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Chapter 1 
 

General Introduction 
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Uncovering the molecular basis of growth, development, and adaptation is a major 

research area in plant science, with useful applications in plant breeding. Photosynthesis 

is an underused resource for plant breeding because of its physiological and molecular 

complexity as well as its complex relationship with yield. However, it is acknowledged to 

have great potential for crop improvement (Lawson et al., 2012; Long et al., 2015). The 

light-use efficiency of photosynthesis depends on the molecular, structural and 

physiological state of the plant (Eberhard et al., 2008; Zhu et al., 2008; Foyer et al., 

2012). The physiological state depends on many environmental factors, of which the level 

of irradiance has a direct relation with photosynthesis light-use efficiency as it is the 

driving force for photosynthesis. Sudden increases in the level of irradiance can result in 

a situation in which the incoming light level exceeds the capacity for photosynthetic 

metabolism. Acclimation to increased irradiance is crucial for plant survival, as excess 

incoming light levels lead to damaged photosystems and the production of reactive 

oxygen species (ROS). The acclimation response of photosynthesis appears to reduce 

the formation of ROS, especially under excess irradiance levels (Scheibe et al., 2005; 

Suzuki et al., 2012). 

This thesis describes a study into natural genetic variation for the acclimation response of 

photosynthetic light use efficiency to increased growth irradiance. By identifying and 

characterizing genes for which different alleles affect photosynthesis responses, I could 

reveal some of the regulatory and physiological processes underlying natural variation for 

photosynthetic acclimation to a step increase in irradiance  

 

Photosynthesis 

Central to this thesis is the understanding of photosynthesis at the molecular level. When 

trying to identify genes, one needs to realize each gene encodes for one protein. A 

protein is a biological macro-molecule, consisting of a chain of amino acids folded in a 

specific three-dimensional structure that determines its pattern of activity. The sequence 

of amino acids is encoded for by the gene and one small change in the gene’s DNA 

sequence can result in a different amino acid, which can result in different structural 

properties of the protein, which can result in a different biological functionality. 

The process of photosynthesis has been studied for long time, with its first discovery by 

Jan van Helmont in the 17th century, who discovered that the mass of a growing plant 

came from water and carbon dioxide (and not from soil). In the next century, Jan 
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Ingenhousz discovered this process was powered by sunlight. Not long after that, it was 

discovered that both CO2 and water are the substrates for a plant to form biomass and O2 

under the influence of light energy (Hill, 2012). 

Photosynthesis is a complex process both at the physiological as well as the molecular 

level, involving many steps. These include the light reactions: the harvest of light energy, 

the transfer of excitation energy, the energy conversion, the electron transfer from water 

to NADP+, the oxygen evolution, and the ATP generation; and the dark reactions: the 

Calvin cycle that fixes CO2 to assimilate carbohydrates, catalysed by the enzyme 

ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Fig. 1). Proteins and 

cofactors, coded for by genes, execute all of these steps. Some of these genes are 

encoded in the nuclear genome, and some in the chloroplast genome, requiring complex 

cross talk between nucleus and chloroplast. The work described in this thesis is focussed 

the identification and characterization of genes involved in photosynthesis responses to 

increased light levels extending over several days, which is directly related to the primary 

processes of photosynthesis (light harvesting and energy conversion), the energy 

transduction machinery, and the metabolic processes of photosynthesis. The applied 

genetic methods exclusively targeted the nuclear encoded genes. 

 
Figure 1. The light and dark reactions (Calvin Cycle) of photosynthesis.  

Picture from Pearson Education, 2012. 

Photosynthesis occurs in the chloroplasts, where chlorophyll molecules divided over two 

different photosystems harvest the incoming light. The photosystems are embedded in 
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the thylakoid membranes, which are specialized structures laying inside the chloroplast. 

Photosystem II (also known as PSII, Psb, and P600) absorbs light up to 600 nm 

wavelength and contains both chlorophyll a and chlorophyll b. Photosystem I (also known 

as PSI, Psa, and P700), absorbs light up to 700 nm wavelength and contains only 

chlorophyll a. At the molecular level, both photosystems are connected to light harvesting 

complexes (LHCI for PSI and LHCII for PSII). PSII is associated with the oxygen-evolving 

complex (also known as the water-splitting complex), which donates an electron coming 

from a water-molecule each time PSII is excited with light (Fig 2). This is the first reaction 

of the light reactions, using the high-energy state of the chlorophyll molecules associated 

with PSII. This energy then enters  an electron transport chain involving plastoquinone 

(PQ), cytochrome b6/f (Cyt b6/f), and plastocyanin (PC), whereby the high energy 

molecule ATP is produced that is later needed in the dark reactions of photosynthesis 

(Fig. 2). The ATP is formed through an ATPase acting as a proton-pump, pumping the H+ 

coming from the water molecules through the thylakoid membranes resulting in proton 

motive force (Fig. 2). At the end of the electron transport chain, the electron has lost its 

energy, and is donated to PSI. The excited electrons from PSI are then donated to 

ferredoxin (Fd), a soluble protein that facilitates reduction of NADP+ to NADPH, a high-

energy molecule needed for the dark reactions of photosynthesis (Fig. 2). 

 
Figure 2. The light reactions of photosynthesis occurring in the thylakoid membrane showing 

all structural proteins forming PSII, CytB6f, PSI, and the ATP synthase, and their link to the 
carbon fixing dark reactions through ATP and NADPH supply.  

Picture from Dr. Jon Nield (http://macromol.sbcs.qmul.ac.uk/).  
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Sensing and responding to excess light 

Light is the driving force for photosynthesis, and the relationship between light and 

photosynthesis is complex. Light is essential for photosynthesis, but absorbed light 

exceeding the photosynthetic capacity of a plant gives rise to reactive intermediates and 

by-products that can damage the photosynthetic machinery (Powles, 1984; Asada, 2006). 

Protection from these damaging processes, while at the same time permitting high 

photosynthetic rates under high light conditions, seems to be the driving force behind the 

evolution of many of the regulatory processes of photosynthesis. This thesis describes 

discoveries on the genetic variation apparent for these regulatory processes in natural 

populations, explaining part of the photosynthetic acclimation process. This requires 

understanding of the physiological and molecular regulatory processes occurring in the 

plant cell when it experiences excess light stress. Excess light can arise simply when the 

amount of absorbed light exceeds the plant’s photosynthetic capacity, but can also result 

from decreases in photosynthesis rates as result of chilling or water stress. This thesis 

only focusses on the first situation.  

Plants have evolved several mechanisms for sensing increases in absorbed irradiance 

levels  (Li et al., 2009); they sense it using several classes of photoreceptors, and they 

sense it through biochemical and metabolic signals. The photoreceptors involved in 

excess light response are: phototropins, phytochromes and cryptochromes. The 

biochemical and metabolic signals come from internal redox and internal pH levels (Li et 

al., 2009).  

The photoreceptor phototropin mediates avoidance response of chloroplast, which makes 

these move to the sides of a plant cell to avoid excess light absorption (Kasahara et al., 

2002). Changes in light quantity can come about with changes in light quality, especially 

when a plant is moved from a shaded environment to an exposed environment. When 

plants shade each other, this causes a change in the light spectrum, as the chlorophyll of 

the upper plants absorbs some wavelengths. Only the light that is outside the spectral 

range and capacity for the upper plants is transmitted to the lower plants. The changes in 

spectral composition of the light when a plant is moved from a shaded to exposed 

environment is sensed by the phytochrome photoreceptor. Phytochrome mainly 

influences responses unrelated to photosynthesis, such as stem- and leaf elongation, 

flowering time, and seed maturation (Schepens et al., 2004). The cryptochrome 

photoreceptor is shown to regulate a large number of genes in response to increased 

light, that at the end of the signalling cascade lead to formation of flavonoids and 
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anthocyanins that protect photosynthesis tissue from high light damage by absorbing the 

high energy containing blue-green and ultraviolet light, significantly reducing the amount 

of ROS produced (Kleine et al., 2007). 

Two major biochemical signals indicate excess light, a pH-change within the chloroplast 

occurring within milliseconds after the induction of the stress (proton gradient dependent 

regulation) and a redox change via changes in thioredoxin levels and oxidized/reduced 

plastoquinone ratios as well as through a build-up of ROS (redox-dependent regulation). 

The pH-change, occurring over the thylakoid membranes, results from a decrease in the 

ATPase proton-pump. The extra electrons coming from the increased irradiance level will 

go to other acceptors than the electron transport chain, such as oxygen (producing ROS) 

or thioredoxin, resulting in decreased lumen pH. This is sensed by the protein PsbS (Li et 

al., 2004), which then activates the energy-dependent part of the photoprotection 

response (non-photochemical quenching, NPQ), (Demmig-Adams and Adams, 1992). 

NPQ is a mechanism involving the fast dissipation of the excess excitation energy as 

heat. It involves several molecular mechanisms, which are energy-dependent quenching 

(qE), quenching associated with state transitions (qT), and photoinhibitory quenching (qI), 

(Horton and Hague, 1988). The fastest response is qE, which is the only NPQ 

mechanism initiated by the protein PsbS, involves dissipating the excess energy through 

the xanthophyll cycle, resulting in the formation of zeaxanthin. Protonation of PsbS and 

binding of zeaxanthin to PSII produces conformational changes in the photosystems that 

result in increases in the efficient heat dissipation of the excess energy (Sylak-Glassman 

et al., 2014). The second NPQ response is qT, where phosphorylation of PSII associated 

light-harvesting complexes results in a decrease in the cross section of PSII with LHCII 

and an increase in that of PSI and LHCII, thereby adjusting the relative excitation energy 

distribution between PSII and PSI (Tikkanen et al., 2010). The last NPQ response is qI, 

resulting from photoinhibition of photochemistry, increasing the dissipation of excitation 

energy as heat, by breaking down photosynthetic proteins. NPQ is a photoprotection 

response occurring mainly around PSII. PSI has evolved an alternative protective 

mechanism for excess light, resulting in cyclic electron flow around PSI (Munekage et al., 

2004). In cyclic electron flow, electrons can be recycled from either reduced ferredoxin or 

NADPH to plastoquinone, and subsequently to the cytochrome b6/f complex. This 

generates a renewed proton motive force for ATP production, decreasing lumen pH 

without the accumulation of ROS, thus protecting the photosystem proteins from damage 

and keeping up the supply of ATP and NADPH enabling increased photosynthesis rates. 

A third alternative for the dissipation of excess electrons is the donation to O2, forming 

H2O2 and ultimately water. This is known as the water-water cycle, because the initial 
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reaction in photosynthesis is the splitting of water, donating electrons to PSII for 

excitation. It is also known as the Mehler reaction, named after its first discoverer (Mehler 

and Brown, 1952). Extra advantage of the water-water cycle is it also scavenges ROS, as 

it binds superoxide formed by the reduction of O2 (Asada, 1999).  

When the excess light persists after a few hours when photoprotection has finished, the 

plant will start altering its photosynthetic proteome, via what is known as photosynthetic 

acclimation (Walters, 2005). This response is initiated by the photoreceptor cryptochrome 

(the CRY1 protein), as well as by several heat-shock proteins and heat shock 

transcription factors (Rossel et al., 2002; Kleine et al., 2007). Ultimately, photosynthetic 

acclimation will provoke changes in the cellular composition in terms of their organisation 

of the photosystems, proteins, pigments, lipids, and other cofactors involved in electron 

transport and ROS metabolism (Bailey et al., 2004; Walters, 2005). Regarding the 

organisation of the photosystems, in response to high irradiance PSII acclimates by 

decreasing its antenna size via a decrease the amount of LHCII proteins associated with 

the PSII supercomplex, analogous to the short-term qT response (Kouřil et al., 2013). The 

ratio of LHCI to PSI is not altered, but the antenna size of PSI deceases with increasing 

irradiance due to a decreased association of LHCII with PSI (Ballottari et al., 2007; 

Wientjes et al., 2013). All the changes during photosynthetic acclimation are the result of 

signal-induced changes in gene expression, in a tight co-ordinated regulation between 

nuclear and chloroplast genes. At the time when I started the project of which the results 

are described in this thesis, molecular understanding of photosynthetic acclimation 

lagged behind the understanding of photosynthesis itself as well as behind the molecular 

understanding of photoprotection. 

 

Phenotyping photosynthesis 

Photosynthesis is about taking up CO2 for fixation into carbohydrates, and releasing back 

O2 into the atmosphere. Therefore, its most direct measurement for photosynthesis 

efficiency is through gas exchange analysis (Von Caemmerer and Farquhar, 1981; Long 

et al., 1996b; Johnson and Murchie, 2011). Infra-red sensors for gas analysis (IRGA) are 

most common for CO2 measurement and are based on an infrared emitter-photodetector 

of which the light beam is used to measure the concentration of gas molecules in the air 

of a leaf chamber (Sesták et al., 1971). In order to measure variation for photosynthesis 

efficiency among natural populations, the IRGA method is very laborious as for every 

plant at least one leaf (normally it is leaves that are measured rather than shoots or larger 
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parts of plants) has to be enclosed inside a leaf chamber each time photosynthesis is 

measured.  

Besides gas-exchange, photosynthesis is about efficiently using the light energy that is 

absorbed by the plant. Once a photon is absorbed by the plant, it can have three fates: 

used for photosynthesis (photochemistry), dissipated as heat (a process facilitated by 

photoprotection), or re-emitted as chlorophyll fluorescence (Butler, 1978). Chlorophyll 

fluorescence is the light re-emitted by chlorophyll molecules during return from excited to 

non-excited states, and is the only one of the three fates that can easily be measured. 

Using a smart design of repeatedly measuring chlorophyll fluorescence in open and 

closed photosystems, calculations can be made of the amount of light energy going into 

photochemistry, and thus the photosynthetic light use efficiency, ФPSII (Baker, 2008). 

Because chlorophyll fluorescence can be detected using a camera, it is non-destructive 

and it can easily handle many plants by either automatically moving each plant to the 

camera, or automatically moving the camera to each plant (Harbinson et al., 2012; Flood 

et al., 2016). 

 

From phenotype to genotype 

The area within biology that tries to genetically explain phenotypes that vary continuously, 

such as photosynthetic light use efficiency, is called quantitative genetics, whereby the 

genetic loci explaining the phenotypes are called quantitative trait loci (QTLs), (Alonso-

Blanco et al., 2009; Alonso-Blanco and Méndez-Vigo, 2014). To perform quantitative 

genetics in plants, Arabidopsis thaliana is the model species of choice, because of its 

well-described genetics, its wide availability of genotyped natural accessions, and the 

ability to exploit it in genome wide association studies (GWAS), (Atwell et al., 2010; 

Bergelson and Roux, 2010; Ogura and Busch, 2015). Genome-wide association studies 

(GWAS) analyse natural variation in populations consisting of a large number of natural 

isogenic lines collected from nature, called natural accessions in case of Arabidopsis 

thaliana (Arabidopsis). The accessions are collected worldwide in the native range of 

Arabidopsis, and as such have genetically adapted to different ecological conditions over 

thousands of years. In order to genetically map quantitative traits to the genome, GWAS 

take advantage of the recombination events that have accumulated over all those 

generations resulting in a high mapping resolution (Bergelson and Roux, 2010). An 

important aspect to consider when performing GWAS is Linkage Disequilibrium (LD), 

which is the non-random association of alleles at different loci, affecting the number of 
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recombination events occurring through time (Kim et al., 2007). When LD is only over 

short lengths in the genome, it requires a very high density of genotyping to find causal 

loci for a phenotypic trait in GWAS. Over the past years, GWAS have proven to be 

successful in Arabidopsis for identifying novel genes underlying the natural variation in 

several physiological (Atwell et al., 2010; Chao et al., 2012), morphological (Filiault and 

Maloof, 2012), cellular (Meijón et al., 2014; Verslues et al., 2014), and defence-related 

traits (Horton et al., 2014). The interpretation of association peaks in GWAS is not 

straightforward as population structure can lead to the occurrence of false positive 

associations, and the presence of causal alleles with low allele frequency or the presence 

of multiple alleles having the same phenotype can lead to hidden heritability (Korte and 

Farlow, 2013). One factor leading to hidden heritability is an epistatic interaction between 

two (or more) genes, where the allelic effect of one gene is depending on the allelic effect 

of another gene (Korte and Farlow, 2013).  

A more traditional method to link phenotypic variation to genetics is to do family mapping 

(Lander and Botstein, 1989). For this, two different accessions are crossed, the 

heterozygous plant that arises is self-fertilized, and the segregating offspring are 

phenotyped for the trait of interest, and genotyped for enough molecular markers to cover 

the genome. In this approach, different numbers of accessions can be (inter-) crossed to 

vary the amount of genetic variation, and different generations of offspring can be chosen 

for analysis to vary the level of heterozygosity. While family mapping provides the 

mapping power that is lacking in GWAS, it has a very low resolution because it depends 

upon the limited number of recombination events that have occurred in one (or a few) 

generation(s). The combination of GWAS and family mapping has proven to be a 

successful strategy in unravelling complex plant genetics (Motte et al., 2014). 

Resolving QTLs to the gene level for any biological process being studied will help the 

physiological and molecular understanding of that process. To study natural genetic 

variation for any trait, first a survey must be performed on the extent of variation present 

among different accessions before proceeding to the genetic analysis, as described in 

chapter 2 of this thesis for photosynthesis efficiency responses to increased irradiance in 

Arabidopsis. 

 

  



  

 
 
16 

Outline of thesis 

In this thesis, I describe a study of natural genetic variation for photosynthesis responses 

to increased growth irradiance. This work was carried out within the research programme 

of BioSolar Cells, co-financed by the Dutch Ministry of Economic Affairs. The aim of 

Biosolar Cells is to optimize the photosynthesis process in plants, algae and bacteria, and 

to develop artifical leaves that combine biological and artificial components 

(www.biosolarcells.nl).  

Plants are known to be able to acclimate their photosynthesis to the level of irradiance. 

Chapter 2 describes which light environment reveals most natural variation and for which 

photosynthetic parameter this is. It shows different Arabidopsis accessions display 

different photosynthetic responses to various light environments, well relatable to genetic 

differences. A candidate gene list for the direct response to increased growth irradiance 

was revealed. 

Acclimation of photosynthesis to changing light environment is a dynamic trait, for which 

at different time points, different genes are causal. Chapter 3 describes the dynamics of 

the QTLs underlying photosynthetic acclimation to increased growth irradiance. This 

chapter shows it is possible to simplify the complexity of photosynthetic physiology as 

well as the genetic analysis in such way to confirm the causal underlying genes. This was 

confirmed for the YS1 gene, a gene encoding a Pentatrico-Peptide-Repeat (PPR) protein 

involved in RNA editing of plastid-encoded genes essential for photosystems I and II. 

Genetic variation for any trait can be on the transcriptional level or on the functional level 

(quantity versus quality). Chapter 4 analyses the transcriptional response of three 

Arabidopsis accessions with distinct photosynthesis responses to increased growth 

irradiance. The existence of a gene activation pathway leading to the process of 

membrane lipid transformation was shown, whose involvement in photosynthetic 

acclimation is explained by the replacement of phospholipids by galactolipids for 

releasing extra orthophosphate (Pi) needed for photosynthetic structures and creating a 

charge balance to the photosynthetic membranes that is overcharged as a result of the 

excess light. Accession-specific differences in activation of this gene activation pathway 

could be associated with variation in photosynthesis efficiency response to increased 

irradiance. 

Chapter 5 describes how genome wide association mapping (GWAS) and family 

mapping combine to reveal genetic epistatic interactions underlying photosynthetic 
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acclimation to increased growth irradiance. This chapter shows an epistatic relation 

between two genes, PHOSPHATIDIC ACID PHOSPHOHYDROLASE 2 (PAH2) and 

ASPARAGINE SYNTHETASE 2 (ASN2). Strong indications are given for the involvement 

of combinations of specific PAH2 and ASN2 natural alleles in keeping high 

photosynthesis efficiencies in response to increased irradiance. 

It In Chapter 6, the results of the preceding chapters are discussed in the context of 

current research on quantitative genetics and photosynthetic physiology. 
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Chapter 2 
 

Natural genetic variation for acclimation of 
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ABSTRACT 

Plants are known to be able to acclimate their photosynthesis to the level of irradiance. 

Here we present the analysis of natural genetic variation for photosynthetic light use 

efficiency (ΦPSII) in response to five light environments among 12 genetically diverse 

Arabidopsis thaliana accessions. We measured acclimation of ΦPSII to constant growth 

irradiances of four different levels (100, 200, 400, and 600 µmol m-2 s-1) by imaging 

chlorophyll fluorescence after 24 days of growth, and compared these results to 

acclimation of ΦPSII to a step-wise change in irradiance where the growth irradiance was 

increased from 100 to 600 µmol m-2 s-1 after 24 days of growth. Genotypic variation for 

ΦPSII is shown by calculating heritability for short-term ΦPSII response to different 

irradiance levels, as well as for the relation of ΦPSII measured at light saturation (a 

measure of photosynthetic capacity) to growth irradiance level, and for the kinetics of the 

response to a step-wise increase in irradiance from 100 to 600 µmol m-2 s-1. A genome-

wide association study for ΦPSII measured one hour after a step-wise increase in 

irradiance identified several new candidate genes controlling this trait. In conclusion, the 

different photosynthetic responses to a changing light environment displayed by different 

Arabidopsis accessions are due to genetic differences, and we have identified candidate 

genes for the photosynthetic response to an irradiance change. The genetic variation for 

photosynthetic acclimation to irradiance found in this study will allow future identification 

and analysis of the causal genes for the regulation of ΦPSII in plants.  

 

 

Abbreviations:  

PSI – photosystem I; PSII – photosystem II; LHC – light harvesting complex; Fo – 

minimum fluorescence yield in dark-adapted state; Fm – maximum fluorescence yield in 

dark-adapted state; Fm’ – maximum fluorescence yield in light-adapted state; Fv/Fm –

maximum photosynthetic light use efficiency of PSII in dark-adapted state; ΦPSII – 

operating photosynthetic light use efficiency of PSII in light-adapted state; rETR – relative 

electron transport rate; NPQ – non-photochemical quenching; qP – co-efficient of 

photochemical quenching of chlorophyll fluorescence (PSII efficiency facor); Fv’/Fm’ – 

photosynthetic light use efficiency of the open PSII reaction centres in light-adapted state 
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INTRODUCTION  

Light is the driving force for photosynthesis and the relation between light and 

photosynthesis is complex; light is essential for photosynthesis but absorbed light 

naturally gives rise to reactive intermediates and by-products that can damage the 

photosynthetic machinery (Powles, 1984; Asada, 2006). Even at low irradiances these 

damaging reactions occur and they increase with increasing irradiance as photosynthesis 

becomes increasingly light-saturated. Protection from these damaging processes, while 

at the same time permitting high photosynthetic rates under high light conditions and a 

high light use efficiency under low light conditions, seems to be the driving force behind 

evolution of many of the regulatory processes of photosynthesis.  

Managing the fate of absorbed light energy is regulated within a plant at the level of the 

chloroplast membranes. Chloroplast membranes are highly organised; the total amount of 

photosystems in a chloroplast, the amount of photosystem I (PSI) in relation to 

photosystem II (PSII), and within each photosystem the amount of light harvesting 

complexes (LHCs) in relation to the amount of reaction centres, are tightly organised in 

response to the prevailing light condition around the leaf (Dekker and Boekema, 2005; 

Kouřil et al., 2012; Tikkanen et al., 2012; Kouřil et al., 2013). A high growth irradiance will 

lead to relatively more photosystem-core protein complexes, electron transport 

complexes, ATP synthase and enzymes in the Calvin-Benson cycle, whereas low growth 

irradiances will lead to relatively more light harvesting complexes and stacking of the 

thylakoid membranes (Bailey et al., 2001). 

With increasing irradiance, the rate of excitation of PSII and PSI exceeds the capacity of 

photosynthetic electron transport or metabolic capacity, resulting in excess irradiance. In 

the short-term this provokes a physiological, regulatory response, while in the longer term 

a sufficiently large excess irradiance will often result in alterations in the chloroplast 

proteome. Both the short-term and long-term responses have limits to their action (Foyer 

et al., 2012; Tikkanen et al., 2012). In the short-term, excess irradiance imposes a strain 

on the capacity to protect the photosystems from damage (photoprotection) (Demmig-

Adams and Adams, 1992). PSII is particularly susceptible to photodamage and has 

evolved an active regulatory process to reduce the extent of damage combined with an 

active repair system to replace damaged PSII reaction centres. As a first line of defence, 

PSII to a certain extent is able to dissipate the excess irradiance as heat via regulated 

non-photochemical quenching mechanisms (NPQ) reducing the rate of reaction centre 

damage (Rabinowitch, 1951). This process is initiated within seconds after an increase in 
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light intensity (Muller et al., 2001). The mechanism of NPQ in plants has been intensively 

studied, with most focus on the role of lumen pH dependent, or energy-dependent, 

dissipation of excess light (also known as qE, (Demmig et al., 1987)) via a mechanism 

that involves psbS and the xanthophyll cycle, one of the major short-term regulatory 

responses to excess irradiance.  

The long-term response of plants to excess irradiance occurs over the time scale of hours 

or days and results in acclimation to the excess irradiance environment (Walters, 2005). 

This leads to increased capacities for electron and proton transport, coupled with 

increased photosynthetic metabolic capacity, often combined with alterations in 

organisation of the photosystems. These changes in capacity are due to changes in the 

amounts of soluble enzymes of photosynthesis, in electron transport components and 

pathways, and in pigment-protein complexes (Murchie and Niyogi, 2011). Regarding the 

photosystem subunit stoichiometry, PSII in response to high irradiance decreases its 

antenna size by decreasing the amount of LHCII proteins associated with the PSII 

supercomplex (Kouřil et al., 2013). Though the ratio of LHCI to PSI is not altered by 

irradiance, the antenna size of PSI decreases with increasing irradiance due to a 

decreased association of LHCII with PSI (Ballottari et al., 2007; Wientjes et al., 2013) (ie 

decreases in the amount of LHCII seems to alter the antenna size of both photosystems). 

In addition to this long-term adjustment of PSI cross-section, a short-term adjustment of 

the relative cross-sections of PSII and PSI can be brought about by state-transitions, 

driven by phosphorylation of LHCII, with phosphorylation being associated with a 

decrease in the cross-section of PSII and an increase in that of PSI (Allen, 1992; 

Tikkanen et al., 2010). 

In the event that the sum of the short and long-term regulatory responses are insufficient, 

then more persistent damage to the photosynthetic apparatus (photoinhibition), especially 

to PSII, results. Damage to PSII, which is conveniently measured as a reduction of the 

Fv/Fm parameter derived from chlorophyll fluorescence measurements (Baker, 2008), is 

commonly used as an indicator of decreased photosynthetic performance arising from 

excess irradiance, though other parameters, such as decreased leaf chlorophyll content, 

are also used (Björkman and Demmig, 1987). The irradiance at which this damage will 

become apparent is difficult to predict.  

Natural genetic variation in plant photosynthesis is a valuable resource (Flood et al., 

2011). Naturally occurring variation in the photosynthetic acclimation response to high 

light has been observed in different plant species, with different studies using different 
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light regimes and focussing on different acclimation responses (Sims and Pearcy, 1993; 

Valladares et al., 1997; Balaguer et al., 2001; Leakey et al., 2003; Portes et al., 2008). 

However, research combining different light regimes and looking at the acclimation 

responses of different aspects of photosynthesis in different genotypes in one experiment 

is lacking. Arabidopsis thaliana (Arabidopsis) is the model species for plant genetic 

research, a choice that was motivated partly because of the considerable variation found 

in this species for many traits. The number and variety of natural genotypes of 

Arabidopsis make it increasingly valuable as physiological model (Alonso-Blanco et al., 

2009). The variability of photosynthetic acclimation in naturally occurring genotypes of 

Arabidopsis has been investigated for light-use efficiency in one growth environment (El-

Lithy et al., 2005), for NPQ responses to high light (Jung and Niyogi, 2009), for 

photosynthetic capacity in response to high light (Athanasiou et al., 2010), and for the 

response to short-term light flecks (Alter et al., 2012). To explore the phenotypic plasticity 

and genetic variation within Arabidopsis thaliana we have investigated the variability of 

the acclimation of multiple photosynthesis parameters to four constant growth irradiances 

and to a step-wise increase in the growth irradiance among 12 genotypically diverse 

accessions. To assess what part of the variability is due to genetic variation, we have 

calculated trait heritabilities, which are a measure of the extent of trait variation that is due 

to genetic variation. The possible genetic basis for trait variation can be determined using 

genome-wide association study (GWAS), in which genetic loci associated with a trait are 

identified by correlating genetic variation with trait variation (Atwell et al., 2010). To 

perform GWAS, there must be a description of genetic variation and the trait must be 

variable and heritable. It requires a large number of genotypes, so we used a population 

of 344 diverse Arabidopsis accessions which all had been genotyped for ~215 000 single 

nucleotide polymorphisms (SNPs) (Kim et al., 2007; Li et al., 2010). Importantly, because 

the genotypic description is restricted to the nuclear genome, any phenotypic variation 

arising from variation in cytoplasmic genomes cannot be associated with those genomes 

and will be a source of noise in the analysis. A GWAS for ΦPSII measured one hour after a 

step-wise change in irradiance was used to identify genomic regions that are associated 

with the response of photosynthesis to step-wise increase in irradiance. These results 

highlight the genetic variation and physiological adaptability (or lack of it) of 

photosynthesis in Arabidopsis. The presence or absence of variability is of particular 

importance in relation to both the evolution of the photosynthetic properties of Arabidopsis 

and the future identification of those genetic factors that give rise to the photosynthetic 

phenotype.  
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MATERIALS AND METHODS 

Plant material and growth conditions 

The measurements described here can be divided into genome-wide association study 

(GWAS) and non-GWAS measurements. As the non-GWAS measurements were used 

as a pilot for the GWAS, many of the methods and genotypes used are common to both 

the non-GWAS and GWAS measurements.  

The non-GWAS measurements were made on twelve genotypically diverse accessions of 

Arabidopsis which were used throughout the experiments in this study (Table I), grown in 

3 replications. All these accessions are part of a core set of 360 natural accessions, 

which represents the global genetic diversity in Arabidopsis 

(http://www.naturalvariation.org/hapmap  (Li et al., 2010)). For the GWAS, we used 344 

accessions of the set of 360 accessions; included in the set of 344 accessions were all of 

the accessions used in the non-GWAS study. The 16 accessions that were not used were 

lines CS28051, CS28108, CS28808, CS28631, CS76086, CS76104, CS76110, 

CS76112, CS76118, CS76121, CS76138, CS76196, CS76212, CS76254, CS76257, and 

CS76302. 

Table I. Origin of the twelve accessions of Arabidopsis used in this study 

Accession Full name Latitude Longitude Origin 

Bor-4 Borky 49.4 16.2 Czech Republic 

Bur-0 Burren 53 -9 Ireland 

C24 C24 41.2 -8.4 Portugal 

Can-0 Canary Islands 29.2 -13.5 Spain 

Col-0 Columbia - - unknown 

Cvi-0 Cape Verde Islands 15.1 -23.6 Cape Verde 

Est-1 Estonia 58.3 25.3 Estonia 

Ler-1 Landsberg erecta 52.7 15.2 Poland 

NFA-8 NFA 51.4 -0.6 United Kingdom 

Sha Shahdara 38.3 68.5 Tajikistan 

Tsu-0 Tsushima 34.4 136.3 Japan 

Van-0 Vancouver 49.3 -123 Canada 
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For both GWAS and non-GWAS experiments seeds were pre-sown on filter paper in petri 

dishes wetted with filled with 0.5 mL demineralised water, and placed in the dark at 4°C 

for 4 days to stratify. Once stratified, the seeds were planted in a hydroponic cultivation 

system based on rockwool blocks (Grodan Rockwool Group, 40 X 40 X 40 mm in size). 

The blocks were positioned and secured using a frame (Fig. 1) of consisting of a 

baseplate made from a sheet of perforated stainless steel, a second PVC frame that was 

held 15 mm above the stainless steel base and into which the blocks were placed, and a 

black non-reflective foamed PVC cover-sheet drilled with countersunk holes 60 mm apart 

and 3 mm diameter that were positioned over the centres of the blocks. The seeds were 

placed on the rockwool surface exposed in these holes and the plants then grew up 

through the holes with the leaves spreading across the surface of the upper, black PVC 

sheet. The three layers of the growing system were secured by stainless steel screws 

and spacers and placed in a basin to which nutrient solution could be added.  The 

baseplate was supported 5 mm above the floor of the basin, allowing nutrient solution to 

pass freely and uniformly under the growing frame and circulate through the frame via the 

holes in the perforated metal baseplate and the 10 mm spaces between the blocks. The 

black plastic upper plate prevented the growth of algae on the rockwool blocks and 

offered a good background for imaging of the plants. 

For the smaller scale non-GWAS experiments the growing frame was 180 X 180 mm in 

size (Fig. 1) and could hold 9 individual rockwool blocks in a 3 x 3 array. Three seeds 

were sown per accession and the total of 36 seeds were randomized over four growing 

systems, with the limitation that two seeds of the same accession were never planted in 

the same growing system. For the GWAS experiment the growing frame was 390 x 85 cm 

and could hold 720 rockwool blocks in a 60 x 12 array. Two of these 60 x 12 growing 

systems, each in a separate basin, were combined to potentially grow a total of 1440 

(allowing for four replicates of 360 genotypes) plants for the GWAS. Each growing frame 

was notionally sub-divided in two blocks, giving a total of four growing blocks. Four seeds 

were sown per accession in the GWAS experiment, and each set of 344 seeds was 

randomized over each of the four blocks.  

For both GWAS and non-GWAS experiments plants were grown hydroponically using a 

nutrient solution developed for Arabidopsis (pH 7; EC 1.4 mS/cm) consisting of 1.7 mmol 

NH4
+, 4.5 mmol K+, 0.4 mmol Na+, 2.3 mmol Ca2+, 1.5 mmol Mg2+, 4.4 NO3

-, 0.2 mmol Cl-, 

3.5 mmol SO4
2-, 0.6 mmol HCO3

-, 1.12 mmol PO4
3-, 0.23 mmol SiO3

2-, 21 µmol Fe2+ 

(chelated using 3% diethylene triaminopentaacetic acid), 3.4 µmol Mn2+, 4.7 µmol Zn2+, 
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14 µmol BO3
3-, 6.9 µmol Cu2+, and <0.1 MoO4

4-, which was added to the basins 

containing the growing frames for 5 minutes 3 times a week.   

For the non-GWAS experiments plants were grown at either constant irradiances of 100, 

200, 400 or 600 µmol m-2 s-1 (Philips fluorescent tubes, MASTER TL5 HO, 80W), or the 

irradiance was increased from 100 µmol m-2 s-1 to 600 µmol m-2 s-1 at noon, 24 days after 

sowing on rockwool.  In all cases the photoperiod was 10h/14h day/night cycle, 

temperature was 20/18°C (day/night), relative humidity was 70% and CO2 levels were 

ambient. Following the step increase in irradiance the photosynthetic acclimation 

response was measured over five days, by measuring light response curves once a day 

in the morning 30 minutes after light onset. Other conditions were kept similar, although 

an increase of leaf temperature due to energy absorbed by the black cover needed for 

imaging could not be prevented. The highest irradiance we used in this study was well 

within the adaptive range of the accessions used so even the highest irradiance used was 

non-stressful insofar that it provoked no significant sign of light stress (eg a decrease in 

the dark-adapted Fv/Fm or anthocyanin formation). At the end of the acclimation period to 

increased growth irradiance in this second experiment, when ΦPSII had stabilized, light 

response curves were compared to curves of plants grown at either a constant low (100 

µmol m-2 s-1) or high (600 µmol m-2 s-1) growth irradiance. Plants were measured using 

chlorophyll fluorescence imaging for the first time at 30 minutes after light onset on the 

24th day after sowing on rockwool. Depending on the experiment, this imaging was 

continued daily at the same time until plants began to overlap. 

For the GWAS experiments plants were grown at constant irradiance of 100 µmol m-2 s-1 

(Philips fluorescent tubes, MASTER TL5 HO, 80W). The irradiance was increased to 550 

µmol m-2 s-1 on day 25 after sowing, at the onset of irradiance. In all cases the 

photoperiod was 10h/14h day/night cycle, temperature was 20/18°C (day/night), relative 

humidity was 70% and CO2 levels were ambient. The plants were imaged one hour after 

light onset on day 24 (‘measurement before the increase in irradiance’), as well as one 

hour after light onset on day 25 (‘measurement after the increase in irradiance’).  
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Figure 1. Growing system for Arabidopsis used in this study;  
(A) top view showing non-reflective cover with small holes covering rock wool blocks on which 

Arabidopsis is germinated and grown; (B) when the non-reflective cover is removed, the rock wool 

block can be placed in 4 x 4 cm square holes, on a stainless steel grid, which is supported by short 

pins allowing nutrient solution to spread evenly underneath the rock wool blocks. 

 

Chlorophyll a fluorescence imaging and analysis 

For the non-GWAS experiments chlorophyll a fluorescence was measured using an 

imaging fluorimeter (Open FluorCam, P.S.I., Brno, Czech Republic, http://www.psi.cz), 

driven by the Fluorcam software package (FluorCam7). Fluorescence was detected by a 

camera of which the electronic shutter time and sensitivity were adapted to the irradiance 

being used. Measurements of the dark-adapted Fo and Fm were measured after 20 

minutes of dark-adaptation. Images of the dark-adapted Fo were measured using non-

actinic measuring flashes provided by light emitting diodes (LEDs). Next, a 1-s duration 

pulse of saturating light (6500 µmol m-2 s-1) generated by the same and other LED-panels 

was given produce the maximum fluorescence level in the dark, Fm. An image of Fv/Fm 

was then calculated. To measure the irradiance response of parameters describing the 

operation and regulation of PSII the plants were illuminated with a series of increasing 

actinic irradiances (100, 225, 450, 700, and 1150 µmol m-2 s-1). Each irradiance was 

applied for 15 minutes after which the Ft (steady-state fluorescence yield) and Fm’ yield 

were measured. Pilot experiments showed that using these irradiances 15 minutes was 

sufficient time to allow Ft and Fm’ to stabilise after each irradiance increase. The Fm’ 

fluorescence yield was measured during a 1-s duration pulse of saturating light (6500 

µmol m-2 s-1). Values for Fo, Fm, Ft and Fm’ in the images were averaged over all pixels 

per plant; derived values for ΦPSII, Fv/Fm, NPQ, qP, rETR, Fo’, and Fv’/Fm’ were calculated 

using these averages of Fo, Fm and Fm’ (Oxborough and Baker, 1997; Baker, 2008).  

For the imaging of the 344 accessions used for GWAS, we used a laboratory built high-

throughput chlorophyll fluorescence imager. This system imaged plants in groups of 12 (a 
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3 X 4 array). Chlorophyll fluorescence was measured at 730 nm and excited using 

radiation from Phlatlight leds (Luminus, Billerica, Massachusetts, USA)  (peak emission 

wavelength 624 nm). ΦPSII was imaged at growth-room irradiance, and the irradiances 

supplied by the growth room (produced by fluorescent tubes) and the imager (produced 

by LEDs) were matched by comparing ΦPSII (measured using a chlorophyll fluorimeter 

(MiniPam, Walz, Effeltrich, Germany)) in leaves under the growth room irradiance and the 

imager irradiance. The matching of the irradiances provided by the growth-room lights 

and the actinic irradiance of the imager meant that there was only minor disturbance of 

photosynthesis as a result of positioning the camera over the plants; a 30 s recovery time 

was found to be enough to allow the disappearance of any disturbance before the 

imaging procedure for ΦPSII was begun.  

Genetic variation 

To estimate the genetic variation for a parameter, we calculated its heritability. 

Heritability, in this case broad sense heritability  (H 2), is a term used in quantitative 

genetics that describes the portion of the total phenotypic variance in a population that is 

contributed by genetic variance (Visscher et al., 2008).  

Genetic variance and the total phenotypic variance within an experiment were calculated 

with an ANOVA using type III sums of squares in a general linear model, in the IBM 

statistical software program SPSS. The genetic variance was estimated as the proportion 

of variance explained by differences between genotypes based on measurement of three 

plants per genotype. Standard errors for heritability were calculated using the heritabilities 

of three repeated experiments. Heritability for a response was calculated by first 

calculating the response values for a trait between two time points or two light steps. 

These response values were always calculated relative to the initial value of the first 

measurement of the two. When a relation between different parameters in different 

environments needed to be parameterized, we estimated the curve of the relation using 

regression statistics and parameterized it using the statistical model that fitted closest to 

the curve, with the IBM statistical software program SPSS.  We then used the 

parameterized value for each individual to calculate the variances in the population. 

Genome wide association analysis 

The analysis was performed using the publicly available web application for genome-wide 

association mapping in Arabidopsis (GWAPP; gwas.gmi.oeaw.ac.at), using the 

accelerated mixed model option (Seren et al., 2012). GWAS was performed for ΦPSII 
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measured one hour after a step-wise increase in irradiance from 100 to 550 µmol m-2 s-1, 

by providing a list with average values of three biological replicates per accession. The 

website already ‘knows’ the 215 000 SNPs used for mapping, and will output a list with 

association scores for all these SNPs. For our analysis, we classified the SNPs with an 

association score > 4 as ‘associated SNPs’. A core set of candidate genes was selected 

by cataloguing the genes which contained the associated SNPs in their coding region. 

The same web application was used to calculate the level of linkage disequilibrium (LD) 

for a SNP, and to catalogue the genes in these LD-regions (Seren et al., 2012); these 

genes were added to the core set of genes to form the complete list of candidate genes. 

A description for all candidate genes was obtained from TAIR (www. arabidopsis.org). 

Gene ontology enrichment analysis 

All gene ontology (GO) annotations were downloaded from TAIR (www.arabidopsis.org). 

The gene ontology enrichment analysis was performed for three categories: cellular 

component, molecular function, and biological process (Ashburner et al., 2000). Per 

category, the fraction of genes annotated to a certain ontology class for the list of 

candidate genes from GWAS was compared to the fraction of genes annotated to the 

same ontology class in a control group consisting of all the genes in the genome of 

Arabidopsis. 
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RESULTS 

Phenotypic and genotypic variation in light response curves of various PSII 
parameters among 12 Arabidopsis accessions grown at 100 µmol m-2 s-1 

To assess genotypic variation for the irradiance response of photosynthesis in 12 

genotypically diverse Arabidopsis accessions grown under constant growth irradiance of 

100 µmol m-2 s-1, the operating light use efficiency of photosystem II (ΦPSII) was 

measured under a range of steady-state actinic irradiances. ΦPSII measures the 

proportion of the light absorbed by PSII that is used in photochemistry, it is widely used 

as a proxy for the quantum yield of linear electron transport and for photosynthesis in 

general (Maxwell and Johnson, 2000). Figure 2A shows the light response curves of ΦPSII 

for the 12 accessions used in this study, and figure 2B shows the light response curves of 

the values for the relative linear electron transport rate (rETR; the product of ΦPSII and 

irradiance) derived from the ΦPSII values in Figure 2A. The ETR is considered relative 

because we do not account for leaf light absorptance or the distribution of excitation 

energy between the two photosystems, nor apply any correction to the apparent quantum 

yield of PSII photochemistry provided by chlorophyll fluorescence measurements to give 

actual quantum yields for PSII electron transport. We will use the rETR at light saturation 

as a proxy for the maximum photosynthetic capacity (Pmax) in vivo (Genty et al., 1989). 

Figure 2B shows that when grown at 100 µmol m-2 s-1, light saturation of photosynthesis 

occurs between 550 - 650 µmol m-2 s-1 for all 12 accessions. While the amount of 

phenotypic variance among the 12 accessions increases with the increase of the actinic 

irradiance level so does the genetic variance, resulting in similar heritabilities (Inset, Fig. 

2B).  

ΦPSII is the product of the quantum efficiency of the open PSII reaction centres (Fv’/Fm’) 

and the PSII efficiency factor (qp) (Genty et al., 1989). The loss of ΦPSII can therefore be 

accounted for by decreases in one or both of these parameters. For plants grown at a 

growth irradiance of 100 µmol m-2 s-1, Fv’/Fm’ remains constant at about 0.8 for actinic 

irradiances of 225 µmol m-2 s-1 or less, but decreases when the actinic irradiance is 

increased above this (Fig. 2C). Heritability for the response of Fv’/Fm’ to increases in 

irradiance increases with increasing actinic irradiance (Fig. 2C). Similar to Fv’/Fm’, qP also 

decreases with increasing actinic irradiance for plants grown at 100 µmol m-2 s-1 growth 

irradiance (Fig. 2D). However, unlike Fv’/Fm’, qP shows decreases in response to actinic 

irradiances of less than 225 µmol m-2 s-1. In contrast to the heritability for the irradiance 
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response of Fv’/Fm’, the heritability for the irradiance response of qP decreases with 

increasing actinic irradiance (Fig. 2D). 

The values of non-photochemical quenching calculated according to the Stern-Volmer 

model (NPQ; Fm/Fm’ - 1), qP, and Fv’/Fm’ measured at an actinic irradiance of 700 µmol m-

2 s-1 (ie at light saturation), are shown plotted against the value of ΦPSII measured at 700 

µmol m-2 s-1 (Fig. 2E, 2F, and 2G), and the correlation between NPQ and Fv’/Fm’ is shown 

in Fig. 2H. NPQ, qP and Fv’/Fm’ are linearly related to ΦPSII with the correlation being 

negative in the case of NPQ and positive for qP and Fv’/Fm’. The parameters Fv’/Fm’ and 

qP are more strongly correlated to ΦPSII than is NPQ (Fig. 2E, 2F, 2G). 
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Figure 2 (on next page). Light response curves of various PSII parameters among 12 

Arabidopsis accessions grown at 100 µmol m-2 s-1 and the correlation between parameters 
(A) PSII operating light use efficiency (ΦPSII) of 12 Arabidopsis accessions. Error bars indicate the 

standard error of the mean, N=3. ΦPSII was measured on plants that were grown in 100 µmol m-2 s-1 

for 24 days, after reaching steady state photosynthesis in five different actinic irradiances: 100, 225, 

450, 700, and 1150 µmol m-2 s-1  (B) relative electron transport rates (rETR) in the presence of 

different actinic irradiances of 12 accessions of Arabidopsis, calculated from PSII operating light use 

efficiencies.; the inset shows the average heritabilities over three independent experiments for the 

individual measurement points and for the response of these values to actinic irradiance level; (C) 

light use efficiency of the open PSII reaction centres in the presence of different actinic irradiances 

(Fv’/Fm’) of 12 accessions of Arabidopsis; (D) PSII efficiency factor (qP) in the presence of different 

actinic irradiances of 12 accession of Arabidopsis; (E) correlation of ΦPSII and NPQ of 12 accessions 

each with three replicates grown in 100 µmol m-2 s-1 and measured at light saturation (700 µmol m-2 

s-1); (F) correlation of ΦPSII and qP of 12 accessions each with three replicates  grown in 100 µmol m-2 

s-1 and measured at light saturation (700 µmol m-2 s-1); (G) correlation of ΦPSII and Fv’/Fm’ of 12 

accessions each with three replicates  grown in 100 µmol m-2 s-1 1 and measured at light saturation 

(700 µmol m-2 s-1) ; (H) correlation of NPQ and Fv’/Fm’ of 12 accessions each with three replicates  

grown in 100 µmol m-2 s-1 1 and measured at light saturation (700 µmol m-2 s-1) 
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Light use efficiency responses to different, constant growth irradiances 

At an actinic irradiance of 600 µmol m-2 s-1 plants grown at 100 µmol m-2 s-1 have an 

average ΦPSII of 0.35, while for plants grown at 200 µmol m-2 s-1 the average ΦPSII is 0.48, 

for plants grown at 400 µmol m-2 s-1 it is 0.58 and for plants grown at 600 µmol m-2 s-1 it is 

0.65 (Fig. 3A). This shows there is long-term photosynthetic acclimation to growth 

irradiance for Arabidopsis. Genetic variation for this acclimation is present. For example 

for some accessions the irradiance response of ΦPSII for plants grown at 600 µmol m-2 s-1 

is the same as that for those grown at 400 µmol m-2 s-1, whereas for other accessions the 

irradiance response of ΦPSII for plants grown at a 600 µmol m-2 s-1 differs to that of plants 

grown at 400 µmol m-2 s-1 while the response of plants grown at 200 and 400 µmol m-2 s-1 

is similar (Supplementary Fig. S1).  

The value of ΦPSII measured at an actinic irradiance equal to growth irradiance shows, 

overall, an apparently linear decrease with increasing irradiance (Fig. 3B). In detail, 

however, at growth irradiances above 400 µmol m-2 s-1 this decline ceases for some 

accessions (Fig. 3B). This leads to a heritability of 0.20 for the difference in this 

parameter when comparing the data obtained from plants grown at an irradiance of 600 

µmol m-2 s-1 to those grown at 400 µmol m-2 s-1 (inset Fig. 3B). 

 
Figure 3 (on next page). Light response of PSII light use efficiency (ΦPSII) of 12 Arabidopsis 
accessions , grown in different constant growth irradiances: 100, 200, 400 or 600 µmol m-2 s-1 

(A) ΦPSII light response curves measured on 24-days-old plants after reaching steady state 

photosynthesis in four different actinic irradiances: 100, 225, 450, and 700 µmol m-2 s-1. The lines 

represent the average of all accessions, the area around the line represents the extent of deviation 

among the accessions (highest value minus lowest value in population); (B) variation in ΦPSII among 

12  Arabidopsis accessions, when grown at four different constant growth irradiances (100, 200, 400, 

and 600 µmol m-2 s-1) for 24 days and measured at actinic irradiance identical to the growth 

irradiance. Error bars indicate the standard error of the mean, N=3; the inset shows the heritabilities 

of the response of these values to growth irradiance level (C) variation in maximum relative electron 

transport rates (rETR) measured at saturating actinic irradiance (Pmax) among 12 accessions, 

grown at four different growth irradiances (100, 200, 400, and 600 µmol m-2 s-1) for 24 days. When 

grown at 100 µmol m-2 s-1, the saturating actinic irradiance level used was 600 µmol m-2 s-1, at 200 

µmol m-2 s-1 this was 700 µmol m-2 s-1, at 400 µmol m-2 s-1 it was 800 µmol m-2 s-1, and at 600 µmol m-

2 s-1 it was 1150 µmol m-2 s-1. Error bars indicate the standard error of the mean, N=3; (D) Correlation 

of Fv’/Fm’ and qp for different growth irradiances (100, 200, 400, and 600  µmol m-2 s-1); (E)  

Correlation of Fv’/Fm’ and qp for different actinic irradiances (100, 225, 450, 700, and 1150  µmol m-2 

s-1); (F) Correlation of Fv’/Fm’ and qp for the 12 different accessions of Arabidopsis; (G) Correlation of 

NPQ and ΦPSII for different actinic irradiances (100, 225, 450, 700, and 1150  µmol m-2 s-1) 
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The correlation between the maximum rETR and growth irradiance shows genotypic 

variation (Fig. 3C). For some accessions this relationship is triphasic (Supplementary Fig. 

S2), with a sharp increase over the lower irradiance range (100-200 µmol m-2 s-1), a much 

lower increase between 200 and 400 µmol m-2 s-1 growth irradiance, and a second sharp 

increase between 400 and 600 µmol m-2 s-1. For other accessions this relationship is 

biphasic (Supplementary Fig. S2), while for others it is linear (Supplementary Fig. S2). 

Curve estimation of this relation using a cubic statistical model resulted in different fitted 

values for all 12 accessions (Supplementary Fig. S3). The heritability for this relation is 

0.52. 

The partitioning of the decrease in ΦPSII into decreases in Fv’/Fm’ and qp is shown for  

different growth irradiance levels (Fig. 3D), actinic irradiance levels (Fig. 3E), and 

genotypes (Fig. 3F). While there is some variation in the partitioning of the loss of ΦPSII 

between losses in Fv’/Fm’ and qp, this variation seems to be independent of genotype or 

growth irradiance. A negative correlation between NPQ and ΦPSII (Fig. 2E) has already 

been noted, but in addition Fig. 3G also shows that considering all the data from all 12 

genotypes, the correlation between ΦPSII and NPQ is curvilinear, with NPQ decreasing 

more strongly with ΦPSII at lower values of ΦPSII. Overall, the correlation between ΦPSII 

and NPQ does not show much genotypic variation or dependency on growth irradiance. 

Long-term acclimation of light use efficiency to a step-wise increase in growth 

irradiance  

During acclimation to a step-wise increase in growth irradiance from 100 µmol m-2 s-1 to 

600 µmol m-2 s-1, Fo stays constant (Fig. 4A), whereas Fm decreases on the first day after 

the increase to high light (HL) and then recovers to its baseline value within 3-4 days (Fig. 

4B), resulting in a decrease in Fv/Fm on day 1 after the increase to HL (Fig. 4C). This 

decrease in Fv/Fm is correlated significantly to the levels of ΦPSII and qP before the 

increase in growth irradiance (Supplementary Table S1), as well as to the levels of ΦPSII 

and qP on each day of the subsequent acclimation period. NPQ started to decline within 

the first 24 hours after the irradiance increase and continued to decline until day 3 (Fig. 

4E). The level of NPQ on day 1 after the increase to HL is significantly correlated to the 

decrease in Fv/Fm on that same day, but this correlation disappears after the start of the 

acclimation of NPQ (Table S1). The decline of NPQ in the subsequent days of the 

acclimation period is accompanied by an increase in ΦPSII (Fig. 4E; 4F). Both NPQ and 

ΦPSII stabilize after three days of long-term acclimation.  
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Figure 4. Variation in long term acclimation response of 12 Arabidopsis accessions to 
increased growth irradiance after 24 days of growth, from 100 µmol m-2 s-1 to 600 µmol m-2 s-1 

(high light, HL). 
(A) Fo, (B) Fm, (C) Fv/Fm, (D) Fm’ measured with an actinic irradiance level of 600 µmol m-2 s-1, (E) 

NPQ measured with an actinic irradiance level of 600 µmol m-2 s-1, and (F) ΦPSII measured with an 

actinic irradiance level of 600 µmol m-2 s-1. Day 0 represents the baseline measurement taken on day 

24 after sowing the plants on rockwool. All measurements were taken in the morning, 30 minutes 

after light onset. Error bars indicate the standard error of the mean, N=3. The insets show the 

heritabilities of the daily responses relative to the day before for the corresponding values (Fo, Fm, 

Fv/Fm, Fm’(600), NPQ (600), or ΦPSII(600)). 
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Genotypic variation was observed for both the decline of NPQ and the increase in ΦPSII 

during acclimation to increased growth irradiance (heritabilities insets in Figures 4E and 

4F). Furthermore, there is some genotypic variation for the decrease in Fv/Fm on day 1 

after the increase to HL as well as its recovery on day 2 (heritabilities in inset Fig. 4C). 

After three days, all the measured photosynthetic parameters had stabilized; some 

genotypic variation is also noted for the kinetics of this stabilization process, as shown by 

the heritabilities (insets, Fig. 4).  

While some accessions acclimate fully (Fig. 5A and 5C) to an increase in growth 

irradiance (ie after acclimation to the increased irradiance their ΦPSI I-irradiance response 

becomes identical to that they have when grown continuously at this higher irradiance), 

others do not (Fig. 5B and 5D). Among the twelve accessions used in this study we could 

distinguish only these two kinds of responses; the responses for the accessions not 

shown in Figure 5 are in supplementary Figure S4. 

 

 

Figure 5. Variation in light response curves of relative electron transport rate (rETR) of four 
Arabidopsis accessions grown at a low growth irradiance (growth in LL), grown in LL for 24 

days followed by a high growth irradiance (HL) for 4 days (response to HL), and grown in HL 
for 24 days (growth in HL).  

The low growth irradiance level is 100 µmol m-2 s-1; high growth irradiance level is 600 µmol m-2 s-1. 

Error bars indicate the standard error of the mean, N=3. 
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Genome-wide association analysis 

ΦPSII was measured on 344 accessions of Arabidopsis one day before and one hour after 

an increase in growth irradiance from 100 µmol m-2 s-1 to 550 µmol m-2 s-1; ΦPSII 

measurements before and after the increase were correlated significantly, with a Pearson 

correlation coefficient of 0.436. At both time points the measurements were normally 

distributed (Supplementary figure S5), but the phenotypic distribution, and consequently 

also the trait heritability, was larger one hour after the increase in irradiance compared to 

before the increase in irradiance (H2=0.26 vs H2=0.09). A genome-wide association study 

(GWAS) was performed for the measurements taken one hour after a step-wise increase 

in growth irradiance to identify potential candidate genes associated with the short-term 

high light response of photosynthesis (Fig. 6). All of these genes are nuclear because the 

cytoplasmic genomes cannot be included in the analysis because neither the 

mitochondrial nor the chloroplast genomes have been genotyped for the Arabidopsis 

population we used (nor for any other large Arabidopsis population) so there are no SNPs 

(or any other genetic markers) available for these genomes. Any phenotypic variation 

arising from the variation in the cytoplasmic genetic factors will therefore not be 

accounted for.  

 

 

 

Figure 6. Genome-wide association analysis of ΦPSII one hour after an increase in growth 

irradiance from 100 µmol m-2 s-1 to 550 µmol m-2 s-1.  
Based on the analysis of 344 diverse Arabidopsis accessions. Every point indicates the –log10(p) 

value for all SNPs that have been tested. Different colours distinguish the SNPs mapped to one of 

the five chromosomes of Arabidopsis. The dotted line represents the arbitrary threshold for 

significance of –log10(p) = 4. 
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The strongest association between a SNP and the phenotype we found had a –log10(p) 

value of 5.31, where ‘p’ is the probability of obtaining the association by chance. This 

strength of association was found twice, at position 27981096 on chromosome 1, and for 

position 12784017 on chromosome 3. Using an arbitrary threshold of significance for –

log10(p) of 4, we defined the SNPs with –log10(p) values above this threshold as 

‘associated SNPs’. This yielded 30 associated SNPs, corresponding to 25 candidate 

genes (some genes contain more than one SNP), which increases to 63 candidate genes 

when all genes in linkage disequilibrium (LD) with these SNPs are included (Table II). 

Besides information on the genes localized (either directly or in LD) to the associated 

SNPs, Table II shows extra information about the population genetics of the associated 

SNPs, such as minor allele frequency in the population, the effect size on the trait, and 

the percentage of variation it explains. The functions, if known, of those genes directly 

associated with the SNPs is also described in Table II; the functions of the genes in the 

LD regions with the associated SNPs are described in Supplementary Table S2. No 

genes previously reported to be involved in photosynthesis were found among the 63 

candidate genes., The candidate gene list is, however, enriched for genes encoding 

proteins that are targetted to the chloroplast, cytosol, and nucleus (Fig. 7A). When 

examined for protein function, there is enrichment for kinase activity, protein binding, 

transferase activity, and transporter activity (Fig. 7B), while the processes DNA/RNA 

metabolism, response to abiotic or biotic stimulus, response to stress, and transport are 

most represented (Fig. 7C). Of the 63 candidates, 13 (nuclear encoded) proteins are 

targetted to the chloroplast (Table III). 
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Table II.  List of candidate genes localized to SNPs  

Candidate genes are those genes containing the SNP and those genes in linkage disequilibrium (LD) 

with the SNP associated with a –log10(p) >4 for ΦPSII measured one hour after a step-wise increase 

in irradiance from 100 to 550 µmol m-2 s-1, selected upon a genome wide association study on 344 

Arabidopsis accessions. Chr., chromosome; gene, the gene to which the associated SNP localizes, if 

two genes are indicated, the SNP is mapped in between two genes; SNP pos., the chromosome 

position(s) of the SNP(s); MAF, minor allele frequency, the letter in parenthesis indicates whether it 

represents the Col-0 allele (C) or the non-Col-0 allele (NC); -log10(p), the significance level of the 

associated SNP expressed as –log10(p); effect size, the contribution of the Col-0 allele of the SNP 

on ФPSII; perc.of.genetic.var, the percentage of genetic variation explained by the SNP; description, 

the annotation of the gene function as indicated in TAIR (www.arabidopsis.org); LD, the genes found 

to be in linkage disequilibrium (r> 0.45) with the indicated SNP. 

Chr. Gene SNP Pos. MAF  -log10(p) Effect 

size  

Perc.of.

genetic.

var 

Description LD 

1 AT1G21080/ 

AT1G21090 

7384441 0.146 (C) 4.6 0.018 9 DNAJ heat shock N-terminal domain-

containing protein / Cupredoxin 

superfamily protein 

AT1G21060 

to 

AT1G21140 

1 AT1G69770 26249116 0.254 (NC) 4.3 -0.014 8.1 Chromomethylase 3; involved in 

methylating cytosine residues at non-

CG sites. 

- 

1 AT1G72560 27329236 0.246 (NC) 4.6 0.014 8.1 PAUSED, a karyopherin - 

1 AT1G74180 27899243 0.351 (C) 4.4 0.013 8.6 Receptor-like protein 14, located in 

chloroplast 

AT1G74190 

1 AT1G74440 27979318; 

27981096 

0.447 (C); 

0.365 (NC) 

5.0; 5.3 0.013; 

0.013 

9.0; 9.8 Unknown protein - 

2 AT2G26280 11189311 0.196 (NC) 4.3 -0.018 8.3 CID7, CTC-interacting domain7, 

functions in DNA binding and 

mismatch repair, located in 

chloroplast.  

AT2G26290 

3 AT3G04910 1353894 0.155 (NC) 4.3 -0.016 8.3 WNK1, With No Lysine Kinase1, 

serine/threonine protein kinase, 

whose transcription is regulated by 

circadian rhythm.  

AT3G04880 

to 

AT3G04910 

3 AT3G05860 1750265; 

1750573; 

1750946; 

1751042 

0.175; 

0.167; 

0.167; 

0.211 (C) 

4.2; 4.5; 

4.2; 5.4 

0.016; 

0.017; 

0.016; 

0.016 

8.3; 

9.1; 

8.3; 9.8 

MADS-box transcription factor family 

protein 

AT3G05790 

to 

AT3G05890 

3 AT3G22910 8120853 0.307 (NC) 4.1 0.015 7.9 ATPase E1-E2 type family protein / 

haloacid dehalogenase-like hydrolase 

family protein 

 

- 
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Chr. Gene SNP Pos. MAF  -log10(p) Effect 

size  

Perc.of.

genetic.

var 

Description LD 

3 AT3G31410 12784017 0.377 (C) 5.3 -0.015 8.7 Transposable element - 

3 AT3G44230 15932189 0.184 (NC) 4.1 -0.016 6.6 Unknown protein - 

3 AT3G54010 20000766 0.289 (NC) 4.7 -0.014 9.6 Immunophilin-like protein AT3G54000 

4 AT4G11300 6872903 0.480 (C) 4.2 0.014 7.6 Unknown protein - 

4 AT4G14250 8209018; 

8209226 

0164; 

0.187 (C) 

4.9; 5.1 0.017; 

0.016 

9.3; 9.1 Pseudogene - 

4 AT4G21760 11561583 0.053 (NC) 4.2 0.023 6.3 Beta-glucosidase 47, involved in 

carbohydrate metabolic process 

AT4G21750 

to 

AT4G21770 

5 AT5G03760 987180; 

987216; 

988003 

0.216 (C); 

0.272; 

0.240 

4.9; 4.3; 

4.4 

0.014; 

0.014; 

0.014 

7.7; 

8.5; 8.3 

Cellulose Synthase Like A9 AT5G03750 

5 AT5G42870 17186178 0.345 (C) 4.3 -0.012 8 PAH2, a phosphatidate 

phosphohydrolase 

- 

5 AT5G43390 17424158 0.450 (C) 4.0 -0.012 8.5 Uncharacterised conserved protein, 

located in chloroplast 

- 

5 AT5G64960 25956134 0.465 (C) 4.3 -0.013 9.9 CDKC2, expression of CDKC2 

modifies the location of spliceosomal 

components 

AT5G64910-

AT5G65030 

5 AT5G64980 25963073 0.465 (C) 4.5 -0.013 9.9 Unknown protein   

5 AT5G65000/A

T5G65005 

25967700 0.354 (NC) 4.9 0.013 9.4 Nucleotide-sugar transporter family 

protein / Polynucleotidyl transferase 

  

5 AT5G65010 25968943 0.284 (NC) 4.2 0.014 10.1 ASN2, Asparagine Synthetase 2   

5 AT5G65030 25975808 0.480 (C) 4.4 -0.013 10.4 Unknown protein   
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Figure 7. Gene ontology enrichment analysis  

(A) Cellular Component, (B) Molecular Function, and (C) Biological Process. The graphic depicts the 

fraction of genes from a list (gene candidate list directly localized to, and in LD regions of, the SNPs 

associated in GWAS above –log10(p) = 4; list of all genes on chromosome 1; on chromosome 2; on 

chromosome 3; on chromosome 4; and on chromosome 5) annotated to different gene ontology 

categories.   



  

 
 
44 

Table III. List of candidate genes  that encode proteins predicted to localize at the chloroplast.  

Selected from  63 genes found to be directly localized, or be in linkage disequilibrium with the 

associated SNPs identified in the GWAS. 

Gene  SNP  Description 

AT1G21060  in LD with 7384441  Unknown protein 

AT1G21065  in LD with 7384441  Unknown protein 

AT1G74180  directly localized to 

27899243 

 Receptor-like protein 14, located in chloroplast 

AT1G74440  27979318; 27981096  Unknown protein 

AT2G26280  directly localized to 

11189311 

 CID7, CTC-interacting domain 7, functions in DNA binding and mismatch repair 

AT3G05790  in LD with 1750265; 

1750573; 1750946; 

1751042 

 Lon-protease 4, for degradation of abnormal, damaged, and unstable protein 

AT3G05810  in LD with 1750265; 

1750573; 1750946; 

1751042 

 Chromatin assembly/disassembly protein 

AT4G21770  in LD with 11561583  Pseudouridine synthase, involved in RNA modification 

AT5G43390  directly localized to 

17424158 

 Uncharacterised conserved protein 

AT5G64930  in LD with 25956134; 

25963073; 25967700; 

25968943; 25975808 

 Regulator of expression of pathogenesis-related genes. Participates in signal 

transduction pathways involved in plant defence. 

AT5G64940  in LD with 25956134; 

25963073; 25967700; 

25968943; 25975808 

 Oxidative stress-related ABC1-like protein (ATP-binding cassette) 

AT5G65000  directly localized to 

25967700 

 Nucleotide-sugar transporter family protein / Polynucleotidyl transferase 

AT5G65020  in LD with 25956134; 

25963073; 25967700; 

25968943; 25975808 

 Annexin 2, calcium binding protein 
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DISCUSSION 

Short-term response of plants to increased irradiances 

In 12 genotypically diverse Arabidopsis accessions grown at 100 µmol m-2 s-1 there is 

variability in the responses of ΦPSII to short-term (minutes time scale) changes in 

irradiance (Fig. 2A, Fig. 2B). There is more phenotypic variance for electron transport rate 

the closer the actinic irradiance level is to light saturation (Fig. 2B), which would be 

expected given that increasing irradiances move the leaf from light-limitation to light-

saturation (Björkman, 1981; Evans and Poorter, 2001). In a light-limited leaf, ΦPSII is close 

to a maximum value (c. 0.80 – 0.83) that is similar across many groups of plants 

(Björkman and Demmig, 1987). The value for ΦPSII at steady state is due to the balance 

between supply side processes, that give rise to the formation of excited states of 

chlorophyll a (chl*) in PSII following light absorption by photosystem II, and demand side 

processes that dissipate these chl* photochemically (Genty et al., 1989). If supply 

exceeds demand then the light-use efficiency for photosynthesis must decrease. For 

plants grown at 100 µmol m-2 s-1 such a decrease has already occurred at an actinic 

irradiances equal to the growth irradiance (Fig. 2A), which implies that even at low growth 

irradiances acclimation did not maximise light-use efficiency. In a light-saturated leaf, 

ΦPSII is limited by electron transport or metabolic factors that generally can differ greatly 

between species (Seemann, 1989; Murchie and Horton, 1997; Valladares et al., 1997) 

and within species (Balaguer et al., 2001; Walters et al., 2003; Ptushenko et al., 2013).  

Values for heritability generally range from zero to one (Visscher et al., 2008), where a 

value of one means that all of the observed phenotypic variance is solely due to genetic 

variation. The heritability for ΦPSII ranges around 0.50, independent of the actinic 

irradiance at which it is measured (inset Fig. 2B), from which we conclude the amount of 

genetic variation for short-term responses of ΦPSII to increased irradiance is independent 

of the level of the irradiance. To further dissect the variation for photosynthetic light use 

efficiency, ΦPSII can be broken down into its Fv’/Fm’ and qp components (Genty et al., 

1989). Overall, Fv’/Fm’ and qp decrease as ΦPSII decreases, but not in parallel (Harbinson 

et al., 1989). In the absence of photodamage or slowly reversible down-regulation of PSII 

(Demmig-Adams and Adams, 2006), decreases in Fv’/Fm’ are due to the activation of a 

non-photochemical dissipation mechanism that gives rise to the qE component of NPQ 

(Demmig et al., 1987). Decreases in qp are due to the reduction of QA, though the 

relationship between QA redox state and qp is non-linear (Kramer et al., 2004). In 

response to a moderate increase in irradiance (from 100 to 200 µmol m-2 s-1), the 



  

 
 
46 

decrease in ΦPSII is due only to decreases in qP (Fig. 2C and 2D). The loss of qP at low 

irradiances, which is due to an over-excitation of PSII compared to PSI and not to a 

limitation of electron transport (Genty and Harbinson, 1996),  is still correlated with a loss 

of light-use efficiency for carbon dioxide fixation (Hogewoning et al., 2012). The lack of 

any decrease in Fv’/Fm’ at the lowest measurement irradiances is paralleled by the pattern 

of heritability for the irradiance responses of qp and Fv’/Fm’ (insets, Fig. 2C and 2D)  

The parameters Fv’/Fm’ and NPQ quantify the effect of inducible (ie not present in the 

dark-adapted state) non-photochemical dissipation in PSII on the efficiency of open PSII 

traps (Fv’/Fm’) and the quenching of Fm (NPQ). Even if Fm’ changes, the Fv’/Fm’ calculated 

using a measured value of Fo’ should be unaffected by state transitions, in contrast to the 

NPQ parameter. In our case Fo’ was calculated from Fv, Fm and Fm’ (Oxborough and 

Baker, 1997) and while this allows a good estimate of Fo’, it cannot estimate the impact of 

qT quenching which is where the impact of using a calculated Fo’ in place of a measured 

Fo’ will be greatest. QT quenching is due to state transitions (Horton and Hague, 1988; 

Quick and Stitt, 1989) on Fo’. QT quenching (and state transitions) is limited to low 

irradiances (Walters and Horton, 1991; Rintamäki et al., 1997). An Fv’/Fm’ based on a 

calculated Fo’ is therefore likely to be better correlated with NPQ than would be an Fv’/Fm’ 

based on a measured Fo’, especially at low irradiances. Figure 2E, 2F, and 2G show a 

high correlation of NPQ, qP, and Fv’/Fm’ with ΦPSII measured at light saturation (actinic 

light of 700 µmol m-2 s-1). Fv’/Fm’ and qP are more strongly correlated with ΦPSII than is 

NPQ (Fig. 2E, 2F, 2G), which is to be expected as ΦPSII is the product of qP and Fv’/Fm’. 

The correlation between NPQ and Fv’/Fm’ (Fig. 2H) is also expected given that under the 

experimental conditions used both these parameters will be predominantly affected by the 

energy-dependent quenching mechanism that gives rise to qE. These results suggest that 

there is little variability in the extent to which the loss of ΦPSII can be absorbed via the 

thermal dissipation processes that give rise to NPQ and produce the decrease in Fv’/Fm’. 

ΦPSII in plants grown at different constant growth irradiances 

In response to increasing growth irradiances, all accessions of Arabidopsis showed a 

smaller loss of ΦPSII with increasing actinic irradiance (Fig. 3A). As a result, ΦPSII 

measured at an actinic irradiance identical to the growth irradiance decreases only 

slightly with growth irradiance (maximally 25%, Fig. 3B). This response shows that 

Arabidopsis has considerable flexibility in its photosynthetic apparatus and responds 

strongly to high irradiances, a trait not found in all species (Murchie and Horton, 1997). 

Genotypic variation for this trait is minor amongst the 12 genotypes used in this study 
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(Fig. 3B). More genotypic variation can be found in the relationship between the rETR at 

light saturation and growth irradiance (Fig. 3C). For some accessions this relation is 

linear, for some it is bi-phasic, and for some tri-phasic, confirming the presence of 

separate low and high light responses in Arabidopsis (Bailey et al., 2001). 

The pattern of partitioning of losses in ΦPSII between Fv’/Fm’ and qp is independent of both 

growth irradiance (Fig. 3D) and actinic irradiance (Fig. 3E), and genotype (Fig. 3F). These 

results imply that non-photochemical dissipation in PSII is highly and consistently 

regulated across diverse genotypes grown under a range of growth irradiances. Another 

implication is that when evaluating and comparing the development and extent of the 

inducible non-photochemical dissipation processes that give rise to decreases in Fv’/Fm’ 

and to increases in NPQ, the underlying change in PSII efficiency should be taken into 

account (Fig. 3G).  

Long-term responses to a step-wise increase in growth irradiance  

The decrease in Fv/Fm (0.02 - 0.04) one day after a step-increase in growth irradiance 

from 100 to 600 µmol m-2 s-1 is due to a decrease in Fm, which is followed by a recovery 

in Fv/Fm, an increase in ФPSII and a decrease in NPQ (Fig. 4A, B, C). The decrease in 

Fv/Fm was correlated to the values for ФPSII and qP before the increase in irradiance, as 

well as to the values for ФPSII, qP, and NPQ on the first day after the increase in irradiance 

(Supplementary Table S1). Slowly reversible decreases in Fv/Fm are an indicator of 

photodamage or of slowly reversible down-regulation of PSII (Walters and Horton, 1991; 

Demmig-Adams and Adams, 1992; Niyogi, 1999; Demmig-Adams and Adams, 2006). We 

were not able to distinguish between these two mechanisms in our experiments, but 

overall the phenomenon of slowly reversible loss of Fv/Fm seems to occur if the short-term 

protection mechanisms that give rise to NPQ are insufficient to protect PSII from damage.  

The kinetics of NPQ decay and ΦPSII recovery after a step-increase in irradiance show 

genotypic variation (Fig. 4E and 4F), implying there is variation in the regulation of 

photosynthetic recovery after an irradiance increase, whereas the ultimate extent of 

acclimation after four days shows no genotypic variation. The extents of the changes in 

ΦPSII in response to a step-increase in irradiance found by use are similar to those found 

by Yin et al. (2012), but their ΦPSII values decreased for two days following the increase in 

irradiance before recovering on day three, whereas our data showed a recovery of ΦPSII 

beginning on the first day after the increase in irradiance. This difference could be caused 

by the relatively greater irradiance increase they used (from 120 µmol m-2 s-1 to 950 µmol 

m-2 s-1 versus from 100 µmol m-2 s-1 to 600 µmol m-2 s-1 in our case), causing more 
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extensive slowly reversible loss of Fv/Fm. Yin et al identified two potential regulatory 

mechanisms that are variable among three Arabidopsis accessions in response to 

increased irradiance; one is the abundance of kinases that facilitate state transitions and 

the other is a mechanism to facilitate lateral protein traffic in the membrane by diluting 

chlorophyll-protein complexes with additional lipids and carotenoids (Yin et al., 2012). The 

variation we found for the kinetics of NPQ decay and ΦPSII recovery is likely to reflect 

these different mechanisms found by Yin et al (2012), and in addition possible other 

regulatory mechanisms yet undefined. 

After full acclimation to a step-wise increase in irradiance from 100 to 600 µmol m-2 s-1, all 

accessions had a photosynthetic capacity higher than that achieved under a constant 

growth irradiance of 100 µmol m-2 s-1 (Fig. 5, Supplementary Figure S4). In contrast to our 

results, a similar study performed by Athanasiou et al. (2010) revealed significant 

variation in the ability of different accessions to acclimate to an increased irradiance. 

While Athanasiou et al. increased irradiance after 8 weeks of growth at 100 µmol m-2 s-1, 

we increased it after 3.5 weeks of growth. Plant age or size therefore might have an effect 

on the capacity of photosynthesis to respond to the increase in irradiance. We also grew 

the plants hydroponically while Athanasiou et al. used soil-based cultivation, and 

differences in plant nutritional state might have contributed to the different responses of 

photosynthesis. Whatever the explanation, the fact that there are these differences 

implies that there are extra dimensions to the irradiance responses of photosynthesis in 

Arabidopsis that need to be understood. There is genotypic variation for the ability of 

leaves grown at 100 µmol m-2 s-1 before a step-increase in irradiance to 600 µmol m-2 s-1 

to acclimate their photosynthetic capacity to that found in leaves grown at a constant 

irradiance 600 µmol m-2 s-1 (Fig. 5). A possible role for leaf anatomy in limiting the 

response of photosynthetic capacity in leaves subjected to an increase in irradiance has 

been reported (Oguchi et al., 2003) and there is variation in leaf architecture in 

Arabidopsis (Pérez-Pérez et al., 2002).  

Natural genetic variation and GWAS 

The fact that there is genetic variation for photosynthesis could mean that natural 

selection has favoured different optima depending on the local environment, especially 

since it is hard to imagine that genetic drift will be the sole cause of variation for such an 

important trait (Alonso-Blanco et al., 2009; Trontin et al., 2011). To investigate this it is 

crucial to identify the genes involved and the effect of alleles of those genes on the 

photosynthesis phenotype. Identifying causal allelic variation is easier when there is 
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substantial genetic variation for a trait, as quantified by the heritability values (Barton and 

Keightley, 2002) and the effect size of the QTL (Falke and Frisch, 2011). It is hard to 

predict how much heritability is required before a trait will be amenable to genetic 

analysis, as this depends on the number of loci that contribute to the heritability (i.e. the 

genetic complexity of the trait) and on the population used in the study (Visscher et al., 

2008; Brachi et al., 2011). In this study of 12 Arabidopsis accessions it is clear that there 

are some photosynthetic traits for which heritability values look more promising for further 

genetic analysis than others  

The heritability calculated for ΦPSII in the 344 accessions used for the GWAS (H2=0.09 

before, and H2=0.26 one hour after, the increase in growth irradiance (Figure S5) is 

different from the heritability calculated for the population of 12 accessions (H2=0.59 

before, and H2=0.53 after the increase in growth irradiance; Figure 2B). Different 

heritabilities for the same trait in different populations can be explained by different allele 

frequencies (Visscher et al., 2008); in this case it looks like the small set of 12 diverse 

accessions already captured most of the genetic variation for ΦPSII also found in the larger 

set of 344 accessions. Even though alleles get more heterogeneous when studying a 

bigger natural population (Brachi et al., 2011; Gibson, 2012),  if the larger heterogeneity 

found in the set of 344 accessions does not contribute to larger  phenotypic variation than 

in the set of 12 accessions, but merely a dilution of the phenotypic effect of extreme 

genotypes, the result will be a reduction in heritability.  

Successful GWAS studies have identified an over-representation in a-priori candidate 

genes (Atwell et al., 2010), or identified only a small number of genes that were 

associated above the Bonferroni threshold of –log10(p) = 6.50 (Chao et al., 2012; Meijón 

et al., 2014). The Bonferroni threshold is a very stringent statistical test correcting for 

multiple testing (Holm, 1979). In our study, no genetic associations are detected with a –

log10(p) above the Bonferroni threshold. As the change in photosynthesis efficiency in 

response to an increase in irradiance is a highly polygenic trait, we expect that the effects 

of the individual underlying genes will be small. Such genes are likely to remain hidden in 

associations that do not exceed the Bonferroni threshold because of epistatic and 

interactive effects (Gibson, 2010; Korte and Farlow, 2013). By lowering the –log10(p) 

threshold to 4, some of these hidden associations were be revealed (Fig. 6), allowing us 

to select 63 candidate genes which either contained an associated SNP or were in 

linkage disequilibrium (LD) with the SNP (Table II). No genes previously reported to be 

involved in photosynthesis were found among these candidate genes. To provide 

validation for our approach, a gene ontology (GO) enrichment analysis was performed 
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from which we could extract the ontology classes that are relevant for the natural variation 

of our trait (Fig. 7) (Huang et al., 2009). There was enrichment for regulation of protein 

abundance (enriched ontology classes: golgi apparatus, kinase activity, transferase 

activity, protein binding, protein metabolism, response to (a)biotic stimulus or to stress), 

as well as to responses limited to the nucleus (enriched ontology class: nucleus) and the 

chloroplast (enriched ontology classes: chloroplast, cytosol, transporter activity). Out of 

the 63 candidate genes, 13 of the (nuclear-) encoded proteins localized to the chloroplast 

(Table III). Close analysis of the function of these 13 genes validates the enrichment for 

abiotic stress responses, as some genes are involved with the sensing of a stress 

(receptor; oxidative stress protein; calcium binding protein), others with regulating a 

stress response (chromatin assembly/disassembly; RNA modification; regulator of 

expression of defence genes), and others are involved with the act of responding to 

(photosynthetic) stress (DNA mismatch repair; protease for degrading abnormal and 

damaged proteins; carbohydrate transport)  (Table III). Only four genes have no known 

function.  

Conclusion 

In conclusion, we have demonstrated that for Arabidopsis accessions there is genotypic 

variation for the short-term response of photosynthetic light use efficiency to a step-wise 

increase in growth irradiance as well as its long-term acclimation. The data also show that 

over the range of growth irradiances employed, the light use efficiency of photosynthesis 

(measured by ΦPSII) acclimates strongly to the level of growth irradiance so that the ΦPSII, 

measured at an actinic irradiance identical to the growth irradiance, only decreases 

slightly with higher levels of growth irradiance. A broader phenotypic distribution is found 

by measuring ΦPSII at light saturation (Fig. 2B, 3A, 5, and supplementary Fig. S5). In 

relation to productivity and yield, the ability of photosynthesis to acclimate has been 

shown to increase plant fitness of Arabidopsis in a greenhouse environment where 

natural fluctuations in irradiance and other environmental factors would have occurred 

(Athanasiou et al., 2010). If there was a desire to breed Arabidopsis for improved 

photosynthetic properties leading to increased yield, more might be gained by focussing 

on the dynamic regulatory acclimation response of photosynthesis to different light 

environments instead of investigating acclimation to stable environments (Leister, 2012). 

The response described here will be useful when selecting light environments for optimal, 

uniform growth of Arabidopsis, and also serves as a reminder that while often grown at 

low irradiances (100-200 µmol m-2 s-1), Arabidopsis has photosynthetic responses that 

are more typical of a high-light adapted plant, in accordance with its natural habitat which 
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is disturbed sites, possibly with light shade (Pigliucci, 1998; Mitchell-Olds and Schmitt, 

2006). In addition, we have shown that for those traits for which there is considerable 

heritability, it is possible to use GWAS to identify novel candidates for genetic 

components of the plant photosynthetic response to light. 
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SUPPLEMENTARY TABLES AND FIGURES  

Table S1. Correlation between the relative decrease of Fv/Fm on the first day after increasing 
the growth irradiance from 100 µmol m-2 s-1 to 600 µmol m-2 s-1 and other photosynthetic 

parameters during the acclimation period to increased growth irradiance.  
Dark grey cells indicated with ** represent significant correlations at P=0.05; light grey cells indicated 

with * represent significant correlations at P=0.10. 

 

Fv/Fm Fv'/Fm'(600) NPQ(600) qP(600) ФPSII(600)

Pearson 
Correlation

0.088 0.031 0.025 .395** 0.296*

Sig. (2-tailed) 0.616 0.862 0.886 0.019 0.085

Fv/Fm Fv'/Fm'(600) NPQ(600) qP(600) ФPSII(600)

Pearson 
Correlation .792** .077 .364** .525** .393**

Sig. (2-tailed) .000 .659 .032 .001 .019

Fv/Fm Fv'/Fm'(600) NPQ(600) qP(600) ФPSII(600)

Pearson 
Correlation .636** .109 .255 .394** 0.286*

Sig. (2-tailed) .000 .533 .139 .019 .096

Fv/Fm Fv'/Fm'(600) NPQ(600) qP(600) ФPSII(600)

Pearson 
Correlation .617** 0.311* -.040 .387** .396**

Sig. (2-tailed) .000 .069 .819 .022 .018

Fv/Fm Fv'/Fm'(600) NPQ(600) qP(600) ФPSII(600)

Pearson 
Correlation .505** 0.306* -.084 .382** .365**

Sig. (2-tailed) .002 .074 .631 .024 .031

Decrease 
in Fv/Fm on 

day 1 
relative to 

day 0

DAY3                           
(after HL increase)

DAY4                           
(after HL increase)

Decrease 
in Fv/Fm on 

day 1 
relative to 

day 0

Decrease 
in Fv/Fm on 

day 1 
relative to 

day 0

Decrease 
in Fv/Fm on 

day 1 
relative to 

day 0

Decrease 
in Fv/Fm on 

day 1 
relative to 

day 0

DAY0

DAY1                           
(after HL increase)

DAY2                           
(after HL increase)
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Table S2. Annotations of the gene function as indicated in TAIR (www.arabidopsis.org) of all 

the genes found to be in linkage disequilibrium (r> 0.45) with the SNPS associated with a –
log10(p) >4 for ΦPSII measured one hour after a step-wise increase in irradiance from 100 to 

550 µmol m-2 s-1. 

Gene Description 

AT1G21060 Unknown protein  

AT1G21065 Unknown protein  

AT1G21070 Nucleotide-sugar transporter family protein 

AT1G21100 IGMT1, indole glucosinolate O-methyltransferase 1 

AT1G21110 IGMT3, indole glucosinolate O-methyltransferase 3 

AT1G21120 IGMT2, indole glucosinolate O-methyltransferase 2 

AT1G21130 IGMT4, indole glucosinolate O-methyltransferase 4 

AT1G21140 Nodulin-like1, transcript abundance repressed under conditions of Fe-deficient growth 

AT1G74190 Receptor-like protein 15, located in endomembrane system 

AT2G26290 Root-specific kinase1 

AT3G04880 Encodes a novel protein involved in DNA repair from UV damage 

AT3G04890 Unknown protein  

AT3G04900 Heavy metal transport/ detoxification superfamily protein 

AT3G04903 Encodes a defensin-like family protein 

AT3G05790  Lon-protease 4, for degradation of abnormal, damaged, and unstable protein 

AT3G05800 AIF1 (activation-tagged BRI1 suppressor 1)-interacting factor 1, involved in MAPK cascade, major regulator 

AT3G05810 Chromatin assembly/disassembly protein 

AT3G05820 Encodes a putative plastid-targeted alkaline/neutral invertase 

AT3G05830 Encodes an intermediate filament-liek protein, function unknown 

AT3G05835 tRNA-Ile 

AT3G05840 Encodes a kinase involved in meristem organization 

AT3G05850 Encodes a member of a domesticated transposable element gene family 

AT3G05858 Unknown protein  

AT3G05870 Subunit of the anaphase promoting complex in cell division 

AT3G05880 Encodes a small, highly hydrophobic protein induced by low temperatures, dehydration and salt stress (A) 

AT3G05890 Encodes a small, highly hydrophobic protein induced by low temperatures, dehydration and salt stress (B) 

AT3G54000 Unknown protein  

AT4G21750 MERISTEM LAYER 1, a homeobox protein similar to GL2; expressed in both the apical and basal daughter 
cells of the zygote. 

AT4G21770 Pseudouridine synthase, involved in RNA modification 

AT5G03750 Unknown protein  

AT5G64910 Unknown protein  

AT5G64920 Encodes a RING-H2 protein, involved in ubiquitination 

AT5G64930 Regulator of expression of pathogenesis-related genes. Participates in signal transduction pathways involved in 
plant defence. 

AT5G64940 Oxidative stress-related ABC1-like protein (ATP-binding cassette) 

AT5G64950 Mitochondrial transcription termination factor family protein 

AT5G64970 Mitochondrial substrate carrier family protein 

AT5G64990 RAB GTPase homolog, GTPase activity, located in mitochondrion 

AT5G65020 Annexin 2, calcium binding protein 
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Figure S1. Light response curves per accession in different constant growth irradiances.  

Error bars indicate the standard error of the mean, N=3. 
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Figure S2.  Maximum relative electron transport rates (rETR) measured at saturating actinic 

irradiance  per accession in different constant growth irradiances.  
Error bars indicate the standard error of the mean, N=3.
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Figure S3. Variation in parameterized valueof the relation of maximum rETR with growth 
irradiance level 

(A) Descriptive ANOVA table including a Tukey’s HSD test revealing three significantly different 

groups for the parameterized value at p=0.05; (B) Variation in parameterized value for the relation 

between photosynthetic capacity and growth irradiance, Error bars indicate the standard error of the 

mean, N=3. The top right inset shows the heritability calculated for this trait.

1 2 3

tsu-0 3 1.1117 .58950 .34035 1.1117

c24 3 1.3907 .56734 .32755 1.3907 1.3907

est-1 3 1.4367 .37650 .21737 1.4367 1.4367

cvi-0 3 1.5407 .36650 .21160 1.5407 1.5407 1.5407

can-0 3 1.6290 .27900 .16108 1.6290 1.6290 1.6290

sha 3 2.1377 .12150 .07015 2.1377 2.1377 2.1377

bur-0 3 2.1720 .19300 .11143 2.1720 2.1720 2.1720

bor-4 3 2.3607 .98273 .56738 2.3607 2.3607 2.3607

col-0 3 2.5650 .63877 .36879 2.5650 2.5650 2.5650

ler-1 3 2.6727 .58750 .33919 2.6727 2.6727 2.6727

nfa-8 3 2.9483 .75612 .43655 2.9483 2.9483

van-0 3 3.1210 .52400 .30253 3.1210

Sig. .067 .068 .061

Subset for alpha = 0.05

A   Descriptives Tukey's HSD test

 
N

Mean 
parameter-
ized value

Std. 
Deviation Std. Error
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Figure S4. Complete variation in light response curves of rETR of all 12 accessions grown in 

low growth irradiance level (LL), response to high growth irradiance level (HL), or grown in 
HL 
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Figure S5. Phenotypic distribution of ΦPSII one day before (A) and one hour after (B) an 

increase in growth  irradiance from 100 µmol m-2 s-1 to 550 µmol m-2 s-1 for the 344 accessions 
used for the GWAS.  
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ABSTRACT 

Increases in irradiance levels damage the photosynthesis machinery, but plants can 

protect themselves from this damage and adapt to acclimate (Demmig-Adams and 

Adams, 1992; Walters, 2005). Natural genetic variation for this acclimation should be 

exploited to identify the genes involved (Van Rooijen et al., 2015). Here we show it is 

feasible to dissect natural genetic variation in photosynthesis efficiency down to the 

genomic DNA level, by confirming that allelic sequence variation at the YELLOW 

SEEDLING1 (YS1) gene explains natural variation in Arabidopsis thaliana photosynthesis 

acclimation. YS1 encodes a Pentatrico-Peptide-Repeat (PPR) protein involved in RNA 

editing of plastid encoded genes (anterograde signalling), (Zhou et al., 2009). A genome-

wide association (GWA) study was performed in a time-course manner to genetically 

dissect the photosynthetic acclimation response of Arabidopsis thaliana. Candidate genes 

were prioritized according to recurrence of association over time, in combination with 

relevant functional clues regarding gene ontology, expression and function. Reverse 

genetics supported the involvement of four gene candidates. Quantitative 

complementation and gene expression analysis confirmed that polymorphisms in the GT-

1 binding site of the light responsive element in the promoter of YS1 are the cause of the 

variation in photosynthetic acclimation. 
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INTRODUCTION  

Light, as the driving force for photosynthesis, is a conspicuously important determinant of 

photosynthetic activity. Genetic variation exists in plants for what constitutes a high light 

leaf or a low light leaf, for the range of irradiances to which the leaf is capable of 

responding, and for the actual photosynthetic properties that emerge from any 

environmental treatment. A sudden increase in growth irradiance beyond light saturation 

causes light stress in the photosynthetic apparatus, especially in photosystem II (PSII). 

Within a few seconds this provokes a protective regulatory response in the metabolism of 

the leaf (Demmig-Adams and Adams, 1992; Dietz, 2015). If the increased irradiance level 

is sustained it will induce a photosynthetic acclimation response via changes in the 

composition of mesophyll cells in terms of their proteins, pigments, and lipids, and other 

cofactors involved in electron transport and reactive-oxygen species metabolism (Bailey 

et al., 2004; Walters, 2005; Li et al., 2009). The regulation of photosynthetic acclimation 

starts with signals originating either from photoreceptors, or from the photosynthetic 

machinery itself, going to the nucleus and altering patterns of nuclear gene expression 

(retrograde signalling), (Li et al., 2009). By identifying the genomic regions that associate 

with phenotypic variation before or after the increase in irradiance, or both, we can 

distinguish those regions that are associated with photosynthetic light use efficiency in 

general from those genomic regions that are associated with photosynthetic acclimation 

to an increase in irradiance (Moore et al., 2013; Bac-Molenaar et al., 2015). Annotating 

the genes that give rise to the photosynthetic acclimation response will reveal at which 

regulatory level natural genetic variation for photosynthesis exists. Photosynthesis is a 

complex trait at both the physiological and genetic levels and as a result natural genetic 

variation in photosynthesis is an underused resource for identification of the genetic 

regulation of photosynthesis (Flood et al., 2011; Van Rooijen et al., 2015). The poor 

understanding of the genetic foundations of photosynthetic traits together with the 

complex relationship between photosynthesis and yield has resulted in photosynthesis 

being underused in plant breeding programmes (Flood et al., 2011; Driever et al., 2014). 

Nevertheless it does have great potential for crop improvement (Lawson et al., 2012; 

Long et al., 2015). 
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MATERIALS AND METHODS 

Plant material and growth conditions 

A set of 344 Arabidopsis thaliana (Arabidopsis) accessions was used for GWA, which are 

all part of a core set of 360 natural accessions that represent the global genetic diversity 

of the species 

(https://www.arabidopsis.org/servlets/TairObject?type=stock&id=4501958598)(Li et al., 

2010). Sixteen accessions of the core set were not used: CS28051, CS28108, CS28808, 

CS28631, CS76086, CS76104, CS76110, CS76112, CS76118, CS76121, CS76138, 

CS76196, CS76212, CS76254, CS76257 and CS76302. An overview of all T-DNA lines 

that were studied can be found in Table S3.  

Plants were grown as previously described(Van Rooijen et al., 2015). In short, this 

involved growing plants in a climate controlled growth chamber, on rockwool supplied 

with a nutrient solution, at a constant irradiance of 100 µmol m-2 s-1 (Philips 610 

fluorescent tubes, MASTER TL5 HO, 80W). The photoperiod was set to 10h/14h 

day/night, temperature was set to 20/18°C (day/night), relative humidity was set at 70% 

and CO2 levels were ambient. The irradiance was increased to 550 µmol m-2 s-1, at the 

onset of the photoperiod, on day 25 after sowing. 

Chlorophyll a fluorescence imaging and analysis 

Chlorophyll a fluorescence was measured using a high-throughput phenotyping system 

developed for Arabidopsis, as described previously(Van Rooijen et al., 2015). In all 

experiments, the photoperiod lasted from 8.00h until 18.00h CET and imaging of light use 

efficiency of photosystem II (ΦPSII) was performed daily at 9.00h, 11.30h, 14.30h and 

16.30h. 

Genome-wide association (GWA) analysis  

Using a mixed model(Kruijer et al., 2015), GWA analyses were performed twice for each 

time point, once for the ΦPSII-values averaged per accession (3-4 replicates were used to 

produce the average value), and once on the individual measurements (using 3-4 

replicates). For each time point this was achieved by associating the ΦPSII-values (either 

averaged per accession or the individual measurements) to 215,000 SNPs that were 

scored either similar to the Col-0 accession (C) or not similar to the Col-0 accession 

(NC)(Kim et al., 2007); a minor SNP frequency of 0.05 was used to remove rare SNPs. 
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For each of the 215,000 SNPs, the -log10(p) value was calculated, where ‘p’ represents 

the p-value of a t-test between the C- and NC-group of each SNP. 

For each time point, SNPs with -log10(p)>4 were classified as quantitative trait loci 

(QTLs); whenever two or more SNPs were in linkage disequilibrium (LD; LD ≥ 0.45) they 

were lumped together to form one QTL. LD was determined by calculating the correlation 

coefficients between SNP calling frequencies in the population of study. The genome was 

divided into 2-Kbp blocks and the -log10(p) values of all SNPs with -log10(p)>4 within these 

blocks were first summed to form cumulative association scores. The scores of each 2-

Kbp region were then averaged with four adjacent 2-Kbp regions, two upstream and two 

downstream to smooth the data. QTLs were numbered according to physical position, 

and identified according to time of appearance, i.e. only in low light, early in the response 

to high light, late in the response to high light, or at all time points. 

All genes in LD with the associated SNPs for each QTL were identified by first listing all 

SNPs in LD (LD ≥ 0.45) with each SNP with a -log10(p)>4, and then cataloguing all genes 

in LD with these linked SNPs. The LD was calculated using whole genome re-sequence 

data for 173 accessions out of the population of 344 accessions used for the GWA, 

obtained from the 1001 genomes project (http://1001genomes.org/; Table S4).  

Candidate gene prioritization 

All candidate genes in LD with the associated SNPs were prioritized in an in silico 

analysis using publicly available databases for:  

(1) gene ontology terms (www.arabidopsis.org),  

(2) gene co-expression patterns(Hruz et al., 2008) (www.genevestigator.com),  

(3) gene expression in the vegetative rosette(Schmid et al., 2005) 

(http://bar.utoronto.ca/) ,  

(4) known to have a function related to photosynthesis based on literature, 

(5) presence of polymorphisms segregating between two groups of 15 accessions with 

the most extreme phenotypes (http://1001genomes.org/). 

Whenever a candidate gene scored positive for three out of these five criteria, it was 

included in the priority candidate list (Table 1). When multiple candidate genes for one 

QTL listed in the priority candidate list, we selected the priority candidate with segregating 

polymorphisms in the extreme accessions for our reverse screening. For some QTLs we 

chose multiple priority candidate genes for reverse screening, because multiple genes 



  

 
 
64 

complied with the segregating polymorphism-criterion, or because neighbouring genes 

with homologous/redundant functions were listed in this QTL. 

Haplotype analysis 

Haplotypes, representing natural alleles, were assigned based on all SNPs in the 

promoter and coding regions of candidate genes using the re-sequence data of 173 

accessions. Those haplotypes that occurred in >4% of the 173 accessions were then 

associated with photosynthetic phenotypes. Haplotypes that resulted in different 

photosynthetic response to increased irradiance (based on two-sided Student’s t-test) 

were selected for quantitative complementation tests.  

Quantitative complementation 

Quantitative complementation to confirm involvement of allelic difference at one locus to 

contribute to the observed phenotypic variation (Long et al., 1996a), was performed by 

crossing two accessions with different alleles for the gene involved, thought to contribute 

to the most contrasting phenotypes, to a T-DNA insertion knock-out mutant for the gene, 

in accession Columbia (Col) background, as well as to the Col wild type (both used as 

maternal line). The phenotype of resulting F1 plants (N = 16 per cross) for their 

photosynthetic response to increased irradiance was determined as described above, 

two-way ANOVA was performed for testing significance. For quantitative 

complementation of YS1, we used the accession CS76172 representative for allele 3 

accessions and the accession CS76133 representative for allele 4 accessions. The whole 

experiment for quantitative complementation was performed twice in the laboratory. 

Quantitative reverse transcription PCR (qRT-PCR) 

At time point 11.00 am CET (i.e. 3h after lights on) on days 24 (LL plants) and 25 (HL 

plants) after sowing, whole rosettes were collected and flash-frozen in liquid nitrogen. 

RNA was isolated according to Onate-Sánchez and Vicente-Carbajosa (2008). After 

normalization of RNA concentrations, cDNA was synthesized using the Iscript cDNA 

synthesis kit (Bio-RAD, www.bio-rad.com). qRT-PCR was performed with three technical 

replicates for each biological replicate using the SYBR-green master mix (Bio-RAD, 

www.bio-rad.com). Three biological replicates were used per accession; four accessions 

were analysed per haplotype. Two reference genes were used for normalization: 

UBIQUITIN7 (UBQ7; At2g35635) and CYTOCHROME B5 ISOFORM E (CB5E; 

At5g53560); transcription levels of UBQ7 were shown to be constant under excess light 
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by Jung et al. (2013), and the transcription levels of CB5E were shown to be constant 

under excess light by Wunder et al. (2013). The primers used for qRT-PCR are listed in 

Table S5. We chose the accessions CS76113, CS28193, CS28492, and CS76297 to 

represent allele 1; the accessions CS76305, CS28685, CS76218, and CS76153 to 

represent allele 3; and the accessions CS28787, CS76133, CS76129, and CS76128 to 

represent allele 4. One-way ANOVA was used for testing significance. 
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RESULTS AND DISCUSSION 

Using chlorophyll fluorescence imaging, the light-use efficiency of PSII electron transport 

(ФPSII) was measured in 344 Arabidopsis accessions at four time-points during the day, 

before and after the plants were subjected to a sudden increase in growth irradiance (Fig. 

1a). The phenotypic distribution for ФPSII was narrow under steady low growth irradiance 

(100 µmol m-2 s-1), got broader upon high irradiance exposure (550 µmol m-2 s-1), and 

narrowed again during photosynthetic acclimation (Fig. 1b), reflecting the pattern of 

acclimation in the leaves – first young, then old leaves (Fig. 1a). All ФPSII measurements 

were highly positively correlated per accession, indicating a coordinate regulation of 

photosynthesis in these irradiance environments  (Fig. 1c).  

 

 

 

 

 

 

 

 

 

 

Figure 1 (on next page) Photosynthesis efficiency of photosystem II (ФPSII) in response to an 
increase in growth irradiance. 

(a) Photosynthetic acclimation of ФPSII of Arabidopsis accession Col-0. Shown are the ФPSII values 

over time (±s.e.m.) and a chlorophyll fluorescent image of the same Col-0 plant measured one hour 

after onset of the photoperiod.  (b) Frequency distribution of ФPSII measured for 344 accessions at 

consecutive time points in the acclimation response, three replicate plants are measured per 

accession. (c) Pearson’s correlation analysis of ФPSII measured at consecutive time points in the 

acclimation response for all accessions. All correlations are significant at p≤0.001. 

 



  

 
 

67 

 

  

Pearson 
Correlation

0.427

Pearson 
Correlation

0.298 0.867

Pearson 
Correlation

0.294 0.84 0.937

Pearson 
Correlation

0.325 0.806 0.839 0.943

Low Light First Day HL Second Day HL Third Day HL

0.000E+002.100E-268

Sig. (2-tailed) 0.000E+00

0.000E+002.820E-30

Sig. (2-tailed)

 

First Day HL

Second Day HL

Third Day HL

Fourth Day HL

Sig. (2-tailed)

Sig. (2-tailed)

0.000E+00

0.000E+00

5.640E-53

2.077E-25

9.756E-25
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Genome-wide association (GWA) analysis of ФPSII at each data point resulted in a non-

linear time course of associations, which is represented in a heat map of the cumulative 

association scores (i.e. accumulation of -log10(p) values) throughout the acclimation 

response (Fig. 2). Twenty-six quantitative trait loci (QTLs) were identified, which were 

classified according to the time and duration of their appearance: seven QTLs were 

specific for the low irradiance phase, thirteen appeared directly after the onset of the high 

light treatment, three occurred later in the response to high light, and three were present 

throughout the experiment, independent of the irradiance level. The power of GWA 

studies in plants to identify true associations has proven to be relatively low for complex 

polygenic traits, such as photosynthesis, because of small effect sizes of each of the 

individual genes that together cause the phenotype (Korte and Farlow, 2013). Lowering 

the threshold of significance in the association analysis, e.g. below the rather strict 

significance threshold following a Bonferroni correction, will highlight some associations 

that would otherwise be ignored (Van Rooijen et al., 2015), but is also likely to increase 

the number of false positives (Korte and Farlow, 2013). Selection of recurrent QTLs 

through time allows the distinction to be made between true associations and false 

positive associations, strengthening the mapping power in GWA studies (Fig. 2). In 

addition, it allows distinction between those non-specific QTLs that are present 

throughout the phenotyping phase and those that are time-specific (Bac-Molenaar et al., 

2015).  

To focus on the acclimation response of photosynthesis we conducted no further analysis 

on the seven QTLs specific for the low irradiance phase of the experiment. The three 

QTLs present throughout the experiment were included for further analysis as they were 

found to increase in cumulative association score after the irradiance increase (Fig. 2). 

We then determined the physical positions of those SNPs corresponding to the 19 QTLs 

associated specifically to photosynthetic acclimation (Fig. S1). Including all genes in 

linkage disequilibrium (LD) with these SNPs resulted in a list of 268 candidate genes for 

which allelic variation may have caused the association (Table S1). Of these genes, 33 

scored positive for three out of five in silico selection criteria based on gene function that 

we used to prioritize the candidate genes: gene ontology, gene co-expression, gene 

expression in the vegetative rosette, and the presence of segregating polymorphisms in 

the coding sequence (Table S2). These 33 priority candidate genes corresponded to 15 

of the 19 acclimation-specific QTLs. Reverse screening with T-DNA insertion lines was 

performed for 20 of the 33 priority candidate genes.  
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Figure 2 Heat map of cumulative association scores in a genome-wide association study of  

ФPSII, before and after an increase in growth irradiance.  
Plant ФPSII is measured three times per day, two days in low light (100 µmolm-2s-1) and four days in 

high light irradiance (550 µmolm-2s-1). Association scores of genomic regions of 0.2 megabasepairs 

(Mbp) per chromosome were summed and subsequently averaged within a 1-Mbp sliding window 

from the top to the bottom of each of the five A. thaliana chromosomes. The physical distance (Mb) 

in each chromosome is indicated. Each quantitative trait locus (QTL) is numbered, 1-26.  
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Four T-DNA insertion lines showed an aberrant phenotype for photosynthetic acclimation 

to increased irradiance (Fig. 3). These are insertion lines for CTC-INTERACTING 

DOMAIN 7 (CID7 (At2g26280), which encodes a protein involved in DNA binding and 

mismatch repair; corresponds to QTL7 of Fig. 2), YELLOW SEEDLING 1 (YS1 

(At3g22690), which encodes a Pentatrico-Peptide-Repeat (PPR) protein involved in RNA 

editing of plastid encoded genes; corresponds to QTL10), DGD1 SUPPRESSOR 1 

(DGS1 (At5g12290), which encodes a mitochondrial outer membrane protein involved in 

galactolipid biosynthesis; corresponds to QTL 21 of the heat map), and ASPARAGINE 

SYNTHETASE 2 (ASN2 (At5g65010), which encoding an asparagine synthetase; 

corresponds to QTL 26). 

 

Figure 3. Photosynthesis efficiency response to increased irradiance for T-DNA insertion 

knock-out lines significantly different from the Col wild type (WT).  
(a-d) Photosynthesis efficiency (ФPSII) response (±s.e.m.) over time and chlorophyll fluorescence 

images of plants carrying a T-DNA insertion in the (a) CTC-INTERACTING DOMAIN 7 (CID7); (b) 

YELLOW SEEDLING 1 (YS1); (c) DGD1 SUPPRESSOR 1 (DGS1); or (d) ASPARAGINE 

SYNTHETASE 2 (ASN2) gene. Day 1 of the measurements corresponds to day 22 after sowing. The 

chlorophyll fluorescence images are taken 1 hour after lights are switched on. The yellow bar 

indicates a shift in irradiance from 100 to 550 µmol m-2s-1. 
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Quantitative complementation was not performed for CID7 (the insertion line was 

completely sterile; Fig. S2), and failed to identify DGS1 and ASN2 as causal for the 

identified QTLs (Fig. S3 and Fig. S4) but was successful for YS1 (significant only on day 

1 after irradiance increase; Fig. 4c). Within the available re-sequence data for the 

Arabidopsis accessions used for the GWA, five different YS1 alleles were distinguished 

(Fig. 4a). Accessions carrying alleles 2, 4 and 5 displayed the highest photosynthesis 

efficiency in response to high light, and were significantly different from accessions with 

alleles 1 and 3, which displayed the lowest photosynthesis efficiency (Fig. 4b). No single 

polymorphisms in YS-1 distinguished alleles 2,4 and 5 from alleles 1 and 3 (Fig. 4a), 

however we observed the average transcription of YS1-4 alleles to be higher than YS1-3 

alleles (Fig. 4d). Since gene expression is regulated by its promoter, we de novo-

sequenced the promoter region of the Col-0 YS1-1 allele as well as those of five 

accessions with allele YS1-3 and five with allele YS1-4. We found three SNPs in the 

promoter region (Fig. S5): at positions 8 024 723; 8 025 056; and 8 025 189 bp. In 

addition, there was an 8-bp deletion in the promoter of allele YS1-3, between positions 8 

024 863 and 8 024 871 bp, that was not present in the public re-sequence data (Fig. S5). 

Upon combining the gene expression analysis with the allelic polymorphisms, we 

conclude that the combination of  InDel8024863-8024871 and SNP8025056 causes low YS1 

expression in low light conditions (Fig. 4e), while the combination of SNP8024723 and 

SNP8025189 causes increased YS1 expression in high light when compared to low light 

conditions (Fig. 4e). Since allele 1 and allele 3 lead to low photosynthesis efficiency in 

response to high light (Fig. 4b), we conclude that only when the 8-bp deletion is absent 

and SNP8025056 = T, SNP8024723 = A, and SNP8025189 = G (i.e. allele 4), gene expression is 

highest, leading to the highest photosynthesis efficiency in response to high light (Fig. 

4e). InDel8024863-8024871 overlaps with a binding site for the nuclear transcription factor GT-

1, while SNP8025189 locates in the core of another GT-1 binding site (Fig. S5), (Green et 

al., 1988; Gilmartin and Chua, 1990). No obvious transcription factor binding sites were 

found around SNP8024723 or SNP8025056. Mutations in GT-1 binding sites are known to 

affect a promoter’s responsiveness to light (Gilmartin et al., 1990; Ouwerkerk et al., 

1999), which is consistent with the correlations we found between the differences in 

expression of YS1 alleles and the differences in photosynthesis acclimation responses 

(Fig. 4). 
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Figure 4. Characterization of natural alleles of YS1.  

(a) Five most abundant haplotype alleles and frequency (%) for the YS1 gene 

(www.arabidopsis.org). Gene orientation is 3’ to 5’; two splice variants are indicated4. SNPs differing 

from the Col-0 reference genome sequence (allele 1) are marked; two SNPs of significance for this 

study are indicated by arrows. (b) Average photosynthesis efficiencies (ФPSII) (±s.e.m.) of the five 

haplotype alleles before (LL) and after an increase in radiance (HL), the inset shows small but 

significant differences between allelic groups based on T-test series. (c) ФPSII of F1 plants of crosses 

between wild type (WT) or ys1 mutants with accessions carrying either YS1-3 or YS1-4 alleles 

confirming the QTL and the mutation in the YS1 locus are allelic, asterisks indicate significant 

difference in effect of allele 3 and allele 4 on the difference between ФPSII of the F1 with WT 

compared to the F1 with  ys1 based on two-way ANOVA. (d) Relative transcription (±s.e.m.) of YS1 

alleles. Letters indicate significant different groups independent of LL or HL. (e) Summary of genetic 

polymorphisms, ФPSII and transcription of three YS1 alleles. Blue and red distinguish co-segregating 

traits/polymorphisms.SNP8025056 and SNP8025189 are also indicated in panel (a) of this figure, whereas 

SNP8024723 and InDel802486 were not present in the re-sequence data but were found by de novo 

sequencing as presented in Extended Data Figure 5. 

e

Allele 1 Allele 3 Allele 4
SNP 8,024,723 bp T A A
InDel 8,024,863 bp In Del In
SNP 8,025,056 bp T G T
SNP 8,025,189 bp A G G

ФPSII low low high
Gene expression in low light A B A
Gene expression in high light A AC C
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Previously, a ys1 knock-out mutation of YS1 was found to lead to disturbed chloroplast 

development in young seedlings (Zhou et al., 2009). We found that young leaves of the 

ys1 mutant cannot acclimate after the irradiance increase (Fig. 3b), from which we 

conclude that similar developmental constraints occur in young leaves during 

photosynthetic acclimation to increased irradiance as in leaves of young seedlings. 

Differences in YS1 expression have been found to lead to differences in the extent of 

sequence editing of rpoB transcipts, encoding for the β-subunit of the Plastid-Encoded 

Polymerase (PEP), (Okuda et al., 2009; Zhou et al., 2009). PEP is mainly involved in 

transcription of photosynthesis genes encoding photosystem I (PSI) and PSII 

components that are active in leaf chloroplasts (Hajdukiewicz et al., 1997). We conclude 

that disturbed PEP function in the ys1 mutant leads to dysfunctional leaf maturation via 

aberrant transcription of genes encoding PSI and PSII components in the leaf 

chloroplasts. 
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SUPPLEMENTARY TABLES AND FIGURES  

Table S1. List of candidate genes co-localized with SNPs repetitively associated with ФPSII 
upon an increase in growth irradiance.  

These are genes containing the SNP, and those genes in linkage disequilibrium (LD)  with the SNP,  

repetitively associated (-log10(p) ≥ 4) at different time points with ФPSII measured after an increase in 

growth irradiance from 100 to 550 µmol m-2 s-1 on day 25 after sowing. The SNPs were identified in 

genome-wide association (GWA) studies (once using average phenotypic values and once using 

individual measurement values) of 344 Arabidopsis accessions.   

QTL, the QTL number shown in Fig 2; Chr., chromosome; Cond., condition in which the QTL is 
identified; SNP.Pos.on.Chr., the chromosome position(s) of the SNP(s); in black: significant only in 
GWA using average values, in orange: significant only in GWA using individual measurement values, 
in green: significant in both GWA studies; MAF, minor allele frequency, with indication whether it 
represents the Col-0 allele (C) or the non-Col-0 allele (NC); effect size, the contribution of the Col-0 
SNP allele on ФPSII; Perc.of.gen.var., the percentage of genetic variation explained by the SNP; 
genes in LD region, all genes in the LD region of the indicated SNP(s), genes in red are genes 
associated with photosynthesis or with the chloroplast; location of gene, physical position of the gene 
on the indicated chromosome; description, the annotation of the gene function as indicated in TAIR 
(www.arabidopsis.org).  

QTL Chr. Cond. SNP. Pos. 
on Chr. 

MAF Effect 
size 

Per
c.of. 
gen.
var 

Genes in LD 
region 

Location of 
gene 

Description 

3 1 Early 
HL 

10596936 0.21NC  -0.01         8 AT1G30135  10596492-
10597239 

jasmonate-zim-domain protein 8 
(JAZ8); CONTAINS InterPro 
DOMAIN/s: Tify 
(InterPro:IPR010399), CCT domain-
like (InterPro:IPR018467); 

      12275289 0.46C 0.01   AT1G30140  10598627-
10599696 

unknown protein 

      12348136 0.10C -0.01   AT1G30150  10602178-
10605159 

CACTA-like transposase family 
(Tnp1/En/Spm) 

              AT1G33813 12273243-
12274646 

transposable element gene; copia-
like retrotransposon family 

              AT1G33817 12274982-
12276763 

transposable element gene; copia-
like retrotransposon family 

              AT1G33820 12278438-
12279451 

unknown protein 

              AT1G33830 12279947-
12281406 

P-loop containing nucleoside 
triphosphate hydrolases superfamily 
protein; FUNCTIONS IN: GTP 
binding; INVOLVED IN: response to 
bacterium; LOCATED IN: 
cellular_component unknown; 
EXPRESSED IN: egg cellBLink). 

              AT1G33835 12281847-
12282297 

transposable element gene; copia-
like retrotransposon family 

              AT1G33840 12283862-
12285306 

Protein of unknown function 
(DUF567) 

              AT1G33850 12287913-
12288210 

Ribosomal protein S19 family 
protein; FUNCTIONS IN: structural 
constituent of ribosome; INVOLVED 
IN: translation; LOCATED IN: 
cytosolic small ribosomal subunit, 
ribosome; EXPRESSED IN: 
synergid0; Metazoa - 255; Fungi - 
145; Plants - 198; Viruses - 0; Other 
Eukaryotes - 99 (source: NCBI 
BLink). 

              AT1G33855 12291258-
12292501 

transposable element gene; Mutator-
like transposase family 

              AT1G33860 12294394-
12295305 

unknown protein 

              AT1G33870 12301325-
12302467 

P-loop containing nucleoside 
triphosphate hydrolases superfamily 
protein; FUNCTIONS IN: GTP 
binding; INVOLVED IN: response to 
bacterium; LOCATED IN: 
cellular_component unknown; 
EXPRESSED IN: stem, root, seed; 
EXPRESSED DURING: F mature 
embryo stage 
 
 
 



  

 
 

75 

              AT1G33880 12303862-
12304911 

Avirulence induced gene (AIG1) 
family protein; FUNCTIONS IN: GTP 
binding; INVOLVED IN: N-terminal 
protein myristoylation, response to 
bacterium; LOCATED IN: 
cellular_component unknown; 
EXPRESSED IN: sperm cell 

              AT1G33890 12308284-
12309686 

Avirulence induced gene (AIG1) 
family protein; FUNCTIONS IN: GTP 
binding; INVOLVED IN: response to 
bacterium; LOCATED IN: 
cellular_component unknown; 
EXPRESSED IN: pedicel; 
EXPRESSED DURING: 4 anthesis 

              AT1G33900 12311518-
12313518 

P-loop containing nucleoside 
triphosphate hydrolases superfamily 
protein; FUNCTIONS IN: GTP 
binding; INVOLVED IN: response to 
bacterium 

              AT1G33910 12314904-
12316258 

P-loop containing nucleoside 
triphosphate hydrolases superfamily 
protein; FUNCTIONS IN: GTP 
binding; INVOLVED IN: response to 
bacterium 

              AT1G33920 12319905-
12320870 

phloem protein 2-A4 (PP2-A4) 

              AT1G33930 12323888-
12327084 

P-loop containing nucleoside 
triphosphate hydrolases superfamily 
protein; FUNCTIONS IN: GTP 
binding; INVOLVED IN: response to 
bacterium; EXPRESSED IN: leaf 
lamina base, pedicel, petiole, leaf; 
EXPRESSED DURING: LP.04 four 
leaves visible, 4 anthesis 

              AT1G33940 12330576-
12332785 

BEST Arabidopsis thaliana protein 
match is: Protein kinase family 
protein with ARM repeat domain 
(TAIR:AT5G18700.1); 

              AT1G33950 12333046-
12339182 

Avirulence induced gene (AIG1) 
family protein; FUNCTIONS IN: GTP 
binding; INVOLVED IN: response to 
bacterium 

              AT1G33960 12346232-
12348513 

AIG1; identified as a gene that is 
induced by avirulence gene avrRpt2 
and RPS2 after infection with 
Pseudomonas syringae pv 
maculicola strain ES4326 carrying 
avrRpt2 

              AT1G33970 12349463-
12351203 

P-loop containing nucleoside 
triphosphate hydrolases superfamily 
protein; FUNCTIONS IN: GTP 
binding; INVOLVED IN: response to 
bacterium; LOCATED IN: 
cellular_component unknown; 
EXPRESSED IN: 22 plant structures; 
EXPRESSED DURING: 13 growth 
stages 

              AT1G33980 12351593-
12355023 

UPF3; Involved in mRNA 
surveillance, detects exported 
mRNAs with truncated open reading 
frames and initiates nonsense-
mediated mRNA decay (NMD) 

              AT1G33990 12355568-
12358031 

MES14; Encodes a protein predicted 
to act as a carboxylesterase. It has 
similarity to the SABP2 methyl 
salicylate esterase from tobacco. 
This protein does not act on methyl 
IAA, methyl JA, MeSA, MeGA4, or 
MEGA9 in vitro. 

              AT1G34000 12357910-
12358966 

OHP2; ncodes a novel member of 
the Lhc family from Arabidopsis with 
one predicted transmembrane alpha-
helix closely related to helix I of Lhc 
protein from PSI (Lhca4). Gene 
expression is triggered by light stress 
and both transcript and protein 
accumulate in a light intensity-
dependent manner. Ohp2 is 
associated with PSI under low- or 
high-light conditions. 

              AT1G34010 12359536-
12361189 

unknown protein 

              AT1G34020 12366854-
12369178 

Nucleotide-sugar transporter family 
protein; LOCATED IN: plasma 
membrane, membrane; 
EXPRESSED IN: 22 plant structures; 
EXPRESSED DURING: 13 growth 
stages 

              AT1G34030 12370065-
12371553 

Ribosomal protein S13/S18 family; 
FUNCTIONS IN: structural 
constituent of ribosome, protein 
binding; INVOLVED IN: translation; 
LOCATED IN: in 6 components; 
EXPRESSED IN: 23 plant structures; 
EXPRESSED DURING: 13 growth 
stages 
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              AT1G34040 12374433-
12376179 

Pyridoxal phosphate (PLP)-
dependent transferases superfamily 
protein; FUNCTIONS IN: pyridoxal 
phosphate binding, carbon-sulfur 
lyase activity, catalytic activity; 
INVOLVED IN: biological_process 
unknown; LOCATED IN: 
endomembrane system 

4 1 early 
HL 

27891662 0.019N
C 

-0.01 10 AT1G74150  27880528-
27883626 

Galactose oxidase/kelch repeat 
superfamily protein 

      27894888 0.16NC 0.01   AT1G74160  27886426-
27891431 

unknown protein 

      27896712 0.44C 0.01   AT1G74170  27891494-
27896355 

receptor like protein 13 (RLP13) 

      27897142 0.14NC 0.01   AT1G74180  27897197-
27900908 

receptor like protein 14 (RLP14); 
INVOLVED IN: signal transduction; 
LOCATED IN: chloroplast; 
EXPRESSED IN: 19 plant structures; 
EXPRESSED DURING: 13 growth 
stages 

      27899243 0.35C 0.01   AT1G74190  27902590-
27906158 

receptor like protein 15 (RLP15); 
INVOLVED IN: signal transduction; 
LOCATED IN: endomembrane 
system 

      27903238 0.24C -0.01   AT1G74200  27906909-
27909358 

receptor like protein 16 (RLP16) 

      27904597 0.39C -0.01   AT1G74210  27910314-
27912941 

Encodes a member of the 
glycerophosphodiester 
phosphodiesterase (GDPD) family. 

      27904633 0.40C -0.01   AT1G74220  27913099-
27914134 

unknown protein; FUNCTIONS IN: 
molecular_function unknown; 
INVOLVED IN: biological_process 
unknown; LOCATED IN: chloroplast; 
EXPRESSED IN: male gametophyte, 
flower, pollen tube; EXPRESSED 
DURING: L mature pollen stage, M 
germinated pollen stage, 4 anthesis 

      27904871 0.43C -0.01   AT1G74230  27914699-
27917083 

encodes a glycine-rich RNA binding 
protein. 

      27905270 0.43NC 0.01   AT1G74240  27917396-
27920139 

Mitochondrial substrate carrier family 
protein; FUNCTIONS IN: binding; 
INVOLVED IN: transport, 
mitochondrial transport, 
transmembrane transport; LOCATED 
IN: mitochondrial inner membrane, 
membrane; EXPRESSED IN: 11 
plant structures; EXPRESSED 
DURING: 6 growth stages 

      27905627 0.19NC 0.01   AT1G74250  27920328-
27922414 

DNAJ heat shock N-terminal domain-
containing protein; FUNCTIONS IN: 
heat shock protein binding, zinc ion 
binding, nucleic acid binding; 
INVOLVED IN: protein folding; 
LOCATED IN: intracellular; 
EXPRESSED IN: 22 plant structures; 
EXPRESSED DURING: 13 growth 
stages 

      27905987 0.44NC 0.01   AT1G74260  27922833-
27927904 

Encodes formylglycinamidine 
ribonucleotide synthase an enzyme 
involved in de novo purine 
biosynthesis. PUR4 is localizes to 
the chloroplast and mitochondria. 
Loss of PUR4 function affects male 
but not female gametophyte 
development. 

              AT1G74270  27928171-
27929497 

Ribosomal protein L35Ae family 
protein; FUNCTIONS IN: structural 
constituent of ribosome; INVOLVED 
IN: translation, ribosome biogenesis; 
LOCATED IN: ribosome, cytosolic 
large ribosomal subunit; 
EXPRESSED IN: 22 plant structures; 
EXPRESSED DURING: 13 growth 
stages 

              AT1G74280  27929662-
27931364 

alpha/beta-Hydrolases superfamily 
protein 

              AT1G74290  27931836-
27934268 

alpha/beta-Hydrolases superfamily 
protein 

5 1 early 
HL 

27979318 0.45C 0.01 9 AT1G74440 27976502-
27980404 

Protein of unknown function 
(DUF962) 

      27981096 0.37NC 0.01         

7 2 early 
HL 

11189311 0.19NC -0.02 9 AT2G26280 11187733-
11191337 

CID7, CTC-interacting domain7, 
functions in DNA binding and 
mismatch repair, located in 
chloroplast. smr (Small MutS 
Related) domain-containing protein 
mRNA, complete cds. 

      11189443 0.18NC -0.02   AT2G26290 11192137-
11194259 

root-specific kinase 1 (ARSK1); 

8 3 early 
HL 

1350656 0.45NC -0.01 9 AT3G04820 1321228-
1325953 

Pseudouridine synthase family 
protein; FUNCTIONS IN: 
pseudouridine synthase activity; 
INVOLVED IN: pseudouridine 
synthesis, RNA modification; 
EXPRESSED IN: 21 plant structures; 
EXPRESSED DURING: 13 growth 
stages 
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      1353218 0.19NC -0.01   AT3G04830 1326227-
1329364 

Protein prenylyltransferase 
superfamily protein; FUNCTIONS IN: 
binding; INVOLVED IN: 
biological_process unknown; 
LOCATED IN: cellular_component 
unknown; EXPRESSED IN: 23 plant 
structures; EXPRESSED DURING: 
13 growth stages 

      1353894 0.16NC -0.01   AT3G04840 1329665-
1331617 

Ribosomal protein S3Ae; 
FUNCTIONS IN: structural 
constituent of ribosome; INVOLVED 
IN: translation; LOCATED IN: 
cytosolic small ribosomal subunit, 
cytosolic ribosome, plasma 
membrane, chloroplast; 
EXPRESSED IN: 27 plant structures; 
EXPRESSED DURING: 16 growth 
stages 

              AT3G04850 1331946-
1335993 

Tesmin/TSO1-like CXC domain-
containing protein 

              AT3G04860 1339104-
1340623 

Plant protein of unknown function 
(DUF868) 

              AT3G04870 1342718-
1346387 

Zeta-carotene desaturase (ZDS); 
involved in the biosynthesis of 
carotenes and xanthophylls, reduces 
zeta-carotene to lycopene. 

              AT3G04880 1346273-
1347377 

DNA-damage-repair/toleration2 
(DRT102); encodes a novel protein 
involved in DNA repair from UV 
damage. Isolated by functional 
complementation of E. coli UV-
sensitive mutants (UVR genes). 

              AT3G04890 1347646-
1349202 

Uncharacterized conserved protein 
(DUF2358); FUNCTIONS IN: 
molecular_function unknown; 
INVOLVED IN: biological_process 
unknown; LOCATED IN: chloroplast; 
EXPRESSED IN: 22 plant structures; 
EXPRESSED DURING: 13 growth 
stages 

              AT3G04900 1349302-
1349928 

Heavy metal transport/detoxification 
superfamily protein ; FUNCTIONS 
IN: metal ion binding; INVOLVED IN: 
metal ion transport; LOCATED IN: 
cellular_component unknown 

              AT3G04903 1350510-
1350989 

Encodes a defensin-like (DEFL) 
family protein. 

              AT3G04910 1354635-
1358211 

With No Lysine (K) Kinase 1 
(WNK1); serine/threonine protein 
kinase, whose transcription is 
regulated by circadian rhythm. 

              AT3G04920 1360882-
1362295 

Ribosomal protein S24e family 
protein; FUNCTIONS IN: structural 
constituent of ribosome, nucleotide 
binding; INVOLVED IN: translation, 
ribosome biogenesis; LOCATED IN: 
in 7 components; EXPRESSED IN: 
26 plant structures; EXPRESSED 
DURING: 13 growth stages 

              AT3G04930 1362905-
1364799 

DNA-binding storekeeper protein-
related transcriptional regulator 

              AT3G04940 1365165-
1367759 

Encodes cysteine synthase CysD1. 

              AT3G04943 1368248-
1368678 

Encodes a member of a family of 
small,secreted, cysteine rich protein 
with sequence similarity to the PCP 
(pollen coat protein) gene family. 

              AT3G04945 1369114-
1369532  

Encodes a member of a family of 
small,secreted, cysteine rich protein 
with sequence similarity to the PCP 
(pollen coat protein) gene family. 

              AT3G04950 1371705-
1373477 

unknown protein 

              AT3G04960 1373688-
1375850 

Molecular chaperone, heat shock 
protein, Hsp40, DnaJ  

              AT3G04970 1376175-
1378500 

DHHC-type zinc finger family protein; 
FUNCTIONS IN: zinc ion binding; 
INVOLVED IN: biological_process 
unknown; LOCATED IN: 
endomembrane system; 
EXPRESSED IN: 21 plant structures; 
EXPRESSED DURING: 13 growth 
stages 

              AT3G04980 1378684-
1382181 

DNAJ heat shock N-terminal domain-
containing protein; FUNCTIONS IN: 
unfolded protein binding, heat shock 
protein binding; INVOLVED IN: 
protein folding; LOCATED IN: 
cellular_component unknown; 
EXPRESSED IN: 12 plant structures; 
EXPRESSED DURING: 6 growth 
stages 

              AT3G04990 1383996-
1384679 

Frigida-like protein 
(TAIR:AT5G27220.1) 
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9 3 early 
HL 

1750265 0.17NC 0.02 8 AT3G05810 1730976-
1732384 

unknown protein; FUNCTIONS IN: 
molecular_function unknown; 
INVOLVED IN: biological_process 
unknown; LOCATED IN: 
mitochondrion; EXPRESSED IN: 22 
plant structures; EXPRESSED 
DURING: 13 growth stages 

      1750573 0.17NC 0.02   AT3G05820 1732991-
1735757 

Encodes a putative plastid-targeted 
alkaline/neutral invertase. 

      1750946 0.17NC 0.02   AT3G05830 1736677-
1738664 

Encodes alpha-helical IF 
(intermediate filament)-like protein. 

      1751042 0.21NC 0.02     AT3G05835 1738791-
1738864 

pre-tRNA; tRNA-Ile (anticodon: TAT) 

      1755712 0.21NC -0.01   AT3G05840 1740020-
1743163 

encodes a SHAGGY-like kinase 
involved in meristem organization. 

              AT3G05850 1743413-
1746785 

transposable element gene; Mutator-
like transposase family 

              AT3G05860 1751406-
1752355 

MADS-box transcription factor family 
protein; FUNCTIONS IN: DNA 
binding, sequence-specific DNA 
binding transcription factor activity; 
INVOLVED IN: regulation of 
transcription, DNA-dependent; 
LOCATED IN: nucleus; 
EXPRESSED IN: embryo, 
endosperm 

              AT3G05870 1753467-
1755631 

APC11; subunit of the anaphase 
promoting complex, a ubiquitin ligase 
complex that regulates progression 
through the cell cycle. 

              AT3G05880 1755497-
1756540 

Induced by low temperatures, 
dehydration and salt stress and ABA. 
Encodes a small (54 amino acids), 
highly hydrophobic protein that bears 
two potential transmembrane 
domains. 

10 3 Late HL 7992656 0.11(N
C) 

-0.02 7 AT3G22550  7991646-
7993454 

Protein of unknown function 
(DUF581) 

      8120853 0.30(N
C) 

0.01   AT3G22555  7995486-
7996636 

pseudogene, putative DNA 
methyltransferase 

              AT3G22560  7998857-
7999533 

Acyl-CoA N-acyltransferases (NAT) 
superfamily protein; FUNCTIONS IN: 
N-acetyltransferase activity; 
INVOLVED IN: metabolic process; 
LOCATED IN: membrane; 
EXPRESSED IN: leaf 

              AT3G22570  8000515-
8001238 

Bifunctional inhibitor/lipid-transfer 
protein/seed storage 2S albumin 
superfamily protein; FUNCTIONS IN: 
lipid binding; INVOLVED IN: lipid 
transport; LOCATED IN: 
endomembrane system; 
EXPRESSED IN: root, pollen tube 

              AT3G22580  8002762-
8003145 

Bifunctional inhibitor/lipid-transfer 
protein/seed storage 2S albumin 
superfamily protein; FUNCTIONS IN: 
lipid binding; INVOLVED IN: lipid 
transport; LOCATED IN: 
endomembrane system 

              AT3G22590  8003934-
8005579 

Encodes PLANT HOMOLOGOUS 
TO PARAFIBROMIN (PHP), a 
homolog of human Paf1 Complex 
(Paf1C) subunit Parafibromin. 
Human Parafibromin assists in 
mediating output from the Wnt 
signaling pathway, and dysfunction 
of the encoding gene HRPT2 
conditions specific cancer-related 
disease phenotypes. PHP resides in 
a ~670-kDa protein complex in 
nuclear extracts, and physically 
interacts with other known Paf1C-
related proteins in vivo. Loss of PHP 
specifically conditioned accelerated 
phase transition from vegetative 
growth to flowering and resulted in 
misregulation of a very limited subset 
of genes that included the flowering 
repressor FLOWERING LOCUS C. 

              AT3G22600  8006508-
8007471 

Bifunctional inhibitor/lipid-transfer 
protein/seed storage 2S albumin 
superfamily protein; FUNCTIONS IN: 
lipid binding; INVOLVED IN: lipid 
transport; LOCATED IN: anchored to 
membrane; EXPRESSED IN: 14 
plant structures; EXPRESSED 
DURING: 10 growth stages 

              AT3G22620  8008534-
8009590 

Bifunctional inhibitor/lipid-transfer 
protein/seed storage 2S albumin 
superfamily protein; FUNCTIONS IN: 
lipid binding; INVOLVED IN: lipid 
transport; LOCATED IN: chloroplast 
envelope; EXPRESSED DURING: 4 
anthesis, C globular stage, petal 
differentiation and expansion stage   
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              AT3G22630  8009540-
8010844 

Encodes 20S proteasome beta 
subunit PBD1 (PBD1). 

              AT3G22640  8011724-
8013902 

PAP85; FUNCTIONS IN: nutrient 
reservoir activity; INVOLVED IN: 
biological_process unknown; 
LOCATED IN: plant-type cell wall; 
EXPRESSED IN: stem, seed; 
EXPRESSED DURING: seedling 
growth, seed development stages 

              AT3G22650  8014809-
8015960 

CEGENDUO (CEG); CONTAINS 
InterPro DOMAIN/s: F-box domain, 
cyclin-like, F-box domain, Skp2-like, 
F-box associated domain, type 1, F-
box associated interaction domain 

              AT3G22660  8016051-
8017508 

rRNA processing protein-related 

              AT3G22670  8017771-
8019459 

Pentatricopeptide repeat (PPR) 
superfamily protein; INVOLVED IN: 
biological_process unknown; 
LOCATED IN: mitochondrion; 
EXPRESSED IN: 21 plant structures; 
EXPRESSED DURING: 10 growth 
stages 

              AT3G22680  8019708-
8020508 

Encodes RNA-DIRECTED DNA 
METHYLATION 1 (RDM1), forming a 
complex with DMS3 (AT3G49250) 
and DRD1 (AT2G16390). This 
complex is termed DDR. The DDR 
complex is required for polymerase V 
transcripts and RNA-directed DNA 
methylation. 

              AT3G22690  8021229-
8024534 

YS1; INVOLVED IN: photosystem II 
assembly, regulation of chlorophyll 
biosynthetic process, photosystem I 
assembly, thylakoid membrane 
organization, RNA modification; 
LOCATED IN: chloroplast; 
EXPRESSED IN: 13 plant structures; 
EXPRESSED DURING: LP.04 four 
leaves visible, 4 anthesis, petal 
differentiation and expansion stage, 
E expanded cotyledon stage, D 
bilateral stage 

              AT3G22700  8024798-
8025814 

F-box and associated interaction 
domains-containing protein 

              AT3G22710  8026202-
8027274 

F-box family protein 

              AT3G22720  8028961-
8030097 

F-box and associated interaction 
domains-containing protein 

              AT3G22730  8031341-
8032459 

F-box and associated interaction 
domains-containing protein 

              AT3G22740  8032959-
8035809 

homocysteine S-methyltransferase 
(HMT3) 

              AT3G22750  8037216-
8039903 

Protein kinase superfamily protein; 
FUNCTIONS IN: protein 
serine/threonine kinase activity, 
protein kinase activity, kinase 
activity, ATP binding; INVOLVED IN: 
protein amino acid phosphorylation; 
LOCATED IN: plasma membrane; 
EXPRESSED IN: 13 plant structures; 
EXPRESSED DURING: L mature 
pollen stage, M germinated pollen 
stage, LP.04 four leaves visible, 4 
anthesis, petal differentiation and 
expansion stage 

              AT3G22760  8044455-
8047530  

CXC domain containing TSO1-like 
protein 1. The gene is expressed in 
stamens, pollen mother cells, and 
immature ovules. 

              AT3G22770  8048802-
8052260 

F-box associated ubiquitination 
effector family protein 

              AT3G22780  8047684-
8048667 

putative DNA binding protein (tso1) 
mRNA, tso1-3 allele, 

              AT3G22790  8052318-
8058764 

Encodes a member of the NET 
superfamily of proteins that 
potentially couples different 
membranes to the actin cytoskeleton 
in plant cells. It binds filamentous 
actin and is localized to the plasma 
membrane and plasmodesmata. 

              AT3G22800  8062888-
8064556 

Leucine-rich repeat (LRR) family 
protein; FUNCTIONS IN: structural 
constituent of cell wall; LOCATED 
IN: endomembrane system; 
EXPRESSED IN: 8 plant structures; 
EXPRESSED DURING: petal 
differentiation and expansion stage 

              AT3G22810  8068516-
8071559 

FUNCTIONS IN: phosphoinositide 
binding; INVOLVED IN: signal 
transduction; LOCATED IN: 
cellular_component unknown; 
EXPRESSED IN: 10 plant structures; 
EXPRESSED DURING: 4 anthesis, 
F mature embryo stage, petal 
differentiation and expansion stage, 
E expanded cotyledon stage, D 
bilateral stage 
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              AT3G22820  8073271-
8074138 

allergen-related; FUNCTIONS IN: 
molecular_function unknown; 
INVOLVED IN: biological_process 
unknown; LOCATED IN: 
endomembrane system 

              AT3G22830  8078820-
8081051 

member of Heat Stress Transcription 
Factor (Hsf) family 

              AT3G22840  8084447-
8085560 

Encodes an early light-inducible 
protein. 

              AT3G22845  8087307-
8088747 

emp24/gp25L/p24 family/GOLD 
family protein; INVOLVED IN: 
transport; LOCATED IN: vacuole; 
EXPRESSED IN: 24 plant structures; 
EXPRESSED DURING: 15 growth 
stages 

              AT3G22850  8089003-
8090470 

Aluminium induced protein with YGL 
and LRDR motifs; FUNCTIONS IN: 
molecular_function unknown; 
INVOLVED IN: biological_process 
unknown; LOCATED IN: cytosol, 
nucleus, plasma membrane; 
EXPRESSED IN: 24 plant structures; 
EXPRESSED DURING: 15 growth 
stages 

              AT3G22860  8090654-
8093248 

member of eIF3c - eukaryotic 
initiation factor 3c 

              AT3G22870  8096230-
8097471 

F-box and associated interaction 
domains-containing protein 

              AT3G22880  8097687-
8100820 

Expression of the AtDMC1 is 
restricted to pollen mother cells in 
anthers and to megaspore mother 
cells in ovules. Similar to meiosis-
specific yeast DMC gene. 

              AT3G22886  8108021-
8108622 

Encodes a microRNA that targets 
ARF family members ARF6 and 
ARF8. Essential for fertility of both 
ovules and anthers 

              AT3G22890  8112723-
8114992 

encodes ATP sulfurylase, the first 
enzyme in the sulfate assimilation 
pathway of Arabidopsis. It may also 
participate in selenium metabolism. 

              AT3G22900  8115177-
8116253 

Non-catalytic subunit specific to 
DNA-directed RNA polymerase IV; 
homologous to budding yeast RPB7 

              AT3G22910  8116335-
8119388 

ATPase E1-E2 type family protein / 
haloacid dehalogenase-like 
hydrolase family protein; 
FUNCTIONS IN: calcium-
transporting ATPase activity, 
calmodulin binding; INVOLVED IN: 
cation transport, calcium ion 
transport, metabolic process, ATP 
biosynthetic process; LOCATED IN: 
membrane; EXPRESSED IN: 12 
plant structures; EXPRESSED 
DURING: LP.04 four leaves visible, 4 
anthesis, C globular stage, petal 
differentiation and expansion stage 

11 3 early 
HL 

12784017 0.37 
(C) 

-0.01 11 AT3G31367 12735171-
12737948 

transposable element gene; gypsy-
like retrotransposon family 

              AT3G31370 12739412-
12740362 

transposable element gene 

              AT3G31373 12742861-
12745393 

transposable element gene; 
pseudogene, putative replication 
protein 

              AT3G31374 12745879-
12747374 

transposable element gene; gypsy-
like retrotransposon family  

              AT3G31375 12748365-
12752403 

transposable element gene; gypsy-
like retrotransposon family 

              AT3G31377 12753386-
12754761 

transposable element gene; 
pseudogene, putative replication 
protein 

              AT3G31380 12758024-
12758958 

transposable element gene; copia-
like retrotransposon family 

              AT3G31390 12760805-
12762223 

transposable element gene; gypsy-
like retrotransposon family 

              AT3G31395 12762661-
12766244 

transposable element gene; non-
LTR retrotransposon family 

              AT3G31400 12768984-
12769481 

unknown protein; 

              AT3G31403 12776573-
12778649 

transposable element gene; Mutator-
like transposase family 

              AT3G31406 12779538-
12780473  

transposable element gene 

              AT3G31410 12780479-
12783581  

transposable element gene 
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12 3 late HL 15932189 0.18NC -0.01 8 AT3G44770 16316080-
16319458 

Protein of unknown function 
(DUF626); FUNCTIONS IN: 
molecular_function unknown; 
INVOLVED IN: biological_process 
unknown; LOCATED IN: 
mitochondrion; EXPRESSED IN: 7 
plant structures; EXPRESSED 
DURING: 4 anthesis, petal 
differentiation and expansion stage, 
E expanded cotyledon stage, D 
bilateral stage 

      16316203 0.35C -0.01         

      16318079 0.22C -0.01         

      16318704 0.27C -0.01         

13 4 Late HL 818905 0.53C 0.009 7 AT4G01860 801345-
808060 

Transducin family protein / WD-40 
repeat family protein 

      987887 0.89NC  -0.008   AT4G01865 808270-
808342 

tRNA-Phe (anticodon: GAA) 

              AT4G01870 808376-
810446  

tolB protein-related 

              AT4G01880 810699-
812925  

methyltransferases 

              AT4G01883 813068-
815170 

Polyketide cyclase / dehydrase and 
lipid transport protein 

              AT4G01890 816210-
818428 

Pectin lyase-like superfamily protein 

              AT4G01895 819957-
820379 

systemic acquired resistance (SAR) 
regulator protein NIMIN-1-related 

              AT4G01897 820336-
821505  

unknown protein 

              AT4G01900 821685-
823523 

encodes a PII protein that may 
function as part of a signal 
transduction network involved in 
perceiving the status of carbon and 
organic nitrogen.  

              AT4G01910 824568-
826685 

Cysteine/Histidine-rich C1 domain 
family protein 

              AT4G01915 827237-
828607 

unknown protein 

              AT4G01920 828890-
831200 

Cysteine/Histidine-rich C1 domain 
family protein 

              AT4G01925 833173-
834340 

Cysteine/Histidine-rich C1 domain 
family protein 

              AT4G01930 838802-
840760 

Cysteine/Histidine-rich C1 domain 
family protein 

              AT4G01935 841057-
842364 

unknown protein 

              AT4G01940 841989-
843459 

Encodes a protein containing the 
NFU domain that may be involved in 
iron-sulfur cluster assembly. Part of a 
five member gene family, more 
closely related to NFU2 and 3 than to 
NFU4 and 5. Targeted to the 
chloroplast. 

              AT4G01950 844409-
846787 

putative sn-glycerol-3-phosphate 2-
O-acyltransferase 

              AT4G01960 851210-
853165 

unknown protein 

              AT4G01970 853922-
857008 

Encodes a putative stachyose 
synthetase or raffinose synthase. 

              AT4G01975 858636-
862475 

pseudogene 

              AT4G01980 863351-
864259 

similar to myb family protein 

              AT4G01985 866236-
868126 

unknown protein 

              AT4G01990 871145-
872913 

Tetratricopeptide repeat (TPR)-like 
superfamily protein 

              AT4G01995 873054-
874772 

unknown protein 

              AT4G02000 874880-
875903 

unknown protein 

              AT4G02010 881090-
885399 

Protein kinase superfamily protein 

              AT4G02020 886600-
891955 

Encodes a polycomb group protein 

              AT4G02030 892176-
897318 

Vps51/Vps67 family (components of 
vesicular transport) protein 

              AT4G02040 897547-
898370 

unknown protein 

              AT4G02050 898307-
900870 

sugar transporter protein 7 (STP7) 

              AT4G02055 901176-
901247 

tRNA-His (anticodon: GTG) 

              AT4G02060 901388-
905590 

Member of the minichromosome 
maintenance complex, involved in 
DNA replication initiation.  

              AT4G02070 906079-
912930 

encodes a DNA mismatch repair 
homolog of human MutS gene, 
MSH6.  

              AT4G02075 913419-
916476  

pitchoun 1 (PIT1); FUNCTIONS IN: 
zinc ion binding 

              AT4G02080 921454-
922777 

A member of ARF-like GTPase 
family. A thaliana has 21 members, 
in two subfamilies, ARF and ARF-like 
(ARL) GTPases. 
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              AT4G02090 923100-
923916 

unknown protein 

              AT4G02100 930065-
932330 

Heat shock protein DnaJ with 
tetratricopeptide repeat 

              AT4G02110 935086-
940191 

transcription coactivators 

              AT4G02120 940778-
944291 

CTP synthase family protein 

              AT4G02130 944367-
947085 

Encodes a protein with  putative 
galacturonosyltransferase activity. 

              AT4G02140 949460-
951063 

unknown protein 

              AT4G02150 950611-
953690 

Encodes IMPORTIN ALPHA 3. 
Mutant plants act as suppressors of 
snc1 response and salicylic acid 
accumulation. Located in the 
nucleus. Involved in protein import. 

              AT4G02160 955101-
955652 

unknown protein 

              AT4G02170 958049-
958641 

unknown protein 

              AT4G02180 959964-
963517 

DC1 domain-containing protein 

              AT4G02190 967372-
969351 

Cysteine/Histidine-rich C1 domain 
family protein 

              AT4G02195 970007-
972307 

Encodes a member of SYP4 Gene 
Family that is a plant ortholog of the 
Tlg2/syntaxin16 Qa-SNARE.   

              AT4G02200 972707-
974692 

Drought-responsive family protein 

              AT4G02210 973924-
976129 

unknown protein 

              AT4G02220 976278-
979163 

zinc finger (MYND type) family 
protein / programmed cell death 2 C-
terminal domain-containing protein 

              AT4G02230 979170-
980670 

Ribosomal protein L19e family 
protein 

              AT4G02235 980955-
981711 

AGAMOUS-like 51 (AGL51) 

              AT4G02250 983970-
984523 

Plant invertase/pectin 
methylesterase inhibitor superfamily 
protein 

              AT4G02260 985232-
991494 

RELA/SPOT homolog 1 (RSH1) 

              AT4G02270 992175-
993038 

root hair specific 13 (RHS13) 

              AT4G02280 994927-
998967 

Encodes a protein with sucrose 
synthase activity (SUS3).   

15 4 early 
HL  

7346546 0.16NC 0.02 11 AT4G12400 7338659-
7341361 

HOP3; encodes one of the 36 
carboxylate clamp (CC)-
tetratricopeptide repeat (TPR) 
proteins (Prasad 2010, Pubmed ID: 
20856808) with potential to interact 
with Hsp90/Hsp70 as co-
chaperones. 

      7810132 0.46NC -0.01   AT4G12410 7342956-
7343590 

SAUR-like auxin-responsive protein 
family 

      7810598 0.40NC 0.01   AT4G12420 7349662-
7353074 

Encodes a protein of unknown 
function involved in directed root tip 
growth. It is a member of 19-member 
gene family and is distantly related 
structurally to the multiple-copper 
oxidases ascorbate oxidase and 
laccase, though it lacks the copper-
binding domains. The protein is 
glycosylated and GPI-anchored. It is 
localized to the plasma membrane 
and the cell wall. The gene is 
expressed most strongly in 
expanding tissues. 

16 4 early 
HL  

8209018 0.16C 0.02 10 AT4G14250 8208748-
8213237 

structural constituent of ribosome; 
FUNCTIONS IN: structural 
constituent of ribosome; INVOLVED 
IN: translation; LOCATED IN: 
ribosome, intracellular 

      8209226 0.19C 0.02         

19 5 early 
HL 

267918 0.31NC 0.01 10 AT5G01715  267185-
269354 

pseudogene, antisense mRNA to 
gene At5g01720 

      272241 0.30C 0.01   AT5G01720  266723-
270483 

RNI-like superfamily protein; 
FUNCTIONS IN: ubiquitin-protein 
ligase activity; INVOLVED IN: 
ubiquitin-dependent protein catabolic 
process; LOCATED IN: 
endomembrane system; 
EXPRESSED IN: 17 plant structures; 
EXPRESSED DURING: 8 growth 
stages 

      273701 0.28C 0.01   AT5G01730  272832-
277561 

Encodes a member of the SCAR 
family.These proteins are part of a 
complex (WAVE) complex.The 
SCAR subunit activates the ARP2/3 
complex which in turn act as a 
nucleator for actin filaments. 

      295648 0.17NC 0.01   AT5G01740  280722-
281445 

Nuclear transport factor 2 (NTF2) 
family protein; CONTAINS InterPro 
DOMAIN: Wound-induced protein, 
Wun1  
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      296004 0.33NC -0.01   AT5G01747  287586-
287734 

Encodes a microRNA that targets 
several genes containing NAC 
domains including NAC1. 
Overexpression leads to decreased 
NAC1 mRNA and reduced lateral 
roots. Loss of function mutants have 
increased NAC1 and increased 
number of lateral roots. Also targets 
ORE1 to negatively regulate the 
timing of leaf senescence 

      298229 0.17NC 0.01   AT5G01750  289765-
291326 

Protein of unknown function 
(DUF567); FUNCTIONS IN: 
molecular_function unknown; 
INVOLVED IN: biological_process 
unknown; LOCATED IN: chloroplast; 
EXPRESSED IN: 23 plant structures; 
EXPRESSED DURING: 13 growth 
stages 

      299476 0.14NC 0.01   AT5G01760  291712-
294304 

ENTH/VHS/GAT family protein; 
FUNCTIONS IN: protein transporter 
activity; INVOLVED IN: intracellular 
protein transport, intra-Golgi vesicle-
mediated transport; LOCATED IN: 
Golgi stack, intracellular 

      302045 0.19NC 0.01   AT5G01770  294313-
301984 

Encodes one of two Arabidopsis 
RAPTOR/KOG1 homologs. 
RAPTOR proteins are binding 
partners of the target of rapamycin 
kinase that is present in all 
eukaryotes and play a central role in 
the stimulation of cell growth and 
metabolism in response to nutrients. 
Mutations in this gene have no 
visible effects on embryo or plant 
development. 

      304375 0.42NC -0.01   AT5G01780  302267-
304188 

2-oxoglutarate-dependent 
dioxygenase family protein; 
LOCATED IN: cellular_component 
unknown; EXPRESSED IN: 21 plant 
structures; EXPRESSED DURING: 
11 growth stages 

      305676 0.42C 0.01   AT5G01790  304897-
305696 

unknown protein; FUNCTIONS IN: 
molecular_function unknown; 
INVOLVED IN: biological_process 
unknown; LOCATED IN: chloroplast; 
EXPRESSED IN: 19 plant structures; 
EXPRESSED DURING: 13 growth 
stages 

      308976 0.50C 0.01   AT5G01800  306968-
308908 

saposin B domain-containing protein; 
FUNCTIONS IN: molecular_function 
unknown; INVOLVED IN: N-terminal 
protein myristoylation, lipid metabolic 
process; LOCATED IN: 
endomembrane system; 
EXPRESSED IN: 23 plant structures; 
EXPRESSED DURING: 15 growth 
stages 

      309253 0.39NC 0.01         

20 5 early 
HL 

987180 0.22C 0.01 10 AT5G03750 984796-
985497 

unknown protein; BEST Arabidopsis 
thaliana protein match is: 
Transducin/WD40 repeat-like 
superfamily protein 
(TAIR:AT5G03450.1) 

      987216 0.27C 0.01   AT5G03760 985675-
990549 

encodes a beta-mannan synthase 
that is required for agrobacterium-
mediated plant genetic 
transformation involves a complex 
interaction between the bacterium 
and the host plant. 3' UTR is 
involved in transcriptional regulation 
and the gene is expressed in the 
elongation zone of the root. 

      988003 0.24C 0.01         

21 5 early 
HL 

3975495 0.27NC -0.02 11 AT5G12290 3974171-
3978160 

DGS1, encodes a mitochondrial 
outer membrane protein, involved in 
galactoglycerolipid biosynthesis. The 
dgd1 mutant phenotype is 
suppressed in the dgs1 mutant 
background. 

      3980151 0.10NC -0.02   AT5G12300 3978313-
3979795 

Calcium-dependent lipid-binding 
(CaLB domain) family protein 

              AT5G12310 3980226-
3982442 

RING/U-box superfamily protein; 
FUNCTIONS IN: zinc ion binding 

              AT5G12320 3982684-
3984078 

ankyrin repeat family protein 
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22 5 early 
HL 

6034111 0.19NC 0.01 10 AT5G18160 6002770-
6003909 

F-box and associated interaction 
domains-containing protein 

      6180615 0.43C -0.01   AT5G18170 6006039-
6008472 

GDH1; encodes the 43 kDa alpha-
subunit of the glutamate 
dehydrogenase with a putative 
mitochondrial transit polypeptide and 
NAD(H)- and alpha-ketoglutarate-
binding domains. Mitochondrial 
localization confirmed by subcellular 
fractionation. Combines in several 
ratios with GDH2 protein (GDH-beta) 
to form seven isoenzymes. 
Catalyzes the cleavage of glycine 
residues. May be involved in 
ammonia assimilation under 
conditions of inorganic nitrogen 
excess. The enzyme is almost 
exclusively found in the mitochondria 
of stem and leaf companion cells. 

      6797296 0.45NC 0.01   AT5G18180 6008561-
6009605 

H/ACA ribonucleoprotein complex, 
subunit Gar1/Naf1 protein; 
FUNCTIONS IN: snoRNA binding, 
pseudouridine synthase activity, 
RNA binding; LOCATED IN: 
chloroplast thylakoid membrane, 
membrane; EXPRESSED IN: 14 
plant structures; EXPRESSED 
DURING: LP.06 six leaves visible, 4 
anthesis, F mature embryo stage, 
petal differentiation and expansion 
stage, E expanded cotyledon stage 

      6797770 0.48C 0.01   AT5G18190 6009967-
6014689 

Protein kinase family protein; 
FUNCTIONS IN: protein 
serine/threonine kinase activity, 
protein kinase activity, kinase 
activity, ATP binding; INVOLVED IN: 
protein amino acid phosphorylation; 
LOCATED IN: cellular_component 
unknown; EXPRESSED IN: 24 plant 
structures; EXPRESSED DURING: 
15 growth stages 

              AT5G18200 6015225-
6016782 

encodes an adenylyltransferase 

              AT5G18210 6017865-
6019993 

NAD(P)-binding Rossmann-fold 
superfamily protein; FUNCTIONS IN: 
oxidoreductase activity, binding, 
catalytic activity; INVOLVED IN: 
oxidation reduction, metabolic 
process; EXPRESSED IN: 22 plant 
structures; EXPRESSED DURING: 
13 growth stages 

              AT5G18220 6018914-
6020453 

O-Glycosyl hydrolases family 17 
protein; FUNCTIONS IN: cation 
binding, hydrolase activity, 
hydrolyzing O-glycosyl compounds, 
catalytic activity; INVOLVED IN: 
carbohydrate metabolic process; 
LOCATED IN: anchored to 
membrane 

              AT5G18230 6021444-
6027249 

transcription regulator 
NOT2/NOT3/NOT5 family protein; 
FUNCTIONS IN: transcription 
regulator activity; INVOLVED IN: 
negative regulation of transcription, 
regulation of transcription; LOCATED 
IN: nucleus; EXPRESSED IN: 24 
plant structures; EXPRESSED 
DURING: 15 growth stages 

              AT5G18240 6028285-
6030802 

Encodes MYR1 (MYR1). 

              AT5G18250 6033702-
6035380 

unknown protein; FUNCTIONS IN: 
molecular_function unknown; 
INVOLVED IN: biological_process 
unknown; LOCATED IN: 
mitochondrion; EXPRESSED IN: 23 
plant structures; EXPRESSED 
DURING: 13 growth stages 

              AT5G18260 6036202-
6038106 

RING/U-box superfamily protein; 
FUNCTIONS IN: zinc ion binding 

              AT5G18270 6040919-
6042938 

Arabidopsis NAC domain containing 
protein 87 (ANAC087); FUNCTIONS 
IN: sequence-specific DNA binding 
transcription factor activity; 
INVOLVED IN: multicellular 
organismal development, regulation 
of transcription; LOCATED IN: 
cellular_component unknown; 
EXPRESSED IN: 12 plant structures; 
EXPRESSED DURING: LP.06 six 
leaves visible, LP.04 four leaves 
visible, 4 anthesis, C globular stage, 
petal differentiation and expansion 
stage 
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              AT5G18470 6127797-
6129285 

Curculin-like (mannose-binding) 
lectin family protein; FUNCTIONS IN: 
sugar binding; INVOLVED IN: 
response to karrikin; LOCATED IN: 
plant-type cell wall; EXPRESSED IN: 
22 plant structures; EXPRESSED 
DURING: 12 growth stages 

              AT5G18475 6129237-
6131015 

Pentatricopeptide repeat (PPR) 
superfamily protein; FUNCTIONS IN: 
molecular_function unknown; 
INVOLVED IN: biological_process 
unknown; LOCATED IN: chloroplast; 
EXPRESSED IN: 22 plant structures; 
EXPRESSED DURING: 13 growth 
stages 

              AT5G18480 6131203-
6133906 

plant glycogenin-like starch initiation 
protein 6 (PGSIP6); FUNCTIONS IN: 
transferase activity, transferring 
hexosyl groups, transferase activity, 
transferring glycosyl groups; 
INVOLVED IN: carbohydrate 
biosynthetic process, biosynthetic 
process; LOCATED IN: membrane; 
EXPRESSED IN: guard cell, leaf 

              AT5G18490 6134152-
6136765 

Plant protein of unknown function 
(DUF946) 

              AT5G18500 6138489-
6141630 

Protein kinase superfamily protein; 
FUNCTIONS IN: protein 
serine/threonine kinase activity, 
protein kinase activity, kinase 
activity, ATP binding; INVOLVED IN: 
protein amino acid phosphorylation; 
LOCATED IN: plasma membrane; 
EXPRESSED IN: 22 plant structures; 
EXPRESSED DURING: 13 growth 
stages 

              AT5G18510 6141778-
6143886 

Aminotransferase-like, plant mobile 
domain family protein 

              AT5G18520 6144963-
6146570 

Encodes a candidate G-protein 
Coupled Receptor that is involved in 
the regulation of root growth by 
bacterial N-acyl-homoserine lactones 
(AHLs) and plays a role in mediating 
interactions between plants and 
microbes. 

              AT5G18525 6146743-
6153742 

protein serine/threonine 
kinases;protein tyrosine kinases;ATP 
binding;protein kinases; 
FUNCTIONS IN: protein 
serine/threonine kinase activity, 
protein tyrosine kinase activity, 
protein kinase activity, ATP binding; 
INVOLVED IN: protein amino acid 
phosphorylation; LOCATED IN: 
CUL4 RING ubiquitin ligase complex; 
EXPRESSED IN: 22 plant structures; 
EXPRESSED DURING: 13 growth 
stages 

              AT5G18540 6153869-
6156166 

unknown protein 

              AT5G18550 6160178-
6163130 

Zinc finger C-x8-C-x5-C-x3-H type 
family protein; FUNCTIONS IN: zinc 
ion binding, nucleic acid binding; 
INVOLVED IN: biological_process 
unknown; LOCATED IN: 
cellular_component unknown; 
EXPRESSED IN: 17 plant structures; 
EXPRESSED DURING: 8 growth 
stages 

              AT5G18560 6164587-
6165991 

Encodes PUCHI, a member of the 
ERF (ethylene response factor) 
subfamily B-1 of ERF/AP2 
transcription factor family. The 
protein contains one AP2 domain. 
There are 15 members in this 
subfamily including ATERF-3, 
ATERF-4, ATERF-7, and leafy 
petiole. PUCHI is required for 
morphogenesis in the early lateral 
root primordium of Arabidopsis. 
Expressed in early floral meristem 
(stage 1 to 2). Required for early 
floral meristem growth and for bract 
suppression.  

              AT5G18570 6171661-
6174833 

Encodes AtObgC, a plant ortholog of 
bacterial Obg. AtObgC is a 
chloroplast-targeting GTPase 
essential for early embryogenesis. 
Mutations in this locus result in 
embryo lethality. The protein is dually 
localized in the stroma and the inner 
envelope membrane and is involved 
in thylakoid membrane biogenesis 
and functions primarily in plastid 
ribosome biogenesis during 
chloroplast development. 
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              AT5G18580 6174996-
6178401 

FASS1; fass mutants have aberrant 
cell shapes due to defects in 
arrangement of cortical microtubules. 
Encodes a protein highly conserved 
in higher plants and similar in its C-
terminal part to B' regulatory 
subunits of type 2A protein 
phosphatases. Interacts with an 
Arabidopsis type A subunit of PP2A 
in the yeast two-hybrid system. 

              AT5G18590 6178354-
6182761 

Galactose oxidase/kelch repeat 
superfamily protein 

              AT5G18600 6183258-
6183954 

Thioredoxin superfamily protein; 
FUNCTIONS IN: electron carrier 
activity, arsenate reductase 
(glutaredoxin) activity, protein 
disulfide oxidoreductase activity; 
INVOLVED IN: cell redox 
homeostasis; LOCATED IN: 
cellular_component unknown; 
EXPRESSED IN: 18 plant structures; 
EXPRESSED DURING: 10 growth 
stages 

              AT5G20110 6791487-
6793346 

Dynein light chain type 1 family 
protein; FUNCTIONS IN: microtubule 
motor activity; INVOLVED IN: 
microtubule-based process; 
LOCATED IN: microtubule 
associated complex; EXPRESSED 
IN: 19 plant structures; EXPRESSED 
DURING: 11 growth stages 

              AT5G20120 6795366-
6797172  

unknown protein 

              AT5G20130 6797440-
6798899 

unknown protein 

              AT5G20140 6798923-
6800977 

SOUL heme-binding family protein 

23 5 early 
HL 

17186178 0.35C -0.01 8 AT5G42870 17185463-
17189681 

PAH2; the PAH2 gene encodes a 
phosphatidate phosphohydrolase. 
Mutant analysis revealed that it 
involvement in galactolipid synthesis 
pathway, and the membrane lipid 
remodeling 

      17187071 0.35C -0.01   AT5G42880 17191577-
17194131 

Plant protein of unknown function 
(DUF827) 

      17187390 0.35C -0.01         

24 5 early 
HL 

18812710 0.39C -0.01 8 AT5G46360 18806821-
18808224 

Encodes AtKCO3, a member of the 
Arabidopsis thaliana K+ channel 
family of AtTPK/KCO proteins. 
AtKCO3 is targeted to the vacuolar 
membrane. Forms homomeric ion 
channels in vivo. 

      18872155 0.42C -0.01   AT5G46370 18809576-
18811772 

Encodes AtTPK2 (KCO2), a member 
of the Arabidopsis thaliana K+ 
channel family of AtTPK/KCO 
proteins. AtTPK2 is targeted to the 
vacuolar membrane. May form 
homomeric ion channels in vivo. 

      18872623 0.34C -0.01   AT5G46380 18813088-
18815974 

Kinase-related protein of unknown 
function (DUF1296) 

      18872638 0.34C -0.01   AT5G46390 18816585-
18819348 

Peptidase S41 family protein; 
FUNCTIONS IN: serine-type 
peptidase activity; INVOLVED IN: 
proteolysis, intracellular signaling 
pathway; LOCATED IN: chloroplast 
thylakoid lumen 

      18873842 0.34C -0.01   AT5G46400 18820032-
18824650 

PRP39-2; INVOLVED IN: RNA 
processing; LOCATED IN: 
intracellular; EXPRESSED IN: 21 
plant structures; EXPRESSED 
DURING: 13 growth stages 

      18874929 0.49C -0.01   AT5G46410 18825103-
18829221 

Encodes a SCP1-like small 
phosphatase (SSP). Three SSPs 
form a unique group with long N-
terminal extensions: AT5G46410 
(SSP4), AT5G11860 (SSP5), 
AT4G18140 (SSP4b). SSP4 and 
SSP4b were localized exclusively in 
the nuclei, whereas SSP5 
accumulated in both nuclei and 
cytoplasm. All three SSPs encodes 
active CTD phosphatases like animal 
SCP1 family proteins, with distinct 
substrate specificities: SSP4 and 
SSP4b could dephosphorylate both 
Ser2-PO(4) and Ser5-PO(4) of CTD, 
whereas SSP5 dephosphorylated 
only Ser5-PO(4). 

      18875337 0.32C -0.01   AT5G46420 18829955-
18832953 

16S rRNA processing protein RimM 
family; FUNCTIONS IN: ribosome 
binding, nucleotidyltransferase 
activity; INVOLVED IN: metabolic 
process, rRNA processing, ribosome 
biogenesis; LOCATED IN: 
chloroplast; EXPRESSED IN: 22 
plant structures. 
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      18875477 0.34C -0.01   AT5G46430 18833267-
18834564 

Ribosomal protein L32e; 
FUNCTIONS IN: structural 
constituent of ribosome; INVOLVED 
IN: translation, ribosome biogenesis; 
LOCATED IN: ribosome, cytosolic 
large ribosomal subunit 

              AT5G46440 18834643-
18835153 

FUNCTIONS IN: molecular_function 
unknown; INVOLVED IN: 
biological_process unknown; 
LOCATED IN: endomembrane 
system 

              AT5G46450 18835618-
18839546 

Disease resistance protein (TIR-
NBS-LRR class) family; 
FUNCTIONS IN: transmembrane 
receptor activity, nucleoside-
triphosphatase activity, nucleotide 
binding, ATP binding; INVOLVED IN: 
signal transduction, defense 
response, apoptosis, innate immune 
response; LOCATED IN: intrinsic to 
membrane; EXPRESSED IN: 18 
plant structures; EXPRESSED 
DURING: 11 growth stages 

              AT5G46460 18840305-
18842398 

Pentatricopeptide repeat (PPR) 
superfamily protein; INVOLVED IN: 
biological_process unknown; 
LOCATED IN: mitochondrion; 
EXPRESSED IN: 20 plant structures; 
EXPRESSED DURING: 11 growth 
stages 

              AT5G46470 18842701-
18849741 

Encodes RPS6 (RESISTANT TO P. 
SYRINGAE 6), a member of the TIR-
NBS-LRR class resistance protein. 

              AT5G46490 18850776-
18853843 

Disease resistance protein (TIR-
NBS-LRR class) family; 
FUNCTIONS IN: transmembrane 
receptor activity, nucleoside-
triphosphatase activity, nucleotide 
binding, ATP binding; INVOLVED IN: 
signal transduction, apoptosis, 
defense response, innate immune 
response; LOCATED IN: intrinsic to 
membrane 

              AT5G46500 18856454-
18857787  

unknown protein; BEST Arabidopsis 
thaliana protein match is: disease 
resistance protein (TIR-NBS-LRR 
class) family (TAIR:AT5G46260.1) 

              AT5G46510 18860451-
18867013 

Disease resistance protein (TIR-
NBS-LRR class) family; 
FUNCTIONS IN: transmembrane 
receptor activity, nucleoside-
triphosphatase activity, nucleotide 
binding, ATP binding; INVOLVED IN: 
signal transduction, defense 
response, apoptosis, innate immune 
response; LOCATED IN: intrinsic to 
membrane; EXPRESSED IN: 21 
plant structures; EXPRESSED 
DURING: 12 growth stages 

              AT5G46520 18867767-
18872415 

Disease resistance protein (TIR-
NBS-LRR class) family; 
FUNCTIONS IN: transmembrane 
receptor activity, nucleoside-
triphosphatase activity, nucleotide 
binding, ATP binding; INVOLVED IN: 
signal transduction, defense 
response, apoptosis, innate immune 
response; LOCATED IN: intrinsic to 
membrane 

              AT5G46530 18875525-
18876898 

AWPM-19-like family protein; 
FUNCTIONS IN: molecular_function 
unknown; INVOLVED IN: 
biological_process unknown; 
LOCATED IN: endomembrane 
system, membrane 

26 5 early 
HL 

25956134 0.46C -0.01 13 AT5G64910 25940711-
25944114 

unknown protein 

      25963073 0.46C -0.01   AT5G64930 25945712-
25948341 

Regulator of expression of 
pathogenesis-related (PR) genes. 
Participates in signal transduction 
pathways involved in plant defense 
(systemic acquired resistance -SAR). 

      25967700 0.36NC 0.01   AT5G64940 25948973-
25953822 

Encodes a member of ATH 
subfamily of ATP-binding cassette 
(ABC) proteins. 

      25968943 0.28NC 0.01   AT5G64960 25955381-
25958995 

Encodes CDKC;2, part of a CDKC 
kinase complex that is targeted by 
Cauliflower mosaic virus (CaMV) for 
transcriptional activation of viral 
genes. Also regulates plant growth 
and development. Co-localizes with 
spliceosomal components in a 
manner dependent on the 
transcriptional status of the cells and 
on CDKC2-kinase activity. 
Expression of CDKC2 modifies the 
location of spliceosomal 
components. 
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      25975808 0.48C -0.01   AT5G64980 25960775-
25963235 

unknown protein 

      25976943 0.32C -0.01   AT5G65000 25964960-
25967393 

Nucleotide-sugar transporter family 
protein; FUNCTIONS IN: nucleotide-
sugar transmembrane transporter 
activity, sugar:hydrogen symporter 
activity; INVOLVED IN: carbohydrate 
transport, nucleotide-sugar transport; 
LOCATED IN: integral to membrane, 
Golgi membrane 

              AT5G65005 25967824-
25968638 

Polynucleotidyl transferase, 
ribonuclease H-like superfamily 
protein; FUNCTIONS IN: nucleic acid 
binding; INVOLVED IN: 
biological_process unknown; 
LOCATED IN: cellular_component 
unknown 

              AT5G65010 25969190-
25972575 

Encodes asparagine synthetase 
(ASN2). 

              AT5G65020 25973815-
25975726 

Annexin2; annexins are calcium 
binding proteins that are localized in 
the cytoplasm. When cytosolic Ca2+ 
increases, they relocate to the 
plasma membrane. They may be 
involved in the Golgi-mediated 
secretion of polysaccharides. 

              AT5G65030 25975697-
25976305 

unknown protein 
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Table S2. Shortlist of 33 prioritized candidate genes potentially underlying quantitative trait 

loci (QTLs) for photosynthesis acclimation in Arabidopsis  
These are the QTLs indicated in Fig. 2. These genes pass three out of the five selection criteria 

summarized in columns 2 to 6: gene ontology (genes in red have ontology terms ‘chloroplast’, 

‘photosynthesis’, or ‘light stress’); gene co-expression (values in red have a correlation value (r2) that 

exceeds 0.800 when considering expression of light response genes from light intensity-associated 

microarray experiments; a dash means the gene is not represented on the microarray chip used for 

gene expression analysis); gene expression in the vegetative rosette; gene function; and presence of 

segregating polymorphisms in the gene coding sequence. The last column indicates for which genes 

T-DNA insertion mutants were screened; AT1G74190, AT5G64960, AT5G64980, AT5G65000, and 

AT5G65030 were included in T-DNA screening because of extreme high LD in these two QTLS 

(LD>0.9). 

 
QTL gene r2 rosette expression known role in 

photosynthesis 
polymorphisms in 

extreme 
accessions 

T-DNA line 
screened 

3 AT1G34000 0.951 yes yes no yes 

4 AT1G74180 0.669 yes no yes yes 
4 AT1G74190 0.337 no no yes yes 

4 AT1G74210 0.924 yes no yes no 

7 AT2G26280 0.467 yes no yes yes 

8 AT3G04840 0.847 yes no yes no 

8 AT3G04870 0.937 yes yes no yes 

8 AT3G04880 0.818 yes no yes yes 

8 AT3G04890 0.899 no no yes no 

8 AT3G04920 0.858 yes no yes no 

9 AT3G05810 0.884 yes no yes no 

10 AT3G22570 0.896 no yes no no 
10 AT3G22690 - - yes yes yes 

13 AT4G01900 0.820 yes yes no no 

15 AT4G12400 0.952 no yes yes yes 

19 AT5G01750 0.746 no yes yes no 

20 AT5G03760 0.810 no yes no yes 

21 AT5G12290 0.940 yes yes no yes 

22 AT5G18170 0.840 no yes no no 
22 AT5G18570 0.958 yes yes no no 

22 AT5G20130 0.917 yes no no no 

22 AT5G20140 0.967 yes yes no yes 

23 AT5G42870 0.822 no yes yes yes 

24 AT5G46390 0.952 yes no yes no 
24 AT5G46420 0.958 yes no no no 

24 AT5G46530 - - no yes yes 

26 AT5G64940 0.938 yes no no yes 

26 AT5G64960 0.612 yes no yes yes 

26 AT5G64980 0.841 no no yes yes 

26 AT5G65000 0.656 no no yes yes 

26 AT5G65010 0.903 yes yes yes yes 

26 AT5G65020 0.923 yes no no yes 

26 AT5G65030 - - no yes yes 
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Table S3. T-DNA lines screened for photosynthetic acclimation response to increased 

irradiance. 

gene NASC ID name insertion location in gene 

AT1G34000 N406778 GK-071E10 first intron 

AT1G74180 N65449 SAIL_513_A08 sixth (=last) exon 

AT1G74190 N65450 SALK_041143 fifth (=last) exon 

AT2G26280 N511487 SALK_011487 promoter 

AT2G26280 N861393 SAIL_888_F10 intron 1700bp downstream of ATG-start 

AT3G04870 N658302 SALK_079674 first exon 

AT3G04880 N593180 SALK_093180 first exon 

AT3G22690 N660581 SALK_123515 first exon 

AT4G12400 N670406 SALK_023494 first exon 

AT5G03760 N502194 SALK_002194 promoter 

AT5G12290 N818029 SAIL_391_F04 third exon 

AT5G20140 N829965 SAIL_683_H02 promoter 

AT5G42870 N653185 SALK_047457 seventh intron 

AT5G46530 N643165 SALK_143165 5'UTR 

AT5G64940 N679867 SALK_080442 promoter 

AT5G64960 N595246 SALK_095246 5'UTR 

AT5G64980 N686875 SALK_138186 first exon 

AT5G65000 N660110 SALK_112086 third intron 

AT5G65010 N543167 SALK_043167 third intron 

AT5G65020 N624483 SALK_124483 promoter 

AT5G65030 N654708 SALK_069622 first exon 
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Table S4. The 173 re-sequenced accessions used for haplotype analysis. 
Code Accession Code Accession Code Accession Code Accession 

cs22689 RRS-10 cs28759 Ting-1 cs76146 HSm cs76232 Ste-3 
cs28013 Alst-1 cs28779 Tscha-1 cs76147 In-0 cs76235 T1080 

cs28014 Amel-1 cs28780 Tsu-0 cs76148 JEA cs76236 T1110 

cs28018 Ang-0 cs28786 Ty-0 cs76150 Kas-1 cs76237 T1130 

cs28049 Ann-1 cs28787 Uk-1 cs76152  Kelsterbach-4 cs76239 T540 

cs28053 Ba-1 cs28795 Utrecht cs76153 Kin-0 cs76242 Ta-0 

cs28054 Baa-1 cs28800 Ven-1 cs76154 Kno-18 cs76244 Tamm-2 

cs28064 Benk-1 cs28804 Wa-1 cs76156 Kulturen-1 cs76245 TDr-1 

cs28091 Boot-1 cs28822 Wl-0 cs76159 Lc-0 cs76246 TDr-17 

cs28099 Bsch-0 cs76087 Ag-0 cs76164 Ler-1 cs76249 TDr-8 

cs28128 Ca-0 cs76088 Alc-0 cs76166 Liarum cs76250 Tomegap-2 

cs28135 Chat-1 cs76091 An-1 cs76167  Lilloe-1 cs76251 Tottarp-2 

cs28142  CIBC-5 cs76092 App1-16 cs76168 Lip-0 cs76268 Ts-1 

cs28160 Cnt-1 cs76093  Baa1-2 cs76170 Lis-2 cs76293 Ull2-3 

cs28193 Com-1 cs76094 Bay-0 cs76171 Lisse cs76294 Ull2-5 

cs28201 Da(1)-12 cs76096  Bg-2 cs76172 LL-0 cs76296 Uod-7 

cs28210 Do-0 cs76097 Bla-1 cs76173 Lm-2 cs76297 Van-0 

cs28241 Es-0 cs76098 Blh-1 cs76174 Lom1-1 cs76298  Vaar2-1 

cs28279 Gel-1 cs76099 Bor-1 cs76175  Lov-5 cs76301 Wei-0 

cs28280 Gie-0 cs76100 Bor-4 cs76176 Lp2-2 cs76302 Wil-1 

cs28336 Ha-0 cs76101 Br-0 cs76177 Lp2-6 cs76303 Ws-0 

cs28343 Hau-0 cs76102  Broet1-6 cs76178 Lund cs76304 Wt-5 

cs28344 Hey-1 cs76103 Bu-0 cs76191 Mrk-0 cs76305 Yo-0 

cs28345 Hh-0 cs76105 Bur-0 cs76192 Mt-0 

  cs28350 Hn-0 cs76106 C24 cs76193 Mz-0 

  cs28364 Je-0 cs76109 Can-0 cs76194 N13 

  cs28369 Jl-3 cs76111  CIBC-17 cs76195 Na-1 

  cs28394 Kl-5 cs76113 Col-0 cs76196 NC-6 

  cs28395 Kn-0 cs76114 Ct-1 cs76198 NFA-10 

  cs28420 Kro-0 cs76116 Cvi-0 cs76199 NFA-8 

  cs28490 Mc-0 cs76117 Dra3-1 cs76200  oemoe2-1 

  cs28492 Mh-0 cs76118 DraII-1 cs76203  Oy-0 

  cs28495 Mnz-0 cs76124 Duk cs76210 Per-1 

  cs28527 Nc-1 cs76125 Eden-2 cs76212 PHW-34 

  cs28564 No-0 cs76126 Edi-0 cs76213 Pna-17 

  cs28573 Nw-0 cs76127 Est-1 cs76214 Pro-0 

  cs28578  Nz1 cs76128  FÃ¤b-4 cs76215 Pu2-23 

  cs28583 Old-1 cs76129 Fei-0 cs76216 Ra-0 

  cs28587 Or-0 cs76131  FjÃ¤1-2 cs76217 Rak-2 

  cs28640 Pla-0 cs76132  FjÃ¤1-5 cs76218 Ren-1 

  cs28650 Pog-0 cs76133 Ga-0 cs76219 Rev-2 

  cs28685 Rhen-1 cs76135 Ge-0 cs76220 Rmx-A180 

  cs28692 Rou-0 cs76136  Got-7 cs76222 Rsch-4 

  cs28713 RRS-7 cs76137 Gr-1 cs76223 Sanna-2 

  cs28725 Sav-0 cs76139 Gy-0 cs76224 Sap-0 

  cs28729 Sei-0 cs76140 Hi-0 cs76226 Se-0 

  cs28732 Sg-1 cs76141 Hod cs76227 Shahdara 

  cs28739 Si-0 cs76142 Hov4-1 cs76229 Sparta-1 

  cs28743 Sp-0 cs76143 Hovdala-2 cs76230 Sq-8 

  cs28758 Tha-1 cs76145 Hs-0 cs76231 St-0  
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Table S5. Sequences (5’-3’) of primers used for real-time quantitative Reverse Transcriptase-

PCR of candidate and reference genes. 

Gene Forward Primer Reverse Primer 

YS1 GCCTCGCGTAACCACAAATC TTTACGCCGAGTGTGGAGAG 

DGS1 GAGTGGGAAGCAAGCAGTCA GAGTTAGGAAGGCCACAGCA 

CID7 GCTGTGCTCCTCAACACACT CCAGTGGGTCAAGGAAACA 

UBQ7 GCAGCGACACCATCGACAAT AGGTCCGGCCATCTTCCAAT 

CB5E TGATCATCCTGGAGGCGATG TTGCAGTGTCGCTGTGACCA 
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Figure S1 Heat map of all 202 SNPs with -log10(p) ≥ 4 for at least one time point in genome-
wide association study of ФPSII on consecutive time points before and after an increase in 
growth irradiance from 100 to 550 µmol m-2 s-1 on day 25 after sowing.  
Three time points are indicated per day, i.e. 9.00h (1), 11.30h (2) and 14.30h (3), either on two days 
before (low light, L) or four days after (high light, H) the increase in growth irradiance; ‘GWAS’ 
indicates if the SNPs were significant when the GWA analysis was performed on the ΦPSII-values 
averaged per accession (AV) or on single measurement (SM) values, or both (AV + SM). 

 

C hr. S NP 	  po s ition GWA S L1.1 L1.2 L1.3 L2.1 L2.2 L2.3 H1.1 H1.2 H1.3 H2.1 H2.2 H2.3 H3.1 H3.2 H3.3 H4.1 H4.2 H4.3

1 548,483 A V 4.2 3 2.6 3.3 2.9 2.6 0.9 0.8 0.6 0.7 0.6 0.5 1 1 1 1.4 1.7 1.4

1 548,499 A V 4.1 3 2.6 3.7 3.8 2.7 1 0.8 0.7 0.8 0.8 1 1.2 1.5 1.5 1.7 2.2 1.9

1 552,796 A V	  +	  S M 2.9 2.1 2.7 2.5 4.1 2.8 0.3 0.3 0.3 0.3 0 0.1 0.1 0.3 0.3 0.1 0.7 0.6

1 703,755 A V 3.4 4.4 3.4 3.5 3.1 3.3 0.6 0.8 0.8 0.9 1.1 1.3 0.9 1.2 1.2 0.9 1.1 0.9

1 3,995,184 A V 0.6 0.6 1 1 1.6 1.3 1.1 1.2 0.9 1.3 1.9 2.7 2.3 3.3 3.6 2.6 3.6 4.1

1 7,384,441 A V	  +	  S M 1.2 1.4 0.9 1.1 0.5 1.2 4.6 4.8 5.3 4.1 3.8 3.4 3.7 2.9 2.6 3.3 2.5 2.4

1 9,765,217 A V 3.1 4.4 3.7 2.8 3.5 3.1 0.2 0.2 0.1 0.2 0.1 0 0.2 0 0.1 0.2 0 0.1

1 9,774,441 A V	  +	  S M 3.2 4.6 4.2 3 4 3.9 0.3 0.3 0.1 0.1 0 0.1 0 0.3 0.5 0.1 0.4 0.4

1 9,776,148 A V	  +	  S M 3.2 4.6 3.9 2.8 3.5 3.5 0.4 0.5 0.3 0.2 0.1 0 0.1 0.1 0.3 0 0.3 0.2

1 9,781,240 A V	  +	  S M 2.9 4.2 3.9 2.6 3.5 3.5 0.4 0.6 0.3 0.3 0.1 0 0.2 0.1 0.3 0 0.3 0.3

1 9,786,365 A V	  +	  S M 1.8 1.7 2.3 2.4 4 3 0.3 0.4 0.3 0.3 0.6 0.8 0.5 1.1 1.2 0.8 1.3 1.4

1 9,790,491 A V	  +	  S M 3.1 4.2 4.2 3.4 4 3.8 0.3 0.4 0.3 0.1 0.1 0 0 0.2 0.5 0.2 0.5 0.6

1 10,596,936 A V	  +	  S M 3.7 2.7 2.7 3.6 2.7 3.9 2.7 2.6 2.4 3.4 3.6 4.2 4.2 4.7 5.1 5.1 5.8 5.4

1 12,275,289 A V 1 0.6 0.3 0.4 0.5 0.2 2.9 3.4 3.2 4 3.9 3.9 3.4 2.9 3.1 3.1 2.8 2.5

1 12,348,136 A V 3.2 4 2.6 2.4 2.4 3.1 1.6 1.7 2.3 2.6 2.4 2.5 1.7 2.1 2.4 1.8 2 2.3

1 16,280,462 A V 4 2.6 3.6 2.4 2.7 1.5 0.5 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.2 0.3

1 22,409,810 A V 4.7 3.7 3.5 3.6 3.6 3.4 0.3 0.3 0.4 0.2 0.4 0.4 0.1 0.6 0.8 0.1 0.5 0.6

1 22,981,647 A V 3.6 3.8 3.4 2.3 2.4 4.1 0.8 0.7 0.5 0.7 0.6 0.5 0.6 0.6 0.8 0.5 0.7 0.7

1 22,982,345 A V 2.7 4.2 3.5 2.3 2 3 0.3 0.7 0.7 0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.1

1 23,271,314 A V 2.7 2.9 2.3 2.1 4 1.8 0.3 0.6 0.7 0.3 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.2

1 23,441,407 A V 0.1 0 0.1 0.3 0.1 0.4 2 2 1.2 1.8 1.8 2.2 2.9 3.5 3.6 4 4.4 4.7

1 24,371,872 A V 4.1 2.4 2.9 3.3 3 3.2 0.3 0.3 0.3 0.3 0.5 0.5 0.1 0.2 0.2 0.1 0.2 0.3

1 26,249,116 A V 0 0.1 0.3 0.6 0 0.1 4.3 4.2 3.6 3.8 4.3 4.7 4.1 4.1 3.6 3.3 2.6 2.2

1 27,114,195 A V 0 0.1 0 0.5 0.1 0.3 0.9 0.8 0.8 1.6 1.9 2.6 2.5 3.6 3.8 3.3 4 4

1 27,114,604 A V 0.2 0.1 0 0.1 0.1 0.1 1.7 1.8 2.5 3.5 3.4 4.1 3.7 3.6 3.8 3.3 3.3 3.3

1 27,114,842 A V 0.3 0.2 0 0 0 0 1.8 1.9 2.8 3.5 3.3 4 3.7 3.6 3.7 3.6 3.4 3.3

1 27,329,236 A V	  +	  S M 1.8 1.1 1.2 1.4 0.9 0.7 4.6 4.1 4.2 4.3 3.8 3.6 3.7 3.2 3.3 2.4 2.7 2.7

1 27,891,662 A V 0 0.1 0.3 0.1 0 0.4 3.2 4.2 4 3.2 4 3.5 2.8 3 2.8 2.2 2 1.9

1 27,894,888 A V 0.8 0.9 1 1.1 0.4 1 2.1 4.2 3.9 2.7 3.4 3.2 2 2.2 2 1.4 1.4 1.1

1 27,896,712 A V 0 0.3 0.1 0.2 0.1 0.2 3.7 4.2 3.8 2.8 3.2 3.2 2.7 2.7 2.6 2.1 2 2

1 27,897,142 A V 0.8 0.7 0.9 0.9 0.4 1.3 2.6 4.4 4 2.4 3 3 2.1 2.2 2.1 1.4 1.7 1.6

1 27,899,243 A V 0.6 1 0.9 0.9 0.5 0.9 4.4 5.2 4.1 3.3 3.8 3.9 2.7 3.1 2.9 1.9 2 2.2

1 27,903,238 A V	  +	  S M 0.2 0.2 0.2 0.1 0 0.4 3.9 5 4.4 4.1 4 4 3.8 3.6 3.5 3.1 2.6 2.1

1 27,904,597 A V	  +	  S M 1.1 1.4 1.1 0.6 0.5 1.2 3.2 4.1 4.1 3.3 3.2 3.5 2.7 2.5 2.6 1.8 1.7 1.6

1 27,904,633 A V	  +	  S M 1.1 1.5 1.2 0.7 0.6 1.1 3.5 4.2 4.1 3.4 3.2 3.4 2.6 2.5 2.5 1.8 1.7 1.6

1 27,904,871 A V	  +	  S M 1.2 1.6 1.1 0.7 0.7 1.2 3.4 4.2 4 3.6 3.4 3.5 3 2.8 2.8 2 1.8 1.7

1 27,905,270 A V	  +	  S M 0.4 0.5 0.3 0.5 0 0.7 2.1 3.5 4 2.8 2.9 2.6 1.9 1.6 1.6 1 0.8 0.7

1 27,905,627 A V 0.5 0.7 0.7 0.9 0.3 0.9 3.1 4.4 3.9 3.2 3.6 3.4 2.3 2.7 2.6 1.6 1.7 1.8

1 27,905,987 A V	  +	  S M 0.5 0.4 0.3 0.3 0.2 0.8 2.9 4 3.9 3.2 3.5 3.3 2.9 2.5 2.4 1.7 1.4 1.3

1 27,979,318 A V	  +	  S M 0.5 0.5 1.3 0.5 0.3 0.4 4.9 4.2 5 5.4 5.2 5.2 4.5 4.2 4 3.6 3.4 3.2

1 27,981,096 A V 2.4 1.6 2.7 2 1.2 1.5 5.3 3.9 4.3 4.5 4.3 4.1 3.7 2.9 3 3 2.6 2.9

2 77,634 A V	  +S M 0 0 0.2 0.3 0.1 0.3 4 4.2 2.8 3.8 4.2 4.7 5 6 5.1 5.1 5.2 5

2 350,665 S M 2.7 1.8 2.7 2.4 2.6 2.4 2.4 2.4 1.8 2.1 2.2 2.6 2.9 3.3 3.5 3.6 4.3 4.2

2 3,537,208 A V 2.6 4.1 3.7 2.1 3.1 3.3 0.8 0.9 1.1 0.7 0.5 0.5 0.1 0.1 0.2 0 0.1 0.1

2 3,843,084 A V	  +	  S M 3.6 4.1 4 3.7 3.6 3.4 0.9 0.8 0.7 0.5 0.3 0.2 0.2 0 0.1 0.2 0.1 0

2 4,420,246 A V	  +	  S M 3.1 4.5 3.5 2.1 3.2 4.1 0.1 0.3 0.4 0.1 0.1 0.1 0.2 0.2 0.1 0.3 0.1 0.1

2 4,705,002 A V	  +	  S M 5.4 5 5.2 3.7 4.2 3.8 1.7 1.8 1.9 1.5 1.2 1.4 0.8 0.8 0.9 0.6 0.8 0.8

2 6,718,723 A V	  +	  S M 3 3.6 3.2 4 5 3.2 1.4 1.3 1.1 1.4 2 2.4 1.5 2.4 2.6 1.9 2.4 2.6

2 6,720,135 A V	  +	  S M 2.8 2.9 2.6 4.9 3.1 2.8 0.3 0.2 0.3 0.6 0.7 0.9 0.3 0.4 0.6 0.1 0.5 0.5

2 6,814,637 A V 3.7 4.2 3.5 3.1 3.5 3.3 0.2 0.2 0.1 0.1 0.1 0 0 0.1 0.1 0.1 0.2 0.2

2 7,404,313 A V 0.4 0.2 0.6 0.5 0.4 0.8 3.5 3.9 3.6 4.2 4.6 4.4 4.7 4.7 4.4 4.7 4.5 4.6

2 8,158,848 A V 0.4 0.5 0.9 0.9 0.8 0.7 4 2.9 2.4 3.4 3 2.6 3.9 3.1 3.5 4.2 3.5 4
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C hr. S NP 	  po s ition GWA S L1.1 L1.2 L1.3 L2.1 L2.2 L2.3 H1.1 H1.2 H1.3 H2.1 H2.2 H2.3 H3.1 H3.2 H3.3 H4.1 H4.2 H4.3

2 11,189,311 A V	  +	  S M 0.9 1.3 1.8 1.8 1.3 1.2 3.3 3.4 4.3 2.7 2.7 2.6 2.9 2.7 2.5 2.6 1.9 1.7

2 11,189,443 A V 1 1.3 1.8 1.9 1.1 1.2 3.2 3.3 4 2.5 2.3 2.3 2.6 2.2 2.1 2.3 1.6 1.4

2 11,189,829 S M 1.3 1.6 2.3 2.1 1.4 1.4 3.9 3.8 4 2.6 2.5 2.3 2.8 2.5 2.3 2.6 1.8 1.8

2 16,905,030 A V	  +	  S M 0.8 0.8 0.9 1 1.1 0.7 3.9 4.2 4 3 3.2 3.5 2.9 2.9 2.7 2.3 2.1 1.9

3 1,230,134 A V 0.9 1.1 1.1 1.1 0.9 0.8 3 3.5 4 2.9 3 2.3 1.6 1.5 1.7 1.2 1 1.3

3 1,350,656 S M 1.6 2 2.1 1.7 1.6 2 4.4 4 2.8 3 3.2 3.1 3 3.2 2.7 3 2.6 2.5

3 1,353,218 A V	  +	  S M 0.7 1 1.4 0.7 0.7 1.2 2.7 2.8 3.8 3.3 3.8 3.9 3.8 4.2 4.1 4.7 3.9 3.8

3 1,353,894 A V	  +	  S M 0.7 0.7 1.2 0.7 0.7 1.2 4.3 4.1 5 4.8 5 5 4.4 4.9 4.7 4.4 3.6 3.2

3 1,453,164 A V	  +	  S M 1.9 2.1 1.6 1.8 1.8 1.9 3.1 4.2 3.7 4.1 4.9 5.4 4.3 5.5 5.5 4.7 4.9 4.7

3 1,652,181 A V 0.8 0.7 0.3 0.5 0.6 1 3.5 2.9 2.5 3.2 3.6 3.6 4.4 5 4.7 4.8 4.6 4.6

3 1,714,987 A V 0.9 1 0.8 1.1 1.3 1.5 3.3 4.1 2.8 3 3.3 3 3.4 3.3 3 3.7 3.1 2.7

3 1,750,265 A V 0.3 0.4 0.4 0.2 0.2 0.5 4.1 3.7 2.9 4.3 3.3 3 3.3 2.6 2.4 2.7 2 1.5

3 1,750,573 A V 0.5 0.6 0.7 0.2 0.5 0.8 4.5 3.7 2.8 4.2 3.6 3.3 3.3 2.9 2.9 2.7 2.3 1.8

3 1,750,946 A V 0.5 0.5 0.6 0.2 0.5 0.7 4.2 3.4 2.5 3.9 3.2 3 3 2.6 2.6 2.4 2.1 1.6

3 1,751,042 A V 0.7 0.7 0.8 0.5 0.5 1.2 5.1 4.1 3.2 4.6 3.9 3.5 3.7 3.2 3.1 3.1 2.8 2.2

3 1,755,712 A V	  +	  S M 1.7 1.4 1.7 1.4 1.2 2 2.1 3.2 3.4 3.4 3.3 3.7 4 3.6 3.2 4.2 3.3 2.9

3 1,791,357 A V 0.2 0.2 0.2 0.1 0.2 0.5 1.9 2.2 2.1 2.7 2.9 3.3 3.8 3.8 3.8 4.6 3.9 3.9

3 1,791,485 A V 0.2 0.3 0.2 0.1 0.2 0.5 2.1 2.3 2.2 2.8 3 3.4 4 3.7 3.8 4.7 3.9 3.9

3 1,834,221 A V	  +	  S M 0.2 0.3 0.2 0.2 0.6 0.2 3.3 3.5 2.9 3.5 3.2 3.2 4.2 3.3 3.1 4.1 2.8 2.4

3 1,834,667 A V 0.1 0.1 0 0.1 0.3 0.1 3.5 3.7 3 3.4 3.3 3.4 4.3 3.8 3.9 4.6 3.7 3.3

3 1,835,145 A V 0 0.2 0 0 0.4 0.1 3.5 3.4 2.4 2.9 2.7 2.7 3.6 3.4 3.4 4.3 3.6 3.2

3 3,281,845 A V 0.1 0.4 0.4 0.1 0.2 0.1 1.8 1.8 1.5 1.4 2.2 2.4 3 3.7 3.6 3.8 4.2 3.9

3 3,382,240 A V	  +	  S M 0.3 0.4 0.6 0.5 0.3 0.3 3.1 3.4 3.6 4.4 4.1 3.7 4.6 3.4 2.9 3.5 2.8 2.3

3 4,496,216 A V 0.8 0.9 0.5 0.3 0.5 0.3 3.3 3.8 4.1 3.6 3.7 3.9 3.9 3.1 3.5 4.1 2.9 2.9

3 5,586,719 A V	  +	  S M 1.2 1 0.9 0.9 0.8 0.8 3.4 3.5 3.6 3.6 3.9 4.1 4.1 4.1 4.3 4.2 3.5 3.8

3 5,900,347 A V	  +	  S M 4.2 3.6 3.8 4.2 3.3 2.9 1.1 0.8 0.7 0.7 1.2 1.2 1 1.2 1.2 0.7 1.1 1.3

3 7,348,466 A V	  +	  S M 3 3.5 3 5 2.8 2.3 0.8 0.8 0.8 0.8 1.1 1.1 0.7 0.7 0.8 0.6 0.6 0.6

3 7,759,706 A V 2.9 3.3 4 3.9 2.8 3.6 1.3 1.2 1.3 1.1 1.3 1.2 0.9 1 1.1 0.9 0.7 0.8

3 7,760,604 A V 3.3 4.1 4 3.6 3.5 3.6 0.3 0.4 0.3 0.3 0.3 0.3 0.2 0.4 0.5 0.4 0.5 0.5

3 7,992,656 S M 0.9 0.7 1.3 0.6 0.8 0.9 1.8 1.9 2.2 3.9 4.5 5 4.5 5.1 4.9 4.6 4.7 4.2

3 8,120,853 A V	  +	  S M 1.5 1.6 1.7 1.9 1.9 2.4 4 4.6 3.3 3.8 4.6 4.7 4 5 4.8 3.9 4.5 4.3

3 8,226,290 A V 3.3 2.9 4.6 2.3 3.4 4.3 1.1 1.3 0.9 1.5 1.5 1.2 1.4 1.6 1.5 1.3 1.9 1.7

3 9,116,089 A V	  +	  S M 3.4 4.5 4.5 4 2.9 4.1 1.6 0.8 0.5 0.7 0.9 1.1 0.8 1.2 1.5 0.8 1.4 1.4

3 10,578,962 A V	  +	  S M 3.4 3.9 3.1 4.1 4.6 3 0.9 0.7 0.4 0.5 0.8 1 0.9 1 1.4 1.4 1.6 1.5

3 11,032,555 A V	  +	  S M 0 0.1 0.1 0.2 0.6 0.1 1.4 1.2 1 1.1 1.8 2.4 2.7 3.6 3.9 4.1 4.8 4.6

3 11,720,925 A V 0.2 0.7 0.8 0.6 0.6 0.7 3.1 4 4.2 3.9 2.7 2 2.3 1.5 1.3 1.5 0.8 0.7

3 12,765,053 A V 0.5 1 1.2 1 0.7 0.7 4 3.5 3.3 3.5 3.4 3.5 2.7 2.6 2.3 1.8 1.5 1.6

3 12,784,017 A V	  +	  S M 2.5 2.6 2.7 2.3 2.6 2.8 3.9 5.3 5.7 5 5.2 5.6 4.3 3.6 3.7 3.2 2.6 2.5

3 15,364,226 A V 1.1 0.8 1.1 0.9 0.8 0.8 2.6 2.9 4 3.3 2.6 2.6 2.4 1.8 1.9 1.9 1.3 1.5

3 15,932,189 A V	  +	  S M 0.4 0.1 0.1 0.2 0.1 0.1 3.7 4.3 4.8 3.9 3.6 3.6 4.4 3.6 3.8 4.3 3 3.1

3 16,316,203 A V	  +	  S M 2.7 3.4 3.9 2.7 3.8 4 1.2 1.1 1.4 1.3 1.5 1.3 1 1.2 1 1.2 1.6 1.1

3 16,318,079 S M 1.9 2.8 2.1 2.4 1.8 2.5 2.1 1.2 1.2 1.4 2 2.1 2.2 3.3 3.4 3 4.3 4

3 16,318,704 S M 1 1.2 1.1 1 0.7 1.6 1.9 1.6 1.8 1.6 2.4 2.7 2.7 3.9 4.4 3.4 5.2 4.9

3 16,698,957 A V	  +	  S M 2.2 2.4 2.7 4.6 3.1 3.3 1.4 1.4 1.2 1.3 1.2 1.4 1.6 1.7 1.9 2.1 2 1.9

3 16,844,909 A V 0.5 0.5 0.8 0.9 0.2 0.7 2.7 3.7 3.3 3.9 3.9 4.1 4.1 3.9 3.8 4.2 3.9 3.5

3 18,539,054 A V 0.5 0.4 0.6 0.5 0.2 0.6 4.3 3.4 2.6 2.5 2.9 3 2 2.6 2.6 1.9 2 2.3

3 19,985,321 A V 1.7 1.5 1.3 1.2 0.9 1.7 4 4.4 3.8 3.4 2.9 2.5 3 2.4 2.3 3.2 2.6 2.3

3 20,000,766 A V	  +	  S M 2.2 1.5 1.5 1.6 1.4 2.1 4.7 3.4 2.8 3.5 2.9 2.6 4.2 3.3 3.1 3.6 3.4 3.1

3 21,370,204 A V 0 0.5 0.6 0.1 0.7 0.4 3.6 3 2.9 3.9 3.8 3.9 4.8 3.4 3.3 4.1 3 2.5

3 21,528,062 A V 4.4 4.3 3.5 2.8 2.7 3.3 1.2 1 1.3 1.2 1.4 1.3 1 1.3 1.2 0.8 0.9 1.1

3 21,529,038 A V 3.8 4.2 3.1 2.6 2.6 3.3 0.7 0.6 0.8 0.7 1 0.9 0.5 0.8 0.7 0.4 0.5 0.7

4 818,905 A V 0.2 0.1 0.4 1 0.3 0.5 1.7 1.5 0.9 1.3 1.5 1.6 2.4 2.7 3.2 3.3 3.3 4
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C hr. S NP 	  po s ition GWA S L1.1 L1.2 L1.3 L2.1 L2.2 L2.3 H1.1 H1.2 H1.3 H2.1 H2.2 H2.3 H3.1 H3.2 H3.3 H4.1 H4.2 H4.3

4 987,887 A V 0.2 0.2 0.3 0.4 0.3 0.4 2.7 2.6 2.6 2.7 3 4 2.4 3.1 3.4 2.3 3.2 3.3

4 5,849,497 A V 0 0.1 0.1 0.6 0.3 0.3 4.1 3.1 2.5 3.9 3.2 2.8 3.7 3.5 2.9 3.3 2.9 2.9

4 6,016,113 S M 1.4 0.9 1.9 1.5 0.8 0.9 3.3 4.4 4.1 3.7 4 3.7 3.7 2.8 3 3 2.5 2.4

4 6,017,522 A V	  +	  S M 0.9 0.5 1.3 0.9 0.4 0.9 3.1 4 3.7 3.2 2.8 2.4 3 1.8 1.8 2.2 1.7 1.3

4 6,222,812 A V 3.9 4.1 3.6 3.3 3.7 3.1 1.2 1.3 1.6 1.3 1.4 1.6 1.1 1.3 1.5 1.2 1.3 1.3

4 6,320,947 A V	  +	  S M 3.1 3 4.2 2.9 3.2 3 0.6 0.4 0.8 1.1 0.8 0.7 0.8 0.7 0.8 0.4 0.5 0.5

4 6,644,701 A V 3.9 3.3 2.7 3.1 2.3 4.3 0.5 1.5 1.2 0.9 1.1 1.1 0.4 0.7 0.7 0.3 0.4 0.5

4 6,744,839 A V	  +	  S M 3.9 2.9 2.5 3.5 4.3 3.9 1 0.9 0.7 0.5 0.6 0.8 0.8 0.8 1.1 0.9 1.1 1

4 6,745,253 A V	  +	  S M 4.2 3.2 2.9 3.4 4.3 3.8 1 0.9 0.7 0.6 0.5 0.7 0.8 0.7 0.9 0.8 0.9 0.8

4 6,872,903 A V	  +	  S M 1.4 1.1 1.2 0.9 0.9 1.3 3.7 4.7 4.5 2.8 3.5 3.5 2.9 3.6 3.6 4 4 4.1

4 7,081,972 A V 4 3.1 3.2 3 2.3 2.3 1.1 0.7 0.4 0.1 0.5 0.4 0.3 0.8 0.6 0.6 1 1.1

4 7,149,183 A V 0.3 0 0.1 0.6 0.3 0.1 4 3 2.7 3 3.1 3.3 3.9 3.5 3.1 3.1 2.2 2.6

4 7,346,546 A V	  +	  S M 0.9 0.9 0.4 1.1 0.8 1.2 4 5.3 4.7 2.6 3.1 3.7 2.7 3.2 3.3 2.9 3.1 2.7

4 7,810,132 S M 0.6 0.6 0.8 1 0.6 0.8 3 3.2 1.9 3 2.6 2.4 3.7 3.5 3.6 3.8 4.4 4.5

4 7,810,598 A V 0 0.1 0.4 0.5 0.2 0.5 3.4 3.7 3.5 4.2 3 2.5 3.9 2.5 2.7 3.3 2.7 2.8

4 8,209,018 A V 0.3 0 0.1 0.3 0 0.3 4.9 3.4 2.6 2.9 3.1 2.8 3.3 2.7 2.8 3 2.6 2.4

4 8,209,226 A V	  +	  S M 0.6 0.3 0.2 0.7 0.2 0.1 5.1 4.3 3.6 3.5 3.5 3.3 3.7 3.3 3.3 3.7 3.2 2.9

4 9,122,369 A V 3.9 3.1 4.4 2.2 3.4 3.1 1.3 1 1.1 1.2 1.1 1.1 0.7 0.7 1.2 0.6 0.9 0.9

4 9,122,499 A V 3.9 3.1 4.4 2.2 3.4 3.1 1.3 1 1.1 1.2 1.1 1.1 0.7 0.7 1.2 0.6 0.9 0.9

4 9,122,802 A V 3.9 3.2 4.2 2 2.9 2.8 1.1 1 0.8 0.9 0.9 0.9 0.5 0.6 1.1 0.5 0.8 0.8

4 9,123,738 A V 3.7 3.1 4.2 2.4 3.2 3.2 1.3 1.2 1 1 1.1 1.1 0.5 0.6 1.1 0.5 0.8 0.8

4 9,755,226 A V 4 2.7 3.9 2.6 2.3 3.3 1.4 1 0.8 0.7 0.6 0.5 0.5 0.4 0.4 0.3 0.2 0.3

4 10,731,316 A V	  +	  S M 5 4.7 4.6 4.3 4.7 6.1 0.6 0.6 0.6 0.7 0.3 0.3 0.3 0.2 0.2 0.3 0.2 0.1

4 10,731,342 A V	  +	  S M 3.3 3.1 2.8 3.3 3.6 4.8 0.5 0.5 0.4 0.3 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.1

4 10,768,505 A V	  +	  S M 3.7 3.7 3.8 4.4 3.6 3.5 0.2 0.2 0 0.1 0 0.1 0.2 0 0 0.2 0.1 0

4 12,088,780 A V	  +	  S M 4.2 3.8 3.1 3.3 4.5 3.3 3 2.7 1.2 1.4 1.4 1.3 1.8 2.4 2.3 2.3 3.4 3.1

4 12,827,665 A V 0.9 1.2 1.1 0.6 0.4 0.5 3 4 3.8 2.7 2.5 2 2 1 0.9 1 0.4 0.5

4 14,264,880 A V 0.7 0.5 0.8 0.8 0.5 1.1 4.2 2.5 1.8 2.2 2.3 2.3 2.1 1.9 1.8 1.4 1.2 1.2

4 18,101,550 A V	  +	  S M 3.3 2.2 2.7 4 2.9 2.5 0.3 0.2 0.2 0.2 0.3 0.4 0.5 0.7 1.1 1 1.6 1.8

5 145,325 A V 3.3 1.9 1.3 4.1 3.1 2.6 1.3 1 0.9 0.5 1.1 1.3 0.6 1 0.8 0.6 0.8 0.7

5 267,918 A V	  +	  S M 5.3 4.3 3.9 4.1 3.2 4 3.1 2.9 2.5 3.1 3.8 4.1 3.2 4.4 4.7 3.3 4.6 4.5

5 268,505 A V	  +	  S M 5.1 4.2 3.7 4.1 2.7 4 1.5 1.4 1.2 1.7 1.9 2.2 1.9 2.4 2.8 1.7 2.5 2.6

5 272,241 A V	  +	  S M 3.2 2.9 3.2 2.5 2.4 2.6 2.1 2.2 2.2 3.1 3.1 3.2 3.9 4.3 4.6 3.5 4.2 4.3

5 273,701 S M 3.1 2.7 3.3 2.1 2.2 2.6 2.7 2.6 2.8 3.5 3.6 3.7 4.1 4.4 4.6 3.6 4.3 4.3

5 295,648 A V	  +	  S M 1.2 0.5 0.4 1 0.6 0.3 1.4 1.2 1.9 1.2 1.8 2.6 2.1 3.2 3.7 3 3.9 4.5

5 296,004 S M 1 0.8 0.4 0.7 0.6 0.6 2.6 2.5 2.5 2.7 3 3.5 3.3 3.8 3.9 3.5 3.8 4

5 298,229 A V	  +	  S M 1.2 0.5 0.4 1 0.6 0.3 1.4 1.2 1.9 1.2 1.8 2.6 2.1 3.2 3.7 3 3.9 4.5

5 299,476 A V	  +	  S M 1.1 0.4 0.4 1 0.5 0.2 1.7 1.3 2 1.3 1.5 2.3 2.5 3.1 3.6 3.4 3.6 4.2

5 302,045 A V	  +	  S M 2 1 0.9 1.7 1.1 0.7 1.9 1.6 1.9 1.4 1.9 2.7 2.4 3.4 3.9 3.5 4.3 4.9

5 304,375 A V	  +	  S M 1.2 1.5 1.3 1.1 1.2 1.4 2.6 2.8 3.3 2.5 2.4 2.9 2.9 3.3 3.6 3.7 4.4 4.4

5 305,676 A V	  +	  S M 1.4 1 1.1 0.8 0.8 0.9 2.4 2.9 3.5 2.7 2.4 3.2 3.6 3.8 4.3 4.7 4.7 4.9

5 308,976 S M 2.9 1.8 1.6 1.9 2 1.4 2.9 2.6 3.2 3.1 3.4 4 4.3 4 4.2 4.1 3.9 3.8

5 309,253 S M 2.5 1.2 1.5 1.2 1.4 1.3 3.3 3.4 4 2.9 3.1 3.6 3.8 3.8 4 4.2 4 4.2

5 513,637 A V	  +	  S M 0.4 0.7 0.7 0.6 0.7 1 3.4 4.6 4.9 4.7 5.4 5.3 5 4.5 4.2 3.9 3.4 3.5

5 987,180 A V 1.2 1.1 1.5 1.7 1.7 1.7 4.2 3.4 2 2.4 3.2 3.4 3.2 3.8 3.8 3.3 3.4 3.2

5 987,216 A V 1 1.2 1.7 1.3 1.4 1.7 4.5 3.8 2.4 2.6 3.3 3.4 2.6 3.5 3.5 2.6 3.1 3

5 988,003 A V	  +	  S M 1.1 0.9 1.3 1.2 1.2 1.2 4.5 3.1 1.8 1.8 2.7 2.8 2.2 3.1 2.9 2.4 2.8 2.9

5 1,486,024 A V	  +	  S M 0.8 0.4 0.5 0.6 0.6 0.8 3 2.1 1.9 2.1 1.9 2 2.9 2.8 2.9 4.2 3.4 3.5

5 3,975,495 A V 0.8 1 1.5 2.1 1.8 1.3 3.1 3 3 3.8 4.4 4 4.2 4.1 4.2 3.3 3.5 3.7

5 3,980,151 A V	  +	  S M 0.2 0.6 1.2 0.6 1.1 1.1 3.9 5 5.4 4.1 5.1 4.9 3.9 4.4 4.1 3.2 3.2 3.3

5 6,034,111 A V	  +	  S M 1.4 0.5 0.8 1.2 1.3 1 3.2 3 3.6 3.3 3.9 4.2 4.2 4.9 4.6 4 3.7 3.2

5 6,180,615 S M 0.9 1.5 1.3 0.9 1.2 1.5 2.7 3.7 4 2.6 2.9 3 1.8 2 1.8 1.7 1.6 1.6
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C hr. S NP 	  po s ition GWA S L1.1 L1.2 L1.3 L2.1 L2.2 L2.3 H1.1 H1.2 H1.3 H2.1 H2.2 H2.3 H3.1 H3.2 H3.3 H4.1 H4.2 H4.3

5 6,797,296 S M 0.7 0.5 0.9 0.2 0.7 0.4 3.7 3.9 4.3 3 3.8 4.4 3 3.3 3.3 2.9 2.9 2.5

5 6,797,770 S M 0.2 0 0.3 0.1 0.2 0.3 3.3 3.7 4.1 3.3 3.6 4.1 3.1 3.2 3.1 2.9 2.5 2.3

5 7,059,818 A V	  +	  S M 2.7 3.1 4.3 2.9 3.8 3.9 1 1.5 1.1 1 1.3 1.3 0.8 0.9 1.1 0.8 1.1 1.2

5 10,283,914 A V	  +	  S M 2.6 3.7 3.4 2.6 3.9 4.1 1.3 1.1 1.2 1.7 1.9 2.1 1.7 2.3 2.4 1.4 1.8 2.2

5 11,988,896 A V 4 3.1 2.7 2.2 3.4 2.6 0.4 0.5 0.6 0.4 0 0.1 0.3 0.1 0.2 0.1 0.2 0.2

5 13,518,211 A V 0.1 0 0.1 0.2 0.1 0 2.7 2.9 2.5 2.8 2.8 2.7 3.6 3.8 3.3 4.1 3.9 3.3

5 14,762,315 A V	  +	  S M 1.1 0.7 0.4 0.9 0.3 0.3 3 4.1 3 2 2.2 1.9 1.7 1.8 1.6 1.6 1.6 1.2

5 16,230,562 A V 2.2 1.3 2.2 0.9 1.3 1.3 2.2 2.2 1.5 1.9 1.8 1.8 2.5 2.9 3.5 3.7 4.6 4.6

5 17,186,178 A V 1.7 1.5 1.9 1.6 1.5 2.2 4.2 4 4.1 3.9 4.6 4 3.3 3.5 3.1 2.6 2.5 2.5

5 17,187,071 A V 1.5 1.3 1.7 1.7 1.5 2.2 3.8 3.9 3.9 3.3 4 3.6 2.7 2.9 2.6 2.1 2 2.1

5 17,187,390 A V 1.5 1.3 1.7 1.7 1.5 2.2 3.8 3.9 3.9 3.3 4 3.6 2.7 2.9 2.6 2.1 2 2.1

5 17,422,614 A V 1.8 1.6 1.4 2.4 1.3 2.3 3.7 3.6 2.9 3.2 3.9 4.2 2.7 3.3 2.9 2.4 2.9 2.6

5 17,423,798 A V 0.9 0.8 0.6 1.6 0.8 1 3.9 3.4 3.1 4.3 4.2 4.2 4 4.4 3.7 3.7 3.5 2.9

5 17,424,158 A V 0.6 0.8 0.5 1.1 0.9 1.2 4.5 3 2 3.6 3.2 2.7 3.3 3 2.3 2.6 2.3 1.7

5 17,427,025 A V 1 0.6 0.7 1.1 0.3 0.7 2.6 2.9 3.6 3.8 4.4 4.3 2.8 3.1 2.6 1.9 1.7 1.3

5 17,675,653 A V	  +	  S M 4.2 4.3 3.1 4.5 3.3 3.3 1.7 1.5 0.9 1 1.3 1.3 1 1.4 1.6 0.8 1.1 0.9

5 17,677,299 A V	  +	  S M 3.4 3.7 3.3 4.4 3.1 4.2 1.3 0.9 0.4 0.3 0.5 0.5 0.2 0.4 0.6 0.2 0.4 0.3

5 17,682,216 A V	  +	  S M 3 2.6 2.4 3.6 3.1 2.6 3.3 3.4 2.8 2.7 3.2 3 3 3.7 4.1 3.3 3.4 3.4

5 17,683,868 A V	  +	  S M 3.2 4.4 3.7 3.1 3.4 3.9 2.9 2.4 2.2 2.4 3.2 3.1 2.4 3 3.4 2.6 2.5 2.4

5 17,684,433 A V	  +	  S M 3.1 4 3.5 3.2 3.6 4.1 2.8 2.7 2.3 2.7 3.5 3.4 2.8 3.7 4.1 3.4 3.5 3.3

5 17,684,460 A V	  +	  S M 2.7 3.5 2.9 3.2 3.3 3.7 2.7 2.9 2.8 3.2 4.1 3.9 3.3 4.1 4.5 3.5 3.4 3.3

5 17,684,844 A V	  +	  S M 3.7 3.9 3.7 4.5 4.1 3.7 1.7 1.9 1.2 1.4 1.8 1.7 1.4 2 2.5 1.5 2 2

5 17,688,132 A V	  +	  S M 4.9 5.3 4.6 3.9 3.6 5 2.7 2.2 1.7 2.1 2.1 2 1.7 2.3 2.5 1.4 1.8 1.7

5 17,945,137 S M 1.4 1.4 1.4 1.7 1.9 2 2 2 1.6 1.6 2.4 2.7 3 3.5 4.1 3.9 4.1 4

5 17,946,540 A V	  +	  S M 0.8 0.6 0.7 2 1.7 0.9 1.7 1.8 1.7 1.5 2.2 3 2 3.1 3.7 2.8 3.4 4.1

5 18,807,935 A V	  +	  S M 0.8 0.6 0.9 0.6 1.1 0.9 2.9 2.8 3 4.5 4.1 3.8 4.6 4.7 4.3 4.4 4 3.5

5 18,812,710 S M 0.7 0.3 1.3 1.3 0.9 1.1 3 3.1 2.9 4.2 3.6 3.8 4.3 4.3 4.3 4.4 4.1 4.1

5 18,872,155 S M 1.1 1.1 1.4 1.4 1 0.8 2.5 3.5 4 4.4 3.4 3.5 3.9 3.3 3 3 2.3 2.3

5 18,872,623 S M 2.2 1.3 1.8 2.5 2 1.6 2.3 3.4 2.9 4 3.3 3.4 4 3.9 3.9 3.6 3.6 3.1

5 18,872,638 S M 2.6 1.6 2.1 2.5 2 1.5 2.9 3.7 3.2 4.3 3.5 3.6 4.5 4.4 4.4 4.3 4.1 3.9

5 18,873,842 A V	  +	  S M 2.8 1.9 2.3 2.4 2.1 1.8 1.9 3.2 3.5 4.3 3.5 3.5 4.4 4.1 3.9 4 3.8 3.1

5 18,874,929 S M 0.3 0.2 0.5 0.8 0.3 0.1 2.1 3.2 2.7 3.2 3.5 3.9 3.6 4.1 3.8 3.8 3.4 3.3

5 18,875,337 S M 2.6 1.8 2.6 2.4 2 1.6 2.3 3.3 3.5 4.3 3.4 3.5 4.4 4.1 4.1 3.8 3.6 3.5

5 18,875,477 S M 2.5 1.8 2.7 2.6 1.9 1.7 2.9 4.2 3.7 4.8 3.9 4.1 4.7 4.3 4.2 3.7 3.3 2.9

5 21,804,982 A V 2.2 2 2.3 4 3.4 3 1.1 1.4 0.8 0.9 1.9 1.5 1.3 2.1 1.8 1.6 2.5 2.3

5 21,946,280 A V 2.8 2.1 2.8 2.2 4.1 2.9 0.3 0 0.1 0 0.3 0.5 0.1 0.5 0.5 0.3 0.7 0.7

5 21,971,571 A V	  +	  S M 4.6 3.3 3.6 5 4.8 3.7 0.3 0.2 0.1 0 0 0.1 0.1 0.5 0.5 0.3 1 0.8

5 22,823,366 A V	  +	  S M 2.4 2.9 2.4 2.2 4.6 1.7 0.3 0.5 0.4 0.1 0 0.1 0.1 0.1 0.1 0.1 0.1 0

5 22,827,058 A V	  +	  S M 2.6 3.3 2.1 2.3 4.1 2 0.4 0.1 0.1 0.2 0.4 0.2 0.3 0.3 0.5 0.5 0.6 0.5

5 25,956,134 A V	  +	  S M 1.6 2.3 2.2 1.6 1.1 1.7 4.3 3.3 2.9 3.4 3.7 3.6 2.9 2.8 2.8 1.8 1.5 1.3

5 25,963,073 A V	  +	  S M 1.8 2.4 2.2 1.6 1.3 1.5 4.5 3.3 2.9 3.3 3.5 3.1 2.4 2.1 1.9 1.2 0.8 0.6

5 25,967,700 A V	  +	  S M 0.8 1 1 1.5 0.9 1.2 4.9 3.8 3.2 2.8 3.2 3.4 3.4 3.1 2.9 3 2.3 2

5 25,968,943 A V	  +	  S M 0.1 0 0.3 0.1 0.2 0.2 3.6 3.9 3.7 3.7 3.5 3.4 4 3.4 3.1 3.2 2.3 1.9

5 25,975,808 A V	  +	  S M 0.7 1.2 1.2 0.7 0.6 0.9 4.4 3.2 2.6 3.3 3.5 3.4 2.9 2.6 2.6 2.1 1.6 1.3

5 25,976,943 A V	  +	  S M 0.3 0.4 0.7 0.5 0.7 0.6 3.4 4 3.6 4.6 4.3 3.9 4.4 3.9 3.6 3.9 3 2.6

5 26,189,378 A V 0.6 0.4 0.4 0.7 0.7 0.5 0.7 0.5 0.3 0.7 0.7 1 1.4 1.8 2.4 2.5 3.8 4.1
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Figure S2. Characterization of natural alleles of CID7   

(a) Overview of haplotype alleles and frequencies for the CID7 gene (AT2G26280), gene orientation 

is 3’ to 5’, SNPs differing from the Col-0 reference genome sequence (allele 1) are marked; (b) 

Average photosynthesis efficiencies (ФPSII) (±SE) of the seven haplotype alleles before and after an 

increase in radiance at the onset of day 3, alleles 1 and 2, 1 and 4, 2 and 7 and 4 and 7 are 

statistically significantly different; (c)  relative mRNA expression (±SE) of CID7 in two T-DNA 

insertion lines (SALK_011487 and SAIL_888_F10) as determined by qRT-PCR. * indicates 

significant difference with the Col wild type. 
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Figure S3. Characterization of natural alleles of DGS1  

(a) Overview of haplotype alleles and frequencies for the DGS1 gene (AT5G12290), gene orientation 

is 3’ to 5’, SNPs differing from the Col-0 reference genome sequence (not indicated) are marked; (b) 

average photosynthesis efficiencies (ФPSII) (±SE) of the seven haplotype alleles before and after an 

increase in radiance at the onset of day 3, only allele 7 responds statistically significantly different 

from the other alleles;  (c) In a quantitative complementation analysis, alleles 5 and 7 respond 

similarly regarding ФPSII in F1 plants upon crossing appropriate accessions with Col wild type or with  

T-DNA insertion mutant line SAIL_391_F04. 

  



  

 
 

99 

 

 

Figure S4. Characterization of natural alleles of ASN2 

(a) Overview of haplotype alleles and frequencies for the ASN2 gene (AT5G65010), gene orientation 

is 5’ to 3’, SNPs differing from the Col-0 reference genome sequence (not indicated) are marked; (b) 

average photosynthesis efficiencies (ФPSII) (±SE) of the seven haplotype alleles before and after an 

increase in radiance at the onset of day 3, only allele 2 responds statistically significantly different 

from the other alleles;  (c) In a quantitative complementation analysis, alleles 2 and 5 respond 

similarly regarding ФPSII in F1 plants upon crossing appropriate accessions with Col wild type or with  

T-DNA insertion mutant line SALK_043167. 
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Figure S5. Genomic DNA sequence of the promoters of YS1 alleles 1, 3 and 4.  

YS1 promoter sequence alignment  (sequence is indicated 3’ to 5’, as YS1 is positioned in reverse 

orientation on chromosome 3 between 8021229 - 8024534 bp). The ATG-start codon is indicated 

with an arrowed box, with the arrow indicating the direction of translation. Polymorphisms are 

highlighted in pink. The yellow boxes indicated potential GT-1 binding sites (in opposite orientations 

relative to each other). 
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ABSTRACT 

Plants have evolved several mechanisms for sensing increased irradiance; they are 

known to sense it using several classes of photoreceptors (phototropins, phytochromes 

and cryptochromes), and to sense it through biochemical (reactive oxygen species, ROS) 

and metabolic signals. This results in the activation of heat shock genes and the 

activation of the transcription factor LONG HYPOCOTYL 5 (HY5, mediated by the 

cryptochrome photoreceptor 1, CRY1).  Here we show the existence of another gene 

expression response pathway in Arabidopsis. This pathway starts with the SPX1-

mediated activation of the transcription factor PHR1 and leads to the activation of several 

galactolipid biosynthesis genes. Gene expression analysis of accessions Ga-0 and Ts-1, 

with contrasting phenotypes for response to increased irradiance, showed stronger 

activation of heat responsive genes in Ga-0 and the opposite in Ts-1, when compared to 

Col-0, in line with the differences in the efficiency of photosynthesis. Furthermore, the 

SPX1/PHR1-mediated gene activation pathway acting on galactolipid biosynthesis genes 

was found to be active in Ga-0 as well as Col-0, but not in Ts-1, contributing to the 

difference between both accessions with contrasting increased irradiance response 

phenotypes.   
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INTRODUCTION 

The light-use efficiency of photosynthesis depends on the molecular, structural and 

physiological state of the plant (Eberhard et al., 2008; Zhu et al., 2008; Foyer et al., 

2012). The physiological state of the plant depends on many environmental factors, of 

which the level of irradiance has a direct relation with photosynthesis light-use efficiency 

as it is the driving force for photosynthesis. At low irradiances, photosynthesis is fully 

light-limited and photosynthetic light-use efficiency is maximal. At irradiances above the 

light-limiting level, light-use efficiency decreases with increasing irradiances, resulting in 

the overall phenomenon of light-saturation of photosynthesis at elevated irradiances 

(Long et al., 1994; Sinclair and Muchow, 1999). The decrease in light-use efficiency from 

its maximum under wholly light-limiting conditions implies that irradiance exceeds the 

capacity for photosynthetic metabolism (Long et al., 1994). A consequence of increased 

irradiance is an increase in the rate of damaging side reactions of photosynthesis that 

occurs as a result of the reactive nature of many intermediates formed (Vass, 2012). 

Reactive oxygen species (ROS), mainly singlet oxygen (O.), superoxide (O2
-) and 

hydrogen peroxide (H2O2), are the most conspicuous damaging by-products of 

photosynthesis (Asada, 2006; Vass, 2012). The stress response of photosynthesis 

appears to reduce the formation of ROS, especially under high growth irradiances 

(Scheibe et al., 2005; Suzuki et al., 2012). The state of the photosynthesis apparatus – its 

composition, organisation and regulation – is thus under complex control that operates at 

the physiological and molecular levels. An increase in irradiance, leading to excess, will 

initially provoke a rapid physiological response, including qE type quenching and 

increased CO2 fixation activity (Demmig-Adams and Adams, 1992; Niyogi, 1999; Li et al., 

2009). If persistent this increased irradiance will result in longer term acclimation of the 

photosynthetic apparatus, obvious on both transcript and protein level (Walters, 2005; Li 

et al., 2009). Different species and genotypes display different capacities to acclimate 

their photosynthetic apparatus to an irradiance increase so it is reasonable to infer that 

this is at least partly genetically determined (Van Rooijen et al., 2015). 

An increase in irradiance brings about changes not only in photosynthesis, but also in leaf 

temperature and photoreceptor activity (Larcher, 2003). The transcriptome changes 

provoked by an increase in irradiance are therefore complex, part of them caused by the 

temperature increase rather than the irradiance increase (Swindell et al., 2007). 

Increased irradiance and increased temperature together induce a stress response by 

activation of heat shock proteins and the generation of ROS originating from the 
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chloroplast, the latter of which is required for the photosynthetic acclimation response to 

excess light (Rossel et al., 2002; Vanderauwera et al., 2005; Jung et al., 2013). 

In addition to the increased temperature and the induced generation of ROS, plants 

detect increases in the irradiance level through their cryptochrome photoreceptors (Kleine 

et al., 2007). Of the two distinct plant cryptochromes in Arabidopsis thaliana (Arabidopsis) 

(CRY1 and CRY2), only CRY1 responds to increases in irradiance by initiating a 

transcriptional response mediated by the transcription factor LONG HYPOCOTYL 5 

(HY5), (Kleine et al., 2007; Lee et al., 2007). 

The gene expression response to increased irradiance initiated by the heat shock factors 

and the response initiated via the HY5 transcription factor are considered to be two 

distinct gene activation pathways, distinct both in function and in time (Yamamoto et al., 

2004). The heat shock factors are thought to induce a direct response to cope with the 

ROS that are already formed; whereas the HY5-induced gene expression responds 

slower, and is thought to function in protecting the cells from newly formed ROS.  

All transcriptome studies of Arabidopsis that analysed the response to increased 

irradiance so far, have used the Col-0 accession. This study includes additional, natural, 

accessions of Arabidopsis with contrasting photosynthesis responses to increased 

irradiance (Van Rooijen et al., 2015), to reveal which common and genotype-specific 

transcriptional responses are associated with differences in acclimation of photosynthesis 

efficiency. In addition, analysing different time-points within one study allows identification 

of transient expression patterns throughout the acclimation response.  
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MATERIALS AND METHODS 

Plant material and growth conditions 

Three Arabidopsis accessions, Columbia-0 (Col-0, CS76113), Gabelstein-0 (Ga-0, 

CS76133) and Tossa de Mar-1 (Ts-1, CS76268), were grown as previously described 

(Van Rooijen et al., 2015). In short, the plants were grown on rockwool in a 10h/14h 

day/night cycle, with the temperature set at 20/18°C (day/night), and relative humidity set 

at 70%. CO2 levels were ambient. Under controlled conditions, plants in the light were 

kept at a constant irradiance of 100 µmol m-2 s-1 (Philips 610 fluorescent tubes, MASTER 

TL5 HO, 80W). In the increased irradiance treatment, the irradiance was increased to 550 

µmol m-2 s-1 at the onset of the photoperiod on the 25th day after sowing. In the increased 

temperature treatment, the irradiance was kept at 100 µmol m-2 s-1, but the temperature 

was increased from 20°C to 30 °C during the day. Photosynthesis efficiency was 

measured as previously described (Van Rooijen et al., 2015). 

RNA sample preparation 

On the 25th day after sowing, rosettes of plants were harvested 1 hour (1h) after the start 

of the photoperiod and flash-frozen in liquid nitrogen. Only for the Col-0 accession this 

was repeated at 3.5 hours (3.5h) after the start of the photoperiod, as well as one day 

later, at 1 hour after the start of the photoperiod, so 25 hours  (25h) after increasing the 

irradiance to 550 µmol m-2 s-1. Three rosettes for each accession-treatment combination 

were pooled as one sample for RNA isolation, in three replications.  

Total RNA was extracted using the Direct-zol RNA mini prep kit from Zymo Research 

(www.zymoresearch.com). The RNA quality control, labelling, microarray hybridization 

and data extraction were performed at ServiceXS B.V. (part of GenomeScan B.V., 

Leiden, The Netherlands). The RNA concentration was measured using a DropSense96 

spectrophotometer (Trinean N.V., Gentbrugge, Belgium). The RNA quality and integrity 

was determined using Lab-on-Chip analysis on the Agilent 2100 BioAnalyzer (Agilent 

TEchn9ologies, Inc., Santa Clara, CA, U.S.A.). Single-strand-cDNA (ss-cDNA) was 

prepared using the Ovation® PicoSL WTA System V2 (NuGEN Technologies, Inc., San 

Carlos, CA, U.S.A.) according to the manufacturer’s specifications, with an input of 50 ng 

total RNA. Labelling and fragmentation of the ss-cDNA was performed with the EncoreTM 

Biotin Module (NuGEN Technologies, Inc., San Carlos, CA, U.S.A.).  
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Microarray hybridization, scanning and data analysis 

Per sample, 2.5 µg of the labeled ss-cDNA was hybridized onto an AraGene 1.1ST Array 

plate (Affymetrix, Santa Clara, CA, U.S.A.). Hybridization and scanning was performed on 

a GeneTitan (Affymetrix, Santa Clara, CA, U.S.A.). Image analysis and extraction of raw 

expression data was performed with the Affymetrix Expression ConsoleTM v1.2.1. with 

“Gene-level Default: RMA-Sketch” settings. Raw data were analysed using the 

Bioconductor packages in the statistical programming language R (http://www.r-

project.org/)(Gentleman et al., 2004). The microarray oligonucleotide probe data were 

gene annotated using the TAIRT v19 cdf file 

(http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/19.0.0/tairt.asp) 

and gene expression was normalized using the Robust Multi-array Average (RMA) 

algorithm (Irizarry et al., 2003), after which a linear model was fitted for every gene. The 

empirical Bayes method was used to determine significant differences between the 

samples and the Benjamini and Hochberg method was used for adjustment of the P 

values for multiple testing (Benjamini and Hochberg, 1995; Efron and Tibshirani, 2002). 

Quantitative Reverse Transcription PCR (qRT-PCR) 

In a separate experiment, but with identical experimental set-up as used for the 

microarray experiment, rosettes were likewise harvested, on the 25th day after sowing, for 

all accession-treatment combinations at 1 and 3.5 h after the start of the photoperiod, and 

immediately frozen in liquid nitrogen. Three rosettes for each accession-treatment 

combination were pooled as one sample for RNA isolation, in three replications. RNA was 

extracted according to Onate-Sánchez and Vicente-Carbajosa (2008). After normalization 

of RNA concentrations, cDNA was synthesized using the Iscript cDNA synthesis kit from 

Bio-RAD (www.bio-rad.com). qRT-PCR was performed with three technical replicates for 

each biological replicate using the SYBR-green mastermix from Bio-RAD. Three 

reference genes were used for normalization: UBIQUITIN7 (UBQ7, At2g35635), 

CYTOCHROME B5 ISOFORM E (CB5E, At5g53560), and UBIQUITIN THIOESTERASE 

(At1g28120), based on previous report. Expression levels of UBQ7 and CB5E were 

previously found to be constant under excess light (Jung et al., 2013; Wunder et al., 

2013), and expression levels of UBIQUITIN THIOESTERASE were previously found to be 

stable in several genome-wide expression studies involving irradiance changes 

(Genevestigator database (Hruz et al., 2011), https://genevestigator.com/gv/). The 

primers used for qRT-PCR are listed in Table S7.  
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RESULTS 

Heat shock response and RNA binding protein genes are among the core group of 
genes responding to an increase in irradiance  

Three Arabidopsis accessions, Col-0, Ga-0 and Ts-1, were grown for 25 days under 100 

µmol m-2 s-1 growth irradiance (low light, LL), and then shifted to an increased irradiance 

(550 µmol m-2 s-1, high light, HL), a condition which saturates photosynthesis (Van 

Rooijen et al., 2015). Upon exposure to increased irradiance, the accessions show 

different photosynthesis efficiencies, as determined by measuring ΦPSII (the light-use 

efficiency of photosystem II (PSII) electron transport, also known as Fq’/Fm’)  (Fig. 1A). A 

rosette transcriptome analysis was performed for these accessions to identify a core set 

of genes of which the response associates with increased photosynthesis efficiency. This 

analysis will also be used to identify accession-specific responses. In addition, a time-

series transcriptome analysis was performed, for Col-0 only, to investigate the effect of 

diurnal rhythm on gene expression.  

The effect of the genotype is larger than the time effect, although both can be 

distinguished from control experiments (Fig. 1B). Genes that were statistically significantly 

more than 1.4-fold up- or down-regulated after the increased irradiance treatment 

compared to the control treatment were identified (Fig. 2), which we will further refer to as 

‘responsive genes’.  
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Figure 1. Genotypic effect on photosynthetic response to increased irradiance 
(A) Representative photosynthetic (ФPSII) phenotypes for Arabidopsis accessions Col-0, Ts-1 and Ga-
0, grown for 24 days in 100 µmol m-2 s-1 growth irradiance and subsequently 6 days in 550 µmol m-2 
s-1 growth irradiance, measured from day 23 (first day of measurement) until day 31, at four time-
points per day; (B) Dendrogram on Pearson distance measure between microarray-based 
transcriptome data representing gene expression in rosettes of Arabidopsis accessions Col-0, Ts-1 
and Ga-0 exposed to low light (LL; 100 µmol m-2 s-1 growth irradiance) control conditions or 
increased irradiance (high light, HL; 550 µmol m-2 s-1 growth irradiance), sampled at 1h, 3.5h, and 
25h after lights on (control, LL) or after the switch to increased irradiance (HL), in three experimental 
replicates (R1, R2 and R3). 
 

A total of 752, resp. 440 genes was more than 1.4-fold up- or down-regulated, when 

compared to untreated plants, in at least one of the three accessions one hour after the 

irradiance increase from 100 to 550 µmol m-2 s-1 (Fig. 2A). Of these responsive genes, 

161 up-regulated and 59 down-regulated genes were shared among all three accessions 

(Fig. 2A). A total of 1664, resp. 1356 genes was more than 1.4-fold up- or down-

regulated, when compared to untreated Col-0 plants either at 1, 3 or 25 hours after the 

switch to increased irradiance (Fig. 2B). Of these responsive genes, 115 up-regulated 

genes and 120 down-regulated genes were  responding at all time-points (Fig. 2B). 
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Figure 2. Genotype- and time-specific gene expression response to increased irradiance 
(A) Venn diagrams displaying the number of significantly (p=0.05) differentially (more than 1.4-fold 
up- or down-regulated) expressed genes when comparing rosettes of control plants (100 µmol m-2 s-1 
growth irradiance) of three accessions (Col-0, Ga-0, or Ts-1) to those of plants one hour after 
exposure to increased irradiance (550 µmol m-2 s-1 growth irradiance); (B) Idem when comparing 
rosettes of control Col-0 plants (100 µmol m-2 s-1 growth irradiance) at 1 hour (h), 3.5 h or 25 h after 
lights on, to those of Col-0 plants at 1 h, 3.5 h or 25 h after exposure to increased irradiance (550 
µmol m-2 s-1 growth irradiance); (C) Idem when comparing differentially expressed genes shared by 
all accessions (a) with those shared by all time-points in Col-0 (b).  
Arrows indicate up- and down-regulation compared to controls. 

 

In order to establish a core set of Arabidopsis genes constituting the general response to 

an increase in irradiance, the genes in common to both comparisons (i.e. accessions and 

time-points) were selected (Fig. 2C), meaning 53 up- and 35 down-regulated genes 

(Tables S1 and S2). Gene ontology analysis of this core set showed that heat shock 

response, photosynthesis and RNA binding were enriched processes among the up-

regulated genes; while only modest enrichment for a genes involved in photosynthesis 

was found among the down-regulated genes (Fig. 3A). Figure 3B lists all genes classified 

in one of the enriched biological processes, and their expression difference when 

compared to control plants. Most prominent in terms of induced expression are the heat 

response genes, while most of the down-regulated genes show only modest down-

regulation (Fig. 3B). 

Comparing the fold changes of the core responsive genes between the three accessions 

(Ga-0, Ts-1, and Col-0) or between the three time-points (1, 3.5, and 25 hrs after 

exposure to irradiance increase) revealed differential responsiveness (e.g. 15-fold 

upregulated in Col-0, 1.8-fold in Ga-0, and 5-fold in Ts-1; where all are above 1.4-fold 

change, but 15-, 1.8- and 5-fold are significantly different from each other) between 
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accessions and/or time-points for some of the core genes (Tables S1 and S2). To 

distinguish if this differential responsiveness was high light specific or was common 

between the three accessions and/or three time-points, we selected the differentially 

responsive genes between accessions or between time-points that were not differentially 

expressed in control conditions and referred to those as high light specifically differentially 

responsive genes. Two, resp. 27, resp. 9 genes were found high light specifically 

differentially responsive between accessions, between time-points, or between both 

accessions and time-points (Tables S1 and S2).  The two high light specifically 

responsive core genes up-regulated to different extent between accessions were 

DEHYDRATION RESPONSIVE ELEMENT BINDING 2A (DREB2A) and SERINE-

ARGININE RICH RNA BINDING PROTEIN 45a (SR45a), annotated to photosynthesis-

related transcription factor activity and RNA alternative splicing, respectively (Fig. 3B and 

Table S1). The 27 high light specifically responsive core genes up-regulated to different 

extent between time-point or between both accessions and time-points were all heat 

shock response genes (Fig. 3B and Table S1). Given the annotations of these high light 

specific responsive core genes, we focussed on similar processes/functions when 

analysing the accession- and time-point-specific gene expression responses. 

 

 

 

Figure 3 (on next page). Gene ontology and functional annotation of Arabidopsis rosette 
genes showing core transcriptional response upon exposure to increased irradiance. 

(A) Gene ontology enrichment for biological process of Arabidopsis rosette genes differentially 

expressed at 1, 3.5 or 25 hrs after exposure to increased irradiance when compared to control 

plants, either when comparing accessions Ga-0, Ts1, and Col-0 or time-points (Col-0 only); (B) Heat 

map for fold changes in increased irradiance conditions versus control conditions of core genes with 

biological functions in photosynthesis (yellow highlighted), response to heat (grey highlighted), and 

RNA binding (green highlighted). Core genes are more than 1.4-fold up- or down regulated in all 

time-points and accessions. For the complete gene list see Supplementary Tables S1 and S2. G-1 = 

Ga-0 time-point 1h; T-1 = Ts-1 time-point 1h; C-1 = Col-0 time-point 1h; C-3.5 = Col-0 time-point 

3.5h; C-25 = Col-0 time-point 25h.  
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B 
Molecular 
function 

Gene ID Gene name G 
1 

T 
1 

C 
1 

C 
3.
5 

C 
2
5 

  Fold   
Change 

chlorophyll 
binding/ flavon-
oid biosynthesis 

At3g22840 EARLY LIGHT-INDUCIBLE PROTEIN 1 (ELIP1)             HL vs LL 

At4g14690 EARLY LIGHT-INDUCIBLE PROTEIN 2 (ELIP2)           24 

H2O2 
scavenging 

At1g07890 ASCORBATE PEROXIDASE 1 (APX1)               22 
  At4g31870 GLUTATHIONE PEROXIDASE 7 (GPX7)               20 

transcription 
factor activity At2g20880 ERF/AP2 FAMILY, ETHYLENE RESPONSE FACTOR 53 

(ERF53)           18 

  At4g28140 ERF/AP2, A6 FAMILY           16 

  At5g05410 ERF/AP2 FAMILY, DEHYDRATION RESPONSE ELEMENT 
BINDING 2A (DREB2A)           14 

  At5g07580 ERF/AP2, B3 FAMILY           12 

  At5g25190 ERF/AP2, B6 FAMILY           10 

  At5g44190 GOLDEN2-LIKE2 (GLK2)           8 

chaperones 

At1g07400 HSP20-like chaperones superfamily protein               6 

At1g53540 HSP20-like chaperones superfamily protein           4 

At1g54050 HSP20-like chaperones superfamily protein           2 

At1g59860 HSP20-like chaperones superfamily protein           1 

At2g19310 HSP20-like chaperones superfamily protein           0.9 

At2g29500 HSP20-like chaperones superfamily protein           0.8 

At5g51440 HSP20-like chaperones superfamily protein           0.7 

At2g46240 A member of Arabidopsis BAG (Bcl-2-associated athanogene) 
proteins           0.6 

At5g48570 Tetratricopeptide repeat (TPR) protein, interacts with 
Hsp90/Hsp70 as co-chaperones               0.5 

heat shock 
factor 

At2g26150 HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2)               0.4 
  At4g36990 HEAT SHOCK FACTOR 4 (HSF4)               0.3 

heat shock 
protein 

At1g74310 HEAT SHOCK PROTEIN 101 (HSP101)           0.2 
  At2g20560 DNAJ heat shock family protein           0.1 

  At2g25140 Casein lytic proteinase/heat shock protein 100 family.           0 

  At3g08970 J domain protein localized in ER lumen, shows similarity to 
HSP40 proteins             

  At3g12580 HEAT SHOCK PROTEIN 70 (HSP70)             

  At3g23990 HSP60; mitochondrial chaperonin HSP.              

  At3g46230 HEAT SHOCK PROTEIN 17.4 (HSP17.4)             

  At4g12400 Hop3, a tetratricopeptide repeat (TPR) protein, interacts with 
Hsp90/Hsp70             

  At4g25200 MITOCHONDR.-LOCALIZED SMALL HEAT SHOCK PROTEIN 
23.6 (HSP23.6-MITO)             

  At5g09590 Heat shock protein 70 (Hsc70-5)             

  At5g12020 17.6 KDA CLASS II HEAT SHOCK PROTEIN (HSP17.6II)             

  At5g12030 HEAT SHOCK PROTEIN 17.6A (HSP17.6A)             

  At5g52640 HEAT SHOCK PROTEIN 90.1 (HSP90.1)                 

unknown At1g30070 unknown                 

  At5g64510 TUNICAMYCIN INDUCED 1 (TIN1),  a plant-specific ER stress-
inducible protein                 

alternative 
splicing At1g07350 Serine-arginine rich RNA binding protein (SR45a) involved in 

alternative splicing                 

  At1g09140 Serine-arginine rich RNA binding protein (SR30) involved in 
alternative splicing                  

translation  At5g12110 Translation elongation factor EF1B/ribosomal protein S6                 
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Differential expression in genes for heat shock response and lipid remodelling 

when comparing phenotypically contrasting accessions 

 Accession-specific expression responses were characterized between three 

photosynthetically contrasting accessions to identify any associations between gene 

expression responses and photosynthesis efficiency responses to increased irradiance. A 

total of 752, resp. 440 genes was more than 1.4-fold up- or down-regulated, when 

compared to untreated plants, in at least one of the three accessions one hour after the 

irradiance increase from 100 to 550 µmol m-2 s-1 (Fig. 2A). Of these 1192 responsive 

genes, 155 genes were identified as accession-specific responsive genes (Tables S3 and 

S4), meaning they were also differentially (P=0.05) responsive between two or three 

accessions when comparing Col-0, Ga-0 and Ts-1 (e.g. 15-fold upregulated in Col-0, 1.8-

fold in Ga-0, and 5-fold in Ts-1).  Of these 155 accession-specific responsive genes, 123 

were found high light specifically differentially responsive between accessions (and not 

different between accessions independent of irradiance, Tables S3 and S4).  

The up-regulated accession-specific responsive genes were enriched for the biological 

processes of heat shock response, lipid remodelling and photosynthesis (Fig. 4A). The 

down-regulated time-point-specific responsive genes were enriched for cell organization, 

photosynthesis response, and RNA binding (Fig. 4A). Figure 4B lists all genes classified 

in one of the enriched biological processes, and their expression difference when 

compared to control plants. Most prominent in terms of expression are the heat shock 

response genes (Fig. 4B).  

Differential expression in genes for photosynthetic and heat shock response when 

comparing sequential time-points after increased irradiance in Col-0 

Time-point-specific expression responses were characterized in Col-0 between three 

time-points after irradiance increase to identify transient expression patterns throughout 

the acclimation response and to study the effect of diurnal rhythms on gene expression 

response during long-term acclimation. A total of 1664, resp. 1356 genes was more than 

1.4-fold up- or down-regulated, when compared to untreated Col-0 plants either at 1, 3 or 

25 hours after the switch to increased irradiance (Fig. 2B). When comparing the fold 

changes of these 2785 responsive genes, 2280 genes were identified as time-specific 

responsive genes, meaning they were differentially (P=0.05) responsive between two or 

three time-points when comparing 1, 3.5, and 25 hours after irradiance increase (e.g. 15-

fold upregulated at 1 hour and 1.8-fold at 3.5 hour after irradiance increase; at both time-
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points classified above 1.4 but time-point-specifically). Increasing the threshold to 2.0 fold 

up- or down regulated to be more exlcusive resulted in 229, resp. 155 genes more than 

2.0 fold up- or down-regulated (Supplementary Tables S5 and S6). Of these 384 time-

specific responsive genes, 270 were found high light specifically differentially responsive 

between time-points (Tables S5 and S6). 

The more than 2.0 fold up-regulated time-point-specific responsive genes were enriched 

for the biological processes of photosynthesis response, heat shock response, lipid 

remodelling, RNA binding and carbohydrate metabolism (Fig. 5A). The down-regulated 

time-point-specific responsive genes were enriched for cell organization, photosynthesis 

response, and lipid remodelling (Fig. 5A). Figure 5B lists all time-point-specific responsive 

genes classified in one of the enriched biological processes, and their expression 

difference when compared to control plants.  
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B 
Molecular 
function 

Gene ID Gene name G
1 

T
1 

C
1 

  Fold 
Change 

anthocyanin 
biosynthesis 

At1g56650 PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1)       HL vs LL 

photoprotection At4g04020 Fibrillin precursor protein, involved in abscisic acid-mediated photoprotection           24 

NAD(H) kinase At3g21070 NAD(H) kinase          22 
transcription 
factor activity 

At2g20880 ERF/AP2 FAMILY, ETHYLENE RESPONSE FACTOR 53 (ERF53)           20 
  At4g25470 ERF/AP2 FAMILY, DREB subfamily A-1         18 

  At5g05410 ERF/AP2 FAMILY, DEHYDRATION RESPONSE ELEMENT BINDING 2A 
(DREB2A)         16 

  At5g61590 ERF/AP2, B3 FAMILY         14 

chaperones At1g71000 Chaperone protein dnaJ-related           12 
  At2g46240 A member of Arabidopsis BAG (Bcl-2-associated athanogene) proteins         10 

  At3g13470 Subunit of chloroplasts chaperonins CHAPERONIN-60BETA2 (CPN60BETA2)         8 

  At5g43260 Chaperone protein dnaJ-related         6 

heat shock 
factor At3g51910 HEAT SHOCK TRANSCRIPTION FACTOR A7 A (HSFA7A)           4 

heat shock 
protein At1g53540 HSP20-like chaperones superfamily protein         2 

  At2g32120 Heat-shock protein 70T-2 (HSP70T-2)         1 

  At3g08970 J domain protein localized in ER lumen, shows similarity to HSP40 proteins         0.9 

  At3g46230 HEAT SHOCK PROTEIN 17.4 (HSP17.4)         0.8 

  At4g12400 Hop3, a tetratricopeptide repeat (TPR) protein, interacts with Hsp90/Hsp70         0.7 

  At4g25200 MITOCHONDRION-LOCALIZED SMALL HEAT SHOCK PROTEIN 23.6 (HSP23.6-
MITO)         0.6 

  At5g09590 Heat shock protein 70 (Hsc70-5)         0.5 

  At5g37670 HSP20-like chaperones superfamily protein         0.4 

  At5g51440 HSP20-like chaperones superfamily protein         0.3 

  At5g56030 HEAT SHOCK PROTEIN 81-2 (HSP81-2)         0.2 

unknown At1g03070 Apoptosis-promoting Bax inhibitor-1 family protein           0.1 

  At1g17870 ETHYLENE-DEPENDENT GRAVITROPISM-DEFICIENT AND YELLOW-GREEN-
LIKE 3 (EGY3)         0 

  At1g66510 AAR2 protein family     	  	   	  	   	  	  

  At4g21320 heat-stress-associated 32-kD protein     	  	   	  	   	  	  

  At5g13200 GRAM domain family protein     	  	   	  	   	  	  

  At5g64510 TUNICAMYCIN INDUCED 1 (TIN1),  a plant-speci-c ER stress-inducibl protein     	  	   	  	   	  	  

alternative 
splicing At1g07350 Serine-arginine rich RNA binding protein (SR45a) involved in alternative splicing       	  	   	  	   	  	  

unknown At2g18510 Embryo defective 2444 (emb2444)       	  	   	  	   	  	  

  At3g09160 RNA-binding (RRM/RBD/RNP motifs) family protein 
     	  	   	  	   	  	  

  At4g03110 
       
 

unkown RNA binding protein 
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ascorbic acid 
synthesis At1g67070 PHOSPHOMANNOSE ISOMERASE 2 (PMI2), also known as DARK INDUCED 9 

(DIN9)     	  	   	  	   	  	  

mannose 
binding lectin 
protein 
cell wall 
synthesis 

At1g78820 
At5g49360 

D-mannose binding lectin protein  
a bifunctional {beta}-D-xylosidase/{alpha}-L-arabinofuranosidase    

  
  

	  	   	  	   	  	  

	  	   	  	   	  	  

sugar tansport At5g57100 Nucleotide/sugar transporter family protein     	  	   	  	   	  	  

HY5 target, 
chloroplast 
organization 

At5g23730 REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2)       	  	   	  	   	  	  

  At5g52250 REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1)       	  	   	  	   	  	  

lipid transfer 
protein 

At2g38530 LIPID TRANSFER PROTEIN 2 (LTP2)       	  	   	  	   	  	  

MGDG 
synthesis 

At2g11810 MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE 3 (MGD3)       	  	   	  	   	  	  

  At5g20410 MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE 2 (MGD2)       	  	   	  	   	  	  

phosphatase At3g17790 PURPLE ACID PHOSPHATASE 17 (PAP17)       	  	   	  	   	  	  

phospholipid 
catabolism 

At3g02040 GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE 1 (GDPD1)       	  	   	  	   	  	  

SQDG synthesis At4g33030 SULFOQUINOVOSYLDIACYLGLYCEROL 1     	  	   	  	   	  	  

  At5g01220 SULFOQUINOVOSYLDIACYLGLYCEROL 2       	  	   	  	   	  	  

transcription 
factor activity At3g03790 Ankyrin repeat family protein / regulator of chromosome condensation       	  	   	  	   	  	  

unknown At2g26660 SPX DOMAIN GENE 2 (SPX2)     	  	   	  	   	  	  

  At5g20150 SPX DOMAIN GENE 1 (SPX1)       	  	   	  	   	  	  

transcription 
factor activity 

At4g00150 Belongs to one of the LOM (LOST MERISTEMS) genes       	  	   	  	   	  	  

transcription 
factor activity At4g37180 Myb family transcription factor, contains Pfam domain     	  	   	  	   	  	  

unknown At2g40610 Alpha-Expansin Gene Family. Inv. in the form. of nematode-induced syncytia in 
roots       	  	   	  	   	  	  

 

Figure 4. Gene ontology and functional annotation of Arabidopsis rosette genes showing 
accession-specific transcriptional response upon exposure to increased irradiance.  

(A) Gene ontology enrichment for biological process of Arabidopsis rosette genes differentially 

(P=0.05)  expressed at 1 hr after exposure to increased irradiance when comparing control plants 

with plants exposed to increased irradiance in minimal one accession and differentially (P=0.05) 

expressed between two or three accessions when comparing Ga-0, Ts1, and Col-0; (B) Heat map for 

fold changes in increased irradiance conditions versus control conditions of accession-specific 

responsive genes (P=0.05) with enriched biological functions photosynthesis (yellow highlight), 

response to heat (grey highlight), RNA binding (green highlight), carbohydrate metabolism (blue 

highlight), photoreceptor activity (pink highlight), lipid remodelling (light-green highlight), and cell 

organization (orange highlight). Accession-specific responsive genes are more than 1.4-fold up- or 

down regulated in minimal one accession measured 1h after irradiance increase and in addition are 

differentially (P=0.05) up- or down-regulated between two or three accession when comparing Ga-0, 

Ts1, and Col-0. Only enriched biological processes among these accession-specific responsive 

genes are presented, for complete list see Supplementary Tables S3 and S4. G-1 = Ga-0 time-point 

1h; T-1 = Ts-1 time-point 1h; C-1 = Col-0 time-point 1h.   
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B 

Molecular function Gene ID Gene name C
1 

C 
3.
5 

C
2
5 

  Fold 
Change 

chlorophyll binding At3g22840 EARLY LIGHT-INDUCABLE PROTEIN (ELIP1)         HL vs LL 
  At4g14690 EARLY LIGHT-INDUCIBLE PROTEIN 2 (ELIP2)           24 

chlorophyll biogenesis At4g27440 light-dependent NADPH:protochlorophyllide oxidoreductase B           22 

chloroplast biogenesis At1g69200 fructokinase-like protein         20 
  At3g54090 fructokinase-like protein            18 

chloroplast protein 
import 

At2g28900 involved in plastid import of protochlorophyllide oxidoreductase A         16 
  At3g13470 subunit of chloroplasts chaperonins           14 

chloroplast transcription/ 
translation 

At2g04530 protein with RNAse Z activity            12 

flavonoid biosynthesis At2g23910 NAD(P)-binding Rossmann-fold superfamily protein         10 
  At2g24550 unknown protein         8 

  At3g29590 malonyl-CoA:anthocyanidin 5-O-glucoside-6"-O-malonyltransferase         6 

  At3g51240 flavanone 3-hydroxylase         4 

  At4g14090 anthocyanidin 5-O-glucosyltransferase          2 

  At4g22880 leucoanthocyanidin dioxygenase         1 

  At5g07990 Required for flavonoid 3' hydroxylase activity         0.9 

  At5g08640 FLAVONOL SYNTHASE 1 (FLS1)         0.8 

  At5g13930 chalcone synthase (CHS)         0.7 

  At5g17220  GLUTATHIONE S-TRANSFERASE PHI 12 (GSTF12)          0.6 

  At5g42800 dihydroflavonol reductase         0.5 

  At5g48880 peroxisomal 3-keto-acyl-CoA thiolase 2 precursor         0.4 

  At5g62210 Embryo-specific protein 3           0.3 

glucose:flavonoid 
glucosyl transferase At5g54060 anthocyanin 3-O-glucoside           0.2 

H2O2 scavenging At2g37770  NADPH-dependent aldo-keto reductase          0.1 
  At3g03630 protein that possesses S-sulfocysteine synthase activity         0 

  At4g31870 GLUTATHIONE PEROXIDASE 7 (GPX7)       	  	   	  	   	  	  

light harvesting At2g34430 LIGHT-HARVESTING CHLOROPHYLL-PROTEIN COMPLEX II 
SUBUNIT B1 (LHB1B1) 

      	  	   	  	   	  	  

NAD metabolism At5g14760 L-aspartate oxidase        	  	   	  	   	  	  

nutrient mobilization At5g24770 VEGETATIVE STORAGE PROTEIN 2 (VSP2)     	  	   	  	   	  	  

  At5g24780 VEGETATIVE STORAGE PROTEIN 1 (VSP1)     	  	   	  	   	  	  

oxidation-reduction 
process 

At4g19170 similar to nine-cis-epoxycarotenoid dioxygenase       	  	   	  	   	  	  

photoprotection At4g04020 Fibrillin precursor protein, involved in abscisic acid-mediated 
photoprotection     	  	   	  	   	  	  

stomatal functioning At5g22920 sequence similarity to RING, zinc finger proteins       	  	   	  	   	  	  

transcription factor 
activity 

At1g27730 SALT TOLERANCE ZINC FINGER 10 (ZAT10)     	  	   	  	   	  	  

  At1g28370 ERF/AP2, B-1 family     	  	   	  	   	  	  

  At1g74930 ERF/AP2, DREB A-5 family     	  	   	  	   	  	  

  At2g20880 ERF/AP2, ERF53     	  	   	  	   	  	  

  At2g47460 MYB12      	  	   	  	   	  	  

  At4g17500 ERF/AP2, B-3 family      	  	   	  	   	  	  

  At5g05410 ERF/AP2 FAMILY, DEHYDRATION RESPONSE ELEMENT BINDING 
2A (DREB2A)     	  	   	  	   	  	  

  At5g11590 ERF/AP2, DREB A-4 family      	  	   	  	   	  	  

  At5g25190 ERF/AP2, B-6 family  
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At5g44190 
At5g59820 

GOLDEN2-LIKE2 (GLK2) 
RESPONSIVE TO HIGH LIGHT 41 (RHL41)   

  
  

	  	   	  	   	  	  

	  	   	  	   	  	  

transferase activity At1g54570 PHYTYL ESTER SYNTHASE 1 (PES1)       	  	   	  	   	  	  

chaperone At1g53540 HSP20-like chaperones superfamily protein     	  	   	  	   	  	  

  At1g54050 HSP20-like chaperones superfamily protein     	  	   	  	   	  	  

  At1g59860 HSP20-like chaperones superfamily protein     	  	   	  	   	  	  

  At1g71000 Chaperone DnaJ-domain superfamily protein     	  	   	  	   	  	  

  At2g46240 A member of Arabidopsis BAG (Bcl-2-associated athanogene) proteins     	  	   	  	   	  	  

  At5g48570 tetratricopeptide repeat (TPR) proteins with potential to interact with 
Hsp90/Hsp70     	  	   	  	   	  	  

  At5g56030 A member of heat shock protein 90 (HSP90) gene family     	  	   	  	   	  	  

heat shock factor At2g26150 HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2)       	  	   	  	   	  	  

  At3g51910 HEAT SHOCK TRANSCRIPTION FACTOR A7A (HSFA7A)     	  	   	  	   	  	  

  At4g36990 HEAT SHOCK FACTOR 4 (HSF4)       	  	   	  	   	  	  

heat shock protein At1g74310 belongs to the Casein lytic proteinase/heat shock protein 100 
(Clp/Hsp100) family     	  	   	  	   	  	  

  At2g19310 HSP20-like chaperones superfamily protein     	  	   	  	   	  	  

  At2g20560 DNAJ heat shock family protein     	  	   	  	   	  	  

  At2g25140 belongs to the Casein lytic proteinase/heat shock protein 100 
(Clp/Hsp100)     	  	   	  	   	  	  

  At2g29500 HSP20-like chaperones superfamily protein     	  	   	  	   	  	  

  At2g32120 heat-shock protein 70T-2 (HSP70T-2)     	  	   	  	   	  	  

  At3g08970 J domain protein localized in ER lumen; similarity to HSP40 proteins     	  	   	  	   	  	  

  At3g09350 Arabidopsis ortholog of the human Hsp70-binding protein 1 (HspBP-1)      	  	   	  	   	  	  

  At3g25230 a high molecular weight member of the FK506 binding protein (FKBP) 
family     	  	   	  	   	  	  

  At3g46230 HEAT SHOCK PROTEIN 17.4 (HSP17.4)     	  	   	  	   	  	  

  At4g12400 Hop3, a tetratricopeptide repeat (TPR) protein, interacts with 
Hsp90/Hsp70     	  	   	  	   	  	  

  At4g21320 heat-stress-associated 32-kD protein     	  	   	  	   	  	  

  At4g25200 AtHSP23.6-mito mRNA     	  	   	  	   	  	  

  At5g02490 Heat shock protein 70 (Hsp 70) family protein (Hsp70-2)     	  	   	  	   	  	  

  At5g09590 heat shock protein 70 (Hsc70-5)     	  	   	  	   	  	  

  At5g12030 HEAT SHOCK PROTEIN 17.6A (HSP17.6A)     	  	   	  	   	  	  

  At5g37670 HSP20-like chaperones superfamily protein     	  	   	  	   	  	  

  At5g51440 HSP20-like chaperones superfamily protein     	  	   	  	   	  	  

  At5g52640 cytosolic heat shock protein AtHSP90.1     	  	   	  	   	  	  

unknown At1g30070 SGS domain-containing protein       	  	   	  	   	  	  

  At1g66080 Unknown protein     	  	   	  	   	  	  

  At5g13200 unknown     	  	   	  	   	  	  

  At5g64510 TUNICAMYCIN INDUCED 1 (TIN1),  a plant-speci-c ER stress-inducibl 
protein       	  	   	  	   	  	  

alternative splicing At1g07350 serine/arginine rich-like protein, SR45a     	  	   	  	   	  	  

  At1g09140 serine/arginine rich-like protein, SR30     	  	   	  	   	  	  

methyl transferase At5g57280 Gene encodes a methyltransferase-like protein involved in pre-rRNA 
processing 

      	  	   	  	   	  	  

organellar RNA editing At3g22310 PUTATIVE MITOCHONDRIAL RNA HELICASE 1 (PMH1)     	  	   	  	   	  	  

ribosome biogenesis At1g15440 nucleolar protein that is a ribosome biogenesis co-factor       	  	   	  	   	  	  

  At5g22100 RNA cyclase family protein     	  	   	  	   	  	  

  At5g39850 Ribosomal protein S4       	  	   	  	   	  	  

rRNA editing At4g25630 encodes a fibrillarin directing 2'-O-ribose methylation of the rRNA     	  	   	  	   	  	  

beta galactosidase At5g63800 Involved in mucilage formation       	  	   	  	   	  	  

beta-hexosaminidase 
activity 

At1g65590 protein with beta-hexosaminidase activity     	  	   	  	   	  	  

enzyme, pectin lyase At1g48100 Pectin lyase-like superfamily protein       	  	   	  	   	  	  

enzyme, alpha amylase At1g76130 alpha-amylase, putative / 1,4-alpha-D-glucan glucanohydrolase       	  	   	  	   	  	  

lectin family protein At5g03350 Legume lectin family protein     	  	   	  	   	  	  

nodulin family protein At3g28007 SWEET4; a nodulin MtN3 family protein       	  	   	  	   	  	  

starch degradation At4g09020 isoamylase-like protein     	  	   	  	   	  	  

  At4g15210 cytosolic beta-amylase     	  	   	  	   	  	  

  At4g17090 beta-amylase targeted to the chloroplast     	  	   	  	   	  	  

sucrose-proton 
symporter At1g71880 Sucrose transporter       	  	   	  	   	  	  

transporter At5g13170 member of the SWEET sucrose efflux transporter family     	  	   	  	   	  	  

transporter glucose6-
phosphate At1g61800 glucose6-Phosphate/phosphate transporter 2 (GPT2)     	  	   	  	   	  	  

unknown At4g23820 Pectin lyase-like superfamily protein       	  	   	  	   	  	  

HY5 homologue At3g17609 Encodes a homolog of HY5 (HYH). Involved in phyB signaling pathway.     	  	   	  	   	  	  

phytochrome signalling At5g04190 phytochrome kinase substrate 4       	  	   	  	   	  	  
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unknown At1g18810 phytochrome kinase substrate-related     	  	   	  	   	  	  

glycosyl transferase 
 

At1g32900 
 

GRANULE BOUND STARCH SYNTHASE 1 (GBSS1)  
 

   	   	   	  

hydrolase activity At1g58520 RXW8; functions in hydrolase activity, acting on ester bonds, lipase 
activity       

  
	  	   	  	   	  	  

	  	   	  	   	  	  

lipid binding 
  

At2g37870 
At2g42540 

Bifunctional inhibitor/lipid-transfer protein 
COLD-REGULATED 15A (COR15A)       

  
	  	   	  	   	  	  

	  	   	  	   	  	  

  At2g45180 Bifunctional inhibitor/lipid-transfer protein     	  	   	  	   	  	  

  At4g22490 Bifunctional inhibitor/lipid-transfer protein     	  	   	  	   	  	  

  At5g48490 Bifunctional inhibitor/lipid-transfer protein     	  	   	  	   	  	  

  At5g59320 LIPID TRANSFER PROTEIN 3 (LTP3)       	  	   	  	   	  	  

lipid transport At3g23080 Polyketide cyclase/dehydrase and lipid transport superfamily protein     	  	   	  	   	  	  

MGDG synthesis At5g20410 MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE 2 (MGD2)       	  	   	  	   	  	  

SQDG synthesis At4g33030 SULFOQUINOVOSYLDIACYLGLYCEROL 1 (SQD1)     	  	   	  	   	  	  

  At5g01220 SULFOQUINOVOSYLDIACYLGLYCEROL 2 (SQD2)       	  	   	  	   	  	  

phospholipid catabolism At3g02040 GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE 1 (GDPD1)     	  	   	  	   	  	  

transferase activity At1g09390 GDSL-motif esterase/acyltransferase/lipase       	  	   	  	   	  	  

  At3g16370 GDSL-motif esterase/acyltransferase/lipase       	  	   	  	   	  	  

unknown At5g20150 SPX DOMAIN GENE 1 (SPX1)     	  	   	  	   	  	  

acetylesterase At1g57590 Pectinacetylesterase family protein       	  	   	  	   	  	  

alpha expansin At1g69530 Alpha-Expansin Gene Family. Inv. in the form. of nematode-induced 
syncytia in roots 

      	  	   	  	   	  	  

  At2g40610 Alpha-Expansin Gene Family. Inv. in the form. of nematode-induced 
syncytia in roots        	  	   	  	   	  	  

auxin transport At2g01420 Encodes PIN-FORMED 4 (PIN4), a putative auxin efflux carrier     	  	   	  	   	  	  

  At2g38120 Encodes an auxin influx transporter       	  	   	  	   	  	  

cellulose synthase At4g23990 encodes a protein similar to cellulose synthase       	  	   	  	   	  	  

fatty acid biosynthetic 
process 

At1g01120 3-ketoacyl-CoA synthase 1 (KCS1), inv. in fatty acid elongation process 
in wax biosynth. 

      	  	   	  	   	  	  

hydrolase activity At4g32940 a vacuolar processing enzyme,  cysteine proteinase  associated with 
cell death      	  	   	  	   	  	  

microtubule 
cytoskeleton 
organization 

At4g16520 autophagy 8f (ATG8F)       	  	   	  	   	  	  

  At4g20260 Encodes a Ca2+ and Cu2+ binding protein.      	  	   	  	   	  	  

transcription factor 
activity 

At4g00150 Belongs to one of the LOM (LOST MERISTEMS) genes       	  	   	  	   	  	  

transferase activity At4g03210 encodes a member of xyloglucan endotransglucosylase/hydrolases 
(XTHs) 

      	  	   	  	   	  	  

 
Figure 5.  Gene ontology and functional annotation of Arabidopsis Col-0 rosette genes 

showing time-point-specific transcriptional response upon exposure to increased irradiance.  
(A) Gene ontology enrichment for biological process of Arabidopsis Col-0 rosette genes differentially 

(P=0.05) expressed after exposure to increased irradiance when comparing control plants with 

plants exposed to increased irradiance at minimal one time-point and differentially (P=0.05) 

expressed between two or three time-points when comparing 1, 3.5 and 25 hrs after exposure to 

increased irradiance; (B) Heat map for fold changes in transcription when comparing increased 

irradiance conditions versus control conditions of time-specific responsive genes (P=0.05) with 

enriched biological functions photosynthesis (yellow highlight), response to heat (grey highlight), 

RNA binding (green highlight), carbohydrate metabolism (blue highlight), photoreceptor activity (pink 

highlight), lipid remodelling (light-green highlight), and cell organization (orange highlight). Time-

specific responsive genes are more than 2.0-fold up- or down regulated in minimal one time-point 

after irradiance increase in Col-0 increase and in addition are differentially (P=0.05) up- or down-

regulated between two or three time-points when comparing 1, 3.5 and 25 hrs after exposure to 

increased irradiance. Only enriched biological processes among these time-specific responsive 

genes are presented, for complete list see Supplementary Tables S5 and S6. C-1 = Col-0 time-point 

1h; C-3.5 = Col-0 time-point 3.5h; C-25 = Col-0 time-point 25h. The colour-scale is similar to figures 

3 and 4. 
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Light response versus heat response 

In order to distinguish between the direct effects of an increase in irradiance and the 

indirect effect caused by the increase in temperature due to the increased irradiance, the 

expression of nine genes, selected from the classes of differentially expressed genes with 

enriched biological functions (Fig. 3, 4 and 5), was determined using quantitative reverse 

transcriptase PCR (qRT-PCR). For this experiment, plants were grown at either increased 

irradiance or increased temperature but no increased irradiance, conditions, and 

compared to plants grown under control conditions (no increased irradiance, no increased 

temperature). Of the core genes we selected two genes involved in RNA binding (SR45a 

[At1g07350] and SR30 [At1g09140]) to compare their expression under these conditions 

(Fig. 6). The up-regulation of SR45a and SR30 in response to excess light was observed 

for Col-0 and Ga-0 at 1 h after lights on, but not in Ts-1 and not after 3.5 h after lights on 

in either accession. Both genes were also induced by increased temperature, not 

significantly different from the induction by increased irradiance. 

Another core responsive gene encodes for the transcription factor GLK2 (At5g44190), 

which was down-regulated upon increased irradiance (Fig 3.). Both Col-0 and Ga-0 

showed a down-regulation of GLK2, at 1h after the irradiance increase, but not after the 

temperature increase (Fig. 6C). After 3.5 hours GLK2 was found to be up-regulated in 

Col-0 in response to an irradiance increase, but not to a temperature increase. 

Expression of GLK2 in Ts-1 was unaltered when comparing treatments. 
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Figure 6 (on next page). Expression of genes selected for their response to increased 
irradiance to distinguish response to increase irradiance and response to increased 

temperature  
Expression differences measured as fold changes (average ± SE) upon qRT-PCR analysis, of genes 

selected for their specific response based on the microarray analysis, determined at 1 h (1H; orange) 

and 3.5 h (3.5H; red) after an irradiance increase from 100 to 550 µmol m-2 s-1 (HL), as well as 1 h 

(light blue) and 3.5 h (dark blue) after a temperature increase from 20 to 30°C (HT), compared to 

control conditions, 1 h after lights on; (A) SR45a [At1g07350]; (B) SR30 [At1g09140]; (C) GLK2 

[At5g44190]; (D) HSFA2 [At2g26150];  (E) HOP3 [At4g12400]; (F) CPN60beta2 [At3g13470]; (G) 

SPX1 [At5g12150]; (H) GDPD1 [At3g02040]; (I) DREB2A [At5g05410]. Letters indicate statistically 

significant differences as determined by analysis of variance (P<0.05). 
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The largest group among both the core as well as accession-specific responsive genes 

were heat shock response genes (Fig. 3A). Three of these genes were selected for 

further analysis, HSFA2 [At2g26150]), up-regulated in all accessions; HOP3 

[At4g12400]), most upregulated in Col-0; and CPN60BETA2 [At3g13470], up-regulated 

only in Col-0 and Ga-0. HSFA2 was confirmed to be induced 1 h after both the irradiance 

increase and the temperature increase in both Col-0 and Ga-0, but only after 3.5 h after 

temperature increase in Ts-1 (Fig. 6D). Expression of HOP3 was confirmed by qRT-PCR 

to be increased one hour after the irradiance increase as well as after temperature 

increase for Col-0 and for Ga-0, though after temperature increase the expression of 

HOP3 was induced in Ts-1 similarly as in Col- 0 and Ga-0 (Fig. 6E). In all accessions the 

activation of HOP3 had significantly reduced by 3.5 hours after the induction of any stress 

treatment. Expression of CPN60Beta2 was not confirmed by qRT-PCR to be up-regulated 

in response to irradiance increase (Fig. 6F). 

Another biological process enriched among the accession-specific responsive genes is 

classified as lipid remodelling (Fig. 4A and 5A). Two genes (SPX1 [At5g12150] and 

GDPD1 [At3g02040]) were selected for further analysis. qRT-PCR showed that 

expression of SPX1 was strongly activated in Col-0 and to lesser extent in Ga-0 during 

the first hour after the irradiance increase (Fig. 6G). Similar results were found for 

GDPD1, except for an increase in GDPD1 expression for Ts-1 after 3.5 hours of exposure 

to high temperature (Fig. 6H). 

The transcription factor DREB2A [At5g05410] is well known for its response to drought, 

but is also known to be heat responsive (Sakuma et al., 2006). It was found among the 

accession-specific responsive genes (Fig. 4B), and was selected to further analyse its 

expression response to excess light and to a temperature increase without a light 

increase. qRT-PCR confirmed that expression was increased only in Col-0 in the first 

hour of the irradiance increase, but not after only temperature increase (Fig. 6I).  

Of the nine genes selected for qRT-PCR confirmation of the microarray results, eight 

were confirmed to be responsive to increased irradiance (Fig. 6). Of these eight 

confirmed genes, four genes (GLK2, SPX1, GDPD1, and DREB2) were found to be 

irradiance increase specific and not to be responsive to temperature increase only (Fig. 

6). All of these four genes were accession-specifically responsive, with an absent 

response in Ts-1 for all four genes. The four genes responsive to both irradiance and 

temperature increase (SR30, SR45a, HSFA2, and HOP3) were accessions-specific as 

well, with also for these genes an absent response in Ts-1. For SR30, SR45a, HSFA2, 
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and HOP3, the accession-specific effect was more pronounced after irradiance increase 

than after temperature increase (Fig. 6).  
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DISCUSSION 

This study investigated whether association of increases in ΦPSII with time following an 

increase in growth irradiance (Fig. 1A) with gene expression patterns (Fig. 2A) in natural 

accessions of Arabidopsis would reveal which gene responses are associated with high 

photosynthesis efficiency acclimation. In addition, analysing different time-points in Col-0 

within one study (Fig. 2B) would allow identification of transient expression patterns 

throughout the acclimation response. A core set of Arabidopsis genes was established by 

selecting the core responsive genes in common to both comparisons (i.e. accessions and 

time-points, Fig. 2C), constituting the general response to an increase in irradiance.  

Transient gene expression through time reveals photosynthetic acclimation 

Plants have evolved three mechanisms for sensing increased irradiance. This can be 

through several classes of photoreceptors (phototropins, phytochromes and 

cryptochromes), responding to irradiance levels directly; but also through biochemical 

signals (reactive oxygen species, ROS); and metabolic signals (sugar levels or protein 

phosphorylation status), (Li et al., 2009). Our study reveals gene expression responses in 

all three sensing mechanisms (Fig. 7A). It confirms the photoreceptor response mediated 

through the CRY1/HY5 genetic regulators leading to induced expression of many 

flavonoid biosynthesis genes (Fig. 5B) (Vanderauwera et al., 2005; Kleine et al., 2007); it 

confirms the biochemical response mediated through heat shock factors leading to 

induced expression of ROS scavenging genes (Fig. 5B); and it confirms the metabolite 

response through the up-regulated ERF/AP2 transcription factor family (Fig. 5B), known 

to sense distorted metabolite levels in response to increased irradiance, leading to 

systemic induced acclimation (Rossel et al., 2007; Moore et al., 2014; Vogel et al., 2014). 

In addition, it identifies another increased irradiance response, sensing distorted internal 

phosphate metabolite levels leading to induced expression of membrane lipid remodelling 

genes (Fig. 7B). 

Photosynthetic acclimation is known to occur in several phases. Around three hours after 

the irradiance increase the initial photoprotection response, provoking a rapid 

physiological response, including qE type quenching and increased CO2 fixation activity 

(Demmig-Adams and Adams, 1992; Niyogi, 1999; Li et al., 2009), will be replaced by the 

more long-term photoacclimation response, leading to a change in the composition of 

mesophyll cells in terms of their proteins, lipids,  pigments, and other cofactors involved in 

electron transport and reactive-oxygen species metabolism (Bailey et al., 2004; Walters, 

2005). This photosynthetic acclimation response involves alterations in photosynthetic 
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protein structures, and is thought to stay active over days (Walters, 2005). However, our 

study shows that gene expression levels the next day early morning (25 hours after 

increased irradiance) correlate better with gene expressions one hour after increased 

irradiance (considered to be within the photoprotection response) than with gene 

expressions at 3.5 hours after increased irradiance (considered to be after the switch to 

the photoacclimation response) (Fig. 1B). This suggests that the diurnal rhythm has more 

effect on plant gene expression than the effect of the increased irradiance. This effect of 

diurnal rhythms on photosynthetic gene expression can be explained by the importance 

of the interaction of the increased irradiance with the increased temperature. The light 

onset in the morning is followed by a temperature increase, causing the reappearance of 

differentially expressed heat responsive genes to re-occur on several mornings after the 

increased growth irradiance (Fig. 5B).  

 

Figure 7. Model summarizing (A) the signal transduction pathways leading to transcriptional 
responses upon increased irradiance; and (B) the signal transduction pathway leading to  

phosphate deficiency dependent lipid remodelling, for which several genes were found to be 
up-regulated in response to increased irradiance. 

CRY1 = CRYPTOCHROME 1; HY5 = LONG HYPOCOTYL 5; PHR1 = PHOSPHATE STARVATION 

RESPONSE 1; ZAT10 = SALT TOLERANCE ZINC FINGER 10; ERF/AP2 = ETHYLENE 

RESPONSE FACTOR/ APETALA2;  SPX1 = SYG1, PHO81, AND XPR1 HOMOLOGUE 1; GDPD1 

= GLYCEROPHOSPHO-DIESTER-PHOSPHO-DIESTERASE1; PLD = PHOSPHOLIPASE D; PLC = 

PHOSPHOLIPASE C; DREB2A = DEHYDRATION RESPONSE ELEMENT BINDING PROTEIN 2A; 

DGDG = DIGALACTOSYL DIACYLGLYCEROL; SQDG = SULFOQUINOVOSYL 

DIACYLGLYCEROL; GLK2 = GOLDEN-LIKE 2 
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From 3.5 h after the irradiance increase transcripts involved in RNA-binding are 

upregulated (Fig. 5), which will contribute to de novo protein synthesis, and is in line with 

the expression of new proteins as part of the acclimation response (Walters, 2005). Two 

genes regulating alternative splicing of many downstream RNAs are known to be up-

regulated already within one hour  after increased irradiance (SERINE/ARGININE-RICH 

PROTEIN 45a and 30 [SR45a and SR30]) (Rossel et al., 2002; Tanabe et al., 2007). The 

observation that SR45a and SR30 are up-regulated within one hour after increased 

irradiance suggests these genes are important regulators initiating a translational 

response of many genes that are induced in response to increase irradiance after 3.5 

hours by alternatively splicing the mRNAs of these genes. In addition to the induced 

expression of many RNA-binding genes 3.5 h after the irradiance increase, these 

alternative splicing events contribute to the synthesis of new proteins, being part of the 

acclimation response (Walters, 2005). In our study, both SR45a and SR30 are classified 

as core responsive genes, meaning they were responsive in all accessions and all time-

points (Fig. 3B), although the subsequent qRT-PCR experiments showed there is some 

variation in the level of expression depending on accession and time-point (Fig. 4B, 5B, 

6A, and 6B). SR45a was less up-regulated after a temperature increase compared to 

irradiance increase, the accession-specific effect was lost after temperature increase, and 

the increase in SR45a transcript was most obvious in the first hour after the irradiance 

increase (Fig. 6A and 6B), although both genes are up-regulated in increased irradiance 

conditions compared to control conditions also after 3.5 hours and after 25 hours (Fig. 5, 

6A, and 6B). By regulating alternative splicing of many downstream genes, SR45a is an 

important regulator of the high light response. In an sr45a null mutant over 200 genes 

involved in signal transduction, regulation of transcription, protein turn-over and cell cycle 

regulation are altered in expression, with at least 10 of them through differences in 

alternative splicing (Yoshimura et al., 2011). SR30 has not been investigated in great 

detail yet, but the similarity in gene expression profile (Fig 6B) and the similarity in 

subcellular localization (Mori et al., 2012) suggests a similar biological function as for 

SR45a. Its early activation and its involvement in the regulation of expression of many 

transcriptional activators make it likely that  SR45a (and possibly also SR30) initiates a 

gene responsive pathway activating photosynthetic acclimation in response to increased 

irradiance.  

Photoreceptor response 

Three types of photoreceptors are known to be involved in the response to increased 

irradiance: cryptochrome (CRY), phytochrome (PHY), and phototropin (PHOT), (Li et al., 
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2009). The CRY1 photoreceptor is known to regulate a large number of genes in 

response to increased irradiance through the HY5 transcription factor (Kleine et al., 

2007). CRY, PHY, or PHOT were not induced in any of the three accessions upon 

increased irradiance; nor did we see any induced transcription of HY5, suggesting 

regulation at the protein level. However, accession-specific increase in expression of two 

down-stream targets of HY5 was found (Fig. 4B), and a homologue of HY5 (HY5 

HOMOLOGUE [HYH]) was found to be time-point-specific responsive (Fig. 5B). The 

function of HYH  partially overlaps with that of HY5, and the accumulation of the HYH 

protein depends on the expression of HY5 (Holm et al., 2002) The increased expression 

of HYH together with two down-stream targets of HY5 confirms the involvement of the 

CRY1/HY5 response pathway. Two phytochrome signalling genes were down-regulated, 

one of which is PHYTOCHROME KINASE SUBSTRATE 4 (PKS4), a phytochrome 

signalling component involved in phototropism, phosphorylated in a PHOT1-dependent 

manner (Demarsy et al., 2012); the other a phytochrome kinase substrate-related protein 

with unknown molecular function (Fig. 5B). Together, these suggest a phytochrome-

receptor response to increased irradiance mediating a phototropism response, not 

directly related to photosynthesis efficiency response. 

Biochemical response 

Two major biochemical signals are known to be responsive to increased irradiance, a pH-

change within the chloroplast across the thylakoid membrane beginning within 

milliseconds after the induction of the irradiance increase (proton gradient dependent 

regulation) and and redox signals mediated via changes in the degree of thioredoxin 

reduction, the degree of plastoquinone reduction and increased formation  of ROS 

(redox-dependent regulation). The redox changes are a result from combined irradiance- 

and temperature increases (Apel and Hirt, 2004). This combined irradiance and 

temperature effect causes activation of heat shock proteins and heat shock factors, 

initiating photosynthetic acclimation responses (Jung et al., 2013). 

Using heat filters to block infrared light and thus reduce the heating effect that often 

accompanies and irradiance increase (Rossel et al., 2002), or by running parallel 

experiments with light and temperature increases and a temperature increase with no 

irradiance increase  (as done in this study), it is possible to separate of the acclimation 

responses of  an irradiance increase from those due to a temperature increase.  We 

found most pronounced expression induction in response to increased irradiance of 

several genes encoding heat shock proteins and/or heat shock factors (Fig. 3), of which 
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some were accession-specifically (Fig. 4) and some time-point-specifically induced (Fig. 

5). The expression of heat shock genes was least induced in Ts-1 (Fig. 4B), an 

observation that is in line with its observed low photosynthetic efficiency response to 

excess irradiance (Fig. 1A).  

qRT-PCR confirmed the accession-specific expression response of HSFA2 (Fig. 6D), a 

gene known to be associated with photosynthesis acclimation through the ascorbate 

peroxidase pathway (Jung et al., 2013) and the expression of HOP3 (Fig. 6E). HOP3 is 

known to assist in undamaged import of photosynthetic pre-proteins synthesized outside 

the chloroplast by interacting with HSP70 and HSP90 (Fellerer et al., 2011). Both HSFA2 

and HOP3 were induced in Ga-0 and Col-0, but not Ts-1, again in line with the 

differences found in photosynthesis efficiency measurements for these accessions (Fig. 

1A).  

Metabolite response 

Response to changed metabolite levels resulting from increased irradiance levels are 

sensed and signalled by the ERF/AP2 transcription factor family (Moore et al., 2014; 

Vogel et al., 2014). Members of this family showed transcriptional response to increased 

irradiance (Fig. 3, 4, and 5). The ERF/AP2 transcription factors are induced by ZAT10, a 

transcription factor activated by a MAP kinase (Nguyen et al., 2012; Vogel et al., 2014). 

ZAT10 was found to be transcriptionally up-regulated in this study (Fig. 5B). ZAT10 has 

been reported to initiate a systemic acclimation response to excess light (Rossel et al., 

2007; Munekage et al., 2015). 

One regulatory gene that was characterized before to be responsive to increased 

irradiance is SPX1 (Rossel et al., 2002). SPX1, so-called because it shares a domain with 

the yeast proteins Syg1 and Pho81, and the human protein Xpr1, is a phosphate-

dependent inhibitor of the transcription factor PHOSPHATE STARVATION RESPONSE 1 

(PHR1), (Puga et al., 2014). The physical interaction between SPX1 and PHR1 is 

reduced in the absence of inorganic phosphate (Pi), leading to transcription of many Pi 

starvation induced genes by PHR1 (Bustos et al., 2010; Puga et al., 2014). Among these 

PHR1-induced genes is SPX1, but the SPX1 protein is unable to bind PHR1 until Pi 

becomes available again (Puga et al., 2014). In this study, SPX1 was up-regulated in Col-

0 and to a lesser extent in Ga-0 (but not Ts-1) one hour after the irradiance increase, (Fig. 

6G). It was also found to be specifically responsive to irradiance increase and not to 

temperature increase (Fig. 6G). This agrees with Rossel et al (2002) who found that 

SPX1 was specifically induced by one hour fHL (filtered for the heat-producing infrared). 
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Therefore, we conclude that SPX1, acting in concert with PHR1, rapidly initiates a 

pathway of increased irradiance responsive genes that is independent of heat shock, and 

is associated with natural variation in photosynthesis efficiency acclimation (Fig. 1A). 

Expression of PHR1 was not responsive to increased irradiance; probably because PHR1 

transcription levels are kept stable by SPX1. Besides SPX1, the genes GLK2, GDPD1 

and DREB2A were found to be accession-specifically induced in response to increased 

irradiance independent of heat shock (Fig. 6). The next paragraph describes how these 

three genes connect to lipid remodelling, summarized in Fig. 7B. 

Phosphate-deficiency-dependent lipid remodelling response 

Several lipid remodelling genes are activated one hour after the irradiance increase, 

mainly in Col-0 (Fig. 4 and 5). Increased irradiance induces a condition where more 

phosphate is required for additional photosynthesis structures and where 

photosynthetically produced sugars are in excess. An interaction between phosphate and 

sugar metabolism is known to exist on the transcriptional level (Müller et al., 2007); 

several genes involved in galactolipid biosynthesis were up-regulated in response to 

combined phosphate starvation and sugar accumulation (Müller et al., 2007). The 

interaction between phosphate and sugar metabolism was hypothesized to be important 

for either (1) maintenance of the ratio of available Pi and carbon by reducing the cellular 

sucrose content via galactolipid synthesis; or (2) supply of galactolipids as components of 

the plasma membrane to support enhance growth under sucrose supplementation 

(Murakawa et al., 2014). Our study supports this hypothesis, as both phosphate-

deficiency-initiated lipid remodelling genes as well as carbohydrate (sucrose) metabolism 

genes were found to be light-responsive (Fig. 4 and 5). 

Compared to Ga-0 and Ts-1, there is enhanced expression in Col-0 of several genes 

involved in galactolipid biosynthesis (Fig. 4 and Table S3) and reduced expression of one 

particular gene (GOLDEN2-LIKE2 [GLK2], Table S4). Golden2-like transcription factors 

(GLK) are required for chloroplast development by regulating genes involved in 

chlorophyll biosynthesis (Waters et al., 2009). GLK2 was shown to be a pivotal regulator 

of DGD1, which encodes for the key enzyme of di-galactosyl-diacyl-glycerol (DGDG) 

synthesis (Kobayashi et al., 2014). DGDG is a bilayer-forming galactolipid, important for 

the integrity of the chloroplast protein-import apparatus (Chen and Li, 1998). In addition, 

DGDG replaces phospholipids in several organelles and membranes in phosphate-limited 

conditions (Härtel et al., 2000). GLK2 expression was repressed in Col-0 and Ga-0 (but 

not Ts-1) one hour after increased irradiance, and activated in Col-0 and Ga-0 (but not 
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Ts-1) 3.5 hours after increased irradiance (Fig. 6C). Additionally, it was found to be 

specifically responsive to light increase (and not to temperature increase; Fig. 6C). This 

expression pattern implies that GLK2-induced DGDG replacement of phospholipids is 

activated only after 3.5 hours of excess light. 

Three metabolic pathways are known for the release of Pi from phospholipids during Pi 

deficiency (Ruelland et al., 2015), two of which – galactolipid formation through the 

generation of phosphatidic acid (PA) by phospholipase C (first route) or, alternatively, 

phospholipase D (second route) – are extensively studied (Gaude et al., 2008; Nakamura 

et al., 2009). GLYCEROPHOSPHO-DIESTER-PHOSPHO-DIESTERASE1 (GDPD1) is 

another gene known to respond to phosphate limitation that was found up-regulated upon 

increased irradiance (Fig. 4B and 5B); GDPD1 is suggested to mediate the third route for 

the release of Pi from phospholipids during Pi starvation (Cheng et al., 2011). In our 

experiment, the GDPD1 pathway is the only of the three phosphate limitation activated 

pathways normally up-regulated in excess light, that is significantly higher induced in Col-

0 compared to Ga-0 and Ts-1 (Fig. 6H). The promoters of the GDPD family were found to 

all include Pi response elements binding to the PHR1 transcription factor (Cheng et al., 

2011). To release Pi from phospholipids, the phospholipids are catalyzed into 

glycerophophodiesters and then hydrolyzed into glycerol-3-phosphate (G-3-P) by GDPD. 

It is unknown how Pi is released from G-3-P in Pi starved plants, but is suggested to be 

released via the de novo pathway of DGDG and/or SQDG synthesis (Cheng et al., 2011). 

Through this pathway, G-3-P is first converted into phosphatidic acid (PA) and then Pi is 

released in the subsequent conversion of PA into di-acyl-glycerol (DAG) by phosphatidic 

acid phosphohydrolases (PAH), (Nakamura et al., 2009). DAG is the direct substrate for 

synthesis of either MGDG (by MGD1, MGD2, and MGD3), DGDG (by DGD1 and DGD2), 

or SQDG (by SQD1 and SQD2), where MGDG is the precursor of both end-products 

DGDG and SQDG. The gdpd1 mutant did not affect DGDG content, but SQDG content 

was not measured (Cheng et al., 2011). In this study, DGD1 and DGD2 were not 

transcriptionally responsive to excess light, whereas SQD1 and SQD2 were both up-

regulated, only in Col-0, comparable to SPX1 and GDPD1 (Fig. 4B and 5B). Therefore, 

this study supports the hypothesis of Cheng et al (2011) in the part of release of extra Pi 

needed in phosphate-limited conditions mediated through SQDG synthesis. We 

hypothesize that the preference of SQDG over DGDG for replacement of phospholipids 

for releasing extra Pi in response to excess light is explained by the fact that SQDG 

brings a charge balance to the photosynthetic membranes that is overcharged as a result 

of the excess light, as, in contrast to MGDG and DGDG, SQDG is negatively charged. 

We suggest this preference for SQDG is mediated by reduced DGDG synthesis as result 
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of decreased GLK2 expression leading to reduced DGD1 expression (Fig. 7B). When 

after ~ 3.5 hrs, the charge balance is recovered, GLK2 transcription is induced (Fig. 6C), 

leading to activation of DGDG synthesis. 

Besides the PHR transcription factor, we found expression of another transcription factor 

gene previously implicated to be responsive to increased irradiance, encoding the 

dehydration-responsive element binding protein DREB2A (Rossel et al., 2002). DREB2A 

is induced by hydrogen peroxide and is known as a key regulator of drought response, 

though it is known to be involved in response to heat stress (Sakuma et al., 2006). 

DREB2A belongs to the ERF/AP2-type transcription factor family, binding to drought 

responsive elements (DRE) in the promoters of transcriptional target genes. DREB2A is 

transcriptionally up-regulated one hour after irradiance increase, only in Col-0 (Fig. 6I), as 

are SPX1 and GDPD1. It is known that the expression of DREB2A is repressed by the 

phosphoinositide dependent-phospholipase C (PI-PLC) pathway in basal conditions 

(Ruelland et al., 2013), one of the pathways for the release of Pi from phospholipids. We 

propose that the activation of the GDPD pathway, as a result of Pi limitation, outcompetes 

the PLC pathway, leading to reduced PLC-mediated repression of DREB2A, leading to 

activation of drought responsive genes, explaining the crosstalk (Fig. 7B). 

Conclusion 

Our gene expression analysis shows the existence of a gene activation pathway for 

photosynthetic acclimation to increased irradiance that starts with the SPX1-mediated 

activation of the transcription factor PHR1 and activates the physiological process of 

membrane lipid remodelling (Fig. 7B). The involvement of PHR1 for photosynthetic 

responses to high light has been demonstrated before (Nilsson et al., 2011); the current 

study adds insights into the physiological mechanism behind it. It is hypothesized to 

involve  the replacement of phospholipids by SQDG (preferred of DGDG) for releasing 

extra Pi needed for photosynthetic structures and for creating a charge balance to the 

photosynthetic membranes that is overcharged as a result of the excess light. 

In addition, we suggest a gene activation pathway that starts with the activation of the 

regulators SR45a and SR30, which mediate alternative splicing activities. However, the 

downstream targets of these regulators and their involvement with photosynthetic 

acclimation remain to be elucidated. 

This study aimed to explain natural variation in photosynthetic acclimation to increased 

irradiance at the transcriptional level, for which we studied gene regulation in three 
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accessions. Based on the results of this study, stronger expression of heat responsive 

genes in the accession Ga-0 might explain its slightly higher photosynthesis efficiency 

compared to Col-0. The absence of induced expression of heat responsive genes in Ts-1 

partly explains its lower photosynthetic efficiency. The importance of the combined light 

and heat shock responsive pathway to increased irradiance is well known for the 

scavenging of reactive oxygen species for the maintenance of proper functioning of the 

photosynthetic membrane. Furthermore, a new, increased irradiance responsive PHR-

mediated gene activation pathway was found, acting on membrane remodelling. This 

pathway was active in both Ga-0 and Col-0, providing additional explanation for the 

higher photosynthesis efficiencies in these accessions compared to Ts-1, in which the 

activation of both the heat shock responsive pathway as well as the PHR-mediated 

pathway is absent.  
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Table S7. Primers used for qRT-PCR 

Name Gene Forward Primer Reverse Primer 

SR45a At1g07350 GATGCAACGGTTAGCATCACC TCCTGGACCCATGGACTAGA 

SR30 At1g09140 CCGAAGTCGACACCCATCAA AGATTCCACCGAGACCTCCT 

GLK2 At5g44190 TTGCACGTATGGGGTCATCC TGGATGACCTGGCCAAGATG 

HSFA2 At2g26150 CAGCAAGGATCTGGGATGTCA GCTACAAGCACACCATGATCC 

HOP3 At4g12400 GTACTCCTGTTGCTCCAGCT GCCTGCGATTGAGACTTTCC 

CPN60BETA2 At3g13470 CTTGGTTCGTTGCTTGCTCC ACTATGGCAGGACGGGATCT 

SPX1 At5g20150 CTGCCTTGCGGGTTTTGAAG GGCTTCTTGCTCCAACAATGG 

GDPD1 At3g02040 TCACCTCCGAGACAATCCCT TGTACCACGACACGAGAAGG 

DREB2A At5g05410 GGAGGACCAGAGAATAGCC CCAAAGCCTGCTACCTCGAT 

UBQ7 At2g35635 GCAGCGACACCATCGACAAT AGGTCCGGCCATCTTCCAAT 

CBE-5 At5g53560 TTGCAGTGTCGCTGTGACCA TGATCATCCTGGAGGCGATG 

UBQ.THIO At1g28120 TGGTTGATCTTCCACTGATG TGAAGGATGAAGCGGAAGTA 
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ABSTRACT 

Photosynthetic light use efficiency is inevitably connected with the incoming growth 

irradiance level. Specifically acclimation to increased irradiance is crucial, as increased 

incoming light levels lead to the production of reactive oxygen species (ROS) that are 

harmful to the integral cellular structures of the plant that could be lethal when persistent. 

The combination of genome wide association mapping (GWAS) and linkage mapping 

allowed the dissection of part of the genetic complexity and the underlying genetic 

variation explaining phenotypic variation in photosynthetic efficiency response to 

increased irradiance. It revealed an epistatic relation between two genes, 

PHOSPHATIDIC ACID PHOSPHOHYDROLASE 2 (PAH2) and ASPARAGINE 

SYNTHETASE 2 (ASN2). PAH2 acts in membrane lipid remodelling in response to 

phosphate starvation, and ASN2 acts in detoxifying excess ammonium levels by 

transporting it via asparagine from source to sink organs. Three natural alleles could be 

found in the GWAS population for both genes. This study shows strong indications for the 

involvement of specific combinations of these PAH2 and ASN2 natural alleles in keeping 

high photosynthesis efficiencies in response to increased irradiance.  
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INTRODUCTION 

A plant’s capacity and efficiency to convert incoming light and CO2 to biomass and O2 

through the process of photosynthesis is of major interest to present society with 

increasing population and rising CO2 levels, as photosynthesis uses CO2 (and light) to 

produce plant biomass (Long et al., 2015). Many possible targets have been identified to 

manipulate for increasing photosynthetic efficiency (Evans, 2013). These targets range 

from the canopy level to the thylakoid membrane level and from light capture to CO2 

conductance (Evans, 2013). Understanding genetic variation for photosynthesis and its 

response to fluctuating environments is crucial, as it will allow plant breeders to select for 

the photosynthetically best performing genotypes in an early stage, which might lead to 

faster growth and higher yields in later stages (Athanasiou et al., 2010). This study 

focusses on the process of light use efficiency, a trait that is inevitably connected with the 

incoming growth irradiance level (Van Rooijen et al., 2015). The ability of a plant to 

acclimate to fluctuations in irradiances is of major importance to maintain high 

photosynthetic rates over those conditions (Walters, 2005; Leister, 2012; Van Rooijen et 

al., 2015). Specifically acclimation to increased irradiance is crucial, as increased 

incoming light levels lead to the production of reactive oxygen species (ROS) that are 

harmful to the integral cellular structures of the plant, which could be lethal when 

persistent (Powles, 1984).  

A sudden increase in growth irradiance provokes a regulatory response in the plant’s 

metabolism within seconds, called photoprotection (Demmig-Adams and Adams, 1992). 

When the high irradiance level persists for longer time, photosynthetic acclimation will 

change the composition of mesophyll cells in terms of their proteins, lipids,  pigments, and 

other cofactors involved in electron transport and reactive-oxygen species metabolism 

(Bailey et al., 2004; Walters, 2005). Increasingly more research is being performed to 

identify the genetic loci that are regulating these (sub-) processes in photosynthetic 

acclimation (Suorsa et al., 2012; Albrecht-Borth et al., 2013; Jin et al., 2014; Van Rooijen 

et al., 2015). The natural allelic variants of the genes underlying such loci can be applied 

for breeding for photosynthetic performance (Van Rooijen et al., 2015). 

Natural allelic variants result from random mutations of the genomic DNA sequence. 

Phenotypic variation in a trait such as photosynthetic light use efficiency can be related to 

variation at the genome sequence level, which allows the identification of the associated 

genes (Alonso-Blanco et al., 2009; Flood et al., 2011; Alonso-Blanco and Méndez-Vigo, 

2014). To do this, Arabidopsis thaliana is the model species of choice, because of its 
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well-described genetics, its wide availability of natural accessions, and the ability to 

exploit it in genome wide association studies (GWAS), (Atwell et al., 2010; Bergelson and 

Roux, 2010; Ogura and Busch, 2015). GWAS are performed in populations consisting of 

a large number of natural isogenic lines collected from nature, that have genetically 

adapted to different ecological conditions over thousands of years. In order to genetically 

map quantitative traits to the genome, GWAS take advantage of the recombination 

events that have accumulated over all those generations resulting in a high mapping 

resolution (Bergelson and Roux, 2010). An important aspect to consider when performing 

GWAS is Linkage Disequilibrium (LD), which is the non-random association of alleles at 

different loci, affecting the number of recombination events occurring through time (Kim et 

al., 2007). When LD is only over short lengths in the genome, it requires a very high 

density of genotyping to find causal loci for a phenotypic trait in GWAS. Also the 

interpretation of association peaks in GWAS is not straightforward as population structure 

can lead to the occurrence of false positive associations; and the presence of causal 

alleles with low allele frequency, the presence of multiple alleles having the same 

phenotype, or the presence of a genetic interaction between two loci can lead to hidden 

heritability (Korte and Farlow, 2013). Epistasis is an example of a genetic interaction 

between two loci, where the phenotypic effect of one allele one locus is obscured by the 

genotype at another locus (Bateson, 1909). 

A more traditional method to link phenotypic variation to genetics is to do family mapping 

(Lander and Botstein, 1989). For this, two different accessions are crossed, the 

heterozygous plant that arises is self-fertilized, and the segregating offspring are 

phenotyped for the trait of interest, and genotyped for enough molecular markers to cover 

the genome. Less genetic complexity exists within family mapping compared to GWAS, 

as it deals with the presence of only two alleles per locus, coming from the two parents, 

increasing the mapping power. While family mapping provides the mapping power that is 

lacking in GWAS, it has a very low resolution because it depends upon the limited 

number of recombination events that have occurred in one (or a few) generation(s). The 

combination of GWAS and family mapping has proven to be a successful strategy in 

unravelling complex plant genetics (Keurentjes et al., 2011; Motte et al., 2014). 

This study uses the combination of genome wide association mapping and family 

mapping to identify the underlying genetic variation of phenotypic variation in 

photosynthetic efficiency response to increased irradiance. A GWAS population and an 

experimental F2 population were phenotyped for photosynthesis efficiency response to 

increase irradiance. Both these populations revealed to be segregating for the trait of 
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interest and were used for genetic mapping. Genetic mapping revealed two epistatic 

quantitative trait loci (QTLs) on chromosome 5 were associated to photosynthesis 

efficiency levels after one hour of irradiance stress in both populations. Haplotype and 

expression analyses revealed the underlying genes were PHOSPHATIDIC ACID 

PHOSPHOHYDROLASE 2 (PAH2) and ASPARAGINE SYNTHASE 2 (ASN2), acting in 

the conversion of membrane phospholipids to galactolipids and the removal of excess 

ammonia, respectively.  

This study identifies genetic epistasis, a factor that is thought to be limiting the power in 

genetic mapping of complex traits with many underlying genes (Korte and Farlow, 2013). 

Additionally, it reveals three natural alleles for both PAH2 as well as three natural alleles 

for ASN2 are underlying natural variation in photosynthesis efficiency in response to 

increased irradiance.  
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MATERIALS AND METHODS 

Plant material and growth conditions 

A set of 344 accessions was used for GWAS, as described in Chapter 3 of this thesis. 

The accessions S96 and SLSP30 were crossed, and one F1 plant was self-fertilized to 

produce an F2 mapping population. Of this F2 population, 306 plants were grown, 

genotyped for 384 single nucleotide polymorphisms (SNPs), and phenotyped for 

photosynthesis response to excess irradiance. 

With the aid of the re-sequence data of the 1001 genomes project as described in 

(http://1001genomes.org/), the accessions Baa-1, Ga-0, S96, Uk-1, and Got-7 were 

selected to represent the ASN2-PAH2-genotype ‘ASN2-5,6,7-PAH2-1,2,3,5,6’; the 

accessions Ra-0, Old-1, Yo-0, Faeb-4, and Broet1-6 to represent the genotype “ASN2-

5,6,7-PAH2-4”;  accessions Fei-0, Kin-0, Ren-1, and Chat-1 to represent the genotype 

“ASN2-2,3-PAH2-1,2,3,5,6”; and the accessions Ts-1, LL-0, Com-1, and SLSP30 to 

represent the genotype  “ASN2-2,3-PAH2-4”.  

The T-DNA insertion knock-out line asn2-1 (SALK_043167) was kindly donated by the 

laboratory of Dr. Akira Suzuki (INRA Centre de Versailles-Grignon, France). The double 

T-DNA insertion knock-out line pah1pah2 (originated from SALK_042970 and 

SALK_047457) was kindly donated by the laboratory of Dr. Peter Eastmond (Department 

of Plant Biology and Crop Science, Rothamsted Research, United Kingdom).  

All plants were grown and phenotyped as described in Chapter 3 of this thesis 

Genetic analysis 

Genome wide association analysis was performed for ΦPSII-values averaged per 

accession (at least three replicates were used to determine the average value), combined 

with the 215,000 SNP database for 360 accessions (Kim et al., 2007), using a mixed 

model analysis software package, written within the R project environment for statistical 

computing (https://www.r-project.org/).  

For analysis of the F2 population derived from the cross between S96 and SLSL30, all 

306 F2 plants were genotyped for 384 SNPs using Illumina’s GoldenGate Genotyping 

with VeraCode Technology. A genetic map was created using Joinmap 4 (Van Ooijen, 

2006). Multiple QTL Mapping (MQM) was performed using MapQTL6 (Van Ooijen, 2009). 
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Haplotypes were generated based on all SNPs in the promoter and coding regions of the 

two candidate genes using the re-sequence data of 173 accessions, which are those out 

of the 344 GWAS accessions of which  re-sequence data were available at the time of the 

analysis (http://1001genomes.org/). Those haplotypes that occurred in >4% of the 173 

accessions were then associated with photosynthetic phenotypes. Haplotypes that 

resulted in significantly different photosynthetic response to increased irradiance (based 

on t-test) were further compared per SNP for association with the phenotype. 

Gene expression analysis 

Gene expression was determined using quantitative reverse transcriptase PCR (qRT-

PCR) as described in Chapter 3 of this thesis. The primers used are listed in table S1. 

 

 

Lipid profiling 

Rosettes of Arabidopsis plants grown for 33 days in 600 µmol m-2 s-1 growth irradiance 

were harvested and flash-frozen in liquid nitrogen. Frozen rosettes were broken into 

pieces and immersed for 15 minutes in 2 ml isopropanol with 0.01% butylated 

hydroxytoluene (BHT), preheated to 80 °C. Subsequently, 1 ml chloroform and 0.4 ml 

water were added, mixed, and the solution was agitated for 1 hour at room temperature. 

Lipid extracts were transferred to glass tubes with Teflon-line screw-caps; 2 ml 

chloroform/methanol (2:1) with 0.01% BHT was added to the remaining leaf pieces, and 

the solution was agitated for 30 minutes at room temperature. The second lipid extract 

was added to the first extract and the extraction procedure was repeated until all leave 

pieces became white. Subsequently, 0.5 ml of 1M potassium chloride was added to the 

combined extract, mixed and centrifuged to separate the lipids from the proteins and 

carbohydrates. The upper phase was discarded, 0.5 ml water was added to the lower 

phase, mixed and centrifuged. The upper phase was discarded again, and the lower 

phase was dried with nitrogen stream. 

The dried lipid extracts were analysed by thin layer chromatography (TLC) coupled with 

gas-liquid chromatography (GLC).  
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RESULTS 

Identification of two QTLs for the photosynthesis response to increased irradiance 

Using 344 accessions, ФPSII was measured repeatedly three times a day in a climate 

chamber where the growth irradiance was increased from 100 to 550 µmol m-2 s-1, at the 

onset of the photoperiod, on day 25 after sowing. The first measurement in high light was 

performed one hour after the irradiance increase and the second measurement 3.5 hours 

after the irradiance increase. Genome wide association studies (GWAS) were performed 

to associate these first two high light measurements with 215,000 SNPs spread over the 

genome of Arabidopsis. By setting the significance threshold for association peaks to 

a -10log(p)=4, thirteen peaks of association were identified one hour after the irradiance 

increase and seventeen peaks 3.5 hours after the irradiance increase, with an overlap of 

6 peaks (Fig. 1A and 1B). All association peaks are specific for high light, none of them 

appeared before the irradiance increase (Fig. S2).  

In order to select the QTLs for further analysis, two GWAS accessions (S96 and SLSP30) 

were crossed that were polymorphic for all SNPs above our association threshold. One 

F1-plant was self-fertilized, and the F2 population was grown under the same conditions 

as the GWAS population and ФPSII values were measured at the same time points. A 

genetic map was created for the F2 population (Supplementary Fig S1), and QTLs for 

ФPSII values at the same time points as in the GWAS were mapped using family mapping 

(Fig 1C and 1D).   
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Figure 1. Mapping of photosynthesis response to excess irradiance in Arabidopsis thaliana  
(A + B) -log10(Pvalue) for 215,000 single nucleotide polymorphisms (SNPs) in a genome-wide 

association mapping panel of 344 natural accessions (A) one hour after increased growth irradiance, 

and (B) three and a half hours after increased growth irradiance. The colours blue and pink 

distinguish the 5 chromosomes from left to right, the black dotted line represents a significance 

threshold arbitrarily set at -log10(Pvalue)=4, the red dots are SNPS that are associated with the 

phenotype at -log10(Pvalue)≥4, the numbers indicate distinct association peaks; (C + D) LOD scores 

of 384 SNPs represented as a red line though each chromosome in an F2 mapping population 

arisen from a cross between two natural accessions S96 and SLSP30 (C) one hour after increased 

growth irradiance, and (D) three and a half hours after increased growth irradiance. The black dotted 

line represents a significance threshold set with a permutation test at LOD=3. 

At one hour after the irradiance increase, the F2 population QTL map showed five QTLs. 

The QTL on chromosome 2 and the QTL on chromosome 4 were unstable when 

comparing the one hour time-point to the 3.5 hour time-point; the QTL on chromosome 3 

and the other QTL on chromosome 5 were also found when ФPSII was measured before 

the irradiance increase (Fig. S3). Only the QTL at the end of chromosome five is specific 

for high light and is stable when compared to 3.5 hours after the increase (QTL2, Fig. 

1C). At 3.5 hours after the irradiance increase, one more QTL on chromosome 5 was 
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associated with ФPSII, also specific for high light (QTL1, Fig. 1D). QTL1 disappeared on 

day 2 after the irradiance increase and QTL2 disappeared on day 3 after the irradiance 

increase (Fig. S3). QTL1 and 2 were both also found in the GWAS-profiles (Fig. 1A and 

1B); with the notification that 3.5 hours after the irradiance increase these two peaks were 

just below our arbitrary threshold of -10log(p)=4 (Fig. 1B). However, both QTLs 

reappeared in subsequent time-points (Fig. S2). The location of the associated SNPs 

above –log10(p)=4 in GWAS or above LOD=3 in F2 family mapping for both QTLs are 

shown in Table 1.  

Table 1. Location of the associated SNPs above –log10(p)=4 in GWAS or above LOD=3 in F2 

family mapping for (A) QTL1 and (B) QTL2  

A       B 
  QTL1       QTL2     

Location of associated SNPs on chromosome 5   Location of associated SNPs on chromosome 5 

above -
log10(p)=4 in 
GWAS  

  above LOD=3 
in family 
mapping 

  above -
log10(p)=4 in 
GWAS  

  above LOD=3 
in family 
mapping 

17,186,178   14,853,688   25,956,134   25,149,877 

17,187,071   16,105,691   25,963,073   25,802,730 

17,187,390   16,428,797   25,967,700   26,203,511 

    16,947,516   25,968,943   26,420,670 

    17,154,448   25,975,808   26,621,481 

    17,612,157   25,976,943     
    17,675,463        
    17,675,844         
    18,241,308         
    20,391,591         
    20,898,095         

 

The LD region in GWAS around the associated SNPs of QTL1 is 8 kb (Kim et al., 2007), 

which encompasses three genes according to TAIR10 (www.arabidopsis.org), which are 

At5g42860, At5g42870, and At5g42880. Of these three genes, only at5g42870 has a 

described gene function, encoding PHOSPHATIDIC PHOSPHOHYDROLASE 2 (PAH2). 

Haplotype analysis and mutant analysis was performed for PAH2 to prove its involvement 

in natural variation for photosynthesis efficiency, as described in the next paragraphs.  

The LD region in GWAS around the associated SNPs of QTL2 is 50 kb (Kim et al., 2007), 

which encompasses twenty genes according to TAIR10, ranging from At5g64855 until 

At5g65020. This association peak also arose after performing GWAS in a time-course 

manner (Chapter 3 of this thesis). In silico prioritization of these twenty candidate genes 
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based on gene ontology, gene co-expression, gene expression in the vegetative rosette, 

and the presence of segregating polymorphisms in the coding sequence followed by 

mutant analysis highlighted At5g65010, encoding ASPARGINE SYNTHETASE 2 (ASN2), 

as the best candidate underlying QTL2 (Chapter 3 of this thesis). Haplotype analysis and 

functional analysis was performed for ASN2 to prove its involvement in photosynthesis 

efficiency.  

Haplotype analysis 

Haplotype analysis among 173 re-sequenced accessions for the PAH2 gene resulted in 8 

different alleles with allele frequencies ≥ 4% (Fig. 2A). No clear difference in 

photosynthesis efficiency response to increased irradiance was discovered between 

these alleles (Fig. 2B). Sequence analysis revealed several polymorphisms were 

common among alleles 1, 2, 3, 5, and 6, indicated by the blue arrows in Fig. 2A. 

Additionally, alleles 7 and 8 showed sequence similarity (Fig. 2A). Allele 4 showed distinct 

from either of the other alleles, indicated by the red arrows in Fig. 2A. Grouping the 173 

re-sequenced accessions according to their PAH2 alleles based on this observation 

(PAH2-1,2,3,5,6 versus PAH2-7,8 versus PAH2-4) revealed higher photosynthesis 

efficiency in response to increased irradiance for accession with the PAH2-1,2,3,5,6 allele 

(Fig. 2C).  

Haplotype analysis among 173 re-sequenced accessions for ASN2 resulted in 7 different 

alleles with allele frequencies ≥ 4% (Fig. 2D), of which allele 2 resulted in significantly 

lower photosynthesis efficiency compared to the other alleles (Fig. 2E). In addition, also 

allele 4 has lower photosynthesis efficiency specifically at later time points (Fig. 2E). 

Close analysis of the sequences of alleles led to the hypothesis that the following two 

polymorphisms in ASN2 are associated to the observed photosynthesis differences: the 

guanine (G) of alleles 5, 6 and 7 (ASN2-5,6,7) in the fifth intron of the coding sequence 

(position 25,970,333 bp) led to relatively high photosynthesis efficiency; and the cytosine 

(C) of alleles 2 and 3 (ASN2-2,3) in the tenth exon of the coding sequence (position 

25,971,571 bp), leads to relatively low photosynthesis efficiency (Fig. 2D). We did not 

observe genotypes in which both polymorphisms were present together. Grouping the 

173 re-sequenced accessions according to their ASN2 alleles based on this observation 

(ASN2-1,4 versus ASN2-2,3 versus ASN2-5,6,7) revealed different photosynthesis 

efficiency in response to increased irradiance between accessions with the ASN2-2,3 

compared to accessions with the ASN2-5,6,7 allele (Fig. 2F). 
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Figure 2 (on next page). In silico analysis of 173 re-sequenced Arabidopsis accessions (1001 
genomes) 

(A) Eight most abundant alleles and frequency (%) for the PAH2 gene. Gene orientation is 3’ to 5’; 

two splice variants are indicated. SNPs differing from the Col-0 reference genome sequence (allele 

8) are marked. Polymorphisms indicative of possible association with natural variation in 

photosynthesis efficiency are marked in red and blue; (B) Average photosynthesis efficiencies (ФPSII) 

(±SE) of accessions grouped by the eight alleles of PAH2 before and after an increase in irradiance; 

(C) Median ФPSII one hour after increased irradiance of accessions grouped by the identity of the two 

SNPs that represent best the different alleles in the PAH2 gene (N=118 for PAH2-1,2,3,5,6; N=23 for 

PAH2-7,8; N=32 for PAH2-4). Box = 25th and 75th percentiles; bars = min and max values; letter over 

bar indicates significant differences between groups in T-test series; (D) Seven most abundant 

alleles and frequency (%) for the ASN2 gene. Gene orientation is 5’ to 3’; two splice variants are 

indicated. SNPs differing from the Col-0 reference genome sequence (allele 1) are marked. 

Polymorphisms associated with natural variation in photosynthesis efficiency are marked in red (E) 

Average photosynthesis efficiencies (ФPSII) (±SE) of accessions grouped by the seven alleles of 

ASN2 before and after an increase in irradiance. (F) Median ФPSII one hour after increased irradiance 

of accessions grouped by the identity of the two causative SNPs in the ASN2 gene (N=79 for ASN2-

1,4; N=27 for ASN2-2,3; N=67 for ASN2-5,6,7). Box = 25th and 75th percentiles; bars = min and max 

values; letter over bar indicates significant differences between groups in T-test series. 
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Epistasis 

Analysis of the effect of the different PAH2 and ASN2 alleles revealed that the variation at 

the PAH2 gene only affected photosynthesis efficiency in high light when ASN2-2,3 was 

present (Fig. 3A). Oppositely, the variation at the ASN2 gene only affected 

photosynthesis efficiency in high light when PAH2-4 was present (Fig. 3A). The same 

epistatic relation was observed in the F3 population arisen from five F2 plants grouped by 

their genotypes concerning the PAH2 and ASN2 alleles (Fig. 3B).  

 

 

 
Figure 3. Epistasis 
Median ФPSII one hour after increased irradiance of (A) the natural accessions; and (B) the F3-

families arisen from the F2 population, grouped by their genotypes concerning the PAH2 and ASN2 

alleles; Box = 25th and 75th percentiles; bars = min and max values; number over or under bar 

indicates statistical outliers; letter over bar indicates significant differences between groups in 

ANOVA.   
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Mutant analysis 

For both the PAH2 as the ASN2 gene T-DNA insertion knock-out mutants are available. 

These were studied to further investigate the involvement of PAH2 and ASN2 in 

photosynthesis efficiency. A knock-out of ASN2 in the Col-0 background (asn2-1) affected 

photosynthesis efficiency at the first two days after the increase in growth irradiance (Fig. 

4). A knock-out of PAH2 is expected to have no obvious phenotype as PAH2 is known to 

be redundant with PAH1, and both genes need to be mutated to disrupt their function 

(Eastmond et al., 2010). The double knock-out pah1pah2 did not affect photosynthesis 

efficiency on the first two days after increased growth irradiance, but after the third and 

fourth day it acclimated less than control (Fig. 4). The lines asn2-1 and pah1pah2 were 

crossed and the triple mutant asn2-1pah1pah2 was selected in its progeny using mutant 

specific markers. The triple mutant did not affect photosynthesis efficiency in any time 

point compared to Col-0 (Fig. 4). To confirm the effect of the different natural alleles 

identified in haplotype analysis, quantitative complementation was tried for the asn2-1 

mutant, but failed to identify ASN2 as causal for the identified QTL (Chapter 3 of this 

thesis).  

 

 
Figure 4. Mutant analysis of asn2-1, pah1pah2, and asn2-1pah1pah2. 

Representative photosynthetic (ФPSII) phenotypes for Arabidopsis Col-0, and the mutants asn2-1, 

pah1pah2, and asn2-1pah1pah2, grown for 24 days in 100 µmol m-2 s-1 growth irradiance and 

subsequently 6 days in 550 µmol m-2 s-1 growth irradiance, measured from day 23 (first day of 

measurement) until day 31, at four time-points per day; AV±SE . 
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Gene expression 

Gene expression of PAH2 and ASN2 in natural accessions as well as in T-DNA knock-out 

insertion lines was studied to provide evidence for the involvement of both genes as 

underlying the two QTLs found for photosynthesis efficiency, as well as to find an 

explanation for the epistatic interaction between these two QTLs. There is no difference in 

expression of ASN2 when comparing ASN2-567 vs ASN2-23 under LL, whereas ASN2-

567 is higher expressed than ASN2-23 under HL (Fig. 5A). Additionally, the presence of 

the PAH2-1,2,3,5,6 allele leads to down-regulation of ASN2 in response to increased 

irradiance (Fig. 5A). Expression of PAH1 nor PAH2 in response to increased irradiance 

could not be associated to any allelic combination (Fig 5B and 5C). 

In the double mutant pah1pah2, the expression response to increased irradiance of ASN2 

is similar as in Col-0 (Fig 6A). When ASN2 is no longer functional (in the asn2-1 mutant), 

the expression of PAH2 is increased in response to increased irradiance, whereas the 

expression of PAH1 is not (Fig 6B and 6C). In the double mutant pah1pah2, there is still 

some PAH1 expression implying pah1 is not a knock-out, but  a knock-down. In the triple 

mutant asn2-1pah1pah2, the expression response to increased irradiance of PAH1 is 

increased compared to Col-0 (Fig 6B).  
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Figure 5. Expression analysis of ASN2, PAH1, and PAH2 in natural Arabidopsis accessions  
Expression of (A) ASN2, (B) PAH1, and (C) PAH2 measured as relative expression to the averaged 

value of the housekeeping genes (± SE) by qRT-PCR three hours after excess irradiance induction 

(HL) as well as in control conditions (LL), in natural Arabidopsis accessions grouped by their 

genotypes concerning the PAH2 and ASN2 alleles. Expression was measured in four accessions 

randomly chosen per genotype (Baa-1, Ga-0, S96, Uk-1, and Got-7 to represent the genotype 

‘PAH2-1,2,3,5,6-ASN2-5,6,7’; Ra-0, Old-1, Yo-0, Faeb-4, and Broet1-6 to represent the genotype 

“PAH2-4- ASN2-5,6,7”; Fei-0, Kin-0, Ren-1, and Chat-1 to represent the genotype “PAH2-1,2,3,5,6- 

ASN2-2,3”; and Ts-1, LL-0, Com-1, and SLSP30 to represent the genotype  ‘PAH2-4- ASN2-2,3’; 

four biological replications were used per accessions, two plants were pooled per biological 

replication. The * indicates significant (P=0.05) difference between expression in high light conditions 

(HL) versus expression in control conditions (LL). 
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HL response affects membrane lipid remodelling 

PAH1 and PAH2 convert phosphatidic acid into di-acyl-glycerol (DAG), releasing 

orthophosphate as by-product (Eastmond et al., 2010). This is a small step in the 

complex physiological process of remodelling phospholipids to the galactolipids 

monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) 

(Nakamura et al., 2009). The lipid remodelling functions in releasing orthophosphate (Pi) 

from phospholipids to overcome phosphate starvation (Moellering and Benning, 2011), as 

well as to acclimate photosynthesis efficiency to excess light (Nilsson et al., 2011). PAH2 

and ASN2 were hypothesized to epistatically function in balancing the intracellular Pi 

concentrations.  

Gene expression of MGDG and DGDG synthase genes in the asn2-1 and pah1pah2 T-

DNA knock-out insertion lines was studied to test if ASN2 can take over the lipid 

remodelling function of PAH1/2 in providing balanced Pi concentrations. No effect of 

increased irradiance (HL) was observed after three hours on expression of the MGDG 

and DGDG synthase genes compared to control conditions (LL) in Col-0, nor in the single 

mutant asn2-1 or the double mutant pah1pah2 (Fig 6D, 6E, 6F, 6G, and 6H), while all 

tested MGDG and DGDG synthase genes were upregulated after three hours in response 

to increased irradiance in the triple mutant asn2-1pah1pah2 (Fig 6D, 6E, 6F, 6G, and 

6H). The absent induction of the MGDG and DGDG synthase genes in Col-0 implies that 

three hours after irradiance increase is too short to activate the process of lipid 

remodelling to release orthophosphate. The induction of the MGDG and DGDG synthase 

genes in the triple mutant is correlated with the induction of PAH1 in the triple mutant 

(Fig. 6B), implying PAH1 activates lipid remodelling within three hours after the irradiance 

increase only when both ASN2 and PAH2 are knocked-out, indicating the significance of 

the lipid remodelling process in acclimation to increase irradiance.  

To confirm the significance of lipid remodelling, lipid profiling in the asn2-1 and pah1pah2 

T-DNA knock-out insertion lines as well as in two natural accessions with contrasting 

ASN2 and PAH2 genotypes was performed. Additionally, it was still not clear if ASN2 

could take over the lipid remodelling function of PAH1/2. Four lipids were quantified, two 

of which are galactolipids (monogalactosyldiacylglycerol [MGDG] and 

digalactosyldiacylglycerol [DGDG]) and two are phospholipids (phosphatidylcholine [PC] 

and phosphatidylglycerol [PG]). The molar ratios (the share of one class of lipids in the 

total amount of lipids) of MGDG were similar in the double mutant pah1pah2 and the 

triple mutant asn2-1pah1pah2, both were lower than in Col-0 (Fig. 7A). This observation 



  

 
 

181 

confirms the lipid remodelling function of PAH1 and PAH2, and implies ASN2 cannot take 

over the lipid remodelling function of PAH1/2. The molar ratio of DGDG was similar in all 

genotypes measured (Fig. 7B), implying the effect of PAH1/2 on lipid remodelling does 

not affect DGDG synthesis. Of the phospholipids, the molar ratios of PC were similar in 

the double mutant pah1pah2 and the triple mutant asn2-1pah1pah2, both were higher 

than in Col-0 (Fig. 7A). The molar ratios of PG were similar in all genotypes measured. 

No differences were measured between Col-0 and the natural Arabidopsis accessions 

representing the ‘PAH2-1,2,3,5,6-ASN2-5,6,7’ and ‘PAH2-4-ASN2-2,3’ genotypes (Fig. 

7).  

 

Figure 6. Expression analysis of ASN2, PAH1, PAH2, MGD1, MGD2, MGD3, DGD1, and DGD2 
in Col-0,  asn2-1, pah1pah2, and asn2-1pah1pah2. 

Expression of (A) ASN2, (B) PAH1, (C) PAH2, (D) MGD1, (E) MGD2, (F) MGD3, (G) DGD1, (H) 

DGD2 measured as relative expression to the averaged value of the housekeeping genes (± SE) by 

qRT-PCR three hours after increased irradiance induction (HL) as well as in control conditions (LL), 

in Col-0, and in the T-DNA knock-out mutant lines asn2-1, pah1pah2, and asn2-1pah1pah2. The * 

indicates significant (P=0.05) difference between expression in high light conditions (HL) versus 

expression in control conditions (LL).  
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Figure 7. Molar ratios of major lipid classes in Arabidopsis mutants and in natural accessions 
grown for 33 days in 600 µmol m-2 s-1 growth irradiance. 

Molar ratio of (A) monogalactosyldiacylglycerol (MGDG); (B) digalactosyldiacylglycerol (DGDG); (C) 

phosphatidylcholine (PC); and (D) phosphatidylglycerol (PG) in whole rosettes of Arabidopsis Col-0, 

in the T-DNA knock-out mutant lines asn2-1, pah1pah2, and asn2-1pah1pah2, and in one natural 

accession representing the ‘PAH2-1,2,3,5,6-ASN2-5,6,7’ genotype and one natural accession 

representing the ‘PAH2-4-ASN2-2,3’ genotype, grown for 3 days in 600 µmol m-2 s-1 growth 

irradiance,  (AV ±SE; N=3) . Letter above bars indicate significant differences. 
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Geographic distribution 

In order to find any pattern of evolutionary adaptation, the coordinates of the GWAS 

accessions were mapped according to their genotypes concerning the PAH2 and ASN2 

alleles (Fig. 8). The geographical distribution of European GWAS accessions grouped by 

the identity of the ASN2 and PAH2 alleles shows an east-west gradient with the 

photosynthetically best performing combination of alleles ‘PAH2-1,2,3,5,6-ASN2-5,6,7’ 

(green) in  central and eastern Europe, the  two combinations of one positive and one 

negative photosynthetically performing allele ‘PAH2-4-ASN2-5,6,7’ and ‘PAH2-1,2,3,5,6-

ASN2-2,3’  (combined in one colour: yellow) are mainly found in France and Spain and 

the photosynthetically worst performing ‘PAH2-4-ASN2-2,3’ (red) found in France and 

Spain as well as in Britain (Fig. 9). 

 
Map data ©2014 Geobasis-DE/BKG (©2009), Google 

Figure 8. Geographic distribution. 

Geographic distribution of European GWAS accessions grouped by grouped by their genotypes 

concerning the PAH2 and ASN2 alleles: ‘PAH2-1,2,3,5,6-ASN2-567’ (green) and ‘PAH2-4-ASN2-2,3’  

(red), plus the two heterozygous alleles ‘PAH2-4-ASN2-567’ and ‘PAH2-1,2,3,5,6-ASN2-2,3’  

(combined in one colour: yellow).  
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DISCUSSION 

By combining GWAS and F2 family mapping, we identified two QTLs on chromosome 5, 

which have an epistatic interaction for photosynthesis efficiency response to increased 

irradiance. Using the high resolution of GWAS we identified the underlying genes 

ASPARAGINE SYNTHASE 2 (ASN2) and PHOSPHATIDIC ACID 

PHOSPHOHYDROLASE 2 (PAH2) as the best candidates associated to natural variation 

in photosynthesis efficiency response to increased irradiance.  

Epistatic interaction and allelic variation for PAH2 and ASN2 underlying two QTLs 

for photosynthesis response to increased irradiance 

In the GWAS, the association peak for PAH2  (QTL1) as well as the peak for ASN2 

(QTL2) came above our arbitrary threshold at one hour after the irradiance increase (Fig. 

1A), both were below the threshold at 3.5 hours after the irradiance increase (Fig. 1B), 

and both re-appeared in subsequent time-points (Fig. S2), revealing the QTLs depend on 

the environment. In the F2 family mapping, the QTL for ASN2 appeared within one hour 

after the irradiance increase and it was still present after 3.5 hours, whereas the QTL for 

PAH2 appeared only 3.5 hours after the increase in irradiance (Fig. 1C and 1D). Similar 

as in GWAS, also in the F2 family mapping the two QTLs re-appeared in subsequent 

time-points (Fig. S3), revealing ‘genotype x environment’ interaction (El-Soda et al., 

2014).  

Both for ASN2 and PAH2, haplotype analysis revealed three distinct alleles (Fig. 2). The 

PAH2-1,2,3,5,6 and the PAH2-4 alleles reveal distinct polymorphisms compared to the 

PAH2-7,8 allele (the Col-0 allele). The combination of the polymorphismics SNPs of the 

PAH2-1,2,3,5,6 allele and the polymorphisms of the PAH2-4 allele does not occur in the 

population. Similarly, the ASN2-5,6,7 and ASN2-2,3 alleles reveal distinct polymorphisms 

compared to the ASN2-1,4 allele (the Col-0 allele), and the combination of 

polymorphisms does not occur in the population. The fact that some combinations of 

polymorphisms do not occur suggests that two independent mutational events happened 

one after the other (Fig. 9). The combination of the PAH2-4 and ASN2-2,3 allele is 

photosynthetically unfavourable (Fig 2), probably leading their low frequency in the 

population (Fig 9). Many more polymorphisms are present in PAH2 than in ASN2, 

suggesting PAH2 is functionally less important than ASN2, as functionally less important 

loci evolve at a faster rate (Kimura and Ohta, 1974). The fact that there is another gene 

with similar function as PAH2, which is PAH1, supports this suggestion. 
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Figure 9. Overview of (A) PAH2 and (B) ASN2 alleles 

The occurrence in the population (N) and the effects on photosynthesis efficiency (ФPSII) of the alleles 

relative to each other are shown. 

The combination of GWAS mapping and F2 family mapping allowed the discovery of an 

epistatic relationship between the two loci covering the PAH2 and ASN2 genes (Fig. 3).  

The epistasis was more pronounced in the F2 population than in the GWAS population 

(Fig. 3), explained by the less allelic diversity of the two loci in the F2 population. In the 

F2 population both loci have two possible alleles (either parent A or parent B), whereas in 

the GWAS population there are at least three alleles per locus (Fig. 2). Epistasis limits the 

effect of genetic variation in one locus to the presence of a specific allele at another 

locus, reducing the amount of accessions to determine the effect size of the QTL, limiting 

the genetic signal. Additionally, when the two loci are on the same chromosome there is 

genetic linkage, lowering the recombination events between the two loci, distorting the 

distribution of  frequencies of allelic combinations of the two loci. Both these limitations 

contributes to epistasis often being seen as a limiting factor in performing GWAS, as it 

lowers the association of QTLs (Korte and Farlow, 2013). The epistatic effect results in 

the combination of two alleles (PAH2-4 and ASN2-2,3) that gives a less favourable 

photosynthesis efficiency, which indicates that although the other alleles function 

sufficiently to take over the effect of a less functional allele at the other locus, this is not 

the case when a less functional allele occurs at both loci, implying both genes function in 

a similar way in photosynthesis. 

PAH2 and ASN2 balance intracellular Pi concentrations for maintaining high 
photosynthesis efficiency  

PAH1 and PAH2, which act redundantly (Eastmond et al., 2010), are needed for 

remodelling phospholipids to galactolipids (Nakamura et al., 2009). The lipid remodelling 

functions in releasing orthophosphate (Pi) from phospholipids to overcome phosphate 

starvation (Moellering and Benning, 2011), as well as to acclimate photosynthesis 

efficiency to excess light. In photosynthesis, Pi is necessary for ATP synthesis, activation 
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of Rubisco, and for export of triose phosphate (Dietz and Foyer, 1986). Within the 

process of lipid remodelling PAH1 and PAH2 convert phosphatidic acid into di-acyl-

glycerol (DAG), releasing orthophosphate as by-product (Eastmond et al., 2010). DAG is 

the direct substrate for synthesis of monogalactosyl diacylglycerol (MGDG), MGDG being 

a substrate for the synthesis of digalactosyl diacylglycerol (DGDG). DGDG is important 

for the integrity of the chloroplast protein-import apparatus (Chen and Li, 1998), 

explaining the significance of the lipid remodelling process for keeping high 

photosynthetic efficiencies. However, MGDG but not DGDG molar ratios were affected in 

the asn2-1 and pah1pah2 mutants, suggesting not DGDG but another galactolipid is 

significant for the response to increased irradiance (Fig 7). It is suggested the MGDG is 

converted to the negatively charged sulfoquinvosyl diacyldiglycerol (SQDG), that creates 

a charge balance to the photosynthetic membranes that is overcharged as a result of the 

excess light (Chapter 4 of this thesis).  

ASN2 is one of three members of the small asparagine synthetase gene family in 

Arabidopsis (Lam et al., 1998), which converts the amino acid aspartic acid (Asp) to 

asparagine (Asn). Asn acts as an important nitrogen storage and transport compound in 

plants, particularly when carbon supplies are limited (Lam et al., 1998). The expression of 

ASN2 is absent in dark-adapted plants, and is induced after a switch from dark to light in 

an ammonium-dependent way (Lam et al., 1998; Wong et al., 2004). Oxidative stress 

following excess irradiance increases the cellular concentrations of ammonium by either 

increased rates of photorespiration or induced rates of proteolytic activity, breaking down 

oxidatively damaged proteins (Sweetlove et al., 2002; Foyer et al., 2003; Kumagai et al., 

2011; Bittsánszky et al., 2015). Genotypic variation for increased rates of ammonia 

emission in relation to photorespiration has been found in rice (Kumagai et al., 2011), but 

this relationship could not be found in Arabidopsis (Gaufichon et al., 2013). However, the 

proteolytic activity that results from oxidative stress does increase ammonia levels in 

Arabidopsis (Sweetlove et al., 2002). As excess ammonium is toxic to plants, the 

produced ammonium is normally immediately re-used for new organic and amino acid 

biosynthesis (Foyer et al., 2003). Ammonium levels were found to accumulate in high 

light irradiance in asn2-knock-out lines but not in Col-0 wild type, indicating that ASN2 is 

needed for proper removal of excess ammonium upon high light irradiance, either by 

degradation or by reallocation (Wong et al., 2004; Gaufichon et al., 2013). ASN2 is 

particularly known to play a role in the export of nitrogen from source organs to sink 

organs via the phloem (Gaufichon et al., 2013). Our study identifies genetic variation in 

the ASN2 gene to explain part of the natural variation for photosynthesis efficiency in 

response to increased irradiance, suggesting that balancing nitrogen metabolism is 
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closely associated to the efficiency of photosynthesis acclimation. We explain the 

significance of balancing nitrogen metabolism for keeping high photosynthetic efficiencies 

by the need of removing of excess ammonium levels that rise in source organs in 

response to oxidative stress (Britto and Kronzucker, 2002; Bittsánszky et al., 2015).  

ASN2 was found to have an epistatic interaction with PAH2 regarding its effect on 

photosynthesis efficiency. The ASN2 protein is an ATP-pyrophosphatase, which means 

its synthetase domain binds Mg2+-ATP and aspartate to catalyse the production of an β-

aspartyl-AMP intermediate and pyrophosphate (PPi), (Larsen et al., 1999). The β-

aspartyl-AMP intermediate is subsequently converted into asparagine via a chemical 

reaction with ammonia, and the PPi is hydrolysed into two orthophosphate (Pi) molecules 

(Larsen et al., 1999). Also PAH1 and PAH2 release Pi as by-product when converting 

phosphatidic acid into di-acyl-glycerol (DAG) (Eastmond et al., 2010).  We hypothesize 

the epistatic relation between ASN2 and PAH2 is explained by the fact that both genes 

catalyse reactions where Pi molecules are released as by-products. We suggest ASN2 

and PAH2 are redundant in their role of balancing intracellular Pi concentrations to 

maintain high photosynthesis efficiency in response to increased irradiance. The epistatic 

effect between ASN2 and PAH2 explains the unsuccessful quantitative complementation 

test to confirm the effect of the ASN2 natural alleles on photosynthesis efficiency 

(Chapter 3 of this thesis). The use of quantitative complementation is ambiguous because 

of the confounding effects of epistasis (Service, 2004; Turner, 2014). Transgenic 

complementation is needed to confirm to allelic effects of PAH2 and ASN2 on 

photosynthesis efficiency response to increased irradiance. 

PAH2 is known to be redundant to PAH1 (Eastmond et al., 2010). There is still some 

PAH1 expression in the double mutant pah1pah2, implying pah1 is not a knock-out, but a 

knock-down (Fig. 6B). In the triple mutant asn2-1pah1pah2, the expression response to 

increased irradiance of PAH1 is increased compared to Col-0 (Fig 6B). The induction of 

the MGDG and DGDG synthase genes in the triple mutant (Fig 6D, 6E, 6F, 6G, and 6H) 

is correlated with the induction of PAH1 in the triple mutant (Fig. 6B), implying PAH1 

activates lipid remodelling within three hours after the irradiance increase only when both 

ASN2 and PAH2 are knocked-out. This suggests PAH1 function is only needed when 

both PAH2 and ASN2 are knocked-out, confirming the redundant role of ASN2 and PAH2 

in acclimation to increased irradiance.  

Several observations lead to the conclusion that ASN2 acts earlier in the acclimation 

response to increased irradiance than does PAH2, i.e. the QTL for ASN2 appears earlier 
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in the F2 family mapping (Fig. 1), the knock out mutant asn2-1 mainly affects 

photosynthesis efficiency on the first two days after increase in irradiance whereas the 

double knock-out mutant pah1pah2 mainly affects photosynthesis efficiency on the last 

few days after increase in irradiance (Fig. 4), and the MGDG and DGDG synthase genes 

were not induced yet after 3 hours (Fig 6). The triple mutant asn2-1pah1pah2 does not 

affect photosynthesis efficiency compared to wild type Col-0 (Fig. 4), suggesting a third 

pathway for photosynthetic acclimation takes over when the first two are knocked out.  

Both the expression of ASN2 and PAH2 are not induced in expression after irradiance 

increase (Fig. 5), implying their individual effects are on translational or functional level. 

However, the epistatic relation between them is expression-based, as accessions that 

have PAH2-1,2,3,5,6 allele show reduced ASN2 expression three hours after increased 

irradiance (Fig. 5A), leading to the conclusion that PAH2 downregulates the expression of 

ASN2 when PAH2 gets functional after the irradiance increase by taking over the function 

of ASN2 in photosynthetic acclimation to increased irradiance. This expression-based 

relation is supported by the observation that PAH2 expression in response to irradiance 

increase is induced when ASN2 is knocked out (Fig. 6C), i.e. when one functional 

pathway is omitted another takes over. The fact that ASN2 expression is not induced to 

compensate when PAH2 is knocked-out, can explained by the fact that the pathway in 

which ASN2 acts functions earlier in time than the pathway in which PAH2 acts. We 

explain this by the fast rise of reactive oxygen species and subsequently ammonia, that 

has to be dissipated and transported to sink organs by ASN2 (producing Pi as side 

product). When the formation of reactive oxygen species are being prevented by 

subsequent metabolism such as formation of anthocyanins (Asada, 2006), the release of 

Pi needed for higher photosynthetic rates gets taken over by PAH2. PAH2 gets activated 

for the release of extra Pi, as well as for keeping the integrity of the photosynthetic 

membranes by providing galactolipids. 

Allelic effects on the epistatic interaction between PAH2 and ASN2  

We conclude the ASN2-5,6,7 allele, leading to relatively high photosynthesis efficiency 

acclimation (Fig. 2), is capable of providing enough Pi so that lipid remodelling by PAH2 

for extra Pi remobilization is not needed. The ASN2-1,4 allele (the Col-0 allele) is not 

capable of providing enough Pi so that lipid remodelling is needed, as seen in reduced 

conversion of phospholipids to galactolipids in the pah1pah2 double mutant where the 

ASN2-1,4 allele cannot take over the lipid remodelling function of mutant PAH2 (Fig. 7). 

The ASN2-2,3 allele is also not capable of providing enough Pi, as seen in apparent 
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effects of PAH2 allelic variation only when the ASN2-2,3 allele is present (Fig. 3). The 

observation of PAH2 allelic variation only being apparent when the ASN2-2,3 allele is 

present, suggests the ASN2-3 allele is less functional that the ASN2-1,4 allele Oppositely, 

the PAH2-1,2,3,5,6 allele, leading to relatively high photosynthesis efficiency acclimation 

(Fig. 2), provides enough Pi, leading to down-regulation of ASN2 (Fig. 5A). Both the 

PAH2-4 allele and the PAH2-7,8 allele (the Col-0 allele) do not show this effect, being 

less functional (Fig. 5A and Fig. 6A). The observation of ASN2 allelic variation only being 

apparent when the PAH2-4 allele is present, suggest the PAH2-4 allele is less functional 

than the PAH2-7,8 allele (the Col-0 allele).  

The European geographic distribution of natural accessions grouped according to the 

presence of the allelic combinations for ASN2 and PAH2, shows a longitudinal gradient 

with the photosynthetically best performing allelic combination (PAH2-1,2,3,5,6 and 

ASN2-5,6,7) found more in eastern Europe (Fig. 8). This is indicative of a selective force 

acting on photosynthesis regulation; future evolutionary ecological studies are necessary 

to find out what this force is. 

This study shows strong indications for the involvement of PAH2 and ASN2 in keeping 

high photosynthesis efficiencies in response to increased irradiance. Ultimate proof of the 

PAH2-1,2,3,5,6 allelic effects and the ASN2-5,6,7 allelic effects for increasing 

photosynthesis efficiencies should be gained by future transgenic complementation 

studies. 
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SUPPLEMENTARY TABLES AND FIGURES  

Table S1. Primers used for qRT-PCR 

Name Gene Forward Primer Reverse Primer 

ASN2 at5g65010 TTGCATCGACAACTCTCAAG CTCCAATCAGGACCTCTG 

PAH1 at3g09560 CCTGTTGCCACTTCTCCCTT TACAACCCGTTCTATGCCGG 

PAH2 at5g42870 CCATTCTTCAAAACCCCTTG AGGTCCGTTTCATCCATTTG 

MGD1 at4g31780 GTTTTGGGTGAGGAGGGATT CAGAAGCTCTGTGACCACCA 

MGD2 at5g20410 CCGTCATACCCATCATCACA CCGATCTGGATAAGCTCCAA 

MGD3 at2g11810 ATTAATGGGAGGGGGTGAAG GGCCGCATATGACAATCAA 

DGD1 at3g11670 TTCCTTCCTCCCTCTCCATT ATCTCTCTTGGGAAGCAGCA 

DGD2 at4g00550 CCTGGAGCTTCTGCTGTTCT GCTGCGACTCAAGAATACCC 

UBQ7 at2g35635 GCAGCGACACCATCGACAAT AGGTCCGGCCATCTTCCAAT 

CB5-E at5g53560 TTGCAGTGTCGCTGTGACCA TGATCATCCTGGAGGCGATG 
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Figure S1. Genetic map of F2 population 

The five chromosomes of Arabidopsis thaliana are shown from left to right.  
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Figure S2. Genetic mapping in the GWAS population with ФPSII values measured (A) before; 

(B) 6.5 hours; (C) 25 hours; (D) 28.5 hours; (E) 31.5 hours; (F) 49 hours; (G) 52.5 hours; and 

(H) 55.5 hours after the increase in growth irradiance.  
-log10(Pvalue) for 215,000 single nucleotide polymorphisms (SNPs) in a genome-wide association 

mapping panel of 344 natural accessions. The colours blue and pink distinguish the 5 chromosomes 

from left to right, the black dotted line represents a significance threshold arbitrarily set at -

log10(Pvalue)=4, the red dots are SNPS that are associated with the phenotype at -log10(Pvalue)≥4   
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Figure S3. Genetic mapping in the F2 

population with ФPSII values measured 
(A) before; (B) 6.5 hours; (C) 10.5 hours; 

(D) 25 hours; (E) 28.5 hours; (F) 31.5 
hours; (G) 35.5 hours; (H) 49 hours; (I) 

52.5 hours; (J) 55.5 hours; and (K) 59.5 
hours after the increase in growth 

irradiance.  
LOD scores of 384 SNPs are represented 

as a red line through each chromosome. 

The black dotted line represents a 

significance threshold set with a 

permutation test at LOD=3. 
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Chapter 6 
 
General Discussion 
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Photosynthesis efficiency variation under light stress 

Improving the efficiency of photosynthesis is a grand opportunity to increase food and 

climate security in a world with ever increasing population and rising CO2 levels (Zhu et 

al., 2010; Lawson et al., 2012; Long et al., 2015). Photosynthesis is the basis of all life on 

earth, it provides carbohydrates for plant growth, and through the edible plants indirectly 

also for animal and human growth. Additionally, it provides the oxygen to the air we all so 

desperately need to breathe, thereby using CO2 as a substrate, reducing the rising 

atmospheric CO2 concentrations.  

Photosynthesis is a complex process both on the physiological as well as the molecular 

level. Many possible targets have been identified to manipulate for increasing 

photosynthetic efficiency. These targets range from the canopy level to the level of 

enzymatic kinetic properties, and from light harvesting to CO2 conductances (Evans, 

2013). However, improving the maximum efficiency of light energy conversion seems 

surprisingly difficult (Zhu et al., 2008), resulting in the idea that plant photosynthesis has 

been optimized during evolution (Leister, 2012). This thesis negates this idea, as it 

reveals several genetic targets for direct improvement of light use efficiency of 

photosystem II (ФPSII). 

The success of manipulations for enhancing photosynthetic efficiency depends on the 

environmental conditions in which it is measured. In the laboratory, photosynthesis is 

usually measured in stable environmental conditions, i.e. the plant has completely 

acclimated to its environment. In nature, environments are more dynamic due to the daily 

moving of the sun and clouds, as well as seasonal temperature changes. Extensive 

regulation is known for photosynthetic responses to such environmental fluctuations 

(Walters, 2005; Minagawa, 2013; Dietz, 2015). In this thesis, a broader phenotypic 

distribution for photosynthesis efficiency was found among Arabidopsis accessions under 

light stress, as opposed to stable conditions (Chapter 2). However, the light stress effect 

on photosynthesis efficiency did not influence the heritability of the trait (Chapter 2), and 

QTLs could be found for photosynthesis efficiency both in low light conditions as well as 

in stressful high light conditions, although the number of quantitative trait loci (QTLs) 

increased after the onset of light stress (Chapter 3). The increase in phenotypic variation 

could have different biological reasons, first of which is that every accession has adapted 

its genome to the dynamic growth environment it was growing in the field, leading to more 

variation for responses to fluctuating environmental conditions as opposed to stable 

laboratory conditions. Furthermore, a step-wise increase in irradiance moves the leaf 
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from light limitation to light saturation, which is known to provoke regulatory physiological 

responses. The extra regulatory mechanisms are an additional source for potential 

variation. Plant photosynthesis has originated in a marine ecosystem lacking light and 

oxygen (Ting et al., 2002). Only when plants colonized land, they needed to evolve 

mechanisms to use and protect the photosynthesis system from damage by high light 

(Alboresi et al., 2010). As a result, less variation exists among land pants for 

photosynthetic functioning in low light, as opposed to high light, possibly explaining the 

observations on genetic variation. An additional explanation is the lack of genetic 

information of chloroplast genomes among the genotype data used in the genome-wide 

association studies (GWAS) approach, although the extent of natural variation in 

chloroplast genes is still unknown. Many genes encoding the structural components of 

the photosystems and light harvesting complexes are on the chloroplast genome, 

whereas the regulatory genes for photosynthetic responses are mainly encoded on the 

nuclear genome (Berry et al., 2013).  

 

The use of natural variation to uncover the genetics of photosynthesis 

Traditional plant breeding strategies depend on the existence of natural genetic variation 

for any trait of interest, which is exploited by intercrossing available germplasm, which 

can include wild relatives. Photosynthesis efficiency is a phenotypic trait not yet bred for 

specifically, mainly because it is difficult to measure and because of its genetic 

complexity. Before the start of the project of which the results are described in this thesis, 

significant efforts have been made to develop a high-throughput phenotyper for 

photosynthesis efficiency (Harbinson et al., 2012), solving the phenotyping issue. This 

photosynthesis phenotyper exists of a camera moving over a platform of growing plants, 

imaging the plants top view. Because it is a non-destructive measurement, plants can 

repeatedly be measured throughout the experiment, allowing the construction of time 

courses through development (Flood et al., 2016) or through a stress response (Chapter 

3). 

The identification of the true genes causal for a quantitative phenotypic trait such as 

photosynthesis efficiency, to potentially use for introducing beneficial new alleles crossing 

into commercial varieties, remains a difficult task. Entire germplasms could be screened 

for the presence of favourable alleles for a trait of interest by the use of marker assisted 

selection. For genetically complex traits, such as plant photosynthesis, it is difficult to 

select the underlying genes with the beneficial alleles because the phenotypic effect of 
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variations in sequence of a candidate gene are usually very small as one gene plays only 

a small part in the entire process (small effect size). Natural genetic variation for the 

major regulators of a process is uncommon, as their big effect size causes selection on 

these loci, resulting in the presence of only one allele in the population. Genetic mapping 

studies try to find associations between the phenotypes of interest and genetic loci 

(Quantitative Trait Loci, QTLs) throughout the entire genome. These studies usually 

reveal multiple QTLs per mapping experiment, reflecting the genetic variation present for 

the process that is studied. The underlying causal genes can be identified by 

mutagenesis and overexpression studies. Different mapping strategies have been 

developed over the years, using populations with different genetic layouts. These 

strategies range from family mapping in the progeny of a cross between two accessions 

(F2 or RIL populations), to a more genetically complex situation in the progeny of a cross 

between multiple accessions (Ampril population or Magic population), to an even more 

complex genetics  in a population of natural accessions (GWAS population), (Kover et al., 

2009; Atwell et al., 2010; Bergelson and Roux, 2010; Huang et al., 2011; Keurentjes et 

al., 2011). Chapter 5 of this thesis shows that the combination of family mapping 

(crossing two accessions and genetically and phenotypically analysing the offspring of 

this cross) and GWAS mapping (exploiting multiple alleles and thousands of years of 

recombination events) allowed the discovery and explanation of an epistatic relationship 

between two loci (Chapter 5). Epistasis is often seen as a limiting factor in performing 

genetic mapping, as it lowers the association of QTLs (Korte and Farlow, 2013). 

Combining the two mapping approaches overcomes this problem, helping to dissect the 

genetic complexity of a trait with many different and connecting parts, such as 

photosynthesis efficiency. 

In order to proceed from the QTL to the underlying causal gene, it is essential to know if 

the observed phenotypic differences are caused by expression differences in the causal 

gene or by structural differences in the encoded protein. Genome-wide transcriptomic 

analysis complements the mapping analysis in this (Chapter 4). Not much overlap was 

found between the QTLs found in the mapping study (Chapter 3) and the genes 

responsive to increased irradiance found in transcriptomic analysis (Chapter 4). However, 

they did point to candidates functioning in similar physiological pathways. The YELLOW 

SEEDING 1 (YS1) gene found in Chapter 3 acts in anterograde signalling between the 

nucleus and the chloroplast, regulating expression of chloroplast encoded genes. RNA 

metabolism and signalling between the nucleus and chloroplast was found as biological 

process to which many responsive genes to increased irrdiance belong (Chapter 4). 

Additionally, many genes acting in the lipid remodelling process were upregulated by this 
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treatment (Chapter 4), to which also the gene encoding for phosphatidic acid hydrolase 

(PAH2), found to act epistatically to the gene encoding for asparagine synthetase 

(ASN2), (Chapter 5), belongs. None of the three genes that we characterized as genes 

underlying natural variation for photosynthesis response to increased growth irradiance 

(YS1, ASN2, PAH2), were found to be transcriptionally responsive to the irradiance 

increase themselves. However, finding enrichment of the same biological processes for 

these three genes in  transcriptomics suggests the complementarity of  the two 

approaches, which can be explained by the fact that associated polymorphisms in 

mapping studies are linked to underlying genes in the LD region, whereas transcriptional 

variation for a gene can be caused either in cis or in trans. Transcriptional variation 

caused in trans would not be uncovered in mapping studies, which apparently is the case 

for the photosynthetic regulatory genes. A proper confirmation study on this would be to 

do expression QTL (eQTL) mapping (Gibson and Weir, 2005; Gilad et al., 2008). 

 

The journey from QTL to QTN 

The huge advantage of GWAS over other mapping approaches is its high resolution as 

only few candidate genes underlie a QTL because of the small region of linkage 

disequilibrium (LD), (Korte and Farlow, 2013). In most of the published GWAS, the best 

associated single nucleotide polymorphism (SNP) from the dataset is not the causal SNP, 

however it does associate with the causal SNP through the LD. It is challenging to find 

the causal SNPs, as the SNPs in GWAS datasets are chosen because both of their 

alleles are common, and so cannot be in complete LD with a causal SNP driven to low 

frequency by selection (Wray et al., 2013), frequently referred to as hidden or missing 

heritability (Gibson, 2010; Brachi et al., 2011; Zuk et al., 2014). Whole genome re-

sequence data for Arabidopsis (Weigel and Mott, 2009) solves this problem as it allows 

analysis of LD between the rare variant SNPs (absent in GWAS datasets) and the 

associated SNPs arisen from GWAS (Service et al., 2014), as seen in Chapter 3 and 

Chapter 5.  

In quantitative genetics, different prioritizing methods for gene candidate lists have been 

developed (Huang et al., 2009; Feltus, 2014). A pathway-based expression set analysis is 

a way to examine for each candidate gene whether it is co-expressed with genes in the 

same functional pathway (Wang et al., 2007; Wang et al., 2010). In addition for each 

candidate gene it can be checked if the expression is mapped to the developmental stage 

and part of the plant under study (Schmid et al., 2005). Gene function prediction is a 
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method to determine the functional relation for each candidate gene by examining the 

gene ontology terms (Ashburner et al., 2000; Bargsten et al., 2014). All these approaches 

have their limitations, i.e. LD is calculated in a pre-determined group of re-sequenced 

accessions; transcriptomics is studied on certain time points/conditions; sequencing is 

done on a limited number of accessions. Therefore, even when a gene is causal in 

GWAS, it will never comply to all the selection criteria described above. However, the 

selective power of the different approaches can be improved by adding them together 

and prioritize the gene candidates by counting the number of selection approaches the 

candidate gene does comply to, as achieved in Chapter 3 of this thesis.  

The use of T-DNA insertion lines to knock-out candidate genes is widely used in 

Arabidopsis to analyse gene functions (Alonso and Ecker, 2006). Its use in quantitative 

genetics is valuable to confirm the involvement of the gene candidate in the trait of study 

(Verslues et al., 2014). However, its use is not undisputed as there are limitations to its 

effectiveness (Wang, 2008), mainly because screening a large library of T-DNA 

homozygous lines for phenotypes of interest limits the researchers to only find effective 

knockouts of genes that have no redundancy and/or epistasis in the genome of the 

reference accession Columbia (Col), as most knock-outs are in the Col background. 

The use of quantitative complementation is ambiguous because of the confounding 

effects of epistasis (Service, 2004; Turner, 2014). However, it has been applied 

successfully in Arabidopsis (Motte et al., 2014; Sanchez-Bermejo et al., 2014). Because 

of these confounding effects of epistasis, it is difficult to conclude if the absence of a 

successful complementation test is because the alleles are not causal, or because there 

is an epistatic effect (as for the ASN2 gene in Chapter 3 and Chapter 5). However, as 

argued by (Turner, 2014), this problem can be surmounted by producing knock-outs in 

the accession under study instead of in Columbia-0 background. By using artificial micro 

RNAs (amiRNAs), we can reach this goal by knocking out the gene of interest in any 

genomic background (Weigel, 2012). In addition to amiRNAs, the CRISPR-Cas 

technological breakthrough in genomic manipulation facilitates the exact reproduction of 

natural alleles of a causal gene in different genomic backgrounds (Cong et al., 2013). 

Additionally, besides strengthening the quantitative complementation test, the CRISPR-

Cas technology will also surmount the limitations of T-DNA insertion lines (mutation 

possible in different background breaking redundant/epistatic effects, multiple insertions 

in one genome, incomplete knockout, etc), (Voytas, 2013; Xing et al., 2014; Kumar and 

Jain, 2015). 
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The role of anterograde signalling in photosynthetic response to excess light 

All the changes during photosynthetic acclimation are the result of signal-induced 

changes in gene expression, in a tight co-ordinated regulation between nuclear and 

chloroplast genes. This co-ordinated regulation is termed anterograde signalling in cases 

where nuclear signalling affects chloroplast gene expression and retrograde signalling in 

cases where chloroplast signalling affects nuclear gene expression. The anterograde 

signals are coming from trans-acting regulatory factors determining when and where in 

the chloroplast gene activation occurs. There are many distinct types and classes of 

trans-acting factors, ranging from nuclear factors interacting with light responsive gene 

promoters (such as the YS1 promoter, Chapter 3), to nuclear encoded transcription 

factors controlling transcription of plastid encoded genes, and nuclear encoded proteins 

involved in post-transcriptional modification of chloroplast transcribed RNAs, such as the 

pentatrico-repeat (PPR) protein family to which YS1 belongs. For chloroplast encoded 

photosynthesis genes, post-transcriptional regulation is the major regulatory mechanisms 

that determines the timing and location of expression (Berry et al., 2013). A very large 

number of nuclear-encoded RNA-binding proteins are present in plastids (Berry et al., 

2013), and some of these are found to be responsive to light irradiance increase (Chapter 

4). Several types of plastid-targeted RNA-binding proteins exist in plants, of which the 

class of PPR proteins is most enriched: the Arabidopsis genome encodes ~450 of them 

(Berry et al., 2013). PPR proteins are defined by the presence of a 35-amino-acid motif 

repeated in tandem up to 30 times (Schmitz-Linneweber and Small, 2008). They are 

separated into two major classes, the P- and PLS-class, based on the nature of their PPR 

motifs. The PLS-class is separated into two smaller subclasses, the E- and DYW-

subclass, based on the presence of characteristic C-terminal motifs (Schmitz-Linneweber 

and Small, 2008). PPR proteins function in RNA translation, RNA editing, RNA splicing, 

and RNA stability of chloroplast and mitochondrial encoded genes (Schmitz-Linneweber 

and Small, 2008). 

The chloroplast genome includes around 100 genes, the expression of which is essential 

for chloroplast development and photosynthetic functioning. Two types of RNA 

polymerases transcribe these genes: the nuclear-encoded polymerase (NEP) and the 

plastid-encoded polymerase (PEP). NEP transcribes the chloroplast housekeeping 

genes, whereas PEP transcribes the photosynthesis genes. PEP has a catalytic core 

consisting of RpoA, RpoB, RpoC1 and RpoC2, all encoded for by the chloroplast 
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genome. Additionally to the core, PEP associates with variable signalling factors 

determining its promoter specificity. These are known as sigma factors, and are all 

encoded by the nuclear genome (Hanaoka et al., 2003). The YS1 gene encoding a PPR 

protein with a DYW motif is such a sigma factor, editing the RpoB transcript in the 

chloroplast, indirectly affecting transcription of chloroplast encoded photosynthesis genes 

and, remarkably, many chloroplast transfer-RNAs (tRNAs), (Zhou et al., 2009; Kindgren 

et al., 2012). The significance of PEP-transcribed tRNAs for photosynthetic functioning 

has been noted before, but remains elusive to date (Williams-Carrier et al., 2014).  

High light induced photosynthetic activity has a strong effect on PEP-dependent plastid 

gene expression, generating a retrograde signal from the chloroplast to the nucleus 

(Kindgren et al., 2012). In response to increased irradiance, the plant thus can 

synchronize the expression of nuclear- and chloroplast-encoded photosynthetic via PEP, 

necessary to acclimate to environmental fluctuations. The identification of the YS1 gene 

in this thesis as a genetic factor causing differences in photosynthetic efficiency (Chapter 

3) and the finding of many RNA associated genes up-regulated in response to light 

increase of which some associated with photosynthetic efficiency (Chapter 4), reveals the 

significance of this regulatory mechanism in nature. 

 

The role of internal phosphate levels in photosynthetic acclimation to excess light 

In photosynthesis, orthophosphate (Pi) is necessary for ATP synthesis, activation of 

Rubisco, and for export of triose phosphate (Dietz and Foyer, 1986). As a consequence, 

P-starved leaves have low photosynthetic rates per unit leaf area, and high P-levels are 

needed for high photosynthetic rates. Increased rates of photosynthesis need a balance 

between the concentration of free Pi and phosphorylated intermediates (Stitt et al., 2010). 

When the release of Pi and the regeneration of ATP and NADPH lag behind the capture 

of light energy, i.e. in the case of excess irradiance, the imbalance leads to enhanced 

overreduction of the photosystems (Nilsson et al., 2011). 

The internal Pi levels are regulated by the uptake of phosphate by the roots, as well as by 

internal mobilisation through (de)phosphorylation of internal structures (Abel et al., 2002). 

Pi is one of the least mobile macronutrients in the soil, due to precipitation with metal ions 

and binding to soil particles. As a result, high photosynthetic P-use efficiency in response 

to increased irradiance is gained from remobilizing Pi from internal structures, as shown 

in Chapters 4 and 5 of this thesis. This thesis shows that a major process for releasing Pi 
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to meet the increased photosynthetic rates in response to excess light, is the remodelling 

of chloroplast and cellular membranes, where phospholipids get converted to 

galactolipids (Chapters 4 and 5). An additional process working epistatically with the lipid 

remodelling is the removal of excess ammonium, thereby releasing Pi as a side product 

(Chapter 5). Different processes acting in concert to balance internal Pi levels, associated 

with different photosynthetic efficiencies in response to excess light, reveals the 

significance of this regulatory mechanism in nature.  

 

Future prospective  

Within biological research more and more focus is put on identifying genes, because with 

the genes in hand society believes we can not only improve crop production, but also 

animal and human health. This thesis contributes in finding genes underlying natural 

variation in photosynthesis efficiency in Arabidopsis thaliana, the genetic model organism 

for plants. As a model organism, Arabidopsis is significant for improving crop production, 

because it can act as an example for identifying molecular and physiological pathways 

that could potentially be modified in crops for their improvement. Understanding natural 

genetic variation in Arabidopsis is most interesting for breeding, as those genes are likely 

to be variable also in the germplasm of crops. Next step would now be to screen the 

germplasm of commercial crops for the presence of beneficial alleles of the genes causal 

for natural variation in photosynthesis efficiency response to increased growth irradiance 

identified in this thesis, by the use of marker assisted selection. Subsequent crossing of 

these beneficial alleles into commercial lines will allow analysis of its effect on 

photosynthesis in crops, as well as crop yield.  

Additionally to improving photosynthesis efficiency, and ultimately crop yield, this thesis 

serves as an example for the dissection of complex genetics. Photosynthesis is a multi-

step process for which many genes work together. This thesis shows also that the 

regulation of photosynthesis to light stress consists of many physiological and molecular 

pathways. This was already known, though at the genetic level, this thesis contributes to 

new insights. The combined use of GWAS, family mapping, and transcriptomics has 

helped in getting these results. These three approaches together yield huge and very rich 

datasets to analyse for a biologist, a task that a PhD student cannot completely fulfil 

within the provided time; the datasets provided in this thesis are still full with information 

not analysed in detail. Anyhow, I have shown the possibility of dissecting part of this 

complexity by a well-structured and targeted approach. 
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Summary 
 

The efficiency of photosynthesis results from the composition and organization of the 

plant’s internal structural components as well as the capability of response to 

environmental fluctuations. This thesis aims at identifying the genetic loci that are 

regulating the (sub-) processes in photosynthetic acclimation to increased irradiance 

levels, in order to obtain the genetic information useful to breed for photosynthetic 

performance. It uses genome wide association studies (GWAS) to reveal which genetic 

loci are being exploited in nature for keeping good photosynthetic performances in natural 

conditions. Phenotypic variation among natural accessions in photosynthetic light use 

efficiency response to increased growth irradiance is related to its variation in genetics in 

order to identify the associated genetic loci. In Chapter 2 is described which light 

environment reveals most natural variation in photosynthetic performance and for which 

photosynthetic parameter this is. It shows different Arabidopsis accessions display 

different photosynthetic responses to various light environments, well relatable to genetic 

differences. A candidate gene list for the direct response to increased growth irradiance 

was revealed after performing genome wide association analysis. Chapter 3 elaborates 

on the genome wide association results by visualizing the dynamics of the associated 

genetic loci over the time course of the photosynthetic response to increased irradiance. 

It shows it is possible to simplify the complexity of photosynthetic physiology as well as 

the genetic analysis in such way to confirm the causal genes underlying the associated 

loci, by confirming this for the YELLOW SEEDLING 1 (YS1) gene, a gene encoding a 

Pentatrico-Peptide-Repeat (PPR) protein involved in RNA editing of plastid-encoded 

genes essential for photosystems I and II. Genetic variation for any trait can be on the 

transcriptional level or on the functional level. In Chapter 4, the gene regulation in three 

Arabidopsis accessions with contrasting photosynthesis efficiency responses to increased 

irradiance is studied. These differences in photosynthesis efficiency are associated to 

differences in activation extents of heat responsive genes as well as to differences in the 

presence of a gene activation pathway acting on membrane lipid remodelling, suggested 

to maintain balanced cellular phosphate concentrations. Chapter 5 confirms the 

significance of maintaining balanced cellular phosphate concentrations for photosynthesis 

efficiency responses to increased irradiance. It describes how genome wide association 

mapping and linkage mapping combine to reveal genetic epistatic interactions between 

PHOSPHATIDIC ACID PHOPSPHOHYDROLASE 2  (PAH2, phosphate metabolism 

gene) and ASPARAGINE SYNTHETASE 2 (ASN2, nitrogen metabolism gene), both 
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acting in the delivery of orthophosphate in the chloroplast. In conclusion this thesis 

contributes new insights into the physiological and molecular pathways underlying 

photosynthesis responses to increased growth irradiances.  
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Samenvatting 
 

De efficiëntie van fotosynthese is het gevolg van de compositie en organisatie van de 

interne structurele onderdelen van de plant, als wel het reactievermogen van de plant op 

veranderingen in omgevingsomstandigheden. Dit proefschrift heeft als doel genetische 

loci te identificeren die de (sub-) processen voor het acclimatiseren van fotosynthese in 

reactie op verhoogde licht intensiteit reguleren, ten einde deze verkregen genetische 

informatie te gebruiken voor het veredelen van fotosynthese prestaties binnen gewassen. 

Het onderzoek maakt gebruik van zogeheten genoom-wijde associatie studies (GWAS) 

om de genetische loci te onthullen die door de natuur binnen een soort variabel 

gehouden worden voor het ten alle tijde behouden van goede fotosynthese prestaties in 

afwisselende natuurlijke omgevingsomstandigheden. Fenotypische variatie tussen 

natuurlijke accessies (dezelfde soort planten afkomstig uit, en dus aangepast aan, een 

ander ecosysteem) in de reactie van fotosynthese efficiëntie op verhoogde licht intensiteit 

is voor dit onderzoek gerelateerd aan de genetisch variatie tussen deze accessies ten 

einde de geassocieerde genetische loci te identificeren. In hoofdstuk 2 wordt beschreven 

welke lichtomstandigheden de meeste waar te nemen variatie in fotosynthese efficiëntie 

onthullen en voor welke specifieke fotosynthese parameter dit is. Het laat verschillend 

reactievermogen met betrekking tot fotosynthese efficiëntie zien voor verschillende 

accessies van Arabidopsis thaliana, en laat zien dat deze verschillen goed te relateren 

zijn aan genetische variatie tussen deze accessies. Na het uitvoeren van GWAS, wordt 

een lijst met kandidaatgenen die verantwoordelijk kunnen zijn voor het initiële 

reactievermogen op verhoogde lichtintensiteit gegeven. In hoofdstuk 3 wordt verder 

ingegaan op de resultaten van de GWAS door de dynamica van geassocieerde 

genetische loci te analyseren tijdens een tijdsspanne waarin fotosynthese acclimatiseert 

aan de verhoogde lichtintensiteit. Het laat zien dat het mogelijk is om de fysiologische en 

genetische complexiteit van fotosynthese te simplificeren wat leidt tot het identificeren 

van de genen onderliggende de geassocieerde genetische loci. Dit is bevestigd voor het 

YELLOW SEEDLING 1 (YS1) gen, een gen wat codeert voor een Pentatrico-Peptide-

Repeat (PPR) eiwit betrokken bij het aanpassen van het RNA afkomstig van genen 

gecodeerd op het chloroplast DNA die essentieel zijn voor het functioneren van 

fotosysteem I en II. Genetische variatie voor iedere eigenschap kan voorkomen op het 

gebied van gen expressie of op het gebied van functionele eigenschappen van het 

gecodeerde eiwit. In hoofdstuk 4 wordt de gen expressie regulatie bestudeerd van drie 

Arabidopsis accessies met contrasterende reactievermogens betreffende fotosynthese 
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efficiëntie op verhoogde lichtintensiteit. De verschillen in reactievermogen betreffende 

fotosynthese efficiëntie worden geassocieerd met verschillen in activatie van genen 

betrokken bij reactie op hitte, als wel met verschillen in het aanwezig zijn van een gen 

activatie reactieroute leidende tot het her-modelleren van membraan lipiden, wat wordt 

gesuggereerd belangrijk te zijn voor het behouden van gebalanceerde cellulaire fosfaat 

concentraties. Hoofdstuk 5 bevestigd het belang van het behouden van gebalanceerde 

cellulaire fosfaat concentraties voor de reactie van fotosynthese efficiëntie op verhoogde 

lichtintensiteit. Het beschrijft hoe een genoom-wijde associatie studie in natuurlijke 

accessies en een gen karteringsstudie in genetisch uitsplitsende nakomelingen uit een 

kruising tussen twee accessies elkaar aanvullen in het onthullen van een genetische 

epistatische interactie tussen het gen PHOSPHATIDIC ACID PHOPSPHOHYDROLASE 

2 (PAH2, een gen betrokken bij fosfaat metabolisme) en het gen ASPARAGINE 

SYNTHETASE 2 (ASN2, een gen betrokken bij nitraat metabolisme), beide handelend in 

het vrijmaken van orthofosfaat in de chloroplast. In conclusie draagt dit proefschrift bij aan 

nieuwe inzichten in de mogelijke fysiologische en moleculaire routes voor de reactie van 

fotosynthese efficiëntie op verhoogde lichtintensiteit. 
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