

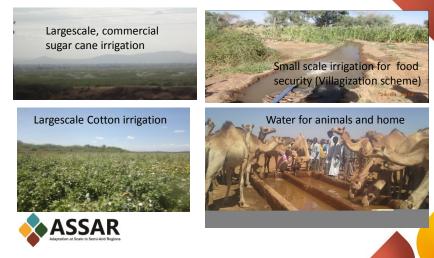
WATER for WHQM? ETH

Introduction

- The MAV forms part of Central Part of Ethiopian Rift Valley (Great East African Rift Valley)
- Low RF, high temp and high evaporation rates are typical features and make area to be used for extensive pastoral farming only
- Drained by Awash river, and flatter to gentler slopes, MAV attracts government/ others for agricultural development. Coupled with poor RF, long term over use of this available Awash river causes water scarcity
- Agricultural development policy focuses in the production of **sugarcane/ sugar** in this region (as foreign income generation and ETHANAOL production- **biofuel**).
- Cotton is another crop

Water for Whom? Introduction

These plants demand much water and little is assigned for local community. Water is disproportionately available for local communities to lead their normal life.


Objectives (1) assess the patterns of water consumption and (2) give suggestions for its equity distribution under the Ethiopian situations with examples from CRV.

Methods: **A**) FGDs (stratified by sex, age, community), and **B**) Stakeholder workshops- National and local – levels have been conducted **C**) KII

Water for whom?

Patterns of Water use (at times of water availability, all can be benefited, government irrigation and other uses over 80%), local- small scale irrigation for local community, water for animals

Water for whom?

 Problem: in absence of sustainable water management- at times of water scarcity, both could not get enough water for their uses; Government vs. local community problems

Fetching water from irrigation canal, unsafe, water borne diseases

Unirrigated land, no water, no crop production, food insecured

Water for whom?

• Both (irrigation and local) systems fail, at the end due to unsustainable water management

Water for whom?

- Implications
- Decision is top-down approach (no local participatory plan and management)
- · Water scarcity and quality are associated (scarcity leads to use of unsafe water)
- · Water planning is not related to land planning
- Water is governed by government or its delegate e.g. Basin authority no participatory management (local people) (government uses over 80% of water)
- · Water scarcity for home occurs both in wet and dry periods
- · There must be a need considering local problem and situations
- · Human diseases occur both in wet and dry periods no clean water
- · Selection of plant spp. to local available water (growing low water consumer plants)
- · Severity of vulnerability/ impact is high with prolonged drought
- Emphasis is on macro-planning (CRGE plan- focused) rather than micro-planning (increasing vulnerability of local communities)
- No Selection of appropriate technology (selected and evaluated before implementation)
- No early warning systems and support- prepare guidelines on adaptation and other issues

What must be done?

- We remind the moto **Water for all**, we recommend the followings for this (possible policy intervention for water availability improvements)
- a) Development of underground water for various uses including irrigation, home, etc.
- b) Storing of surface water by dam constructions at different points of the river courses
- c) Watershed development and conservation both at head and down streams
- d) Improving water use technologies, ponds, tanks, etc.
- e) Improvements of provision of climate related information
- f) Selection and adaption of species and crop varieties withstanding drought, heat stress, less water demanding and clearing alien spp. (avoid excessive water consumer plants)
- g) Integration of crop, livestock and agroforestry (government's policy of villagization policy for settled life of pastoralist- reduce size of animals, more crop)
- h) Modification of irrigation technologies to harvest water, conserve soil moisture and irrigation soil and water management e.g. cemented canal, timing, methods

Supported by

