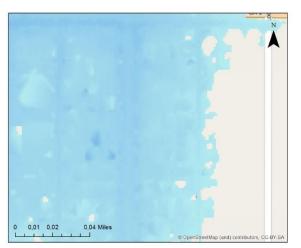
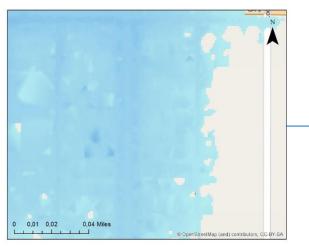
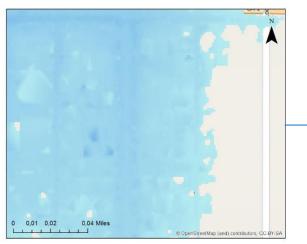
Economic Evaluation of Flood Adaptation Strategies


A case study of Los Angeles County

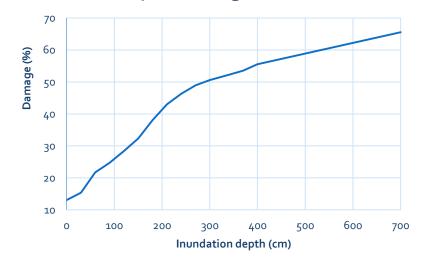

Presentation by Lars de Ruig


IVM Institute for Environmental Studies




Landuse: Multi Family Dwelling – 5-9 Units Surface area: ~550 m² Max. damage: ~1660 \$/m²

Flood scenario: 1/100 – 1.4m SLR Inundation depth: ~50 cm



Landuse: Multi Family Dwelling – 5-9 Units Surface area: ~550 m² Max. damage: ~1660 \$/m²

Flood scenario: 1/100 – 1,4m SLR Inundation depth: ~50 cm

Depth-damage curves

Estimate damage: ~\$175,000

Flood risk modelling - Results

Detune e erie d	Estimated damage	Estimated damage	Estimated damage
Return period	No SLR (\$ billion)	o.5 m SLR (\$ billion)	1.4 m SLR (\$ billion)
1/25	2	3	6
1/100	4	6	9
1/500	7	8	12
Expected Annual Damage (\$ million per year)	100	155	313

Adaptation Strategy - Resilience

Beach nourishment

- Based on expected erosion rates with sea level rise
- Floodproofing of buildings
 - All buildings in the 1/100, 1.4 m SLR floodzone

Cost-Benefit analysis

	Resilience strategy	
Total initial investment costs	500 (\$ mln)	
Costs over time	8 (\$ mln/yr)	

Cost-Benefit analysis

-

	Resilience strategy	
Total initial investment costs	500	(\$ mln)
Costs over time	8	(\$ mln/yr)
Benefit without sea level rise	29	(\$ mln/yr)
Benefit with 1.4 m sea level rise	75	(\$ mln/yr)

Cost-Benefit analysis

-

	Resilience strategy	
Total initial investment costs	500	(\$ mln)
Costs over time	8	(\$ mln/yr)
Benefit without sea level rise	29	(\$ mln/yr)
Benefit with 1.4 m sea level rise	75	(\$ mln/yr)
B/C ratio (4%)		\$1.29

What's next

- Work in progress
 - CoSMoS 3.0 Dynamic flood model by USGS
 - Extensive indirect impact assessment
 - Adaptation measures per area
- Connecting with stakeholders and policy makers
 - USC Sea Grant

Economic Evaluation of Flood Adaptation Strategies

A case study of Los Angeles County

Presentation by Lars de Ruig L.T.de.Ruig@student.vu.nl Co-authors: Dr. Hans de Moel, Prof. Dr. Wouter Botzen & Prof. Dr. Jeroen Aerts

IVM Institute for Environmental Studies

