

Applicability and sustainability of products from processed manure

Romke Postma (NMI), Kor Zwart (Alterra), René Schils (Alterra), Debby van Rotterdam (NMI) & Wim Bussink (NMI)

Introduction

Surpluses of animal manure in the Netherlands → caused by intensive livestock farming and imports of animal feed

The surplus of phosphorus (P) is higher than that of nitrogen (N) and potassium (K) → surplus on national P balance

Increased interest in manure processing because of:

- Better defined products
- Separation of N, K ←→ P, organic matter
- Efficiency of nutrient use may be improved

Objectives

- Characterisation of products of processed manure
- Applicability in fertilization plans of arable farms
- Evaluation of sustainability

Manure processing in the Netherlands

Activities - methods

- Selection of products to be considered
- Characterisation of products of processed manure, e.g.
 - Nutrient contents, N fertilizer replacement value
 - Dry matter, organic matter contents, pH, etc.
- Applicability on arable farms, based on
 - Properties of products from processed manure
 - Nutrient requirement of crops / soil types of various model farms in NL
- Sustainability of products, based on
 - Energy consumption
 - Greenhouse gass (GHG) emissions
 - Ammonia volatilization

Properties of products from processed pig slurry

- NFRV= N-fertilizer replacement value (N availability in comparison with Calcium Ammonium Nitrate)
- Ne= effective N, calculated as total N * NFRV

Nutrient requirement of arable crops

- Based on fertilizer recommendations
- Differs between crops, soil type and nutrient availability in soil (variation regions / fields)

Do products fit in fertilization plans of arable farms?

Regional differences: soil types and crop rotations

Northern Clay

Sugar beet

Winter wheat

Southwestern Clay

Southwestern C

Liquid fraction / concentrate: in addition to pig slurry

Southwestern clay

- Pig slurry is often used as a base fertilizer on farms
- Oversupply of P should be overcome
- liquid fraction in addition to untreated pig slurryApplication in spring:
- Risk for soil compaction
 Logistics should receive

attention

Southeastern sand

- Pig slurry is maximally used as a base fertilizer on farms
- P supply ≈ 90% of requirement
 → prevent oversupply
- concentrate (very low in P) in addition to pig slurry
- Attention to logistics in spring is needed

Sustainability: Greenhouse gas emissions

- GHG emissions during / after production, storage and processing, transport and application
- Digestion leads to negative GHG emissions →
 production of CH₄ = prevention of CO₂ emission
- Dominant stage differs between products

Conclusions

- N/P and N/K ratio determine the applicability of products in addition to untreated pig / cattle slurry
- The applicability of liquid fractions and concentrates in the fertilizer plans of Dutch arable farms is rather good
- N fertilizer replacement values of liquid fractions and concentrates are < 100%, because of NH₃ volatilization
- The required large volumes of liquid fractions / concentrates hamper the applicability, esp. on clay soils
- The high P content in solid fractions limits its' applicability in addition to untreated pig / cattle slurry.

Recommendations

- The applicability of liquid fractions and concentrates will be improved if the N and K concentrations are increased
- The solid fractions should preferably be modified (e.g. dried) and exported, because of the P surplus in NL

