Re-framing our adaptation message #### From: Disempoweringly complex, all-encompassing, problematic, uncertain and distant #### To: - 1. Solutions/decisions, not problem-oriented - 2. Decisions today, not in 2070 - 3. Risk management, not uncertainty - 4. Values and institutions, not only technical constraints - 5. **Social and economic** implications, not (only) environmental - 6. Emergent challenges, not (only) local responses CSIRO (Stafford Smith, Fortaleza, 2014) #### Australian adaptation planning standard - developing # **Key elements of leading practice** - 5-6 basic iterative steps are ~universal, & key sub-steps (n=24) - But still expressed in many different ways: time to get consistent # Core steps (whatever you call them) O. Getting ready to start 1. SCOPING – goals, scope, decision areas affected, managing the process • Getting the right people involved, choosing approaches 2. IDENTIFYING – risks, opportunities, response measures 3. APPRAISING – assembling adaptation options, appraising them, developing an implementation plan 4. IMPLEMENTING – sign off, timing, actions 5. MONITORING – evaluating success, sharing lessons, planning to iterate • Critical for emergent effects # **Key elements of leading practice** - 5-6 basic iterative steps are ~universal, & key sub-steps (n=24) - But still expressed in many different ways: time to get consistent - · Different levels of planning detail - Issue evident since 2000s (e.g. 'tiers' in UK-CIP), but not formalised - > Operational Cycles of increasing detail: Scan, Portfolio, Project # Operational cycles - may be sequential | Cycle: | SCAN | PORTFOLIO | PROJECT | |--------------------------------|--|-----------|---------| | Status of
decision
maker | First consideration of
managing climate risks;
poorly defined scope;
limited understanding of
stakeholders and their
expectations | | | | Intended
output | Decide what areas of operations require future planning effort | | | | | | | | # Operational cycles – may be sequential | Cycle: | SCAN | PORTFOLIO | PROJECT | |--------------------------------|--|---|---------| | Status of
decision
maker | First consideration of
managing climate risks;
poorly defined scope;
limited understanding of
stakeholders and their
expectations | General understanding
of the climate risks faced
by the organisation, and
identified priority areas
for attention | | | Intended
output | Decide what areas of operations require future planning effort | Develop a broad
adaptation pathway
across affected areas of
the organisation | | | | | | | # Operational cycles – may be sequential | Cycle: | SCAN | PORTFOLIO | PROJECT | |--------------------------------|--|---|---| | Status of
decision
maker | First consideration of
managing climate risks;
poorly defined scope;
limited understanding of
stakeholders and their
expectations | General understanding
of the climate risks faced
by the organisation, and
identified priority areas
for attention | Strong understanding of
climate risks faced by the
organisation and related
decisions; focus on a
previously prioritised
decision area | | Intended
output | Decide what areas of operations require future planning effort | Develop a broad
adaptation pathway
across affected areas of
the organisation | Implement investment in
targeted adaptation
project (or deliberate
decision to delay action) | | | | | | #### Operational cycles - may be sequential | Cycle: | SCAN | PORTFOLIO | PROJECT | |--------------------------------|--|---|---| | Status of
decision
maker | First consideration of
managing climate risks;
poorly defined scope;
limited understanding of
stakeholders and their
expectations | General understanding
of the climate risks faced
by the organisation, and
identified priority areas
for attention | Strong understanding of
climate risks faced by the
organisation and related
decisions; focus on a
previously prioritised
decision area | | Intended
output | Decide what areas of operations require future planning effort | Develop a broad
adaptation pathway
across affected areas of
the organisation | Implement investment in
targeted adaptation
project (or deliberate
decision to delay action) | | | e.g. high level
regional adaptation
plan which identifies
sectors or places for
more analyses | e.g. portfolio analysis
for a company or
council, identifying
areas for detailed
investment planning | e.g. plan for project implementation, may be informal or major project like Brisbane airport 3 rd runway | # Key elements of leading practice - 5-6 basic iterative steps are ~universal, & key sub-steps (n=24) - But still expressed in many different ways: time to get consistent - · Different levels of planning detail - Issue evident since 2000s, but not formalised - > Operational Cycles of increasing detail: Scan, Portfolio, Project - Guides what detail is needed in other issues - Diagnose problem/context framing better - Diagnostics leading to more informed choice of risk assessment methods - Growing rigour about measures and options, and methods for appraising options (per Hinkel, Bisaro, etc) - · More availability of registers of risks and measures/opportunities by sector - Growing ability to look at systemic risks from value and supply chains, and cross-scale effects; often coming to be recognised as dominant risks - Firmer guidelines for how to select climate inputs # **Priorities x cycle** | Cycle: | SCAN | PORTFOLIO | PROJECT | |--|------|-----------|---------| | Context analysis: social and institutional analysis techniques for barriers (e.g. VRK diagnostic) | | | | | Risk assessment approaches: climate-driven or experience-driven / vulnerability or adaptive capacity | | | | | Choice of climate data:
level of detail and diversity | | | | # **Priorities x cycle** | Cycle: | SCAN | PORTFOLIO | PROJECT | |--|--|---|--| | Context analysis: social and institutional analysis techniques for barriers (e.g. VRK diagnostic) | Low priority – this cycle
emphasises the
identification of areas of
decision making that need
closer examination in the
subsequent cycles | Critical - explicitly use to identify barriers to action in each decision-making area of the portfolio; also to appraise all adaptation options | Important but should be already be known; use diagnostics as part of appraising adaptation option priorities | | Risk assessment approaches: climate-driven or experience-driven / vulnerability or adaptive capacity | | | | | Choice of climate data:
level of detail and diversity | | | | # **Priorities x cycle** | Cycle: | SCAN | PORTFOLIO | PROJECT | |--|--|---|--| | Context analysis: social and institutional analysis techniques for barriers (e.g. VRK diagnostic) | Low priority – this cycle
emphasises the
identification of areas of
decision making that need
closer examination in the
subsequent cycles | Critical - explicitly use to identify barriers to action in each decision-making area of the portfolio; also to appraise all adaptation options | Important but should be already be known; use diagnostics as part of appraising adaptation option priorities | | Risk assessment approaches: climate-driven or experience-driven / vulnerability or adaptive capacity | Emphasise local
experiences, past
exposure to climate-
related hazards, simplified
trends in potential impacts | If resource limited, then
emphasise experience-
driven approach if context
analysis identifies many
barriers, else take climate-
driven approach; ideally
both | For small projects,
emphasise experience-
driven approach if context
analysis highlights many
barriers, else take climate-
driven approach; for large
projects, do both. | | Choice of
climate data:
level of detail and
diversity | | | | # **Priorities x cycle** | Cycle: | SCAN | PORTFOLIO | PROJECT | |--|--|--|--| | Context analysis: social and institutional analysis techniques for barriers (e.g. VRK diagnostic) | Low priority – this cycle
emphasises the
identification of areas of
decision making that need
closer examination in the
subsequent cycles | Critical - explicitly use to identify barriers to action in each decision-making area of the portfolio; also to appraise all adaptation options | Important but should be already be known; use diagnostics as part of appraising adaptation option priorities | | Risk assessment approaches: climate-driven or experience-driven / vulnerability or adaptive capacity | Emphasise local
experiences, past exposure
to climate-related hazards,
simplified trends in
potential impacts | If resource limited, then
emphasise experience-
driven approach if context
analysis identifies many
barriers, else take climate-
driven approach; ideally
both | For small projects,
emphasise experience-
driven approach if context
analysis highlights many
barriers, otherwise take
climate-driven approach;
for large projects, do both. | | Choice of climate data:
level of detail and diversity | Regional <i>summaries</i> for general future impacts and confidence | Regional <i>summaries</i> enhanced by <i>trajectories</i> of main climate variables over time | For bigger, longer-term or contentious projects use detailed <i>projections</i> , else as for Portfolio cycle. | # Selection of climate data x cycle & step - In Steps 1 and 2, ensure all possible risks are considered by using the 'greatest plausible change' climate information. - In Step 3, obtain a balanced assessment of whether to act through a balanced understanding of the range of possible futures, to avoid acting either too soon or too late. - Use greater detail as you move from Scan to Portfolio to Project Cycles | Cycle: | SCAN | PORTFOLIO | PROJECT | |-----------------------|---|--|---| | Step 1
Scoping | Use regional Summaries
for greatest plausible
change, to ensure all
issues are raised | Use regional Summaries or
Trajectories of greatest
plausible change to identify
relevant decision areas | [N/A usually] | | Step 2
Identifying | Use regional <i>Summaries</i> , emphasising ' <i>maximum</i> consensus', with some sense of uncertainties | Use greatest plausible change
scenarios from regional
Trajectories: adjust for whether
variables change monotonically | Choice of <i>Trajectories</i> or <i>Projections</i> systematically dependent on scale of decision context and style of risk management | | Step 3
Appraising | [N/A: usually qualitative analysis] | Extend the <i>Trajectories</i> used above to the 3-4 that cover the full range of possibilities for this step, allowing for direction of change in variables and your risk tolerance | Level of detail dependent on scale and significance of project – mostly may not need any more data, but some cases require detailed <i>Projections</i> data for quantitative appraisal of options; then risk management and data needs systematically interlinked | See Climate Navigator at www.climatechangeinAustralia.gov.au, forthcoming For more details: www.climate-adaptation.org.au www.csiro.au Mark Stafford Smith, Chief Coordinating Scientist – Adaptation, CSIRO mark.staffordsmith@csiro.au – +61 408 852 082 research.csiro.au/climate