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Reality and fiction of models and data in soil hydrology 

Y.A. Pachepsky1, K.R.J. Smettem2, J. Vanderborght3, M. Herbst3, H. 
Vereecken3, and J.H.M. Wösten4

Abstract

The objective of this paper is to contribute to the ongoing discussion on strengths, 
weaknesses, opportunities and trends of existing modeling approaches in soil 
hydrology. In modern hydrology, complexity of models and detail of data grow at 
increasing pace. The prevailing attitude has been that if a model is comprehensive 
enough, it should be possible to represent the site uniqueness with a specific set of 
model parameters. Recent advances in instrumentation have revealed complexity of 
flow pathways that may be easily perceived but difficult to represent in mathematical 
terms without making strong simplifying assumptions. This implies that many 
different model structures could be consistent with available observations. The same 
appears to be true for parameter sets obtained by calibration for a specific model. The 
multiplicity of models and the parameter deficit are the emerging issues that present 
both obstacles and opportunities for hydrologic modeling. We present a 
comprehensive case study of using integrated data to build a model of groundwater 
pollution for a watershed, and use this case study to illustrate current opportunities 
and problems related to quantifying soil variability with remote sensing, geophysical 
methods and topographic information. The value of pedotransfer functions and 
publicly available databases is discussed. Mismatch between measurement and 
modeling scales creates the need to incorporate scale effects in the hydrologic models. 
Techniques for comprehensive comparative evaluation of models need to be 
developed and tested. In the absence of unique model selection criteria, it can 
therefore be best to consider a variety of alternative models based on reasonable 
alternative hypotheses. 

Introduction

In the historical course of studies on the soil–vegetation–atmosphere system, 
many models and measurement methods have been developed. Having said that 
truism, one actually opens a Pandora’s box of questions. Is there a better or the best 
model for a specific site or watershed? Should measurement methods correspond to 
the model selected? How complex does a model have to be? Being far from having 
answers to these questions, we still see a value in reflecting on them. 
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Over the past 40 years there has been (and continues to be) an exponential 
increase in computing power and the consequent ability to provide numerical 
solutions to highly non-linear equations for a wide variety of changing initial and 
boundary conditions. Prior to this development, hydrologists were limited to 
analytical solutions for very special cases, i.e. Burgers solution and the Dirac delta 
solution for linearizing the soil hydraulic properties in order to provide analytic 
solutions to Richards’ equation (Smith, Smettem and Broadbridge 2002). Although 
these solutions still provide insights into checks for numerical models, it appears that 
numerical modeling has become the ‘tool of choice’ in hydrological studies. Another 
important development in setting the direction of hydrological modeling has been the 
increasing availability and resolution of digital elevation models. This development 
coincided with the emerging concepts of ‘variable source area’ hydrology that broke 
away from the earlier Hortonian notions of runoff dominated entirely by the 
infiltration-excess process. The advent of geographical information systems and the 
consequent ability to store, retrieve and rapidly manipulate spatial data gave further 
impetus to the development and application of spatially distributed deterministic 
hydrologic models. 

Overall, complexity of models and data detail grow at increasing pace. Many 
researchers are now beginning to question openly whether the reductionist or ‘bottom-
up’ approach to model development that pursues ever-greater detail in the 
understanding of processes and their interactions is the only approach. Instead, can 
general limits and controls be elucidated that provide an overarching framework for 
understanding and interpreting system behavior? Can such a framework lead to model 
structures that are consistent with the available data and inform us about the key 
processes that need to be incorporated into our models? 

We commence this paper be exploring some of these emerging issues in more 
detail.

Overview 

A comprehensive contemplation on the non-uniqueness of modeling in 
environmental sciences was recently presented by Beven (2000; 2002a). Referring to 
hydrology, Beven (2000) poses an interesting question: why are predictions so 
uncertain if all hydrological principles are known? The primary reason is that in 
practice one deals with specific instances of real sites that are unique in their 
characteristics, including atmospheric and human impact (Neuman and Wierenga 
2003). In the past, the attitude was that if a model is comprehensive enough, it would 
be possible to represent the site-uniqueness with a specific set of model parameters. 

In addition to burgeoning growth in computer models, there has been a major 
increase in detailed studies which, generally, have revealed a complexity in flow 
pathways due to heterogeneity at different scales and interactions between geometry 
of the flow domain and prevailing hydraulic gradients including both ‘preferential 
flow’ and ‘stagnant zones’. Indeed, some hydrologists now accept that preferential 
flow is ubiquitous – a situation that soil physicists would have found hard to accept 
even 40 years ago. Similarly, much of our hydrological modeling effort has been built 
around the ‘variable source area’ (VSA) concepts of runoff (Dunne 1978). McDonnell 
(2003) points out that new field evidence of water source, flowpath and age provides a 
different picture of runoff generation. There is now recognition that pre-event water 
can dominate storm runoff (Kirchner 2003), whereby catchments store water for 
considerable periods of time and then release it promptly during storm events. This 
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paradox of prompt release of old water within a flashy hydrograph is one example of a 
process not captured by existing VSA-structured models (McDonnell 2003). 

Complexity of flow pathways may be easily perceived but difficult to represent in 
mathematical terms without making strong simplifying assumptions. This implies that 
many different model structures could be consistent with available observations. 
Likewise, it may well be impossible to identify a single correct set of model 
parameters, especially if one seeks a rational physical basis to the parameters. For 
example, at the Representative Elementary Volume scale, where macroscopic average 
parameters are typically used in flow equations (typically, over scales of 1 to 10 m2

for macroporous soils), preferential flow is a non-equilibrium process, so the (often 
unstated) assumption of equilibrium between water content and soil water potential at 
any given position in the soil does not apply. Ross and Smettem (2000) addressed this 
problem by introducing a time constant to describe the non-equilibrium between the 
soil water matric head, and the soil water content during preferential wetting. Other 
modelers have empirically separated the soil into two (or more) ‘domains’ that may be 
independent or interconnected (e.g. Jarvis et al. 1991; Šim nek et al. 2003) and need 
to be extensively parameterized. 

Even if a reasonable description of the representative elementary volume (REV) 
scale macrostructure is possible, upscaling remains a major problem. Difficulties 
include meaningful representation of soil macrostructure in soil mapping and the 
inherent temporal variability of structure in agricultural soils. Identification of 
threshold conditions for preferential flow is also problematic. For example, runoff can 
occur in structured soils when the rainfall intensity is less than the saturated hydraulic 
conductivity. The reason for this is that runoff can occur between structural features 
and this may also be compounded by macropore sealing during rainfall (Somaratne 
and Smettem 1993). 

In terms of model choice, Beven (2000) argues that no matter how intensively a 
site is studied, there is a wide range of models and parameter sets for each model that 
will yield acceptable simulations. Such multiplicity of models is simply a summed 
expression of the limitations to current models in representation of flow systems, 
limitations of measurement techniques with respect to scales of public interest, and 
limitations in defining initial and boundary conditions. One cannot also exclude the 
possibility that there still exists a lack of fundamental understanding in fluid and 
chemical transport processes in the environment, and this precludes building of 
widely applicable models. 

If there is a wide range of models and parameter sets for each model that will 
yield acceptable simulations, then what can be an approach to model selection? One 
approach is, in essence, based on scale(s) of interest. Recently, in recognition of (or in 
response to) the limitations of detailed models, there has been considerable interest in 
what has been referred to as the ‘downward approach’ in hydrological modeling. The 
motivation comes from work such as Klemes (1983), who suggests that calibration-
based models suffer from structural arbitrariness and over-parameterization. This 
theme is echoed by Perrin, Michel and Andreassian (2001), who show that complex 
models outperform simple ones in calibration mode but fail to do so in verification 
mode.

The philosophy of the downward approach is that laws at higher levels of scale 
may express integration of laws at lower scales (Klemes 1983). This has motivated a 
search for parsimony in model parameterization and structure and a systematic 
method of model selection that makes trade-offs between model complexity, accuracy 
and predictive uncertainty (Atkinson, Woods and Sivapalan 2002). Characteristically, 
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the approach starts by postulating very simple models with physically meaningful 
parameters in order to capture the signature of, say, the annual runoff response of a 
catchment (Milly 1994). Progressive complexity is added as space and/or temporal 
scales diminish (Jothityangkoon, Sivapalan and Farmer 2001). In this way, spatial and 
temporal scales are associated with the complexity scale. 

In the related field of plant physiology, a similar dilemma concerning the 
complexity of models has arisen. Calder (1998) has proposed a limits-on-evaporation 
concept to guide the development of models of varying complexity for estimating 
water use of forests in different regions and for predicting differences in water use 
between forests and shorter crops. Calder (1998) makes the important point that in dry 
climates, where evaporative systems are limited by supply and where demand greatly 
exceeds supply, detailed modeling of the meteorological demand in the evaporative 
equations becomes largely irrelevant. This implies that there will be a shift in model 
sensitivity between temperate wet and dry climates, with advection dominating in the 
wet environment and soil-water and physiological processes dominating in the dry 
climate. 

Other approaches to the model selection are based on the availability of input 
data, on previous experience or on physically meaningful model performance with 
reasonable scenarios using, i.e., the Generalized Likelihood Uncertainty Estimation 
(GLUE) methodology (Beven 2002b). However, an impeccable way to select ‘the 
model’ is unknown. A variety of formulations exists for any component of soil–
vegetation–atmosphere models, and in any specific project a choice is made on the 
model type and the source and availability of the parameter values. Either the choice 
has to be justified or outcomes of several models have to be used simultaneously. 

To examine general issues of model parameterization and testing, we commence 
with a short introduction to modeling soil–vegetation–atmosphere processes using 
Richards’ equation and present an example from a study in which subsurface water 
fluxes and pesticide transport are modeled using integrated datasets in a 20 km² area 
in order to predict the groundwater quality. 

Spatial modeling using integrated datasets: a case study 

Model development 
To describe water movement in the subsurface, Richards’ equation may be 

written

Sz
t

K        (1) 

where  (L³ L-³) is the volumetric water content, K (L T-1) the hydraulic-conductivity 
tensor,  (L) the pressure head, z (L) the elevation head, and S (T-1) a sink term that 
accounts for water uptake, among other things water uptake by plant roots. The 
functions ) and K( ) are highly non-linear, and an approximate solution of Eq. (1) 
can only be obtained using numerical methods. The TRACE code (Vereecken et al. 
1994), which was developed at the Forschungszentrum Jülich, has been used in this 
work to solve the 3-D Richards’ equation numerically. 

The soil hydraulic properties are related to other soil properties like soil texture, 
bulk soil density and organic carbon content. By pedotransfer functions, parameters of 
the ) and K( ) functions can be estimated from other soil properties (e.g. 
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Vereecken et al. 1989; 1990). For larger-scale modeling, information is extracted 
from soil maps to obtain the spatial distribution of hydraulic soil properties. 

The root water-uptake sink term, S(z,t), is a function of depth which is defined by 
the root density and the potential transpiration. When plants are not subjected to 
stress, the root uptake is at its potential maximum: S(z,t) = Sp(z,t), where Sp(z,t) is the 
potential root water uptake. The integral of S(z,t) with depth corresponds with the 
potential transpiration Tp (L T-1) by the plant cover : 

Lr

p dztzStT
0

),()(         (2) 

where Lr (L) is the rooting depth. The potential transpiration is a boundary condition 
that is estimated from meteorological and plant-cover parameters (see below). When 
the soil is too wet or too dry, plants are under stress and roots cannot take up 
sufficient water. The reduction of root water uptake due to stress is modeled using a 
stress factor  (-) that reduces the sink term with respect to the potential sink term: 

S(z,t) = Sp(z,t)        (3)

The stress factor  depends on the matric head and the plant (Feddes, Kowalik and 
Zaradny 1978). 

In order to solve flow equation, the boundary conditions must be defined. We 
focus on the boundary conditions at the soil surface, which are relevant for remote 
sensing: the water that infiltrates in the soil I (L T-1), that evaporates from the soil 
surface, Ea (L T-1), and that is taken up by the plant roots and transpired by the crop, 
Ta (L T-1).

Based on an energy balance at the soil surface, the reference evapotranspiration, 
ET0 (L), can be calculated from meteorological parameters using the 
Penman/Monteith equation (Monteith 1975; Allen et al. 1998). ET0 corresponds to 
the evapotranspiration of a well-watered grass surface. The potential 
evapotranspiration, ETp (L) of a cropped or bare soil surface is calculated from ET0 
using the dimensionless Kc factor (Doorenbos and Pruitt 1977), which depends on the 
plant, plant-cover development stage and climatic region: 

ETp(t) = Kc(t) ET0(t)        (4) 

The potential evapotranspiration is split up into the potential evaporation from the soil 
surface, Ep, and transpiration from the crop using an empirical model that is controlled 
by the leaf-area index LAI (-): 

Ep(t)= ETp(t)e(-0.6 LAI) .       (5) 

Then the potential transpiration can be obtained from the difference between potential 
evapotranspiration and potential evaporation. 

The evaporation and transpiration rates obtained until now are potential 
evaporation rates when both the soil and the plant can supply the atmospheric 
demand. Under water-stress conditions, plant roots cannot take up enough water and 
the transpiration is reduced according to Eq. (3). When plants suffer from water stress, 
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hydraulic soil properties influence plant transpiration rates through the stress factor 
. Changes of the stress factor with water loss from the soil profile are controlled 

by soil hydraulic properties. 
Due to evaporation from the soil surface, the upper soil layer dries out and the 

hydraulic conductivity of the surface layer drops. To guarantee upward water flow to 
an evaporating soil surface, the matric potential at the soil surface must drop. It is 
assumed that the potential at the soil surface cannot drop below a critical threshold 
value. When this threshold is reached, the potential at the surface remains constant so 
that the evaporation rate decreases with time. The reduction of the potential 
evaporation rate when the soil dries out is determined by the hydraulic soil properties 
and can be predicted using the Richards’ equation when hydraulic soil properties are 
known (Figure 1). 
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Figure 1. Evaporation from a bare loamy soil surface predicted by the Richards 
equation for a potential evaporation of 0.3 cm d-1

Since surface boundary conditions and internal sinks in a water flow model are to 
a major extent controlled by plants, a water flow model should be coupled to a crop 
growth model. Therefore, for cropping systems, the simple crop growth model 
SUCROS (Spitters, Van Keulen and Van Kraalingen 1989), which calculates dry-
matter accumulation of a crop as a function of irradiation, temperature and crop 
characteristics, was coupled to the soil/groundwater flow model TRACE. In Figure 2, 
the effect of the crop type on the matric head in the soil profile as simulated by the 
coupled TRACE/SUCROS model is shown (see Color pages elsewhere in this book). 

Model application 
The TRACE/SUCROS model is applied in the PEGASE project to predict 

groundwater quality in a 20-km² area around the Forschungszentrum Jülich (Figure 3, 
see Color pages elsewhere in this book). In a first step, a 3-D hydrogeological model 
is built using the soil map and geological data (Figure 4, see Color pages elsewhere in 
this book). From the soil map, four characteristic soil profiles with typical soil layers 
were identified. Using a pedotransfer function, the hydraulic functions were 
determined for the different soil layers. Geological information was used to determine 
the base of the unconfined aquifer. Since the modeled area was not hydrologically 
confined at the lateral boundaries, groundwater-table depths at the boundaries were 
interpolated from piezometers and were used as Dirichlet boundary conditions. Land 
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use was derived from statistical information. Because the parcel size was smaller than 
the size of the used computation grid (200 x 200 m) and since no data were available 
on the land use in the different parcels for the considered simulation period, the land 
use of the non-forested and unsealed surfaces was attributed randomly to the grid cells 
and conforms to the land-use statistics (Figure 5, see Color pages elsewhere in this 
book). The soil surface boundary conditions: precipitation and potential 
evapotranspiration are derived from meteorological data that were recorded in the 
meteorological station of the Forschungszentrum Jülich. ET0 was calculated using the 
Penman/Monteith approach according to the revised FAO methodology (Allen et al. 
1998).

The matric potential at the soil surface, the actual evaporation and transpiration 
predicted by the TRACE model are shown in Figure 6 for two exemplary days (see 
Color pages elsewhere in this book). Since the model considers three-dimensional 
flow, spatially variable soil properties and land use, the spatial structure and 
heterogeneity of the flow processes at the soil–atmosphere surface are represented by 
the model. Furthermore, the model also represents the dynamics of water flow in the 
soil in response to the dynamics of the boundary conditions. However, the predicted 
fluxes and state variables are not validated against measurements. The example of this 
case study illustrates the typical choices that have to be made in any concerted effort 
to integrate existing data and existing models to address practical questions of public 
interest. We now turn our attention to the question of the uncertainty behind some of 
those choices and the potential to mitigate this uncertainty. 

Quantifying spatial variability of soil parameters using geophysical, 
remote-sensing and topographic data 

The example case study raises the question of whether the input datasets 
adequately capture the inherent spatial variability in both the horizontal and vertical 
co-ordinates. This question arises in almost every application where map information 
is utilized to define the spatial pattern of input parameters but formal recognition of 
this source of error is comparatively recent (Heuvelink and Goodchild 1998). 

Over the last few decades, the heterogeneity of soil properties has been subject of 
extensive research. The spatial variability of hydraulic properties has received 
especially large interest since the pioneering work of Nielsen, Biggar and Erh (1973). 
Extensive field experiments have been conducted both in the vadose zone and aquifer 
systems (Butters and Jury 1989; Ellsworth et al. 1991; Gelhar, Welty and Rehfeldt 
1992). The theoretical framework developed to understand the relationship between 
soil properties and flow and transport is based on a stochastic description assuming 
that soil properties are space random variables. In order to obtain analytical 
expressions and to interpret field data, simplifying assumptions such as second-order 
stationarity have been introduced (Russo, Dagan and Bresler 1993; Dagan 1989; 
Russo and Dagan 1991; Neuman 1997). For simplified linearized cases, approximate 
closed-form expressions for effective parameters have been derived (e.g. 
renormalization methods for hydraulic conductivity K, effective dispersivity). In soil 
hydrology, due to the strong non-linearity and the limited spatial extent of the system, 
these approximate expressions may be unreliable and only numerical analyses can be 
made at present. 

Traditional soil and landscape mapping defines ‘units’ and performs a taxonomic 
partition with distinct boundaries. The resulting classification usually only provides a 
rudimentary guide to the soil hydraulic properties and gives little insight into the 
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spatial structure within the units. To overcome this problem, geostatistical methods 
such as variogram analysis and kriging techniques are now routinely used to identify 
the spatial structure and to derive continuous fields from point measurements. 
However, field measurement costs can be high because large numbers of samples are 
required to characterize adequately the semi-variogram which is the main source of 
geostatistical inference. 

Despite our improved capability to provide continuous surface mapping of 
relevant soil attributes, the major limitation is still our inability to verify 
experimentally the validity of our estimates of effective parameters at scales larger 
than a soil column. Non-invasive methods including tomographic geophysical 
techniques and remote sensing offer an enormous potential to tackle some of the 
above issues (Vereecken, Yaramanci and Kemna 2002). 

Recent advances in mapping the distribution of relevant soil properties include 
the direct generation of continuous surfaces from a variety of remote-sensing and 
geophysical techniques. 

Kemna et al. (2002) used electrical-resistivity tomography (ERT) to monitor 
bromide concentration changes in an ERT plane during a tracer test in an unconfined 
aquifer. The concentration images were interpreted using equivalent transport models. 
They used a 3-D equivalent convection–dispersion model to quantify the longitudinal 
and lateral spreading of the solute plume. The spreading process and the observed 
heterogeneity were characterized using a 1-dimensional stochastic stream-tube model. 
Zhou, Shimada and Sato (2001) proposed a 3-D ERT method for monitoring spatial 
and temporal variations of soil water content in the field. Moisture contents were 
derived from 3-D distributions of soil resistivity and Archie’s law which was 
calibrated on field data. They compared the obtained water contents with measured 
values obtained from heat-probe-type soil moisture sensors. Although considerable 
differences were found between calculated and measured moisture contents, a linear 
relation between both existed, which enabled the investigation of temporal variations. 
Ground-penetrating radar (GPR) is being used to monitor changes in soil moisture 
content. Huisman (2002) used GPR to map the soil water content at the field scale in 
which a spatial structure in soil water content was created by irrigation. He found that 
GPR is well suited to capture the spatial water-content variation as expressed by the 
variogram. Lambot (2003) used a contact-free GPR system to predict the moisture 
retention characteristic of a disturbed sandy soil in a laboratory experiment. This 
method shows considerable potential for mapping soil water content under real field 
conditions.

Remote-sensing techniques show large potential in evaluating spatial variability 
of SVAT components. Taylor et al. (2002) used airborne gamma-radiometric sensing 
to estimate the clay content of surface soils across a catchment. Active microwave-
radar methods are presently used to map continuously spatial and temporal changes of 
moisture content (Burke et al. 1997; Mancini, Hoeben and Troch 1999; Ulaby, Dubois 
and Van Zyl 1996). The passive microwave remote sensing can also be used to 
determine the water content of the soil surface (reviews by Engman and Chauhan 
1995; Njoku and Entekhabi 1996; Schmugge 1998; Wigneron et al. 2003). Overviews 
of the use of remotely sensed data for hydrological modeling are given by, e.g., 
Droogers and Kite (2002) and Schmugge et al. (2002). Reflectance spectra of sunlight 
can be used to characterize land cover/land use (Hall, Townshend and Engman 1995), 
which is an important input parameter for hydrological models. Furthermore, the LAI 
can be derived from reflectance spectra using the NDVI index. The LAI can be 
predicted by a crop growth model and plays a crucial role by splitting up the 
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evapotranspiration in crop transpiration and soil evaporation. Therefore, the remotely 
sensed LAI can be used to validate or even calibrate crop growth models or to define 
the upper boundary fluxes better, which improves the model performance of soil–
plant–atmosphere models (e.g. Andersen et al. 2002). 

The thermal microwave emission or brightness temperature, TB, in the 1-5 GHz 
frequency range is considered to be the most useful for determining surface soil 
moisture. Besides soil moisture, the emitted radiation depends as well on the surface 
roughness, the depth profiles of the soil water content and soil temperature (e.g. 
Schneeberger, Stamm and Flühler in press), and the vegetation (e.g. Ferrazzoli, 
Guerriero and Wigneron 2002). Therefore, microwave remote-sensing data must be 
‘assimilated’ in radiation transfer models that model the effect of soil roughness, 
water-content profiles and vegetation on the emitted radiation, and soil–vegetation–
atmosphere models (SVAT), which model water and energy fluxes (e.g. Wigneron et 
al. 1999; 2002). If multi-angular and dual-polarization passive microwave 
measurements are acquired, effects of soil and vegetation on the microwave signature 
can be discriminated and the outcomes of this assimilation process are root-zone 
water contents and parameters that describe the crop development (Wigneron et al. 
2002). Besides microwave emission data, IR surface brightness temperatures and 
short-wave reflection spectra can also be assimilated in SVATs to calculate sensible 
and latent heat fluxes (e.g. Bastiaanssen et al. 1998; 2002; Olioso et al. 1999a; 1999b; 
Mauser and Schädlich 1998; Boulet et al. 2000; Van der Keur et al. 2001). 
Assimilation schemes were in most cases developed and tested based on 
measurements in agricultural field plots, cropped or bare. How the microwave 
emission from a forest can be related to the forest soil water content is the subject of 
current research projects. The SVATs that are commonly used in assimilation 
schemes are based on a capacity model to describe water and energy fluxes in the soil. 
These models currently have limited capability to describe the spatial dependence of 
water flow and root water uptake in soils. 

Based on monitored soil moisture data, hydraulic soil parameters and parameters 
of a root water-uptake model can be estimated using inverse modeling. Musters and 
Bouten (1999) and Hupet and Vanclooster (2002) derived root water-uptake 
parameters (root depth and root density) using a 1-D flow model and found that the 
root uptake parameters vary considerably in space. Two-dimensional soil moisture 
patterns were considered by Vrugt, Hopmans and Šim nek (2001) in the calibration of 
a two-dimensional root water-uptake model. However, Hupet and Vanclooster (2002) 
remarked that root water-uptake parameters are difficult to estimate when hydraulic 
soil parameters are uncertain. Musters and Bouten (2000) also found that root water 
uptake was difficult to estimate based on soil water dynamics alone. Additional 
measurements of root densities, sap flow and actual plant transpiration would help to 
confine root parameters within physically reasonable bounds. Alternatively, a 
comparison of the behavior of the system with and without root activity may be used 
to discriminate root activity and its spatial heterogeneity from the heterogeneity of 
soil hydraulic properties. However, in winter, when roots are not active and the 
evaporation is low, soils remain relatively wet and the dynamics of the soil water 
content is small. Tracer experiments can be used to identify zones of high and low 
leaching velocity, which are related to zones of differing hydraulic conductivity. 

The potential of remotely-sensed parameters, soil moisture and actual 
evapotranspiration in combination with inverse modeling of unsaturated flow has first 
been discussed by Feddes et al. (1993). Soil hydraulic properties were estimated from 
remotely-sensed surface soil moisture content (Burke et al. 1997; Mattikalli et al. 



Chapter 8 

240

1998; Chang and Islam 2000). Given the control of hydraulic soil properties on the 
reduction of both potential evaporation and transpiration, soil hydraulic properties 
may be derived from actual evapotranspiration data obtained from remotely-sensed 
thermal infrared signals (e.g. Jhorar et al. 2002). Chanzy, Bruckler and Perrier (1995) 
suggested combining both thermal infrared and microwave remote sensing to confine 
the estimation of soil parameters. A combination of multispectral remote-sensing data, 
including areal subsurface information has a great potential to improve the 
parameterization of subsurface water flow models. Especially the effect of 
heterogeneity on flow and transport processes can be considered when the spatial 
information of subsurface soil water contents is included. For instance, Schneeberger, 
Stamm and Flühler (in press) illustrated that the dynamics of the soil surface moisture 
content, which can be derived from microwave radiometers, was equally well 
described by a unimodal model, which does not account for preferential flow, and by 
a preferential-flow model. This implies that surface water-content dynamics does not 
contain sufficient information for discrimination between these two models. It is 
therefore assumed that inclusion of subsurface information about the soil water-
content dynamics may better constrain the model identification. 

Our case-study model does not directly include remotely-sensed parameters. 
However, remotely-sensed parameters like IR surface-brightness temperature, LAI 
derived from NDVI, short-wave reflection or albedo, can be used as direct input in an 
expanded Soil–Vegetation– Atmosphere–Transfer models (SVAT) to calculate latent 
and sensible heat fluxes (e.g. Olioso et al. 1999a; 1999b; Mauser and Schädlich 1998; 
Boulet et al. 2000; van der Keur et al. 2001). Additional input parameters are the 
resistances for heat and vapor transfer in the atmospheric surface boundary layer and 
meteorological parameters. Sensible heat-transfer resistances are only determined by 
meteorological parameters whereas resistances for vapor transport are linked to the 
soil water content. Therefore the coupling between soil moisture status and actual 
evapotranspiration requires the use of SVAT models to interpret remotely-sensed 
variables. A further advantage of a SVAT is that fluxes can be predicted at times for 
which no remote-sensing data are available. Since remotely-sensed data are 
instantaneous data of variables with a high temporal dynamic, a physically based 
model may be useful to predict the systems behavior between observation times. 

However, a disadvantage of SVATs is the larger number of parameters that is 
needed to run the model. Especially the spatial variability of meteorological 
parameters like air temperature, air humidity and wind-speed profiles make a 
parameterization of SVAT cumbersome. This may be overcome using the SEBAL 
procedure proposed by Bastiaanssen et al. (1998). In this procedure, area effective 
resistances for sensible heat transfer are derived from the relation between surface 
brightness temperature and albedo for regions where the latent heat flux can be 
neglected. Surface–air temperature differences are derived from surface temperatures. 
Latent heat fluxes are obtained by closing the surface energy balance. In order to 
extrapolate the estimated evaporation rates in time, it is assumed that the evaporative 
fraction, i.e. the ratio of the energy used for evapotranspiration to the total net 
radiation, remains constant in time (e.g. Bastiaanssen, Ahmad and Chemin 2002). 
This assumption is only valid for moderate temporal variations in soil moisture 
content. When the soil dries out, actual evapotranspiration will be less than the 
potential evapotranspiration so that the fraction of the sensible heat flux will increase. 
Since the change in actual evapotranspiration with time is controlled by soil hydraulic 
properties, a soil–vegetation–atmosphere model can be combined with remotely-
sensed surface parameters to evaluate evapotranspiration rates in time. 
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Finally, topographic spatially dense data can be related to soil properties. 
Separating hill slopes into distinct sections, showed that soil properties within a 
section vary much less than between sections, so that distinct values of soil properties 
can be assigned to each section (Lark 1999). Regression equations could be developed 
to correlate soil properties in the sections (Brubaker et al. 1994). Geomorphometry 
was proposed as a data source to predict soil properties (Moore et al. 1993; McKenzie 
and Austin 1993). Terrain attributes, i.e. mathematical characteristics of the land 
surface shape, such as slope, profile, plan and tangential curvatures, and aspect, could 
be used for statistical correlation with soil properties (Odeh, Chittleborough and 
McBratney 1991). Such relationships have a general validity (Rawls and Pachepsky 
2002); they become more accurate when site-specific soil-survey information is 
available (Pachepsky, Timlin and Rawls 2001). 

Using pedotransfer functions 

Because of the difficulties and high labor costs associated with measuring soil 
hydraulic properties, there is often a need to resort to estimating modeling-related soil 
parameters from other readily available data. Modeling in a wide range of scales, from 
general circulation models to the fine-scale precision-agriculture decision support, 
experiences the need for such estimations. Statistical regression equations expressing 
relationships between soil properties were proposed to be called ‘transfer functions’
(Bouma and Van Lanen 1986) and later ‘pedotransfer functions’ (PTFs) (Bouma 
1989). Estimating soil hydraulic properties dominates the research field, although soil 
chemical and biological parameters are also being estimated. Several reviews on PTF 
development and use have been published (e.g. Rawls, Gish and Brakensiek 1991; 
Van Genuchten and Leij 1992; Pachepsky, Rawls and Timlin 1999; Wösten, 
Pachepsky and Rawls 2001). Large databases, such as UNSODA (Leij et al. 1996), 
HYPRES (Lilly 1997; Wösten et al. 1999), WISE (Batjes 1996) and NRCS pedon 
database (USDA Natural Resources Conservation Service 1997) are suitable for PTF 
development. Our case study heavily relies on the use of PTFs. 

Evaluation of PTFs is an essential element of their development and use. 
Pachepsky, Rawls and Timlin (1999) have broadly defined the accuracy of a PTF as a 
correspondence between measured and estimated data for the data set from which a 
PTF has been developed. The reliability of PTF was assessed in terms of the 
correspondence between measured and estimated data for the data set(s) other than 
the one used to develop a PTF. Finally, the utility of PTF in modeling was viewed as 
a correspondence between measured and simulated environmental variables. The 
concept of the PTF uncertainty (Schaap and Leij 1998) encompasses the ambiguity in 
PTF predictions and parameters caused by the input data variability and uneven 
representation of soils with different properties in the database. 

The apparent ease of developing PTFs by applying statistical regressions should 
not overshadow several basic questions about PTFs that need to be answered by 
hydrologists and soil scientists. Why do PTFs exist? How do we assess the accuracy 
and reliability of PTFs? Will a grouping of soils by some criterion enhance both the 
accuracy and the reliability of PTFs? Is there a limit of accuracy and reliability of 
PTFs and on what does this limit depend? What are the most appropriate techniques 
to evaluate a PTF? What input variables are more preferable or necessary to be 
included in a PTF? An inventory of existing PTFs (Pachepsky and Rawls in press) has 
been assembled to begin answering these questions in a systematic fashion. 
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Estimating solute transport parameters remains a weak point of the PTF 
development. Although a progress has been made in estimating solute dispersivity for 
small soil cores (Griffioen, Barry and Parlange 1998; Oliver and Smettem 2003), no 
methodology exists for such estimates at the pedon scale and at coarser scales. A 
notable attempt was recently made by Nimmo (2002), who collected published results 
of field experiments on conservative tracer transport in soils and unsuccessfully tried 
to relate the solute travel time to soil properties. Results of this work in Figure 7 show 
that the only parameter suitable to predict the presence or absence of fast preferential 
flow is the type of water supply at the soil surface. Ponded infiltration inevitably 
causes a fast breakthrough whereas an intermittent water supply does not. A likely 
reason for this failure is the fact that soil transport properties are largely dependent on 
soil structure. Quantitative information on soil structural parameters that could be 
used in PTFs is not available. 

        Scale of transport 
Figure 7. Maximum tracer velocity in 34 documented field experiments (from Nimmo 
2002)

The PTF research is a fast-developing field driven by the high demand in 
hydraulic and related parameters existing in environmental modeling. Recently the 
volume of PTF applications increased due to development of GIS-based regional 
modeling. Relying on PTFs presumes a level of the PTF accuracy and reliability 
sufficient to obtain acceptable uncertainty in results of modeling. As many PTFs have 
been developed and are under development, the users face the problem of selection of 
PTF. Discussions of reasoning and consequences of such selection are currently 
underrepresented in literature. One criterion of PTF selection is its reliability. 
Although no general conclusion could be derived from the review of the PTF 
reliability studies, some general observations can be made. PTFs developed from 
regional databases give good results in regions with similar soil and landscape history. 
Water-retention PTFs developed in Belgium (Vereecken et al. 1989) were the most 
accurate as compared with 13 others for the data base of Northern Germany (Tietje 
and Tapkenhinrichs 1993). Water-retention PTFs developed for the Hungarian Plain 
(Pachepsky et al. 1982) were applicable for the Caucasian Piedmont Plain. PTFs 
developed in Australia were more accurate for the Mississippi Delta as compared with 
other regional PTFs (Timlin et al. 1996). It remains to be seen whether this 
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observation holds for other cases, and which soil and landscape features have to be 
similar in two regions to assure the mutual reliability of the PTFs developed. 

The database size and measurement methods are among important factors 
affecting PTF accuracy and reliability. The number of samples has to be large enough 
to develop both accurate and reliable PTF (Pachepsky, Rawls and Timlin 1999). PTFs 
developed from the USA database by Rawls and Brakensiek (1985) are more robust 
than PTFs developed from regional databases. When the reliability of the all-USA 
PTFs has been compared with the accuracy of several other regional databases, and 
the PTFs were ranked by their reliability, the all-USA PTFs usually had one of the 
highest rankings (Tietje and Tapkenhinrichs 1993; Kern 1995; Timlin et al. 1996). 
Collection and analysis of data suitable for the PTF development is an important step 
in providing essential parameters for the environmental and agricultural modeling. 

There may exist a limit in accuracy and reliability of PTFs caused by temporal 
variation of soil properties related to the changes in vegetation and soil management. 
Incorporation of organic-matter content (Felton and Ali 1992), soil erosion 
(Fahnestock, Lal and Hall 1995), tillage practice (Azooz, Arshad and Franzluebbers 
1996) can cause variations in hydraulic properties that are comparable with variations 
within regional data bases. Pachepsky, Mironenko and Scherbakov (1992) have 
reported 20% changes in water retention at -1 kPa and 5% changes in water retention 
at -30 kPa in soils under wheat during the growing season in three different climatic 
zones. The amount of published data on temporal variations of soil hydraulic 
properties remains small. A temporal component may be required in PTFs to improve 
their reliability. 

A relatively new promising direction in PTF development is the use of spatially 
dense physical information related to the soil cover. Smettem et al. (in press) 
presented an example of using airborne gamma-radiometric sensing to estimate the 
clay content of surface soils and using a simple PTF (Smettem et al. 1999) to convert 
this information into a spatial representation of the slope of the Brooks and Corey 
water-retention function. Another idea is to use geophysical and/or topographic 
information as a direct input in PTFs. Ground-penetrating radar, penetrometers, 
electric-conductivity meters, etc., all provide spatial coverage that shows a potential to 
be included in PTFs (an example for the penetration resistance as a PTF input can be 
found in Pachepsky et al. (1998)). Romano and Palladino (2002) used terrain 
attributes to recalibrate a PTF, and soil water retention exhibited strong dependence 
on terrain attributes in the study of Pachepsky, Timlin and Rawls (2001). 

The reliability of a PTF is not directly related to its utility. The latter is affected 
by the sensitivity of the model to PTF predictions, and also by the uncertainty in other 
model inputs (Leenhardt 1995). When the PTF uncertainty is factored in a modeling 
effort, the variation in predictions of different PTFs has to be considered along with 
uncertainty of individual PTF predictions. The procedures to do that have yet to be 
developed. Using weighted-average predictions of several different PTFs instead of 
predictions of a single PTF may be a viable option for obtaining an estimate of the 
hydraulic property and to guess-estimate the uncertainty of this estimate. As the 
hydrological model calibration technology develops, more opportunities appear to 
compare calibrated and PTF-estimated hydraulic properties (Wang et al. 2003) and 
also to use PTF predictions as initial estimates for model calibration (Jacques et al. 
2002).

An emerging challenge is the upscaling of PTF estimates, i.e. determination of 
equivalent hydraulic parameters for large spatial units using PTF estimates and 
information on their variations in space. Scale dependencies in soil hydraulic 
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properties have become recognized (Bork and Diekkrüger 1990; Feddes et al. 1993). 
Currently these dependencies are ignored and may limit PTF reliability. Scale 
dependencies of hydraulic properties need to be included in PTFs. As the scale 
becomes coarser, hydrologic models change and so do the hydrologic parameters. Soil 
field capacity presents an example of such parameter that cannot be predicted as water 
retention at some fixed value of soil matric potential. PTF predictions of water-
retention curves have to be supplemented with a scale correction to become utilizable 
at coarser scales. 

Quantifying scale effects 

It seems that all parameters of the models in hydrology are scale-dependent, and 
yet very little is known about those dependencies. An example of the scale effect on 
the solute dispersivity in soils is shown in Figure 8. One plausible explanation of the 
increase in dispersivity with distance or with travel time is the lateral mixing 
developing in time (Flühler, Durner and Flury 1996). 

When the transport time is shorter than the mixing time, the dispersivity increases 
with time or travel distance. A constant dispersivity is reached when the travel time is 
much longer than the mixing time. The mixing time is defined by soil structural 
features that either enhance lateral mixing, such as soil layering, or prevent mixing 
and induce preferential flow such as large interconnected interaggregate pores, water 
repellent layers etc. (Vanderborght et al. 2001). The occurrence of these 
morphological features is not related to soil texture so that soils with similar soil 
texture may have completely different dispersivity and scale dependence of 
dispersivity. However, quantitative information of soil morphology is used in soil 
classification. As a consequence, inclusion of categorical soil-type information in 
PTFs may improve the estimation of transport parameters. Some data on 
dependencies of hydraulic conductivity on the soil core size are shown in Figure 9. An 
increase in hydraulic conductivity with the core size is well pronounced. 
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Figure 8. Observed dependencies of the solute dispersivity on distance in soils (after 
Pachepsky, Benson and Rawls 2000). Different symbols show data of different 

Figure 9. Examples of scale dependence in soil saturated hydraulic conductivity; -
loamy sand, Ap horizon,  - loamy sand, A2 horizon,  - sandy clay loam, B1t
horizon,  - clay loam, B1t horizon  (after Pachepsky and Rawls 2003) 



Chapter 8 

246

Figure 10. Relationship between field and laboratory water contents at the same soil-
water matric potential;  - samples with sand content more than 50% ,  - samples 
with sand content less than 50%; lines show the quadratic regression (______) with 
95% prediction interval (_  _  _). Data from the UNSODA database (Leij et al. 1996) 

Scale dependence of parameters affects the performance of methods of parameter 
determination. Comparison of field and laboratory water-retention data is shown in 
Figure 10. At the same matric potentials, field water contents of fine-textured soils are 
markedly less than the laboratory values. Comparison of unsaturated hydraulic 
conductivity obtained with the tensiometer-influx method and with profile drainage 
method is shown in Figure 11. The difference in hydraulic conductivity is more than 
one order of magnitude. 

Scale dependencies in hydrologic parameters have led to a general rule of 
selecting the size of grid cells corresponding to the scale at which the measurements 
were made (Neuman and Wierenga 2003). However, this becomes impractical as the 
grid size increases in large-scale modeling. No scale dependence of hydraulic 
parameters has been introduced in our case study. 

In soil physics, the description of water flow in soils is based on the gradients in 
soil water potential, which in soils is predominantly determined by capillary and 
gravitational forces. This concept has been applied and thoroughly tested at the scale 
of a soil column. The upper scale limit is determined by the measurement scales of 
water fluxes and water contents in soils. Predictions of water fluxes in soils at larger 
scales are, therefore, an extrapolation based on the reductionist assumption that the 
hydraulic properties of the soil, which are experimentally determined on a local scale, 
may represent the properties of the system at a larger scale. However, many studies 
have revealed that soil properties vary considerably in space. Therefore, upscaling 
procedures need to derive effective parameters that describe the system’s behavior at 
a scale that is relevant for the watershed management. Therefore, if effective 
parameters cannot be adequately specified, a change of scale may dictate changing 
models and parameters. For example, capacity-based rather than Darcy’s-law-based 
models are often used at coarse spatial and temporal scales. Difficulties arise when 
parameters of coarser scales and finer scales have to be related. Several attempts were 
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made to relate soil water-retention curves measured on small cores to field capacity 
measured as water content measured after two days of drainage following a ponded 
infiltration event. Some results of relating field capacity to water contents measured at 
specific soil water matric potential are shown in Figure 12. No single value of the 
matric potential appears to be suited to estimate field capacity from soil water-
retention curves. 

Figure 12. Soil field capacity and soil water retention at fixed matric potentials; CS - 
coarse sand, MS - medium sand, FS - fine sand, LFS - loamy fine sand at -5 and -10 
kPa sol matric potentials (data from Rivers and Shipp 1978);  and  - topsoil and 
subsoil of varying texture at -33kPa  (data from Haise, Haas and Jensen 1955) 

Soil physicists have approached the upscaling problem in two ways as shown in 
Figure 13. In the first (Vogel and Roth 2003) approach, the smaller-scale structure and 
heterogeneity of the properties at a smaller scale are explicitly considered in a small-
scale model that predicts processes considering small-scale spatial variability and its 
spatial structure. Essentially, it is proposed to generate parameters of a coarser scale 
by the Monte Carlo simulation of a coarse-scale representative elementary volume 
(REV) as composed of many small representative elementary volumes at a finer scale 
(Faybishenko et al. 2003). The  predicted processes and variables at  the smaller scale 
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Figure 13. Schematic representation of the upscaling of processes in heterogeneous 
media, effective parameters and inverse parameter estimation 

finer scale (i.e., macropores), are represented in the ‘composite’ coarse-scale REV. 
Deriving soil profile parameters from the parameters of soil horizons (Jhorar et al. 
2004; Zhu and Mohanty 2003) presents another example of work along those lines. In 
the second approach, the behavior of the system is observed at the larger scale and 
effective parameters are derived using inverse modeling. Effective parameters are 
parameters that lump the system’s subscale heterogeneity and describe its behavior at 
a larger scale (e.g. Grayson and Blöschl 2001). Here, remote sensing has a potential to 
determine area-wide states of the system (e.g. surface soil-moisture content, leaf-area 
index) and surface fluxes (Feddes et al. 1993). 

Using publicly available data 

Large databases have recently become available containing data that can either 
serve directly as model inputs, as climatic data, or be used in pedotransfer functions to 
estimate soil hydraulic properties. Several publicly available datasets have been used 
in our case study. There is not enough experience with such databases to compare the 
relative value of such data with site-specific information. The first examples of such 
comparisons have brought mixed results. The HYPRES database served as input in a 
study by Nemes, Schaap and Wösten (2003), in which the authors used national-, 
continental- and intercontinental-scale data collections to derive PTFs for the 
estimation of soil water retention, using artificial neural networks. The goal of the 
study was to identify the relevance of PTF from international data collections for 
individual countries that contributed to the database or for countries located in areas 
with comparable climatic conditions. The same methodology and the same sets of 
predictors were used while the source database was changed. Soil-moisture time 
series of seven soils were simulated, using water-retention characteristics estimated by 
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the different PTFs. Small differences were found between simulations based on 
different-scale data collections. Moreover, PTF estimates resulted in simulations that 
were only marginally worse than simulations with estimates using laboratory-
measured water retention. Wang et al. (2003) simulated water flow and bromide 
transport in soils and sediments of a desert research site for a 100-day period. They 
found that publicly available information could not be satisfactorily translated in 
model transport parameters. In situ measured hydraulic properties also did not provide 
good parameters for the transport simulations. A calibration of the models to the 
monitoring data was needed for successful simulations. The authors concluded that 
the value of publicly available data consists in providing estimates of the stratigraphy, 
a priori estimates of input-parameter distributions, and initial estimates of parameters 
for inverse modeling. Similar conclusions were reached by Jacques et al. (2002), who 
simulated a full year of water and chloride transport in loamy soil in Belgium. We 
note that the two latter research groups used large international or all-USA databases, 
and did not make an attempt to use smaller regional subsets to estimate hydraulic 
properties like Nemes, Schaap and Wösten (2003) did. 

Evaluating performance, predictive ability and prediction 
uncertainty

The root-mean-square model error or the determination coefficients are often 
used as measures of model performance. These measures may suffice for 
investigating the performance of a single model against a single data set, yet fail to 
recognize that a model should not be more accurate than the data. The 2 test, the 
goodness-of-fit test (Whitmore 1991) or the normalized root-mean square (Loague 
and Green 1991) value would account for that, but things become more complex if a 
choice of model is presented and/or datasets on different variables are available to 
evaluate model performance. 

Apart from conceptual differences, a major difference between models is in the 
number of parameters that are free to be adjusted. This leads to a recognition of the 
need for information-based measures of model performance in which the root-mean-
square error is corrected to reflect the number of adjustable parameters (Akaike 1977). 
These criteria leave aside the issue of data quality and availability. Kashyap (1982) 
has suggested the criterion that combines measures of complexity, data quality and 
goodness-of-fit.

Soil–vegetation–atmosphere models serve as both explanatory and predictive 
tools. Suitable forecasts can hardly be expected from a model that fits observations 
well but produces a wide range of predictions given reasonable variations of 
parameters and forcing variables. The Monte Carlo simulations present a viable way 
of predicting uncertainty estimations, but Latin Hypercube (LH) sampling is more 
efficient. In contrast to the Monte Carlo method, which is a random-sampling 
simulation, LH sampling is a numerical simulation of a distributed parameter. The 
probability-density function is divided into M equal areas and the centroid of each 
area is used to determine a sample value. The major advantage is that a similar level 
of accuracy to the Monte Carlo method can be achieved with an order of magnitude 
fewer samples. With both methods, a measure of uncertainty is generated after 
multiple model runs. The LHS method was used by Vachaud and Chen (2002) to 
investigate the sensitivity of computed water and nitrate leaching to within-texture-
class variability of transport parameters using the ANSWERS model. For their 
simulations, within-class variability had no effect in long-term simulations for soils 
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with saturated hydraulic conductivity greater than 100 mm/d. Corresponding soil 
classes could be identified by a single set of parameters (the barycentre (centroid) of 
the class) with a small loss of information compared to a very important gain in terms 
of input-data requirements and simulation time. This has profound consequences for 
large-scale distributed models, since it reduces considerably the number of 
measurements necessary to describe the soil; in particular there may be no need, in 
this range, to account for spatial variability of textural parameters within a class. With 
saturated hydraulic conductivity of 100 mm/d, however, within-class variability of 
transport parameters was a much more important source of uncertainty. 

Providing probability distributions for simulations is not a trivial matter. In 
ecological modeling, input values and their ranges are often taken from personal 
beliefs or from literature. Neuman and Wierenga (2003) indicate that such estimates 
are rarely realistic. Adjustable, or calibrated, model parameters also have to be 
reported and used as random values. One way to obtain their probability distributions 
is to do multiple calibrations of the model within the Monte Carlo framework by 
using random input parameters with known or estimated distributions. Correlations 
between parameters, both input and adjustable, are of utmost importance in Monte 
Carlo assessment of the predicted uncertainty. Rechov (1994) gives examples of the 
decrease in uncertainty from 300% to 30% after such correlations have been 
accounted for. Clearly, there is much work to be done in this area, with the goal of 
achieving parsimony in the model input parameters and data requirements. 

Quo vadis? 

The multiplicity of models, the parameter deficit, and the uncertainty of 
predictions are not new problems in hydrologic modeling. The need to address these 
problems directly is a relatively new issue. 

Soil hydrology gives a representative example of model multiplicity. One-
dimensional flow and transport in soils can be modeled using Richards’ equation or 
by simpler mass-balance approximations. For two- and three-dimensional flow 
problems, Richards’ equation still applies but is often forsaken in favor of more 
approximate models that require less computing time and input data. Preferential flow 
is accounted for with separate submodels or ignored. Parameters of models exist in 
many functional forms, more than ten equations for water content being but one 
example. A similar multiplicity can be found in watershed hydrology. 

In absence of unique selection criteria, it can therefore be best to consider a 
variety of models (National Research Council 2001) based on reasonable alternative 
hypotheses. More examples of working with multiple models can be expected, and 
comparison of models will undoubtedly enhance the understanding of the validity of 
hypotheses behind them. The need to balance complexity and robustness of models 
begins to materialize in developments of the model abstraction technology that seeks 
to reduce the complexity of a simulation model while maintaining the validity of the 
simulation results with respect to the question that the simulation is being used to 
address.

In the absence of reliable methods to measure directly fluxes in the vadose zone, 
parameter deficit will remain a substantial difficulty. Pedotransfer functions present a 
viable way to obtain first-guess estimates that may be sufficient for many 
applications, or can be used in calibrations if data are available. Currently examples of 
evaluating PTFs as model inputs are scarce. Accumulation of such examples is a 
precondition to a progress in site-specific PTF selection. 
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The emerging transdisciplinary research field of hydropedology attracts a 
substantial attention because of its promise to bridging pedology and hydrology. Such 
interaction is desirable because the wealth of pedological information can advance 
understanding and predicting water distribution in soils and landscapes, whereas 
advances of hydrology can enrich interpretation of spatial distributions of soil 
properties. One possible approach to the hydropedology agenda is to consider it from 
the standpoint of relations between structure and function. Hydrologic functioning of 
soils and landscapes is defined by the structure of pathways and voids available for 
water to move and to be stored. In turn, structure of soil pore space and hydrological 
units is substantially affected by the functioning of soils and landscapes in 
hydrological cycles. This relationship has a multitude of feedbacks that modify the 
function according to changes in structure and vice versa, and introduce the non-
linearity that may manifest itself in chaotic behavior. One immediate consequence of 
this relationship is the need to seek structure-related inputs for PTF. 

Using geophysical, remote-sensing and topographic information to infer soil 
variability is a promising research direction that presents a challenging exercise in 
searching a trade-off between quantity and quality of data and demonstrates the need 
for and value of integrative studies. Systematic coupling measurements of basic soil 
properties, soil hydraulic properties, and geophysical measurements adds value to all 
of those measurements as pedotransfer relationships can be derived to be used in a 
wide variety of applications. Both existing pedotransfer pathways, i.e. ‘geophysical 
data  soil basic properties  soil hydraulic properties’ and ‘geophysical data  soil 
hydraulic properties’, are of interest. 

Change of scale practically means change of the model type and change of 
representation of soil hydraulic properties in models. No direct scaling relationship is 
possible across the hierarchy of scales because of differences in the type of 
information that we obtain about the SVA system, differences in variables that we use 
to characterize the system, and differences in observed variability of the system. 
Structural features that are rare at fine scale tend to control flow and transport at 
coarser scales. The coarse-scale hydraulic properties have to be simulated using an 
exhaustive representation of variability and relevant physical processes at the fine 
scale.

Comparison of performance for several models requires criteria that would take 
into account differences both in model complexity and in data quality. Currently such 
criteria are used rarely and have never been tested in vadose-zone studies. Poorly 
defined measurements should not allow model discrimination, and quality of 
measurements should be reflected in uncertainty of parameter estimates. Presenting 
modeling results with their uncertainty creates another challenge, as the probabilistic 
approach is not necessarily familiar to end-users. 

Experience with models in a wide variety of hydrologic settings and contexts 
indicates that, regardless of the amount and quality of data, it is generally neither 
possible nor justifiable to describe all relevant aspects by a unique model. Given 
existing trends, we shall need to learn how to generate and use multiple predictions 
from multiple models on top of overcoming difficulties to populate a single model 
with parameters using data from multiple sources. 
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