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Summary

Tropical forests concentrate a large part of the terrestrial biodiversity, provide impor-

tant resources, and deliver many ecosystem services such as climate regulation, carbon

sequestration, and hence climate change mitigation. While in the current context of an-

thropogenic pressure these forests are threatened by deforestation, forest degradation and

climate change, they also have shown to be, in certain cases, highly resilient and able

to recover from disturbances. Quantitative measures of forest resources and insights into

their dynamics and functioning are therefore crucial in this context of climate and land

use change. Sensors on-board satellites have been collecting a large variety of data about

the surface of the earth in a systematic and objective way, making remote sensing a tool

that holds tremendous potential for mapping and monitoring the earth. The main aim of

this research is to explore the potential of remote sensing for mapping forest attributes

and dynamics. Tropical South America, which contains the largest area of tropical forest

on the planet, and is therefore of global significance, is the regional focus of the research.

Different methods are developed and assessed to: (i) map forest attributes at national

scale, (ii) detect forest cover loss, (iii) quantify land use intensity over shifting cultivation

landscapes, and (iv) measure spectral recovery and resilience of regrowing forests.

Remote sensing data are diverse and multidimensional; a constellation of satellite sensors

collects data at various spatial, temporal and spectral resolutions, which can be used

to inform on different components of forests and their dynamics. To better map and

monitor ecological processes, which are inherently multidimensional, this thesis develops

methods that combine multiple data sources, and integrate the spatial, temporal and

spectral dimensions contained in remote sensing datasets. This is achieved for instance

by assembling time-series to fully exploit the temporal signal contained in the data, or

by working with multiple spectral channels as a way to better capture subtle ecological

features and processes.

After introducing the general objectives of the thesis in Chapter 1, Chapter 2 presents

an approach for mapping forest attributes at national scale. In this chapter, 28 coarse

resolution remote sensing predictors from diverse sources are used in combination with

in-situ data from 220 forest inventory plots to predict nine forest attributes over low-

land Bolivia. The attributes include traditional forest inventory variables such as forest
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structure, floristic properties, and abundance of life forms. Modelling is done using the

random forest approach and reasonable prediction potential was found for variables related

to floristic properties, while forest attributes relating to structure had a low prediction po-

tential. This methodological development demonstrates the potential of coarse resolution

remote sensing for scaling local in-situ ecological measurements to country-wide maps,

thus providing information that is highly valuable for biodiversity conservation, resource

use planning, and for understanding tropical forest functioning.

Chapter 3 presents an approach to detect forest cover loss from remote sensing time-series.

While change detection has been the object of many studies, the novel contribution of

the present example concerns the capacity to detect change in environments with strong

inter-annual variations, such as seasonally dry tropical forests. By combining Landsat

with Moderate Resolution Imaging Spectroradiometer (MODIS) time-series in a change

detection framework, the approach provides information at 30 m resolution on forest cover

loss, while normalizing for the natural variability of the ecosystem that would otherwise be

detected as change. The proposed approach of combining two data streams at different

spatial resolutions provides the opportunity to distinguish anthropogenic disturbances

from natural change in tropical forests.

Chapter 4 introduces a new method to quantify land use intensity in swidden agriculture

systems, using remote sensing time-series. Land use intensity — a parameter known for

influencing forest resilience — is retrieved in this case by applying a temporal segmentation

algorithm derived from the econometrics field and capable of identifying shifts in land

dynamic regimes, to Landsat time-series. These shifts, or breakpoints, are then classified

into the different events of the swidden agriculture cycle, which allows to quantify the

number of cultivation cycles that has taken place for a given agricultural field. The

method enables the production of objective and spatially continuous information on land

use intensity for large areas, hence benefiting the study of spatio-temporal patterns of land

use and the resulting forest resilience. The results were validated against an independent

dataset of reported cultivation frequency and proved to be a reliable indicator of land use

intensity.

Chapter 5 further explores the concept of forest resilience. A framework to quantify

spectral recovery time of forests that regrow after disturbance is developed, and applied

to regrowing forests of the Amazon. Spatial patterns of spectral resilience as well as

relations with environmental conditions are explored. Regrowing forests take on average

7.8 years to recover their spectral properties, and large variations in spectral recovery

time occur at a local scale. This large local variability suggests that local factors, rather

than climate, drive the spectral recovery of tropical forests. While spectral recovery times

do not directly correspond to the time required for complete recovery of the biomass and

species pool of tropical forests, they provide an indication on the kinetics of the early

stages of forest regrowth.
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Chapter 6 summarizes the main findings of the thesis and provides additional reflections

and prospects for future research. By predicting forest attributes country-wide or retriev-

ing land use history over the 30 years time-span of the Landsat archive, the developed

methods provide insights at spatial and temporal scales that are beyond the reach of

ground based data collection methods. Remote sensing was therefore able to provide

valuable information for better understanding, managing and conserving tropical forest

ecosystems, and this was partly achieved by combining multiple sources of data and taking

advantage of the available remote sensing dimensions. However, the work presented only

explores a small part of the potential of remote sensing, so that future research should

intensively focus on further exploiting the multiple dimensions and multi-scale nature of

remote sensing data as a way to provide insights on complex multi-scale processes such

as interactions between climate change, anthropogenic pressure, and ecological processes.

Inspired by recent advances in operational forest monitoring, operationalization of scien-

tific methods to retrieve ecological variables from remote sensing is also discussed. Such

transfer of scientific advances to operational platforms that can automatically produce and

update ecologically relevant variables globally would largely benefit ecological research,

public awareness and the conservation and wise use of natural resources.
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Chapter 1

Introduction



2 Introduction

1.1 When the forest disappeared

Wandering through an ancient Mayan city of Mesoamerica, you may not only witness

remnant of pyramids, temples and other Mayan structures, you are also likely to observe

luxurious tropical vegetation that most would label as pristine forests. But how could this

vegetation be pristine if people have lived in these places? The answer is rather simple;

it isn’t; these forests regrew and are therefore old secondary forests. About 1300 years

ago, during the Mayan late classic Period, Mesoamerica hosted a large population with

some of the largest cities of the region exceeding 100,000 inhabitants (Chase & Chase,

1994). The Maya civilization thrived during this period enabling the development of an

elaborate and complex society organized around multiple large cities. But with such a

high population density, the Mayas also had a large impact on their natural environment

(Wahl et al., 2006). Many of these ancient cities were abandoned following the rapid 150

years collapse of the Mayan classic period, between 750 and 900 AD, giving a chance

for nature to reconquer these territories. Theories attempting to explain the sudden

decline of such a flourishing civilization often highlight the role that deforestation played

in the collapse (Oglesby et al., 2010; Cook et al., 2012). Cook et al. (2012) for instance

explain that large scale deforestation over Mesoamerica would have amplified a long lasting

period of drought resulting in failed harvests, which combined with other political and

social factors, may have led to the collapse (Hodell et al., 1995). While the precise

reason of the collapse will always remain a mystery (there were no scientific instruments

available at that time to record human impact on forests, and its relations to regional

climates and population dynamics), it is certain that: (i) The Maya had a large impact

on their natural environment which in turn affected their livelihood, and (ii) despite

extensive deforestation in the classic period, forests of Mesoamerica recovered. The former

highlights the importance of forests in maintaining our environment and ourselves, while

the latter is a proof that ecosystems are resilient albeit in this case at temporal scales

that are beyond human perception.

Today, tropical forests are once again being put under great pressure by human activities,

and it is urgent to gain insights on the state of our forests and on the various processes

and dynamics that govern them. Such insights and related policy actions are key to

ensure a future with healthy tropical forests and the associated benefits they provide to

humankind. The scientific and technological landscape is obviously very different today

than it was during the peak of the Maya civilization, and these advances might contribute

to gaining the required insight for sustainably managing the forests. It is in this context

that the present thesis takes place, the main objectives of the research being to investigate

the potential and opportunities of remote sensing techniques to map and monitor forest

attributes and dynamics.
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1.2 Forests and their dynamics

With an estimated area of 42 million km2, forests cover approximatively 30% of the

global land surface (Bonan, 2008). Not only do forests cover the majority of the land

surface, they also play an important role in the provision of ecosystem services. With

climate change being at the centre of many international discussions, the role of forests

in regulating global climatic patterns is often particularly emphasized (Stocker et al.,

2014). The mechanism behind this climate regulation role lies in the carbon stored in

the above and below ground biomass of the forests (Saatchi et al., 2011). Removal of

this woody biomass, which is a result of deforestation or forest degradation often co-

insides with atmospheric carbon emissions, which contributes to amplifying the green

house effect and fuels global warming (Bonan, 2008). The latest reports estimate that

tropical forests store 231 Pg of carbon in their biomass (total biomass of 462 Pg)(Avitabile

et al., 2016), and that forest clearing accounts for about 10% of the global CO2 emissions

(Le Quéré et al., 2015). Both biomass stocks and dynamics matter when considering

the climate change mitigation role of forests. Growing forests, with positive net primary

productivity, are often seen as a carbon sinks (Poorter et al., 2016; Chazdon et al., 2016),

using photosynthesis to transform CO2 into sugar, which is then used to produce leaves,

stems and roots. Additionally, forests also contribute to climate regulation at local and

regional scale by cycling water through transpiration (Bonan, 2008). However, local to

global climate regulation is not the only service forests provide. Tropical forests host

a major part of terrestrial biodiversity as shown by the many hotspots they concentrate

(Myers et al., 2000), and recent estimates report the probable presence of 40,000 to 53,000

tree species in tropical regions alone (Slik et al., 2015). Local communities also largely

benefit from the surrounding forests. The livelihood of riverine Amazonian populations

largely rely on their traditional swidden agricultural system — a rotational system that

alternate between forest and agriculture. Their use of the secondary forests as a way to

enhance land fertility and maintain its productivity is an example of such services provided

by forests to local populations (Coomes et al., 2000; Jakovac, 2015). A variety of dynamics

govern the current and future state of forests and their associated services. Deforestation,

forest degradation, urban and agriculture expansion are part of the drivers that threaten

forests and directly result in forest cover loss (Hosonuma et al., 2012). While forests have

the potential to regrow and recover their biomass, structure and species composition, the

speed of this process varies spatially and is influenced by factors such as climate (Poorter

et al., 2016), local environmental conditions, and the intensity of previous disturbances

(Jakovac et al., 2015). All these processes that shape the forests, operate at different

spatio-temporal scales. For instance forest degradation is by definition a very localized

process, as opposed to deforestation which may apply to relatively large areas. Figure 1.1

provides an overview of key forest processes related to forest cover change and forest

response to climate and the spatio-temporal scale at which they occur.
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Figure 1.1: Six key forest processes related to forest cover change and response to climate,

and the spatial and temporal scales at which they occur.

1.3 Observing, measuring and monitoring forests

from space

Remote sensing instruments on-board satellites have been acquiring data of the surface of

the earth in an objective and systematic way for more than 40 years (Goward et al., 2006).

Because they have been collected by a variety of sensors, the data diversity available is

huge, with every dataset having different spatial, temporal and thematic characteristics.

Facing the abundance and diversity of data it provides, remote sensing could be thought

as the ideal tool for addressing most of the mapping and monitoring activities the sci-

entific communities require to better understand, protect and manage forests. However,

sensors on board satellites do not directly collect ecologically meaningful information; for

instance optical sensors, measure radiance, which in itself is not of much use for resource

use and conservation, forest managers, and policy makers. For remote sensing to be a

useful tool for forest mapping and monitoring, there is therefore a need to transform the

raw data collected by the remote sensing sensors into meaningful biophysical variables

and information about ecological and anthropogenic processes. Given the diversity of

remote sensing data available, possibilities to approach every specific mapping objective

are numerous, and choosing the appropriate approach and scale largely depends on the
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process being observed. I briefly introduce below the process of converting raw remote

sensing measurements of vegetation into meaningful biophysical variables, then because

a large part of this thesis implements time-series approach to retrieve forest processes, I

describe some details of using the temporal dimension of remote sensing data, and finally

I elaborate on the multidimensional nature of remote sensing data.

1.3.1 From raw remote sensing data to estimating biophysical variables

The Normalized Difference Vegetation Index (NDVI) is undoubtedly the most notorious

vegetation index derived from optical remote sensing and is an example of a simple yet

widely used biophysical variable (Tucker, 1979). By taking advantage of the difference

in reflectance of green vegetation in the Near Infra-Red (NIR) and red parts of the light

spectrum, the NDVI is an indicator of vegetation greenness and health, and has been

shown to relate closely to the Fraction of Absorbed Photosynthetically Active Radiation

(FAPAR) (Myneni & Williams, 1994). Therefore NDVI, which is a simple transformation

of the raw data gathered by most optical remote sensing sensors, has nearly become a

reference biophysical variable in itself and has acquired a certain legacy among remote

sensing scientists and ecologists. However, NDVI is not always sufficient, so that more

elaborated methods have been developed for extracting other forms of information from

remote sensing data. Remote sensing has gone a long way since NDVI was invented and

methods have been developed that are able to retrieve parameters ranging from energy

fluxes (Running et al., 2004), to tree level functional traits (Asner et al., 2014b), tree

cover dynamics (Hansen et al., 2013), and landscape structure (Broadbent et al., 2008a).

Some of the most advanced methods for ecological applications include the work of Asner

and his collaborators (Asner et al., 2007; Asner & Martin, 2008; Asner et al., 2014b).

Their work, by combining Light Detection And Ranging (LiDAR) with hyperspectral

optical data, enables detailed mapping of functional traits at the level of individual trees.

Such work currently represents the state of the art in terms of ecological applications of

remote sensing. Although global deployment of these technologies remains at the moment

prohibitively expensive, these examples provide an outlook on what may become possible

in the future. The potential for mapping ecological processes with freely and globally

available data is evidently more limited, however, the scientific community has already

largely taken advantage of this abundant source of data to develop applications relevant to

forest mapping. There is for instance a large body of work on forest cover loss, detection

with Landsat time-series, which is presented in the next paragraph.

1.3.2 Time-series approaches for monitoring forest dynamics

Dynamics refer to change in properties over time, so that forest dynamics and processes

contain an obvious time dimension, and therefore require the use of time-series approaches
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to be measured. Assembling time-series from remote sensing data is possible, and many

recent remote sensing advances aimed at mapping of forest dynamics have used time-series

assembled from Landsat data for their analysis. Landsat is a constellation of satellite

carrying multispectral sensors that have delivered data of the surface of the earth at

30 m resolution for more than 40 years (Roy et al., 2014). The sub-hectare resolution

combined with multi-spectral characteristics, the availability of repeated measurements

of a same area since the 1970s, and free access makes Landsat data the ideal dataset

for investigating forest dynamics from local to global scale (Wulder et al., 2012). More

specific uses of Landsat for forest dynamics include deforestation monitoring (Zhu et al.,

2012; DeVries et al., 2015b; Dutrieux et al., 2015), temporal trajectories analysis (Huang

et al., 2010; Kennedy et al., 2010; Dutrieux et al., 2016) and forest regrowth (DeVries

et al., 2015a; Hansen et al., 2013). Today, Landsat data are even taken to the operational

level with as an example the recent development of a near real time deforestation alert

system (Hansen et al., 2016).

One challenging aspect of investigating changes in vegetation time-series is that vegetation

is constantly changing as part of a its natural seasonal dynamics, associated with cold

periods in the temperate zone, and dry periods in the tropical zone. Whether it is to

study trends, shifts in temporal trajectories, or abrupt changes, or other anthropogenic

processes, it is therefore important to account for vegetation seasonality. Seasonality was

taken into account in this thesis by using time-series regression modelling of the seasonal

behaviours (Verbesselt et al., 2010b,a). Although this thesis did not make extensive use of

these sensors in a time-series context, potential to study vegetation dynamics and process,

particularly at regional and global scale, extends beyond Landsat. Coarse resolution data

collected by sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS)

or Advanced Very High Resolution Radiometer (AVHRR) have been used to study global

vegetation trends (de Jong et al., 2011) or vegetation response to climate change (Jong

et al., 2013).

1.3.3 Remote sensing: towards a multi-dimensional approach

Figure 1.1 presents six forest dynamical processes along two, spatial and temporal, axes.

Because they occur at different spatial and temporal scales, these forest dynamics contain

at least two dimensions. Additionally, the dynamics involve a continuous development

of different characteristics of the forests. For instance, when forests regrow, biomass

increases, together with changes in horizontal and vertical structure, as well as species

composition. Because of these multiple aspects changing in both space and time, forest

dynamics can be perceived as a multidimensional process. Remote sensing data are mul-

tidimensional too. First, the spatial dimension is ubiquitous in remote sensing data. In

the case of optical sensors, radiance is exhaustively sampled in space, at varying resolu-

tions, depending on the sensors characteristics. Secondly, the same areas are measured
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repeatedly over time, enabling the data to be assembled in time-series. Remote sensing

data therefore contain a temporal dimension, which is particularly required when studying

dynamics. Thirdly, optical remote sensing instruments collect data for a range of spectral

channels, making the spectral domain the third remote sensing dimension. The structure

and chemistry of the observed targets define the amount of light they reflect at vari-

ous wavelengths, and therefore their spectral signature (Knipling, 1970; Curran, 1989).

Lastly, the variety of sensors and technologies that acquire data constitute a fourth re-

mote sensing dimension, which I call here thematic dimension. The different families of

sensors (i.e. optical, radar, and Light Detection And Ranging (LiDAR)) inform on dif-

ferent elements of an observed area. In the case of forest for instance, the optical signal

is mainly influenced by the structure and the chemistry of the upper canopy elements,

while the radar signal penetrates deeper in the canopy and informs on the structure of

woody components, and LiDAR retrieves information about the vertical structure of the

forest. Remote sensing data are therefore multidimensional, as they are composed of four

dimensions, namely the spatial, temporal, spectral, and thematic dimension. Taking ad-

vantage of these multiple dimensions and the synergies that exist between them to better

capture ecological processes is a general objective of this thesis.

1.4 Problem statement and research objectives

The Amazon contains the largest area of tropical forest on the planet and it plays a major

role in carbon sequestration, water cycling, and biodiversity preservation. However, in

the current context of climate and land use change, tropical forests and the services they

deliver are under great pressure. Forest dynamics, such as deforestation, forest regrowth

and forest response to climate change, largely determine the state of the present and fu-

ture forests and the services they deliver. Deforestation for instance has a direct impact

on the carbon cycle and often results in biodiversity loss. Following deforestation, the use

that is made of the land determines whether or not a secondary forest will replace the

original forest. When given the chance, the capacity of a forest to recover is determined

by its resilience, which depends on many natural and anthropogenic factors. In swidden

agriculture systems for instance, resilience is largely determined by the frequency of pre-

vious events of forest slashing and burning. Because the existence and state of forests is

so intertwined with forest dynamics, we must gain further insights on current states of

forests and processes that govern them, so that we can ensure successful use, conservation

and management of forest resources, as well as effective policy actions aiming at conserv-

ing them. Although, remote sensing offers a tremendous potential to map forest resources

and monitor the dynamics that govern forest state, a large part of its potential remains

un-explored. There is a need to develop innovative remote sensing methods that are able

to provide assistance for forest resources accounting by mapping forest state, and that

can provide spatio-temporal information on forest dynamics. The main objective of this
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Figure 1.2: Graphical representation of the four core chapters of this thesis relatively to

forest dynamics. The ellipses indicate the chapters, the boxes represent the two, forested and

unforested, states, and the arrows symbolize the dynamic processes involved in the transitions

betweens these states.

thesis is to explore remote sensing approaches that combine multiple remote sensing di-

mensions for better mapping of tropical forest resources and monitoring of various forests

dynamics. This is done by developing and assessing the potential different innovative

approaches that combine in-situ and remote sensing data and make use of methods from

the machine learning and the econometrics fields.

1.5 Thesis overview

The presentation of the work I conducted is articulated around six chapters, four of which

are direct research results presented in the form of scientific publications. As described

earlier, the work and methods developed was done for tropical forests, with a regional focus

on South America. The outline of the four core chapters is summarized in Figure 1.2.

Chapter 2 concentrates on national scale mapping of forest attributes. I have developed
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and tested an approach that combines in-situ forest inventory data with coarse resolution

remote sensing from multiple sources to predict and map forest attributes. I tested the

approach over lowland Bolivia using in-situ data from 220 permanent plots from Bolivia’s

national forest inventory for model training and validation. By combining these 220 plots

data with 28 remote sensing derived predictors I assessed the prediction potential for nine

forest attributes relating either to forest structure, floristic properties, and abundance of

life forms.

Chapter 3 focuses on automatic detection of forest cover loss using remote sensing time-

series. More specifically, I developed and assessed the performances of a forest cover

change monitoring approach tailored at forests with a large inter-annual variability in their

seasonal cycle. Tropical dry forests commonly present such features so that I developed

and assessed the approach over a small area of tropical dry forest in lowland Bolivia.

The innovativeness of the approach lies in the combined use of two data streams at

different resolutions enabling human induced change to be distinguished from natural

dynamics.

Chapter 4 extends the work on forest dynamics by not only looking at tree cover loss

but by retrieving forest cover trajectories over the last 30 years. Temporal trajectories,

which are the result of a temporal segmentation algorithm, are used to quantify the

intensity with which the land was used in a swidden agriculture rotational cultivation

system. Land use intensity in these systems largely influences the capacity of the forests

to regenerate, so that the land use intensity estimates returned by the method provide

spatial information relating to forest resilience. The study area used for developing and

validating this method is located in the Brazilian Amazon, where swidden agriculture is

the cultivation type that dominates the landscape around riverine Amazon villages.

Chapter 5 continues with temporal trajectories and forest resilience. In this chapter I ap-

proached regrowing forests of the Amazon basin with a fully specto-temporal perspective.

This approaches allows to investigate how spectral recovery dynamics vary spatially and

relate to climatic conditions.

Finally the thesis concludes with a synthesis chapter that provides an overview of the

main findings and their implications. It provides a case for the need of a multidimensional

remote sensing approach, and it gives recommendations and prospects for the future of

ecological applications of remote sensing.





Chapter 2

Country wide mapping of forest

diversity and structure

This chapter is based on:

Dutrieux, L. P., Poorter, L., Equihua, J., Ascarrunz, N., Herold, M., Peña-Claros,

M., Roerink, G., Toledo, M. & Kooistra, L. (2016). Country wide mapping of for-

est diversity and structure by combining forest inventories with remote sensing. In

prep.
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Abstract

Species conservation, international initiatives and research in forest ecology can greatly

benefit from maps of forest attributes. While national forest inventories have contributed

large amount of data covering different areas in the tropics, high costs and various difficul-

ties associated with data collection prevent a wide coverage in space and time. The present

study explores the potential of moderate resolution remote sensing to predict forest at-

tributes, with the purpose of producing spatially continuous maps for entire countries or

even larger regions. Using a set of 28 globally available remote sensing layers and in-situ

data from a network of 220 permanent plots, we predicted for every 1 km2 covering low-

land Bolivia forest inventory variables related to forest structure, floristic composition,

and the abundance of functional groups. The whole modelling approach consists in (i)

extracting the data contained in pixels overlapping with in-situ sites location, (ii) training

a Random Forest regression and (iii) predicting the response variable for every pixel cov-

ering lowland Bolivia. We assessed model performances for nine response variables and

found strong predictive power for floristic composition variables (proxies of species compo-

sition and richness from a list of 100 reliably identified species), but limited potential for

forest structure variables (e.g. tree density, basal area). We explain the limited potential

to predict forest structural properties by a strong disconnection between the attributes

measured via optical remote sensing and the response variables considered. Following a

variable selection step we found phenology, Leaf Area Index (LAI), and surface reflectance

to be highly represented in the list of important predictors, making them key predictors

for remote sensing based forest floristic properties modelling. The floristic composition

maps present coherent spatial patterns, following the well known rainfall and environmen-

tal gradients of lowland Bolivia. Such maps of species composition and diversity and the

approach we propose can greatly benefit the ecological understanding of tropical systems

as well as contribute to conservation initiatives. Our methodological approach allows the

scaling of in-situ ecological measurements for national-scale mapping activities and en-

ables the production of information highly valuable to biodiversity conservation and our

understanding of tropical forest functioning.
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2.1 Introduction

Tropical forests cover about 30% of the continental surface of the earth (Bonan, 2008),

concentrate a large part of terrestrial biodiversity (Pimm et al., 2014) including 96% of

the global tree species (Fine et al., 2009), and play a major climate regulation role via the

carbon they store in their biomass (Stocker et al., 2014). It is crucial, for conservation,

resource use, international commitments on green house gases emissions and biodiversity,

as well as for understanding mechanisms that drive the organisation of tropical forests,

to map and monitor species composition, richness, and forest structure (Watt, 1947;

Chave, 2008; Sexton et al., 2015). Forest inventories data have been for a long time

the only source to address these questions (Ter Steege et al., 2006; Poorter et al., 2015),

however, particularly in tropical regions, these are often difficult and expensive to acquire

due to remoteness and low accessibility. Combining forest inventory data with remote

sensing might provide a solution to these constraints. Since the 1970s, a variety of remote

sensing instruments orbiting the earth have been systematically acquiring large amounts

of data, covering every location of the earth. Such data streams therefore provide a great

opportunity to map forest variables with large spatial coverage and high spatial detail

while maintaining low costs.

However, one important challenge with satellite-based forest attribute mapping is that

remote sensing measurements do not directly translate into ecologically meaningful vari-

ables (Skidmore et al., 2015). Optical sensors for instance measure reflected light, which

in itself is not a useful trait for forest conservation or management. The raw information

acquired by the sensors can sometimes be transformed into meaningful biophysical vari-

ables (Asner & Martin, 2008; Asner et al., 2014a,b). Asner and colleagues for instance,

used a combination of hyper-spectral data and light Detection and Ranging (LiDAR) to

produce detailed maps of vegetation types in tropical forest ecosystems (Asner & Mar-

tin, 2008), or retrieve plant chemical properties and other functional traits (Asner et al.,

2014a,b). Using a similar approach, Fricker et al. (2015) were also able to predict tree

species richness for a small area in Panama. While these studies show major scientific and

technical advances, they use technologies whose cost currently prevent their use beyond

the local scale. Remote sensing products, techniques, and potential vary along with the

spatial scale, so that small areas may benefit from detailed and highly accurate measure-

ments (Asner et al., 2014b), while globally available datasets provide different variables

and at a resolution reduced in nearly all dimensions (spatial, spectral and thematic). The

potential to map similar ecologically relevant variables over large areas therefore remains

to be explored (Pereira et al., 2013). Also, facing the great amount and diversity of data

accumulated by various remote sensing technologies over time (Justice et al., 2002), it is a

challenge to mine that archive and identify which information is relevant for the purpose

of characterising forest ecosystems.
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In this paper we assess the potential of moderate resolution remote sensing to predict forest

attributes at a national scale. We present and assess an empirical approach to predict

various forest attributes using multiple remote sensing variables. As an example, we

used a forest inventory dataset from Bolivia — a highly diverse tropical country (Navarro

& Maldonado, 2002) — in which different forest attributes (forest structure, floristic

composition, abundance of functional groups) all having an ecological relevance, were

inventoried across the country. Knowledge on floristic properties (species composition

and tree diversity) is important for conservation and ecosystems functioning as species

affect ecosystem processes through their traits (Finegan et al., 2015; van der Sande et al.,

2015). Functional groups of palm, liana, and trees have received increasing attention

over the past decade; palm because they are hyperdominant species (Ter Steege et al.,

2013) and provide non-timber forest products, lianas because they constitute up to 30%

of canopy leaf, compete strongly with trees, and are thought to increase worldwide in

abundance (Schnitzer & Bongers, 2011), and emergent trees, because they lock up a

disproportional part of forest biomass (Slik et al., 2013) and are especially sensitive to

severe droughts, resulting in canopy dieback (McDowell & Allen, 2015). Finally, forest

structure is important for timber availability, leaf layering and carbon gains.

We use this in-situ collected forest inventory dataset as training data for a Random For-

est based modelling and prediction of the forest attributes, and provide a set of essential

remote sensing variables for modelling forest attributes. Our methodological approach

allows the scaling of in-situ ecological measurements for national-scale mapping activ-

ities and as such enables the production of information highly valuable to biodiversity

conservation and our understanding of tropical forest functioning.

2.2 Material and methods

2.2.1 In-situ data

The in-situ dataset used for linking the remote sensing covariates to forest attributes orig-

inates from the Bolivian network of permanent sample plots (Figure 2.1). The network

comprises 220 1 ha plots spread across lowland Bolivia’s forests and distributed along the

main climatic and environmental gradients of the area. Stem diameter, height, species

name, crown position and liana infestation were recorded for each tree with a stem di-

ameter at breast height (DBH) > 10 cm, and derived information at plot level, such as

basal area, tree density and species richness, was computed. A thorough description of

the in-situ data used can be found in Toledo et al. (2011b) and Toledo et al. (2011a) for

structure and floristic composition respectively.

We selected nine variables related to forest structure and floristic composition that are
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important for forest functioning (Spies, 1998; Schnitzer & Bongers, 2002; Chave, 2008;

Poorter et al., 2015), and biomass stocks (Ketterings et al., 2001). Structural variables are

basal area (m2.ha−1), mean stem DBH (cm), and tree density (#.ha−1). Variables that

refer to abundance of functional groups are liana infestation (mean relative infestation

based on an ordinal scale ranging from 0 to 5), density of emergent trees (trees with

their crown above the mean canopy level) (#.ha−1), as well as densities of palm and trees

(#.ha−1). Floristic variables are represented by species richness and composition; both

variables are derived from a subset of 100 species with reliable taxonomic identification

that occured at least in 5% of the plots. The use of this subset of species allowed identifying

the patterns of floristic variation in lowland Bolivia (Toledo et al., 2011a). Toledo et al.

(2011a, 2012) used a Detrended Correspondence Analysis (DCA) (Hill & Gauch Jr, 1980)

to summarize the species composition of the plots into two continuous variables (or DCA

axes). We refer to the two DCA axes retained as species composition first and second

axes. See Toledo et al. (2011a) for interpretation of the DCA ordination scores reported

in the present study. Although we expect richness derived from this restricted list of

species to reflect patterns of total species richness occurring in lowland Bolivia (Toledo

et al., 2011a), the variable should be interpreted as a proxy for species richness rather

than absolute species richness. We therefore rescaled the variable from absolute species

counts to a relative index from 0 to 1, and refer to it as richness100.

2.2.2 Study area

Our in-situ dataset did not include highland areas, forests from the Gran Chaco or zones

with low canopy cover such as savannah (Toledo, 2010), we therefore focused on areas

below 500 m above sea level and with a tree cover (as measured by MODIS percentage

tree cover (Hansen et al., 2003)) higher than 40%. We excluded the Gran Chaco (south of

the country) from the analysis using the map of terrestrial ecoregions of the world (Olson

et al., 2001). Such forests are displayed in dark grey in Figure 2.1 and cover an area of

360,000 km2 (about 33% of the country).

2.2.3 Statistical modelling approach

The present study predicts various forest attributes measured at forest plots using multi-

variate statistical modelling applied to multiple remote sensing layers. In-situ data are

thereafter referred to as response variables while the various remote sensing layers are

referred to as predictors. One can distinguish four approaches to model biophysical vari-

ables; physically based, parametric regressions, non-parametric regressions, and hybrid

approaches (Verrelst et al., 2015). Here we apply a non-parametric approach because it

does not require pre-established relationships amongst variables (Rivera Caicedo et al.,

2014; Verrelst et al., 2015). We chose the Random Forest approach for modelling the
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Figure 2.1: Map of Bolivia. The green markers represent the location of the sites for which

in-situ data were available for this study. 220 forest sites were used in total but spatial

clustering of sites result in overlapping markers. Areas in dark grey correspond to forest range

considered for prediction of modelled parameters (MODIS tree cover greater than 40% and

elevation below 500 m).

response variables based on a set of remote sensing based predictors. Random Forest is

an ensemble learning method, developed by Breiman (2001) and widely used in many

scientific fields, including the field of remote sensing (Pal, 2005; Avitabile et al., 2012;

Laurin et al., 2014; Gessner et al., 2013). It can be used for both classification and re-

gression problems and works by building multiple regression or classification trees from

bootstrapped training samples (Breiman et al., 1984). The output of these trees are then

aggregated by means of a model averaging in the regression case. This approach is called

bootstrap aggregating, or bagging, and aims at increasing the model stability and ac-

curacy (Breiman, 1996, 2001). Random Forest is a good choice for exploratory studies

since it is able to cope with datasets that potentially contain many irrelevant predictors,

and it performs reasonably well without the need to proceed to a variable pre-selection
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(Svetnik et al., 2004). The bootstrapping approach used by Random Forest allows for the

production of Out Of Bag (OOB) estimates of error which can be used for performance

assessment of the model (Breiman, 2001; Liaw & Wiener, 2002). An additional output of

Random Forest is the variable importance, which is computed by permuting the observa-

tions for a given predictor and measuring the effect of this permutation on the response

variable prediction (Breiman, 2001; Svetnik et al., 2004). Such variable importance can

later be used for selecting subsets of important predictors, and understanding of relations

between response variables and predictors.

If a given model has a sufficient predictive power, as measured by the performance metrics,

we can ultimately use it for predicting the response variable in a spatially continuous way,

hence producing maps of the forest attribute of interest.

In addition to investigating the absolute potential to predict certain forest attributes,

we aim in this paper to provide a parsimonious approach for such prediction approach

applied to questions in forest ecology, management and conservation. While some of the

remote sensing layers used in this study can be easily obtained and require little to no

pre-processing (e.g., tree height), other predictors can be time and resource consuming

to download and prepare. We therefore proceeded to a selection of the most important

predictors for such modelling exercise, so that preparatory work can be minimized to

the essential inputs for future studies. To select the variables, we used the variable

importance returned by Random Forest as starting point and iteratively reduced the

number of predictors in increasing variable importance order, re-computing the Mean

Squared Error (MSE) for each new reduced model (Svetnik et al., 2004). The rationale

of the approach is that removing irrelevant predictors will have little to no effect on the

model prediction power while an increase in MSE should be observed once the important

predictors start being removed. We therefore applied this procedure for a set of selected

response variables, identified points of increase in MSE and derived reduced models for

these response variables.

2.2.4 Remote Sensing predictors

We selected a set of layers to use as predictors for modelling the forest variables described

above. Although the approach is empirical, we expect the selected set of predictors to

either directly relate to some response variables (e.g. tree cover and tree density), or to

indirectly have an influence on them (terrain metrics with palm density). As such we

selected a set of fluxes, structure related variables and topography metrics as the full set

of remote sensing predictors (Table 2.1). Because we aim the approach to be repeatable

for different locations in the tropics, we worked only with globally available or continental

remote sensing products. Each of the products used is presented below, together with the

required pre-processing steps, and the rationales for including it as a predictor are briefly
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justified. For consistency across variables, all remote sensing layers were re-sampled to

1 km resolution. While most of the predictors are available for multiple dates (MODIS

time-series are 15 years long for instance), we selected 2005 as the year of reference for all

remote sensing products because the tree height dataset was only available for that year,

and because the in-situ measurements occurred between 2002 and 2007 (Toledo, 2010).

We do not expect small difference in timing between the in-situ measurements and the

remote sensing observations to have a significant influence on the resulting predictions;

the coarse nature of the predictors likely reflect the general state of the ecosystems rather

than their condition at a given time.

MODIS products

A large part of the remote sensing predictors used in the present study are derived from

the two MODIS sensors (Terra and Aqua), which collect daily optical data globally about

land, oceans and the atmosphere (Justice et al., 2002). Data is collected, depending on the

spectral characteristics at a resolution of 250 to 500 m. The moderate spatial resolution,

coupled with daily revisit capabilities makes MODIS particularly suited to global scale

analysis. Repeated measurement can be assembled in time-series for mapping dynamics

while the spatial resolution makes data volumes relatively easy to handle without requiring

supercomputing facilities. MODIS has a wide array of applications (Justice et al., 2002),

and has been used in many global studies, from modelling biophysical variables (He et al.,

2012) to vegetation trends and dynamics studies (Morton et al., 2005; Dutrieux et al.,

2012). While the original raw data collected by the MODIS instruments is radiance,

a number of higher level products are derived from these data and distributed by the

United States Geological Survey (USGS) for public use. In the present study, we are

using both the surface reflectance, corrected for Bidirectional Reflectance Distribution

Function (BRDF) effects, and a set of higher level MODIS products. MODIS products

are generally delivered with quality control information, meaning that every pixel contains

not only the values of the variable of interest but also information on the reliability of such

value. Data were systematically filtered using this quality control information, retaining

good quality data only. This section describes the standard MODIS products produced

on an operational basis by the USGS and directly available via their Distributed Active

Archive Center (https://lpdaac.usgs.gov/).

Surface Reflectance When light illuminates vegetation, it is partitioned into three

components; part of the light is absorbed and used to power photosynthesis, another part

is transmitted, and the remaining part is reflected (Anderson, 1966). The reflected part of

the light partitioning is what optical sensors on-board satellites are measuring. Such light

partitioning, which varies along with the wavelengths, depends on the chemistry and the

structure of the vegetation (Knipling, 1970; Curran, 1989). Hence differences in chemistry
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and structure, which are likely to occur among different tree species associations and

forest types, should result in different spectral signatures (Asner et al., 2014b). Surface

reflectance measured by MODIS is delivered as a remote sensing product by the USGS

in the form of 16 days composites, meaning that 22 measurements of surface reflectance

are available for every location throughout the year (Strahler et al., 1999). In order to

limit the amount of data usage, we used for each pixel independently, two observations

of surface reflectance for each of the seven spectral bands. We used the two extremes of

the season (peak of the growing season and lowest point of the season) derived from the

HANTS phenology dataset (method described later in section 2.2.4) as reference dates for

selecting the two observations of surface reflectance considered. In order to increase the

stability of the reflectance values and reduce the probability of cloud cover contamination,

we built trimestrial average value composites centered around these two dates for each

spectral band. Given that seven spectral bands are available and that two predictors

corresponding to the surface reflectance during high and low season are derived for each

band, 14 predictors related to surface reflectance are derived from this dataset (Table 2.1).

Predictors are named SRnmin, SRnmax, where min and max correspond to the low and

high seasons (peak and lowest point in photosynthetic activity annual profile) respectively

and n is the spectral band index.

Net Primary Production (NPP) (KgC.m−2) Satellite based annual estimates of

NPP are an indicator of forest productivity and carbon assimilation. The USGS pro-

cesses and delivers annual NPP values following the algorithm described in Running et al.

(2004).

Leaf Area Index (LAI) (m2
plant/m

2
ground) LAI plays an important role in ecosystem

processes such as transpiration, light and rainfall interception or photosynthesis (Maass

et al., 1995); it is therefore an important structural characteristic of forest canopies. LAI is

provided as a high level MODIS product for every eight day period of the year (Knyazikhin

et al., 1999), resulting in 45 yearly LAI estimations. We reduced this LAI time-series to

one value by calculating the median LAI value of the year.

Percentage tree cover Percentage tree cover, or Vegetation Continuous Fields (VCS),

is the percentage of closed canopy projected on a horizontal plane (Hansen et al., 2003).

We therefore expect this predictor to relate to structural attributes such as tree density.

Apart from being a predictor, we used the percentage tree cover to constrain the spatial

prediction range to forest areas only (Figure 2.1).
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Tree height

A lot of attention has been given to satellite-based tree height recently, particularly for

the task of forest above ground biomass estimations (Saatchi et al., 2011). Beside being

an essential variable in biomass estimations (Ketterings et al., 2001), height plays an

important functional role at the individual tree level (Poorter et al., 2006). Here we

use an average canopy height dataset, available globally at 1 km resolution, generated

by combining measurements from the Geoscience Laser Altimeter System (GLAS) with

environmental modelling (Simard et al., 2011). Unlike MODIS derived products, tree

height, which requires LiDAR technology to be estimated, is only available for one point

in time (2005).

Canopy clumping

Canopy clumping is a direct measure of canopy structure and heterogeneity that quantifies

the level of foliage grouping. By taking advantage of the effect of canopy structure on the

BRDF of light estimated from multiple MODIS observations, He et al. (2012) were able

to retrieve a canopy clumping index at 500 m resolution globally.

Harmonic Analysis of Time-Series (HANTS) phenology

This dataset generated by fitting a Fourier series on a Normalized Difference Vegetation

Index (NDVI) MODIS time-series reflects changes and cycles in vegetation photosynthetic

activity (Roerink et al., 2003). Here we applied an improved version of the HANTS al-

gorithm that uses inter-annual NDVI composites to generate a reference dataset hence

making the method suitable to areas with high cloud coverage. The relevance of phe-

nology and seasonality has been demonstrated in many studies and deciduousness is

commonly accepted as a major functional trait of forest ecosystems (Chambers et al.,

2007). Ter Steege et al. (2006) also found a concurrence between dry season length and

variation in genus composition, suggesting that seasonal dynamics may contribute to the

mapping of forest floristic attributes. Rather than one value, several variables, charac-

terizing the intra-annual dynamics of vegetation productivity, can be extracted from the

HANTS phenology dataset. Here we use the seasonal amplitude in NDVI (displayed in

Figure 2.2 for illustration), the duration of the vegetation production season, the minimum

and maximum NDVI values as well as the yearly average NDVI as predictors.

Terrain metrics

Topography may be an important factor to consider when attempting to predict vegetation

structure and floristic composition. It is well known for instance that altitude, slope and
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Figure 2.2: Map of NDVI intra-annual amplitude (HANTS phenology dataset) covering the

forested areas of lowland Bolivia.

aspect affect micro-climatic conditions such as temperature, amount of incoming radiation

or water retention capacity of an area. These micro-conditions may in turn affect the life

forms and species composition of a forest and the development of established individuals

(Emilio et al., 2014). We computed, using the global elevation dataset from the Shuttle

Radar Topographic Mission (SRTM) (Farr et al., 2007), slope, aspect (Horn, 1981), and

Terrain Ruggedness Index (TRI) (Wilson et al., 2007), for every 1 km2 pixel covering

Bolivia.

2.2.5 Variables extraction

To train the Random Forest model, we first need to bring predictors and response variables

together. For this data extraction step, we spatially overlayed predictors and response

variables and extracted the predictor values corresponding to the pixels overlapping with



2
2

C
o
u
n
tr
y
w
id
e
m
a
p
p
in
g
o
f
fo
re
st

a
tt
ri
b
u
te
s

Table 2.1: Detail of the eight remote sensing variables used in the present study. Each row corresponds to a variable from which we

derived at least one predictor. In addition to the specific pre-processing steps described in the table, all predictors were re-projected

to a common projection and re-sampled to 1000 m spatial resolution. NPP and LAI correspond to Net Primary Production and Leaf

Area Index respectively.

Variable Origin Product name Original Spatial

Resolution (m)

Specific

preprocessing

Number of

predictors

References

Surface Reflectance MODIS MCD43A4 500 average value

composite

centered around

peak and min

of season

14 Strahler et al.

(1999)

NPP MODIS MOD17A3 1000 - 1 Running et al.

(2004)

LAI MODIS MCD15A2 1000 Compute

annual median

1 Knyazikhin

et al. (1999)

Tree cover MODIS MOD44B 250 - 1 Hansen et al.

(2003)

Tree height GLAS

MODIS

- 1000 - 1 Simard et al.

(2011)

Canopy clumping MODIS - 1000 - 1 He et al. (2012)

Phenology metrics MODIS HANTS

phenology

250 - 5 Roerink et al.

(2003)

Terrain metrics SRTM SRTM DEM 90 - 4 Farr et al.

(2007); Horn

(1981); Wilson

et al. (2007)
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Figure 2.3: Schematic overview of the proposed methodology applied to each response vari-

able.

the in-situ site locations (Figure 2.3). When several sites would fall within the same

1 km pixel, we averaged the values of the response variable. This necessity to spatially

aggregate neighbouring forest plots reduced the amount of training sites from 220 to

104. Connecting a 1 km2 (100 ha) surface to a 1 ha plot requires that an assumption

be made about the representativeness of the plot with respect to its surroundings. Such

assumption would most certainly be violated in a heterogeneous landscape (Woodcock &

Strahler, 1987), in which case alternative approaches using landscape stratification could

be used (Baccini et al., 2007). However, in the present case, the way plots were established

ensures that they are at least surrounded by a forest matrix.
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2.2.6 Measures of accuracy

To evaluate the performance of the Random Forest model, we used a set of measures of

model performance. All accuracies are calculated from the estimates of error derived from

the Out Of the Bag (OOB) predictions (Breiman, 2001; Liaw & Wiener, 2002). The OOB

predictions correspond to the predicted values of the response variables; error rates can

therefore be computed by subtracting observed value of the response variable to these

OOB predictions.

Following that, the different metrics used can be calculated as follows:

RMSE =

√

∑

(ŷi − yi)2

n
(2.1)

where ŷi and yi are the predicted (OOB) and observed values respectively for the ith

sample of the response variable, and n represents the total number of observations.

The Root-Mean-Square Error (RMSE) provides an estimate of the prediction error, ex-

pressed in the unit of the variable. While it is a reliable metric to compare the predictive

power of different models applied to the same response variable, its use for assessing a sin-

gle model predictive performance is limited. We therefore also computed the normalized

version of the RMSE, which is defined as:

NRMSE =
RMSE

σy

(2.2)

where σy is the standard deviation of the observed variable.

The Normalized RMSE (NRMSE) is unit-less and can be interpreted as the proportion

of residual variance, which is the variance not explained by the model when predicting

new values.

Additionally, we computed Modelling Efficiency (EF ) (Mayer & Butler, 1993; Loague

& Green, 1991), which is a dimensionless metric that varies between -infinite and 1 and

expresses the proportion of variance explained by the 1:1 line. When varying in the 0–1

range, EF can be interpreted similarly to the coefficient of determination (R2), meaning

that higher values reflect better model performance, while negative values suggest very

poor prediction performance.

EF is calculated as follow:

EF = 1−
∑

(yi − ŷi)
2

∑

(yi − ȳ)2
(2.3)
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Finally, to assess whether systematic patterns of over or under estimation exist in the

model predictions we computed for each in-situ variable a Bias, which is computed as

follows:

Bias = ˆ̄y − ȳ (2.4)

where ˆ̄y and ŷ correspond to predicted and observed mean respectively.

For the variable selection step (Svetnik et al., 2004), Mean Squared Error (MSE), calcu-

lated using five fold cross validation instead of OOB estimates of error, is used. Svetnik

et al. (2004) explains with further details why using OOB estimates of error would be

biased for this step specifically. MSE can be calculated using the following equation:

MSE =
1

n

∑

(ŷi − yi)
2 (2.5)

2.3 Results

2.3.1 Model performance

In order to assess the maximum achievable performances, we evaluated for each of the

nine response variables the modelling potential by running a Random Forest model using

all 28 predictors. Because these measures are generated with an unrestricted number

of predictors we can refer to them as absolute modelling potential. Figure 2.4 presents

the performance of the predictions for all response variables. A first observation of the

modelling results reveals three levels of performance, associated with variables related to

floristic composition, functional groups and structural variables. Floristic variables show

the highest potential (with EF values ranging from 0.65 to 0.97), followed by functional

groups (EF between 0.16 and 0.66) and structural variables (EF between 0.14 and 0.37).

Modelling potential appears to be particularly high for floristic variables suggesting that

different species associations result in differences in canopy structure, chemistry and phe-

nology, making them distinguishable using our approach. We selected response variables

with EF higher than 0.5 (Table 2.2) for interpretation, selection of essential predictors

and further analysis.

2.3.2 Selection of essential predictors for floristic variables and palm density

prediction

To identify a set of essential remote sensing variables for predicting the floristic properties

and palm density, we carried out a model reduction. An example of the procedure used
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Figure 2.4: Scatter plots of prediction performances for the species composition axes 1 (a)

and 2 (b), richness100 (c), palm density (d), emergent density (e), liana infestation (f), basal

area (g), tree density (h) and mean DBH (i). Richness100 is a proxy of species richness based

on 100 species with reliable taxonomic identification that occured in at least 5% of the plots.

Each dot corresponds to an observed in-situ value for which the observation is confronted to

the random forest prediction of the corresponding pixel. The diagonals are the 1:1 lines, so

that wider spread around these lines indicates lower prediction performances. The top panels

refer to floristic variables, the middle panels to functional composition, and the bottom panels

to forest structure. All variables apply to trees with a stem diameter at breast height > 10 cm.

is illustrated in Figure 2.5, where the case of increase in MSE with decreasing number

of predictors used for richness100 modelling is presented. Starting from a full model

(28 predictors, right side of Figure 2.5) the MSE is computed for each reduced model,

discarding variable in increasing importance order. In this particular example, a large

increase in MSE is observed when reducing from seven to six predictors, resulting in an
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Table 2.2: Summary of prediction performances (RMSE, NRMSE, EF, and Bias) for all

response variables modelled using the Random Forest algorithm and using all remote sensing

predictors available. Rows with asterisks (*) are response variables retained for further analysis

and prediction.

Variable RMSE NRMSE EF Bias

Species composition first axis * 5.38 0.17 0.97 0.02

Species composition second axis * 9.33 0.37 0.86 -0.05

Richness100 * 0.04 0.59 0.65 0.00

Palm density * 31.11 0.58 0.66 0.76

Emergent density 37.62 0.85 0.27 1.78

Liana infestation 0.26 0.91 0.16 0.00

Total basal area 3.68 0.79 0.37 0.04

Tree density 62.24 0.92 0.14 -0.72

Mean DBH 1.81 0.82 0.32 0.03
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Figure 2.5: Example of decrease in MSE when removing variables ordered by increasing

importance. In total 28 variables are considered. This particular example illustrates the case

of the richness100 variable, and an inflexion point can clearly be seen at 7 variables.

optimal reduced model containing the seven most important predictors.

The most important predictors for the four response variables retained are presented in

Table 2.3. Surface reflectance and phenological metrics account together for 10 out of the

15 essential predictors. HANTS NDVI amplitude and NPP are the two only predictors

contributing to the modelling of three out of the four response variables retained; making

them key predictors for forest inventory modelling. Two terrain metrics — TRI and slope

— are important for modelling palm density. Despite a systematic reduction of more

than half of the predictors, the modelling efficiencies (EF) were maintained, indicating
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that little information was lost during the model reduction and that a limited number of

predictors are relevant.

Table 2.3: Summary table of most important remote sensing variables ranked by importance

when modelling species composition (first two axes), richness100, and palm density.

Variable Species

composi-

tion first

axis

Species

composi-

tion second

axis

Richness100 Palm

density

SR1min - 1 - -

SR2min 3 - 7 -

SR2max - 3 - -

SR4max - 4 - -

SR5min 5 - 6 -

SR7min 8 - - -

NPP - 2 5 1

LAI 7 - - -

Tree height 6 - - 2

HANTS NDV Iamplitude 2 - 1 4

HANTS NDV Imean 4 - 2 -

HANTS NDV Imin 1 - 4 -

HANTS NDV Imax - - 3 -

TRI - - - 3

slope - - - 5

Reduced model efficiency (EF) 0.64 0.97 0.83 0.66

2.3.3 Spatial prediction of forest floristic attributes and palm density

We used the reduced models for predicting the four response variables for every forested

1 km2 pixel covering lowland Bolivia (Figure 2.6). Some of the patterns described by

Toledo et al. (2011a) can be seen in the resulting prediction maps. For instance the first

axis of species composition (Figure 2.6a) presents a strong north–south gradient in floristic

composition, which co-varies with the well known south to north rainfall gradient present

in the lowland part of the country. The second axis (Figure 2.6b) shows a stronger east–

west gradient in floristic composition which corresponds to the east to west gradient in

soil fertility. Although richness100 (Figure 2.6c) presents some coherent patterns (higher

diversity in the North and East of the country than in the South), it also misses some

well known diversity hotspots near the foothill of the Andes.
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(a) (b)

(c) (d)

Figure 2.6: Spatial predictions over lowland Bolivia of species composition first and second

axes (a–b), richness100 (c), and palm density (d). Predictions were made using the reduced

Random Forest models presented in section 2.3.2 for areas with a forest cover > 40% as defined

by the forest mask presented in Figure 2.1, so that areas in light grey are considered non-forest.

Overlayed scaled markers correspond to observed values, measured from in-situ sites.

2.4 Discussion

2.4.1 Moderate resolution remote sensing can predict floristic properties of

tropical forests

By combining data from a network of permanent sample plots, multiple remote sensing

predictors, and a Random Forest modelling approach we predicted forest attributes across
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tropical forests across lowland Bolivia. We found great potential to predict forest floristic

properties and palm density, and a more limited potential to predict forest structure. In

the case of floristic composition variables and palm density, for which model performance

metrics suggest a strong potential for remote sensing based modelling, the relations be-

tween predictors and response variables are more direct. For instance, different species

associations will likely result in different spectral signatures (Féret & Asner, 2013), and

intra-annual phenological patterns (Somers & Asner, 2014), which are two traits partially

measured by the remote sensing predictors via surface reflectance and phenology respec-

tively. Species composition could be better modelled than richness100 because of its higher

specificity to the local floristic characteristics. Different forest types with non-overlapping

species compositions and potentially different structure and functional composition can

potentially achieve similar levels of species richness. Given this non-specificity, a statis-

tical modelling approach using the predictors related to canopy structure and chemistry

will not be able to capture the entire range of variability in species richness. Addition-

ally, expert opinions on the maps produced suggest that while the North–South gradient

pattern of species richness is well captured by our prediction, the high species diversity

of forests near the Andes does not appear in the map. The map likely has a high un-

certainty in this region which may be explained by a relatively low representation of this

particular forest type in the training dataset. Nevertheless, even if richness100 did not

achieve the levels of performance observed for species composition (EF = 0.85–0.98), we

could surprisingly well model it (EF = 0.65). This capacity to produce in a consistent

and objective way spatially continuous information on tropical forests floristic properties

holds great promises for biodiversity conservation initiatives, and to quantify change in

biodiversity over time.

There was limited potential to predict structural properties which can most likely be

explained by the lack of remote sensing predictors that are directly comparable to the

response variables of interest. With the exception of tree height and terrain, all predictors

originate from optical remote sensing and are therefore mainly influenced by reflected light.

In these closed forests, the structural components are therefore inferred from the chemistry

of the canopy trees alone, which is not a good reflection of the underlying forest biomass

or structure (Broadbent et al., 2008b). This disconnection between response variables and

predictors, is a limitation for forest structure modelling in general, and also partly explains

the large uncertainties that exists in all global biomass mapping efforts attempted to date

(Ometto et al., 2015). Unfortunately, with the set of optical remote sensing products

currently available at global scale, it is very unlikely that we will be able to overcome this

limitation.
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2.4.2 Phenology and surface reflectance are essential predictors of floristic

properties

Random Forest allowed us to obtain a restricted number of essential remote sensing pre-

dictors, based on their contribution in predicting the response variables retained. This

is of great relevance as reducing the number of predictors leads to more parsimonious

approaches, facilitating the data preparation efforts and the repeatability of such studies

for different areas in the tropics. The variable importance also provides a perspective on

the mechanistic relations influencing the model. We identified two important groups of

predictors from the variable selection process: phenological metrics and surface reflectance

(Table 2.3). Both deciduousness and leaf chemistry have been identified as key functional

traits in previous studies (Ter Steege et al., 2006; Féret & Asner, 2013; Somers & Asner,

2014), and are important for species identification using remote sensing. Optical sensing

offers the capacity to measure both leaf structure and chemistry (via surface reflectance)

and phenology, and is therefore well suited for species associations mapping (Lang et al.,

2015), as demonstrated in the present study. This importance of surface reflectance also

suggests that the use of higher spectral resolution data, which will be more widely avail-

able in the future (Kaufmann et al., 2008) could potentially contribute to an even better

distinction between species associations. In addition to surface reflectance and phenology,

we found that NPP, tree height and LAI also play an important role in the modelling of

floristic characteristics of the forest.

Although Bolivia covers a limited spatial extent, it has a large variety of environments,

primarily due to its location between the Andes and the Amazon basin where several

biomes converge (Amazonian, cloud forest, dry forest, chaco and cerrado). This is an

important aspect to consider when interpreting our findings. On the one hand, this

variety ensures that the findings are applicable to a wide range of environments, possibly

including areas beyond the administrative borders of Bolivia. On the other hand, while

we expect the general patterns of predictors importance to be consistent regardless of the

tropical region of interest, it is likely that the relative importance of each predictor will

vary. We would for instance expect phenology to be less determinant in discriminating

floristic properties within homogeneous wet evergreen forests of the Amazonian basin. We

therefore recommend, as a way to fully ensure the transferability of the method and its

potential, to repeat the present modelling exercise with different in-situ datasets covering

other regions in the tropics.

2.4.3 Current contribution to ecological questions and resource manage-

ment

Our work demonstrated the potential of moderate resolution remote sensing to provide

spatially continuous information on forest floristic properties. While the focus of the paper
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is mostly on the method and its validation rather than on the use of that information,

using the full potential of these maps is a logical next step. The potential contribution

of these maps is twofold. First the information produced can be used to enhance our

mechanistic understanding of processes driving these natural systems. As shown by Watt

in 1947, studying spatial patterns of plant communities is an essential component to

understanding the processes that drive these communities (Watt, 1947). While it has

always been possible to put in-situ measurements in a spatial context, the lack of spatial

continuum in the data makes it difficult to infer patterns. Using 1 km2 spatial resolution

maps produced by our method, spatial patterns can easily be identified as well as co-

occurrence between environmental variables and floristic properties. Such insight can

greatly enhance our understanding of the processes that drive the organization of tropical

forests. Additionally, as vegetation dynamics modelling increasingly contributes to the

understanding of functional mechanisms that drive forests (Sakschewski et al., 2015), it

would be of great interest to refine existing models using floristic data produced by our

method as input. Besides, an enhanced understanding of the ecology of these systems

also benefits the applied issues listed above as sound management is only possible when

the systems considered are well understood. Secondly, the maps are valuable tools for

applied issues such as conservation, forest management or international initiatives such

as Reducing Emissions from Deforestation and Forest Degradation (REDD+) and the

Convention on Biological Diversity (CBD) (Skidmore et al., 2015; Sexton et al., 2015).

By providing relevant variables in a spatially explicit, objective and consistent way, they

offer a strong basis to delineate areas of interest for conservation, or define region specific

management strategies or policies. As an example, such maps, if used jointly with carbon

maps, could be used to address biodiversity co-benefits in a REDD+ context.

The uncertainties of our approach also carry important messages for resources manage-

ment. While the local mismatch between the well known patterns of high species diversity

near the foothills of the Andes and the predicted diversity for this region highlights a lim-

itation of our method, it also stresses the importance of well designed national forest

inventories. Such method will never be able to accurately predict variables that are be-

yond the range of the training data; it is therefore crucial, to ensure remote sensing based

scalability, that national forest inventories are designed in such a way that all forest types

are equally represented and that variables are comparable across sites.

2.4.4 Future prospects for mapping of biodiversity and vegetation struc-

ture

The present study demonstrates the potential and limitations of remote sensing to predict

nine forest attributes at national-scale. The results suggest a great potential, particularly

for mapping variables relating to floristic composition and biodiversity, but also found

limitations when attempting to model variables related to forest structure. We have al-
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ready discussed that a strong disconnection between the remote sensing predictors — in

most cases derived from optical remote sensing — and the response variables, could ex-

plain these limited performances. These limitations of optical remote sensing to predict

forest structure will always exist and the use of alternative technologies such as radar and

LiDAR, that are able to penetrate the upper layers of the canopy and provide information

on the structure of the woody parts of the vegetation is a promising way forward (Arcioni

et al., 2014). However these technologies, even if they already exist, and were proven to be

effective in mapping forest structure (Asner et al., 2012), remain at the moment unavail-

able at global scale or prohibitively expensive for a realistic global deployment (Mascaro

et al., 2014). The future is certainly very promising in this regard, with rapid technolog-

ical progress and upcoming space-born LiDAR and radar missions targeted at ecosystem

structure and dynamics mapping (Le Toan et al., 2011; Dubayah et al., 2014).

Additionally, one alternative approach called regression krigging (Hengl et al., 2004),

which would certainly improve the predictions of all response variables, can be mentioned.

By taking advantage of spatial autocorrelation contained in the response variables (Sales

et al., 2007), regression krigging can potentially compensate for the lack of relationship

between the response variables and the predictors. However, such approach can only be

considered for areas with a high spatial density of in-situ sites — which is often a limiting

parameter in remote sensing studies applied to the tropics — and could therefore not be

used in the present case.

We explored and assessed in the present case study the potential of the approach for a

single point in time, however, as we get further insights on the reliability of such approach

by testing it in other areas, we will be able to include a temporal dimension in such

studies as well, hence allowing to monitor long term trends in vegetation characteristics,

biodiversity and response to climate change.

2.5 Conclusion

We predicted a set of forest attributes from a large number of remote sensing predictors

using an empirical statistical modelling approach. Our approach revealed a great potential

to map forests floristic properties; we were able to produce high accuracy maps for proxies

of species richness and composition, and palm density at 1 km2 covering lowland Bolivia.

The results also revealed limitations of remote sensing to capture variables related to

forest structure. These limitations originate from the nature of remotely sensed data we

used and are unlikely to be overcome with technologies currently available and suitable for

global mapping. While we used 28 predictors in total, the list of contributive predictors

could be reduced to 15, with phenology and surface reflectance playing a particularly

important role. The information generated by our approach is spatially continuous and

provides an objective and consistent stream of data that can enhance our understanding
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of forest functioning, contribute to better zoning and monitoring of resources and benefit

biodiversity conservation. As stability of the method gets confirmed, we will be able to

move from simple mapping of these variables to monitoring them which is crucial for

biodiversity conservation.
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Abstract

Automatically detecting forest disturbances as they occur can be extremely challenging

for certain types of environments, particularly those presenting strong natural variations.

Here, we use a generic structural break detection framework (BFAST) to improve the

monitoring of forest cover loss by combining multiple data streams. Forest change mon-

itoring is performed using Landsat data in combination with MODIS or rainfall data

to further improve the modelling and monitoring. We tested the use of the Normalized

Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectrora-

diometer (MODIS) with varying spatial aggregation window sizes as well as a rainfall

derived index as external regressors. The method was evaluated on a dry tropical forest

area in lowland Bolivia where forest cover loss is known to occur, and we validated the

results against a set of ground truth samples manually interpreted using the TimeSync

environment. We found that the addition of an external regressor allows to take advantage

of the difference in spatial extent between human induced and naturally induced varia-

tions and only detect the processes of interest. Of all configurations, we found the 13 by

13 km MODIS NDVI window to be the most successful, with an overall accuracy of 87%.

Compared with a single pixel approach, the proposed method produced better time-series

model fits resulting in increases of overall accuracy (from 82% to 87%), and decrease in

omission and commission errors (from 33% to 24% and from 3% to 0% respectively). The

presented approach seems particularly relevant for areas with high inter-annual natural

variability, such as forests regularly experiencing exceptional drought events.
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3.1 Introduction

Getting spatially and timely accurate information about land cover change is essential as

change in forest cover is likely to affect aspects of the biosphere such as carbon cycle and

biodiversity (Malhi et al., 2008). Remote sensing, especially in recent years, with large

amount of data becoming freely available offers great opportunities to monitor forest at

relatively high spatial resolution and in a systematic and objective way. However, there

is a challenge that consists in extracting the desired information from large amounts of

spatio-temporal data containing natural variability (seasonality and exceptional events

such as droughts) and noise. The scientific community has reacted to this growing need

and a variety of methods and products has appeared in the last few years, with a trend

moving from bi/multi-temporal to hyper-temporal approaches (Lu et al., 2014). This

trend can be explained by the opening of the Landsat archive, which allowed researchers

to take full advantage of all the Landsat data that have been acquired since the beginning

of the program in the 70s. In addition to being widely available at no cost, Landsat data,

thanks to their spatial (30 m resolution) and temporal characteristics (16 days revisit

period) are well suited to monitor processes such as deforestation and forest degradation

(Asner et al., 2004a,b; de Wasseige & Defourny, 2004; Souza et al., 2005). Hence, by

mining the entire Landsat archive for a given area, Zhu et al. (2012) were able to detect

forest disturbances in temperate forests of the western United States. In a following

paper Zhu & Woodcock (2014) extended their method to include land cover mapping

following disturbance detection. Using super geo-computing facilities, Hansen et al. (2013)

were able to globally map annual forest cover loss. From a methodological point of

view, the existing multi-temporal methods differ slightly, depending on their intended use.

For instance, in order to investigate land trajectories, Kennedy et al. (2010) developed

LandTrendr, a temporal segmentation method capable of reconstructing recent land use

history. LandTrendr works by identifying, using a time-series of annual image composites,

segments of stable land use trajectories (stable forest, agriculture, regrowing forest, etc).

For producing annual estimates of forest cover loss, Hansen et al. (2013) also worked on

a year by year basis, computing differences between forest cover percentages produced

annually from regression trees calibrated with Very High Resolution (VHR) images, such

as Quickbird imagery. However, aiming at producing forest cover loss information with

precise timing of disturbances requires approaches that work directly on the entire time-

series. Working on the entire time-series, which means using all data available has two

main advantages. First it allows to capture not only inter-annual differences, but also

intra-annual variation. For instance vegetation, particularly in temperate regions is well

known for having an intra-annual seasonal signal, which we call phenology. A time-series

approach that uses full time-series can account for the phenology and identify changes

in the phenological patterns (Verbesselt et al., 2010a). Second, using all data allows a

higher precision in the timing of the events being detected. An example of method which
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uses the full time-series is the Continuous Monitoring of Forest Disturbances Algorithm

(CMFDA), proposed by Zhu et al. (2012), which uses Fourier series and a threshold based

deviation from the model mechanism to detect abnormal behaviours in newly acquired

images. CMFDA requires three consecutive observations exceeding the threshold for a

change event to be confirmed, which in an optimal setting with two Landsat satellites (8

days revisit period) can be as short as 16 days (Zhu et al., 2012). Similarly, approaches

proposed by Brooks et al. (2014), Verbesselt et al. (2012), and DeVries et al. (2015b) use all

pixels available within the time-series and identify change based on statistical hypotheses

of stability and confidence intervals. An intermediate approach, using all data from cloud

free Landsat scenes, rather than all pixels, is proposed by Huang et al. (2010) for their

Vegetation Change Tracker, which uses spectral distances to a set of reference pixels to

derive forest likelihood. All these methods have been successful in detecting on a pixel

basis events of forest cover loss soon after they occur in temperate forests at Landsat scales

(Zhu et al., 2012; Brooks et al., 2014; DeVries et al., 2015b) and forest disturbances and

droughts from Moderate resolution time-series (Verbesselt et al., 2010a,b, 2012). However,

an additional challenge, which has not been much investigated yet, consists in detecting

in a similar way forest cover loss in highly variable forest environments. Seasonality in

some environments may vary in amplitude from year to year, making the use of traditional

seasonality models inappropriate since they cannot model differences among years. The

challenge therefore consists in discriminating what is natural from what is anthropogenic

in a temporal signal.

We identified two mechanisms potentially capable of discriminating human induced from

anthropogenic variations. The first consists in taking advantage of the spatial context,

since natural variations occur at regional scales, while human induced change (excluding

climate change) tend to be much more localized. The second mechanism is to use an addi-

tional independent variable capable of predicting the observed variable. When interested

in vegetation, or more specifically the Normalized Difference Vegetation Index (NDVI),

time-series, the two above mentioned strategies can be translated as (1) including an extra

NDVI time series at a different spatial resolution and (2) using a climatic index, since cli-

matic conditions are known to be an important driver of vegetation greenness (Jong et al.,

2013; Nemani et al., 2003). Previous studies taking advantage of contextual information

or external data sources in a change detection context include Huang & Friedl (2014) and

Kleynhans et al. (2011). Huang & Friedl (2014) developed a method capable of detect-

ing sub MODIS pixel land cover change with context based calibration, while Kleynhans

et al. (2011) developed a change metric at MODIS pixel level, using information from a

3× 3 pixels window, hence using spatial context as a way to discriminate anthropogenic

change from natural variability. Although the above mentioned studies illustrate ways of

using the spatial context for change detection the level of spatial detail they provide is

not sufficient for tracking small forest disturbances.

The proposed approach is an extension of the Break detection For Additive Season and
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Trend (BFAST) concept. BFAST has been developed as a generic change detection frame-

work for disturbance detection. It is fully statistically based and has been validated for

forest change detection (Verbesselt et al., 2010a), phenological change (Verbesselt et al.,

2010b) and optimised for near real-time detection (Verbesselt et al., 2012). The frame-

work has recently been evaluated for forest change monitoring in the tropics on Landsat

time series for continuous forest change tracking in Ethiopia (DeVries et al., 2015b), and

for disturbance monitoring using fused radar-Landsat time-series (Reiche et al., 2015). In

this study we further test and improve the BFAST framework by including extra data

sources to improve the discrimination of anthropogenic changes from natural variabil-

ity. Monitoring is performed using Landsat data. We tested two candidate variables to

be used as external regressors; NDVI from the Moderate Resolution Imaging Spectrora-

diometer (MODIS) and the Standardized Precipitation Index (SPI). The proof of concept

is done over a tropical dry forest of lowland Bolivia and the accuracy of the method is

assessed using a set of visually interpreted Landsat time-series in combination with re-

cent Very High Resolution imagery. Further insights on the approach performances and

applicability are gained by experimenting with the different parameters combinations of

the method, as well as via qualitative assessment of spatio-temporal patterns and single

time-series profiles.

3.2 Material and methods

3.2.1 Change detection algorithm

In the BFAST framework, techniques for break detection (Chu et al., 1996; Leisch et al.,

2000; Zeileis et al., 2005, 2010) which have been optimised for linear regression frame-

works by Zeileis (2005), are combined with a seasonal-trend model for detecting change in

vegetation dynamics (Verbesselt et al., 2012). The method consists in fitting a model to

the data by Ordinary Least Square (OLS) fitting on a period defined as stable history, and

to check for stability of that same model during a period defined as monitoring period.

Discrepancy between the model predictions and the data during the monitoring period is

estimated using a moving sums of residuals (MOSUM) approach (Chu et al., 1996), and

when observed data significantly deviate from the model, a break is detected.

Seasonal-trend model with an external regressor

The additive seasonal trend model used by Verbesselt et al. (2012) to detect change within

satellite image time-series is the following:
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yt = α1 + α2t+
k

∑

j=1

γj sin(
2πjt

f
+ δj) + ǫt (3.1)

where the dependent variable y at a given time t is expressed as the sum of an intercept

α1, a slope α2 for potential temporal trend in the data, a sum of different frequency

harmonic components representing seasonality (
∑k

j=1
γj sin(

2πjt

f
+ δj)), and an error term

ǫt. For the harmonic component of the model, j = 1 corresponds to the 1 year cycle, k is

the chosen harmonic order, γj and δj correspond respectively to the amplitude and phase

of the harmonic order j, and f is the known frequency of the time-series (i.e.: number of

observations per year).

Here, we add an extra external explanatory variable (hereafter referred to as external

regressor), xt, to equation 3.1:

yt = α1 + α2t+
k

∑

j=1

γj sin(
2πjt

f
+ δj) + α3xt + ǫt (3.2)

where xt corresponds to observation of the external regressor at time t. This addition, we

hypothesize, should allow for better model fits and consequently more realistic predictions

during the monitoring period. In this study two external regressors will be evaluated;

MODIS NDVI and SPI as introduced in section 3.2.3.

Monitoring process

The breakpoint detection performed over the monitoring period works by estimating the

deviation from the model of the newly acquired observations using a MOSUM window.

From the model presented in equation 3.1, a standard linear regression can be formu-

lated:

yt = xT
t β + ǫt (3.3)

where xT
t is the vector of regressors, β a vector of regression coefficients and ǫt the residual

term. From this equation, β̂ which we define as the vector of coefficients for the stable

history period, can be estimated by OLS. The monitoring process then consists in test-

ing whether β̂ remains a valid predictor through time for the incoming data during the

monitoring period. The MOSUM used for that purpose can be expressed as follows:

MOt =
1

σ̂
√
n

t
∑

i=1−h+1

(ys − xT
s β̂) (3.4)
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where h is the width of the MOSUM window. The hypothesis of structural stability is

rejected when MOt significantly deviates from 0, and crosses a boundary defined by the

functional central limit theorem (Leisch et al., 2000). See Zeileis et al. (2005) for further

details about the boundary used.

Stability of the history period

To facilitate reliable monitoring, the history period needs be free of disturbances (i.e.

referred to as stable history). A stability test, part of the BFAST framework, selects

the stable history by moving backwards in time while assessing the Reversed-ordered-

cumulative sum of residuals (ROC) (Pesaran & Timmermann, 2002; Verbesselt et al.,

2012). Having a sufficiently long stable history period for model fitting is critical for an

accurate detection of change. For instance Verbesselt et al. (2012) suggest a stable history

period of at least two years to accurately monitor change when using MODIS time-series

with a 16 days temporal resolution. Although Landsat data are irregularly spaced in time,

making such definition of a minimum length impossible, the temporal resolution being

equal or lower than MODIS 16 days composites suggests a minimum length of history

period equal or longer than two years for change monitoring with BFAST.

3.2.2 Study area

In order to test and validate the approach proposed in this paper, we chose a case study

area situated in lowland Bolivia in the department of Santa Cruz (Figure 3.1). The area

is a subset of the Landsat scene path/row 230/71 covering about 40 by 50 km of a forested

area nearby the town of Concepćıon, where forest cover loss is known to occur. The type of

forest of the study area, which can be categorized as tropical dry forest presents interesting

challenges for change detection. Although it is in a tropical environment, numerous species

in that forest type are deciduous and unlike tropical rainforests for which seasonality in

the spectral signal is still being debated (Huete et al., 2006; Xiao et al., 2006; Saleska

et al., 2007; Myneni et al., 2007; Samanta et al., 2010, 2012; Silva et al., 2013; Morton

et al., 2014), a clear seasonality appears in the vegetation indices time-series for that

area (Figure 3.2). In addition, a strong inter-annual variability can be observed in the

phenological signal, with very low NDVI values reached during the dry season of certain

years. Figure 3.2 depicts the temporal profiles of rainfall, average NDVI from MODIS and

SPI which is a moisture stress metric. Large drops in SPI, visible in Figure 3.2, which

appear to coincide with dips in the NDVI profile correspond to abnormally dry years.

Details about SPI and NDVI can be found in a subsequent section of the present paper.

Analysing these profiles in parallel, low SPI values, which correspond to negative rainfall

anomalies, appear to coincide with the exceptional drops in NDVI, which may infer that

greenness dynamics in these environments are largely driven by water availability. Such
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strong inter-annual natural variations in NDVI make the change detection monitoring

process particularly challenging. Pixel based approaches, for which a statistical model

is fitted to the data and change detection based on stability through time are likely to

detect change in these exceptionally dry years, which can be attributed to the nature of

the time-series but not necessarily to anthropogenic disturbances. For a more thorough

description of these forest environments and their ecology, please refer to Mostacedo et al.

(2009).
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Figure 3.1: Map of the study area, subset of Landsat path/row 230/71 located in the region

of Santa-Cruz, lowland Bolivia

3.2.3 Datasets and indices

In the following section, we present the datasets used to demonstrate the approach and

evaluate its performances. When mention is made of VHR, we refer to the sub 5 m spatial
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Figure 3.2: Temporal profiles of a) NDVI from MODIS spatially averaged over the study

area. b) SPI computed from monthly TRMM data, with a 6 month time scale. c) Monthly

rainfall from TRMM 3B43

resolution data, while MODIS types of data (250–1000 m range) are considered moderate

resolution.

Landsat data

NDVI calculated from Landsat surface reflectance data at 30 m resolution is used as

response variable in the change detection process. NDVI, which is a measure of vegetation

“greenness” has been used and described extensively in remote sensing studies relating

to vegetation (Tucker, 1979; Jackson & Huete, 1991). We chose NDVI over other metrics

such as the Enhanced Vegetation Index (EVI) (qing Liu & Huete, 1995) or other more

advanced indices, considering the robustness of NDVI and the fact that it can be calculated

in a comparable manner from various data sources. Although EVI was shown to perform

well over forested areas, and be less sensitive to saturation effects for high photosynthetic

activity (Huete et al., 2002), EVI is also known to be more sensitive to varying atmospheric

conditions. In addition, a recent paper by Morton et al. (2014) describes NDVI as being

less sensitive than other indices to varying sun-sensor geometry, hence making a NDVI

a safe and robust option for time-series analyses. All Landsat (ETM+ and TM) data

acquired were downloaded already processed to surface reflectance from the United States

Geological Survey (USGS) archives and only scenes with LT1 terrain correction were

selected. In total, this resulted in 328 scenes spanning the 2000–2014 range for the study

area. The USGS uses the Landsat Ecosystem Disturbance Adaptive Processing System

(LEDAPS) algorithm (Masek et al., 2006) to perform automatic atmospheric correction
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of the Landsat archive, while the fmask algorithm (Zhu & Woodcock, 2012) is used for

cloud detection. We used the fmask cloud mask in order to ensure that all pixels included

in the change detection process were clear land pixels.

Forest mask

For additional Landsat data preparation, we used a forest/non forest mask as a way to

exclude non forested pixels from the process. This step has two objectives which are:

(i) to focus only on pixels of interest, which in this case are forested pixels, and (ii) to

decrease processing requirements by decreasing the total number of pixels. For the needs

of this paper, we used a forest mask derived from the global year 2000 Landsat based

percent tree cover (Hansen et al., 2013), and considered as forest every pixel having a

tree cover greater than or equal to 50%. The Landsat based percent tree cover product

was produced using a decision tree classifier trained with interpreted very high resolution

data (Hansen et al., 2011). It is to be noted that this is a simple way to produce a forest

mask and potentially not the most accurate mask. However, the method presented in

this paper is not bound to any forest mask, so that potential users may use any masks of

various origins to perform this non-forest masking step.

External regressors

We experimented with two different datasets to be used in the approach as external

regressor; NDVI derived from the MODIS sensors, with a varying window size around the

Landsat pixel of interest, and SPI from the Tropical Rainfall Measuring Mission (TRMM)

satellite (Figure 3.2). First pre-processing of MODIS NDVI is briefly described, then SPI

and the data from which it was computed are introduced.

MODIS NDVI One external regressor tested in this study is NDVI derived from the

MODIS sensors. The product name more specifically is MOD13A2, which is the NDVI

product generated at 1 km resolution from the MODIS sensor on-board the Terra satellite.

In addition to the regular cleaning of the MODIS data using pixel reliability information

to remove low quality and cloud contaminated observations (only pixels labelled as “good

quality” were kept in that case), we filtered for potential unstable pixels through time.

For that we used the MODIS based Vegetation Continuous Field (VCF) of Land Cover

product (Hansen et al., 2003), product name MOD44B and only kept MODIS NDVI

pixel time-series with percentage tree cover consistently higher than a certain threshold

for further analysis. Such a step ensures that MODIS pixel highly affected by forest

cover loss during the change detection process are not included as external regressor. As

a way to assess the sensitivity of this threshold, hereinafter referred to as VCF filtering
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threshold, as well as to gain further insights on the transferability of the method, we tested

different combinations of this parameter, ranging from a 20% VCF filtering threshold

to 70%. A low filtering threshold means that most MODIS NDVI pixels are included,

potentially comprising non forested pixels and pixels that have undergone change through

the considered period, while a high VCF filtering threshold restricts the MODIS NDVI

pixels included as external regressor to the most densely forested pixels only.

SPI from TRMM The other variable tested in this study for use as external regressor

is the Standardized Precipitation Index (SPI). SPI expresses relative water conditions,

and can be interpreted as the probability of occurrence of a given amount of precipitation

as compared to historical data (McKee et al., 1993). In simpler terms SPI reflects the

cumulative precipitation anomalies; negative values correspond to abnormally dry periods

while positive values correspond to abnormally wet periods. The index requires a time

scale parameter for its computation, which corresponds to the temporal scale at which

anomalies are cumulated. In this way the index integrates a temporal dimension about

water stress status, hence automatically capturing the well known temporal lag of veg-

etation response to rainfall (Nicholson et al., 1990; Wang et al., 2003; Vicente-Serrano

et al., 2013). For this reason SPI is thought to be a suitable variable to be used as exter-

nal regressor in the change detection process. Vicente-Serrano et al. (2013) showed that

the timing of vegetation response to droughts varies across biomes so that the time scale

parameter of the SPI is highly context specific. We selected the time scale parameter

by fitting a linear model using equation 3.2 for all possible time scales ranging from 1

to 12 months, α2t being MODIS NDVI at time t averaged over the study area, and we

selected the time scale resulting in the best model fit. Six months was retained as the

time scale resulting in the best model fit and therefore used in all subsequent analyses,

which is in agreement with the findings of Vicente-Serrano et al. (2013). We computed

SPI at 0.25° spatial resolution using rainfall estimates from TRMM, product name 3b43.

3b43 is a monthly product that combines rainfall estimates from TRMM and interpo-

lated rain gauge measurement for correction. Adeyewa & Nakamura (2003); Dinku et al.

(2007); Nicholson et al. (2003), and Franchito et al. (2009) assessed the product accuracy

and generally found good agreement between in-situ rainfall measurements and TRMM

estimates. The temporal profile of SPI with time scale of 6 months for the study area is

depicted in Figure 3.2.

Validation dataset

A spatio temporal validation is essential in order to assess the performance of the method.

For this study we chose to build a validation dataset by performing a visual interpretation

of one VHR image (from Bing map (http://www.bing.com/maps/)) combined with the

Landsat temporal profile of the associated pixel. In the absence of ground validation
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dataset, visually interpreting the Landsat time-series is the only alternative to obtain a

dataset that matches the temporal precision of the algorithm (Zhu et al., 2012). This

interpretation was facilitated by the use of the TimeSync environment (Cohen et al.,

2010). TimeSync is an environment developed in order to facilitate human interpretation

of temporal trajectories in remote sensing time series. Initially developed jointly with the

LandTrendR algorithm (Kennedy et al., 2010) for its validation, it can greatly benefit

the validation of any land dynamic detection method. It is important to note that most

of the forest cover loss happening in the present study area consists of a one-way land

cover change, without regrowth of the forest, but with agriculture as a follow-up land

use instead (Müller et al., 2012; Killeen et al., 2007). Considering this scenario, a spatial

interpretation of a recent very high resolution image can suffice to perform most of the

spatial validation of omission and commission error. Using this dataset in combination

with the associated pixel Landsat time-series allows the interpreter to determine the

timing of change accurately and with a precision close to the Landsat data availability

frequency. The validation dataset was generated by visually interpreting a set of 300

samples, divided in two strata (assumed change and assumed no change). The two strata

were generated from the Global forest cover loss product (Hansen et al., 2013). Bing

map was used instead of Google Earth as the environment for VHR interpretation for

it contained the most recent imagery, the whole area being covered with VHR images

acquired in 2012. After interpretation and cleaning of samples with large uncertainties

(e.g. proximity to forest edges), 258 validation points remained out of the original 300

samples.

3.2.4 Implementation

Model parameters

From equation 3.2, one important parameter to be set is the harmonic order j. While the

study area is known for having a simple, single vegetation production season per year,

also visible in Figure 3.2, it is interesting to test different harmonic orders. Higher orders

may provide better fits and increase the change detection accuracy. We therefore tested,

the three harmonic orders from k = 1 to k = 3 and investigated the effect of varying this

parameter on the accuracy of the method. Another important parameter is the width of

the MOSUM window used during the monitoring process; similarly to Verbesselt et al.

(2012) we chose a value of 0.25× n, with n being the size of the history sample.

Temporal component

In order to run the regression model, the two datasets need to have matching observations

at similar dates. Since these do not systematically occur, we created daily time-series for
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the external regressors by linearly interpolating values between successive dates. We

subsequently only kept values from dates with matching Landsat observations. An other

option would consist in interpolating the Landsat time-series instead, but because of

more irregular observations and higher noise in the Landsat time-series we decided to

interpolate the already smoother moderate resolution time-series.

MODIS NDVI residuals extraction

Considering equation 3.1, which is a nested part of the model presented in equation 3.2,

seasonality and trend are already being modelled. Given that MODIS NDVI is also a

variable with seasonality, which should follow similar patterns than Landsat NDVI, we

decided to de-seasonalize and de-trend it before including it in the model. This step

consists in extracting the residuals from a linear model fit using equation 3.1 and k = 1.

The removal of the trend may also be able to compensate for a potential degradation

of the external regressor over time due to increasing land cover heterogeneity at sub

MODIS pixel level. Such step does not apply to SPI, which already represent anomalies

and consequently does not have seasonality directly comparable to the one of Landsat

NDVI.

Spatial component

Following the idea to take advantage of the difference in spatial extent between natural

and anthropogenic processes, we investigated various spatial configurations for the use of

MODIS NDVI. The aim of this exercise is to find an optimal size of spatial aggregation

window for MODIS NDVI. The configurations differed in size (8 levels from 1 to 225

(152) MODIS pixels) as well as in the aggregation function used (mean and median).

Larger aggregation windows are expected to be less sensitive to forest cover loss, while

NDVI from smaller windows should better correlate with Landsat NDVI. A similar spatial

aggregation step does not apply to the case of SPI. The interest of including SPI as an

external regressor lies in the variable itself, assumed to be a driver of vegetation greenness

and therefore being a potentially good predictor of NDVI. Consequently SPI was simply

used as external regressor on a pixel basis. Table 3.1 presents the different levels of the 4

method parameters tested; in total this resulted in 288 combinations.
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Table 3.1: Summary of the different parameters tested in the method implementation

VCF filtering (%) Harmonic order

(j)

Aggregation

window size (1

km2 pixels)

Aggregation

function

20 1 1 mean

30 2 9 (32) median

40 3 25 (52)

50 49 (72)

60 81 (92)

70 121 (112)

169 (132)

225 (152)

3.3 Results and discussion

3.3.1 Overview

The following section presents the results of the change detection process performed over

the study area. We tested all combinations of window size, harmonic order, aggregation

function and VCF filtering (3.1). Accuracy figures are produced using the TimeSync

validation samples. For all configurations, monitoring started in January 1st 2008 and

extended until the date of the most recently acquired Landsat scenes (May 4th 2014). The

change map, with timing of change, resulting from the configuration with highest accuracy

(accuracy assessment presented in section 3.3.2) is depicted in Figure 3.3. An initial

observation of the map reveals that the prediction of change is rather conservative, with

little isolated pixels being flagged as change but rather distinct spatial patterns coherent

with deforestation patterns occurring in the area. Although this is not systematic, isolated

pixels often reveal false detections, while human induced changes tend to present more

geometric features (e.g., fish bone structure with deforestation strips perpendicular to the

roads) (de Filho & Metzger, 2006). While most of the roads in the present case appear to

be properly detected, a few seem to be missing from the change detection results. These

omissions are likely to be attributed either to the spatial characteristics of the roads, too

narrow to be detected by 30 m Landsat pixels, or to the time at which these roads were

constructed. Any feature already present prior to the period under investigation, will not

appear in the change detection output, and that is certainly the case for many of the

undetected roads. Regarding the timing of change, it is encouraging to note that changes

detected around similar dates are spatially clustered, which is coherent with the switch

from forest to agriculture process, where large strips of forest are removed at once and

transformed into agricultural fields. We also noticed a few isolated pixels surrounding the
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dark organic shaped features in the south eastern corner of the study area. These zones

are non forested, and these detections, we assume, are mostly the results of inaccuracies in

the forest mask used. From these observations it is clear that the quality of the forest mask

is reflected in the output of the change detection process. Although we considered that

thresholding the global Landsat based percent tree cover product (Hansen et al., 2013)

was sufficient for the purpose of this study, we encourage users of the approach who require

the highest quality output to carefully consider their choice of forest mask. Alternatives

to obtain forest masks include local, supervised and object based classifications methods

(Dorren et al., 2003) or approaches based on multitemporal data, as suggested by Zhu

et al. (2012).

Figure 3.3: Change map of the study area after 2008 produced using the method with

external regressor yielding the highest overall accuracy (169 MODIS pixel, mean aggregating

function, harmonic order 2 and VCF filtering threshold of 60% (section 3.3.2)). NDVI from

Landsat 8 acquired on April 26th 2014 is used as background layer. The continuous colours

indicate timing at which change was detected by the algorithm.
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3.3.2 Accuracy assessment

Accuracies calculated using confusion matrices between the TimeSync validation samples

and the results for the different configurations (Table 3.1) are displayed in Figure 3.4

and Figure 3.5. Although the main objective of the study is to investigate the effect of

including an external regressor, hence taking advantage of the spatial context, we also

present in the section below the impact on the accuracy of varying some other parameters

of the method. These additional comparisons and assessments can potentially inform

on the limits of the method and help in understanding its behaviour. Accuracy for the

configuration using SPI as external regressor was very low and is not presented in any

figure. This configuration resulted in a commission error of 28%, an omission error of

37% and an overall accuracy of 67%. Well below all the other configurations, including

the single pixel approach.

We decided to only display a single aggregation function (mean) on Figure 3.4 and Fig-

ure 3.5, since differences in the accuracy of using mean or median as aggregation function

were marginal.

First of all it is important to note that in all cases, the overall accuracy benefited from

including MODIS NDVI as external regressor (Figure 3.4). The maximum overall accuracy

with the single pixel approach is achieved with k = 2, resulting in an accuracy value of

83%, while the highest accuracy recorded for all combinations has an overall accuracy of

87% and is the result of the combination with a VCF filtering threshold set to 60%, an

aggregation window size of 169 km2, a mean aggregation function and a second harmonic

order (k = 2). The resulting map from this combination is presented in Figure 3.3.

Harmonic order

While the results show that increasing the harmonic order of the model has a strong effect

on the accuracy of the single pixel method, particularly between k = 1 and k = 2, with

an increase in overall accuracy from 74% to 83% between k = 1 and k = 2 respectively,

varying the harmonic order has a smaller effect on the overall accuracy of the method

with external regressor. This difference in effect of the harmonic order can possibly be

explained by a more dynamic fit in higher harmonic orders, better able to cope with

intra-annual variability in the single pixel case, while this more dynamic fit is directly

provided by the external regressor itself in the case of the combinations with external

regressors.

We also computed commission error estimates (not presented in the figure), which also

seem to react mostly to changes in harmonic order. Commission error for k = 1 are in

nearly all cases with external regressor equal to 0% and vary between 2% and 4% for

third harmonic order. This observation may suggest a more conservative approach when
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using low harmonic orders (e.g.: k = 1) and higher probability of obtaining false positive

in higher harmonic orders. Although encouraging these low commission error results have

to be considered with care, for the type of validation we opted for is likely to under

represent the no change stratum, which despite the large proportion of change within the

study area remains much larger than the change stratum. Considering that an increasing

harmonic order has the effect of increasing the commission error, but on the other hand

slightly reduces overall accuracy by increasing the omission error, the choice of harmonic

order appears to be trade off between a more conservative approach and a more sensitive

approach.

VCF filtering and aggregation window size

To understand the effect of varying the VCF filtering threshold, it has to be considered

together with the varying window size effect. First it is interesting to note that low VCF

filtering levels have little to no effect on the accuracy. The VCF thresholding was initially

thought as a mechanism to make the method more robust in heterogeneous landscapes,

potentially containing large proportions of non forested areas. We were consequently

expecting lower accuracies for low VCF filtering threshold due to a contamination of the

external regressor by non forested pixels. This indicates that filtering or not for unforested

pixels in the external regressor does not affect the performances of the method. However,

as a precaution, we still recommend excluding a maximum of non-forested pixel in the

external regressor. There is a clear drop in overall accuracy, and a jump in omission

error, between 30% and 40% filtering thresholds for small aggregation window size, and

between 60% and 70% for all window sizes. We can explain this pattern by an exclusion of

nearly all MODIS pixels by the filtering threshold making the method unable to produce

results and consequently decreasing the accuracy. This happens later for larger windows

for the probability of encountering pixels that satisfy a certain condition becomes higher

when the number of pixel increases. It is interesting to note that increasing window size

seems to result in slightly better accuracies as well, although the range of variation is small

(overall accuracy improvement from 84% to 87% for the two extreme cases). Overall, best

accuracies were obtained when aggregating MODIS NDVI residuals from a 13×13 km (169

km2) window. We therefore recommend using large aggregation windows since it appears

to robustify the method in spatially heterogeneous environments and provides a slight

increase in accuracy. However, it is predictable that more heterogeneous landscape will

present a greater challenge for the use of MODIS NDVI and the optimisation of window

size and aggregation function parameters (Hansen et al., 2008). Accordingly a transfer

of the proposed approach to different study areas, particularly if they present strong

landscape heterogeneity should be preceded by a careful investigation of its appropriate

spatial parameters. In order to facilitate such transfer, a consideration for further research

would be to develop a mechanism leading to a more dynamic external regressor, with real
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time land cover change information informing the reliability of the external regressor, or

an external regressor weighting based on neighbouring pixels reliability.

SPI

We found the method to perform poorly when SPI was used as external regressor. Reasons

for the low performances of SPI are not clear. We hypothesize that the forests in that area

are not sufficiently water limited to strongly react to dry conditions, hence making water

status a poor predictor of forest greenness. Additionally, it is possible that SPI is not the

ideal way to include moisture conditions in that environment. Limitations of the index,

which considers rainfall anomalies alone without including evaporative demand have been

discussed by Trenberth et al. (2014). Another explanation could come from a non linear

response of vegetation to water status; with droughts not necessarily affecting greenness

(Huete et al., 2006) and excess rainfall increasing trees vulnerability to large scale natural

disturbances. Facing these uncertainties, and the potential benefits of including a variable

that is fully independent from Landsat NDVI, the use of climatic variables as external

regressor is a topic of great interest that will require to be further investigated.
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Figure 3.4: Overall accuracy of the method with varying aggregation window size, harmonic

order and VCF filtering threshold. The largest window size (farthest points to the right) are

225 km2, which corresponds to a 15 × 15 km window. Horizontal lines correspond to the

accuracies for the single pixel configuration.

3.3.3 Qualitative assessments

In order to get further insights on the performances of the method presented and to

better understand the mechanisms leading to higher accuracies, we performed two extra

qualitative analyses. First we created maps of agreement using the validation samples, for

the single pixel and the configuration yielding the highest accuracy. We expect from these

maps that spatial patterns of agreement may reveal performance differences related to the
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Figure 3.5: Omission error of the method with varying aggregation window size, harmonic

order and VCF filtering threshold. The largest window size (farthest points to the right) are

225 km2, which corresponds to a 15 × 15 km window. Horizontal lines correspond to the

omission errors for the single pixel configuration.

spatial context. Secondly we extracted pixels for which results differed and observed the

behaviour of the algorithm for these selected pixels.

Spatial accuracy

The maps of agreement are presented in Figure 3.6. A first observation concerns the 3

samples flagged as false positive (blue dots) in the south-western corner of the area for

the pixel configuration (upper panel). These three false detections, which were properly

omitted in the method with external regressor, appear to occur in an area with a lot of

noise, where pixels flagged as disturbance do not follow geometrical patterns. This type of

false detection, which we could characterize as speckle appear to be partly reduced when

using the method with MODIS as external regressor. The reasons for the occurrence

of this spatial cluster of noise remain un-explained. Regarding omission error, if one

compares Figure 3.3 with areas of reduced omission error, it is interesting to note that

most differences between the two configuration appear to occur in areas that experienced

recent changes (vertically aligned samples in the top centre of the study area and eastern

samples). This pattern may indicate a higher sensitivity of the proposed method with

MODIS as external regressor as time increases since the beginning of the monitoring

period. However, these areas of recent deforestation still concentrate a large part of the

omission error. This apparent lower sensitivity of the method towards the end of the

monitoring period can be explained by the MOSUM values boundary used (see Zeileis

et al. (2005), equation 7) for the monitoring process. These boundaries are diverging from

0 as a function of time, meaning that larger magnitude disturbances need to occur for the

hypothesis of structural stability to be rejected as time from the start of the monitoring

period increases. Implementation of sequential monitoring as proposed by DeVries et al.
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(2015b) provides an alternative to that decreasing sensitivity. The principle of sequential

monitoring consists in working with only short monitoring period at a time (e.g.: 1

to 2 years) and subsequently extending the stable history period for stable pixels before

monitoring again for 1 or 2 extra years. With that technique the sensitivity of the method

remains consistent through time. Although this approach was not implemented in the

present study, sequential monitoring is perfectly suited to the proposed approach and if

implemented would certainly increase the sensitivity towards the end of the monitoring

period, hence further enhancing the accuracy of the method.

Individual pixels assessment

A set of three individual time-series for which results of the single pixel and the config-

uration with a 121 km2 aggregation window differed was investigated. The comparisons

are presented in figures 3.7, 3.8 and 3.9. Figures 3.7 and 3.8 are two examples in which

commission error is reduced thanks to the addition of an extra regressor, while Figure 3.9

presents the case for which an omission error is avoided by using the proposed method.

A common pattern for these three time-series is that the model with MODIS regressor

always provides a better, more adaptive fit, that is able to predict inter-annual variabil-

ity and exceptional variations much better than the seasonal trend model. This is true

both during the history period, in which case the ROC stability test benefits from this

better fit (Figure 3.7), and during the monitoring period. In the latter case, exception-

ally low NDVI values may trigger false detections (Figure 3.8). Finally, benefits of the

method from the omission error reduction side also appear to be provided by better fit

during the history period, increasing its length and consequently the sensitivity during

the monitoring period, as illustrated by Figure 3.9. In fact, following Verbesselt et al.’s

(2012) recommendations to use a minimum history period length of 2 years in the case

of a regular MODIS time-series, a time-series like the one shown in Figure 3.7, with a

temporal density lower than a MODIS time-series, cannot be accurately monitored. In

practice, given that it does not meet a requirement of the monitoring framework, such a

pixel should be unclassified in a post processing step, and if not, is likely to be wrongly

classified. The inclusion of the external regressor in Figure 3.7 case therefore allows such

pixel to meet the minimum 2 year requirements to monitor and detect change.

3.3.4 Temporal accuracy

The method performs continuous monitoring over the defined monitoring period and

therefore produces timing of disturbance with precision equalling the data acquisition

frequency. Having gathered information about timing of disturbance in the TimeSync

validation sample, we were able to produce some visual estimates of accuracy for the

timing of change outputted by the method. The metric under investigation in that case
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Figure 3.6: Map of agreement between the validation samples and the corresponding pixels.

The upper panel (A) represents the pixel based approach without external regressor, while

lower panel (B) presents the agreement with the method using MODIS residuals as exter-

nal regressor. For both panels the background layer is the resulting change map from the

configuration with external regressor.

to assess the temporal accuracy of the method is the time lag between the moment a

disturbance has occurred (assessed in TimeSync) and the detection time by the algorithm.

Figure 3.10 depicts this detection lag for the single pixel and the configuration with

external regressor. It is interesting to note that a large amount of samples present a

negative lag. This could be interpreted as an error, however, it is more likely to be

due to the way samples are interpreted in the TimeSync environment. TimeSync time-
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Figure 3.7: Example of a falsely detected break when applying the single pixel approach

method (A), as opposed to the same pixel properly modelled when using MODIS NDVI

residuals as external regressor (B). False detection in that case is to be attributed to instability

in the history period not resulting in a realistic model and prediction. Green line, blue

line, vertical dashed red line and vertical black line correspond respectively to stable history

period model, model predictions during the monitoring period, detection of a break-point and

beginning of the monitoring period.

series interpretation consists in identifying break points surrounding disturbance events

in the investigated pixel’s temporal profile (Cohen et al., 2010). The pixel’s temporal

profile appears as a broken line made of vertices connected by segments; each vertex

corresponds to a cloud free observation and there is one vertex per year displayed on

the temporal profile. The timing of disturbance we recorded for producing Figure 3.10

corresponds to the date of the first post change vertex identified. While it is possible in

the TimeSync environment to refine vertices selection to be as close as possible to the

time of the event observed, we did not put much emphasis on accurate timings when

interpreting the samples. Consequently, in our validation dataset, part of the timing

of disturbances may very well have occurred half a year or more before the labelled

vertex. Considering this potential artifact and the distribution of the lag histogram of

the configuration with external regressor, we can say that a reasonable proportion of
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Figure 3.8: Example of an undisturbed pixel for which a break was detected using the single

pixel approach due to strong inter-annual variations (A). The use of MODIS NDVI residuals

as extra regressor (B) was able to compensate for this effect. For details about the different

elements of the figure, refer to the caption of Figure 3.7.

disturbances are detected by the method within a year. Looking more specifically at the

single pixel time lag distribution, one can see a few samples which have been detected long

before the actual disturbance occurred. These detections are likely to be false positives,

which happened to experience a disturbance at a later time. The rest of the single pixel

configuration distribution is relatively spread with a peak slightly in the positive part

of the time lag, meaning that disturbances are likely detected with a small delay. The

external regressor time lag distribution has a slightly different shape, much narrower and

centred on 0 days. Considering the temporal precision and accuracy of the validation

dataset, as discussed above, it is difficult to conclude on the absolute temporal accuracy

of one method or another. However, given that the same samples are used, with the same

potential bias or systematic error, a relative comparison of one configuration against the

other remains possible. Then, comparing the two distributions, corresponding to the single

pixel and the external regressor configurations in Figure 3.10, we can conclude that the

configuration with external regressor tends to detect disturbances earlier than the single

pixel configuration. This aspect can be at least partly explained by the better model fits
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Figure 3.9: Example of a time-series for which a disturbance remains undetected when

using the simple pixel based method (A), while it is detected in the configuration with ex-

ternal regressor. For details about the different elements of the figure, refer to the caption of

Figure 3.7.

as illustrated in the previous section. The fact that conclusions on absolute temporal

accuracy are difficult to draw despite our validation dataset containing some estimate of

disturbance timing reveals the complexity to obtain such complete and accurate spatio-

temporal validation dataset and consequently the difficulties associated with validation

of near real time change detection method. A more thorough human interpretation of

Landsat time-series is a promising way, and in that regard, environments such as TimeSync

are of great value (Cohen et al., 2010). While spatial thematic accuracy assessments are

now well developed, which can at least partly be attributed to land cover mapping efforts

(Foody, 2002), it is now time to develop robust frameworks for spatio-temporal accuracy

assessments. Zhu et al. (2012) propose an interesting way to present temporal accuracy in

a near real time detection context by using proportions of samples for which disturbance

detection occurred before or at the same time than the reference.
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Figure 3.10: Histograms and associated smoothed density estimates presenting the time

difference (in days) between observed times of disturbance (validation samples) and predicted

times from the single pixel approach and the configurations with external regressor.

3.3.5 General considerations

We evaluated how external regressors can improve the forest cover change monitoring

using the BFAST framework (Verbesselt et al., 2012). Such approach differs from a data

fusion approach in the way that the added data source is used externally in order to

better explain variations in the observed variable, and not fused into a single time-series.

The hypotheses were that by taking advantage of the different characteristics of different

datasets, change detection results could be improved. The two hypothetical improvements

formulated were that: (i) by including NDVI at a different spatial scale we can discrim-

inate natural phenomena from anthropogenic disturbances and (ii) including SPI will

result in better Landsat NDVI predictions also resulting in an offset of natural variability.

The method was demonstrated using Landsat, MODIS and TRMM data, and only the

first hypothesis could be confirmed, provided by the results of the Landsat-MODIS config-

uration. Although demonstrated with MODIS and Landsat, the approach is not bound to

the use of specific datasets, but rather introduces a generic spatial implementation frame-

work to guide the use of external regressors in multi-temporal regression based change

detection methods. This non specificity is particularly relevant in the current context

where an increasing amount and variety of remotely sensed data are becoming available.

The upcoming launch of the Sentinel 2 constellation for instance holds great promise to

enhance forest cover change monitoring capabilities (Drusch et al., 2012). However, for

further improvements to be achieved, the potential synergies existing between datasets
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have to be fully exploited (De Sy et al., 2012). This requires using and further improv-

ing innovative methods accordingly (Lu et al., 2014). As such, considerations for further

research regarding the proposed approach were mentioned in the previous paragraphs.

Those include: (i) more sophisticated spatial context considerations, such as definition of

objects for spatial aggregation rather than windows and assessment of neighbouring pix-

els reliability to increase performance of the method in heterogeneous environments, (ii)

further investigations on ways to use climatic data as external regressor, and (iii) a more

thorough temporal validation of the method. Finally, while the proposed approach was

successful in improving change detection accuracy for the study area, we also acknowledge

that it adds a bit of complexity to the overall change detection framework. Different near

real time approaches can co-exist and should be used depending on user requirements

and context. While a pixel based approach such as the one proposed by Verbesselt et al.

(2012); Zhu et al. (2012); Brooks et al. (2014), and DeVries et al. (2015b) might yield

good results in many stable environments with sufficient data available, more variable

environments may benefit from the addition of an external regressor as presented here,

and a fusion with radar time-series will be more suitable in presence of high cloud cover

(Reiche et al., 2015).

3.4 Conclusion

In this paper we evaluate how external regressors can improve the forest cover change

monitoring using the BFAST framework (Verbesselt et al., 2012). Advantages of adding

an additional external variable are that the spatial context can be included, hence taking

advantage of the scale difference between natural and anthropogenic phenomena. The ap-

proach was tested for a dry tropical forest area in Bolivia. Validation performed against

a set of sample pixels interpreted using the TimeSync environment revealed accuracy

improvements of the proposed method, when compared with the single pixel approach.

Overall accuracy increased from 83% to 87% when including MODIS as external regressor

in its best configuration. These improvements are explained by a better model fit to the

time-series, particularly during extreme natural events such as droughts, hence resulting

in more realistic predictions of NDVI values during the monitoring period and a positive

impact on the sensitivity of the method. Additionally, qualitative accuracy assessment

of the timing of break detection suggests that the temporal accuracy of the method also

benefit from the inclusion of the external regressor, and disturbances are detected with

a shorter temporal lag. The combination of Landsat NDVI as dependent variable for

observing the process, and MODIS aggregated from a 13 × 13 km moving window was

found to result in the best algorithm performances for the study area. The method pro-

posed is particularly relevant for environments that present large inter-annual variability.

Such development is a step forward in the development of global automated near real

time monitoring systems, for generation of forest cover change information.
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The BFAST framework is available for use as a R package (R Core Team, 2014). Fur-

ther information illustrating how to apply the method on satellite image time-series are

available at http://bfast.R-Forge.R-project.org/.

Acknowledgements

The authors wish to thank Z. Yang (Oregon State University) and W.B. Cohen (US

Forest Service) for their support with TimeSync. Additionally, the research received

partial funding from the European Union Seventh Framework Programme (FP7/2007-

2013) under Grant agreement Number 283093 — The Role Of Biodiversity In climate

change mitigatioN (ROBIN).





Chapter 4
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Landsat time-series
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Abstract

We developed a method to reconstruct land use history from Landsat images time-series.

The method uses a breakpoint detection framework derived from the econometrics field

and applicable to time-series regression models. The Breaks For Additive Season and

Trend (BFAST) framework is used for defining the time-series regression models which

may contain trend and phenology, hence appropriately modelling vegetation intra and

inter-annual dynamics. All available Landsat data are used for a selected study area, and

the time-series are partitioned into segments delimited by breakpoints. Segments can be

associated to land use regimes, while the breakpoints then correspond to shifts in land

use regimes. In order to further characterize these shifts, we classified the unlabelled

breakpoints returned by the algorithm into their corresponding processes. We used a

Random Forest classifier, trained from a set of visually interpreted time-series profiles

to infer the processes and assign labels to the breakpoints. The whole approach was

applied to quantifying the number of cultivation cycles in a swidden agriculture system in

Brazil (state of Amazonas). Number and frequency of cultivation cycles is of particular

ecological relevance in these systems since they largely affect the capacity of the forest

to regenerate after land abandonment. We applied the method to a Landsat time-series

of Normalized Difference Moisture Index (NDMI) spanning the 1984–2015 period and

derived from it the number of cultivation cycles during that period at the individual field

scale level. Agricultural fields boundaries used to apply the method were derived using

a multi-temporal segmentation approach. We validated the number of cultivation cycles

predicted by the method against in-situ information collected from farmers interviews,

resulting in a Normalized Residual Mean Squared Error (NRMSE) of 0.25. Overall the

method performed well, producing maps with coherent spatial patterns. We identified

various sources of error in the approach, including low data availability in the 90s and

sub-object mixture of land uses. We conclude that the method holds great promise for

land use history mapping in the tropics and beyond.
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4.1 Introduction

Land use and land use dynamics affect elements of the biosphere with local to global

impacts (Foley et al., 2005). Forests are of particular importance in this system for

the role they play in maintaining biodiversity levels and delivering ecosystem services

such as climate regulation and water supplies (Foley et al., 2005; Myers et al., 2000).

While old-growth forests are often considered first when accounting for these services,

secondary forests, with an estimated 2010 area of 165,230 km2 for the Brazilian Amazon

alone (TerraClass, 2011), cannot be ignored since they too play an increasingly important

role in the provision of ecosystem services (Bongers et al., 2015). However, multiple

factors need to be taken into account when dealing with secondary forests. Secondary

forests can succeed to a variety of land use histories such as logging, agriculture, or

cattle ranching and these different histories will in turn impact the characteristics of the

present forests. It has been shown that the vegetation structure, species composition

and resilience of secondary forests are strongly affected by previous land uses (Jakovac

et al., 2015; Lawrence et al., 2010; Mesquita et al., 2001). The longer the areas is kept

under land use and, in the case of shifting cultivation, the higher the frequency of use, the

lower the recovery rate and species diversity of the succeeding secondary forests (Zarin

et al., 2005; Jakovac et al., 2015). Intensive land use can also result in a shift in species

composition (Mesquita et al., 2001; Jakovac et al., 2016a) and can ultimately hinder the

secondary succession (Longworth et al., 2014). Examples of previous land uses include

swidden agriculture—also known as slash and burn agriculture, which is a type of shifting

cultivation widespread in the tropics and from which a large part of today’s secondary

forests originate (Van Vliet et al., 2012; Mertz, 2009). Swidden agriculture has a very

particular rotation cycle which consists in cutting and burning the forest, cultivating the

land for a period of one to three years and leaving the land fallow until the next rotation

five to sometimes more than 20 years later (Coomes et al., 2000; Jakovac et al., 2015). For

these systems specifically, research carried out at field level has shown that the frequency

of land usage as well as the total number of cultivation cycles are important determinants

of the current structure and function of the resulting secondary forest (Lawrence et al.,

2010; Jakovac et al., 2015).

Considering the strong connection that secondary forests have with their previous land

uses, land use history is an important aspect to take into account when measuring and

modelling the current state of secondary forest ecosystems. However, despite its im-

portance such information is not always straightforward to obtain. Interviewing local

stakeholders can provide accurate information, but such effort can only be carried for a

few punctual locations, while information on the remaining part of the landscape would

still be lacking. There is therefore a need to develop standardized methods capable of de-

riving quantitative, spatial informations about past land uses in secondary forest systems

(Van Vliet et al., 2012). Remote sensing techniques offer great promises to contribute
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to this effort of studying the dynamics and evolution of these ecosystems in a spatial

context. Satellites have been acquiring images of the earth for more than 40 years. This

represents large amounts of data which have been collected in an objective, systematic

and spatially continuous way. However, exploiting the remote sensing data for ecological

purposes contains challenges as well. While variables measured in field inventories have a

direct ecological meaning, optical remote sensing measures light reflected by the elements

of the earth surface. Reflected light is a biophysical variable which does not have any

direct ecological meaning and therefore does not provide useful information to the ecolo-

gist or the decision maker. There is therefore a challenge that consists in translating raw

satellite measurements into useful and meaningful variables. One way of achieving this

is by taking advantage of the temporal dimension of the remote sensing measurements.

The earth has been continuously monitored by the various sensors on board the Landsat

satellites since roughly the 80s (Goward et al., 2006). By assembling these repeated mea-

surement, land dynamics can be extracted and used to provide useful information about

the history and dynamics of the land (Kennedy et al., 2014).

A variety of methods has been developed to investigate change using remote sensing

time-series (Lu et al., 2014). The wide range of techniques developed responds to vari-

ous monitoring needs both in terms of spatial extent and dynamics observed. The land

dynamics can be either gradual or abrupt and concern changes about the intra-annual or

the inter-annual dynamics (Kennedy et al., 2014). Using simple linear trends, Dutrieux

et al. (2012) and Fensholt & Proud (2012) have investigated gradual change regionally to

globally using Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced

Very High Resolution Radiometer (AVHRR) coarse resolution time-series. More sophis-

ticated approaches, such as de Jong et al. (2013) and Forkel et al. (2013) used the Breaks

For Additive Season and Trend (BFAST) framework (Verbesselt et al., 2010b,a, 2014)

to investigate shifts in vegetation trends globally. Studies at higher spatial resolution,

nearly always based on Landsat data, include methods for near real time deforestation

monitoring (Zhu et al., 2012; Brooks et al., 2014; DeVries et al., 2015b; Dutrieux et al.,

2015; Reiche et al., 2015), as well as more general tools for vegetation dynamics and land

trajectories monitoring (Kennedy et al., 2010; Huang et al., 2010; Zhu & Woodcock, 2014;

DeVries et al., 2015a).

Here we are interested in applying a method to the case of swidden agriculture with the

objective to map land use intensity defined as the number of times the land has been

cultivated. Swidden agriculture dynamics are fast and complex, which adds additional

challenges to the time-series approach we need to develop. This complexity originates

firstly from the location of these systems. Because they are in the tropics where vegeta-

tion regrowth happens immediately after disturbances, the optical signal related to the

swidden agriculture events fades rapidly making the temporal window to detect events

very short (Asner et al., 2004a,b). An additional challenge comes from the repeated cycles,

all containing gradual changes, such as the periods of forest regrowth, and abrupt changes
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triggered by the burning events. Finally the high cloud coverage usually present above

tropical forest regions further restricts data availability making the observation of dy-

namics even more challenging (Asner, 2001). These constraints call for a hyper-temporal

approach capable of capturing both gradual and abrupt changes.

Here we propose to use a statistically based breakpoint detection method derived from

the econometrics literature to retrieve land use history. The method is applicable to

Landsat time-series hence producing information on past land uses at medium spatial

resolution. We applied the method to the case of swidden agriculture, trying to quantify

the land use intensity defined as the number of times an area has been cultivated for

two municipalities of the Brazilian Amazon where swidden agriculture is the predominant

cultivation practice. Performances of the method are assessed and discussed by comparing

method’s output with a ground truth dataset about agricultural management collected

via farmer’s interviews.

4.2 Material and methods

4.2.1 Time-series segmentation

Detecting change in time-series

As described in the introduction of this paper, detecting change may take several forms,

depending on whether the change observed is gradual, abrupt, occurs on intra-annual

dynamics, or between years (Kennedy et al., 2014). Here we propose an approach to

perform full segmentation of the time-series. Abrupt changes, referred to as breakpoints

are detected from changes in the coefficients of a time-series regression model (Bai, 1994).

Periods between breakpoints, which we call temporal segments can be characterized in

different ways, based on their duration, trend, mean values or intra-annual characteris-

tics.

Breakpoint detection—theoretical background

In order to detect abrupt changes in the remote sensing time-series, we use a breakpoint

detection method derived from the econometrics literature. The method developed to de-

tect breakpoints in time-series regression models was initially introduced by Bai (1994),

and later extended to the detection of multiple breakpoints (Bai, 1997a,b; Bai & Perron,

1998). Examples of applications are given by Zeileis et al. (2003), and Bai & Perron

(2003). Given a regression model (Equation 4.1), the method tests the hypothesis that

the regression coefficients remain constant over time against the alternative hypothesis

that at least one of the coefficients changes. To test this hypothesis, a triangular Residual
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Sum of Squares (RSS) matrix, which gives the RSS for each possible temporal segment in

the time-series, is computed. The optimal number of partitions is then obtained by min-

imizing the Bayesian Information Criterion (BIC), while the position of the breakpoints

is determined by minimizing the RSS among all possible partitioning schemes given by

the RSS matrix (Zeileis et al., 2003; Bai & Perron, 2003). The un-partitioned time-series

regression (Equation 4.1) can therefore be re-written for each potential partitioning fol-

lowing Equation 4.2.

The initial time-series regression model can be written as follows:

yi = x⊤
i βi + ui (i = 1, . . . , n), (4.1)

where yi is the observation at time i of the dependent variable, xi a vector of regressors,

and βi the vector of regression coefficients, and ui the error term. After partitioning,

Equation 4.1 can be re-written as:

yi = x⊤
i βj + ui (i = ij−1 + 1, . . . , ij, j = 1, . . . ,m+ 1), (4.2)

where j is the segment index for a time-series regression containing m+1 segments within

which the regression coefficients (βj) are constant. By convention i0 = 0 and im+1 = n

(Zeileis et al., 2003).

Here, because the method is being applied to vegetation, which is known for having

seasonality due to its phenological cycles, we chose to allow the use of a seasonal-trend

regression model (Verbesselt et al., 2010b,b; Roerink et al., 2003). The model we use can

be written as follow:

yt = α1 + α2t+
k

∑

j=1

γj sin(
2πjt

f
+ δj) + ǫt (4.3)

where the dependent variable y at a given time t is expressed as the sum of an intercept α1,

a slope α2 for potential temporal trend in the data, a sum of different frequency harmonic

components representing seasonality (
∑k

j=1
γj sin(

2πjt

f
+ δj)), and an error term ǫt. For

the harmonic component of the model, j = 1 corresponds to the one year cycle, k is the

chosen harmonic order, γj and δj correspond respectively to the amplitude and phase of

the harmonic order j, and f is the known frequency of the time-series (i.e., number of

observations per year).
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Breakpoint detection—implementation

An important parameter for the implementation of the breakpoint detection algorithm

is the minimum segment size relative to the sample size, referred to as h. In that case

sample size refers to the number of observation in the given time-series. While a large

h value may increase the stability of the model, it may result in short segments being

missed, given that the cultivation period is only two years in average. On the other hand,

a too small value for h may result in the detection of spurious breakpoints due to the

noise that might be contained in the data.

Based on recommendations from Bai & Perron (2003), and empirical experiments we

chose a h value of 0.07, which corresponds to approximately 24 samples in our case. The

regression model used is another important parameter of the implementation. Although

we designed the method to work with a seasonal trend model, we decided based on a

priori knowledge of the system and visual investigation of randomly chosen pixel time-

series to use a simple trend model without seasonal component, meaning that we set k to

0 in Equation 4.3. This decision is justified by the presence of essentially evergreen tree

species in the area.

Figure 4.1: Illustration of a temporal Normalized Difference Moisture Index (NDMI) profile

with breakpoints detected. Blue lines correspond to the fitted regression model for each

segment while green dots represent the observations.

4.2.2 Breakpoint classification

In the present case study we are interested in quantifying land use intensity in a slash and

burn agriculture system. The breakpoint detection algorithm introduced in Section 4.2.1

returns all breakpoints regardless of the change process associated to them. We therefore
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need to characterize the segmented profiles in order to retrieve the variables of interest.

Following Jakovac et al. (2015), we define land-use intensity as the number of cultivation

cycles that the land has undergone in the past. The objective of this characterization

therefore becomes to identify and count the number of cultivation cycles from the seg-

mented temporal profiles. After investigating a set of segmented time-series, it appeared

that the typical segmented profiles would present a succession of burning and stabilization

breakpoints (Figure 4.1). Burning breakpoints correspond to the slashing and burning

events in the swidden agricultural system and can be identified on the temporal profile by

a dramatic drop in Normalized Difference Moisture Index (NDMI, see description in Sec-

tion 4.2.4) (1st, 3rd, 5th and 7th breakpoints in Figure 4.1). The stabilization breakpoints

occur generally two years after burning events when NDMI stabilizes to its saturation level

following a gradual increase period (2nd, 4th and 6th breakpoints in Figure 4.1). While

this appears to be the transition from a regrowing forest to a stable forest, we know

that two years is not a sufficient period for forest regrowth and the NDMI stabilization

reflects more a limitation of the index to discriminate the later stages of forest regrowth

than a real ecological transition. Because we were interested in the number of cultivation

cycles, we decided to use the number of breakpoints related to the burning process as a

the proxy for the number of cycles. We classified the breakpoints for being able to count

for each segmented time-series the total number breakpoints associated to the burning

process.

While it is relatively easy for a human to assign classes to the breakpoints by jointly

considering several elements of the temporal context, it would be very difficult to pro-

grammatically define a set of rules and thresholds that would assign the right class to the

breakpoints. We therefore decided to use a Random Forest classifier in order to automat-

ically classify breakpoint classes based on the characteristics of the surrounding segments

of each breakpoint (slope, mean, begin and end NDMI values). Random Forest is an en-

semble learning method, developed by Breiman (2001) and widely used in many scientific

fields, including the field of remote sensing (Pal, 2005; Avitabile et al., 2012). It can be

used for both classification and regression problems and works by building multiple re-

gression or classification trees (Breiman et al., 1984) from bootstrapped training samples.

The output of these trees are then aggregated. In the present case, by learning from the

patterns of the surrounding segments, the classifier can assign a class to all the break-

points of every individual time-series. Random Forest requires a training dataset in order

to be able to perform supervised classification. We assembled this training dataset by

visually interpreting a set of randomly selected partitioned NDMI profiles and manually

assigning classes to all breakpoints. In total we considered three classes; the burning and

stabilization breakpoints, as illustrated in Figure 4.1 as well as an additional undefined

class, for breakpoints from which the process could not be clearly identified from the

temporal patterns.
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4.2.3 Study area

We developed and tested the method in an area of Brazil, state of Amazonas, where

swidden agriculture is used for the cultivation of manioc. The area is covered by two

municipalities (Tefé and Alvarães) and comprises 22 villages (Figure 4.2). The area is rel-

atively flat with an elevation comprised between 25 and 80 m above sea level. The river

(Rio Tefé—a tributary of the Amazon river) is central to the organization, water ways

being the main transportation network in the area, and all villages have been established

along the rivers. The agricultural fields stretch out of the villages from the immediate

proximity to a few kilometres inland and have an average size of 0.5–1 ha. Old-growth

forests represent the remaining part of the landscape. Villagers cultivate the land essen-

tially for manioc and rely on a rotation system that consists in slashing and burning the

forest to prepare the land for a cropping period of two years, after which the forest is left

to regrow until the next rotation (Jakovac et al., 2015). The time between two rotations

vary in most cases between two and seven years (Jakovac et al., 2015). Information on the

land history and use intensity were collected in the area by means of farmers interviews,

conducted in 2012 and 2013. A complete description of the field data set used in this

study can be found in Jakovac et al. (2015).

4.2.4 Data sets and data processing

Landsat data

The present study uses data collected by the Landsat sensors Thematic Mapper (TM),

Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI). These

data have a ground resolution of 30 m and span the 30 years period of 1984–2015. Early

steps of the pre-processing such as geo-referencing, atmospheric correction as well as

cloud and cloud shadows detection are directly performed by the United States Geological

Survey (USGS), from where the data were downloaded. The USGS uses the Landsat

Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm (Masek et al.,

2006) to perform automatic atmospheric correction of the Landsat archive, while the fmask

algorithm (Zhu & Woodcock, 2012) is used for cloud detection. LEDAPS is a highly

standardized pre-processing framework which ensures the comparability of reflectance

values among the different sensors on-board Landsat satellites (Masek et al., 2006), while

fmask is an advanced object based cloud and cloud shadow detection algorithm that takes

advantage of both surface reflectance and temperature (Zhu & Woodcock, 2012). Only

terrain corrected data (L1T), which corresponds to the highest level of spatial accuracy,

were used. In total this resulted in 350 Landsat scenes covering the study area. Scenes

with cloud cover were kept but pixels contaminated by clouds were excluded by using

the cloud mask provided by the fmask algorithm. By not excluding scenes partially

contaminated by clouds, we take advantage of all observation available, making the use
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Figure 4.2: Map of the study area, red dots correspond to the location of the different

villages. An Operational Land Imager (OLI) image (band combination 6/5/2) acquired on

September 29th 2014 is used as background

of methods requiring entire time-series possible. This is analogue to many other recently

developed approaches (DeVries et al., 2015b,a; Dutrieux et al., 2015; Zhu et al., 2012;

Zhu & Woodcock, 2014), that use all data available, in order to perform computation at

the pixel level. These methods are often referred to as multi-temporal, or hyper-temporal

approaches (Brooks et al., 2014).

Although the Landsat satellites have a 16 days revisit period (8 days on a two satellites

configuration), the temporal resolution of useful data is not constant over the entire period

investigated. Several reasons can explain this difference between satellite revisit period

and temporal resolution of useful data. First, sensors are not systematically acquiring the
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data; this is particularly pronounced over the 90s, period during which little data were

acquired outside of the United States (Goward et al., 2006). Even when data are acquired

by the sensor and successfully transferred to a receiving station, they can be contaminated

by clouds or affected by sensor malfunctioning. An example of sensor malfunctioning is

the ETM+ Scan Line Corrector failure in 2003, which has resulted in systematic data loss

ever since (Goward et al., 2006).

Vegetation index

While Landsat data, with six spectral bands, contain a lot of information for different

regions of the light spectrum, the breakpoint detection algorithm we are using has not

been designed to work with multiple time-series. We are consequently required to reduce

these six surface reflectance time-series into a single vegetation index time-series. Vegeta-

tion indices often emphasize a certain trait at the expenses of another potentially useful

trait, so that choosing a vegetation index often comes as a trade-off. Many indices can be

computed from Landsat surface reflectance data. Here we are mostly interested in indices

relating to the properties of the vegetation cover such as greenness or photosynthetic activ-

ity. The most notoriously used vegetation index is undoubtedly the Normalized Difference

Vegetation Index (NDVI) (Tucker, 1979). NDVI has the advantages of being robust and

easily interpretable (Jackson & Huete, 1991), but it also tend to saturate at high biomass

levels (Huete et al., 2002). A number of alternatives have been proposed to the NDVI,

including the Enhanced Vegetation Index (EVI) (Huete et al., 2002), however, this latter

was also found to being largely affected by varying sun-sensor geometry characteristics,

resulting in potential artefacts in the data when used in time-series (Morton et al., 2014;

Brede et al., 2015). Another alternative to NDVI originates from the family of indices

which consider both Short Wave Infra-Red reflectance (SWIR) and Near Infra-Red (NIR)

such as the Normalized Difference Moisture Index (NDMI) (Vogelmann & Rock, 1988),

or other metrics derived from the Tasseled Cap transformation (Crist, 1985). By tak-

ing advantage of the NIR and SWIR spectral regions which are respectively sensitive to

photosynthetic activity and moisture, these indices have been shown to be particularly ap-

propriate for discriminating among forest age classes (Horler & Ahern, 1986; Jin & Sader,

2005; Wilson & Sader, 2002). Here we are interested in capturing the process of forest

recovery after land abandonment, we therefore decided to use the NDMI (Vogelmann &

Rock, 1988). The index is calculated using the equation below (Equation 4.4).

NDMI =
NIR− SWIR

NIR + SWIR
(4.4)

where NIR corresponds to the Near Infra-Red (770–900 nm) part of the light spectrum

and SWIR to the Short-Wave Infra-Red (1550–1750 nm). NIR and SWIR correspond
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respectively to the bands 4 and 5 of the TM and ETM+ sensors and to the bands 5 and

6 of the OLI sensor.

Because it is a simple normalized ratio, NDMI is easy to compute and does not depend on

other reference pixels or end members, and varies by design between -1 and 1. Low NDMI

values are expected for bare soils and thin regrowing forest canopies while higher values

correspond to thicker, fully developed forest canopies (Wilson & Sader, 2002).

4.2.5 Spatial implementation

In our approach we analyze the time-series profiles at the object level. Objects are clus-

ters of pixels grouped according to their resemblance and spatial proximity. Working with

objects rather than pixels has two advantages for our purpose of analysing land dynamics

in the swidden agriculture mosaic landscape. First, when working with objects features

being mapped correspond to elements of the landscape, which results in easier interpre-

tation of the outputs of the analysis (Blaschke, 2010). Secondly, creating the object layer

simultaneously allows for a pre-selection of the areas of interest and tremendously reduces

the number of time-series that need to be processed, hence reducing computing time and

efforts. A singular characteristic of the swidden agriculture land use is the constant shift

in fields footprints. While farmers often return to the same location when re-opening a

piece of land for a new cultivation cycle, they may decide to only re-open part of the

previous field (Metzger, 2003). Considering such characteristic of the system, a simple

multi-spectral image segmentation would be unsuitable to delineate the objects of interest

as different land use histories could be present within the same object. Here we use a

multi-temporal spatial segmentation, so that instead of being defined according to spec-

tral resemblance, the segments cluster pixels based on their spectral–temporal similarity.

The resulting segmentation hence delineates objects having undergone similar land use

temporal trajectories. This approach is adapted from a method initially proposed by

Desclée et al. (2006), further improved by Verhegghen et al. (2010) and used for object

based deforestation mapping in central Africa by Duveiller et al. (2008) and Ernst et al.

(2013).

We used a mean shift segmentation algorithm, as implemented in the Orfeo ToolBox

(www.orfeo-toolbox.org) (version 4.2.0) to perform the multi-temporal segmentation

(Fukunaga & Hostetler, 1975; Inglada & Christophe, 2009). A NDMI time-series, which

we assembled by building annual mean value composites resulting in one average NDMI

value per year, was used as input data. Since spatial segmentation can only be performed

on gap free data, we visually screened the annual composites for remaining clouds or

gaps and discarded non gap free layers. The resulting NDMI stack used as input for

the segmentation contains 25 layers spanning the 1986-2014 period. The mean shift

segmentation algorithm requires as input parameters a range radius, a spatial radius and
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a minimum object size. We chose for the range radius, which is the similarity (Euclidean

distance) measure for a pair of pixel profiles, a value of 0.14. Such value exceeds the

natural variability between two similar pixels while successfully differentiating two pixels

with different land use trajectories. A too small range radius value has the effect of

over-segmenting the area, while larger values have the opposite effect. Based on a-priori

knowledge of the system, we set the spatial radius to three pixels and the minimum object

size to three pixels (Jakovac et al., 2015).

This initial segmentation step results in many segments, some of which are not swidden

agriculture. Since we are only interested in the swidden agriculture fields, we applied a set

of rules to filter and keep only those polygons that delineate areas of swidden agriculture.

First, we discarded objects larger than 15 ha, which is larger than the average field size

of 1 ha, usually found in the area (Jakovac et al., 2015). Following that we used the

NDMI time-series associated to the segments in order to filter out remaining segments of

stable forest (NDMI never falling below 0.3), and urban areas, permanent agriculture and

wetlands (NDMI never exceeding 0.3). A graphical representation of the overall approach

is presented in Figure 4.3.

4.2.6 Validation

In order to assess the performances of the method in quantifying land use intensity,

we complemented this analysis by a validation exercise. We compared the number of

cultivation cycles predicted by the proposed method with a reference dataset providing

information on past land uses (Jakovac et al., 2015). The reference dataset was collected

in 2012 and 2013 by means of farmer’s interviews and contains the number of times the

individual fields have been used for manioc cultivation. In total 35 data points, each

corresponding to a single field were available for validation. We used the Normalized

Root Mean Square Error (NRMSE), Normalized Mean Absolute Error (NMAE) and

Bias to assess model performances. NRMSE and NMAE inform on the relative amount

of residual variance, which is the variance in the observed variable that is not explained

by the model (Mayer & Butler, 1993). Bias indicates whether the model predictions over

or under-estimates the variable when predicting new values. The performance metrics

can be computed using the following equations:

NRMSE =
RMSE

ymax − ymin

(4.5)

Where ymax − ymin is the range of the observed variable and RMSE the Root Mean

Square Error expressed by,

RMSE =

√

∑

(ŷi − yi)2

n
(4.6)
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Figure 4.3: Schematic overview of the proposed methodology

In the above equation, yi is the ith observation of the observed variables, while ŷi is the

corresponding predicted value for that observation. n is the total number of observations

used for validation.

Similarly to NRMSE, NMAE is a normalized version of the Mean Absolute Error

(MAE).

NMAE =
MAE

ymax − ymin

(4.7)

Where MAE is expressed by,

MAE =

∑

|ŷi − yi|
n

(4.8)



4.3 Results and discussion 77

By design, NMAE will always be smaller than or equal to NRMSE (Mayer & Butler,

1993).

Finally Bias is simply the difference between the predicted mean ˆ̄y and the observed

mean ȳ.

Bias = ˆ̄y − ȳ (4.9)

4.3 Results and discussion

4.3.1 Multi-temporal segmentation

Figure 4.4 presents the resulting multi-temporal segmentation applied to a subset of the

study area. The transparent polygons are overlaid with a colour composite of NDMI

at three different years. Although not representing the whole time-span considered, the

resulting colour composite reflects some variability in land use trajectories. One can see

in Figure 4.4 polygons appropriately separating groups of pixels with different colours.

Delineations are particularly clear at the periphery of the cultivation area, where fields

also tend to be larger. These fields at the periphery likely correspond to recently acquired

land, opened and cultivated for the first time. This characteristic makes their spatio-

temporal signature relatively simple and distinct from the surrounding forest matrix and

easily delineated by the segmentation algorithm. Segments are smaller in the core of the

cultivation area. These correspond to areas that have been cultivated multiple times,

with fields footprints potentially shifting over time, making the spatio-temporal dynamics

more complex and resulting in smaller, more numerous objects. In total 65,000 segments,

corresponding to 50,000 ha (11% of the study area shown in Figure 4.2), were delineated.

The average segment size is 0.77 ha, which is comprised in the field size range (0.5–1 ha)

reported by Jakovac et al. (2015).

4.3.2 Quantifying land use intensity

We applied the developed approach to a swidden agriculture area, aiming at predicting

the number of cultivation cycles each land parcels had gone through. As described in

Section 4.2, retrieving the number of cultivation cycles from the time-series involves several

steps. The first step, which is the core of the method presented here, and also the

most computationally demanding step, is the temporal segmentation using the breakpoint

detection algorithm. We ran the algorithm on 65,000 time-series corresponding to the

Landsat spatially aggregated values for all the swidden agriculture polygons identified

in the multi-temporal segmentation. It took approximatively 25 CPU hours to run the
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Figure 4.4: Example of segmentation results for an area bordering a secondary river. Seg-

ments with transparent filling are overlayed with a RGB composite with red, green and blue

channels corresponding to NDMI in years 2006, 2008 and 2010 respectively. White areas

correspond to stable forest with little to no variation in NDMI among the three years, and

different colours reflect various NDMI temporal trajectories.

temporal segmentation algorithm on all the time-series for the 1984–2015 period, resulting

in an average processing time of 1.4 s per polygon. For the second step, which consists in

classifying the unlabelled breakpoints returned by the temporal segmentation algorithm,

we visually interpreted 100 randomly selected temporal profiles and manually classified

700 breakpoints into the three classes; Burning break, Stabilization break and Undefined.

This training dataset was then used for training the Random Forest classifier. From

the Out Of Bag (OOB) estimates of error, the Burning Breakpoint class, which is the

most important class to identify for later retrieving the number of cultivation cycles, had

a prediction accuracy of 88%. Following the breakpoint classification, we were able to

produce the land use intensity map presented in Figure 4.5, which presents the predicted

number of cultivation cycles over part of the study area. We predicted that, over the
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study area presented in Figure 4.2, the area with at least one cultivation cycle was about

36,000 ha. A first observation of the map reveals that cultivated areas occur within a

2 km zone surrounding waterways. The mapped variable also appears to be structured in

space, with most fields with only one cultivation cycle located in the outer bound of the

cultivated area and more intensively used land parcels closer to villages. Such patterns

were expected since agricultural expansion grows organically away from the villages or

main transportation networks (Jakovac et al., 2016b).

Figure 4.5: Map depicting the predicted number of cultivation cycles for a subset of the

study area. NDMI from Landsat 8 acquired on September 29th, 2014 is used as background

layer.

4.3.3 Method performance assessment

We assessed the performance of the method by confronting the method’s predictions to an

observed dataset and computed performance metrics. This ground truth dataset is based

on 35 farmer’s interviews who reported the number of times their land has been cultivated

in the past. The resulting method performance assessment is represented in Figure 4.6.

The NRMSE and NMAE inform on the relative amount of residual variance unexplained

by the model. With values of 0.25 and 0.17 for NRMSE and NMAE respectively, we are
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confident that the method can provide reliable information in this context, and that the

number of cultivation cycles predicted reflects the actual management intensity of the

land. However, it is clear from the validation that certain time-series did not produce

the expected number of cultivation cycles and deviated from the information reported

by farmers. From the spread of the validation samples in Figure 4.6, and confirmed by

the Bias of -0.23 cycles, there is no strong systematic pattern of the method to either

overestimate or underestimate the number of cultivation cycles. In order to further explain

these deviations from the reference number of cultivation cycles, we examined three time-

series profiles from the validation data set (Figure 4.7).

The time-series profiles, together with their associated model predictions and reference

values are presented in Figure 4.7. Figure 4.7a, represents a time-series for which the

number of cultivation cycles predicted by the method is much smaller than the reference

number of cycles, with two and four cultivation cycles for the prediction and reference

respectively. One striking characteristic of this profile, when compared to a typical NDMI

profile as shown for instance in Figure 4.1, is the large variability, or noise in the NDMI

values. With such high variability in the time-series, the optimal partitioning found

by the breakpoint detection algorithm consists of a single partition for the 1984–2007

period. One hypothesis for explaining such high variability is the presence of several land

use trajectories within the object of interest. Such sub-object mixture could originate

from a limitation of the multi-temporal segmentation to appropriately discriminate land

use trajectories between various individual pixels temporal profiles, resulting in spatial

segments composed of several land use histories. However, considering the small size of

agricultural fields (0.5–1 ha), which can be just a few pixels in the case of 30 m Landsat

data, such mixture is likely to occur and reflects more a physical boundary of the method

related the spatial resolution of the input data rather than a shortcoming of the multi-

temporal segmentation. Also, such mixture is likely to occur more frequently in the core of

the area, where objects are small and spatio-temporal patterns more complex. Figure 4.7b

is an example of temporal profile for which the prediction over-estimates the actual number

of cultivation cycles. While breakpoints are detected in the NDMI time-series, transition

patterns between consecutive temporal segments are unclear and the underlying transition

processes cannot easily be inferred. These unclear patterns result in miss-classifications by

the Random Forest classifier in charge of labelling the breakpoints. The rapid dynamics

of the system of interest are forcing us to set a small minimum segment size for the

breakpoint detection step of the method, hence increasing the sensitivity to noise and the

possibility of detecting breakpoints which are not related to actual change processes. This

source of error, and limitation, is very specific to the current application of the method and

we are confident that the robustness of the method would increase in environments with

slower dynamics, such as temperate forests for instance. The last source of deviation from

the reference dataset we identified, presented in Figure 4.7c, appears to originate from

inaccuracies in the reference dataset itself. While three cultivation cycles were reported
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for that particular field, the visual interpretation of the NDMI profile, as well as the

method’s prediction, suggests four cycles. When interpreting the method’s performance,

it is important to consider the origin of the reference dataset, and the corresponding

accuracy. Although this dataset is undoubtedly the most reliable reference information

available, it was collected from interviews and therefore relies on individuals accurately

remembering the past. Considering that fact, inaccuracies in the reference dataset are

likely to occur, particularly regarding events that occurred more than 15–20 years ago.

This however, can only be acknowledged and is hardly quantifiable.

In addition to the three examples presented above, other limitations of the current ap-

proach can be discussed, as they are likely to occur. First of all, the length of the Landsat

observations period is obviously limiting the retrieval of dynamics that occurred before

the 80s. Landsat is among the satellites that have the longest data record and we will not

be able to overcome this limitation. While for the present application retrieving land use

history of the past three decades is sufficient to infer the pressure of the intensification

on the secondary forest’s capacity to regenerate (Jakovac et al., 2016b), other mapping

activities may require longer land use history data in order to retrieve useful information.

In addition to the limitations of the dataset, other limitations inherent to the method also

exist. An important parameter of the method is the minimum segment size (h), defined

as a proportion of the total number of observations available in the time-series. This

parameter of the breakpoint detection algorithm further limits the temporal extent of the

period during which potential breakpoints can be detected. This period which can be

referred to as the effective monitoring period stretches between 1988 and 2014 in our case

(represented by the interval between the two red dashed lines in Figure 4.8). Addition-

ally, given that data density varies with time, the sensitivity to detecting rapid dynamics

evolves alongside and can be largely different between two time periods. As shown in

Figure 4.8, which represents the minimum segment duration assuming all Landsat ac-

quisitions are clear observations, the mid 90s particularly suffers from a data shortage,

and two consecutive breakpoints during that period need to be at least four years apart

when using a minimum segment size of 0.07. Although it is method specific, this limi-

tation also needs to be considered relatively to the input data as denser time-series and

time-series with reduced noise will help more robust temporal segmentations. Finally, we

acknowledge that working with a single vegetation index might be a limitation to properly

capture regrowing forest dynamics. In all cases presented in Figure 4.7 we can see that the

base NDMI level corresponding to a fully grown forest is reached relatively shortly after

the burning breakpoint. Choosing a single vegetation index constitutes a trade-off which

may restrict the time span during which we are able to detect the regrowing phase of the

forest. Developing change detection approaches that take advantage of all the spectral

information available should therefore constitute a priority for future work.

Many of the limitations listed above are directly or indirectly related to temporal density

of the data. This holds great promises for an undoubtedly data richer future, thanks to



82 Reconstructing land use history

the launch of the Sentinel 2 constellation and an increased data acquisition capacity of

the recent and upcoming Landsat sensors (Drusch et al., 2012; Roy et al., 2014). Other

regions of the world with greater data availability than the Brazilian Amazon may also

hold great promises for the method to retrieve information about past land uses. Testing

and validating the method we propose in different ecosystems, including environments

outside of the tropical zone with various seasonality patterns, will be part of our future

studies.
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Figure 4.6: Scatter plot of predicted number of cultivation cycles against information re-

ported by farmers.

4.3.4 General considerations

We developed and tested an approach for reconstructing land use history from Landsat

time-series. The method uses all data available in a pixel time-series regardless of the

cloud cover present in the rest of the scene to partition a vegetation index time-series

into segments and abrupt changes. The breakpoint detection algorithm that finds abrupt

changes in time-series regression models (Bai & Perron, 1998; Zeileis et al., 2003), is

the core of the method. We tested the method capacity to retrieve land use intensity,

defined as the number of cultivation cycles, in a swidden agriculture context. In that

specific context the implementation of the method involved an additional multi-temporal

spatial segmentation step as well as a post-partitioning breakpoint classification. In its

present application the method was able to predict the number of cultivation cycles with
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Figure 4.7: Illustration of some sources of variability in prediction performances from three

temporal profiles (a, b and c) for which the number of predicted cultivation cycles diverges

from the reference number of cycles. Burning, stabilization and undefined breakpoints are

represented by solid, dashed and dot-dashed vertical lines respectively. (a) corresponds to a

profile with high variability in the NDMI signal, resulting in undetected breakpoints. (b) is an

example of a temporal profile for which the method overestimates the number of cultivation

cycles due to classification errors. (c) illustrates a case of potential inaccuracy in the reference

dataset, where visual interpretation of the NDMI profile suggests four cultivation cycles while

only three were reported.
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Figure 4.8: Minimum segment duration based on the density of data available and a min-

imum segment size h of 0.07. The horizontal scale corresponds to the date at the centre of

the segment and the dashed red lines represent the earliest and latest possible breakpoint

detection dates.

a NRMSE of 0.25 and a NMAE of 0.17 (Figure 4.6). Further exploitation of the results

with an ecological perspective are presented in Jakovac et al. (2016b), where the method

was successful in evaluating changes in land use dynamics through time. The method

can potentially retrieve land use history in various environments by detecting changes

in trajectories including potential changes in phenological patterns over time. From an

application point of view, since they both have been demonstrated with Landsat time-

series and provide similar types of outputs, the method we propose can be seen as analogue

to LandTrendR (Kennedy et al., 2010). The method we propose brings one difference with

respect to LandTrendR, which is the use of all data available in the time-series. As we

demonstrated in the present article, this characteristic allows tracking of rapid vegetation

dynamics, which often is a feature of tropical environments (Asner et al., 2004a,b). Since it

was introduced in 2010, LandTrendR has achieved a certain legacy and the present method

is absolutely not meant to replace it. The use of all data rather than annual composites

likely makes the present method more sensitive to noise in the time-series. However, the

method we are proposing is particularly relevant when tracking fast dynamics or when

change in intra-annual dynamics over time is relevant to consider.

As discussed earlier, the current application of the method revealed some limitations, most

of which relate to the temporal density of the input data. Periods of low data availability

are likely to result in missing breakpoints when attempting to detect fast dynamics. The

90s are notorious over many regions of the world for having poor data availability (Goward

et al., 2006). Potential users should be aware of this limitation and temporal resolution

of the input data should be taken into consideration when interpreting results.

At the moment we were only able to demonstrate part of the potential of the method by
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applying it to an area of swidden agriculture for the quantification of land use intensity.

Such variable is of great interest in that particular agricultural system since it largely

influences the capacity of the secondary forest to regenerate following land abandonment

(Jakovac et al., 2015). Although we developed a proof of concept for swidden cultivation

systems applied to manioc, and we acknowledge that further testing is required due to the

use of a single case study, this method will likely be useful for retrieving land use history

in other contexts and can be seen as a generic land use history reconstruction method.

It could for instance be used—considering minor parameters adjustments—for other ro-

tational systems such as banana and pineapple plantations, which are also common in

the Amazon, and therefore comprise a similar sequence of cutting break, cultivation and

regrowing forest. Future research will look into further testing the method in other en-

vironments and for different applications, such as carbon modelling and secondary forest

recovery. Such application would undoubtedly require a more thorough characterization

of the segmented temporal profiles than was required for the present case study. Im-

provements to the current application will also be considered in further research, such

as multi-spectral approaches as a way to overcome trade-off and limitations related to

choosing a single vegetation index.

4.4 Conclusion

With this paper we propose a method capable of reconstructing past land use history

by using Landsat time-series. Individual time-series are partitioned into segments corre-

sponding to land use regimes, and breakpoints, which can be thought as abrupt changes

between regimes. Although the present case study did not require its use, because it

detects changes in time-series regression models, the method can be used in combination

with a seasonal model, hence potentially detecting changes over time in phenological pat-

terns. The method was tested in the context of swidden agriculture for a chosen study

area in Brazil, with the aim of quantifying the number of cultivation cycles fields had un-

dergone in the past three decades. Such land use intensity metric is relevant in swidden

cultivation systems since it largely affects the capacity of the forest to regenerate following

land abandonment. For this case study specifically we applied the method at the object

level rather than for individual pixels, using objects from a multi-temporal spatial seg-

mentation step. A simple characterization of the segmented temporal profiles was applied

by classifying breakpoints and counting the number of burning breakpoints. We validated

the resulting land use intensity against a set of reference data collected from farmer’s in-

terviews and obtained accuracies of 0.25 and 0.17 of NRMSE and NMAE respectively.

While the method requires further testing for different areas and in various environments

for its potential to be fully confirmed, we already demonstrated a use case for which it

was able to provide useful information to ecologists and we are confident that the method

holds greater potential for retrieving land use history in different environments of the
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planet.
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Abstract

Secondary forests constitute a large part of today’s existing forests and play a major

role in climate regulation; yet little is known on how forest resilience varies spatially or

what drives the recovery of previously disturbed forests. The present study is twofold; we

first propose a framework able to quantify time necessary for a disturbed and abandoned

forest to recover it spectral properties. We then investigate spatial patterns and potential

drivers of spectral recovery time across the Amazon basin. The framework, applicable

to multi-spectral time-series data such as those collected by the sensors on-board the

Landsat satellites, is largely derived from the econometrics field and combines change

detection, temporal trajectory identification, and structural stability monitoring. We

applied it to a set of 3596 Landsat time-series sampled from regrowing forests across the

Amazon basin, thus producing estimates of recovery time in spectral properties, which

we call spectral resilience. On average, it took 7.8 years, with a large variability (sd =

5.3 years) for disturbed forests to recover their spectral properties. We expected spectral

resilience to vary across forests and increase with water availability. Instead, we found that

spectral resilience does not show any spatial structure and appears to be independent from

water availability, as indicated by annual rainfall and climatic water deficit (CWD). The

high local variability in spectral recovery suggests that spectral resilience largely depends

on local conditions which we could not identify. We did not possess sufficient elements,

particularly regarding the relation between spectral resilience and resilience in other forest

attributes (biomass, species richness, etc) to explain whether the patterns observed are

likely specific to the spectral properties of forest or can be generalized to other forest

attributes. Facing this uncertainty we suggest additional research to be conducted, with

the aim of better understanding this newly introduced spectral resilience metric.
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5.1 Introduction

Secondary forests constitute over half of the area of tropical forests, will increase in pro-

portion in the future and sequester large amounts of carbon (Bongers et al., 2015; Brown

et al., 1990; Poorter et al., 2016). They are therefore a potentially important missing

piece of the global carbon balance and their potential role for biodiversity conservation

is underestimated. Despite their tremendous relevance in the current context of climate

change and environmental degradation, large blocks of knowledge are missing concerning

them. While recent studies brought great insights on potential drivers of forest resilience

(Poorter et al., 2016; Jakovac et al., 2015), much variation remains unexplained. There

is therefore a fundamental need to better understand forest recovery, resilience and their

underlying drivers.

Here we propose to approach forest resilience from a remote sensing perspective. Rela-

tively long time-series of remotely sensed data can be assembled (Goward et al., 2006),

allowing dynamic processes to be observed and studied in a spatially explicit way. The

dynamic process we are interested in is the resilience in spectral properties. We de-

fine resilience in that context as the time necessary for spectral properties to recover to

their initial levels following a sequence of forest disturbance and abandonment, hence

adopting the engineering resilience definition proposed by Pimm (1984) (see also Holling

(1996)).

Previous studies have used remote sensing to describe global resilience of natural vegeta-

tion (Hirota et al., 2011; De Keersmaecker et al., 2015). Both have approached resilience

using the ecological definition of the term, which corresponds to the magnitude of distur-

bance that a system can absorb before switching to a different stable state (Pimm, 1984;

Holling, 1996). Hirota et al. (2011) used static data from Moderate Resolution Imaging

Spectroradiometer (MODIS) to infer resilience, while De Keersmaecker et al. (2015) have

developed a framework using Normalized Difference Vegetation Index (NDVI) time-series,

which they then applied to the 8 km spatial resolution Global Inventory Modelling and

Mapping Studies (GIMMS) dataset. In contrast we are interested in quantifying resilience

of forests following the engineering definition of the term. The engineering resilience of

a system is characterized by the speed of recovery in its properties, through regrowth in

the case of a forest systems. We decided to address this dynamic process using a time-

series approach. Considering the scale at which forest disturbances and regrowth occur,

Landsat data, with a spatial resolution of 30 m provide an ideal data source to observe

and quantify these processes. Numerous studies have used Landsat time-series to monitor

land cover change (Zhu et al., 2012; Brooks et al., 2014; DeVries et al., 2015b; Dutrieux

et al., 2015; Huang et al., 2010; Kennedy et al., 2010; Dutrieux et al., 2016; DeVries et al.,

2015a; Hansen et al., 2013). The most recent developments of that field resulted in the

implementation of a near real time deforestation alert system (Hansen et al., 2016).
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The framework we propose is largely derived from the econometrics literature and com-

bines break detection (Bai, 1994, 1997b,a; Bai & Perron, 1998, 2003; Zeileis et al., 2003),

trajectories identification, and structural stability monitoring (Leisch et al., 2000; Zeileis

et al., 2005; Zeileis, 2005; Zeileis et al., 2010). Most time-series approaches focus on single

vegetation indices, but here we use a full multi-spectral time-series approach to take full

advantage of the spectral dimension contained in the Landsat data, and capture subtle

differences in spectral signatures between secondary and old growth forests canopies.

We first introduce a framework to quantify forest recovery time in spectral properties

from multi-spectral remote sensing time-series. We then investigate spatial patterns and

drivers of spectral recovery time across the Amazon basin.

5.2 Material and methods

5.2.1 Study area and sampling of forest regrowth pixel

The objective of the study is to characterize the spectral recovery of regrowing forests

and how it is influenced by environmental variables. We therefore sampled pixels of

regrowing forests across different environments. The study stretches from -70 to -50

degrees longitude, and from -18 to 2 degrees latitude (Figure 5.1). This area covers a

large part of the Brazilian Amazon as well as lowland Bolivia, contains a large variety of

environments, forest types and climatic conditions, and is globally important for carbon

sequestration and biodiversity conservation. Because we are only interested in areas

having undergone forest regrowth, we selected pixels based on the global map of forest

cover change (Hansen et al., 2013). This product includes a forest cover gain category

for the 2000–2014 period and provides information on tree cover percentage and change

in tree cover percentage at 30 m resolution, globally. To decrease the risk of sampling

pixels which are the result of errors in the forest cover change product, we first identified

connected pixels of forest cover increase with an area equal to or greater than 1 ha.

Isolated pixels are more likely to be artefacts, while there is greater confidence that larger

connected areas are actual areas of forest regrowth. This initial filtering step resulted

in a total area of regrowing forest during the 2000–2014 period over the study area of

6,318 km2. To keep data volumes reasonably manageable, we then randomly sampled

0.05% of these remaining pixels, resulting in a sampled area of 324 ha (3,596 30 m pixels)

(Figure 5.1). Individual pixels time-series of surface reflectance for the 6 spectral bands

originating from the TM and ETM+ sensors were extracted using the Google Earth

Engine platform. Surface reflectance is processed from sensor radiance values directly

on the platform by using the LEDAPS algorithm (Masek et al., 2006). LEDAPS also

produces a pixel cloudiness information which we used to discard observations likely to

be contaminated by clouds from the time-series.
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Figure 5.1: Map representing the study area from which Landsat pixels of regrowing forest

were sampled. Background colours represent tree cover derived from MODIS (Hansen et al.,

2003). Magenta markers indicate the location of sampled pixels.

5.2.2 Quantifying recovery time in spectral properties

We developed a framework combining temporal segmentation, classification of temporal

dynamics, and structural stability monitoring to quantify recovery time in spectral prop-

erties, and applied it to every sampled time-series. The different steps of the framework

consist in: (i) partitioning the time-series into segments of homogeneous temporal dy-

namics, (ii) classifying each temporal segment into its corresponding land dynamic class

(stable forest, regrowing forest, etc), (iii) identifying and retaining time-series that con-

tain a succession of stable forest followed by a period of regrowth, and (iv) monitoring

along the regrowing period for structural stability taking the preceding stable period as

reference. Details of the framework can be found in Appendix 5.4.
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5.2.3 Variables and indices

Choosing a vegetation index for a particular application often comes as a trade-off since

different families of indices emphasize different specific traits at the expense of other

potentially useful ones. While the framework we developed (Appendix 5.4) contains one

step that requires the use of a single vegetation index (for temporal segmentation of the

time-series), the actual structural stability monitoring can be performed on any time-

series metric. We therefore decided to fully explore the spectral dimension of the input

data by working with each spectral region available in TM and ETM+ data since different

bands contain different information on vegetation attributes (Table 5.1). From the wide

range of vegetation indices available, we chose the Normalized Difference Moisture Index

(NDMI) (Equation 5.1) as the single variable required for temporal segmentation. While

NDVI is undoubtedly the most popular index, with many advantages such as being easily

interpretable and easy to compute (Jackson & Huete, 1991), it suffers from saturation

effects for forests with dense canopies as it is the case in many tropical forests. This makes

NDVI suitable for certain applications (e.g. detecting abrupt events in tropical forests

such as deforestation (DeVries et al., 2015b; Dutrieux et al., 2015)), but limits its use for

tracking more subtle processes like forest regeneration. While the Enhanced Vegetation

Index (EVI) (Huete et al., 2002) claims to address this saturation limitation, it is also

known for being largely affected by varying sun-sensor geometry characteristics, resulting

in potential artefacts in the data when used in time-series (Morton et al., 2014; Brede

et al., 2015). We chose to use NDMI (Vogelmann & Rock, 1988), which is particularly

sensitive to differences in canopy attributes of young secondary forests (Horler & Ahern,

1986; Jin & Sader, 2005; Wilson & Sader, 2002; Dutrieux et al., 2016; DeVries et al.,

2015a).

The NDMI can be computed using the following equation:

NDMI =
NIR− SWIR1

NIR + SWIR1
(5.1)

where NIR corresponds to the Near Infra-Red (770–900 nm) part of the light spectrum

and SWIR to the Short-Wave Infra-Red (1550–1750 nm). NIR and SWIR correspond

respectively to the bands 4 and 5 of the TM and ETM+ sensors. Low NDMI values are

expected for bare soils and thin regrowing forest canopies while higher values correspond

to thicker, fully developed forest canopies (Wilson & Sader, 2002).

Concerning the structural stability monitoring step, fully exploring the spectral dimension

of the data implies that each time-series returns a recovery time for each of the six spectral

channels (Table 5.1) as well as NDMI, which we kept for comparison, and an additional

multi-spectral variable described in the next section.
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Table 5.1: Spectral channels available in TM and ETM+ data and the vegetation related

attributes they indicate (Horler & Ahern, 1986)

Band name Spectral region Wavelength (nm) Indicator of

B1 Blue 450 – 520 Surface brightness and

soil vegetation

differentiation

B2 Green 520 – 600 Vegetation greenness and

plant vigour/health

B3 Red 630 – 690 Chlorophyll absorption

and photosynthetic

activity

B4 Near Infra Red (NIR) 770 – 900 Canopy biomass

B5 Short Wave Infra Red

(SWIR1)

1550 – 1750 Canopy moisture content

B7 Short Wave Infra Red

(SWIR2)

2090 – 2350 Canopy disturbance and

fire

5.2.4 Combining all spectral information into one index

The evaluated spectral channels will likely respond differently to the forest recovery pro-

cess (Vieira et al., 2003). We expect for example NIR to be generally more contributive to

differentiating young secondary forests from old growth forests than Blue. These specific

spectral channel responses may in turn vary per forest type. In an attempt to combine the

potential benefits of each spectral band in a flexible way, we developed a multi-spectral

index using an euclidean distance approach. A distance can only be calculated relatively

to a point of origin, and several remote sensing studies have developed similar distance

based indices using neighbouring pixels or pixels in the image labelled as intact forest

for reference (Huang et al., 2008). Because we are working with time-series we could

define a dynamic origin for every location independently by using the modelled temporal

behaviour of the preceding stable forest segment. For every time-series independently

the euclidean distance was computed as follows: for every spectral channel, the temporal

extent of the stable forest segment preceding regrowth was used to fit a harmonic model

(Equation 5.2)

yt = α1 +
3

∑

j=1

γj sin(
2πjt

f
+ δj) + ǫt (5.2)

where the dependent variable y at a given time t is expressed as the sum of an in-

tercept α1, a sum of different frequency harmonic components representing seasonality

(
∑3

j=1
γj sin(

2πjt

f
+ δj)), and an error term ǫt. For the harmonic component of the model,
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j corresponds to the harmonic order, 1 being the annual cycle, γj and δj correspond

respectively to the amplitude and phase of the harmonic order j, and f is the known

frequency of the time-series (i.e., number of observations per year).

New values are then predicted for each spectral band and every observation of the time-

series using the respective fitted model (Equation 5.2), allowing to compute an euclidean

distance between the predicted and observed reflectance with the following formula:

Dt =

√

√

√

√

k
∑

i=1

(ŷit − yit)2 (5.3)

Where Dt is the euclidean distance at time t computed between the predicted (ŷ) and the

observed reflectance (y) using all k spectral bands (i).

Structural stability monitoring, which tests for a time-series whether new values signifi-

cantly diverge from a modelled stable history, can subsequently be done with the euclidean

distance in a similar way as has been done for each spectral band (Appendix 5.4). The

only difference is the use of a single intercept regression model in the structural stability

test instead of the harmonic model used when testing individual spectral channels (Equa-

tion 5.2). The reason for not using a seasonal model with euclidean distance is that such

model was already used for computing the distance, hence already removing seasonality

from the temporal signal.

To better understand spectral response of regrowing forests, we analysed recovery time

for the six spectral channels of Landsat (Table 5.1), the euclidean distance (thereafter

referred to as Dist) and NDMI. We refer to these different combinations as time-series

metrics; the term encompassing both single spectral channels and derived indices.

5.2.5 Spatial analysis and explanatory factors

Our method provides for a set of locations spread across the Amazon basin how much

time is needed to recover their spectral properties to pre-disturbance values (Figure 5.1).

We hypothesize that water availability, expressed either as the total annual rainfall or as

climatic water deficit (CWD) (obtained from Chave et al. (2014)), would explain a large

part of the variations in recovery time, and that recovery time would be structured in

space in a similar way than water availability. We therefore analysed variations in recovery

time by comparing it to water availability, and by investigating the spatial structure with

a variogram. Figure 5.2 presents the clear diagonal gradient in water availability with

drier regions located at the South-East of the study area, while the North-West corner

represents the wetter end of the gradient.
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(a) (b)

Figure 5.2: Maps of rainfall and Climatic Water Deficit (CWD). Rainfall and CWD data

were obtained from Hijmans et al. (2005) and Chave et al. (2014), respectively. The red

squares in both panels indicate the boundaries of the study area.

5.3 Results and discussion

5.3.1 Overall method performance

We sampled a total of 3596 time-series across the study area to understand spectral

recovery dynamics of regrowing forests. Because forest clearing prevails in the southern

states of the Brazilian Amazon (Mato Grosso, Rondônia) making these landscapes very

dynamic, these states concentrate a large proportion of the samples even though they only

represent a small part of the study area. Another large cluster of sample is located along

the Amazon river representing the dynamic agricultural systems of riverine Amazonia

(Van Vliet et al., 2012; Jakovac et al., 2015). The final number of observations analysed

is reduced by an order of 70% compared to the initial dataset, unsuitable time-series being

discarded at different steps along the process. From the initial 3596 sampled observations,

1982 remained after segment classification as they contained an appropriate sequence

of stable forest followed by deforestation and then regrowth. For the remaining part

of the samples, the segmentation and classification algorithms did not find appropriate

successions of stable forest followed by deforestation. Observations were sampled from

a simple layer of forest cover change where areas undergoing a forestation process are

labelled as increasing tree cover regardless of their previous land covers. The uncertainty

about the identity of previous land cover in the sampled dataset may partially explain why

the stable-regrowth sequence was not systematically found in all profiles. An additional
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explanation may originate from a limitation of the algorithm to isolate fast changing

dynamics such as those occurring in swidden agriculture areas where a succession of

multiple different land uses may occur over relatively short periods of time (two to seven

years) (Jakovac et al., 2015; Dutrieux et al., 2016). Structural stability was tested for each

time-series metric for each sample. A reduction in the amount of samples occurs once

again at this stage due to certain time-series metrics never reaching structural stability.

The proportions of observations reaching structural stability for every time-series metric is

reported in Table 5.2. While time-series metrics from the visible part of the light spectrum

(B1–B3) reach structural stability in most cases (90–96%), it is a lot more common for

Short Waves Infra-red metrics to not reach stability before the end of the time-series

(58% in the case of B5). Differences in the amount of observations reaching structural

stability among time-series metric can be influenced by several factors. In certain cases,

a given metric does not return to its initial state because the conditions have changed

and spectral properties of the new land cover, even under stable circumstances differ

from those of the previous land cover taken as reference by the method to define stable

conditions (Figure 5.A3b). This might for instance occur for certain plantations, for

which a different species composition than the previously established forest results in a

different spectral signature, and certain time-series metrics never reach stability. In many

other cases, the time-series metrics did not reach structural stability because the time-

series ended before the on-going spectral recovery process had time to complete. The

existence of such boundary effect implies that time-series with long recovery period are

likely under-represented compared to fast recovering ones.

Table 5.2: Number and proportion of time-series metrics that have reached structural sta-

bility. Proportion are computed relatively to the number of time-series for which a suitable

sequence of stable forest followed by regrowth was identified.

Metric Number of time-series Proportion of time-series

B1 1912 0.96

B2 1842 0.93

B3 1785 0.90

B4 1732 0.87

B5 1141 0.58

B7 1490 0.75

NDMI 1493 0.75

Dist 1259 0.63
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Figure 5.3: Pair-wise relations and pearson correlations in recovery time (in years) between

the 6 spectral bands of TM and ETM+, NDMI and the euclidean distance metric (Dist). The

diagonals across each panel correspond to the 1:1 lines.

5.3.2 Contribution and differences between spectral regions to detect regrow-

ing forests

Because different spectral channels are sensitive to different traits of forest canopies (Ta-

ble 5.1), we expect each spectral region to respond differently to regrowing forests. Fig-

ure 5.3 presents pair-wise relations and correlations in recovery time between all metrics

used for all the samples of the study area that reached structural stability. High cor-

relations in recovery time between two bands, as it is for instance the case between B2

and B3, indicates that both bands reach structural stability roughly around the same

time during regrowth and therefore respond similarly to canopy dynamics of regrowing
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forests. There is therefore a certain redundancy between bands for which recovery times

are highly correlated. High correlation can be observed among channels of the visible

domain (B1–B3). Low pair-wise correlations can take two forms; observations can be

either symmetrically distributed across both sides of the 1:1 line, or distributed with an

unbalance to one side of the line. In the latter case, the unbalance suggests that one band

systematically have longer recovery times than the other one. In the former case the two

spectral regions complement each others, one still being able to differentiate a regrowing

canopy from a stable forest, while the other one has already fully recovered, and vice

versa. The combination of B4 and B5 is an example where both channels complement

each others, as indicated by the wide symmetrical scatter in recovery time and the low

correlation value. Vegetation indices that combine such uncorrelated bands should be suc-

cessful in discriminating regrowing forests from stable forests under many circumstances.

One band, B4, displays such low correlation with an even scatter for all the bands it is

associated with, making it a crucial spectral region to use in association with additional

bands. A large unbalance is present in most cases in pair-wise relations involving B1,

systematically out of favour for B1. For that reason, and also because it is known for

being largely influenced by atmospheric scattering, we decided to exclude B1 from the

calculation of the integrated euclidean distance index (Equation 5.3). It is also interesting

to note that while Dist combines information from all other spectral bands, recovery time

in this metric is not systematically longer than recovery time of single bands or NDMI

(Figure 5.3). Differences in recovery time among the eight time-series metrics presented

in Figure 5.4 confirm the relative importance of the SWIR region of the light spectrum

(particularly B5) in capturing the regrowth process.

5.3.3 Spatial patterns of recovery in spectral properties

It takes 7.8 years on average for forests of the Amazonian basin to recover their spectral

properties following a disturbance. However, spectral recovery time has a large local spa-

tial variability, observations distant from each others by only a few kilometres having a

spectral recovery time that varies from about 5 to 15 years (Figure 5.5b). This large local

variability suggests that spectral recovery time is largely influenced by local conditions

such as intensity and frequency of land use and the cause of the disturbance. However,

a large local variability does not necessarily imply an absence of spatial structure; there

can be underlying regional effect influencing the variation over large distances. To test

for such potential underlying spatial structure, we built a semi-variogram for the spec-

tral recovery time. This analysis resulted in very low levels of spatial autocorrelation,

that disappeared for distance ranges larger than 9 km. This finding is confirmed by

Figure 5.5a in which regional variations do not appear to present any spatial structure.

The lack of spatial structure might appear contradictory to previous studies that have

found that resilience is largely driven by water availability (Hirota et al., 2011; Poorter
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Figure 5.4: Boxplot of recovery time for the eight time-series metrics used.

et al., 2016) and therefore presents spatial patterns similar to those of water availability

distribution. The strength of the relation between resilience in spectral properties and re-

silience of other forest attributes (biomass, structure, species composition) is not known,

so that we lack elements to fully interpret the absence of spatial patterns or the influence

of water availability. While local factors such as previous land uses, landscape context

or disturbance intensity possibly out-weight more regional, climatic effects on forest re-

silience in general, the absence of spatial structure in our result can potentially also be

explained by an independence between spectral resilience and more general concepts of

forest resilience.

5.3.4 Water availability does not explain variations in spectral resilience

All spectral regions show a recovery time that varies between 1 and 20 years (Figure 5.4).

Here we try to find regional or climatic effects that can explain this large variability.

Water availability, within the rainfall and CWD ranges present in the study area, does

not appear to have a strong effect on recovery time (Figure 5.6). The negative trend in

recovery time with increasing water availability particularly pronounced for visible bands

indicates that spectral properties in the visible part of the light spectrum have a longer
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(a)

(b)

Figure 5.5: Maps displaying spatial variability in spectral recovery time for the entire area

(a), and for a subset of the study area located across the border between Bolivia and Brazil

(b). For the entire area map (a), data were spatially aggregated into 60 clusters using the

k-means clustering algorithm (Hartigan & Wong, 1979). Background imagery of the subset

(b) is provided by MapQuest (http://www.mapquest.com/) and contributors.

recovery time in more water limited environments, such as dry forests. However, NIR,



5.3 Results and discussion 101

SWIR metrics, NDMI, and the euclidean distance (Dist) were not significantly related to

water availability. The large variability in spectral recovery time (sd = 5.3 years) therefore

appears to be rather driven by other factors than water availability, such as disturbance

intensity and the availability of seed tress and dispersal agents in the surrounding areas.

The mechanism in the case of biomass is that water availability enables longer growing

seasons hence contributing to faster recovery. This positive effect of water availability

on biomass recovery speed is particularly pronounced for water limited environments

such as dry forests with a CWD inferior than 600 mm (Poorter et al., 2016). Because

the study area only includes a few samples with such dry conditions, potential patterns

of spectral recovery response to water availability may be hidden beyond the range of

our dataset. Also we do not yet know how recovery in spectral properties relates to

recovery in structure, biomass or species richness as observed in field studies (Jakovac

et al., 2015; Poorter et al., 2016). It is therefore too early to derive ecological implications

from the apparent independence we found between spectral recovery speed and water

availability.

5.3.5 Opportunities for remote sensing and secondary forests mapping

We developed a novel approach using remote sensing to quantify post-disturbance recovery

of forests in terms of their spectral properties. The approach combines change detection

and structural stability monitoring, applied to time-series of multi-spectral Landsat data.

In the present exploratory study we applied the method to time-series sampled over a

large area covering the Amazonian basin. It takes 7.8 years on average for forests of the

Amazonian basin to recover their spectral properties following a disturbance. We are

certain that this relatively short period does not directly reflect the time required for a

disturbed forest to recover all of its properties, which may take hundreds of years in certain

cases (Brown et al., 1990; Poorter et al., 2016). Our findings imply that until 7.8 years after

the recovery process has started, secondary forests remain spectrally different from their

neighbouring old growth forests. This provides a large window of opportunities for remote

sensing to assist mapping and further characterizing secondary forests. For instance, there

is currently no existing map of young secondary forests at global scale. In the present study

we used information on tree cover change to infer potential location of secondary forests

(Hansen et al., 2013). This tree cover change information is relatively non-specific and

does not for instance differentiate plantations from natural forest regeneration (Tropek

et al., 2014). Such map of young secondary forests would be of great use for many

purposes, including carbon sequestration accounting, and as shown in the present and in

other studies (Fagan et al., 2015; Chazdon et al., 2016), the technology at our disposal

would allow such mapping to be done.

The method we propose moves beyond the simple use of vegetation indices by taking an

almost fully spectro-temporal approach. Despite the additional information provided by
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Figure 5.6: Relation between water availability (defined as mean annual rainfall and Climatic

Water Deficit) and recovery time in the 8 time-series metrics investigated.

the spectral dimension, we could find very few examples of Landsat studies that integrated

spectral and temporal dimensions (Fagan et al., 2015). In a time of data abundance

and diversity we believe that it is crucial to take maximum advantage of all dimensions

contained in the data so that the information extracted from them can be maximized.

Beside using all dimensions of a single dataset, such as we did in the present case, fusion of

multiple data streams could potentially lead to additional useful information. Specifically

to forest regrowth mapping, combining radar with optical, which can be achieved similarly

to the way we combined the different spectral channels, has great potential to enhance

the sensitivity of the method to distinguish secondary from old growth forests. While the

optical signal alone is only sensitive to the chemistry and the structure of the upper layers

of the canopy, radar would provide an additional stream of information informing on the
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structure of the woody part of the forest (Reiche et al., 2016). The recent launch of the

sentinel 1 sensor has greatly benefited the availability and accessibility of radar data so

that a fused optical-radar product could soon become a reality. Remote sensing data are

spatially continuous and have been collected in a systematic way for several decades (since

the beginning of the 80s in the case of Landsat TM). This archive therefore provides an

invaluable source of information to assist in assessing, measuring and mapping ecological

processes. The repeated measurement can be assembled in time-series which makes the

data particularly suited to the monitoring of dynamic processes. We attempted to apply

these principles to the case of forest recovery over the tropical region of the Amazon

Basin. Success of the method to appropriately capture or proxy forest resilience from

remote sensing would enable spatially continuous mapping of forests capacity to regrow,

regardless of the presence of in-situ sites, which are generally scarce in the tropics.

The results of this preliminary study focus more on the spectral characterization of the

regrowth process than on the connection with resilience in other forest attributes (Poorter

et al., 2016). It is therefore too early to draw conclusions about the potential of the method

to produce ecologically relevant estimates of resilience which would in turn inform nature

conservation actions and policies. One important observation about the results is that the

patterns of spectral resilience do not, as expected, follow the patterns of biomass resilience

reported by Poorter et al. (2016). While Poorter et al. (2016) found water availability

to be a major driver of biomass resilience, our results appear to be largely influenced

by local conditions and no effect of water availability on spectral resilience was found.

Several factors relating both to the recovery process (influence of type and intensity of

previous disturbances, spatial context), the method we developed (variable temporal data

density, inability to capture fast dynamics), and the limited water availability range of

our study area can explain these differences. However, while remote sensing is able to

retrieve variations and patterns, it has little power to infer causality from them. Better

understanding how spectral resilience relates to ecological resilience by linking it to in-

situ ecological measurements and ecosystem processes (flux data) should therefore be a

priority for further studies.

5.4 Conclusion

The principal objectives of this study were to develop a framework to quantify resilience in

spectral properties of regrowing forests and perform a preliminary investigation of spatial

patterns and drivers of spectral resilience. By combining change detection, trajectories

identification, and structural stability monitoring and applying it to multi-spectral time-

series data from Landsat, we were able to determine the time necessary for forests to

recover their spectral properties following disturbance and abandonment. The framework

allows recovery time to be quantified for individual spectral bands as well as for the overall
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spectral properties, expressed as an euclidean distance index. We applied the framework

to a set of time-series sampled from regrowing forests across the Amazon basin. Relations

between recovery time of the different spectral bands confirm the well known importance

of the infra-red region (NIR and SWIR) of the light spectrum (represented by TM and

ETM+ bands 4, 5 and 7) for distinguishing subtle differences in canopy attributes. Spatial

variation in spectral resilience was not related to regional variations in water availability,

but rather presented large local variability. This suggests that land use history and

forest fragmentation in the surrounding areas may explain forest resilience. However,

while we could observe this large local variability, we did not have sufficient elements

to explain it; we therefore suggest further research to be carried out, primarily focusing

on (i) better understanding the connection between recovery in spectral properties and

recovery in other forest attributes as observed in the field, and (ii) investigating potential

local drivers of recovery time variability (landscape context, disturbance intensity and

land use history).
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5.A Appendix

This appendix presents the framework we developed to quantify recovery time in spectral

properties from remote sensing time-series.

5.A.1 Time-series temporal segmentation

The first step of our framework for characterizing recovery of spectral properties of regrow-

ing forest is to identify the different phases of the forest across time. We used a breakpoint

detection method derived from the econometrics literature capable of detecting abrupt

changes in time-series regression model to partition each time-series into segments of ho-

mogeneous land dynamics (Bai, 1997a; Zeileis et al., 2003; Dutrieux et al., 2016). Given

a time-series regression model (Equation 5.4), the algorithm tests whether the regression

coefficients of the model remain constant over time and detects a breakpoint if at least

one of the coefficients changes. To test this hypothesis, a triangular Residual Sum of

Squares (RSS) matrix, which gives the RSS for each possible temporal segment in the

time-series, is computed. The optimal number of partitions is then obtained by minimiz-

ing the Bayesian Information Criterion (BIC), while the position of the breakpoints is

determined by minimizing the RSS among all possible partitioning schemes given by the

RSS matrix (Zeileis et al., 2003; Bai & Perron, 2003). The initial time-series regression

model can be written as follows:

yi = x⊤
i βi + ui (i = 1, . . . , n), (5.4)

where yi is the observation at time i of the dependent variable, xi a vector of regressors,

and βi the vector of regression coefficients, and ui the error term.

After partitioning model Equation 5.4 can be re-written as:

yi = x⊤
i βj + ui (i = ij−1 + 1, . . . , ij, j = 1, . . . ,m+ 1), (5.5)

where j is the segment index for a time-series regression containing m+1 segments within

which the regression coefficients (βj) are constant. By convention i0 = 0 and im+1 = n

(Zeileis et al., 2003).

One important tuning parameter of the breakpoints detection method is the h value. h

corresponds to the minimum segment size — expressed in percentage of the total number

of observations in the time-series — allowed by the algorithm, and can be seen as a

trade-off between sensitivity and stability. While small h values make the method more

sensitive to fast dynamics, they also increase its sensitivity to noise and the probability
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of detecting breakpoints which do not reflect any land dynamic process occurring on the

ground. We decided to work with a h value of 0.2, which is sufficiently large to avoid

spurious breaks to be detected, but short enough so that short lasting land dynamics

regimes can be captured. Given that we are working with time-series of approximately 30

years, assuming an homogeneous spread of the observations across time, a h value of 0.2

corresponds to a minimum segment segment duration of 6 years. However, the assumption

of an homogeneous spread of the observations across the Landsat observation period is

rarely true, so that data rich periods (post 2000) will likely have shorter minimum segment

durations than data poor periods (90s).

Here because we are interested in applying this method to the case of vegetation, which

is known for having an annual cyclic behaviour usually referred to as phenology, we

used a seasonal-trend regression model for Equation 5.4. Such regression model which

approximates both intra and inter-annual behaviours of vegetation (Verbesselt et al.,

2010b; Roerink et al., 2003), can be written as follows:

yt = α1 + α2t+
k

∑

j=1

γj sin(
2πjt

f
+ δj) + ǫt (5.6)

where the dependent variable y at a given time t is expressed as the sum of an intercept α1,

a slope α2 for potential temporal trend in the data, a sum of different frequency harmonic

components representing seasonality (
∑k

j=1
γj sin(

2πjt

f
+ δj)), and an error term ǫt. For

the harmonic component of the model, j = 1 corresponds to the one year cycle, k is the

chosen harmonic order, γj and δj correspond respectively to the amplitude and phase of

the harmonic order j, and f is the known frequency of the time-series (i.e., number of

observations per year).

By using this phenological trend model, a change in either intra-annual dynamics or

temporal trend will trigger a breakpoint, resulting in a time-series containing multiple

partitions. Because these partitions (or temporal segments) correspond to period with an

invariable phenology or trend, they can be translated into periods of stable land dynamics

regimes; such as a stable forest or a homogeneous forest regrowth following a disturbance.

Unlike the rest of our framework this particular step requires that we work with a single

vegetation index; we chose to use the Normalized Difference Moisture Index (NDMI) and

justify this decision in section 5.2.3.

An example of time-series partitioning using the breakpoints detection algorithm with a

seasonal trend model is presented in Figure 5.A1.
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Figure 5.A1: Example a time-series partitioning. Green dots represent the observations of

the variable (NDMI in that case), blue curves are the modelled temporal behaviour of each

segment and the vertical red lines correspond to the breakpoints separating the segments.

This partitioned profile example is a case of a stable forest (first segment to the left) that

experienced a disturbance (first breakpoint) immediately followed by a period of regrowth

(second segment) up to full recovery of the NDMI variable.

5.A.2 Classification of temporal segments

The temporal segmentation algorithm partitions the time-series into unlabelled segments

of stable vegetation dynamics regimes. To be able to identify period of stable forest and

forest regrowth we had to classify the segments into their corresponding classes. While

it is relatively easy for a human — by simultaneously considering multiple elements of

the spatio-temporal context — to assign classes to segments from visual interpretation

(Cohen et al., 2010), it would be very challenging to define the appropriate set of thresh-

olds required to automatically label the segments. We therefore trained a random forest

classifier from a random set of visually interpreted partitioned time-series and used it to

predict segment classes for the entire dataset. To aid the visual interpretation of seg-

ments we built an interface allowing the experimenter to quickly visualize the result of

the temporal segmentation and assign labels to each segment. We then used this dataset

to train a random forest classifier with the following segment properties used as predic-

tors: mean, slope, phenological amplitude, duration of the segment and intercept values

at the beginning and end of the segment. A preview of the interface used to interpret

the temporal segments is shown in Figure 5.A2. Additionally to the temporal patterns

present in the partitioned time-series, the experimenter can visualize the location of the

sample over a very high resolution satellite image, and infer the probable dynamic from

the spatial context, hence allowing to refine the interpretation of the segments. Although

only a static preview of the spatial context is available, it did greatly benefit interpreta-

tion of unusual profiles such as in areas bordering rivers, where sedimentation have led to

establishment of trees on areas previously covered by water. Although we did not make



108 Post disturbance recovery of Amazonian forests

Figure 5.A2: Preview of the interface used for visual interpretation of the segments

use of this information, plantation could also be identified from the very high resolution

images.

5.A.3 Monitoring spectral recovery dynamics – theory

Following the temporal segments classification we retained time-series that contained a

sequence of stable forest, directly or indirectly followed by a period of forest regrowth.

The characterization of recovery in spectral properties can only be done relatively to a

stable period taken as reference; it is therefore essential that each time-series retained

contains both a stable and a regrowth period. This step therefore implies a reduction of

the initial number of samples, time-series for which a sequence of stable forest, regrowth

could not be identified being discarded.

To monitor the recovery in spectral properties for each spectral band individually we used

a structural stability test derived from the econometrics literature (Chu et al., 1996; Leisch

et al., 2000; Zeileis et al., 2005, 2010). Structural stability monitoring consists in testing

whether observations of a defined monitoring period significantly deviate from a stable

behaviour as modelled over a stable period. The different steps of that approach consist in

(i) defining a stable period from which stable behaviour of the time-series can be modelled,

(ii) fitting a linear model to the stable period, (iii) monitoring for structural stability

over the monitoring period by testing whether the results of a Moving Sum of Residuals

(MOSUM) significantly deviate from zero or not. A structural stability boundary derived

from the central limit theorem (Leisch et al., 2000) is used to test whether values are

significantly different from zero; the hypothesis of structural stability is accepted when

the MOSUM values (Equation 5.7) are inferior to that boundary (meaning that they are

not significantly different from zero) and is rejected otherwise.
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The MOSUM can be computed for any observation at time t using the following for-

mula:

MOt =
1

σ̂
√
n

∣

∣

∣

t
∑

i=t−h+1

(yi − ŷi)
∣

∣

∣
(5.7)

where h is the width of the MOSUM window defined as a proportion of the stable period,

σ̂ is the predicted variance estimated on the stable period, n is the number of observations

of the stable period, and y− ŷ are the residuals. h has to be set by the user, larger values

decrease the sensitivity to potential noise contained in the time-series while increasing the

time-lag between actual events and their confirmation by the statistical test, and lower

values decrease that time-lag but make the method more sensitive to noise. We chose a

value of 0.25 — meaning that the width of the MOSUM window equals 0.25 times the

number of observations of the stable period — as a compromise between detection lag

and sensitivity.

A typical disturbance-regrowth monitoring of a variable will display an increase in MO-

SUM values shortly after the disturbance and a first boundary crossing followed by a

decrease of the MOSUM values until there is a second boundary crossing; the variable is

then considered stable again. The 1

σ̂
√
n
component of Equation 5.7 makes MOSUM values

sensitive to the quality of the model fit and the duration of the stable period. Better

statistical fit and longer stable period will therefore result in higher MOSUM values —

more likely to deviate from zero —, while a noisy stable period decreases the sensitivity

to detect structural instability.

5.A.4 Monitoring spectral recovery dynamics – implementation

Our aim is to characterize recovery in spectral properties of regrowing forests. Theoreti-

cally, one could say that the spectral properties of a regrowing forest have not recovered

until all individual spectral band or derived index have not reached structural stability.

We therefore applied the structural stability monitoring to each spectral band available

in the Landsat 5 and 7 sensors as well as NDMI and a combined variable we introduce in

Section 5.2.4.

While the structural stability framework presented above is valid for any time-series,

applying it to the case of regrowing forest requires some specific parameters adjustments.

Firstly, since we are once again working with vegetation time-series, we chose to use a

seasonal model for defining the reference stable behaviour of the forests spectral signal. A

seasonal model is a reduced version of the seasonal trend model presented in Equation 5.6,

that does not contains the trend component (α2t). We decided not to use trend in the

model because (i) these temporal segments supposedly represent stable forests, and (ii)
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modelling even a slight temporal trend during the stable period could result in predicting

unrealistic high values for the monitoring period.

Secondly, the stable period must be set by the user. Having already identified periods

of stable forest in the segment classification step, we used these segments to define the

stable period for each time-series independently, and tested for structural stability on

every subsequent observation. In cases when a stable forest segment is not immediately

followed by a period of regrowth (alternative land use in between); we started counting the

regrowth time from the beginning of the regrowth segment. Thirdly, spurious crossings

of the structural stability boundary, which do not necessarily reflect an actual recovery

of spectral properties are likely to occur during the monitoring period. In order to better

reflect the ecological reality of regrowing forests and similarly to DeVries et al. (2015a), we

complemented the structural stability test by a confirmation period of one year, meaning

that MOSUM values need to remain below the boundary for a minimum period of one

year for a recovery to be confirmed. Several reasons such as noise in observations or an

inversion in the residuals can trigger these spurious crossings of the boundary value.

Figure 5.A3 presents the concept of the structural stability monitoring framework applied

to two variables derived from the same time-series (also used to illustrate the temporal

segmentation process in Figure 5.A1). The bottom panel in Figure 5.A3a clearly depicts a

first crossing of the boundary shortly following the end of the stable period, at which point

the hypothesis of structural stability is rejected, until the MOSUM values experience a

second crossing. The time during the end of the stable forest segment and the second

boundary crossing determines the recovery time (of NDMI in that case). Figure 5.A3b

presents a case where the values of the variable (SWIR 2 in that case) never return to

their original level.

As illustrated in Figure 5.A3 the MOSUM values experience a first crossing of the bound-

ary shortly after the end of the stable period, which corresponds to the point of rejection

of the structural stability hypothesis and a second crossing when the time-series becomes

stable again. In the present case we are mostly interested in the second crossing, which

determines the duration required for the recovery.
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Figure 5.A3: Example of monitoring of structural stability with MOSUSM for two time-

series metrics (NDMI (a) and SWIR 2 (b)) of a same pixel. Vertical dashed red lines correspond

to regime shifts identified in the temporal segmentation step. The monitoring period, during

which new observation are compared to predictions from a modelled stable history, begins

after the first regime shift. The horizontal red line corresponds to the structural stability

boundary; when, during the monitoring period, MOSUM value are above the boundary the

hypothesis of structural stability is rejected.
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Synthesis
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6.1 Introduction

Adequate and accurate information on ecosystems, their characteristics and their dy-

namics is crucial in the context of climate change and biodiversity loss the world is

currently experiencing. Information such as how much biodiversity does a forest host,

how is this biodiversity spread spatially, what are the most vulnerable forests or where

are they more threatened, is essential for resource conservation and management. Sen-

sors on-board satellites are thought to be a potentially valuable source of information for

mapping ecosystems and their dynamics, because they acquire data globally, consistently,

and in a systematic way. However, these sensors do not provide direct measurements of

biodiversity, resilience or other variables of interest to ecologists. The raw data (surface

reflectance in the case of optical sensors) must be transformed into information, so that

it can eventually become useful for a specific mapping need. Facing the amount, diversity

and multidimensional nature of remote sensing data available, options to extract relevant

information out of these data are nearly infinite, including statistical and physically based

modelling, analysis of spatial patterns, and time-series analyses. The main objective of

this thesis was to investigate options to retrieve ecologically relevant variables on forest

structure, composition, diversity and dynamics from remote sensing.

Natural environments are complex and multidimensional systems in which different eco-

logical processes operate at non-independent spatial and temporal scales (Peterson et al.,

1998). Getting a complete understanding of the processes at stake therefore requires a

multi-scale and multi-dimensional approach. The spatial dimension (in some cases along

with the temporal and spectral dimensions) is ubiquitous in remote sensing datasets,

making remote sensing a potentially well suited tool to analyse multi-scale and multidi-

mensional systems and processes. This parallel between ecological processes and remote

sensing dimensions was exploited in different ways along this thesis, in which different

methods were developed and tested using Amazonian tropical forests as a case study. In

the present chapter, I first summarize the main findings of the different chapters, I then

discuss the consequences of scale and dimension for the ecological application of remote

sensing, illustrating the benefits of multidimensional approaches for mapping and monitor-

ing forest dynamics with the results of this thesis. I then discuss these scientific advances

in the broader context of mapping biodiversity and ecological processes using remote sens-

ing. Finally, the chapter concludes with some visions and future directions concerning

the increasing contribution of remote sensing to answer ecological questions.

6.2 Specific contributions of this thesis

This thesis focused on mapping forest state and dynamics. The mapping of forest state

was illustrated in chapter 2, in which I developed and evaluated a method to produce
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coarse resolution maps of forest attributes by combining multiple remote sensing datasets

and in-situ forest inventory data. The mapping of dynamical attributes was elaborated

in chapters 3, 4 and 5, focusing on abrupt changes for deforestation monitoring (chapter

3), and forest resilience mapping (chapter 4 and 5).

6.2.1 Moderate resolution remote sensing can assist country-wide mapping

of forest attributes

Chapter 2 presents a simple method to map forest attributes at country scale using coarse

resolution (1000 m) remote sensing products. Variables were modelled over Bolivia using

in-situ national forest inventory plots for training of a random forest regression framework.

The approach performed relatively well for predicting and mapping forest floristic prop-

erties (e.g. proxies of species richness, composition and palm trees density) but relatively

poorly for predicting and mapping forest structure (e.g. tree density, basal area, diam-

eter at breast height). The main conclusions and implications drawn from these results

are that: (i) there is added value in combining a variety of data-sources in an empirical

modelling approach, (ii) coarse resolution remote sensing offers the potential to generate

information on forest attributes that reflects the main known patterns of species richness

and composition, (iii) dynamic predictors like phenology are particularly important for

modelling static response variables (Somers & Asner, 2012; DeFries & Townshend, 1994),

and (iv) there is a strong disconnection between variables measured by most remote sens-

ing sensors and forest structure. Although the approach performed well in predicting

floristic variables spatially, it cannot act as a replacement for forest inventories and lo-

cal expert knowledge. The predicted species richness did not represent well some known

biodiversty hotspots, emphasizing the dependence on sufficient in-situ data, representa-

tive of all environments considered and the importance of local expert knowledge in the

validation and interpretation of such results.

Overall this chapter demonstrates the potential of remote sensing for coarse, large-scale

mapping of forest attributes. The ability to produce spatially continuous estimates of

floristic properties over tropical forests brings us a step closer to operational remote sensing

based biodiversity monitoring. Such empirical approach developed and implemented over

Bolivia is relatively simple, hence providing a cost efficient way to obtain spatial data

relative to forest attributes. It can potentially be repeated for any area provided that it

contains sufficient in-situ data for model calibration.

6.2.2 Forest dynamics and remote sensing

Chapters 3, 4 and 5 approach forest dynamics from a remote sensing perspective. Chapter

3 addresses the relatively simple dynamic of tree cover loss, while chapters 4 and 5 develop

methods to analyse and quantify forest resilience. In all three cases time-series approaches
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were used, taking full advantage of the temporal dimension contained in the the remote

sensing data.

Deforestation monitoring

Forest cover loss is a conceptually simple dynamic process, but because forests are con-

stantly changing due to seasonal dyanamics and response to climatic events like droughts,

detecting forest cover loss in an automated way can be challenging. In Chapter 3, a

multi-scale approach was developed and tested to improve existing automated deforesta-

tion detection methods. The main scientific advance brought by this thesis in term of

deforestation monitoring is related to the ability to detect deforestation in environments

with highly irregular seasonal dynamics, such as tropical dry forests. This approach builds

upon methods that use the deviation from a modelled seasonal greenness cycle to infer tree

cover loss (Verbesselt et al., 2012; Zhu et al., 2012; DeVries et al., 2015b). When inter an-

nual irregularities caused by natural variability are present in the seasonal cycle, climate

related anomalies can be confused with anthropogenic disturbances. Because climatic

anomalies occur at a regional scale while anthropogenic forest disturbances are more local

processes, using the spatial dimension offers an opportunity to distinguish them. The

method that I developed in Chapter 3 improves the detection accuracy of remote sensing

based deforestation monitoring by taking advantage of this spatial scale difference between

natural dynamics and human-induced changes. By tackling forest cover change using a

multi-scale approach, this work, together with Hansen et al. (2008) has emphasized the

benefits of working at different resolutions simultaneously, hence allowing processes that

occur at different spatial scales to be distinguished from each other.

Recently there has been rapid developments in methods for forest cover change detec-

tion. The main developments were improvements in: (i) detection accuracy (sensitivity,

robustness, versatility), (ii) spatial resolution, and (iii) timing of detection. The most

recent advances in the field have led to the deployment of an operational deforestation

alert system (globalforestwatch.org/) that provides updated deforestation estimates

every 8 days at 30 m resolution (Popkin, 2016). Such platforms play important roles for

resources conservation, outreach and public awareness. It benefits resource conservation

by providing a tool for local forest managers and legal authorities to track current forest

changes; it benefits outreach by providing easily accessible information about forest cover

change to non-remote sensing specialists; and it benefits public awareness thanks to the

capacity it provides for anyone with an internet connection and a computer to visualize

in near real time changes occurring to our forests. Such platforms also play an impor-

tant scientific role by providing quantitative forest change estimates for forest resources

monitoring and carbon accounting.
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Proxies of forest resilience

Chapters 4 and 5 extend the contribution of this thesis on remote sensing based for-

est dynamics by focusing on forest regrowth and resilience. Two different approaches

were developed with the aim to obtain spatially continuous estimates of forest resilience.

Chapter 4 presents a novel method to estimate land use intensity — a known proxy of

the capacity of secondary forests to recover in swidden agriculture systems. By applying

a temporal segmentation algorithm derived from the econometrics field to 30 years long

Landsat time-series covering a swidden agriculture area of Brazil, the different events

and stages of the swidden agriculture cycle (forest removal, agriculture, abandonment,

forest regrowth) could be identified. The number and frequency of cultivation cycles pro-

vide quantitative estimates of land use intensity which largely determines the capacity of

forests to recover. By quantifying land use intensity from remote sensing time-series, the

method developed and tested in Chapter 4 provides spatially continuous and objective

estimates of forest resilience for swidden agriculture systems.

Chapter 5 investigates a method to quantify recovery time in spectral properties of regrow-

ing forests. The method developed as part of Chapter 5 applies to Landsat time-series,

and combines temporal segmentation and structural stability monitoring. Periods of for-

est regrowth are identified using the temporal segmentation, and the structural stability

monitoring allows to quantify the time required for each Landsat spectral channel to re-

cover to its pre-disturbance values. The framework is applied to 3,596 sampled locations

across the Amazon and spectral recovery time produced are compared to water availabil-

ity. On average, it took 7.8 years, with a large variability (sd = 5.3 years) for disturbed

Amazonian forests to recover their spectral properties. Spectral recovery time did not

appear to be structured in space or influenced by water availability, suggesting that local

conditions (e.g. type and intensity of disturbance, surrounding forest matrix) likely affect

spectral resilience.

Resilience is a dynamic process, and the two approaches take full advantage of the tempo-

ral dimension available in the Landsat archive that contains repeated observations since

the 1980s. By extracting information from Landsat based temporal trajectories and link-

ing it to ecological variables, these contributions extend the work started in 2010 with

the development of the LandTrendR algorithm (Kennedy et al., 2010) and the Vegetation

Change Tracker (Huang et al., 2010). Additionally the two Chapters demonstrate how,

by mining the information contained in temporal trajectories, remote sensing is capable

of delivering insights that go beyond simple land cover (an important cornerstone of re-

mote sensing applications), and derive information related to land use instead. Finally,

by delivering ecologically relevant information, both contributions are a proof of the large

amount of information contained in the Landsat archive. A lot of this information has to

be mined from the temporal dimension using time-series approaches. Further exploring

temporal trajectories from Landsat time-series will undoubtedly result in great benefits



118 Synthesis

for remote sensing based ecological applications.

6.3 Reflection

6.3.1 Potential of remote sensing for ecology

”At different scales, different sets of mutually reinforcing ecological processes leave their

imprint on spatial, temporal and morphological patterns.” This quote from Peterson et al.’s

1998 review, summarizes well the complexity and multidimensional nature of ecosys-

tems.

To illustrate this notion of scale interaction in a more concrete and simplified way, we can

take the example of the process of tree cover change — a dynamic process that played

a central role in three out of the four core chapters presented in this thesis. First of

all, tree cover change is a dynamic process, which means that it obviously involves the

temporal dimension. The change in tree cover can be either negative, in which case there

is a loss in tree cover — often induced by human deforestation —, or positive, when

forests regrow. However, there is also a strong spatial scale component that affects tree

cover dynamics, and a dependence exists between events occurring at the local scale and

services delivered at the scale of the landscape. A simplified conceptual representation

of that spatial interaction is presented in Figure 6.1, and can be described as follows.

Individual trees make up a landscape which delivers services that are beneficial to these

individual trees themselves. When tree cover loss occurs, individual trees disappearing, it

reduces landscape integrity, and in turn affects the capacity of the ecosystem to deliver its

services. One important service that was also investigated in this thesis, is the capacity

of components of the system to regenerate. This capacity to regenerate, which is also

being referred to as ”engineering resilience”, is influenced by conditions (mico-climate,

seed sources and non-eroded top soils) that are largely determined by the integrity of the

surrounding forest matrix (Chazdon et al., 2007).

This simplified example therefore already comprises two non-independent dimensions

(spatial and temporal) and its main processes interact at two different spatial scales (sin-

gle tree and landscape). Understanding such a system, and determining its vulnerability

to disturbance intensity requires a multi-dimensional approach in which different spatial

and temporal scales are integrated.

Remote sensing offers the potential to capture processes at different spatial scales. The

spatial dimension is ubiquitous in remote sensing datasets, and as shown in the different

chapters of this thesis, remote sensing offers the capability to retrieve information for large

areas while maintaining the local realism of human scale processes. To provide a more

complete and practical overview of the different scales of ecological processes in relation
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Forest degradation 

occurs at a local scale 

and affects some of the 

function provided by the 

landscape

Forest regrowth is a 

local scale process that 

requires some functions 

provided by the 

landscape

Figure 6.1: Simplified conceptual representation of a feedback loop interaction between

spatial scale and tree cover dynamics. The large green ellipse represents a forested landscape

while the inner patch represents a local scale change in forest cover.

to remote sensing capabilities, I present in Figure 6.2 a conceptual diagram in which I

position common optical remote sensing technologies in relation with the dimensions and

scale of ecological processes of interest.

However, while processes that operate at different spatial scales can be captured individ-

ually using remote sensing techniques, fully understanding the complexity of processes

and their interactions requires that different scales be integrated. An example of how

integrating multiple scales can be achieved is given below.

Table 6.1: List of acronyms used in Figure 6.2.

Sensor acronym Full name

AVHRR Advanced Very High Resolution Radiometer

ETM+ Enhanced Thematic Mapper Plus

MODIS Moderate Resolution Imaging Spectroradiometer

OLI Operational Land Imager

PROBA-V PROBA Vegetation

SPOT Satellite Pour l’Observation de la Terre

TM Thematic Mapper

I have approached in this thesis the topic of deforestation, which can now be monitored

operationally using Landsat data (Hansen et al., 2016), and other authors have recently
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Figure 6.2: Conceptual diagram showing the correspondence between spatio-temporal scales

of six ecological processes and 13 available optical sensors. Spatio-temporal suitability of a

sensor to map a process is given by the position of the intersecting lines relative to the spatio-

temporal scale of the process. A sensor is suitable for a given process when its spatio-temporal

resolution is higher than the scale of the processes (lines intersecting at the bottom left of the

ellipse). Accronyms are explained in Table 6.1. Reported scales of ecological processes are

hypothetical.

developed methods to estimate ecological resilience from coarse resolution remote sensing

time-series (De Keersmaecker et al., 2015). Ecological resilience can be perceived as an

ecosystem property, while deforestation is a local process that, if integrated over a large

area, can inform on the degree of disturbance the ecosystem has gone through. While there

is to my knowledge no empirical evidence that a connection exist between the degree of

disturbance within a landscape and its ecological resilience, it is highly plausible that the

two are not independent. Thanks to remote sensing and its intrinsic spatial dimension, we

now have the ability to quantify both the local scale process and the ecosystem property;

but rather than using these two sources of information independently, it is necessary to

combine them. While this is simply one example among many other possible benefits of

combining analyses at different spatial scales, investigating the relation between degree

of disturbance and ecological resilience would be highly relevant, as it could for instance

inform conservation actions on critical levels of disturbance and result in well guided

policy actions.
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6.3.2 On the use of multidimensional remote sensing approaches to map,

monitor, and analyse ecological processes

The previous example about tree cover change dynamics did not only present the existence

of interactions between scales in ecological processes, it also revealed their multidimen-

sionality. The case of tree cover change presents two obvious dimensions (the spatial and

the temporal dimension), however, if one would observe the process at a fixed spatial

scale, that person would certainly notice that various aspects of the forest are changing

as well. A regrowing forest for instance will at least display a development in structure

and species composition, resulting in a different canopy structure and chemistry. These

different attributes that evolve during forest regeneration can be perceived as additional

ecological dimensions. Similarly to ecological processes, remote sensing datasets are of-

ten multidimensional too. Common dimensions of remote sensing datasets are the spatial,

temporal, spectral and thematic dimensions. I refer here to the thematic dimension as the

potential combination of data-sources from different remote sensing technologies. Each

dimension has potential to retrieve different types of information. By taking advantage of

the spatial relations that exist among the elements at the surface of the earth, the spatial

dimension can improve mapping accuracies; the temporal dimension is particularly suited

for investigating dynamic processes; the spectral dimension allows subtle differences in

chemistry or structure to be distinguished; and the thematic dimension enables retrieving

information on different independent properties of an object (structure of woody compo-

nents, chemistry).

While each dimension potentially provides complementary information, the greatest ben-

efits can be achieved by combining them. Such synergistic use of multiple dimensions can

be illustrated by the example of remote sensing based land cover mapping. Not only land

cover is an output that perfectly suits the portfolio of remote sensing capabilities, it is also

tightly coupled with life forms and ecological processes and is therefore of great interest

to ecological studies. It is therefore no surprise that land cover mapping has been an on-

going research topic for many years already (Justice, 1978). Land cover mapping nearly

always make use of the spectral dimension; a common approach — as taught in remote

sensing introductory classes — is to establish a statistical relation between the reflectance

in multiple wavelengths of each pixel and land cover. While this simple uni-temporal

approach in which pixels are considered independently from each others often yield good

results for highly contrasted land covers, pioneers of land cover mapping have discovered a

long time ago that land cover maps could be improved by extending the dimensionality of

the input data to the spatial and temporal domains (Gurney & Townshend, 1983; Tucker

et al., 1985; DeFries & Townshend, 1994). More recent developments have integrated

both spatial and temporal dimensions in a synergistic way, using temporal similarity of

neighbouring pixels to define spatio-temporal objects (Lhermitte et al., 2008). However,

synergies between dimensions are not limited to land cover mapping; additional examples
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of these synergies include Desclée et al. (2006) who developed a fully spatio-temporal

approach to detect deforestation in the Congo basin, and Somers & Asner (2012) who

combined spectral and temporal dimensions in a hyper-spectral time-series approach that

helped to enhance mapping accuracy of invasive plant species.

Figure 6.3: The four chapters of this thesis placed according to the four common remote

sensing dimensions (spatial, temporal, spectral and thematic). Chapter 2 combined multiple

data sources for forest attributes mapping, Chapter 3 took advantage of the spatial scale

difference between natural and anthropogenic processes in a time-series approach to improve

deforestation detection, Chapter 4 mapped land use intensity from Landsat time-series at the

landscape level for individual swidden aggriculture fields, and Chapter 5 investigated temporal

dynamics in spectral properties of regrowing forests of the Amazon.

As illustrated in the scheme of Figure 6.3, the present thesis also made extensive use

of multiple dimensions and synergies among them. Combining multiple data sources in

Chapter 2 enabled country wide mapping of forest attributes. A large diversity of variables

including MODIS (Moderate Resolution Imaging Spectroradiometer) derived surface re-

flectance, leaf area index and phenology, terrain metrics, and tree height were used as

predictors in a random forest modelling framework. Phenology and surface reflectance

were particularly contributive in modelling floristic properties, highlighting the benefits of

combining temporal and spectral dimensions (which in itself exploits the thematic dimen-

sion) for such mapping efforts. Chapter 3 took advantage of the spatial difference between

climate related and athropogenic processes. Combining MODIS with Landsat time-series
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helped distinguishing the deforestation events from seasonal irregularities and therefore

revealed that integrating the spatial dimension in a time-series approach is possible and

can enhance deforestation detection. Chapter 4 identified agricultural field boundaries in

a swidden agriculture landscape using temporal similarity of neighbouring pixels, and re-

trieved land use history at the level of individual fields by mining their temporal signature.

This chapter therefore used both spatial and temporal dimensions, and fully exploiting

the information of the temporal signature was particularly contributive to quantifying

the land use intensity variable. Finally, a full spectral-temporal approach for quantifying

spectral recovery of tropical forests was developed in Chapter 5 enabling the detection of

subtle differences in canopy development during the forest regrowth process.

While there are already many examples of remote sensing applications that benefited

from using different dimensions, there is still room for improvement. I showed in Chap-

ter 4, about swidden agriculture, that remote sensing based temporal trajectories can be

used to derive past land use intensity, which is a specific type of land use information.

Building upon this method, and further mining the information contained in temporal

trajectories potentially holds great potential for characterizing land use parameters ben-

eficial to answering ecological questions at various scales. Thorough characterization of

land use history could therefore be used as an input in carbon modelling studies applied

to secondary forests. But the temporal dimension is not the only one that can be further

explored. The thematic dimension holds great potential as well, and methods that aim

at combining multiple data-sources of different nature will certainly help maximizing the

information we can retrieve from remote sensing. I discussed for instance that optical

remote sensing signal over dense forests is mainly influenced by canopy structure and leaf

chemistry, while radar on the other hand is insensitive to chemistry but largely influenced

by structure of the woody components. A combination of optical and radar remote sensing

can therefore highly benefit mapping efforts such as for biomass and carbon accounting

(Baccini et al., 2012). Another example of radar-optical combination is given by Reiche

et al. (2015) who successfully combined Landsat and radar data in a time-series approach

to improve deforestation detection. Finally, Asner et al. (2007) show that making syn-

ergistic use of hyper-spectral and LiDAR data — two already highly valuable sources of

information when used independently — could result in an almost unrivalled mapping po-

tential, the system and its associated method being able to identify species of individual

trees.

The diversity of available remote sensing data will keep on increasing in the coming years

with the launch of new sensors designed for ecosystems structure and dynamics mapping

(Le Toan et al., 2011; Dubayah et al., 2014), and combing these new datasets with existing

datastreams will ensure that all information at our disposal is used to its full potential

(Reiche et al., 2016; Pettorelli et al., 2016).

Finally, hyperspectral data which until now have been mainly collected using sensors
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onboard air-planes will become increasingly available in a near future thanks to the launch

of the Environmental Mapping and Analysis Program (EnMAP) sensor (Kaufmann et al.,

2008). While Asner et al. (2014b) has demonstrated that hyperspectral remote sensing has

a great potential for detailed vegetation mapping and monitoring, the spectral dimension

remains a largely unexplored dimension. Figure 6.2 for instance illustrates this knowledge

gap. Because we evolve in these dimensions every day, our knowledge and ability to

perceive the spatio-temporal domain is relatively advanced and it was therefore easy to

position ecological processes along the space and time axes. Our perception of the spectral

dimension is not as intuitive as for space and time, and although a similar graphical

representation including the spectral dimension would be very useful, considering our

current knowledge it would be challenging to position ecological processes along a scale

of spectral contrasts.

Table 6.2 shows the potential contribution of the identified remote sensing dimensions

to capture the six ecological processes reported in Figure 6.2. Because all six processes

are dynamic, hence containing a strong temporal component, it is no surprise that the

temporal dimension has an important role in capturing them all. The spectral dimension

is particularly contributive to capturing subtle processes such as forest degradation or

forest regrowth, the thematic dimension often offers complementary information such

as structure of woody components or vertical structure when optical remote sensing is

combined with LiDAR or radar remote sensing.

Table 6.2: Potential contribution of the common remote sensing dimensions in detecting and

monitoring six ecological processes shown in Figure 6.2. The number of pluses indicates the

hypothesized potential contribution of the given dimension to contributes to quantifying or

mapping the associated process.

Spatial

dimension

Temporal

dimension

Spectral

dimension

Thematic

dimension

Tree cover loss /

Deforestation

++ +++ + ++

Forest degradation ++ +++ ++ ++

Phenology + +++ + +

Forest regrowth + +++ ++ ++

Response to

climate anomalies

++ +++ + +

Response to

climate change

+ +++ + +
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6.4 Future prospects

The remote sensing landscape has evolved continuously over the past 40 years with an

increase in data availability and accessibility. Today, remote sensing data are not only

becoming more abundant and accessible, but also more diverse and at a higher spatial

and temporal resolution. This evolution towards higher resolution data is also reflected

in the semantics. AVHRR for example, which at the time it was launched at the end the

1970s was certainly a major technological advance, was labelled ”very high resolution”.

Today, sensors that collect data at 1 km spatial resolution would enter the coarse resolution

category, the term ”very high resolution” being only used for the sub 5 m domain. Science

has successfully taken advantage of these technological advances and today, remote sensing

not only provides valuable insights to the scientific community, it also provides near real

time information that is accessible to all. Taking into account the increasing abundance of

high resolution data, as well a shift toward operational remote remote sensing, I provide

an outlook on possible future developments below.

6.4.1 Toward a global operational remote sensing based mapping of ecosys-

tem dynamics and biodiversity

The newly developed alert system for near real time deforestation monitoring perfectly ex-

emplifies a successful transfer of technological innovation to an operational system. Today,

any citizen of the earth can access (given he or she has access to the internet) and visualize

in a simple and understandable way information that was once only accessible to special-

ists. Reaching this stage will undoubtedly have large impacts in terms of awareness and

in turn benefit conservation initiatives. Contemplating the success of operational remote

sensing based deforestation mapping, can we expect the production of other variables to

follow the same path? Can maps of forest resilience, ecosystem structure or species rich-

ness be produced globally, in an operational way and regularly updated? While this would

be desirable and highly beneficial for environmental conservation causes, biodiversity and

the various ecological processes I have studied in this thesis are much more complex than

tree cover, and therefore present different challenges. Ecosystems are complex, multidi-

mensional, and can be studied at various scales so that even the definition of terms such as

biodiversity are still subject to controversies (Pettorelli et al., 2016). For ecosystem mon-

itoring to achieve the operational level of deforestation monitoring, it is important that a

discussion takes place among all parties at stake (ecologists, policy makers/governments,

conservationists, space agencies, the remote sensing community, and local communities

involved) (Pereira et al., 2013; Skidmore et al., 2015) in order to reach agreements and

frame biodiversity variables in a global observation context. This discussion process has in

fact already started, involving international experts under the umbrella of the GEO-BON

(the Group on Earth Observations - Biodiversity Observation Network), and has already
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reached encouraging preliminary results. For instance the network has largely contributed

to framing global biodiversity monitoring and reviewed some known potential of existing

technologies (Pereira et al., 2013; Pettorelli et al., 2016). Additionally, in line with the

Global Forest Watch (globalforestwatch.org) — a platform developed by the World

Resources Institute to provide information on forest cover change — another important

recent contribution of the GEO-BON network is the set-up of a global platform for shar-

ing and analysing biodiversity data named BON in a Box (boninabox.geobon.org). By

providing easily accessible information to many stakeholders and scientific communities,

these platforms play a crucial role in accelerating the pace of scientific and technological

development. They facilitate collaboration and mutual feedback mechanisms among com-

munities, and hence the application of the obtained information for resource conservation

and use.

6.4.2 Remote sensing of ecology in the new era of data science and artificial

intelligence

Extracting valuable information from the abundance and diversity of remote sensing data

that will become available in a near future will require use of new and innovative ap-

proaches. One of the methods that can play an important role in retrieving valuable

information in this context is computer vision. Computer vision is a sub-field of artificial

intelligence particularly targeted at detecting and identifying objects in digital images.

To better understand what is the added value of computer vision, we can take as an

analogy the way the human brain interpret images. When we, humans, look at an image,

we automatically and unconsciously integrate the spatial context in our interpretation

of the elements of the image; our eyes see groups of pixels but our brain immediately

sees objects, identifies their nature, and perceives dependences and connections among

them. Similarly to the way the human brain identifies objects in images, computer vision

techniques are able to detect and identify the nature of objects such as trees, cars, people

or animals in digital images. Computer vision has largely benefited the field of medical

imagery already and is ubiquitous in most modern internet picture services. A transfer of

these existing and already operational methods, would greatly benefit ecological applica-

tions of remote sensing by transforming raw data into properties relevant to the ecological

domain.

6.5 Concluding remarks

The remote sensing landscape has evolved continuously over the past 40 years. Today a

large variety of remote sensing sensors with different spectral and thematic capabilities

deliver data globally at various spatial and temporal resolutions. This current availability
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of remote sensing data provides great opportunities for regional to global forest dynamics

mapping and retrieval of other variables relevant to ecological applications. To ensure

that the available data are exploited to their full potential, innovative methods that can

(i) combine multiple data sources, (ii) take advantage of the spatial, temporal, spectral

and thematic dimensions contained in remote sensing datasets, and (iii) make synergistic

use of in-situ and remote sensing data, must be developed and assessed. By develop-

ing and testing methods to map forest state and dynamics while combining all these

requirements, this thesis demonstrates the potential of remote sensing for tropical forest

mapping and monitoring applications. The amount and diversity of data will keep on

increasing, both from the remote sensing and in-situ sides, and it is important to work

on further integrating all these data streams for successful global forest and biodiversity

mapping and monitoring in the future. The technology we have at our disposal and its

capacity to monitor the earth is a great advantage that the Maya did not have, and we

must make proper use of it to ensure conservation and wise use of these important forest

resources.
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