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1.1 Climate warming in the Arctic  

The global mean surface air temperature increased by 0.85 °C over the 

period 1880 to 2012, with an expected further increase of more than 1.5 °C 

by the end of 21st century (IPCC 2013). In the Arctic, greater rates of 

temperature increase have been observed for recent decades (ACIA 2005). 

This is also known as Arctic amplification, which can be attributed to less 

emitted blackbody radiation per unit warming in high latitudes and the 

increase in surface absorption of solar radiation when snow and ice retreat 

(Screen and Simmonds 2010, Serreze and Barry 2011, Pithan and Mauritsen 

2014). It is predicted that surface air temperature in the Arctic will increase 

twice as rapid as the global average at the end of this century (Fig. 1.1).  

The warming climate may cause the permafrost to thaw (Lawrence et al. 

2008, Park et al. 2016), making the organic matter, that has been stored in 

the permafrost for thousands of years, available for microbial decomposition 

(Schuur et al. 2009, Romanovsky et al. 2010). This is expected to enhance 

the carbon release from Arctic soil (Schuur et al. 2015). On the other hand, a 

warmer climate can increase the growing season length (Schwartz et al. 2006, 

Høye et al. 2007) and soil nutrient availability (Mikan et al. 2002, Aerts 

2006), thereby increasing primary productivity and carbon storage in tundra 

vegetation (Epstein et al. 2012, Forkel et al. 2016). The net carbon exchange 

of tundra ecosystems will depend on the balance between increased carbon 

release from the soil and increased carbon uptake by the vegetation. For 

example, Belshe et al. (2013) showed that with higher temperatures, net 

carbon uptake during summers increased, while net carbon emission during 

winters also increased, making tundra ecosystems net carbon sources on the 

annual basis across a temperature gradient from –16 to 0 °C. 

Tundra vegetation can be sorted into various vegetation types according to 

the percentages of different vascular plants (forbs, sedges, grasses, 
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deciduous shrubs, evergreen shrubs), bryophytes and lichens (Wielgolaski 

1972). Due to climate warming, vegetation composition in Arctic tundra is 

also changing. The most dramatic change is the shrub expansion across 

Arctic tundra, which has been observed by the use of satellite imagery and/or 

aerial photographs (Callaghan et al. 2011, Myers-Smith et al. 2011b). 

However, it remains unclear what is (are) the most important cause(s). 

Growth of both shrubs and graminoids is limited by low temperatures in the 

Arctic, and meta-analyses of experimental warming studies have suggested 

that both of them can respond positively to warming in terms of biomass, 

cover or canopy height (Arft et al. 1999, Walker et al. 2006, Elmendorf et al. 

2012), indicating that warming alone does not necessarily increase the 

competitive advantage of shrubs.  

 

 

Fig 1.1 Predicted relative climate change rate of the globe 2081 – 2100 derived from 
transient simulations from the Coupled Model Intercomparison Project Phase 5 
(CMIP5) ensembles (IPCC 2013). Temperature increase in the Arctic is twice as 
large as the global average. 

 

Multiple abiotic factors can influence plant growth in tundra. Some 

dendrochronological studies suggested a high correlation between shrub 
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growth and summer temperatures (Forbes et al. 2010, Blok et al. 2011). 

However, some experimental studies suggested that the indirect temperature 

effects on soil nutrient availability are more important for plant growth in 

tundra compared to direct temperature effects (Hobbie and Chapin, 1998; 

Shaver et al., 1998). Moreover, other factors such as soil pH and 

precipitation were also found important (Walker et al. 2003a, Blok et al. 

2011). In addition to temperature, precipitation is also expected to increase 

in the Arctic (IPCC 2013, Bintanja and Selten 2014). The changes in 

precipitation and soil moisture, particularly the latter which is more site 

specific because of local topography and evapotranspiration/precipitation 

ratio, can interact with temperature to impact tundra ecosystems (Callaghan 

et al. 2011, Myers-Smith et al. 2015). 

Apart from abiotic factors, biotic factors can also influence tundra vegetation. 

Herbivory has been found to be able to inhibit shrub expansion (Olofsson et 

al. 2009, Naito and Cairns 2011). In addition, trampling and faecal inputs 

from herbivores can play a role in determining tundra vegetation (Wal 2006). 

Predators also have an indirect effect on tundra vegetation by controlling 

herbivore populations (Hambäck et al. 2004).  

There are much less studies on vegetation changes in Siberian tundra than in 

other tundra areas. Frost and Epstein (2014) showed that shrub and tree 

cover increased in 9 out of 11 ecotones in northern Siberia; however, these 

increases were more related to disturbance regimes rather than temperature. 

Siberian tundra needs to be more studied as it occupies a very large part of 

the tundra biome. 

 

1.2 Plant roots in tundra ecosystems 

In general belowground parts account for 70% of total vascular plant 

biomass in tundra vegetation (Poorter et al. 2012), although plant functional 
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types can differ in their belowground to aboveground biomass ratios (Iversen 

et al. 2015). Fine roots are the parts that are directly involved in the nutrient 

uptake of plants, which can largely influence the competitive relationship 

between tundra plant species since tundra ecosystems are greatly limited by 

nutrient availability (Chapin 1987, Chapin et al. 1995). In addition, the 

senesced roots are important contributors to soil organic matter (Loya et al. 

2002, Loya et al. 2004, Freschet et al. 2013). Therefore, it is of particular 

importance to incorporate root responses of tundra vegetation in order to 

fully understand the effects of climate warming on tundra ecosystems.  

However, it is not yet well studied how climate warming can affect the 

belowground parts, particularly the roots, of tundra vegetation, as most 

studies focused on the aboveground parts (Arft et al. 1999, Walker et al. 

2006, Elmendorf et al. 2012). Only a few studies investigated warming 

effects on tundra belowground biomass through manipulated warming 

experiments, and they yielded inconsistent results. Some studies found that 

belowground biomass was increased by manipulated warming (Sistla et al. 

2013, Zamin et al. 2014), while other studies found no significant effects 

(Björk et al. 2007, DeMarco et al. 2014) or even negative effects of warming 

on belowground biomass (Gough and Hobbie 2003, Björk et al. 2007).  

Differences in vegetation composition may partly explain the mixed results 

found for belowground responses to warming treatments. Plant species or 

functional types differ greatly in their root traits such as morphology, 

turnover, rooting depth and plasticity in response to environmental changes, 

all of which can influence their belowground responses to warmer climates 

(Bardgett et al. 2014, Iversen et al. 2015). For example, in a fertilization 

experiment, fine root biomass increased while root production decreased, 

because fertilization changed the vegetation from graminoid-dominated to 

shrub-dominated and the shrub had a lower root turnover rate (Sullivan et al. 

2007). Therefore, it is important to take into account the differences in 



Chapter 1 
 

 

12 
 

vegetation composition to fully understand warming effects on tundra 

belowground. 

 

1.3 Influences on carbon dynamics 

As roots account for a major part of plant carbon pool in the tundra, warming 

effects on roots can largely influence the carbon dynamics of tundra 

ecosystems through biomass allocation, carbon storage and turnover of roots. 

In addition, because shrubs have higher primary productivity and carbon 

storage capacity than graminoids (Johnson and Tieszen 1976, Shaver and 

Chapin 1991), shrub expansion with climate warming can further change the 

carbon dynamics of tundra ecosystems. For example, shrubs have a large 

proportion of biomass stored in woody stems, which have very low turnover 

and decomposition rates (Hobbie 1996, Cornelissen et al. 2007), and thus 

shrub expansion can increase the carbon storage in the vegetation. Moreover, 

through its lower albedo (Sturm et al. 2005a, Juszak et al. 2016), winter 

warming and summer shading effects on soils (Sturm et al. 2005b, Blok et al. 

2010), increased shrub cover can influence the surface energy exchange 

between the atmosphere, vegetation and soil, which will further change 

permafrost conditions. 

One of the important processes in carbon cycling is the litter decomposition 

which results in carbon emission into the atmosphere. In tundra ecosystems 

the decomposition of root litter is particularly important, which, however, is 

understudied. On the one hand, higher temperatures can accelerate root 

decomposition (Hobbie 1996). On the other hand, vegetation changes caused 

by climate warming can also change the quality of root litter and thus have 

complex influences on decomposition. With shrub expansion, more shrub 

root litter is anticipated to enter the system and the decomposition processes. 

However, it is still unclear whether and to what extent root litter of shrubs 
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and graminoids differ in their decomposability, which is essential for our 

understanding of climate warming effects on carbon dynamics of tundra 

ecosystems. 

 

1.4 Research aims  

With the research described in this thesis I aimed to improve our 

understanding of the effects of climate warming on root biomass and its 

vertical distribution in tundra vegetation, and their potential effects on tundra 

vegetation change and carbon cycling in the scenario of climate warming. In 

this thesis I focus on two species that are dominant at the site and many other 

tundra sites: Eriophorum vaginatum L and Betula nana L (Fig. 1.2).  

 

Fig. 1.2 Leaves and roots of Eriophorum vaginatum (a, b) and Betula nana (c, d) 

 

Also known as cotton grass, E. vaginatum is a rhizomatous perennial sedge 

which has leaves with two years life span and annual roots that grow deep in 

the soil (Wein 1973). B. nana is a deciduous dwarf shrub which has annual 

leaves and grows roots shallower in the soil and can be colonized by 
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ectomycorrhizal fungi (De Groot et al. 1997).  

I try to answer the following questions in this thesis:  

1) Does the belowground biomass of tundra vegetation increase with 

temperature, as the aboveground biomass does, and is the relationship 

affected by shrub abundance?  

2) Do the fine root biomass and its temporal and spatial rooting patterns 

differ between shrub- and graminoid-dominated tundra vegetation types, as a 

result of different rooting patterns of graminoids and shrubs?  

3) Can the different rooting patterns of different plant functional groups 

affect their competitive relationships when climate warming increases 

thawing depth and nutrient availability? 

4) Does the root decomposition differ between graminoids and shrubs? Will 

vegetation change affect decomposition in tundra ecosystems? 

 

1.5 Outline of the thesis 

The aims are accomplished through synthesis of results from literature 

(chapter 2) as well as field investigation and experiments (chapter 3 – 5). 

The research site of the field investigation and experiments is Chokurdakh 

Scientific Tundra Station which is situated in the Kytalyk Nature Reserve, 

Sakha Republic, Russia (Fig. 1.3).  

In chapter 2 the relationships between temperature and different plant 

biomass pools, particularly belowground pools and biomass allocation 

between above and belowground, are explored through synthesizing 

published data on the belowground biomass of tundra vegetation across the 

tundra biome spanning a mean annual temperature gradient from –20 to 0 °C. 

With this space-for-time approach the effects of future climate warming 
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effects on tundra belowground can be extrapolated. Also the effects of 

vegetation composition on these temperature relationships are examined in 

this chapter.  

 

 

Fig. 1.3 Location and satellite image of the Chokurdakh Scientific Tundra Station in 
northeastern Siberia. The study area is the former lake bed of a drained thermokarst 
lake, which has a shallow active layer underlain by continuous permafrost. The 
vegetation surrounding the Chokurdakh Scientific Tundra Station is classified as G4, 
tussock-sedge, dwarf-shrub, moss tundra, on the Circumpolar Arctic Vegetation 
Map (Walker et al. 2005). 

 

Chapter 3 shows the differences in belowground and fine root biomass 

among graminoid-dominated, shrub-dominated vegetation and mixture 

vegetation at the research site, and the differences in the seasonal changes 

and vertical distribution of root biomass of the two dominant plant functional 

types. The roles of spatio-temporal rooting patterns in relation to shrub 

expansion are discussed.  

In chapter 4 above and belowground responses, particularly the responses of 
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vertical root distribution, of different plant functional types to nutrient 

changes at different soil depths is further investigated. The role of vertical 

root distribution in the competition between tundra plants is discussed and 

the implications for future plant competitive relationships under different 

scenarios are given.  

Chapter 5 describes the differences in the decomposition rates of leaf and 

root litter from the shrub B. nana and the graminoid E. vaginatum, and 

shows the home-field advantage in the decomposition at the research site. 

The results have implications for the effects of vegetation change on carbon 

dynamics of tundra ecosystems.  

Finally, in chapter 6 I synthesize the results of chapter 2 – 5 and discuss the 

implications for the relationship between climate warming and tundra 

vegetation change as well as their effects on the carbon dynamics of tundra 

ecosystems. Also knowledge gaps that need future researches for a better 

understanding of climate warming effects on tundra ecosystems are 

discussed. 
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Abstract 

Climate warming is known to increase the aboveground productivity of 

tundra ecosystems. Recently, belowground biomass is receiving more 

attention, but the effects of climate warming on belowground productivity 

remain unclear. Enhanced understanding of the belowground component of 

the tundra is important in the context of climate warming, since most carbon 

is sequestered belowground in these ecosystems. In this study we 

synthesized published tundra belowground biomass data from 36 field 

studies spanning a mean annual temperature (MAT) gradient from −20 to 

0 °C across the tundra biome, and determined the relationships between 

different plant biomass pools and MAT. Our results show that the plant 

community biomass – temperature relationships are significantly different 

between above and belowground. Aboveground biomass clearly increased 

with MAT, whereas total belowground biomass and fine root biomass did 

not show a significant increase over the broad MAT gradient. Our results 

suggest that biomass allocation of tundra vegetation shifts towards 

aboveground in warmer conditions, which could impact on the carbon 

cycling in tundra ecosystems through altered litter input and distribution in 

the soil, as well as possible changes in root turnover.  

Key words: tundra vegetation, belowground biomass, biomass allocation, 

climate change, root biomass, root:shoot ratio 
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2.1 Introduction 

The global climate has been warming in the past half century and is 

predicted to continue warming beyond this century (IPCC 2013). In the 

Arctic areas where tundra ecosystems occur, climate warming is expected to 

be more severe than in other areas of the world. An increase in average 

annual air temperature of 2 to 8 °C at the end of this century has been 

predicted in different future scenarios (IPCC 2013). Climate warming is 

associated with large changes in Arctic tundra ecosystems, including 

permafrost thawing (Romanovsky et al. 2010), accelerated decomposition 

and carbon (C) release (Schuur et al. 2009, Craine et al. 2010), expansion of 

deciduous shrubs (Tape et al. 2006, Frost and Epstein 2014) and increased 

aboveground productivity. A number of studies using either remote sensing 

or field observations in tundra revealed that aboveground primary 

productivity had increased with climate warming in tundra (Verbyla 2008, 

Hudson and Henry 2009, Hill and Henry 2011, Epstein et al. 2012).  

The relationships between climate warming and aboveground productivity in 

tundra are reasonably well established, but we have limited understanding of 

belowground responses of tundra vegetation to climate change (Iversen et al. 

2015). In tundra vegetation, belowground biomass is much larger than 

aboveground biomass (Shaver and Chapin 1991, Mokany et al. 2006). On 

average about 70% of the vascular plant biomass in tundra ecosystems is 

belowground (Poorter et al. 2012), thus a small fraction of change in plant 

belowground biomass can have large effects on ecosystem carbon stock. 

Since warmer temperatures will affect water and nutrient availability 

(Hobbie and Chapin 1998, Shaver et al. 1998, Hodkinson et al. 1999), it is 

also important to focus on fine root biomass, being the component of 

belowground plant biomass active in water and nutrient uptake – at least 

compared to the belowground stems and rhizomes.  
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Ten available warming experiments in tundra ecosystems examining 

belowground plant responses yielded contrasting results. Two studies 

showed significant positive effects of manipulated warming on total 

belowground plant biomass (Zamin et al. 2014) or rhizome biomass (Sistla 

et al. 2013), and one study showed positive effects of warming on root 

production (Sullivan et al. 2008). The other seven studies did not show 

significant warming effects on total belowground or fine root biomass. Out 

of these seven studies, two studies even reported a trend of decrease in 

belowground (Björk et al. 2007) or rhizome biomass (Gough and Hobbie 

2003) in response to warming.  

Both theoretical and empirical researches suggest that with temperature rise, 

relative biomass allocation to belowground plant parts may decrease (Bloom 

et al. 1985, Mokany et al. 2006, Reich et al. 2014). In line with this 

prediction, three studies indeed showed a decrease in the 

belowground/aboveground ratio with experimental warming in tundra 

(Hollister and Flaherty 2010, DeMarco et al. 2014, Zamin et al. 2014), but 

one study showed the opposite (Hobbie and Chapin 1998). Currently there is 

no clear pattern of how warming effects influence biomass allocation 

patterns of tundra vegetation. Understanding plant biomass allocation in 

response to climate warming is crucial in order to be able to predict 

ecosystem C storage and flux (Ise et al. 2010). Changes in plant biomass 

allocation due to climate change can impact the carbon storage in tundra 

ecosystems, as altered input of root material into the tundra soil may alter the 

large soil organic carbon pools (Hobbie 1996, Zimov et al. 2006, De Deyn et 

al. 2008). 

Different plant functional types (i.e. shrubs and graminoids) differ in traits 

regarding productivity, biomass allocation and root distribution as well as in 

their plasticity in response to warming (Bret-Harte et al. 2001, Van Wijk et 

al. 2003, Björk et al. 2007, Sullivan et al. 2008). A meta-analysis study 
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showed that aboveground responses of graminoids and shrubs to warming 

are different and depend on ambient temperature (Elmendorf et al. 2012): 

positive effects of warming on shrub growth increased with ambient 

temperature and, while positive effects of warming on graminoid growth 

decreased with ambient temperature. This study suggested that it is 

necessary to take vegetation composition and ambient temperature into 

account when studying warming effects on tundra vegetation, as many 

studies have reported shrub expansion at the expense of the graminoids 

(Tape et al. 2006, Myers-Smith et al. 2011a, Myers-Smith et al. 2011b, Frost 

and Epstein 2014).  

Here, we aimed to elucidate the relationships of aboveground and 

belowground biomass with ambient temperature, using data from 36 field 

studies over the temperature gradient across the tundra biome. Specifically, 

our hypotheses were: 1) above and belowground biomass respond differently 

to increasing temperatures, and 2) belowground biomass allocation decreases 

with temperature.  

 

2.2 Methods 

2.2.1 Data collection 

2.2.1.1 Community biomass  

We searched for published journal articles and book chapters with 

belowground plant biomass data obtained from both experimental and 

observational studies in both Arctic and alpine tundra. In total104 cases from 

46 studies at 28 research sites were found (Tables A2.1–A2.3), with each 

case representing a replicated sampling of a plant community type in a study. 

Among these studies 29 were from field observations from undisturbed sites 

and 17 from field experiments with warming or fertilization treatments. It is 
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important to note that from the field experiments, only the control plots were 

included in the analyses. Studies were included if they met the following 

criteria to reduce the variation introduced by varying sampling methods:  

1) Samples included both rhizomes (belowground stems) and fine roots.  

2) Samples excluded dead roots or at least were within the normal biomass 

range, as in some studies belowground biomass was extremely high because 

of the inclusion of dead roots. It should be noted that it is difficult to 

distinguish live and dead roots, particularly for shrubs, which has probably 

increased the variation in belowground biomass data.  

3) The community aboveground biomass was at least 20 g m-2. This was 

done to exclude extreme conditions, e.g. polar deserts with sparse vegetation.  

4) The sampling depth was at least 10 cm for shrub-dominated vegetation 

and at least 20 cm for vegetation in which graminoids were abundant. We 

differentiated because in tundra, shrubs generally have a shallower root 

distribution than graminoids .  

After evaluation based on these criteria, 81 cases from 36 studies at 21 sites 

remained in our dataset (Fig. 2.1, Tables A2.1–A2.3). From these papers we 

collected data for aboveground biomass, total root biomass (belowground 

stem + rhizome + root) and/or fine root biomass (if available). From these 

data belowground/aboveground ratio and fine root/aboveground ratio were 

calculated by dividing the belowground biomass and fine root biomass by 

the aboveground biomass. We further calculated relative shrub abundance 

for each case, which is the proportion of shrub biomass in the aboveground 

biomass, if the aboveground biomass of different plant functional groups 

was distinguished. 

 

2.2.1.2 Climate data  
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Mean annual air temperature (MAT) as well as summer temperature (ST, 

average temperature of June, July and August) from or near the research 

sites were obtained using the ‘Climate Explorer’ of the Royal Netherlands 

Meteorological Institute (KNMI), which is based on the Global Historical 

Climatology Network (GHCN Monthly) database. For some sites the climate 

data were obtained from another dataset: the Toolik Field Station 

Environmental Data Center was used for the Toolik site, the Zackenberg GIS 

Data for the Zackenberg site, and the National Water & Climate Center of 

the United States Department of Agriculture for the Eagle Summit site. In 

the analysis we used MAT averaged over the 20 years preceding the year in 

which the sampling of a specific study was carried out.  

 

Initially, we also planned to include mean annual precipitation (MAP) data, 

as precipitation may also affect plant productivity (Blok et al. 2011, Keuper 

et al. 2012a). However, MAP was not homogeneously distributed in the 

 
Fig. 2.1 Locations of the 21 research sites in the dataset 
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dataset. Alpine tundra sites had at least 400 – 500 mm higher MAP than 

other sites, which made the model highly unbalanced, and the outcome 

greatly affected by the cases with high precipitation. These problems did not 

occur with MAT. In addition, MAP and MAT were clearly correlated (R2 = 

0.57, P < 0.001), making it difficult to disentangle the effects of MAP and 

MAT. Therefore, we decided to omit MAP from the analyses and focus on 

MAT only.  

 

2.2.2 Data analysis 

We used linear mixed models to explore the relationship between site 

temperature (MAT) and aboveground biomass, belowground biomass, 

belowground/aboveground ratio, fine root biomass, and fine 

root/aboveground ratio. To take into account that our dataset contains sites 

with multiple measurements, which were made in different years or at 

different locations within the site, we included site, study and case as 

random factors in a nested structure. To compare the aboveground and 

belowground responses, we ran two models. One included total aboveground 

and belowground biomass, and the other total aboveground biomass and fine 

root biomass. In these models, MAT was included as a covariate, and 

vegetation part (aboveground or belowground) as a fixed factor. The 

interaction between MAT and vegetation part was also included. For 

below/above and fine root/aboveground ratio, the same model as above, but 

without vegetation part, was used. Data were ln-transformed to achieve 

normal distribution and homoscedasticity of errors. To check if summer 

temperature had the same relationships with vegetation biomass and 

below/above ratio, we ran the same models for summer temperature as well. 

To investigate the potential effect of shifts in vegetation composition with 

temperature on the temperature-biomass relationships, we included the shrub 
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abundance as a covariate in each of the models described above. We first 

checked if shrub proportion was dependent on MAT, but this was not the 

case (F1,9.7 = 0.6, P = 0.459). Unfortunately, data of the relative abundance 

of the different plant functional types was not available for each study. 

Consequently, this analysis was limited to 35 cases from 18 studies at 12 

sites.  

Analyses were performed with R (version 3.1.3) in RStudio (version 

0.98.1091). Linear mixed model analyses were made using package lme4 

version 1.1-7 (Kuznetsova et al. 2014); P values were obtained through 

package lmerTest version 2.0-20 (Bartoń 2014); R2 values were calculated 

using package MuMIn version 1.10.5 as described by Nakagawa and 

Schielzeth (2013).  

 

2.3 Results 

Total belowground plant biomass was significantly higher than aboveground 

biomass (853 ± 93 vs. 259 ± 51 g m-2), resulting in an average 

belowground/aboveground biomass ratio of 3.7 ± 0.9. Biomass of tundra 

vegetation increased with MAT, but this MAT effect significantly differed 

between aboveground and belowground biomass (Table 2.1). Aboveground 

biomass clearly increased with MAT (Fig. 2.2a; F1,12.8 = 13.2, P = 0.003), 

but belowground biomass only tended to increase (Fig. 2.2b; F1,8.3 = 4.2, P = 

0.072) and the increases were smaller than that in aboveground biomass.  

Similar patterns were found when analyzing the subset for fine root biomass. 

Aboveground biomass and fine root biomass did not differ significantly, but 

their relationships with MAT did (Table 2.1). Aboveground biomass again 

increased with MAT (F1,7.2 = 15.7, P = 0.005), whereas fine root biomass did 

not increase with MAT (Fig. 2.2c; F1,8.2 = 0.26, P = 0.625). Aboveground 

and belowground biomass had very similar relationships with summer 
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temperature to that they had with MAT (Table A2.4): aboveground biomass 

increased significantly with ST (F1,31.3 = 22.2, P < 0.001), but belowground 

biomass did not show a significant relationship (F1,28.6 = 2.1, P = 0.159). 

 

Table 2.1 Summary of analyses of MAT effects on community biomass and 
differences between vegetation or tissue part (aboveground/belowground or 
aboveground/fine root), and MAT effects on belowground/aboveground ratio and 
fine root/aboveground ratio, using linear mixed models. Biomass data and ratios 
were ln-transformed. R2

m (Marginal R2) describes the proportion of variance 
explained by the fixed factors alone. R2

c (conditional R2) describes the proportion of 
variance explained by both the fixed and random factors. 

Total community biomass (data from 34 studies) 

Variable  Fixed factor  Sum of 
squares df F value P value R2 

Community 
biomass  

Vegetation 
part 13.7 1 37.6 < 0.001 * 

R2
m = 0.52 

R2
c = 0.71 MAT 4.2 1 11.5 0.007 * 

Vegetation 
part × MAT 3.0 1 8.3 0.005 * 

Belowground/ 
aboveground 
ratio  

MAT 2.4 1 3.9 0.073 R2
m = 0.08 

R2
c = 0.24 

Aboveground and fine root biomass (data from 18 studies ) 

Variable  Fixed factor  Sum of 
squares df F value P value R2 

Aboveground 
and fine root 
biomass  

Vegetation 
part 0.4 1 1.0 0.319 

R2
m = 0.47 

R2
c = 0.55 MAT 4.0 1 9.4 0.006 * 

Vegetation 
part × MAT 11.5 1 26.9 < 0.001 * 

Fine root/ 
aboveground 
ratio 

MAT 4.9 1 8.6 0.029 * R2
m = 0.43 

R2
c = 0.70 
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Fig. 2.2 Relationships between mean annual temperature and (a) aboveground 
biomass (73 cases, slope 0.084 ± 0.023, intercept 5.78 ± 0.23), (b) belowground 
biomass (71 cases, slope 0.037 ± 0.018, intercept 6.79 ± 0.18), (c) 
belowground/aboveground ratio (72 cases, slope −0.042 ± 0.021, intercept 1.01 ± 
0.21). (d) fine root biomass (41 cases, slope −0.015 ± 0.03, intercept 5.86 ± 0.28), (e) 
fine root/aboveground ratio (34 cases, slope −0.15 ± 0.05, intercept −0.30 ± 0.51). 
Biomass data and ratios were ln-transformed. Solid lines represent significant 
relationships (P < 0.05), dashed lines represent insignificant relationships. The blue 
band represents 95% confidence intervals. Gray dots represent cases without 
information for calculating shrub fraction. 
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On average, about 75% of total biomass was belowground and 45% was fine 

root (belowground fraction 0.76 ± 0.02, fine root fraction 0.47 ± 0.08). The 

belowground/aboveground ratio tended to decrease with MAT (Fig. 2.2d, 

Table 2.1), and decreased significantly with ST (Table A2.4). The fine 

root/aboveground ratio decreased significantly with MAT and ST (Fig. 2.2e, 

Table 2.1).  

Including the relative abundance of shrubs as a covariate did not change the 

relationships between biomass and MAT (Table A2.5). Despite the smaller 

dataset, the interaction between MAT and vegetation part remained 

significant (F1,31 = 6.8, P = 0.014). Aboveground biomass still increased 

with MAT (F1,16.9 = 8.02, P = 0.02), while belowground biomass did not 

(F1,31 = 5.39, P = 0.26). Consequently, the negative relationship between 

belowground/aboveground ratio and MAT was significant (Table A2.5). 

Similar results were found for fine root biomass and fine root/aboveground 

ratio (Table A2.5).  

 

2.4 Discussion  

Our results show that belowground parts account for three quarters of total 

vascular plant biomass in the tundra ecosystems, which highlights the 

importance of understanding belowground responses of tundra vegetation to 

climate warming. Our analysis suggests that the biomass – temperature 

relationship of tundra vegetation differs between the aboveground and 

belowground parts, which may lead to reduced allocation belowground with 

climate warming. Aboveground biomass of tundra ecosystems increased 

significantly with local mean annual temperature, which is consistent with 

other studies (Hudson and Henry 2009, Hill and Henry 2011, Epstein et al. 

2012). The average increase was approximately 20 g·m-2 per degree Celsius. 

In contrast, belowground biomass did not significantly increase over a MAT 
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gradient of more than 20 °C. This difference in the temperature relationships 

between aboveground and belowground biomass appeared quite robust, as it 

remained significant in the subset of cases for which shrub abundance was 

known (~50% of the data). Variation in root biomass is considered to be 

relatively large due to methodological issues such as distinguishing live from 

dead roots. In our dataset, different criteria were used to define fine roots: a 

diameter smaller than 0.25 mm, 1 mm, or 2 mm, respectively in different 

studies (e.g., Miller et al. 1982, Sloan et al. 2013, DeMarco et al. 2014), or 

not defined (e.g., Hobbie and Chapin 1998, Hill and Henry 2011). 

Nevertheless, the results for this subset of the data were very similar (Fig. 

2.2d–e). To us, this suggests that methodological issues are not likely to 

explain the lack of a response of belowground biomass to temperature. 

Rather, our results suggest increased biomass allocation to aboveground 

parts. 

 

2.4.1 Possible environmental influences 

The different biomass – temperature relationships for aboveground and 

belowground of tundra vegetation may be explained by changes in different 

environmental factors. First, an initial increase in productivity in response to 

warming may have increased aboveground competition for light, thereby 

increasing allocation to aboveground plants parts (Brouwer 1962a, b, Niklas 

1994). Second, plant biomass allocation also depends on nutrient availability 

in the soil. Plant productivity in tundra is nutrient-limited (Chapin 1987, 

Chapin et al. 1995, Gough et al. 2012, DeMarco et al. 2014). This would 

limit the allocation to aboveground plant parts, and lead to increased 

allocation to fine root biomass to acquire more nutrients (Brouwer 1962a, b). 

Our result of a reduced proportion of belowground biomass with increasing 

temperature suggests that either, nutrient availability is not strongly limiting 
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plant growth, or that nutrient availability increased with increasing 

temperatures. Indeed, it has been suggested that higher air temperatures lead 

to higher soil temperatures (Marion et al. 1997, Schmidt et al. 1999), 

enhancing organic matter decomposition and nutrient mineralization 

(Nadelhoffer et al. 1991, Hobbie 1996, Schmidt et al. 1999). However, soil 

temperature can also be influenced by the insulation effect of plant canopies 

and soil organic layer (Walker et al. 2003b, Buttler et al. 2015, Myers-Smith 

et al. 2015), which may reduce the root responses to increased air 

temperature. In our dataset only seven studies measured the soil 

temperatures in the investigated plots and they differed in the duration and 

depth of the measurement. Therefore we cannot confirm whether soil 

temperature increased with MAT in our dataset. 

A third factor that may affect plant productivity is water availability. We 

could not reliably test for effects of mean annual precipitation, but the actual 

soil moisture content, which also depends on micro-topography, is probably 

more relevant. Soil moisture is known to influence tundra productivity and 

can also affect the responses of tundra plants to warming. Several studies 

have shown that aboveground biomass is affected by precipitation or soil 

moisture (Fisk et al. 1998, Blok et al. 2011, Keuper et al. 2012a, Myers-

Smith et al. 2015), but few studies have investigated moisture effects on 

belowground biomass. Unfortunately, the number of studies that measured 

soil moisture content in our dataset was too low to take soil moisture into 

account in our analyses. 

 

2.4.2 The role of vegetation composition 

Shrubs are very important in tundra ecosystems as they can influence 

permafrost thaw (Blok et al. 2010, Nauta et al. 2015), carbon and nutrient 

cycling (Myers-Smith et al. 2011b, Cahoon et al. 2012), and they are also 
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important food resources for some herbivores (Chapin et al. 1986, Olofsson 

et al. 2009). Deciduous shrubs have been found to expand in tundra areas 

(Tape et al. 2006, Callaghan et al. 2011, Myers-Smith et al. 2011b, Frost and 

Epstein 2014) and their expansion may be greater in relatively warm and 

moist areas (Elmendorf et al. 2012). This can affect responses of tundra 

vegetation to climate warming as shrubs differ in phenology, tissue structure 

and biomass allocation patterns from other growth forms such as sedges and 

grasses (Chapin et al. 1996, Iversen et al. 2015). However, in our dataset 

shrub abundance did not have a significant effect on the relationship between 

MAT and biomass or allocation. Still, we cannot rule out that belowground 

plant responses to MAT were obscured by shifts in abundance of co-

occurring plant species or functional types. For example, in a warming 

experiment, belowground biomass of Carex bigelowii and Betula nana 

increased by 135% and 53% respectively, but belowground biomass of 

Eriophorum vaginatum decreased by 74%, resulting in a minor change in 

total belowground biomass at the community level (Hobbie and Chapin 

1998). However, species-specific responses to warming in terms of 

belowground biomass are poorly known. Most of the available information 

comes from individuals grown in pots and from the graminoid E. vaginatum 

(e.g., Kummerow et al. 1980, Ellis and Kummerow 1982, Bassirirad et al. 

1996), which may be difficult to extrapolate to field conditions. In addition, 

belowground responses to climate warming can also differ among different 

community types. In the manipulated warming experiments, plant 

communities in a moist acidic tussock tundra and in an erect dwarf shrub 

tundra increased their belowground biomass in response to warming (Sistla 

et al. 2013, Zamin et al. 2014), while other communities did not show 

significant responses in belowground biomass (Table A2.1). In an 

experiment which was at a site with a mosaic microtopography of 

hummocks and hollows, root production of the plant community in the 
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hummocks did not change in response, while that in the hollows increased 

significantly to the manipulated warming (Sullivan et al. 2008). 

Distinguishing the responses to warming for different plant species and/or 

functional types in different plant communities, both aboveground and 

belowground, will be crucial to fully understand the consequences of 

changes in vegetation composition in future global warming scenarios.  

 

2.4.3 Implications for C cycling in tundra 

Increased aboveground biomass allocation is often accompanied by an 

increase in the biomass fraction of leaves (Mokany et al. 2006, Reich et al. 

2014), thereby increasing leaf litter input to the soil, especially for 

graminoids which lack woody stems for C storage. In general, leaf litter is 

decomposed faster than root litter (Hobbie 1996, Thormann et al. 2001). In 

addition, leaf litter is mostly decomposed at the soil surface, where the 

summer temperature is much higher than deeper in the tundra soil. As a 

consequence, leaf litter may not contribute that much to long-term carbon 

sequestration in the tundra soil, while root litter that is deposited deeper in 

the soil close to the permafrost may form a substantial part of the soil 

organic matter pool (Zimov et al. 2006). Greater allocation to leaves than to 

roots may thus result in a lower C storage in tundra ecosystems than one 

might expect on the basis of unchanged allocation pattern.  

In our study, we focused on standing belowground or root biomass. This is a 

pool, constituting a balance between root production and root losses due to 

mortality (Gill and Jackson 2000, Sullivan et al. 2007). A few studies have 

investigated warming effects on root production in tundra and showed that, 

at least for graminoids, root production increased in warmer conditions 

(Chapin 1974, Kummerow et al. 1980, Sullivan and Welker 2005, Sullivan 

et al. 2008, Xue et al. 2015). If root production increases with temperature 
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while root biomass does not, as we found in this study, this implies that root 

turnover in tundra also increases with climate warming. Therefore, C cycling 

in tundra ecosystems might be accelerated by climate warming, especially in 

areas which are dominated by graminoids. However, studies of warming 

effects on tundra root production and mortality are still scarce, especially for 

shrubs and shrub dominated vegetation. To fully understand the relationships 

between tundra belowground biomass and temperature, future studies of root 

production, mortality, and assimilated C allocation of different plant 

functional types in response to climate warming are clearly needed.  

 

2.5 Conclusions 

Our meta-analysis of 36 field studies spanning a MAT gradient from −20 to 

0 °C across the tundra biome shows that with increasing temperatures, total 

belowground biomass and fine root biomass does not increase significantly, 

while aboveground biomass clearly increases. Together, this leads to a shift 

in biomass allocation to aboveground biomass with climate warming, which 

may influence carbon cycling in tundra ecosystems. Future research should 

focus on the effects of temperature on root production and root losses, which 

ultimately determine root biomass. To incorporate shifts in vegetation 

composition that are known to occur with increasing temperatures, detailed 

knowledge of the responses of different plant functional types is crucial. 
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2.7 Appendices 
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Queen Elizabeth Islands. Ecography 7: 325-344. 
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776. 

Christensen TR, Michelsen A, Jonasson S, Schmidt IK. 1997. Carbon dioxide and 

methane exchange of a subarctic heath in response to climate change related 

environmental manipulations. Oikos: 34-44. 

DeMarco J, Mack MC, Bret-Harte MS, Burton M, Shaver GR. 2014. Long-term 

experimental warming and nutrient additions increase productivity in tall deciduous 
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Fisk MC, Schmidt SK, Seastedt TR. 1998. Topographic patterns of above- and 

belowground production and nitrogen cycling in alpine tundra. Ecology 79: 2253-

2266. 

Gough L, Hobbie SE. 2003. Responses of moist non-acidic arctic tundra to altered 

environment: productivity, biomass, and species richness. Oikos 103: 204-216. 

Gough L, Moore JC, Shaver GR, Simpson RT, Johnson DR. 2012. Above- and 

belowground responses of arctic tundra ecosystems to altered soil nutrients and 
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Gross MF, Hardisky MA, Doolittle JA, Klemas V. 1990. Relationships among depth 
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Henry GHR, Svoboda J, Freedman B. 1990. Standing crop and net production of 

sedge meadows of an ungrazed polar desert oasis. Canadian Journal of Botany 68: 

2660-2667. 

Hill GB, Henry GHR. 2011. Responses of High Arctic wet sedge tundra to climate 

warming since 1980. Global Change Biology 17: 276-287. 

Hobbie SE, Chapin FS, III. 1998. The response of tundra plant biomass, 
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Table A2.4 Summary of analyses of summer temperature (ST) effects on 

community biomass and differences between vegetation part (above-/belowground 

or aboveground/fine root), and ST effects on belowground/aboveground ratio and 

fine root/aboveground ratio. 

Total community biomass (data from 34 studies) 

Variable  Fixed 
factor  

Sum of 
squares df F value P value R2 

Community  
biomass  

Vegetation 
part 36.6 1 109.1 < 0.001 * 

R2
m = 0.53 

R2
c = 0.73 ST 4.1 1 12.1 0.001 * 

Vegetation 
part × ST 4.8 1 14.4 < 0.001 * 

Belowground/ 
aboveground 
ratio  

ST 5.8 1 9.5 0.014 * R2
m = 0.16 

R2
c = 0.24 

Aboveground and fine root biomass (data from 18 studies ) 

Variable  Fixed 
factor  

Sum of 
squares df F value P value R2 

Aboveground 
and fine root 
biomass  

Vegetation 
part 27.8 1 94.7 < 0.001 * 

R2
m = 0.55 

R2
c = 0.69 ST 2.7 1 9.3 0.008 * 

Vegetation 
part × ST 16.1 1 54.7 < 0.001 * 

Fine root/ 
aboveground 
ratio 

ST 21.5 1 36.7 0.004 * R2
m = 0.61 

R2
c = 0.64 
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Table A2.5 Summary of analyses of vegetation part, MAT and shrub fraction effects 

on community biomass, and MAT, shrub fraction effects on below/aboveground 

ratio, fine root biomass and root/above ratio. Biomass data and ratios were ln-

transformed. 

Total community biomass (data from 20 studies) 
 

Variable Source  Sum of 
squaresa df F value P value 

 

Community 
biomass 

MAT 0.5 1 2.7 0.120  
Shrub abundance < 0.1 1 0.3 0.619  
Vegetation part 2.5 1 12.4 0.001  * 
MAT × shrub abundance < 0.1 1 < 0.1 0.956  
MAT × vegetation part  1.3 1 6.8 0.014  * 
Shrub abundance × 
vegetation part 0.4 1 1.8 0.185  

Vegetation part × shrub 
abundance × MAT 0.5 1 2.3 0.138  

Belowground/ 
aboveground 
ratio 

MAT 2.7 1 6.9 0.013  * 
Shrub abundance 0.7 1 1.8 0.188  
Shrub abundance × MAT 0.9 1 2.4 0.135  

Aboveground and fine root biomass (data from 9 studies ) 
 

Fine root 
biomass 

MAT 0.3 1 0.9 0.389  
Shrub abundance 0.1 1 0.3 0.607  
Vegetation part 8.2 1 29.7 < 0.001  * 
MAT × shrub abundance 0.1 1 0.3 0.612  
MAT × Tissue part  10.9 1 39.5 < 0.001  * 
Shrub abundance × tissue 
part 1.5 1 5.4 0.035  * 

MAT × shrub abundance 
× tissue part 0.1 1 0.2 0.669  

Fine root/ 
aboveground 
ratio 

MAT 5.4 1 13.9 0.033  * 
Shrub abundance 0.2 1 0.5 0.509  
Shrub abundance × MAT < 0.1 1 < 0.1 0.860  

a Type III sum of squares was used in the analysis of total biomass and 
belowground/aboveground ratio. In the subset of fine root biomass data, shrub 
abundance and MAT were positively correlated, so we used Type I sum of 
squares and first considered MAT effect and then shrub abundance effect. 
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Abstract 

Shrub expansion is common in the tundra biome and has been linked to 

climate warming. However, the underlying mechanisms are still not fully 

understood. This study aimed to investigate the seasonal and vertical rooting 

patterns of different plant functional types, which is important for predicting 

tundra vegetation dynamics. We harvested root samples by soil coring and 

investigated seasonal changes in root biomass and vertical root distribution 

across a vegetation gradient, focusing on the differences between graminoids 

and dwarf shrubs, at a northeastern Siberian tundra. Graminoid fine root 

biomass increased significantly during the growing season, whereas that of 

shrubs was already high at the beginning and did not change later on. Shrubs 

had a much shallower rooting pattern than graminoids. Also, shrub roots did 

not respond to increases in permafrost thawing depth over the growing 

season, whereas graminoids grew fine roots in deeper, recently thawed soil 

layers during the growing season. Our results show that shrubs are 

predominantly shallow-rooted and grow roots earlier than graminoids, which 

allows shrubs to take advantage of the nutrient pulse after snowmelt in the 

early growing season. In contrast, the deep-rooted graminoids can access the 

nutrients in deeper soil and may profit from increasing permafrost thawing 

depth. The outcome of the competitive interactions between graminoids and 

shrubs in tundra may depend on the balance between the benefits associated 

with earlier root growth and deeper root distribution, respectively. The shrub 

expansion with climate warming observed in recent decades suggests that 

earlier root growth in the upper soil layer may be more important than 

increased rooting depth later in the growing season.  

Keywords: Arctic tundra, belowground biomass, Betula nana, biomass 

distribution, Eriophorum vaginatum, rooting pattern 
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3.1 Introduction 

Global annual air temperature is predicted to increase by more than 1.5 °C at 

the end of this century, and the temperature increase in the Arctic areas is 

predicted to be higher than in other regions of the globe (IPCC 2013). Arctic 

tundra ecosystems have been shown to be strongly affected by climate 

warming. Due to the increased temperature, the decomposition rate of soil 

organic matter and release of carbon is accelerated (Schuur et al. 2009, 

Belshe et al. 2013), and the release of previously frozen soil organic carbon 

is initiated as permafrost layers thaw (Zimov et al. 2006, Schuur et al. 2009). 

In addition, increased temperature extends the growing season and improves 

nutrient availability due to increased permafrost thawing depth (active layer 

thickness, ALT) (Hinkel and Nelson 2003, Burn and Kokelj 2009) and 

increased nutrient mineralization at higher soil temperatures (Aerts 2006, 

Craine et al. 2010). Soil moisture content can change as well, due to the 

altered balance between thawing and evapotranspiration (Callaghan et al. 

2011). 

As a result of these environmental changes, aboveground productivity of 

tundra vegetation has been shown to increase (Verbyla 2008, Hill and Henry 

2011, Epstein et al. 2012). Following this increase, vegetation composition is 

also changing, as shrub expansion at the expense of graminoids and/or 

cryptogams has been observed in many tundra areas (Tape et al. 2006, 

Wookey et al. 2009, Callaghan et al. 2011, Myers-Smith et al. 2011a, Myers-

Smith et al. 2011b). However, the drivers underlying shrub expansion are 

still poorly understood. Experimental warming studies suggested that both 

graminoids and shrubs can increase biomass, cover or canopy height in 

response to warming treatments (Arft et al. 1999, Walker et al. 2006, 

Elmendorf et al. 2012), indicating that warming alone does not necessarily 

increase the competitive advantage of shrubs. All kinds of environmental 

changes that take place due to climate warming can affect the competitive 
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interactions between the dominant plant functional types (PFTs) in tundra, 

change vegetation composition, and further influence ecosystem functioning 

such as carbon and nutrient fluxes (Shaver and Chapin 1991, Mack et al. 

2004).  

Since the changes that we referred to are primarily experienced by the roots, 

which constitute 70% of total plant mass in tundra ecosystems (Poorter et al. 

2012), it is important to study the belowground responses of different 

functional types to understand the responses of tundra vegetation to 

environmental changes. Roots of different functional types in tundra may 

differ in morphology, architecture, productivity and life span (Iversen et al. 

2015). Here, we focus on dwarf shrubs and graminoids, the two dominant 

types of vascular plants in the tundra ecosystem. Graminoids such as 

Eriophorum vaginatum are considered to grow deep roots with a short life 

span while dwarf shrubs such as Betula nana are assumed to have shallow 

roots with a longer life span (Shaver and Billings 1975, Miller et al. 1982, 

Shaver and Chapin 1991, Sullivan et al. 2007). Shallow-rooting plants may 

have a competitive advantage early in the growing season when the deeper 

soil is still frozen and inaccessible for deep-rooting plants. However, climate 

warming can lead to increases in ALT (Hinkel and Nelson 2003, Burn and 

Kokelj 2009), which may favor deep-rooting species later in the growing 

season. For example, nutrients available at the thaw front of permafrost may 

benefit plants with deeper roots at the expense of shallow-rooting species 

(Keuper et al. 2012b, Keuper et al. 2014). However, little is known about the 

temporal and spatial root responses of shrubs and graminoids to increases in 

growing season length and ALT. Here, we investigated seasonal changes and 

vertical distribution of root biomass across a vegetation gradient, focusing on 

the differences between graminoids and dwarf shrubs. We aimed to answer 

the following questions:  
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1) Is belowground biomass development over the growing season different 

for dwarf shrubs and graminoids? 

2) Is the root vertical distribution of these two functional types different and 

does it change over the growing season?  

 

3.2 Materials and methods 

3.2.1 Study site 

The study site is at the Chokurdakh Scientific Tundra Station (70°49’28’’ N, 

147°29’23’’ E; elevation 11 m a.s.l.) in Kytalyk Wildlife Reserve, which is 

located in the lowlands of the Indigirka River in northeastern Siberia. The 

mean annual air temperature at the nearest climate station (Chokurdakh, 

WMO station code 21946, 27 km away from the study site) is −13.4 ºC 

(1981 – 2010), with 10.3 ºC as the mean July temperature. Annual 

precipitation is 196 mm (1981 – 2010), of which 76 mm falls in the summer 

(June – August). The study area is the former lake bed of a drained 

thermokarst lake, which has a shallow active layer underlain by thick 

continuous permafrost.  

The vegetation surrounding the Chokurdakh Scientific Tundra Station is 

classified as G4, tussock-sedge, dwarf-shrub, moss tundra, on the 

Circumpolar Arctic Vegetation Map (Walker et al. 2005). The vegetation in 

the drained lake bed is a mosaic formed mainly by graminoids, dwarf shrubs, 

and a mixture of the two (Fig. 3.1). The dominant graminoid species in this 

study is the tussock-forming sedge Eriophorum vaginatum L, followed by 

the grasses Arctagrostis latifolia (R. Br.) Griseb and Calamagrostis holmii 

Lange. The dominant dwarf shrub is the deciduous shrub Betula nana L. 

Other shrub species include the deciduous shrub Salix pulchra Cham, and 

evergreen shrubs Vaccinium vitis-idaea L and Rhododendron subarcticum 
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Harmaja. A moss layer with some lichens is present throughout the study 

area.   

 

3.2.2 Sampling design 

In June 2013, 8 blocks were selected in which all three vegetation types, 

graminoid dominated, dwarf shrub dominated and mixture vegetation, were 

close to each other. Each block was about 150 m2 and 40 – 140 m away from 

the next block. Within each block we selected one plot in each of the three 

vegetation types. Vegetation types were determined visually by the relative 

cover of B. nana and E. vaginatum. Graminoid vegetation was characterized 

by cover of E. vaginatum exceeding 70% of total vascular plant cover, 

whereas in shrub vegetation, the cover of B. nana was at least 70%. In 

mixture plots, cover of both PFTs varied between 30 and 70% (Fig. 3.1). 

Plots were squares, with side lengths between 3 and 5 m, and the distances 

between plots varied between 3 and 10 m. Within these plots, we focused on 

two plant functional types: graminoids and dwarf shrubs.  

In order to investigate seasonal changes in biomass, we sampled twice: once 

at the beginning of the growing season (28 June – 1 July) approximately two 

weeks after the surface soil started to thaw (2 cm soil temperature data from 

VU meteorology data at the study site), and the second one at the end of the 

growing season (28 – 30 July) when B. nana leaves started to turn red and 

presumably vegetation biomass reached its peak. For each harvest, two 

subplots measuring 25 x 25 cm were sampled per plot. These two samples 

were pooled per plot. In shrub plots, two randomly chosen subplots were 

harvested, but in graminoid and mixture vegetation plots, one quadrat was 

located on a randomly selected tussock and one in the inter-tussock area. In 

order estimate the total amounts of plant mass per plot, we multiplied the 

measured biomass in the subplots by the relative cover of tussock or inter-
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tussock area. This was determined using four random point quadrats (0.5 × 

0.5 m) in each plot. A pin was lowered at 100 points in each quadrat. For 

aboveground tussock cover, each pin hitting the actual tussock or E. 

vaginatum leaves expanding from a tussock, was recorded as tussock, and 

the rest as inter-tussock area. For belowground tussock area, only the pins 

hitting the actual tussock (from which the roots are assumed to grow directly 

downwards) were recorded as tussock.  

 

Fig. 3.1 Pictures of the three vegetation types. Graminoid vegetation (a) had a cover 
of E. vaginatum more than 70%; in mixture vegetation (b) the cover of E. vaginatum 
or B. nana was between 30 and 70%; shrub vegetation (c) had a cover of B. nana 
more than 70%. 

 

In each subplot, aboveground plant parts were clipped at the moss surface 

and sorted to different fractions for the different PFTs: leaves for graminoids, 

and leaves and stems for shrubs. Root biomass was sampled by taking a soil 

core (8 cm diameter, 30 cm deep) in the center of the subplot. The soil cores 

were separated into 3 depths: 0 – 5, 5 – 15, and 15 – 30 cm. Early in the 

growing season, the thawed layer in some plots was still very shallow, and 

the root corer with 8 cm diameter could not be hammered into the permafrost. 

In these cases, a smaller corer with 3.2 cm diameter was used instead. 
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Belowground plant parts were sorted out from the soil cores manually by 

using forceps. To take into account the resulting differences in soil volume 

between layers, we used the root mass density (g m-3) as a measure of root 

biomass. Belowground biomass was sorted to different fractions for the 

different functional types: belowground stems (diameter > 5 mm), coarse 

roots (1 mm < diameter < 5 mm) and fine roots (diameter < 1 mm) for 

shrubs, rhizomes (diameter > 1 mm, including leaf bases of E. vaginatum) 

and fine roots (diameter < 1 mm) for graminoids. Belowground stems of 

shrubs were easily identified to species as they resemble their aboveground 

part. Roots that were not attached to the belowground stems were identified 

according to their color and texture (Hobbie and Chapin 1998). Roots of the 

graminoids were white and smooth while roots of the shrubs were brownish 

or reddish, with woody texture. The very new roots of B. nana were also 

white or light-colored. However, they were white only in the fore-end part 

which is normally less than 5 mm long and they were normally finer than the 

roots of E. vaginatum which are about 1 mm in diameter. If the root density 

was very high, which was usually the case for soil cores from E. vaginatum 

tussocks and cores with high density of very fine evergreen shrub roots, 

subsamples with a known proportion of the original samples were taken. 

All samples were air-dried at the field station before they were transported to 

Spasskaya Pad Scientific Forest Station, Russia (62°14’ N, 129°37’ E) where 

they were further dried in an oven at the temperature of 70 ºC for at least 24 

hours. After the samples were transported to the Netherlands, they were 

dried in an oven at the temperature of 65 ºC for 72 hours and weighed.  

 

3.2.3 Environmental factors  

ALT and soil moisture were measured in each plot at 2 points and 9 points in 

early and late growing season, respectively. ALT was measured by inserting 
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a metal stick into the soil until it hit the permafrost. Soil moisture was 

measured at 10 cm soil depth by a Thetaprobe soil moisture sensor (ML3 

ThetaKit, Delta-T Devices, UK). Organic layer thickness of each soil core 

was measured immediately after the soil core was taken. Resin bags were 

used for measuring exchangeable nutrients in the soil. Each resin bag 

contained 5 g ion-exchange resin (TMD-8, H+/OH− Form, Type 1, Mixed 

Bed Resin, 16 – 50 mesh, Avantor, USA) in a 5 × 5 cm polypropylene bag 

with a 100 µm mesh size. Before the first harvest 3 resin bags were buried in 

each plot at the depth of 10 cm. Temperature loggers (iButton 

DS1922L/DS1921G, Maxim Integrated, USA) were buried at 10 cm depth in 

12 plots of 4 blocks. Resin bags and temperature loggers were retrieved after 

the second sampling. Resin bags were transported back to the Netherlands 

and extracted overnight in 50 ml 2 M NaCl in 0.1 M HCl. The extracts were 

brought to neutral pH by the addition of NaOH and analyzed 

spectrophotometrically for NH4
+, NO3

−, PO4
3− and K+ using an auto-analyzer 

(Skalar, Breda, The Netherlands). 

 

3.2.4 Data analysis 

To test for differences in total aboveground and belowground biomass of the 

three different vegetation types and their seasonal changes, we used a linear 

mixed model (lme) with vegetation type, season (early  or late), vegetation 

part (aboveground or belowground) and their interactions as fixed factors, 

block and plot as random effects in a nested structure (plot within block). 

The same model was used for the analyses of resource-acquiring leaf and 

fine root biomass, except that vegetation part was replaced by tissue type 

(leaf or fine root).  

To test for seasonal changes in fine root biomass of the two PFTs in different 

vegetation types, fine root biomass was analyzed using vegetation type, PFT, 
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season and their interactions as fixed factors, block and plot as random 

effects in a nested structure.  

To test for changes in vertical distribution of fine roots, we used fine root 

biomass density as a dependent variable to correct for the different soil 

volume of each layer. Shrubs had few roots in the 3rd layer in our samples, 

which resulted in a lot of zero values in the data, so that the assumptions of 

normal distribution and homogeneity of variance were violated. To solve this, 

we first analyzed fine root biomass density of the upper two layers using 

vegetation type, PFT, season, soil layer and their interactions as fixed factors, 

block and plot as random effects in a nested structure. Then we used a 

nonparametric method for longitudinal data described by Brunner and Puri 

(2001) to test for differences in fine root densities in the 3rd layer with plots 

as the individual subjects on which repeated measurements were taken. In 

addition, we also used this nonparametric method to analyze the relative 

biomass in each layer of graminoid and shrub roots to test for seasonal 

changes in root vertical distribution. 

All dependent variables were ln transformed when necessary to achieve 

normal distribution and homoscedasticity of errors. Analyses were 

performed with R (version 3.2.1) in RStudio (version 0.98.1091). Linear 

mixed model analyses were made using package lme4 version 1.1-7 (Bates 

et al. 2014). P values were obtained through package lmerTest version 2.0-

20 (Kuznetsova et al. 2014). Nonparametric analysis was made using 

nparLD package version 2.1 (Noguchi et al. 2012). Graphics were produced 

with ggplot2 package version 1.0.0 (Wickham 2009). 

 

3.3 Results 

3.3.1 Environmental conditions 
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In the study period, average ALT of all the three vegetation types doubled 

from 14 cm early in the growing season to 28 cm in the late season (Table 

3.1). ALT in the graminoid vegetation was significantly higher than in the 

mixture and shrub vegetation, irrespective of the time of season (Table 3.1), 

indicating a larger soil volume available for root development in the 

graminoid vegetation type. Soil temperature at 10 cm depth increased over 

the season but did not differ among the three vegetation types (Table 3.1). 

 

Table 3.1 Environmental factors in the three vegetation types in early and late 
growing season. Different letters indicate difference among vegetation types in each 
season. Data are mean ± SE, n = 8 plots except for soil temperature (n = 4 plots).  

  Graminoid 
vegetation 

Mixture 
vegetation 

Shrub 
vegetation 

Season and 
vegetation 

effects 

Active layer 
thickness (cm) 

Early 17 ± 0.9a 14  ± 0.5b 12  ± 0.5c Season * 
Vegetation * 

Season × Veg * Late 34  ± 1.7a 26  ± 1.1b 23  ± 0.4b 

Organic layer 
thickness (cm) 

Early 18 ± 1.6 18 ± 0.7 19 ± 0.9 Season ns 
Vegetation ns 

Season × Veg ns Late 21 ± 1.4 20 ± 1.4 17 ± 1.0 

Soil moisture  
(% volume) 

Early 50  ± 3a 46  ± 3ab 37  ± 2b Season * 
Vegetation * 

Season × Veg ns Late 51  ± 5a 39  ± 5b 24  ± 1c 

Soil  
temperature  

(˚C) 

Early 0.8   ± 0.1a 0.8  ± 0.2a 0.7  ± 0.2a Season * 
Vegetation ns 

Season × Veg ns Late 2.8  ± 0.1a 2.5  ± 0.3a 2.6  ± 0.2a 

Exchangeable 
nutrient 

(µg g-1resin) 

N-NH4 52  ± 6a 26  ± 4b 23  ± 4b Vegetation * 

N-NO3 3  ± 1 4  ± 1 4  ± 1 Vegetation ns 
Total 

inorganic 
N 

55  ± 6a 30  ± 3b 26  ± 4b Vegetation * 

P 5  ± 1a 3  ± 0.3b 3  ± 1b Vegetation * 

K 124  ± 11a 90  ± 10b 50  ± 9c Vegetation * 
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Volumetric soil moisture content was significantly higher in graminoid 

vegetation than in shrub vegetation (50% vs 30%). Over the season, soil 

moisture content decreased in shrub vegetation, but not in the graminoid and 

mixed vegetation types (Table 3.1). The organic layer thickness was 

approximately 20 cm and did not differ among vegetation types (Table 3.1). 

Most soil exchangeable nutrients (NH4
+, total inorganic N, PO4

3− and K+) 

were two times higher in graminoid vegetation than in the other two 

vegetation types, but the three vegetation types did not differ in soil nitrate 

concentration, which amounted to 10% of the inorganic nitrogen (Table 3.1). 

 

3.3.2 Community biomass  

Community biomass differed significantly among the three vegetation types 

(Fig. 3.2, Table 3.2), both above and below ground. Total (above + below 

ground) biomass of shrub vegetation was 110% and 60% higher than that of 

graminoid vegetation and mixture vegetation respectively (Fig. 3.2, Table 

3.2).  

Biomass was greater belowground than aboveground (Fig. 3.2). Moreover, 

the distribution of biomass over above and below ground plant parts differed 

among the vegetation types (significant vegetation type × part in Table 3.2; 

below/above ground ratio in the late season was 4.4 ± 0.3, 3.3 ± 0.3, 2.3 ± 

0.2 for graminoid, mixture and shrub vegetation respectively). Both above 

and below ground community biomass increased significantly over the 

season in graminoid and mixture vegetation (F1,21 = 56.7, P < 0.001; F1,21 = 

10.9, P = 0.003 respectively), but not in shrub vegetation (F1,21 = 1.8, P = 

0.189).  

As the next step we zoomed in on the actual resource acquiring tissues, i.e. 

leaves and fine roots. Leaf biomass was not significantly different among the 

three vegetation types (F2,21 = 0.7, P = 0.517). Fine root biomass was lower 
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in graminoid vegetation than in the other two types, but only in the early 

growing season (F2,14 = 3.4, P = 0.004 for the early season; F2,21 = 0.4, P = 

0.182 for the late season; Fig. 3.2). Fine root biomass, as well as leaf 

biomass, increased over the growing season in graminoid and mixture 

vegetation (F1,21 = 71.9, P < 0.001; F1,21 = 12.9, P = 0.002 respectively), but 

in shrub vegetation no significant changes were found (F1,28 = 3.2, P = 

0.084). 

 

 

Fig. 3.2 Total community biomass of the three vegetation types, subdivided into leaf, 
aboveground stem, fine root and coarse root (including rhizome and belowground 
stem), in early and late growing season. Bars indicate mean ± SE (n = 8 plots) of 
each tissue type. Asterisks represent significant seasonal changes (P < 0.05). 
Seasonal change patterns resembled between total aboveground biomass and leaf 
biomass, total belowground biomass and fine root biomass. 
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Table 3.2 Analysis of community biomass (above and belowground), and 
acquisitive biomass (leaf and fine root) of the three vegetation types using linear 
mixed model. Block and plot were taken as random effects in a nested structure. 
Data were ln transformed. Part refers to aboveground/belowground, tissue refers to 
leaf/fine root. 

Variable Source Sum of  
squares df F value P value  

Community  
biomass 

Vegetation 9.7 2 66.2 < 0.001  * 

Season 3.2 1 43.6 < 0.001  * 

Part 31.6 1 429.7 < 0.001  * 

Vegetation × season 1.1 2 7.8 0.001  * 

Vegetation × part 1.5 2 10.4 < 0.001  * 

Season × part < 0.1 1 < 0.1 0.972  

Vegetation × season × part < 0.1 2 < 0.1 0.961  

Leaf and 
fine root 
biomass 

Vegetation    0.4    2 2.4 0.130  

Season 4.0 1 49.5 < 0.001  * 

Tissue  41.1 1 508.0 < 0.001  * 

Vegetation × season 0.8 2 4.9 0.010  * 

Vegetation × tissue  2.1 2 13.2 < 0.001  * 

Season × tissue  < 0.1 1 < 0.1 0.890  

Vegetation × season × tissue  0.1 2 0.7 0.515  

 

3.3.3 Fine roots of PFTs  

Fine root biomass density differed between the two PFTs in the first two soil 

layers, but this effect depended on season, vegetation type and layer (see 

Table A3.1). When the two PFTs were analyzed separately, graminoid root 

density increased significantly over season in the upper two layers of all 

three vegetation types (Fig. 3.3, Table 3.3). Meanwhile, seasonal changes of 

shrub root density in the upper two layers differed among vegetation types 

(Fig. 3.3, Table 3.3): it increased over season in graminoid vegetation (F1,21 

= 5.0, P = 0.026), but there were no significant seasonal changes in the other 

two vegetation types (F1,53 = 1.0, P = 0.321). Similar patterns were found in 
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the 3rd layer: graminoid root density increased significantly over the growing 

season, while shrub root density did not change (Table A3.2), as it remained 

at zero or very low values (Fig. 3.3).  

The distribution of relative fine root biomass of each PFT over the layers 

also shows that graminoids increased relative biomass distribution to deep 

roots at the expense of shallow roots over the growing season, while the 

vertical distribution pattern of shrubs did not change much over the growing 

season (Fig. A3.2).  

 

 

Fig. 3.3 Fine root biomass density in different soil layers of the three vegetation 
types, shown separately for graminoids (a) and shrubs (b). Layer 1 = 0 – 5 cm; 2 = 5 
– 15 cm. 3 = 15 – 30 cm. Note that the scale of the x-axis differs for graminoid and 
shrub roots. Symbols indicate mean ± SE (n = 8 plots). 
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Table 3.3 Analysis of vegetation, season, and layer effects on fine root biomass 
density in the upper two layers, using linear mixed model for each PFT separately. 
Block, plot were taken as random effects in a nested structure. Data were ln(x+1) 
transformed. 

Source df 
Graminoid roots  Shrub roots 

Sum of 
squares 

F 
value P value  

 Sum of 
squares 

F 
value P value 

 

Vegetation 2 200.1 52.9 < 0.001  *  35.3 12.8 0.001  * 

Season 1 21.6 11.4 0.001  *  6.4 4.6 0.035  * 

Layer  1 2.3 1.2 0.278   19.9 14.4 < 0.001  * 

Vegetation × 
season 2 5.9 1.5 0.219  

 
10.8 3.9 0.025  * 

Vegetation × 
layer 2 1.3 0.3 0.708  

 
5.2 1.9 0.157 

 

Season × 
layer 1 5.4 2.9 0.094  

 
0.9 0.6 0.425 

 

Vegetation × 
season × layer 2 3.6 0.9 0.392  

 
0.4 0.1 0.865 

 

 

The vertical distribution of fine roots also differed between the two PFTs: 

graminoid root density did not differ between the upper two layers while 

shrub root density decreased significantly from the 1st to the 2nd layer (Fig. 

3.3, Table 3.3). Root density in the 3rd layer was lowest for both PFTs (Fig. 

3.3), however, graminoid root density in this deepest layer was significantly 

higher than shrub root density in all vegetation types except in shrub 

vegetation where the relative abundance of graminoids was very low (P < 

0.001, P < 0.001, P = 0.584 for graminoid, mixture, and shrub vegetation 

type, respectively; Fig. 3.3, Table A3.2). 

 

3.4 Discussion 

Despite the large differences in community biomass among the three 

vegetation types, the biomass of the acquisitive organs, i.e., leaves and fine 
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roots, did not differ significantly among the vegetation types in the late 

growing season. Graminoid fine root biomass increased during the growing 

season, while shrub fine root biomass did not, suggesting important 

differences in seasonality of root growth between graminoids and shrubs. 

Between the early and late sampling date, graminoids increased root growth 

and distributed relatively more roots in the deepest layer, while shrubs did 

not change their rooting pattern. Moreover, shrubs grew a larger part of their 

roots in the shallow layers than the graminoids did. Although shrub root 

growth was not limited by the available soil volume, as during the late 

growing season the thawed soil was deeper than 25 cm, still very few shrub 

roots were found there. Our results suggest important differences both in 

seasonality and in vertical distribution of root growth between graminoids 

and shrubs. This finding contributes significantly to our understanding of the 

mechanisms of shrub expansion in Arctic tundra.  

 

3.4.1 Seasonal changes in fine root biomass  

Graminoids and shrubs differed in their aboveground phenology. It was 

observed in the field that at the time of the first harvest, most of the B. nana 

leaves had already sprouted, while new leaves of the dominant graminoid E. 

vaginatum were still rare. This earlier leaf growth of dwarf shrubs has also 

been found in other studies (Murray and Miller 1982, Wipf 2010). The 

seasonal patterns belowground in our study were very similar to the seasonal 

patterns that we found aboveground, which suggests differences in 

seasonality of root growth between E. vaginatum and B. nana. In the mixture 

vegetation, where graminoids and dwarf shrubs were equally abundant, 

graminoid fine root biomass increased during the growing season, but shrub 

fine root biomass did not (Fig. A3.1). One explanation is that the shrubs 

already grew most of their fine roots before the early season harvest. It has 
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been shown that B. glandulosa, a species similar to B. nana, started root 

growth one week after bud break and achieved maximum root biomass in 

three weeks (Kummerow et al. 1983). Perhaps, root growth of B. nana starts 

and finishes early in the growing season as well. Only in graminoid-

dominated vegetation, fine root biomass of shrubs showed a small increase 

during the growing season (F1,7 = 5.0, P < 0.05; Fig. A3.1). We observed 

that in graminoid vegetation the snowmelt was later than in shrub vegetation 

(Juszak et al. 2016) and soil temperature at 5 cm depth at the time of 

snowmelt was lower than in shrub vegetation (unpublished data from 

another study at the same site). The earlier snowmelt and higher soil 

temperature in the very early growing season in the shrub-dominated 

vegetation can also be in favor of the earlier shoot and root growth of the 

shrubs, which might explain the difference in shrub root growth between the 

vegetation types. 

An alternative explanation for the lack of a season effect in shrub fine root 

biomass may be that root turnover of shrubs in tundra is very low. As a 

consequence, root biomass is already high at the start of the growing season 

and growth is limited, leading to only minor, non-detectable changes in fine 

root biomass over the growing season. However, at the early season 

sampling, we observed in shrub vegetation that many light-colored and 

water-rich B. nana roots, presumably newly-grown roots, were at the 

interface of thawed soil and still-frozen soil, indicating that in the early 

growing season shrubs did grow new roots. Therefore, earlier root growth of 

B. nana seems to be a better explanation.  

 

3.4.2 Vertical rooting patterns  

Our findings confirm that dwarf shrubs root shallower than graminoids in 

tundra ecosystems (Shaver and Billings 1975, Shaver and Cutler 1979, 
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Miller et al. 1982). Our results further show that the shallow rooting pattern 

of shrubs was quite persistent. Even when the active layer was deeper than 

25 cm in the late season in all vegetation types (Table 3.1), there were very 

few shrub roots in this deeper layer and relative biomass of deep roots did 

not increase (Fig. 3.3 and A3.2). Following our earlier explanation that root 

growth of shrubs mainly takes place early in the growing season, the 

persistent shallow root distribution of shrubs is not surprising: as shrubs 

grow new fine roots early in the growing season, when the active, unfrozen 

layer is still shallow, their root growth is confined to the upper thawed soil. 

In contrast, graminoids grow new fine roots later in the growing season and 

as a consequence, can also access deeper soil layers.  

 

3.4.3 The competitive balance between shrubs and graminoids  

Our results show a clear distinction between shrubs and graminoids: shrubs 

grow new roots earlier in the growing season, but this is restricted to the 

upper soil layer, whereas graminoids are able to access deeper soil layers, 

but only later in the growing season. This suggests that the outcome of the 

competitive interactions between graminoids and shrubs in tundra depends 

on the balance between the benefits associated with earlier root growth and 

deeper root distribution, respectively. Climate warming increases ALT 

(Hinkel and Nelson 2003, Burn and Kokelj 2009), which can increase plant 

available nutrients in the deeper soil (Keuper et al. 2012b). The deeper root 

distribution of graminoids would allow them to take advantage over shrubs 

under warmer conditions (Oulehle et al. 2016). In contrast, the earlier root 

growth of shrubs enables them to absorb nutrients released from the frozen 

soil and snowpack in the very early season (Brooks et al. 1998, Weih 1998, 

Sturm et al. 2005b, Weintraub and Schimel 2005), thereby getting an 

advantage over graminoids early in the growing season. Moreover, nutrient 
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availability typically is higher in the top of the soil than deeper in the soil 

(Jobbágy and Jackson 2001, Hobbie and Gough 2002), thus the shallow root 

distribution could also allow shrubs to take an advantage over graminoids. 

The observed shrub expansion in tundra ecosystems in recent decades 

suggests that the ability to grow roots in the top soil early in the growing 

season is more important than the ability to grow roots in deeper soil layers 

later in the growing season. However, if climate warming continues in the 

Arctic, the active layer gets deeper and soil temperature higher, which 

provides benefits for graminoids because of higher nutrient availability 

deeper in the soil. Future research explicitly linking vegetation composition 

and extended growing season and increased ALT is needed to test this 

hypothesis.  

 

3.5 Conclusion 

Our results suggest that root growth of graminoids and dwarf shrubs differs 

both in seasonal timing and in vertical distribution pattern. These patterns 

are remarkably consistent in the three vegetation types we studied. The 

current trend of shrub expansion in tundra suggests that shallow root growth 

early in the growing season is more important for tundra plants than growing 

roots in deeper soil later in the growing season. If further climate warming 

leads to increased nutrient release in deeper soil layers, via increased 

permafrost thawing and nutrient mineralization, graminoids may gain a 

competitive advantage in the future. 
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3.7 Appendices 
 

 
Fig. A3.1 Fine root biomass of graminoids and shrubs in each vegetation type. Error 
bars indicate ± SE. Graminoid fine root biomass increased over season in all three 
vegetation types, but shrub fine roots did not change significantly over season 
 

 

 
Fig. A3.2 Relative fine root biomass (proportion of total fine root biomass) distribution 
of each PFT over the three soil layers in the early and late growing season. Data of 
graminoid roots in shrub vegetation and data of shrub roots in graminoid vegetation were 
excluded as graminoids and shrubs were low in abundance in shrub vegetation and 
graminoid vegetation respectively and had large variation. For graminoid roots relative 
biomass distribution changed significantly over the growing season (P < 0.001 for layer 
× season interaction): it decreased in 1st layer (P = 0.001) while increased in the 3rd (P < 
0.001). For shrub roots the distribution pattern did not change significantly over the 
growing season (P = 0.390 for layer × season interaction) 
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Table A3.1 Analysis of vegetation, season, PFT and layer effects on fine root 
biomass density in the upper two layers using linear mixed model. Block, plot were 
taken as random effects in a nested structure. Data were ln(x+1) transformed 

Source df Sum of  
squares F value P value  

Vegetation  2 12.9 3.8 0.040  * 

Season 1 25.7 15.0 < 0.001  * 

PFT 1 39.8 23.2 < 0.001  * 

Layer 1 4.4 2.5 0.113  

Vegetation × season 2 2.1 0.6 0.547  

Vegetation × PFT 2 125.7 36.7 < 0.001  * 

Season × PFT 1 2.3 1.3 0.252  

Vegetation × layer 2 4.8 1.4 0.248  

Season × layer 1 5.3 3.1 0.080  

PFT × layer 1 17.8 10.4 0.002  * 

Vegetation × season × PFT 2 14.6 4.2 0.016  * 

Vegetation × season × layer 2 1.3 0.4 0.690  

Vegetation × PFT × layer 2 1.7 0.5 0.605  

Season × PFT × layer 1 1.0 0.6 0.455  

Vegetation × season × PFT × layer 2 2.7 0.8 0.456  

 

Table A3.2 Nonparametric analysis of vegetation, PFT and season effects on fine 
root biomass density in the 3rd layer (15 – 30 cm) 

Source df ANOVA-Type 
statistic P value 

 

Vegetation 2.0 10.4 < 0.001  * 

PFT 1.0 39.5 < 0.001  * 

Season  1.0 27.5 < 0.001  * 

Vegetation × PFT 1.8 15.0 < 0.001  * 

Season × PFT 1.0 5.9 0.015  * 

Vegetation × season 1.9 1.2 0.299  

Vegetation × PFT × season 1.6 0.5 0.567  
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Abstract 

Climate warming is faster in the Arctic than the global average. Nutrient 

availability in tundra soil can be increased by climate warming through 

accelerated mineralization in the upper organic layer, while increased 

thawing of permafrost due to climate warming releases nutrients locked up 

in previously frozen soil layers, both of which may initiate vegetation shifts. 

As vegetation plays a key role in ecosystem carbon dynamics, it is important 

to understand the effects of these two processes on tundra vegetation.  

We manipulated soil thawing depth and nutrient availability in a full-

factorial field experiment to investigate their effects on above and 

belowground responses of four plant functional types (grasses, sedges, 

deciduous shrubs and evergreen shrubs). At a Northeast-Siberian tundra site, 

thawing depth was increased by heating cables at ~15 cm depth, whereas 

nutrient availability was increased by slow-release fertilizer at ~5 cm depth. 

This is the first study to our knowledge specifically investigating the effects 

increased thawing depth in tundra ecosystems. 

We found that the four plant functional types responded differently to the 

increased thawing depth and fertilization. Thawing increased the 

aboveground biomass of sedges, the plant functional type with the highest 

deep root proportion in our study, but did not affect biomass of the other 

plant functional types. In contrast, fertilization increased aboveground 

biomass of the two dwarf shrub functional types, both of which had very 

shallow root systems. Fertilization also increased above and belowground 

biomass of grasses. Grasses had the highest plasticity in terms of vertical 

root distribution, as they shifted root distribution in different soil layers in 

response to both soil thawing and fertilization. 

Our results show that increased thawing depth can only benefit deep-rooted 

sedges, while increased nutrient availability in the upper soil layers can 
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benefit shallow-rooted shrubs as well as deep-rooted grasses, with the latter 

shifting root distribution to the shallower soil. Our results suggest that 

grasses have the highest root plasticity, which enables them to be more 

competitive in rapidly changing environmental conditions. We conclude that 

root allocation strategies are key to understanding vegetation responses to 

climate-induced increases in nutrient availability in arctic tundra. 

Keywords: active layer thickness, Arctic tundra, climate warming, 

competition, nutrient availability, permafrost thawing, plant functional types, 

root biomass, vertical root distribution, vegetation composition 
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4.1 Introduction 

Global temperatures have increased by 0.7 °C since the 1900s (IPCC 2013). 

This trend will continue this century with an increase of 1.5 degrees or more, 

particularly in the Arctic (IPCC 2013). Arctic warming has already resulted 

in  large scale thawing of permafrost (Romanovsky et al. 2010), accelerating 

decomposition of organic matter (Aerts 2006), releasing carbon and nutrients 

(Schuur et al. 2009, Belshe et al. 2013). Tundra vegetation is responding by 

increasing aboveground productivity (Verbyla 2008, Hill and Henry 2011, 

Epstein et al. 2012), and shifting species composition (Tape et al. 2006, 

Wookey et al. 2009, Callaghan et al. 2011, Myers-Smith et al. 2011b). Since 

vegetation characteristics can have decisive impacts on greenhouse gas 

emissions (Cahoon et al. 2012, Nauta et al. 2015) and the energy balance of 

the earth surface (Blok et al. 2010, Myers-Smith et al. 2011b), the crucial 

question is whether such shifts in plant species composition will decelerate 

or accelerate Arctic warming. One of the key factors influencing the 

competitive balance between plant species is their capacity to monopolize 

the newly available resources.  

Due to the low temperatures and short growing season, microbial 

decomposition and nutrient mineralization are very slow, making the tundra 

ecosystem highly nutrient-limited (Chapin 1987, Chapin et al. 1995). 

Climate warming can influence nutrient availability in tundra soils along 

different pathways. With climate warming, the depth of active layer which is 

frozen during the winter and thaws in the growing season is prone to 

increase (Hinkel and Nelson 2003, Burn and Kokelj 2009, Park et al. 2016). 

Increased thawing depth can release nutrients that were previously locked up 

in the frozen soil, thus increasing nutrient availability in the deep soil (Frey 

and McClelland 2009, Keuper et al. 2012b). On the other hand, microbial 

activity can be stimulated by climate warming (Mikan et al. 2002). As a 

result, nutrient availability in the shallow soil is expected to increase due to 
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accelerated microbial decomposition and mineralization of organic matter in 

the shallow soil (Aerts 2006, Craine et al. 2010). Fertilization experiments in 

tundra ecosystems have hitherto focused on the effects of increased nutrient 

availability in the top soil layers showing that both shrubs and graminoids, 

particularly grasses, benefit from the increased nutrient availability 

(Dormann and Woodin 2002, Gough and Hobbie 2003, Gough et al. 2012, 

Zamin et al. 2014). However, to our knowledge no study explored the effects 

of increased nutrient availability in deeper soil layers as a result of increased 

thawing depth. 

Since fine roots are the plant parts that absorb soil nutrients, the responses of 

fine root mass will likely determine which species can take advantage of the 

expected increase in nutrient availability. Shallow-rooting dwarf shrubs such 

as Betula nana L. and Vaccinium vitis-idaea L. are likely to monopolize 

nutrients released in the top soil whereas deep-rooting species such as grass 

Calamagrostis holmii Lange and sedge Eriophorum vaginatum L. are likely 

to forage on nutrients at the deeper thawfront (Keuper et al. 2014, Oulehle et 

al. 2016). In addition, plants that have short-lived roots can better adapt the 

placement of their roots to changes in nutrient availability than plants that 

have long-lived roots (Eissenstat et al. 2000), which probably gives them a 

competitive advantage in changing environments. Until now, it remains 

unresolved however to what extent aboveground vegetation responses can be 

traced back to belowground root foraging strategies.  

To improve our understanding of climate warming effects on tundra plants 

and vegetation composition, we investigated the effects of increases in 

permafrost thawing depth and nutrient availability in the shallow soil on 

above and belowground responses of tundra plants. Specifically, our 

hypotheses were: 

1) Increased thawing depth will benefit deep-rooting species such as grasses 
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and sedges, as they can actively forage at the deeper thaw front; 

2) Increased nutrient availability in the shallow soil will benefit shallow-

rooting species such as dwarf shrubs, as they already have a well-established 

root system in the top soil; 

3) Aboveground responses of plant species to increased thawing depth or 

nutrient availability are linked to belowground shifts in vertical rooting 

patterns. 

To test these hypotheses we carried out a field experiment in which the 

thawing depth and nutrient availability was manipulated from 2010 to 2014 

at a Siberian tundra site.  

 

4.2 Materials and methods 

4.2.1 Study site 

We performed our research at the long-term research facility in the Kytalyk 

Nature reserve (70º49’N, 147º29’E) which is 28 km Northwest of the town 

of Chokurdakh (Yakutia, Russian Federation), 150 km south of the Arctic 

Ocean. The mean annual air temperature is −13.4 ºC (1981 – 2010), with a 

mean July temperature of 10.3 ºC. Annual precipitation at the nearest climate 

station (Chokurdakh, WMO station code 21946, 27 km away from the study 

site) is 196 mm (1981 – 2010), of which 76 mm falls in the summer (June – 

August).  

The study area is located in the lowlands of Indigirka River and underlain by 

thick continuous permafrost with a shallow active layer. The circumpolar 

Arctic Vegetation Map (Walker et al., 2005) classifies the vegetation of the 

research area as tussock-sedge tundra, dominated by E. vaginatum and dwarf 

shrubs, with high moss cover (G4). The experiment is located on the top of a 

20 – 30 m elevated ridge that surrounds part of a drained thaw lake. This 
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ridge is probably a remaining Pleistocene river terrace surface (Van der 

Molen et al., 2007). The 200 – 300 m wide ridge is covered by a relatively 

homogeneous moist tussock tundra vegetation with E. vaginatum as the 

dominant graminoid species and abundant dwarf shrubs such as B. nana, 

Salix pulchra Cham., Rhododendron tomentosum Harmaja and V. vitis-idaea. 

Throughout the ridge a moss layer with some lichens is present below the 

vascular plants. On the ridge, frost boils without any vegetation cover are 

sparsely distributed. Soils are classified as Gelisol and consist of an organic 

layer on top of silty clay parent deposits. The organic layer varies in 

thickness from a few cm up to 25 cm. 

 

4.2.2 Experimental setup 

We established 20 plots of 1.5 by 1.5 m in 2010. The plots were clustered in 

5 blocks containing 4 plots each. Plot selection was based on vegetation 

composition: we made sure each plot contained species of 5 plant functional 

types (grasses, sedges, deciduous shrubs, evergreen shrubs and moss or 

lichen). Within each block we randomly assigned 4 treatments, comprising 2 

levels of fertilization: fertilized and unfertilized; and 2 levels of thawing: 

thawing treatment with heating cable, control treatment with cable but 

without heating (Fig. 4.1a). 

The thawing treatment was realized by heating cables buried in the soil and 

connected to solar panels. The heating cables were inserted into the soil at a 

depth of about 15 cm below surface in July 2010. The horizontal spacing 

between the cable lines was 20 cm. The cables were inserted into the soil 

from excavated trenches at two opposing sides of the plots to minimize 

disturbance of root and microbial activity within the plots. The total length 

of the cable for a single plot was 15 m and the total resistance was 15 Ohm. 

In the thawing plots, the heating cables were connected to two parallel 
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connected solar panels of 85 Watt each on July 3, 2011, which is one year 

after the cable installation. No battery was included in the circuit, so the 

solar energy mainly enlarged the natural ground heat flux and allowed for 

diurnal and seasonal variation in solar intensity. The two solar panels had an 

angle of 60º to each other in order to capture sunlight during 20 hours per 

day. The fertilization treatment was realized by inserting slow-release 

fertilizer tablets (Osmocote Exact Tablet 3-4M, Scotts International BV, 

Waardenburg, The Netherlands) into the soil at 5 cm below soil surface in 

early July 2011. The fertilization treatment was repeated in early July 2013. 

Fertilizer was added within a 1.75 × 1.75 m area for each plot, making sure 

plants at the plot edge with roots beyond the plot border also completely 

experience the fertilization treatment. Within the 1.75 × 1.75 m area, 68 

tablets of 5 g fertilizer were inserted in a pattern of 25 cm spacing between 

each pair of neighbouring tablets. We added 5.6 g N m-2 yr-1, 1.4 g P m-2 yr-1 

and 3.7 g K m-2 yr-1, but as we do not know exactly how fast the nutrients 

were released from the slow-release fertilizer tablets, the actual nutrient 

release rates could have been lower. 

 

4.2.3 Measurements 

4.2.3.1 Environmental factors 

The thawing depth and soil moisture were measured 2 – 4 times during the 

growing season from 2010 to 2014 at five points in each plot. Thawing depth 

was measured by inserting a metal stick into the soil until hitting the frozen 

soil. Soil moisture was measured at 10 cm soil depth using a Thetaprobe soil 

moisture sensor (ML3 ThetaKit, Delta-T Devices, UK).  

Soil temperature was measured continuously in each plot at depths of 0, 5, 

15 and 25 cm below the soil surface from 8th August 2010 to 30th July 2014. 

Temperature was recorded automatically every 3 hours using temperature 
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loggers (iButton DS1922L/DS1921G, Maxim Integrated, USA). 

Soil nutrient availability was assessed by measuring soil exchangeable 

nutrient concentrations in each plot at depths of 5 and 25 cm below the soil 

surface using resin bags. Each resin bag contained 5 g ion-exchange resin 

(TMD-8, H+/OH− Form, Type 1, Mixed Bed Resin, 16 – 50 mesh, Avantor, 

USA) in a 5 × 5 cm polypropylene bag with a 100 µm mesh size. The bags 

were first inserted in 2010 and replaced by new ones at the beginning of 

August each year until 2014. Resin bags were extracted overnight in 50 ml 2 

M NaCl in 0.1 M HCl. The extracts were brought to neutral pH by the 

addition of NaOH and analyzed spectrophotometrically for NH4
+, NO3

−, 

PO4
3− and K+ using an auto-analyzer (Skalar, Breda, The Netherlands). 

 

4.2.3.2 Plant abundance 

The abundance of each plant species in each plot was recorded in the 50 × 50 

cm plot center (Fig. 4.1b) in 2010, before installing the heating cables, and in 

2013, at the end of the third growing season of treatments, by taking point 

intercept measurements on a grid of 11 by 11 points spaced 5 cm apart. The 

121 grid points were used to determine species abundances. To determine 

species presence at each point in the grid, a thin rod was lowered from above 

the point to the ground and each plant species it touched on its descent to the 

ground was recorded. A species, e.g. B. nana, could be hit multiple times at 

one point. The total number of hits for each species in a plot is taken as the 

indicator of the abundance of that species in that plot. 

 

4.2.3.3 Biomass  

Aboveground and belowground plant biomass was harvested on 1 – 15 

August 2014. In each plot, two 25 × 25 cm subplots were sampled (Fig. 
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4.1b). In each subplot, aboveground plant parts were clipped flush with the 

moss surface and sorted into different fractions for the four PFTs:  leaves for 

grasses and sedges, leaves and stems for deciduous and evergreen shrubs.  

 

 

 

Fig. 4.1 Diagrams showing the setup of the thawing and control treatments (a) and 
the location of point-quadrat measurements and harvests of above and belowground 
biomass (b). 
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Root biomass was sampled by taking a soil core (8 cm diameter) in the 

center of each subplot. Organic layer thickness was measured for each soil 

core. The soil cores were separated into 4 layers: 0 – 5 cm as the first layer, 5 

– 15 cm as the second layer, 15 – 30 cm as the third layer, and 30 – thawing 

depth as the fourth layer. To take into account the differences in soil volume 

between layers, we used the biomass density (g m-3) when comparing the 

rooting patterns over layers. Belowground biomass was sorted into different 

fractions for the four PFTs: belowground stems (diameter > 5 mm), coarse 

roots (1 mm < diameter < 5 mm) and fine roots (diameter < 1 mm) for 

deciduous and evergreen shrubs; rhizomes (diameter > 1 mm, including stem 

bases of E. vaginatum) and fine roots (diameter < 1 mm) for grasses and 

sedges. Belowground stems of shrubs were easily identified to species as 

they resemble their aboveground parts. Roots that were not attached to the 

belowground stems or rhizomes were identified according to their colour and 

texture (Hobbie and Chapin 1998). Arctagrostis latifolia (R. Br.) Griseb. and 

C. holmii roots are white and smooth, and with a light yellow colour for 

older roots. E. vaginatum roots are also white and smooth, but unbranched, 

which differs from grass roots. Carex bigelowii Torr. ex Schwein. roots are 

tan coloured, with a pubescent texture. The roots deciduous shrubs are 

reddish to brown coloured, with woody structure and usually can be 

recognized by the colonization of ectomycorrhizal fungi. The roots of 

evergreen shrubs are also reddish to brown coloured but much finer than the 

roots of deciduous shrubs. 

All samples were air-dried at the field station before they were transported to 

Spasskaya Pad Scientific Forest Station, Russia (62°14’ N, 129°37’ E) where 

they were dried in an oven at the temperature of 70 ºC for at least 24 hours. 

After the samples were transported to the Netherlands, they were further 

dried in an oven at the temperature of 65 ºC for 72 hours and weighed. 
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4.2.4 Analysis 

We used linear mixed effects models (LMM) with thawing treatment, 

fertilization treatment as fixed factors, block and plot as random effects in a 

nested structure (plot within block) to test for treatment effects on the 

environmental factors, including soil temperature at different depths, 

thawing depth, soil moisture and soil exchangeable nutrients (nitrogen and 

phosphorus). 

We also used the same linear mixed effects models as above to test for 

changes in the abundance of different PFTs from 2010 to 2013 (differences 

in hits between 2010 and 2013) and differences in the aboveground biomass, 

belowground biomass, and fine root biomass of vascular plants in the four 

different treatments. 

To test for differences in the vertical distribution of fine roots of different 

PFTs and treatment effects, we calculated mean root depth of each PFT in 

each treatment: 

mean root depth =  
∑  (𝑏𝑏𝑖𝑖 × 𝐷𝐷𝑖𝑖)

∑𝑏𝑏𝑖𝑖
 

where bi is the biomass of layer i, Di is the depth of the middle of layer i. For 

the fourth layer, the depth was calculated as the middle from 30 cm to the 

depth beyond which no roots were found any more. Then a linear mixed 

effects model same as above was used. To further investigate changes in 

mean root depth, we analysed the proportion of root biomass in each layer 

separately for each PFT, using linear mixed effects models with thawing and 

fertilization as fixed factors, block as random effect. 

The differences in the abundance change, aboveground biomass, 

belowground biomass, and fine root biomass of vascular plants of the whole 

plot community were also tested, using linear mixed effects models with 

thawing and fertilization as fixed factors, block as random effect. Least 
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significant difference (LSD) method was used for post hoc tests when an 

effect was significant in one of the above models. 

Dependent variables were ln transformed when necessary to achieve normal 

distribution and homoscedasticity of errors. Analyses were performed with R 

(version 3.2.1) in RStudio (version 0.98.1091). Linear mixed model analyses 

were made using package lme4 version 1.1-7 (Bates et al. 2014); P values 

were calculated using package lmerTest version 2.0-20 (Kuznetsova et al. 

2014).  

 

4.3 Results  

4.3.1 Environmental factors 

Thawing significantly warmed the deeper soil layers (15 and 25 cm), and 

increased average thawing depth in July by 7 cm (Fig. A4.1). Thawing did 

not affect soil exchangeable nutrient concentrations significantly (Fig. A4.1), 

although the exchangeable phosphorus concentration at 25 cm depth tended 

to be increased by thawing (F1,12 = 3.56, P = 0.083). Fertilization  cooled all 

soil layers by 0.6 – 0.9 °C, reduced thawing depth in July by 4 cm, and 

increased soil exchangeable nutrient concentrations in the shallow soil layer 

(5 cm) four (nitrogen) to five (phosphorus) times (Fig. A4.1). Neither 

thawing nor fertilization affected soil moisture significantly (Fig. A4.1, 

Table A4.1). In the control plots exchangeable nitrogen was higher at 5 cm 

depth than at 25 cm depth (P = 0.028), but exchangeable phosphorus did not 

differ between the two depths (P = 0.732; Fig. A4.1).  

 

4.3.2 Aboveground plant responses  

Thawing increased community plant abundance (F1,12 = 4.9, P = 0.047), 

although each PFT individually did not respond significantly (Table 4.1 and 
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4.2; Fig. A4.2, Table A4,2). Thawing did not affect community aboveground 

biomass (F1,12 = 0.1, P = 0.809; Fig. A4.3) but did significantly increase 

sedge aboveground biomass (Fig. 4.2a; Table 4.1 and 4.2). The other PFTs 

did not respond to the thawing treatment (Table 4.2). In contrast, fertilization 

increased community aboveground biomass by 60% (F1,12 = 15.9, P = 0.002; 

Fig. A4.3). For each PFT, fertilization increased the aboveground biomass 

and/or abundance, except for sedges (Fig. 4.2a, Fig. A4.2; Table 4.2). The 

biomass increase was strongest for grass leaves (Fig. 4.2a). Mosses and 

lichens decreased with fertilization as vascular plants increased (Fig. A4.2).  

 

4.3.3 Belowground plant responses 

Community belowground biomass was about three times as high as 

aboveground biomass (F1,28 = 15.7, P < 0.001; Fig. A4.3). The four PFTs 

differed significantly in belowground biomass, fine root biomass and mean 

root depth (Table 4.1). Sedges had lower total belowground biomass than 

deciduous and evergreen shrubs, while grasses had higher fine root biomass 

than other PFTs (Fig. 4.2b). The mean root depth of different PFTs followed 

the order: grass/sedge > deciduous shrub > evergreen shrub (Fig. 4.3). 

Thawing did not affect belowground biomass and fine root biomass of either 

the community (Fig. A4.3) or individual PFT (Fig. 4.2b; Table 4.1 and 4.2). 

Thawing significantly increased community mean root depth (F1,12 = 5.9, P 

= 0.031), although it did not significantly affect mean root depth of any 

individual PFT (Table 4.2). However, grasses did tend to shift their root 

distribution to deeper soil layers in response to thawing: thawing marginally 

decreased the proportion of grass roots in the second layer and significantly 

increased that in the third layer (Fig. 4.3a; F1,16 = 3.1, P = 0.098; F1,16 = 5.1, 

P = 0.038 respectively). The other PFTs did not show any significant 

responses to thawing in their vertical root distribution (Fig. 4.3a). 
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Fig. 4.2 Aboveground (a) and belowground (b) biomass of each vascular PFT 

separated by tissue types. C, control; T, thawing treatment; F, fertilization treatment; 

TF, combination of thawing and fertilization treatment. Belowground stems and 

rhizomes were included in the coarse root category. Letters above the bars in Fig. 

4.2a represent pairwise statistical differences in total aboveground biomass. Total 

belowground biomass did not show significant pairwise differences among 

treatments while there were overall fertilization effects. 



Chapter 4 
 

 

90 
 

  
T

ab
le

 4
.1

 A
na

ly
si

s 
of

 P
FT

 d
iff

er
en

ce
s i

n 
an

d 
tre

at
m

en
t e

ff
ec

ts
 o

n 
ab

ov
eg

ro
un

d 
bi

om
as

s, 
be

lo
w

gr
ou

nd
 b

io
m

as
s, 

fin
e 

ro
ot

 b
io

m
as

s a
nd

 

m
ea

n 
ro

ot
 d

ep
th

. B
io

m
as

s d
at

a 
w

er
e 

ln
(x

+1
) t

ra
ns

fo
rm

ed
. 

So
ur

ce
 

df
 

A
bu

nd
an

ce
 

ch
an

ge
 

20
10

 –
 2

01
3 

 

 
 

A
bo

ve
gr

ou
nd

 
bi

om
as

s 

 
 

B
el

ow
gr

ou
nd

 
bi

om
as

s 

 
 

Fi
ne

 ro
ot

 
bi

om
as

s 

 
 

M
ea

n 
ro

ot
 

de
pt

h 

 

F 
P 

 
 

F 
P 

 
 

F 
P 

 
 

F 
P 

 
 

F 
P 

 

Th
aw

in
g 

1 
6.

3 
0.

02
8 

 * 
 

6.
6 

0.
01

2 
* 

 
0.

9 
0.

34
5 

 
 

0.
6 

0.
52

9 
 

 
2.

2 
0.

14
6 

 

Fe
rti

liz
at

io
n 

1 
11

.0
 

0.
00

6 
 * 

 
21

.5
 

< 
0.

00
1 

 * 
 

< 
0.

1 
0.

88
3 

 
 

3.
3 

0.
07

2 
. 

 
5.

3 
0.

02
5 

 * 

PF
T 

3 
8.

5 
< 

0.
00

1 
 * 

 
67

.5
 

< 
0.

00
1 

 * 
 

4.
0 

0.
01

2 
* 

 
11

.0
 

< 
0.

00
1 

* 
 

98
.4

 
< 

0.
00

1 
 * 

Th
aw

in
g 

× 
fe

rti
liz

at
io

n 
1 

0.
1 

0.
76

9 
 

 
0.

3 
0.

60
3 

 
 

< 
0.

1 
0.

90
0 

 
 

0.
9 

0.
39

3 
 

 
1.

8 
0.

18
8 

 

Th
aw

in
g 

× 
PF

T 
3 

0.
3 

0.
82

8 
 

 
4.

5 
0.

00
7 

* 
 

0.
2 

0.
86

2 
 

 
0.

5 
0.

82
6 

 
 

0.
4 

0.
72

3 
 

Fe
rti

liz
at

io
n 

× 
PF

T 
3 

0.
7 

0.
52

8 
 

 
10

.6
 

< 
0.

00
1 

 * 
 

0.
8 

0.
51

0 
 

 
2.

5 
0.

06
8 

. 
 

3.
1 

0.
03

5 
 * 

Th
aw

in
g 

× 
fe

rti
liz

at
io

n 
× 

PF
T 

3 
3.

0 
0.

04
0 

* 
 

1.
0 

0.
38

9 
 

 
0.

4 
0.

72
2 

 
 

0.
4 

0.
88

1 
 

 
0.

4 
0.

78
2 

 

· 0
.0

5 
< 

P 
< 

0.
10

; *
 P

 <
 0

.0
5 



Thawing and fertilization experiment 
 
 

91 
 

  
T

ab
le

 4
.2

 A
na

ly
si

s 
of

 t
re

at
m

en
t 

ef
fe

ct
s 

on
 a

bu
nd

an
ce

 c
ha

ng
e,

 a
bo

ve
gr

ou
nd

 b
io

m
as

s, 
be

lo
w

gr
ou

nd
 b

io
m

as
s, 

fin
e 

ro
ot

 b
io

m
as

s 
an

d 

m
ea

n 
ro

ot
 d

ep
th

 o
f e

ac
h 

fu
nc

tio
na

l t
yp

e 
se

pa
ra

te
ly

. B
io

m
as

s d
at

a 
w

er
e 

ln
(x

+1
) t

ra
ns

fo
rm

ed
. 

PF
T 

So
ur

ce
 

df
 

A
bu

nd
an

ce
 

ch
an

ge
 

20
10

 –
 2

01
3 

 
 

A
bo

ve
gr

ou
nd

 
bi

om
as

s 
 

 
B

el
ow

gr
ou

nd
 

bi
om

as
s 

 
 

Fi
ne

 ro
ot

 
bi

om
as

s 
 

M
ea

n 
ro

ot
 

de
pt

h 
 

F 
P 

 
 

F 
P 

 
 

F 
P 

 
 

F 
P 

 
 

F 
P 

 

G
ra

ss
 

Th
aw

in
g 

1 
2.

8 
0.

11
9  

 
0.

5 
0.

47
7  

0.
0 

0.
88

8  
 

< 
0.

1 
0.

95
8  

 
2.

9 
0.

10
7  

Fe
rti

liz
at

io
n 

1 
13

.7
 

0.
00

3 *
 

 
46

.1
 <

 0
.0

01
 * 

4.
9 

0.
04

6 *
 

 
5.

2 
0.

04
2 *

 
 

11
.4

 
0.

00
4 *

 
Th

aw
in

g 
× 

 
Fe

rti
liz

at
io

n 
1 

0.
1 

0.
71

2  
 

< 
0.

1 
0.

96
5  

0.
0 

0.
88

0  
 

0.
2 

0.
67

0  
 

2.
1 

0.
16

9  

Se
dg

e 

Th
aw

in
g 

1 
3.

8 
0.

07
4 .

 
 

16
.3

 
0.

00
2 *

 
0.

6 
0.

45
6  

 
0.

7 
0.

42
9  

 
0.

07
 

0.
79

9  

Fe
rti

liz
at

io
n 

1 
0.

7 
0.

41
0  

 
1.

5 
0.

23
9  

0.
1 

0.
80

2  
 

0.
2 

0.
69

9  
 

0.
6 

0.
43

7  
Th

aw
in

g 
× 

 
Fe

rti
liz

at
io

n 
1 

4.
0 

0.
06

9 .
 

 
2.

3 
0.

15
2  

0.
1 

0.
71

2  
 

0.
9 

0.
35

9  
 

0.
4 

0.
55

0  

D
ec

id
uo

us
 

sh
ru

b 

Th
aw

in
g 

1 
1.

6 
0.

23
5  

 
0.

4 
0.

53
3  

0.
7 

0.
41

0  
 

< 
0.

1 
0.

94
2  

 
1.

5 
0.

25
0  

Fe
rti

liz
at

io
n 

1 
8.

7 
0.

01
2 *

 
 

6.
8 

0.
01

9 *
 

0.
8 

0.
38

5  
 

1.
2 

0.
29

2  
 

2.
3 

0.
15

7  
Th

aw
in

g 
× 

 
Fe

rti
liz

at
io

n 
1 

0.
1 

0.
79

1  
 

0.
6 

0.
45

2  
 

1.
4 

0.
25

4  
 

0.
6 

0.
45

8  
 

0.
02

 
0.

87
2  

Ev
er

gr
ee

n 
sh

ru
b 

Th
aw

in
g 

1 
1.

5 
0.

24
6  

 
0.

6 
0.

44
7  

0.
1 

0.
76

1  
 

< 
0.

1 
0.

91
4  

 
0.

04
 

0.
83

7  

Fe
rti

liz
at

io
n 

1 
2.

2 
0.

16
2  

 
4.

8 
0.

04
9 *

 
0.

5 
0.

50
4  

 
5.

2 
0.

04
1 *

 
 

9.
7 

0.
00

7 *
 

Th
aw

in
g 

× 
 

Fe
rti

liz
at

io
n 

1 
2.

3 
0.

15
2  

 
0.

1 
0.

76
7  

0.
2 

0.
68

0  
 

0.
6 

0.
47

1  
 

0.
3 

0.
57

8  

· 0
.0

5 
< 

P 
< 

0.
10

; *
 P

 <
 0

.0
5 



Chapter 4 
 

 

92 
 

 

 

  

Fi
g.

 4
.3

 P
ro

po
rti

on
al

 d
is

tri
bu

tio
n 

of
 fi

ne
 ro

ot
 b

io
m

as
s 

ov
er

 th
e 

fo
ur

 s
oi

l l
ay

er
s 

fo
r e

ac
h 

PF
T 

in
 a

) t
he

 th
aw

ed
 a

nd
 u

nt
ha

w
ed

 tr
ea

tm
en

ts
 

an
d 

b)
 t

he
 u

nf
er

til
iz

ed
 a

nd
 f

er
til

iz
ed

 t
re

at
m

en
ts

. 
Th

aw
in

g 
ef

fe
ct

s 
an

d 
fe

rti
liz

at
io

n 
ef

fe
ct

s 
ar

e 
ill

us
tra

te
d 

se
pa

ra
te

ly
 a

s 
th

er
e 

is
 n

o 
si

gn
ifi

ca
nt

 e
ff

ec
t o

f t
he

 in
te

ra
ct

io
n 

be
tw

ee
n 

th
e 

tw
o 

tre
at

m
en

ts
 o

n 
th

e 
pr

op
or

tio
na

l b
io

m
as

s 
di

st
rib

ut
io

n.
 U

nt
ha

w
ed

 tr
ea

tm
en

ts
 in

cl
ud

e 
co

nt
ro

l 
tre

at
m

en
t 

an
d 

fe
rti

liz
at

io
n 

tre
at

m
en

t, 
th

aw
ed

 t
re

at
m

en
ts

 i
nc

lu
de

 t
ha

w
in

g 
tre

at
m

en
t 

an
d 

th
aw

in
g×

fe
rti

liz
at

io
n 

tre
at

m
en

t; 
un

fe
rti

liz
ed

 
tre

at
m

en
ts

 
in

cl
ud

e 
co

nt
ro

l 
tre

at
m

en
t 

an
d 

th
aw

in
g 

tre
at

m
en

t, 
fe

rti
liz

ed
 

tre
at

m
en

ts
 

in
cl

ud
e 

fe
rti

liz
at

io
n 

an
d 

th
aw

in
g×

fe
rti

liz
at

io
n 

tre
at

m
en

t. 
Er

ro
r b

ar
s r

ep
re

se
nt

 ±
 S

E 
(n

 =
 1

0 
pl

ot
s)

. A
st

er
is

ks
 in

di
ca

te
 si

gn
ifi

ca
nt

 d
iff

er
en

ce
s. 



Thawing and fertilization experiment 
 
 

93 
 

Fertilization did not affect belowground biomass and mean root depth at the 

community level, but did affect them at PFT level: fertilization significantly 

increased fine root biomass of grasses but decreased that of evergreen shrubs 

(Table 4.2). Fertilization also decreased the mean root depth of grasses and 

evergreen shrubs by 4 and 1.5 cm respectively (Table 4.2). When zooming in 

to specific layers, grasses increased their root proportion in the first layer and 

decreased that in the third layer (Fig. 4.3b; F1,12 = 16.0, P = 0.002; F1,16 = 

10.3, P = 0.005 respectively), while evergreen shrubs increased their root 

proportion in the first layer and decreased that in the second layer (Fig. 4.3b; 

F1,16 = 9.7, P = 0.007). 

 

4.4 Discussion 

Our results show that aboveground responses of tundra vegetation to 

thawing and fertilization depend on functional type and are related to their 

vertical root distribution. Increased thawing depth benefited the deep-rooted 

sedges in their aboveground biomass, and tended to increase the root 

distribution of grasses in deeper soil. Fertilization promoted aboveground 

biomass of the shallow-rooted dwarf shrubs and the flexible-rooted grasses. 

Overall, our results suggest that deep-rooted sedges may benefit from 

increased thawing depth and shallow-rooted species can benefit from 

increased nutrient contents in the upper soil. The competitive relationship 

between the two rooting strategies will depend on the balance between the 

nutrient changes in the shallow and deep soil, while the flexible-rooted 

grasses may benefit in rapidly changing conditions.  

 

4.4.1 Environmental changes caused by the treatments  

Thawing depth was increased without influencing soil temperatures in the 



Chapter 4 
 

 

94 
 

upper organic soil layer, enabling us to examine the effects of increased 

thawing depth without the confounding effects of shallow soil environmental 

changes for the first time in tundra studies. Thawing depth was also 

increased in previous field experiments using either open-top chamber (OTC) 

to increase air and soil temperatures or snow-fences to increase snow depth 

in the experimental plots (e.g., Wahren et al. 2005, Björk et al. 2007, Natali 

et al. 2012, Zamin et al. 2014). OTC treatments usually only increased the 

air temperature in the chamber and did not influence thawing depth much or 

not at all (Sullivan and Welker 2005, Natali et al. 2012). Snow fence 

treatments have opposing effects on thawing depth depending on the soil 

thermal conditions and snowmelt time (Hinkel and Hurd 2006, Leffler et al. 

2016), also it adds a thicker protective layer against frost damage in winter, 

which benefits taller plants and increases spring water flow (Wahren et al. 

2005, Wipf 2010), making it difficult to isolate soil thawing effects on 

vegetation. 

In our study, thawing did not influence nutrient availability significantly. 

Probably the nutrient content of the newly thawed mineral soil layers was 

rather small, and although the average soil temperature in the deeper layers 

was increased by 0.7 degree, they were still low compared to the 

temperatures of the shallow soil, thereby limiting mineralization of soil 

organic matter.  

In contrast to the thawing treatment, fertilization decreased soil temperature 

and thawing depth, probably through increased shading by vascular plants  

(Chapin et al. 1995), as suggested by a significant correlation between total 

aboveground biomass and average June – July soil temperature of all depths 

(P = 0.037, R2 = 0.29, n = 15 plots with temperature records). This shading 

effect on thawing depth illustrates a negative feedback between plant 

productivity and soil temperature, which can mitigate changes resulting from 

climate warming.  
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4.4.2 Plant responses in biomass 

Soil thawing had minor effects on plant biomass in our experiment, which 

might be due to the fact that nutrient availability in the soil was not 

influenced much by the thawing treatment, as nutrient availability is an 

important limiting factor for plant growth in tundra ecosystems (Chapin et al. 

1995, Chapin et al. 1996). However, the deep-rooted sedges, which had the 

highest root proportion beyond 15 cm (F1,18 = 4.5, P = 0.048),  did benefit a 

little from the thawing treatment. As the phosphorus concentration in the 

deep soil showed a marginally significant increase, it suggests that sedges 

might have profited from the slightly more available nutrients deeper in the 

soil. Thawing may also have mitigated the competition between sedges and 

other plants in the surface soil layer, as suggested by the fact that in the 

fertilization treatment sedge aboveground biomass was significantly lower 

than in other treatments, while thawing enabled sedges to have more 

biomass in fertilized plots. 

In our study, the response to fertilization was strongest in grasses and 

deciduous shrubs, with evergreen shrubs taking a third position. Sedges did 

not respond to fertilization, which might be due to the intensified 

competition in the shallow soil where most roots of the other PFTs were. 

Also in other studies grasses were very responsive to fertilization (Dormann 

and Woodin 2002), as well as deciduous shrubs (Shaver and Chapin 1986, 

Gough and Hobbie 2003). However, responses of sedges and evergreen 

shrubs to fertilization were quite mixed in previous studies. Positive, 

negative, and neutral responses were observed in different studies/sites 

(Shaver and Chapin 1986, Grellmann 2002, Gough et al. 2012, Zamin et al. 

2014), which suggests that the limiting factor for the growth of sedges and 

evergreen shrubs differs from site to site, such as nutrient, soil moisture, 

and/or snow depth in winter (Shaver and Chapin 1986). It is well known that 

increased nutrient availability results in reduced plant root:shoot ratio 
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(Brouwer 1962b, Chapin 1980), which is also the case in our experiment 

(Table A4.3).  

We also found that fertilization effects on fine root biomass of grasses and 

evergreen shrubs were opposite: fertilization increased fine root biomass of 

grasses while it decreased that of evergreen shrubs. The increases in fine root 

biomass of grasses can help grasses to absorb more nutrients and thus 

increase their aboveground biomass. However, evergreen shrubs also 

increased their aboveground biomass in response to fertilization despite the 

decreases in fine root biomass. This discrepancy might be explained by the 

fact that the evergreen shrub species in our plots can be colonized by ericoid 

mycorrhizal fungi which form mutualistic symbionts with and provide 

nutrients to their host plants (Iversen et al. 2015). Clemmensen et al. (2006) 

showed that the abundance of ectomycorrhizal fungi at a heath tundra site 

was increased by fertilization while fine root biomass was not affected. We 

observed that deciduous shrubs had more ectomycorrhizal roots in 

fertilization plots, although we did not quantify the colonization rates. 

Therefore we assume that in our study both evergreen and deciduous dwarf 

shrubs responded to fertilization through increased mycorrhizal symbiosis 

instead of root growth itself.  

 

4.4.3 Vertical root distribution  

To our knowledge this study is the first to show changes in vertical root 

distribution in response to environmental changes in tundra ecosystems. 

Thawing increased community mean root depth, suggesting that with climate 

warming and permafrost thawing, tundra vegetation can exploit the 

previously frozen soil and thus affect the carbon dynamics there. Although 

each PFT individually did not show significant response to thawing in mean 

root depth, grasses did show a trend of increasing deep root proportion, 
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indicating that when permafrost thaws and more nutrients are available in the 

deeper soil, grasses have the potential to grow roots deeper, where dwarf 

shrubs have hardly any roots.  

Fertilization shifted root distribution of grasses and evergreen shrubs to 

shallower soil layers. However, the shifts were caused by opposite changes 

in root biomass of the two plant functional types: root biomass density of 

grasses increased in the upper 15 cm (Fig. A4.4; F1,16 = 14.4, P = 0.002; F1,16 

= 3.8, P = 0.07; for the 0 – 5 cm and 5 – 15 cm respectively), while root 

biomass density of evergreen shrubs decreased in the 5 – 15 cm layer (Fig. 

A4.4; F1,16 = 6.2, P = 0.024), suggesting competitive advantage for the 

grasses over the evergreen shrubs. The shift in rooting pattern of grasses 

could enable them to make better use of available nutrients in the soil 

probably explains their strong increase in abundance and aboveground 

biomass due to fertilization, whereas the fine roots of evergreen shrubs 

might have been driven out of the 5 – 15 cm layer by the grass roots, where 

nutrient availability was probably the highest as the fertilizer tablets were 

inserted into the soil at ca. 5 cm depth. The shift of root distribution of 

grasses towards the depth of newly available nutrients, both in the 

fertilization and thawing treatment, suggests their high plasticity for reacting 

quickly to changed nutrient conditions. 

 

4.4.4 Implication for plant competitive relationships in the warmer future 

Our results suggest that responses of tundra vegetation to climate warming 

will depend on the balance between thawing depth and nutrient availability 

in the shallow soil. For example, the top soil layers are where fresh litter is 

deposited and the temperatures are more influenced by the increases of air 

temperature (Jobbágy and Jackson 2000, Jobbágy and Jackson 2001, 

Tarnocai et al. 2009), which means that the decomposition in the top soil is 
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likely to be accelerated more than in the deeper soil. In this case, 

mineralization of soil organic matter increases more in the top soil than in 

the deeper soil with climate warming, and thus dwarf shrubs will gain more 

advantages through their shallow roots. However, warming can also dry up 

the top soil (Hinzman et al. 2005, Smith et al. 2005), thereby limiting 

nutrient mineralization rates in the top layer (Aerts 2006, Hicks Pries et al. 

2013), decreasing the advantage of the shallow-rooted dwarf shrubs. Instead, 

the deep-rooted sedges and/or the plastic grasses, can ‘escape’ the dried-out 

top soil and forage the thaw front instead (Keuper et al. 2012b, Oulehle et al. 

2016), perhaps even leading to graminoid dominance.  

Another study found that A. latifolia, which was the dominant grass species 

in our study, responded rapidly to disturbances and changing soil conditions 

(Jorgenson et al. 2015). Our results suggest that grasses have the highest root 

plasticity among the four PFTs in terms of vertical root distribution, as they 

actively responded to both thawing and fertilization. This plasticity enable 

grasses to better deal with the changes in both deep and shallow nutrients as 

consequences of climate warming in tundra ecosystems, and may give 

grasses advantages over other plants if climate warming results in more 

erratic nutrient distributions in the future.  

 

4.5 Conclusions 

We show that increased thawing depth had modest effects, and only affected 

aboveground biomass of sedges which had the deepest root distribution, 

while fertilization strongly increased aboveground biomass of the shallow-

rooted shrubs as well as grasses, which were more plastic than other plant 

functional types in terms of vertical root distribution. Increased thawing 

depth and increased nutrient availability in the upper soil have different 

effects on plants that differ in rooting depths and plasticity, which might 
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have important consequences for further successional trajectories. The high 

root plasticity of grasses enables them to gain advantage over dwarf shrubs 

and sedges in the competition for soil nutrients if climate warming leads to 

more erratic environmental conditions.  

 

4.6 Acknowledgement 

We thank staff of IBPC, Yakutsk, and staff of the Regional Inspection of 

Nature Protection of Allaikhovsky Region, Chokurdakh, for logistic support 

and assistance. We thank Pieter Hazenberg, Daan Blok, Sergey Karsanaev, 

Ko van Huissteden and Roman Petrov for assistance on setting up the 

experiment. We acknowledge financial support from China Scholarship 

Council (CSC, No.201206040062), The Netherlands Organization for 

Scientific Research (NWO-ALW, VIDI grant 864.09.014), and the European 

Union Seventh Framework Programme [FP7/2007-2013] under grant 

agreement n° 262693 [INTERACT]. 

  



Chapter 4 
 

 

100 
 

4.7 Appendices 

 
Fig. A4.1 Treatment effects on a) June – July soil temperature at four depths, b) 
average active layer thickness (thawing depth) in July, c) volumetric soil moisture 
and d) soil exchangeable N and P in 2014. C, control; T, thawing treatment; F, 
fertilization treatment; TF, combination of thawing and fertilization treatment. Error 
bars represent ± SE (n = 5). Fertilization effect on 0 cm temperature was marginally 
significant (P = 0.088). Soil moisture was higher in control treatment than in other 
treatments, but this difference existed already at the beginning of the experiment 
(Table A4.1). When considering initial differences, treatments did not significantly 
affect soil moisture. 
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Fig. A4.2 Changes in abundances from 2010 (pre-treatment year) to 2013 of 

different PFTs. C, control; T, thawing treatment; F, fertilization treatment; TF, 

combination of thawing and fertilization treatment. Error bars represent ± SE (n = 5). 

Letters above the bars represent pairwise statistical differences. There were no 

significant differences among the treatments in the abundances of the plant 

functional types in 2010. Abundance changes of lichen and moss were analyzed 

separately from the four vascular PFTs which were analyzed as mentioned in the 

Materals and methods. 
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Fig. A4.3 Aboveground and belowground plant community biomass separated by 

tissue types. Belowground stems and rhizomes are included in the coarse root 

category. C, control; T, thawing treatment; F, fertilization treatment; TF, 

combination of thawing and fertilization treatment. Error bars represent ± SE (n = 5). 

Letters above the bars represent pairwise statistical differences. Patterns resembled 

between total aboveground biomass and leaf biomass, total belowground biomass 

and fine root biomass. 
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Table A4.1 Environmental factors in each treatment. Soil moisture in 2010 in 

unfertilized-unthawed treatment was already higher than that in other treatments. 

Root growing degree days is the number of days during 10 August 2013 – 29 July 

2014 when daily average temperature was above zero. Values show mean ± SE. 

  Unthawed  Thawed Treatment effects 

2010 
ALT (cm) 

Unfertilized 43 ± 2 40 ± 3 Thawing  ns 
Fertilization ns 

Thawing×fertilization ns Fertilized 42 ± 2 41 ± 3 

Organic 
layer 

thickness 
(cm) 

Unfertilized 12 ± 1 10 ± 1 Thawing ns 
Fertilization ns 

Thawing×fertilization ns Fertilized 13 ± 2 13 ± 2 

2010 
Soil 

moisture  
(% volume) 

Unfertilized 26 ± 3.1 20 ± 1.2 Thawing  ns 
Fertilization ns 

Thawing×fertilization . Fertilized 20 ± 0.6 22 ± 1.4 

 Shallow 
inorganic K 
(mg g-1resin) 

Unfertilized 0.7 ± 0.2 1.0 ± 0.6 Thawing ns 
Fertilization * 

Thawing×fertilization ns Fertilized 1.6 ± 0.4 3.2 ± 1.0 

Deep  
inorganic K 
(mg g-1resin) 

Unfertilized 0.3 ± 0.1 0.3 ± 0.1 Thawing ns 
Fertilization ns 

Thawing×fertilization ns Fertilized 0.4 ± 0.1 0.6 ± 0.3 

0 cm 
growing 

degree days  
(> 0 °C) 

Unfertilized 98 ± 1 96 ± 2 Thawing ns 
Fertilization * 

Thawing×fertilization ns Fertilized 95 ± 1 95 ± 1 

5 cm 
growing 

degree days  
(> 0 °C) 

Unfertilized 93 ± 3 102 ± 6 Thawing * 
Fertilization * 

Thawing×fertilization ns Fertilized 84 ± 0.3 94 ± 6 

15 cm 
growing 

degree days  
(> 0 °C) 

Unfertilized 82 ± 3 99 ± 1 Thawing * 
Fertilization ns 

Thawing×fertilization ns Fertilized 81 ± 4 99 ± 1 

25 cm 
growing 

degree days  
(> 0 °C) 

Unfertilized 70 ± 5 105 ± 5 Thawing * 
Fertilization ns 

Thawing×fertilization ns Fertilized 70 ± 8 95 ± 5 
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Table A4.2 Abundance (number of hits in point-quadrat) of each PFT in 2010 and 

2013. Values show mean ± SE.   

PFT Year C T F TF 

Grass 
2010 16 ± 9 5 ± 2 7 ± 3 5 ± 2 
2013 13 ± 7 11 ± 4 26 ± 12 38 ± 12 

Sedge 
2010 5 ± 3 12 ± 4 12 ± 2 14 ± 3 
2013 23 ± 8 30 ± 10 20 ± 7 57 ± 20 

Deciduous 
shrub 

2010 34 ± 9 30 ± 7 31 ± 6 29 ± 6 
2013 21 ± 5 22 ± 7 33 ± 6 39 ± 6 

Evergreen 
shrub 

2010 86 ± 18 63 ± 9 70 ± 9 66 ± 5 
2013 63 ± 10 69 ± 4 79 ± 10 72 ± 11 

Lichen  
2010 42 ± 11 40 ± 10 32 ± 9 31 ± 6 
2013 37 ± 14 26 ± 12 30 ± 10 13 ± 3 

Moss  
2010 49 ± 5 60 ± 11 56 ± 11 59 ± 5 
2013 52 ± 10 33 ± 9 49 ± 8 28 ± 11 

 

 

Table A4.3 Analysis of treatment effects on root:shoot ratios. Data were ln 

transformed. 

Source df 
Belowground : 
aboveground 

  Fine root : leaf  

F value P value   F value P value  

Thawing 1 < 0.1 0.958   1.4 0.242  

Fertilization 1 10.3 0.002 *  11.0 0.001  * 

PFT 3 10.9 < 0.001 *  9.6 < 0.001  * 

Thawing × fertilization 1 0.8 0.365   < 0.1 0.961  

Thawing × PFT 3 0.4 0.736   0.4 0.720  

Fertilization × PFT 3 1.5 0.218   3.2 0.030  * 
Thawing × fertilization 
× PFT 3 0.5 0.697   0.3 0.817  
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Table A4.4 Treatment effects on fine root biomass density of each functional type in 

each layer. For deciduous and evergreen shrubs only the upper two layers were 

included in the analysis since shrub roots were very rare in the third layers and no 

shrub roots were found in the fourth layer. Data were ln transformed. 

PFT Source df F value P value 

Grass 

Thawing 1 0.6 0.437 
Fertilization 1 14.8 0.002 * 
Layer 3 20.4 < 0.001 * 
Thawing × fertilization 1 2.3 0.155 
Thawing × layer 3 1.6 0.206 
Fertilization × layer 3 9.3 < 0.001 * 
Thawing × fertilization × layer 3 2.5 0.071 · 

Sedge 

Thawing 1 1.7 0.221 
Fertilization 1 0.5 0.512 
Layer 3 5.0 0.004 * 
Thawing × fertilization 1 2.9 0.116 
Thawing × layer 3 0.3 0.818 
Fertilization × layer 3 0.8 0.487 
Thawing × fertilization × layer 3 3.2 0.033 * 

Deciduous 
shrub 

Thawing 1 0.1 0.763 
Fertilization 1 0.9 0.358 
Layer 2 8.5 0.010 * 
Thawing × fertilization 1  < 0.1 0.874 
Thawing × layer 2 0.6 0.438 
Fertilization × layer 2 0.2 0.652 
Thawing × fertilization × layer 2 < 0.1 0.989 

Evergreen 
shrub 

Thawing 1 < 0.1 0.893 
Fertilization 1 6.0 0.026 * 
Layer 2 31.4 < 0.001 * 
Thawing × fertilization 1 0.1 0.716 
Thawing × layer 2 < 0.1 0.896 
Fertilization × layer 2 5.9 0.027 * 
Thawing × fertilization × layer 2 < 0.1 0.848 

· 0.05 < P < 0.10; * P < 0.05  
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Abstract 

Litter decomposition is an important component of ecosystem carbon 

dynamics. With climate warming, decomposition often accelerates in tundra 

ecosystems. However, the observed shrub expansion in tundra can also 

affect litter decomposition through changes in litter quality which is 

associated with vegetation composition. Most studies so far have mainly 

focused on aboveground litter input. In tundra ecosystems, however, roots 

account for a major part of plant biomass and, consequently, root litter input 

may actually be larger than leaf litter input. Carbon sequestration in tundra 

soils depends on the decomposability of root litter. However, in contrast to 

leaf litter decomposition, root decomposition generally is understudied.  

In order to increase our understanding of root decomposition in the Arctic, as 

well as the potential consequences of large-scale vegetation shifts, we 

performed a litter transplant experiment in which we measured 

decomposition rates of leaf and root litter of the two dominant plant 

functional types (shrub and graminoid) in three vegetation types in a 

northeastern Siberian tundra.  

Our results show that root decomposition can be different from leaf 

decomposition. While the mass loss of leaf litter did not differ between the 

two plant functional types, the decay of shrub roots was much slower than 

that of living graminoid roots. We found evidence for home-field advantage 

effects when we compared decomposition rates in the different vegetation 

types. The observed differences in mass loss rate among the litter types 

could to a great extent be attributed to differences in phosphorus 

concentration, indicating that phosphorus limits microbial activity in this 

tundra site.  

The low decomposition rate of shrub root litter compared to graminoid root 

litter suggests that soil carbon sequestration is larger in shrub vegetation than 
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in graminoid vegetation. However, decomposition of graminoid root litter 

may be limited by cold soil temperatures, as graminoid roots are located 

closer to the permafrost than shrub roots. More information on litter input 

rates and direct effects of climate change on decomposition rates are needed 

to accurately predict the effects of climate change on carbon dynamics in 

tundra ecosystems. 

Keywords: Arctic tundra, mass loss, deciduous shrub, graminoid, home-

field advantage; litter quality 
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5.1 Introduction  

The Arctic soils are an important carbon reservoir, as half of the terrestrial 

belowground organic carbon pool is sequestered in the northern circumpolar 

soil (Tarnocai et al. 2009), which is two times as large as the global 

atmospheric carbon pool (Houghton 2007). One of the key processes in the 

global carbon cycle is the decomposition of organic plant litter (Bonan et al. 

2013, Wieder et al. 2013). It was estimated that the decomposition of plant 

litter accounts for half of the terrestrial carbon release into the atmosphere, 

and that 4 Pg carbon originating from plant litter is stored in the soil per year 

(Houghton 2007). Therefore, changes in decomposition rates will greatly 

affect the soil carbon stocks of the Arctic ecosystems.  

Important abiotic factors controlling decomposition rates include soil 

moisture, temperature and nutrient availability (Swift et al. 1979). In the 

Arctic, temperature arguably is the most important driver of decomposition 

(Hobbie 1996, Robinson 2002), as the soil is frozen for most of the year, 

preventing decomposition. However, due to climate change, Arctic 

temperature has already increased by about 1 ºC in the last century and is 

predicted to further increase with 2 – 8 ºC this century (Jones et al. 2012, 

IPCC 2013). As a result, Arctic tundra soils will be warmer, permafrost will 

thaw faster and decomposition of organic carbon will be accelerated 

(Davidson and Janssens 2006, Cornelissen et al. 2007, Schuur et al. 2009). 

Ultimately, the Arctic tundra may shift from a net carbon sink to a net 

carbon source (Belshe et al. 2013, Webb et al. 2016).  

In addition to abiotic factors, litter quality is an important driver of 

decomposition (Cornwell et al. 2008). In general, plant litter with a high 

nitrogen and low lignin content decays faster than litter with low nutrient 

and high lignin content (Zhang et al. 2008, Freschet et al. 2012). In most 

studies, nitrogen appears to be the most important limiting nutrient, but 
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phosphorus content has also been found to be important and positively 

correlated to decomposability (Enriquez et al. 1993, Cornwell et al. 2008). 

Litter quality can differ substantially between plant species within the same 

ecosystem. In tundra, the main plant functional types (PFTs) are dwarf shrub 

and graminoid. These two PFTs may differ in nutrient concentrations of their 

litter and consequently in decomposition rates (Berendse et al. 1989, Hobbie 

1996, Aerts 2006). 

Decomposition rates may also differ between different tissues. For example, 

root litter generally decays slower than leaf litter (Thormann et al. 2001, 

Fujii and Takeda 2010, Birouste et al. 2011, Ma et al. 2016). In Arctic tundra, 

up to 70% of plant biomass is allocated belowground (Poorter et al. 2012). 

Although there is little knowledge of biomass turnover rates of these tissues 

in tundra ecosystems, the high root biomass suggests that root litter is a 

major source of carbon input in this ecosystem. Consequently, root litter 

decomposition may be an important component of the carbon dynamics. 

However, detailed information about differences in root litter decomposition 

rates among species or PFTs in the field is scarce. Bryant et al. (1998) 

investigated leaf and root litter decomposition in an alpine tundra and found 

that root litter was decomposed slower than leaf litter, but they did not link 

this to PFTs. Another study found that leaf and root litter of two graminoid 

species were decomposed faster than those of three shrub species, but this 

experiment was performed in microcosms under controlled conditions 

(Hobbie 1996). Detailed knowledge of decomposition rates of leaf and root 

litter of shrubs and graminoids in Siberian tundra is lacking.  

Understanding the differences in decomposition rates between PFTs in the 

Arctic is important because evidence is accumulating that climate warming 

affects the distribution and abundance of these PFTs (Tape et al. 2006, Hill 

and Henry 2011, Elmendorf et al. 2012). Shrub expansion has been observed 

across the tundra biome (Tape et al. 2006, Wookey et al. 2009, Callaghan et 
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al. 2011, Myers-Smith et al. 2011a, Myers-Smith et al. 2011b). These 

changes in plant species composition will likely lead to differences in the 

quantity and quality of litter input to the soil, which may affect 

decomposition rates and thus carbon dynamics (Berendse et al. 1987, 

Berendse et al. 1989). 

Moreover, there are feedbacks among vegetation type and decomposition 

rates (Ward et al. 2015). Decomposition of plant litter can be up to 70% 

faster in the species’ own habitat compared to a different environment, a 

phenomenon referred to as “home-field advantage” (Gholz et al. 2000, 

Strickland et al. 2009, Veen et al. 2015). Home-field advantage effects on 

decomposition have been observed worldwide (Ayres et al. 2009, Veen et al. 

2015), but it is not known whether such effects also exist in tundra 

ecosystems. 

Here, we determined the decomposition rates of leaf and root litter for the 

two dominant PFTs in Siberian tundra, and tested for home-field advantage 

effects. We performed a litter transplant experiment, in which leaf and root 

litter of both PFTs (the deciduous shrub Betula nana L. and the graminoid 

Eriophorum vaginatum L.) was incubated in three different vegetation types: 

shrub-dominated, graminoid-dominated and mixed vegetation. We 

hypothesized that:  

1) The decomposition of shrub litter is slower than that of graminoid litter;  

2) Root decomposition is slower than leaf decomposition; 

3) Litter of a PFT is decomposed faster in its ‘home’ vegetation; i.e. home-

field advantage in decomposition exists in tundra. 

 

5.2 Material and methods 

5.2.1 Study site 
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The study site is at the Chokurdakh Scientific Tundra Station (70°49’28’’ N, 

147°29’23’’ E; elevation 11 m a.s.l.) in Kytalyk Wildlife Reserve, which is 

located in the lowlands of Indigirka River in northeastern Siberia, Russia. 

The mean annual air temperature at the nearest climate station (Chokurdakh, 

WMO station code 21946, 27 km away from the study site) is −13.4 ºC 

(1981 – 2010), with 10.3 ºC as the mean July temperature. Annual 

precipitation is 196 mm (1981 – 2010), of which on average 76 mm falls in 

the summer (June – August). The study area is the former lake bed of a 

drained thermokarst lake, which has a shallow active layer underlain by 

thick continuous permafrost (Blok et al. 2010, Nauta et al. 2015).  

The vegetation surrounding the Chokurdakh Scientific Tundra Station is 

classified as G4, consisting of tussock-sedges (i.e. graminoids), dwarf-shrubs 

and moss on the Circumpolar Arctic Vegetation Map (Walker et al. 2005). In 

the lake bed we distinguished 3 vegetation types: graminoid vegetation 

dominated by the tussock-forming sedge Eriophorum vaginatum L (> 70% 

cover); shrub vegetation dominated by the deciduous shrub Betula nana L (> 

70% cover) and a mixed vegetation of both species. Other co-existing 

species with minor abundances include grasses Arctagrostis latifolia (R. Br.) 

Griseb and Calamagrostis holmii Lange, sedge Carex aquatilis Wahlenberg, 

deciduous shrub Salix pulchra Cham, evergreen shrubs Vaccinium vitis-

idaea L and Rhododendron subarcticum Harmaja. A moss layer with some 

lichen species is present throughout the study area (Blok et al. 2010).  

 

5.2.2 Experimental design 

We focused on the two dominant plant species, the graminoid E. vaginatum 

and the deciduous shrub B. nana. We intended to include both live and dead 

samples of leaves and roots of the graminoid and shrub. However, as most 

other root decomposition studies, it was difficult to collect dead shrub roots 
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from the soil. It has been suggested that roots are not likely to shed discretely 

like leaves, but rather they gradually lose functions and become colonized by 

decomposers as they age, making it impossible to collect freshly senesced 

root litter (Hobbie et al. 2010). So we did not include dead shrub roots in this 

experiment. However, it is possible to collect the dead roots of E. vaginatum 

as its roots are annual and white-colored when alive, and become black after 

senescence. Thus, seven litter types were included in this experiment. They 

were: live and dead leaves of graminoids and shrubs, live and dead roots of 

graminoids, and live roots of shrubs.  

Litter of E. vaginatum was collected in the graminoid-dominated vegetation, 

and litter of B. nana was collected in the shrub-dominated vegetation. Live 

leaves of the two species were collected in July of 2013 by clipping leaves 

from B. nana shoots and E. vaginatum leaf bases, and dried and stored in dry 

condition. Dead leaves of the two species were collected in July of 2015 

from the ground underneath shrub vegetation or graminoid vegetation, 

respectively.  

Soil cores were taken and roots were collected manually with forceps from 

the cores. Roots of the two species could be distinguished as roots of B. nana 

had a reddish to brown color, woody structure and were usually colonized by 

ecto-mycorrhizal fungi, whereas roots of E. vaginatum were either white 

(live) or black (dead), non-woody, unbranched, and densely clustered 

underneath the tussock (Fig. 1.2). Live fine roots (< 1 mm) of B. nana were 

collected and dried in July 2013 and stored in dry condition. As mentioned 

above, shrub roots are not likely to shed discretely, so it is possible that the 

shrub live root samples contained some dead roots. However, when 

collecting B. nana roots, strong efforts were made to distinguish live and 

dead roots, as live roots were reddish to brown with white newly-grown root 

tips or mycorrhizal fungi colonization, while dead roots were darker in color 

and easily torn apart. Thus dead roots should only account for a very minor 
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part of the samples. Live and dead roots of E. vaginatum were collected in 

July 2015. Leaf and root litter that was collected in 2015 was air-dried for 24 

hours prior to filling the litter bags. 

Plant materials were carefully placed into litter bags, which were 10 × 10 cm 

made from nylon mesh with a 0.5 mm mesh size (Top Zeven B.V., the 

Netherlands). Each litterbag contained one type of litter with approximately 

0.4 g dry weight. We recorded the exact initial weight of each sample. Initial 

weights were corrected for their water content using the water contents of 

additional samples which were dried at 60 ºC one month later in 

Wageningen University, the Netherlands (see section 5.2.3). To close the 

litterbags, they were folded and staple-sealed with stainless steel staples.  

Litter bags were buried in the three vegetation types: graminoid vegetation 

dominated by E. vaginatum, shrub vegetation dominated by B. nana and 

mixture vegetation co-dominated by the two species. The three vegetation 

types differ in abiotic factors, with graminoid vegetation higher in soil 

moisture and exchangeable nutrients (Chapter 3). In the study area, eight 

blocks were selected in which all three vegetation types were close to each 

other (3 – 10 m distance). Each block was 40 – 140 m away from the next 

block. In each of the 24 plots, seven litter bags (representing the different 

litter types) were buried. In total, we buried 168 litter bags (7 litter types × 8 

blocks × 3 vegetation types) on 6 July 2015. Before buried into the soil, they 

were moderately moisturized for 10 minutes. A spade was used to cut a gap 

in the soil with a 45˚ angle to the soil surface, and then one litterbag was 

placed at the depth of 5 cm.  

After 38 days, on 13 August 2015, the litterbags were harvested. After the 

litterbags were gently removed from the soil, organic matter and soil on the 

surface of the litterbags was carefully brushed off. The litterbags were stored 

in paper envelops and air-dried in the field, then they were transported to the 
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Netherlands, where they were oven-dried at 60 ºC for at least 48 hours and 

weighed. Mass loss was calculated as the difference between the initial dry 

weight and the final dry weight, divided by the initial dry weight. 

 

5.2.3 Litter quality 

Six additional initial samples of each litter type (four samples for shrub fine 

roots because of limited amount) were used to estimate the initial moisture 

content (see section 5.2.2). After the determination of initial water content, 

litter quality of each litter type was analyzed. Three samples of each litter 

type were used to analyze the initial carbon, nitrogen, phosphorus 

concentration, and the other three samples (only one sample for shrub fine 

roots) were used for lignin analysis. Carbon and nitrogen concentrations 

were determined with an elemental analyzer (Fisons EA 1108 CHN-O). 

Phosphorus concentration was determined with a segmented flow analyzer 

(SKALAR SAN Plus System, Breda, The Netherlands) after digestion with 

H2SO4-salicylic acid-H2O2 and selenium (Novozamsky et al. 1983). Acid 

detergent lignin was determined with Ankom 220 Fiber Analyzer (Ankom 

Technology, USA). C:N, C:P, lignin:N, lignin:P ratios were calculated. 

Because lignin and N/P concentrations were measured in separate samples, 

lignin:N and lignin:P ratios were calculated using mean values of lignin and 

N/P concentrations in each litter type. 

 

5.2.4 Statistical analysis 

We used linear mixed effects models (LMM) to take into account that mass 

loss of samples in the same plot or block are not fully independent. As the 

experimental design in terms of litter species and dead vs live litter was not 

fully balanced (because we did not include dead shrub roots), we tested live 
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and dead litter separately. In the model for live litter, vegetation type, PFT 

and tissue type (leaf, root) were included as fixed effects. In the model for 

dead litter, vegetation type and litter type (graminoid leaf, graminoid root, 

shrub leaf) were included as fixed effects. In both models block and plot 

were included as random effects with a nested structure (plot within block). 

Mass loss data were ln transformed. Least significant difference (LSD) 

method was used for post hoc tests when an effect was significant in one of 

the models.  

Litter quality were compared among the seven litter types using a model 

with litter type as fixed effect, block and plot as random effects with a nested 

structure for each chemical characteristics. To investigate effects of litter 

quality on litter mass loss, we used linear models to test for the relationships 

between the average mass loss of each litter type and chemical 

characteristics, including nitrogen, phosphorus, lignin concentration, and 

C:N, C:P, lignin:N, lignin:P ratios. We also calculated the AIC (Akaike 

information criterion) values and Akaike weight of each model to evaluate 

which chemical characteristics best explained mass loss. A lower AIC value 

indicates a better model (Burnham and Anderson 2004), and an Akaike 

weight is the probability that a model is the actual best model among a set of 

models (Wagenmakers and Farrell 2004).  

 

5.3 Results 

5.3.1 Mass loss of different litter types and vegetation effects 

For live litter, differences in mass loss between the two PFTs depended on 

tissue type (significant interaction of PFT × tissue; Table 5.1). Mass loss of 

E. vaginatum roots was significantly higher than that of B. nana roots (F1,21 

= 747, P < 0.001; Fig. 5.1a). Leaves of the two PFTs showed a similar mass 

loss (F1,42 = 0.7, P = 0.424). Vegetation effects on mass loss significantly 
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differed between the two PFTs (significant interaction of PFT × vegetation; 

Table 5.1): leaf and root litter of E. vaginatum had similar mass losses in the 

three types of vegetation (F2,30 = 0.4, P = 0.657), whereas root (but not leaf) 

litter of B. nana had significantly larger mass losses in shrub vegetation than 

in graminoid vegetation (P = 0.02; Fig. 5.1a).  

 

Table 5.1 Effects of vegetation type, PFT and tissue type (leaf/root) on 
live litter mass loss 

Source df F value P value  

Vegetation 2 1.4 0.259  

PFT  1 264.3 < 0.001  * 

Tissue 1 40.9 < 0.001  * 

Vegetation × PFT 2 4.2 0.019  * 

Vegetation × tissue 2 0.8 0.441  

PFT × tissue 1 310.4 < 0.001  * 

Vegetation × PFT × tissue 2 0.2 0.829  
 

For dead litter, decomposition of different litter types was significantly 

different (Table 5.2): mass loss of B. nana and E. vaginatum leaves were 

significantly higher than E. vaginatum roots (P = 0.002 and P < 0.001 

respectively; Fig. 5.1b). Similar to live plant tissues, vegetation effects on 

mass loss of dead plant tissues depended on the PFT (significant interaction 

of litter type × vegetation; Table 5.2). Dead roots of E. vaginatum decayed 

significantly faster in graminoid vegetation than in shrub vegetation (F2,30 = 

5.1, P = 0.013), while dead leaves of B. nana had significantly larger mass 

loss in shrub vegetation than in graminoid vegetation (F2,21 = 4.5, P = 0.023). 

The significant interactions between vegetation and PFT/litter type for 

live/dead litter show a clear home-field advantage (Table 5.1 and 5.2). Dead 

graminoid roots decayed significantly faster in graminoid-dominated 
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vegetation, while live roots and dead leaves of shrubs decomposed faster in 

shrub-dominated vegetation (Fig. 5.1, see also Fig. A5.1). 

 

 
Fig. 5.1 Mass loss of live (a) and dead (b) litter types in three vegetation types: 
graminoid (G), mixed (M) and shrub (S). Bars are means ± SE, n = 8. Scales of y-
axes in (a) and (b) are different as mass loss of dead litter was much smaller. Capital 
letters represent pairwise differences in mass loss between litter types for live and 
dead litter respectively; lowercase letters represent pairwise differences in the mass 
loss of each litter type between vegetation types. 

 

Table 5.2 Effects of vegetation type and dead litter type (shrub and 
graminoid leaves, graminoid roots) on mass loss 

Source df F value P value  

Vegetation 2 0.4 0.697  

Litter type  2 12.4 < 0.001  * 

Vegetation × litter type 4 4.2 0.005  * 
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5.3.2 Litter quality 

The seven litter types differed significantly in nitrogen, phosphorus and 

lignin concentrations and related ratios (Table 5.3). In general, shrub litter 

had higher lignin concentrations than graminoid litter. Not surprisingly, dead 

litter types showed lower nitrogen and phosphorus concentrations than live 

litter types, but dead roots and leaves of E. vaginatum had particularly low 

nitrogen and phosphorus concentrations (Table 5.3). Nitrogen concentration 

differed up to 4.6 fold (between live shrub leaves and dead graminoid roots), 

whereas phosphorus concentration differed up to 16.9 fold (between live 

shrub leaves and dead graminoid leaves; see Table 5.3).  

The average mass loss of a litter type was closely related to litter 

characteristics related to phosphorus. Mass loss strongly increased with P 

concentration, and decreased with N:P and lignin:P ratios (Fig. 5.2). Mass 

loss also decreased, albeit less clearly, with the lignin:N ratio. No significant 

relationships between mass loss and nitrogen concentration, C:N ratio and 

lignin concentration were found (Fig. 5.2). Model comparison revealed that 

phosphorus concentration and lignin:P ratio were the best predictors for 

mass loss (Table A5.1). 

 

5.4 Discussion  

In contrast to the decomposition of leaf litter, which did not differ between 

graminoids and shrubs, the decomposition of root litter can be different 

between the two PFTs. On average, live root litter decomposition was 3 

times greater for graminoid roots compared to shrub roots. The possible 

inclusion of some dead shrub roots in the shrub root samples, might have led 

to an overestimation of the real difference between the decomposition of 

graminoid and shrub roots, but our results still highlight the necessity of 

distinguishing the decomposition of leaf litter and root litter.  
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As root litter constitutes a considerable fraction of organic matter input in 

this system (Freschet et al. 2013), the difference in root decomposition rates 

between the two PFTs suggest that vegetation composition is an important 

factor in the carbon dynamics of tundra ecosystems. This is particularly 

relevant because climate warming has been shown to induce shifts in 

vegetation composition (Callaghan et al. 2011, Myers-Smith et al. 2011b). In 

addition, we provide the first evidence for home-field advantage in litter 

decomposition in Arctic tundra and we also show that litter phosphorus 

concentrations are the main driver of mass loss at our study site, indicating 

phosphorus is the main nutrient limiting microbial activity in this area.  

 

5.4.1 Decomposition of leaves and roots of PFTs 

The decomposition of leaf litter did not differ between the two PFTs. This 

was true for both dead and live leaves. However, decomposition of root litter 

might differ between the two PFTs, although we have to take into account 

the uncertainty due to the possible inclusion of dead roots in the shrub root 

samples. These results only partly confirm our first and second hypothesis 

and they suggest that we need to consider the differences between tissue 

types and PFTs at the same time. 

Shrub litter is generally thought to be less decomposable than graminoid 

litter, as the former has a higher lignin concentration (Hobbie 1996, 

Cornelissen et al. 2007, Zhang et al. 2008). In our study, this is only the case 

for root litter, as leaf litter of the two PFTs exhibited similar mass loss rates. 

The difference in the decomposition of live roots between the two PFTs 

suggests that root decomposition in tundra can differ between shrubs and 

graminoids, at least in the early stage. These results emphasize that it is 

important to consider root litter separately from leaf litter when comparing 

PFTs, even if the decomposition of leaf litter does not show differences.  
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Fig. 5.2 Relationships between mass loss of the seven litter types and their chemical 
characteristics. Solid lines represent significant relationships while dashed lines 
represent insignificant relationships. Relationships between mass loss and litter 
quality were particularly strong for P-related characteristics (right column). Symbols 
show average mass loss (n = 24) and chemical characteristic (n = 1 for lignin content 
of shrub dead roots and lignin:N, lignin:P; n = 3 for other characteristics; see Table 
5.3) values.  

 

Many studies showed that leaf litter is more decomposable than root litter as 

roots contain more chemically recalcitrant substances (Gorissen and Cotrufo 

2000, Freschet et al. 2012, Freschet et al. 2013, Ma et al. 2016). In our study 

this is only partly true, as live graminoid leaves were decomposed slower 

that its live roots. However, dead graminoid leaves were decomposed faster 

than its dead roots. It illustrates that conclusions about decomposition based 
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on live litter of different plants should be treated with caution, especially if 

species differ in characteristics such as nutrient resorption efficiency 

(Scheffer and Aerts 2000, Snyder and Rejmánková 2015). Since root death is 

hard to determine (Eissenstat and Yanai 1997), the advantage of using live 

roots is that they better represent roots that have not yet started to decay 

(Hobbie et al. 2010). It may be more realistic to use live roots for long-term 

decomposition experiments, as live roots become real litter in the course of 

the experiments. 

 

5.4.2 Effects of vegetation and litter quality on decomposition  

Decomposition of both PFTs tended to be faster in the vegetation in which 

they were dominant. This led to significant home-field advantage effects in 

our study. We found these effects for roots and dead leaves shrubs and for 

dead graminoid leaves, even though there are big differences in 

decomposability between these litter types. In fact, in our study the site 

effects are more significant for dead than for live materials, confirming the 

hypothesis that litter with low decomposability requires more specialized 

decomposers (Ayres et al. 2009, Milcu and Manning 2011). The graminoid 

and shrub vegetation in our study differ in abiotic factors, as the former is 

wetter and more nutrient-rich (Chapter 3). However, the lack of overall 

vegetation effects on decomposition suggests that the environmental factors 

are not decisive in this experiment. Instead, the different environmental 

conditions may help to shape different microbial communities that are 

acclimated to decompose the litter of the dominant species of each 

vegetation type, resulting in home-field advantage effects in litter 

decomposition (Wallenstein et al. 2007). It has to be noted that all the 

litterbags were buried at 5 cm in this experiment. Since graminoids grow 

roots deeper than shrubs at the study site (Chapter 3), a large part of 
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graminoid roots are decomposed in the deeper soil at lower temperatures. 

Therefore our results do not mean that overall root decomposition is slower 

in shrub vegetation, as the natural root decomposition occurs at different soil 

depths between the two vegetation types.  

Litter quality (e.g., nitrogen and lignin concentrations, C:N ratio) is one of 

the most important factors in decomposition from grassland to forest 

ecosystems (Cornwell et al. 2008, Zhang et al. 2008, Freschet et al. 2012). It 

is well known that nitrogen and phosphorus are the best predictors during the 

early stage of decomposition, while lignin is the best predictor during later 

stages (Berg and McClaugherty 2014). In our study, traits related to 

phosphorus content were identified as the main drivers of early litter 

decomposition, suggesting that the early phases of decomposition are 

phosphorus-limited. This finding agrees with another study at the same site 

(Beermann et al. 2014), which suggested that mineralization is limited by 

phosphorus. However, the relatively low N:P ratios of live plant samples in 

our study (7.9 ± 1.1; Table 5.3) suggest that for plants nitrogen is likely more 

limiting, as Koerselman and Meuleman (1996) suggested that a N:P ratio 

lower than 14 indicates nitrogen limitation for plant growth. The explanation 

for the limitation of microbial growth and plants growth by different 

elements could be that the accessibility to phosphorus is different between 

microbes and plants. While microbes in the shallow soil are limited by 

phosphorus, graminoids can exploit the deep soil, where larger amounts of 

bioavailable phosphorus are available (Chapin et al. 1978, Beermann et al. 

2014). Shrubs can depend on mycorrhizal fungi to absorb phosphorus from 

the deep soil (Bolan 1991, Landeweert et al. 2001).  

 

5.4.3 Implications for carbon dynamics in tundra 

For a long time there has been concern that tundra ecosystems might shift 
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from a carbon sink to a carbon source with warmer climates (Oechel et al. 

1993, Belshe et al. 2013, Webb et al. 2016). A warmer climate increases 

primary productivity of tundra vegetation and thus increases carbon uptake 

by the ecosystem (Verbyla 2008, Hill and Henry 2011, Epstein et al. 2012). 

On the other hand, higher temperatures also accelerate decomposition and 

thus increase carbon emission from the soil (Hobbie 1996, Davidson and 

Janssens 2006). The balance between the two changes will determine 

whether tundra ecosystems will be a carbon sink or source. The two changes 

can also be affected by vegetation shifts induced by climate warming. The 

home-field advantage in litter decomposition in our study suggests that litter 

decomposition rates may be temporarily reduced when vegetation shifts 

occur. However, whether this reduction in decomposition due to home-field 

advantage can at least temporarily offset the increase in decomposition due 

to climate warming needs further investigation.  

Shifts in vegetation composition also affect decomposition via changes in 

litter quality (Cornelissen et al. 2007). Focusing on the aboveground part of 

the ecosystem, our study provides little evidence for such effects, as the 

decomposability of leaf litter did not differ between the two PFTs in our 

study. However, root litter decomposition could be lower for shrubs, at least 

in the early stage. This means that shrub expansion with increasing 

temperatures could reduce decomposition and increase carbon storage. 

However, the latter also depends on litter input. Estimates for root litter input 

of different PFTs are scarce, but the available data suggest that root turnover 

rates of shrubs are lower in tundra (Shaver and Chapin 1991, Mack et al. 

2004, Sullivan et al. 2007). This could at least partly counteract the effects of 

shrub expansion on soil carbon storage. Moreover, graminoids grow roots 

deeper than shrubs (Miller et al. 1982, Shaver and Chapin 1991), and thus 

part of the graminoid roots are decomposed at lower temperatures, which 

can make the decomposition of graminoid roots even slower than shrub roots. 
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The finding of almost intact graminoid roots in yedoma (windblown dust, 

deposited during the glacial age)  permafrost also suggests that graminoid 

roots can be decomposed very slowly in the deep soil (Zimov et al. 2006). 

So far the effects of vegetation shifts on decomposition and the carbon 

balance remain unresolved. 

 

5.5 Conclusion 

Our study shows that it is important to consider root decomposition to 

understand carbon dynamics in tundra ecosystems. Although leaf litter 

decomposition did not differ between PFTs, root litter decomposition 

showed important differences. Differences in litter decomposability could be 

mainly attributed to traits related to phosphorus. In addition, we show that 

home-field advantage effects may lead to a temporary reduction in litter 

decomposition when vegetation shifts occur. Accurate determination of the 

balance between litter input and decomposition for different PFTs in a 

changing climate would enhance our understanding of potential climate – 

vegetation feedbacks and its consequences for carbon cycling. 
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5.7 Appendices 

 

 Fig. A5.1 Home-field advantage 

index (HFAI) of litter from 

different tissue types. Letters 

above error bars indicate 

pairwise differences between 

litter types. Dotted line 

represents zero level of HFAI. 

Asterisks indicate HFAIs that are 

significantly different from zero. 

Symbols with error bars show 

mean ± SE, n = 8 blocks. HFAIs 

were calculated following the method described in Ayres et al. (2009): 

𝐴𝐴𝑅𝑅𝑀𝑀𝐿𝐿𝐿𝐿 =  
𝐴𝐴𝐿𝐿

𝐴𝐴𝐿𝐿 +  𝐵𝐵𝐿𝐿
 × 100 

HFAI =  �
𝐴𝐴𝑅𝑅𝑀𝑀𝐿𝐿𝐿𝐿 + 𝐵𝐵𝑅𝑅𝑀𝑀𝐿𝐿𝑅𝑅

2
 / 
𝐴𝐴𝑅𝑅𝑀𝑀𝐿𝐿𝑅𝑅 + 𝐵𝐵𝑅𝑅𝑀𝑀𝐿𝐿𝐿𝐿

2
�  × 100 − 100 

in which ARMLa is the relative mass loss of species A at site a, Aa and Ba are the 

percent mass loss of species A and B at site a. This formulation controls for inherent 

habitat differences in decomposition, i.e., in one habitat the decomposition of most 

litter may be faster than in other habitats. Note that this formulation only tests for the 

presence of HFA at the site and it does not quantify the HFA for an individual 

species. To calculate the HFA for individual species requires three or more 

reciprocally transplanted species (Ayres et al. 2009), which is beyond the scope of 

this study. Mass loss data in shrub vegetation and graminoid vegetation were used to 

calculate the HFAIs within each block. HFAIs for live and dead leaf, and live roots 

were determined separately. To test if the HFAI for each litter type is significantly 

larger than zero and if it differed significantly between tissue types, we ran a linear 

mixed model with litter type as fixed effect and block as random effect. 
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Table A5.1 Comparison of the regression models of mass loss and chemical 

characteristics using AIC values and Akaike weights 

Model parameter Log- 
likelihood AIC ∆AIC Akaike 

weight 

N 6.95 −7.91 12.38 0.001 

P 13.15 −20.29 0.00 0.479 

Lignin 6.26 −6.52 13.77 0.001 

C:N 7.69 −9.38 10.91 0.002 

C:P (ln transformed) 11.68 −17.36 2.93 0.111 

Lignin:N (ln transformed) 9.31 −12.63 7.66 0.010 

Lignin:P (ln transformed) 12.95 −19.91 0.38 0.396 
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Global climate has been warming rapidly for the last half century, and the 

Arctic warms about twice as fast as the global average (ACIA 2005, IPCC 

2013), which has large impacts on Arctic tundra ecosystems. Climate 

warming increases the thaw depth of permafrost in the summer (Hinkel and 

Nelson 2003, Romanovsky et al. 2010, Park et al. 2016), which accelerates 

the release of the carbon that is stored in the permafrost, and triggers a 

positive feedback with climate warming (Schuur et al. 2015). Moreover, 

climate warming lengthens the growing season in the Arctic (Schwartz et al. 

2006, Høye et al. 2007), stimulates the aboveground primary productivity of 

Arctic tundra (Verbyla 2008, Forbes et al. 2010, Epstein et al. 2012), and 

changes vegetation composition with deciduous shrubs being observed to 

expand across the tundra biome (Stow et al. 2004, Tape et al. 2006, Frost 

and Epstein 2014).  

Although the aboveground productivity of tundra vegetation has been found 

to increase with climate warming, the responses of the belowground parts 

are largely unknown. In tundra vegetation the majority of vascular plant 

biomass is belowground (Poorter et al. 2012, Iversen et al. 2015). Roots play 

a critical role in plant competition, particularly in tundra where nutrients 

often limit plant growth (Chapin 1987, Chapin et al. 1995). Different plant 

functional types (PFTs) differ greatly in their root traits such as rooting 

depth and traits related to morphology (Mack et al. 2004, Iversen et al. 2015), 

litter input and quality (Hobbie 1996, Gill and Jackson 2000, Silver and 

Miya 2001). Therefore, changes in vegetation composition and plant 

biomass allocation with climate warming can have large impacts on 

ecosystem functioning and plant-soil-atmosphere feedbacks. In this thesis I 

investigated the climate warming effects on the belowground biomass of 

tundra vegetation, as well as the role roots can play in the vegetation shifts 

caused by warmer climates.  

We performed both an analysis of published data and three field studies. We 
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synthesized published data on belowground vascular plant biomass across 

the tundra biome, and compared the biomass – temperature relationships for 

the aboveground and belowground of tundra vegetation. We did a field 

investigation to compare the seasonal changes in root biomass and vertical 

root distribution of different PFTs in different tundra vegetation types. In a 

thawing and fertilization experiment we investigated the role of vertical root 

distribution in the responses of tundra plants to environmental changes. 

Furthermore, we compared the decomposition rates of leaves and roots of 

graminoids and shrubs in different tundra vegetation types. 

As a first step, we analyzed the relationship between annual air temperature 

and reported above and belowground biomass of tundra plant communities 

across different tundra locations, spanning a gradient of −20 to 0 °C in mean 

annual air temperature (Chapter 2). We found a clear positive relationship 

between the temperature and aboveground biomass. This was not the case 

for belowground biomass. The biomass – temperature relationship differed 

significantly between above and belowground biomass. It is possible that the 

lack of community-level belowground biomass responses to temperature 

might obscure contrasting species- or PFT-level responses. In the limited 

number of tundra root studies, one study showed that the increases of Carex 

bigelowii and Betula nana root biomass in response to experimental 

warming were offset by the decrease of Eriophorum vaginatum root biomass, 

resulting in a minor change in total belowground biomass at the community 

level (Hobbie and Chapin 1998). It highlights the importance of 

distinguishing the responses of different PFTs in future studies. Even if 

climate warming has minor community-level effects on belowground 

biomass, different PFT-level responses also matter as their roots differ in 

their ecosystem functions such as turnover and decomposability. 

In order to improve our understanding of PFT-level differences in root 

biomass and rooting patterns, we investigated the seasonal changes in root 



Chapter 6 
 

 

134 
 

biomass and vertical root distribution patterns of shrubs and graminoids in 

graminoid-dominated, shrub-dominated and mixture vegetation types at a 

Siberian tundra site (Chapter 3). We found that although total belowground 

biomass differed significantly, fine root biomass was similar among the three 

vegetation types in the late growing season. However, graminoids and 

shrubs showed different spatio-temporal rooting patterns. Shrubs grow roots 

in the very early growing season and exploit mainly the shallow soil, while 

graminoids continue to grow roots later in the growing season, and exploit 

the deeper soil layers. The separate niches of graminoids and shrubs in both 

time and space can promote their coexistence (Berendse 1981, McKane et al. 

2002). It also suggests that changes in the spatio-temporal distribution of 

nutrients with climate warming can shift the competitive relationships 

between graminoids and shrubs.  

Through a 4-year soil thawing and fertilization experiment, we examined the 

effects of increased thawing depth and nutrient availability in the top soil on 

the aboveground and belowground biomass of various PFTs and the role that 

vertical root distribution plays in plant responses (Chapter 4). We show that 

shallow-rooted plants (deciduous and evergreen shrubs) benefited from the 

increased nutrient availability in the top soil, while only deep-rooted plants 

(sedges) benefited from increased thawing depth. The deep-rooted grasses 

had the highest plasticity in terms of vertical root distribution in response to 

thawing and fertilization, which helped them also to benefit from the 

increased nutrient availability in the top soil, and may help them be more 

competitive in a more erratic climate scenario. These results confirm that 

different rooting strategies of PFTs play an important role in plant 

competition and vegetation shifts in tundra. 

Shrub expansion may become more widespread in tundra ecosystems as long 

as nutrient availability increases mainly in the top soil. The effects of shrub 

expansion on carbon dynamics in tundra ecosystems also depend on the 
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differences in the decomposition rates of graminoid and shrub litter, 

particularly root litter, which is still largely unknown so far. We performed a 

plant litter transplant experiment to compare the decomposition of roots and 

leaves of E. vaginatum and B. nana in different vegetation types. The results 

show that despite the similarities in leaf decomposability, the decomposition 

rate of roots may differ between the two species in the early stage, which 

was driven by phosphorus concentration of litter (Chapter 5). We also find 

evidence of home-field advantage in plant litter decomposition in Arctic 

tundra. 

Based on the results of this thesis, below I provide an overview of how 

vegetation composition can change in a future warmer climate and how 

carbon dynamics can be influenced by climate warming and vegetation shifts, 

as well as the knowledge gaps that need future studies.  

 

6.1 Vegetation shifts in a warmer future  

Shrub expansion has been observed across the tundra biome (Callaghan et al. 

2011, Myers-Smith et al. 2011b), which is hypothesized to result from 

climate warming. However, the exact mechanisms behind shrub expansion 

are still unclear. Multiple factors, such as temperature, precipitation, nutrient 

availability, length of growing season, and their interactions, can influence 

plant growth and competition (Hobbie and Chapin 1998, Shaver et al. 1998, 

Walker et al. 2003a, Forbes et al. 2010, Blok et al. 2011). Based on the 

finding of Chapter 3 of this thesis, shrubs differ from graminoids both in the 

period and duration of root growth and in vertical root distribution. Shrubs 

grow roots in the very early growing season and are shallow-rooted, while 

graminoids grow roots for a longer period during the growing season and are 

deep-rooted. Probably shrubs can get advantages from the early and shallow 

root growth when snowmelt and soil thaw begin and release nutrients to the 
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top soil. However, the future competitive relationship between shrubs and 

graminoids may depend on the balance between the benefits they can get 

from increased nutrient availability in the top soil and in the deeper soil, 

respectively (Chapter 4).  

Warmer climates can facilitate litter decomposition, which will probably be 

more significant in the top soil where organic matter content is higher 

(Tarnocai et al. 2009, Baughman et al. 2015) and temperature increases 

probably are larger than deeper in the soil. In this case shrubs can benefit 

more than graminoids from the increased nutrient availability in the top soil 

through their shallow root systems. The recent widespread shrub expansion 

in tundra ecosystems suggests that this is the most likely vegetation shift in 

most tundra areas at least in the near future.  

However, when organic matter content is high in the deep soil, nutrient 

availability in the deeper soil can also be increased substantially in warmer 

climates, which will favor deep-rooted graminoids. It has been shown that 

increased thawing depth can increase nutrient availability in the deep soil 

and that deep-rooted graminoids can take up these newly available nutrients 

(Keuper et al. 2012b, Oulehle et al. 2016). In addition, warmer but dry 

climates may dry up the top soil (Hinzman et al. 2005, Smith et al. 2005), 

which can inhibit microbial decomposition (Aerts 2006, Hicks Pries et al. 

2013), and thus decrease the nutrient availability in the top soil. Under such 

conditions shrubs will be less competitive while graminoids can still absorb 

the nutrients in the deeper soil and become more competitive.  

Another important factor that can influence plant competitive relationships is 

soil moisture, as graminoids and shrubs generally differ in their preferred 

soil moisture condition. Graminoids such as E. vaginatum prefer wet 

conditions while shrubs such as B. nana prefer moist, but well-drained soils 

(Wein 1973, De Groot et al. 1997). It is predicted that precipitation will 
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increase with climate warming (IPCC 2013), however, soil moisture depends 

not only on precipitation, but also on the thawing of the ice in the permafrost, 

evapotranspiration and microtopography, which could make the vegetation 

responses more spatially heterogeneous. If ice-rich permafrost thaws with 

climate warming, increasing the soil water content, the vegetation will 

become more graminoid-dominated (Blok et al. 2010, Nauta et al. 2015). 

However, if the melt water is drained, for example in discontinuous 

permafrost zones (Frost and Epstein 2014), climate warming can also reduce 

soil moisture as evapotranspiration increases, which will make shrubs able to 

establish and dominate the site.  

In conclusion, this thesis highlights the importance of spatio-temporal 

nutrient distribution in the soil for tundra vegetation shifts in a warmer future, 

as graminoids and shrubs differ in their root seasonal development and 

vertical distribution. In the meanwhile, changes in soil moisture also need to 

be taken into account to better predict possible vegetation shifts. 

 

6.2 Influences of climate warming and shrub expansion on carbon 

dynamics  

With climate warming, tundra might shift from a net carbon sink to a net 

carbon source (Oechel et al. 1993, Belshe et al. 2013, Webb et al. 2016). 

Warming climates can influence both carbon uptake by the vegetation and 

carbon release from the soil. Warmer climates can increase plant primary 

productivity, and hence carbon uptake of tundra vegetation (Verbyla 2008, 

Hill and Henry 2011, Epstein et al. 2012). On the other hand, warmer 

climates can also accelerate the decomposition of soil organic matter and 

thus increase carbon emission from the soil (Hobbie 1996, Davidson and 

Janssens 2006). The balance between the warming effects on productivity 

and decomposition will determine the carbon balance of tundra ecosystems 
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in the future. Moreover, vegetation change induced by climate warming can 

also influence carbon dynamics through shifts in carbon assimilation 

capacity and litter input and quality, which can have both positive and 

negative feedbacks on climate warming effects on carbon dynamics in 

tundra ecosystems (Fig. 6.1 and Fig. 6.2). 

 

6.2.1 Climate warming effects on carbon dynamics 

Climate warming increases total aboveground biomass as well as leaf 

biomass of tundra vegetation (Chapter 2), which has also been shown by 

remote sensing studies and experimental warming experiments (Arft et al. 

1999, Walker et al. 2006, Verbyla 2008, Epstein et al. 2012), suggesting that 

carbon storage in the aboveground parts of tundra vegetation increases with 

climate warming. On the one hand, increased leaf biomass can increase 

carbon uptake of tundra vegetation through more photosynthesis. On the 

other hand, it can be assumed that increased leaf biomass also increases leaf 

litter input to the soil surface, particularly leaf litter of deciduous shrubs, 

which has greater decomposability than evergreen leaves (Cornwell et al. 

2008). Therefore, carbon emission from the decomposition of leaf litter will 

also increase with climate warming through both higher temperature and 

increased leaf litter input.  

Total belowground and fine root biomass may not increase much with 

climate warming as our results suggest (Chapter 2). Therefore carbon storage 

in belowground biomass may not change. Carbon emission from root litter 

decomposition depends on root litter input, which further depends on root 

turnover rate. However, root turnover is still largely unknown for tundra 

plants. Some studies investigated warming effects on root production of 

tundra graminoids, and showed that warming increased graminoid root 

production (Sullivan and Welker 2005, Sullivan et al. 2008). This suggests 
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that root turnover in tundra is likely to be accelerated by climate warming, at 

least for graminoids. According to studies of other ecosystems, shrub root 

turnover might increase with higher temperatures (Gill and Jackson 2000, 

Kitajima et al. 2010). But knowledge of shrub root production and turnover 

in tundra is still lacking, making it difficult to estimate root litter inputs and 

the impacts of warming effects.  

 

 

Fig. 6.1 Schematic diagram of climate warming effects on carbon dynamics in 
tundra ecosystems. Plus signs represent positive effects, minus signs represent 
negative effects, N represents neutral effects, and question marks represent unclear 
effects. Signs with red color indicate the finding of this thesis; signs with grey color 
indicate effects assumed from literature. 

 

If permafrost thaw does not increase nutrient availability much, climate 

warming may only have minor effects on plant root biomass and vertical 

root distribution (Chapter 4). However, permafrost itself contains a huge 

amount of organic carbon that has accumulated for thousands of years, 

which will be mobilized by climate warming and emitted from the soil 

(Zimov et al. 2006, Schuur et al. 2009).  
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Therefore, climate warming will probably accelerate carbon cycling in 

tundra ecosystems through increased carbon uptake of plants and increased 

carbon emission from litter decomposition and thawing permafrost. However, 

the net effect of climate warming on these two fluxes still needs to be 

determined. 

 

6.2.2 Effects of shrub expansion on carbon dynamics 

In addition to directly influencing tundra carbon dynamics, climate warming 

can also indirectly influence carbon dynamics through induced vegetation 

change in tundra ecosystems (Cornelissen et al. 2007, Knapp et al. 2008). If 

recently observed shrub expansion continues in tundra ecosystems, carbon 

dynamics will be further affected.  

For the aboveground, as shrub vegetation has similar leaf biomass as 

graminoid vegetation (Chapter 3), shrub expansion and the replacement of 

graminoids may not increase leaf litter input. But this is based on the 

assumption that leaf turnover rates are the same for shrubs and graminoids. E. 

vaginatum, the graminoid species that this thesis focuses on, has an average 

life span of two years (Wein 1973), which is longer than the deciduous shrub 

leaves. This also implies that leaf production (carbon uptake) is higher in 

deciduous shrubs than in graminoids with perennial leaves. Since shrub 

expansion is mostly observed for deciduous shrubs such as B. nana, shrub 

expansion can increase leaf production and litter input if it happens in an 

area dominated by graminoids with perennial leaves. Increased leaf litter 

input will possibly increase carbon emission through the decomposition of 

the extra leaf litter, as the decomposition rate of leaves is similar between 

graminoid and shrub (Chapter 5), which was also found by some other 

studies (Thormann et al. 2001, Quested et al. 2003, Hobbie and Gough 2004, 

Moore et al. 2007). Although some other studies suggested that shrub leaves 
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can decay slower than graminoid leaves (Hobbie 1996, Cornelissen et al. 

2007), our results implies that, at least at our research site, if shrub expands 

and replaces graminoids, carbon emission from leaf decomposition will 

increase.  

 

 
Fig. 6.2 Schematic diagram of shrub expansion effects on carbon dynamics in tundra 
ecosystems. Plus signs represent positive effects, minus signs represent negative 
effects, Ns represent neutral effects, and question marks represent unclear effects. 
Signs with blue color indicate the finding of this thesis; signs with grey color 
indicate effects assumed from literature. 

 

For the belowground, shrub expansion is not likely to increase fine root 

biomass since it is similar between the graminoid-dominated vegetation and 

shrub-dominated vegetation (Chapter 3). However, root litter input also 

depends on root turnover rate. Although studies on root turnover rates of 

tundra shrubs are lacking, root turnover of shrubs possibly is slower than that 

of graminoids (Shaver and Chapin 1991, Mack et al. 2004, Sullivan et al. 
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2007), particularly when compared to E. vaginatum, which has an annual 

root system (Wein 1973). Therefore, root litter input can also be reduced by 

shrub expansion, thereby limiting the carbon emission from root 

decomposition, which is just opposite to what happens aboveground. Shrub 

root litter may be less decomposable than graminoid root litter (Chapter 5). 

A possible consequence is that an increasing proportion of shrub root 

biomass may slow down root decomposition through less litter input and 

lower decomposability, thereby reducing carbon emission. However, since 

shrubs grow roots shallower than graminoids (Chapter 3–4), overall shrub 

roots are decomposed in the shallower soil at higher temperatures, which can 

offset the effects of the possible lower decomposability and turnover rates of 

shrub roots. Moreover, the difference in long-term root decomposition 

between graminoids and shrubs is not clear yet. 

Despite that leaf and fine root biomass is not likely to increase with shrub 

expansion, a large portion of shrub biomass lies in the woody stems and 

coarse roots (Chapter 3–4), with very low turnover and decomposability 

(Hobbie 1996, Cornelissen et al. 2007). Therefore shrub expansion can 

increase the carbon stock by storing carbon in shrub stems and coarse roots. 

One study showed that 20 years experimental warming increased plant 

biomass and woody dominance but did not change soil carbon storage, 

resulting in a net increase in ecosystem carbon storage (Sistla et al. 2013). 

Whether this can be extrapolated to larger scales needs further studies. 

 

6.3 Future research needs 

Although our results suggest that tundra vegetation may not respond much to 

climate warming in total belowground biomass, species or plant functional 

type specific responses can be different. We have shown that fine root 

biomass did not differ much between the different tundra vegetation types at 
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the research site, but the spatio-temporal rooting patterns of PFTs did differ. 

This implies that they have different abilities to use the increased nutrient 

availability and soil thaw depth. However, we are still far from drawing a 

general picture of how the roots of different PFTs in tundra will respond to 

climate or experimental warming when they grow together, which highlights 

the necessity to distinguish different PFTs in future root studies in tundra.  

We have also shown that plant competitive relationships depended on the 

relative changes in nutrient availability in the top soil and in the deeper soil. 

In addition to nutrient availability, soil moisture is another very important 

factor that determines root growth. Furthermore, soil moisture can affect 

microbial activities and thus affect nutrient availability, thereby influencing 

plant competition. There are not many studies about the moisture effects on 

vegetation shifts in tundra yet. Since climate warming induces permafrost 

thaw and shifts in precipitation and evapotranspiration regimes, soil moisture 

condition are expected to change significantly. Therefore it is urgently 

needed for future tundra studies to take soil moisture into account.  

We found that there may be important differences in root decomposition of 

different PFTs. The possible changes in the species composition of root 

biomass with climate warming can influence tundra carbon dynamics 

through shifted decomposability of root litter. However, so far we know little 

about root production, root turnover and root litter decomposition in tundra 

ecosystems, particularly for shrubs, which are expanding across the tundra 

biome. As roots account for a large part of plant standing biomass and litter 

input into the soil in tundra ecosystems, it is essential to acquire more 

knowledge on these subjects for a better understanding of climate warming 

effects on the carbon balance of tundra ecosystems. 
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Summary  

 

Global climate has been warming up for the last decades and it will continue 

in this century. The Arctic is the part of the globe that warms fastest and is 

more sensitive to climate warming. Aboveground productivity of Arctic 

tundra has been shown to increase in response to warmer climates. However, 

belowground responses of tundra vegetation are still unclear. As the major 

part of plant biomass in tundra lies belowground, it is pivotal to investigate 

changes in the belowground parts of tundra vegetation for our understanding 

of climate warming effects on tundra ecosystems. 

To get a general idea of how belowground plant biomass may change in a 

warmer climate, we synthesized published data on the belowground biomass 

of tundra vegetation across a broad gradient of mean annual air temperature 

from −20 to 0 °C. We found that aboveground biomass of tundra biomass 

indeed increases with mean annual temperature as well as summer air 

temperature, while belowground biomass did not show a significant 

relationship with temperature. The increases in the aboveground biomass 

were significantly larger than belowground biomass, resulting in reduced 

below/above ratios at higher temperatures. The shifted biomass allocation 

with temperature can influence the carbon dynamics of tundra ecosystems. 

Future tundra studies need to focus more on the species or functional type 

composition of belowground biomass and species or functional type specific 

belowground responses to climate warming.  

To determine the seasonal changes and vertical distribution of root biomass 

of different plant functional types, we sampled roots at a Siberian tundra site 

in the early and late growing season, from vegetation types dominated by 

graminoids and shrubs respectively. We distinguished the roots of 

graminoids and shrubs, and found that shrub roots grew earlier and 
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shallower than graminoid roots, which enables shrubs to gain advantage over 

graminoids at the early growing season when nutrient pulses occur during 

snowmelt and soil thaw. The deeper roots of graminoids can help them to be 

more competitive if climate warming induces more nutrient release in the 

deeper soil.  

In a soil thawing and fertilization experiment, we further investigated the 

effects of increased thawing depth and nutrient supply in the upper soil, 

which can be the consequences of climate warming, on root biomass and its 

vertical distribution. In this study we distinguished between the roots of 

grasses, sedges, deciduous shrubs and evergreen shrubs. The study was done 

in a moist tussock tundra site with similar abundance of the different plant 

functional types. We found that only sedges benefited from the increased 

thawing depth, probably through their deepest root distribution among the 

four functional types, while the shrubs, which were shallower-rooted, 

benefited from the increased nutrient availability in the upper soil. The deep-

rooted grasses had the highest plasticity in vertical root distribution, which 

enabled them also to benefit greatly from the fertilization. Our results show 

that tundra plants with different rooting strategies can show different 

responses to climate warming dependent on the relative warming impacts on 

the nutrient supply in shallow and deeper soil layers. This insight can help to 

predict future tundra vegetation dynamics.  

The carbon balance of tundra ecosystems also depends on the decomposition 

of plant litter, particularly the root litter, which may account for a larger part 

of annual litter input than leaf litter in tundra ecosystems. Vegetation shifts 

also change litter quality which ultimately influences carbon dynamics. To 

investigate the differences in the decomposition of leaves and roots of 

graminoids and shrubs, we performed a litter transplant experiment. We 

found that although the decomposability of leaf litter did not differ between 

the graminoid and shrub, root decomposability might be lower for the shrub. 
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However, this cannot be extrapolated to the overall decomposition in 

different vegetation types, as these different plant communities differ in 

rooting depths. We also found evidence of home-field advantage in the 

decomposition in Arctic tundra, and we show that the early stage of litter 

decomposition at our research site could be driven by the phosphorus 

concentration of the litter. To get a full understanding of the carbon balance 

of tundra ecosystems, much more efforts are needed to quantify litter input 

and decomposition.  

In this thesis we show that belowground parts, which account for a major 

part of plant biomass in tundra, can show a different response to climate 

warming from aboveground parts. Belowground responses to climate 

warming can have crucial impacts on the competitive balance between 

tundra plants, and consequently result in vegetation shifts in tundra. Such 

shifts in species composition can have large effects on carbon dynamics 

through altered input and decomposability of plant litter, particularly root 

litter. 
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