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Plants growing in natural environments are exposed to a broad range of 

biotic and abiotic factors that are known to cause stress symptoms in many 

species. These stresses can be: pathogen attack, insect herbivory, drought, 

extreme temperatures, UV radiation, salinity, etc. (Pareek et al., 2010; Robert-

Seilaniantz et al., 2010). Biotic and abiotic stress-inducing determinants often 

adversely impact plant growth and development, frequently leading to severe 

annual yield losses in agricultural production (Pierik et al., 2013; Pieterse et al., 

2012; Stam et al., 2014). 

Stress responses in plants 

In response to a myriad of biotic and abiotic stress triggers, plants mobilize 

signaling molecules, thereby boosting the accumulation of so-called second 

messengers such as reactive oxygen species (ROS), calcium ions (Ca2+), 

phospholipids, mitogen-activated protein kinases (MAPKs), G-proteins, and 

phytohormones (Smékalová et al., 2014; Takahashi et al., 2011; Tuteja and 

Sarvajeet, 2012). Various stress signaling pathways are interconnected in an 

overarching network, influenced by key regulators, such as transcription factors 

and MAPKs, responding to, and affecting the production of stress-related plant 

hormones and ROS (Caarls et al., 2015; Fujita et al., 2006; Pieterse et al., 

2009b; Rejeb et al., 2014; Robert-Seilaniantz et al., 2011). Under stress 

conditions, ROS are generated rapidly and act as a common message to activate 

MAPKs (Jalmi and Sinha, 2015). MAPK- and Ca2+-induced activation of the 

calcium-dependent protein kinases (CDPKs) are two major signaling cascades 

triggered in response to both biotic and abiotic stresses (Colcombet and Hirt, 

2008). The last step of the delineated defense mechanism is the subsequent 

induction of transcription of stress-responsive genes. While the resultant 

production of an array of plant hormones has been associated with a variety of 

stress triggers (of both biotic and abiotic nature), high accumulation of abscisic 

acid (ABA) was recorded under specific abiotic conditions, such as drought, 

osmotic imbalance, salinity, and low temperature (Tuteja, 2007). Further, this 

hormone was shown to negatively interact with biotic stress response cascades. 

For instance, the drought-associated accumulation of ABA coincided with 

decreased levels of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) 

(Adie et al., 2007; Koornneef and Pieterse, 2008). Moreover, ABA can modulate 
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the crosstalk between the JA-regulated signaling pathway and those under 

control of salicylic acid (SA), gibberellins (GAs), and auxins (AUXs) (Abe et al., 

2003; Dombrecht et al., 2007; Kazan and Manners, 2013; Yamaguchi-Shinozaki 

and Shinozaki, 2005). 

Genes involved in response to biotic and abiotic stress 

Reactive oxygen species (ROS) as stress-response gene activators 

In the model plant Arabidopsis thaliana (hereafter Arabidopsis), a few 

hundred genes involved in the ROS scavenging network were identified (Mittler 

et al., 2004). Among them, SUPEROXIDE DISMUTASE 2 (FSD2), FSD3, 

ASCORBATE PEROXIDASE 1 (APX1), APX2, and MONODEHYDROASCORBATE 

REDUCTASE 4 (MDAR4) were shown to be transcriptionally induced upon heat, 

cold, drought, and salinity stresses (Mittler et al., 2004). Furthermore, zinc 

finger and WRKY transcription factor genes (ZF- and WRKY-TFs) are induced by 

ROS. For example, the zinc finger protein ZAT12 is required for the expression 

of APX1 and responds transcriptionally to multiple triggers, including intense 

light, freezing, osmotic and oxidative stress, wounding, and pathogen infection 

(Fujita et al., 2009; Rizhsky et al., 2004), while another zinc finger protein, 

ZAT6, positively regulates responses to drought, salinity, as well as bacterial 

infection (Shi et al., 2014). Concurrently, WRKY25 is transcriptionally induced 

under multiple conditions, such as wounding, heat, osmotic and oxidative stress, 

and appears to be regulated by ZAT12 (Rizhsky et al., 2004), whereas WRKY70 

interacts with ZAT7 in regulating plant disease response and the SA- and JA-

mediated signaling pathways (Li et al., 2004) . 

Mitogen-activated protein kinases (MAPKs) 

MAPKs often engage in cross-talk with ROS signaling pathways. For instance, 

the OXIDATIVE SIGNAL-INDUCIBLE 1 (OXI1) kinase plays a role in ROS sensing 

and is required for activation of MPK3 and MPK6 (Forzani et al., 2011; 

Smékalová et al., 2014). These two are involved in disease resistance, drought 

and salt tolerance, and abscisic acid (ABA) signaling (Frei dit Frey et al., 2014; 

Tsugama et al., 2012; Yu et al., 2010). Moreover, MITOGEN-ACTIVATED 

PROTEIN KINASE KINASE KINASE 1 (MEKK1), a common MAP kinase kinase 

kinase (MPKKK), is activated by ROS under various biotic and abiotic conditions. 
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In biotic stress situations, MEKK1 mobilizes MKK4/5 and stimulates expression 

of MPK3/6 for innate immunity response, while under abiotic stress, the kinase 

activates MKK1/MKK2 for the expression of MPK4 and MPK6, thereby affording 

cold and salt acclimation (Jalmi and Sinha, 2015). 

Hormone signaling-regulated transcription factors 

Transcription factors, such as ERF1, BOS1, RD26, MYB2, MYC2, RD22, 

ANAC019 and ANAC055 are associated with both ABA and JA-ET signaling 

(Koornneef and Pieterse, 2008; Shinozaki and Yamaguchi-Shinozaki, 2007). 

They are expressed under multiple biotic and abiotic stresses, including drought, 

salinity, osmotic imbalance, as well as infection by Fusarium oxysporum and 

Pieris rapae herbivory (Abe et al., 2003; Anderson et al., 2004; Fujita et al., 

2004; Shinozaki and Yamaguchi-Shinozaki, 2007; Vos et al., 2013). Further, 

multiple transcription factors regulate the expression of defense- and wounding-

responsive genes. For instance, ANAC019 and ANAC055 are expressed under 

drought stress, they interact with MYB2 and MYC2 to up-regulate the expression 

of wounding-responsive genes VSP1 and LOX2 (Bu et al., 2008; Kazan and 

Manners, 2013). 

Cross-talk between drought, pathogen, and insect 

herbivore response mechanisms 

Drought is one of the most ubiquitous negative abiotic environmental factors 

influencing plants. Under drought stress, the accumulation of ABA triggers 

stomatal closure to reduce water loss via transpiration (Rai and Takabe, 2006; 

Xiong and Ishitani, 2006). As a consequence, water uptake and assimilation are 

diminished, resulting in lower nutrient take up, which leads to lower biomass 

(Verslues et al., 2006). Adaptive responses to drought involve metabolic, 

osmotic, and structural adjustment, as well as production of proteins with DNA 

damage-control and DNA repair functions (Ingram and Bartels, 1996). ABA-

dependent and ABA-independent drought-response signaling pathways were 

described by Shinozaki and Yamaguchi-Shinozaki (2007). In addition, JA and ET 

have been implicated as important regulators of drought response (Bray, 1997; 

Shinozaki et al., 2003; Riera et al., 2005; Huang et al., 2008). 
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Plant pathogenic fungi can generally be classified as necrotrophs or 

biotrophs depending on whether they kill their host cells or not. Botrytis cinerea 

(hereafter referred to as Botrytis) is a necrotrophic fungus and is considered to 

be the second most important plant pathogen (Dean et al., 2012), infecting over 

200 cultivated plant species and causing significant economic damage to crops 

worldwide. It kills plant tissue prior to feeding deploying diverse mechanisms 

that cause decay, e.g., enzymatic degradation of the cell wall, generation of 

toxic reactive oxygen compounds, and secretion of host non-selective toxins 

(Diaz et al., 2002; El Oirdi et al., 2011; Geraats et al., 2002; Rowe et al., 2010; 

Thomma et al., 1998; Thomma et al., 1999). While plant defense against 

biotrophic pathogens commonly involves SA, fighting necrotrophic invaders often 

requires the action of JA and ET (Pieterse et al., 2009). ABA and SA have been 

shown to exert negative effects on resistance to necrotrophic fungi (El Oirdi et 

al., 2011; Liu et al., 2015; Vos et al., 2015). 

Insect herbivores consume over 15% of the plant biomass produced 

annually in temperate and tropical ecosystems, making insect herbivory a major 

conduit by which energy flows through food chains (Agrawal, 2011; Cyr and 

Pace, 1993; Johnson, 2011). JA is an important primary signal in herbivore-

induced local and systemic defense mechanisms in various plant–herbivore 

interactions, while ABA plays a modulating role in the JA-responsiveness 

(Bodenhausen and Reymond, 2007; Howe and Jander, 2008; Soler et al., 2013; 

Vos et al., 2013). Pieris rapae (hereafter Pieris), the Small Cabbage White 

butterfly, is among the most destructive pests of cruciferous plants as it has 

adapted to the glucosinolate-derived glycoside toxins produced by crucifers as 

chemical deterrents (Hopkins et al., 2009). SA is reported to inhibit the JA-

dependent defense pathway induced by Pieris feeding (Koornneef et al., 2008). 

One of the signaling pathways that modulate the cross-talk between Botrytis, 

Pieris, and drought stresses is the MYC2-related signaling pathway. MYC2 is a 

positive regulator of drought stress response induced by ABA as well as a 

negative regulator of the Botrytis defense gene PDF1.2 through interaction with 

ERF1 within the JA-signaling pathway. What is more, MYC2 down-regulates the 

expression of other pathogen defense genes, such as PR3 and PR4, while 
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boosting that of the Pieris defense-responsive gene VSP2 (Anderson et al., 2004; 

Lorenzo et al., 2004;Dombrecht et al., 2007; Vos et al., 2013).  

Effects of consecutive stresses on plants 

Abiotic stresses can significantly affect plant responses to biotic strains and 

vice versa, depending on the timing, nature, and severity of the afflicting events 

(Atkinson and Urwin, 2012; Appel et al., 2014; Rejeb et al., 2014). Both positive 

and negative interactions among various stress factor combinations have been 

reported (Suzuki et al., 2014). For instance, a drought-stress-associated 

increase in cellular ABA concentrations causes plant stomata to close, which has 

a negative impact on photosynthesis. This often leads to elevated canopy 

temperatures and reduced relative humidity of the afflicted plant, which may 

render its microenvironment suboptimal for herbivores, adversely influencing 

their fitness and reproduction (Haile, 2000). At the gene level, drought-induced 

accumulation of ABA leads to up-regulation of specific transcription factors, such 

as CBF, NAC, and MYB. The TF activation, in turn, triggers elevated expression 

of pathogenesis-related (PR) genes, thus rendering the plant resistant to 

subsequent biotic stress. For example, the drought tolerance gene Di19-encoded 

ZF-TF modulates the expression of PR1, PR2, and PR5 in A. thaliana (Liu et al., 

2013). 

Furthermore, increased ABA concentrations have a positive impact on callose 

deposition, which may boost plant resistance to fungal and bacterial pathogens 

(Mauch-Mani and Mauch, 2005). Studies with tomato plants showed that a 

drought-associated surge in endogenous ABA levels caused a 50% reduction in 

Botrytis infection (Achuo, 2006), while moderate drought stress in Nicotiana 

benthamiana led to decreased growth of its bacterial invader, Pseudomonas 

syringae pv. tabaci (Ramegowda et al., 2013). 

On the other hand, exposure to herbivorous insects and pathogens can have 

both positive and negative impacts on plant response to subsequent drought 

stress (Ramegowda and Senthil-Kumar, 2015). For example, Brome Mosaic 

Virus (BMV), Cucumber Mosaic Virus (CMV), and Tobacco Mosaic Virus (TMV) 

infections enhance drought tolerance of N. benthamiana through reduction of 
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transpiration rate and a boost in osmoprotectant levels (Xu et al., 2008). The 

reverse is true of the infection of A. thaliana by the Turnip Mosaic Virus (TuMV), 

which causes lesions, mosaics, and mottling that reduce photosynthetic capacity, 

thereby rendering the plant more susceptible to subsequent drought stress 

(Prasch and Sonnewald, 2015). 

Tailored responses of plants to stress combinations 

Generally, plant responses to individual stress factors are different from 

those involved in countering a simultaneous or sequentially combination of 

detrimental triggers. Most studies have focused on a single time point in the 

stress response, representing only a snapshot of the transcriptional changes that 

are induced by a single or combinatorial stress (Stein and Waters, 2011; Shaik 

and Ramakrishna, 2013). Coding sequences involved in response to multiple 

factors can be identified through comparison of differentially expressed genes 

(DEGs) under various individual and combined stress treatments (Prasch and 

Sonnewald, 2013; Rasmussen et al., 2013). Transcriptome analysis on 

simultaneous effects of drought, heat, and virus infections in Arabidopsis 

resulted in the identification of 11 genes involved in all relevant single, double, 

and triple stress treatments (Prasch and Sonnewald, 2013). It was impossible 

though to determine how single stress responses led to responses to stress 

factor combinations. For instance, expression of the resistance gene RPS6 was 

only responsive in case of simultaneous heat, drought, and virus treatments, but 

not under any of the double or individual stresses  (Rasmussen et al., 2013a). 

As the responses of plants to blends of triggering factors cannot be predicted 

based on mechanisms countering their individual components, there is likely to 

be a unique combinatorial stress response, as has been suggested by 

Ramegowda and Senthil-Kumar (2015). 
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RNA-sequencing and genome-wide association 

mapping 

Microarray and RNA-sequencing (RNA-seq) approaches are very useful in 

providing large, yet comprehensive, sets of gene expression data. However, for  

financial reasons, this strategy can be applied to examine but a limited number 

of genotypes at once. Natural variation, partly reflecting the adaptation to 

different environments, is one of the most important resources for genetic 

studies in Arabidopsis (Koornneef et al., 2004; Alonso-Blanco et al., 2005; 

Weigel, 2012). Due to the aforementioned constraints, most investigative efforts 

addressing plant responses to multiple individual stresses have focused on only 

a few genotypes (Stein and Waters, 2011; Rasmussen et al., 2013; Shaik and 

Ramakrishna, 2013). To fully understand the genetic architecture of complex 

traits, such as plant adaptation to a diversity of stress factors, a much wider 

survey of the natural genetic variation within a species is mandatory (if variation 

is present). Genome-wide association (GWA) analysis, relying on a large number 

of well-genotyped plant accessions, provides an important tool for natural 

genetic variation research approaches. Although the interest in natural variation 

and GWA mapping is rapidly increasing (Wijnen and Keurentjes, 2014; Ogura 

and Busch, 2015), no comprehensive evaluation of natural genetic variation in 

plants tolerant to simultaneous and sequential biotic and abiotic stress factor 

combinations was available at the time the hereby presented PhD research 

project had begun.  
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Scope of the thesis 

In the research endeavors described in this thesis, Arabidopsis was used as 

a model organism to study plant responses to different sequential combinations 

of biotic factors (infection with Botrytis or herbivory by Pieris) and drought. The 

main objective was to identify genes that contribute to tolerance to the 

aforementioned sequential stress combinations. 

The investigations described herein are part of a collaborative project, 

involving three PhD students, embedded within the national ‘Learning from 

Nature’ research program. My contribution involved application of large-scale 

experimental approaches to examine the genetics and physiology of variation in 

plant tolerance to sequential combinations of the indicated biotic/abiotic factors, 

mainly focusing on the response to drought or osmotic stress, in combination 

with biotic factors. With three single stress-inducing determinants, i.e., drought 

or osmotic stress, Pieris herbivory and Botrytis infection, six sequential 

combinations of treatments could be applied. RNA-seq was used to analyze the 

dynamics of transcriptome changes over time that occurred in Arabidopsis 

accession Col-0 in response to the single and combined treatments, whereas the 

GWA approach was employed to identify genes characterized by natural genetic 

variation contributing to different phenotypic responses to the investigated 

trigger combinations. 

The main results of the ‘Learning from Nature’ program, integrating the 

GWA analyses of the aforementioned large set of Arabidopsis accessions (the 

HapMap population) challenged with 11 single environmental factors and several 

of their consecutive combinations, are reported in a comprehensive, multi-

author paper presented as Chapter 2. 

Responses to the consecutive biotic and drought/osmotic stresses were 

mapped using two types of the GWA methods. Genotype-by-environment (G×E) 

effects and phenotypic plasticity of several singe nucleotide polymorphisms 

(SNPs) relevant to stress responses were highlighted and the biological functions 

of some candidate genes were validated by gene expression and mutant 

analyses  in Chapter 3. 
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Responses to consecutive drought and Botrytis infection were delineated 

using univariate GWA-mapping. Investigation results pertaining to phenotypic 

plasticity of significant SNPs as well as biological function of selected candidate 

genes are presented in Chapter 4. 

Major outcomes of the whole-transcriptome profile analysis of Arabidopsis 

Col-0 exposed to three single stress triggers (Pieris, Botrytis, drought) and six 

consecutive combinations thereof are reported in a multi-author paper presented 

as Chapter 5. 

The most relevant or significant findings of the whole-transcriptome profiling 

of Arabidopsis Col-0 exposed to biotic and subsequent drought stresses and the 

alternative splicing (AS) events identified under different conditions were 

investigated in detail and are described in Chapter 6. 

Phenotypic responses of 16 Arabidopsis accessions challenged with different 

single or combinatorial stresses and the changes in expression levels of nine 

drought-responsive genes under alternative stress conditions are expounded 

upon in Chapter 7. 

All findings presented in this thesis, in concert with their implications for 

future research, are comprehensively discussed in Chapter 8.  
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Abstract 

 Plants are exposed to combinations of various biotic and abiotic stresses, but 

stress responses are usually investigated for single stresses only. Here, we 

investigated the genetic architecture underlying plant responses to 11 single 

stresses and several of their combinations by phenotyping 350 Arabidopsis 

thaliana accessions. A set of 214k SNPs was screened for marker-trait 

associations in Genome-Wide Association analyses using tailored multi-trait 

mixed models.  

 Stress responses that share phytohormonal signaling pathways also share 

genetic architecture underlying these responses. After removing the effects 

of general robustness, for the 30 most significant SNPs average QTL-effect-

sizes were larger for dual stresses than single stresses.  

 Plants appear to deploy broad-spectrum defensive mechanisms influencing 

multiple traits in response to combined stresses. Association analyses 

identified QTLs with contrasting and with similar responses to (a) biotic 

versus abiotic stresses and (b) belowground versus aboveground stresses.  

 Our approach allowed for an unprecedented comprehensive genetic analysis 

of how plants deal with a wide spectrum of stress conditions. 
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Introduction 

In nature, plants face variable environments that impose a wide range of 

biotic and abiotic stresses. These include e.g. belowground and aboveground 

stresses, stresses imposed by unicellular and multicellular organisms, short and 

long-lasting stresses. Under natural conditions, these stresses do not occur in 

isolation but are commonly present simultaneously (Rizhsky et al., 2004; 

Bergelson & Roux, 2010; Mittler & Blumwald, 2010; Vile et al., 2012; Prasch & 

Sonnewald, 2013; Rasmussen et al., 2013; Kissoudis et al., 2014; Rivero et al., 

2014; Sewelam et al., 2014; Suzuki et al., 2014). Thus, plants are under strong 

selection to adapt to local conditions and have evolved sophisticated 

mechanisms to withstand multiple adverse environmental conditions (Howe & 

Jander, 2008; Bergelson & Roux, 2010; Pieterse et al., 2012; Stam et al., 2014; 

Brachi et al., 2015; Julkowska & Testerink, 2015; Kerwin et al., 2015). Yet, 

investigating this in a targeted experimental way is a major challenge due to the 

complexity of multiple stress exposure. To gain insight into the adaptation of 

plants to the wide variety of stress-inducing conditions they face, genetic 

variation and mechanisms underlying stress resistance should be studied 

(Alonso-Blanco et al., 2009; Brachi et al., 2015; Kerwin et al., 2015). The 

responses of plants to stresses have traditionally been investigated for individual 

stresses (Howe & Jander, 2008), but the research focus is currently shifting 

towards plant responses to combinations of stresses (Holopainen & Gershenzon, 

2010; Pierik & Testerink, 2014; Stam et al., 2014; Suzuki et al., 2014; Kissoudis 

et al., 2015). The emerging picture is that responses to stress combinations 

cannot be predicted reliably from the responses to individual stresses (De Vos et 

al., 2006; Makumburage et al., 2013). For instance, the majority of 

transcriptional responses of Arabidopsis to combinations of two abiotic stresses 

could not be predicted from responses to the individual stresses (Rasmussen et 

al., 2013). Moreover, phenotype expression in response to two biotic stresses 

could not be predicted on the basis of existing information on interactions 

between underlying signaling pathways (De Vos et al., 2006). Phytohormones 

are major players in a signaling network, mediating responses to both biotic and 

abiotic stresses (Pieterse et al., 2009). For instance, chewing insect herbivores 

elicit especially the jasmonic acid  (JA), abscisic acid (ABA) and ethylene (ET) 

signaling pathways, phloem-sucking insects and biotrophic microbial pathogens 
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elicit especially the salicylic acid (SA) pathway, and drought elicits the abscisic 

acid (ABA) pathway (Pieterse et al., 2009). The phytohormonal responses 

exhibit extensive crosstalk, resulting in specific changes in plant phenotype in 

response to individual stresses (De Vos et al., 2005; Pieterse et al., 2012).  

In plant breeding, resistance and tolerance to multiple stresses is a common 

selection target (Braun et al., 1996). A well-known strategy to achieve 

resistance and tolerance is by evaluation of candidate varieties in multi-

environment trials, i.e., field trials at multiple locations during several years 

(van Eeuwijk et al., 2010; Malosetti et al., 2013). In such trials, multiple 

stresses can occur, but their occurrence and the intensity with which they occur 

is not guaranteed and, therefore, plant breeders developed the concept of 

managed stress trials in which specific and well-defined stress conditions are 

imposed for a single or a small number of stresses (Cooper & Hammer, 1996; 

Cooper et al., 2014). Recently, the urge to manage environmental factors even 

more precisely has led to the development of phenotyping platforms, where, 

again, mainly single stresses are investigated (Fiorani & Schurr, 2013; Granier & 

Vile, 2014; Kloth et al., 2015). 

Most studies, outside plant breeding, that examined plant responses to 

multiple stresses included only one or a few genotypes (Holopainen & 

Gershenzon, 2010; Rasmussen et al., 2013; Pierik & Testerink, 2014; Stam et 

al., 2014; Suzuki et al., 2014; Kissoudis et al., 2015). To obtain a further 

understanding of the genetic architecture of complex traits such as plant 

adaptation to a diversity of stresses, extensive study of the natural genetic 

variation within a species is instrumental. Genome-wide association (GWA) 

analysis is an important tool for this, requiring a large number of well-genotyped 

plant accessions. Yet, although the interest in natural variation and GWA 

mapping is rapidly increasing (Wijnen & Keurentjes, 2014; Ogura & Busch, 

2015), a large-scale evaluation of natural genetic variation for resistance of 

plants to the full diversity of stresses that they are exposed to, including 

pathogens, herbivores and abiotic stresses and their interactions, has not been 

made to date. To elucidate the genetic architecture of plant stress resistance, an 

integrated approach is needed that models the genetics of responses to a range 

of single and combined stresses, including the interaction between those 

responses. Here, we have taken a comprehensive and integrated approach to 
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investigate the genetics underlying plant responses to 15 carefully standardized 

single stresses or stress combinations (Table 1), making use of a global 

population of 350 Arabidopsis accessions that have been genotyped for 214k 

SNPs (Baxter et al., 2010; Li et al., 2010). The standardization of these 15 

stress conditions is an important element of the study because it allows for 

phenotyping of well-defined stress responses. We developed a tailored multi-

trait GWA analysis that allowed the identification of candidate genes associated 

with plant responses to multiple stresses that were validated by gene expression 

and mutant analyses.  
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Materials and Methods 

Arabidopsis thaliana population 

In this study we included 350 Arabidopsis thaliana (L.) Heynh. accessions 

from the Hapmap population  (http://bergelson.uchicago.edu/wp-

content/uploads/2015/04/Justins-360-lines.xls). The Hapmap population has 

been genotyped for 250K bi-allelic SNPs (Baxter et al., 2010; Platt et al., 2010; 

Chao et al., 2012) and after quality control and imputation this SNP-set was 

reduced to a set of 214,051 SNPs. 

Definition of the target traits 

For every experiment, the target traits  were derived from the individual 

plant data using the following strategy. First, when residuals deviated from 

normality, a logarithmic, arcsine or square root transformation was applied to 

the original observations. Second, genotypic (accession) means for each 

treatment were calculated using a mixed model to account for design effects. 

Different mixed models were used in the experiments, reflecting the different 

designs. In all cases, accession effects were modelled as fixed, and the 

accession means were the best linear unbiased estimator (BLUE) of these effects. 

Third, for traits measured in treatment and control conditions, differences or 

residuals (when regressing treatment on control values) were defined, in order 

to obtain a measure of stress tolerance that was corrected for the expression of 

the same trait under control conditions. Finally, within each experiment, the 

traits were replaced by the first principal component if the latter explained more 

than half of the variation in all traits in this experiment; in all other cases the 

original traits were retained. An overview of final traits and their corresponding 

sections in the Supplementary Methods can be found in Table 1. In case of 

replacement by the first principal component, original traits and the variance 

explained by the first principal component are listed (Supplementary Methods 

Tables M1-M5). In total, phenotypic data for 73 individual traits were obtained 

by 10 different research groups. All calculations were performed in R, unless 

stated otherwise. Mixed model analysis was performed with the R-package 

ASReml (Butler et al., 2009). In all equations the term E denotes residual error. 
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All other terms represent fixed effects unless stated otherwise. A colon (:) is 

used to define interactions between terms.     

Statistics 

Genetic correlation networks and heritability 

Pairwise marker-based genetic correlations between traits, genomic 

correlations, were estimated using a multi-trait mixed model (MTMM) (Korte et 

al., 2012). Residuals were assumed uncorrelated for traits that were measured 

on different plants. For some pairs of traits the likelihood was monotone, which 

can also occur in single-trait mixed models (Kruijer et al., 2015). In this case, 

the genetic correlation was estimated by the (Pearson) correlation between the 

univariate G-BLUPs (De los Campos et al., 2013) estimated for these traits. A 

network between predefined groups of traits was constructed by connecting 

groups whose average genetic correlation across pairs of traits was above 0.2.  

Narrow sense heritability (Table S1) was estimated using the mixed model 

𝑌𝑖 =  µ + 𝐴𝑖 + 𝐸𝑖   where 𝑌𝑖  represents the phenotypic means of accessions 

(i=1,...,350), and Ai and Ei random genetic and residual effects. The vector of 

additive genetic effects follows a multivariate normal distribution with covariance 

σA
2 K, K being a marker-based relatedness matrix. The residual errors are 

independent, with variance σE
2. We obtained REML-estimates of σA

2 and σE
2 , 

and estimated heritability as h2= σA
2 / (σA

2 + σE
2) . This is an estimate of 

narrow-sense heritability, since the model for the genetic effects only captures 

additive effects, and σE
2 is the sum of environmental and non-additive genetic 

effects (see e.g. Kruijer et al. (2015)). 

Multi-trait mixed models 

Following Zhou and Stephens (2014), we assume the MTMM 𝑌 = 𝑋𝐵 + 𝐺 + 𝐸, 

with 𝑌 being the genotypes by traits (n × p) matrix of phenotypic observations. 

The terms 𝑋𝐵, 𝐺  and 𝐸  stand for respectively the fixed effects (including trait 

specific intercepts and SNP-effects) and the random genetic and environmental 

effects. 𝐺  follows a zero mean matrix-variate normal distribution with row-

covariance (marker-based kinship) matrix 𝐾  and column (trait) covariance 

matrix 𝑉𝑔. 𝑉𝑔 is a p × p matrix modeling the genetic correlations between traits. 
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This is equivalent with 𝑔 = 𝑣𝑒𝑐(𝐺) (the vector containing the columns of 𝐺 being 

multivariate normal with a covariance matrix defined by the Kronecker product 

𝑉𝑔⨂𝐾  (Zhou & Stephens, 2014). Similarly, 𝑣𝑒𝑐(𝐸) follows a zero mean normal 

distribution with covariance 𝑉𝑒⨂𝐼𝑛 , where 𝑉𝑒  accounts for the non-genetic 

correlations between traits. 

Factor-analytic models 

Since 𝑉𝑔  and 𝑉𝑒  contain a total of p(p + 1) parameters, the MTMM above 

becomes difficult to fit for more than 10 traits (Zhou & Stephens, 2014). For 𝑉𝑔 

we therefore assumed a factor analytic model, which is well known in the 

context of QTL-mapping for experimental populations with limited numbers of 

markers (Boer et al., 2007), but has not been used in the context of multivariate 

GWAS. As almost all traits were derived from measurements on different plants, 

a diagonal model 𝑉𝑒 = 𝑑𝑖𝑎𝑔(𝜎𝑒,1
2 ,...,  𝜎𝑒,𝑝

2 )  was chosen for the environmental 

covariances. For 𝑉𝑔  a second order factor analytic structure was chosen 𝑉𝑔 =

𝜎𝑔
2(𝜆𝜆𝑡 + 𝑑𝑖𝑎𝑔(𝜏1

2, … , 𝜏𝑝
2)), where 𝜎𝑔

2 represents a scale parameter, the magnitude of 

genetic effects, the  p x 2 matrix 𝜆  contains the trait specific scores belonging 

to the factor analytic part of the model that provides a rank two variance-

covariance structure between traits, and 𝑑𝑖𝑎𝑔(𝜏1
2, … , 𝜏𝑝

2)  provides trait specific 

residual genetic variances (Piepho, 1997; Meijer, 2009). The model was fitted 

with the R-package ASRreml (Butler et al., 2009). 

Compressed kinship  

Factor analytic models have been successfully applied to experimental 

populations with a simple genetic relatedness structure (Boer et al., 2007; 

Malosetti et al., 2008; Alimi et al., 2013), but currently available software could 

not perform REML-estimation for the Hapmap-population. The kinship matrix 

was therefore replaced by a compressed kinship matrix (Bradbury et al., 2007; 

Zhang et al., 2010), modeling the genetic relatedness between a number of 

internally homogeneous groups. Assuming there are m such groups, containing 

n1, ..., nm accessions each, the original kinship matrix 𝐾 is replaced by 𝑍𝐾𝐶𝑍𝑡, 

where 𝐾𝐶  is the kinship matrix for the groups, and 𝑍 is the n × m incidence 

matrix assigning each of the n accessions to one of the m groups. The groups 

were created by a procedure that restricted the marker data to be linear 
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combinations of environmental covariates representing the conditions at the 

place of origin of the accessions, as explained below. 

Compressed kinship was calculated as the average kinship within genetic 

groups. Genotypes were assigned to k genetic groups by performing Ward 

clustering based on the squared Euclidean distance along the first k − 1 principal 

components calculated from a matrix of standardized SNP scores, followed by 

cutting the resulting dendrogram into k distinct clusters (van Heerwaarden et al., 

2012; Odong et al., 2013; van Heerwaarden et al., 2013). 

The use of a compressed kinship matrix requires a choice of the level of 

compression, as determined by the number of genetic groups over which the 

individual kinship is averaged. This choice needs to balance the gain in 

computational efficiency with model fit (Zhang et al., 2010) and the ability of the 

compressed matrix to capture the correlation between genetic dissimilarity and 

phenotypic differences, which is ultimately the reason for including a kinship 

matrix in the association model. There are currently no standard methods to 

determine the optimum level of compression, at least not when used in a multi-

trait setting. We determined the appropriate level of compression for each 

association model based on the model likelihood, convergence and 

correspondence between kinship and phenotypic and geographical similarity. 

The latter was quantified as the Frobenius norm of the difference between the 

complement of the compressed kinship matrix, expanded to a block matrix of 

full rank, and the Euclidean distance matrix of phenotypic traits or geographic 

coordinates. We considered a range of 4 to 100 groups. Correspondence with 

phenotypic and geographical dissimilarity increased steeply from 4 to around 35 

groups, after which correspondence with geographic distance increased more 

slowly and the correspondence with phenotypic distance showing a local 

decrease until 58 groups. Model likelihood was relatively stable above 4 groups 

but convergence was erratic depending on the modeled contrasts. For each 

model the number of groups was therefore chosen to be the minimum number 

of groups needed to achieve a level of correspondence approximating that found 

at 35 groups, under condition of model convergence. 

Multi-trait GWAS 
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Traits (columns of Y) were standardized. Along the genome, MTMMs of the 

type 𝑌 = 𝑋𝐵 + 𝐺 + 𝐸  were fitted with initially for each marker trait-specific QTL 

effects 𝛽1 , … , 𝛽𝑝  (contained in B). To identify general QTLs with trait-specific 

effects, for individual markers, the null hypothesis 𝛽1 = 𝛽2 = ⋯ 𝛽𝑝 = 0 was tested 

by a Wald test against the alternative hypothesis that at least one of the trait 

specific effects was nonzero (Zhou & Stephens, 2014). To identify consistent 

QTLs, the null hypothesis 𝛽1 = 𝛽2 = ⋯ 𝛽𝑝 = 𝛽 ≠ 0 was tested. To identify potentially 

adaptive QTLs, contrasts defined on the trait specific QTL effects were tested. 

For example, suppose the first p1 of the full set of p traits represent responses 

measured under abiotic stresses, while the second p2 traits represent responses 

under biotic stresses. A contrast can now be defined to test the hypothesis 

whether the QTL effect for abiotic stresses differs from that for biotic stresses: 

𝛽1 = 𝛽2 = ⋯ 𝛽𝑝1 = 𝛼𝑎𝑏𝑖𝑜𝑡𝑖𝑐;  𝛽𝑝1+1 = 𝛽𝑝1+2 = ⋯ 𝛽𝑝 = 𝛼𝑏𝑖𝑜𝑡𝑖𝑐 and 𝐻0: 𝛼𝑎𝑏𝑖𝑜𝑡𝑖𝑐 = 𝛼𝑏𝑖𝑜𝑡𝑖𝑐  versus 

𝐻𝑎: 𝛼𝑎𝑏𝑖𝑜𝑡𝑖𝑐 ≠ 𝛼𝑏𝑖𝑜𝑡𝑖𝑐. For the Wald test for the hypothesis β1 = … = βp we first fit 

the MTMM Y = XB + G + E with XB only containing trait specific means µ1, …, µp, 

and next test hypotheses on the marker effects. The contrast is defined through 

a partitioning of the traits in two groups (e.g. resistance against biotic or abiotic 

stress). Using the R-package asreml (Butler et al., 2009) we perform Wald tests 

for the following hypotheses:  

1. H0 : β = 0, in the constrained model β1 = … = βp = β.  

2. H0 : α1 = α2, in the constrained model where α1 is the effect on all traits in 

the first group, and α2 for traits in the second group. 

Simulations to compare power for full MTMM, contrast MTMM and univariate 

analysis 

We further compared the different Wald tests using simulations, described in 

more detail in the Supplementary Methods (SM.12). Specifically, we compared 

the performance of the general MTMM (i.e. testing the hypothesis 𝛽1 = 𝛽2 =

⋯ 𝛽𝑝 = 0  ) with the MTMM used for the contrasts ( i.e.  𝐻0: 𝛼𝑔𝑟𝑜𝑢𝑝 1 = 𝛼𝑔𝑟𝑜𝑢𝑝 2 , 

where, within two predefined groups of traits, all SNP-effects equal 𝛼𝑔𝑟𝑜𝑢𝑝 1 

respectively 𝛼𝑔𝑟𝑜𝑢𝑝 2). We simulated phenotypic data for given genotypic data, 

either assuming SNP-effects positive (but not equal) within one group of traits 

and negative for the other (Scenario A), or the sign of each SNP effect being 

chosen randomly (Scenario B). The simulation results as presented in Fig. S11 
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(see later) clearly indicate that the Wald test for the contrast has superior power 

under scenario A, while the general MTMM performs best under scenario B. In 

both cases, univariate analysis of the trait with the highest heritability is 

outperformed by at least one of the MTMM analyses. As a consequence, 

univariate GWAS and GWAS with the general and contrast MTMM give different 

rankings of SNPs.       

Selecting candidate genes 

A significance threshold of P < 0.0001 was chosen after implementation of 

genomic control (see below). For MTMM this resulted in 43 SNPs meeting this 

criterion.  Such a threshold of 0.0001 is not uncommon in studies involving 

single trait GWAS (e.g., El Soda et al. 2015; van Rooijen et al. 2015; Kooke et al. 

2016). Given the total number of analysed SNPs (i.e. 199589 SNPs having a 

minor allele frequency above 0.05) and under the null hypothesis of no QTLs and 

independence of the markers, we arrive at a naive estimate for the expected 

number of false positives of around 20, which is considerably smaller than the 

43 SNPs with P < 0.0001 recorded in the full MTMM, suggesting that about half 

of the significant SNPs must be true positives. Furthermore, following the 

procedure described by Benjamini and Hochberg (1995), we estimated the false 

discovery rate to be 0.45, a number very comparable to our naive estimate 

above. SNPs within a 20kb region were considered to be part of one LD 

block. This resulted in 30 genomic regions. For presentation purposes, each LD 

block was represented in Figures and heatmaps by the SNP with the on average 

strongest (absolute) effect across all traits. For the GWA contrast analyses, the 

same procedure was followed to define LD blocks and representative SNPs.  
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Correcting for genomic inflation 

The Wald test is known to suffer from some inflation (Zhou & Stephens, 

2014), which we correct for by using genomic control (GC) (Devlin & Roeder, 

1999; Devlin et al., 2001), which divides the observed test statistics T1, …, Tp by 

the genomic inflation factor. For both the unconstrained MTMM and the MTMM 

for contrasts described above, we observed inflation for small as well as large P-

values (i.e. also more P-values close to one than expected). Consequently, the 

usual genomic control procedures based on the observed versus expected 

median of test statistics gave too optimistic inflation factors. We therefore 

applied an alternative genomic control procedure, in which we regress the 

observed −log10(P) values on the expected ones, and correct the observed 

−log10(P) values for the slope. The genomic inflation factor was 1.24 for the full 

MTMM, with similar values for the other MTMM analyses (between 1.07 and 

1.38). For the full MTMM without correction for population structure (i.e. taking 

the kinship to be the identity matrix), the inflation factor was 2.36. 
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Results 

The phenotypic response of a population of 350 Arabidopsis accessions to an 

extensive set of stress-inducing conditions was quantified relative to the 

respective control treatments. Correcting for the respective control means that 

in the residual signal for a trait, effects of earliness, flowering time, general 

robustness, vigour, etc., have been removed already. Therefore, the traits as 

analysed represent a kind of stress per se response from which all kinds of 

disturbances have already been eliminated. Thirty traits, including e.g. root 

length, number of damaged leaves, or number of pathogen-inflicted spreading 

lesions (Table 1) were quantified when the plants were exposed to 15 different 

stresses, i.e. four abiotic stresses (drought, salt stress, osmotic stress and heat), 

seven biotic stresses (parasitic plant, phloem-feeding aphid, phloem-feeding 

whitefly, cell-content feeding thrips, leaf-chewing caterpillar, root-feeding 

nematode, and necrotrophic fungus) and four stress combinations (fungus and 

caterpillar, drought and fungus, drought and caterpillar, caterpillar and osmotic 

stress). For detailed information on the carefully standardized stress treatments, 

the trait definitions and phenotyping, see Supplementary Methods. 
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Table 1. Phenotypes assessed. The dataset contains three plant stress categories 
applied to Arabidopsis thaliana; abiotic stress, biotic stress and combinations of both 
abiotic and biotic stress. Phenotype assessments that were performed under similar 
environmental conditions have similar background shading (light and dark grey). 
'Phenotype' refers to different phenotypic assessments (in some cases the first principal 
component of a group of phenotypes). ‘Treatment’ refers to the sort of stress that was 
applied. Additional information on traits can be found in Supplementary Methods. Yellow 
indicates abiotic stress, green indicates biotic stress and blue indicates combinations of 
biotic and abiotic stress. 

 Stress Trait name 
Section of 

Supplementary 
Methods 

Trait 
phenotype 

Treatment 

A
b
io

ti
c
 s

tr
e
s
s
e
s
 

S
a
lt
 

Salt_1 SM.1 

Main root 
length, number 
of lateral roots 

and 
straightness 

75 mM NaCl 

Salt_2 SM.1 
Main root 

length 
125 mM NaCl 

Salt_3 SM.1 
Number of 

lateral roots 
125 mM NaCl 

Salt_4 SM.1 Main root angle 125 mM NaCl 

Salt_5 SM.2 Biomass 25 mM NaCl 

D
ro

u
g
h
t 

Drought_1 SM.2 Biomass Drought 

Drought_2 SM.3 Biomass Drought 

O
s
m

o
ti
c
 

Osmotic SM.2 Biomass PEG8000 

H
e
a
t 

Heat SM.2 
Number of 

siliques 
35 °C 
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B
io

ti
c
 s

tr
e
s
s
e
s
 

P
a
ra

s
it
ic

 

p
la

n
t 

Parasitic plant SM.4 Attachments 
Phelipanche 

ramosa 

N
e
m

a
to

d
e
 

Nematode SM.5 
Offspring, 
eggmass 

Meloidogyne 
incognita 

W
h
it
e
fl
y
 Whitefly_1 SM.6 

Survival, 
whiteflies 

Aleyrodes 
proletella 

Whitefly_2 SM.6 
Reproduction, 

eggs 
A. proletella 

A
p
h
id

 

Aphid_1 SM.7 
Behavior T1, 

probing 
Myzus 

persicae 

Aphid_2 SM.7 
Behavior T2, 

probing 
M. persicae 

Aphid_3 SM.7 
Offspring, 

aphids 
M. persicae 

T
h
ri
p
s
 

Thrips_1 SM.8 
Feeding 
damage 

Frankliniella 
occidentalis 

Thrips_2 SM.8 Behavior T1 
F. 

occidentalis 

Thrips_3 SM.8 Behavior T2 
F. 

occidentalis 

C
a
te

rp
il
la

r 

Caterpillar_1 SM.9 
Leaf area 
consumed 

Pieris rapae 

Caterpillar_2 SM.3 Biomass P. rapae 

Caterpillar_3 SM.3 

Number of 
damaged 

leaves and 
feeding sites 

P. rapae 



Chapter 2 
 

32 

F
u
n
g
u
s
 

Fungus SM.10 
Number of 
spreading 

lesions 

Botrytis 
cinerea 

D
o
u
b
le

 s
tr

e
s
s
 

Fungus and 
caterpillar_1 

SM.3 Biomass 
B. cinerea  

and P. rapae 

Fungus and 
caterpillar_2 

SM.3 

Number of 
damaged 

leaves and 
feeding sites 

B. cinerea 
and P. rapae 

Caterpillar 

and fungus 
SM.10 

Number of 
spreading 

lesions 

P. rapae and 

B. cinerea 

A
b
io

ti
c
 a

n
d
 b

io
ti
c
 s

tr
e
s
s
 

D
o
u
b
le

 s
tr

e
s
s
 

Drought and 
fungus 

SM.10 
Number of 
spreading 

lesions 

Drought and 
B. cinerea 

Drought and 
caterpillar 

SM.3 

Number of 
damaged 

leaves and 

feeding sites 

Drought and 
P. rapae 

Caterpillar 
and 

osmotic_1 
SM.9 

Projected leaf 
area 

P. rapae and 
PEG8000 

Caterpillar 
and 

osmotic_2 
SM.9 Biomass 

P. rapae and 
PEG8000 

 

Heritability of responses to biotic and abiotic stresses 

The phenotypic analysis resulted in a wide range of marker-based narrow 

sense heritability (Kruijer et al., 2015) estimates with 15 traits of low (h2<0.2), 

10 of moderate (0.2<h2<0.5) and 5 of high (h2>0.5) heritability (Figure S1). 

The number of abiotic stress traits per heritability category was similar, while 

the number of traits related to biotic and combined stresses decreased with 

increasing heritability class. The most heritable traits were responses to feeding 

damage by thrips (Thrips_1; h2=0.8), and nematodes (h2=0.7), and responses 

to salt (Salt_1 and Salt_3; resp. h2=0.6 and h2=0.7) and heat (Heat; h2=0.6) 

(Table S1). The traits related to combined stresses have predominantly low 
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heritabilities; however, it should be emphasized that the combined stresses 

especially relate to combinations involving fungal and caterpillar stress. 

Genetic commonality underlying responses to different stresses 

To analyze the phenotypic variation between Arabidopsis accessions as a 

function of molecular marker variation, we used various mixed model 

approaches (see Methods section). We estimated marker-based genetic 

correlations, i.e. correlations based on the genome-wide commonality of SNP 

effects underlying pairs of traits (see Methods), to investigate the magnitude of 

genetic commonality underlying resistance mechanisms in response to a range 

of biotic and abiotic stresses. For brevity, we will refer to these marker-based 

genetic correlations as genetic correlations. Such genetic correlations can be 

interpreted as upper boundaries to the joint determination of pairs of traits by 

genetic factors. Genetic correlation analysis revealed a strong connection 

between the responses to parasitic plants and to aphids (r=0.8), which were 

both negatively associated with other stress responses (Figure 1). Parasitic 

plants and aphids have in common that they target phloem and xylem tissue 

(Tjallingii & Hogen Esch, 1993; Dorr & Kollmann, 1995), and induce the SA 

phytohormonal pathway (De Vos et al., 2005; Runyon et al., 2008). In contrast, 

the biotic stress responses that were negatively associated with the responses to 

parasitic plants and aphids, i.e. responses to necrotrophic fungi, caterpillars, and 

thrips, represent JA-inducing stresses (De Vos et al., 2005; Pieterse et al., 2009; 

Pieterse et al., 2012). Because the SA and JA pathways predominantly interact 

through negative crosstalk (Pieterse et al., 2009), the two main clusters 

resulting from the genetic correlation analysis represent different phytohormonal 

signaling response mechanisms. We also observed a strong genetic correlation 

between plant responses to osmotic stress and root-feeding nematodes. This 

supports the  notion that root-knot nematodes trigger a differentiation of root 

cells to multinucleate giant cells with severely altered water potential and 

osmotic pressure (Baldacci-Cresp et al., 2015). While the correlations between 

traits at the phenotypic level were generally rather low, the genetic correlation 

analysis revealed a common genetic basis underlying the responses to sets of 

single and combined stresses (Figure S2). 
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Figure 1. Mean genetic correlations between responses of Arabidopsis thaliana to 
abiotic (red) and biotic (dark blue) plant stresses. Thickness of lines represents the 
strength of mean genome-wide correlations, annotated with r values (orange=positive, 
blue=negative correlation). The more shared genetic associations between stresses, the 
higher the absolute genetic correlation. Correlations are negative when alleles have 
opposite effects, i.e. resulting in increased resistance to one stress, but decreased 
resistance to the other stress. Values in balloons represent mean within-group correlation 
(not shown for groups consisting of a single trait). Mean between-group correlations are 
not shown if they are below an absolute value of r=0.2. Two clusters can be distinguished: 
(1) parasitic plants and aphids and (2) the other stresses, except whiteflies. 
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Candidate genes underlying responses to stresses 

To identify individual candidate genes that contributed most to the pattern 

of genetic correlations, we fitted multi-trait QTL mixed models (MTMMs) to the 

total set of 30 traits, using a 214k SNP set that is commonly used for GWA 

studies in Arabidopsis (Kim et al., 2007; Atwell et al., 2010; Li et al., 2010; 

Horton et al., 2012; Bac-Molenaar et al., 2015). Our multi-trait GWA approach 

closely follows the modeling framework developed by Zhou and Stephens (2014) 

and generalizes the use of MTMMs as described previously (Boer et al., 2007; 

Malosetti et al., 2008; Alimi et al., 2013) for classical biparental offspring 

populations to association panels. This GWA analysis identified 30 chromosome 

regions with multiple, significant SNP-trait associations. From each of those 

regions, the significant SNP with the strongest effect was chosen to represent 

the locus (Figure 2; Table S2). Clustering of stresses by estimated SNP-effect 

profiles (Figure 2) indicates that multiple SNPs were associated with response to 

more than one stress. Stress combinations induced large QTL allele substitution 

effects in the MTMM mapping (Figure 2 and Table S2), indicating that 

combinations of stresses trigger broad-spectrum defensive mechanisms. A total 

of 125 genes were in linkage disequilibrium (LD) with the 30 most significant 

SNPs from the GWA analysis. Twenty of these genes were stress-related 

according to gene ontology (GO) annotation data (Table S3). Of these 20 genes, 

six have been functionally characterized by at least one study (Table 2a). For 

these six genes, we explored expression data to evaluate the biological 

relevance of these genes in stress-responsive mechanisms of Arabidopsis 

(Figure S3). Of special interest were SNPs chr5.7493620, chr5.22041081 and 

chr4.6805259, that were in LD with WRKY38 (encoding a WRKY transcription 

factor involved in SA-dependent disease resistance) (Kim et al., 2008), AtCNGC4 

(involved in pathogen resistance) (Chin et al., 2013) and RMG1 (coding for 

disease resistance protein) (Yu et al., 2013) respectively.  
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Figure 2. Multi-trait mixed-model (MTMM) GWA mapping with 30 different stress 
responses of Arabidopsis thaliana. The top panel shows the 214k SNPs with their 

corresponding -log10(P) values for the five chromosomes. The lower panel depicts the trait-
specific effect sizes of the rare alleles for significant SNPs (P<0.0001) as estimated by the 
full MTMM. When several SNPs were located within the 20 kb linkage disequilibrium half-
windows around the most significant SNP in a region, the effects for the SNP with the on 
average strongest absolute effects are shown (red-flagged in the Manhattan plot). SNPs 
are named by chromosome number and position on the chromosome. Negative effect sizes 
(blue) correspond to reduced plant resistance due to the rare allele, positive effect sizes 
(yellow) to increased resistance due to the rare allele. Stress responses were clustered 
hierarchically according to their effect, using Ward’s minimum variance method. The key 
shows the frequency distribution for the effect sizes of the SNPs.  
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Phytohormonal signaling underlying contrasts in stress 

responses 

The MTMM framework allowed imposing constraints on the values of the 

estimated QTL effects, thereby providing a powerful testing framework for QTLs 

that have a common effect for the stresses belonging to one particular group of 

stresses as contrasted to the effect for another group of stresses (see Materials 

and Methods section ‘Multi-trait GWAS’). We investigated whether 

polymorphisms for genes involved in SA and JA biosynthesis or genes responsive 

to signals from these pathways were the cause of the negative genetic 

correlations between the groups of traits sharing one or the other 

phytohormonal signaling pathway. To this end, we performed a multi-trait GWA 

mapping to test the contrast between: (1) parasitic plant and aphid response, 

versus (2) the most negatively correlated traits, i.e. fungus, caterpillar, thrips 

and drought response (Figure 1). Fifteen SNPs were significantly associated with 

contrasting effects between the two trait clusters (Figure S4). Seven of these 

SNPs, were in LD with one or more genes known to be involved in JA-, SA- or 

resistance-related signal transduction (Table S4). Among these genes are LOX5, 

whose product is involved in facilitating aphid feeding (Nalam et al., 2012a; 

Nalam et al., 2012b), MYB107 encoding a transcription factor responsive to SA 

(Stracke et al., 2001; Chen et al., 2006), the JA-inducible genes TPS02 and 

TPS03 encoding terpene synthases (Huang et al., 2010) and MES16, encoding a 

methyl jasmonate esterase (Christ et al., 2012). Using TAIR10 annotations, we 

found that in total there are 371 genes that have an annotation related to JA 

and SA signaling (JA-SA genes). Our GWA analysis identified significant SNPs 

inside or in a 20 kb neighbourhood of five of those. In the remainder of the 

genome, i.e. non JA-SA, we identified 162 genes close to or with significant 

SNPs. So, in candidate regions for JA-SA, we had a ratio of 5/371 = 1.35% 

significant genes, while in non-candidate regions, we found 162/27863 = 0.58%. 

This is an enrichment of 2.33 times, significant at α=0.05 (Fisher exact 

probability test, mid-P value < 0.046; Rivals et al. (2007)). Following Atwell et 

al. (2010), an upper bound for the false discovery rate is then 1 / 2.33 = 0.43.  

In addition to screening for SNPs with contrasting effects, we screened for 

SNPs with a similar effect across the above-mentioned trait clusters (Figure S5) 
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and found candidate genes involved in oxidative stress and plant responses to 

salinity and pathogens  (Table S5).  

QTLs underlying contrasts in responses to biotic and abiotic 

stresses 

We expected a negative correlation between the responses to abiotic and 

biotic stresses due to antagonistic interactions between ABA and the SA and 

JA/ET pathways (Anderson et al., 2004; Fujita et al., 2006; De Torres Zabala et 

al., 2009; Kissoudis et al., 2015). Testing for this contrast within the GWA 

analysis using our MTMM approach significantly identified 43 SNPs with a QTL 

effect that changed sign between biotic and abiotic conditions. For presentation 

purposes, traits were grouped by a cluster analysis across SNPs, while SNPs 

were grouped by clustering across traits. Figure 3 shows the SNPs with the 

strongest overall effects, identified in 18 LD intervals. The minor alleles of nine 

of these SNPs displayed a positive effect on biotic stress response traits and a 

negative effect on abiotic response traits. The remaining nine SNPs displayed the 

opposite effect (Figure 3). Several candidate genes were identified in LD with 

the SNPs that are specific for plant responses to either abiotic or biotic stresses 

(Table 2b), such as TCH4 (encoding a cell-wall modifying enzyme), AtCCR2 

(involvement in lignin biosynthesis) and ASG1 (a gene induced by ABA and salt 

stress). Transcription data (Figure S6) support the notion that these genes play 

a contrasting role in responses to abiotic and biotic stresses and reveal an 

antagonistic responsiveness between ABA and JA treatment (TCH4) or a specific 

responsiveness to either ABA (AtCCR2, ASG1, ATVDAC4) or JA (ATWRKY40). 

This is in line with the hypothesis that there are antagonistic effects between 

abiotic stress responses, predominantly involving the ABA pathway, and wound 

and biotic stress responses involving the JA-ET or SA pathways (Kissoudis et al., 

2015). Previous studies have, however, also revealed an overlap in abiotic and 

biotic plant responses, such as similar transcriptomic perturbations after salinity 

and pathogens stress (Ma et al., 2006).  A screen for QTLs with similar effects 

on resistance to biotic and abiotic stress (Figure S7) identified three genes 

annotated to be responsive to stress stimuli (Table S6). Transcriptional data 

show that these genes respond differentially to different (a)biotic stresses and 

phytohormones (Figure S8). ARGAH2, encoding an arginase enzyme with a role 
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in the metabolism of polyamines and nitric oxide, is involved in both SA- and JA-

mediated resistance to both biotrophic and necrotrophic pathogens, and is also 

responsive to abiotic stimuli such as temperature, salt and light intensity (Figure 

S8) (Jubault et al., 2008; Gravot et al., 2012; Rasmussen et al., 2013). PKS1 is 

known to be involved in adaptation in plant growth in response to light 

(Fankhauser et al., 1999; Molas & Kiss, 2008), but also seems to be responsive 

to Botrytis (Figure S8). These genes are promising candidates for consistent 

effects across biotic and abiotic stresses.  



Chapter 2 

 

42 

e 

 

Figure 3. Genetic associations specific for contrasting responses of Arabidopsis 
thaliana to abiotic and biotic stresses. Genetic associations (in red) were estimated 
with a contrast-specific GWA analysis using MTMM. For exploratory purposes, significant 
SNPs (P ≤ 10-4) for the biotic-abiotic contrast were clustered on their trait-specific effect 
sizes as estimated in the full MTMM, that is, without imposing a contrast restriction on the 
SNP effects. If there was another SNP in LD that had a higher effect size, this SNP was 
used a representative for the LD block. Negative effects (blue) were cases where the rare 
allele was associated with a detrimental effect on the plants, positive effects (yellow) were 
cases where the rare allele was associated with increased resistance to the stress. The 
rare alleles of the top 9 SNPs are associated with enhanced resistance to abiotic stresses 
and reduced resistance to biotic stresses; the bottom 9 SNPs show the inverse. Stresses 
were clustered on the basis of SNP effects using Ward’s minimum variance method. The 
key shows the frequency distribution of SNPs across effect sizes. 
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QTLs underlying contrasts in responses to below- and 

aboveground stresses 

We expected a negative correlation between responses to below- and 

aboveground stresses. A strong QTL signal was found on chromosome 1 for this 

contrasting response (Figure S9). The associated marker (chr1. 13729757) had 

12 genes in LD with it, of which 11 are annotated as pseudogenes. 

Transcriptional data on abiotic stresses for the only protein coding gene 

(AT1G36510) shows an upregulation in aboveground tissues, yet a 

downregulation in the root tissues (Winter et al., 2007). Marker chr5.16012837 

showed the strongest signal for similar effects on responses to below- and 

aboveground stresses (Figure S10) for which the pathogenesis-related 

thaumatin superfamily protein (AT5G40020) is the most promising candidate 

gene.  

Validation of identified QTLs 

To obtain experimental support for the most interesting QTLs resulting from 

the MTMM, we tested homozygous T-DNA insertion lines for candidate genes 

RMG1 and WRKY38 (both resulting from the MTMM analysis), and TCH4 (from 

MTMM analysis on biotic versus abiotic contrast) for several of the stresses 

addressed in this study. Two independent rmg1 T-DNA insertion lines showed a 

phenotype that was different from the wild type (Col-0) for some of the stress 

conditions (Figure 4, Supplementary Methods Section SM.11), being more 

resistant to caterpillar feeding and osmotic stress (Figure 4). RMG1 (AT4G11170) 

encodes an NB-LRR disease resistance protein, which acts as a pattern-

recognition receptor (PRR) that recognizes evolutionarily conserved pathogen-

derived signatures, and transcription is induced by the bacterial peptide flg22 

(Yu et al., 2013). The rare allele of the corresponding marker chr4.6805259 is 

associated with enhanced resistance to salt stress and the combined stresses 

‘caterpillar and drought’ and ‘caterpillar and fungus’ and with enhanced 

susceptibility to drought stress. Gene expression data show that RMG1 is 

upregulated by several abiotic and biotic stresses (Figure 4). In addition, gene 

ontology enrichment analysis of the co-expression network of RMG1 shows an 

overrepresentation of genes involved in immune responses and maintenance of 

ion homeostasis. The latter is based upon co-expression with five genes 
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encoding glutamate receptors (GLR1.2, GLR1.3, GLR2.5, GLR2.8, and GLR2.9), 

putatively involved in ion-influx-mediated long-distance signaling of wound, 

pathogen and salt stress (Ma et al., 2006; Mousavi et al., 2013; Choi et al., 

2014; Kissoudis et al., 2015). T-DNA insertion lines for TCH4 and WRKY38 did 

not show a phenotype different from the wild type (Col-0) for any of the tested 

stress conditions. Whether this is dependent on the genetic background used, 

remains to be investigated. 
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Figure 4. Phenotypes of RMG1 T-DNA mutant screenings for Arabidopsis thaliana. 
Phenotypes are given for two T-DNA lines in the RMG1 gene and for Col-0 as control. a. 
Number of thrips feeding spots on a detached leaf, 6 days post infestation (N=24); b. Leaf 
area consumed by P. rapae caterpillars (N=6); c. Number of nematode egg masses 
(N=23); d. Number of M. persicae aphid offspring (N=10-17); e. Percent survival of adult 
whiteflies (A. proletella) (N=10); f. Plant fresh weight after osmotic treatment in 
comparison to control (% relative to control) (N=4); g. Plant dry weight after 75mM salt 
treatment in comparison to control (ratio)(N=7-10); Mean ± SE, +: P < 0.10, *: P < 0.05, 
**: P < 0.01, difference in comparison to Col-0. Relative expression fold change for RMG1 
compared to untreated control plants in aboveground (h) and belowground (i) tissue. 
Expression data from Arabidopsis eFP browser (http://bbc.botany.utoronto.ca).  
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Summarizing, our multi-trait GWA methodology facilitated a detailed 

analysis of the genetic architecture of resistance in Arabidopsis to a wide 

diversity of biotic and abiotic stresses. Application of this methodology revealed 

novel candidate genes associated with multiple stress responses, where specific 

contrasts were identified with some genes positively associated with the 

resistance to one set of stresses while being negatively associated with another 

set of stresses. In plant breeding (Brady et al., 2005; Ballesteros et al., 2015), 

such genes are classified as adaptive. Alternatively, other genes were identified 

with consistent effects across a wide spectrum of stress conditions. Such genes 

are labelled as constitutive in the plant breeding literature (Brady et al., 2005; 

Ballesteros et al., 2015). Both adaptive and constitutive QTLs are important 

factors to contribute to improved stress resistance and tolerance in commercial 

crop species (Brady et al., 2005; Ballesteros et al., 2015). 
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Discussion 

We developed a novel mixed-model approach to multi-trait GWA mapping 

with a special feature for testing contrasts between groups of stresses to identify 

the genetic architecture underlying a total of 30 stress response traits in 

Arabidopsis. The strength of our statistical approach was that our multi-trait 

mixed model accounted simultaneously for dependencies between genotypes 

and between traits, providing a natural and appropriate correction for multiple 

testing, while maximizing power for the detection of QTLs for the stress contrast 

under study. As we addressed a large number of stresses, our phenotyping 

experiments were distributed across a series of laboratories and were not 

performed simultaneously. To mitigate as much as possible the occurrence of 

QTLs induced purely by experiment-specific differences in plant management 

and environmental control, our phenotypic responses were defined in terms of 

control-corrected responses. This type of correction will emphasize QTLs for 

resistance and tolerance per se and will decrease detection power for QTLs 

related to development and viability. 

The extensive phenotyping executed in this study was done under carefully 

controlled conditions in climate chambers. Ideally, phenotyping should be done 

in nature because that is where genetic variation is exposed to natural selection 

(Bergelson & Roux, 2010; Brachi et al., 2010; Brachi et al., 2013). Here, we 

have phenotyped the plant population to 15 different stresses under laboratory 

conditions and our data show an interesting pattern  based on genetic 

correlations that matches with phytohormonal signalling underlying stress 

responses (Figure 1). This indicates that the genetic architecture recorded here 

is biologically relevant. Drought and salt stress responses share signal-

transduction mechanisms (Zhu, 2002) which is represented by the genetic 

correlations recorded (Figure 1). Insect damage is commonly associated with  

drought or osmotic stress and this is also clear from overlap in underlying 

phytohormonal signalling (Pieterse et al., 2012). Figure 1 shows that drought 

stress and osmotic stress correlate with insect stresses. Extending studies of 

genetic variation and the genetic architecture underlying responses to multiple 

stresses to natural conditions will be an important next step (Bergelson & Roux, 

2010).   
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Through the approach developed here, candidate genes for stress responses 

were identified that are involved in contrasting responses when comparing biotic 

and abiotic stresses, above- and belowground stresses, and attack by phloem 

feeders compared with other biotic stresses. Among these genes many are 

involved in phytohormone-mediated processes, supporting the notion that the 

phytohormonal regulatory network plays an important role in plant stress 

responses (Pieterse et al., 2012). The MTMM approach further showed that 

certain SNPs were associated to multiple stress responses and that 

transcriptional patterns of genes to which the SNPs were linked, as well as the 

phenotype expressed upon knocking out one of these genes, matched with the 

observed stress responses of the plants. The RMG1 gene that was identified 

through this procedure has relevant effects on plant phenotype in the context of 

responses to individual stresses. RMG1 is a bacterium-inducible resistance gene 

whose activity is modulated by the plant through RNA-directed DNA methylation 

(RdDM) (Yu et al., 2013). RMG1 expression activates the SA pathway (Yu et al., 

2013). Thus, the increased resistance against caterpillars in rmg1 mutants may 

be the result of elimination of SA-mediated interference with JA-induced 

resistance to caterpillars (Pieterse et al., 2012). RMG1 appears to be inducible 

by several stresses and deserves further in-depth analysis for its role in plant 

response to multiple stresses. Our data show that for the 30 most significant 

SNPs resulting from the MTMM analysis, the average absolute effect size for 

double stresses is on average higher than that for single stresses (P < 0.007, 

Table S2). This suggests that resistance mechanisms involved in countering dual 

stresses are of a more general nature, in contrast to the rather specific 

resistance mechanisms involved in single stress responses. However, the 

combined stresses included in this study especially involve fungal and caterpillar 

stresses. Future studies including other combined stresses are needed to further 

investigate the suggested pattern. 

The MTMM framework that we used for GWA mapping provides unbiased 

estimates for QTL allele substitution effects together with correct standard errors 

for these effects. Within the same framework we developed unique facilities to 

test hypotheses on QTL-by-stress interactions in multi-trait models, which are 

not available in competing meta-analysis approaches (Zhu et al., 2015). The 

variance-covariance structure that we used for the polygenic term protects 
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against inflated type I error, i.e. too many false positive SNP-trait associations, 

as a consequence of population structure and kinship on the genotypic side and 

genetic correlations between traits on the trait side. The inclusion of trait 

correlations will, for most QTLs, improve the power of detection in comparison to 

single-trait GWA mapping (Korte et al., 2012; Zhou & Stephens, 2014; section 

‘Multi-trait GWAS’ in Materials and Methods). For a comparison of the MTMM 

analysis with single-trait analyses, see ‘Simulations’ in Materials and Methods, 

SM. 12 and Figures S11 and S12. Our choice for the variance-covariance 

structure of the polygenic term as a Kronecker product of a compressed kinship 

on the genotypes with an approximated unstructured variance-covariance model 

on the environments is sometimes used in plant breeding for genomic prediction 

models (Burgueno et al., 2012). However, implementation of such models in 

GWA mapping and especially on the scale that we present here, with 30 traits, is 

unprecedented and is practically far from straightforward. It required substantial 

work on preparatory phenotypic analyses as well as fine-tuning of the genotypic 

and trait variance-covariance structures to achieve convergence of the mixed 

models.  

The MTMM analyses identified candidate genes associated with contrasting 

responses to biotic and abiotic stresses. Stress combinations appeared to have a 

strong influence on the MTMM outcome, indicative for significant interactions 

between different stresses when occurring simultaneously, and underlining the 

importance of studying the resistance of plants to combinations of stress. 

Transcriptional data and phenotyping of mutants provide initial support for the 

role of several of the candidate genes identified. Studies of plant responses to a 

diverse set of biotic stresses show that the transcriptional pattern is stress-

specific and that phytohormonal signaling pathways can explain up to 70% of 

the induced gene regulation (De Vos et al., 2005). Taking the outcome of the 

MTMM analyses to investigate the involvement of identified candidate genes in 

the resistance of plants to several stresses, not only in Arabidopsis but also in 

related crop species such as e.g. Brassica species will be valuable in the 

breeding by design of future crops to protect them against combinations of 

stresses, including biotic and abiotic stresses. This will be of great value for next 

generation crops. 
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Abstract 

While the response of Arabidopsis thaliana to either drought, herbivory or 

fungal infection has been well-examined, the consequences of exposure to a 

series of such (a)biotic stresses are not well studied. This work reports on the 

genetic mechanisms underlying the Arabidopsis thaliana (Arabidopsis) response 

to a priming pre-treatment with a biotic agent, followed by drought, a 

‘combinatorial stress’ treatment. Two genome-wide association (GWA) mapping  

approaches were employed on a set of 350 Arabidopsis accessions. Plants were 

exposed separately to either fungal infection using Botrytis cinerea or herbivory 

using Pieris rapae caterpillars, and then subjected to a PEG treatment to 

simulate drought. Alternatively, plants were subjected to PEG without any pre-

treatment. Multi-environment (ME) GWA-mapping identified a number of SNPs 

associated with candidate genes for which allelic variation affects the plant 

response to combinatorial stresses in a gene-by-environment interaction (GxE) 

mode. Univariate GWA-mapping identified additional SNPs that affect phenotypic 

plasticity in response to the combinatorial stress treatment when compared to 

the single PEG treatment. SNPs associated with a gene of unknown function and 

DROUGHT INDUCED 19 (DI19) were identified by both approaches, supporting 

their potential involvement in the combinatorial stress response. Several SNPs 

were found to be in linkage disequilibrium with known stress-responsive genes 

such as PEROXIDASE 34 (PRX34), BASIC LEUCINE ZIPPER 25 (bZIP25), 

RESISTANCE METHYLATED GENE 1 (RMG1), and WHITE RUST RESISTANCE 4 

(WRR4). New roles were found for some of these known stress-responsive genes, 

e.g. for PRX34 in their response to the combined Pieris and PEG treatment, and 

RMG1 to Botrytis and PEG. In general, antagonistic interactions were found 

between biotic and drought stress responses, and found a negative effect of 

biotic stresses on consecutive osmotic stress response. The results of this study 

illustrate the complexity of combinatorial stress responses, but also offer new 

leads to improve tolerance of crop species to multiple stresses. 
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Introduction 

In the field, plants are simultaneously or sequentially exposed to various 

biotic and abiotic stress inducing factors which limit plant performance and 

cause a substantial annual reduction in agricultural production (Hirt and 

Shinozaki, 2004). Plant responses to biotic and abiotic stresses are mainly 

regulated by abscisic acid (ABA), in response to abiotic stresses such as drought 

and salt (Shinozaki and Yamaguchi-Shinozaki, 2007); jasmonic acid (JA) and 

ethylene (ET), in response to necrotrophic fungi and chewing insects; and 

salicylic acid (SA), which activates the plant defence response upon infection 

with biotrophic fungi (Pieterse et al., 2009; Dodds and Rathjen, 2010). 

Alongside these major compounds, plant hormones such as brassinosteroids 

(BRs), auxins (AUXs), and cytokinins (CKs) are also involved in regulating the 

response of plants to biotic and abiotic stresses (Hirt, 2009; Pareek et al., 2010; 

Pieterse et al., 2012). Negative interactions have been observed between JA and 

SA, ABA and SA, ABA and JA, and ABA and ET; while positive interactions have 

been observed between ABA and AUX (Yoshioka and Shinozaki, 2009).  

The interaction between biotic and abiotic stress responses is often mediated 

by different plant hormones and the outcome can be synergistic, antagonistic, or 

neutral. The impact of abiotic stresses on plant responses biotic strains can 

significantly, and vice versa (Atkinson and Urwin, 2012; Appel et al., 2014; 

Rejeb et al., 2014). For instance, drought increased ABA concentrations have a 

positive impact on callose deposition, which may boost plant resistance to fungal 

and bacterial pathogens (Mauch-Mani and Mauch, 2005; Achuo et al., 2006; 

Ramegowda et al., 2013). Turnip Mosaic Virus (TuMV), which causes lesions, 

mosaics, and mottling that reduce photosynthetic capacity, thereby rendering 

the plant more susceptible to subsequent drought stress (Prasch and Sonnewald, 

2015).  

Generally, plant responses to individual stress factors are different from 

those involved in countering detrimental triggers that are either simultaneous or 

sequentially combined. The consecutive exposure to biotic and abiotic stresses 

triggers specific multiple-stress-responsive gene expression, indicating the 

existence of a unique combinatorial stress signalling network (Atkinson and 

Urwin, 2012; Sewelam et al., 2014). For instance,  Rasmussen et al (2013) 
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showed that 61% transcription changes in response to the combinatorial stress 

cannot be predicted from the single stress responses. Prasch and Sonnewald 

(2013) showed that the expression of the resistance gene RPS6 was only 

regulated in case of simultaneous heat, drought, and virus treatments, but not 

under any of the double or individual stresses. Transcriptome analysis on 

simultaneous effects of drought, heat, and virus infections in Arabidopsis 

resulted in identification of 11 genes involved in all relevant single, double, and 

triple stress treatments (Prasch and Sonnewald, 2013), with those responding to 

stress factor combinations impossible to determine in presence of single triggers 

(Rasmussen et al., 2013).  

Most studies on the response of plants to multiple stresses have only 

focused on a limited number of genotypes (Narsai et al., 2013; Shaik and 

Ramakrishna, 2013; Sewelam et al., 2014; Ramegowda and Senthil-Kumar, 

2015), which is fine to understand the general physiology of the response, but 

insufficient to understand the genetic architecture of such response. For 

Arabidopsis it is attractive to investigate the natural genetic variation of a trait 

using genome-wide association (GWA) mapping, which gives high genetic 

resolution for traits which have high heritability and are controlled by a modest 

number of genes (Baxter et al., 2010; Li et al., 2010; Chao et al., 2012; Bac-

Molenaar et al., 2015; Ogura and Busch, 2015).  

In the research reported here, the genetic architecture of the Arabidopsis 

response to a biotic stress, followed by drought, was examined. Arabidopsis 

plants were either exposed to Pieris rapae larvae, to induce response to 

herbivory, or to the necrotrophic fungus Botrytis cinerea, to induce a fungal 

infection response, and then subjected to a PEG treatment which induces an 

osmotic stress, simulating drought. These two treatments will be further referred 

to as ‘Pieris and PEG’ and ‘Botrytis and PEG’. Control plants were subjected to 

the single PEG treatment without any pre-treatment. The purpose of our study 

was to 1) determine the heritability of the single and combined treatments for 

different growth parameters; 2) identify SNPs associated with these phenotypes 

through different GWA approaches; 3) identify candidate genes linked to these 

SNPs, for which allelic variation contributes to the trait variation; and 4) 
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determine if there is any genotype by environment interaction affecting the 

phenotypes, that could be linked to allelic variation.  
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Materials and Methods  

Plant material and growth conditions.  

For the GWA-mapping experiments, the Arabidopsis HapMap population (Li 

et al., 2010) was used. Seeds of most T-DNA insertion mutants (Supplementary 

Table 1) were ordered from the European Arabidopsis Stock Centre 

(http://Arabidopsis.info/), except for seeds of the drought-induced19 (di19) 

mutant (Liu et al., 2013), which were obtained from the authors. 

Prior to experiments, seeds were stratified at 4oC in the dark for 5 days. 

Thereafter, one seed per accession was sown on one Grodan® Rockwool cube of 

40 X 40 X 40 mm. Plants were watered 3 times / week (on Monday, Wednesday, 

and Friday, respecitvely) with a nutrient solution developed for Arabidopsis with 

pH = 7 and EC = 1.4 mS/cm. The nutrient solution consisted of 1.7 mM NH4
+, 

4.5 mM K+, 0.4 mM Na+, 2.3 mM Ca2+, 1.5 mM Mg2+, 4.4 mM NO3
-, 0.2 mM Cl-, 

3.5 mM SO4
2-, 0.6 mM HCO3

-, 1.12 mM PO4
3-, 0.23 mM SiO3

2-, 21 µM Fe2+ 

chelated using 3% diethylene triaminopentaacetic acid, 3.4 µM Mn2+, 4.7 µM 

Zn2+, 14 µM BO3
3-, 6.9 µM Cu2+, and <0.1 µM MoO4

4-. Plants were grown in a 

climate-controlled growth chamber set to short day condition, i.e. 10 h day/14 h 

night, at 21oC day/19oC night temperatures and 70% relative humidity. 

Irradiation was set at 200 μmol m-2s-1.  

Preparation of Pieris rapae caterpillar and Botrytis cinerea 

spores 

Pieris rapae caterpillars were reared on cabbage plants (Brassica oleracea 

convar. capitata var. alba) under greenhouse conditions (24°C, with natural 

daylight). Butterflies were fed on the nectar of flowering plants such as Lantana 

camara. When flowers were scarce, additional food solution consisting of 20% 

honey and 10% sucrose was introduced to butterflies. Inbreeding of the existing 

population was minimized by adding wild butterflies and caterpillars from the 

Dutch Flevopolder. After starving for 1h, first-instar (L1) larvae were placed on 

Arabidopsis leaves using a fine paint brush as described by Van Wees et al., 

(2013). 

http://arabidopsis.info/
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Botrytis cinerea strain B05.10 (Staats and Van Kan, 2012) was grown for 2 

weeks at room temperature on half-strength potato dextrose agar (PDA; Difco 

Laboratories) plates containing 100 µg/ml penicillin and 200 µg/ml 

streptomycin. Spores were collected, filtered through glass wool and then re-

suspended in half-strength potato dextrose broth (PDB; Difco Laboratories) to a 

final density of 1 x 105 spores/ml. Three hours after incubation, spores were 

used for inoculation by applying two 5-µl droplets on two Arabidopsis leaves as 

described by Van Wees et al., (2013). 

Single and combinatorial stresses  

The HapMap population : For single osmotic treatment, 19-day-old plants 

were irrigated with Hyponex nutrient solution that contained 7.7% w/v 

Polyethylene Glycol (PEG) 8000 for 6 days (“PEG”). For combinatorial stress, 17-

day-old plants were exposed to one Pieris 1st instar larva or inoculated with two 

5-µl droplets of Botrytis spore suspension for 1 day. The next day, the 

caterpillars were removed and the plant continued to grow in the control 

conditions for 1 day, followed by irrigation with Hyponex solution that contained 

7.7% w/v Polyethylene Glycol (PEG) 8000 for 6 days (“Pieris and PEG” and 

“Botrytis and PEG” ). Plants that did not receive any stress treatment were used 

as a control (Figure 1). 
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Figure 1. Experimental design for treatment of Arabidopsis plants subjected to Mock and 
PEG, Botrytis cinerea infection and PEG, or Pieris rapae herbivory and PEG, and control 
conditions. Conditions are indicated in different colours: control (dark blue); PEG (yellow); 
Botrytis treatment (purple); Mock treatment (grey); and Pieris treatment (green). Vertical 
arrows indicate sampling time points (T1, T2, Sampling). Vertical dashed line indicates 
before and after biotic treatment.  

Testing T-DNA mutants: In addition to the four treatments described in the 

previous paragraph, For single Pieris treatment, 17-day-old plants were exposed 

to either one Pieris 1st instar larva or two 5-µl droplets of Botrytis spore 

suspension for 1 day. Thereafter, the caterpillars were removed and the plant 

was allowed to grow in control conditions for 6 days (“Pieris” and “Botrytis”) 

(Figure 2). 

Testing extreme accessions from the HapMap population: This experiment was 

carried out with the same design as described in the previous paragraph.  
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Figure 2. Experimental design for treatment of Arabidopsis plants subjected to PEG, 
Botrytis cinerea infection, Pieris rapae herbivory, Mock, PEG, Mock and PEG,  Botrytis 
infection and PEG, or Pieris rapae herbivory and PEG, and control conditions. Conditions 
are indicated in different colours: control (dark blue); PEG (yellow); Botrytis treatment 
(purple); Mock treatment (grey); and Pieris treatment (green). Vertical arrows indicate 
sampling time points (T1 – T3). Vertical dashed line indicates after biotic treatment 

Plant phenotyping  

For all plants used for GWA mapping, projected Leaf Area (PLA) were 

measured. For the combined Pieris and PEG treatment, plants were measured 

directly after the Pieris pre-treatment (T1), and 6 days after the PEG treatment 

(T2) ( Figure 1.a). For the other treatments the rosettes of too many plants 

were overlapping and the data was not used for mapping. Instead, for the 

Botrytis and Mock & PEG treatments, rosette fresh weight (FW) and dry weight 

(DW) were measured after the PEG treatment. (Figure 1.b). Rosette water 

content (WC) was calculated using the formula:  
𝑓𝑟𝑒𝑠ℎ 𝑤𝑖𝑔ℎ𝑡−𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

𝑓𝑟𝑒𝑠ℎ 𝑤𝑒𝑖𝑔ℎ𝑡
.  

Genome-Wide Association mapping 

For PLA, residuals were calculated from the regression analysis between the 

PLA after Pieris treatment (T1) and PLA after PEG treatment (T2), whereas, 

residuals of DW and WC were calculated from the regression between the 

Botrytis & PEG and mock & PEG. These residual values were used for mapping. 

For Multi-Environment (ME) GWA mapping (Korte et al., 2012) a minor allele 

frequency (MAF) of 0.05 was used and a –log(p-value) of 4 as arbitrary 

threshold value for significance as described by El-Soda et al., 2015). Univariate 

GWA-mapping was performed using the scan_GLS software as described by 
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Kang et al. (2010) and Kruijer et al (2015). In brief, this approach involves 

performing generalized least squares (GLS) calculations conditional on the 

variance components, which were estimated in the model without markers and 

can efficiently handle genetically identical individuals. Thereafter, SNPs with 

MAF<0.05 were excluded. The proportion of explained phenotypic variance was 

the criterion to identify significant SNPs as described by (Sun et al., 2010). The 

information of SNPs in the linkage disequibrium (LD) with the significant SNPs 

were identified by the online LD tool (http://dev3.ab.wur.nl/AthaLD), as well as 

the information of coding sequence substitution and amino acid substitution. 

Selection of candidate genes 

Gene ontology annotation of selected candidate genes for the quantitative 

trait loci (QTL) identified after the GWA analysis was found in The Arabidopsis 

Information Resource (TAIR; www.Arabidopsis.org/tools/bulk/go/index.jsp). 

Genes characterized by one or more of the following criteria were considered as 

candidates: 1) Genes known to be responsive to biotic and abiotic stimulus and 

expressed under abiotic stress and hormonal (JA and ABA) treatments; 2) Genes 

with reported physiological functions in response to stress conditions and 

expressed under abiotic stresses and hormonal (JA and ABA) treatments 

(http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi). 3) Genes with reported 

physiological functions in response to stress conditions and responsive to biotic 

and abiotic stimuli.  

T-DNA mutants of the candidate genes were ordered from the European 

Arabidopsis Stock Centre if available as homozygotes.  

Comparing drought and PEG8000-induced osmotic stress  

Four-week-old Col-0 plants were subjected to a PEG treatment as described 

above and compared to soil-grown plants subjected to drought by withholding 

water for 6d. The expression of five drought-responsive genes; RD26 

(AT4G27410), MYC2 (AT1G32640), RD29b (AT5G52300), RD29a (AT5G52310), 

and P5CS1 (AT2G39800) (Shinozaki and Yamaguchi-Shinozaki, 2007) was 

determined by real-time quantitative reverse transcription PCR (qRT-PCR) under 

both treatments. 

http://dev3.ab.wur.nl/AthaLD
http://www.arabidopsis.org/tools/bulk/go/index.jsp
http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
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RNA was extracted from rosettes following the protocol described by Onate-

Sanchez and Vicente-Carbajosa (2008). cDNA was synthesized from 800 ng of 

total RNA using an iScript cDNA synthesis kit (Bio-Rad). cDNA was diluted ten 

times before qRT-PCR. The gene with ID At3g15930 was selected as reference 

for qRT-PCR as the most stably expressed across different drought, osmotic, and 

Botrytis treatments based on the transcriptome database Genevestigator 

(refgenes.org/rg). The qRT-PCR was performed using iQ SYBR® Green Supermix 

(cat. no. 170-8885) on a Bio-Rad CFX96 real-time PCR system set at 95oC for 4 

minutes, followed by 40 cycles of 95oC for 10 s and 55oC for 30 s. Relative gene 

expression was calculated using the 2(-ΔΔCT) method (Livak and Schmittgen, 

2001). The standard error were calculated from at least 3 plants per accession. 

Primers of the five drought-responsive genes mentioned in the previous 

paragraph are provided in Supplementary Table 2. Primers of all investigated 

candidate genes are provided in Supplementary Table 3. 

Statistical analysis 

The broad sense heritability was calculated using the equation H2= 

𝑉𝑎𝑟(𝐺)

𝑉𝑎𝑟(𝐺)+𝑉𝑎𝑟(𝐸)
, in which G = Genotype, E = Environment and Var = Variance. 

Pearson’s correlation coefficient ‘r’, one-way and two-way ANOVAs were 

performed using GenStat for Windows 16th Edition (VSN International Ltd., 

Hemel Hempstead, UK). Student’s t-test was used to compare the growth of the 

same accession between treatments. Three-way ANOVA was performed as 

described by (Sokal RR, 1981). Statistical tests of FW, DW and WC were 

performed on 4 plants per accession, whereas gene expression was performed 

on 3 plants per accession.   

http://refgenes.org/rg
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Results 

Drought stress can be mimicked by exposure to polyethylene 

glycol 

To minimize non-genetic, environmental, variation affecting the phenotypes 

of the Arabidopsis Hapmap population used for GWA analysis, plants were grown 

on rockwool, watered with nutrient solution, rather than on a peat-based 

substrate often used in growing Arabidopsis. This however limits the application 

of drought stress by withholding water, as rockwool is much more resilient to 

drying than peat-based substrates. To induce a stress mimicking drought, a 

polyethylene glycol (PEG) 8000 treatment was applied, which gave similar plant 

phenotypes after six days as plants grown on a peat-sand mixture left without 

water for six days. To show that also plant physiology was comparable, the 

expression of five genes involved in the ABA-dependent or the ABA-independent 

pathway of drought response (Shinozaki and Yamaguchi-Shinozaki, 2007) was 

determined in plants subjected to either treatment (Figure 3). Except for RD29b, 

the change of expression of these genes compared to control conditions, was 

indistinguishable. RD29b expression was induced in both treatments, only 

slightly, but significantly, more in the PEG treatment. Nevertheless, we conclude 

that the two treatments are sufficiently comparable to consider the PEG 

treatment as physiologically equivalent to drought by withholding watering, 

which allowed us to use rock-wool-based growth set-up that supports more 

uniform growth of Arabidopsis under control and stress treatments than a peat-

based growth set-up. 
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Figure 3. Relative expression of five drought-responsive genes in rosettes of plants either 

grown on a peat-based mixture, subjected to drought by withholding water (light orange) 
or grown on rock wool, watered with a nutrient solution containing PEG8000 (PEG), to 
induce an osmotic stress response (dark orange).  Relative gene expression was 
determined by comparing expression in treated plants with expression in control plants 
(either growing in a well-watered peat mixture or on rock wool watered with a nutrient 
solution without PEG). A Student’s t-test was used to compare expression of each gene in 
the different conditions. * indicates a significant difference (p<0.05).  Standard errors 
were calculated based on at least four plants per treatment.  

Phenotyping the Hapmap population under the Botrytis and the 

combinatorial stress 

To obtain relevant trait values for genetic characterization of quantitative 

trait loci (QTLs) involved in the response to a combined stress treatment, plants 

of the Hapmap population were grown on rock wool and either pre-treated with 

Pieris rapae larvae (Pieris treatment), to induce herbivory, or with Botrytis 

cinerea (Botrytis treatment), to induce fungal infection, before exposure to a 

PEG treatment to induce osmotic stress (Figure 1-2). In this experiment, rosette 

fresh weight (FW) and projected rosette leaf area (PLA) were determined in the 

Pieris treatment and FW, PLA, rosette dry weight (DW) and the (FW-DW)/FW 

ratio, representing water content (WC) for the Botrytis treatment. The rosette 

FW measurements of plants exposed to different treatments were all 

significantly correlated, suggesting no major environmental disturbances or 

experimental errors (Supplementary Table 4). Broad sense heritabilities (H2) 

were calculated for the measured traits in control and treated plants, which 

ranged from 0.37 to 0.63 (Supplementary Table 5), suggesting moderate to 

high heritability and good prospects of identification of QTLs upon mapping. 

Two-way ANOVA was performed to test the interaction between treatments and 
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accessions for PLA, FW, DW, and WC. Significant main effects of treatments and 

accessions were observed, but no but no significant interactions between 

accessions and treatments were found (Supplementary Table 6).  

Univariate GWA-mapping of residuals identified SNPs associated 

with phenotypic plasticity 

Rather than mapping each trait for the respective treatment, we decided to 

map the residual values for each trait and accession combination obtained after 

regression of the trait value of stress-treated plants on the trait value of control-

grown plants, or of combinatorial stress-treated plants on single stress-treated 

plants. The residuals represent the variations of the accessions (genotype) in 

response to stresses (environment) (Filiault and Maloof, 2012). To observe the 

effect of Pieris priming on plant growth in response to subsequent PEG, residuals 

was calculated from a regression of PLA of the Pieris and PEG stress treatment 

on PLA of the Pieris treatment alone. When these PLA residual values were used 

for GWA analysis, 60 associated SNPs were found, directly linked to 47 genes 

(Supplementary Figure 2.a, Supplementary Table 7), but with more genes in 

linkage disequilibrium (LD) with these SNPs. Eleven SNPs were mapped to a 

genomic region that spans only 19 kb on chromosome (Chr) 2, in which six 

genes are located (Figure 4.a), corresponding to TAIR gene IDs At2g36540-

At2g36590. The combined boxplot of the haplotypes combining nine of these 11 

SNPs showed a that accessions containing the non-Col-0 allele had comparably 

lower rosette PLA under the Pieris and PEG treatment vs. the single Pieris 

treatment than accessions containing the Col-0 allele (Figure 5.a and 

Supplementary Figure 2).  SNPs m73992 -97 were located at gene with TAIR 

IDs At2g36560, significantly reduced PLA was observed in when comparing 

accessions carrying the non-Col allele to the accessions carrying Col-0 allele 

(Figure 5.b).  

When the residuals resulting from the regression of the DW upon Botrytis 

and PEG treatment on the DW upon PEG treatment alone were used for GWA 

mapping, 26 associated SNPs were found, residing in 17 genes (Supplementary 

Figure 2.b, Supplementary Table 8). Nine associated SNPs mapped to a locus 

spanning 9.7kb of Chr 1, corresponding to four genes with TAIR IDs At1g56280-
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At1g56310 (Figure 4.b). The combined boxplot of the haplotypes combining 

these nine SNPs (m33786 – m33809) showed a that accessions containing the 

non-Col-0 allele had comparably higher rosette DW under the Botrytis and PEG 

treatment vs. the single PEG treatment than accessions containing the Col-0 

allele (Figure 5.c). Six (m33789 – m33798) of these 9 SNPs, residing in 

At1g56290, the non-Col-0 allele of the six SNPs exhibited significant higher DW   

under the Botrytis and PEG treatment vs. the single PEG treatment than 

accessions containing the Col-0 allele (Figure 5.d). The SNP marker m33786, 

residing in the DROUGHT INDUCED 19 (DI19) gene (At1g56280), significantly 

distinguished accessions carrying the non-Col-0 allele from those carrying the 

Col-0 allele (Figure 5.e), with the former allele contributing to a relatively higher 

DW after the combined treatment.  

When mapping the residuals for WC, comparing the combined Botrytis and 

PEG treatment with the single PEG treatment, 23 associated SNPs were found, 

corresponding to 17 genes (Supplementary Figure 2.c, Supplementary Table 6). 

A set of SNPs identifies one region of 14.5 kb on Chr. 5, comprising genes with 

TAIR IDs At5g06480-At5g06530 (Figure 4.c, Supplementary Table 9). One of 

these genes is ATP-BINDING CASSETTE TRANSPORTER G22 gene (At5g06530), 

mutation of which is known to cause increased water respiration and drought 

susceptibility  (Kuromori et al., 2011). Accessions carrying the non-Col-0 

haplotype for SNP markers m164494 and particularly m164506, residing in this 

region, had a lower relative WC upon Botrytis and PEG stress vs. PEG stress 

alone, when compared to accessions carrying the Col-0 allele (Figure 5.f & g) 

Figure 4. Genomic region on (a) Genomic region on Chromosome 2 from (15324282bp to 
1346000bp) contains six genes At2g36540-At2g365090 which were associated to 11 
significant SNPs for Pieris and PEG responses (Supplementary Table 7). (b) Chromosome 1 
from (21072000bp to 21088000bp) contains six genes At1g56280-At1g56330 which were 
associated to nine significant SNPs for Botrytis and PEG responses(Supplementary Table 8); 
(b) Chromosome 5 from 1970000bp to 2005000bo) contains five genes At5g06490 – 
At5g06530 which were associated to nine significant SNPs for Botrytis and PEG responses 
(Supplementary Table 9). Red colour indicates SNPs in high LD (LD > 0.8) with SNP 
m73995 (a), m33786 (b), or m164484 (c), which exhibited the highest –log(p) score 
among the SNPs. Yellow colour indicates SNPs in LD (LD > 0.3) with the SNP m33786, 
m73995 or m164484. Yellow boxes indicates gene exons. Horizontal dashed line indicates 
bonferroni threshold. Figure 4 is the GWA-mapping results which was obtained using an 
accelerated mixed model (AMM) method from online tool GWAPP 
(https://gwas.gmi.oeaw.ac.at). Same association region was found by both AMM and GLS 
(this project) methods.  
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Figure 5. Boxplots shows the effect of two types alleles (Col-0 like and Non-Col like) of 
the combination of (a) 11 significant SNPs (m73984 – m74024) and (b) six (SNPs m73992 
- m73997, residing in At2g36560, on project rosette area (PLA) under the Pieris and PEG 
treatment vs. the single Pieris treatment; the combination of (c) nine significant SNPs 
(m33786 – m33809), (d) six significant SNPs (m33789 – m33798, residing in At1g56290), 
and (e) one significant SNP m33786 (residing in DI19)  on rosette dry weight (DW) under 
the Botrytis and PEG treatment vs. the single PEG treatment; Significant SNPs (e) 
m1164494, (f) m164506, and m200329 – m200335 on rosette water content (WC) under 
the Botrytis and PEG treatment vs. the single PEG treatment．Student’s t-test was sued to 

compare the difference of the two groups. *indicates the difference between the Col-0 like 
allele and the Non-Col allele is *<0.05, **<0.01, ***<0.001. 
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Multi-environment GWA-mapping identified SNPs interacting 

with the stress treatments 

Next to the univariate GWA mapping approach, we also employed Multi-

environment (ME) GWA-mapping using a multi trait mixed model (MTMM) 

approach (El-Soda et al., 2015). This approach has the advantage over the first 

one that it can test multiple environment responses and thus is better in 

identifying SNPs representing QTL-by-environment interaction (QxE). This 

method was used to map PLA at the two time-points at which it was determined 

during the Pieris and PEG treatment, with T1 representing the Pieris pre-

treatment and T2 representing the Pieris and PEG treatment (Figure 1). This 

revealed 39 associated SNPs (Supplementary Figure 3.a and supplementary 

table 9). Seven of these SNPs mapped to a region of Chr 2 containing the genes 

with TAIR IDs At2g36550 and At2g36560. This region was also found in the 

univariate GWA analysis (Supplementary Figure 2.a). Accession carrying the 

non-Col allele of gene with TAIR ID At2g36560 exhibited reduced PLA under the 

Pieris and PEG treatment vs. the single Pieris treatment when compared to 

accessions containing the Col-0 allele (Figure 5.b)  

When mapping the QxE effect on DW, comparing the combined Botrytis and 

PEG treatment with the single PEG treatment, 10 associated SNPs, residing in 

nine genes were found (Supplementary Figure 3.b and supplementary table 10). 

One of these was the SNP identifying the DI19 gene also identified upon 

univariate GWA analysis (Figure 4.b). The SNP m33786 was associated with DW 

and was mapped to an intron of gene Di19. However, this SNP was in the intron 

but the Non-col like allele of SNP m33786 is more tolerant to the consecutive 

combination of Botrytis and PEG stress in comparison to the Col-0 like allele 

(Figure 5.e). When mapping the effect on WC for the same treatments, 43 

associated SNPs were found, residing in 30 genes (Supplementary Figure 3.c 

and supplementary table 10). Four of these SNPs identify a region on Chr 3 

containing associated with seven genes with TAIR IDs At3g22670-At3g22730 

(Supplementary Table 10). The combined boxplot of the haplotypes combining 

these four SNPs showed a that accessions containing the non-Col-0 allele did not 

exhibit differences in WC under the Botrytis and PEG treatment vs. the single 

Botrytis treatment than accessions containing the Col-0 allele (Supplementary 
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Figure 4.a). In addition, six associated SNPs mapped to a region on Chr. 5 

containing seven genes with TAIR IDs At5g48120-At5g48180. Boxplot of the 

haplotypes combining these six SNPs showed a that accessions containing the 

non-Col-0 allele did not exhibit differences in WC under the Botrytis and PEG 

treatment vs. the single PEG treatment than accessions containing the Col-0 

allele (Supplementary Figure 4.b). Two SNPs m200317 and m200318 were 

residing in MET18 gene (At5g48120). No significant differences in WC between 

accessions carrying the non-Col-0 alleles of the two SNPs under the Botrytis and 

PEG treatment vs. the single PEG treatment when compared to accessions 

containing the Col-0 allele (Supplementary Figure 4.c). SNPs m200329, 

m200331 and m200335, residing in the genes with TARI IDs At5g48130 and 

At5g48140. Boxplot of the haplotypes combing the three SNPs showed that 

accessions containing Non-Col-0 allele exhibited higher WC under the Botrytis 

and PEG treatment vs. the single Botrytis treatment than accessions containing 

the Col-0 allele (Figure 5.h). SNP m200389, residing in NITRILE SPECIFIER 

PROTEIN 5 (ATNSP5) gene (At5g48180), the non-Col-0 allele did not show 

difference in relative WC upon Botrytis and PEG stress vs. PEG stress alone, 

when compared to accessions carrying the Col-0 allele (Supplementary Figure 

4.d). SNP m60883 was identified by both univariate and ME GWA-mapping 

approaches. is from C (Col-0 like) to G (non-Col like) led to a nonsynonymous 

amino acid substitution from Glu to Gln (A-A position E500Q. The SNP is residing 

in gene with TAIR ID AT2G13690, and the non-Col-0 allele did not show 

difference in relative WC upon Botrytis and PEG stress vs. PEG stress alone, 

when compared to accessions carrying the Col-0 allele (Supplementary Figure 

4.e) 

Amino acid substitution of the significant SNPs in response to 

combinatorial stress 

Using ME and univariate GWA mapping approaches revealed a number of 

QTLs containing candidate genes that could play a role in the response to 

combinatorial stresses. To support the relevance of the identified loci, several 

SNPs were found using both methods (Figure 6). This involves only a few loci 

though, for the response to Pieris and subsequent PEG the QTL on Chr 2 

comprising genes with IDs At2g36550 and At2g36560, linked to eight associated 
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SNPs and the QTL on Chr 3 around gene AT3G45910, linked to one associated 

SNP. For the response to Botrytis and PEG four common SNPs were found in 

both approaches, covering as many loci, around genes with IDs At1g48670, 

At1g56280 (DI19), At2g13690 and a larger region comprising At5g48120 – 

At5g48180. 

 

Figure 6. Venn diagram exhibit significant SNPs identified by ME and univariate GWA-
mapping methods for traits related to the combined Pieris and subsequent PEG treatment 
response (a), and the Botrytis and subsequent PEG treatment response (b).  

Although not all polymorphisms will be represented in the SNP markers used 

for GWAS analysis, some of the identified SNPs could be causal to the allelic 

variation. Therefore the allelic effect on any coding region was determined for 

these SNPs. SNP marker m73991 resides in At2g36550, encoding a Haloacid 

dehalogenase-like hydrolase (HAD) superfamily protein, with the allelic 

difference causing a non-synonymous amino acid substitution from an Asp to a 

Lys (A-A position N138K) residue in the non-Col-0 allele. Two additional SNPs, 

m73993 and m73994, cause non-synonymous changes to the coding region of 

At2g36560, encoding a protein of unknown function and the expression was 

very low, substituting Ala to Glu (A-A position A488E) and Glu to Gly (A-A 

position E420G) amino acids. SNP m111770 is residing in the intergenic region 

between genes with TAIR IDs At3g45910 and At3g45920, but is in LD (r=0.53) 

with another SNP causing a Val to Ile (A-A position V44I) substitution in the 

coding region of At3g45920. 

The allelic effect of SNP m33786 on DI19 gene was showed in Figure 4.e. 

SNP m60883 is residing in gene with TAIR ID AT2G13690. The coding sequence 
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substitution of SNP m60883 is from C (Col-0 like) to G (non-Col like) led to a 

nonsynonymous amino acid substitution from Glu to Gln (A-A position E500Q).  

PRX34 and RMG1 play a role in the response of PLA to 

consecutive biotic and PEG stresses 

A number of genes in LD with the significant SNPs have reported roles in 

response to biotic or abiotic stresses, but not to Pieris, Botrytis, or PEG. To 

determine if they play a role in response to these stresses, mutants for seven 

genes associated with response QTLs were further examined (Table 1). The HAD 

gene family member At2g36560 (Pieris and PEG) and DI19 (Botrytis and PEG) 

were identified by both ME and univariate GWA-mapping approaches. In total, 

nine homozygous T-DNA insertion mutants, one for each of these nine candidate 

genes, were further analysed.  

Plants were subjected to the same treatments as the HapMap accessions 

have been to (Figure 2). The di19 mutant exhibited small rosette in all 

conditions when compared to the wild type (Supplementary Figure 5). One-way 

ANOA was performed to test the significance of projected rosette area expansion 

of T-DNA insertion mutants to the wild type, it shows that the prx34 and bzip25 

mutants were more tolerant to Pieris herbivory (Figure 7.a) and the rmg1 

mutant was more tolerant to Botrytis infection when compared to the wild type 

(Figure 7.b). Two-way ANOVA was performed to test the significance of the 

response to PEG treatments compared to wild-type plants. When determining 

the response to single PEG, the prx34, di19 and rmg1 mutants were more 

tolerant than the wild type (Figure 7.c & d). When regarding the combinatorial 

treatments, the prx34 mutant was found to be more sensitive to the 

combination of Pieris and subsequent PEG treatment (Figure 7.e); while the arf4 

mutant was more tolerant to the combination of Botrytis and subsequent PEG 

treatment (Figure 7.f).  
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Figure7．Ratios of projected rosette areas (PLA) of T-DNA inerstion mutants lhca5, 

prx34, bzip25, dwf4, wrr4, rmg1, arf4, di19 and for the HAD gene family member 
with TAIR ID At2g36560 subjected to several (a)biotic stress treatments, compared 

to Col-0 wild type.  
a. Comparing plants treated with Pieris to the PLA of the same plants before 

treated with Pieris  
b. Comparing plnats treated with Botrytis to the PLA of the same plants before 

treated with Botrytis 
c. Ratio of PLA of the genotypes in figure 7.a after subjected to PEG, compared to 

the control (yellow). 
d. Ratio of PLA of genotypes in figure 7.b after subjected to PEG, compared to the 

control (yellow). 
e. Ratio of PLA of Col-0 wild type and the mutant plants after pre-treatment with 

Pieris and subsequent exposure to PEG, compared to plants exposed to PEG 
only (light grey).  

f. Ratio of PLA of Col-0 wild type and the mutant plants after subjected to pre-
treatment with Botrytis and subsequent exposed to PEG, compared to plants 
exposed to PEG only (dark grey). 

Two-way ANOVA was used for analysis of differences between mutants and wild 
type, samples comprised six plants per treatment per line. 
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The response of the extreme accessions to single and 

combined stresses 

Some accessions that exhibited a phenotype on the extreme ends of 

the spectrum (either more tolerant or more sensitive) to the combinatorial 

stress treatments were analysed for expression of the selected candidate 

genes upon exposure to different stress treatments. This involved four 

accessions responsive to Pieris and PEG and six accessions responsive to 

Botrytis and PEG (table 2).  

Table 2. Accessions showed extreme phenotype in response to combinatorial stress 
from the result of screening Hapmap population 

Treatment CS code Accessions Phenotype 

Pieris & PEG CS28201 Da(1)-12  Tolerant 

Pieris & PEG CS76105 Bur-0  Tolerant 

Pieris & PEG CS76124 Duk  Susceptible 

Pieris & PEG CS76156 Kulturen-1 Susceptible 

Botrytis & PEG CS76143 Hovdala-2  Tolerant 

Botrytis & PEG CS76147 In-0  Tolerant 

Botrytis & PEG CS76164 Ler-1  Tolerant 

Botrytis & PEG CS76214 Pro-0  Susceptible 

Botrytis & PEG CS76218 Rennes-1  Susceptible 

Botrytis & PEG CS28743 Sp-0 Susceptible 
 

Different responses to the combinatorial stress was found when 

compared to the result from screening the Hapmap accessions, Kulturen-1 

was tolerant to the Pieris & PEG combined stress when compare to single 

stress (Figure 8.a),  Ler-1 was susceptible to Botrytis & PEG when 

compared to single PEG while Rennes-1 and Sp-0 were tolerant to the 

combinatorial stress (Figure 8.b). No significant correlation between the 

result from the screening Hapmap population and the re-screen data, 

showing a variation of the environmental factors between the two times 

screening. Significant interaction between treatments and accessions were 

observed on DW (Supplementary Table 12). 
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Figure 8. Phenotypes of Arabidopsis accessions Da(1)-12, Bur-0 (more tolerant), 
Duk and Kulturen-1 (more sensitive), identified as extremes in the response to the 
Pieris and subsequent PEG treatment, and Hovdala-2, In-0, Ler-1 (more tolerant), 
Pro-0, Rennes-1 and Sp-0 (more sensitive), identified as extremes in the response 
to the Botrytis and subsequent PEG treatment. Vertical dashed line separate 
accessions were either tolerant or susceptible to combinatorial stress (result from 
screening the HapMap population).  
a. Rosette dry weights (DW) of accessions grown in control conditions (blue), 

after Pieris pre-treatment (green), after PEG treatment (yellow), and after the 
combinatorial Pieris and PEG treatment (grey). 

b. DW of accessions grown in control conditions (blue), after Botrytis pre-
treatment (purple), after PEG treatment (yellow), and after the combinatorial 
Botrytis and PEG treatment (lilac). 

Two-way ANOVA was used to compare accessions under single Pieris and single 
PEG to the control, or under the combinatorial treatment to the PEG treatment. * 
indicates mutants with a significant difference under single stress in comparison to 
the control, or under combinatorial stress in comparison to single PEG (p<0.05, 
**p<0.01, ***<0.001). Averages ± SE are shown, n=4. 
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Variation in candidate gene expression in extreme accessions 

grown under different stress conditions 

The expression of the candidate genes bZIP25, PRX33 (in LD with PRX34), 

PRX34, LHCA5, DWF4 was determined in the accessions Duk, Kulturen-1, Da(1)-

12, and Bur-0, grown under control, Pieris, PEG, and Pieris and subsequent PEG 

treatments (Figure 9). Three-way ANOVA to test the interaction between 

accessions and treatment was performed for bZIP25, PRX33, and LHCA5 

exhibited significant interaction between accessions, Pieris, and PEG 

(Supplementary Table 13). The five genes were downregulated in all accessions 

grown under PEG and combinatorial stresses. The expression under Pieris 

treatment exhibit contrasting expression direction when compared to the PEG 

treatment. In general, all genes were down-regulated under single PEG and the 

combinatorial stress. bZIP25 is more down-regulated in Kulturen-1 than other 

accessions under PEG treatment, the expression is less down-regulated in Bur-0 

under combinatorial stress when compared to single PEG treatment (Figure 9.a). 

PRX33 was less down-regulated in Da(1)-12 than other accessions under PEG 

treatment, the expression is more down-regulated in Da(1)-12 but less down-

regulated in Bur-0 under combinatorial stress in compression to single PEG 

stress (Figure 9.b). PRX34 is less down-regulated in Da(1)-12 and Duk than in 

Bur-0 and Kulturen-1, the expression was more down-regulated under the Pieris 

and PEG combined stress when compared to single PEG (Figure 9.c). LHCA5 was 

extreme down-regulated under PEG treatment but less down-regulated under 

the combinatorial treatment when compared to single PEG (Figure 9.d). DWF4 is 

less down-regulated than other accessions under PEG treatment, reduced down-

regulation was observed in Bur-0 and Kulturen-1 under Pieris combined stress 

when compared to single PEG treatment (Figure 9.e).    

The expression levels of the DI19, RMG1, ARF5, and WRR4 genes in 

response to the Botrytis treatment and the subsequent PEG conditions was 

studied in the 6 accessions; Pro-0, Rennes-1, Sp-0, Hovdala-2, In-0, and Ler-1 

(Figure 10). Three-way ANOVA to test the interaction between treatments and 

accessions of RMG1 and WRR4 showed significant interaction between 

accessions, Botrytis, and PEG treatments (Supplementary Table 14). Strong  
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expression of RMG1 was observed in Botrytis infection condition, the 

expression fold change up to 256 times relative expression fold change in 

accession Sp-0 (Figure 10.b). Under PEG stress, DI19 and WRR4 were up-

regulated in all accessions (Figure 10.a & d). variations of DI19 and ARF4 were 

observed among accessions; DI19 was up-regulated up to 4 times fold change in 

Hovdala-2 and ARF4 was up-regulated up to 8 times fold change in the same 

accession. Under combinatorial stress, all accessions exhibit down-regulation 

ARF4, except in Rennes-1 (Figure 10.c). Variation of RMG1 expression was found 

among accessions. The gene is down-regulated in Hovdala-2 but up-regulated in 

Sp-0 under combinatorial stress when compared to single PEG treatment.   

   
Figure 9. Relative rosette gene expression analysis of bZIP25 (a.),  PRX33 (b.), PRX34 
(c.), LHCA5 (d.), and DWF4 (e.) in four Arabidopsis accessions selected based on extreme 
phenotypes, after Pieris treatment (green), PEG treatment (yellow), and the combinatorial 
Pieris and subsequent PEG treatment (grey), compared to the expression under control, 
untreated, conditions. Two-way ANOVA was used to compare gene expressions under 
combinatorial stress to PEG for each accession. Average rel. expression differences 
observed in treatments compared to control conditions are shown ± SE; n=3.  * indicates  
a significant difference of gene expression under combinatorial stress when compared to 
the PEG (* p<0.05, **p<0.01, ***p<0.001) 
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Figure 10. Relative rosette gene expression analysis of DI19 (a.), RMG1 (b.), ARF4 (c.), 
and WRR4 (d.)  in four Arabidopsis accessions selected based on extreme phenotypes, 
after Botrytis treatment (Purple), PEG treatment (yellow), and the combinatorial Botrytis 
and subsequent PEG treatment (Pink), compared to the expression under control, 
untreated, conditions. Two-way ANOVA was used to compare gene expressions under 
combinatorial stress to PEG within each accession. Average rel. expression differences 
observed in treatments compared to control conditions are shown ± SE; n=3.  * indicates  
a significant difference of gene expression under combinatorial stress when compared to 
the PEG (* p<0.05, **p<0.01, ***p<0.001) 
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Discussion 

Comparing the PEG osmotic stress treatment with conventional 

drought stress 

PEG8000 was used to simulate drought stress. PEG and conventional 

drought by soil-drying is known to cause some differences in plant responses, 

such as for instance shown by differences in proline accumulation and leaf 

thickness in apple, while the impacts on Relative Water Content (RWC) and 

chlorophyll content are similar (Kautz et al., 2015). We expected that a PEG 

treatment would emphasize the osmotic aspects of drought and thus more the 

physiology related to drought tolerance, rather than plant architectural 

responses contributing to drought avoidance, like for example adaptations of the 

root system architecture (El-Soda et al., 2015). The latter would be much less 

expressed in our rock wool-based growth system anyhow, since the small rock 

wool cubes do not allow for root drought avoidance. The mean reason to revert 

to a PEG treatment was related to the difficulties we experienced in obtaining 

homogeneous drought on peat-based substrates for a large set of plants, which 

would be needed for a proper GWA analysis of the Arabidopsis HapMap 

population. We are aware of much more suitable systems, especially designed to 

screen for plant drought on soil, such as the Phenopsis system (Granier et al., 

2006), but logistic issues made us instead decide to use the PEG-mediated 

osmotic stress. There is also an important advantage of such approach, as we 

could use this in our rock wool based growth facilities equipped with imaging 

systems to record plant size and thus accurately measure plant growth (Bac-

Molenaar et al., 2016; Flood et al., 2016). Using an ebb-flood system to water 

the rock wool blocks also allowed us to reproducibly test different PEG-nutrient 

solution mixtures for the most suitable osmotic potential for screening. In order 

to verify that the PEG-nutrient solution induced similar, but more controlled, 

symptoms as observed upon conventional drought stress of plants raised on 

peat-based mixtures by withholding watering, we examined gene expression of 

a set of known drought responsive genes in both conditions and their respective 

controls (Figure 3).  The five tested genes are involved in the ABA-dependent 

and -independent regulatory system for drought responses (Shinozaki and 

Yamaguchi-Shinozaki, 2007). Since we observed comparable expression profiles 
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of these drought-responsive genes in response to PEG and soil-drying 

treatments, we concluded that the PEG8000 induced osmotic stress would be 

sufficiently suitable to study the Arabidopsis ‘drought’ response.  

Allelic effects on combinatorial stress responses 

Previous studies of Arabidopsis natural variation exhibited different effects of 

allelic variation on plant morphology and stress responses which led to the 

identification of the gene involved. For instance, GWA mapping of cellular traits 

identified the KUK gene involved in root development regulation and root growth 

(Meijon et al., 2014). Likewise, different alleles of the ACCELERATED CELL 

DEATH 6 (ACD6) gene were found to exhibit pleiotropy effects on pathogen 

resistance and results in plants with small rosettes (Todesco et al., 2010). In 

general, an allelic effect of a locus can be due to a single bp mutation, such as 

often found in EMS-mutagenized populations, which can be simple SNPs, for 

instance when such a SNP causes a non-synonymous amino acid substitution in 

one of the exons of the gene involved or when it causes an intron-exon splice 

junction error (Brown, 1996; Guyon-Debast et al., 2010). Both cases are likely 

to affect the amino acid sequence of the protein encoded by the gene, which can 

affect its function. For instance, a SNP causing alternative splicing of the 

FLOWERING LOCUS C (FLC) antisense transcript COOLAIR, resulted in 

differential expression of FLC and altered flowering time in Arabidopsis (Li et al., 

2015). Furthermore, natural accessions carrying a single SNP at the HIGH-

AFFINITY K+ TRANSPORTER 1;1 (AtHKT1;1) gene affected the expression of the 

gene leading to a difference in leaf Na+ accumulation (Baxter et al., 2010).  

In this study, we initially identified SNPs as markers for the traits we used to 

evaluate the response to single and combinatorial stresses. Of the two GWA 

approaches we employed, the univariate approach yielded more associated SNPs 

than the ME approach. This could be due to a higher number of false positives in 

univariate approach, which is known to occur when compared to the ME 

approach, as the latter also considers the within and the between trait(s) 

variation (Korte et al., 2012). The traits we measured (FW, DW, WC and PLA) 

are very general growth traits, likely to be genetically affected by allelic variation 

at many loci. So, even when heritabilities are high, which was the case for these 

traits (table 2), the multitude of small-effect QTLs could make it very difficult to 
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identify these QTLs (Kooke et al., 2016). This is also the reason we used an 

arbitrary threshold of –log(p)=4 to assign associated SNPs (van Rooijen et al., 

2015), instead of the much more conservative Bonferroni corrected threshold (–

log(p)=6.5) which is advised (Atwell et al., 2010). If this conservative threshold 

was used, we would only consider one associated SNP for the univariate GWA 

approach, m73995, close to gene ID At2g36550, for rosette PLA upon 

combinatorial Pieris and PEG stress (Supplementary Figure 2.a and 

supplementary Table 8). This same SNP was also identified in the ME GWA 

approach (Supplementary Figure 3.a and supplementary Table 10). For the 

response to Botrytis and PEG, only the ME GWA approach would have yielded 

significantly associated SNPs; m64241, close to the GENE WITH UNSTABLE 

TRANSCRIPT 15 (At2g18440); and m94602, close to an unnamed gene 

(At3g22690) involved in chloroplast RNA editing, and in LD with a region 

containing seven more genes (At3g22670-At3g22740), of which RNA-DIRECTED 

DNA METHYLATION 1 (RDM1), involved in DNA methylation and YELLOW 

SEEDLING 1 (YS1), involved in chloroplast RNA editing, have been analysed in 

some detail (Zhou et al., 2009; Law et al., 2010).   

To avoid false positives, we focussed on genes identified in both approaches 

for further analysis, as we considered those to be less likely to be false positive. 

The genetically best supported locus comprises two unnamed genes (At2g36550 

and At2g36560), supposedly involved in the response to Pieris and PEG. There 

are several SNPs in LD with the main associated SNP, all residing in the 

At2g36560 gene, which could explain the allelic variation. Unfortunately the KO 

mutant for this gene did not show any aberrant responses to the stress 

treatments in comparison to wild-type plants to support it as the most likely 

candidate underlying the allelic variation. It could be that the Col-0 allele is 

redundant, but that other accessions carry gain-of-function allelic variants 

affecting the phenotype. At2g36550 is a member of Haloacid dehalogenase-like 

hydrolase (HAD) superfamily protein and At2g36560 is a member of AT hook 

domain DNA-binding protein. The biological functions of the two genes haven’t 

yet to be studied. However, At2g36560 could act as a positive factor for gene 

expression. For instance, one of the AT hook motif DNA binding protein (PF1) 
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was found can bind to the promoter site of oat photochromic A3 (PHYA3) gene 

and could has influence on the gene expression (Nieto-Sotelo et al., 1994). 

In case of DW measured upon Botrytis and subsequent PEG stress, both 

mapping approaches identified SNP marker m33786 to be associated. This 

marker resides in an intron of the DI19 gene, but in LD with this marker there 

are three more genes: an unnamed gene encoding a CwfJ-like Zn-finger DNA 

binding protein, that is expressed in response to Cabbage leaf curl virus (CaLcuV) 

infection (Ascencio-Ibanez et al., 2008) (At1g56290); an unnamed gene which 

encodes a chaperone DnaJ-domain superfamily protein, expressed in response 

to oxidative stresses (At1g56300); and an unnamed gene that encodes a 

ribonuclease H-like superfamily protein (At1g56310). Although no SNP in any of 

these gene could be identified that would explain the allelic variation, the DI19 

gene is the most likely candidate underlying this QTL, as in our hands, the KO 

mutant was very small, under all tested conditions (Supplementary Figure 5), 

and we could not test it properly for response to stress treatments. The 

expression of Di19 can be found in seedlings, roots, rosettes, stems, flowers, 

and siliques (Milla et al., 2006). The gene is up-regulated under drought, but did 

not respond to ABA (Gosti et al., 1995), it is down-regulated under Botrytis 

infection, and the combination of Botrytis and subsequent drought (Coolen et al., 

2016). Liu et al. (2013) reported that the di19 knockout mutant was susceptible 

to drought and that the constitutive overexpression line was tolerant to drought. 

The gene encodes a Cys2/His2-type zinc-finger protein that functions as a 

transcription factor (Liu et al., 2013). The expression of DI19 can be modulated 

by Calcium-dependent Protein Kinases CPK3, CPK4, CPK11, and CPK12 via 

Ca2+-dependent signalling (Milla et al., 2006; Rodriguez Milla et al., 2006). 

Some of the CPK family proteins were reported to be involved in biotic stress 

resistances. For instance, CPK1 plays a role in Botrytis, Fusarium oxysporum, 

and Pseudomonas syringae pv.tomato DC3000 (Pst) resistance (Coca and San 

Segundo, 2010), while CPK4, CPK5, CPK6, and CPK11 are involved in Pst 

resistance (Boudsocq et al., 2010), CPK5, CPK6, and CPK11 are involved in 

Botrytis resistance (Gravino et al., 2015), and CPK3 and CPK13 act as positive 

regulators of PDF1.2 resistant to Spodoptera littoralis caterpillars (Kanchiswamy 

et al., 2010). Thus, we hypothesize that the down-regulation of DI19 under 

Botrytis infection is due to the negative regulation by CPKs.  
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Role of other candidate genes in response to single and 

combinatorial stresses  

Some candidate genes in LD with the significant SNPs have been reported to 

have a role in the response to stresses, but not yet in the response to Pieris, 

Botrytis, and PEG. We therefore identified homozygous T-DNA insertion mutants 

for as many of these genes and determined their phenotypes in response to 

treatments.  

Mutant prx34 was found to be more susceptible to the Pieris and PEG 

combinatorial stress (Figure 7). The univariate GWA-mapping on PLA showed 

another gene, PRX33 (AT3G49110), to be in LD with PRX34. Both genes encode 

cell-wall peroxidases (Valerio et al., 2004). PRX34 is more abundantly expressed 

than PRX33 (Sultana et al., 2015), and the expression of PRX33 is partially 

controlled by PRX34 (Daudi et al., 2012). Knockout mutant prx34 was found to 

exhibit reduced expression of both PRX33 and PRX34 and reduced 50% MAMP-

induced ROS production in apoplastic space (Daudi et al., 2012; O'Brien et al., 

2012). The double knock-out mutant prx33prx34 expressed a number of Pieris-

responsive genes such as VSP2, which were not expressed in the wild type (Liu 

et al., 2005; Dombrecht et al., 2007; Mammarella et al., 2014), as well as other 

JA and ET-responsive genes such as VSP, PR3, PR4 (Mammarella et al., 2014). 

It is possible that the resistance of the prx34 mutant to Pieris is due to the 

enhanced expression of VSP2. The prx33prx34 double knockout mutant also 

showed reduced expression of drought tolerance gene ETHYLENE RESPONSE 

FACTOR 1 (ERF1) (Cheng et al., 2013; Mammarella et al., 2014), which was 

negatively regulated by Pieris (De Vos et al., 2006). This could be the reason 

why the prx34 mutant was more sensitive to the consecutive Pieris and PEG 

stress combination instead of more tolerant as expected based on the response 

to Pieris alone.   

RMG1 encodes a NB-LRR-TIR protein and the promoter region contains two 

helitron-related repeats AtERP4 and AtERP11, which are the target by siRNAs 

and can be heavily methylated in all cytosine sequencing contexts (Yu et al., 

2013). It is a primary target of the RNA-directed DNA methylation (RdDM) and 

the expression can be enhanced by flg22 treatment in the knockout mutant of 
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gene Repressor Of Silencing 1 (ROS1) (Yu et al., 2013). Thus, the observed 

phenotype of rmg1 mutants in response to stresses could be due to the RMG1 

involved RdDM. In addition, the body of the defense responsive gene WRKY22 

was found at the 5’ part of the open reading frame ORF of RMG1 (Yu et al., 

2013), which suggests a epigenetic control of the two genes under multiple 

stresses.  

When looking at the effect of biotic pre-treatment on plants in response to 

PEG, we found the Pieris pre-treatment has positive effect on prx34 mutant and 

the Botrytis pre-treatment has positive influence on rmg1 mutant in response to 

PEG stress (Figure 7). Comparing candidate genes expression under the 

combinatorial stress  to PEG stress, the expression of PRX34 is more down-

regulated under the combinatorial stress when compared to single PEG stress 

(Figure 9). Negative effects of Botrytis pre-treatment was observed on DI19 

gene expression in response to drought stress (Figure 10). We hypothesised the 

interaction between biotic and abiotic stress responses can be synergistic, 

antagonistic, or neutral. In this study, additive effects was found on arf4 mutant, 

which did not show significant responses to individual Botrytis and PEG 

treatments but was tolerant to the combination. Antagonistic effect was 

observed on prx34 mutant, the mutant was tolerant to Pieris and PEG stresses, 

but was susceptible to the combination of Pieris and PEG when compared to the 

wild type (Figure 7). Neutral effect was observed on rmg1 mutant, the mutant 

was tolerant to individual Botrytis and PEG treatments, but did not show 

different phenotype under the combination of Botrytis and PEG treatment when 

compared to the wild type. This suggests it will be impossible to obtain 

genotypes that would be tolerant to both single and combinatorial stresses. To 

illustrate this, overexpression of PRX34 and ARF4 could result in enhanced 

tolerance to combinatorial stresses, but this is likely to reduce the tolerance to 

each of the biotic single stresses.  
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Conclusion 

To conclude, this study used two GWA-mapping approaches and identified a 

number of candidate genes exhibited allelic variation in the response to 

combinatorial stress. Genes. To confirm the allelic effect on stress responses, 

genetic complementation tests to examine the biological function of the different 

alleles in response to different stress conditions will be needed. We validated the 

biological function of nine genes, of which seven genes were in LD with the 

identified associated SNPs, not the gene in which the SNP resides. These genes 

have reported functions in response to some stresses, in single and 

combinatorial stress conditions. Antagonistic interaction between Pieris and PEG 

was observed for the prx34 mutant, and antagonistic interaction between 

Botrytis and PEG for the rmg1 mutant. The expression of candidate genes in 

single and combinatorial conditions was measured from Arabidopsis accessions. 

However, we did not observe a relation between the variation of the phenotypic 

responses in Arabidopsis natural accessions and the variation in candidate gene 

expression. A powerful analysing method such as algorithm locally linear 

embedding graph generator (LEGG) (Van Poecke et al., 2007) could be useful to 

define relationships between expression profile and phenotypic variances in 

response to stresses. 

 

  



GWA-mapping of biotic & osmotic stress responses 

 

97 

Acknowledgement  

We thank Taede Stoker, Gerrit Stunnenberg, and Pauline Sanderson of 

Unifarm, Wageningen UR, for their help with plant propagation. We acknowledge 

Dr. Yifang Chen (China Agriculture University, PR China) for providing seeds of 

the di19 mutant. We are grateful to the Entomology group of Wageningen 

University for providing us with Pieris rapae larvae, and the Plant-Microbe 

Interactions group of Utrecht University and the Phytopathology group of 

Wageningen University for providing us with Botrytis cinerea cultures. We thank 

Prof. Maarten Koornneef and Dr. Robert Akkers for critical reading of the 

manuscript and numerous very useful suggestions. This work was financially 

supported by The Netherlands Organization for Scientific Research (NWO) 

through the Technology Foundation, Perspective Programme ‘Learning from 

Nature’ [STW10988]. 

  



Chapter 3 

 

98 

References 

Achuo EA, Prinsen E, Höfte M (2006) Influence of drought, salt stress and 
abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici 
Plant Pathology Volume 55, Issue 2. In Plant Pathology, Vol 55, pp 178-186 

Appel HM, Maqbool SB, Raina S, Jagadeeswaran G, Acharya BR, Hanley JC, 
Miller KP, Hearnes L, Jones AD, Raina R, Schultz JC (2014) Transcriptional and 
metabolic signatures of Arabidopsis responses to chewing damage by an insect herbivore 
and bacterial infection and the consequences of their interaction. Frontiers in Plant Science 
5: 441 

Ascencio-Ibanez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, 
Hanley-Bowdoin L (2008) Global analysis of Arabidopsis gene expression uncovers a 
complex array of changes impacting pathogen response and cell cycle during geminivirus 
infection. Plant Physiol 148: 436-454 

Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic 
stresses: from genes to the field. Journal of Experimental Botany 63: 3523-3543 

Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic 
stresses: from genes to the field. J Exp Bot 63: 3523-3543 

Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, 
Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, 
Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, 
Jones JD, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, 
Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M (2010) Genome-wide 
association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465: 627-
631 

Bac-Molenaar JA, Fradin EF, Becker FF, Rienstra JA, van der Schoot J, 
Vreugdenhil D, Keurentjes JJ (2015) Genome-Wide Association Mapping of Fertility 
Reduction upon Heat Stress Reveals Developmental Stage-Specific QTLs in Arabidopsis 
thaliana. Plant Cell 27: 1857-1874 

Bac-Molenaar JA, Granier C, Keurentjes JJ, Vreugdenhil D (2016) Genome-
wide association mapping of time-dependent growth responses to moderate drought stress 
in Arabidopsis. Plant Cell Environ 39: 88-102 

Baxter I, Brazelton JN, Yu D, Huang YS, Lahner B, Yakubova E, Li Y, 
Bergelson J, Borevitz JO, Nordborg M, Vitek O, Salt DE (2010) A coastal cline in 
sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium 
transporter AtHKT1;1. PLoS Genet 6: e1001193 

Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, 
Cheng S-H, Sheen J (2010) Differential innate immune signalling via Ca2+ sensor 
protein kinases. 464: 418-422 

Brown JW (1996) Arabidopsis intron mutations and pre-mRNA splicing. Plant J 
10: 771-780 

Chao DY, Silva A, Baxter I, Huang YS, Nordborg M, Danku J, Lahner B, 
Yakubova E, Salt DE (2012) Genome-wide association studies identify heavy metal 
ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis 
thaliana. PLoS Genet 8: e1002923 

Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE 
RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to 
different cis-acting elements in response to different stress signals. Plant Physiol 162: 
1566-1582 

Coca M, San Segundo B (2010) AtCPK1 calcium-dependent protein kinase 

mediates pathogen resistance in Arabidopsis. Plant J 63: 526-540 
Coolen S, Proietti S, Hickman R, Davila Olivas NH, Huang PP, Van Verk MC, 

Van Pelt JA, Wittenberg AH, De Vos M, Prins M, Van Loon JJ, Aarts MG, Dicke M, 
Pieterse CM, Van Wees SC (2016) Transcriptome dynamics of Arabidopsis during 
sequential biotic and abiotic stresses. Plant J  



GWA-mapping of biotic & osmotic stress responses 

 

99 

Daudi A, Cheng Z, O'Brien JA, Mammarella N, Khan S, Ausubel FM, Bolwell 
GP (2012) The apoplastic oxidative burst peroxidase in Arabidopsis is a major component 
of pattern-triggered immunity. Plant Cell 24: 275-287 

De Vos M, Van Zaanen W, Koornneef A, Korzelius JP, Dicke M, Van Loon 
LC, Pieterse CMJ (2006) Herbivore-Induced Resistance against Microbial Pathogens in 
Arabidopsis. Plant Physiology 142: 352-363 

Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of 
plant-pathogen interactions. Nat Rev Genet 11: 539-548 

Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt 
GP, Sewelam N, Schenk PM, Manners JM, Kazan K (2007) MYC2 differentially 
modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19: 2225-
2245 

El-Soda M, Kruijer W, Malosetti M, Koornneef M, Aarts MG (2015) 
Quantitative trait loci and candidate genes underlying genotype by environment interaction 
in the response of Arabidopsis thaliana to drought. Plant Cell Environ 38: 585-599 

Filiault DL, Maloof JN (2012) A genome-wide association study identifies 
variants underlying the Arabidopsis thaliana shade avoidance response. PLoS Genet 8: 
e1002589 

Flood PJ, Kruijer W, Schnabel SK, van der Schoor R, Jalink H, Snel JF, 
Harbinson J, Aarts MG (2016) Phenomics for photosynthesis, growth and reflectance in 
Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant 
Methods 12: 14 

Gosti F, Bertauche N, Vartanian N, Giraudat J (1995) Abscisic acid-dependent 
and -independent regulation of gene expression by progressive drought in Arabidopsis 
thaliana. Mol Gen Genet 246: 10-18 

Granier C, Aguirrezabal L, Chenu K, Cookson SJ, Dauzat M, Hamard P, 
Thioux JJ, Rolland G, Bouchier-Combaud S, Lebaudy A, Muller B, Simonneau T, 
Tardieu F (2006) PHENOPSIS, an automated platform for reproducible phenotyping of 

plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of 
an accession with low sensitivity to soil water deficit. New Phytol 169: 623-635 

Gravino M, Savatin DV, Macone A, De Lorenzo G (2015) Ethylene production 
in Botrytis cinerea- and oligogalacturonide-induced immunity requires calcium-dependent 
protein kinases. Plant J 84: 1073-1086 

Guyon-Debast A, Lecureuil A, Bonhomme S, Guerche P, Gallois JL (2010) A 
SNP associated with alternative splicing of RPT5b causes unequal redundancy between 
RPT5a and RPT5b among Arabidopsis thaliana natural variation. BMC Plant Biol 10: 158 

Hirt H (2009) Plant Stress Biology: From Genomics to Systems Biology. Wiley 
Hirt H, Shinozaki K (2004) Plant Responses to Abiotic Stress. Springer 
Kanchiswamy CN, Takahashi H, Quadro S, Maffei ME, Bossi S, Bertea C, 

Zebelo SA, Muroi A, Ishihama N, Yoshioka H, Boland W, Takabayashi J, Endo Y, 
Sawasaki T, Arimura G (2010) Regulation of Arabidopsis defense responses against 
Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biol 10: 97 

Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, 
Eskin E (2010) Variance component model to account for sample structure in genome-
wide association studies. Nat Genet 42: 348-354 

Kautz B, Noga G, Hunsche M (2015) PEG and drought cause distinct changes in 
biochemical, physiological and morphological parameters of apple seedlings. Acta 
Physiologiae Plantarum 37: 1-6 

Kooke R, Kruijer W, Bours R, Becker F, Kuhn A, van de Geest H, Buntjer J, 
Doeswijk T, Guerra J, Bouwmeester H, Vreugdenhil D, Keurentjes JJ (2016) 
Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic 
Architecture of Morphological Traits in Arabidopsis. Plant Physiol 170: 2187-2203 

Korte A, Vilhjalmsson BJ, Segura V, Platt A, Long Q, Nordborg M (2012) A 
mixed-model approach for genome-wide association studies of correlated traits in 
structured populations. Nat Genet 44: 1066-1071 

Kruijer W, Boer MP, Malosetti M, Flood PJ, Engel B, Kooke R, Keurentjes 
JJB, van Eeuwijk FA (2015) Marker-Based Estimation of Heritability in Immortal 
Populations. Genetics 199: 379-398 



Chapter 3 

 

100 

Kuromori T, Sugimoto E, Shinozaki K (2011) Arabidopsis mutants of 
AtABCG22, an ABC transporter gene, increase water transpiration and drought 
susceptibility. Plant J 67: 885-894 

Law JA, Ausin I, Johnson LM, Vashisht AA, Zhu JK, Wohlschlegel JA, 
Jacobsen SE (2010) A protein complex required for polymerase V transcripts and RNA- 
directed DNA methylation in Arabidopsis. Curr Biol 20: 951-956 

Li P, Tao Z, Dean C (2015) Phenotypic evolution through variation in splicing of 
the noncoding RNA COOLAIR. Genes Dev 29: 696-701 

Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz JO (2010) Association 
mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proc Natl 
Acad Sci U S A 107: 21199-21204 

Liu WX, Zhang FC, Zhang WZ, Song LF, Wu WH, Chen YF (2013) Arabidopsis 
Di19 functions as a transcription factor and modulates PR1, PR2, and PR5 expression in 
response to drought stress. Mol Plant 6: 1487-1502 

Liu Y, Ahn JE, Datta S, Salzman RA, Moon J, Huyghues-Despointes B, 
Pittendrigh B, Murdock LL, Koiwa H, Zhu-Salzman K (2005) Arabidopsis vegetative 
storage protein is an anti-insect acid phosphatase. Plant Physiol 139: 1545-1556 

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using 
real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408 

Mammarella ND, Cheng Z, Fu ZQ, Daudi A, Bolwell GP, Dong X, Ausubel 
FM (2014) Apoplastic peroxidases are required for salicylic acid-mediated defense against 
Pseudomonas syringae. Phytochemistry  

Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen 
interactions. Current Opinion in Plant Biology 8: 409-414 

Meijon M, Satbhai SB, Tsuchimatsu T, Busch W (2014) Genome-wide 
association study using cellular traits identifies a new regulator of root development in 
Arabidopsis. 46: 77-81 

Milla MA, Townsend J, Chang IF, Cushman JC (2006) The Arabidopsis AtDi19 
gene family encodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-
independent dehydration, high-salinity stress and light signaling pathways. Plant Mol Biol 
61: 13-30 

Narsai R, Wang C, Chen J, Wu J, Shou H, Whelan J (2013) Antagonistic, 
overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions 
with abiotic stress. BMC Genomics 14: 93 

Nieto-Sotelo J, Ichida A, Quail PH (1994) PF1: an A-T hook-containing DNA 
binding protein from rice that interacts with a functionally defined d(AT)-rich element in 
the oat phytochrome A3 gene promoter. The Plant Cell 6: 287-301 

O'Brien JA, Daudi A, Finch P, Butt VS, Whitelegge JP, Souda P, Ausubel 
FM, Bolwell GP (2012) A peroxidase-dependent apoplastic oxidative burst in cultured 
Arabidopsis cells functions in MAMP-elicited defense. Plant Physiol 158: 2013-2027 

Ogura T, Busch W (2015) From phenotypes to causal sequences: using genome 
wide association studies to dissect the sequence basis for variation of plant development. 
Curr Opin Plant Biol 23: 98-108 

Onate-Sanchez L, Vicente-Carbajosa J (2008) DNA-free RNA isolation 
protocols for Arabidopsis thaliana, including seeds and siliques. BMC Res Notes 1: 93 

Pareek A, Sopory SK, Bohnert H (2010) Abiotic Stress Adaptation in Plants: 
Physiological, Molecular and Genomic Foundation. Springer Netherlands 

Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking 
by small-molecule hormones in plant immunity. Nat Chem Biol 5: 308-316 

Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC 
(2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28: 489-521 

Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, 
and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant 
Physiol 162: 1849-1866 

Prasch CM, Sonnewald U (2015) Signaling events in plants: Stress factors in 
combination change the picture. Environmental and Experimental Botany 114: 4-14 



GWA-mapping of biotic & osmotic stress responses 

 

101 

Ramegowda V, Senthil-Kumar M (2015) The interactive effects of 
simultaneous biotic and abiotic stresses on plants: mechanistic understanding from 
drought and pathogen combination. J Plant Physiol 176: 47-54 

Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, 
Costantino P, Bones AM, Nielsen HB, Mundy J (2013) Transcriptome Responses to 
Combinations of Stresses in Arabidopsis. Plant Physiology 161: 1783-1794 

Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous 
biotic and abiotic stress: molecular mechanisms. Plants 3: 458-475 

Rodriguez Milla MA, Uno Y, Chang I-F, Townsend J, Maher EA, Quilici D, 
Cushman JC (2006) A novel yeast two-hybrid approach to identify CDPK substrates: 
Characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger 
protein1. FEBS Letters 580: 904-911 

Sewelam N, Oshima Y, Mitsuda N, Ohme-Takagi M (2014) A step towards 
understanding plant responses to multiple environmental stresses: a genome-wide study. 
Plant Cell Environ 37: 2024-2035 

Shaik R, Ramakrishna W (2013) Genes and co-expression modules common to 
drought and bacterial stress responses in Arabidopsis and rice. PLoS One 8: e77261 

Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in 
drought stress response and tolerance. J Exp Bot 58: 221-227 

Sokal RR RF (1981) Biometry the Principles and Practice of Statistics in Biological 
Research (2nd ed.). . WH Freeman and Company, San Francisco, USA  

Staats M, Van Kan JAL (2012) Genome update of Botrytis cinerea strains 
B05.10 and T4. Eukaryotic Cell 11: 1413-1414 

Sultana N, Florance HV, Johns A, Smirnoff N (2015) Ascorbate deficiency 
influences the leaf cell wall glycoproteome in Arabidopsis thaliana. Plant Cell Environ 38: 
375-384 

Sun G, Zhu C, Kramer MH, Yang SS, Song W, Piepho HP, Yu J (2010) 
Variation explained in mixed-model association mapping. 105: 333-340 

Todesco M, Balasubramanian S, Hu TT, Traw MB, Horton M, Epple P, 
Kuhns C, Sureshkumar S, Schwartz C, Lanz C, Laitinen RAE, Huang Y, Chory J, 
Lipka V, Borevitz JO, Dangl JL, Bergelson J, Nordborg M, Weigel D (2010) Natural 
allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. 465: 632-636 

Valerio L, De Meyer M, Penel C, Dunand C (2004) Expression analysis of the 
Arabidopsis peroxidase multigenic family. Phytochemistry 65: 1331-1342 

Van Poecke RMP, Sato M, Lenarz-Wyatt L, Weisberg S, Katagiri F (2007) 
Natural Variation in RPS2-Mediated Resistance among Arabidopsis Accessions: Correlation 
between Gene Expression Profiles and Phenotypic Responses. The Plant Cell 19: 4046-
4060 

van Rooijen R, Aarts MG, Harbinson J (2015) Natural genetic variation for 
acclimation of photosynthetic light use efficiency to growth irradiance in Arabidopsis. Plant 
Physiol 167: 1412-1429 

Van Wees SCM, Van Pelt JA, Bakker PAHM, Pieterse CMJ (2013) Bioassays 
for assessing jasmonate-dependent defenses triggered by pathogens, herbivorous Insects, 
or beneficial rhizobacteria. Methods in Molecular Biology 1011: 35-49 

Yoshioka K, Shinozaki K (2009) Signal Crosstalk in Plant Stress Responses. 
Wiley 

Yu A, Lepere G, Jay F, Wang J, Bapaume L, Wang Y, Abraham AL, 
Penterman J, Fischer RL, Voinnet O, Navarro L (2013) Dynamics and biological 
relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci U 
S A 110: 2389-2394 

Zhou W, Cheng Y, Yap A, Chateigner-Boutin AL, Delannoy E, Hammani K, 
Small I, Huang J (2009) The Arabidopsis gene YS1 encoding a DYW protein is required 
for editing of rpoB transcripts and the rapid development of chloroplasts during early 
growth. Plant J 58: 82-96 

 



Chapter 3 

 

102 

Supporting Information 

Additional supporting information may be download via link 

https://www.dropbox.com/sh/hb95t5dwvxbsc1u/AAB2Z7Q1DPSwCCU-

oaTBBi2Pa?dl=0  



 

 

 

 

Genome wide association mapping of the Arabidopsis 

thaliana growth response to the sequential 

combination of drought and Botrytis cinerea infection  

 

Pingping Huang1, Mohamed El-Soda2, Katarzyna W. Wolinska1, Silvia Coolen4, 

Hans van Pelt4, Corné Pieterse4, Jan van Kan5, Mark G. M. Aarts1. 

 

 

 

 

 

 

 

1Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB, 
Wageningen, the Netherlands.  

2  Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.  

3Plant-Microbe Interactions, Department of Biology, Utrecht University, P.O. Box 
800.56, 3508 TB, Utrecht, the Netherlands.  

4Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 
PB, Wageningen, the Netherlands.   



Chapter 4 

 

104 

Abstract 

There is an increasing demand to understand the genetics underlying plant 

response to multiple stresses. Therefore, we designed this work to study the 

effect of drought pre-treatment on plant response to a subsequent Botrytis 

cinerea infection to identify genes responsible for tolerating this combinatorial 

stress. Genome-wide association mapping was performed on plant rosette dry 

weight of 350 Arabidopsis thaliana accessions subjected to the combinatorial 

stress. In addition, Arabidopsis accessions were exposed to a single Botrytis 

cinerea treatment without any pre-treatment. We identified the effect of a 

number of significant SNPs that were associated with the DW plasticity under 

stresses, as well as candidate genes that could play a role in the response to the 

combinatorial stress. Furthermore, we validated the biological functions of six 

candidate genes under single drought or Botrytis stress and the combinatorial 

stress using T-DNA insertion mutants and the transcriptome data of the most 

extreme eight accessions. Allelic effect was observed on MYB46 gene expression 

under combinatorial stress comparing to single Botrytis treatment. The role of 

MYB46, PAL4 and HSFA1b in response to the interaction of drought and Botrytis 

infection was highlighted. We observed antagonistic interaction between drought 

and Botrytis infection, and the effect of drought pre-treatment on subsequent 

Botrytis infection is negative.  

 

Keywords 

Arabidopsis thaliana, genome-wide association mapping, (a)biotic stress 

tolerance, multiple stresses.   
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Introduction 

In nature, plants are exposed to various stress that often occur 

simultaneously or sequentially. When stress factors interfere negatively with 

plants, this will limit its performance causing a substantial yield reduction (Hirt 

and Shinozaki, 2004). 

Plant responses to biotic and abiotic stresses are often mediated through 

hormone-signaling pathways. For example, abscisic acid (ABA) plays a major 

role in the response to abiotic stress such as drought and salinity (Shinozaki and 

Yamaguchi-Shinozaki, 2007). Jasmonic acid (JA) and ethylene (ET) signaling 

pathways are essential in reacting to necrotrophic fungi and chewing insects 

(Vos et al., 2013 ). Salicylic acid (SA) activates plant defense mechanisms upon 

the infection with biotrophic fungi (Dodds and Rathjen, 2010; Pieterse et al., 

2009). Several additional hormones such as brassinosteroids (BR), auxins (IAA) 

and cytokinins (CK) are also involved in regulating plant responses to biotic and 

abiotic stress (Hirt, 2009; Pareek et al., 2010; Pieterse et al., 2012). The 

interaction between plant response to biotic and abiotic stress can be either 

synergistic, e.g. positive interactions between ABA and IAA or antagonistic, e.g. 

negative interactions between JA and SA, ABA and SA, ABA and JA, and between 

ABA and ET (Yoshioka and Shinozaki, 2009). 

The mechanisms by which plants respond to individual biotic or abiotic stress 

were extensively studied at both molecular and cellular levels. For example, 

recent comparative transcriptome studies identified unique as well as 

overlapping genes playing a role in Arabidopsis thaliana response to several 

single biotic and abiotic stress (Narsai et al., 2013; Ramegowda and Senthil-

Kumar, 2015; Sewelam et al., 2014; Shaik and Ramakrishna, 2013). In contrast, 

far less information is known on the plant response to simultaneous or 

consecutive biotic and/or abiotic stresses. Generally, consecutive stresses 

trigger the expression of specific multiple stress-responsive genes, indicating a 

tailored combinatorial stress signaling network (Atkinson and Urwin, 2012; 

Sewelam et al., 2014). For example, earlier studies (Anderson et al., 2004; Pré 

et al., 2008; Vos et al., 2013; Yoshioka and Shinozaki, 2009) showed that 

Botrytis infection triggers the expression of defense responsive genes such as 
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PDF1.2 in the JA-ET signaling pathway through the ERF branch, which interacts 

negatively with the drought induced ABA responses. 

The present study focused on identifying genes underlying Arabidopsis 

thaliana responses to consecutive drought and infection by a necrotrophic 

fungus, Botrytis cinerea. The objectives were to: 1) observe the effect of the 

prior drought stress on subsequent Botrytis infection, 2) study the variation in 

allelic effect in response to single Botrytis and the combinatorial stresses and 3) 

identify genes that could play a role in the response to the single and 

combinatorial stresses. To achieve these goals we conducted genome-wide 

association mapping (GWA-mapping) for the rosette dry weight (DW) of 350 

Arabidopsis accessions (Baxter et al., 2010; Li et al., 2010). Our results 

identified a number of genes exhibited allelic effects on combinatorial stress 

responses, and reported the new role of several known gene in response to the 

consecutive drought and Botrytis infection.   
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Materials and Methods 

Plant material and growth conditions 

For GWA-mapping experiments, the HapMap population (Li et al., 2010) was 

used. Seeds of the T-DNA insertion mutants (Supplementary Table 1) were 

ordered from The Nottingham Arabidopsis Stock Centre (NASC) 

(http://Arabidopsis.info/). Seeds of the HEAT SHOCK TRANCRIPTION FACTOR 1b 

(HSFA1b) over-expression lines and its wild-type are described by Bechtold et al 

(2013).  

Seeds were stratified at 4oC for two days in the dark, then sown on river 

sand and watered with half-strength Hoagland nutrient solution as described by 

Van Wees et al (2013). Plants were grown in a climate-controlled growth 

chamber under short day conditions (8 hrs day/16 hrs night) at 21oC, 70% 

relative humidity and 100 μmol m-2s-1 irradiation. Fourteen-day-old seedlings 

were transferred to individual pots filled with a mixture of river sand and peat 

(1:1, v/v) and watered three times per week, at the bottom of each pot.  

Botrytis spore preparation 

Botrytis cinerea strain B05.10 (Staats and Van Kan, 2012) was grown for 

two weeks at room temperature on half-strength potato dextrose agar plates 

(PDA; Difco Laboratories) containing 100 µg/ml penicillin and 200 µg/ml 

streptomycin. Spores were collected, filtered through glass wool and then re-

suspended in half-strength potato dextrose broth (PDB; Difco Laboratories) to a 

final density of 1 x 105 spores/ml. Three hours after incubation spores were used 

for inoculation by applying six 5-µl droplets on six Arabidopsis leaves. 

Single and combinatorial stress application 

Screening the Hapmap population: For the combinatorial stress experiments, i.e. 

drought on subsequent Botrytis, four-week-old Arabidopsis plants of the 

Hapmap population were subjected to drought by withholding water for seven 

days and then re-watered to recover for one day. Thereafter, plants were 

inoculated with Botrytis by pipetting six 5-µl droplets of spore suspension 

(1×105 spores/ml) onto six leaves (one droplet per leaf). For the single Botrytis 

http://arabidopsis.info/
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treatment, 5-week-old plants were inoculated with Botrytis as described above. 

Plants in both treatments were incubated at 100% relative humidity (RH) for 3 

days, after which samples were collected (Figure 1.a).  

Screening T-DNA mutants: In addition to the two treatments described in the 

previous paragraph, two mock treatments replaced the Botrytis treatment where 

six 5-µl droplets PDB were applied on six leaves per plants. Two additional 

treatments were applied in which one treatment involved watering plants for 34 

days and the other treatment involved watering plants for 27 days and then 

subject them to drought for six days (Figure 1.b). After mock or Botrytis 

infection, plants were maintained at 100% RH for three days. For drought 

treatments, six plants of each mutant/wild-type were used. For the Botrytis 

treatment, 48 leaves (8 plants) of each mutant/wild-type were used. Samples 

for gene expression were collected twice, directly after drought stress and three 

days after Botrytis treatment. 

Screening extreme accessions of the Hapmap population: This experiment was 

carried out with the same design as described in the previous paragraph except 

that an additional sample for gene expression was collected after one day (at 

time point 2, Figure 1.b) of Botrytis infection treatment.  
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Figure 1. Experimental design for treatment of Arabidopsis plants subjected to drought, 
Botrytis cinerea infection and combinatorial stress. Conditions are indicated in different 
colors: control (dark blue); drought (yellow); Botrytis treatment (purple); rehydration 
after drought (light blue). Dashed line indicate days after treatment and the growth date. 
Vertical arrows indicate sampling time point (a.) and sampling time points (T1-T3). a. 
experimental design for screening Hapmap accessions in response to drought and the 
consecutive drought and Botrytis infection, b. experimental design for T-DNA insertion 
mutants, wild-type and Arabidopsis accessions in different conditions.  

Genome-Wide Associations mapping 

GWA-mapping was performed using the scanGLS software as described by 

Kang et al (2010) and Kruijer et al (2015). In brief, this approach performs 

generalized least squares (GLS) calculations conditional on variance components 

estimated in the model without markers. Thereafter, SNPs with minor allele 

frequency (MAF) lower than 5% were excluded. Marker-trait associated P-values 

at 10-4 with type I error was used to evaluate significant SNPs. The proportion of 

explained phenotypic variance of each significant SNP was the criterion used to 

identify significant SNPs as described by Sun et al (2010). The information of 

SNPs in the linkage disequibrium (LD) with the significant SNPs were identified 

by the online LD tool (http://dev3.ab.wur.nl/AthaLD), as well as the information 

of coding sequence substitution and amino acid substitution. 

http://dev3.ab.wur.nl/AthaLD
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Selection of candidate genes 

Gene ontology annotation of selected candidate genes for the quantitative 

trait loci (QTL) identified after the GWA analysis was found in The Arabidopsis 

Information Resource (TAIR; www.Arabidopsis.org/tools/bulk/go/index.jsp). 

Genes characterized by one or more of the following criteria were considered as 

candidates: 1) Genes known to be responsive to biotic and abiotic stimulus and 

expressed under abiotic stress and hormonal (JA and ABA) treatments; 2) Genes 

with reported physiological functions in response to stress conditions and 

expressed under abiotic stresses and hormonal (JA and ABA) treatments 

(http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi). 3) Genes with reported 

physiological functions in response to stress conditions and responsive to biotic 

and abiotic stimuli.  

Quantitative reverse transcriptase (qRT)-PCR  

To determine the expression of the candidate genes in Arabidopsis 

accessions with an extreme phenotype compared to the whole set of accessions, 

total RNA was extracted from rosettes following the protocol described by 

Onate-Sanchez and Vicente-Carbajosa (2008). Thereafter, cDNA was 

synthesized from 800 ng of total RNA using an iScript cDNA synthesis kit (Bio-

Rad) at 25°C for 5 minutes, 42°C for 30 minutes and 85°C for 5 minutes. cDNA 

was diluted ten times to be used in the quantitative reverse transcription PCR 

(qRT-PCR). Based on the transcriptome data collected from several drought, 

osmotic and Botrytis studies using the Genevestigator web tool 

http://refgenes.org/rg, unnamed gene At3G19460 was considered to be the 

most stable gene expressed across experiments and was selected as reference 

gene for gene expression studies. The qRT-PCR was performed using iQ SYBR® 

Green Supermix (cat. no. 170-8885) on a Bio-Rad CFX96 real-time PCR system 

set at 95oC for 4 minutes, followed by 40 cycles of 95oC for 10 seconds and 55oC 

for 30 seconds. The primer sequences used to amplify the four investigated 

genes, i.e. TUBLINE 5 (TUB5), PHENYLALANINE AMMONIA-LYASE 4 (PAL4), MYB 

DOMAIN PROTEIN 46 (MYB46) and HEAT SHOCK FACTOR 1b (HSFA1b), are 

provided in Supplementary Table 2 and their expression was measured in eight 

accessions, i.e. Est-1 (CS76127), Sei-0 (CS28729), Kulturen-1 (CS76156), RRS-

7 (CS28713), (Col-0 (CS76113), Rsch-4 (CS76222), Cnt-1 (CS28160), Can-0 

http://www.arabidopsis.org/tools/bulk/go/index.jsp
http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
http://refgenes.org/rg
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(CS76109). Gene primers were designed at the identical sequence region of the 

eight accessions.  

Statistical analysis 

Pearson’s correlation coefficient, one-way and 2-way ANOVAs were 

performed using GenStat for Windows 16th Edition (VSN International Ltd., 

Hempstead, UK). Three-way ANOVA was performed as described by (Sokal RR, 

1981). Student’s t-test was used to compare rosette dry weight (DW) and lesion 

diameter of plants grown under the combinatorial stress with those grown under 

the single Botrytis stress. For lesion diameter, 48 leaves (eight plants) per 

accession or line were used, whereas, for DW, five plants per accession or line 

were used.   
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Results 

Phenotyping the Arabidopsis accessions under drought and the 

combinatorial stress  

To identify genes that are involved in the response to consecutive abiotic 

and biotic stress the Arabidopsis HapMap population was grown for four weeks 

under normal, well-watered conditions and then subjected to one week of 

drought. Thereafter plants were watered and allowed to recover for one day 

(rehydration), before being infected with Botrytis. Rosettes of plants were 

harvested after three days Botrytis treatment and used to determine rosette dry 

weights (DW) (Figure 1.a). High broad sense Heritabilities (H2) of DWs under 

single Botrytis treatment (0.69) and the combinatorial stress (0.73) were 

observed. High Pearson’s correlation coefficient (0.81) between the two 

treatments was found. Two-way ANOVA of DW was used to test the interaction 

between treatments and accessions. Significant interaction between treatments 

and accessions was found (p<0.001), indicating that there is genetic variation 

for the drought pre-treatment effect.   

Univariate GWA-mapping of DW residuals identified SNPs 

associated with phenotypic plasticity   

GWA-mapping using the DW residuals that was calculated from a regression 

analysis of DW under consecutive drought and Botrytis to DW under single 

Botrytis treatment, and revealed 34 significantly associated SNPs (Figure 2 and 

Table 1) that are located in or very close to 30 genes.  
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Figure 2. univariate GWA-mapping on DW for consecutive drought and Botrytis stress 

responses identified 34 significant SNPs (-log(p)>4) (red) that located on five 
chromosomes (black, green, yellow, red, blue).  

SNP m168340 exhibited strong association with –log(p) score at 7.29 

(Figure 2 and Table 1). The non-Col like allele of SNP m168340 presented strong 

effect on combinatorial stress responses and explained 8.06% genetic variation 

of accessions in response to the combinatorial stress. This SNP is not located or 

very close to any gene, but when looking at the Linkage Disequilibrium (LD) of 

the  SNP, a large locus (150kb) including 74 SNPs that are associated to 16 

genes was found. Another four SNPs exhibited higher –log(p) score (>5) than 

the other SNPs (Table 1). SNP m168339 is in LD with m16340 and is present at 

the same locus. SNP m20853 is located at the 2.2 kb upstream region of 

MULTIPLE ORGANELLAR RNA EDITING FACTOR 5 (MOREF5; AT1G32580), which 

acts as a cofactor of pentatricopeptide repeat proteins (PPR proteins) for RNA 

editing in plastids and mitochondria in flowering plants (Zehrmann et al., 2015). 

The synonymous non-Col like allele of the SNP explained 5.82% phenotypic 

variance. Two SNPs m370070 and m370071 are located at the exon of an 

unnamed gene AT1G50650 with unknown molecular function. The non-Col like 

alleles of the two SNPs explained respectively 5.78% and 6.03% phenotypic 

variations of accessions under the combinatorial stress. The synonymous 

substitution of SNP m370070 is from G (Col-0 like) to T (non-Col like). The 

nonsynonymous substitution of SNP m370071 is from A (Col-0 like ) to G (non-
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Col like) and causes an isoleucine to threonine change, but the on effect on 

combinatorial stress responses was found when comparing the non-Col allele to 

Col-0 allele.  

SNPs such as m157533, m157535, and m151030 exhibited large allelic 

effects on combinatorial stress responses among the 34 significant SNPs and 

displayed high –log(p) score (~ 4.8; Table 1). SNPs m157533 and m157535 are 

associated with unnamed gene AT4G34400; and another SNP m157515 (4.69) 

was found in LD with m15735 and is associated with gene ARIADNE 1 (ARI1; 

AT4G34370), which could interact with the ubiquitin-conjugating (E2) enzymes 

for ubiquitination (Mladek et al., 2003). The coding sequence substitution of 

SNPs m157533 and m151030 were synonymous, while SNP m157535 in ARI1 

displayed a nonsynonymous substitution from G (Col-0 like) to A (non-Col like) 

leading to an amino acid substitution from aspartic acid to asparagine. We found 

that the amino acid substitution in ARI1 has a negative effect on combinatorial 

stress responses as reduced DW ratio was observed under the combinatorial 

stress when compared to Botrytis infection (Figure 3.a). The SNP m151030 

present in the 5th exon of the 3XHIGH MOBILITY GROUP-BOX2 (3XHMG-Box2; 

AT4G23800) gene showed a synonymous substitution and is unlikely to cause an 

effect on the protein function. However, another SNP is tightly linked (LD =0.98) 

to SNP m151030 and displayed a nonsynonymous substitution from G to C 

resulting in a serine to threonine change. The non-Col allele of the SNP exhibited 

negative effects on combinatorial stress tolerance in comparison to the Col-0 like 

allele (Figure 3.b) Gene PROTEIN ARGININE METHYLTRANSFERASE 4A (PRMT4A; 

AT5G49020; Table 1) encodes a type I protein arginine methyltransferase which 

plays a role in regulating flowering time through the FLOWERING LOCUS C 

(FLC)-dependent pathway (Niu et al., 2008). The SNP m201187 present in 

PRMT4A displayed a –log(p) score of 4.12 and was a sequence substitution from 

G to T causing a valine to phenylalanine substitution. Plants with this genotype 

can cope less with combined stress when compared with plants that contain the 

Col-0 like allele (Figure 3.c). 
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Figure 3. Boxplots of the combination of two types allele (Col-0 like and non-Col like) of 
SNPs associated with gene ARI1 (a), 3XHMG-Box2 (b) and PRMT4A (c). Student’s t-test 
was used to compare the differences of the Col-0 like and non-Col like alleles of each gene. 
*** indicates significant differences (p<0.0001) 
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Genes play a role in response to combinatorial stress 

Another 191 candidate genes were in linkage disequilibrium (LD > 0.3) with 

the associated significant SNPs, increasing the total number to 221 candidate 

genes that could explain the allelic variance revealed by challenging the 

population with the single and combinatorial stresses (Supplementary Table 3). 

Some candidate genes were reported to play a role in response to biotic, abiotic 

or plant hormone treatments, but none were reported a role in response to both 

drought and Botrytis infection. To study the interaction of drought and Botrytis 

infection, six candidate genes: DREB2A-INTERACTING PROTEIN 1 (DRIP1; 

AT1G06770), ARMADILLO BTB PROTEIN 1 (ABAP1; AT5G13060), TUBULIN 

BETA-5 CHAIN (TUB5; AT1G20010), PHENYLALANINE AMMONIA-LYASE 4 (PAL4; 

AT3G10340), MYB DOMAIN PROTEIN 46 (MYB46; AT5G12870) and HEAT SHOCK 

FACTOR 1B (HSFA1b) (AT5G16820), were selected based on available 

homozygous T-DNA insertion mutants. drip1, tub5 and pal4 mutants were 

tolerant to drought and myb46, abap1 and hsfa1b were susceptible to drought 

when compared to the wild-type (Figure 4.a). Under Botrytis infection, pal4 

mutant was less infected when compared to the wild-type (Figure 4.b). 

Comparing the DW of plants under combinatorial stress to Botrytis infection 

without pre-treatment, pal4 and hsfa1b exhibited reduced DW when compared 

to the wild-type (Figure 4.c). When comparing the lesion diameter under 

combinatorial stress to Botrytis infection, tub5 and myb46 mutants exhibited 

less spread lesion diameter than the wild-type (Figure 4.d) and hsfa1b displayed 

larger spread lesion diameter than the wild-type.    
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Figure 4. Phenotype of T-DNA insertion mutants of genes DRIP1, TUB4, PAL4, MYB46, 
ABAP1 and HSFA1B, in response to drought (yellow, a.), in response to Botrytis infection 
(purple, b), in response to the combinatorial stress (pink, c & d). Dashed line indicates 
Col-2 is the wild-type for drip1 mutant.  

a. Ratio of  rosette dry weight (DW) of the wild-types (Col-0, Col-2) and the mutant 
plants in response to drought, when compared to the control.  

b. Lesion diameter (mm) of these genotypes under Botrytis treatment. 
c. Ratio of DW of these genotypes under combinatorial stress, when compared to 

Botrytis without pre-treatment. 
d. Ratio of lesion diameter of these genotypes under Botrytis treatment.  
Two-way ANOVA was used for all figures. Standard error for DW was calculated from at 
least eight plants, standard error for lesion diameter was calculated from at least 48 leaf 
replicates (6 leaves per plant x 8 biological repeat). * indicates mutants with a significant 
difference when compared to Col-0 wild type  (* p<0.05, ***p<0.001) 

Two overexpression lines HSFA1bOX1 (WS-2 background) and HSFA1bOX2 

(Col-0 background) were used to observe the effect on Botrytis and the 

combinatorial stress responses. Plants that overexpressed HSFA1B were more 

tolerant to drought than wild-types (Figure 5.a). Under Botrytis infection, 

reduced lesion diameter was observed from the two overexpression lines when 

compared to the wild-types (Figure 5.b). We found HSFA1bOX2 is more tolerant 

to the combinatorial stress when compared to the wild-type (Figure 5.c) and 

only slightly more tolerance was observed in HSFA1bOX1, though not significant. 

Comparing the lesion diameter under combinatorial stress to single Botrytis 

infection, the two overexpression lines were more sensitive to Botrytis when 

pre-treated with drought than the wild-types (Figure 5.d). Less spread lesion 
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diameter of the two overexpression lines was found when compared to the wild-

types under combinatorial stress (Figure 5.e).     

 
Figure 5. Phenotype of HSFA1b overexpression lines and the wild types in response to 
drought (yellow, a.), in response to Botrytis infection (purple, b), in response to the 
combinatorial stress (pink, c, d & e), Dashed line indicates the HSFA1b overexpression line 
1 (OX1) and the wild-type Ws-2; HSFA1b overexpression line 2 (OX2) and the wild-type 
Col-0.  
a. Ratio of  rosette dry weight (DW) of the two wild-types (Ws-2, Col-0) and the two 

overexpression lines (OX1, OX2) in response to drought when compared to the control.  
b. Lesion diameter of these genotypes under Botrytis treatment. 
c. Ratio of DW of these genotypes under combinatorial stress, when compared to 

Botrytis without pre-treatment. 
d. Ratio of lesion diameter of these genotypes under combinatorial stress, when 

compared to Botrytis without pre-treatment.  
e. Lesion diameter of these genotypes under combinatorial stress. 
Two-way ANOVA was used for all figures. Standard error for DW was calculated from at 
least eight plants, standard error for lesion diameter was calculated from at least 72 leaf 
replicates (6 leaves per plant x 12 plants). * indicates mutants with a significant difference 
when compared to Col-0 wild type (* p<0.05, **<0.01,***p<0.001). 
 

To observe the effect of drought pre-treatment on gene expression in 

sequential Botrytis infection condition, the relative expression fold change of 

genes TUB5, PAL4, MYB46 and HSFA1b were measured in eight Arabidopsis 

accessions that either were susceptible (Est-1, CS76127; Sei-0, CS28729; 

Kulturen-1, CS76156; or RRS-7, CS28713) or tolerant (Col-0, CS76113; Rsch-4, 

CS76222; Cnt-1, CS28160; or Can-0, CS76109) to the combinatorial stress 

treatment in comparison to Botrytis stress alone (phenotype result was from the 

screening of the Hapmap accessions in the two conditions). TUB5 was down-

regulated under drought but up-regulated under Botrytis infection in all 

accessions (Figure 6.a). We found drought pre-treatment enhance the down-

regulation of TUB5 in sequential Botrytis infection condition. PAL4 was down-

regulated under drought but up-regulated under Botrytis treatment (Figure 6.b). 
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The gene was up-regulated under combinatorial stress but the expression fold 

change was reduced in all accessions when compared to the single Botrytis 

treatment. MYB46 was up-regulated in all conditions, but the expression fold 

change was reduced in some accessions under combinatorial stress in 

comparison to the single Botrytis treatment (Figure 6.c). Variations of HSFA1b 

gene expression among accessions in stress conditions were observed (Figure 

6.d). No significant effect of the interaction between drought and Botrytis on 

HSFA1b expression was observed.    

 

Figure 6. Relative expression fold change at Log2 scale of TUB5 (a.), PAL4 (b.), MYB46 (c.) 
and HSFA1b (d.) expression in eight Arabidopsis accessions after exposure to drought 
(yellow), after Botrytis infection (purple) and after exposure to drought and followed by 
Botrytis infection (pink), compared to control. Log2 scale at 1, 2, 3, 4, 5, 6, 7, 8 = actual 
expression fold change of 2, 4, 6, 8, 16, 32, 64, 128, 256 times. In all figures, two-way 
ANOVA was used to compare accession under combinatorial stress to single Botrytis stress. 
Standard error was calculated from 3 plants per accession.  * indicates mutants with a 
significant difference when compared to drought (* p<0.05, **p<0.01, ***<0.001) 
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Discussion  

Mapping significant SNPs associated with drought, Botrytis and 

combinatorial stress 

This study uncovers the genes for which there is natural allelic variation 

affecting the Arabidopsis response to the single and combinatorial response to 

drought and Botrytis exposure. GWA-mapping revealed 221 candidate genes  

that could have allelic effects on Botrytis and the combinatorial stress responses. 

High heritability was found under both conditions, indicating that the variation of 

accessions in responses to stresses is due to its genetic variation. However, each 

identified individual QTLs explained only small genetic variances (Table 1). It is 

possible that a GWAs analysis on a complex trait, such as DW, could result more 

QTLs but with less effect size, while a simple trait could result less QTLs but with 

large effect size (Louthan and Kay, 2011). Several studies combined association 

mapping with linkage mapping and identified flowering time associated QTLs 

(Brachi et al., 2010), Hyaloperonospora arabidopsidis ex parasitica (Hpa) 

resistance genes (Nemri et al., 2010), endoreduplication related genes (Sterken 

et al., 2012) and shoot regeneration genes (Motte et al., 2014). Thus, to confirm 

the loci associated with combinatorial stress response follow-up studies of QTL 

analysis using parental populations will be needed.  

We observed nonsynonymous amino acid substitution caused by the non-Col 

alleles of SNPs on gene ARI1, 3XHMG-Box2 and PRMT4A and observed negative 

effects of the non-Col like alleles in response to the combinatorial stress when 

compared to the Col-0 like alleles. This shows that the three genes could be 

causative genes with allelic effects on the combinatorial stress responses. 

PRMT4A is involved in the FLOWERING LOCUS C (FLC)-dependent pathway, but 

has a redundant function with PRMT4B (AT3G06930) because only the 

prmt4aprmt4b double knockout mutant exhibited enhanced expression of FLC 

(Niu et al., 2008). The GWAs analysis identified PRMT4A as the candidate gene 

for combinatorial stress but not PRMT4B, showing a role of PRMT4A to 

combinational stress response.  
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Two SNPs m370070 and m370071 associated to gene AT1G50650 exhibited 

nonsynonymous amino acid substitution but did not affect the combinatorial 

stress responses. This shows that the two SNPs itself are not the causal SNPs 

but other SNPs in LD or the two SNPs in combination with other SNPs in LD 

could be casual SNPs.  

Although we did not validate the allelic effects of candidate genes TUB5, PAL4, 

MYB46 and HSFA1b on stress responses, the mutants exhibited different 

phenotype in response to combinatorial stress when compared to the wild-type. 

This shows that the allelic variation of the four genes could contribute to the 

genetic variance to combinatorial stress responses. In this study, allelic effects 

on gene expression was observed for MYB46. The expression of MYB46 was 

reduced by the drought pre-treatment in most tolerant accessions in sequential 

Botrytis condition, but not in susceptible accessions (except in Col-0) (Figure 

5.c). Other genes such as DRIP1 and SUPERSENSITIVE TO ABA AND DROUGHT 

1 (SAD1, At5g48870), which are two candidate gene in LD with the significant 

SNPs, could show the effect of allele variation in stress responses. DRIP1 can 

interact with DREB2A (DEHYDRATION-RESPONSIVE ELEMENT BINDING 

PROTEIN2A) hereby inhibiting DREB2A function by marking the protein for 

proteasomal degradation via ubiquitination (Qin et al., 2008). Recently, similar 

negative regulation of DREB2A by DRIP1 was reported in cowpea (Sadhukhan et 

al., 2014) indicating that this part of the drought response in plants is conserved 

and likely to be tightly controlled. We showed that loss of DRIP1 resulted in a 

tolerance to drought stress when compared to wild-type (Figure 3.a). SAD1 is a 

multifunctional protein involved in mRNA splicing, export and degradation (Xiong et al., 

2001). The sad1 mutant is impaired in regulation of the ABA-dependent stress responsive 

genes (Xiong et al., 2001) and has an early flowering phenotype (Perez-Santangelo et al., 

2014), a common drought escape strategy (Franks, 2011; Sherrard and Maherali, 2006). 

Moreover, the finding of SAD1 shows that there is possibly extensive 

degradation at the mRNA level (Golisz et al., 2013) and can affect the protein 

level during stress. Thus, the allele effects of SAD1 on mRNA degradation is an 

area interesting to explore. To confirm the effects of the allele variations on 

combinatorial stress responses, complementation tests to validate the biological 

role of the natural alleles of the described genes are necessary.   
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The role of candidate genes in response to drought and Botrytis 

stresses 

The knockout mutants of candidate genes MYB46, PAL4 and TUB5 exhibited 

different phenotypes compared to wild type and the genes displayed differential 

gene expression under the combinatorial stress when compared to the single 

Botrytis treatment. Antagonistic interaction between drought and Botrytis was 

for pal4 mutant, and the same effect was found on TUB5 gene expression. 

Negative effect of drought pre-treatment was observed in hsfa1b, tub5 and 

myb46 mutants in sequential Botrytis infection. The negative effect of drought 

pre-treatment was observed on the expression of PAL4 and MYB46 as well.  

The MYB46 transcription factor regulates the expression of many secondary 

wall biosynthesis genes such as cellulose synthases genes (CESA4, CESA7, 

CESA8) and activates MYB family and NAC family transcription factors, which are 

involved in lignin and secondary wall biosynthesis (Ko et al., 2014). CESA8 is 

also a drought and osmotic tolerant gene (Chen et al., 2005). Thus, the 

susceptible phenotype of myb46 to drought stress could be due to less 

expression of CESA8. With regard to the Botrytis stress, one study reported that 

the myb46 mutant is tolerant to Botrytis infection because the Botrytis defense 

responsive gene PDF1.2 is highly expressed in the mutant and that led to an 

enhanced tolerance to Botrytis stress (Ramirez et al., 2011). However, in the 

present study, we did not observe the same phenotype of myb46 mutant in 

response to Botrytis infection when compared to the wild type. Downstream of 

MYB46 are MYB58 and MYB63 that are involved in regulating lignin biosynthesis 

through regulating the expression of several monolignol biosynthesis genes 

including PAL1 and PAL4 (Kim et al., 2014; Ko et al., 2014; Ko et al., 2009; 

Zhou et al., 2009). PAL4 is a member of the Phenylalanine ammonia-lyase (PAL) 

gene family that contains four genes PAL1-PAL4 that respond to various stresses 

such as pathogens, cold, wounding and UV (Huang et al., 2010). PAL genes are 

involved in salicylic acid (SA) accumulation, the knockout mutants of PAL genes 

exhibited 75% reduction of SA when compared to the wild type (Dempsey et al., 

2011). SA can antagonize JA (Yoshioka and Shinozaki, 2009). Thus, we 

hypothesis that the increased tolerance to Botrytis is due to reduced SA 

concentration in pal4 mutant, which led to increased JA accumulation.  
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Two SNPs were located at the exon of HSFA1b and were in LD (LD>0.46) 

with significant SNP m170625 (-log(p)=4.56). The non-Col like alleles of the two 

SNPs led to nonsynonymous amino acid substitution. However, we did not 

observe significant effects of the non-Col like alleles (neither individual nor in 

combination with each other) on combinatorial stress response, when compared 

to the Col-0 like alleles. This is showing that the two alleles are not the causal 

alleles of HSFA1b. However, the HSFA1b gene is the most likely candidate 

underlying this QTL, as in our hands, the KO mutant was susceptible to drought 

and drought + Botrytis and the overexpression lines were tolerant to both 

stresses. HSFA1b belong to the HEAT SHOCK TRANSCRIPTION FACTOR (HSF) 

family genes and is regulated by NAC019 and flowers of nac019 plants are 

hypersensitive to drought stress (Duc et al., 2016; Sakuraba et al., 2015). 

Bechtold et al (2013) showed that overexpression HSFA1b gene led to up-

regulation of more than 500 genes, some of them were drought and Botrytis 

responsive genes. Ethylene- and JA-related genes ETHYLENE RESPONSIVE 

ELEMENT BINDING FACTOR 6/9 (ERF6/9), JSMONATE-ZIM-DOMAIN PROTEIN 

1/5/7 (JAZ1/5/7); Botrytis defense responsive genes BCL-2-ASSOCIATED 

ATHANOGENE 6 (BAG6), OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF 

59 (ORA59); and drought responsive genes such as DRE/CRT-BINDING PROTEIN 

2B (DREB2b), EARLY RESPONSIVE TO DEHYDRATION 5 (ERD5), and 

RESPONSIVE TO DESSICATION 29B (RD29B) were up-regulated. This is showing 

that HSFA1b is play a role in response to Botrytis and drought stress.   
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Conclusion 

In this study, the univariate GWA-mapping identified a number of SNPs for 

combinatorial stress responses but the each SNP only explained small proportion 

of phenotypic variance . Follow-up analysis such as QTL mapping with bi-

parental population would be helpful to reduce false positives and to identify 

QTLs with large effect. A set of 221 candidate genes associated with the 

significant SNPs were identified and some exhibited allelic effects on stress 

responses. Follow-up experiment such as complementation tests to validate the 

biological role of the natural alleles will be needed. Antagonistic interaction 

between drought and Botrytis was observed and we found the negative effect of 

drought pre-treatment on mutants performance and gene expression during 

subsequent Botrytis infection. We did not observe any mutants were tolerant to 

the combinatorial stress, as well as to the two single stresses. The present study 

provides an insights into plant response mechanisms triggered by sequential 

drought and Botrytis infection. We highlighted some candidate genes as targets 

for breeding by allele mining aimed at ultimate improvement of crop tolerance to 

relevant stress factor combinations. 
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Abstract 

In nature, plants have to cope with a wide range of stress conditions that 

often occur simultaneously or in sequence. To investigate how plants cope with 

multi-stress conditions, we analyzed the dynamics of whole-transcriptome 

profiles of Arabidopsis thaliana exposed to six sequential double stresses 

inflicted by combinations of (1) infection by the fungus Botrytis cinerea, (2) 

herbivory by Pieris rapae, and (3) drought stress. Each of these stresses induced 

specific expression profiles over time, in which one third of all differentially 

expressed genes was shared by at least two single stresses. Of these, 394 genes 

were differentially expressed during all three stress conditions, albeit often in 

opposite directions. When two stresses were applied in sequence, plants 

displayed transcriptome profiles that were very similar to  the second stress, 

irrespective of the nature of the first stress. Nevertheless, significant first-stress-

signatures could be identified in the sequential stress profiles. Bioinformatic 

analysis of the dynamics of co-expressed gene clusters highlighted specific 

clusters and biological processes of which the timing of activation or repression 

was altered by a prior stress. The first-stress-signatures in second stress 

transcriptional profiles were remarkably often related to responses to 

phytohormones, strengthening the notion that hormones are global modulators 

of interactions between different types of stress. Because prior stresses can 

affect the level of tolerance against a subsequent stress (e.g. prior herbivory 

strongly affected B. cinerea resistance), the first-stress-signatures can provide 

important leads for the identification of molecular players that are decisive in the 

interactions between stress response pathways.   

Keywords:   

Combinatorial plant stress, transcript profiling, Botrytis cinerea, Pieris rapae, 

drought stress, gene regulatory network, plant hormones, RNA-Seq, Arabidopsis 

thaliana 
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 Introduction  

Plants are continuously threatened by a wide range of harmful microbial 

pathogens and insect herbivores. Besides these biotic stresses, plants are also 

exposed to extreme abiotic environmental conditions such as drought, heat, cold, 

water logging, high salinity or toxicity. Adaptive plant responses to single biotic 

and abiotic stresses have been extensively studied. Both biotic and abiotic stress 

responses are associated with the action of the phytohormones jasmonic acid 

(JA), ethylene (ET), abscisic acid (ABA), and salicylic acid (SA), and to a lesser 

extent with cytokinin, brassinosteroids and auxin (Broekgaarden et al. 2015, 

Giron et al. 2013, Kazan and Lyons 2014, O'Brien and Benková 2013, Pieterse et 

al. 2012, Robert-Seilaniantz et al. 2011). JA and ET are generally involved in 

defense against pathogens with a necrotrophic lifestyle, whereas defenses 

against biotrophs are commonly controlled by SA (Glazebrook 2005). ABA is 

associated with plant development and abiotic stresses (Yamaguchi-Shinozaki 

and Shinozaki 2006), such as drought, but its role in modulating JA-dependent 

defenses against insect herbivores and SA-dependent defenses against 

pathogens is becoming increasingly evident (Verhage et al. 2011, Vos et al. 

2013b, Yasuda et al. 2008). Antagonistic and synergistic interactions between 

hormonal signal-transduction pathways are thought to provide the plant with a 

regulatory potential to adapt to its complex biotic and abiotic environment while 

utilizing its resources in a cost-efficient manner (Pieterse et al. 2012, Reymond 

and Farmer 1998, Robert-Seilaniantz et al. 2011, Vos et al. 2015, Vos et al. 

2013a).  

 In natural and agricultural settings, plants often have to cope with 

multiple stress conditions simultaneously. In the context of climate change, it is 

highly likely that the frequency and complexity of these multi-stress conditions 

will increase and further threaten crop yield. Abiotic stresses can significantly 

affect plant responses to biotic stresses and vice versa, depending on the timing, 

nature, and severity of the stresses (Appel et al. 2014, Atkinson and Urwin 2012, 

Rejeb et al. 2014). How plants regulate and prioritize their adaptive response 

when exposed to multiple stresses is largely unknown. Several studies have 

investigated plant responses to different stress factors occurring simultaneously 

or sequentially (Atkinson et al. 2013, De Vos et al. 2006, Kissoudis et al. 2014, 
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Mohr and Cahill 2003, Prasch and Sonnewald 2013, Ramegowda and Senthil-

Kumar 2015, Rasmussen et al. 2013, Rivero et al. 2014, Santino et al. 2013, 

Sewelam et al. 2014, Sham et al. 2015, Stam et al. 2014, Suzuki et al. 2014, 

Van Oosten et al. 2008). From these studies, the picture emerged that different 

stress signaling pathways are interconnected in a network that is under control 

of key regulators such as MAP kinases, transcription factors and the above-

mentioned stress-related hormones (Caarls et al. 2015, Fujita et al. 2006, 

Pieterse et al. 2009, Rejeb et al. 2014, Robert-Seilaniantz et al. 2011). In order 

to gain insight in the complexity of the plant response to combinatorial stresses, 

several recent studies investigated changes in the transcriptome of Arabidopsis 

thaliana (hereafter called Arabidopsis) in response to simultaneous exposure to 

abiotic and biotic stresses (Atkinson et al. 2013, Prasch and Sonnewald 2013, 

Ramegowda and Senthil-Kumar 2015, Rasmussen et al. 2013, Sham et al. 2015, 

Suzuki et al. 2014). Generally, the responses to the single stresses were 

different from those to the double stresses. However, these studies often 

focused on a single time point, representing only a snapshot of the 

transcriptional changes that are induced by a single or combinatorial stress. The 

influence of one stress on the other may primarily have an effect on the timing 

of the response to the second stress, causing the detection of large 

transcriptional differences in combinatorial stresses at one time point, while over 

time these differences may be much smaller or are the result of a shift in the 

phasing of the expression profiles. 

In order to gain detailed insight into how plants cope with multiple 

stresses, we here investigated how a first stress influences the nature and 

dynamics of the transcriptional response that is induced by a second stress. We 

chose to study the response of the model plant species Arabidopsis to two biotic 

stresses (infection by the necrotrophic fungus Botrytis cinerea and herbivory by 

larvae of Pieris rapae) and to one abiotic stress (drought stress by water 

withhold). These stresses were chosen because in previous studies it was 

demonstrated that the plant hormones JA, ABA, and/or ET are involved in 

adaptive plant responses to these respective stresses. We hypothesized that 

combining these stresses may lead to hormonal signal interactions that 

potentially affect the outcome of the response to the second stress. Several 
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previous studies have identified thousands of Arabidopsis genes that change in 

expression in response to the selected single stresses (Birkenbihl et al. 2012, 

Clauw et al. 2015, De Vos et al. 2005, Ferrari et al. 2007, Huang et al. 2008, 

Rehrig et al. 2014, Reymond et al. 2004, Reymond et al. 2000, Rowe et al. 2010, 

Windram et al. 2012), but their dynamic behavior during multi-stress conditions 

is largely unknown.   

B. cinerea is considered the second most important plant pathogen 

(Dean et al. 2012), infecting over 200 cultivated plant species and causing 

significant economic damage to crops worldwide. Moreover, B. cinerea has 

become an important model for studying interactions between plants and 

necrotrophic pathogens (Laluk and Mengiste 2010, Van Kan 2006). As a 

necrotroph, B. cinerea kills plant tissue prior to feeding by using different 

mechanisms that cause plant decay, e.g. enzymatic degradation of the cell walls, 

generation of toxic reactive oxygen compounds, or secretion of host non-

selective toxins. JA and ET participate in the defense response of Arabidopsis 

against B. cinerea (Diaz et al. 2002, El Oirdi et al. 2011, Geraats et al. 2002, 

Rowe et al. 2010, Thomma et al. 1998, Thomma et al. 1999), while ABA and SA 

can have a negative effect on B. cinerea resistance (El Oirdi et al. 2011, Liu et al. 

2015, Vos et al. 2015).  

Insect herbivores consume over 15% of the plant biomass produced 

annually in temperate and tropical ecosystems making insect herbivory a major 

conduit by which energy flows through food webs (Agrawal 2011, Cyr and Pace 

1993, Johnson 2011). The Small Cabbage White butterfly P. rapae is one of the 

most destructive pests of cruciferous plants because it has adapted to the 

glycoside toxins known as glucosinolates that are produced by crucifers as 

chemical defenses (Hopkins et al. 2009). Arabidopsis and other plants activate 

additional defense responses that reduce the performance of leaf-chewing P. 

rapae caterpillars on pre-infested plants (De Vos et al. 2006). It has been 

shown that this herbivore- or wound-induced resistance also extends 

systemically to undamaged plant parts (Howe and Jander 2008, Vos et al. 

2013b). JA is an important primary signal in herbivore-induced local and 

systemic defenses in various plant–herbivore interactions, while ABA has a 

modulating role in the JA-responsiveness (Bodenhausen and Reymond 2007, 
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Howe and Jander 2008, Soler et al. 2013, Vos et al. 2013b). SA is reported to 

inhibit the JA-dependent defense pathway that is induced by P. rapae feeding 

(Koornneef et al. 2008).  

 Drought is one of the most frequently experienced abiotic environmental 

stresses in plants. Low water availability in the rhizosphere leads to a reduction 

in leaf stomatal conductance and growth (Schachtman and Goodger 2008). 

Adaptive responses to drought also involve metabolic, osmotic, and structural 

adjustment, as well as the production of proteins with DNA damage control and 

repair functions (Ingram and Bartels 1996). ABA accumulation is essential for 

the adaptation to drought, but also ABA-independent regulatory systems are 

involved in drought stress-responsive gene expression. In the latter, JA and ET 

have been implicated as important regulators (Bray 1997, Huang et al. 2008, 

Riera et al. 2005, Shinozaki et al. 2003).  

  In this study, we used RNA-Seq to analyze the dynamics of the 

transcriptome changes that occurred in Arabidopsis over four time points in 

response to B. cinerea infection, P. rapae feeding, drought stress, and all six 

combinations of sequential double stresses. Our results show that irrespective of 

the first stress, Arabidopsis is capable of swiftly adapting its transcriptome to 

respond to the second stress. Over time, this second stress-induced 

transcriptome is highly similar to that of plants that did not receive a first stress, 

but contains clear first-stress-signatures, which may play a role in the 

phenotypic interaction between consecutive stresses.   
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Material ＆Methods 

Plant cultivation  

Seeds of Arabidopsis thaliana accession Col-0 were sown in cultivation 

containers filled with autoclaved river sand. Sand was supplied with half-

strength Hoagland solution containing Sequestreen as described (Van Wees et 

al. 2013). In order to attain 100% relative humidity (RH) for germination, 

cultivation containers were enclosed in a tray with water covered with a 

transparent lid. Seeds were stratified for two days at 4°C in the dark to ensure a 

homogeneous germination after which the tray was moved to a growth chamber 

(t=0) with an 8-h day/16-h night rhythm, a temperature of 21°C, and a light 

intensity of 100 µmol/m2/s. After 10 d, the lids of the trays were slightly opened 

and gradually removed over a 4-d period to adjust to the 70% RH present in the 

growth chamber. Fourteen-day-old seedlings were transplanted to individual 

pots containing a mixture of river sand and potting soil (1:1 (v:v)). Pots were 

supplied with water from the bottom up three times per week. At an age of 3 

weeks the plants were supplied once with half-strength Hoagland solution. 

Rearing of P. rapae and treatment with P. rapae caterpillars  

Pieris rapae caterpillars were reared on cabbage plants (Brassica oleracea 

convar. capitata var. alba) under greenhouse conditions (24°C, with natural 

daylight). Butterflies were supplied with flowering plants such as Lantana 

camara for their (nectar) food. When flowers were scarce, additional food 

(solution of 20% honey and 10% sucrose) was offered to the butterflies. 

Inbreeding of the population was minimalized by adding wild butterflies and 

caterpillars from the Dutch Flevopolder to the existing population. After starving 

for 1 h, first-instar (L1) larvae were placed on Arabidopsis leaves using a fine 

paint brush as described (Van Wees et al. 2013). 

Cultivation of B. cinerea and treatment with B. cinerea spores 

Botrytis cinerea strain B05.10 (Staats and Van Kan 2012) was grown on 

half-strength Potato Dextrose Agar (PDA; Difco Laboratories) plates containing 

penicillin (100 µg/ml) and streptomycin (200 µg/ml) for 2 weeks at room 
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temperature. Spores were collected, filtered through glass wool, and re-

suspended in half-strength Potato Dextrose Broth (PDB; Difco Laboratories) to a 

final density of 1x105 spores/ml. After a 3-h incubation period, the spores were 

used for inoculation by applying 5-µl droplets on Arabidopsis leaves as described 

(Van Wees et al. 2013). For the RNA-Seq analysis, 4 droplets were applied on a 

single leaf, while for disease resistance assays, a single droplet was 

administered to the leaf. 

Single and sequential double stress treatments 

Single and sequential double stress treatments were applied according to 

the schedule shown in Fig. 1. Developmental leaf number 8 was treated with the 

second stress and harvested for RNA-Seq analysis. Individual leaves were 

numbered from oldest to youngest. For single and sequential double stress 

treatments in which B. cinerea was the second stress, developmental leaf 

number 8 of 5-week-old plants was inoculated with B. cinerea by pipetting four 

5-µl droplets of spore suspension (1×105 spores/ml) onto the leaf. Plants were 

kept at 100% RH for the remaining time period. Mock-treated plants received 

droplets of PDB and were kept at 100% RH. Pre-treatment with drought was 

started when plants were 4 weeks old by withholding water for 7 d, after which 

plants were re-watered and allowed to recover for 1 d before plants were 

inoculated with B. cinerea. P. rapae pre-treatment was started 1 d prior to B. 

cinerea inoculation by placing a single P. rapae L1 caterpillar on leaf 7 and 

allowing it to feed for 1 d. Only plants of which leaf number 8 was undamaged 

were used for inoculation with B. cinerea as second stress. Leaf number 8 was 

harvested at 6, 12, 18, and 24 h after inoculation with B. cinerea. 

For single and sequential double stress treatments in which P. rapae 

herbivory was the second stress, two P. rapae L1 larvae were transferred to 

developmental leaf number 8 of 5-week-old plants. Pre-treatment with drought 

was achieved as described above for the B. cinerea experimental set-up. B. 

cinerea pre-treatment was performed 1 d prior to introduction of P. rapae by 

inoculating leaves 6 and 7 with one 5-µl droplet of B. cinerea spore suspension 

(1×105 spores/ml) per leaf and placing the plants at 100% RH for 1 d. A mock 

treatment for the B. cinerea pre-treatment was included by placing droplets with 
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PDB on the leaves and keeping the plants at 100% RH for 1 d. Leaf number 8 

was harvested at 3, 6, 12 and 24 h after the start of P. rapae feeding. When leaf 

number 8 was not damaged by P. rapae (because it had moved to another leaf), 

the next-closest P. rapae-damaged leaf was harvested.  

 For single and sequential double stress treatments in which drought was 

the second stress, 4-week-old plants were refrained from watering for 7 d. After 

7 d of water withhold, plants were re-watered and allowed to recover for 1 d. B. 

cinerea pre-treatment was performed at the beginning of day 1 of the drought 

period by inoculating leaves 6 and 7 with one 5-µl droplet of B. cinerea spore 

suspension (1×105 spores/ml) per leaf and placing the plants at 100% RH for 1 

d. A mock treatment for the B. cinerea pre-treatment was included by placing 

droplets with PDB on the leaves and keeping the plants at 100% RH for 1 d. P. 

rapae pre-treatment was performed at the same time as the B. cinerea pre-

treatment by placing one P. rapae caterpillar on leaf 7 and allowing it to feed on 

the plant for 1 d. Only plants of which leaf number 8 was undamaged were used 

to harvest leaf 8. Leaf number 8 was harvested at 5, 6, 7, and 7+1 d after the 

onset of water withhold (with 7+1 representing the time point of 1 d after re-

watering).  

 For each treatment and time point, 3 biological replicates were used for 

RNA-Seq analysis. Each of the three biological replicates consisted of four pooled 

“number 8” leaves harvested from four similarly-treated plants. For all 

treatments in which B. cinerea inoculation was used as first or second stress, a 

mock treatment was performed in which plants were inoculated with droplets of 

half-strength PDB and placed at 100% RH for 1 d. For all treatments without B. 

cinerea, controls consisted of untreated plants. After harvest, leaf samples were 

immediately frozen in liquid nitrogen and stored at -80°C.   
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Experimental design 

The experiment was carried out in a fully randomized factorial design with 

two factors; time and treatment, with time having four levels (four time points 

analyzed per stress combination) and treatment having five levels (control, 

mock, two different first stresses per sequential stress, and one single stress). 

The climate chamber space was divided in three blocks, in which time was 

randomized. Within every time point, treatments were assigned randomly to the 

plants. RNA extraction was carried out in batches of approximately 20 randomly 

chosen samples. 

RNA extraction, library preparation, and RNA-Seq alignment 

RNA was extracted using the Plant RNeasy Plant Mini Kit (Qiagen), according 

to the manufacturer’s instructions. All samples were treated with DNase I on 

column using the Qiagen RNase-Free DNase Set. Quality of RNA was checked by 

determining the RNA Integrity Number (RIN) with an Agilent 2100 bioanalyzer 

and RNA LabChip. For the library preparation samples with a RIN value ≥6 were 

used. The samples were processed according to the TruSeq Stranded mRNA HT 

Sample Prep Kit from Illumina. This protocol allows the identification of strand-

specific transcripts. First, poly-A RNA was isolated from the total RNA using Poly-

T oligo-attached magnetic beads. Subsequently, Poly-A RNA was fragmented 

using divalent cations under elevated temperature. First-strand cDNA was 

synthesized using random primers. Strand specificity was achieved by replacing 

dTTP with dUTP in the second Strand Marking Mix (SMM), followed by second 

strand cDNA synthesis using DNA polymerase I and RNase H. Samples were 

sequenced with an Illumina Hi-seq 2000 sequencer using three sequencing runs. 

Samples were randomly assigned to 7 lanes of the Illumina flow cells within each 

run.  

Processing of raw sequencing data, alignment of the RNA-Seq data to 

the Arabidopsis genome, and downstream processing was performed as 

described (Van Verk et al. 2013). RNA-Seq reads were aligned to the 

Arabidopsis genome (TAIR version 10) using TopHat v2.0.4 (Trapnell et al. 2009) 

with parameters:  ‘transcriptome-mismatches 3’, ‘N 3’, ‘bowtie1’, ‘no-novel-

juncs’, ‘genome-read-mismatches 3’, ‘read-mismatches 3’, ‘G’, ‘min-intron-
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length 40’, ‘max-intron-length 2000’. Gene expression levels were calculated by 

counting the number of mapped reads per annotated gene model using HTSeq-

count v0.5.3p9 (Anders et al. 2014). For downstream analyses, raw read counts 

were normalized for between sample differences in sequencing depth (Love et al. 

2014). Differential gene expression was calculated using DESeq2 (Love et al. 

2014) for all stress treatments and time points relative to the appropriate non-

stress-treated control/mock treatment that was cultivated and harvested in 

exactly the same way as the stress-treated samples. The raw P. rapae RNA-Seq 

data have been used in a previous study (Davila Olivas et al. 2016). In the study 

of Davila Olivas et al., the raw P. rapae RNA-Seq reads were analyzed 

independently of this study with the specific goal to identify P. rapae-responsive 

genes that are affected by prior drought stress or B. cinerea infection and 

possibly link them to effects on changes in P. rapae resistance. In the present 

study, the raw P. rapae RNA-Seq reads were used in the larger framework of 

analyzing global dynamics of gene expression profiles during multiple 

combinatorial stress conditions in which also B. cinerea and drought stress were 

analyzed as second stresses. All raw RNA-Seq read data are deposited in the 

NCBI Short Read Archive (http:// www.ncbi.nlm.nih.gov/sra/) under the 

BioProject accession code PRJNA315516. 

Gene ontology analysis 

To identify enrichment of gene ontology (GO)-terms in the different sets of 

DEGs, ‘Go term finder’ (Boyle et al. 2004) analysis was performed using an A. 

thaliana gene association file downloaded from ftp.geneontology.org on May 2nd 

2013. The default background set was used (all 30504 transcripts in the 

database that have GO annotations). GO term finder tests for over-

representation of GO categories using the hypergeometric distribution and false 

discovery rate for multiple testing (P-value ≤0.05). Figures showing heatmaps of 

P-values were generated using the R package (version 3.2.1).  
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Clustering 

Hierarchical clustering of the core set of single stress DEGs was performed 

on log2 fold-change expression values using the R function hclust with a cosine 

similarity metric and average linkage. The cutree function was used with a 

visually determined cut height to partition the resulting dendrogram into clusters. 

Clustering of the core set of single stress DEGs and shared main treatment 

datasets was performed using model-based clustering package mclust version 4 

in R (Fraley et al. 2012) with the number of clusters optimized in the range 1 to 

10 using the Bayesian information criterion.  

Wigwams analysis 

To identify modules of co-expressed genes across single and sequential 

stresses the Wigwams algorithm was applied (Polanski et al. 2014), using log2 

transformed expression values for the DEGs of each single stress across their 

respective sequential double stresses. For each main treatment, Wigwams was 

run with default arguments to partition genes into modules that indicate co-

expression in subsets of the relevant main treatments. 
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Results 

Experimental approach for RNA-Seq analysis of single and 

sequential stress time series  

In order to capture a maximal dynamic range of the stress responses, the 

response to each of the three main stresses was monitored in a different time 

frame of four time points, depending on how quickly the stress response 

developed (Fig. 1).  

The transcriptional response to each single and sequential stress was 

compared at each time point to a non-treated control (for treatments not 

involving B. cinerea) or a mock-treated control (same 100% relative humidity 

conditions as B. cinerea treatments) that was harvested at the same time as the 

stress treatment. For the study of B. cinerea stress, a time span between 6 and 

24 h after inoculation with a 5-µl droplet of 5x105 spores/ml was chosen, 

because previous studies showed that the earliest transcriptional changes can be 

observed around 6 h after application of the inoculum, while at 24 h after 

inoculation massive changes in gene expression can be detected (Vos et al. 

2015, Windram et al. 2012). For the study of P. rapae stress, we chose a time 

span between 3 and 24 h after infestation by larvae of stage L1 because 

previous studies demonstrated that this would yield a maximal dynamic range of 

transcriptional responses (De Vos et al. 2005, Reymond et al. 2004, Reymond et 

al. 2000, Verhage et al. 2011). For the induction of drought stress, 4-week-old 

Arabidopsis plants that had previously been watered with equal amounts of 

water were subsequently withheld from water for 7 days. At day 5 of water 

withhold, drought-stressed plants were clearly smaller and darker colored than 

the watered control plants, a phenotype that progressed further on day 6 and 7 

when they were at the point of wilting. The transcriptome time series were 

chosen at 5, 6 and 7 days after water withhold, and at day 8 (7+1d), which was 

one day after re-watering. The recovery response at day 8 was chosen as the 

fourth time point of the drought time series because this recovery response after 

drought stress is interesting by itself, and at this time point the sequential 

treatment with B. cinerea and P. rapae was executed and thus could function as 
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a reference treatement. Prior to applying the second stress, further development 

of the first stress was stopped by changing the 100% relative humidity condition 

to 70% (first stress B. cinerea), by removing the caterpillar (first stress P. 

rapae), or by re-watering the plants (first stress drought). Developmental leaf 

number 8 was used for applying B. cinerea or P. rapae as second stress. For all 

treatments, leaf number 8 was harvested for RNA-Seq analysis. When leaf 

number 8 was not damaged by P. rapae, the next-closest P. rapae-damaged leaf 

was harvested. Three biological replicates per treatment and time point were 

subjected to RNA-Seq. Each of the three biological replicates consisted of four 

“number 8” leaves that were pooled to form one sample. After harvest, leaves 

were processed and subjected to RNA-Illumina sequencing. On average, 14.6 

million reads (range 8.5 – 29.8 million) were generated per sample with >90% 

of sequences aligning to the Arabidopsis genome after quality filtering (Van Verk 

et al. 2013). 
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Figure 1. Experimental schedule of treatments and harvests for RNA-Seq time 
series of single and sequential double stresses. The schedule shows the timing of 
treatments and time points of harvest for the three main treatments, B. cinerea (Bc, red), 
P. rapae (Pr, green) and Drought (Dr, yellow), and the respective pre-treatments. Each 
single and sequential double stress sample had a mock/control (not visualized) that was 
harvested at the same time point as the stress treatment. Mock-treated plants were 
cultivated under the same conditions as their respective B. cinerea-treated plants (same 
periods of 100% RH). Untreated control plants were cultivated under the same conditions 
as their respective P. rapae- and/or drought-treated plants. First stresses were stopped by 
either lowering relative humidity from 100% to 70% (after 1 d in case of Bc pre-
treatment), removing caterpillars from plants (after 1 d), or re-watering after a 7-d period 
of drought (7+1; blue). In case the second stress was drought, the pre-treatments with B. 
cinerea and P. rapae were performed right after the last moment of watering. 100%; 
period of 100% RH instead of standard 70% RH; time indications at the bottom indicate 
time of the day at which plants were harvested.  
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Time series transcriptome profiling following single and 

sequential stresses 

In this study, our aim was to analyze the dynamic transcriptome changes 

that are triggered by the single stresses and investigate how the nature and 

dynamics of these transcriptome profiles were affected by pre-exposure to each 

of the other two stresses. First, a set of differentially expressed genes (DEGs) 

derived from each single stress time series was selected according to their 

significance in fold-change expression (false discovery rate (FDR) <0.05) and an 

additional threshold level of at least 2-fold change (-1> log2 >1) in comparison 

to the respective control (Supporting Table S1). The first observation that can be 

made from the RNA-Seq results is that over time there are clear differences in 

the number of genes that are significantly activated or repressed during the 

different single stress conditions (Fig. 2). For responses to B. cinerea (total 2076 

unique DEGs) and P. rapae (total 3952 unique DEGs), a strong increase in the 

number of activated genes is observed over time, while relatively few genes are 

repressed. Upon exposure to drought stress (total 4032 unique DEGs for the 

first three time points, plus 482 additional unique DEGs for the 1 d after re-

watering time point), relatively more genes become repressed than activated. A 

prior stress did not dramatically change the number of DEGs relative to the 

single stresses (Fig. 2). Clustering the union of DEGs of the single stress sets 

(total 7355 unique DEGs), and subsequent Gene Ontology (GO) analysis (Boyle 

et al. 2004) of overrepresented biological processes in each cluster highlights 

the differentially regulated biological processes during the plant response to the 

single stresses and uncovers similarities and contrasts between the different 

stress responses (Fig. 3; Supporting Table S2).  
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Figure 2. Numbers of DEGs at different time points in single and sequential stress 
responses. Graphs show the number of activated (red bars) and repressed (blue bars) 
differentially expressed genes (DEGs) for all single stresses and their corresponding 
sequential double stresses at different time points after treatment (FDR <0.05; >2-fold). 
The one day after rewatering time point of the drought treatments is indicated as “7+1d”. 
Bc, B. cinerea; Pr, P. rapae; Dr, drought; Pr+Bc, Dr+Bc, Bc+Pr, Dr+Pr, Bc+Dr, and Pr+Dr, 
respective sequential double stresses. 
 

 

Figure 3. Clustering of the single stress DEGs. Heatmap showing the expression 
patterns of the union of differentially expressed genes (DEGs) in the three single stresses 
at different time points after induction (total 7173 unique genes). DEGs were clustered 
using Mclust yielding 9 gene clusters (colored bars on the left). On the right side, the most 
significant GO term for each cluster (full data set in Supporting Table S2). Bc, B. cinerea; 
Pr, P. rapae; Dr, drought. For drought stress, the time point one day after re-watering 
(7+1d) was included in the cluster analysis. Blue-red color key for change in gene 
expression level: -3 > log2 fold change > 3. 
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Core DEGs that are shared between the single stress responses  

To investigate to what extent genes and biological processes are shared 

between the three single stress responses, we compared their DEGs. Figure 4a 

shows that there is a large overlap between the DEGs of the single stress 

responses, ranging from 1716 genes shared between the drought and P. rapae 

sets, to 788 genes between the drought and B. cinerea sets, and 777 genes 

between the P. rapae and B. cinerea sets. Of all 7173 DEGs (excluding the 1 d 

after re-watering time point), 2493 DEGs (35%) are shared with one or both of 

the other stresses. A core set of 394 DEGs (5%) was differentially expressed in 

response to all three single stresses, and clustered into 12 co-expressed gene 

clusters (Fig. 4b). Among this core set of shared DEGs are several well-

characterized hormone-responsive marker genes, including LOX2 (At3g45140), 

JAZ7 (At2g34600), and JAZ8 (At1g30135) (JA responsive), PDF1.2 (At5g44420) 

and ORA59 (At1g06160) (JA/ET responsive), PR4 (At3g04720), ERF5 

(At5g47230), ERF6 (At4g17490), and ACS2 (At1g01480) (ET responsive), 

Rap2.6L (At5g13330), and HAI1 (At5g59220) (ABA responsive), and PR-1 

(At2g14610), PR-5 (At1g75040), and FRK1 (At2g19190) (SA responsive) 

(Supporting Table S1 for details of their expression patterns). In Fig. 4c the 

expression patterns of well-characterized marker genes of the response to B. 

cinerea (PDF1.2; At5g44420), P. rapae (LOX2; At3g45140), and drought stress 

(RAD18; At5g66400) are depicted, confirming that the different stress 

treatments resulted in the expected response. When looking at the co-expressed 

gene clusters, only the genes of cluster 1 (top GO terms related to “response to 

oxygen-containing compound”, “response to JA” and “response to wounding”; 

Supporting Table S3) are regulated in the same direction (activated) during all 

three individual stress conditions (Fig. 4b). All other gene clusters behave clearly 

different in response to the three single stresses and are often regulated in 

opposite directions (Fig. 4b). For example cluster 8 (top GO terms related 

to ”response to other organism”, “defense response” and “immune system 

process”) is activated by B. cinerea, but repressed by P. rapae and drought. 

Conversely, cluster 10 (top GO terms “multidimensional cell growth”, “response 

to light stimulus”, and “cell wall organization”) is activated by P. rapae, but 

repressed by B. cinerea and drought. The fact that there is an overlap in the 

expression of genes under all three single stresses, whether in the same or in 
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opposite directions, suggests that these genes or their regulators may act as a 

point of convergence if plants were to experience these stresses in combination. 

 

Figure 4. Shared DEGs between the single stress responses. (a) Venn diagram 
showing the overlap between the DEGs of each of the single stress responses. The total 
number of unique DEGs per single stress over all time points is shown in red (full data set 
in Supporting Table S1). (b) Hierarchical clustering of the 394 core DEGs that are shared 
between the three single stresses (Cosine similarity metric; 12 clusters are color coded in 
the square boxes on the left). On the right side, the most significant GO term for each 
cluster (full data set in Supporting Table S3). (c) Comparison of the expression patterns of 
the 394 core DEGs in response to the single and respective sequential double stresses. 

Different lanes in (c) reflect the transcription profiles at the time points after treatment as 
indicated above the lanes in (b). Gene names in the lower right corner represent marker 
genes of the SA, JA, JA/ET, ET and ABA response pathways that are among the 394 core 
DEGs. PDF1.2, LOX2, and RAD18, represent known marker genes for the response to B. 
cinerea, P. rapae, and drought, respectively. Bc, B. cinerea; Pr, P. rapae; Dr, drought; 
Pr+Bc, Dr+Bc, Bc+Pr, Dr+Pr, Bc+Dr, and Pr+Dr, respective sequential double stresses. 
Blue-red color key for change in gene expression level: -3 > log2 fold change > 3. 
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B. cinerea data set: effect of herbivory and drought stress on 

dynamics of B. cinerea-induced gene expression 

To investigate the effect of P. rapae infestation and drought stress on the 

dynamics of the transcriptome changes that are induced by B. cinerea infection, 

we analyzed the expression patterns over time of all 2076 B. cinerea-responsive 

DEGs. Clustering of this group of genes yielded 10 clusters of co-expressed 

genes across the B. cinerea single and sequential stress data sets. Gene clusters 

that are activated in response to B. cinerea infection are enriched for GO terms 

such as “response to chitin” (Fig. 5, cluster 3; Supporting Table S4), reflecting 

recognition of fungal chitin by the plant immune system (Pel and Pieterse 2013), 

and “response to ET stimulus”, reflecting the high level of ET emission that is 

related to plant responses to B. cinerea infection (Broekgaarden et al. 2015). In 

addition, gene clusters that are repressed in response to B. cinerea infection are 

associated with GO terms such as “multidimensional cell growth” (Fig. 5, cluster 

9; Supporting Table S4), highlighting the antagonistic relationship between plant 

growth and defense (Wang and Wang 2014).  

In order to identify in greater detail co-regulated genes of which the 

expression pattern in response to B. cinerea infection was affected by either 

herbivory or drought stress, we used the bioinformatics tool Wigwams (Polanski 

et al. 2014). The Wigwams algorithm identifies gene modules showing evidence 

for co-regulation in multiple gene expression time series and identifies 

signatures of condition-dependent regulatory mechanisms in co-regulated gene 

sets. Wigwams identified 35 modules of co-regulated genes in the B. cinerea 

data sets (Supporting Fig. S1). Analysis of these clusters for co-expression 

revealed gene modules of which the expression patters were clearly affected in 

one or both of the sequential stress treatments in comparison to the B. cinerea 

treatment alone (examples shown in Fig. 6). These gene modules represent 

signatures of a previous stress in the B. cinerea-induced transcriptome profile, 

and may thus be functionally related to the effect of the first stress on the 

outcome of the plant response to B. cinerea infection. The genes in these 

Wigwams modules are given in Supporting Table S5 along with their GO term 

analysis.  
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Figure 5. Dynamics of the expression of the B. cinerea set of DEGs during single 
and sequential double stresses. Heatmap showing the expression pattners of the 2076 
B. cinerea-responsive DEGs during B. cinerea infection on mock pre-treated (Bc), P. rapae 
pre-infested (Pr+Bc) or drought pre-treated (Dr+Bc) Arabidopsis plants. The B. cinerea-
responsive DEGs were clustered using Mclust yielding 10 clusters (colored bars on the left). 
On the right side, the most significant GO term for each cluster (full data set in Supporting 
Table S4). Blue-red color key for change in gene expression level: -3 > log2 fold change > 
3. 
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Figure 6. Expression patterns of selected Wigwams modules from the B. cinerea 
set of DEGs during single and sequential stress conditions. A selection of Wigwams 

modules of co-expressed gene clusters is depicted that show a different pattern in one or 
both of the sequential stresses P. rapae-B. cinerea (Pr+Bc) and drought-B. cinerea (Dr+Bc) 
in comparison to the single stress B. cinerea (Bc). The modules represent standardized 
patterns of differential gene expression over time (log2 counts). Blue-colored graphs 
indicate modules of which the genes are significantly co-expressed over time in the given 
stress condition. Time points 1, 2, 3 and 4 represent 6, 12, 18 and 24 h after B. cinerea 
inoculation. The top 5 of GO terms with highest significance in the respective modules are 
given (full data set for all Wigwams modules is presented in Supporting Table S5). 
 

Among the B. cinerea-responsive Wigwams modules of which the co-

expression pattern is different when plants were previously exposed to herbivory 

or drought stress, are gene modules with GO term enrichments for rather 

general plant processes such as nucleoside biosynthesis and metabolism 

(modules 6 and 9), and cell growth (module 25), but also modules related to 

more specific plant processes, such as response to chitin and nitrogen (module 

15). Functional analysis of underlying candidate genes should reveal their 

importance for effects on the outcome of the second stress response.     

Further knowledge about the biological processes that are affected when B. 

cinerea infection is preceded by either drought stress or herbivory can be gained 

by analyzing the phasing of gene expression under the different single and 
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sequential stress conditions. We did this by analyzing at which time point a GO 

term becomes significantly overrepresented in the B. cinerea-related DEG set. 

For this, we clustered all B. cinerea-responsive DEGs according to their time 

point of first differential expression, divided them over activated and repressed 

genes, and performed GO term analysis on them. Figure 7 shows the timing and 

strength of the onset of significant GO term enrichment in the single and 

sequential double stress conditions. In the B. cinerea single stress data set, GO 

terms related to responses to ET, fungus, chitin, SA, and oxygen-containing 

compound, or to processes such as systemic acquired resistance, respiratory 

burst, and defense appear early in the activated gene set, reflecting the 

importance of these processes in the plant response to this necrotrophic 

pathogen. Prior infestation with P. rapae clearly delayed the appearance of these 

GO terms (become visible at 18 hai in Fig. 7), while pre-treatment with drought 

stress did not have a dramatic effect on the phasing of the activated genes. For 

the repressed genes in the B. cinerea set of DEGs, pre-infestation with P. rapae 

has clearly only minor effects on the GO term phasing. By contrast, pre-

treatment with drought stress noticeably affected the phasing of GO terms 

related to responses to fungus, JA, SA, ABA, chitin, and oxygen-containing 

compound, and to auxin metabolic process, defense, systemic acquired 

resistance, and glucosinolate biosynthetic process. Remarkably, biological 

processes related to hormone action prevail in the B. cinerea-responsive 

processes that are sensitive to modulation by prior exposure to one of the other 

stresses. 
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Figure 7. Timing of GO term overrepresentation patterns in B. cinerea single and 
sequential stress data sets. Heatmap represents the strengths of the P-values of GO 
term overrepresentation in the B. cinerea-responsive DEG sets (corresponding to the gene 
lists in Supporting Table S1) that become significantly activated (up) or repressed (down) 
for the first time at the given stress conditions and time points. Color index represents 
level of significance (P-values). On the right, overrepresented GO terms. Bc, B. cinerea; Pr, 
P. rapae; Dr, drought; hai, h after B. cinerea infection.  
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Effect of herbivory or drought stress on resistance to B. cinerea 

Both herbivory and drought stress imposed a first-stress-signature in the 

dynamics of the B. cinerea-induced transcriptome profiles. Wigwams analysis 

gained insight into the identity of candidate genes related to these first-stress-

signatures (Supporting Fig. S1; Supporting Table S5), whereas analysis of GO 

term enrichment provided global insight into the biological processes that were 

affected by the stress pre-treatments (Fig. 7). To investigate whether the two 

prior stresses affected the resistance level to B. cinerea infection we performed 

disease resistance bioassays. Inoculation of 5-week-old Arabidopsis Col-0 plants 

with B. cinerea resulted in the development of spreading lesions in about 60% of 

the inoculated leaves (Fig. 8).  

 

Figure 8. Effect of herbivory and drought stress on resistance of Arabidopsis to B. 
cinerea. (a) Quantification of B. cinerea disease symptoms on Arabidopsis accession Col-0 
plants (% spreading lesions per plant). On each plant, six leaves were inoculated with one 
droplet of B. cinerea spores. Three d later, the average number of leaves with spreading 
lesions was determined per plant. Asterisk indicates statistically significant difference from 
single stress (Bc) treatment (n=6 plants; Student’s t-test; P<0.05). (b) Photographs of B. 
cinerea disease symptoms 3 d after inoculation. Bc, B. cinerea-inoculated plants; Pr+Bc, B. 
cinerea-inoculated plants that prior to inoculation were exposed to herbivory by P. rapae 
larvae for 24 h; Dr+Bc, B. cinerea-inoculated plants that prior to inoculation received a 
drought treatment for 7 days, followed by a re-watering phase of one day. Red dots, B. 
cinerea-inoculated leaves; purple arrow, damage caused by P. rapae feeding.   
 

Plants that were exposed to drought stress prior to B. cinerea inoculation 

showed a similar percentage of leaves with spreading lesions (~70%). 

Interestingly, plants that were exposed to herbivory prior to B. cinerea 

inoculation showed a significantly enhanced level of resistance against B. cinerea 

infection (average ~35% spreading lesions). Together these results indicate that 

a first stress can have strong effects on the outcome of the adaptive stress 

response to a second stress, depending on the nature of the first stress.  
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P. rapae data set: effect of B. cinerea infection and drought 

stress on dynamics of P. rapae-induced gene expression 

The same approach as described above for the B. cinerea transcriptome data 

was taken to investigate the effect of prior B. cinerea infection and drought 

stress on the transcriptional dynamics that are induced by P. rapae feeding. 

Analysis of the global expression profiles of the 3952 P. rapae-responsive DEGs 

yielded 9 clusters of co-expressed genes during single and sequential P. rapae 

stress (Fig. 9).  

As expected, P. rapae feeding induced many genes related to the GO term 

“response to JA stimulus” (Fig. 9, cluster 7; Supporting Table S6), reflecting 

induced defenses that are triggered by herbivory-inflicted wounding (Wasternack 

2015). In addition, P. rapae feeding repressed SA-related genes associated with 

GO terms “defense response” and “systemic acquired resistance” (Fig. 9, cluster 

3; Supporting Table S6), reflecting the antagonistic relationship between JA- and 

SA-dependent defenses (Pieterse et al. 2012). In analogy with what we 

observed in the B. cinerea data sets, the general gene expression patterns over 

time overlapped greatly between the responses to P. rapae single and sequential 

double stress treatments, again suggesting that Arabidopsis is capable of 

reprogramming its transcriptome to the last stress encountered, thereby 

overruling the effects of the prior stresses. For instance, while prior drought 

stress impacted the expression of over 1000 genes in the leaf tissue just prior to 

the start of the P. rapae treatment (Supporting Table S1; Fig. 3 last lane), 

already from the first time point (3 h) after herbivory this effect was mostly 

vanished in the P. rapae-induced profiles, which readily followed a similar 

expression pattern as in the P. rapae single treatment (Fig. 9). A similar pattern 

is visible in the core set of 394 DEGs (Fig. 4c, middle panel). Nevertheless, 

during the sequential stresses first-stress signatures can be detected, e.g. genes 

in cluster 3 of Fig. 9 and clusters 7 and 8 of Fig. 4c (middle panel) show a 

weaker repression in the B. cinerea pre-treatment and a stronger repression in 

the drought pre-treatment. In general, these P. rapae-related results confirm 

previous findings (Davila Olivas et al. 2016). 
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Figure 9. Dynamics of the expression of the P. rapae set of DEGs during single 
and sequential double stresses. Heatmap showing the expression patterns over time of 
the 3952 P. rapae-responsive DEGs during feeding of P. rapae on control (Pr), B. cinerea 
pre-infected (Bc+Pr), or drought pre-treated (Dr+Pi) Arabidopsis plants. The P. rapae-
responsive DEGs were clustered using Mclust yielding 9 clusters (colored bars on the left). 
On the right side, the most significant GO term for each cluster (full data set in Supporting 
Table S6). Blue-red color key for change in gene expression level: -3 > log2 fold change > 
3. 

To pinpoint co-regulated genes whose expression pattern in response to 

herbivory is affected by prior B. cinerea infection or drought stress, the set of P. 

rapae-responsive DEGs was analyzed with the Wigwams algorithm. Wigwams 

identified 93 modules of co-regulated genes in the P. rapae set of DEGs. 

Analysis of these clusters for co-expression under the single and sequential 

double stress conditions revealed gene modules of which the expression 

patterns were clearly affected by one or both of the sequential double stress 

treatments in comparison to the P. rapae treatment alone (examples shown in 

Fig. 10; full set in Supporting Fig. S2). The identities of the genes in the P. 

rapae-related Wigwams gene modules are given in Supporting Table S5 along 

with their GO term analysis. It is beyond the scope of this paper to discuss the 

identity of the genes in detail. However, among the P. rapae-responsive 

Wigwams modules of which the co-expression pattern is clearly different when 

plants were exposed before to B. cinerea infection or drought stress, are gene 

modules with GO term enrichments for xylem, phloem and tissue development 
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(module 3), cell wall biosynthesis processes (module 45), and responses to JA 

and wounding (module 69).  

 

Figure 10. Expression patterns of selected Wigwams modules from the P. rapae set of 
DEGs during single and sequential stress conditions. A selection of Wigwams modules of 
co-expressed gene clusters is depicted that show a different pattern in one or both of the 
sequential stresses B. cinerea-P. rapae (Bc+Pr) and drought-P. rapae (Dr+Pr) in 
comparison to the single stress P. rapae (Pr). The modules represent standardized 
patterns of differential gene expression over time (log2 counts). Blue-colored graphs 
indicate modules of which the genes are significantly co-expressed over time in the given 
stress condition. In the black-colored graphs, the genes in the module are not significantly 
co-expressed. Time points 1, 2, 3 and 4 represent 3, 6, 12 and 24 h after P. rapae 
infestation. The top 5 of GO terms with highest significance in the respective modules are 
given (full data set for all Wigwams modules is presented in Supporting Table S5). 
 

Also for the P. rapae data set, phasing of the regulation of biological 

processes that are associated with herbivory and influenced by prior B. cinerea 

infection or drought stress was determined. Therefore, the level of significance 

of overrepresentation of the GO terms for the P. rapae set of DEGs at their first 

time of differential expression was assessed. In the P. rapae single stress data 

set, GO terms related to responses to chitin, wounding, JA, ET, SA, auxin, ABA, 

water deprivation, osmotic stress, and oxygen-containing compound are already 

highly enriched at 3 h after infestation in the activated set of DEGs (Fig. 11), 
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reflecting the importance of these processes in the response of Arabidopsis to 

herbivory. In many cases, pre-infection with B. cinerea strengthened the level of 

overrepresentation of these GO-terms at different time points after P. rapae 

infestation, while pre-treatment with drought stress often weakened them. In 

the repressed set of DEGs, drought stress clearly enhanced the 

overrepresentation of GO terms related to responses to chitin, JA, fungus, ABA, 

SA, bacterium, and oxygen-containing compound, and to processes such as 

systemic acquired resistance, defense response to fungus, and negative 

regulation of programmed cell death, while B. cinerea infection had no major 

effect on the phasing of these GO terms. Overall, these data indicate that B. 

cinerea infection and drought treatment prior to P. rapae infestation affects the 

timing of several defense-related processes, in particular responses to JA, ABA, 

SA and ET, corroborating the notion that different stresses interact via the 

hormone-regulated signaling network.      
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Figure 11. Timing of GO term overrepresentation patterns in P. rapae 
single and sequential double stress data sets. Heatmap represents the 
strengths of the P-values of GO term overrepresentation of P. rapae-responsive 

DEG sets (corresponding to the gene lists in Supporting Table S1) that become 
significantly activated (up) or repressed (down) for the first time at the given 
stress conditions and time points. Color index represents level of significance (P-
values). On the right, overrepresented GO terms. Bc, B. cinerea; Pr, P. rapae; 
Dr, drought; hai, h after P. rapae infestation.  
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Drought data set: effect of B. cinerea infection and herbivory on 

dynamics of drought stress-induced gene expression 

Also for drought stress we investigated the effect of the other two stresses 

on the dynamics of the transcriptome changes that are induced by this abiotic 

stress. We analyzed the dynamics of the global expression patterns of the 4032 

drought-responsive DEGs during single and sequential stress with drought as the 

second stress, which yielded 10 clusters of co-expressed genes (Fig. 12). GO 

term analysis of overrepresented biological processes in each cluster highlights 

the main differentially regulated biological processes. As expected, drought 

stress induced a relatively large number of genes related to GO term “response 

to water deprivation” (Fig. 12, cluster 6; Supporting Table S7) and GO terms 

related to “response to oxygen-containing compound” (clusters 3 and 10, and 

cell wall-related processes (cluster 7). Another feature that stands out is the 

association of drought stress with massive repression of genes, many of which 

are associated with biological processes such as “photosynthesis” and “defense 

response” (clusters 1, 2, 5 and 8), reflecting the fact that drought-stressed 

plants shift their strategy from energy-demanding processes related to growth 

and immunity to adaptation to the abiotic stress condition. Interestingly, after 1 

day of re-watering (7+1 d columns in Fig. 12), the drought-induced 

transcriptional changes that intensified over the 7-d period of water withhold, 

were for 77% (3106 of the 4032 DEGs; Supporting Table S1) reset towards 

basal levels within 24 h, demonstrating the plant’s ability to swiftly redirect 

transcriptional programming when drought stress is relieved. Similar to what we 

observed for the B. cinerea and P. rapae sequential double stress responses, the 

gene expression patterns over time in the sequential drought double stress 

treatments were to a large extent similar to those inflicted by the single drought 

treatment. In the core set of 394 DEGs it is clear that on the first time point 

after the start of the drought treatment (5 d), B. cinerea and P. rapae pre-

treatment still had noticeable effects on the drought-induced gene expression 

profiles (Fig. 4c, right panel; compare the left lanes of Dr, Bc+Dr, and Pr+Dr). 

However, at the later time points (6 and 7 d) these effects dampened off and 

the expression patterns became more similar to that of the drought single 

treatment. Nevertheless, prior stress caused by B. cinerea infection or P. rapae 

infestation left first-stress-signatures in the drought-induced transcriptome. 
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Figure 12. Dynamics of the expression of the drought set of DEGs during single 
and sequential double stresses. Heatmap showing the expression patterns over time of 
the 4032 drought-induced DEGs during a 7-d period of water withhold and 1 d after 
rewatering on control (Dr), B. cinerea pre-infected (Bc+Dr), or P. rapae pre-infested 
(Pr+Dr) Arabidopsis plants. The drought-responsive DEGs were clustered using Mclust 
yielding 10 clusters (colored bars on the left). On the right side, the most significant GO 
term for each cluster (full data set in Supporting Table S7). Blue-red color key for change 
in gene expression level: -3 > log2 fold change > 3. 
 

Wigwams analysis of co-regulated genes in the drought data sets identified 

72 co-expressed gene modules under the single and sequential double drought 

stress conditions (examples in Fig. 13; full set in Supporting Fig. S3). The 

identities of the genes in these Wigwams gene modules are given in Supporting 

Table S5 along with their GO term analysis. Wigwams modules with clear 

changes in expression pattern when drought-stressed plants were pre-treated 

with either B. cinerea or P. rapae represent genes related to the biological 

processes such as SA and defense signaling (module 10 and 55), and 

Nucleosome organisation (module 11). Future analysis of candidate genes in 

these modules should reveal their importance for the outcome of the 

combinatorial stress responses.  
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Figure 13. Expression patterns of selected Wigwams modules from the drought 
set of DEGs during single and sequential stress conditions. A selection of Wigwams 
modules of co-expressed gene clusters is depicted that show a different pattern in one or 
both of the sequential stresses B. cinerea-drought (Bc+Dr) and P. rapae-drought (Pr+Dr) 
in comparison to the single stress drought (Dr). The modules represent standardized 
patterns of differential gene expression over time (log2 counts). Blue-colored graphs 
indicate modules of which the genes are significantly co-expressed over time in the given 
stress condition. In the black-colored graphs, the genes in the module are not significantly 
co-expressed. Time points 1, 2, 3 and 4 represent 5, 6, 7 and 7+1 d after onset of water 
withhold, in which the 7+1 d time point represents plants that were re-watered for 1 d 
after the 7-d drought period. The top 5 of GO terms with highest significance in the 
respective modules are given (full data set for all Wigwams modules is presented in 
Supporting Table S5). 
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Also for the drought DEGs, we analyzed the timing and level of significance 

of overrepresentation of all the GO terms in the single and sequential double 

stress time series (Fig. 14). In the drought single stress data set, GO terms 

related to responses to oxidative stress, water deprivation, osmotic stress, ABA, 

and oxygen-containing compound, and to processes such as phenylpropanoid 

biosynthesis, cell wall biogenesis, and lignin metabolism are enriched in the 

activated gene set at the first day of sampling, while responses to wounding and 

JA follow somewhat later. In the repressed gene set, GO terms related to 

responses to JA, SA, chitin, fungus, insect and oxygen-containing compound and 

to processes such as photosynthesis, shoot system development, systemic 

acquired resistance, glucosinolate metabolic process, nitrogen compound 

transport, and respiratory burst are enriched already at the first sampling point. 

This highlights the biological processes that are engaged or affected during 

drought stress. Interestingly, pre-infection with B. cinerea accelerated the 

phasing of activated genes associated with biological processes such as 

responses to chitin, wounding, osmotic stress, ABA, and JA. In the repressed 

gene set, GO terms  related to responses to chitin, fungus, and SA, and to 

systemic acquired resistance became later enriched than in the single stress 

data set. When plants were pre-infested with P. rapae, the phasing of the 

drought responsive genes is also clearly affected. Many GO terms in the drought 

activated gene set become more prominently enriched at later time points. 

Moreover, in the repressed gene sets GO terms related to responses to water 

deprivation, osmotic stress, wounding, JA, ABA and ET are highly 

overrepresented at the first time point of sampling, while this is not the case in 

the single stress treatment. Like in the B. cinerea and P. rapae data sets, 

biological processes related to hormone action become relatively often 

differentially enriched in the sequential double treatments in comparison to the 

single stress treatment.  
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Figure 14. Timing of GO term overrepresentation patterns in drought single and 
sequential stress data sets. Heatmap represents the P-values of GO term 
overrepresentation of drought-responsive DEG sets (corresponding to the gene lists in 
Supporting Table S1) that become significantly activated (up) or repressed (down) for the 
first time at the given stress conditions and time points. Color index of P-values represents 
level of significance. On the right, overrepresented GO terms. Bc, B. cinerea; Pi, P. rapae; 
Dr, drought; days, d after water withhold. 

Effect of stress interactions on plant resistance 

For all three main stresses tested, prior treatment with one of the other 

stresses imposed a first-stress-signature in the dynamics of their transcriptome 

profiles. Wigwams analysis provided insight into the identity of the co-expressed 

genes related to these first-stress-signatures (Figs. 6, 10 and 13), whereas 

analysis of GO term enrichment at the onset of gene induction provided global 

insight into the biological processes that were affected during the time course by 

the prior stress treatment (Figs. 7, 11 and 14). As an example for the effect of 

prior stress on the level of plant resistance to a second stress, we showed that 

the level of infection by B. cinerea can be significantly altered when plants were 

pre-disposed to herbivory (Fig. 8). The bioassays with the other sequential 

stress treatments showed no strong effects of prior stress treatment on the 
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performance of the specialist herbivore P. rapae (Davila Olivas et al. 2016). In 

future research, we will functionally analyze candidate genes from the first-

stress signatures in the second stress profiles to investigate their putative role in 

a diverse range of multi-stress interactions. 
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Discussion 

Plants are often exposed to different abiotic and biotic stresses, which can 

occur simultaneously or sequentially. How plants selectively adapt their response 

to this complexity of stresses is largely unknown. In this study, we aimed to 

gain insight into how plants respond to a biotic or abiotic stress when previously 

exposed to another stress, using a necrotrophic pathogen, an insect herbivore, 

and drought as main stress factors. By analyzing the dynamics of the 

Arabidopsis transcriptome over four consecutive time points we were able to 

show that 1) on average 35% of the DEGs in a given single stress is also 

differentially regulated in one or both of the other two single stresses, albeit 

often in different directions; 2) irrespective of the nature of the first and second 

stress applied, genes responsive to the second stress rapidly follow a similar 

pattern as that induced by the second stress alone; 3) the Wigwams algorithm 

identified first-stress-signatures of co-expressed genes that behave differently in 

the sequential double stress profile in comparison the single stress treatment; 4) 

plant hormone-related biological processes play a dominant role in the 

interaction between the studied stress-induced transcriptomes supporting 

previous findings (Rejeb et al. 2014); and 5) a previous stress can affect the 

outcome of a response to a sequential second stress, resulting in altered plant 

resistance. 

Transcriptome profiles of different single stress responses show 

significant overlap 

The expression profiles induced by the single stresses B. cinerea infection, P. 

rapae infestation, and drought are clearly different in timing and numbers of 

activated and repressed genes (Fig. 2). Clustering of the profiles of all DEGs 

(7355) from the three single stress responses shows that, in general, genes 

related to stress-related processes are overrepresented in the activated gene 

sets, while genes related to growth  become repressed (Fig. 3). This confirms 

the notion that plants under stress prioritize appropriate adaptive responses 

over growth (Vos et al. 2015, Vos et al. 2013a). One third of all DEGs under 

single stress conditions was also differentially expressed under one or both of 

the other single stress conditions (Fig. 4a). A set of 394 DEGs was differentially 

expressed in response to all three single stresses and clustering of their 
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expression profiles clearly shows that the expression of the genes in the 12 

distinguished clusters is often regulated in opposite directions (up or down), 

depending on the nature of the stress (Fig. 4b). Only one cluster, containing an 

overrepresentation of genes related to the GO term “response to oxygen-

containing compound” shows a general up-regulation of genes under all three 

single stress conditions, highlighting that production and responsiveness to 

oxygen-containing compounds are central to stress responses in general. Overall, 

these results indicate that a significant proportion of the stress-related 

transcriptome is engaged by all three stresses tested. The differential stress-

type specific up- or down-regulation of genes suggests their positive versus 

negative function in different adaptive stress responses. When a plant 

experiences a combination of stresses, this may cause synergistic or 

antagonistic effects on the level of tolerance to the stresses at hand.  

The transcriptome is rewired to the last stress response, but the 

prior stress leaves first-stress-signatures in the second stress 

profile 

Analysis of the dynamics of both the single and sequential double stress 

transcriptome profiles showed that the transcriptome profiles of all possible 

double stress combinations were remarkably similar to those of the last 

encountered stress if applied individually (Figs. 4c, 5, 9, and 12). In analogy, 1 d 

after re-watering, the drought-induced transcriptome was largely reset to the 

non-stressed condition (Fig. 12). Apparently, plants are highly plastic in their 

capacity to adapt to changes in their biotic and abiotic environment, and swiftly 

rewire their transcriptome to the latest stress encountered. Nevertheless, it has 

been demonstrated that prior exposure to biotic or abiotic stresses can have 

dramatic effects on the outcome of the response to a second stress (Rejeb et al. 

2014).  

To identify genes and biological processes that could contribute to the 

interaction between different stress responses, different types of analyses have 

been carried out. When globally inspecting the transcriptional profiles of the 

single and sequential double stress profiles, it is difficult to pinpoint obvious 

effects of a first stress on the dynamics of the transcriptional response to a 
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second stress. Using Mclust clustering of the transcriptional profiles of the B. 

cinerea, P. rapae and drought sets of DEGs (Figs. 5, 9 and 12) different gene 

clusters were identified that showed distinct behavior over time during the single 

and sequential double stress responses. However, in this way relatively small 

differences between the single and sequential stresses were detected. In order 

to better pinpoint co-expressed gene clusters that represent first-stress-

signatures in the second stress transcriptome profiles, we used the 

bioinformatics tool Wigwams (Polanski et al. 2014). We were able to dissect the 

transcriptional profiles into modules of co-regulated genes in time across 

different conditions. This approach highlighted modules whose gene expression 

patterns differed from the single stress profile in one or both of the sequential 

double stress profiles (Figs. 6, 10, and 13, and Supporting Figs. S1, S2 and S3). 

Future studies should reveal the role of candidate genes in these clusters in 

shaping the outcome of the adaptive stress responses in the sequential dual 

stress conditions. Moreover, the Wigwams modules of co-regulated genes could 

aid in dissecting the regulatory circuitry underlying plant responses to 

combinatorial stresses, e.g. by analyzing the representation of transcription 

factors binding motifs in the promoters of the gene modules. 

Hormone-related responses prevail in biological processes that 

are differentially enriched in the double stress transcriptional 

profiles     

Zooming in on the biological processes that are differentially enriched among 

the transcriptional profiles of the single versus the sequential double stresses, 

we monitored GO term enrichment at the time points of first differential 

expression of all genes. Plots of all biological GO terms that become significantly 

represented in the set of DEGs at the different time points provide a landscape 

of the timing at which these biological processes significantly change (Figs. 7, 11 

and 14). Interestingly, among all biological processes that become clearly more 

enriched in the sequential double stresses over their respective single stresses 

(either in activated or repressed DEGs) are GO terms related to the response to 

the stress-related hormones JA, ABA, SA, and ET and occasionally to auxin. This 

observation suggests that responses to these hormones are likely to play a 

central role in the interaction between the signaling pathways that regulate the 
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adaptive responses to the sequential double stresses. In the past, JA, ABA, ET, 

and SA have been demonstrated to be crucial positive or negative regulators of 

plant resistance against B. cinerea (JA, ET, and SA; El Oirdi et al. 2011, Thomma 

et al. 1998, Thomma et al. 1999, Vos et al. 2015), P. rapae (JA and ABA; 

Bodenhausen and Reymond 2007, De Vos et al. 2006, Vos et al. 2013b), and 

drought stress (ABA; Yamaguchi-Shinozaki and Shinozaki 2006). Hence, 

interactions between the different hormone-controlled signaling pathways may 

be decisive in the outcome of the adaptive response when two stresses are 

encountered sequentially.  

Effect of prior stress on level of resistance to subsequent stress  

Classic examples of interactions between defense pathways are the different forms of 

induced resistance that are triggered by pathogens, insect herbivores and beneficial 

microbes as they all change the outcome of the defense response against a subsequent 

invasion by another pathogen or insect in a positive or negative manner (De Vos et al. 

2006, Howe and Jander 2008, Pieterse et al. 2014, Poelman et al. 2008, Van Oosten et al. 

2008, Vos et al. 2015). Also for abiotic stresses effects on the level of resistance against 

other abiotic and biotic stresses are documented (Fujita et al. 2006, Rejeb et al. 2014). 

For the combinations of sequential stresses that were investigated here, we found that 

prior infestation by P. rapae caterpillars changed the level of resistance against B. cinerea 

(Fig. 8), even though the global transcriptional profiles induced by B. cinerea as single or 

second stress did not differ dramatically (Fig. 5).  

It can thus be concluded that subtle first-stress-signatures in the double stress 

transcriptional profile may have significant effects on the outcome of the adaptive 

response to the second stress, although it cannot be excluded that non-transcriptional 

changes may also contribute to changes in the level of resistance against the second 

stress.  Previously, it was shown that herbivory on Arabidopsis by P. rapae results in a 

systemic increase in the levels of JA, and that this can prime systemic tissues for 

enhanced JA-dependent anti-herbivory defenses (Vos et al. 2013b). Since JA-regulated 

defenses play a major role in resistance against the necrotrophic pathogen B. cinerea as 

well, herbivory-induced priming of JA responsiveness may contribute to the enhanced 

resistance level against B. cinerea (Fig. 7; Fig. 8).  

This study was aimed at analyzing the dynamics of gene expression patterns in 

response to a set of single and sequential double stresses. Future research will be focused 

on biological validation of candidate genes in the Wigwams modules with putative major 
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roles in shaping the outcome of sequential double stresses. Knowledge on how plants cope 

with different stresses simultaneously or in sequence will aid in breeding for multi-stress 

tolerant crops. 
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Supplementary Tables 

Supporting Table S1: Differentially expressed genes (DEGs) of Arabidopsis 
thaliana (AGI numbers of DEGs; FDR <0.05; >2-fold) in response to B. cinerea 

infection, P. rapae infestation, drought stress, and their six sequential 

combinations at four consecutive time points. 
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Abstract 

It is important to understand how plant responses to the combination of 

biotic and abiotic stresses because plants are exposed to multiple biotic and 

abiotic stresses that occur either simultaneously or sequentially in the natural 

environment. The molecular mechanisms underlying plant responses to 

individual stresses have been studied extensively but less is known about the 

responses to a combination of stresses. In this study, we performed RNA-seq to 

discover the transcriptome changes of Arabidopsis thaliana to drought and 

rehydration, in combination with two biotic pre-treatments (necrotrophic fungal 

infection by Botrytis cinerea and herbivory by Pieris rapae larvae), in order to 

gain a deep understanding of the interaction between these combinations of 

stresses. We found drought stress has the strong influence of secondary 

messengers and photosynthesis and the one-day sequential rehydration period 

is insufficient to fully overcome the effects of drought stress on Arabidopsis. 

Herbivory by Pieris has a much higher impact on the transcriptome during 

sequential drought and rehydration, than the infection with Botrytis. The biotic 

pre-treatment can have strong antagonistic effects on sequential drought 

responses. Opposite effects were observed on 42 differential expressed genes 

(DEGs), including ethylene-related genes ERF5, ERF6, ERF104 and drought 

responsive gene P5CS1, during the subsequent drought treatment, revealing 

specific temporal regulation during the sequential drought that is influenced by 

the biotic pre-treatment factor. Genes with alternative splicing (AS) variants 

were identified in different stress conditions, but none of them  were found 

among the DEGs, showing a separate regulation of gene expression and AS in 

response to stresses. Phenotypic differences found for the mdar3 and pin7 

mutants suggest the MDAR3 and PIN7 genes to play an important role in the 

response to the combinatorial stress.   

Keywords 

Drought, Pieris rapae, Botrytis cinerea, (a)biotic stress response, Arabidopsis 

thaliana, RNA-sequencing, alternative RNA splicing.  
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Introduction 

Plants growing under natural conditions are often simultaneously or 

sequentially exposed to various biotic and abiotic factors which may interfere 

with plant growth and development causing a substantial annual reduction in 

agricultural production yield (Hirt and Shinozaki, 2004). Strong effects of 

(a)biotic factors are considered to be imposing plant stress, hence these factors 

are often referred to as conferring (a)biotic stress, and the tolerance to resist 

their effect as stress tolerance. 

Plants respond to adverse biotic and abiotic conditions primarily through 

plant hormone-mediated pathways. This includes signalling pathways involving 

abscisic acid (ABA), which plays an important role in abiotic stress responses to 

e.g. drought and salt (Shinozaki and Yamaguchi-Shinozaki, 2007); jasmonic acid 

(JA) and ethylene (ET), which are essential in reacting to necrotrophic fungi and 

chewing insects; and salicylic acid (SA), which activates plant defence responses 

upon infection with biotrophic fungi (Pieterse et al., 2009; Dodds and Rathjen, 

2010). Other plant hormones such as brassinosteroids (BR)s, auxins (AUX), and 

cytokinins (CK) are also involved in regulating the responses to biotic and abiotic 

stresses, but play a minor role (Hirt, 2009; Pareek et al., 2010; Pieterse et al., 

2012).  

The interaction between biotic and abiotic stress responses, mediated by 

different plant hormones, can be both synergistic or antagonistic. Negative 

interactions have been observed between JA and SA, ABA and SA, ABA and JA, 

and ABA and ET; while positive interactions have been observed between ABA 

and AUX (Yoshioka and Shinozaki, 2009). Studies in tomato indicate that 

drought stress leads to increased resistance to Botrytis cinerea infection 

(Audenaert et al., 2002; Achuo et al., 2006). Vice versa, interactions with 

pathogens and insects can also have a positive impact on plant responses to 

subsequent drought stress. For instance, pathogen-induced priming has a 

positive effect on plants in response to drought (Ramegowda and Senthil-Kumar, 

2015), and prior infections of the Brome Mosaic Virus (BMV), Cucumber Mosaic 

Virus (CMV), or Tobacco Mosaic Virus can enhance Nicotiana benthamiana 

tolerance to drought (Xu et al., 2008). On the other hand, prior Turnip Mosaic 



Chapter 6 

 

184 

Virus (TuMV) infection reduces plant biomass and leaf number under drought 

stress when compared to control conditions (Prasch and Sonnewald, 2015). 

Arabidopsis thaliana plants exposed to Pieris rapae larvae or to the necrotrophic 

fungus Botrytis cinerea, are expected to trigger JA-ET-mediated signalling 

through different branches within the JA-ET signalling pathway. The Botrytis 

response is regulated through the ETHYLENE RESPONSE FACTOR (‘ERF’) branch, 

which is co-regulated by ET, and the Pieris response is regulated through the 

‘MYC’ branch, which is co-regulated by ABA (Pré et al., 2008; Vos et al., 2013). 

These two branches interact with each other antagonistically (Dombrecht et al., 

2007). Genes from the two branches can also interact positively or negatively 

with drought-induced ABA signalling, eg. MYC2 (MYC branch) binds to the 

promoter of OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59 (ORA59) 

and ERF1 (ERF branch) and negatively regulates their expression. Both targets 

are positive regulators of the Botrytis defence gene PDF1.2 (Anderson et al., 

2004; Yoshioka and Shinozaki, 2009).  

The ways by which plants respond to individual biotic and abiotic stress 

treatments have been studied extensively. Far less is known regarding plant 

responses to multiple stresses, either simultaneously or consecutively 

encountered. Recent studies have identified genes that play a role in response to 

multiple stresses by comparing transcriptome data from varying biotic and 

abiotic stresses (Narsai et al., 2013; Shaik and Ramakrishna, 2013; Sewelam et 

al., 2014; Ramegowda and Senthil-Kumar, 2015). The consecutive combination 

of exposure to biotic and abiotic stress evidently triggers specific multiple stress-

responsive genes, indicating a tailored combinatorial stress signalling network 

(Atkinson and Urwin, 2012; Sewelam et al., 2014). However, the molecular 

responses in natural situations, where plants encounter simultaneous or 

consecutive combinations of biotic and abiotic stress, remain to be elucidated. 

To gain novel insights into the interaction between biotic and abiotic stress 

responses we studied the Arabidopsis transcriptome, including alternative RNA 

splicing, in response to drought as either a single drought-stress-inducing 

condition or following exposure to two different biotic stresses applied prior to 

the drought treatment.  
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The purpose of this study was to: 1) observe the effects of the two prior 

biotic stresses on the subsequent drought treatment response, and 2) discover 

the differences of the effects of the two prior biotic stresses on subsequent 

drought. We identified a large number of differentially expressed genes (DEGs) 

as well as alternative splicing (AS) events under the two combinatorial 

treatments with both antagonistic or synergistic effects on plant performance.  
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Material and Methods  

Plant material and growth  

Arabidopsis thaliana accession Col-0 seeds were vernalized at 4oC in the 

dark for 48 h to break seed dormancy. Thereafter, seeds were sown on river 

sand with half-strength Hoagland nutrient solution containing sequestreen, as 

described Van Wees et al (2013). Plants were grown in a climate-controlled 

growth chamber (8 h day/16 h night) set at 21oC and 70% relative humidity. 

Irradiation was set at 100 μmol m-2 s-1. Fourteen-day-old seedlings were 

transferred to individual pots containing a mixture of river sand and peat (1:1, 

v:v). Water was supplied to the bottom of each pot three times per week.  

Experimental design 

The experiment was carried out in a fully randomized design with two 

factors: time and treatment. Four time points were selected for measurements, 

with T1, T2, and T3 after 4, 5, and 6 days of drought treatment, respectively, 

which started after growing plants for 28 days (Figure 1). Directly after the last 

time point, plants were re-watered to rehydrate. T4 was set at 24 hrs (1 day) of 

rehydration. The experiment comprised four experimental groups: control, single 

drought, Botrytis infection followed by drought and Pieris exposure followed by 

drought. Randomized Block Design was used for this experiment. The climate 

chamber space was divided into three subgroups called blocks. Plants within 

each block are randomly subjected to different treatments.  

Preparation of Pieris rapae and Botrytis cinerea for treatments 

Pieris rapae caterpillars were reared on cabbage plants (Brassica oleracea 

convar. capitata var. alba) under greenhouse conditions (24°C, with natural 

daylight). Butterflies were supplied with flowering plants such as Lantana 

camara for their food (nectar). When flowers were scarce, additional food 

(solution of 20% honey and 10% sucrose) was offered to the butterflies. 

Inbreeding of the population was minimalized by adding wild butterflies and 

caterpillars from the Dutch Flevopolder to the existing population. After starving 

for 1 h, first-instar (L1) larvae were placed on Arabidopsis leaves using a fine 

paint brush as described (Van Wees et al., 2013). 
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Botrytis cinerea strain B05.10 (Staats and Van Kan, 2012) was grown on 

half-strength Potato Dextrose Agar (PDA; Difco Laboratories) plates containing 

penicillin (100 µg/ml) and streptomycin (200 µg/ml) for 2 weeks at room 

temperature. Spores were collected, filtered through glass wool, and re-

suspended in half-strength Potato Dextrose Broth (PDB; Difco Laboratories) to a 

final density of 1 x 105 spores/ml. After a 3 h incubation period, the spores were 

used for inoculation by applying two 5-µl droplets on one Arabidopsis leaf as 

described (Van Wees et al., 2013). 

 

Figure 1. Experimental design for treatment of Arabidopsis plants subjected to drought, 
Botrytis cinerea infection and drought, or Pieris rapae herbivory and drought, and control 
conditions. Conditions are indicated in different colours: control (dark blue); drought 
(yellow); Botrytis pre-treatment (purple); Pieris pre-treatment (green) and rehydration 
after drought (light blue). Vertical arrows indicate sampling time points (T1-T4).  

Drought and combinatorial stress treatments 

For the single drought treatment, 28-day-old plants of Arabidopsis 

accessions were withheld from water for 6 days. Afterwards, plants were re-

watered and allowed to recover for 1 day. For the combination of Botrytis 

exposure and subsequent drought, a Botrytis pre-treatment was performed right 

after the last watering before the drought treatment, by inoculating leaves 6 and 

7 of each plant with two 5-µl droplets of a Botrytis spore suspension (1×105 

spores/ml) per leaf and placing the plants at 100% relative humidity (RH) for 1 

day (Figure 1). The next day, the RH was reduced to that of drought-exposed 

plants. For the combination treatment of Pieris and subsequent drought, the 

Pieris pre-treatment was performed at the same time as the Botrytis pre-

treatment by placing one Pieris caterpillar on leaf 7 and allowing it to feed on the 

plant for 1 day. Plants without receiving any treatment, neither biotic nor 

abiotic, were used as control. Leaf number 8 was harvested, if undamaged, after 
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4, 5 and 6 days of withholding water (T1, T2, T3, respectively) and at 1 day 

after the rehydration treatment (T4)(Figure 1). 

The treatments for the T-DNA insertion mutants were the same as described 

for the accessions. For information on the identity of T-DNA insertion mutants, 

see supplementary table 1. 

RNA extraction and library preparation  

RNA was extracted using the Plant RNeasy Plant Mini Kit (Qiagen, cat. no. 

74903), according to the manufacturer’s instructions. All samples were treated 

with DNase I on a column using the Qiagen RNase-Free DNase Set (cat. no. 

79254). Quality of RNA was evaluated by determining the RNA Integrity Number 

(RIN) with an Agilent 2100 bioanalyzer and RNA LabChip. For the library 

preparation, samples with a RIN value ≥6 were used. The samples were 

processed according to the TruSeq Stranded mRNA HT Sample Prep Kit from 

Illumina. This protocol allows the identification of strand-specific transcripts. 

First, poly-A RNA was isolated from total RNA using poly-T oligo-attached 

magnetic beads. Subsequently, poly-A RNA was fragmented using divalent 

cations under elevated temperature. First-strand cDNA was synthesized using 

random primers. Strand specificity was achieved by replacing dTTP with dUTP in 

the second Strand Marking Mix (SMM), followed by second strand cDNA 

synthesis using DNA polymerase I and RNase H.  

RNAseq analysis, Differential expressed genes, Alternative RNA 

splicing 

Samples were sequenced on an Illumina Hi-Seq 2000 sequencing machine 

randomly assigned to seven lanes of three Illumina flow cells. Sequence reads 

were quality trimmed and mapped to the Arabidopsis thaliana genome version 

‘TAIR 10’ (www.arabidopsis.org) using TopHat with parameters: -N 3 --min-

intron-length 50 --max-intron-length 5000 -g 1 -M -p 4 -G --read-edit-dist 3 --

library-type (Trapnell et al., 2009). The number of reads mapped to each 

annotated Arabidopsis gene (TAIR10) was determined using HTSeq count 
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(Anders et al., 2015). Read counts were subjected to a regularized log 

transformation, implemented in DESeq2 (Love et al., 2014). 

Differentially expressed genes (DEGs) were computed per time point using 

the DESeq2 Bioconductor package in R (Anders and Huber, 2010; Love et al., 

2014). To determine DEGs under drought treatment, we compared drought with 

control. To determine DEGs under the combinational stresses, we compared 

each combinatorial treatment to the single drought treatment. To determine 

DEGs under rehydration treatment, we compared the rehydration to the control.  

To determine alternative RNA splicing, putative full-length transcripts were 

assembled for each RNAseq sample using cufflinks package (Trapnell et al., 

2012). The full transcriptome was obtained by merging the individual assemblies 

using cuffmerge from the cufflinks package. Custom python scripts were used 

for detecting the following splicing events: intron retention, alternative donor 

site, alternative acceptor sites, exon skipping and mutually exclusive exons 

(Davila Olivas et al., 2016).  

Mixture of Isoforms Probalistic model (MISO) was used for quantifying 

alternative splicing events in each individual sample and the pooled replicates 

for each condition (Katz et al., 2010). For each sample (excluding pooled 

datasets), those alternative splicing events that were not supported by at least 

20 isoform-specific reads were discarded. Differential splicing events were 

detected in 2 steps: 

1. The alternative splicing (AS) events for each pairwise condition were 

analysed as follows: All events for which either of the two conditions 

lacked more than one replicate value were discarded. It was required 

that the values of the replicates in each condition were closer to each 

other than to any other replicate value in the other condition.  

2. For each splicing event that passed the filtering, we tested whether the 

corresponding values in the pooled set were significantly different from 

each other. The significance in MISO is provided as Bayes factors, which 

describe how much more likely the event is differentially regulated than 
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not. Splicing events with a difference of at least 0.05 and a Bayes factor 

of ≥4 were considered as significant events.     

Enriched gene ontology, metabolic pathway, transcription factors 

analysis 

Enriched gene ontology (GO), metabolic pathways, and transcription factors 

(TFs) were identified using the online tool PlantGSEA 

(http://structuralbiology.cau.edu.cn/PlantGSEA/) (Yi et al., 2013). In all cases, 

we used the following parameters: hypergeometric test with Benjamini-

Hochberg FDR adjustment, α = 0.05. As background, we used only genes that 

were expressed in at least one sample out of all samples that were analysed.  

Statistical analysis 

One-way ANOVA was used to compare the areas of each leaf consumed by 

Pieris in the Pieris pre-treatment. Two-way ANOVA was used to compare plants 

in response to drought (compared to control) and to compare plants in response 

to the combination of Pieris on subsequent drought (compared to drought). In 

all cases p-values < 0.05 were considered as significant.   

Real-time quantitative reverse transcriptase (qRT)-PCR  

1 μg total RNA was used for reverse transcription by iScript cDNA synthesis 

kit (Bio-Rad); 25°C for 5 min, 42°C for 30 min and 85°C for 5 min. cDNA was 

diluted ten times for Quantitative Reverse Transcriptase-PCR (qRT-PCR) use. 

The At3g15930 (PCMP-E51) gene was used as the reference gene upon selection 

through the “References” web tool (http://refgenes.org/rg) (forward primer 

sequence 5’-ACCAAACCCAACATTCCAAA-3’ and the reverse primer sequence 3’-

ACACAACCACGTCTGGTTCA-5’). The qRT-PCRs were performed using iQ SYBR® 

Green Supermix (Bio-Rad, cat. no. 170-8885) on a Bio-Rad CFX96 real-time PCR 

system, set at 95 oC for 4 minutes, followed by 40 cycles of 95 oC for 10 seconds 

and 55 oC for 30 seconds. The primers of the PIN-FORMED 7 (PIN7) gene and 

the two AS variants are shown in Supplementary Table 12. 

Results 
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Differentially expressed genes by drought and subsequent 

rehydration  

A time-course experiment was performed using ArabidopsisA. thaliana plants 

which were separately exposed to two biotic stresses: fungal infection by 

Botrytis cinerea and herbivory by Pieris rapae caterpillars, followed by drought 

(“Botrytis and subsequent drought” and “Pieris on subsequent drought”) (Figure 

1). In addition to the combinatorial treatment, plants were subjected to a single 

drought treatment without a pre-treatment (“drought”). Samples were 

harvested after 4 (T1), 5 (T2) and 6 days of drought (T3) and one day later, 

meaning after 24 hrs of rehydration(T4) (Figure 1). Gene expression was 

determined using RNA-seq. 

 

Figure 2. Bar plot (a.) showing the number of up- and down-regulated differentially 

expressed genes (DEG) at four time points, after (T1), 5 (T2) and 6 days of drought (T3), 
and after one-day sequential rehydration (T4). The Y axis represents the number of DEGs 
and the X axis represents time points and the total number of DEGs. The ratio of up- (red) 
or down-regulated (blue) genes are indicated. Venn diagram showing the numbers DEGs 
of Arabidopsis Col-0 (b.) at three time points , after 4 (T1), 5 (T2) and 6 days of drought 
(T3), when compared to well-watered control plants at each time point, the numbers of 
up- or down-regulated genes are indicated with blue and red arrows. Or (c.) at two time 
points, after 6 days of drought (T3) and after one day rehydration (T4), when compared to 
well-watered control plants at each time point. 

A total of 8993 differentially expressed genes (DEGs) were identified when 

plants exposed to drought at time points T1, T2 and T3 were compared with 

plants grown on control conditions (Figure 2.a; Supplementary Table 2). These 

expression differences illustrate the effects of drought on gene expression. A 

total of 2349 DEGs were identified at T1, 6632 DEGs at T2 and 6586 DEGs at T3, 

which are all one day apart in the drought response, suggesting that the effect 

of the treatment became more severe the longer it lasted. In total, 1358 DEGs 
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were shared by the three time points, which can be considered to be common 

drought-responsive genes (Figure 2.b; Supplementary Table 2). With so many 

DEGs, drought causes major changes to the transcriptome and is therefore be 

considered to be a severe stress. 

To observe if rehydration upon drought reverts plants to the same state as 

seen under control conditions, plants exposed to rehydration after drought 

treatment were compared to the control (not drought-stressed), which still 

revealed 3432 DEGs (Supplementary Table 3). Comparing DEGs under 

rehydration (T4) to DEGs under drought at T3, we found that 1677 drought 

responsive genes were affected by the sequential rehydration treatment (Figure 

2.c; Supplementary Table 3.e). This means that a one-day rehydration period is 

insufficient to fully overcome the effects of drought stress on Arabidopsis. 

Enriched GO terms of genes involved in the drought and 

subsequent rehydration response 

The 1358 common drought-responsive DEGs (Figure 2) were examined for 

overrepresented gene ontology (GO) terms. The top 20 enriched GO terms 

indicates three main gene expression responses to drought: the defence 

response, which includes GO terms such as response to stimulus, response to 

abiotic stimulus, response to chemical stimulus, response to stress, response to 

temperature stimulus; the photosynthesis response, including GO terms 

photosynthesis and light reaction; and the metabolic processes response, 

including GO terms such as secondary metabolic process, oxoacid metabolic 

process, carboxylic acid metabolic process, etc. (Supplementary Table 3.a). To 

determine the role of DEGs involved in a biochemical pathway, an ‘enriched 

pathway analysis’ was performed, which identified 32 pathways that were 

associated with the DEGs, including the biosynthesis of phenylpropanoids, 

biosynthesis of plant hormones, and photosynthesis (Supplementary Table 3.b). 

In addition, the targets of several transcription factors that are related to stress 

responses are enriched, such as transcription factors HY5 (light response), 

AtbHLH15 (light and hormone response), AP2, MYB88, and MYB124 (abiotic 

stress response), WRKY53 (drought response), and MYC2 (drought and biotic 
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stress response) (Osterlund et al., 2000);(Xie et al., 2010; Mizoi et al., 2012) 

(Supplementary table 3.c).  

When analysing the large set of DEGs identified when comparing the gene 

expression after rehydration with gene expression in unstressed, control, plants 

(Supplementary Table 4.a) the GO terms that are associated with defence 

response are still enriched, as they were upon drought treatment 

(Supplementary Table 4.b). DEGs involved in the biosynthesis of alkaloid-

derived pathways and biosynthesis of phenylpropanoids were also 

overrepresented (Supplementary Table 4.c), as were targets of transcription 

factors AtbHLH15 (involved in light and hormone response), AP2, MYB88, and 

MYB124 (involved in abiotic stress response), WRKY53 (involved in drought 

response) AGL15 (involved in flowering), and PYE (involved in the response to 

iron deficiency) (Adamczyk et al., 2007; Long et al., 2010) (Supplementary 

Table 4.d) and several DEGs known to be drought-responsive, such as 

RESPONSIVE TO DESICCATION 29a (RD29a), RESPONSIVE TO DESICCATION 

29a (RD29b), and DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 2a 

(DREB2a) (Shinozaki and Yamaguchi-Shinozaki, 2007). In conclusion, one day of 

rehydration did not dramatically revert the drought-induced gene expression 

profile back to normal. 

Comparing DEGs under rehydration to DEGs under drought at T3, a set of 

1677 DEGs were shared by the two time points. Enriched GO terms that are 

associated with stress responses such as response to stimulus, response to 

chemical stimulus, response to stress, response to endogenous stimulus, and 

response to abiotic stimulus are highly enriched (Supplementary Table 4.e). 

DEGs involved in the metabolic pathways, biosynthesis of plant hormones, and 

biosynthesis of alkaloids are overrepresented (Supplementary Table 4.f). We did 

not find overrepresented transcription factor targets in this gene set 

(Supplementary Table 4.g). 
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Differential expressed genes by combinatorial and sequential 

rehydration  

Plants exposed to the two combinatorial stresses were compared with plants 

subjected to the single drought treatment, at comparable time points, to 

determine if there is an effect of a biotic pre-treatment on the response to 

drought (Figure 1). For the combination of Botrytis followed by drought, 101 

DEGs were identified (Figure 3.a), most of them representing down-regulated 

genes, and the large majority of them (80) were differentially expressed at T2 

(Supplementary Table 5.a). Only one DEG appeared in two time points (T2 and 

T3), the AMINO ACID PERMERASE 6 (AAP6) gene (At5g49630), encoding a high-

affinity Asp/Trp uptake transporter to transport amino acids in phloem sap (Hunt 

et al., 2010).  

A total of 734 DEGs were identified when comparing the combined Pieris and 

subsequent drought treatment to the drought treatment (Figure 3.b, 

Supplementary Table 6). The number of DEGs decreased over time from 503 (T1) 

to 20 (T3). Most DEGs were down-regulated at T1, while most DEGs were up-

regulated at T2 and T3. In total 165 DEGs were common between T1 and T2, 

but only 10 DEGs between T2 and T3, and 7 between T3 and T1. Of the 20 DEGs 

found at T3, no less than six were common to all three time-points. Genes 

including two known drought-responsive genes CALCIUM-DEPENDENT PROTEIN 

KINASE 28 (CPK28) (At5g66210) and EARLY RESPONSE TO DEHYDRATION 6 

(ERD6) (At1g08930) were expressed at all three time points (Kiyosue et al., 

1998; Zou et al., 2015). When comparing the combinatorial treatments, 49 of all 

786 DEGs were found in both treatments (Figure 4.a). 

To investigate if the biotic pre-treatments still had any effect on gene 

expression after rehydration to recover from the drought treatment, DEGs were 

identified when comparing the gene expression upon the three rehydration 

treatments (after drought alone and after Botrytis/Pieris pre-treatment and 

drought). The Botrytis pre-treatment affected the expression of only 24 genes 

(Supplementary Table 7), while the Pieris pre-treatment affected the expression 

of 1779 genes (Supplementary Table 8). Only 7 DEGs, including gene 

CHALCONE SYNTHASE (CHS) (At5g13930) which is required for purple 
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anthocyanins accumulation in leaves and stems (Li and Strid, 2005), were found 

to be common for both combinatorial treatments upon rehydration (Figure 4.b, 

Supplementary Table 9.b). This illustrates that herbivory by Pieris rapae has a 

much higher impact on the transcriptome during sequential drought and 

rehydration, than the infection with Botrytis cinerea.  

 

Figure 3. Venn diagram showing the numbers of DEGs of Col-0 at points T1-T3 (see figure 
1) when comparing plants treated with (a) Botrytis cinerea and drought (purple;) or (b) 
Pieris rapae and drought (green) with the drought alone treatment. The numbers of up- or 
down-regulated genes are indicated with blue and red arrows. 

 

Figure 4. Venn diagram showing the numbers of DEGs of Col-0  when (a) comparing 
plants pre-treated with (Botrytis cinerea (purple) or Pieris rapae  (green) followed by  
drought to control plants only treated with drought;  or (b)  when comparing plants pre-
treated with Botrytis cinerea (purple) or Pieris rapae  (green) followed by  drought and 
subsequent rehydration,  to control plants treated only with drought and rehydration. The 
numbers of up- or down-regulated genes are indicated with blue and red arrows . 



Chapter 6 

 

196 

Enriched GO terms in combinatorial stress response 

Among the 101 DEGs identified under the stress combination of Botrytis on 

subsequent drought treatment. Genes including drought responsive gene RD28 

(At2g37180) (Taji et al., 1999), cytokinin-related gene CYTOKININ OXIDASE 5 

(CKX5) (At1g75450) (Werner et al., 2003), auxin-related gene  ARABIDOPSIS 

THALIANA METHYL ESTERASE 18 (ATMES18) (At5g58310) (Yang et al., 2008) 

(Supplementary Table 5.b). Among the 734 DEGs responsive to the Pieris pre-

treatment before subsequent drought, defence response associated GO terms 

such as response to chitin, defence response, innate immune response, 

response to stress, response to biotic stimulus, and regulation of defence 

responses were highly enriched (Supplementary Table 6.f). Known stress-

response genes include mitogen-active protein kinase (MAPK)-related genes 

such as MPK3 (At3g45640), MKK4 (At1g51660), MKK5 (At3g21220), and MAP 

kinase substrate 1 (MKS1, At3g18690). The DEGs involved in metabolic 

pathways such as plant-pathogen interaction pathway was especially enriched in 

this gene set (Supplementary Table 6.g), as well as targets of transcription 

factors such as ATBZIP60 (unfolded protein response) and GL1 (development, 

anthocyanin biosynthesis) were only enriched in this gene set (Humbert et al., 

2012)(Supplementary Table 6.h).  

Common genes affected by both biotic pre-treatments in 

combination with drought 

A total of 49 DEGs were shared by both combinatorial treatments 

(Supplementary Table 9). Among the 49 DEGs, 17 DEGs were down-regulated 

and 14 DEGs were up-regulated under these treatments. Remarkably, for 42 

genes the biotic pre-treatments had an opposite effect on the up- or 

downregulation of their expression, either at one or more time points. Among 

these are known stress response genes, such as ETHYLENE RESPONSIVE 

ELEMENT BINDING FACTOR 5  (ERF5) (At5g47230), ERF6 (At4g17490), ERF104 

(At5g61600) and Delta1-Pyrroline-5-Carboxylate Synthase 1 (P5CS1) 

(AT2G39800). In general, these genes showed an initial down-regulation and 

subsequent up-regulation upon pre-treatment with Botrytis, and an initial up-

regulation and subsequent down-regulation upon the Pieris pre-treatment. This 
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reveals specific temporal regulation during drought that is influenced by the 

biotic pre-treatment factor. 

CCR2 and MDAR3 play a role in response to the consecutive 

combination of Pieris and subsequent drought 

Genes that showed a high fold-change in expression when comparing the 

Pieris plus drought treatment with the drought treatment alone, were selected 

for further analysis of their relevance for the response. Phenotypic analysis was 

performed on T-DNA insertion mutants of three up-regulated candidate genes 

(WALL ASSOCIATED KINASE (WAK)-LIKE 10; WAKL10; At1g79680) (expression 

fold change (FC)>7), CINNAMOYL COA REDUCTASE; CCR2; At1g80820) 

(FC>12), MONODEHYDROASCORBATE REDUCTASE 3; MDAR3; At3g09940) 

(FC>30), and one down-regulated gene, At3g10720, encoding an 

invertase/pectin methylesterase inhibitor (FC<0.2) (Supplementary Table 6). 

The wakl10 mutant plants exhibited reduced rosette dry weight when compared 

with their Col-0 wild-type under control conditions (Figure 5.a). No mutants 

exhibited significant differences in response to Pieris treatment when compared 

to the wild type for leaf eaten area (Figure 5.b). Under drought stress, mdar3 

mutants showed increased rosette dry weight when compared with the wild type 

(Figure 5.c). A decreased rosette dry weight was observed for the ccr2 and 

mdar3 mutants when pre-treated with Pieris followed by drought, when 

compared to the wild type (Figure 5.d; Supplementary Figure 2). This means 

that only for the mutant of At3g10720 we did not observe any effect on the 

phenotype under any of the tested conditions. All other genes are somehow 

involved in the growth of plants, with particularly CCR2, encoding a cinnamoyl 

CoA reductase involved in lignin biosynthesis, and MDAR3, encoding a 

monodehydroascorbate reductase, to be important to maintain wild-type growth 

under the combined Pieris-drought combination. 



Chapter 6 

 

198 

 

Figure 5. Phenotypes of T-DNA insertion mutants of DEGs WAKL10 (At1g79680), CCR2 
(At1g80820), MDAR3 (At3g09940) and unnamed gene At3g10720, identified when 
comparing Pieris rapae pre-treated with non-pre-treated plants subjected to drought (Sup. 
Table .....).  
a. Rosette dry weight of  Col-0 wild type and mutant plants grown in control conditions.  
b. Leaf areas eaten by Pieris of these genotypes.  
c. Rosette dry weight ratios of these genotypes after exposure to drought, compared to 

control plants. 
d. Rosette dry weight ratios of these genotypes after pre-treatment with Pieris and 

subsequent exposure to drought, compared to plants exposed to drought only.  
One-way ANOVA was used for Figures 5.a and b. Two-way ANOVA was used for Figures 
5.c and d. Error bars were calculated from at least  six plants. * indicates  mutants with a 
significant difference when compared to Col-0 wild type  (* p<0.05, **p<0.01). 
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Alternative RNA splicing affecting gene expression upon 

exposure to stress-inducing conditions 

Alternative splicing (AS) is known to be sometimes an important factor in 

controlling the gene expression response to environmental perturbations 

(Staiger and Brown, 2013). To determine if there is any differential alternative 

RNA splicing, plants exposed to drought were compared to control plants at each 

of the three time points. For 19 genes a total of 23 AS variants were found 

(Table 1; Supplementary Table 10.a). When including the rehydration treatment 

in the analysis, and comparing rehydrated plants after drought exposure to 

plants continuously grown under control conditions, 17 genes with a total of 20 

AS variants were found (Table 1; Supplementary Table 10.b).  

When examining both plants exposed to biotic pre-treatments plus drought 

to plants only exposed to drought, five genes with as many AS variants were 

found for the Botrytis pre-treatment and 16 genes corresponding to 16 AS 

variants for the Pieris pre-treatment. There was no overlap between these two 

sets. When including the rehydration treatment, only the Botrytis pre-treatment 

was found to yield AS variants, for 5 genes (Table 1; Supplementary Table 10. c 

and d). 

Table 1. Number of alternative splicing variants induced by different stresses 

 
A3 = Alternative splicing at 3' of intron; A5 = Alternative splicing at 5' of intron, RI = 
Intron retention, MXE = mutually exclusive exon, SE = exon skipping. BD = combination 
of Botrytis and subsequent drought; PD = combination Pieris and subsequent drought. 
  

           Treatment

Type Drought BD* PD* Rehydration after drought Rehydration after BD Rehydratoin after PD

A3 10 1 5 4 4 0

A5 3 3 5 2 0 0

RI 6 1 3 7 1 1

MXE 1 0 2 1 0 0

SE 3 0 1 0 0 0

Total 23 5 16 14 5 1
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PIN7 plays a role in response to Pieris, drought, and the 

consecutive stress combination treatments 

One gene, for which AS variants were found, that caught our attention is 

PIN-FORMED 7 (PIN7) (At1g23080), as it is known to be involved in auxin 

transport contributing to root architecture (Lewis et al., 2011). We found two 

splicing variants for this gene, PIN7-1 and PIN7-2, differing at the 5’ splice 

donor site of intron 1 leading to addition/removal of 4 amino acids (Figure 6.a). 

The splicing affects a region of the protein that is located in the cytoplasm. The 

expression of these two AS variants of PIN7 was determined using specific 

splice-site-flanking primers, which showed that the expression level of the PIN7-

1 variant is significantly higher than of PIN7-2, under the single drought and the 

Pieris plus subsequent drought treatments (Figure 6.b). PIN7-1 was marginally, 

though significantly, higher expressed when plants were pre-treated with Pieris 

than when plants were only drought-treated. In order to verify if this gene has 

any phenotypic importance for the response to Pieris and/or drought, a T-DNA 

insertion pin7 mutant was obtained and grown under the different conditions. 

This mutant showed some remarkable phenotypic differences when compared to 

the wild type. When grown under control, non-stressing, conditions the pin7 

mutant rosettes comprised significantly more dry biomass than Col-0 (Figure 

7.a), of which much less was consumed by Pieris (Figure 7.b). However, when 

plants were exposed to drought, the pin7 mutants performed much worse than 

Col-0 in terms of rosette dry biomass ratios when comparing drought-treated to 

well-watered plants (Figure 7.c). Pre-treatment with Pieris alleviated this strong 

inhibition by drought somewhat, though the pin7 mutants stayed notably 

smaller than Col-0 plants (Figure 7.d). This suggests that PIN7 is important for 

Col-0 tolerance to drought although it enhances herbivory by Pieris. 
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Figure 6 . Alternative splicing (AS) variants of PIN7 are differentially expressed upon 
Pieris and drought exposure.   
a. Two splicing variants of PIN7, indicating the alternatively spliced region with a red box. 

Exons are indicated as grey boxes and introns with lines, arrows indicate direction of 
transcription. AS variant PIN7-1 is indicated in dark grey and PIN7-2 in light grey. 

b. Relative expression of the two PIN7 splicing variants when comparing drought treated 
with well-watered control plants, and comparing the Pieris and subsequent drought 
with the well-watered control plants.  

A Student’s t-test was used to compare expression of each splicing variant in the different 

conditions. Two-way ANOVA was used to test the differences of the two AS variants 
between different conditions. * indicate significant differences (p<0.05).  Standard error 
bars were calculated from at least six plants. 
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Figure 7. The PIN7 gene is important for Arabidopsis tolerance to drought and herbivory.  
a. Rosette dry weight of pin7 mutant and Col-0 wild-type plants when grown in control 

conditions.  
b. The area of rosette leaf consumed by Pieris of pin7 mutant and Col-0 wild-type plants.  
c. Rosette dry weight ratios of pin7 mutant and Col-0 wild-type plants when comparing 

drought-treated plants to well-watered plants. 
d. Rosette dry weight ratios of pin7 mutant and Col-0 wild-type plants when comparing 

Pieris pre-treated and drought exposed plants to plants only exposed to drought. 
e. Rosette dry weight of plants in drought and the combinatorial conditions. 
A student’s t-test was used for a and b. Two-way ANOVA was used for c and d. Error bars 
were calculated from at least six plants. *indicate significant differences, **p<0.01, 
***p<0.0001. 
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Discussion 

Transcriptomic responses to drought and subsequent 

rehydration 

In response to myriad biotic and abiotic stress triggers, plants mobilize 

signaling molecules thereby boosting the accumulation of so-called second 

messengers, such as reactive oxygen species (ROS), calcium ions (Ca2+), 

phospholipids, mitogen-activated protein kinases (MAPKs), Sucrose 

NonFermenting-1 (SNF1)-related protein kinases (SnRKs), and phytohormones 

(Takahashi et al., 2011; Tuteja and Sarvajeet, 2012; Smékalová et al., 2014). 

Some genes related to secondary messengers and plant hormones were found 

among the 1358 common drought-responsive DEGs, such as the up-regulation 

of SnRKs family genes such as SnRK2.6 and SnRK2.7, plant hormones-related 

genes such as AUXIN RESPONSE FACTOR 2, AUXIN-INDUCED PROTEIN 13 

(IAA13), JAMONATE-ZIM-DOMAIN PROTEIN 9 (JZA9), and ABSCISIC ACID 

RESPONSIVE ELEMENT-BINDIGN FACTOR 2/3 (ABF2/3); and down-regulation of 

CALCIUM-DEPENDENT PROTEIN KINASE 31 (CPK31), and plant hormone-related 

genes such as ET-stabilized transcription factors ETHYLENE INSENSITIVE 3-LIKE 

1 (EIL1), auxin biosynthesis gene YUCCA9 (Supplementary Table 2). . Many 

LIGHT HARVESTING CHLOROPHYLL A/B BINDING (LHCB) protein genes were 

down-regulated under drought and the sequential rehydration. The LHCB family 

genes encode proteins that are part of the light harvesting antenna that receives 

and transfers light energy to the reaction centre of photosystem II (PSII) 

(Jansson, 1994). The LHCB genes are required for ABA-mediated stomatal 

aperture and the lhcb knock out mutants were found incapable to control 

stomatal aperture under ABA treatment by (Xu et al., 2012). The down-

regulation of the LHCB family genes under drought thus reflects the effect of 

drought-induced stomatal closure, inhibiting gas exchange. Thus, limiting CO2 

assimilation and impairs photosynthesis. 

A set of 1677 DEGs were expressed at T3 under drought as well as under 

the sequential rehydration treatment (T4). 30% of the DEGs were overlapped 

with the common drought-responsive DEGs. GO terms ‘response to chemical 

stimulus’ and the plant hormone biosynthesis pathway are overrepresented in 
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this data set, both indicating hormone-related signalling to be involved. Plant 

hormone-related genes exhibited different expression at T4 in comparison to T3. 

Ethylene-related genes such as ERF6 and ERF8 were down-regulated in both 

conditions. JASMONATE-ZIM-DOMAIN-PROTEIN (JAZ) 3/7/8/9 and INDOLE-3-

ACETIC ACID INDUCIBLE (IAA) 13/18 were up-regulated under in both 

conditions, while IAA29 and OCTAEDECANOID-RESPONSIVE ARABIDOPSIS 

AP2/ERF59 (ORA59) were down-regulated under drought, but up-regulated 

under the sequential rehydration condition. JAZ family genes function in signal 

transduction in JA signalling (Chini et al., 2007), and the same holds for the 

pathogen defence responsive gene ORA59, linking it to the ET signalling 

pathway (Pre et al., 2008). The auxin biosynthesis YUCCA 2/8/9 genes and the 

auxin efflux carrier PIN-FORMED 4 (PIN4) gene were also down-regulated under 

drought and up-regulated under sequential rehydration, indicating an inhibition 

of auxin biosynthesis and transport in plants by drought. ABA-related genes 

such as DREB2a, RESPONSIVE TO DEHYDRATION 22 (RD22), RESPONSIVE TO 

DESICCATION 29a (RD29a), RESPONSIVE TO DESICCATION 29b (RD29b) were 

up-regulated under drought at T3 (day7) but down-regulated in sequential 

rehydration condition. This is showing that the well-watered state is indeed 

sensed by plants and that for mostly down-stream drought responsive genes are 

still expressed upon rehydration.  

Temporal regulation of genes influenced by biotic pre-treatment 

A set of 49 identified DEGs were shared by the two combinatorial treatments, 

of which 31 genes exhibited opposite directions of expression response when 

comparing the two pre-treatments at T2 (Supplementary Table 9).  Another 

eleven out of 49 DEGs responded faster to the Pieris pre-treatment than to the 

Botrytis pre-treatment, being found at T1 upon Pieris pre-treatment, but at T2 

after inoculation by Botrytis. The 11 genes exhibited the same expression at 

early time point but an opposite transcriptional output at later time points. One 

of the gene, ERF6, was exhibited redundant function as ERF5 in response to 

Botrytis infection (Moffat et al., 2012). However, the scenario is different in the 

sequential drought condition. The ERF5 and ERF6 were down-regulated by 

Botrytis pre-treatment at T2 during sequential drought, but gene ERF6 exhibited 

enhanced down-regulation at T3 and this was not found for ERF5. ERF5 and 
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ERF6 were up-regulated under Botrytis treatment and were down-regulated 

drought (Coolen et al., 2016)(Chapter 5). The down-regulation of the two genes 

in the sequential drought condition indicates an negative interaction effects 

between Botrytis and drought on ERF5 and ERF6, and the effect on ERF6 is 

stronger than on ERF5. To Pieris pre-treatment response, up-regulation of the 

two genes in the Pieris and subsequent drought condition was observed at T2, 

but only ERF6 exhibited down-regulation at T1. This is showing a negative 

influence of the Pieris pre-treatment on ERF6 but not on ERF5.   

In total 18 out of the 49 DEGs exhibited faster response to the Pieris pre-

treatment than to the Botrytis pre-treatment, showing a higher impact of the 

Pieris rapae on transcriptome during the sequential drought.  This could be due 

to the severity of the Pieris herbivory was much stronger than 24 h Botrytis 

treatment. Windram et al (2012) used the same concentration of Botrytis spores 

as in this study, and showed that the first symptom of Botrytis infection on leaf 

can be observed at 20 h after inoculation (HAI) and the expansion of lesion was 

at 36 HAI.  

Combinatorial stress responses cannot be predicted by 

comparing single stress responses  

Previous studies have suggested tailored responses of plants to 

simultaneous combinations of biotic and abiotic stresses (Prasch and Sonnewald, 

2013; Ramegowda and Senthil-Kumar, 2015), which is the combinatorial stress 

responses cannot be predicted by comparing single stress responses. Our 

experimental conditions and protocols are the same as described by Coolen et 

al;, (2016) (Chapter 5). Thus, our data set for combinatorial stress responses 

were compared with the results obtained under single stresses as by Coolen et 

al;, (2016) (Chapter 5). When comparing DEGs from the stress combination of 

Botrytis and subsequent drought with single drought and Botrytis treatments 

(Coolen et al., 2016)(Chapter 5), only 4% of DEGs identified as Botrytis and 

subsequent drought responsive genes were not induced by either single Botrytis 

or drought treatments (Supplementary Table 11). When comparing DEGs from 

the stress combination of Pieris and subsequent drought with single drought and 

Pieris treatments, only 3% of DEGs identified as Pieris + drought responsive 
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genes were not induced by either Pieris or drought. This is showing that most 

combinatorial stress responsive genes can be identified by comparing results 

from single stresses. Genes such as ERF5 and ERF104 are the two combinatorial 

stress responsive genes and can be identified by comparing results from single 

stresses. ERF5 was up-regulated under both Botrytis and Pieris treatments, and 

down-regulated in drought condition. In combinatorial stress conditions, the 

gene was down-regulated under Botrytis and subsequent drought stress and up-

regulated under Pieris and subsequent drought stress. ERF104 is up-regulated 

under Botrytis, Pieris and drought conditions, but was down-regulated under the 

Botrytis and subsequent drought stress and was up-regulated under the Pieris 

and subsequent drought stress. This is showing that the effects of the 

interaction between biotic and subsequent drought responses cannot be 

predicted from single stress responses. 

PIN7-regulated auxin is essential for plants responding to Pieris 

attack and drought stress 

A number of alternative splicing (AS) variants were identified from each 

combinatorial treatment. No observed genes exhibited AS variants under both 

combinatorial treatments, indicating that the effects of the two biotic pre-

treatments on alternative RNA splicing in sequential drought conditions were 

different. In addition, DEGs were compared from the combinatorial treatment 

with genes carrying AS variants and as expected no overlap was found. This 

indicates differential regulation of combinatorial stress in gene expression and 

alternative RNA splicing. The alternative splicing of a gene causes different 

isoforms and the isoform expression levels can be different depending on the 

condition, but this does necessarily need to have an effect on the total mRNA 

transcripts levels. Although a small overlap between DEGs and DEGs with AS 

variants were observed under salt stress (Ding et al., 2014), the over-

represented function of the DEGs and the DEGs with AS variants fell into two 

different categories, showing a separate regulation of the two set of genes in 

response to stress.  

The relative expression of two AS variants of auxin efflux carrier PIN7 were 

measured and showed enhanced expression of AS variant PIN7-1 under the 
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stress combination of Pieris and subsequent drought, when compared to the 

single drought treatment. This shows that the PIN7-1 could play a role in 

response to the combinatorial stress. The two isoforms of PIN7 could have 

distinct biological functions, as their protein sequence is slightly different. 

Analysis of AS variants of the ZINC-INDUCED FACILITATOR1 (ZIFL1) gene 

showed that two of its isoforms (ZIFL1.1 and ZIFL1.3 ) exhibited distinct  

localization and played different roles in root tonoplast cells to modulate root 

polar auxin transport (ZIFL1.1) and in plasma membrane of stomatal guard cells 

for drought tolerance (ZIFL1.3) (Eckardt, 2013). The same AS variants of PIN7 

we describe for A. thaliana were deposited in GenBank for the Brassicaceae 

Camelina sativa, though these variants had not yet been reported for A. thaliana, 

according to TAIR (www.arabidopsis.org). The biological function and the targets 

of the two PIN7 variants in response to stresses remains to be determined.  

Role of PIN7, MDAR3, and CCR2 in response to stresses 

The biological function of the combinatorial stress responsive genes (PIN7, 

MDAR3, and CCR2) were validated using T-DNA mutants. The PIN7 gene 

encodes an auxin efflux carrier expressed in the vascular tissues and columella 

in the mature lateral root and primary root, leaf primordia, and hypocotyl 

(Scarpella et al., 2006; Guyomarc'h et al., 2012; Sassi et al., 2012; Lavenus et 

al.). The knockout mutant pin7 exhibited decreased number of lateral root in 

comparison to the wild type (Lewis et al., 2011), which could be the reason for 

the enhanced susceptibility to drought stress.  Pieris uses glucosinolate as 

feeding and oviposition stimulus (de Vos et al., 2008). Thus, one of our 

hypothesis for the decreased leaf consumption by Pieris is due to less indole-3-

carbinol (I3C) accumulation in pin7 leafs. However, an antagonistic interaction 

has been suggested between the glucosinolate breakdown products I3C and 

auxin (Katz et al., 2015). Another hypothesis for the enhanced tolerance to 

Pieris in pin7 could be due to the negative regulation between auxin and JA 

biosynthesis (Cecchetti et al., 2013). The pin7 mutant could contain higher JA 

accumulation than the wild type and that regulates Pieris defence genes 

expression. The MDAR3 gene is a member of the monodehydroascorbate 

reductase gene family and plays an important role in recapturing ascorbic acid 

(AsA) and regulates redox homeostasis in plant cell  (Ramel et al., 2009; Brini et 
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al., 2011). The MDAR3 expression is regulated by ERF6 and the expression of 

MADAR3 can be inhibited by ABA and heat treatments (Sewelam et al., 2013), 

as well as drought stress (this study).  The AsA level is decreased under drought 

because AsA has impair on ABA- and H2O2-mediated stomatal closing (Pastori 

and Foyer, 2002). Inhibit MDAR3 expression reduces AsA level in plants cell and 

results increased tolerance to drought stress by closing stomata. The CCR2 gene 

encodes one of cinnamoyl CoA reductase (CCR) isoforms and is involved in 

lignification and phenolic biosynthesis (Lauvergeat et al., 2001).  The 

lignification is inovlved in response to multiple biotic and abiotic stresses. For 

instance, The phenolic acids can affect Pieris oviposition and feeding stimulants 

(van Loon, 1990), the lignification and CCR proteins were increased drought and 

salt stress in  Leucaena leucocephala(Srivastava et al., 2015). A study in maize 

showed that the transcript level of CCR2 is increased under drought stress and 

the increased expression of CCR2 results decreased cell wall expansion, 

increased deposition of lignin, and reduced root elongation (Fan et al., 2006).  

The ccr2 mutant could promote root elongation and that enhances the sensitivity 

of ccr2 mutant to drought stress.  
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Conclusion 

In this paper, we have shown the gene expression and alternative splicing of 

genes that are associated with drought and two combinatorial pre-treatment 

stress responses in Arabidopsis. An increased number of DEGs across time 

points under drought stress were identified, showing an increased severity of 

drought experienced by plants. We found that one-day rehydration period is 

insufficient to fully overcome the effects of drought stress on Arabidopsis. More 

DEGs under the Pieris and subsequent drought stress were identified than under 

the Botrytis on subsequent drought stress, showing that the Pieris herbivory is 

more severe than Botrytis infection. A small set of DEGs were  shared by the 

two combinatorial stresses and most of the genes showed opposite 

transcriptional output in the two combinatorial conditions, indicating different 

regulations of the two combinatorial stress in gene expression. We validated 

some combinatorial stress responsive genes using loss-of-function mutants and 

observed antagonistic interaction between Pieris and drought.   Some unique 

combinatorial stress responsive genes were discovered, but their biological 

function in stress conditions still remains unresolved. We confirmed that the 

expression level of alternative splicing variant PIN7-1 changes under drought 

and the combination of Pieris and subsequent drought, but further research will 

be needed to establish if and how this affects the phenotype.     
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Abstract 

This study focuses on investigating the responses of natural accessions of 

Arabidopsis thaliana to the consecutive exposure to a biotic agent (herbivory by 

Pieris rapae) and an abiotic factor (drought) as well as to each of the single 

treatments. Three parameters: rosette fresh weight (FW), dry weight (DW), and 

water content (WC) were used to evaluate the effect of exposure to Pieris and/or 

subsequent drought stress in 16 Arabidopsis accessions. We found WC is a 

suitable parameter for the Pieris and drought stress interaction assessment and 

showed it to be independent of leaf biomass accumulation under drought 

conditions. To gauge the effect of Pieris pre-treatment on sequential drought 

response in planta, differential expression levels of nine drought-responsive 

genes, relevant to the cross-talk between Abscisic acid (ABA) and jasmonic acid 

(JA) signaling pathways, were measured. While no correlation with the observed 

phenotypic variation was found, the expression of all investigated gene 

candidates (except RD29b) proved affected in response to drought preceded by 

exposure to the herbivore activity. Results presented herein allowed us to 

propose a model of gene regulatory networks effectively delineating the effects 

of the interaction between Pieris and drought stress triggers on drought-

responsive gene expression. 

 

Keywords 

Arabidopsis thaliana, (a)biotic stress, consecutive stress combination, 

drought-responsive gene expression 
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Introduction 

Biotic and abiotic stress factors, such as pathogen attack, insect herbivory, 

drought, extreme temperatures, UV radiation, salinity, etc. (Pareek et al., 2010; 

Robert-Seilaniantz et al., 2010) often exert negative effects on plant growth and 

development causing immense losses in agricultural production (Hirt, 2004). 

Drought is one of the most devastating abiotic stress elicitors in plants, resulting 

in accumulation of abscisic acid (ABA), a phytohormone triggering stomatal 

closure to reduce water loss via transpiration (Rai and Takabe, 2006; Xiong and 

Ishitani, 2006). As a consequence, water uptake and assimilation are reduced, 

leading to lower nutrient uptake and diminished biomass (Verslues et al., 2006). 

The ABA-dependent signaling pathway has been reported crucial in 

mediation of plant stress-responsive gene expression under drought condition, 

while also being involved in osmotic and pathogen stress response mechanisms 

(Rai and Takabe, 2006; Xiong and Ishitani, 2006). A comprehensive overview of 

ABA-dependent and ABA-independent signaling trails in planta as triggered by 

drought stress was proposed by Shinozaki and Yamaguchi-Shinozaki (2007). 

Zeaxanthin epoxidase, catalyzing the first committed step in the ABA 

biosynthetic pathway, is encoded by ABA DEFICIENT 1 (ABA1) (Xiong and Zhu, 

2003), whose expression is enhanced in response to drought as well as osmotic 

stress, high salinity, and ABA treatment (Xiong et al., 2002; Barrero et al., 2006) 

and down-regulated by JA (Anderson et al., 2004). Furthermore, multiple 

transcription factors (TFs), such as RESPONSIVE TO DESICCATION 26 (RD26), 

MYB2, MYC2, RD22, and ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING 

FACTOR 2 (ABF2), RESPONSIVE TO DESICCATION 29B (RD29b) participate in 

the ABA-dependent pathway and are involved in the cross-talk between ABA and 

jasmonic acid (JA) signaling (Shinozaki and Yamaguchi-Shinozaki, 2007). Their 

genes are expressed in response to multiple biotic and abiotic triggers, including 

drought, high salinity, osmotic stress, Fusarium oxysporum infection, and 

herbivory by Pieris rapae (Abe et al., 2003; Anderson et al., 2004; Fujita et al., 

2004; Shinozaki and Yamaguchi-Shinozaki, 2007; Vos et al., 2013). Among the 

aforementioned TFs, MYC2, a positive regulator of Pieris defense as well as 

drought tolerance (Vos et al., 2013), is of special significance. Transgenic 
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overexpression of MYB2 and MYC2 resulted in plants exhibiting enhanced 

sensitivity to ABA treatment, with the MYB2 transformants proving less 

responsive to the phytohormone in comparison with their MYC2 overexpressing 

counterparts (Abe et al., 2003). Further, the promoter of RD22 contains two cis-

elements that can bind respectively with MYB2 and MYC2 (Abe et al., 2003), 

while gene expression of RD29b is regulated by ABF2, as well as ANAC019 in 

response to dehydration treatment (Jensen et al., 2010; Uno et al., 2000; 

Yamaguchi-Shinozaki and Shinozaki, 1994). Moreover, the DEHYDRATION-

RESPONSIVE ELEMENT BINDING PROTEIN 2 (DREB2a), playing a role in the 

ABA-independent pathway, was reported as sensitive to drought (Shinozaki and 

Yamaguchi-Shinozaki, 2007). Although the upstream sequence of the initial 

transcriptional site of DREB2a contains an ABA-responsive AREB element, and 

its expression can be activated by ABF2 (AREB1), AREB2, and AREB3,only low 

expression levels of the gene were observed after exposure to the plant 

hormone (Kim et al., 2011), while enhanced expression of DREB2a was detected 

after 24 hours of rehydration treatment (Yamaguchi-Shinozaki and Shinozaki, 

1994). What is more, plants under drought stress were found to accumulate 

high levels of proline (Delauney and Verma, 1993). DELTA1-PYRROLINE-5-

CARBOXYLATE SYNTHASE 1 (P5CS1) is one of the proline biosynthetic genes 

(Strizhov et al., 1997) and is required for the build-up of the amino acid levels 

under osmotic, high salinity, and drought stress conditions (Szekely et al., 2008; 

Verslues and Sharma, 2010). The gene can be regulated via both the ABA-

dependent and the ABA-independent pathway (Verslues and Sharma, 2010). 

The enumerated drought-responsive genes are representative of the cross-talk 

between the ABA and JA cascades, as well the cross-take between ABA-

dependent and ABA-independent signal transduction mechanism that triggered 

by the abiotic stress factor in question. 

Various interactions between biotic and abiotic stress response mechanisms 

in plants have been reported and summarized by Suzuki et al. (2014). The 

interplay between biotic and drought stress feedback involves complex cross-

talk via both metabolic and signaling pathways (Atkinson and Urwin, 2012; 

Prasch and Sonnewald, 2013; Rasmussen et al., 2013). For instance, the biotic 

herbivory of Pieris rapae larvae induces signaling through the jasmonic acid and 
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ethylene (JA-ET) cascade (De Keersmaecker et al., 2005), which can interacts 

negatively with the drought-induced ABA signaling (Pieterse et al., 2012). The 

latter observation suggests that Pieris pre-treatment might lead to increased 

drought susceptibility. Thus, understanding how plants adapt to the wide range 

of stress factors and the genetics underlying their response will undoubtedly 

contribute to the improvement of plant tolerance to extreme conditions via 

optimized breeding. 

This study was designed to gain novel insights into the mechanism of plant 

response to combinatorial stress, namely insect attack and subsequent drought, 

through observation of the variation of Arabidopsis thaliana natural accessions 

subjected to the investigated stress factor combination. Arabidopsis plants were 

exposed to Pieris rapae larvae, to elicit response to herbivory, and then treated 

with polyethylene glycol (PEG) which induces osmotic stress simulating drought. 

Control plants were subjected to single stress treatments (Pieris herbivory only 

and single PEG treatment without any pre-treatment). Responses to the applied 

stress-inducing conditions were investigated using phenotypic analysis in 

combination with expression profiling of the aforementioned nine drought-

responsive genes. 
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Materials and methods 

Plant material and growth conditions 

Sixteen Arabidopsis thaliana accessions that showed maximum genetic 

divergence from the HapMap population were selected based on single 

nucleotide polymorphism (SNP) marker information (Li et al., 2010). These 

included: Br-0 (CS76101), Bur-0 (CS76105), Col-0 (CS76113), Est-1 (CS76127), 

Fei-0 (CS76129), Got-7 (CS76136), Ler-1 (CS76164), Lov-5 (CS76175), NFA-8 

(CS76199), RRS-7 (CS28713), RRS-10 (CS22689), Sha (CS76227), Tamm-2 

(CS76244), Ts-1 (CS76268), Tsu-0 (CS28780), and Van-0 (CS76297). 

Prior to experimental procedure commencement, seeds of the test A. 

thaliana accessions were stratified at 4 °C in the dark for five days. Thereafter, 

one seed per accession was sown on one Grodan® Rockwool cube of 40×40×40 

mm. The plants were watered three times per week (on Mondays, Wednesdays, 

and Fridays) with a nutrient solution developed for Arabidopsis (pH, 7; EC, 1.4 

mS/cm). The solution consisted of 1.7 mM NH4
+, 4.5 mM K+, 0.4 mM Na+, 2.3 

mM Ca2+, 1.5 mM Mg2+, 4.4 mM NO3
-, 0.2 mM Cl-, 3.5 mM SO4

2-, 0.6 mM HCO3
-, 

1.12 mM PO4
3-, 0.23 mM SiO3

2-, 21 µM Fe2+ chelated using 3 % 

diethylenetriaminepentaacetic acid (DTPA), 3.4 µM Mn2+, 4.7 µM Zn2+, 14 µM 

BO3
3-, 6.9 µM Cu2+, and <0.1 µM MoO4

4-. The plants were grown in a climate-

controlled growth chamber set to short day conditions, i.e., 10 h day/14 h night 

at 21 °C day/19 °C night and 70 % relative humidity. Irradiation was set to 200 

μmol m-2 s-1. 

Preparation of Pieris rapae larvae 

Pieris rapae caterpillars were reared on cabbage plants (Brassica oleracea 

convar. capitata var. alba) under greenhouse conditions (24 °C, natural 

daylight). Butterflies were supplied with flowering plants, such as Lantana 

camara, for their nourishment (nectar). When the flowers were scarce, 

additional food source (a solution of 20 % honey and 10 % sucrose) was offered 

to the butterflies. Inbreeding was minimalized by adding wild butterflies and 

caterpillars from the Dutch Flevopolder to the existing population. After starving 
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for 1 h, first-instar (L1) larvae were placed on Arabidopsis leaves using a fine 

paint brush as described by Van Wees et al. (2013). 

Stress treatments 

Control plants did not receive any stress treatment (Figure 1). For single 

Pieris treatment, 17-day-old plants were exposed to one Pieris first-instar larva 

(one larva per one plant)for one day. Thereafter, the caterpillars were removed 

and the plants were allowed growth under the aforementioned control conditions 

for six days (“Pieris”). For single drought treatment, 19-day-old plants were 

irrigated with the nutrient solution (described above) that contained 7.7 % w/v 

polyethylene glycol (PEG) 8000 for six days (“drought”). For combinatorial stress, 

17-day-old plants were exposed to one Pieris first-instar larva for one day. The 

caterpillars were then removed and the plants continued to grow under the 

control conditions for one day to be subsequently subjected to irrigation with the 

Hyponex solution containing 7.7 % w/v PEG 8000 for six days (“Pieris and 

subsequent drought”).  

 

 

Figure 1. Experimental design of the applied plant treatment. A. thaliana plants were 
subjected to Pieris rapae herbivory, drought, or combinatorial stress (Pieris herbivory and 

drought) as well as allowed growth under control conditions. The various treatment 
conditions are indicated in different colors: control, blue; drought, yellow; Pieris, green; 
rehydration after drought, gray. The vertical arrow indicates the sampling time point. 
Vertical dashed lines indicate periods before Pieris pre-treatment, after Pieris treatment, 
and before exposure to drought stress conditions. 
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Real-time reverse transcription PCR (qRT-PCR) 

RNA was extracted from A. thaliana rosettes following the protocol proposed 

by Onate-Sanchez and Vicente-Carbajosa (2008). cDNA was then synthesized 

from 800 ng of total RNA using the iScript cDNA synthesis kit (Bio-Rad) at 25 °C 

for 5 min, 42 °C for 30 min, and 85 °C for 5 min. cDNA thus obtained was 

diluted (1:10) and used as a template in quantitative PCR (qPCR). According to 

the transcriptome data collected from several studies concerning plant 

responses to drought, osmotic, and Botrytis infection stress triggers, relying on 

the Genevestigator (http://refgenes.org/rg) web tool application, RETICULON-

LIKE PROTEIN B11 (RTNLB11) proved the gene characterized by the most stable 

expression level across the experiments and was, therefore, selected as a 

reference gene. The qPCR was performed using the iQ SYBR® Green Supermix 

(Bio-Rad) on the CFX96 real-time PCR system (Bio-Rad) set to 95 °C for 4 min, 

followed by 40 cycles of 95 °C for 10 sec and 55 °C for 30 sec. Primer 

sequences of all investigated genes are provided in Supplementary Table 1. 

Statistical analysis 

Broad-sense heritability, H2 was calculated using equation (1): 

H2= 
𝑉𝑎𝑟(𝐺)

𝑉𝑎𝑟(𝐺)+𝑉𝑎𝑟(𝐸)
  (1), 

where G stands for genotype, E for environment and Var for variance. 

Pearson’s correlation coefficient (r) analysis, one-way, two-way, and three-

way analysis of variance (ANOVA, to test the Accession×Gene×Treatment 

interaction), as well as canonical variate analysis (CVA) were performed using 

the GenStat software (16th Edition). The three-way ANOVA used to assess the 

Accession×Pieris×Drought interaction was performed as described by Sokal RR 

(1981). The logarithm (log) transformed quantification cycle (Cq) values of 

drought-responsive genes were used for the three-way ANOVA tests. Student’s 

t-test was used to compare the investigated accessions subjected to two 

alternative treatments. Statistical tests on the measured parameters: rosette 

fresh weight (FW), rosette dry weight (DW), and rosette water content (WC) 

http://refgenes.org/rg
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ratio were performed upon four plants per accession. The water content (WC) 

ratio was calculated using equation (2): 

WC= 
𝐹𝑊−𝐷𝑊

𝐹𝑊
   (2). 

Statistical tests on the log transformed Cq values were performed upon three 

plants  per accession.   
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Results 

Effect of Pieris rapae herbivory and subsequent drought 

treatment on 16 natural accessions of Arabidopsis 

Sixteen A. thaliana accessions, exhibiting maximum genetic divergence 

based on SNP marker information (Li et al., 2010), were selected and examined 

for the effect of Pieris rapae herbivory (Pieris) and/or drought stress on plant 

performance (Figure 1). Single Pieris treatment significantly reduced the rosette 

fresh weight (FW) and rosette dry weight (DW) in the accessions Bur-0, Col-0, 

Got-7, NFA-8, RRS-7, and Tamm2 (Figure 2 a and b). Strikingly, the 

representatives of Est-1 accession showed significantly higher FW and DW 

values upon Pieris treatment than under control conditions. Sole drought 

treatment significantly reduced both FW and DW quotients in Bur-0, Col-0, Fei-0, 

NFA-8, RRS-10, RRS-7, Tamm-2, and Van-0. Decrease in DW was also detected 

in Got-7, Sha, and Ts-1, indicating that most accessions experienced serious 

growth retardation upon drought treatment. This finding prompted us to 

examine the water content (WC) ratio, which was significantly enhanced in Got-

7, Sha, Tamm-2, and Ts-1 and decreased in Tsu-0, pointing to the latter as the 

most drought-susceptible accession (Figure 2 c). Pieris pre-treatment followed 

by that simulating drought resulted in lowered FW values in Bur-0, Col-0, Est-1, 

Got-7, RRS-7, and Tamm2 and diminished DW rates in Est-1 and RRS-7, in 

comparison to those characteristic of plants subjected to drought conditions 

without pre-treatment. Significantly reduced WC values were observed in Bur-0, 

Col-0, Got-7, Lov-5, Sha, Tamm-2, and Ts-1, showing that the most drought-

resistant accessions (evaluated as such based on their WC ratio parameters) lost 

their relative drought tolerance after Pieris pre-treatment. Broad-sense 

heritabilities of the investigated traits were high, mostly above 0.5, up to 0.65, 

with the exception of the shift in WC ratio upon Pieris treatment, which showed 

moderate heritability (Table 1). Results obtained thus far offered a favorable 

prospect for genetic analysis of the test traits in the 16 accessions. 
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Figure 2. Phenotypic analysis of rosettes of 16 A. thaliana accessions in response to Pieris 
rapae herbivory, drought, and drought induced after Pieris pre-treatment. a., Rosette 
fresh weight (FW); b., rosette dry weight (DW); c., water content (WC), calculated as the 
(FW-DW)/FW ratio. Phenotypes observed under control conditions are indicated in blue, 
those resulting from exposure to Pieris alone – in green, drought alone – in yellow, and 
Pieris pre-treatment followed by drought – in grey. The standard error of the mean (SE) 
was calculated based on four replicates. Two-way ANOVA was used to compare Pieris- and 
drought-induced responses to the control and to compare combinatorial stress feedback to 
that caused by drought. p-values: * <0.05, ** <0.01, *** <0.001 
 
Table 1. Broad-sense heritability, H2 of rosette fresh weight (FW), dry weight (DW), and 
water content (WC= FW-DW/FW) of 16 A. thaliana accessions upon exposure to Pieris 
rapae herbivory, drought, and combinatorial stress conditions (n= 4). 

Treatment FW DW WC 

Control 0.63 0.60 0.59 

Pieris 0.58 0.55 0.37 

Drought 0.65 0.60 0.64 

Pieris and drought 0.63 0.59 0.53 

 
 
  



Chapter 7 

 

230 

Correlations among traits 

Pearson’s correlation coefficients between FW, DW, and WC were calculated 

for each set of experimental conditions. Positive correlations between FW and 

DW were found in all investigated settings. While the correlation between FW 

and WC was significant under all applied conditions except the combinatorial 

treatment, the latter correlation was largely lost when considering DW and WC 

upon sole drought induction (Table 2). This observation pointed to WC as an 

informative trait in the study of sensitivity to drought. 

Table 2. Pearson’s correlation coefficients upon comparison of rosette fresh weight (FW), 
dry weight (DW), and water content (WC) of 16 A. thaliana accessions under each set of 
experimental conditions. Significant correlations are shaded in gray. 

 
Phenotypic traits 

Treatment group   DW WC 

Control 
 

FW 0.99 0.61 

WC 0.47   

Pieris 
 

FW 0.98 0.49 

WC 0.32   

Drought 
 

FW 0.94 0.32 

WC -0.01   

Pieris and subsequent drought 

FW 0.97 0.17 

WC -0.08   

 

To observe the variation of phenotypic responses of the investigated 

accessions under stress conditions, three-way ANOVA was performed to test the 

interactions between traits, treatments, and accessions. Significant main effects 

of accessions, traits, and treatments were observed (p <0.001; Table 3) and 

significant interactions between accessions, traits, and treatments were found. 

Upon exposure to divergent treatments, the plants showed a large variation in 

phenotypic responses. 
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Table 3. Three-way ANOVA to test the interaction between accessions, traits, and 
treatments. All main effects and interactions were significant. 

Source of variation d.f s.s m.s v.r p-value 

Accessions (Acc) 15 7.98 0.53 69.91 3.06E-132 

Traits 2 211.82 105.91 13914.40 0.00E+00 

Treatments 3 2.32 0.77 101.71 1.96E-55 

Acc×Traits 30 3.96 0.13 17.35 3.96E-67 

Acc×Treatments 45 1.18 0.03 3.45 1.75E-12 

Traits×Treatments 6 1.21 0.20 26.46 1.04E-28 

Acc×Traits×Treatments 90 0.67 0.01 0.98 5.34E-01 

Residual 576 4.38 0.01   

Total 767 233.53    

d.f= degree of freedom; s.s= sum of square; m.s= mean square; v.r= variance 

To test the interactions between treatments and accessions, three-way 

ANOVAs were performed for the three traits separately (Table 4). The analyses 

showed significant main effects of Pieris and drought treatments (p <0.001) in 

all cases, as well as interaction effects between accessions and the two single 

stress triggers (Pieris and drought) for FW and DW (p <0.001) and between 

accessions and drought-simulating treatment regarding WC (p <0.001). The 

only significant interaction effect between accessions, Pieris and  drought was 

observed for WC (p <0.05). 

Taken together, the obtained results point to a large variation in the 

phenotypic response of plants exposed to Pieris herbivory, drought, or the 

combination of stress triggers (exposure to Pieris followed by drought 

simulation). Calculation of the WC ratio allows identification of natural variation 

in the drought response, including the influence of Pieris pre-treatment. 
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Gene expression variation under Pieris, drought, and the 

combinatorial treatments 

To explore whether the genetic background and the observed phenotypic 

differences influenced the transcriptional output of the investigated plant 

population upon Pieris, drought, and the combinatorial stress treatments, 

expression levels of nine known drought-responsive genes (Table 5) were 

compared to those characteristic of plants maintained under control conditions. 

The expression quotients of interest were determined via analysis of the genetic 

material of rosette leaves of 14 Arabidopsis accessions, as the relevant organs of 

the other two accessions were lost during harvesting. All primers used for the 

quantitative reverse transcription PCR (qRT-PCR) analysis were designed to 

amplify the same coding sequence region from the mRNA pools of the 

investigated accessions and were pre-tested for efficiency. 

Pearson’s correlation coefficients between the three investigated traits and 

the nine drought-responsive gene expression levels were calculated and 

significant correlations were found (Supplementary Table 4), while the obtained 

transcription quotients could not be correlated with the treatment effects on 

growth of the tested natural accessions of Arabidopsis. 

When examining gene expression responses in general, two groups of 

accessions could be distinguished; one, for which 2log quantification cycle (Cq) 

values (2logCq) decreased upon drought treatment but increased upon 

application of the combination of Pieris and sequential drought triggers and 

another, showing hardly any response to drought but a decrease in 2logCq values 

upon exposure to the combinatorial stress treatment (Figure 3). Further, 

divergent effects of the Pieris pre-treatment in response to sequential drought 

were found in the investigated accessions. 
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Figure 3. Variation in mean average Cq values (on a log2 scale) representing expression 
of the nine investigated drought-responsive genes in rosettes of 14 A. thaliana accessions 
in response to drought, Pieris herbivory, and Pieris pre-treatment followed by drought 
simulation. 

Pearson’s correlation coefficients between gene expression levels were 

calculated using relevant Cq values. For most genes, a positive correlation was 

observed (Table 6), while a negative one was noted between ABA1 and DREB2a 

quotients, confirming their independence. No significant correlation was found 

between MYB2 transcript abundance values and those of the remaining 

investigated genes, showing that MYB2 is not related to other drought-

responsive genes in the three tested experimental settings. 
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Table 6. Pearson's correlation coefficients of the investigated drought-responsive genes 
calculated on the basis of the relevant Cq values. Gray shading indicates significant 
correlation (p< 0.05). 

ABA1 1                 

ABF2 0.17 1 

       
DREB2a -0.31 0.26 1 

      
MYB2 0.11 -0.03 0.02 1 

     
MYC2 -0.02 0.47 0.4 -0.06 1 

    

P5CS1 0.36 0.62 -0.04 -0.09 0.61 1 

   
RD22 -0.11 0.51 0.57 0.09 0.76 0.48 1 

  
RD26 0.08 0.45 0.42 -0.08 0.72 0.62 0.61 1 

 
RD29b 0.20 0.70 0.18 0.02 0.32 0.54 0.31 0.4 1 

Genes ABA1 ABF2 DREB2a MYB2 MYC2 P5CS1 RD22 RD26 RD29b 
 

To assess the effect of the applied treatments on plant gene expression, 

canonical variate analysis (CVA) was performed upon the relevant Cq values. 

CVA is a multivariate analysis method that has a similar function to the principle 

component analysis (PCA) applied to evaluate the possible correlation between 

variables (Heymann and Noble, 1989). The difference is that CVA can be used to 

discriminate between alternative treatment groups as it accounts for differences 

in group variation in course of their separation (Heymann and Noble, 1989). 

Thus, the CVA axes maximize the variance between groups relative to that 

within them (Zelditch et al., 2012). The resulting biplot (Figure 4) represents 

92.9% of total variance and shows that the variation among accessions was 

lower than the variation among treatments, based on the separation of plants 

subjected to control conditions, drought, and the combination of Pieris and 

subsequent drought simulation, but not on separation of accessions. As a result, 

strong effects of Arabidopsis accessions on gene expression come to the fore, 

while those of single stress treatments cannot be distinguished in the presented 

plot. When considering individual components, the CVA-1 component explained 

77.6 % of the total variance, especially for DREB2a, RD22, P5CS1, and RD29b 

while the CVA-2 explained 15.3% of the total variance, most notably in case of 

ABF2, RD22, MYC2, P5CS1, and DREB2a (Supplementary Table 2). 
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Figure 4. Canonical variates analysis (CVA) explained 92.92% of total variance in 
drought-responsive gene expression upon application of alternative stress treatments. The 
CVA-1 explained 77.61% of total variance and the CVA-2, 15.31%. The biplot displays a 
clear separation between the control group, the one subjected to drought, and that 
exposed to combinatorial stress. Each biplot axis represents one gene, while the numbers 
on the axes, the corresponding Cq values on the log2 scale. The angles between the axes 
illustrate correlation between the variables and arrows, the direction, with lines in opposite 
direction indicating negative correlation (e.g., DREB2a and ABA1). Black color represents 
control conditions; green, Pieris treatment; red, drought simulation; blue, combinatorial 
stress induction. Each dot within each treatment group represents one accession. 

As initially expected, drought stress (as compared to control conditions) 

induced the expression of ABA-dependent signaling genes ABA1, RD26, MYC2, 

RD22, RD29b, ABF2, and P5CS1, although the levels of induction were quite 

variable between accessions (Figure 5). Strikingly, the ABA-dependent signaling 

gene MYB2 was either up- or down-regulated depending on the accession. For 

instance, its expression fold change under drought conditions (relative to control) 

was two times lower in Fei-0 (log2FC= -1) but  up to four times higher in Ts-1 

(log2FC= 2). Also DREB2α, an ABA-independent signaling gene showed variable 

response levels upon comparison of accessions. 
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Unexpectedly, analysis of the single Pieris treatment outcomes also revealed 

differential expression of drought-responsive genes depending on their genetic 

background (Supplementary Figure 1). RD29b and P5CS1 were up-regulated, 

whereas the expression levels of RD26, RD22, and DREB2α decreased. This 

observation suggested that transcriptional activity of the aforementioned genes, 

thought to be largely drought-responsive, was also susceptible to biotic stress 

triggers (such as Pieris herbivory), thus leading us to hypothesize that, 

depending on the genetic background, a combination of stress factors can have 

a synergetic or an antagonistic effect on the expression levels of drought-

responsive genes. To address this hypothesis, gene expression levels were 

analyzed by comparing the drought vs. control expression difference with the 

combinatorial stress vs. control expression difference (Figure 5). Pieris pre-

treatment reduced the expression of ABA1 and P5CS1 in response to sequential 

drought, when compared to the outcomes of the single drought treatment, while 

MYB2, RD22, and ABF2 were up-regulated. For RD26, MYC2, and DREB2a, the 

direction of the response varied considerably depending on the accession, 

indicating a large effect of natural genetic variation on their transcriptional 

activity. This supposition was confirmed by a three-way ANOVA, accounting for 

Cq values of drought-responsive genes, that showed a significant main effect of 

drought stress for all genes (p< 0.001, Supplementary Table 3) and a significant 

main effect of Pieris on the expression levels of RD26, MYB2 DREB2a, RD29b, 

and ABF2 (p< 0.05). Moreover, significant interactions were found between 

genes and accessions, meaning that a combination of biotic and abiotic stress 

elicits a specific response in each accession. 
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Figure 5. Relative expression levels of drought-responsive genes: a., ABA1; b., RD26; c., 
MYC2; d., MYB2; e., RD22; f., DREB2a; g., RD29b; h., AFB2; i., P5CS1 in rosettes of the 
investigated A. thaliana accessions upon comparison of drought vs. control and 
combinatorial stress vs. control treatments. Log2 scale at 1, 2, 3, 4, 5, 6, 7, and 8,  
corresponds to 2, 4, 6, 8, 16, 32, 64, 128, and 256 times actual fold change, respectively. 
The standard error of the mean (SE) was calculated based on three plants per accession. 
Two-way ANOVA was used to compare the responses to the combinatorial stress to those 
caused by drought simulation. Significant differences (p-values): * <0.05, ** <0.01, *** 
<0.001. 
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Discussion 

This work uncovers the differences in responses of natural accessions of A. 

thaliana to single and combinatorial stress treatments involving biotic stress 

imposed by herbivory of P. rapae larvae and abiotic stress due to drought. 

WC is a suitable parameters to present drought response 

Our research showed that the water content ratio (WC, (FW-DW)/FW), but 

not the fresh weight (FW) or the dry weight (DW) parameters of Arabidosis 

rosettes alone, is a trait relevant to identification of genotypes that are either 

tolerant, susceptible, or characterized by mechanisms aiming at evasion of 

detriments of drought. Low WC ratio values coincide with inhibited plant growth, 

as the parameter is positively correlated with solutes and metabolic activity in 

plants (Bac-Molenaar et al., 2016; Loudet et al., 2003). 

Different responses to drought stress in Arabidopsis 

Drought tolerance is characterized by maintaining similar DW and WC 

quotients under drought stress to those corresponding to control conditions, 

which was observed in Br-0, Est-1, and Lov-5. Further, Tsu-0 exhibited drought 

tolerance, which is consistent with earlier findings on the relative water content 

in this accession under drought conditions (Bouchabke et al., 2008). In contrast, 

accessions Bur-0, Col-0, Fei-0, Ler-1, NFA-8, RRS-10, RRS-7, and Van-0 proved 

drought-sensitive, displaying reduced DW values  but no differences in WC. 

Under drought stress, plants can avoid dehydration by retaining water, 

reducing photosynthesis, and enhancing root development (Verslues et al., 

2006). Drought avoidance is characterized by diminished DW outputs along with 

increased WC. Such phenotypes were found for the accessions Got-7, Sha, 

Tamm-2, and Ts-1. Several potential downstream targets of the two flowering-

time regulators, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC), were identified 

by QTL mapping of WC under two contrasting nitrate regimes (Loudet et al., 

2003). FRI can activate the expression of FLC, which inhibits flowering by 

repressing transcription of downstream genes in the floral pathway (Michaels 

and Amasino, 1999). It is, moreover, possible that FLC is involved in WC 

regulation through quenching of the downstream flowering integrator 
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SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) to control stomatal 

opening (Kimura et al., 2015; Loudet et al., 2003). These considerations 

suggest that Got-7, Sha, Tamm-2, and Ts-1 (early flowering accessions) 

mobilize drought-avoidance mechanisms by accelerating their metabolic 

processes to finish their life cycle with limited biomass accumulation. 

Another way to circumvent sensitivity to drought is for plants to stay small, 

as their high water use efficiency (WUE) renders smaller specimens more 

tolerant to the stress factor (Blum, 2005). In the present study, five accessions 

characterized by low biomass were investigated, Lov-5, RRS-10, RRS-7, Tamm-

2, and Ts-1; of these, however, only Lov-5 proved drought-tolerant. Our 

observation of different responses of Arabidopsis accessions to drought stress 

indicates a variation in plant adaptation to extreme environments. 

Role of drought-responsive genes in plant stress mechanisms 

triggered by consecutive Pieris and drought treatments 

In our study, expression of all investigated genes (except RD29b) was 

affected by the interaction between plant response mechanisms triggered by 

Pieris herbivory and those caused by the subsequent drought stress, with both 

the ABA-dependent and the ABA-independent signaling pathways involved. The 

cross-talk between the aforementioned stress response cascades was described 

by Nakashima et al. (2014). 

ABA1 is involved in ABA biosynthesis and is down-regulated by JA (Anderson 

et al., 2004; Xiong and Zhu, 2003). Enhanced ABA1 expression under drought 

simulating conditions observed in this study points to increased accumulation of 

the phytohormone in response to the stress factor (Figure 5 a). In contrast, 

reduced transcriptional activity of ABA1 detected under combinatorial stress 

conditions indicates a negative interaction between the Pieris-induced JA 

signaling pathway and the drought-activated ABA-dependent response 

mechanism. The aforementioned results proved our experimental design 

sufficient for the study of the interaction between Pieris- and drought-triggered 

stress responses in planta. 
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MYB2 and MYC2 are transcription factors acting as positive regulators of 

Pieris and drought stress responses, thus playing an important role in the cross-

talk between ABA and JA signaling trails (Abe et al., 2003; Anderson et al., 2004; 

Harb et al., 2010). Herein, Pieris pre-treatment enhanced MYB2 expression in 

plants subsequently exposed to drought. This finding is in accord with previously 

reported results showing that MYB2 can be respectively up- and down-regulated 

by two upstream transcription factors, WRKY18 and WRKY40 (Shang et al., 

2010), positively responding to JA (Xu et al., 2006). Further, opposite effects of 

Pieris pre-treatment on MYC2 gene expression were observed between the 

investigated accessions. Both MYB2 and MYC2 bind to the promoter region of 

RD22 activating its transcription (Abe et al., 2003). In our study, exposure to 

Pieris larvae resulted in RD22 up-regulation in most accessions upon subsequent 

drought simulation, when compared to the single drought treatment. This 

finding exemplifies a synergetic effect of Pieris pre-treatment and drought 

simulation, as RD22 was repressed  in plants exposed to the herbivore alone. 

Enhanced expression of DREB2a under a 24-hour dehydration treatment 

(relative to control) was reported previously (Yamaguchi-Shinozaki and 

Shinozaki, 1994). Herein, however, the gene was down-regulated in most 

accessions after six days of drought simulation. As the increased severity of 

drought stress is positively associated with the concentration of ABA in plants 

(Kim et al., 2012), the observed reduction in DREB2a transcriptional activity 

could be due to its sensitivity to the phytohormone levels. To confirm this 

supposition, measurements of ABA concentration in plants on consecutive days 

of drought treatment are necessary. Moreover, a positive influence of Pieris 

herbivory on DREB2a expression under subsequent drought conditions was 

observed, when compared to the single drought treatment. The effect could be 

due to the interaction between salicylic acid (SA), JA, and ABA activity in 

Arabidopsis plants. According to Yoshioka and Shinozaki (2009), the 

involvement of DREB2a in the cross-talk between plant hormones is relevant to 

the interaction of SA and ABA rather than that between ABA and JA. Thus, it is 

possible that the effect of Pieris pre-treatment on DREB2a gene expression is 

not JA- but SA-dependent. 
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Expression of RD29b is regulated by several transcription factors, encoded 

by drought-responsive genes, such as ABF2 (Uno et al., 2000), DREB2a (Qin et 

al., 2008a), and ANAC019 (that can be further modulated by MYB2 and MYC2 

(Bu et al., 2008; Hickman et al., 2013; Jensen et al., 2010).  The former TF can 

interact with ABA-responsive elements and plays a positive role in drought 

feedback (Abe et al., 2003). In this study, we expected Pieris pre-treatment to 

lead to up-regulation of ANAC019 and, thus, exert an effect on RD29b 

expression under sequential drought stress conditions. However, no significant 

differences in RD29b transcriptional activity under combinatorial stress (relative 

to single drought treatment) were observed between the investigated accessions 

(except Tsu-0). This could be due to the complex regulation of RD29b 

expression in response to drought. For instance, besides ANAC019, ABF2, and 

DREB2a, positive regulators of RD29b whose gene expression increases under 

drought conditions, transcription of the gene in question can be further 

increased by ETHYLENE INSENSITIVE 2 (EIN2) and SA- AND ABA-

DOWNREGULATED ZINC FINGER GENE (SAZ) whose levels decrease under 

drought treatment (Jiang et al., 2007; Wang et al., 2007). 

Furthermore, enhanced expression of P5CS1, pointing to increased proline 

biosynthesis, was observed in all investigated accessions upon drought 

simulating treatment. The promoter region of P5CS1 contains a drought-

responsive element (DRE) which can be bound by the JA-responsive protein 

ETHYLENE RESPONSE FACTOR 1 (ERF1) (Anderson et al., 2004), with the latter 

negatively regulated by MYC2, VSP2, and ABA treatment (Anderson et al., 2004; 

Dombrecht et al., 2007). The factor can boost P5CS1 expression, as was found 

in 35S:ERF1 plants (Cheng et al., 2013). Thus, the subsequently observed 

reduced expression of P5CS1 under combinatorial stress conditions could be due 

to the antagonistic interaction between the down-regulation of ERF1 and 

increased proline accumulation characteristic of drought exposure. 

Based on the one described by Shinozaki and Yamaguchi-Shinozaki (2007), 

we hereby propose a model of gene regulatory networks relevant to the 

consecutive Pieris and drought stress responses in plants (Figure 6). Our study 

focused on measurement and assessment of the effect of Pieris herbivory on 

expression levels of known drought-responsive genes upon sequential drought 
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exposure; we, however, payed less attention to Pieris-responsive genes. Some 

of the latter, such as ERF1, ANAC019, and VSP2, can be regulated by both JA 

and ABA. Thus, it would be of further interest to determine the effect of Pieris 

pre-treatment on transcriptional activity of the three genes in response to 

sequential drought simulation. No effect of the interaction between Pieris and 

drought stress triggers was observed in case of RD29b only. Our hypothesis as 

to the cause of this outcome pertains to the aforementioned complexity of its 

upstream regulation. For instance, since EIN2 and SAZ  were identified as 

involved in down-regulation of RD29b in response to drought stress, additional 

evaluation of expression levels of their encoding genes is necessary. Lastly, to 

comprehensively delineate the gene regulatory network triggered in response to 

the combinational stress in planta, full transcriptome analysis is called for. 

 

Figure 6. Model of the gene regulatory networks relevant to the consecutive Pieris and 
drought stress responses in plants, involving ABA1, MYB2, MYC2, RD22, RD26, ABF2, 
DREB2a, RD29B, P5CS1, WRKY18, WRKY 40, ANAC019, VSP2, EIN2, and ERF1. Signaling 
pathways triggered by drought are indicated in orange, while those implicated in the 
response mechanism to Pieris rapae herbivory are marked in green. The figure was 
updated based on Shinozaki and Yamaguchi-Shinozaki (2007 ). 
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No divergent expression profiles of the investigated drought-

responsive genes among Arabidopsis accessions 

Our findings on differential gene expression are in line with previous results 

of a study comparing seven Arabidopsis accessions in response to SA treatment 

that identified a number of genes with multiple alleles characterized by 

diversified transcriptional activity (Kliebenstein et al., 2006). Similarly, 

contrasting expression of abiotic stress-responsive genes (including RD22) was 

observed in Col-0, when compared with C24 (Miller et al., 2015). Moreover, 

diverse expression levels in response to drought and cold stress were detected 

upon comparative analysis of ten Arabidopsis accessions (including Bur-0, Col-0, 

and Ts-1; Lasky et al., 2014). Further, while similar expression of REDUCED 

CHLOROPLAST COVERAGE 3 (REC3) was reported for the three aforementioned 

accessions subjected to drought (relative to control), ETHYLENE RESPONSE 

FACTOR022 (ERF022) showed contrasting transcriptional levels in Ts-1 as 

compared to Bur-0 and Col-0 (Lasky et al., 2014). We, however, did not observe 

divergent expression profiles of the investigated drought-responsive genes in Ts-

1 relative to Bur-0 and/or Col-0, except in case of RD26. 

No correlation between phenotypic responses and variation in 

gene expression 

In the present study, no correlation between the three investigated traits 

and the nine drought-responsive genes was found (Supplementary Table 1). In 

addition, the relevant expression level quotients could not be correlated with the 

treatment effects on growth in Arabidopsis natural accessions. Hence, the 

obtained results suggest that the representatives of the investigated accessions 

employ not one, but different strategies to overcome drought stress, or at least 

not one involving the genes whose expression was evaluated. Considering the 

substantial variation in both phenotypes and gene expression levels among 

accessions upon comparison of their responses to single and combinatorial 

stress treatments, their whole-transcriptome analysis would be of great interest. 

Since we selected accessions that are genetically divergent, the observed large 

variation among them was not unexpected. 
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Thus, the limited transcriptomic information at our disposal prevented us 

from effective determination of the relationship between phenotype variation 

and genetic responses among accessions. For instance, correlation analysis of 

the expression data of more than 400 Pseudomonas syringae pv tomato DC3000 

(Pst) type III effector protein AvrRpt2-responsive genes showed that 49% of 

variation of the phenotypic responses to Pst infection could be explained by 

genetic differences among accessions (Van Poecke et al., 2007). Therefore, full 

transcriptome analysis of the accessions of interest would be useful in providing 

adequate genetic information corresponding to stress conditions (relative to 

control). Another hypothesis aiming at explanation of the poor correlation is that 

the simple Pearson’s test is not sufficient to determine the relationship between 

complicated phenotype stress responses and relevant genotype data. Application 

of powerful analytical methods, such as algorithm locally linear embedding graph 

generator (LEGG) (Van Poecke et al., 2007) and cluster analysis, could help to 

effectively tackle these obstacles. 
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Conclusion 

In this paper, we have evaluated phenotypic responses and gene expression 

in Arabidopsis upon exposure to Pieris herbivory, drought, and combinatorial 

stress conditions. The observed responses of the investigated accessions to 

drought simulation were divergent, indicating a variation in plant adaptation to 

extreme environments. We identified the phenotypic trait of water content (WC) 

as a parameter allowing effective estimation of the effects of the interaction 

between Pieris and drought stress responses. No significant correlation between 

phenotypic responses and gene expression was found, suggesting that 1) whole 

transcriptomes of the investigated accessions ascertaining sufficient genetic 

information and 2) application of superior correlation analysis methods, such as 

LEGG, will be needed to delineate the relevant interactions. Different effects of 

Pieris pre-treatment on drought-responsive gene expression levels upon 

sequential drought simulation were observed, with the exception of RD29b. 

Based on the obtained results, we proposed an improved model of gene 

regulatory networks triggered in response to consecutive Pieris and drought 

stress factors. However, to afford a comprehensive overview of the network in 

question, appropriate full transcriptome analyses are necessary. 
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This thesis deals with the responses of Arabidopsis thaliana (Arabidopsis) 

plants to sequential combinations of biotic and drought stress triggers, with the 

identification of relevant regulatory genes as its main objective. Pieris rapae and 

Botrytis cinerea were employed as biotic stress activators. Following the 

biological treatment(s), the investigated plants were subjected to abiotic stress 

conditions (drought). Both Pieris and Botrytis trigger expression of defense-

responsive genes from the jasmonate (JA) signalling pathway; however, the 

respective defense mechanisms mostly follow alternative courses. The Pieris 

response is mediated mainly through the MYC pathway branch, whereas Botrytis 

infection, activates the ethylene response factor (ERF) branch (Dombrecht et al., 

2007). The two sub-networks can interact with each other antagonistically. 

Hence, some JA-ET-responsive genes were expected to be shared in both 

investigated biotic stress mechanisms but others might show opposite effects. In 

addition, the MYC and ERF branches engage, respectively, in positive and 

negative interactions with the drought-induced abscisic acid (ABA) signalling 

pathway (Dombrecht et al., 2007). Therefore, the hypothesis that the JA-ET-

responsive genes and therefore also Pieris and Botrytis pre-treatments exert 

contrasting influence on the ABA-mediated drought stress response was 

addressed. Transcriptiome analysis identifed 31 genes, which exhibited opposite 

directions of expression response when comparing the two combinatorial 

stresses, and indeed found differential regulation of several plant hormone-

related genes such as ERF4, ERF5, ERF6 and ERF104 (Chapter 6).  

GWA-mapping and RNA-seq 

Two genetic approaches were used to study the effects of sequential stress 

combinations in plants in comparison with single factor responses and to identify 

genes relevant especially to the combinatorial stress mechanisms. 

RNA sequencing (RNA-seq) using the Next Generation Sequencing approach 

is a straightforward technique affording identification of genes showing 

differential transcription levels under various conditions. Next to determining 

levels of transcription, RNA-seq will reveal alternative splicing (AS) variants 

influenced by diverse environments. This can be interesting, as for instance 

analysis of AS variants of the ZINC-INDUCED FACILITATOR1 (ZIFL1) gene 
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showed that two of its isoforms (ZIFL1.1 and ZIFL1.3 ) exhibited distinct 

localization and played different roles, either to modulate root polar auxin 

transport by localizing to the root cell tonoplasts (ZIFL1.1), or to affect drought 

tolerance when expressed in stomatal guard cells and localised to the plasma 

membrane (ZIFL1.3) (Remy et al., 2013). In the response to combinatorial 

stresses, AS variants of the auxin efflux carrier PIN7 were found. The AS variant 

PIN7-1 exhibited enhanced expression compared to PIN7-2 under the stress 

combination Pieris and subsequent drought in comparison to the single drought 

treatment, suggesting that this particular isoform is more relevant in the 

response to the combinatorial stress than the other isoform (Chapter 6).  

Genome-wide association (GWA) analysis identifies genes for which there is 

genetic variation that leads to differences in the genotype’s response to 

treatments while RNA–seq, using a single genotype, identifies genes that 

respond in expression to the treatments. While gene expression differences are 

very interesting to identify genes that play a role in environmental responses, it 

will not reveal anything on the genetic variation for environmental response, 

that can be illustrative for breeders to focus on when trying to improve crop 

robustness and tolerance to environmental fluctuations. However, some overlap 

was found between the genes identified in both approaches. For instance, in 

case of the effect of Pieris and subsequent drought stress response, one 

identified quantitative trait locus (QTL) overlapped with differential expression of 

two genes, PRX34 and AT3G49350 (Chapters 3 & 6), while for Botrytis infection, 

a similar overlap was seen for gene AT3G02910 (Chapters 3 & 6). 

The GWA-mapping approach affords discerning connections between DNA 

sequence polymorphisms and their phenotypic consequences. Genetic variation 

can either exert its impact through single-nucleotide polymorphisms (SNPs) 

associated with gene transcription differences or those affecting protein 

functions. For instance, Arabidopsis natural accessions carrying a single SNP at 

the HIGH-AFFINITY K+ TRANSPORTER 1;1 (AtHKT1;1) gene showed an aberrant 

expression of the gene leading to a difference in leaf Na+ accumulation (Baxter 

et al., 2010); and a single SNP substitution in CRY2 led to an amino acid 

substitution affecting CRY2 protein stability under short photoperiods, thus 

leading to early flowering in Arabidopsis thaliana (El-Assal et al., 2001).  
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GWA-mapping has been used in many studies and proved successful in 

detecting SNPs causal to their corresponding phenotypic traits (Atwell et al., 

2010; Bac-Molenaar et al., 2016; Meijon et al., 2014). The challenges of the 

technique were described by Weigel (2012) and include 1) false positives: the 

identified SNPs may not be the causal ones or the association may incorrectly 

identify SNPs as associated, 2) population structure: association may be found 

due to close relationships between genotypes, rather than shared SNPs based on 

short-range linkage disequilibrium, and 3) allelic heterogeneity: different SNPs 

at the same locus lead to similar phenotypes, but they will not be detected 

through GWA analysis (Barboza et al., 2013).  

Using a Bonferroni-corrected threshold (–log(p)=6.5) to reduce false 

positives is advised by Atwell et al (2010). However, the Bonferroni corrected 

threshold is extremely conservative and often not convenient for growth related 

traits such as FW, DW, WC, and PLA because these traits are genetically 

influenced by a multitude of small-effect QTLs. An arbitrary threshold of –

log(p)=4 as described by van Rooijen et al. (2015) was used to assign 

associated SNPs in Chapter 3 and Chapter 4, and a number of SNPs exhibited 

genetic variance in response to stresses were discovered, with associated genes 

for which mutants showed a relevant aberrant phenotype. Although the number 

of false positive associated SNPs will be larger than when the Bonferroni 

threshold is used, there will be sufficient SNPs found that are indeed associated 

with the phenotype. Especially for complex polygenic traits this seems to be a 

practically viable approach for GWAs analysis.  

In many GWAs studies, statistical approaches were applied to correct 

population structure ( Yu et al., 2006; Atwell et al., 2010; Brachi et al., 2010). 

However, correcting population structure can increase the frequency of false 

negatives and led to miss the causative genetic markers (Brachi et al., 2010). 

GWA analysis in Chapter 2, 3, and 4, used the 350 accessions, which eliminated 

population structure based on testing results of 149 SNPs for genetic diversity 

(Li et al., 2010; Platt et al., 2010). In combination with mutant test, I confirmed 

the biological function of some SNPs associated candidate genes under different 

conditions. 
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Several studies combined association mapping with linkage mapping, which 

helped substantially in identifying causal genetic variation eg. in case of 

flowering time (Brachi et al., 2010), resistance to Hyaloperonospora 

arabidopsidis ex parasitica (Hpa) (Nemri et al., 2010), endoreduplication 

(Sterken et al., 2012), or shoot regeneration (Motte et al., 2014). Thus, to 

confirm the loci associated with combinatorial stress response and to reveal false 

negatives, follow-up studies of QTL analysis using biparental populations might 

be useful. Although in my studies, the allelic effects of some genes on 

combinatorial stress responses could be highlighted, the physiological function of 

many allelic variants in the response to stress conditions remains to be 

discovered. Future experiments, such as gene expression studies aiming at 

determining the effects of SNP variation or different allelic groups on gene 

expression or complementation tests to examine the gain or loss of function 

effects of the SNPs or alternative types of alleles under diverse stress conditions, 

should be performed.  

 Using different trait values was also recommend for GWA analysis. For 

instance, residuals that represent the variations of the accessions (genotype) in 

response to stresses (environment) (Filiault and Maloof, 2012) are suitable for 

univariate GWA analysis (Chapter 3 & 4). Principal component (PC) values are 

suitable for multi-trait multi-environment analysis (Chapter 2).  

GWA analysis identifies small-effects QTLs 

Moderate to high heritability was found for the measured traits in the single 

and combinatorial stress conditions, indicating the variation among accessions in 

their responses to stresses due to their genetic variation (Chapter 3 & 4). 

Normally, moderate to high heritability offers good prospects to identify QTLs 

affecting the trait. In my study, each identified individual QTL explained a small 

part of the genetic variance (on average 4-6%). This is not a surprising because 

the traits we measured (FW, DW, WC and PLA) are very general growth traits, 

which are likely to be genetically affected by allelic variation at many loci. Few 

loci with large genetic variance were not able to be identified by GWAs analysis 

approach (Brachi et al; 2010). The large number of small-effect QTLs could 

make it very difficult to identify these QTLs (Kooke et al., 2016). Thus, the 
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causal variants could be due either to a small number of genes, with relatively 

large effects; or due to many genes, with relatively small effects. Analysis of a 

simple trait often results in less QTLs, but with larger effect sizes, than for a 

complex trait (Louthan and Kay, 2011). 

 Different models in GWA-mapping 

In the present study, the interactions of Arabidopsis accessions with an 

array of enviromental conditions were tested. Various phenotypic parameters 

were taken into account, and different models of GWA-mapping were applied to 

determine the effects of SNP variants on multiple stress responses. Models such 

as multi-trait QTL mixed models (MTMMs) (Chapter 2), Multi-environment (ME) 

analysis, , and univriate analysis (Chapter 3 & 4). Residuals resulting from the 

regression of the response to the combinaitonal stress on the response to single 

stress were used as trait values (Chapter 3 & 4). 

A recent study, appying QTL analysis to investigate yield-related traits in 

pepper, showed a partial overlap of the identified significant QTLs when 

comparing MTME, ME, multi-trait (MT), and univariate single environment (SE) 

mapping approaches (Alimi et al., 2013). In my study, the comparison of ME 

GWA-mapping with univariate analysis resulted in identification of eight shared 

SNPs with QTL by environment interaction (Q×E)  effects of subsequent drought 

for those Pieris pre-challenged plants and four common SNPs with Q×E effects in 

subsequent drought stress response for those infected with Botrytis (Chapter 3). 

This is not a surprise because the univriate analysis used residuals which also 

represent Q×E effects. The 12 SNPs that were identified by both approaches 

indicates these could be true causative QTLs. The partly overlap between the 

univariate and ME approahces was oversation found by El-Soda et al. (2015) as 

well, where a positive correlation between the –log10 values of the 214k SNPs 

resulted from two approaches were reported.  

Korte et al. (2012) suggest that ME mapping using MTMM is more powerful 

than the univariate approach as it takes the variation within and between trait(s) 

into consideration, while the latter affords identification of SNPs associated with 

main effects only, without accounting for the Q×E interactions. However, as my 
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study used residuals that represent genotype x environment (G×E) variation for 

the univariate analysis, it does take at least some of the Q×E into consideration. 

Several studies reported limited efficacy of the ME GWA-mapping in detection of 

Q×E effects for strong QTLs (Bac-Molenaar et al., 2015; Korte et al., 2012; 

Morrison and Linder, 2014). In these studies, more significant SNPs were 

identified using the univariate method than when the ME mapping was applied. 

The same was the case in my studies. This does not mean the ME method is the 

less efficient one, as many of the SNPs identified in the univariate analysis could 

be false positives (Chapter 3). Thorough follow-up research would be needed to 

evaluate these results properly, but this is very time-consuming and labor 

intensive.  

Different interactions between biotic and abiotic 

stress 

Abiotic stresses can significantly affect plant responses to biotic strains and 

vice versa (Atkinson and Urwin, 2012; Appel et al., 2014; Rejeb et al., 2014). 

The interaction between biotic and abiotic stress responses is often mediated by 

different plant hormones and the outcome can be synergistic, antagonistic, or 

neutral (Audenaert et al., 2002; Achuo et al., 2006; Suzuki et al., 2014; 

Ramegowda and Senthil-Kumar, 2015; Prasch and Sonnewald, 2015). In 

Chapter 3, 4, 6 and 7, different phenotypic and transcriptomic responses to the 

single and combinatorial stress were observed. For instance, we found that the 

biotic pre-treatment promotes the susceptibility of plants to drought stress. For 

instance, by reducing rosette dry weight (DW) during sequential drought, but 

increasing the water content (WC) (Chapter 7). Three types of interaction 

between biotic and abiotic stress were observed. For example, neutral effects 

were found of the interaction between Pieris and osmotic stress on bzip25 

mutants, antagonistic effects were found between Pieris and osmotic stress on 

the prx34 mutant and between Botrytis and osmotic stress in the rmg1 mutant 

(Chapter 3), while a synergistic effect was observed between drought and 

Botrytis in the pal4 mutant (Chapter 4).  
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Combinatorial stress responses cannot be predicted 

by comparing single stress responses  

Ramegowda and Senthil-Kumar (2015) suggest there has to be a unique 

response to combinatorial stresses as the responses of plants to blends of 

triggering factors cannot be predicted based on mechanisms responding to their 

individual components. For instance, 61% of the changes in gene expression in 

response to the combinatorial stress could not be predicted from the single 

stress responses (Rasmussen et al., 2013). Transcriptome analysis of 

simultaneous effects of drought, heat, and virus infections in Arabidopsis 

identified only 11 genes involved in all single, double, and triple stress 

treatments (Prasch and Sonnewald, 2013). This is not much, considering 

Arabidopsis has around 30,000 genes, with often at least half of them expressed 

at any time point in any organ.  

Genes involved in multiple stress responses may not be able to identified 

under single stress conditions. For instance, the expression of the resistance 

gene RPS6 was only regulated in case of simultaneous heat, drought, and virus 

treatment, but not under any of the double or individual stresses (Prasch and 

Sonnewald, 2013).  In my study, when comparing the Botrytis and subsequent 

drought with single drought and Botrytis treatments, 4% of DEGs identified as 

Botrytis and subsequent drought responsive genes were not induced by either 

single Botrytis or drought treatments; comparing DEGs from the stress 

combination of Pieris and subsequent drought with single drought and Pieris 

treatments, 3% of DEGs identified as Pieris and subsequent drought responsive 

genes were not induced by either Pieris or drought (Chapter 6).  

The aim to study combinatorial stress responses is to understand how plants 

react in a close to natural environment, as a combinatorial stress is more likely 

to occur in a natural environment than a single stress. Transcriptome analysis 

identified several combinatorial stress responsive genes that cannot be induced 

by neither by the biotic nor drought, showing that these combinatorial stress 

responsive genes could be the potential candidate genes for plant breeding use.  
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Experimental design 

The combinatorial treatment in the GWA-mapping experiments was slightly 

different from the one used for the RNA-seq analysis, with a 24 h recovery 

period included in between the first stress condition and the sequential drought 

in case of the GWA-mapping (Chapter 3, Supplementary Figure 1). As the 

interaction between Pieris and drought and between Botrytis and drought on 

plants could be observed for the expression of bZIP25 and PRX34 (for Pieris & 

drought) and for Di19 and WRR4 (for Botrytis & drought) under combinatorial 

treatment in comparison to single drought treatment (Chapter 3), I consider the 

24 h recovery period still acceptable for observing the interaction between the 

first challenge and the sequential drought stress response. 

The investigated plants differed in recovery speed from the Botrytis and 

Pieris treatments. For instance, the RNA-seq analysis reported a much lower 

number of DEGs in the Botrytis-challenged plants following subsequent drought 

treatment as compared to those subjected to initial Pieris herbivory and 

subsequent drought. This observation could stem from the fast recovery of 

plants from the exposure to Botrytis, with few residual infection-induced signals 

at the time of the application of drought. In order to get a stronger interaction 

between Botrytis and drought, it will be better to apply a quick induction of 

drought in plants. Such could be achieved by applying polyethylene glycol (PEG), 

which will emphasize the osmotic component of drought, or to ensure that 

moisture evaporates faster from soil eg. by increasing air circulation. 

The impact of the first stress treatment on plant response to sequential ones 

can be strong but depends on the nature of the initial challenge (Chapter 5). 

While prior herbivory strongly affected Botrytis resistance (Coolen, 2016), we 

identified six times more DEGs under the Pieris and subsequent drought than 

under Botrytis and subsequent drought, showing a stronger effect of prior Pieris 

exposure on gene expression than prior Botrytis infection (Chapter 6). However, 

this also could mean that Pieris herbivory is more severe than Botrytis infection. 

For instance, Windram et al (2012)) used the same concentration of Botrytis 

spores as in this study, and showed that the first symptom of Botrytis infection 

on leaf can be observed at 20 h after inoculation (HAI) and the expansion of 
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lesions at 36 HAI. In order to have a stronger effect of Botrytis infection, a 

higher spore concentration (e.g. using spore concentration at 1Χ106 per ml), 

increase the number of droplets per leaf, or to inoculate Botrytis spores on 

plants in the late afternoon (e.g. inoculate at 18 hour) (Ingle et al., 2015) could 

be used.   

Conclusions and recommendations 

The research described in this thesis provides insights into plant response 

mechanisms triggered by sequential combinations of biotic and drought stress 

factors, facilitating our understanding of the intricate network of defense 

processes in planta. A number of candidate genes to combinatorial stress 

responses were identified by GWA analysis and RNA-seq. The physiological 

function of some candidate genes in different stress conditions were 

characterized using T-DNA insertion mutants and gene expression study. 

However, the physiological function of many allelic variants in stress conditions 

remain to be discovered. The present study provides an important step towards 

in-depth understanding of plant responses to the investigated stress factors and 

highlights the importance of an array of genes, crucial to the underlying defense 

processes, as targets for breeding by allele mining aimed at ultimate 

improvement of crop tolerance to relevant stress factor combinations. 
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Summary in English 

Biotic and abiotic stresses are often occurring either simultaneous or 

consecutively in the natural environment and the impact of the two types of 

stresses on plants are often negative. Abiotic stresses can significantly affect 

plant responses to biotic stresses and vice versa. In the research described in 

this thesis, Arabidopsis thaliana was used as a model to study plant responses to 

different sequential combinations of biotic factors (infection with Botrytis cinerea 

or herbivory by Pieris rapae) and drought. Genome-wide association (GWA) 

mapping and RNA sequencing (RNA-seq) approaches were used to identify 

combinatorial stress responsive genes. The main objective of  the research 

described in this thesis is to identify genes that contribute to tolerance to the 

aforementioned sequential stress combinations.  

In Chapter 2, I describe multi-trait QTL mixed models (MTMMs) GWA-

mapping with traits from 11 single environmental factors and several of their 

consecutive combinations. Thirty significant SNPs that associated with genes 

responding to multiple stresses were identified and the average QTL-effect-sizes 

were found to be stronger for combinatorial stresses than single stresses. This is 

showing that plants appear to deploy broad-spectrum defensive mechanisms 

influencing multiple traits in response to combined stresses. Association 

analyses were performed to identify QTLs contributing to contrasting and similar 

responses to biotic versus abiotic stresses and  belowground versus 

aboveground stresses. Candidate genes such as RMG1 and WRKY38 were 

identified in response to multiple environments and found to exhibit contrasting 

responses to biotic and abiotic stress. The rmg1 mutant was more tolerant to 

Pieris herbivory and more susceptible to osmotic and salt stresses compared to 

wild-type plants.  

In Chapter 3, polyethylene glycol (PEG) was used to mimic drought. 

Univariate and ME GWA-mapping were performed with phenotypic traits such as 

project rosette leaf area (PLA), rosette dry weight (DW) or fresh weight (FW), 

and water content (WC) for Pieris + PEG and Botrytis + PEG responses. A 

number of SNPs were identified by both methods, of which eight SNPs were 
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identified for the consecutive Pieris and PEG responses. The SNPs were 

associated to genes with IDs At2g36550/At2g36560, and AT3G45910; four 

common SNPs were found for the response to Botrytis and PEG, the SNPs 

associated with genes with IDs At1g48670, At1g56280, At2g13690 and a larger 

region comprising At5g48120 (DI19) – At5g48180. Allelic effects of genes 

At2g36560 and DI19 in response to combinatorial stress were found. Several 

SNPs were found to be in linkage disequilibrium with known stress-responsive 

genes. New roles were found for some of these known stress-responsive genes, 

e.g. for PRX34 and bZIP25 in their responses to the combined Pieris and PEG 

treatment, and RMG1 to Botrytis and PEG. We observed antagonistic interaction 

between the two biotic stress and drought, and a negative effect of the two 

biotic pre-treatments on subsequent PEG response. 

Chapter 4 focused on the consecutive drought and Botrytis infection 

responses. Univariate GWA-mapping was performed on the residuals of DW and 

identified the effect of a number of significant SNPs that were associated with 

the DW plasticity under stresses. The biological functions of six candidate genes 

were validated under single drought or Botrytis stress and the combinatorial 

stress using T-DNA insertion mutants and the transcriptome data of the most 

extreme eight accessions. An allelic effect was observed on MYB46 gene 

expression under combinatorial stress compared to the single Botrytis treatment. 

The role of MYB46, PAL4, and HSFA1b in response to the interaction of drought 

and Botrytis infection was highlighted. Antagonistic interaction between drought 

and Botrytis infection were observed, as well as a negative effect of drought pre-

treatment on subsequent response to Botrytis infection.  

Chapter 5 reports on whole-transcriptome profile analysis of Arabidopsis Col-

0 exposed to three single stress triggers (Pieris, Botrytis, drought) and six 

consecutive combinations. A set of 394 genes were differentially expressed 

during all three stress conditions, though often in opposite directions. A 

significant effect of the first-stress-signatures could be identified in the 

sequential stress profiles, and the effect was often related to responses to 

phytohormones, strengthening the notion that hormones are general modulators 

of interactions between different types of stress.  
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Chapter 6 focuses on the analysis of the transcriptome data on consecutive 

biotic (Pieris and Botrytis) and drought stress. Herbivory by Pieris has a much 

higher impact on the transcriptome during sequential drought and rehydration, 

than the infection with Botrytis. A set of 42 common genes were found to be 

responsive to both Pieris + drought and Botrytis + drought stresses and 

opposite effects of the two biotic pre-treatments were observed on ethylene-

related genes ERF5, ERF6, ERF104 and drought responsive gene P5CS1. Several 

genes were only differentially expressed under combinatorial stress, showing the 

unique responses to the consecutive biotic and drought stress. Genes with 

alternative splicing (AS) variants were identified in different stress conditions, 

but none of them were found among the differentially expressed genes, showing 

a separate regulation of gene expression and AS in response to stresses. 

Phenotypic differences found for the mdar3 and pin7 mutants when compared to 

wild type suggest that the MDAR3 and PIN7 genes play an important role in the 

response to the combinatorial stress.   

Chapter 7 describes the investigations of the responses of Arabidopsis 

accessions to the consecutive exposure to Pieris and drought stress. WC is a 

suitable parameter for evaluation of these interactions. To observe the effect of 

Pieris pre-treatment on drought responsive genes in response to drought stress, 

the expression levels of nine drought-responsive genes were measured under 

different treatments but this showed no correlation with the observed 

phenotypic variation. In the end, a mode of gene regulatory network is proposed 

that is sufficient to explain the effect of Pieris pre-treatment on the nine drought 

responsive genes in response to drought stress.  

The study presented here provides an important step towards an in-depth 

understanding of plant responses to the investigated stress factors and 

highlights the importance of an array of genes, crucial to the underlying defense 

processes, as targets for breeding by allele mining, ultimately aimed at 

improvement of crop tolerance to frequent combinations of stress factors. 
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中文摘要 

在自然环境下，生物胁迫和非生物胁迫经常同时发生或先后发生，而且它们常常会对植

物生长带来不利影响。非生物胁迫可以显著影响植物对生物胁迫的响应，其显著程度受到由

于胁迫时间、种类，和严重程度的影响；反之亦然。本论文旨在研究生物胁迫（菜青虫，或

灰霉病）与非生物胁迫（干旱）先后处理时对拟南芥生长的影响，所用的主要技术方法为用

全基因组关联分析（GWAS）来寻找相关抗性基因位点，以及用 RNA 测序（RNA 

sequencing）方法来寻找相关抗性基因。研究主要目标是是挖掘双重胁迫下的植物抗性基因。 

第二章中，我们用了用多性状数量性状位点（QTL）分析模型（MTMMs）分析了 11 个

单胁迫环境和六个双胁迫环境，找出了响应最显著的 30 个单核苷酸多态性（SNPs）。我们

发现在双重胁迫下的 QTL 效应值大于单一胁迫情况下的值。结果表明，在双重胁迫的情况下，

植物启动了广谱抵御机制，导致很多表型性状发生了改变。关联分析鉴定出一些 QTL 位点，

他们在生物/非生物胁迫，或地上/地下胁迫条件下时有相似的或者截然相反的反应。对于生物

胁迫和非生物胁迫，双重胁迫抗性基因例如 RMG1 和 WRKY38 则展现出了既然不同的相应。 

在第三章中，聚乙二醇 （PEG）-8000 则被用作模拟干旱胁迫环境。表型性状例如莲座

叶面积（PLA） ，莲座干重（DW），鲜重（FW）和水含量（WC）被用于与单变量和多环

境 GWAs 两种方法分析用。八个相应菜青虫和 PEG 的双重胁迫基因和四个相应灰霉病和

PEG 的双重胁迫基因所描述的两种 GWAs 分析方法所鉴定出来。我们观察到了基因

At2g36560 and DI19 的等位基因效应对于双重胁迫的影响。一些备选基因的生理作用已经

得到 T-DNA 突变体证明。prx34 突变体证明了该基因对菜青虫啃食或 PEG 处理下的植物响

应起正向作用，但是对双重胁迫起负面效应；di19 突变体证明了改基因对灰霉病菌和 PEG 胁

迫单独处理条件下的植物响应有正面作用，但是对双重胁迫没有效应; arf4 突变体证明了该

基因对于灰霉菌和 PEG 单独处理条件下的植物没有效应，但是对双重胁迫有正面效应。 
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第四章侧重于连续的干旱和灰霉菌胁迫反应。我们使用了莲座干重（DW）残差和单变量

GWAs 分析方法，找到了一系列在干旱和灰霉菌先后处理情况下情况下影响表型的重要

SNPs. 我们观察到了 MYB46 基因对于干旱和灰霉菌的的等位基因效应。通过测试备选基因

的 T-DNA 突变体，MYB46，PAL4 和 HSFA1b 对应连续的干旱和灰霉病感染有相应。我们

发现干旱和灰霉菌的交感作用是相反的，并且干旱预处理对随后的灰霉菌感染有负面影响。 

第五章报告了拟南芥对于连续的生物胁迫和非生物胁迫反应的的 RNA 测序的结果。 拟

南芥分别被菜青虫，灰霉菌，和干旱三种单个胁迫和六个双胁迫所处理过。一共有 394 个基

因对这三种单个胁迫都有反应。预处理胁迫对于随后的胁迫有着明显的影响，而且这种影响

是和植物荷尔蒙有关联的。 

第六章侧重于分析针对于菜青虫/灰霉菌和随后的干旱胁迫的 RNA 测序结果。 菜青虫对

于随后干旱胁迫的影响力大于灰霉菌对于随之的干旱胁迫。一共有 42 个基因响应于菜青虫和

干旱双胁迫以及灰霉菌和干旱双胁迫。乙烯相关的基因 ERF5, ERF6, ERF104 和干旱胁迫响

应基因 P5CS1 展现出了相反的菜青虫和灰霉菌对于随之的干旱胁迫效应。随后我们鉴定出了

在胁迫环境下展现出了选择性剪切（AS）的基因，并且发现这些基因并在胁迫环境下并没有

产生基因表达量的变化。着说明了选择性剪切和基因表达量的变化是对于胁迫环境的两种独

立的相应。突变体例如 mdar3 和 pin7 证明了这两个基因对于菜青虫和干旱双胁迫环境响应

起到了重要作用。 

第七章我们调查了拟南芥对于连续的菜青虫和干旱胁迫的反应。表型数据水含量（WC）

是一个非常适合用来评价这两种胁迫的相互作用的参数。我们分别测试了九个干旱抗性基因

在菜青虫和干旱的单独胁迫情况下和双胁迫情况下的的基因表达量，并没有发现在胁迫环境

下的基因表达量的差异和拟南芥的表型有着显著联系。最后，基于这九个干旱基因在胁迫环

境下的不同表达，我们提出了一个应答菜青虫和干旱双胁迫的基因调控网络的模型。 
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本文研究提供了对于理解植物对所描述的胁迫环境的响应迈出了重要一步，突出了双重

胁迫的后选抗性基因并描述了潜在的生物防御过程，最终目的在于改善作物对于生物和非生

物胁迫双重胁迫的耐受性。 
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Learning from Nature to protect crops 

Plants are under the constant threat of biotic and abiotic stresses. Yet, 

devastating pests and diseases only rarely occur in nature and plants have 

managed to sustain for millions of years in this hostile environment. This is due 

to and has resulted in a tremendous degree of natural variation in mechanisms 

that plants exploit to defend themselves against pathogens and insects and to 

deal with abiotic stresses. In agriculture, however, we have exploited only very 

little of this diversity of defenses and as a consequence environment-malignant 

pesticides remain a dominant method to control pests and diseases. The current 

threat of climatic changes and limiting resources for agriculture (water, fertilizer) 

require improved resistance to abiotic stresses. 

Ambition and goal 

With this multidisciplinary and innovative STW programme we want to mine 

the natural reservoir of plant defense mechanisms. This will be done by using 

state-of-the-art high-throughput technologies to explore the natural potential 

and exploit mechanisms, genes and markers to develop novel resistance 

mechanisms against biotic and abiotic stresses for plant breeding.  

In nature plants have co-evolved with a large variety of attackers. Therefore, 

wild species, such as Arabidopsis thaliana, harbour a fantastic reservoir of 

natural adaptive mechanisms to respond to (a)biotic stresses that to date have 

not been systematically explored. In the past decade, Arabidopsis has been 

adopted world-wide as the ideal model for plant science and an impressive 

molecular genetic toolbox has since been developed (e.g. the full genome 

sequence, the availability of well-characterized Arabidopsis populations, full-

genome microarrays and metabolomics protocols). Hence, exploring natural 

variation in the defense responses of Arabidopsis to a large variety of (a)biotic 

stresses will yield important new insights into how plants selectively adapt to 

stresses, and provide novel concepts for sustainable agriculture and resistance 

breeding.  
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Objectives 

1. To explore natural varation in resistance to abiotic and biotic stresses in 

Arabidopsis populations through an integrated multidisciplinary approach. 

2. To identify mechanisms underlying natural resistance to abiotic and biotic 

stresses in Arabidopsis 

3. To develop methods to analyze complex datasets on different types of 

resistance 

4. To exploit information gained on natural variation in Arabidopsis to identify 

molecular markers that can assist in breeding for resistance to abiotic and 

biotic stresses in crop plants. 

Focus and results at the end of the programme 

To this end Arabidopsis ecotype and RIL populations can be exploited to 

analyze the degree of resistance to a diversity of microbial pathogens, 

herbivorous insects and abiotic stresses and their interaction. Using large-scale 

bioinformatics this information can be integrated with transcriptomics and 

metabolomics, to select genotypes and lines that can be used for in-depth 

analysis of the resistance mechanisms. The information gained from this 

comprehensive approach will lead to the identification of genes and molecular 

markers for different resistance mechanisms. These mechanisms will be 

characterized at the molecular, biochemical and physiological level and can 

subsequently be used to screen large numbers of lines of various crop species 

for orthologous genes involved in similar resistance mechanisms. 

Innovation 

Never before has the natural variation in plant defenses against different 

biotic and abiotic stresses and their interaction been investigated in such a 

comprehensive, multidisciplinary programme. To date, solutions to individual 

(a)biotic stresses have been sought. However, this has not resulted in a systems 

approach that results in durable solutions for a range of stresses. 
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