

Trends in extreme weather impacts: attribution relevant to the Loss & Damage Mechanism

Laurens Bouwer and Reinhard Mechler

10 May 2016, Adaptation Futures, Rotterdam

Introduction

- Uncertainty in damage and loss estimates
- · Analysis of historic losses: attribution
- · Projections
- · Role of vulnerability

Deltares

Loss and damage: what do we mean?

Loss and Damage definition (James et al. 2015 NCC):

- Residual damages (after adaptation)
- Actual and potential (risk)
- · Current impacts and future projections
- Human induced climate change
- Uncertainties in attribution larger for extremes than impacts from slow onset processes
- Vulnerability to which types of extremes? And relation to anthropogenic climate change

Deltares

12 mei 2016

3

Domain of natural hazard risk assessment

- Focus on extreme (rare, high impact) events
- Loss and damage may also cover slow onset processes that lead to losses and damages
- · Traditionally dominated by engineering and economic sciences
- Strong role for statistics and probability theory
- Damage: to physical assets
- Loss: defined as loss of assets, or human lives
- Economic loss: monetised loss (often emphasis on physical assets)

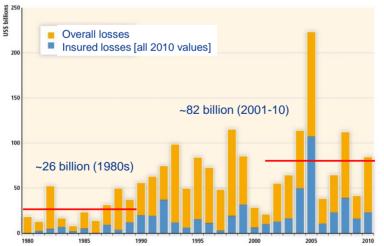
Deltares

12 mei 2016

Disaster loss databases

Global databases of economic losses from natural hazards are:

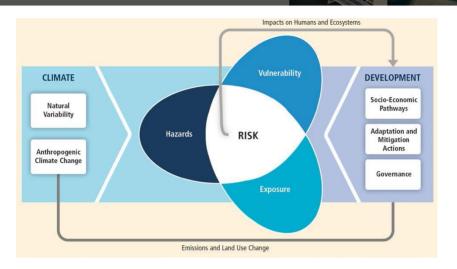
- Fragmented:
 - Developing countries severely underrepresented (insurance)
- Incomplete:
 - · Not all hazards included droughts typically underrepresented
- · Biased:
 - More recent events better covered than events before ~1980
- Uncertain:
 - There is no common reporting convention on which losses should be included (private, public, direct or indirect)


Deltares

12 mei 2016

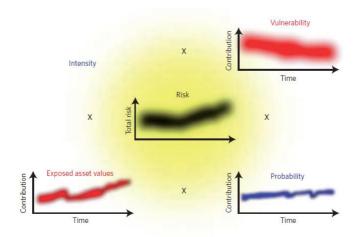
5

IPCC SREX: Large weather-related catastrophes



Source: Munich Re GeoRisks Research, August 2011

Deltares


Risk = f(hazard, exposure, vulnerability)

_____ Deltares

Risk: changing hazard, exposure, vulnerability

12 mei 2016

Huggel et al. 2013 NCC

12 mei 2016

Deltares

No upward trend after normalising for exposure

Number of studies	No loss trend	Loss increase	Loss increase due to human induced climate change	
Wildfire	1	0	0	
Storm	6	2	?	
River floods	3	2	?	
Tornado, thunderstorm, hail	2	2	?	
Various weather	3	0	0	
Total	15	6	?	

(from Bouwer 2011 BAMS)

12 mei 2016 9 Deltares

Conclusions from IPCC

IPCC SREX (2012):

"Increasing <u>exposure</u> of people and economic assets has been the <u>major cause</u> of long-term increases in economic losses from weather- and climate-related disasters (high confidence)."

Long-term trends in disaster losses adjusted for wealth and population increases <u>have not been attributed to climate change</u> (...)"

IPCC AR5 WG2 Chapter 18 (2014):

"(E)xtreme events have caused increasing impacts and economic losses, but there is only <u>low confidence in attribution</u> to climate change for these"

New research:

- Evidence for reductions in vulnerability for flood (Mechler & Bouwer 2015)
- Sub-proportional behaviour of exposure for cyclones (Estrada et al. 2015; Geiger et al. EGU 2016)

Deltares

12 mei 2016

Projections of future risks

Wide variety of studies, very few that take a risk analysis approach

Reviews (Bouwer 2013 RA; IPCC AR5 WG2 Chapter 10)

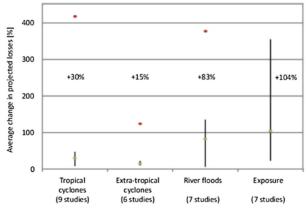
Projected trend is upward, due to anthropogenic climate change

Many different hazards, including:

- Tropical cyclones
- Extra-tropical cyclones
- · River/pluvial flooding
- Hailstorm

12 mei 2016

- 11



Role of projected exposure

Future events:

Exposure is expected to be relatively large (Bouwer 2013 RA)

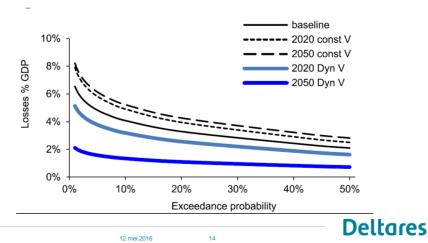
12 mei 2016

12

Role of historic vulnerability

Historic events (Bangladesh):

- Mechler & Bouwer 2015 CC


 | Poppor | 1.0
- IAHS Panta Rhei WG: comparison of impacts from historic flood events: role of drivers including hazard, exposure and vulnerability

Deltares

Role of projected vulnerability

 Vulnerability decline will downscale future risks (Mechler & Bouwer 2015 CC):

7

Some conclusions

- Using impact models it is possible to asses (economic) impacts from (changes in) extreme weather events, including risk potentials
- Very little/no evidence for increasing economic losses from extreme weather due to anthropogenic climate change
- This is the case for many hazard types, including river floods, and tropical and extra-tropical cyclones
- · Role of vulnerability changes still poorly understood
- Expected changes in exposure and vulnerability are very large, but still difficult to project
- Scope of Loss & Damage will need to consider the non-climatic dimension of future climate risks

ח		Iŀ		re	C
U	C	ιι	u		

12 mei 2016