Effecten bodem- en structuurverbeteraars

Onderzoek op klei- en zandgrond 2010-2015
Eindrapportage

Auteurs | D.J.M. van Balen, C.G. Topper, W.C.A. van Geel, J.J. de Haan,
W. van den Berg (Wageningen UR), M.J.G. de Haas & D.W. Bussink (NMI)
Redactie | M.A. Schoutsen & D.J.M. van Balen (Wageningen UR)
Praktijkonderzoek Plant & Omgeving, onderdeel van Wageningen UR
Business Unit Akkerbouw, Groene Ruimte en Vollegrondsgroenten

Adres : Postbus 430, 8200 AK Lelystad
 : Edelherfweg 1, 8219 PH Lelystad
T : 0320-291111
M : infoagv.ppo@wur.nl
Internet : www.wageningenUR.nl/ppo
Inhoudsopgave

SAMENVATTING .. 4

1 INLEIDING .. 7

2 OPZET VAN HET ONDERZOEK EN UITVOERING ... 9
 2.1 Toegepaste bodemverbeteraars .. 9
 2.2 Proeflocaties .. 10
 2.3 Uitvoering van de proef .. 11
 2.3.1 Hoeveelheden bodem- en structuurverbeteraar ... 11
 2.3.2 Bemesting .. 12
 2.4 Metingen en waarnemingen ... 13
 2.4.1 Bodemonderzoek .. 13
 2.4.2 Bodemstikstof .. 17
 2.4.3 Gewasontwikkeling, opbrengst en kwaliteit .. 17
 2.4.4 Kostenindicatie toegepaste bodemverbeteraars ... 17
 2.4.5 Communicatie activiteiten ... 18

3 RESULTATEN ... 19
 3.1 Bodemonderzoek .. 19
 3.1.1 Fysische bodemparameters ... 19
 3.1.2 Chemische bodemparameters ... 26
 3.1.3 Biologische bodemparameters ... 29
 3.2 Bodemstikstof ... 29
 3.3 Gewasontwikkeling, opbrengst en kwaliteit .. 30
 3.3.1 Gewasontwikkeling 2015 ... 30
 3.3.2 Opbrengst en kwaliteit per grondsoort en locatie 2015 ... 30
 3.3.3 Berekende afvoer van stikstof en fosfaat per locatie in 2015 ... 32
 3.3.4 Opbrengsten 2010-2015 ... 33
 3.3.5 Stikstof en fosfaatoverschot per locatie 2010-2015 ... 34
 3.4 Kostenindicatie toegepaste bodemverbeteraars ... 35

4 DISCUSSIE EN CONCLUSIES .. 37
 4.1 Algemeen ... 37
 4.2 Effecten bodemverbeteraars op bodem ... 37
 4.3 Wat zijn de juiste bodemparameters om effecten te beoordelen? ... 38
 4.4 Effecten bodemverbeteraars op opbrengst .. 42
 4.5 Is het gebruik van bodemverbeteraars economisch verantwoord? .. 44
 4.6 Conclusies en aanbevelingen ... 45

LITERATUUR ... 46

BIJLAGE 1. BESCHRIJVING VAN DE GETESTE BODEMVERBETERAARS .. 47

BIJLAGE 2. TOEGEPASTE BODEMVERBETERAARS PER LOCATIE EN JAAR 54

BIJLAGE 3. BEREKENDE BULKDICHtheid ... 60

BIJLAGE 4. DOORLATENDHEID IN TIJDSINTERVAL 15-20 EN 12.5-15 MINUTEN (MM /SEC) 61

BIJLAGE 5. AGGREGAATSTABILITEITSINDEX (-) .. 63

BIJLAGE 6. WATERBERGENDE VERMOGEN ... 65
BIJLAGE 7. RESULTATEN BODEMCHEMISCH ONDERZOEK 2012-2015 ... 67
BIJLAGE 8. CEC GROOTTE EN CA-, MG-, EN K-BEZETTING .. 76
BIJLAGE 9. CA, MG, K IN BODEMVOCHT IN 2015 EN 2012 (MMOL PER L) 77
BIJLAGE 10. HOT WATER EXTRACTABLE CARBON .. 79
BIJLAGE 11. RESULTATEN BODEMBIOLOGISCH ONDERZOEK 2010 EN 2012 81
BIJLAGE 12. N-MIN VOORJAAR (KG N PER HA) .. 87
BIJLAGE 13. OPBRENGST EN KWALITEIT PER LOCATIE IN 2015 .. 89
BIJLAGE 14. GEWASOPBRENGST, KWALITEIT EN MINERALENAFVOER PER LOCATIE EN JAAR 94
BIJLAGE 15. STIKSTOF EN FOSFAATBALANS 2010-2015 .. 114
BIJLAGE 16. KOSTENINDICATIE BODEMVERBETERAARS ... 119
BIJLAGE 17. OVERZICHT COMMUNICATIE ACTIVITEITEN .. 120
Samenvatting

Aanleiding voor het project
In de praktijk lopen telers vaak tegen problemen aan van een slechte bodemkwaliteit. Intensieve bouwplannen, steeds zwaardere mechanisatie, uitleg (Ca-uitspoeling), piekneerslagen en de schaalvergroting in de landbouw leiden tot vermindering van de fysische bodemvruchtbaarheid en de structuur van de bodem. Dit veroorzaakt:
- toenemende problemen bij de bewerkbaarheid van de bodem;
- minder efficiënt gebruik van meststoffen;
- verhoogd risico van uit- en afspoeling van nutriënten;
- wateroverlast;
- verlaging van de opbrengst.

Om de bodemstructuur te verbeteren, worden door industrie en handel zogeheten bodemverbeteraars en kalkmeststoffen aangeboden. Er is een grote variatie in type producten, de wijze waarop ze werken en de mate waarin ze een directe dan wel indirecte invloed op de bodemvruchtbaarheid kunnen hebben. Objectieve informatie over het effect van deze producten op de gewasopbrengsten en de fysische, chemische en biologische bodemvruchtbaarheid ontbreekt. Uit eerdere proeven is bekend dat effecten van bodem verbeterende maatregelen vaak pas na enkele jaren zichtbaar worden.

Doel en opzet van het project

De volgende producten zijn getest op de betreffende locaties:
- Kalk- en calciummeststoffen
 1. Agrigyps
 2. Betacal Carbo
 3. Brandkalk
 4. PRP-SOL (met sporenelementen verrijkte calciummeststof)
- Bodemverbeteraars met micro-organismen of met bodemleven stimulerende eigenschappen
 5. Condit
 6. Xurian Optimum
 7. BactoFil
- Overige producten
 8. Biochar (verkoold organische stof, van diverse producten/oorsprong), vier soorten:
 • Biochar hout
 • Biochar norit
 • Biochar ECN
 • Biochar Romchar
 9. Steenmeel

Deze producten zijn vergeleken met 3 referenties: alleen kunstmest, drijfmest plus kunstmest en compost plus kunstmest.
In 2010 is op alle proefvelden de uitgangssituatie van de bodem bepaald (nulmeting), zowel chemisch, fysisch als biologisch. In 2012 en 2015 zijn de bodemeigenschappen opnieuw bepaald.

Resultaten

Effecten op de bodem

Van de fysische bodemparameters lijken de verzadigde doorlatendheid en aggregaatstabiliteit het meest onderscheidend te zijn. Op de kleilocaties was de doorlatendheid met toepassing van Agrygips en brandkalk op een aantal locaties hoger dan die van de referentie. De aggregaatstabiliteit werd op alle drie kleilocaties verhoogd door Agrygips en Betacal Carbo. De andere getoetste producten gaven geen consistent beeld op de gemeten aggregaatstabiliteit. De gemeten bulkdichtheid, indringingsweerstand en waterbergend vermogen waren niet verschillend wanneer de getoetste bodemverbeteraars met elkaar vergeleken werden. Ook op de zandlocaties blijkt uit uitslagen van de bodemfysische metingen dat de getoetste bodemverbeteraars niet van invloed zijn op de gemeten fysische bodemeigenschappen. Dat de toepassing van kalkproducten Agrigips en brandkalk op kleigrond al op korte de fysische bodemgesteldheid positief beinvloedt lag in de lijn der verwachting.

Van de chemische bodemparameters zijn zowel HWC (Hot Water extractable Carbon) als de CEC-bezetting en het Ca-gehalte in het bodemvocht het meest onderscheidend. Op de kleilocaties was bij toepassing van compost of de bodemverbeteraar PRP-sol de HWC op elk proefveld hoger dan die van de referentie kunstmest. Het Ca-gehalte in het CEC complex was hoger op de proefvelden behandeld met Agrygips en brandkalk. Bij toepassing van brandkalk nam de Mg-bezetting van het complex toe en werd de Mg-beschikbaarheid sterk verhoogd. Dit is een indicatie dat steenmeel, dat alleen is toegepast op de zandlocaties, de calciumvoorraad verhoogt ten opzichte van de referenties. Dit uit zich overigens niet in een verhoogd calciumgehalte in het bodemvocht. Op de kleilocaties is ook minerale stikstof (Nmin) na de oogst gemeten. Tussen de behandelingen met bodemverbeteraars traden er beperkte verschillen op in N-min-voorraad na de oogst. Op de proefvelden is conform de huidige bemestingsadviezen bemest. Dit leidde gemiddeld tot N-min hoeveelheden na de oogst van minder dan 35 kg N/ha (laag 0-60 cm). Bij deze niveaus blijft N-uitspoeling meestal beperkt en blijft het nitraatgehalte van het (bovenste) grondwater beneden de drinkwaternorm van 50 mg nitraat per liter.

Dat er niet meer verschillen gevonden zijn in de fysische- en chemische bodemparameters, bij de toepassing van de bodemverbeteraars, kan liggen aan het feit dat:

- de bodemkwaliteit op de proeflocaties relatief goed was, waardoor eventueel positieve effecten van de bodemverbeteraars niet tot uiting komen;
- de gebruikte producten weinig invloed hebben op de bodemkwaliteit onder het toegepaste bouwplan en bodemmanagement;
- er meer tijd nodig is om de effecten van de gebruikte producten op de bodemstructuur voldoende tot uiting te laten komen, waardoor er meetbare verschillen ontstaan.

Leveranciers schrijven diverse effecten toe aan hun producten die zouden moeten leiden tot een bodemverbeterende werking. In het uitgevoerde onderzoek zijn niet alle claims getoetst, maar voor zover ze wel zijn gemeten, konden de claims veelal niet bevestigd worden.
Effecten op de gewasopbrengst

De effecten op de gewasopbrengst waren niet eenduidig. Op sommige proefvelden werd een significante opbrengstverhoging of -verlaging gevonden bij toepassing van bepaalde bodemverbeteraars, maar deze effecten waren niet structureel en consistent over de jaren, gewassen en locaties. Er is gekeken of de toepassing van bodemverbeteraars heeft geleid tot opbrengstverschillen per gewas. Hiervoor zijn de opbrengsten per gewas over de locaties en jaren met elkaar vergeleken. Wanneer vervolgens de opbrengstmetingen van de toegepaste bodemverbeteraars vergeleken werden met referentie kunstmest is er in het afsluitende jaar met overal aardappelen geen verschil tussen de behandelingen. In daaraan voorafgaande jaren is alleen bij het gewas zomertarwe een opbrengstverschil te zien. Er is een hogere opbrengst gemeten met toediening van Agrigyps en PRP-sol en een lagere opbrengst met Bactofil. Wanneer er sprake was van een slechtere score in gewasstand was dit te herleiden tot een lage beschikbaarheid van stikstof. Dit resulteerde meestal dan ook in een lagere opbrengst. Hiervan is sprake in het geval van de toepassingen met Bactofil en Condit. Daardoor kan het effect van deze bodemverbeteraars niet goed worden afgeleid van de gewasgroei- en opbrengst. Om na te gaan in hoeverre de stikstofbemesting bij toepassing van deze producten moet worden aangepast, zijn gedetailleerde bemestingsproeven nodig. Zulke gedetailleerde bemestingsproeven vallen buiten de scope van dit onderzoek.

Conclusies

De getoetste bodem- en structuurverbeteraars hadden in de deze proefopzet slechts een beperkt effect op de gemeten fysische, chemische en biologische bodemparameters op zowel de klei- als zandlocaties. De toepassing van bodem- en structuurverbeteraars heeft niet geleid tot significant hogere opbrengsten dan de referenties kunstmest, kunstmest plus dierlijke mest of kunstmest plus compost.
1 Inleiding

Een goede bodemstructuur kenmerkt zich door een kruimelstructuur gevormd door stabiele bodemmaggregaten (bodemkluitjes). (Figuur 4.1). Stabiele bodemmaggregaten (zie onder) bestaan uit minerale bodemdeeltjes en organische stof. Ze zijn aan elkaar geketend door uitscheidingsproducten van het bodemleven, wortels en organisch materiaal. Een goede bodemstructuur kenmerkt door veel poriën, voor een goede lucht- en vochtthuishouding. Bij een goede bodemstructuur wordt in natte perioden overtollig water snel afgevoerd en blijft er voor droge perioden voldoende water achter. Ook is dan een goede bodemventilatie mogelijk. Bij een slechte bodemstructuur neemt in het algemeen de doorlatendheid af, komen er te veel kleine poriën en vallen de aggregaten uiteen in losse gronddeeltjes. Tussen en in de bodemmaggregaten zijn kleine en grote poriën aanwezig. De grote poriën zorgen voor een sneller toetreding van water en lucht in de bodem en voor drainage naar diepere bodemlagen. De kleine poriën houden het water vast en zorgen zo voor een goede vochtvoorziening van het gewas. Bij een goede bodemstructuur kunnen de wortels de hele bodemlaag intensief en homogeen bewortelen, waardoor een betere benutting van nutriënten zoals fosfaat mogelijk is. Compactie en verdichting van de grond is niet aan de orde. Een goede bodemstructuur is van belang voor een goede en vroege groei van het gewas. Daarnaast is een goede structuur essentieel voor de draagkracht en bewerkbaarheid van de bodem. Onderstaande afbeeldingen (figuur 1.1) geven een goede en slechte bodemstructuur weer.

Figuur 1.1 Een voorbeeld van een goede (links) en een slechte bodemstructuur

Intensieve bouwplannen, steeds zwaardere mechanisatie, uitzetting (zoals calciumuitspoeling), piekneerslagen en de schaalvergroting in de landbouw leiden tot vermindering van de fysische bodemvruchtbareheid en een slechtere bodemstructuur. Dit leidt tot toenemende problemen bij de bewerkbaarheid van de bodem, het kan leiden tot een slechtere draagkracht en het risico van verslepping neemt toe. Het gevolg is een minder efficiënt gebruik van meststoffen, een verhoogd risico op uit- en afspoeling van nutriënten, wateroverlast en uiteindelijk een verlaging van de (financiële) opbrengst. Het op orde houden en of verbeteren van de bodemstructuur is dus belangrijk. Een mogelijke oplossingsrichting om de problemen met de bodemstructuur aan te pakken is de inzet van bodemverbeteraars. De handel biedt naast kalkmeststoffen ook allerlei bodemverbeteraars aan. Objectieve informatie over het effect van de aanbevolen producten op de fysische, chemische en biologische bodemvruchtbareheid en gewasopbrengsten ontbreekt. Ook is niet bekend wat de effecten van deze producten zijn op de langere termijn en hoe de werking is ten opzichte van kunstmest, dierlijke mest en compost.

Om de effecten te kunnen beoordelen heeft het Productschap Akkerbouw langjarig onderzoek geïnitieerd naar de effecten van bodem- en structuurverbeteraars. Naast
Productschap Akkerbouw zijn er nog meer partijen die meewerkten en meefinancierden aan dit langjarig onderzoek, namelijk het Ministerie van EZ (PPS-bodem), Provincie Flevoland, - Groningen, - Drenthe, - Friesland, de Europese Unie, Kiemkracht, PRP Benelux, IRS, Agrobio, De Wulf Agro en Triferto.

Het doel van het onderzoek was om vast te stellen of bodem- en structuurverbeteraars een positief effect hebben op de bodemstructuur, de gewasopbrengst en het risico van af- en uitspoeling van mineralen. Daarvoor zijn in een zesjarig onderzoek negen producten onderzocht op drie kleilocaties (Lelystad, Westmaas en Kollumerwaard) en twee zandlocaties (Vredepeel en Valthermond). Een overzicht van deze producten en de opzet van het onderzoek staat in hoofdstuk 2. In hoofdstuk 3 worden de resultaten van het onderzoek samengevat. In hoofdstuk 4 worden de resultaten bediscussieerd en worden conclusies getrokken.

In dit rapport wordt het onderzoek van de jaren 2010 t/m 2015 in het kort beschreven. Een uitgebreide rapportage per jaar is terug te vinden in de jaarverslagen van het onderzoek, zie literatuurlijst en kennisakker.nl.
2 Opzet van het onderzoek en uitvoering

Er zijn negen verschillende bodem- en structuurverbeterende producten getoetst in het onderzoek. Een opsomming van deze bodemverbeteraars is te vinden in paragraaf 2.1.

De veldproef van het toetsen van het effect van bodemverbeteraars op opbrengst en bodemeigenschappen op de langere termijn is uitgevoerd op drie klei- en twee zandlocaties in verschillende delen van het land. De locaties vertegenwoordigen een aantal typisch akkerbouwregio’s: het zuidwestelijke kleigebied (Westmaas), de jonge zeekleigronden (Lelystad), het noordelijke kleigebied (Kollumerwaard), het zuidelijk en oostelijk zandgebied (Vredepeel) en de akkerbouw op dalgronden (Valthermond). Daarmee is gezorgd voor een goede landelijke dekking en spreiding. Op de bedrijven zijn typische bouwplannen voor die regio toegepast. Voor een uitgebreide beschrijving van de proeflocaties, zie paragraaf 2.2.

Bekend is dat eventueel positieve effecten van bodemverbeteraars op opbrengst en bodemeigenschappen zich met de jaren sterk zullen manifesteren. Daarom is de proef gedurende zes jaar uitgevoerd. Daarbij is er bij de opzet al voor gezorgd dat ondanks de verscheidenheid in bouwplannen per proeflocatie er in het laatste jaar van de proef overal aardappels geteeld werden. Met eenzelfde gewas kan het meest scherp worden getoetst op de meerwaarde van bodemverbeteraars op de gewasopbrengst en op verandering in de bodemkwaliteit. De gewasopbrengsten zijn elk jaar bepaald. De bodemkwaliteit en bodemstructuur gerelateerde parameters zijn bij aanvang in 2012 en in het slotjaar van de proef gemeten. Dit omdat het bepalen van verandering in bodemkenmerken die een relatie hebben met bodemstructuur relatief duur is en anderzijds het de verwachting was dat veranderingen geleidelijk op zouden treden. Een uitgebreide beschrijving van de uitvoering van de proef is te vinden in paragraaf 2.3.

2.1 Toegepaste bodemverbeteraars

De volgende producten zijn getoetst:

- Kalk- en calciummeststoffen
 1. Agrigyps (calciummeststof)
 2. Betacal Carbo (kalkmeststof)
 3. Brandkalk (kalkmeststof)
 4. PRP-SOL (met sporenelementen verrijkte calciummeststof)
- Bodemverbeteraars met micro-organismen of met bodemleven stimulerende eigenschappen
 5. Condit (gehydrolyseerde eiwitten en zeolieten die bodemleven stimuleren)
 6. Xurian Optimum (micro-organismen die bodemleven stimuleren)
 7. BactoFil (bacterieprepapraat ter verbetering van de bodemstructuur, vanaf 2012 opgenomen, niet in Kollumerwaard)
- Overige producten
 8. Biochar (verkoelde organische stof van diverse oorsprong)
 - Biochar hout 2,5 ton/ha/jaar (Lelystad)
 - Biochar hout 5 ton/ha/jaar (Lelystad en Kollumerwaard)
 - Biochar Norit (Kollumerwaard en Valthermond)
 - Biochar Romchar (Valthermond)
 - Biochar ECN (Valthermond)
 9. Steenmeel (gemalen vulkanisch gesteente, niet meer ingezet na 2012)

De producten zijn vergeleken met drie “gangbare” bemestingsstrategieën, de
zogenaamde referenties: alleen kunstmest, (varkens-/rundvee)drijfmest plus kunstmest en groencompost/GFT plus kunstmest. In Bijlage 1 is een uitgebreide beschrijving van de bodemverbeteraars opgenomen.

2.2 Proeflocaties

Het onderzoek is uitgevoerd op drie verschillende proeflocaties:

- Lelystad (centrale zeekleigebied): een matig lichte, kalkrijke zavelgrond met 2,0% organische stof. De grond is matig slempgevoelig en onder de bouwvoor van het proefveld zit een in enige mate verdichte laag (een ploegzool).
- Kollumerwaard (noordelijk zeekleigebied): een kalkrijke, lichte kleigrond met 3,5% organische stof. Ondanks het vrij hoge gehalte aan organische stof is deze grond matig slempgevoelig.
- Westmaas (zuidwestelijke kleigebied): een zandige, kalkrijke, zware zavelgrond met 2,3% organische stof. De grond op het proefveld is enigszins moeilijk bewerkbaar (stug).
- Vredepeel (zuidoostelijk zand): een droogtegevoelige zandgrond; een veldpodzol (jonge ontginningsgrond) met leemarm en zwak lemig zand en 4,9% organische stof. De maximale bouwvoordepte bedraagt 25-30 cm en de bewortelingsdiepte 50-60 cm.
- Valthermond (Noordoostelijk zandgebied): Dalgrond met 11,3% organische stof en een bouwvoor van 30 cm. Ondanks het hoge organische stofgehalte is deze grond stuif- en slempgevoelig.

De percelen waarop het onderzoek is aangelegd zijn geselecteerd op bodemeigenschappen. Van deze percelen is bekend dat er in meer of mindere mate problemen zijn met bijvoorbeeld bewerkbaarheid, stuifgevoeligheid of droogtegevoeligheid. In bijlage 2 staan per locatie de bodemkenmerken en de vruchtwisseling in de periode van de proef.
2.3 Uitvoering van de proef

2.3.1 Hoeveelheden bodem- en structuurverbeteraar

De totale hoeveelheid bodemverbeteraar die in de periode 2010 tot en met 2015 is toegepast staat in Tabel 2.1. In de praktijk werden er soms grotere hoeveelheden van een product toegepast. In de proefopzet is rekening gehouden met aanvoer van overige mineralen (bijvoorbeeld zwavel in Agrigyps) of het spreiden van een gift over de jaren (compost).

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Toedieningsjaar</th>
<th>eenheid</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Valkermond</th>
<th>Vredepeel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>jaarlijks</td>
<td>kg/ha</td>
<td>10380</td>
<td>10380</td>
<td>10380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bactofil</td>
<td>vanaf 2012</td>
<td>jaarlijks</td>
<td>kg/ha</td>
<td>3</td>
<td>2</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>jaarlijks</td>
<td>kg/ha</td>
<td>14310</td>
<td>14310</td>
<td>14310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar hout</td>
<td>jaarlijks</td>
<td>ton/ha</td>
<td>30</td>
<td>15</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar Norit</td>
<td>2010, 2011, 2013</td>
<td>ton/ha</td>
<td>25</td>
<td>30</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar ECN</td>
<td>2010</td>
<td>ton/ha</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar Romchar</td>
<td>2011</td>
<td>ton/ha</td>
<td></td>
<td></td>
<td></td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>jaarlijks</td>
<td>kg/ha</td>
<td>6710</td>
<td>6710</td>
<td>6710</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condit 7%N</td>
<td>jaarlijks</td>
<td>kg/ha</td>
<td>7500</td>
<td>8000</td>
<td>8000</td>
<td>8500</td>
<td>7000</td>
</tr>
<tr>
<td>GFT</td>
<td>jaarlijks</td>
<td>ton/ha</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>jaarlijks</td>
<td>kg/ha</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>jaarlijks</td>
<td>kg/ha</td>
<td>1350</td>
<td>1350</td>
<td>1350</td>
<td>1350</td>
<td>1350</td>
</tr>
<tr>
<td>Varkensdrijfmeest</td>
<td>jaarlijks*</td>
<td>m^3/ha</td>
<td>70</td>
<td>15</td>
<td>15</td>
<td>80</td>
<td>130</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>jaarlijks</td>
<td>kg/ha</td>
<td>6.75</td>
<td>5.85</td>
<td>5.85</td>
<td>5.85</td>
<td>5.85</td>
</tr>
</tbody>
</table>

* verschilt per locatie, zie bijlage 2

De hoeveelheid drijfmest die is toegepast in Lelystad en Westmaas is door omstandigheden en gewassenkeuze achtergebleven ten opzichte van de planning bij aanvang van de proef. De drijfmestobjecten van deze twee locaties liggen qua uitvoering dan ook dichtbij het kunstmestobject.

De onderzochte bodemverbeteraars verschilden per proeflocatie. Door de specifieke problemen per grondsoort en het te verwachten effect van een bodemverbeteraar er per locatie bekeken welke proefvelden met welke bodemverbeteraar er aangelegd dienden te worden. Het organische stofgehalte, gehalte aan koolzure kalk en het gehalte aan calcium in het bodemvocht zijn bijvoorbeeld factoren die invloed hebben op de bodemstructuur van kleigronden. Vandaar dat de kalkhoudende bodemverbeteraars niet op de zandlocaties toegepast zijn. Steenmeel is juist wel toegepast op de zandlocaties. De leveranciers van de bodemverbeteraars hebben vervolgens aangegeven op welke grondsoort hun producten een goede werking hebben. In bijlage 2 is een overzicht opgenomen van toegepaste producten en giften per locatie per jaar. In een aantal gevallen zijn de bodemverbeteraars gecombineerd met een drijfmestgift, omdat dit aansluit bij het gebruik in de praktijk. Ook dit is nader aangegeven in bijlage 2.

Omdat een aantal bodemverbeteraars nutriënten voor de plant bevat en andere niet, is de nutriëntenaanvoer van werkzame stikstof, fosfaat en kali bij alle proefvelden voor zover
mogelijk tot eenzelfde niveau aangevuld met kunstmest. Een aantal leveranciers van bodemverbeteraars heeft expliciet aangegeven dat zij dit niet wilden (leveranciers van Condit en Bactofil). De leveranciers van Condit en Bactofil claimen een betere stikstofwerking door toepassing van hun product. De leverancier van Bactofil claimt tevens een betere fosfaat- en kalibeschikbaarheid. Hiermee is rekening gehouden bij de bemesting van de proefvelden.

2.3.2 Bemesting

De N-min voorraden in het voorjaar zijn meegenomen in de berekening van de eerste stikstofgift. Uitgangspunt is dat de stikstofvoorziening in alle objecten gelijk is. De berekende werkzame stikstof, in de bodemverbeteraars, de dierlijke mest en de compost is daarom verrekend in de kunstmestgift. Van 2010 tot en met 2012 is de stikstof-, fosfaat- en kalitevoer per object aangepast aan de bodemvoorraad en de aanvoer met bodemverbeteraars, zodat de opbrengst- en/of kwaliteitsverschillen niet, of beperkt, worden beïnvloed door de bemesting. Vanaf 2013 is fosfaat- en kaligift zo veel mogelijk op één gift gehouden, tenzij de afwijking van bodemvoorraad of aanvoer met de bodemverbeteraar te groot was.

Van Biochar Norit en Biochar hout zijn geen analysegegevens bekend. Van deze producten kon de mineralenaanvoer dus niet meegenomen worden. Er is gerekend met verschillende N-werkingsefficiënten van de gebruikte stikstof bevattende bodemverbeteraars:

- Condit : 100%
- Betacal Carbo : 0%
- Groencompost/GFT : 0-10% (afhankelijk van compostsoort)

De aanwezige fosfaat en kali in deze bodemverbeteraars zijn voor 100% meegerekend.
2.4 Metingen en waarnemingen

Op de onderzoeklocaties zijn verschillende waarnemingen en metingen gedaan aan bodem en gewas. Voor een gedetailleerde beschrijving van de proefuitvoering en de waarnemingen per jaar wordt verwezen naar de jaarrapporten (zie literatuurlijst). In de volgende paragrafen is beschreven welke metingen en waarnemingen zijn gedaan. Een beschrijving van metingen aan de fysische en chemische bodemgesteldheid is te vinden in paragraaf 2.4.1, een beschrijving van de metingen aan de minerale stikstof staat in paragraaf 2.4.2 en een beschrijving van de waarnemingen aan gewasontwikkeling, opbrengst en productkwaliteit in paragraaf 2.4.3. Ten slotte wordt een beschrijving van de aanpak van een kostenberekening van de toepassing van bodemverbeteraars gegeven in paragraaf 2.4.4.

2.4.1 Bodemonderzoek

<table>
<thead>
<tr>
<th>Bodemmetingen</th>
<th>2010</th>
<th>2012</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fysisch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textuur</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulkdichtheid</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Doorlatendheid</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indringingsweerstand</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Visuele waarneming bodemstructuur (Spade test)</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Aggregaatstabiliteit</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waterbergend vermogen</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Chemisch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algemeen chemisch grondonderzoek</td>
<td>X</td>
<td>X</td>
<td>X*</td>
</tr>
<tr>
<td>Ca in bodemvocht</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEC (cation exchange capacity) grootte en bezetting, pH, EC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Fractie hydrofoob organische stof;</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Hot Water extractable Carbon (HWC)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Biologisch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schimmel- en bacteriehoeveelheid</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

* is niet uitgevoerd op de locatie Westmaas

Een goede bodemstructuur wordt gekenmerkt door een goede doorlatendheid, geen hoge indringingsweerstanden (signaal voor belemmerde wortelgroei), kruimelige structuur (zie figuur 2.1) en stabiele bodemaggregaten. Met chemische metingen is vast te stellen of er bodemvruchtbaarheidsverschillen zijn ontstaan en of de randvoorwaarden voor een
goede bodemstructuur zijn verbeterd, zoals een hoge Ca-bezetting aan het adsorptieccomplex, het organisch stofgehalte en de stabiliteit van organische stof en de pH. De bodembiologie (zoals aanwezigheid van schimmels, bacteriën en wormen) heeft eveneens invloed op de bodemstructuur. Echter, bodembiologische metingen zijn vaak geen routine metingen, relatief duur en nog niet eenduidig te interpreteren. Er zijn metingen uitgevoerd die een indruk geven van de bodembiologische activiteit in een bodem, zoals HWC (Hot Water extractable Carbon).

![Kruimelige bodemstructuur](image)

Figuur 2.1 Kruimelige bodemstructuur

Tussentijds zijn er bijstellingen geweest in de uit te voeren bodemmetingen, bijvoorbeeld omdat in 2012 bleek dat bepaalde parameters geen zeggingskracht hadden of tussentijds niet veranderden, zoals textuur, of omdat de bodemmetingen te hoge kosten met zich meebrachten. Hieronder volgt en beschrijving van de uitgevoerde metingen.

Fysische bodemparameters

- **Textuur:** De volgende fracties zijn bepaald: 2, 2-16, 16-50, 50-105, 150-210, 210-300, 300-420, 420-600, 600-2000 μm. Als maten voor de verdeling van de verschillende textuurfacties zijn het M50-getal en D60/D10 berekend (alleen zandgrond). M50 is het getal van de korrelgrootte waar boven en waar beneden de helft van de massa van de zandfractie ligt. Het is een maat voor de grofheid van het zand. Het verhoudingsgetal D60/D10 wordt berekend met gebruikmaking van alle textuurfacties. Het D60/D10 getal geeft de verhouding weer van de verschillende textuurfacties, de zogenaamde 'eentoppigheid'. De monsters zijn uit de laag 0-25 cm genomen. De textuur is in 2015 niet opnieuw bepaald, omdat veranderingen in textuur niet te verwachten waren met de toegepaste bodemverbeteraars.

- **Bulkdichtheid (droge bulkdichtheid):** Van de lagen 2-7, 12-17 en 22-27 cm beneden maaiveld zijn 100 cm³ ringmonsters genomen (diameter 5 cm, hoogte 5.1 cm) en is door middel van droging en weging het volume vaste delen en porievolume berekend. Per locatie zijn 6 plekken bemonsterd. Droging van monsters is uitgevoerd op 105 °C. In het najaar van 2015 is de bulkdichtheid opnieuw gemeten op alle locaties, met uitzondering van Westmaas, waar een grondbewerking al was uitgevoerd. Voorafgaand is in het voorjaar van 2015 de bulkdichtheid genomen in Lelystad. Per behandeling zijn twee monsters genomen, van de referentiebehandeling kunstmest zijn drie monsters genomen. De monsters zijn midden onder de rug genomen, op 0-5 cm beneden het niveau van de voor. In Lelystad zijn de ringmonsters op 20-25 cm onder maaiveld genomen, omdat daar de ruggen al waren gerooid. In Kollumerwaard is de helft op 0-5 cm en de helft op 20-25 cm diepe genomen.
• **Doorlatendheid:** De (verzadigde) doorlatendheid is een afgeleide methode van de methode zoals omschreven in de Testkit Bodemkwaliteit (Koopmans en Brands, 2003). De methode en de uitvoering is beschreven in Van der Spek (2015) en Steenis (2015).

• **Indringingsweerstand:** Met behulp van een penetrologger (Eijkelkamp, type conus 1 cm² grondoppervlak top hoek 60°, indringingsnelheid 1 cm/sec). Voor het uitvoeren van de metingen is het protocol gevolgd zoals dat in de gebruiksaanwijzing van de penetrologger is opgenomen (Eijkelkamp, versie 5.08; 2010). Per locatie zijn van de referentiebehandeling per plot 6 metingen uitgevoerd. Metingen gingen door tot een diepte van 80 cm beneden maaiveld tenzij de indringingsweerstand te hoog werd (zie Figuur 2.2).

• **Visuele waarneming bodemstructuur (Spade test):** Visuele waarneming bodemstructuur (‘spadeproef’); de actuele bodemstructuur is visueel beoordeeld. Er is gebruik gemaakt van het protocol zoals beschreven in de Testkit Bodemkwaliteit (Koopmans en Brands, 2003). De spadeproef bleek niet geschikt om subtiele verschillen in bodemgesteldheid in kaart te brengen. Er is gekeken naar een alternatieve veldmethode om de bodemstructuur te beoordelen, namelijk door een schatting te maken van bio-poriën (FAO, 2006), maar deze methode bleek niet geschikt voor bewerkte bodems. Deze meting is in 2015 niet uitgevoerd.

• **Aggregaatstabiliteit:** Bodemverbeteraars kunnen door hun samenstelling en werking een stabiliserende werking hebben op de aggregaten. Een methode om de aggregaatstabiliteit te bepalen is gebruik te maken van de natte zeefmethode (wet sieving) (WUR-LDDG). Luchtdroge grond (<2 mm) wordt zowel in water als in een dispergeervloeistof gedompeld. De aggregaten die in het water al uiteen vallen worden geclassificeerd als instabiel. De aggregaten die in een dispergeervloeistof uiteen vallen worden geclassificeerd als stabiel. Er wordt een correctie gemaakt voor aanwezige elementaire delen > 250 μm (bijvoorbeeld zand) en plantenresten. De stabiele en instabiele aggregaatfracties tezamen vormen de totale aggregaatfractie. De gewichtsverhoudingen tussen de stabiele aggregaatfractie en de totale aggregaatfractie is een maat voor de aggregaatstabiliteit. Bij een ASI van 1, is er sprake van stabiele aggregaten.

• **Waterbergend vermogen:** Door middel van ongestoorde grondmonsters in 100 cm³ ringen is het waterbergend vermogen bepaald (pF) van een aantal behandelingen. Het waterbergend vermogen wordt gedefinieerd als het verschil in vochtgehalte bij veldcapaciteit (pF2.0, vocht dat door de bodem wordt vastgehouden bij drainage) en het vochtgehalte bij verwelkingspunt (pF4.2, vocht dat niet meer voor plantopname beschikbaar is). De uitgevoerde methode is beschreven in Steenis (2015).
Chemische bodemparameters

- **Algemeen chemisch grondonderzoek**: gemeten zijn parametes zoals pH, lutum, N-tot, S-tot, P-AL, PPAE, MgPAE, K,PAE, Ca-beschikbaarheid in bodemvocht, CEC (Cation Exchange Capacity) grootte en bezetting en EC. Dit heeft in 2015 na de aardappeloogst van 2015 plaats gevonden, met uitzondering van locatie Westmaas. Uitzondering was Ca in bodemvocht die in het voorjaar van 2015 is gemeten. (1:2 (v:v) grond: waterextractie, uitgevoerd door Eurofins Agro).

- Fractie hydrofoob organische stof: Hydrofobe organische stof is in verband gebracht met aggregaatstabiliteit en daarmee is meer hydrofobe organische stof dus gunstig voor de bodemstructuur. De waterafstotende werking zorgt er voor dat aggregaten minder snel uiteenvallen door indringend water. De fractie hydrofoob organische stof is in 2015 niet opnieuw bepaald, enerzijds omdat het een dure meting is en anderzijds deze in 2012 niet tot verschillen heeft geleid.

- **Hot Water extractable Carbon (HWC)**: HWC is een bepaling van organische stof die vaak in verband wordt gebracht met structuurvorming (Ghani et al, 2003). HWC bestaat voor een groot deel uit polysacchariden die een bindende rol kunnen spelen bij het bij elkaar houden van aggregaten (pers. mededeling, J. Bloem WUR-Alterra, 2012, 2015). De toegepaste methode is beschreven door Ghani et al. (2003).

Biologische bodemparameters

- **Schimmel- en bacteriehoeveelheid**: Per locatie en per behandeling zijn er grondmonster geanalyseerd op de aanwezigheid van bacteriën en schimmels. Er is daarbij onderscheid gemaakt naar de totale en actieve hoeveelheid. Deze meting is in 2015 niet uitgevoerd.
2.4.2 Bodemstikstof

Op alle locaties is de N-mineraal (N-min) voorraad in het voorjaar bepaald. Het ging om een mengmonster per toegepaste bodemverbeteraar. De diepte van bemonstering is afgestemd op de te telen gewassen in de regio. De uiteindelijke stikstof (N)-bemesting is gecorrigeerd voor de gemeten N-min. Naast de N-min in het voorjaar zijn alleen op de kleilocaties N-min metingen gedaan direct en circa zes weken na de oogst in de jaren 2010 t/m 2015. Dit is gefinancierd door provincie Flevoland. De lagen 0-30 en 30-60 cm is de voorraad N-min bepaald. Doel van de metingen was om na te gaan of de N-bemesting op het goede niveau was en in hoeverre er residueel stikstof aanwezig was dat kon uitspoelen.

2.4.3 Gewasontwikkeling, opbrengst en kwaliteit

Gedurende de loopfase van het project is in het groeiseizoen de bodemstructuur en gewasgroei gevolgd door de betrokken regionale onderzoekers van PPO en SPNA. Bij de bodemstructuur is gekeken naar zichtbare verslemping, korstvorming en verstuiven. Bij de gewasontwikkeling is gekeken naar legering, ziektes, plagen, kleurverschillen en gebreksziekten. Deze factoren kunnen eventuele opbrengstverschillen verklaren. Omdat de stikstofopname bepaald kan worden door de beworteling en bodemstructuur, wordt bij granen de legering opgenomen. Bij aardappelen wordt de mate van afsterving van het gewas waargenomen.

Verder is de opbrengst van het gewas bepaald, evenals, afhankelijk van het gewas, de kwaliteit. Voor de verschillende gewassen die afgelopen jaren op de vijf proeflocaties werden geteeld zijn de volgende kwaliteitsbepalingen gedaan:

- Suikerbieten: suikergehalte, de grond- en koptarra, het kalium-, natrium-, amino-N gehalte en de winbaarheid. Aan de hand van de gewasopbrengst en de kwaliteit is de financiële opbrengst berekend.
- Zomergerst: N-totaal en volgerstpercentage
- Wintertarwe: N-totaal
- Zaaiuien: sortering en uitval
- Zomertarwe: N-totaal
- Snijmaïs: verse opbrengst en droge stofopbrengst
- Pootaardappelen: stengelaantal, sortering, knolaantal, uitval
- Zetmeelaardappelen: onderwatergewicht en uitbetalingsgewicht
- Consumptieaardappelen: sortering, knolaantallen, onderwatergewicht en uitval
- Winterpeen: sortering en uitval
- Erwt: hardheid
- Stamslaboon: sortering

Op de kleilocaties is van de geteelde gewassen het stikstof- fosfaat- en kaligehalte bepaald in het hoofd- en bijproduct. In het bijproduct is dat gemeten als deze werd afgevoerd. Niet van alle behandelingen zijn de stikstof en fosforgehalte gemeten aangezien het budget beperkt was. Er zijn mengmonsters genomen per bodemverbeteraar. Aan de hand van de gerealiseerde gewasopbrengsten kan de totale stikstof- en fosfatafvoer met het gewas berekend worden.

2.4.4 Kostenindicatie toegepaste bodemverbeteraars

Om een indicatie te geven van de kosten van de onderzochte bodemverbeteraars en de opbrengsten die daar tegenover zouden moeten staan, is een berekening gemaakt van de gemiddelde kosten per hectare en de indicatieve meeropbrengsten voor aardappelen (consumptie-, poof- en zetmeelaardappelen). Voor de kosten- en opbrengstberekeningen is gebruik gemaakt van prijsgaven van leveranciers en de KWIN.
2015. En er is een inschatting gemaakt wanneer geen commerciele prijzen beschikbaar waren (bv Biochar). Er zijn twee manieren gehanteerd om de kosten bij de toepassing van de verschillende bodemverbeteraars, zoals toegepast in deze proef, door te rekenen:

- de gemiddelde kosten voor het aanschaffen en uitrijden/opbrengen per jaar zijn doorberekend;
- de jaarlijkse kosten vanaf 2010 t/m 2015 zijn opgeteld, ervan uitgaande dat zich dit voornamelijk zou uitbetalen in een meeropbrengst aardappelen zes jaar later, in 2015.

2.4.5 Communicatie activiteiten

Een nevendoel van het onderzoeksproject was ook om de praktijk regelmatig te informeren over de bevindingen van deze proef en andere ontwikkelingen op het gebied van bodembeheer. Dit is gedaan middels nieuwsbrieven, een flyer, presentaties op open dagen, lezingen, excursies, jaarrapporten en vakbladartikelen. Een overzicht is opgenomen in bijlage 17.
3 Resultaten

In dit hoofdstuk zijn de meet- en waarnemingsresultaten van de toepassing van de bodemverbeteraars op verschillende locaties en in de verschillende jaren samengevat. Een uitgebreid overzicht van de resultaten van de bodemmetingen staan in bijlage 3 t/m 11 en een uitgebreid overzicht van de gewasopbrengsten, de kwaliteit en de N-min metingen staan in bijlage 12 t/m 15. In bijlage 16 wordt een kostenberekening van bodemverbeteraars gegeven en in bijlage 17 een overzicht van de communicatie-activiteiten.

De resultaten van 2010 t/m 2014 zijn reeds in eerdere jaarrapporten uitvoerig beschreven. De verwachting was dat er pas na enkele jaren een effect zou zijn te meten. Daarom worden in de volgende paragrafen met name de resultaten van 2015 weergegeven. Als er in eerdere jaren opmerkelijke resultaten waren, worden deze ook weergegeven. Ook als deze metingen niet in 2015 zijn uitgevoerd.

3.1 Bodemonderzoek

Per parameter zijn de belangrijkste bevindingen en resultaten in de hier volgende paragrafen (§ 3.1.1 t/m 3.1.3) weergegeven.

3.1.1 Fysische bodemparameters

Textuur

In onderstaande Figuur 3.1 zijn resultaten van het granulaironderzoek 2010 weergegeven.

![Weggegeven figuur met granulair onderzoek resultaten](image-url)

Figuur 3.1. Resultaten granulaironderzoek per proeflocatie 2010

Van de drie kleilocaties heeft Lelystad het hoogste aandeel zand, gevolgd door Westmaas en Kollumerwaard. Duidelijk is te zien dat de monsters van de twee zandlocaties, Valthermond en Vredepeel, bijna geen lutum bevatten. Valthermond heeft iets meer silt in het monster dan Vredepeel.
De grofheid van de zandfracties in de drie kleilocaties is ongeveer gelijk: uiterst fijn zandig. Bij het monster van Valthermond is voor de zandfractie sprake van zeer fijn zand. De zandfractie van Vredepeel is matig fijn.

Tussen de twee zandlocaties is qua D60/D10 verhouding weinig verschil. Voor landbouwgronden met zand als dominante textuurfractie kan in de praktijk een uitgangswaarde van 3,5 worden gebruikt als eerste benadering voor een verdichtingsgevoeligheid (persoonlijke mededeling Th. Van Mierlo, 2010). Is de D60/D10 voor deze zandgronden groter dan 3,5 dan worden de gronden gevoelig voor verdichting. Beide D60/D10 verhoudingsgetallen liggen voldoende ver van 3,5 zodat niet gevreesd hoeft te worden voor verdichting van de bodem door het in elkaar schuiven van verschillende textuurfracties. Omdat de structuurvorming op zandgronden minder dan op kleigronden wordt beïnvloed door zwel en krimp van de bodemdelen is de textuurverdeling van de zandfracties van belang. De zandlocaties hebben een textuurverdeling van de zandfractie die geen aanwijzing geeft voor een natuurlijk optredende verdichting.

Bulkdichtheid

In 2010 bedroeg de bulkdichtheid (dichtheid stoofdroge grond) gemiddeld over de drie kleilocaties over de laag 12-27cm ongeveer 137 g/100 cm³. Er waren echter maar kleine verschillen tussen de locaties.

De najaarsmetingen laten voor de bemonsterde behandelingen geen grote verschillen zien. De voorjaars- en najaarsmeting voor Lelystad komen goed overeen. De resultaten van najaarssmeting komen overeen met de voorjaarsmetingen van de dieptes 12-17 en 22-27 cm (zie bijlage 3). Dat betekent dat de bodemverbeteraars geen duidelijke effecten op de bulkdichtheid van de ondergrond hebben.

Doorlatendheid

De doorlatendheid verschilt sterk per locatie en ook komen er grote schommelingen voor per behandeling over de locaties. Na 5 jaar lijkt op de doorlatendheid bij gebruik van Agrigyps (2 van de drie kleilocaties) beter te zijn dan de referentie kunstmest. De andere behandelingen verschillen niet duidelijk van de referentie kunstmest. In 2012 was het beeld nog gevarieerder (Bijlage 4). Daar leek de doorlatendheid met Agrigyps en PRP-Sol beter te zijn dan ten opzichte van de referentie kunstmest. De andere behandelingen op de kleilocaties verschillen niet met die van de referentie kunstmest. In beide meetjaren lijkt Agrigyps positief uit te werken op de doorlatendheid.

Op de zandlocaties blijkt dat de drie referentiebehandelingen niet van elkaar verschillen, met uitzondering van de drijfmestbehandeling op Valthermond. PRP-sol en steenmeel laten een wisselend beeld zien. Zie Tabel 3.2 voor de meetresultaten van 2015.
Tabel 3.2 De gestandaardiseerde doorlatendheid ten opzichte van de kunstmestbehandeling in 2015.

<table>
<thead>
<tr>
<th>Behandeling</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Valthermond</th>
<th>Vredepeel</th>
<th>Gemiddeld klei</th>
<th>Gemiddeld zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>2.4</td>
<td>0.5</td>
<td>1.8</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>1.1</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>2.0</td>
<td>0.9</td>
<td>0.8</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>1.7</td>
<td>1.1</td>
<td>0.5</td>
<td>1.1</td>
<td>1.0</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Bactofil</td>
<td>0.8</td>
<td>0.5</td>
<td>0.6</td>
<td>1.2</td>
<td></td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>1.4</td>
<td>0.7</td>
<td>1.3</td>
<td>0.7</td>
<td>1.0</td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>Compost</td>
<td>1.4</td>
<td>0.5</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

Indringingsweerstand

De indringingsweerstand dient onder de 3,0 MPa te blijven voor een goede wortelgroei. De gemeten waarden van de indringingsweerstand lijken onvoldoende onderscheidend te zijn om de effecten van bodemverbeteraars te kunnen meten. Bovendien is de veldvariatie erg groot. In 2012 lijkt de indringingsweerstand bij Betacal Carbo en drijfmest hoger te zijn dan bij de referentie kunstmest. De andere behandelingen verschilden niet van de referentie kunstmest.

Metingen in 2015 (figuur 3.2) laten in de toplaag (0-30cm) geen structurele verschillen zien tussen de behandelingen, gemiddeld over de drie kleilocaties. De indringingsweerstand blijft ruim onder de 1,0 MPa. Per locatie zijn er ook geen consistente verschillen tussen de behandelingen. Wel worden per locatie incidenteel verschillen tussen behandelingen gevonden. De verschillen kunnen worden toegeschreven aan de ruimtelijke variatie. Het mogelij effect van de bodemverbeteraars op de indringingsweerstand kan worden gemaskeerd door de uitgevoerde grondbewerkingen (poten, rugopbouw).

Er zijn duidelijke verschillen tussen de zandlocaties: de indringingsweerstand op de locatie Vredepeel is veel hoger dan op Valthermond. Per locatie zijn de verschillen tussen de behandelingen gering en niet consistent. Ook hier geldt dat de ruimtelijke variatie en de uitgevoerde grondbewerkingen verklarende factoren zijn voor de gemeten verschillen.
Gemiddelde indringingsweerstand 0-30 cm van behandelingen op de verschillende locaties in 2015, MPa.

Over de laag 30-80 zijn per locatie geen verschillen tussen behandelingen gemeten, zie Figuur 3.3. Er zijn duidelijke verschillen tussen de klei- en zandlocaties. De indringingsweerstand van de ondergrond van de kleilocaties komt bij Lelystad en Westmaas niet boven de 2 MPa, voor Kollumerwaard komt de weerstand net boven de 2 MPa uit. De indringingsweerstand op de drie kleilocaties blijft beneden de 3 MPa.

De indringingsweerstand van de twee zandlocaties ligt rond de 3 MPa of hoger. Met name voor Vredepeel geldt dat er een hoge indringingsweerstand is gemeten. Een verklaring voor de hoge gemeten waarden is de profielopbouw met een duidelijke overgang naar het moedermateriaal in de ondergrond. De hoge indringingsweerstand van Vredepeel, en de iets lagere indringingsweerstand van Valthermond, kan in deze omstandigheid beperkend zijn voor wortelontwikkeling in de ondergrond. Het vochtgehalte heeft een effect op indringingsweerstand, bij een toenemend vochtgehalte neemt de indringingsweerstand af. Ook op zandgronden is dit het geval, maar veel minder dan op kleigronden.

De hoge gemiddelde indringingsweerstand op de locatie Vredepeel is niet een gevolg van verdichte laag. Een verdichte laag kenmerkt zich meestal door een toename van de indringingsweerstand gevolgd door een weerstandsafname in de ondergrond, zie als voorbeeld Figuur 3.4. De textuur van de ondergrond is niet bepaald en kan aanleiding zijn van een natuurlijke verdichting.

Gemiddeld bedraagt de indringingsweerstand over deze laag voor de locaties Lelystad, Westmaas en Kollumerwaard respectievelijk 1.7, 2.3 en 2.3 MPa.
Aggregaatstabiliteit
De metingen in 2015 (Tabel 3.3) laten zien dat de behandelingen, die per locatie in drievoud zijn gemeten, meestal weinig afwijken (minder dan 10% verschil) van de referentiebehandeling kunstmest, hoewel er per locatie wel verschillen kunnen zijn. Zo laat de behandeling Bactofil in Westmaas een duidelijk hogere ASI (Aggregaat Stabiliteit Index) zien dan de referentie.

Er is in 2015 minder variatie van de behandelingen ten opzichte van de referentie dan in 2012 (zie Bijlage 5). Tussen de twee kleilocaties Lelystad en Westmaas is er voor Bactofil een groot verschil in relatieve aggregaatstabiliteit. Bij de andere behandelingen is het verschil tussen locaties minder groot.

De verschillen tussen de behandelingen die op alle locaties waren aangelegd zijn gering (<10%). De bodemverbeterende producten laten ook in 2015 op het micro-aggregaatniveau (<250 µm) geen verschillen zien ten opzichte van de referentie.
Tabel 3.3 De relatieve aggregaatstabiliteitsindex ASI in 2015 voor klei- en zandlocaties ten opzichte van kunstmest (procentueel)

<table>
<thead>
<tr>
<th>Behandeling</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Gemiddeld klei</th>
<th>Valthermond</th>
<th>Vredepeel</th>
<th>Gemiddeld zand</th>
<th>Gemiddeld klei+zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>101</td>
<td>124</td>
<td>118</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>104</td>
<td>114</td>
<td>107</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>82</td>
<td>91</td>
<td>97</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>97</td>
<td>87</td>
<td>111</td>
<td>98</td>
<td>112</td>
<td>102</td>
<td>107</td>
<td>102</td>
</tr>
<tr>
<td>BactoFil</td>
<td>99</td>
<td>145</td>
<td>122</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td>102</td>
<td>103</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groen-compost</td>
<td>97</td>
<td>119</td>
<td>106</td>
<td>107</td>
<td>89</td>
<td>103</td>
<td>96</td>
<td>103</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>93</td>
<td>101</td>
<td>101</td>
<td>98</td>
<td>102</td>
<td>78</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Waterbergend vermogen

In dezelfde monsters als de bepaling van de bulkdichtheid is ook het vochtbergend vermogen bepaald (pF). In onderstaande figuren zijn per locatie de resultaten gepresenteerd van verschillende vochttoestanden: veldvochtig, verzadigd, bij veldcapaciteit (pF 2 en pF 2.5) en bij verwelkingspunt (pF 4.2). In bijlage 6 zijn de resultaten opgenomen. In figuren 3.5 t/m 3.8 wordt het gemiddeld waterbergend vermogen per locatie weergegeven.

Figuur 3.5 Gemiddeld waterbergend vermogen van enkele behandelingen in Kollumerwaard in 2015.

* enkelvoudige bepaling
Figuur 3.6 Gemiddeld waterbergend vermogen van enkele behandelingen in Lelystad in 2015.

Figuur 3.7 Gemiddeld waterbergend vermogen van enkele behandelingen in Valthermond in 2015.
Per locatie zijn er tussen de toegepaste bodemverbeteraars geen verschillen gevonden in waterbergend vermogen, op zowel de klei- als zandlocaties.

3.1.2 Chemische bodemparameters

Algemeen chemisch grondonderzoek (inclusief CEC grootte en bezetting, pH en EC)
In het algemeen zijn geen duidelijke verschillen tussen de jaren 2012 en 2015 vastgesteld, zie bijlage 7. Een uitzondering is de gemeten Ca-beschikbaarheid die voor de meeste behandelingen en voor alle locaties gedaald is. In sommige gevallen is de daling aanzienlijk, zoals bijvoorbeeld voor de locatie Lelystad. De oorzaak hiervan kan zijn dat in 2012 in het najaar is bemonsterd en in het afsluitende jaar 2015 in het voorjaar. Daardoor kan er meer uitspoeling zijn opgetreden.

In 2012 daalde de Ca-bezetting op de kleilocaties bij de behandeling met Brandkalk door een groot aandeel MgO in Brandkalk, hetgeen leidde tot een stijging van de Mg-bezetting van 5 naar 10%. De andere behandelingen verschillen niet van elkaar met een Ca-bezetting van 91-92%. In het algemeen geldt dat een hogere Ca-bezetting een betere bodemstructuur oplevert.

Voor alle kleilocaties geldt dat het algemeen grondonderzoek laat zien dat de CEC-Mg bezetting van de Brandkalkbehandeling verhoogd is. Dit komt nog sterker naar voren in beschikbaar Mg (Mg-PAE) die meer dan dubbel zo hoog is als op de andere behandelingen. Voor de drie kleilocaties geldt ook dat gemiddeld over alle behandelingen er sprake is van een pH-stijging ten opzichte van 2010, voor Lelystad is deze het grootst, gevolgd door Westmaas en Kollumerwaard.

In Kollumerwaard zijn er behalve de Brandkalk geen grote verschillen waargenomen tussen 2012 en 2015. In Lelystad is ten opzichte van 2012 in 2015 de pH van de kunstmest en drijfmest behandelingen licht gedaald, terwijl de andere min of meer gelijk zijn gebleven. Over de hele linie is K-toestand (zowel K-PAE als K-getal) ten opzichte van 2012 gestegen. De Ca-beschikbaarheid (Ca-water) in 2015 is lager dan in 2012. In 2012 is in de herfst gemeten en in 2015 in het voorjaar. Uitspoeling in de winter kan de oorzaak zijn voor het verschil in Ca-beschikbaarheid. Ook voor Westmaas geldt dat er voor alle

Figuur 3.8 Gemiddeld waterbergend vermogen van enkele behandelingen in Vredepeel in 2015.
behandelingen een daling van Ca-beschikbaarheid is ten opzichte van 2012. Andere parameters zijn min of meer gelijk.

In Valthermond zijn effecten zichtbaar van de steenmeelbehandeling, maar de werking is niet consistend. Zowel de K-toestand (K-PAE, K-getal), de Mg-PAE als Na-PAE toestand zijn duidelijk gestegen. Daarenboven lijkt ook de grootte van de CEC bij steenmeel te zijn toegenomen. De fosfaatbeschikbaarheid (P-PAE) daarentegen duidelijker lager bij de andere behandelingen. De Ca-beschikbaarheid van alle behandelingen is in 2015 ook op Valthermond afgenomen ten opzichte van 2012. De Mg-PAE toestand van de compostbehandeling is gestegen.

Op locatie Vredepeel is het tegenovergestelde te zien: de fosfaattoestand (P-PAE, P-AL), de K-toestand (K-PAE), Mg-PAE en Na-PAE is voor alle behandelingen gedaald. Met name voor Na-toestand is een forse daling van de Na-toestand te zien. De fosfaatbeschikbaarheid(P-PAE) voor Steenmeel is duidelijker lager dan van de andere behandelingen. Ook voor Steenmeel geldt dat er in 2015 een lichte hoging van de CEC en van de Ca-beschikbaarheid is gemeten ten opzichte van 2012. De andere behandelingen vertonen geen of een lichte daling van de beschikbare Ca.

Voor de kleilocaties Kollumerwaard en Lelystad is de CEC bezetting zowel met NIR (Near Infra Red Spectroscopy) als met de natchemische methode bepaald (de Cohexmethode). Net als in 2012 blijkt dat in 2015 Brandkalk de magnesiumbezetting van het adsorptiecomplex is verhoogd en de calciumbezetting verlaagd, zie bijlage 8.

Ca in bodemvocht

Een toenemende bezetting van het kationencomplex met calcium leidt tot een hoger gehalte calcium in het bodemvocht. Een laag gehalte Mg, K en Na in het bodemvocht is vanuit bodemstructuur bekeken gunstig, omdat er dan een lage gevoeligheid voor dispersie is. Hogere gehalten in het bodemvocht in relatie tot bodemstructuur zijn vooral in kleigronden van belang. Tabel 3.4 laat zien dat Agrigyps in 2015 een verhogend effect heeft op het calciumgehalte in het bodemvocht op één van de drie locaties. Gezien de spreiding van de resultaten is er in het algemeen geen verschil met de referentiebehandeling. Het calciumverhogend effect van de andere kalkmeststoffen is gering of afwezig. De gemeten gehalten zijn niet alleen afhankelijk van de locatie, maar hangen ook af van het weer. Bij meer neerslag zijn de gehalten over het algemeen lager. Ten opzichte van 2012 zijn de gehalten in 2015 over de hele linie wat lager (bijlage 9). Het voorjaar van 2015 was dan ook een stuk natter dan dat van 2012, waardoor meer uitspoeling is opgetreden. Ter indicatie: 1 mmol Ca in bodemvocht komt ongeveer overeen met 50 kg CaO per ha in de bouwvoor dat in oplossing is.

De gehalten Ca in bodemvocht op de twee zandlocaties zijn laag, waarbij het opvallend is dat de waarden in Vredepeel relatief hoog zijn ten opzichte van voorgaande jaren. De oorzaak is niet duidelijk.
Tabel 3.4 Gemiddelde Ca-water extractie (1:2 volume-extract water) per behandeling per locatie in 2015, in mmol/liter.

<table>
<thead>
<tr>
<th>Behandeling</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Valthemond</th>
<th>Vredepeel</th>
<th>Klei</th>
<th>Zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>0,9</td>
<td>0,7</td>
<td>2,6</td>
<td>1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>1,0</td>
<td>0,6</td>
<td>1,0</td>
<td></td>
<td>0,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>0,9</td>
<td>0,6</td>
<td>0,9</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>0,8</td>
<td>0,7</td>
<td>0,9</td>
<td>< 0,1</td>
<td>0,8</td>
<td>0,8</td>
<td>0,4</td>
</tr>
<tr>
<td>BactoFil</td>
<td>0,7</td>
<td>0,7</td>
<td>0,9</td>
<td>0,9</td>
<td>0,8</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td></td>
<td>< 0,1</td>
<td>0,6</td>
<td>0,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compost</td>
<td>0,9</td>
<td>0,7</td>
<td>0,9</td>
<td>< 0,1</td>
<td>0,8</td>
<td>0,8</td>
<td>0,5</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>0,8</td>
<td>0,6</td>
<td>0,8</td>
<td>< 0,1</td>
<td>0,8</td>
<td>0,7</td>
<td>0,5</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>0,9</td>
<td>0,6</td>
<td>1,0</td>
<td>< 0,1</td>
<td>0,9</td>
<td>0,8</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Fractie hydrofoob organische stof
Op de drie kleilocaties was er geen consistent verschil tussen de behandelingen. De hoeveelheid hydrofiele organische stof was echter voor vrijwel alle behandelingen hoger dan van de referentie kunstmest.

Hot Water extractable Carbon
Hot Water extractable Carbon (HWC) is in 2012 en in het voorjaar van 2015 gemeten. Op alle drie de kleilocaties is de HWC voor de behandeling compost hoger dan de referentie kunstmest. Gemiddeld zijn de behandeling compost, Betacal Carbo en PRP-Sol respectievelijk 30%, 10% en 10% hoger dan de referentie kunstmest (zie Tabel 3.5). De andere behandelingen verschillen minder dan 10% van die van kunstmest, met uitzondering van Brandkalk. Met Brandkalk was de HWC op twee van de drie locaties ongeveer 20% lager (zie bijlage 10).

Tabel 3.5 Relatieve gehalte HWC ten opzichte van referentiebehandeling kunstmest in 2012 en 2015, per locatie, per grondsoort (procentuee).

<table>
<thead>
<tr>
<th>Behandeling</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Gem. Klei</th>
<th>Valthemond</th>
<th>Vredepeel</th>
<th>Gem. Zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>101</td>
<td>127</td>
<td>118</td>
<td>101</td>
<td>84</td>
<td>85</td>
<td>101</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>87</td>
<td>125</td>
<td>103</td>
<td>116</td>
<td>92</td>
<td>88</td>
<td>94</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>71</td>
<td>116</td>
<td>112</td>
<td>81</td>
<td>88</td>
<td>84</td>
<td>90</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>82</td>
<td>123</td>
<td>93</td>
<td>105</td>
<td>94</td>
<td>103</td>
<td>90</td>
</tr>
<tr>
<td>BactoFil</td>
<td>88</td>
<td>100</td>
<td>108</td>
<td>99</td>
<td>98</td>
<td>99</td>
<td>103</td>
</tr>
<tr>
<td>Steenmeel</td>
<td></td>
<td>85</td>
<td>88</td>
<td>96</td>
<td>104</td>
<td>91</td>
<td>96</td>
</tr>
<tr>
<td>Compost</td>
<td>87</td>
<td>146</td>
<td>101</td>
<td>139</td>
<td>100</td>
<td>105</td>
<td>96</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>91</td>
<td>109</td>
<td>109</td>
<td>99</td>
<td>107</td>
<td>92</td>
<td>102</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Op zandgrond is het beeld niet consistent. In Valthermond is bij alle behandelingen de HWC lager tot duidelijk lager (compost en drijfmest) dan bij de referentie kunstmest. In Vredepeel is het beeld omgekeerd. De kunstmest behandeling heeft de laagste HWC (zie bijlage 10).

Tussen klei en zand is er wat betreft de compostbehandeling een duidelijk verschil. Op kleigrond is er een duidelijk hoger relatiefgehalte, op zandgrond een lager relatief gehalte. De andere behandelingen verschillen niet van de referentie kunstmest (<10% verschil).
3.1.3 Biologische bodemparameters

3.2 Bodemstikstof

Een betere bodemstructuur kan leiden tot een betere groei en daarmee tot een betere nutriëntenbenutting. N-min metingen in het najaar geven een indruk of stikstof beter benut is mits de stikstofbemesting exact gelijk geweest is over alle behandelingen. Dat laatste is bij gebruik van organische producten zoals mest en compost niet met zekerheid vast te stellen.

De N-min metingen die in het najaar zijn uitgevoerd op de kleilocaties direct na de oogst en zo’n 6 weken na de oogst laten gemiddeld over alle jaren weinig verschillen zien tussen de behandelingen (zie Tabel 3.6, en bijlage 12). Het niveau schommelde tussen 20-30 kg per ha per laag van 60 cm. De proefvelden zijn conform de huidige bemestingsadviezen bemest en de hoeveelheid N-min is duidelijk beneden de 35 kg N/ha gebleven. Bij deze niveaus blijft de N-uitspoeling meestal duidelijk beneden 50 mg nitraat per liter. De hoogste waarden zijn gevonden bij de inzet van Compost en Betacal Carbo. Deze bevatten mineraliseerbare organische stikstof, waarbij de mineralisatie ook na de oogst nog kan doorgaan.

<table>
<thead>
<tr>
<th>Behandeling</th>
<th>Gemiddeld</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>30</td>
<td>19</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>30</td>
<td>19</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>Condit 5%</td>
<td>29</td>
<td>18</td>
</tr>
<tr>
<td>Xurian</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>Bactofil A10</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>Biochar hout 2.5</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Biochar hout 5.0</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>Compost</td>
<td>37</td>
<td>19</td>
</tr>
</tbody>
</table>
3.3 Gewasontwikkeling, opbrengst en kwaliteit

3.3.1 Gewasontwikkeling 2015

Gedurende het teeltseizoen is maandelijks een gewasbeoordeling gedaan waarbij gekeken is naar de grofheid van het pootbed (alleen vlak na het poten), opkomst, stand en kleur van het gewas en grondbedekking. In Lelystad werden er duidelijke verschillen gevonden in kleur van het gewas. De behandeling met Condit en Bactofil bleef achter in kleur ten opzichte van kunstmest. Op het eind van de teelt was er een mindere gewasstand in de velden waar Bactofil was toegepast. In beide gevallen is dit te wijten aan een te lage aanvoer van stikstof. De behandeling met compost had in juli en augustus een mindere gewasstand. In Valthermond waren er geen duidelijke verschillen zichtbaar, evenals Westmaas. In Vredepeel werd de grofheid van de aardappelrug van de behandeling met Steenmeel als minder goed beoordeeld. Bij de eerste beoordeling scoorden PRP-sol, Xurian Optimum en Condit een betere bodembedekking ten opzichte van referentie kunstmest. Eind augustus was de bodembedekking, kleur en stand van het gewas minder van de behandeling met Condit. Half september was dit eveneens het geval voor het object Bactofil. Bij een beoordeling van ziekteaanstasting scoorde Xurian Optimum op half september beter dan kunstmest. Aangezien er naast bovengenoemde verschillen verder geen verschillen zijn waargenomen, zijn de waarnemingsresultaten van 2015 verder niet opgenomen in deze rapportage.

3.3.2 Opbrengst en kwaliteit per grondsoort en locatie 2015

De effecten van het toepassen van bodemverbeteraars kunnen per grondsoort verschillen. In Tabel 3.7 zijn de relatieve opbrengsten van 2015 per bodemverbeteraar op alle locaties en op kleigrond, en zand- en dalgrond met elkaar vergeleken.

Tabel 3.7 Relatieve opbrengst 2015 op klei en zand-en dalgrond ten opzichte van referentie kunstmest (=100%)

<table>
<thead>
<tr>
<th>Bodemverbeteraars</th>
<th>Alle locaties</th>
<th>Kleigrond</th>
<th>Zand- en dalgrond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalk en calciummeststoffen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrigyps</td>
<td>100.3</td>
<td>abc</td>
<td>100.7</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>103.2</td>
<td>c</td>
<td>103.6</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>101.5</td>
<td>bc</td>
<td>102.0</td>
</tr>
<tr>
<td>PRP-sol</td>
<td>97.4</td>
<td>ab</td>
<td>96.6</td>
</tr>
<tr>
<td>Bodemverbeteraars met micro-organismen of die bodemleven stimuleren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condit</td>
<td>98.3</td>
<td>ab</td>
<td>99.8</td>
</tr>
<tr>
<td>Xurian optimum</td>
<td>100.9</td>
<td>bc</td>
<td>100.8</td>
</tr>
<tr>
<td>Bactofil</td>
<td>95.8</td>
<td>a</td>
<td>94.7</td>
</tr>
<tr>
<td>Overige producten: Biochar en steenmeel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar ECN</td>
<td>99.9</td>
<td>abc</td>
<td>98.9</td>
</tr>
<tr>
<td>Biochar Norit</td>
<td>100.4</td>
<td>abc</td>
<td>101.9</td>
</tr>
<tr>
<td>Biochar Romchar</td>
<td>100.1</td>
<td>abc</td>
<td>99.0</td>
</tr>
<tr>
<td>Biochar hout 2.5 ton</td>
<td>99.8</td>
<td>abc</td>
<td>100.2</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>97.1</td>
<td>ab</td>
<td>98.6</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>97.0</td>
<td>ab</td>
<td></td>
</tr>
<tr>
<td>Referenties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compost</td>
<td>102.7</td>
<td>c</td>
<td>104.3</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>97.3</td>
<td>ab</td>
<td>97.6</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>100.0</td>
<td>abc</td>
<td>100.0</td>
</tr>
<tr>
<td>F pr.</td>
<td><0.05</td>
<td></td>
<td><0.05</td>
</tr>
</tbody>
</table>

¹) Per kolom zijn gemiddelden met een gemeenschappelijke letter niet significant verschillend volgens de paargewijze t-toets (P=0.05).

Ten opzichte van kunstmest zijn er geen betrouwbare verschillen in relatieve opbrengst wanneer de relatieve opbrengsten over alle locaties vergeleken worden. Ten opzichte
van de referentie kunstmest is er geen significante verschil in relatieve opbrengst van de behandelingen met bodemverbeteraars op zowel kleigrond als zand-dalgrond. Ook ten opzichte van referentie drijfmest zijn er geen betrouwbare verschillen in opbrengst behalve Brandkalk. Deze heeft over alle locaties en op kleigrond een hogere opbrengst dan de referentie drijfmest.

De relatieve opbrengst ten opzichte van referentie kunstmest (=100%) van de verschillende locaties wordt weergegeven in Tabel 3.8.

Tabel 3.8 Relatieve opbrengst 2015 van de 5 locaties ten opzichte van referentie kunstmest (=100%)

<table>
<thead>
<tr>
<th></th>
<th>Kollumerwaard 28-55 mm</th>
<th>Lelystad 40-70 mm</th>
<th>Westmaas 40-70 mm</th>
<th>Valthermond ubg</th>
<th>Vredepeel 40-70 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% =</td>
<td>34.8 ton/ha</td>
<td>51.3 ton/ha</td>
<td>38.3 ton/ha</td>
<td>77.9 ton/ha</td>
<td>76.0 ton/ha</td>
</tr>
</tbody>
</table>

Kalk en calciummeststoffen

| | Agrigips 100.2 abcd 98.5 ab 103.3 abc | Betacal carbo 104.6 cd 99.5 ab 101.8 abc | Brandkalk 107.8 d 99.4 ab 103.6 bc | PRP-sol 92.1 a 95.0 ab 102.8 abc 99.6 a 97.3 ab |

Bodemverbeteraars met micro-organismen of die het bodemleven stimuleren

| | Condit 96.2 abc 100.7 b 102.6 abc 99.2 a 92.6 a | Xurian Optimum 107.4 d 99.9 b 95.3 a 103.8 a 98.2 ab | Bactofil 92.0 a 97.3 ab 97.0 ab |

Overige producten: Biochar en steenmeel

| | Biochar Norit 101.9 bcd 100.1 a | Biochar ECN 100.4 a | Biochar hout 2.5 ton 98.3 ab | Biochar hout 5 ton 98.8 abcd 96.4 ab 95.7 a | Ramchar 100.6 a | Steenmeel 97.9 a 94.8 ab |

Referenties

| | Compost 102.8 bcd 101.4 b 98.8 ab 92.8 c 100.4 a 100.2 b | Drijfmest 94.8 ab 92.4 ab 103.9 bc 98.8 a 94.8 ab | Kunstmest 100.0 abcd 100.0 b 100.0 ab 100.0 a 100.0 b | Lsd 1) 9.308 7.566 8.196 9.701 7.253 |

F pr. <0.05 n.s. 4) n.s. n.s. n.s.

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd (least significant difference), dan zijn de verschillen betrouwbaar
2) Ubg: uitbetalingsgewicht
3) Per kolom zijn gemiddelden met een gemeenschappelijke letter niet significant verschillend volgens de paarsgewijze t-toets (P<0.05).
4) n.s. = niet significant tov referentie kunstmest

Ten opzichte van de referentie kunstmest heeft in Lelystad de toepassing met Bactofil een significant lagere opbrengst. Op de andere locaties is er geen significant verschil in opbrengst tussen de toegepaste bodemverbeteraars en referentie kunstmest.
3.3.3 Berekende afvoer van stikstof en fosfaat per locatie in 2015

De afvoer van stikstof en fosfaat per hectare is alleen voor de kleilocaties bepaald. De gevonden waarden geven een indruk van de berekende stikstof- en fosfaatafvoer met het geoogste product, zie Tabel 3.9 en Tabel 3.10.

Tabel 3.9 Afvoer van stikstof (N) in gr/kg ds en in kg/ha

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>N-totaal gr/kg ds</th>
<th>N afvoer kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KW1</td>
<td>LS</td>
</tr>
<tr>
<td>Agrigyps</td>
<td>*</td>
<td>14.3</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>*</td>
<td>14.8</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>16.4</td>
<td>15.9</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>16.2</td>
<td>14.5</td>
</tr>
<tr>
<td>Condit</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>16.3</td>
<td>*</td>
</tr>
<tr>
<td>Biochar norit</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>Biochar hout 2.5 ton</td>
<td>-</td>
<td>16.3</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>16.4</td>
<td>16.2</td>
</tr>
<tr>
<td>Bactofill A10</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>Compost</td>
<td>*</td>
<td>14.6</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>*</td>
<td>15.9</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>*</td>
<td>15.3</td>
</tr>
</tbody>
</table>

*KW = Kollumerwaard, LS = Lelystad, WM = Westmaas
*niet gemeten - niet getest

Opvallend is het hoge gehalte aan fosfaat in de droge stof van de behandeling met Condit in Kollumerwaard. Daardoor komt de fosfaatafvoer het hoogst uit van de metingen op deze locatie. Ook opvallend is de relatief lage afvoer van stikstof van de
behandeling met Bactofil in Lelystad door het lage stikstofgehalte van het afgevoerde product en de lagere droge stof opbrengst.

3.3.4 Opbrengsten 2010-2015

In Bijlage 14 staan de opbrengsten van de verschillende locaties per jaar en de gemiddelde opbrengst per gewas. In deze paragraaf staan de opbrengsten over de jaren 2010-2015. Allereerst de relatieve opbrengst over alle gewassen en locaties en per grondsoort (Tabel 3.11) en voor aardappel (Tabel 3.12).

Tabel 3.11 Gemiddelde relatieve opbrengst over alle gewassen en locaties in 2010 t/m 2015 ten opzichte van referentie kunstmest (100%)

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Alle locaties</th>
<th>Locaties op kleigrond</th>
<th>Locaties op zand en dalgrond</th>
<th>Locaties waar bodemverbeteraar getest is</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalk en calciummeststoffen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrigyps</td>
<td>100.7</td>
<td>c</td>
<td>102.8</td>
<td>b</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>100.0</td>
<td>bc</td>
<td>102.2</td>
<td>b</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>99.2</td>
<td>bc</td>
<td>101.3</td>
<td>b</td>
</tr>
<tr>
<td>PRP-sol</td>
<td>100.0</td>
<td>bc</td>
<td>102.3</td>
<td>b</td>
</tr>
<tr>
<td>Bodemverbeteraars met micro-organismen of die bodemleven stimuleren</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condit</td>
<td>96.9</td>
<td>ab</td>
<td>99.7</td>
<td>b</td>
</tr>
<tr>
<td>Xurian optimum</td>
<td>98.3</td>
<td>bc</td>
<td>100.3</td>
<td>b</td>
</tr>
<tr>
<td>Bactofil</td>
<td>93.0</td>
<td>a</td>
<td>94.6</td>
<td>a</td>
</tr>
<tr>
<td>Overige producten: Biochar en steenmeel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar ECN</td>
<td>99.1</td>
<td>bc</td>
<td>97.40</td>
<td>a</td>
</tr>
<tr>
<td>Biochar Norit</td>
<td>99.2</td>
<td>bc</td>
<td>101.4</td>
<td>b</td>
</tr>
<tr>
<td>Romchar</td>
<td>100.4</td>
<td>bc</td>
<td>98.67</td>
<td>a</td>
</tr>
<tr>
<td>Biochar hout 2,5 ton</td>
<td>98.8</td>
<td>bc</td>
<td>101.0</td>
<td>b</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>98.3</td>
<td>bc</td>
<td>101.7</td>
<td>b</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>97.1</td>
<td>abc</td>
<td>95.81</td>
<td>a</td>
</tr>
<tr>
<td>Referenties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compost</td>
<td>99.6</td>
<td>bc</td>
<td>102.0</td>
<td>b</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>98.2</td>
<td>bc</td>
<td>101.0</td>
<td>b</td>
</tr>
<tr>
<td>Kunstmest(2)</td>
<td>99.3</td>
<td>bc(3)</td>
<td>100.8(3)</td>
<td>b</td>
</tr>
</tbody>
</table>

F pr. <0.05 <0.10 n.s.

1) LS = Lelystad (klei), KW = Kollumerwaard (klei), WM = Westmaas (klei), VM = Valthermond (dal), VP = Vredepeel (zand).
2) Doordat niet alle bodemverbeteraars op klei én zand/dalgrond toegepast zijn staat de referentie kunstmest niet op 100%.
3) Per kolom zijn gemiddelden met een gemeenschappelijke letter niet significant verschillend volgens de paarsgewijze t-toets (P=0.05).

Ten opzichte van de referentie kunstmest heeft het object Bactofil een lagere opbrengst evenals ten opzichte van de overige objecten (behalve Steenmeel).

Om het effect van bodem- en structuurverbeteraars per grondsoort te kunnen beoordelen zijn de opbrengsten over de jaren 2010 tot en met 2015 per grondsoort (klei en zand/dalgrond) naast elkaar gezet.

Per grondsoort zijn er over de periode 2010-2015 alleen op kleigrond voor Bactofil significante verschillen gevonden ten opzichte van referentie kunstmest en de overige bodemverbeteraars. Zoals eerder genoemd is hier vooral sprake van een bemestingseffect (beschikbare stikstof). Ondanks het gericht inzetten van de
bodemverbeteraars per grondsoort zijn er niet meer verschillen gevonden. Zo liggen de kalkmeststoffen alleen op kleigrond en steenmeel alleen op zand en dalgrond omdat deze op de betreffende grondsoorten het meest effect zouden kunnen hebben.

Tabel 3.12 Relatieve opbrengsten van de bodemverbeteraars over 2010-2015 over alle locaties gemiddeld voor aardappel.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalk en Calciummeststoffen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrigyps</td>
<td>100.4 ab</td>
<td>100.9 bc</td>
<td>100.3 ab</td>
<td>104.3 c</td>
<td>96.0 ab</td>
<td>96.0 ab</td>
<td>100.0 ab</td>
<td>100.0 ab</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>101.8 b</td>
<td>102.6 bc</td>
<td>102.6 bc</td>
<td>96.0 ab</td>
<td>96.0 ab</td>
<td>96.0 ab</td>
<td>100.0 ab</td>
<td>100.0 ab</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>99.0 ab</td>
<td>102.6 bc</td>
<td>102.6 bc</td>
<td>96.0 ab</td>
<td>96.0 ab</td>
<td>96.0 ab</td>
<td>100.0 ab</td>
<td>100.0 ab</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>106.1 a</td>
<td>100.8 b</td>
<td>96.0 ab</td>
<td>104.2 c</td>
<td>104.2 c</td>
<td>104.2 c</td>
<td>100.0 ab</td>
<td>100.0 ab</td>
</tr>
<tr>
<td>Bodemverbeteraars met micro-organismen of die het bodemleven stimuleren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condit</td>
<td>102.1 a</td>
<td>99.0 ab</td>
<td>93.5 a</td>
<td>104.2 c</td>
<td>104.2 c</td>
<td>104.2 c</td>
<td>100.0 ab</td>
<td>100.0 ab</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>106.9 a</td>
<td>98.0 ab</td>
<td>104.2 c</td>
<td>100.0 ab</td>
<td>100.0 ab</td>
<td>100.0 ab</td>
<td>100.0 ab</td>
<td>100.0 ab</td>
</tr>
<tr>
<td>BactoFil B10</td>
<td>95.8 a</td>
<td>95.8 a</td>
<td>95.8 a</td>
<td>100.0 ab</td>
<td>100.0 ab</td>
<td>100.0 ab</td>
<td>100.0 ab</td>
<td>100.0 ab</td>
</tr>
<tr>
<td>Overige producten: Biochar en steenmeel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar ECN</td>
<td>103.6 a</td>
<td>100.7 bc</td>
</tr>
<tr>
<td>Biochar norit</td>
<td>103.6 a</td>
<td>100.7 bc</td>
</tr>
<tr>
<td>Biochar hout 2,5 ton</td>
<td>99.6 ab</td>
<td>100.0 ab</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>100.0 a</td>
<td>97.8 ab</td>
<td>99.8 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
</tr>
<tr>
<td>Biochar Romchar</td>
<td>105.8 a</td>
<td>100.0 abc</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>100.2 a</td>
<td>96.5 ab</td>
<td>96.5 ab</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
</tr>
<tr>
<td>Referenties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compost</td>
<td>107.9 ab</td>
<td>102.9 b</td>
<td>102.9 b</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>104.6 a</td>
<td>99.6 ab</td>
<td>98.1 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>100.0 a</td>
<td>100.0 ab</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
<td>100.0 abc</td>
</tr>
</tbody>
</table>

Er is geen significant verschil in opbrengst ten opzichte van de referentie kunstmest wanneer de relatieve marktbare opbrengsten van aardappelen over 2010-2015 met elkaar vergeleken worden.

3.3.5 Stikstof en fosfaatoverschot per locatie 2010-2015

Wanneer er geen getallen in de tabel staan, zijn er geen cijfers bekend van de N- of P-afvoer. Zowel in Westmaas en Lelystad is het stikstofoverschot van Betacal carbo gemiddeld genomen hoog. Het gemiddeld fosfaatoverschot van Condit is zowel op Lelystad en Westmaas het laagst.

3.4 Kostenindicatie toegepaste bodemverbeteraars

De kosten van aanschaf en toepassing van bodemverbeteraars zijn afgezet tegen de benodigde meeropbrengsten van aardappelen (consumptie-, poot- en zetmeelaardappel) om de kosten terug te verdienen. Er zijn twee manieren gehanteerd om de kosten bij de toepassing van de verschillende bodemverbeteraars, zoals toegepast in deze proef, door te rekenen:

- De gemiddelde kosten voor het aanschaffen en uitrijden/opbrengen per jaar zijn doorberekend;
- De jaarlijkse kosten vanaf 2010 t/m 2015 zijn opgeteld, ervan uitgaande dat zich dit voornamelijk zou uitbetalen in een meeropbrengst aardappelen zes jaar later, in 2015.

Deze berekeningen zijn weergegeven in Tabel 3.15 en Tabel 3.16.
Voor de eenmalige toepassing van bijvoorbeeld Biochar is er gerekend met een afschrijving over 2010-2015. In de berekening is Xurian Optimum niet meegenomen wegens het ontbreken gegevens over de kosten van toepassing van dit product.

Tabel 3.15 Kostenindicatie van bodemverbeteraars gemiddeld per jaar en cumulatief over 2010-2015 in €/ha.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Eenheid</th>
<th>Gemiddelde kosten bodemverbeteraar per jaar</th>
<th>Kunst-</th>
<th>Veldspuit</th>
<th>Loonwerk</th>
<th>Kostenbesparing</th>
<th>totaalkosten per jaar (kosten bodemverbeteraar + toediening-kunstmest-besparing)</th>
<th>Toediening over 6 jaar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>kg/ha</td>
<td>€ 53</td>
<td>€ 90</td>
<td>€ 0</td>
<td>€ 143</td>
<td>€ 861</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>kg/ha</td>
<td>€ 240</td>
<td>€ 90</td>
<td>€ 0</td>
<td>€ 330</td>
<td>€ 1.982</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacalkarbo</td>
<td>kg/ha</td>
<td>€ 0</td>
<td>€ 90</td>
<td>€ 22</td>
<td>€ 67</td>
<td>€ 406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>kg/ha</td>
<td>€ 123</td>
<td>€ 25</td>
<td>€ 0</td>
<td>€ 148</td>
<td>€ 892</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condit 7%N</td>
<td>kg/ha</td>
<td>€ 390</td>
<td>€ 25</td>
<td>€ 0</td>
<td>€ 144</td>
<td>€ 270</td>
<td>€ 1.623</td>
<td></td>
</tr>
<tr>
<td>Bactofil</td>
<td>kg/ha</td>
<td>€ 82</td>
<td>€ 30</td>
<td>€ 91</td>
<td>€ 121</td>
<td>€ 1.127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td>ton/ha</td>
<td>€ 1.108</td>
<td>€ 90</td>
<td>€ 0</td>
<td>€ 1.198</td>
<td>€ 7.190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compost</td>
<td>ton/ha</td>
<td>€ 48</td>
<td>€ 90</td>
<td>€ 60</td>
<td>€ 77</td>
<td>€ 463</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Deze berekening is slechts indicatief en gebaseerd op de toepassing van bodemverbeteraars zoals deze in de proef zijn uitgevoerd. In een enkel geval is een bodemverbeteraar niet jaarlijks toegepast. In de berekening gehouden met eventuele lagere kosten van een kunstmestgift (behalve in het geval van compost). Biochar is in bovenstaande tabel niet meegenomen aangezien deze commercieel niet beschikbaar zal zijn. De kalk en calciummeststoffen zijn niet meegenomen in de berekening voor zetmeelaardappel aangezien deze op zand/dalgrond geteeld worden waar deze bodemverbeteraars niet toegepast zijn. In bijlage 16 is een gedetailleerdere berekening opgenomen.

De benodigde meeropbrengsten zullen uiteraard in het geval van een doorberekending van een toepassing voorafgaand aan de teelt lager zijn dan de cumulatieve kosten. De berekende aanvoer van stikstof, fosfaat en of kali heeft vrij sterk kostenverlagend effect op de toepassing van bodemverbeteraars, terwijl de toepassing van Agrigyps ondanks lage productkosten, loonwerk kosten met zich meebrengen en daardoor gelijk uitkomt dan bodemverbeteraars die duurder zijn in aanschaf, maar goedkoper zijn in de toediening, zoals PRP-Sol.
Discussie en conclusies

4.1 Algemeen

De proef is uitgevoerd op drie klei- en twee zandlocaties in verschillende delen van het land. De locaties vertegenwoordigen een aantal typisch akkerbouwregio’s: het zuidwestelijke kleigebied (Westmaas), de jonge zeekleigronden (Lelystad), het noordelijke kleigebied (Kollumerwaard), het zuidelijk en oostelijk zandgebied (Vredepeel) en de akkerbouw op dalgronden (Valthermond). Daarmee is gezorgd voor een goede landelijke dekking/spreiding. Op de bedrijven zijn typische bouwplannen voor die regio toegepast. Bekend is dat eventueel positieve effecten zich met de jaren sterker zullen manifesteren. Daarom is de proef gedurende zes jaar uitgevoerd. Daarbij is er bij de opzet al voor gezorgd dat, ondanks de verscheidenheid in bouwplannen per proeflocatie, er in het laatste jaar van de proef overal aardappels geteeld zouden worden. Met eenzelfde gewas kan het meest scherp worden getoetst op de meerwaarde van bodemverbeteraars op de gewasopbrengst en op verandering in de bodemkwaliteit. De gewasopbrengsten zijn elk jaar bepaald. De bodemkwaliteit en bodemstructuur gerelateerde parameters zijn bij aanvang in 2012 en in het slotjaar van de proef gemeten. Dit omdat het bepalen van verandering in bodemkenmerken die een relatie hebben met bodemstructuur relatief duur is en anderzijds ook de verwachting was dat veranderingen geleidelijk op gaan treden. In het navolgende worden de belangrijkste resultaten kort besproken.

4.2 Effecten bodemverbeteraars op bodem

De leveranciers van de producten schrijven diverse effecten toe aan de producten. In de productbeschrijving (Bijlage 1) staan deze bodemverbeterende eigenschappen genoemd. In het uitgevoerde onderzoek zijn niet alle bodemverbeterende eigenschappen getoetst, omdat goede meetmethodes ontbreken om dit objectief vast te stellen of omdat de metingen te kostbaar zijn. Duidelijke opbrengstverschillen en verschillen in de gemeten bodemparameters, gedurende de gehele looptijd van de proef, ontbreken. Het is dan ook niet te verwachten dat er grote wijzigingen zijn opgetreden in de bodemeigenschappen die niet zijn getoetst in de proef.

Een betere nutriëntenbeschikbaarheid is getoetst door het meten van de nutriëntenopname per ha. Dit is vooral van belang voor Bactofil en Condit waar ook de stikstofbemesting is aangepast op aangeven van de leverancier. De stikstoflevering is echter in veel gevallen te optimistisch ingeschat waardoor de gewasontwikkeling achterblijft. Minder stikstof werd opgenomen en ook opbrengstderving is opgetreden. Bij het ontbreken van stikstoftrappen in de proef kan de stikstoflevering ook niet nauwkeurig worden vastgesteld. In een enkel geval was er sprake van een duidelijk hoger fosfaatgehalte in geoogst gewas in 2015. Dit was echter niet consistent per middel over locaties heen.

De wijze van toepassing van de bodemverbeteraars is afgestemd met de leveranciers. Bij de uitvoering is zoveel mogelijk gekozen voor een jaarlijkse toediening. Dit is gedaan, omdat jaarlijks toedienen mogelijk sneller tot effecten leidt maar ook om milieukundig verantwoord bezig te zijn. Met Agrigyps worden bij eenmalige giften van 5 tot 10 per ha, zoals in de praktijk voorkomt, veel te hoge zwavelgiften gegeven, wat tot te hoge zwavelgehalten in het grondwater leidt (zie verderop). Een jaarlijkse toediening wijkt dan soms af van de praktijk waar incidenteel of maar eens in de paar jaar een hoge dosering wordt gegeven.
Na zes proefjaren met jaarlijkse toediening zijn nauwelijks effecten aangetoond van de toegevoegde bodemverbeteraars. Het is dan ook onwaarschijnlijk dat hogere eenmalige doseringen wel tot positieve effecten zou leiden, temeer daar via de jaarlijkse toepassing in totaal meer is toegepast dan met eenmalige doseringen gedurende deze zou gebeuren.

Bij de start van de proef is er specifiek gezocht naar percelen met enige problemen en niet naar extremen. Dit was ook conform het doel van de proef: nagaan of door gebruik van de bodemverbeteraars op 'gewone' percelen de bodemkwaliteit en opbrengst te verbeteren. Dat er niet meer verschillen gevonden zijn in de fysische- en chemische bodemparameters, bij de toepassing van de bodemverbeteraars, kan liggen aan het feit dat:

- de bodemkwaliteit op de proeflocaties relatief goed was, waardoor eventueel positieve effecten van de bodemverbeteraars niet tot uiting konden komen;
- de gebruikte producten weinig invloed hebben op de bodemkwaliteit onder het toegepaste bouwplan, bodemmanagement en weersomstandigheden;
- er meer tijd nodig is om de effecten van de gebruikte producten op de bodemstructuur voldoende tot uiting te laten komen waardoor er meetbare verschillen ontstaan.

Het laatste is onwaarschijnlijk. De proef heeft zes jaar geduurd. Kennelijk is met een juiste grondbewerking de toplaag van de bodem op orde te houden en bieden bodemverbeteraars geen meerwaarde.

4.3 Wat zijn de juiste bodemparameters om effecten te beoordelen?

Sommige van de metingen die in 2015 zijn uitgevoerd geven een verschil tussen de behandelingen, andere metingen laten niet een duidelijk verschil zien. In tabel 4.1 (kleigrond) en 4.2 (zandgrond) zijn de verschillen van de parameters ten opzichte van de referentie opgenomen.

Voor de kleigronden geven de volgende metingen een duidelijk verschil (>10%) tussen sommige behandelingen en de referentiebehandeling kunstmest:

- doorlatendheid
- indringingsweerstand
- aggregaatstabiliteit
- CEC-bezetting
- HWC

Voor zandgronden zijn er meer metingen die een verschil laten zien van de behandelingen ten opzichte van de referentie (>10%):

- doorlatendheid
- indringingsweerstand
- waterbergend vermogen
- Ca-in bodemvocht
- CEC-bezetting
- HWC

De resultaten van het onderzoek laten zien dat er geen consistent beeld is van de effecten van een bodemverbeteraar op een bodemparameter. Dat kan tussen locaties van dezelfde grondsoort zijn of tussen de twee grondsoorten. Voor de kleilocaties, bijvoorbeeld, laten de resultaten van aggregaatstabiliteit zien dat in de compostbehandeling in Lelystad een verhoging van de stabiliteit wordt gevonden terwijl op locatie Kollumerwaard de stabiliteit niet is toegenomen (zie tabel 3.3, 4.1 en 4.2. De resultaten van de HWC metingen op compostbehandeling zijn hoger dan de
referentiebehandeling kunstmest terwijl op zandgrondlocaties er sprake is van een lagere HWC in vergelijking met de referentiebehandeling.

De in 2015 uitgevoerde fysische en chemische metingen (zie tabel 2.2) zijn ingedeeld op basis van de idee dat de bodemstructuur wordt opgebouwd vanaf de primaire (kleinste) bodemdelen [Dexter, 1988]. Op micro-aggregaat niveau (<250µm) komt de bodemstructuur hoofdzakelijk tot stand door chemische (CEC complex) en biologische (bodemleven) factoren. Op macro-aggregaat niveau (> 250µm) komt de bodemstructuur hoofdzakelijk tot stand door fysische factoren.

Eventuele effecten van bodemverbeteraars zullen naar alle waarschijnlijkheid eerst zichtbaar zijn op de micro-aggregaat niveau en zich geleidelijk uiten op macroaggregaat niveau. Dat betekent dat metingen als aggregaatstabiliteit, verschillende aspecten van de CEC bepalingen en HWC in beginsel belangrijke metingen zijn om de effecten van bodemverbeteraars op de korte termijn aan te tonen.

Bij veel van de gemeten parameters zijn geen verschillen tussen behandelingen aangetoond. Gemiddeld over de kleilocaties zijn er geen duidelijke verschillen gevonden tussen de behandeling en de referentie voor de bodemparameters bulkdichtheid, waterbergend vermogen, visuele waarneming (spadeproef), hydrofobe-hydrofiele organische stof en schimmel en bacterieleven (laatste vijf parameters alleen in 2012 gemeten). Op de zandlocaties zijn de aggregaatstabiliteit en bulkdichtheid, de parameters die geen verschillen hebben laten zien. In 2012 was het de CEC bezetting die geen verschil tussen de behandelingen en de referentie liet zien. Dat wil niet zeggen dat deze parameters niet geschikt kunnen zijn voor onderzoek naar bodemstructuur. Biologische parameters en de organische stof van microbiële oorsprong, zoals gemeten met hydrofiele en hydrofobe organische stof, zijn afhankelijk van de biologische activiteit. Bodemleven kent een spreiding in ruimte (verschillen binnen een perceel) en in tijd (reactie op wisselende weersomstandigheden). Bovendien is er vaak een grote variatie in de meetresultaten. Het is niet duidelijk of de verschillen tussen de behandelingen door de spreiding van de meting voldoende naar voren kunnen komen. Het gebruik van bodembiologische metingen in vaststellen van de bodemkwaliteit is perspectiefvol, maar bodembiologische bepalingen zijn in het algemeen relatief duur. In routinematig onderzoek voor de agrarische praktijk worden ze dan ook weinig toegepast.

Tabel 4.1 Samenvatting resultaten bodemfysische en bodemchemische metingen in 2015 gemiddeld over de kleilocaties, ten opzichte van referentie kunstmest (kunstmest = 100%)

<table>
<thead>
<tr>
<th>Behandeling</th>
<th>Fysisch</th>
<th>Chemisch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Doorlatendheid</td>
<td>Indringings weerstand 0-30</td>
</tr>
<tr>
<td>Agrigyps</td>
<td>156</td>
<td>115</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>97</td>
<td>103</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>125</td>
<td>107</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>110</td>
<td>111</td>
</tr>
<tr>
<td>Xurian</td>
<td>119</td>
<td>102</td>
</tr>
<tr>
<td>Condit</td>
<td>128</td>
<td>100</td>
</tr>
<tr>
<td>BactoFil</td>
<td>64</td>
<td>107</td>
</tr>
<tr>
<td>Groen-compost</td>
<td>91</td>
<td>103</td>
</tr>
<tr>
<td>drijfmest</td>
<td>110</td>
<td>109</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Tabel 4.2 Samenvatting resultaten bodemfysische en bodemchemische metingen in 2015 gemiddeld over de zandlocaties, ten opzichte van referentie kunstmest (kunstmest=100%)

<table>
<thead>
<tr>
<th>Behandeling</th>
<th>Fysisch</th>
<th>Chemisch</th>
<th>Organische stof</th>
<th>HWC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Doorlatendheid</td>
<td>Indringingsweerstand 0-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>106</td>
<td>78</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>BactoFIl</td>
<td>119</td>
<td>109</td>
<td>104</td>
<td>100</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>90</td>
<td>105</td>
<td>104</td>
<td>100</td>
</tr>
<tr>
<td>Compost</td>
<td>99</td>
<td>91</td>
<td>108</td>
<td>100</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>87</td>
<td>68</td>
<td>107</td>
<td>100</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Dichtheid</th>
<th>pF2.0-4.2</th>
<th>Aggregate stabilité</th>
<th>pH</th>
<th>Ca-beschikbaar</th>
<th>Ca in bodemvocht</th>
<th>CEC-grootte</th>
<th>Ca-bezetting</th>
<th>Mg-bezetting</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP-SOL</td>
<td>110</td>
<td>83</td>
<td>107</td>
<td>100</td>
<td>94</td>
<td>107</td>
<td>102</td>
<td>100</td>
<td>102</td>
</tr>
<tr>
<td>BactoFIl</td>
<td>102</td>
<td>103</td>
<td>108</td>
<td>100</td>
<td>108</td>
<td>113</td>
<td>105</td>
<td>84</td>
<td>103</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>103</td>
<td>109</td>
<td>121</td>
<td>110</td>
<td>85</td>
<td>121</td>
<td>89</td>
<td>96</td>
<td>83</td>
</tr>
<tr>
<td>Compost</td>
<td>96</td>
<td>106</td>
<td>124</td>
<td>109</td>
<td>96</td>
<td>98</td>
<td>109</td>
<td>102</td>
<td>83</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>90</td>
<td>104</td>
<td>168</td>
<td>105</td>
<td>96</td>
<td>99</td>
<td>105</td>
<td>104</td>
<td>92</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Het effect van het bodemvochtgehalte op de grondbewerking en de kwaliteit van de bodemstructuur (bewerkbaarheid, verkrui melbaa rheid) en de mogelijke invloed van bodemverbeteraars hierop is niet onderzocht. De pF-bepaling lijkt niet voldoende om inzicht te krijgen in de bewerkbaarheid van de grond en de mogelijke effecten van de bodemverbeteraars op de bodemkwaliteit.

De bodemstructuur van macro-aggregaten komt mede tot stand door grondbewerking en weersinvloeden, hierin spelen mechanische eigenschappen van de grond een rol. Het bepalen van enkele mechanische eigenschappen, zoals indrukbaarheid van de grond, is op kleine schaal geprobeerd maar had geen duidelijk toegevoegde waarde. De indringingsweerstand is wel gemeten, maar lijkt geen goede meting te zijn om structuur in de zin van verkrui meling vast te stellen.

4.4 Effecten bodemverbeteraars op opbrengst

Hoewel er in de meeste gevallen geen opbrengstverhoging geclaimd wordt door de leveranciers van de bodemverbeteraars is dit wel de verwachting. Een betere bodemstructuur, bewerkbaarheid, beworteling, beschikbaarheid van mineralen zou moeten leiden tot betere groeiomstandigheden en daarmee een betere opbrengst en kwaliteit. Zowel over de gehele proef heen als per locatie of grondsoort zijn geen consistent betrouwbare opbrengstverschillen aangetoond. Incidenteel zijn effecten vastgesteld zoals weergegeven in tabel 4.3.
Tabel 4.3 Betrouwbaar verschil in opbrengst per locatie en jaar ten opzicht van referenties kunstmest en drijfmest (alleen van de jaren dat er een verschil gevonden werd)

<table>
<thead>
<tr>
<th>Jaar</th>
<th>Gewas</th>
<th>Betrouwbare opbrengstverschillen ten opzichte van kunstmest</th>
<th>Betrouwbare opbrengstverschillen ten opzichte van drijfmest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hoger</td>
<td>Lager</td>
</tr>
<tr>
<td>Kollumerwaard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Zomer tarwe</td>
<td>Agrigyps, Brandkalk, PRP-SOL, Condit, Xurian, Drijfmest</td>
<td>geen</td>
</tr>
<tr>
<td>2011</td>
<td>Poortaardappel</td>
<td>Drijfmest</td>
<td>geen</td>
</tr>
<tr>
<td>2012</td>
<td>Winter tarwe</td>
<td>Agrigyps, Betacal carbo</td>
<td>geen</td>
</tr>
<tr>
<td>2014</td>
<td>Winter tarwe</td>
<td>Xurian</td>
<td>geen</td>
</tr>
<tr>
<td>2015</td>
<td>Poortaardappel</td>
<td>Geen</td>
<td>Geen</td>
</tr>
<tr>
<td>Leijstad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>Zomer tarwe</td>
<td>Agrigyps, PRP-SOL, Biochar hout</td>
<td>Bactofil</td>
</tr>
<tr>
<td>2015</td>
<td>Poortaardappel</td>
<td>Geen</td>
<td>PRP-sol, Brandkalk, Condit</td>
</tr>
<tr>
<td>Westmaas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Omergerst</td>
<td>Agrigyps, PRP-SOL, Xurian</td>
<td>Geen</td>
</tr>
<tr>
<td>2014</td>
<td>Zaaui</td>
<td>Geen</td>
<td>Xurian</td>
</tr>
<tr>
<td>Vathjermond</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Zetmeel-aardappel</td>
<td>PRP-sol, Condit, Compost, Drijfmest</td>
<td>Geen</td>
</tr>
<tr>
<td>2012</td>
<td>Zomergerst</td>
<td>Geen</td>
<td>Condit</td>
</tr>
<tr>
<td>2013</td>
<td>Zetmeel-aardappel</td>
<td>Geen</td>
<td>Condit</td>
</tr>
<tr>
<td>2014</td>
<td>Suykerbier</td>
<td>Biochar Romchar, Geen</td>
<td>Biocchar Romchar</td>
</tr>
<tr>
<td>Vredepeel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Snijmais</td>
<td>Geen</td>
<td>Drijfmest, Condit, Xurian Optimum</td>
</tr>
<tr>
<td>2013</td>
<td>Snijmais</td>
<td>Xurian Optimum</td>
<td>Geen</td>
</tr>
<tr>
<td>2014</td>
<td>Conservenerwt</td>
<td>Geen</td>
<td>Bactofil, Xurian Optimum</td>
</tr>
</tbody>
</table>

1 opbrengst in de maat 28-55 mm
2 financiële opbrengst
3 opbrengst in de maat 28-50 mm
4 uitbetalingsgewicht

Agrigyps is jaarlijks gebruikt op de kleigronden in een hoeveelheid van 1700 kg/ha. Er is geen significante meeropbrengst aangetoond. Met Agrigyps wordt veel zwavel aangevoerd (240 kg S per ha) die voor een groot deel uitspoelt. Deze uitspoeling is ongewenst voor het milieu. Met de in de proef aangevoerde hoeveelheid Agrigyps stijgt de concentratie in het grondwater met ca. 200 mg sulfaat per liter. Onder normale omstandigheden wordt op veel kleigronden de uitspoelingsgrens van 100-150 mg sulfaat al overschreden. Recentelijk heeft de Commissie Deskundigen Meststoffenwet een advies uitgebracht hoe om te gaan met het risico van een stijgende zwavelaanvoer naar landbouwpercelen (CDM, 2014).

Bij Bactofil zou volgens de leverancier 80 kg N per ha kunnen worden bespaard door bacteriële luchtstikstofbinding. Deze 80 kg is in eerste instantie in mindering gebracht op de stikstofgift. In de metingen van 2012 en 2013 resulteerde dat in gelijkwaardige gewasopbrengsten als bij de referentieobjecten, maar in 2014 waren de
gewasopbrengsten bij het Bactofil-object lager. Het is daarom risicovol om op voorhand 80 kg N per ha in mindering te brengen, temeer daar bij het toetsen van bodem- en structuurverbeteraars niet op het scherpst van de snede is bemest. Getroost is namelijk om uit te sluiten dat bodemstructuur verbeterende effecten zijn toe te schrijven aan bemesterseffecten. In de proefopzet van 2015 is ervoor gekozen om 40 kg N per ha in mindering te brengen. Er zijn gedetailleerde bemestersproeven nodig om na te gaan of er een hoeveelheid stikstof per gewas is te besparen door toepassing van Bactofil, en in hoeverre dit wordt beïnvloed door de groeimogelijkheden (onder andere weersinvloeden).

Ook bij Condit is bij de uitvoering van de proef met minder stikstof bemest. Dit resulteerde in een deel van de metingen in een lagere gewasopbrengst maar in een ander deel niet. In de proefopzet waarin niet minder stikstof was bemest, varieerde de opbrengst van gelijkwaardig aan de referentieobjecten tot soms lager. De indruk is dat de stikstof uit Condit soms te langzaam beschikbaar komt voor het gewas. De stikstof in Condit is in de proefopzet voor 100% meegeteld (dat wil zeggen als volledig werkzaam beschouwd). Blijkbaar mag men hier niet altijd vanuit gaan. Om de stikstofwerking van Condit nauwkeurig vast te stellen per gewas zijn gedetailleerde bemestersproeven nodig. Door de verstrekkeling met stikstofbemesting is het lastig om de kwaliteiten van Condit als bodemverbeteraar te beoordelen.

Steenmeel is alleen toegepast op de zandgronden. Er is in de afgelopen jaren geen duidelijk positief effect vastgesteld van steenmeel. Er is een aanwijzing dat het K-gehalte is toegenomen (Bijlage 7). In het bodemvocht wordt er echter geen duidelijk hoger gehalte gevonden van kalium. Het geheel is in lijn met proeven die in het verleden zijn uitgevoerd (Bakken, 2000).

Niet alleen is er geen consistent verschil tussen de referentie kunstmest en de getoetste bodemverbeteraars, maar ook niet tussen de referenties onderling. Tussen de referenties kunstmest en drijfmest zijn op voor Lelystad en Kollumerwaard geen grote verschillen te verwachten aangezien er beperkt drijfmest is toegepast. Er is echter wel jaarlijks compost toegepast en ook deze behandeling onderscheidt zich niet consistent met de andere twee referenties. Uit andere proeven, waarbij gestuurd wordt op verbetering van bodemkwaliteit (Mest als Kans, Bodemkwaliteit op Zand), is bekend meer dan zes jaar nodig kan zijn om significante opbrengstverschillen vast te stellen.

In de uitgevoerde proeven is ook in het zesde jaar geen significant effect gevonden op de opbrengst. Uit de analyse is er ook geen aanwijzing dat zich een trend aan het ontwikkelen is. Ofwel bij voorzetting van de proeven is het niet waarschijnlijk dat alsnog positieve effecten op de opbrengst worden aangetoond.

4.5 Is het gebruik van bodemverbeteraars economisch verantwoord?

Het toepassen van bodemverbeteraars zal uiteindelijk moeten resulteren in een kostenbesparing of hogere markttore opbrengsten. In enkele gevallen zijn kostenbesparingen op kunstmest denkbaar gezien de samenstelling van het product. Van een aantal producten is er vanuit de fabrikanten advies gegeven over het kopen van de kunstmestgift. Andere kostenbesparingen dan kunstmest zijn niet vastgesteld en daarom niet meegenomen in de berekeningen. Daarmee moet de investering vooral terugverdiend worden door hogere opbrengsten. Een ‘quick and dirty’ berekening in paragraaf 3.4 laat zien dat bij een jaarlijkse toepassing een opbrengstverhoging van 1% tot soms wel 9% nodig is om de kosten terug te verdienen ten opzichte van kunstmest. In het geval van steenmeel zijn de vereiste opbrengststijgingen gering en kleiner dan de
betrouwbaarheid waarmee opbrengstverschillen kunnen worden vastgesteld. Door het ontbreken van betrouwbare opbrengstverschillen moet geconcludeerd worden dat het economisch niet interessant is om bodemverbeteraars toe te passen.

Op basis van gemiddelde kosten per hectare zullen niet alleen de aardappelen een meerprijs moeten geven maar alle gewassen in het bouwplan. Het doorbelasten van de cumulatieve kosten van de toepassing van bodemverbeteraars op het gewas aardappel na zes jaar zal in de praktijk niet snel voorkomen. Bodem- en structuurverbeteraars zullen niet ieder jaar worden toegepast (zoals dat wel in de proefopzet het geval was), maar afhankelijk zijn van bouwplan en gewasrotatie. Zo zullen de kalkhoudende bodem- en structuurverbeteraars voornamelijk voor rooigewassen als aardappel en ui toegepast worden om de rooibaarheid te verbeteren.

De Biochars en ook Steenmeel zijn (nog) niet voor een prijs beschikbaar die ook bij positieve opbrengsteffecten de toepassing economisch verantwoord maakt.

4.6 Conclusies en aanbevelingen

Er kan niet significant worden aangetoond dat de getoetste bodem- en structuurverbeteraars een bijdrage leveren aan een verbetering van de bodemstructuur van de bouwvoor van landbouwpercelen van normale tot goede kwaliteit. Er kan niet significant worden aangetoond dat deze producten leiden tot een opbrengstverhoging. Incidenteel zijn er positieve effecten gebleken uit de proef; deze waren echter niet structureel over jaren, locaties en/of grondsoorten. Als bovendien het kostenaspect wordt meegenomen van deze producten is het economisch resultaat vaak een verslechtering ten opzichte van de referenties.

Op basis van dit onderzoek concluderen we dat toepassing van bodemverbeteraars op gronden van een normale tot goede kwaliteit niet is aan te raden.

Goede zorg voor de bodem is wel van groot belang voor behoud en verbetering van gewasopbrengsten en bodemkwaliteit, waaronder bodemstructuur in het bijzonder. Een goede bodemstructuur is zeer belangrijk voor een goede opbrengst en een goede bewerkbaarheid van gronden, evenals een goede sponswerking van gronden. Daarmee neemt de droogtegevoeligheid af en is er minder risico van piekafvoeren van water. Voorkomen van schade is hierin belangrijk, omdat een slechte structuur lastig te verbeteren is. Behoud van een goede bodemstructuur vraagt om voldoende aanvoer van organische stof, een voldoende ruime vruchtwisseling en aandacht voor een juiste grondbewerking op het juiste moment. Veel bodemstructuur problemen zijn ook toe te wijzen aan verdichting van de ondergrond. Aanpak van verdichting vergt andere maatregelen die bovendien lang niet altijd gemakkelijk uitvoerbaar zijn (zie Kennisakker.nl, handboek bodemenbemesting).
Literatuur

- www.kennisakker.nl
- www.handboekbodemenbemesting.nl
Bijlage 1. Beschrijving van de geteste bodemverbeteraars

In deze bijlage wordt een korte beschrijving gegeven van de onderzochte bodem- en structuurverbeteraars om duidelijk te maken wat voor typen producten het zijn en hoe ze bijdragen aan een goede bodemkwaliteit. Aan de hand van uitgevoerde grondonderzoeken is geanalyseerd hoe de bodemverbeteraars de bodemstructuur en/of de chemische samenstelling van de bodem hebben beïnvloed.

De bodemverbeteraars zijn onder te verdelen in de volgende typen producten:
- calcium- en/of kalkmeststoffen;
- micro-organismen;
- biochar.

B-1.1 Calcium- en/of kalkmeststoffen

B-1.1.1 Agrigyps

Agrigyps (foto B1-1) is een calciummeststof met 29 procent CaO. De calcium is hierbij gebonden aan sulfaat (CaSO₄). Deze calciummeststof heeft geen pH-verhogend effect. Het is jaarlijks toegediend in een dosering van 500 kg CaO per ha wat neer komt op 1700 kg Agrigyps per ha. Het product bevat veel zwavel. In erg hoge doseringen (oorspronkelijke advies 12 ton Agrigyps/ha) zou de zwavel kunnen uitspoelen en zorgen voor een forse verhoging van het zwavelgehalte in het grond- en oppervlaktewater. In de proef is de dosering teruggebracht naar 1,7 ton per ha. Er zijn echter geen metingen verricht aan de uitspoeling van zwavel. De maximale dosering van deze calciummeststof zou in de toekomst mede bepaald kunnen worden door maximaal toelaatbare SO₄ gehalte in grond en oppervlaktewater en de daarmee samenhangende, maximaal toegelaten zwavelaanvoer.

Agrigyps heeft volgens de productleverancier (Zijderlaan) de volgende effecten op de fysische bodemvruchtbaarheid:
- betere waterdoorlatendheid van de bodem
- verbetering van de waterhuishouding
- betere bewerkbaarheid/verkruimelbaarheid van de grond
- betere beschikbaarheid van nutriënten
- geen pH-verhoging
- meer calcium aan het kationenadsorbtiecomplex CEC
- toename van de voor de plant beschikbare calcium (hogere concentraties meetbaar in gewas/product)

Foto B1-1. Agrigyps.
B-1.1.2 **Betacal Carbo**
Betacal Carbo (foto B1-2) is een kalkmeststof die de bodemstructuur verbetert en de pH verhoogt. Het is een uiterst fijne neerslag van koolzure kalk gemengd met enige organische stof en is ontstaan bij de zuivering van ruwsap uit bieten. Door de fijne neerslag en de gemakkelijke vertering van de organische stof heeft het een snelle werking. Betacal Carbo bevat tevens nutriënten, zoals stikstof, fosfaat en kalium. Het IRS heeft de volgende effecten op de fysische bodemvruchtbaarheid aangegeven:
- meer calcium aan het kationenadsorbtiecomplex (CEC)
- meer vrije calcium in het bodemvocht
- lichte pH verhoging op kleigrond
- betere bewerkbaarheid van de grond
In de praktijk wordt een kalkmeststof één keer in de bouwplancyclus toegepast meestal voorafgaand aan de suikerbietenteelt. In dit onderzoek is hiervan afgeweken om deze kalkmeststof vanaf de start zijn werking te laten doen. Om dit te bereiken is in het voorjaar van 2010 1000 kg CaO per ha toegepast en in dat najaar 500 kg CaO per ha. De andere jaren is in het voorjaar 500 kg CaO per ha toegediend en bij de zaai- en pootbedbereiding ingewerkt.

![Betacal Carbo](image)

B-1.1.3 **Brandkalk**
Brandkalk (foto B1-3) is een goed in water oplosbare calciummeststof die 60% CaO bevat en daarnaast veel magnesium (tot 35% MgO). Verder bevat het geen andere mineralen. Met Brandkalk wordt de hoeveelheid vrij calcium en de magnesiumvoorziening in de bouwvoor verhoogd. Brandkalk werkt dan tijdelijk licht pH verhogend. Door een verhoging van reageerbaar CaCO₃ wordt de bewerkbaarheid en de aggregaatstabiliteit van de bodem verbeterd. De plant kan daarnaast meer calcium opnemen en dat verbetert de kwaliteit van het product. Calcium is namelijk net als kalium belangrijk voor een goede celwandopbouw van het gewas.
De leverancier (Agerland/Agrifirm) heeft de volgende effecten op de fysische bodemvruchtbaarheid aangegeven:
- verhoging van zowel calcium als magnesium aan het CEC
- meer vrije calcium in het bodemvocht
- werking afhankelijk van de uitgangssituatie van magnesium
- betere doorworteling
Brandkalk is jaarlijks in het voorjaar toegepast in een dosering van 500 kg CaO per ha. Bij de zaai- en pootbedbereiding is het ingewerkt.
PRP-SOL (foto B1-4) is een meststof op basis van minerale zouten, sporenelementen en extracten van organische oorsprong op basis van calcium en magnesiumcarbonaat. Door verhitting wordt een deel van de magnesium vervangen door minerale zouten en sporenelementen. De elementen die worden toegevoegd, zijn specifiek bedoeld om micro-organismen te voeden. In de bodem stimuleert PRP-SOL de microflora, met de bedoeling op deze wijze de bodemvruchtbaarheid en bodemstructuur te verbeteren. Dit zal uiteindelijk de plantengroei ten goede komen.

Volgens de productleverancier (PRP Technologies) heeft PRP-SOL de volgende effecten op de bodemvruchtbaarheid:
- meer biologische activiteit in de bodem (voornamelijk schimmels)
- vergroting van het kationenadsorbtiecomplex CEC
- structuurverbetering van de ondergrond
- betere doorworteling
- betere vertering van gewasresten

PRP-SOL is in het najaar toegediend in een dosering van 200 kg per ha. De eerste twee jaar was de dosering hoger.
B-1.2.1 Condit
Condit (foto B1-5) combineert de eigenschappen van een plantenvoedingsmiddel met een bodemverbeteraar. Deze meststof stimuleert de ontwikkeling van goede bacteriën en schimmels in de grond. Het is tevens een bron van organische stof. Condit is een product dat bestaat uit o.a. gehydroliseerde eiwitten en zeolieten. Condit bevat geen schadelijke stoffen en is vrij van onkruidzaden.

Volgens de productleverancier (eerst Triferto, later Mertens) heeft Condit de volgende effecten op de bodemvruchtbaarheid:
- vergroting van de CEC
- structuurverbetering
- betere waterdoorlatendheid
- betere beschikbaarheid van fosfaat
- verhoging van organische stof in de bodem

Er zijn verschillende Condit producten: Condit 2,5%N, 5%N en 7% N. Condit 7%N bevat 7% stikstof, 1% fosfaat (P₂O₅) en 2% kali (K₂O). De dosering van Condit is volgens de leverancier gebaseerd op de stikstofbehoefte van het gewas en de vruchtbaarheid van de bodem. Zo krijgen granen 1 ton per ha, aardappelen en suikerbieten 1,5 ton en koolgewassen 2 ton per ha.

In 2010 is in het onderzoek Condit 5%N gebruikt. Vanaf 2011 is er meestal Condit 7%N gebruikt, dat is verrijkt met ureum. Indien stikstofvoorraden hoog waren, is de dosering van de Condit er op aangepast. Condit 7%N is in het onderzoek in het voorjaar toegediend en bij de zaai- en pootbedbereiding ingewerkt. In wintertarwe is het in het voorjaar over het gewas gestrooid en niet ingewerkt.

Voor het groeiseizoen van 2012 was afgesproken met de leverancier dat geen aanvullende bemesting wordt gegeven naast de Condit-gift. In groeiseizoen 2013 en 2014 heeft het gewas naast Condit wel een aanvullende stikstofbemesting gekregen.

B-1.2.2 Xurian Optimum
Xurian Optimum (foto B1-6) is een meststof met borium, zink en een Pseudomonas-bacterie voor de omzetting van verse organische stof. Het product wordt toegepast met een veldspuit. Het eerste jaar is de dosering 1,35 kg per ha in het voorjaar. De jaren erna wordt 0,9 kg per ha in zomer of najaar gegeven. De beste werking wordt verkregen als Xurian Optimum gespoten wordt na de oogst van het gewas voor de inzaai van een groenbemester of in het najaar kort voor het ploegen op een groenbemester.

Volgens de productleverancier (Pype bvba) heeft Xurian Optimum de volgende effecten op de bodemvruchtbaarheid:
- betere doorworteling
- diepere beworteling
- alleen werking op gronden met een pH >7
• minder verslemping
• minder grondtarra bij rooivruchten

Foto B1-6. Xurian Optimum (spuitpoeder).

B-1.2.3 BactoFil
Met ingang van groeiseizoen 2013 is het product BactoFil opgenomen in het onderzoek. BactoFil is een bacteriepreparaat dat volgens de leverancier (Agro Bio / CZAV) de bodemstructuur kan verbeteren. De volgende redenen worden daartoe genoemd.
• Verschillende bacteriën binden stikstof uit de bodemlucht waardoor de stikstofgift omlaag kan.
• Bactofil draagt bij aan een makkelijker opname van kalium en fosfaat uit de bodem. Het gebruik van BactoFil geeft zo een besparing op de bemesting van 80 kg N, 30 kg fosfaat en 30 kg kali per ha.
• Het geeft een betere vertering van gewasresten.

Er bestaan twee BactoFil-producten. BactoFil A10 is specifiek ontwikkeld voor toepassing in monocotylen en BactoFil B10 voor dicotylen. Beide BactoFil producten zijn vloeistoffen, die verspoten kunnen worden. De bespuiting dient 's morgens vroeg of later in de avond uitgevoerd te worden. Dan is de UV-straling gering. UV-straling doodt namelijk de bacteriën. Na de bespuiting moet de BactoFil direct tot zaai- of pootdiepte worden ingewerkt.
BactoFil moet 7-10 dagen vóór het zaaien of poten worden gespoten. Als er naast de BactoFil kunstmest en/of drijfmest wordt gebruikt, pas dan eerst de BactoFil toe en 7-10 dagen later de kunstmest en/of drijfmest.
Omdat bacteriën erg gevoelig zijn voor gewasbeschermingsmiddelen, moet de spuit zeer schoon zijn. De watertank mag niet van metaal zijn. Er moet zacht water (bv regenwater) gebruikt worden.

B-1.3 Overige producten

B-1.3.1 Biochar

Omdat er verschillende bronnen van biomassa zijn, ontstaan er ook verschillende soorten Biochar. In het onderzoek zijn de Biochar hout, Biochar norit, Biochar ECN en Biochar Romchar opgenomen. Biochar hout verschilt vrij sterk in de mate van grofheid. Zo zijn er partijen die de grofheid van foto B1-7 hebben, terwijl er ook partijen zijn die poederfijn zijn en bij de toepassing erg stuifgevoelig zijn. Foto B1-8 laat de Biochar norit zien.

Het idee om met Biochar de bodemkwaliteit te verbeteren is afgeleid van Terra Preta, organische stofrijke (tot 16%) vruchtbare, zwarte gronden in het Amazone-bekken in Brazilië.

In het onderzoek is de Biochar toegediend zonder de toepassing van dierlijke mest. Zo wordt het zuivere effect van de Biochar gemeten. Koolstof is in staat om allerlei stoffen aan zich te binden. Biochar doet in de bodem eigenlijk hetzelfde als norit. Door een groot specifiek oppervlak kan Biochar bijdragen aan een betere bodemstructuur en kan Biochar nutriënten vasthouden zodat ze beschikbaar blijven voor de plant. Bovendien houdt elke ton Biochar een ton vocht vast. De bodem wordt daardoor minder gevoelig voor droogte. Biochar kan vele honderden tot duizenden jaren in de bodem aanwezig blijven. Dat maakt het effect op de bodemvruchtbaarheid langdurig. Daarnaast is Biochar een alternatieve manier om CO₂ voor zeer lange tijd in de grond vast te leggen. Deze productinformatie is gebaseerd op informatie welke door de productleverancier is aangeleverd. Te verwachten effecten op de fysische bodemvruchtbaarheid:
- betere bodemstructuur door verhoging percentage organische koolstof
- betere vochtvasthoudend vermogen en betere vochtlevering
- betere mineralenbeschikbaarheid / minder uitspoeling van mineralen
- verminderde slempgevoeligheid

B-1.3.2 Steenmeel
Steenmeel (foto 2.9) is een gemalen steenachtig product van deeltjes kleiner dan 0,1 mm. Steenmeel wordt gemaakt van vulkanisch gesteenten met een laag silica gehalte en het levert Ca, Mg, K, Na en diverse sporelementen. Op Valthermond en Vredepeel is gekozen voor twee gesteenten afkomstig uit Zuid Duitsland en Noord Noorwegen. Hierbij wordt specifiek gekeken naar de kaliumlevering. In deze proef wordt steenmeel op de zandgrond toegepast maar biedt wellicht ook perspectieven op kleigrond. Steenmeel bevat geen stikstof en afhankelijk van de oorsprong varieert het fosfaatgehalte van 0,1 tot
2%. Omdat dit fosfaat aanwezig is in het slecht oplosbare mineraal apatiet zal dit fosfaat in de praktijk geen rol spelen. Kali is aanwezig in silicatemineralen en lost niet op maar ‘verweert’ en is daardoor niet afhankelijk van evenwichtsreacties. Uit informatie verkregen in de loop van dit experiment blijkt dat 20% van de kalium in het relatief snel verwerende mineraal nefelien aanwezig is, 80% van de opgebrachte kalium zit in het zeer slecht verwerende mineraal kaliveldspaat. Dat dit laatstgenoemde mineraal een veelvoorkomend resistent bodemmineraal is, zegt al genoeg over de reactiviteit. Dit betekent dat de Kali voorziening lager zal uitvallen dan vooraf voorzien. Deze productinformatie is gebaseerd op informatie welke door de productleverancier is aangeleverd.

Bijlage 2. Toegepaste bodemverbeteraars per locatie en jaar
B-2.1 Kollumerwaard

De proeflocatie Kollumerwaard is een kleigrond met 27% lutum en 3,5% organische stof. Het P-AL getal is 47 (berekend Pw-getal 40) en het K-getal is 20. In de proefperiode zijn de volgende gewassen geteeld:

2010: zomertarwe
2011: pootaardappelen
2012: wintertarwe
2013: suikerbieten
2014: wintertarwe
2015: pootaardappelen

In tabel B-2.1 zijn de bodemverbeteraars beschreven die in Kollumerwaard zijn ingezet.

Tabel B-2.1. Toepassing bodemverbeteraars op Kollumerwaard vanaf voorjaar 2010 t/m najaar 2014 en de toepassing van varkensdrijfmest.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>kg/ha</td>
<td>1730</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1730</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>kg/ha</td>
<td>1790</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1790</td>
</tr>
<tr>
<td>Biochar hout</td>
<td>ton/ha</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Biochar Norit</td>
<td>ton/ha</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>kg/ha</td>
<td>1670</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1670</td>
</tr>
<tr>
<td>Condit 7% N 2)</td>
<td>kg/ha</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>GFT</td>
<td>ton/ha</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>kg/ha</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>PRP-SOL 3)</td>
<td>kg/ha</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>Varkensdrijfmest 1)</td>
<td>m³/ha</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Xurian Optimum 4)</td>
<td>kg/ha</td>
<td>1.4</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>6.75</td>
</tr>
</tbody>
</table>

1) + => 25 m³ varkensdrijfmest per ha (object drijfmest is in 2014 maar 2 van de 3 veldjes drijfmest uitgereden).
2) Condit, in 2010 Condit 5%, overige jaren Condit 7% N toegediend.
3) PRP-SOL is in het voorjaar 2013 toegediend in plaats van najaar 2012.
4) Xurian Optimum is najaar 2013 zonder grondbewerking en voorjaar 2014 aansluitend met grondbewerking toegediend.

© Praktijkonderzoek Plant & Umgeving
B-2.2 Lelystad

In Lelystad is de proef aangelegd op een kleigrond met 18% lutum en 2% organische stof. Het P-AL getal is 42 (berekend Pw getal 30) en het K-getal is 20. In de proefperiode zijn de volgende gewassen geteeld:

2010: zomergerst
2011: suikerbieten
2012: zaaiuien
2013: winterpeen
2014: zomergraan
2015: consumptieaardappelen

In tabel B-2.2 zijn de bodemverbeteraars beschreven die in Lelystad zijn ingezet.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>kg/ha</td>
<td>1730</td>
<td>0</td>
<td>+</td>
<td>1730</td>
<td>0</td>
<td>0</td>
<td>1730</td>
<td>0</td>
<td>0</td>
<td>1730</td>
<td>0</td>
</tr>
<tr>
<td>Bactofli</td>
<td>L/ha</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>kg/ha</td>
<td>3570</td>
<td>1790</td>
<td>+</td>
<td>1790</td>
<td>0</td>
<td>0</td>
<td>1790</td>
<td>0</td>
<td>0</td>
<td>1790</td>
<td>0</td>
</tr>
<tr>
<td>Biochar hout 2.5 ton</td>
<td>ton/ha</td>
<td>2.5</td>
<td>0</td>
<td>+</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>ton/ha</td>
<td>5</td>
<td>0</td>
<td>+</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>kg/ha</td>
<td>1670</td>
<td>840</td>
<td>+</td>
<td>840</td>
<td>0</td>
<td>0</td>
<td>840</td>
<td>0</td>
<td>0</td>
<td>840</td>
<td>0</td>
</tr>
<tr>
<td>Condit</td>
<td>kg/ha</td>
<td>1000</td>
<td>0</td>
<td>+</td>
<td>1500</td>
<td>0</td>
<td>0</td>
<td>1500</td>
<td>0</td>
<td>0</td>
<td>1500</td>
<td>0</td>
</tr>
<tr>
<td>Groencompost</td>
<td>ton/ha</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>x</td>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>kg/ha</td>
<td>300</td>
<td>0</td>
<td>+</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>m³/ha</td>
<td>0</td>
<td>15</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>kg/ha</td>
<td>1.4</td>
<td>0.9</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
</tr>
</tbody>
</table>

1) + => 15 m³ varkensdrijfmest per ha
2) Condit, in 2010 condit 5%N, in 2013 Condit 2.5% N, in 2011, 2012 en 2014 Condit 7% N.

© Praktijkonderzoek Plant & Omgeving
B-2.3 Westmaas

De proeflocatie Westmaas is een kleigrond met 20% lutum en 2,3% organische stof. Het P-AL getal is 49 (berekend Pw-getal 32) en het K-getal is 20. In de proefperiode zijn de volgende gewassen geteeld:
2010: zomergerst
2011: consumptieaardappel
2012: suikerbiet
2013: wintertarwe
2014: zaaiuien
2015: aardappel

Door omstandigheden zijn de Bodemverbeteraars in het voorjaar 2013 toegediend in plaats van in het najaar 2012 voor het zaaien van wintertarwe.

Tabel B-2.3. Toepassing bodemverbeteraars op Westmaas vanaf voorjaar 2010 t/m voorjaar 2015 en de toepassing van varkensdrijfmest.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zomergerst</td>
<td>Cons.aard.</td>
<td>Suikerbieten</td>
<td>Wintertarwe</td>
<td>Zaaiuien</td>
<td>Cons. aardappel</td>
</tr>
<tr>
<td>Agrigyps</td>
<td>1730</td>
<td>0</td>
<td>1730</td>
<td>0</td>
<td>1730</td>
<td>0</td>
</tr>
<tr>
<td>Bactofil 1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>3570</td>
<td>1790</td>
<td>+</td>
<td>1790</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>1670</td>
<td>840</td>
<td>+</td>
<td>840</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Condit 2)</td>
<td>1000</td>
<td>0</td>
<td>+</td>
<td>1500</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Groencompost</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>X</td>
<td>x</td>
<td>0</td>
<td>x</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>300</td>
<td>0</td>
<td>+</td>
<td>250</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>Varkensdrijfmest 1)</td>
<td>15</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>1.4</td>
<td>0.9</td>
<td>+</td>
<td>0</td>
<td>0.9</td>
<td>0</td>
</tr>
</tbody>
</table>

1) + = 15 m³ varkensdrijfmest per ha
2) Condit, in 2010 Condit 5% N, overige jaren Condit 7% N.
B-2.4 Valthermond

De proeflocatie Valthermond is een dalgrond met 11,3% organische stof. Het P-AL getal is 26 (berekend Pw-getal 42) en het K-getal is 6. In de proefperiode worden de volgende gewassen geteeld:

2010: suikerbieten
2011: zetmeelaardappelen
2012: zomergerst
2013: zetmeelaardappelen
2014: suikerbieten
2015: zetmeelaardappelen

In tabel B-2.4 staan de bodemverbeteraars die in Valthermond worden ingezet. Romchar is in het najaar van 2011 aangelegd. Het gaat hier om een eenmalige gift. De Biochar ECN is in 2010 toegepast. Omdat er geen product meer beschikbaar was, gaat het hier ook om een eenmalige gift. De beide objecten draaien wel mee in het verdere onderzoek.

| Tabel B-2.4. Toepassing bodemverbeteraars op Valthermond vanaf voorjaar 2010 t/m voorjaar 2015 en de toepassing van varkensdrijfmest. |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Bodemverbeteraar | eenheid | Voorjaar | Najaar | mest voorjaar 1) | Totaal gift |
| Biochar ECN | ton/ha | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 |
| Biochar Romchar | ton/ha | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 24.5 |
| Biochar hout | Ton/ha | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 30 |
| Biochar nooit | ton/ha | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 20 |
| Condit 7% | kg/ha | 1500 | 0 | + | 1500 | 0 | + | 1000 | 0 | 0 | 1500 | 0 | + | 1500 | 0 | 0 | 1500 | 0 | 0 | 8800 |
| Groencompost | ton/ha | 18 | 0 | 0 | 9 | 0 | 0 | 9 | 0 | 0 | 9 | 0 | 0 | 9 | 0 | 0 | 63 |
| Kunstmest | x | x | 0 | x | x | 0 | x | x | 0 | x | x | 0 | x | 0 | 0 | 0 |
| PRP-SOL | kg/ha | 300 | 0 | + | 250 | 0 | + | 200 | 0 | 0 | 200 | 0 | + | 200 | 0 | + | 1350 |
| Steenmeel | ton/ha | 20 | 0 | + | 15 | 0 | + | 10 | 0 | 0 | 0 | 0 | + | 0 | 0 | + | 45 |
| Varkensdrijfmest | m³/ha | 20 | 0 | + | 20 | 0 | + | 0 | 0 | 0 | 20 | 0 | + | 0 | 0 | + | 80 |
| Xurian Optimum | kg/ha | 1.4 | 0.9 | + | 0 | 0.9 | + | 0 | 0.9 | + | 0 | 0.9 | + | 0 | 0.9 | + | 5.85 |

1) + = 20 m³/ha varkensdrijfmest
2) Condit, in 2010 Condit 5% N, overige jaren Condit 7% N.
B-2.5 Vredepeel

In Vredepeel ligt de proef op een zandgrond met 4,9% organische stof. Het P-AL getal is 101 (berekend Pw getal 91) en het K-getal is 21.

In de proefperiode zijn de volgende gewassen geteeld:
2010: snijmaïs
2011: suikerbiet
2012: zomergerst
2013: snijmaïs
2014: erwt vroeg / stamslaboon na teelt
2015: aardappel

<table>
<thead>
<tr>
<th>Tabel B-2.5. Toepassing bodemverbeteraars op Vredepeel vanaf voorjaar 2010 t/m voorjaar 2015 en de toepassing van varkensdrijfmest.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodemverbeteraar</td>
</tr>
<tr>
<td>Bactofil 3)</td>
</tr>
<tr>
<td>Condit 2)</td>
</tr>
<tr>
<td>Groencompost</td>
</tr>
<tr>
<td>Kunstmest</td>
</tr>
<tr>
<td>PRP-SOL</td>
</tr>
<tr>
<td>Rundveedrijfmest 1)</td>
</tr>
<tr>
<td>Steenmeel</td>
</tr>
<tr>
<td>Xurian Optimum</td>
</tr>
</tbody>
</table>

1) + = drijfmestgift van object Rundveedrijfmest
2) Condit, in 2010 Condit 5% N, overige jaren Condit 7% N.
Bijlage 3. Berekende bulkdichtheid

Tabel B-3.1 Gemiddelde droge bulkdichtheid (g/cm³) per diepte en per locatie.

<table>
<thead>
<tr>
<th>jaar</th>
<th>Locatie</th>
<th>behandeling</th>
<th>diepte, cm</th>
<th>2-7</th>
<th>12-17</th>
<th>22-27</th>
<th>32-37</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Kollumerwaard</td>
<td>proefveld</td>
<td>1.32</td>
<td>1.36</td>
<td>1.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Lelystad</td>
<td>proefveld</td>
<td>1.37</td>
<td>1.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>agrigyps</td>
<td></td>
<td>1.62</td>
<td>1.50</td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>groencompost</td>
<td></td>
<td>1.63</td>
<td>1.59</td>
<td>1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>brandkalk</td>
<td></td>
<td>1.60</td>
<td>1.58</td>
<td>1.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRP-Sol</td>
<td></td>
<td>1.60</td>
<td>1.51</td>
<td>1.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kunstmest</td>
<td></td>
<td>1.60</td>
<td>1.60</td>
<td>1.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bactofil-A</td>
<td></td>
<td>1.62</td>
<td>1.59</td>
<td>1.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Betacal-carbo</td>
<td></td>
<td>1.66</td>
<td>1.57</td>
<td>1.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>drijfmest</td>
<td></td>
<td>1.64</td>
<td>1.56</td>
<td>1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gemiddeld</td>
<td></td>
<td>1.62</td>
<td>1.56</td>
<td>1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Westmaas</td>
<td>proefveld</td>
<td>1.37</td>
<td>1.34</td>
<td>1.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel B-3.2 Gemiddelde droge bulkdichtheid, op klei- en zandlocaties, g/100cm³

<table>
<thead>
<tr>
<th>behandeling</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Klei</th>
<th>Vathertomd</th>
<th>Vredepeel</th>
<th>Zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>agrigyps</td>
<td>133</td>
<td>165</td>
<td>149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>betacal</td>
<td>140</td>
<td>168</td>
<td>154</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>brandkalk</td>
<td>139</td>
<td>166</td>
<td>153</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-Sol</td>
<td>137</td>
<td>170</td>
<td>154</td>
<td>104</td>
<td>133</td>
<td>116</td>
</tr>
<tr>
<td>bactofil</td>
<td>164</td>
<td>164</td>
<td>154</td>
<td>104</td>
<td>133</td>
<td>116</td>
</tr>
<tr>
<td>drijfmest</td>
<td>123</td>
<td>123</td>
<td>103</td>
<td>128</td>
<td>113</td>
<td>113</td>
</tr>
<tr>
<td>steenmeel</td>
<td></td>
<td>95</td>
<td>132</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kunstmest</td>
<td>132</td>
<td>166</td>
<td>149</td>
<td>89</td>
<td>130</td>
<td>110</td>
</tr>
<tr>
<td>drijfmest</td>
<td>123</td>
<td>123</td>
<td>103</td>
<td>128</td>
<td>113</td>
<td>113</td>
</tr>
<tr>
<td>groencompost</td>
<td>136</td>
<td>157</td>
<td>146</td>
<td>106</td>
<td>127</td>
<td>114</td>
</tr>
</tbody>
</table>
Bijlage 4. Doorlatendheid in tijdsinterval 15-20 en 12,5-15 minuten (mm/sec)

Klei

Tabel B-4.1 Berekende gemiddelde doorlatendheid in het tijdsinterval 900-1200 seconden voor de kleilocaties, in mm/sec.

<table>
<thead>
<tr>
<th>Behandeling</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
</tr>
</thead>
<tbody>
<tr>
<td>agrigyps</td>
<td>0,278</td>
<td>1,142</td>
<td>0,208</td>
</tr>
<tr>
<td>betacal carbo</td>
<td>0,232</td>
<td>0,536</td>
<td>0,122</td>
</tr>
<tr>
<td>brandkalk</td>
<td>0,243</td>
<td>0,983</td>
<td>0,013</td>
</tr>
<tr>
<td>prp-sol</td>
<td>0,317</td>
<td>0,825</td>
<td>0,148</td>
</tr>
<tr>
<td>condit</td>
<td>0,330</td>
<td>0,072</td>
<td>0,052</td>
</tr>
<tr>
<td>xurian</td>
<td>0,373</td>
<td>0,117</td>
<td>0,022</td>
</tr>
<tr>
<td>bactofil</td>
<td></td>
<td>0,074</td>
<td>0,113</td>
</tr>
<tr>
<td>Biochar Noit</td>
<td>0,338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>biochar 2.5t</td>
<td></td>
<td>0,122</td>
<td></td>
</tr>
<tr>
<td>biochar 5t</td>
<td>0,245</td>
<td></td>
<td>0,102</td>
</tr>
<tr>
<td>compost</td>
<td>0,338</td>
<td>0,697</td>
<td>0,137</td>
</tr>
<tr>
<td>drijfmest</td>
<td>0,211</td>
<td>0,657</td>
<td>0,142</td>
</tr>
<tr>
<td>kunstmest</td>
<td>0,201</td>
<td>0,485</td>
<td>0,172</td>
</tr>
</tbody>
</table>

Tabel B-4.2 Gemiddelde doorlatendheid na 1200 seconden, relatief ten opzichte van kunstmest, %.

<table>
<thead>
<tr>
<th>Behandeling</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
</tr>
</thead>
<tbody>
<tr>
<td>agrigyps</td>
<td>138</td>
<td>235</td>
<td>121</td>
</tr>
<tr>
<td>betacal carbo</td>
<td>115</td>
<td>111</td>
<td>71</td>
</tr>
<tr>
<td>brandkalk</td>
<td>121</td>
<td>203</td>
<td>8</td>
</tr>
<tr>
<td>prp-sol</td>
<td>158</td>
<td>170</td>
<td>86</td>
</tr>
<tr>
<td>condit</td>
<td>164</td>
<td>42</td>
<td>289</td>
</tr>
<tr>
<td>xurian</td>
<td>186</td>
<td>68</td>
<td>122</td>
</tr>
<tr>
<td>bactofil</td>
<td>43</td>
<td>80</td>
<td>961</td>
</tr>
<tr>
<td>Biochar Noit</td>
<td>168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>biochar 2.5t</td>
<td></td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>biochar 5t</td>
<td>122</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>compost</td>
<td>168</td>
<td>144</td>
<td>80</td>
</tr>
<tr>
<td>drijfmest</td>
<td>105</td>
<td>135</td>
<td>83</td>
</tr>
<tr>
<td>kunstmest</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Zand

Tabel B-4.3 Berekende gemiddelde doorlatendheid in het tijdsinterval 750-900 seconden voor de zandlocaties, in mm /sec.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>prp-sol</td>
<td>Valthermond</td>
<td>0.204</td>
<td>0.011</td>
<td>0.166</td>
<td>0.008</td>
</tr>
<tr>
<td>condit</td>
<td>Vredepeel</td>
<td>0.250</td>
<td>0.767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xurian</td>
<td>Vredepeel</td>
<td>0.661</td>
<td>0.127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bactofil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar Norit</td>
<td></td>
<td>0.375</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>biochar 2.5 t</td>
<td></td>
<td>0.204</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar 5t</td>
<td></td>
<td>0.204</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar ECN</td>
<td></td>
<td>0.335</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar ROM</td>
<td></td>
<td>0.335</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>steenmeel</td>
<td></td>
<td>0.409</td>
<td>0.010</td>
<td>0.166</td>
<td>0.006</td>
</tr>
<tr>
<td>compost</td>
<td></td>
<td>0.218</td>
<td>0.009</td>
<td>0.167</td>
<td>0.008</td>
</tr>
<tr>
<td>drijfmest</td>
<td></td>
<td>0.232</td>
<td>0.007</td>
<td>0.078</td>
<td>0.008</td>
</tr>
<tr>
<td>kunstmest</td>
<td></td>
<td>0.254</td>
<td>0.009</td>
<td>0.183</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Tabel B-4.4 Gemiddelde doorlatendheid na 900 seconden, relatief ten opzichte van kunstmest.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>prp-sol</td>
<td>80.3</td>
<td>114.3</td>
<td>90.7</td>
<td>97.1</td>
</tr>
<tr>
<td>bactofil</td>
<td></td>
<td>119.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>steenmeel</td>
<td>161.0</td>
<td>104.8</td>
<td>90.7</td>
<td>74.3</td>
</tr>
<tr>
<td>compost</td>
<td>85.8</td>
<td>97.6</td>
<td>91.3</td>
<td>100.0</td>
</tr>
<tr>
<td>drijfmest</td>
<td>91.3</td>
<td>73.8</td>
<td>42.6</td>
<td>100.0</td>
</tr>
<tr>
<td>kunstmest</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Tabel B-4.5 Gemiddelde verzadigde doorlatendheid, mm /sec en relatief ten opzichte van kunstmest, %.

<table>
<thead>
<tr>
<th>behandeling</th>
<th>klei meting</th>
<th>klei relatief</th>
<th>zand meting</th>
<th>zand relatief</th>
</tr>
</thead>
<tbody>
<tr>
<td>agrigyps</td>
<td>0.496</td>
<td>156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>betacal carbo</td>
<td>0.267</td>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>brandkalk</td>
<td>0.411</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>prp-sol</td>
<td>0.352</td>
<td>110</td>
<td>0.009</td>
<td>106</td>
</tr>
<tr>
<td>bactofil</td>
<td>0.093</td>
<td>64</td>
<td>0.009</td>
<td>119</td>
</tr>
<tr>
<td>steenmeel</td>
<td></td>
<td>0.008</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>compost</td>
<td>0.295</td>
<td>195</td>
<td>0.008</td>
<td>99</td>
</tr>
<tr>
<td>drijfmest</td>
<td>0.315</td>
<td>110</td>
<td>0.007</td>
<td>87</td>
</tr>
<tr>
<td>kunstmest</td>
<td>0.259</td>
<td>100</td>
<td>0.009</td>
<td>100</td>
</tr>
</tbody>
</table>
Bijlage 5. Aggregaatstabiliteitsindex (-)

Tabel B-5.1 Gemiddelde stabiliteit index van aggregaten <2 mm, per locatie voor 2012 en 2015. (Aggregaatstabiliteitsindex -)

<table>
<thead>
<tr>
<th>behandeling</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Valthermond</th>
<th>Vredepeel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>0,52</td>
<td>0,76</td>
<td>0,59</td>
<td>0,45</td>
<td>0,51</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>0,49</td>
<td>0,78</td>
<td>0,55</td>
<td>0,41</td>
<td>0,28</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>0,66</td>
<td>0,61</td>
<td>0,15</td>
<td>0,33</td>
<td>0,27</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>0,17</td>
<td>0,72</td>
<td>0,59</td>
<td>0,31</td>
<td>0,42</td>
</tr>
<tr>
<td>Condi7%N *)</td>
<td>0,43</td>
<td>0,55</td>
<td>0,34</td>
<td>0,15</td>
<td>0,67</td>
</tr>
<tr>
<td>Xurian Optimum *)</td>
<td>0,48</td>
<td>0,15</td>
<td>0,2</td>
<td>0,28</td>
<td>0,77</td>
</tr>
<tr>
<td>BactoFil</td>
<td>0,52</td>
<td>0,36</td>
<td>0,32</td>
<td>0,52</td>
<td>0,52</td>
</tr>
<tr>
<td>Biochar ECN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,27</td>
</tr>
<tr>
<td>Biochar Norit *)</td>
<td>0,62</td>
<td>0,77</td>
<td></td>
<td></td>
<td>0,32</td>
</tr>
<tr>
<td>Biochar Rom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,21</td>
</tr>
<tr>
<td>Biochar hout 2,5 ton *)</td>
<td></td>
<td>0,43</td>
<td>0,27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar hout 5 ton *)</td>
<td>0,67</td>
<td>0,76</td>
<td>0,46</td>
<td>0,34</td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,13</td>
</tr>
<tr>
<td>Compost</td>
<td>0,43</td>
<td>0,72</td>
<td>0,36</td>
<td>0,43</td>
<td>0,47</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>0,36</td>
<td>0,69</td>
<td>0,55</td>
<td>0,36</td>
<td>0,36</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>0,47</td>
<td>0,75</td>
<td>0,49</td>
<td>0,36</td>
<td>0,22</td>
</tr>
</tbody>
</table>

Tabel B-5.2 Gemiddelde stabiliteit van aggregaten <2 mm, relatief t.o.v kunstmest, per locatie voor 2012 en 2015, %.

<table>
<thead>
<tr>
<th>behandeling</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Valthermond</th>
<th>Vredepeel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>111</td>
<td>101</td>
<td>120</td>
<td>124</td>
<td>232</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>104</td>
<td>104</td>
<td>112</td>
<td>114</td>
<td>127</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>140</td>
<td>82</td>
<td>31</td>
<td>91</td>
<td>123</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>36</td>
<td>97</td>
<td>120</td>
<td>87</td>
<td>191</td>
</tr>
<tr>
<td>Condi7%N *)</td>
<td>91</td>
<td>112</td>
<td>155</td>
<td>79</td>
<td>102</td>
</tr>
<tr>
<td>Xurian Optimum *)</td>
<td>102</td>
<td>31</td>
<td>91</td>
<td>147</td>
<td>118</td>
</tr>
<tr>
<td>BactoFil</td>
<td>41</td>
<td>99</td>
<td>145</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Biochar ECN</td>
<td></td>
<td>142</td>
<td>109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar Norit *)</td>
<td>132</td>
<td>102</td>
<td>168</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Biochar Rom</td>
<td></td>
<td>111</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar hout 2,5 ton *)</td>
<td></td>
<td>88</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar hout 5 ton *)</td>
<td>143</td>
<td>102</td>
<td>94</td>
<td>95</td>
<td>68</td>
</tr>
<tr>
<td>Steenmeel</td>
<td></td>
<td>121</td>
<td>102</td>
<td>84</td>
<td>103</td>
</tr>
<tr>
<td>Compost</td>
<td>91</td>
<td>97</td>
<td>73</td>
<td>119</td>
<td>214</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>77</td>
<td>93</td>
<td>112</td>
<td>101</td>
<td>164</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

*) Enkelvoudig grondmonster
Tabel 8.5.3 Gemiddelde stabiiteit van aggregaten <2 mm, relatief t.o.v kunstmest, per grondsoort voor 2012 en 2015, %.

<table>
<thead>
<tr>
<th>behandeling</th>
<th>klei</th>
<th>zand</th>
<th>klei</th>
<th>zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigysp</td>
<td>154</td>
<td>114</td>
<td>2012</td>
<td>2015</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>115</td>
<td>108</td>
<td>2012</td>
<td>2015</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>98</td>
<td>90</td>
<td>2012</td>
<td>2015</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>116</td>
<td>98</td>
<td>90</td>
<td>107</td>
</tr>
<tr>
<td>Condit7%N *)</td>
<td>119</td>
<td>82</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Xutian Optimum *)</td>
<td>75</td>
<td>116</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>BactoFil</td>
<td>93</td>
<td>122</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Biochar ECN</td>
<td></td>
<td>142</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>Biochar Norit *)</td>
<td>132</td>
<td>102</td>
<td>168</td>
<td>100</td>
</tr>
<tr>
<td>Biochar Rom</td>
<td></td>
<td>111</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Biochar hout 2,5 ton *)</td>
<td>88</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar hout 5 ton *)</td>
<td>118</td>
<td>99</td>
<td>68</td>
<td>94</td>
</tr>
<tr>
<td>Steenmeel</td>
<td></td>
<td>102</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Compost</td>
<td>126</td>
<td>107</td>
<td>91</td>
<td>96</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>117</td>
<td>98</td>
<td>104</td>
<td>90</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
*)enkelvoudig grondmonster
Bijlage 6. Waterbergend vermogen
<table>
<thead>
<tr>
<th>Behandeling</th>
<th>klei</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>gemiddeld</th>
<th>waterbergend vermogen</th>
<th>zand</th>
<th>Valthermond</th>
<th>Vredepeel</th>
<th>gemiddeld</th>
<th>waterbergend vermogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>agrigyps</td>
<td></td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>%</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
</tr>
<tr>
<td></td>
<td>agrigyps</td>
<td>38,3</td>
<td>15,4</td>
<td>35,4</td>
<td>12,5</td>
<td>36,8</td>
<td>13,9</td>
<td>22,9</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>betacal</td>
<td></td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>%</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
</tr>
<tr>
<td></td>
<td>betacal</td>
<td>39,5</td>
<td>15,7</td>
<td>34,6</td>
<td>11,7</td>
<td>37,0</td>
<td>13,7</td>
<td>23,3</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>brandkalk</td>
<td></td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>%</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
</tr>
<tr>
<td></td>
<td>brandkalk</td>
<td>41,2</td>
<td>17,1</td>
<td>36,9</td>
<td>13,4</td>
<td>39,1</td>
<td>15,3</td>
<td>23,8</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>PRPsol</td>
<td></td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>%</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
</tr>
<tr>
<td></td>
<td>PRPsol</td>
<td>37,8</td>
<td>12,0</td>
<td>33,8</td>
<td>13,2</td>
<td>35,8</td>
<td>12,6</td>
<td>23,2</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>bactofil</td>
<td></td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>%</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
</tr>
<tr>
<td></td>
<td>bactofil</td>
<td>36,2</td>
<td>12,6</td>
<td>36,2</td>
<td>12,6</td>
<td>36,2</td>
<td>12,6</td>
<td>23,7</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>steenmeel</td>
<td></td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>%</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
</tr>
<tr>
<td>compost</td>
<td></td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>%</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
</tr>
<tr>
<td></td>
<td>compost</td>
<td>39,1</td>
<td>16,7</td>
<td>35,2</td>
<td>12,0</td>
<td>37,2</td>
<td>14,3</td>
<td>22,8</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>drijfmest</td>
<td></td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>%</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
</tr>
<tr>
<td></td>
<td>drijfmest</td>
<td>37,6</td>
<td>14,9</td>
<td>34,6</td>
<td>12,1</td>
<td>37,4</td>
<td>13,5</td>
<td>23,9</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>kunstmest</td>
<td></td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>%</td>
<td>pF2.0</td>
<td>pF4.2</td>
<td>pF2.0</td>
<td>pF4.2</td>
</tr>
<tr>
<td></td>
<td>kunstmest</td>
<td>40,2</td>
<td>14,9</td>
<td>34,6</td>
<td>12,1</td>
<td>37,4</td>
<td>13,5</td>
<td>23,9</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

© Praktijkonderzoek Plant & Omgeving
Bijlage 7. Resultaten bodemchemisch onderzoek 2012-2015
<table>
<thead>
<tr>
<th>Behandeling</th>
<th>N-to-taal</th>
<th>P-PAE</th>
<th>P-AL</th>
<th>K-ge-</th>
<th>S-</th>
<th>Mg</th>
<th>Na</th>
<th>pH</th>
<th>Koolzuur</th>
<th>Org.</th>
<th>CEC</th>
<th>Bodemleven</th>
<th>CEC-bezetting</th>
<th>CEC-Ca bezetting</th>
<th>CEC-Mg bezetting</th>
<th>CEC-K bezetting</th>
<th>CEC-Na bezetting</th>
<th>Ca-voorraad</th>
<th>Ca-beschikbaar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>1840</td>
<td>2,1</td>
<td>50</td>
<td>92</td>
<td>24</td>
<td>993</td>
<td>67</td>
<td>19</td>
<td>7,3</td>
<td>8,5</td>
<td>3,5</td>
<td>195</td>
<td>58</td>
<td>100</td>
<td>91</td>
<td>6,0</td>
<td>2,9</td>
<td>0,6</td>
<td>11900</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>1997</td>
<td>2,4</td>
<td>55</td>
<td>98</td>
<td>25</td>
<td>867</td>
<td>76</td>
<td>21</td>
<td>7,3</td>
<td>9,0</td>
<td>3,7</td>
<td>206</td>
<td>68</td>
<td>100</td>
<td>91</td>
<td>6,1</td>
<td>2,7</td>
<td>0,6</td>
<td>12530</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>1823</td>
<td>2,0</td>
<td>47</td>
<td>81</td>
<td>22</td>
<td>980</td>
<td>172</td>
<td>22</td>
<td>7,3</td>
<td>9,3</td>
<td>3,4</td>
<td>193</td>
<td>63</td>
<td>100</td>
<td>90</td>
<td>6,3</td>
<td>2,8</td>
<td>0,5</td>
<td>11812</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>1790</td>
<td>1,6</td>
<td>45</td>
<td>91</td>
<td>24</td>
<td>827</td>
<td>67</td>
<td>22</td>
<td>7,3</td>
<td>9,1</td>
<td>3,3</td>
<td>190</td>
<td>56</td>
<td>100</td>
<td>91</td>
<td>5,7</td>
<td>3,0</td>
<td>0,6</td>
<td>11722</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>1727</td>
<td>1,9</td>
<td>51</td>
<td>88</td>
<td>23</td>
<td>780</td>
<td>68</td>
<td>21</td>
<td>7,2</td>
<td>8,1</td>
<td>3,3</td>
<td>187</td>
<td>67</td>
<td>100</td>
<td>91</td>
<td>5,9</td>
<td>2,8</td>
<td>0,5</td>
<td>11482</td>
</tr>
<tr>
<td>Compost</td>
<td>1807</td>
<td>2,1</td>
<td>52</td>
<td>93</td>
<td>25</td>
<td>773</td>
<td>72</td>
<td>21</td>
<td>7,2</td>
<td>8,2</td>
<td>3,3</td>
<td>187</td>
<td>61</td>
<td>100</td>
<td>90</td>
<td>6,1</td>
<td>3,0</td>
<td>0,6</td>
<td>11508</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>1893</td>
<td>1,8</td>
<td>52</td>
<td>88</td>
<td>24</td>
<td>977</td>
<td>72</td>
<td>23</td>
<td>7,2</td>
<td>8,1</td>
<td>3,4</td>
<td>203</td>
<td>66</td>
<td>100</td>
<td>91</td>
<td>6,0</td>
<td>2,7</td>
<td>0,5</td>
<td>12462</td>
</tr>
<tr>
<td>Condit</td>
<td>1520</td>
<td>1,6</td>
<td>46</td>
<td>65</td>
<td>18</td>
<td>970</td>
<td>63</td>
<td>17</td>
<td>7,4</td>
<td>7,5</td>
<td>3,0</td>
<td>170</td>
<td>56</td>
<td>100</td>
<td>92</td>
<td>5,2</td>
<td>2,7</td>
<td>0,5</td>
<td>10690</td>
</tr>
<tr>
<td>Xurian</td>
<td>1400</td>
<td>1,3</td>
<td>45</td>
<td>65</td>
<td>19</td>
<td>970</td>
<td>40</td>
<td>16</td>
<td>7,2</td>
<td>8,7</td>
<td>2,6</td>
<td>149</td>
<td>53</td>
<td>100</td>
<td>91</td>
<td>5,0</td>
<td>3,1</td>
<td>0,5</td>
<td>9480</td>
</tr>
<tr>
<td>Biochar Norit</td>
<td>1780</td>
<td>1,5</td>
<td>47</td>
<td>76</td>
<td>21</td>
<td>720</td>
<td>67</td>
<td>21</td>
<td>7,2</td>
<td>8,1</td>
<td>3,1</td>
<td>192</td>
<td>62</td>
<td>100</td>
<td>91</td>
<td>5,8</td>
<td>2,8</td>
<td>0,6</td>
<td>11930</td>
</tr>
<tr>
<td>Biochar hout 5t</td>
<td>1890</td>
<td>1,9</td>
<td>54</td>
<td>96</td>
<td>25</td>
<td>870</td>
<td>69</td>
<td>20</td>
<td>7,2</td>
<td>8,4</td>
<td>3,5</td>
<td>193</td>
<td>68</td>
<td>100</td>
<td>90</td>
<td>6,3</td>
<td>2,6</td>
<td>0,6</td>
<td>11780</td>
</tr>
</tbody>
</table>

© Praktijkonderzoek Plant & Omgeving

68
<table>
<thead>
<tr>
<th>2012 (najaar)</th>
<th>Agrigyp</th>
<th>Betacal Carbo</th>
<th>Brandkalk</th>
<th>PRP-sol</th>
<th>Condit</th>
<th>Xurian Optimum</th>
<th>Biochar-Norit</th>
<th>Biochar-hout</th>
<th>GFTcom-post</th>
<th>drijfmest</th>
<th>Kunstmest</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-totaal</td>
<td>1760</td>
<td>1870</td>
<td>1660</td>
<td>1540</td>
<td>1590</td>
<td>1720</td>
<td>1760</td>
<td>1740</td>
<td>1770</td>
<td>1640</td>
<td>1500</td>
</tr>
<tr>
<td>P-PAE</td>
<td>1,4</td>
<td>2,0</td>
<td>2,1</td>
<td>1,3</td>
<td>2,0</td>
<td>1,6</td>
<td>1,3</td>
<td>2,0</td>
<td>1,8</td>
<td>2,0</td>
<td>1,5</td>
</tr>
<tr>
<td>mg N/kg</td>
<td>75</td>
<td>95</td>
<td>94</td>
<td>90</td>
<td>66</td>
<td>91</td>
<td>64</td>
<td>75</td>
<td>82</td>
<td>78</td>
<td>69</td>
</tr>
<tr>
<td>mg P/kg</td>
<td>19</td>
<td>24</td>
<td>23</td>
<td>21</td>
<td>18</td>
<td>23</td>
<td>18</td>
<td>19</td>
<td>21</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Na-P2O5/100g</td>
<td>950</td>
<td>1210</td>
<td>1080</td>
<td>90</td>
<td>1010</td>
<td>1120</td>
<td>970</td>
<td>910</td>
<td>940</td>
<td>980</td>
<td>900</td>
</tr>
<tr>
<td>mg K/kg</td>
<td>81</td>
<td>96</td>
<td>160</td>
<td>96</td>
<td>79</td>
<td>82</td>
<td>86</td>
<td>87</td>
<td>86</td>
<td>86</td>
<td>80</td>
</tr>
<tr>
<td>Mg-PAE</td>
<td>28</td>
<td>30</td>
<td>27</td>
<td>33</td>
<td>22</td>
<td>31</td>
<td>23</td>
<td>20</td>
<td>21</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>mg Mg/kg</td>
<td>7,3</td>
<td>7,4</td>
<td>6,6</td>
<td>7,0</td>
<td>7,2</td>
<td>7,1</td>
<td>6,8</td>
<td>7,3</td>
<td>7,3</td>
<td>7,4</td>
<td>7,4</td>
</tr>
<tr>
<td>mg Na/kg</td>
<td>8,7</td>
<td>7,6</td>
<td>7,9</td>
<td>7,8</td>
<td>7,7</td>
<td>8,1</td>
<td>7,8</td>
<td>8,1</td>
<td>8,1</td>
<td>8,0</td>
<td>8,0</td>
</tr>
<tr>
<td>pH</td>
<td>3,5</td>
<td>3,9</td>
<td>3,6</td>
<td>3,4</td>
<td>3,4</td>
<td>3,8</td>
<td>4,0</td>
<td>3,8</td>
<td>3,8</td>
<td>3,2</td>
<td>3,2</td>
</tr>
<tr>
<td>Koolzurekalk</td>
<td>182</td>
<td>189</td>
<td>190</td>
<td>179</td>
<td>180</td>
<td>193</td>
<td>194</td>
<td>202</td>
<td>196</td>
<td>172</td>
<td>178</td>
</tr>
<tr>
<td>% CaCO3</td>
<td>58</td>
<td>69</td>
<td>49</td>
<td>59</td>
<td>45</td>
<td>56</td>
<td>47</td>
<td>53</td>
<td>49</td>
<td>51</td>
<td>44</td>
</tr>
<tr>
<td>% Organische stof</td>
<td>100</td>
</tr>
<tr>
<td>CEC</td>
<td>89</td>
<td>88</td>
<td>90</td>
<td>90</td>
<td>91</td>
<td>91</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>mmol+ /kg</td>
<td>7,1</td>
<td>8,3</td>
<td>6,0</td>
<td>6,6</td>
<td>5,6</td>
<td>6,0</td>
<td>6,5</td>
<td>6,7</td>
<td>6,3</td>
<td>6,6</td>
<td>6,4</td>
</tr>
<tr>
<td>% CEC-bezet</td>
<td>0,5</td>
<td>0,5</td>
<td>0,6</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,6</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,6</td>
</tr>
<tr>
<td>% Ca-bezet</td>
<td>58</td>
<td>49</td>
<td>47</td>
<td>53</td>
<td>45</td>
<td>56</td>
<td>47</td>
<td>53</td>
<td>49</td>
<td>49</td>
<td>44</td>
</tr>
<tr>
<td>% Mg-bezet</td>
<td>3,4</td>
<td>3,3</td>
<td>3,0</td>
<td>2,6</td>
<td>3,0</td>
<td>2,7</td>
<td>2,7</td>
<td>2,8</td>
<td>2,9</td>
<td>3,3</td>
<td>3,3</td>
</tr>
<tr>
<td>% K-bezet</td>
<td>0,5</td>
<td>0,5</td>
<td>0,6</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,6</td>
<td>0,5</td>
<td>0,5</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>% Na-bezet</td>
<td>1232</td>
<td>9570</td>
<td>9900</td>
<td>340</td>
<td>9430</td>
<td>10090</td>
<td>10085</td>
<td>10480</td>
<td>8875</td>
<td>9205</td>
<td>8922</td>
</tr>
<tr>
<td>kg Ca/ha</td>
<td>10090</td>
<td>10085</td>
<td>10480</td>
<td>8875</td>
<td>9205</td>
<td>8922</td>
<td>10085</td>
<td>10480</td>
<td>8875</td>
<td>9205</td>
<td>8922</td>
</tr>
<tr>
<td>Behandeling</td>
<td>N-totaal</td>
<td>P-PAE</td>
<td>P-AL</td>
<td>K-gehalte</td>
<td>Stof aal</td>
<td>Mg</td>
<td>Na</td>
<td>pH</td>
<td>Koolzure kalk</td>
<td>Org. Stof</td>
<td>CEC</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>-----------</td>
<td>----------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----------------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>Agrigyps</td>
<td>993</td>
<td>0,6</td>
<td>36</td>
<td>56</td>
<td>16</td>
<td>653</td>
<td>41</td>
<td>18</td>
<td>7,3</td>
<td>6,9</td>
<td>2,2</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>1057</td>
<td>0,7</td>
<td>35</td>
<td>49</td>
<td>14</td>
<td>550</td>
<td>42</td>
<td>18</td>
<td>7,4</td>
<td>6,2</td>
<td>2,2</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>1070</td>
<td>0,5</td>
<td>35</td>
<td>31</td>
<td>12</td>
<td>577</td>
<td>139</td>
<td>17</td>
<td>7,3</td>
<td>6,8</td>
<td>2,2</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>977</td>
<td>0,6</td>
<td>36</td>
<td>32</td>
<td>12</td>
<td>653</td>
<td>49</td>
<td>17</td>
<td>7,4</td>
<td>6,7</td>
<td>2,1</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>1033</td>
<td>0,5</td>
<td>37</td>
<td>48</td>
<td>18</td>
<td>590</td>
<td>41</td>
<td>20</td>
<td>7,4</td>
<td>6,6</td>
<td>2,2</td>
</tr>
<tr>
<td>Bactoflil</td>
<td>1013</td>
<td>0,5</td>
<td>34</td>
<td>48</td>
<td>15</td>
<td>547</td>
<td>43</td>
<td>19</td>
<td>7,4</td>
<td>6,5</td>
<td>2,1</td>
</tr>
<tr>
<td>Compost</td>
<td>947</td>
<td>0,5</td>
<td>34</td>
<td>44</td>
<td>13</td>
<td>613</td>
<td>42</td>
<td>18</td>
<td>7,4</td>
<td>6,6</td>
<td>2,1</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>1123</td>
<td>0,5</td>
<td>36</td>
<td>48</td>
<td>15</td>
<td>697</td>
<td>42</td>
<td>20</td>
<td>7,4</td>
<td>7,1</td>
<td>2,3</td>
</tr>
<tr>
<td>Behandeling</td>
<td>N-toaal</td>
<td>P-PAE</td>
<td>P-AL</td>
<td>K-PAE</td>
<td>K-getal</td>
<td>S-toaal</td>
<td>Mg-PAE</td>
<td>Na-PAE</td>
<td>pH</td>
<td>Koolzurekalk</td>
<td>Organische stof</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>----</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Agrigypse</td>
<td>1150</td>
<td>0,9</td>
<td>42</td>
<td>69</td>
<td>18</td>
<td>650</td>
<td>41</td>
<td>17</td>
<td>7,2</td>
<td>7,3</td>
<td>2,5</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>1030</td>
<td>0,8</td>
<td>38</td>
<td>75</td>
<td>19</td>
<td>550</td>
<td>39</td>
<td>14</td>
<td>7,5</td>
<td>6,5</td>
<td>2,1</td>
</tr>
<tr>
<td>Brandkal k</td>
<td>950</td>
<td>1,0</td>
<td>40</td>
<td>103</td>
<td>24</td>
<td>550</td>
<td>92</td>
<td>26</td>
<td>7,2</td>
<td>6,7</td>
<td>2,0</td>
</tr>
<tr>
<td>PRP-sol</td>
<td>1080</td>
<td>0,7</td>
<td>37</td>
<td>76</td>
<td>19</td>
<td>950</td>
<td>39</td>
<td>24</td>
<td>7,4</td>
<td>7,3</td>
<td>2,5</td>
</tr>
<tr>
<td>Condit</td>
<td>1000</td>
<td>0,6</td>
<td>38</td>
<td>59</td>
<td>17</td>
<td>780</td>
<td>40</td>
<td>19</td>
<td>7,1</td>
<td>6,8</td>
<td>2,4</td>
</tr>
<tr>
<td>Xurian Optimu m</td>
<td>1080</td>
<td>1,0</td>
<td>41</td>
<td>83</td>
<td>20</td>
<td>690</td>
<td>42</td>
<td>19</td>
<td>7,3</td>
<td>6,5</td>
<td>2,6</td>
</tr>
<tr>
<td>Bactofil</td>
<td>1050</td>
<td>0,7</td>
<td>39</td>
<td>77</td>
<td>20</td>
<td>840</td>
<td>44</td>
<td>18</td>
<td>7,3</td>
<td>6,6</td>
<td>2,2</td>
</tr>
<tr>
<td>Biochar-hout 2,5t</td>
<td>980</td>
<td>0,9</td>
<td>42</td>
<td>75</td>
<td>19</td>
<td>780</td>
<td>39</td>
<td>16</td>
<td>7,4</td>
<td>6,5</td>
<td>2,3</td>
</tr>
<tr>
<td>Biochar-hout 5t</td>
<td>1080</td>
<td>1,1</td>
<td>41</td>
<td>80</td>
<td>20</td>
<td>540</td>
<td>42</td>
<td>18</td>
<td>7,4</td>
<td>6,9</td>
<td>2,5</td>
</tr>
<tr>
<td>Compost</td>
<td>1030</td>
<td>0,7</td>
<td>37</td>
<td>75</td>
<td>19</td>
<td>550</td>
<td>38</td>
<td>16</td>
<td>7,4</td>
<td>6,9</td>
<td>2,3</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>1240</td>
<td>1,0</td>
<td>42</td>
<td>83</td>
<td>20</td>
<td>900</td>
<td>51</td>
<td>17</td>
<td>6,9</td>
<td>6,5</td>
<td>3,1</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>1100</td>
<td>0,8</td>
<td>39</td>
<td>91</td>
<td>22</td>
<td>560</td>
<td>44</td>
<td>26</td>
<td>6,8</td>
<td>6,5</td>
<td>2,3</td>
</tr>
</tbody>
</table>
Westmaas 2015 (voorjaar)

| Behandeling | N- totaal | P-PAE | P-AL | K- totaal | K-ge -tal | S-totaal | Mg | Na | pH | Koolzurekalk | Org. Stof | CE C | Bodem -leven | CEC bezetting | CEC-Ca bezetting | CEC-Mg bezetting | CEC-K bezetting | CEC Na bezetting | Ca-voorraad | Ca-beschikbaar |
|--------------|-----------|-------|------|-----------|-----------|----------|-----|----|----|---------------|-----------|------|--------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------|----------------|
| Agrigyps | 1280 | 0,7 | 47 | 84 | 23 | 223 | 71 | 13 | 7,3| 7,2 | 2,2 | 170 | 27 | 100 | 93 | 4,1 | 2,6 | 0,5 | 11142 | 480 |
| Betacal Carbo| 1197 | 0,7 | 46 | 92 | 25 | 197 | 69 | 12 | 7,3| 7,9 | 2,1 | 162 | 25 | 100 | 93 | 4,2 | 2,7 | 0,5 | 10663 | 454 |
| Brandkaalk | 1223 | 0,7 | 46 | 98 | 27 | 173 | 15 | 13 | 7,4| 7,8 | 2,1 | 163 | 31 | 100 | 91 | 4,8 | 3,1 | 0,5 | 10548 | 396 |
| PRP-SOL | 1267 | 0,6 | 43 | 85 | 24 | 180 | 67 | 13 | 7,4| 7,9 | 2,2 | 169 | 26 | 100 | 92 | 4,2 | 2,8 | 0,5 | 11045 | 432 |
| Bactofli | 1197 | 0,6 | 46 | 89 | 25 | 180 | 72 | 13 | 7,3| 7,7 | 2,1 | 162 | 21 | 100 | 92 | 4,2 | 2,9 | 0,5 | 10635 | 473 |
| Drijfmest | 1260 | 0,7 | 47 | 88 | 24 | 187 | 72 | 13 | 7,5| 7,5 | 2,2 | 166 | 24 | 100 | 93 | 4,0 | 2,8 | 0,4 | 10835 | 320 |
| Compost | 1270 | 0,6 | 43 | 85 | 24 | 197 | 70 | 13 | 7,4| 7,8 | 2,2 | 170 | 30 | 100 | 93 | 4,2 | 2,7 | 0,4 | 11140 | 396 |
| Kunst -mest | 1243 | 0,7 | 44 | 88 | 25 | 190 | 70 | 13 | 7,3| 7,2 | 2,2 | 170 | 18 | 100 | 93 | 4,0 | 2,7 | 0,4 | 11155 | 451 |

© Praktijkonderzoek Plant & Omgeving
<table>
<thead>
<tr>
<th>Behandeling</th>
<th>N-toetaal mg N/kg</th>
<th>P-toetaal mg P/kg</th>
<th>P-AL mg P2O5/100g</th>
<th>K-toetaal mg K/kg</th>
<th>S-toetaal mg S/kg</th>
<th>Mg-toetaal mg Mg/kg</th>
<th>Na-toetaal mg Na/kg</th>
<th>pH</th>
<th>Koolzuurkalk %</th>
<th>Organi­sche stof %</th>
<th>CEC mmol+ /kg</th>
<th>Bodem­leven mg N/kg</th>
<th>CEC-bezet­ting %</th>
<th>Ca­bezet­ting %</th>
<th>Mg­bezet­ting %</th>
<th>K­bezet­ting %</th>
<th>Na­bezet­ting %</th>
<th>Ca­voor­raad kg Ca/ha</th>
<th>Ca­beschik­baar kg Ca/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agri-gyps</td>
<td>1360</td>
<td>0,6</td>
<td>50</td>
<td>67</td>
<td>18</td>
<td>280</td>
<td>69</td>
<td>11</td>
<td>7,5</td>
<td>7,3</td>
<td>2,2</td>
<td>187</td>
<td>16</td>
<td>100</td>
<td>93</td>
<td>3,6</td>
<td>2,5</td>
<td>0,5</td>
<td>12815</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>1300</td>
<td>0,7</td>
<td>48</td>
<td>75</td>
<td>19</td>
<td>200</td>
<td>70</td>
<td>13</td>
<td>7,6</td>
<td>7,8</td>
<td>2,0</td>
<td>176</td>
<td>14</td>
<td>100</td>
<td>93</td>
<td>4,0</td>
<td>2,6</td>
<td>0,5</td>
<td>12895</td>
</tr>
<tr>
<td>Brand-kalk</td>
<td>1320</td>
<td>0,6</td>
<td>48</td>
<td>81</td>
<td>20</td>
<td>240</td>
<td>135</td>
<td>12</td>
<td>7,1</td>
<td>8,5</td>
<td>2,5</td>
<td>184</td>
<td>18</td>
<td>100</td>
<td>91</td>
<td>5,8</td>
<td>2,8</td>
<td>0,5</td>
<td>12280</td>
</tr>
<tr>
<td>PRP-sol</td>
<td>1250</td>
<td>0,8</td>
<td>46</td>
<td>82</td>
<td>21</td>
<td>270</td>
<td>70</td>
<td>13</td>
<td>7,3</td>
<td>7,3</td>
<td>2,3</td>
<td>170</td>
<td>24</td>
<td>100</td>
<td>93</td>
<td>4,2</td>
<td>2,3</td>
<td>0,5</td>
<td>11595</td>
</tr>
<tr>
<td>Condit</td>
<td>1310</td>
<td>0,6</td>
<td>45</td>
<td>70</td>
<td>18</td>
<td>220</td>
<td>72</td>
<td>19</td>
<td>7,5</td>
<td>8,1</td>
<td>2,1</td>
<td>187</td>
<td>12</td>
<td>100</td>
<td>94</td>
<td>3,3</td>
<td>2,2</td>
<td>0,5</td>
<td>12895</td>
</tr>
<tr>
<td>Xurian Opti­mu m</td>
<td>1480</td>
<td>0,7</td>
<td>52</td>
<td>89</td>
<td>22</td>
<td>300</td>
<td>74</td>
<td>13</td>
<td>7,3</td>
<td>8,2</td>
<td>2,4</td>
<td>193</td>
<td>13</td>
<td>100</td>
<td>93</td>
<td>4,4</td>
<td>2,4</td>
<td>0,5</td>
<td>13130</td>
</tr>
<tr>
<td>Bactofil</td>
<td>1340</td>
<td>0,7</td>
<td>50</td>
<td>75</td>
<td>20</td>
<td>210</td>
<td>69</td>
<td>12</td>
<td>7,5</td>
<td>7,7</td>
<td>2,2</td>
<td>181</td>
<td>6</td>
<td>100</td>
<td>93</td>
<td>4,4</td>
<td>2,4</td>
<td>0,5</td>
<td>12305</td>
</tr>
<tr>
<td>Compost</td>
<td>1400</td>
<td>0,6</td>
<td>44</td>
<td>70</td>
<td>18</td>
<td>250</td>
<td>71</td>
<td>15</td>
<td>7,5</td>
<td>8</td>
<td>2,3</td>
<td>195</td>
<td>13</td>
<td>100</td>
<td>93</td>
<td>3,7</td>
<td>2,4</td>
<td>0,5</td>
<td>13370</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>1430</td>
<td>1,0</td>
<td>50</td>
<td>84</td>
<td>21</td>
<td>270</td>
<td>68</td>
<td>16</td>
<td>7,1</td>
<td>8,3</td>
<td>2,6</td>
<td>193</td>
<td>15</td>
<td>100</td>
<td>92</td>
<td>4,7</td>
<td>2,4</td>
<td>0,5</td>
<td>13080</td>
</tr>
<tr>
<td>Kunst­mest</td>
<td>1430</td>
<td>0,7</td>
<td>49</td>
<td>92</td>
<td>22</td>
<td>250</td>
<td>73</td>
<td>24</td>
<td>7,2</td>
<td>8,1</td>
<td>2,4</td>
<td>189</td>
<td>15</td>
<td>100</td>
<td>93</td>
<td>3,9</td>
<td>2,2</td>
<td>0,5</td>
<td>12955</td>
</tr>
</tbody>
</table>
Valthermond (2015 voorjaar)

<table>
<thead>
<tr>
<th>Behandeling</th>
<th>N-totaal</th>
<th>P-PAE</th>
<th>P-AL</th>
<th>K-PAE</th>
<th>K-totaal</th>
<th>Mg</th>
<th>Na</th>
<th>pH</th>
<th>Org. Stof</th>
<th>CEC</th>
<th>CEC-bezetting</th>
<th>Bodem-leven</th>
<th>Ca-bezetting</th>
<th>Mg-bezetting</th>
<th>K-bezetting</th>
<th>Na-bezetting</th>
<th>Ca-beschikbaar</th>
<th>Ca-voorraad</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP-SOL</td>
<td>3257</td>
<td>5.2</td>
<td>28</td>
<td>9</td>
<td>720</td>
<td>113</td>
<td>17</td>
<td>5.0</td>
<td>12.2</td>
<td>167</td>
<td>91</td>
<td>62</td>
<td>79</td>
<td>9.3</td>
<td>1.9</td>
<td>0.6</td>
<td>345</td>
<td>6905</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>3327</td>
<td>2.4</td>
<td>33</td>
<td>5</td>
<td>720</td>
<td>111</td>
<td>17</td>
<td>5.3</td>
<td>12.0</td>
<td>175</td>
<td>97</td>
<td>57</td>
<td>85</td>
<td>8.9</td>
<td>2.1</td>
<td>0.6</td>
<td>388</td>
<td>7755</td>
</tr>
<tr>
<td>Drijfmeel</td>
<td>2923</td>
<td>6.3</td>
<td>27</td>
<td>5</td>
<td>720</td>
<td>111</td>
<td>17</td>
<td>5.3</td>
<td>12.0</td>
<td>175</td>
<td>97</td>
<td>57</td>
<td>85</td>
<td>8.9</td>
<td>2.1</td>
<td>0.6</td>
<td>315</td>
<td>6300</td>
</tr>
<tr>
<td>Compost</td>
<td>2747</td>
<td>4.2</td>
<td>27</td>
<td>6</td>
<td>563</td>
<td>104</td>
<td>51</td>
<td>5.4</td>
<td>10.1</td>
<td>159</td>
<td>98</td>
<td>54</td>
<td>86</td>
<td>8.7</td>
<td>2.2</td>
<td>0.6</td>
<td>99</td>
<td>7403</td>
</tr>
<tr>
<td>Kunstmeel</td>
<td>3120</td>
<td>6.5</td>
<td>37</td>
<td>6</td>
<td>690</td>
<td>123</td>
<td>59</td>
<td>5.0</td>
<td>13.4</td>
<td>183</td>
<td>88</td>
<td>64</td>
<td>77</td>
<td>8.4</td>
<td>1.8</td>
<td>0.7</td>
<td>93</td>
<td>7027</td>
</tr>
</tbody>
</table>

2012 najaar

<table>
<thead>
<tr>
<th>Behandeling</th>
<th>N-totaal</th>
<th>P-PAE</th>
<th>P-AL</th>
<th>K-PAE</th>
<th>K-totaal</th>
<th>Mg</th>
<th>Na</th>
<th>pH</th>
<th>Org. Stof</th>
<th>CEC</th>
<th>CEC-bezetting</th>
<th>Bodem-leven</th>
<th>Ca-bezetting</th>
<th>Mg-bezetting</th>
<th>K-bezetting</th>
<th>Na-bezetting</th>
<th>Ca-beschikbaar</th>
<th>Ca-voorraad</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP-sol</td>
<td>3140</td>
<td>5.3</td>
<td>28</td>
<td>5</td>
<td>620</td>
<td>113</td>
<td>17</td>
<td>5.0</td>
<td>12.2</td>
<td>167</td>
<td>91</td>
<td>62</td>
<td>79</td>
<td>9.3</td>
<td>1.9</td>
<td>0.6</td>
<td>345</td>
<td>6905</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>2900</td>
<td>2.3</td>
<td>23</td>
<td>5</td>
<td>720</td>
<td>111</td>
<td>17</td>
<td>5.3</td>
<td>12.0</td>
<td>175</td>
<td>97</td>
<td>57</td>
<td>85</td>
<td>8.9</td>
<td>2.1</td>
<td>0.6</td>
<td>388</td>
<td>7755</td>
</tr>
<tr>
<td>Drijfmeel</td>
<td>2390</td>
<td>5.2</td>
<td>26</td>
<td>7</td>
<td>570</td>
<td>125</td>
<td>23</td>
<td>5.1</td>
<td>10.4</td>
<td>142</td>
<td>93</td>
<td>51</td>
<td>81</td>
<td>9.2</td>
<td>1.9</td>
<td>0.6</td>
<td>315</td>
<td>6300</td>
</tr>
<tr>
<td>GFT-compost</td>
<td>2540</td>
<td>3.5</td>
<td>23</td>
<td>5</td>
<td>590</td>
<td>81</td>
<td>14</td>
<td>5.2</td>
<td>10.7</td>
<td>160</td>
<td>94</td>
<td>44</td>
<td>81</td>
<td>10.0</td>
<td>2.3</td>
<td>0.6</td>
<td>351</td>
<td>7020</td>
</tr>
<tr>
<td>Kunstmeel</td>
<td>2920</td>
<td>6.0</td>
<td>28</td>
<td>5</td>
<td>690</td>
<td>133</td>
<td>21</td>
<td>4.9</td>
<td>12.9</td>
<td>174</td>
<td>88</td>
<td>63</td>
<td>77</td>
<td>8.8</td>
<td>1.8</td>
<td>0.7</td>
<td>342</td>
<td>6845</td>
</tr>
<tr>
<td>Condit</td>
<td>1920</td>
<td>4.1</td>
<td>28</td>
<td>4</td>
<td>520</td>
<td>103</td>
<td>20</td>
<td>5.2</td>
<td>8.7</td>
<td>129</td>
<td>95</td>
<td>48</td>
<td>83</td>
<td>8.8</td>
<td>2.1</td>
<td>0.7</td>
<td>307</td>
<td>6135</td>
</tr>
</tbody>
</table>

© Praktijkonderzoek Plant & Omgeving
Vredepeel 2015 (voorjaar)

Behandeling	N-totaal	P-PAE	K-PAE	K-ge-	Mg	Na	pH	org. Stof	CEC	Bodemon	CEC-Ca-bezetting	CEC-Mg-bezetting	CEC-K-bezetting	CEC-Na-bezetting	Ca-beschikbaarheid	Ca-voorraad			
PRP-SOL	1497	6,0	89	42	NA	240	168	14	5,6	5,3	68	95	24	81	10,7	0,7	130	3125	
Bactofill	1420	5,9	88	29	NA	233	157	8	5,5	5,1	65	95	19	82	9,8	3,1	0,7	115	3075
Steen-meel	1387	3,3	84	49	NA	240	154	23	5,7	5,1	74	96	21	83	9,6	3,3	0,6	352	3522
Drijf-mest	1340	6,2	86	37	NA	207	151	10	5,5	5,1	58	98	35	82	12,3	3,1	0,8	175	2725
Com-post	1423	6,1	82	35	NA	243	151	9	5,5	5,2	63	98	22	82	11,7	3,5	0,7	122	2952
Kunst-mest	1350	5,6	84	37	NA	227	148	8	5,3	4,5	58	94	27	78	11,7	3,4	0,7	87	2627

2012 (najaar)

Behandeling	N-totaal	P-PAE	P-AL	K-PAE	Mg	Na	pH	Org. Stof	CEC	Bodemon	CEC-Ca-bezetting	CEC-Mg-bezetting	CEC-K-bezetting	CEC-Na-bezetting	Ca-beschikbaarheid	Ca-voorraad			
PRP-sol	1430	7,8	110	96	20	270	136	22	5,5	5,0	68	96	40	82	11,0	2,1	1,0	179	3580
Steen-mee	1320	4,0	94	125	25	250	122	52	5,8	4,6	64	91	38	75	12,0	3,8	0,6	156	3120
Groen-compost	1460	8,4	94	108	22	250	113	17	5,5	4,8	65	99	40	84	11,0	3,2	0,8	177	3540
Drijf-mest	1370	8,0	93	90	18	260	121	17	5,4	5,2	61	98	47	82	12,0	2,8	0,8	160	3195
Kunst-mest	1260	7,9	115	104	22	240	117	24	5,3	4,8	49	90	28	78	8,8	2,2	1,2	124	2475
Condit	1440	8,8	91	88	19	240	112	18	5,4	4,7	58	97	30	82	11,0	3,4	1,0	155	3095
Xurian Optimum	1410	6,6	122	116	23	280	170	29	5,7	5,1	66	97	31	83	11,0	2,4	0,9	176	3520
Bijlage 8. CEC grootte en Ca-, Mg-, en K-bezetting

Tabel B-8 CEC grootte (mmol+/kg) en Ca-, Mg-, en K-bezetting (% van CEC) voor Kollumerwaard en Lelystad volgens CoHex bepaling

<table>
<thead>
<tr>
<th>behandeling</th>
<th>Kollumerwaard CEC-grootte</th>
<th>Lelystad CEC-grootte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ca</td>
<td>Mg</td>
</tr>
<tr>
<td>Agrigys</td>
<td>204</td>
<td>92</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>215</td>
<td>92</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>206</td>
<td>85</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>195</td>
<td>92</td>
</tr>
<tr>
<td>BactoFIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar Norit</td>
<td>210</td>
<td>91</td>
</tr>
<tr>
<td>Biochar hout 2,5 ton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>201</td>
<td>91</td>
</tr>
<tr>
<td>Compost</td>
<td>202</td>
<td>91</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>186</td>
<td>92</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>191</td>
<td>92</td>
</tr>
<tr>
<td>Xurian</td>
<td>180</td>
<td>91</td>
</tr>
<tr>
<td>Condit</td>
<td>206</td>
<td>92</td>
</tr>
</tbody>
</table>
Bijlage 9. Ca, Mg, K in bodemvocht in 2015 en 2012 (mmol per l)

Tabel B.9.1 Ca in waterextractie in 2015, mmol/l.

<table>
<thead>
<tr>
<th>behandeling</th>
<th>Locatie</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Klei</th>
<th>Valthermond</th>
<th>Vredepeel</th>
<th>Zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td></td>
<td>0.9</td>
<td>0.7</td>
<td>2.6</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal carbo</td>
<td></td>
<td>1.0</td>
<td>0.6</td>
<td>1.0</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td></td>
<td>0.9</td>
<td>0.6</td>
<td>0.9</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-SOL</td>
<td></td>
<td>0.8</td>
<td>0.7</td>
<td>0.9</td>
<td>0.8</td>
<td>0.1</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>BactoFil</td>
<td></td>
<td>0.7</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Compost</td>
<td></td>
<td>0.9</td>
<td>0.7</td>
<td>0.9</td>
<td>0.8</td>
<td>0.1</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Drijfmest</td>
<td></td>
<td>0.8</td>
<td>0.6</td>
<td>0.8</td>
<td>0.7</td>
<td>0.1</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Kunstmest</td>
<td></td>
<td>0.9</td>
<td>0.6</td>
<td>1.0</td>
<td>0.8</td>
<td>0.1</td>
<td>0.9</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Tabel B.9.2 Mg in waterextractie in 2015, mmol/l.

<table>
<thead>
<tr>
<th>behandeling</th>
<th>Locatie</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Klei</th>
<th>Valthermond</th>
<th>Vredepeel</th>
<th>Zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td></td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>0.2</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal carbo</td>
<td></td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td></td>
<td>0.2</td>
<td>< 0.1</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-SOL</td>
<td></td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>0.1</td>
<td>< 0.1</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>BactoFil</td>
<td></td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>Steenmeel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 0.1</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Compost</td>
<td></td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>0.1</td>
<td>< 0.1</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Drijfmest</td>
<td></td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>0.1</td>
<td>< 0.1</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Kunstmest</td>
<td></td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>0.1</td>
<td>< 0.1</td>
<td>0.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Tabel B.9.3 K in waterextractie in 2015, mmol/l.

<table>
<thead>
<tr>
<th>behandeling</th>
<th>Locatie</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Klei</th>
<th>Valthermond</th>
<th>Vredepeel</th>
<th>Zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td></td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal carbo</td>
<td></td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td></td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-SOL</td>
<td></td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>BactoFil</td>
<td></td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.7</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Compost</td>
<td></td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Drijfmest</td>
<td></td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Kunstmest</td>
<td></td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.9</td>
<td>0.5</td>
</tr>
</tbody>
</table>
| Behandeling | Kollumerwaard | Lelystad | Westmaas | Valthermond | Vredepeel | Gemiddeld
|------------------|---------------|----------|----------|-------------|-----------|-----------
| Agrigyps | 1,1 | 3,2 | 3,2 | 2,5 | | 1,7
| Betacal Carbo | 1,2 | 2,1 | 1,7 | 1,7 | | 1,7
| Brandkalk | 0,9 | 1,8 | 1,7 | 1,5 | | 1,5
| PRP-sol | 0,9 | 1,7 | 1,9 | 0,2 | 0,1 | 1,5
| Condit | 0,9 | 1,4 | 1,1 | 0,2 | 0,1 | 1,1
| Xurian | 0,9 | 1,8 | 1,7 | 0,3 | 0,1 | 1,5
| Bactofil | | 1,6 | 1,2 | | 1,4 | 0,3
| BiocharECN | | | | 0,3 | 0,3 | |
| BiocharNorit | 0,7 | 0,2 | | 0,7 | 0,2 |
| RomChar | | | | | | |
| Biochar2,5t | | 1,8 | | | 1,8 |
| Biochar5t | 0,8 | 1,9 | | 0,2 | 1,4 | 0,2
| Steenmeel | | | 0,1 | 0,1 | | 0,1
| Compost | 0,9 | 1,9 | 1,4 | 0,4 | 0,1 | 1,4
| Drijfmest | 0,9 | 1,9 | 1,7 | 0,2 | 0,1 | 1,5
| Kunstmest | 0,8 | 1,8 | 1,6 | 0,5 | 0,1 | 1,4

Tabel B-9.4 Ca-gehalte in bodemvocht in 2012 (1:2 volume-extract water), per behandeling per locatie, mmol/l.
Bijlage 10. Hot Water Extractable Carbon

Kleilocaties

<table>
<thead>
<tr>
<th>Behandeling</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Gemiddeld</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proefveld</td>
<td>450</td>
<td>287</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>Agrigyps</td>
<td>584</td>
<td>489</td>
<td>224</td>
<td>244</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>502</td>
<td>481</td>
<td>195</td>
<td>257</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>411</td>
<td>445</td>
<td>213</td>
<td>178</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>473</td>
<td>473</td>
<td>177</td>
<td>234</td>
</tr>
<tr>
<td>BactoFil A10</td>
<td>167</td>
<td>221</td>
<td>314</td>
<td>296</td>
</tr>
<tr>
<td>Bactofil B10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condit7%N *)</td>
<td>463</td>
<td>432</td>
<td>153</td>
<td>275</td>
</tr>
<tr>
<td>Xurian Optimum *)</td>
<td>429</td>
<td>479</td>
<td>203</td>
<td>222</td>
</tr>
<tr>
<td>Biochar hout 2,5 *</td>
<td></td>
<td>174</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Biochar hout 5 *</td>
<td></td>
<td>197</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>Biochar ECN *)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar Noit *)</td>
<td>282</td>
<td>305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar RomChar*)</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compost</td>
<td>501</td>
<td>563</td>
<td>191</td>
<td>308</td>
</tr>
<tr>
<td>Driftmest</td>
<td>523</td>
<td>421</td>
<td>207</td>
<td>220</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>576</td>
<td>385</td>
<td>190</td>
<td>222</td>
</tr>
</tbody>
</table>

*) gemeten in enkelvoud, andere behandelingen gemeten in drievoud
Zandlocaties

Tabel B-10.2 **Hot Water extractable Carbon (HWC) (µg C/g grond) op de zandlocaties**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proefveld</td>
<td>1980</td>
<td>1007</td>
<td>1493</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrigyps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal carbo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>1877</td>
<td>1783</td>
<td>683</td>
<td>731</td>
<td>1280</td>
<td>1257</td>
<td>1280</td>
<td>1257</td>
<td></td>
</tr>
<tr>
<td>BactoFIl A10</td>
<td>656</td>
<td>656</td>
<td>656</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BactoFIl B10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condit7%N *)</td>
<td>1122</td>
<td>704</td>
<td>913</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xurian Optimum *)</td>
<td>1874</td>
<td>744</td>
<td>1309</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar hout 2,5 ton *)</td>
<td>1157</td>
<td>1331</td>
<td>1157</td>
<td>1331</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar hout 5 ton *)</td>
<td>1856</td>
<td>1983</td>
<td>1856</td>
<td>1983</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar ECN *)</td>
<td>1894</td>
<td>1898</td>
<td>1894</td>
<td>1898</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar Norit *)</td>
<td>1897</td>
<td>1997</td>
<td>1897</td>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar RomChar*)</td>
<td>1574</td>
<td>1738</td>
<td>735</td>
<td>660</td>
<td>1155</td>
<td>1199</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td>1002</td>
<td>1200</td>
<td>725</td>
<td>666</td>
<td>863</td>
<td>933</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compost</td>
<td>1352</td>
<td>1433</td>
<td>754</td>
<td>705</td>
<td>1053</td>
<td>1069</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kunstmest</td>
<td>1844</td>
<td>1983</td>
<td>764</td>
<td>636</td>
<td>1304</td>
<td>1309</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel B-10.3 **Relatieve gehalte HWC ten opzichte van referentiebehandeling kunstmest in 2012 en 2015, per locatie, per grondsoort, %**

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>101</td>
<td>127</td>
<td>118</td>
<td>101</td>
<td>84</td>
<td>85</td>
<td>100</td>
<td>104</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>87</td>
<td>125</td>
<td>103</td>
<td>116</td>
<td>92</td>
<td>88</td>
<td>91</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>71</td>
<td>116</td>
<td>112</td>
<td>81</td>
<td>88</td>
<td>84</td>
<td>83</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>82</td>
<td>123</td>
<td>93</td>
<td>105</td>
<td>94</td>
<td>103</td>
<td>87</td>
<td>110</td>
<td>102</td>
<td>90</td>
<td>89</td>
<td>115</td>
<td>98</td>
<td>96</td>
</tr>
<tr>
<td>BactoFIl</td>
<td>88</td>
<td>100</td>
<td>108</td>
<td>99</td>
<td>68</td>
<td>89</td>
<td>103</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar ECN</td>
<td>101</td>
<td>100</td>
<td>101</td>
<td>142</td>
<td>151</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar Norit</td>
<td>79</td>
<td>97</td>
<td>103</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Biochar RomChar</td>
<td>103</td>
<td>101</td>
<td>145</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Biochar hout 2,5 ton</td>
<td>92</td>
<td>99</td>
<td>49</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>106</td>
<td>109</td>
<td>104</td>
<td>94</td>
<td>115</td>
<td>101</td>
<td>63</td>
<td>67</td>
<td>89</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td>85</td>
<td>88</td>
<td>96</td>
<td>104</td>
<td>89</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groencompost</td>
<td>87</td>
<td>146</td>
<td>101</td>
<td>139</td>
<td>100</td>
<td>105</td>
<td>130</td>
<td>54</td>
<td>61</td>
<td>95</td>
<td>105</td>
<td>66</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Drijfmest</td>
<td>91</td>
<td>109</td>
<td>99</td>
<td>107</td>
<td>92</td>
<td>100</td>
<td>73</td>
<td>72</td>
<td>99</td>
<td>111</td>
<td>81</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kunstmest</td>
<td>100</td>
</tr>
</tbody>
</table>

© Praktijkonderzoek Plant & Omgeving 80
Bijlage 11. Resultaten bodembiologisch onderzoek 2010 en 2012

2010

Tabel B-11.1 Bodemvoedselwebanalyses van de 3 kleilocaties.

<table>
<thead>
<tr>
<th>Locatie</th>
<th>Totale biomassa μg/g grond</th>
<th>Bacterie:schimmel verhouding, -</th>
<th>Diameter hyfen, μm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bacteriën</td>
<td>Schimmels</td>
<td></td>
</tr>
<tr>
<td>Kollumerwaard</td>
<td>354</td>
<td>100</td>
<td>0,29</td>
</tr>
<tr>
<td></td>
<td>2,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lelystad</td>
<td>112</td>
<td>96</td>
<td>0,81</td>
</tr>
<tr>
<td></td>
<td>2,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmaas</td>
<td>384</td>
<td>139</td>
<td>0,37</td>
</tr>
<tr>
<td></td>
<td>2,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel B-11.2 Totale bacteriële massa in μg/g voor de 5 locaties.

<table>
<thead>
<tr>
<th>Locatie</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Vatthermond</th>
<th>Vredepeel</th>
<th>Klei</th>
<th>Zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>355</td>
<td>285</td>
<td>211</td>
<td>362</td>
<td>284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal</td>
<td>497</td>
<td>292</td>
<td>296</td>
<td>297</td>
<td>284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbo</td>
<td>310</td>
<td>239</td>
<td>281</td>
<td>250</td>
<td>270</td>
<td>276</td>
<td>310</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>271</td>
<td>228</td>
<td>428</td>
<td>625</td>
<td>287</td>
<td>270</td>
<td>456</td>
</tr>
<tr>
<td>PRP-sol</td>
<td>379</td>
<td>220</td>
<td>340</td>
<td>279</td>
<td>421</td>
<td>313</td>
<td>350</td>
</tr>
<tr>
<td>Condif</td>
<td>271</td>
<td>257</td>
<td>308</td>
<td>297</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xurian</td>
<td>313</td>
<td>220</td>
<td>340</td>
<td>279</td>
<td>421</td>
<td>313</td>
<td>350</td>
</tr>
<tr>
<td>Bactofil</td>
<td>250</td>
<td>314</td>
<td>282</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharECN</td>
<td></td>
<td></td>
<td></td>
<td>278</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharNorit</td>
<td></td>
<td></td>
<td></td>
<td>405</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharRom</td>
<td></td>
<td></td>
<td></td>
<td>262</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar2,5t</td>
<td></td>
<td></td>
<td></td>
<td>294</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar5t</td>
<td>289</td>
<td>266</td>
<td>268</td>
<td>277</td>
<td>268</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td>212</td>
<td>216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>compost</td>
<td>386</td>
<td>235</td>
<td>267</td>
<td>232</td>
<td>463</td>
<td>296</td>
<td>348</td>
</tr>
<tr>
<td>drijfmest</td>
<td>286</td>
<td>280</td>
<td>213</td>
<td>255</td>
<td>392</td>
<td>260</td>
<td>324</td>
</tr>
<tr>
<td>kunstmest</td>
<td>375</td>
<td>252</td>
<td>346</td>
<td>278</td>
<td>308</td>
<td>324</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>Kollumerwaard</td>
<td>Lelystad</td>
<td>Westmaas</td>
<td>Valthermond</td>
<td>Vredepeel</td>
<td>klei</td>
<td>zand</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Agrigyps</td>
<td>46.0</td>
<td>41.4</td>
<td>56.0</td>
<td>47.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal</td>
<td>53.5</td>
<td>44.6</td>
<td>37.7</td>
<td>45.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>60.8</td>
<td>31.7</td>
<td>64.4</td>
<td>52.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-sol</td>
<td>41.2</td>
<td>34.4</td>
<td>49.1</td>
<td>32.7</td>
<td>42.8</td>
<td>41.6</td>
<td>37.8</td>
</tr>
<tr>
<td>Condit</td>
<td>50.1</td>
<td>22.0</td>
<td>74.8</td>
<td>28.8</td>
<td>66.0</td>
<td>49.0</td>
<td>47.4</td>
</tr>
<tr>
<td>Xurian</td>
<td>51.9</td>
<td>33.2</td>
<td>48.6</td>
<td>36.6</td>
<td>50.1</td>
<td>44.6</td>
<td>43.4</td>
</tr>
<tr>
<td>Bactofil</td>
<td>23.6</td>
<td>51.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37.6</td>
</tr>
<tr>
<td>BiocharECN</td>
<td></td>
<td></td>
<td>24.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharNorit</td>
<td>50.1</td>
<td></td>
<td>24.2</td>
<td></td>
<td>50.1</td>
<td>24.2</td>
<td></td>
</tr>
<tr>
<td>BiocharRom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar2,5t</td>
<td></td>
<td>32.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar5t</td>
<td>46.3</td>
<td>41.3</td>
<td></td>
<td>24.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td></td>
<td></td>
<td>34.7</td>
<td>49.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>compost</td>
<td>66.9</td>
<td>39.0</td>
<td>34.4</td>
<td>20.8</td>
<td>39.6</td>
<td>46.7</td>
<td>30.2</td>
</tr>
<tr>
<td>drijfmest</td>
<td>52.9</td>
<td>37.8</td>
<td>68.2</td>
<td>33.4</td>
<td>26.3</td>
<td>53.0</td>
<td>29.8</td>
</tr>
<tr>
<td>kunstmest</td>
<td>47.1</td>
<td>38.0</td>
<td>55.6</td>
<td>41.6</td>
<td>62.2</td>
<td>46.9</td>
<td>51.9</td>
</tr>
</tbody>
</table>
Tabel B-11.4 Actief totaal bacterie voor de 5 locaties.

<table>
<thead>
<tr>
<th>activiteit: totaal bacterie</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Valthermond</th>
<th>Vredepeel</th>
<th>klei</th>
<th>zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>0.13</td>
<td>0.15</td>
<td>0.27</td>
<td>0.13</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal</td>
<td>0.11</td>
<td>0.15</td>
<td>0.13</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>0.19</td>
<td>0.12</td>
<td>0.21</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-sol</td>
<td>0.13</td>
<td>0.14</td>
<td>0.18</td>
<td>0.13</td>
<td>0.12</td>
<td>0.15</td>
<td>0.12</td>
</tr>
<tr>
<td>Condit</td>
<td>0.18</td>
<td>0.10</td>
<td>0.17</td>
<td>0.10</td>
<td>0.11</td>
<td>0.15</td>
<td>0.10</td>
</tr>
<tr>
<td>Xurian</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>Bactofit</td>
<td>0.09</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharECN</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharNorit</td>
<td>0.12</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharRom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar2,5t</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharSt</td>
<td>0.16</td>
<td>0.16</td>
<td>0.09</td>
<td>0.16</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td>0.16</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>compost</td>
<td>0.17</td>
<td>0.17</td>
<td>0.13</td>
<td>0.09</td>
<td>0.16</td>
<td>0.21</td>
<td>0.10</td>
</tr>
<tr>
<td>drijfmest</td>
<td>0.18</td>
<td>0.14</td>
<td>0.32</td>
<td>0.13</td>
<td>0.07</td>
<td>0.21</td>
<td>0.10</td>
</tr>
<tr>
<td>kunstmest</td>
<td>0.13</td>
<td>0.15</td>
<td>0.16</td>
<td>0.15</td>
<td>0.20</td>
<td>0.15</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Tabel B-11.5 Totale schimmel massa in ug/g voor de 5 locaties.

<table>
<thead>
<tr>
<th>Totale schimmel massa, ug/g</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Valthermond</th>
<th>Vredepeel</th>
<th>klei</th>
<th>zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>73</td>
<td>73</td>
<td>57</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal</td>
<td>85</td>
<td>68</td>
<td>72</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>71</td>
<td>81</td>
<td>81</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-sol</td>
<td>100</td>
<td>89</td>
<td>40</td>
<td>85</td>
<td>71</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>Condit</td>
<td>98</td>
<td>63</td>
<td>46</td>
<td>138</td>
<td>57</td>
<td>69</td>
<td>97</td>
</tr>
<tr>
<td>Xurian</td>
<td>72</td>
<td>104</td>
<td>70</td>
<td>145</td>
<td>202</td>
<td>82</td>
<td>173</td>
</tr>
<tr>
<td>Bactofit</td>
<td>95</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharECN</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharNorit</td>
<td>96</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharRom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar2,5t</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharSt</td>
<td>117</td>
<td>66</td>
<td>46</td>
<td>91</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td>84</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>compost</td>
<td>46</td>
<td>90</td>
<td>118</td>
<td>148</td>
<td>89</td>
<td>85</td>
<td>118</td>
</tr>
<tr>
<td>drijfmest</td>
<td>84</td>
<td>49</td>
<td>72</td>
<td>124</td>
<td>23</td>
<td>69</td>
<td>74</td>
</tr>
<tr>
<td>kunstmest</td>
<td>62</td>
<td>93</td>
<td>110</td>
<td>41</td>
<td>43</td>
<td>88</td>
<td>118</td>
</tr>
</tbody>
</table>
Tabel B-11.5 Actieve schimmel massa in ug/g voor de 5 locaties.

<table>
<thead>
<tr>
<th>Actieve schimmel massa</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Valtthermond</th>
<th>Vredepeel</th>
<th>klei</th>
<th>zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>17.4</td>
<td>21.9</td>
<td>18.3</td>
<td></td>
<td></td>
<td></td>
<td>19.2</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>23.6</td>
<td>27.9</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
<td>21.4</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>20.1</td>
<td>11.2</td>
<td>16.1</td>
<td></td>
<td></td>
<td></td>
<td>15.8</td>
</tr>
<tr>
<td>PRP-sol</td>
<td>21.5</td>
<td>18.5</td>
<td>17.7</td>
<td>9.0</td>
<td>13.2</td>
<td>19.2</td>
<td>11.1</td>
</tr>
<tr>
<td>Condit</td>
<td>16.0</td>
<td>21.7</td>
<td>16.7</td>
<td>7.0</td>
<td>11.0</td>
<td>18.1</td>
<td>9.0</td>
</tr>
<tr>
<td>Xurian</td>
<td>16.5</td>
<td>21.6</td>
<td>31.7</td>
<td>11.8</td>
<td>14.4</td>
<td>23.3</td>
<td>14.1</td>
</tr>
<tr>
<td>Bactofil</td>
<td>23.6</td>
<td>21.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.3</td>
</tr>
<tr>
<td>BiocharECN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>BiocharNorit</td>
<td>18.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.6</td>
<td>11.0</td>
</tr>
<tr>
<td>BiocharRom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar2,5t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.9</td>
<td></td>
</tr>
<tr>
<td>Biochar5t</td>
<td>18.2</td>
<td>17.2</td>
<td>7.5</td>
<td>17.7</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td></td>
<td></td>
<td>7.1</td>
<td>18.9</td>
<td></td>
<td></td>
<td>13.0</td>
</tr>
<tr>
<td>compost</td>
<td>12.7</td>
<td>24.6</td>
<td>15.5</td>
<td>12.8</td>
<td>22.9</td>
<td>17.6</td>
<td>17.8</td>
</tr>
<tr>
<td>drijfmest</td>
<td>23.3</td>
<td>23.3</td>
<td>16.1</td>
<td>10.8</td>
<td>5.3</td>
<td>20.9</td>
<td>8.0</td>
</tr>
<tr>
<td>kunstmest</td>
<td>25.2</td>
<td>25.2</td>
<td>17.8</td>
<td>8.0</td>
<td>19.3</td>
<td>22.8</td>
<td>13.6</td>
</tr>
</tbody>
</table>

Tabel B-11.6 Actief totaal schimmel voor de 5 locaties.

<table>
<thead>
<tr>
<th>Actief totaal schimmel</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Valtthermond</th>
<th>Vredepeel</th>
<th>klei</th>
<th>zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>0.24</td>
<td>0.30</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td>0.29</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>0.28</td>
<td>0.41</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td>0.29</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>0.28</td>
<td>0.14</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td>0.21</td>
</tr>
<tr>
<td>PRP-sol</td>
<td>0.22</td>
<td>0.21</td>
<td>0.45</td>
<td>0.11</td>
<td>0.19</td>
<td>0.29</td>
<td>0.15</td>
</tr>
<tr>
<td>Condit</td>
<td>0.16</td>
<td>0.34</td>
<td>0.36</td>
<td>0.05</td>
<td>0.19</td>
<td>0.29</td>
<td>0.12</td>
</tr>
<tr>
<td>Xurian</td>
<td>0.23</td>
<td>0.21</td>
<td>0.45</td>
<td>0.08</td>
<td>0.08</td>
<td>0.30</td>
<td>0.08</td>
</tr>
<tr>
<td>Bactofil</td>
<td>0.25</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.24</td>
</tr>
<tr>
<td>BiocharECN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>BiocharNorit</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.19</td>
<td>0.17</td>
</tr>
<tr>
<td>BiocharRom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar2,5t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>Biochar5t</td>
<td>0.16</td>
<td>0.26</td>
<td>0.16</td>
<td></td>
<td></td>
<td>0.21</td>
<td>0.16</td>
</tr>
<tr>
<td>Steenmeel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
<td>0.25</td>
</tr>
<tr>
<td>compost</td>
<td>0.27</td>
<td>0.27</td>
<td>0.13</td>
<td>0.09</td>
<td>0.26</td>
<td>0.23</td>
<td>0.17</td>
</tr>
<tr>
<td>drijfmest</td>
<td>0.28</td>
<td>0.48</td>
<td>0.22</td>
<td>0.09</td>
<td>0.23</td>
<td>0.33</td>
<td>0.16</td>
</tr>
<tr>
<td>kunstmest</td>
<td>0.41</td>
<td>0.27</td>
<td>0.16</td>
<td>0.19</td>
<td>0.45</td>
<td>0.28</td>
<td>0.32</td>
</tr>
</tbody>
</table>
Tabel B-11.7 Totale schimmel/bacterie verhouding voor de 5 locaties.

<table>
<thead>
<tr>
<th></th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Valthermond</th>
<th>Vredepeel</th>
<th>klei</th>
<th>zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>0,21</td>
<td>0,26</td>
<td>0,27</td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>0,17</td>
<td>0,23</td>
<td>0,24</td>
<td>0,22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>0,22</td>
<td>0,32</td>
<td>0,26</td>
<td>0,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-sol</td>
<td>0,32</td>
<td>0,37</td>
<td>0,14</td>
<td>0,34</td>
<td>0,19</td>
<td>0,28</td>
<td>0,27</td>
</tr>
<tr>
<td>Condit</td>
<td>0,36</td>
<td>0,28</td>
<td>0,11</td>
<td>0,48</td>
<td>0,09</td>
<td>0,25</td>
<td>0,29</td>
</tr>
<tr>
<td>Xurian</td>
<td>0,19</td>
<td>0,47</td>
<td>0,20</td>
<td>0,52</td>
<td>0,48</td>
<td>0,29</td>
<td>0,50</td>
</tr>
<tr>
<td>Bactofil</td>
<td>0,38</td>
<td>0,28</td>
<td>0,33</td>
<td>0,33</td>
<td>0,31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharECN</td>
<td></td>
<td></td>
<td></td>
<td>0,31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharNorit</td>
<td>0,24</td>
<td>0,24</td>
<td>0,24</td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharRom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar2,5t</td>
<td>0,41</td>
<td>0,25</td>
<td>0,17</td>
<td>0,33</td>
<td>0,17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar5t</td>
<td>0,40</td>
<td>0,36</td>
<td>0,38</td>
<td>0,38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>compost</td>
<td>0,12</td>
<td>0,38</td>
<td>0,44</td>
<td>0,64</td>
<td>0,19</td>
<td>0,31</td>
<td>0,41</td>
</tr>
<tr>
<td>drijfmest</td>
<td>0,30</td>
<td>0,17</td>
<td>0,34</td>
<td>0,49</td>
<td>0,06</td>
<td>0,27</td>
<td>0,27</td>
</tr>
<tr>
<td>kunstmest</td>
<td>0,17</td>
<td>0,37</td>
<td>0,32</td>
<td>0,15</td>
<td>0,14</td>
<td>0,28</td>
<td>0,14</td>
</tr>
</tbody>
</table>

Tabel B-11.8 Actieve schimmel/bacterie verhouding voor de 5 locaties.

<table>
<thead>
<tr>
<th></th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Valthermond</th>
<th>Vredepeel</th>
<th>klei</th>
<th>zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>0,38</td>
<td>0,53</td>
<td>0,33</td>
<td>0,40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>0,44</td>
<td>0,63</td>
<td>0,33</td>
<td>0,47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>0,33</td>
<td>0,35</td>
<td>0,25</td>
<td>0,30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-sol</td>
<td>0,52</td>
<td>0,54</td>
<td>0,36</td>
<td>0,28</td>
<td>0,31</td>
<td>0,46</td>
<td>0,29</td>
</tr>
<tr>
<td>Condit</td>
<td>0,32</td>
<td>0,99</td>
<td>0,22</td>
<td>0,24</td>
<td>0,17</td>
<td>0,37</td>
<td>0,19</td>
</tr>
<tr>
<td>Xurian</td>
<td>0,32</td>
<td>0,65</td>
<td>0,65</td>
<td>0,32</td>
<td>0,33</td>
<td>0,52</td>
<td>0,32</td>
</tr>
<tr>
<td>Bactofil</td>
<td>1,00</td>
<td>0,41</td>
<td>0,59</td>
<td>0,33</td>
<td>0,37</td>
<td>0,45</td>
<td>0,45</td>
</tr>
<tr>
<td>BiocharECN</td>
<td></td>
<td></td>
<td></td>
<td>0,33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharNorit</td>
<td>0,37</td>
<td>0,45</td>
<td>0,37</td>
<td>0,40</td>
<td>0,38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharRom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar2,5t</td>
<td>0,39</td>
<td>0,42</td>
<td>0,31</td>
<td>0,40</td>
<td>0,38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar5t</td>
<td>0,19</td>
<td>0,63</td>
<td>0,45</td>
<td>0,61</td>
<td>0,58</td>
<td>0,38</td>
<td>0,59</td>
</tr>
<tr>
<td>compost</td>
<td>0,44</td>
<td>0,62</td>
<td>0,24</td>
<td>0,32</td>
<td>0,20</td>
<td>0,39</td>
<td>0,27</td>
</tr>
<tr>
<td>drijfmest</td>
<td>0,54</td>
<td>0,66</td>
<td>0,32</td>
<td>0,19</td>
<td>0,31</td>
<td>0,49</td>
<td>0,26</td>
</tr>
<tr>
<td>hyfendiameter, um</td>
<td>Kollumerwaard</td>
<td>Lelystad</td>
<td>Westmaas</td>
<td>Valthermond</td>
<td>Vredepeel</td>
<td>klei</td>
<td>zand</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Agrigypscarbo</td>
<td>1.7</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-sol</td>
<td>1.9</td>
<td>2.1</td>
<td>2.0</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Condit</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Xurian</td>
<td>1.9</td>
<td>1.8</td>
<td>2.0</td>
<td>2.1</td>
<td>1.9</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Bactofil</td>
<td>1.8</td>
<td>1.9</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>BiocharECN</td>
<td>1.9</td>
<td></td>
<td>1.9</td>
<td>1.9</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharNorit</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BiocharRom</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar2.5t</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar5t</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>compost</td>
<td>2.0</td>
<td>1.7</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>drijfmest</td>
<td>1.9</td>
<td>1.8</td>
<td>1.7</td>
<td>1.9</td>
<td>1.8</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>kunstmest</td>
<td>1.8</td>
<td>1.9</td>
<td>1.9</td>
<td>2.0</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>1.8</td>
<td>1.8</td>
<td>1.9</td>
</tr>
</tbody>
</table>
Bijlage 12. N-min voorjaar (kg N per ha)

Tabel B-12 Gemeten N-min voorraden per jaar, locatie en product.

<table>
<thead>
<tr>
<th>Kollumerwaard</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>Gemiddeld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-60 cm</td>
<td>0-100 cm</td>
<td>0-60 cm</td>
<td>0-100 cm</td>
<td>0-60 cm</td>
<td>0-60 cm</td>
<td></td>
</tr>
<tr>
<td>Agripyps</td>
<td>29</td>
<td>38</td>
<td>32</td>
<td>17</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>23</td>
<td>34</td>
<td>47</td>
<td>19</td>
<td>34</td>
<td>31</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>25</td>
<td>56</td>
<td>37</td>
<td>19</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>28</td>
<td>42</td>
<td>43</td>
<td>22</td>
<td>36</td>
<td>34</td>
</tr>
<tr>
<td>Condit</td>
<td>22</td>
<td>60</td>
<td>28</td>
<td>19</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>25</td>
<td>48</td>
<td>32</td>
<td>18</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>Biochar norit</td>
<td>70</td>
<td>38</td>
<td>13</td>
<td>31</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>62</td>
<td>36</td>
<td>21</td>
<td>30</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Compost</td>
<td>28</td>
<td>68</td>
<td>34</td>
<td>19</td>
<td>38</td>
<td>37</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>24</td>
<td>44</td>
<td>32</td>
<td>19</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>28</td>
<td>52</td>
<td>25</td>
<td>18</td>
<td>30</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lelystad</th>
<th>0-60 cm</th>
<th>0-60 cm</th>
<th>0-60 cm</th>
<th>0-60 cm</th>
<th>0-60 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agripyps</td>
<td>18</td>
<td>22</td>
<td>23</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>25</td>
<td>24</td>
<td>26</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>18</td>
<td>18</td>
<td>26</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>18</td>
<td>22</td>
<td>25</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Condit</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>18</td>
<td>22</td>
<td>23</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Biochar hout 2,5 ton</td>
<td>18</td>
<td>24</td>
<td>26</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>18</td>
<td>24</td>
<td>23</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Compost</td>
<td>18</td>
<td>24</td>
<td>29</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>18</td>
<td>20</td>
<td>31</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>18</td>
<td>24</td>
<td>26</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Bactofil</td>
<td>24</td>
<td>25</td>
<td>10</td>
<td>11</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Westmaas</th>
<th>0-60 cm</th>
<th>0-60 cm</th>
<th>0-100 cm</th>
<th>0-60 cm</th>
<th>0-60 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agripyps</td>
<td>13</td>
<td>16</td>
<td>6</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>13</td>
<td>24</td>
<td>6</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>18</td>
<td>19</td>
<td>22</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>16</td>
<td>41</td>
<td>24</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>Condit</td>
<td>14</td>
<td>30</td>
<td>6</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>14</td>
<td>29</td>
<td>20</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Compost</td>
<td>11</td>
<td>25</td>
<td>12</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>13</td>
<td>34</td>
<td>16</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>12</td>
<td>28</td>
<td>6</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Bactofil</td>
<td>14</td>
<td>6</td>
<td>13</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Valthermond</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2011</td>
<td>2012</td>
<td>2013</td>
<td>2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-30 cm</td>
<td>0-30 cm</td>
<td>0-30 cm</td>
<td>0-30 cm</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>50</td>
<td>22</td>
<td>42</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>Condit</td>
<td>28</td>
<td>24</td>
<td>36</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>55</td>
<td>26</td>
<td>50</td>
<td>17</td>
<td>53</td>
</tr>
<tr>
<td>Biochar ECN</td>
<td>40</td>
<td>29</td>
<td>46</td>
<td>9</td>
<td>31</td>
</tr>
<tr>
<td>Biochar norit</td>
<td>34</td>
<td>35</td>
<td>52</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td>Biochar Edinburgh</td>
<td>53</td>
<td>17</td>
<td>42</td>
<td>11</td>
<td>29</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>41</td>
<td>20</td>
<td>38</td>
<td>9</td>
<td>34</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>50</td>
<td>24</td>
<td>38</td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td>Compost</td>
<td>27</td>
<td>19</td>
<td>23</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>23</td>
<td>23</td>
<td>31</td>
<td>16</td>
<td>31</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>48</td>
<td>25</td>
<td>47</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Vredepeel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-60 cm</td>
<td>0-60 cm</td>
<td>0-30 cm</td>
<td>0-60 cm</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>20</td>
<td>60</td>
<td>33</td>
<td>23</td>
<td>13</td>
</tr>
<tr>
<td>Condit</td>
<td>19</td>
<td>61</td>
<td>37</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>18</td>
<td>78</td>
<td>43</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>18</td>
<td>80</td>
<td>41</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Compost</td>
<td>18</td>
<td>60</td>
<td>31</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>Rundveedrijfmest</td>
<td>18</td>
<td>74</td>
<td>39</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>16</td>
<td>60</td>
<td>42</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Bactofil</td>
<td>56</td>
<td>35</td>
<td>4</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Bijlage 13. Opbrengst en kwaliteit per locatie in 2015

Lelystad: Dit perceel is op 28 april gepoot en op 10 september is dit perceel met een loofdodingsmiddel bespoten. Vier dagen later op 14 september zijn de aardappelen geoogst. In de bovenmaatse sortering (>80 mm) zijn er verschillen in opbrengst tussen de bodemverbeteraars. Tussen de verschillende bodemverbeteraars zijn er verschillen gevonden. Alleen het onderwatergewicht van de behandeling met Brandkalk is lager dan de referentie kunstmest (zie tabel B-13.2 en B-13.3).

Westmaas: Poten is gebeurd op 16 april en 4 maanden later op 24 augustus is het perceel met een loofdodingsmiddel bespoten. Het oogsten gebeurde 10 dagen later op 24 augustus. In Westmaas is er in 2015 geen behandeling geweest die een significant verschil in opbrengst of onderwatergewicht heeft gegeven ten opzichte van referentie kunstmest (zie tabel B-13.4).

Valthermond: De perceel is als laatste gepoot van alle locaties namelijk op 6 mei. Loofdoding gebeurde vervolgens ook als laatste op 2 oktober waarna op 20 oktober de aardappelen geoogst zijn. Van de proeflocatie in Valthermond zijn er alleen in de kleinere sorteringen verschillen in opbrengst tussen de diverse behandelingen maar niet ten opzichte van de referentie kunstmest in onderwatergewicht en uitbetalingsgewicht zijn er geen betrouwbaar verschillen gevonden (zie tabel B-13.5 en B-13.6).

Vredepeel: Op 22 april is het proefperceel gepoot en op 24 september is een loofdodingsmiddel gespoten. Het proefveld is gerooid op 30 september. In 2015 zijn er geen significante verschillen gevonden in onderwatergewicht (zie tabel B-13.7 en B-13.8).

Tabel B-13.1 Opbrengst in ton/ha en onderwatergewicht Kollumerwaard 2015

<table>
<thead>
<tr>
<th></th>
<th>0-25mm</th>
<th>25-28 mm</th>
<th>28-35 mm</th>
<th>35-45 mm</th>
<th>45-50 mm</th>
<th>50-55 mm</th>
<th>>55 mm</th>
<th>OWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>0.148</td>
<td>a 0.519</td>
<td>c bcd</td>
<td>1.044</td>
<td>ab 7.867</td>
<td>a 12.86</td>
<td>abcd 13,11 abc 9.45 ab 302,6 b</td>
<td></td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>0.133</td>
<td>a 0.378</td>
<td>ab</td>
<td>1.200</td>
<td>b 7.370</td>
<td>a 15.13</td>
<td>d 12.73 ab 9.77 ab 302,4 ab</td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>0.148</td>
<td>a 0.511</td>
<td>bcd</td>
<td>1.170</td>
<td>b 7.393</td>
<td>a 13.25</td>
<td>abcd 15.73 c 8.36 a 303,5 b</td>
<td></td>
</tr>
<tr>
<td>PRP-sol</td>
<td>0.148</td>
<td>a 0.556</td>
<td>cd</td>
<td>1.074</td>
<td>ab 7.548</td>
<td>a 11.13</td>
<td>ab 12.31 a 10.56 ab 291,5 ab</td>
<td></td>
</tr>
<tr>
<td>Condit</td>
<td>0.156</td>
<td>a 0.415</td>
<td>abc</td>
<td>1.259</td>
<td>b 7.156</td>
<td>a 11.04</td>
<td>a 14.05 abcd 11.93 b 291,8 ab</td>
<td></td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>0.148</td>
<td>a 0.481</td>
<td>abcd0.844</td>
<td>a 8.326</td>
<td>a 12.76</td>
<td>abcd 15.44 bc 8.50 a 303,3 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar norit</td>
<td>0.178</td>
<td>a 0.504</td>
<td>bcd</td>
<td>1.259</td>
<td>b 7.807</td>
<td>a 13.61</td>
<td>bcd 12.81 ab 8.76 a 301.9 ab</td>
<td></td>
</tr>
<tr>
<td>Biochar hout 2,5 ton/ha</td>
<td>0.185</td>
<td>a 0.459</td>
<td>abcd 1,163</td>
<td>ab 8.511</td>
<td>a 12.39</td>
<td>abc 12.36 a 9.99 abcd 283,6 a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compost</td>
<td>0.230</td>
<td>a 0.563</td>
<td>d</td>
<td>1.207</td>
<td>b 7.704</td>
<td>a 12.38</td>
<td>abc 14.49 abc 9.98 ab 294,1 ab</td>
<td></td>
</tr>
<tr>
<td>Drijfmest</td>
<td>0.170</td>
<td>a 0.385</td>
<td>ab</td>
<td>1.215</td>
<td>b 7.296</td>
<td>a 12.15</td>
<td>abc 12.34 a 10.31 ab 293,5 ab</td>
<td></td>
</tr>
<tr>
<td>Kunstmest</td>
<td>0.178</td>
<td>a 0.348</td>
<td>a</td>
<td>1.341</td>
<td>b 7.600</td>
<td>a 14.15</td>
<td>cd 11.73 a 10.49 abcd 307,3 b</td>
<td></td>
</tr>
<tr>
<td>Lsd 11</td>
<td>0.103</td>
<td>0.141</td>
<td>0.321</td>
<td>1.492</td>
<td>2.557</td>
<td>2.851</td>
<td>2.701</td>
<td>18.79</td>
</tr>
</tbody>
</table>

F pr. n.s. <0.05 n.s. n.s. <0.10 <0.10 n.s. n.s.

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar.
<table>
<thead>
<tr>
<th></th>
<th>0-28 mm</th>
<th>28-40 mm</th>
<th>40-50 mm</th>
<th>50-70 mm</th>
<th>70-80 mm</th>
<th>>80 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>0.147</td>
<td>abc</td>
<td>1.876</td>
<td>abc</td>
<td>10.68</td>
<td>ab</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>0.133</td>
<td>abc</td>
<td>1.796</td>
<td>abc</td>
<td>10.48</td>
<td>ab</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>0.129</td>
<td>ab</td>
<td>1.698</td>
<td>abc</td>
<td>10.77</td>
<td>ab</td>
</tr>
<tr>
<td>PRP-sol</td>
<td>0.116</td>
<td>a</td>
<td>2.013</td>
<td>bc</td>
<td>11.04</td>
<td>ab</td>
</tr>
<tr>
<td>Condil</td>
<td>0.160</td>
<td>abc</td>
<td>1.853</td>
<td>abc</td>
<td>11.19</td>
<td>ab</td>
</tr>
<tr>
<td>Xurian optimum</td>
<td>0.124</td>
<td>ab</td>
<td>1.653</td>
<td>ab</td>
<td>11.12</td>
<td>ab</td>
</tr>
<tr>
<td>Biochar hout 2,5 ton/ha</td>
<td>0.200</td>
<td>c</td>
<td>1.804</td>
<td>abc</td>
<td>10.22</td>
<td>ab</td>
</tr>
<tr>
<td>Biochar hout 5 ton/ha</td>
<td>0.133</td>
<td>abc</td>
<td>1.658</td>
<td>ab</td>
<td>10.01</td>
<td>a</td>
</tr>
<tr>
<td>Bactoflil</td>
<td>0.156</td>
<td>abc</td>
<td>1.827</td>
<td>abc</td>
<td>11.42</td>
<td>b</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>0.187</td>
<td>bc</td>
<td>1.791</td>
<td>abc</td>
<td>10.44</td>
<td>ab</td>
</tr>
<tr>
<td>Compost</td>
<td>0.133</td>
<td>abc</td>
<td>1.502</td>
<td>a</td>
<td>10.13</td>
<td>ab</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>0.147</td>
<td>abc</td>
<td>2.084</td>
<td>c</td>
<td>10.85</td>
<td>ab</td>
</tr>
<tr>
<td>LSD(^1)</td>
<td>0.0688</td>
<td>0.405</td>
<td>1.399</td>
<td>4.442</td>
<td>1.306</td>
<td>0.183</td>
</tr>
</tbody>
</table>

\(^1\) Wanneer het verschil tussen twee resultaten groter of gelijk aan de LSD; dan zijn de verschillen betrouwbaar
Tabel B-13.3 Obrengst onderwatergewicht Lelystad 2015

<table>
<thead>
<tr>
<th>Product</th>
<th>OWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>394.7bcd</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>393.8bcd</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>381.1a</td>
</tr>
<tr>
<td>PRP-sol</td>
<td>401.1cd</td>
</tr>
<tr>
<td>Condif</td>
<td>393.8bcd</td>
</tr>
<tr>
<td>Xurian optimum</td>
<td>387.8ab</td>
</tr>
<tr>
<td>Biochar hout 2.5 ton/ha</td>
<td>391.3bc</td>
</tr>
<tr>
<td>Biochar hout 5 ton/ha</td>
<td>393.3bcd</td>
</tr>
<tr>
<td>Bactofil</td>
<td>402.1d</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>390.3ab</td>
</tr>
<tr>
<td>Compost</td>
<td>390.0ab</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>392.0bcd</td>
</tr>
<tr>
<td>Lsd<sup>1</sup></td>
<td>10.21</td>
</tr>
</tbody>
</table>

¹ Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar.

Tabel B-13.4 Obrengst in ton/ha en onderwatergewicht Westmaas 2015

<table>
<thead>
<tr>
<th>0-28 mm</th>
<th>28-40 mm</th>
<th>40-50 mm</th>
<th>50-70 mm</th>
<th>>70 mm</th>
<th>OWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>0.111 a</td>
<td>4.222 a</td>
<td>16.29 ab</td>
<td>23.32 b</td>
<td>7.431 ab</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>0.222 a</td>
<td>5.958 b</td>
<td>18.39 ab</td>
<td>20.64 ab</td>
<td>6.528 ab</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>0.194 a</td>
<td>4.819 ab</td>
<td>17.86 ab</td>
<td>21.83 b</td>
<td>6.778 ab</td>
</tr>
<tr>
<td>PRP-sol</td>
<td>0.208 a</td>
<td>5.528 ab</td>
<td>17.54 ab</td>
<td>21.86 b</td>
<td>6.694 ab</td>
</tr>
<tr>
<td>Condif</td>
<td>0.153 a</td>
<td>4.819 ab</td>
<td>17.52 ab</td>
<td>21.82 b</td>
<td>8.472 b</td>
</tr>
<tr>
<td>Xurian optimum</td>
<td>0.236 a</td>
<td>6.056 b</td>
<td>18.67 b</td>
<td>17.85 a</td>
<td>6.014 ab</td>
</tr>
<tr>
<td>Bactofil</td>
<td>0.125 a</td>
<td>5.250 ab</td>
<td>15.57 a</td>
<td>21.72 b</td>
<td>6.500 ab</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>0.139 a</td>
<td>5.653 ab</td>
<td>17.29 ab</td>
<td>22.56 b</td>
<td>5.889 a</td>
</tr>
<tr>
<td>Compost</td>
<td>0.153 a</td>
<td>4.847 ab</td>
<td>17.72 ab</td>
<td>23.99 b</td>
<td>6.847 ab</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>0.314 a</td>
<td>5.611 ab</td>
<td>17.51 ab</td>
<td>20.82 ab</td>
<td>5.903 a</td>
</tr>
<tr>
<td>Lsd<sup>1</sup></td>
<td>0.225 a</td>
<td>1.467 n.s.</td>
<td>3.034 n.s.</td>
<td>3.489 n.s.</td>
<td><0.10 n.s.</td>
</tr>
</tbody>
</table>

¹ Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar.
Tabel B.13.5 Opbrengst in ton/ha Valthermond 2015

<table>
<thead>
<tr>
<th></th>
<th>0-28 mm</th>
<th>28-40 mm</th>
<th>40-50 mm</th>
<th>50-70 mm</th>
<th>>70 mm</th>
<th>>28 mm netto</th>
<th>Bruto</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP-sol</td>
<td>0.790 ab</td>
<td>9.59 bcd</td>
<td>23.03 ab</td>
<td>20.67 abc</td>
<td>0.213 ab</td>
<td>53.50 a</td>
<td>54.29 ab</td>
</tr>
<tr>
<td>Condit</td>
<td>0.753 ab</td>
<td>9.47 abcd</td>
<td>23.42 ab</td>
<td>17.85 a</td>
<td>0.216 ab</td>
<td>50.96 a</td>
<td>51.71 a</td>
</tr>
<tr>
<td>Xurian optimum</td>
<td>1.034 c</td>
<td>10.81 d</td>
<td>23.45 ab</td>
<td>20.88 abc</td>
<td>0.152 ab</td>
<td>55.30 a</td>
<td>56.33 b</td>
</tr>
<tr>
<td>Biochar ECN</td>
<td>0.802 ab</td>
<td>9.96 bcd</td>
<td>22.28 ab</td>
<td>21.46 abc</td>
<td>0.076 a</td>
<td>53.77 a</td>
<td>54.57 ab</td>
</tr>
<tr>
<td>Biochar Norit</td>
<td>0.944 bc</td>
<td>9.00 abc</td>
<td>23.08 ab</td>
<td>21.83 abc</td>
<td>0.409 b</td>
<td>54.33 a</td>
<td>55.27 ab</td>
</tr>
<tr>
<td>Biochar hout 2,5 ton/ha</td>
<td>0.665 a</td>
<td>9.20 abc</td>
<td>22.15 ab</td>
<td>19.73 abc</td>
<td>0.149 ab</td>
<td>51.23 a</td>
<td>51.90 ab</td>
</tr>
<tr>
<td>Romchar</td>
<td>0.839 abc</td>
<td>10.24 bcd</td>
<td>23.38 ab</td>
<td>19.51 abc</td>
<td>0.070 a</td>
<td>53.20 a</td>
<td>54.04 ab</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>0.697 a</td>
<td>8.81 ab</td>
<td>21.41 a</td>
<td>22.54 bc</td>
<td>0.132 ab</td>
<td>52.89 a</td>
<td>53.59 ab</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>0.824 abc</td>
<td>10.50 cd</td>
<td>23.57 b</td>
<td>18.67 ab</td>
<td>0.058 a</td>
<td>52.79 a</td>
<td>53.62 ab</td>
</tr>
<tr>
<td>Compost</td>
<td>0.707 a</td>
<td>7.99 a</td>
<td>22.27 ab</td>
<td>23.81 c</td>
<td>0.212 ab</td>
<td>54.29 a</td>
<td>54.99 ab</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>0.930 bc</td>
<td>9.28 abcd</td>
<td>24.02 b</td>
<td>19.78 abc</td>
<td>0.128 ab</td>
<td>53.21 a</td>
<td>54.14 ab</td>
</tr>
<tr>
<td>LSD1)</td>
<td>0.217</td>
<td>1.572</td>
<td>2.144</td>
<td>4.396</td>
<td>0.320</td>
<td>4.578</td>
<td>4.489</td>
</tr>
</tbody>
</table>

F pr. <0.05 <0.10 n.s. n.s. n.s. n.s. n.s. n.s. 1)

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de LSD; dan zijn de verschillen betrouwbaar.
Tabel B-13.6 Onderwatergewicht en uitbetaalgewicht Valthermond 2015

<table>
<thead>
<tr>
<th></th>
<th>OWG</th>
<th>Uitbetalingsgewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP-sol</td>
<td>529.3 a</td>
<td>77.64 a</td>
</tr>
<tr>
<td>Condit</td>
<td>548.4 b</td>
<td>77.30 a</td>
</tr>
<tr>
<td>Xurian optimum</td>
<td>531.1 ab</td>
<td>80.91 a</td>
</tr>
<tr>
<td>Biochar ECN</td>
<td>529.8 ab</td>
<td>78.26 a</td>
</tr>
<tr>
<td>Biochar Norit</td>
<td>523.2 a</td>
<td>77.97 a</td>
</tr>
<tr>
<td>Biochar hout 2.5 ton/ha</td>
<td>531.2 ab</td>
<td>74.59 a</td>
</tr>
<tr>
<td>Romchar</td>
<td>535.4 ab</td>
<td>78.40 a</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>527.0 a</td>
<td>76.29 a</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>531.2 ab</td>
<td>77.02 a</td>
</tr>
<tr>
<td>Compost</td>
<td>527.0 a</td>
<td>78.25 a</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>531.4 ab</td>
<td>77.92 a</td>
</tr>
<tr>
<td>Lsd</td>
<td>18.67</td>
<td>7.559</td>
</tr>
</tbody>
</table>

F pr. n.s. n.s.

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de LSD; dan zijn de verschillen betrouwbaar

Tabel B-13.7 Opbrengst in kg/ha Vredepeel 2015

<table>
<thead>
<tr>
<th></th>
<th>0-40 mm</th>
<th>40-50 mm</th>
<th>50-70 mm</th>
<th>>70 mm</th>
<th>Bruto</th>
<th>>40 mm netto</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP-sol</td>
<td>2578 ab</td>
<td>12203 a</td>
<td>61786 ab</td>
<td>7902 bc</td>
<td>85358 b</td>
<td>81890 b</td>
</tr>
<tr>
<td>Condit</td>
<td>2749 ab</td>
<td>13035 a</td>
<td>57317 a</td>
<td>4813 ab</td>
<td>78428 a</td>
<td>75165 a</td>
</tr>
<tr>
<td>Xurian optimum</td>
<td>2829 ab</td>
<td>11711 a</td>
<td>62929 ab</td>
<td>5597 abc</td>
<td>83783 ab</td>
<td>80237 ab</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>2419 a</td>
<td>11216 a</td>
<td>60825 ab</td>
<td>8327 c</td>
<td>83393 ab</td>
<td>80368 ab</td>
</tr>
<tr>
<td>Bactofil</td>
<td>3079 b</td>
<td>13070 a</td>
<td>60619 ab</td>
<td>4330 a</td>
<td>81749 ab</td>
<td>78019 ab</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>2876 ab</td>
<td>11778 a</td>
<td>60246 ab</td>
<td>5895 abc</td>
<td>81441 ab</td>
<td>77919 ab</td>
</tr>
<tr>
<td>Compost</td>
<td>2883 ab</td>
<td>13238 a</td>
<td>62937 ab</td>
<td>4263 a</td>
<td>83850 ab</td>
<td>80438 ab</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>2740 ab</td>
<td>11956 a</td>
<td>64048 b</td>
<td>4711 a</td>
<td>83894 ab</td>
<td>80714 ab</td>
</tr>
<tr>
<td>Lsd</td>
<td>523.8</td>
<td>2229 b</td>
<td>5685 b</td>
<td>3182 a</td>
<td>6154 b</td>
<td>611 b</td>
</tr>
</tbody>
</table>

F pr. n.s. n.s. n.s. <0.10 n.s. n.s.

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de LSD; dan zijn de verschillen betrouwbaar

Tabel B-13.8 Onderwatergewicht Vredepeel 2015

<table>
<thead>
<tr>
<th></th>
<th>OWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP-sol</td>
<td>395.4 a</td>
</tr>
<tr>
<td>Condit</td>
<td>391.1 a</td>
</tr>
<tr>
<td>Xurian optimum</td>
<td>392.8 a</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>379.4 a</td>
</tr>
<tr>
<td>Bactofil</td>
<td>390.8 a</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>389.4 a</td>
</tr>
<tr>
<td>Compost</td>
<td>393.6 a</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>385.6 a</td>
</tr>
<tr>
<td>Lsd</td>
<td>20.77</td>
</tr>
</tbody>
</table>

F pr. n.s.

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de LSD; dan zijn de verschillen betrouwbaar
Bijlage 14. Gewasopbrengst, kwaliteit en mineralenafvoer per locatie en jaar

B-14.1 Opbrengst, kwaliteit en mineralenafvoer in 2010

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Kollumerw.</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Valthermond</th>
<th>Vredepeel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>z.tarwe</td>
<td>z.gerst</td>
<td>z.gerst</td>
<td>suikerbieten</td>
<td>snijmaïs</td>
</tr>
<tr>
<td>Agrigyps</td>
<td>108</td>
<td>101</td>
<td>119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>104</td>
<td>103</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>107</td>
<td>97</td>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>108</td>
<td>98</td>
<td>121</td>
<td>94</td>
<td>95</td>
</tr>
<tr>
<td>Condit5%N</td>
<td>107</td>
<td>101</td>
<td>112</td>
<td>98</td>
<td>102</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>106</td>
<td>97</td>
<td>116</td>
<td>98</td>
<td>96</td>
</tr>
<tr>
<td>Biochar ECN</td>
<td></td>
<td></td>
<td></td>
<td>99</td>
<td>101</td>
</tr>
<tr>
<td>Biochar norit</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>Biochar hout 2,5 ton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>102</td>
<td>99</td>
<td></td>
<td>97</td>
<td>100</td>
</tr>
<tr>
<td>Steenmeel</td>
<td></td>
<td></td>
<td></td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td>Groencompost</td>
<td>98</td>
<td>98</td>
<td>99</td>
<td>98</td>
<td>104</td>
</tr>
<tr>
<td>Varkens-/rundveedrijfmest</td>
<td>108</td>
<td>101</td>
<td>108</td>
<td>95</td>
<td>98</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Lsd (relatief)</td>
<td>4,8</td>
<td>7,1</td>
<td>15,2</td>
<td>4,2</td>
<td>20,2</td>
</tr>
</tbody>
</table>

100 = ... ton of €/ha

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar.

Tabel B-14.1.2. Relatieve opbrengsten en afvoer van stikstof en fosfaat van zomertarwe Kollumerwaard 2010.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Opbrengst relatief</th>
<th>Afvoer mineralen (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 = 8 ton/ha</td>
<td>N-korrel</td>
</tr>
<tr>
<td>Agrigyps</td>
<td>108</td>
<td>149</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>104</td>
<td>146</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>107</td>
<td>149</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>108</td>
<td>155</td>
</tr>
<tr>
<td>Condit5%N</td>
<td>107</td>
<td>156</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>106</td>
<td>151</td>
</tr>
<tr>
<td>Biochar norit 5 ton</td>
<td>105</td>
<td>144</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>102</td>
<td>148</td>
</tr>
<tr>
<td>Groencompost</td>
<td>98</td>
<td>135</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>108</td>
<td>152</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>100</td>
<td>145</td>
</tr>
<tr>
<td>Lsd 1)</td>
<td>4,8</td>
<td>14</td>
</tr>
</tbody>
</table>

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar.
2) niet significant (niet betrouwbaar)
Tabel B-14.1.3. Relatieve opbrengsten en afvoer van stikstof en fosfaat van zomergerst Lelystad 2010.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Opbrengst relatief</th>
<th>Afvoer mineralen (kg/ha)</th>
<th>Afvoer mineralen (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 = 9.2 ton/ha</td>
<td>N-korrel</td>
<td>P$_2$O$_5$ korrel</td>
</tr>
<tr>
<td>Agrigyps</td>
<td>101</td>
<td>125</td>
<td>63</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>103</td>
<td>127</td>
<td>64</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>97</td>
<td>119</td>
<td>60</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>98</td>
<td>118</td>
<td>59</td>
</tr>
<tr>
<td>Conditi5%N</td>
<td>101</td>
<td>121</td>
<td>62</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>97</td>
<td>119</td>
<td>60</td>
</tr>
<tr>
<td>Biochar hout 2.5 ton</td>
<td>98</td>
<td>122</td>
<td>61</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>99</td>
<td>124</td>
<td>61</td>
</tr>
<tr>
<td>Groencompost</td>
<td>98</td>
<td>115</td>
<td>61</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>101</td>
<td>122</td>
<td>59</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>100</td>
<td>126</td>
<td>63</td>
</tr>
</tbody>
</table>

Lsd 1) 7.1 12.1 6.7 2) n.s. 2) n.s. 2) 12.1 6.7 2) 1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar 2) niet significant (niet betrouwbaar)

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>%doorval<2.2</th>
<th>%2.2-2.5</th>
<th>%2.5-2.8</th>
<th>%>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>0.4</td>
<td>1.9</td>
<td>8.9</td>
<td>97.7</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>0.6</td>
<td>1.5</td>
<td>8.7</td>
<td>97.9</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>0.4</td>
<td>1.2</td>
<td>6.8</td>
<td>98.4</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>0.5</td>
<td>1.6</td>
<td>9.6</td>
<td>97.9</td>
</tr>
<tr>
<td>Conditi5%N</td>
<td>0.3</td>
<td>0.7</td>
<td>6.8</td>
<td>99.0</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>0.5</td>
<td>1.4</td>
<td>6.7</td>
<td>98.1</td>
</tr>
<tr>
<td>Biochar hout 2.5 ton</td>
<td>0.5</td>
<td>1.3</td>
<td>8.4</td>
<td>98.2</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>0.3</td>
<td>0.8</td>
<td>6.3</td>
<td>98.9</td>
</tr>
<tr>
<td>Groencompost</td>
<td>0.5</td>
<td>1.2</td>
<td>7.0</td>
<td>98.3</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>0.6</td>
<td>1.8</td>
<td>9.1</td>
<td>97.6</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>0.5</td>
<td>1.5</td>
<td>7.6</td>
<td>98.0</td>
</tr>
</tbody>
</table>

Lsd 1) 0.3 1.4 2) 4.5 2) 1.6 2) 1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar 2) niet significant (niet betrouwbaar)

Tabel B-14.1.5. Relatieve opbrengsten en afvoer van stikstof en fosfaat van zomergerst Westmaas 2010.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Opbrengst relatief</th>
<th>Afvoer mineralen (kg/ha)</th>
<th>Afvoer mineralen (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 = 6.6 ton/ha</td>
<td>N-korrel</td>
<td>P$_2$O$_5$ korrel</td>
</tr>
<tr>
<td>Agrigyps</td>
<td>119</td>
<td>77</td>
<td>52</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>110</td>
<td>77</td>
<td>51</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>114</td>
<td>76</td>
<td>51</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>121</td>
<td>79</td>
<td>51</td>
</tr>
<tr>
<td>Conditi5%N</td>
<td>112</td>
<td>76</td>
<td>50</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>116</td>
<td>83</td>
<td>55</td>
</tr>
<tr>
<td>Groencompost</td>
<td>99</td>
<td>73</td>
<td>54</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>108</td>
<td>86</td>
<td>57</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>100</td>
<td>76</td>
<td>53</td>
</tr>
</tbody>
</table>

Lsd (relatief) 1) 15.2 13 2) 7.5 2) 2) 13 2) 7.5 2) 1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar 2) niet significant (niet betrouwbaar)

© Praktijkonderzoek Plant & Omgeving

95

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>% doorval < 2.2</th>
<th>% 2.2 - 2.5</th>
<th>% 2.5 - 2.8</th>
<th>% > 2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigysp</td>
<td>0.3</td>
<td>1.0</td>
<td>6.3</td>
<td>92</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>0.3</td>
<td>0.7</td>
<td>6.7</td>
<td>92</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>0.3</td>
<td>1.0</td>
<td>5.7</td>
<td>93</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>0.0</td>
<td>1.0</td>
<td>6.0</td>
<td>93</td>
</tr>
<tr>
<td>Condit5%</td>
<td>0.3</td>
<td>1.3</td>
<td>6.0</td>
<td>92</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>0.0</td>
<td>1.0</td>
<td>5.3</td>
<td>94</td>
</tr>
<tr>
<td>Groencompost</td>
<td>0.3</td>
<td>1.0</td>
<td>8.7</td>
<td>90</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>0.3</td>
<td>1.0</td>
<td>6.3</td>
<td>92</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>0.7</td>
<td>0.7</td>
<td>8.3</td>
<td>90</td>
</tr>
</tbody>
</table>

Lsd 1) 0.9 2) 0.6 2) 2.1 2) 2.6
1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar
2) niet significant (niet betrouwbaar)

Tabel B-14.1.7. Opbrengst en kwaliteit van de suikerbieten op Valthermond 2010 (bron IRS).

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Wortel</th>
<th>Suiker</th>
<th>Suiker</th>
<th>Grond</th>
<th>Kop</th>
<th>Na</th>
<th>K+Na</th>
<th>AmN</th>
<th>WIN</th>
<th>FinO</th>
<th>€/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP-SOL</td>
<td>57.9</td>
<td>18.5</td>
<td>10.7</td>
<td>5.3</td>
<td>9.5</td>
<td>29.5</td>
<td>5.2</td>
<td>34.8</td>
<td>11.9</td>
<td>92.2</td>
<td>2601</td>
</tr>
<tr>
<td>Condit5%N</td>
<td>60.4</td>
<td>18.9</td>
<td>11.4</td>
<td>6.8</td>
<td>10.4</td>
<td>29.8</td>
<td>4.2</td>
<td>34.1</td>
<td>11.2</td>
<td>92.5</td>
<td>2790</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>60.5</td>
<td>18.1</td>
<td>10.9</td>
<td>5.3</td>
<td>8.1</td>
<td>28.9</td>
<td>6.4</td>
<td>35.3</td>
<td>13.0</td>
<td>91.9</td>
<td>2637</td>
</tr>
<tr>
<td>Biochar ECN</td>
<td>61.4</td>
<td>18.5</td>
<td>11.4</td>
<td>5.3</td>
<td>9.0</td>
<td>31.9</td>
<td>5.0</td>
<td>36.9</td>
<td>12.3</td>
<td>92.0</td>
<td>2755</td>
</tr>
<tr>
<td>Biochar norit</td>
<td>58.6</td>
<td>18.3</td>
<td>10.7</td>
<td>5.2</td>
<td>8.9</td>
<td>32.0</td>
<td>5.7</td>
<td>37.7</td>
<td>12.1</td>
<td>91.9</td>
<td>2576</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>59.5</td>
<td>18.8</td>
<td>11.2</td>
<td>5.3</td>
<td>8.2</td>
<td>31.2</td>
<td>4.1</td>
<td>35.3</td>
<td>12.1</td>
<td>92.3</td>
<td>2736</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>60.7</td>
<td>18.6</td>
<td>11.3</td>
<td>5.7</td>
<td>8.6</td>
<td>30.5</td>
<td>7.5</td>
<td>38.0</td>
<td>12.4</td>
<td>92.0</td>
<td>2739</td>
</tr>
<tr>
<td>Groencompost</td>
<td>60.5</td>
<td>19.0</td>
<td>11.5</td>
<td>5.0</td>
<td>9.4</td>
<td>29.9</td>
<td>3.7</td>
<td>33.6</td>
<td>10.2</td>
<td>92.7</td>
<td>2847</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>58.9</td>
<td>18.7</td>
<td>11.0</td>
<td>5.5</td>
<td>8.8</td>
<td>30.0</td>
<td>4.8</td>
<td>34.8</td>
<td>11.9</td>
<td>92.3</td>
<td>2692</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>61.7</td>
<td>18.3</td>
<td>11.3</td>
<td>5.5</td>
<td>8.2</td>
<td>30.3</td>
<td>5.3</td>
<td>35.6</td>
<td>13.2</td>
<td>92.0</td>
<td>2734</td>
</tr>
</tbody>
</table>

Lsd 1) 4.2 2) 0.45 2) 0.8 2) 1.2 2) 1.3 2) 2.6 2) 1.8 2) 3.9 2) 1.9 2) 0.6 2) 202
1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar
2) niet significant (niet betrouwbaar)

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>% droge stof bij oogst</th>
<th>Droge stof opbrengst ton/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP-SOL</td>
<td>28.8</td>
<td>18.0</td>
</tr>
<tr>
<td>Condit5%N</td>
<td>27.7</td>
<td>17.0</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>27.3</td>
<td>17.1</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>28.7</td>
<td>18.9</td>
</tr>
<tr>
<td>Groencompost</td>
<td>31.6</td>
<td>18.6</td>
</tr>
<tr>
<td>Rundveedrijfmest</td>
<td>28.0</td>
<td>16.8</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>33.9</td>
<td>20.2</td>
</tr>
</tbody>
</table>

Lsd 1) 3.4 2) 2.7
1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar
Tabel B-14.2.1. Relatieve opbrengsten per proeflocatie in 2011.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Valth.mond</th>
<th>Vredepeel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pootaard 1</td>
<td>Suikerbiet (€)</td>
<td>Cons aard</td>
<td>Zelm.aard</td>
<td>Suikerbiet (€)</td>
</tr>
<tr>
<td>Agrigyps</td>
<td>102</td>
<td>105.8</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>101</td>
<td>101.1</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>101</td>
<td>98.0</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>100</td>
<td>101.8</td>
<td>102</td>
<td>116</td>
<td>99</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>100</td>
<td>103.7</td>
<td>104</td>
<td>123</td>
<td>97</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>101</td>
<td>100.6</td>
<td>101</td>
<td>107</td>
<td>97</td>
</tr>
<tr>
<td>Biochar ECN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>Biochar norit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar hout 2,5 ton</td>
<td></td>
<td>100.8</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td></td>
<td>104.6</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>112</td>
</tr>
<tr>
<td>Groencompost/GFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Varkens-/rundveedm.</td>
<td></td>
<td>97.9</td>
<td>98</td>
<td>125</td>
<td>100</td>
</tr>
<tr>
<td>Kunstmest</td>
<td></td>
<td>100.0</td>
<td>100</td>
<td>116</td>
<td>98</td>
</tr>
<tr>
<td>Lsd (relatief) 3)</td>
<td></td>
<td>3.7</td>
<td>7.7</td>
<td>n.s.</td>
<td>13.5</td>
</tr>
<tr>
<td>100 = … ton of €/ha</td>
<td>48.5</td>
<td>4391</td>
<td>72.2</td>
<td>60.3</td>
<td>4456</td>
</tr>
</tbody>
</table>

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar

Tabel B-14.2.2. Opbrengsten van Spunta pootaardappelen, Kollumerwaard 2011.

<table>
<thead>
<tr>
<th>Bodemverb.</th>
<th>0-25</th>
<th>25-28</th>
<th>28-35</th>
<th>35-45</th>
<th>45-50</th>
<th>50-55</th>
<th>> 55</th>
<th>totaal</th>
<th>relatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>0.1</td>
<td>0.4</td>
<td>1.3</td>
<td>9.5</td>
<td>17.2</td>
<td>14.3</td>
<td>6.5</td>
<td>49.3</td>
<td>102</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>0.2</td>
<td>0.5</td>
<td>1.3</td>
<td>9.9</td>
<td>14.7</td>
<td>16.3</td>
<td>5.9</td>
<td>48.8</td>
<td>101</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>0.2</td>
<td>0.5</td>
<td>1.3</td>
<td>9.5</td>
<td>17.0</td>
<td>15.6</td>
<td>5.0</td>
<td>48.9</td>
<td>101</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>0.1</td>
<td>0.6</td>
<td>1.3</td>
<td>10.5</td>
<td>17.7</td>
<td>13.4</td>
<td>4.8</td>
<td>48.4</td>
<td>100</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>0.1</td>
<td>0.5</td>
<td>1.3</td>
<td>8.1</td>
<td>12.3</td>
<td>14.2</td>
<td>7.6</td>
<td>44.0</td>
<td>91</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>0.2</td>
<td>0.5</td>
<td>1.2</td>
<td>10.0</td>
<td>17.0</td>
<td>14.6</td>
<td>5.5</td>
<td>49.0</td>
<td>101</td>
</tr>
<tr>
<td>Biochar Norit</td>
<td>0.1</td>
<td>0.5</td>
<td>1.5</td>
<td>9.3</td>
<td>17.4</td>
<td>14.4</td>
<td>5.0</td>
<td>48.2</td>
<td>99</td>
</tr>
<tr>
<td>Biochar hout</td>
<td>0.2</td>
<td>0.6</td>
<td>1.4</td>
<td>9.4</td>
<td>17.1</td>
<td>14.4</td>
<td>6.0</td>
<td>48.9</td>
<td>101</td>
</tr>
<tr>
<td>Groencompost/GFT</td>
<td>0.2</td>
<td>0.6</td>
<td>1.3</td>
<td>10.2</td>
<td>16.5</td>
<td>16.0</td>
<td>4.5</td>
<td>49.1</td>
<td>101</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>0.1</td>
<td>0.4</td>
<td>1.1</td>
<td>11.5</td>
<td>17.1</td>
<td>14.6</td>
<td>4.3</td>
<td>49.2</td>
<td>101</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>0.2</td>
<td>0.5</td>
<td>1.4</td>
<td>9.9</td>
<td>16.0</td>
<td>14.3</td>
<td>6.2</td>
<td>48.5</td>
<td>100</td>
</tr>
<tr>
<td>Lsd 3)</td>
<td>0.07</td>
<td>0.15</td>
<td>0.29</td>
<td>1.90</td>
<td>2.63</td>
<td>2.45</td>
<td>2.35</td>
<td>1.81</td>
<td>3.7</td>
</tr>
</tbody>
</table>

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>per are</td>
<td>per m²</td>
<td></td>
</tr>
<tr>
<td>Agrigyps</td>
<td>89</td>
<td>231</td>
<td>458</td>
<td>1331</td>
<td>1481</td>
<td>933</td>
<td>336</td>
<td>4858</td>
<td>4203</td>
<td>16</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>142</td>
<td>322</td>
<td>464</td>
<td>1419</td>
<td>1278</td>
<td>1050</td>
<td>333</td>
<td>5008</td>
<td>4211</td>
<td>17</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>150</td>
<td>275</td>
<td>436</td>
<td>1314</td>
<td>1456</td>
<td>1008</td>
<td>289</td>
<td>4928</td>
<td>4214</td>
<td>16</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>117</td>
<td>333</td>
<td>433</td>
<td>1458</td>
<td>1517</td>
<td>861</td>
<td>264</td>
<td>4983</td>
<td>4269</td>
<td>16</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>86</td>
<td>281</td>
<td>431</td>
<td>1175</td>
<td>1086</td>
<td>900</td>
<td>400</td>
<td>4358</td>
<td>3592</td>
<td>16</td>
</tr>
<tr>
<td>Xurian Optim.</td>
<td>144</td>
<td>264</td>
<td>458</td>
<td>1386</td>
<td>1486</td>
<td>928</td>
<td>294</td>
<td>4961</td>
<td>4258</td>
<td>16</td>
</tr>
<tr>
<td>Biochar Norit</td>
<td>117</td>
<td>294</td>
<td>500</td>
<td>1300</td>
<td>1500</td>
<td>931</td>
<td>264</td>
<td>4906</td>
<td>4231</td>
<td>15</td>
</tr>
<tr>
<td>Biochar hout</td>
<td>142</td>
<td>319</td>
<td>453</td>
<td>1344</td>
<td>1489</td>
<td>917</td>
<td>319</td>
<td>4983</td>
<td>4203</td>
<td>16</td>
</tr>
<tr>
<td>Groencomp/GFT</td>
<td>147</td>
<td>311</td>
<td>517</td>
<td>1411</td>
<td>1414</td>
<td>1036</td>
<td>236</td>
<td>5072</td>
<td>4378</td>
<td>16</td>
</tr>
<tr>
<td>Varkensdrijmest</td>
<td>136</td>
<td>286</td>
<td>364</td>
<td>1594</td>
<td>1453</td>
<td>950</td>
<td>239</td>
<td>5022</td>
<td>4361</td>
<td>17</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>158</td>
<td>292</td>
<td>481</td>
<td>1408</td>
<td>1403</td>
<td>942</td>
<td>336</td>
<td>5019</td>
<td>4233</td>
<td>16</td>
</tr>
<tr>
<td>Lsd 1)</td>
<td>50</td>
<td>104</td>
<td>161</td>
<td>265</td>
<td>235</td>
<td>161</td>
<td>119</td>
<td>340</td>
<td>415</td>
<td>1.4</td>
</tr>
</tbody>
</table>

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de LSD; dan zijn de verschillen betrouwbaar.

Tabel B-14.2.4. Stikstof- en fossaafvoer van representatieve knolmonsters van Spunta pootaardappelen, Kollumerwaard 2011.

<table>
<thead>
<tr>
<th>Bodemverb.</th>
<th>P₂O₅</th>
<th>N-totaal</th>
<th>P₂O₅ afvoer</th>
<th>Stikstof afvoer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gr/kg ds</td>
<td>gr/kg ds</td>
<td>kg/ha</td>
<td>kg/ha</td>
</tr>
<tr>
<td>Agrigyps</td>
<td>7.3</td>
<td>14.0</td>
<td>56</td>
<td>108</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>8.2</td>
<td>14.9</td>
<td>63</td>
<td>113</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>7.8</td>
<td>15.9</td>
<td>58</td>
<td>118</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>6.9</td>
<td>15.3</td>
<td>52</td>
<td>116</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>8.5</td>
<td>19.9</td>
<td>57</td>
<td>135</td>
</tr>
<tr>
<td>Xurian Optim.</td>
<td>7.3</td>
<td>16.2</td>
<td>56</td>
<td>123</td>
</tr>
<tr>
<td>Biochar Norit</td>
<td>8.0</td>
<td>14.9</td>
<td>60</td>
<td>112</td>
</tr>
<tr>
<td>Biochar hout</td>
<td>7.6</td>
<td>13.7</td>
<td>59</td>
<td>107</td>
</tr>
<tr>
<td>Groencompost/GFT</td>
<td>8.2</td>
<td>15.8</td>
<td>61</td>
<td>117</td>
</tr>
<tr>
<td>Varkensdrijmest</td>
<td>7.1</td>
<td>14.8</td>
<td>54</td>
<td>114</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>7.6</td>
<td>16.3</td>
<td>58</td>
<td>125</td>
</tr>
</tbody>
</table>

Tabel B-14.2.5. Opbrengst en kwaliteit van suikerbieten, Lelystad 2011.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Suiker</th>
<th>Percentage tarra</th>
<th>mmol/kg</th>
<th>Amino</th>
<th>WIN</th>
<th>Financ.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ton/ha</td>
<td>% Ton/ha</td>
<td>Grond</td>
<td>Kop</td>
<td>K</td>
<td>K + Na</td>
</tr>
<tr>
<td>Agrigyps</td>
<td>117.5</td>
<td>17.01</td>
<td>20.0</td>
<td>9.3</td>
<td>2.2</td>
<td>31.6</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>114.2</td>
<td>16.71</td>
<td>19.1</td>
<td>8.9</td>
<td>1.7</td>
<td>29.8</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>109.0</td>
<td>16.98</td>
<td>18.5</td>
<td>9.8</td>
<td>2.3</td>
<td>32.1</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>113.3</td>
<td>17.03</td>
<td>19.3</td>
<td>10.9</td>
<td>2.2</td>
<td>31.4</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>114.5</td>
<td>17.06</td>
<td>19.5</td>
<td>8.6</td>
<td>1.8</td>
<td>31.9</td>
</tr>
<tr>
<td>Xurian Optim</td>
<td>112.3</td>
<td>17.02</td>
<td>19.1</td>
<td>10.7</td>
<td>2.2</td>
<td>31.7</td>
</tr>
<tr>
<td>Biochar hout 2,5 ton</td>
<td>114.8</td>
<td>16.91</td>
<td>19.3</td>
<td>9.4</td>
<td>2.1</td>
<td>30.8</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>116.0</td>
<td>17.06</td>
<td>19.8</td>
<td>10.8</td>
<td>1.9</td>
<td>31.2</td>
</tr>
<tr>
<td>Groencompost/GFT</td>
<td>109.6</td>
<td>16.96</td>
<td>18.5</td>
<td>10.5</td>
<td>1.4</td>
<td>30.7</td>
</tr>
<tr>
<td>Varkensdrijmest</td>
<td>112.6</td>
<td>16.87</td>
<td>19.0</td>
<td>11.2</td>
<td>2.7</td>
<td>30.0</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>111.5</td>
<td>17.03</td>
<td>19.0</td>
<td>10.2</td>
<td>2.9</td>
<td>31.8</td>
</tr>
<tr>
<td>Lsd 1)</td>
<td>7.9</td>
<td>0.27</td>
<td>1.4</td>
<td>2.7</td>
<td>1.3</td>
<td>1.6</td>
</tr>
</tbody>
</table>

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de LSD; dan zijn de verschillen betrouwbaar.
Tabel B-14.2.6 Stikstof- en fosfaatafvoer per bodemverbeteraar, Lelystad 2011.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>P₂O₅ afvoer</th>
<th>N-totaal afvoer</th>
<th>P₂O₅ gr/kg ds</th>
<th>N-gr/kg ds</th>
<th>kg/ha</th>
<th>kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>3.2</td>
<td>4.2</td>
<td>85</td>
<td>112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>3.0</td>
<td>4.1</td>
<td>76</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandskalk</td>
<td>3.4</td>
<td>4.4</td>
<td>83</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>3.2</td>
<td>4.3</td>
<td>83</td>
<td>111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condit7%N</td>
<td>3.2</td>
<td>3.9</td>
<td>83</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>3.2</td>
<td>4.2</td>
<td>81</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar 2.5 ton</td>
<td>3.0</td>
<td>4.0</td>
<td>78</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar 5 ton</td>
<td>3.2</td>
<td>4.3</td>
<td>85</td>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groencompost/GFT</td>
<td>3.0</td>
<td>4.2</td>
<td>74</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>3.0</td>
<td>4.0</td>
<td>76</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kunstmest</td>
<td>2.7</td>
<td>4.2</td>
<td>70</td>
<td>106</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel B-14.2.7 Knolopbrengsten consumptie aardappelen, Westmaas 2011.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>0-40</th>
<th>40-50</th>
<th>50-70</th>
<th>> 70</th>
<th>uitval</th>
<th>bruto</th>
<th>netto</th>
<th>netto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>0.4</td>
<td>1.2</td>
<td>23.3</td>
<td>48.1</td>
<td>2.7</td>
<td>75.7</td>
<td>100</td>
<td>73.0</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>0.4</td>
<td>1.7</td>
<td>24.8</td>
<td>43.5</td>
<td>4.6</td>
<td>75.1</td>
<td>99</td>
<td>70.5</td>
</tr>
<tr>
<td>Brandskalk</td>
<td>0.3</td>
<td>1.4</td>
<td>23.0</td>
<td>50.6</td>
<td>3.4</td>
<td>78.6</td>
<td>104</td>
<td>75.2</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>0.3</td>
<td>1.6</td>
<td>24.5</td>
<td>51.7</td>
<td>2.2</td>
<td>80.3</td>
<td>106</td>
<td>78.2</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>0.4</td>
<td>1.7</td>
<td>26.7</td>
<td>43.4</td>
<td>2.3</td>
<td>74.5</td>
<td>98</td>
<td>72.2</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>0.5</td>
<td>1.7</td>
<td>25.6</td>
<td>43.6</td>
<td>3.4</td>
<td>74.7</td>
<td>98</td>
<td>71.3</td>
</tr>
<tr>
<td>Groencompost/GFT</td>
<td>0.4</td>
<td>1.0</td>
<td>22.9</td>
<td>48.8</td>
<td>2.5</td>
<td>75.6</td>
<td>100</td>
<td>73.1</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>0.4</td>
<td>1.6</td>
<td>22.9</td>
<td>51.3</td>
<td>3.3</td>
<td>79.5</td>
<td>105</td>
<td>76.2</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>0.2</td>
<td>1.6</td>
<td>21.7</td>
<td>48.8</td>
<td>3.6</td>
<td>75.9</td>
<td>100</td>
<td>72.2</td>
</tr>
</tbody>
</table>

Lsd

<table>
<thead>
<tr>
<th>0-40</th>
<th>40-50</th>
<th>50-70</th>
<th>> 70</th>
<th>uitval</th>
<th>bruto</th>
<th>netto</th>
<th>netto</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.s.</td>
<td>n.s.</td>
<td>6.7</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar
2) niet significant (niet betrouwbaar)

Tabel B-14.2.8. Knolaantallen per are en onderwatergewicht consumptie aardappelen, Westmaas 2011.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>0-40</th>
<th>40-50</th>
<th>50-70</th>
<th>>70</th>
<th>totaal</th>
<th>owg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>100</td>
<td>167</td>
<td>1194</td>
<td>1175</td>
<td>2786</td>
<td>434</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>142</td>
<td>222</td>
<td>1294</td>
<td>1058</td>
<td>2881</td>
<td>418</td>
</tr>
<tr>
<td>Brandskalk</td>
<td>86</td>
<td>181</td>
<td>1214</td>
<td>1247</td>
<td>2911</td>
<td>427</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>86</td>
<td>203</td>
<td>1292</td>
<td>1308</td>
<td>2986</td>
<td>427</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>136</td>
<td>206</td>
<td>1342</td>
<td>1100</td>
<td>2889</td>
<td>425</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>133</td>
<td>222</td>
<td>1325</td>
<td>1103</td>
<td>2950</td>
<td>429</td>
</tr>
<tr>
<td>Groencompost/GFT</td>
<td>108</td>
<td>136</td>
<td>1189</td>
<td>1222</td>
<td>2767</td>
<td>436</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>111</td>
<td>217</td>
<td>1164</td>
<td>1233</td>
<td>2878</td>
<td>431</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>61</td>
<td>197</td>
<td>1086</td>
<td>1172</td>
<td>2664</td>
<td>429</td>
</tr>
</tbody>
</table>

Lsd

<table>
<thead>
<tr>
<th>1)</th>
<th>n.s.</th>
<th>n.s.</th>
<th>n.s.</th>
<th>n.s.</th>
<th>n.s.</th>
<th>n.s.</th>
</tr>
</thead>
</table>

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar
2) niet significant (niet betrouwbaar)
Tabel B-14.2.9. Kwaliteit van de zetmeelaardappelen, Valthermond 2011.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>score SCF</th>
<th>Knolgebreken licht</th>
<th>Knolgebreken zwaar</th>
<th>Waardering Groen</th>
<th>Waardering Schuift</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP-SOL</td>
<td>92</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Condi7%N</td>
<td>93</td>
<td>6</td>
<td>10</td>
<td>7.7</td>
<td>9.3</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>97</td>
<td>8</td>
<td>10</td>
<td>9.3</td>
<td>9.3</td>
</tr>
<tr>
<td>Biochar ECN</td>
<td>95</td>
<td>8</td>
<td>10</td>
<td>9.3</td>
<td>7.7</td>
</tr>
<tr>
<td>Biochar hout</td>
<td>94</td>
<td>6</td>
<td>10</td>
<td>9.3</td>
<td>9.0</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>96</td>
<td>8</td>
<td>10</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Groencompost/GFT</td>
<td>95</td>
<td>8</td>
<td>10</td>
<td>9.3</td>
<td>9.3</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>94</td>
<td>7</td>
<td>10</td>
<td>9.3</td>
<td>7.7</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>94</td>
<td>8</td>
<td>10</td>
<td>8.0</td>
<td>7.7</td>
</tr>
</tbody>
</table>

Lsd 1) 3.6 1.9 n.s. 2) 2.6 2.4 2)

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar
2) niet significant (niet betrouwbaar)

Tabel B-14.2.10. Opbrengst en kwaliteit van suikerbieten, Vredepeel 2011.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Ton/ha</th>
<th>% Suiker</th>
<th>Percentage tarra</th>
<th>mmol/kg</th>
<th>Amino</th>
<th>WIN</th>
<th>Financ. €/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP-SOL</td>
<td>100.4</td>
<td>17.97</td>
<td>18.0</td>
<td>1.2</td>
<td>4.5</td>
<td>32.7</td>
<td>2.3</td>
</tr>
<tr>
<td>Condi7%N</td>
<td>101.0</td>
<td>17.58</td>
<td>17.8</td>
<td>1.7</td>
<td>4.9</td>
<td>32.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>100.8</td>
<td>17.59</td>
<td>17.7</td>
<td>1.7</td>
<td>5.0</td>
<td>30.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>102.7</td>
<td>17.89</td>
<td>18.4</td>
<td>2.1</td>
<td>5.4</td>
<td>33.8</td>
<td>3.0</td>
</tr>
<tr>
<td>Groencompost/GFT</td>
<td>102.0</td>
<td>17.82</td>
<td>18.2</td>
<td>1.6</td>
<td>5.7</td>
<td>31.9</td>
<td>2.2</td>
</tr>
<tr>
<td>Zeugenmest</td>
<td>101.1</td>
<td>17.75</td>
<td>17.9</td>
<td>1.3</td>
<td>4.8</td>
<td>31.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>101.1</td>
<td>17.96</td>
<td>18.2</td>
<td>1.3</td>
<td>5.1</td>
<td>33.2</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Lsd 1) n.s. 2) n.s. n.s. 0.8 n.s. n.s. 0.6 n.s. n.s. n.s. n.s. n.s.

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar
2) niet significant (niet betrouwbaar)
B-14.3 Opbrengst, kwaliteit en mineralenafvoer in 2012

Tabel B-14.3.1. Relatieve opbrengsten per proeflocatie in 2012.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Kollumerw. winter tarwe</th>
<th>Lelystad zaaiuien</th>
<th>Westmaas suikerbiet(€)</th>
<th>Valthermond zomergerst</th>
<th>Vredepeel zomergerst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kunstmest</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Bodemverbeteraar</td>
<td>Agrigyps</td>
<td>103</td>
<td>98</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Betacalcarbo</td>
<td>103</td>
<td>98</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brandkalk</td>
<td>101</td>
<td>101</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRP-SOL</td>
<td>100</td>
<td>99</td>
<td>98</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Condit7%N</td>
<td>97(^1)</td>
<td>91(^2)</td>
<td>103(^1)</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Xurian Optimum</td>
<td>101</td>
<td>100</td>
<td>98</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Biochar ECN</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biochar norit</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biochar hout 2,5 ton</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biochar hout 5 ton</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biochar Romchar</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steenmeel</td>
<td>104</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bactofil</td>
<td>98</td>
<td>98</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Referentie

<table>
<thead>
<tr>
<th>Varkens-/Rundveedrijfm.</th>
<th>101</th>
<th>98</th>
<th>100</th>
<th>95</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groencompost/GFT</td>
<td>98</td>
<td>97</td>
<td>108</td>
<td>92</td>
<td>102</td>
</tr>
<tr>
<td>LSD (relatief)(^1)</td>
<td>2.5</td>
<td>5.5</td>
<td>11.9</td>
<td>10.6</td>
<td>17.4</td>
</tr>
</tbody>
</table>

\(^1\) Wanneer het verschil tussen twee resultaten groter of gelijk aan de LSD; dan zijn de verschillen betrouwbaar

1 De N-gift bij het Condit-object was 100 kg per ha lager dan bij het kunstmestobject. Bij gelijk N-gift was de opbrengst bij Condit waarschijnlijk hoger geweest. Aangezien het opbrengstverschil waarschijnlijk een bemestingseffect betreft, wordt niet geoordeeld dat Condit minder goed presteerde.

2 De N-gift bij het Condit-object was 65 kg per ha lager dan bij het kunstmestobject en dit heeft geresulteerd in een lagere opbrengst. Vanwege dit bemestingseffect kan geen oordeel worden gegeven over het effect van Condit als bodemverbeteraar op de opbrengst; wordt derhalve niet geoordeeld dat Condit minder goed presteerde.

3 De N-gift bij het Condit-object was 35 kg per ha lager dan bij het kunstmestobject.

Tabel B-14.3.2. Opbrengst wintertarwe, Kollumerwaard 2012.

<table>
<thead>
<tr>
<th>Bodemverb.</th>
<th>Ton/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>13.8</td>
</tr>
<tr>
<td>Betacalcarbo</td>
<td>13.8</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>13.6</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>13.4</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>13.0</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>13.5</td>
</tr>
<tr>
<td>Biochar norit</td>
<td>13.2</td>
</tr>
<tr>
<td>Biochar hout</td>
<td>13.2</td>
</tr>
<tr>
<td>Groencompost/GFT</td>
<td>13.1</td>
</tr>
<tr>
<td>Varkensdriemast</td>
<td>13.5</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>13.4</td>
</tr>
<tr>
<td>LSD (^1)</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\(^1\) Wanneer het verschil tussen twee resultaten groter of gelijk aan de LSD; dan zijn de verschillen betrouwbaar
Tabel B-14.3.3. Stikstof- en fosfaatgehalten en -afvoer van de wintertarwe, Kollumerwaard 2012.

<table>
<thead>
<tr>
<th>Bodemverb.</th>
<th>P<sub>O3</sub></th>
<th>N-totaal</th>
<th>P<sub>O5</sub> afvoer</th>
<th>Stikstof-afvoer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>7.6</td>
<td>18.6</td>
<td>89</td>
<td>219</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>8.0</td>
<td>19.0</td>
<td>94</td>
<td>224</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>7.6</td>
<td>18.0</td>
<td>88</td>
<td>209</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>7.3</td>
<td>18.0</td>
<td>84</td>
<td>206</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>7.8</td>
<td>16.9</td>
<td>87</td>
<td>189</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>8.0</td>
<td>18.6</td>
<td>93</td>
<td>215</td>
</tr>
<tr>
<td>Biochar Norit</td>
<td>7.8</td>
<td>17.3</td>
<td>88</td>
<td>195</td>
</tr>
<tr>
<td>Biochar hout</td>
<td>7.6</td>
<td>17.5</td>
<td>86</td>
<td>199</td>
</tr>
<tr>
<td>Groencompost/GFT</td>
<td>7.8</td>
<td>17.7</td>
<td>88</td>
<td>200</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>7.8</td>
<td>18.6</td>
<td>90</td>
<td>216</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>8.0</td>
<td>17.7</td>
<td>92</td>
<td>204</td>
</tr>
</tbody>
</table>

Tabel B-14.3.4. Opbrengst zaaiuien per maatsortering, Lelystad 2012.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>0-40 mm</th>
<th>40-60 mm</th>
<th>> 60 mm</th>
<th>Totale Opbrengst</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ton/ha</td>
<td>ton/ha</td>
<td>ton/ha</td>
<td>ton/ha</td>
</tr>
<tr>
<td>Agrigyps</td>
<td>1.7</td>
<td>40.8</td>
<td>40.9</td>
<td>83.6</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>2.0</td>
<td>42.0</td>
<td>39.1</td>
<td>83.4</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>1.9</td>
<td>41.7</td>
<td>41.7</td>
<td>85.7</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>1.4</td>
<td>39.1</td>
<td>43.6</td>
<td>84.3</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>1.5</td>
<td>29.8</td>
<td>45.4</td>
<td>77.0</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>1.8</td>
<td>42.5</td>
<td>40.5</td>
<td>85.1</td>
</tr>
<tr>
<td>Biochar hout 2.5 ton</td>
<td>1.7</td>
<td>37.4</td>
<td>44.6</td>
<td>83.9</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>1.8</td>
<td>39.1</td>
<td>43.2</td>
<td>83.4</td>
</tr>
<tr>
<td>Groencompost/GFT</td>
<td>2.0</td>
<td>42.1</td>
<td>38.6</td>
<td>82.8</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>1.4</td>
<td>36.0</td>
<td>45.9</td>
<td>83.5</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>1.5</td>
<td>35.8</td>
<td>47.3</td>
<td>85.0</td>
</tr>
<tr>
<td>BactoFil A10</td>
<td>1.6</td>
<td>32.1</td>
<td>49.3</td>
<td>83.2</td>
</tr>
</tbody>
</table>

| Lsd | 0.51 | 4.8 | 6.38 | 4.7 |

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de LSD; dan zijn de verschillen betrouwbaar

Tabel B-14.3.5. Opbrengst en kwaliteit van suikerbieten, Westmaas 2012.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Suiker</th>
<th>% tarra</th>
<th>mmol/kg</th>
<th>Amino</th>
<th>Financ.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ton/ha</td>
<td>% Grond</td>
<td>grond</td>
<td>K Na</td>
<td>WIN</td>
</tr>
<tr>
<td>Agrigyps</td>
<td>97.4</td>
<td>19.4</td>
<td>18.9</td>
<td>22.1</td>
<td>36.1</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>92.8</td>
<td>19.2</td>
<td>17.8</td>
<td>20.3</td>
<td>37.5</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>92.1</td>
<td>19.2</td>
<td>17.7</td>
<td>27.2</td>
<td>37.3</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>93.4</td>
<td>19.4</td>
<td>18.1</td>
<td>23.5</td>
<td>34.5</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>98.0</td>
<td>19.2</td>
<td>18.8</td>
<td>20.7</td>
<td>36.0</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>96.0</td>
<td>19.1</td>
<td>18.4</td>
<td>23.6</td>
<td>37.1</td>
</tr>
<tr>
<td>Groencompost/GFT</td>
<td>103.6</td>
<td>19.2</td>
<td>19.9</td>
<td>21.9</td>
<td>35.1</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>96.6</td>
<td>19.4</td>
<td>18.8</td>
<td>26.1</td>
<td>35.0</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>95.5</td>
<td>19.3</td>
<td>18.5</td>
<td>23.2</td>
<td>36.6</td>
</tr>
<tr>
<td>BactoFil B10</td>
<td>92.1</td>
<td>19.3</td>
<td>17.8</td>
<td>20.6</td>
<td>36.1</td>
</tr>
</tbody>
</table>

| Lsd | 9.02 | 0.22 | 1.82 | 5.70 | 1.35 | 0.15 | 4.3 | 0.44 | 506 |

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de LSD; dan zijn de verschillen betrouwbaar
Tabel B-14.3.6. Stikstof- en fosforafvoer per bodemverbeteraar, Westmaas 2012.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Fosfor</th>
<th>N-totaal</th>
<th>P<sub>2</sub>O<sub>5</sub> afvoer</th>
<th>Stikstof-afvoer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gr/kg ds</td>
<td>gr/kg ds</td>
<td>kg/ha</td>
<td>kg/ha</td>
</tr>
<tr>
<td>Agrigyp</td>
<td>1.2</td>
<td>3.7</td>
<td>29.8</td>
<td>91.9</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>1.3</td>
<td>3.7</td>
<td>31.0</td>
<td>88.2</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>1.4</td>
<td>4.0</td>
<td>33.0</td>
<td>94.3</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>1.2</td>
<td>4.4</td>
<td>29.5</td>
<td>108.0</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>1.3</td>
<td>3.6</td>
<td>32.6</td>
<td>90.3</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>1.5</td>
<td>3.8</td>
<td>36.6</td>
<td>92.7</td>
</tr>
<tr>
<td>Groencompost/GFT</td>
<td>1.2</td>
<td>4.1</td>
<td>32.2</td>
<td>110.0</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>1.2</td>
<td>4.2</td>
<td>30.5</td>
<td>106.7</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>1.2</td>
<td>4.9</td>
<td>30.6</td>
<td>124.9</td>
</tr>
<tr>
<td>BactoFil A10</td>
<td>1.2</td>
<td>3.9</td>
<td>28.8</td>
<td>93.7</td>
</tr>
</tbody>
</table>

Tabel B-14.3.7. Opbrengst en kwaliteit zomergerst, Valthermond 2012.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Ton/ha</th>
<th>Eiwitgehalte in</th>
<th>Volgerstperc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP-SOL</td>
<td>6.6</td>
<td>12.4</td>
<td>98.6</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>5.7</td>
<td>11.8</td>
<td>98.9</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>7.0</td>
<td>12.6</td>
<td>98.6</td>
</tr>
<tr>
<td>Biochar ECN</td>
<td>6.7</td>
<td>12.2</td>
<td>98.8</td>
</tr>
<tr>
<td>Biochar norit</td>
<td>7.0</td>
<td>12.1</td>
<td>99.0</td>
</tr>
<tr>
<td>Romchar</td>
<td>6.7</td>
<td>12.2</td>
<td>99.1</td>
</tr>
<tr>
<td>Biochar hout</td>
<td>6.2</td>
<td>12.5</td>
<td>99.0</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>7.0</td>
<td>12.2</td>
<td>98.6</td>
</tr>
<tr>
<td>Groencompost/GFT</td>
<td>6.2</td>
<td>12.1</td>
<td>98.9</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>6.5</td>
<td>12.2</td>
<td>99.1</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>6.8</td>
<td>12.7</td>
<td>99.0</td>
</tr>
<tr>
<td>Lsd 1)</td>
<td>0.7</td>
<td>0.6</td>
<td>0.4</td>
</tr>
</tbody>
</table>

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar

Tabel B-14.3.8. Opbrengst en kwaliteit van zomergerst, Vredepeel 2012.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Ton/ha</th>
<th>Hectolitergewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP-SOL</td>
<td>7.4</td>
<td>63</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>7.5</td>
<td>62</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>7.1</td>
<td>61</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>6.4</td>
<td>61</td>
</tr>
<tr>
<td>Groencompost/GFT</td>
<td>7.2</td>
<td>61</td>
</tr>
<tr>
<td>Zeugenmest</td>
<td>6.8</td>
<td>60</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>7.0</td>
<td>60</td>
</tr>
<tr>
<td>Lsd 1)</td>
<td>1.22</td>
<td>3.6</td>
</tr>
</tbody>
</table>

1) Wanneer het verschil tussen twee resultaten groter of gelijk aan de lsd; dan zijn de verschillen betrouwbaar
Tabel B-14.4.1 Relatieve opbrengsten per proeflocatie in 2013.

<table>
<thead>
<tr>
<th>Proeflocatie</th>
<th>Gewas</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Valthermond</th>
<th>Vredepeel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Suikerbieten</td>
<td>Winterpeen</td>
<td>Wintertarwe</td>
<td>Zetmeel aard.</td>
<td>Mais</td>
</tr>
<tr>
<td>Kunstmest</td>
<td></td>
<td>100 a</td>
<td>100 bc</td>
<td>100 bc</td>
<td>100 bcd</td>
<td>100 a</td>
</tr>
<tr>
<td>Bodemverbeteraar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrigyps</td>
<td></td>
<td>95 a</td>
<td>94 ab</td>
<td>102 c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BactoFil B10</td>
<td></td>
<td>102 c</td>
<td>100 * bc</td>
<td></td>
<td>104 ab</td>
<td></td>
</tr>
<tr>
<td>Betacal carbo</td>
<td></td>
<td>99 a</td>
<td>97 abc</td>
<td>101 bc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar ECN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97 * abcd</td>
<td></td>
</tr>
<tr>
<td>Biochar Romchar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>105 * cd</td>
<td></td>
</tr>
<tr>
<td>Biochar hout</td>
<td></td>
<td>95 abc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar Norit</td>
<td></td>
<td>102 a</td>
<td>97 abc</td>
<td>93 abc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td></td>
<td>101 a</td>
<td>101 c</td>
<td>100 bc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condit</td>
<td></td>
<td>98 a</td>
<td>991 abc</td>
<td>952 a</td>
<td>84 a</td>
<td>105 ab</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td></td>
<td>100 a</td>
<td>96 abc</td>
<td>98 abc</td>
<td>103 bcd</td>
<td>102 ab</td>
</tr>
<tr>
<td>Steenmeel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>91 * ab</td>
<td>106 * ab</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td></td>
<td>97 a</td>
<td>97 abc</td>
<td>98 ab</td>
<td>110 d</td>
<td>111 b</td>
</tr>
<tr>
<td>Referentie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groencompost</td>
<td></td>
<td>97 a</td>
<td>99 abc</td>
<td>100 bc</td>
<td>97 abcd</td>
<td>100 a</td>
</tr>
<tr>
<td>Varkens/Rundvee-</td>
<td></td>
<td>99 a</td>
<td>93 a</td>
<td>98 abc</td>
<td>99 bcd</td>
<td>102 ab</td>
</tr>
<tr>
<td>drijfmest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| LSD 1) | 7,8 | 7,1 | 3,7 | 13,2 | 10,8 |
| F pr. | n.s. | n.s. | <0,05 | <0,05 | n.s. |

100 = … ton/ha of €/ha SB

* Objecten 2013 niet toegediend.

1 De N-gift bij het Condit-object was 40 kg per ha lager dan bij het kunstmestobject.
2 De N-gift bij het Condit-object was 70 kg per ha lager dan bij het kunstmestobject. Door het verschil in N-bemesting kan het effect van Condit als bodemverbeteraar op de opbrengst niet worden beoordeeld.
Tabel B-14.4.2. Opbrengst en kwaliteit van suikerbieten, Kollumerwaard 2013.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Suiker</th>
<th>% Tarra mmol/kg</th>
<th>Amino %</th>
<th>Financ. €/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>84,2</td>
<td>17,5</td>
<td>14,8</td>
<td>6,6</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>89,5</td>
<td>17,4</td>
<td>15,6</td>
<td>7,6</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>89,4</td>
<td>17,7</td>
<td>15,8</td>
<td>8,2</td>
</tr>
<tr>
<td>Biochar nit</td>
<td>86,2</td>
<td>17,6</td>
<td>15,2</td>
<td>6,7</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>91,1</td>
<td>17,4</td>
<td>15,9</td>
<td>7,2</td>
</tr>
<tr>
<td>Condit 7%</td>
<td>87,7</td>
<td>17,4</td>
<td>15,3</td>
<td>6,2</td>
</tr>
<tr>
<td>Groencompost</td>
<td>88,9</td>
<td>17,4</td>
<td>15,4</td>
<td>9,0</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>90,7</td>
<td>17,4</td>
<td>15,8</td>
<td>8,5</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>89,4</td>
<td>17,5</td>
<td>15,7</td>
<td>7,7</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>88,9</td>
<td>17,4</td>
<td>15,5</td>
<td>8,6</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>87,7</td>
<td>17,4</td>
<td>15,3</td>
<td>7,2</td>
</tr>
<tr>
<td>LSD</td>
<td>7,06</td>
<td>0,27</td>
<td>1,19</td>
<td>2,48</td>
</tr>
</tbody>
</table>

1) Is het verschil tussen twee resultaten groter of gelijk aan de LSD zijn de verschillen betrouwbaar.

Tabel B-14.4.3. Opbrengst winterpeen per maatsorting, Lelystad 2013 in ton/ha

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Gew. <50</th>
<th>Gew. 50-250</th>
<th>Gew. >250</th>
<th>Gew. krom</th>
<th>Opbrengst Ton/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>13281</td>
<td>57371</td>
<td>0.0</td>
<td>6235</td>
<td>76.495</td>
</tr>
<tr>
<td>Bacofol A10</td>
<td>11738</td>
<td>62196</td>
<td>0.0</td>
<td>4795</td>
<td>82.928</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>12992</td>
<td>59412</td>
<td>93,7</td>
<td>4810</td>
<td>79.216</td>
</tr>
<tr>
<td>Biochar hout 2.5 ton</td>
<td>14120</td>
<td>58140</td>
<td>0.0</td>
<td>6174</td>
<td>77.520</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>14402</td>
<td>59103</td>
<td>0.0</td>
<td>6403</td>
<td>78.804</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>14054</td>
<td>61956</td>
<td>304,0</td>
<td>4998</td>
<td>82.608</td>
</tr>
<tr>
<td>Condit 5%</td>
<td>14461</td>
<td>60286</td>
<td>0.0</td>
<td>5575</td>
<td>80.381</td>
</tr>
<tr>
<td>Groencompost</td>
<td>13132</td>
<td>60386</td>
<td>83,3</td>
<td>5063</td>
<td>80.514</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>12502</td>
<td>61094</td>
<td>304,0</td>
<td>6091</td>
<td>81.459</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>14913</td>
<td>58900</td>
<td>0.0</td>
<td>4278</td>
<td>78.533</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>16276</td>
<td>56543</td>
<td>0.0</td>
<td>7675</td>
<td>75.391</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>14056</td>
<td>59211</td>
<td>0.0</td>
<td>5571</td>
<td>78.948</td>
</tr>
<tr>
<td>LSD</td>
<td>3218</td>
<td>4320</td>
<td>276,7</td>
<td>2091</td>
<td>5.761</td>
</tr>
</tbody>
</table>

1) Is het verschil tussen twee resultaten groter of gelijk aan de LSD zijn de verschillen betrouwbaar.
Tabel B-14.4.4. Stikstof en fosfaatgehalten en - berekende afvoer winterpeen, Lelystad 2013

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>P2O5 gr/kg ds</th>
<th>N-totaal gr/kg ds</th>
<th>P2O5 afvoer kg/ha</th>
<th>N afvoer kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>1,9</td>
<td>9,4</td>
<td>15</td>
<td>73</td>
</tr>
<tr>
<td>Bactofil A10</td>
<td>2,0</td>
<td>7,4</td>
<td>19</td>
<td>69</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>1,9</td>
<td>10,2</td>
<td>16</td>
<td>83</td>
</tr>
<tr>
<td>Biochar hout 2,5 ton</td>
<td>1,9</td>
<td>9,5</td>
<td>16</td>
<td>81</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>2,3</td>
<td>13,4</td>
<td>20</td>
<td>114</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>2,2</td>
<td>9,6</td>
<td>18</td>
<td>80</td>
</tr>
<tr>
<td>Condit5%</td>
<td>2,0</td>
<td>8,7</td>
<td>17</td>
<td>75</td>
</tr>
<tr>
<td>Groencompost</td>
<td>2,0</td>
<td>9,4</td>
<td>16</td>
<td>77</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>1,9</td>
<td>9,3</td>
<td>16</td>
<td>80</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>2,2</td>
<td>10,5</td>
<td>18</td>
<td>86</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>1,9</td>
<td>9,2</td>
<td>14</td>
<td>69</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>2,1</td>
<td>10,5</td>
<td>18</td>
<td>92</td>
</tr>
</tbody>
</table>

Tabel B-14.4.5. Opbrengst wintertarwe, Westmaas 2013.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Ton per ha bij 15% vocht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>11.376 b</td>
</tr>
<tr>
<td>Bactofil A10</td>
<td>11.184 b</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>11.359 b</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>11.234 b</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>10.595 a</td>
</tr>
<tr>
<td>Groencompost</td>
<td>11.214 b</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>11.216 b</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>10.980 ab</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>11.001 ab</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>10.964 ab</td>
</tr>
</tbody>
</table>

Lsd 1) 416

1) Is het verschil tussen twee resultaten groter of gelijk aan de lsd zijn de verschillen betrouwbaar.

Tabel B-14.4.6. Stikstof en fosfaatgehalten en - afvoer wintertarwe, Westmaas 2013

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>P2O5 gr/kg ds</th>
<th>N-totaal gr/kg ds</th>
<th>P2O5 afvoer kg/ha</th>
<th>N afvoer kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>3.2</td>
<td>17.9</td>
<td>31</td>
<td>171</td>
</tr>
<tr>
<td>Bactofil A10</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>3.2</td>
<td>17.6</td>
<td>31</td>
<td>168</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>3.9</td>
<td>17.9</td>
<td>37</td>
<td>169</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Groencompost</td>
<td>3.4</td>
<td>17.4</td>
<td>32</td>
<td>164</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>3.4</td>
<td>17.7</td>
<td>32</td>
<td>167</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>3.5</td>
<td>17.3</td>
<td>32</td>
<td>159</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>3.7</td>
<td>17.9</td>
<td>34</td>
<td>166</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

*) Geen Bactofil ingezet in 2013 en er zijn geen gewasmonsters in Condit en Xurian genomen om budgetaire redenen.
Tabel B-14.4.7. Opbrengst en kwaliteit zetmeelaardappelen, Valthermond 2013.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Ton/ha</th>
<th>OWG</th>
<th>Uitbet.gew. ton/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochar ECN</td>
<td>42,4</td>
<td>Bcd</td>
<td>510,7 abc</td>
</tr>
<tr>
<td>Biochar (Romchar)</td>
<td>47,1</td>
<td>d</td>
<td>499,5 a</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>40,9</td>
<td>b</td>
<td>504,4 ab</td>
</tr>
<tr>
<td>Biochar noilt</td>
<td>47,6</td>
<td>d</td>
<td>512,5 abc</td>
</tr>
<tr>
<td>Condit5%</td>
<td>34,7</td>
<td>a</td>
<td>534,1 d</td>
</tr>
<tr>
<td>Groencompost</td>
<td>41,6</td>
<td>bc</td>
<td>517,1 bc</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>43,0</td>
<td>bcd</td>
<td>516,3 ab</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>43,1</td>
<td>bcd</td>
<td>526,3 cd</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>39,9</td>
<td>ab</td>
<td>508,3 ab</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>42,2</td>
<td>bcd</td>
<td>519,3 bcd</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>46,7</td>
<td>cd</td>
<td>520,8 bcd</td>
</tr>
<tr>
<td>Lsd</td>
<td>5,42</td>
<td>cd</td>
<td>16,91 d</td>
</tr>
</tbody>
</table>

| F pr. | <0,01 | <0,05 | <0,05 |

1) Is het verschil tussen twee resultaten groter of gelijk aan de LSD zijn de verschillen betrouwbaar

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Score SCF</th>
<th>Knolgebrek licht</th>
<th>Knolgebrek zwaar</th>
<th>groen</th>
<th>blauw</th>
<th>schurft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochar ECN</td>
<td>92</td>
<td>8,0</td>
<td>10,0</td>
<td>8,0</td>
<td>9</td>
<td>7,6</td>
</tr>
<tr>
<td>Biochar Romchar</td>
<td>92</td>
<td>8,0</td>
<td>10,0</td>
<td>9,0</td>
<td>9</td>
<td>6,3</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>94</td>
<td>8,0</td>
<td>10,0</td>
<td>9,6</td>
<td>9</td>
<td>7,6</td>
</tr>
<tr>
<td>Biochar noilt</td>
<td>94</td>
<td>8,6</td>
<td>10,0</td>
<td>9,3</td>
<td>9</td>
<td>7,6</td>
</tr>
<tr>
<td>Condit5%</td>
<td>90</td>
<td>8,0</td>
<td>8,3</td>
<td>9,6</td>
<td>9</td>
<td>5,0</td>
</tr>
<tr>
<td>Groencompost</td>
<td>88</td>
<td>8,0</td>
<td>8,3</td>
<td>7,6</td>
<td>9</td>
<td>5,6</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>94</td>
<td>8,0</td>
<td>10,0</td>
<td>8,0</td>
<td>9</td>
<td>9,0</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>94</td>
<td>8,0</td>
<td>10,0</td>
<td>9,3</td>
<td>9</td>
<td>7,6</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>88</td>
<td>8,0</td>
<td>8,3</td>
<td>8,3</td>
<td>9</td>
<td>5,0</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>92</td>
<td>8,0</td>
<td>10,0</td>
<td>9,3</td>
<td>9</td>
<td>6,3</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>94</td>
<td>8,6</td>
<td>10,0</td>
<td>8,0</td>
<td>9</td>
<td>9,0</td>
</tr>
<tr>
<td>LSD</td>
<td>6,08</td>
<td>0,86</td>
<td>2,57</td>
<td>3,21</td>
<td>*</td>
<td>3,92</td>
</tr>
</tbody>
</table>

| F pr. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |

1) Is het verschil tussen twee resultaten groter of gelijk aan de LSD zijn de verschillen betrouwbaar
Tabel B-14.4.9. **Opbrengst van mais, Vredepeel 2013.**

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>DS %</th>
<th>DS kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bactofil A10</td>
<td>35.3</td>
<td>18.845</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>36</td>
<td>18.993</td>
</tr>
<tr>
<td>GFT-compost</td>
<td>33.8</td>
<td>18.076</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>33.7</td>
<td>18.068</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>33.7</td>
<td>18.347</td>
</tr>
<tr>
<td>Rundermest</td>
<td>33.3</td>
<td>18.426</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>33.7</td>
<td>19.176</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>34.3</td>
<td>20.03</td>
</tr>
<tr>
<td>LSD 1)</td>
<td>3.542</td>
<td>1.950</td>
</tr>
</tbody>
</table>

F pr. n.s. n.s.

1) Is het verschil tussen twee resultaten groter of gelijk aan de LSD zijn de verschillen betrouwbaar.
B-14.5 Opbrengst, kwaliteit en mineralenafvoer in 2014

Tabel B-14.5.1. Relatieve opbrengsten per proeflocatie in 2014.

<table>
<thead>
<tr>
<th>Gewas</th>
<th>Kollumerwaard</th>
<th>Lelystad</th>
<th>Westmaas</th>
<th>Valthermond</th>
<th>Vredepel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wintertarwe</td>
<td>zomertarwe</td>
<td>suikerbieten</td>
<td>uien</td>
<td>erwten/boon</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>100 b</td>
<td>100 b</td>
<td>100 bc</td>
<td>100 abc</td>
<td>100 b</td>
</tr>
<tr>
<td>Bodemverbeteraar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrigyps</td>
<td>97 ab</td>
<td>109 cd</td>
<td>100 bc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bactofil</td>
<td>62 a</td>
<td>87 * ab</td>
<td>71 a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>98 ab</td>
<td>103 bcd</td>
<td>91 abc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar ECN</td>
<td>98 * ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar Romchar</td>
<td>104 * d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar hout</td>
<td>98 ab</td>
<td>111 d</td>
<td>98 ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar Norit</td>
<td>99 ab</td>
<td>103 cd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>98 ab</td>
<td>103 bc</td>
<td>95 abc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condit</td>
<td>97 ab</td>
<td>101 bc</td>
<td>89 ab</td>
<td>100 abc</td>
<td>79 ab</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>99 ab</td>
<td>109 cd</td>
<td>101 bc</td>
<td>101 bc</td>
<td>94 ab</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>101 * bc</td>
<td>75 * ab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>95 a</td>
<td>103 bc</td>
<td>81 a</td>
<td>100 abc</td>
<td>75 a</td>
</tr>
<tr>
<td>Referentie</td>
<td>100 b</td>
<td>108bcd</td>
<td>105 c</td>
<td>97 a</td>
<td>80 ab</td>
</tr>
<tr>
<td>Groencompost</td>
<td>97 ab</td>
<td>107 bcd</td>
<td>95 abc</td>
<td>101 bc</td>
<td>85 ab</td>
</tr>
<tr>
<td>Varkens/ Rundvededrijfmest</td>
<td>4,1 7,8</td>
<td>14,5 3,2</td>
<td>25,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lsd 1)</td>
<td>0,511</td>
<td><0,01</td>
<td><0,01</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>F pr.</td>
<td>n.s.</td>
<td><0,001</td>
<td><0,10</td>
<td><0,01</td>
<td>n.s.</td>
</tr>
<tr>
<td>100 = ton/ha of €/ha SB</td>
<td>12,4 8,8</td>
<td>65,5 4450</td>
<td>10,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Objecten 2014 niet toegediend
1) Is het verschil tussen twee resultaten groter of gelijk aan de lsd zijn de verschillen betrouwbaar

Tabel B-14.5.2. Opbrengst en kwaliteit van wintertarwe, Kollumerwaard 2014.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>opbr. bij 15 % (ton/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>12,0 ab</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>12,1 ab</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>12,1 ab</td>
</tr>
<tr>
<td>Biochar Norit</td>
<td>12,3 ab</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>12,2 ab</td>
</tr>
<tr>
<td>Condit</td>
<td>12,0 ab</td>
</tr>
<tr>
<td>Groencompost</td>
<td>12,4 b</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>12,4 b</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>12,3 ab</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>12,0 ab</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>11,8 a</td>
</tr>
</tbody>
</table>

Lsd 1) 0,511
1) Is het verschil tussen twee resultaten groter of gelijk aan de lsd, zijn de verschillen betrouwbaar.
Tabel B-14.5.3. Stikstof en fosfaatgehalten en - berekende afvoer winter tarwe, Kollumerwaard 2014.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>P₂O₅ gr/kg ds</th>
<th>N-totaal gr/kg ds</th>
<th>P₂O₅ afvoer kg/ha</th>
<th>N afvoer kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>3,8</td>
<td>18,1</td>
<td>41</td>
<td>197</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>3,8</td>
<td>18,1</td>
<td>41</td>
<td>197</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>3,7</td>
<td>17,6</td>
<td>41</td>
<td>194</td>
</tr>
<tr>
<td>Biochar norit</td>
<td>3,5</td>
<td>17,2</td>
<td>40</td>
<td>199</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>3,5</td>
<td>17,1</td>
<td>39</td>
<td>191</td>
</tr>
<tr>
<td>Condit</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Groencompost</td>
<td>3,6</td>
<td>18,3</td>
<td>42</td>
<td>213</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>3,5</td>
<td>16,9</td>
<td>41</td>
<td>197</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>3,8</td>
<td>17,2</td>
<td>44</td>
<td>199</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>3,7</td>
<td>17,2</td>
<td>42</td>
<td>194</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

*) er zijn geen gewasmonsters in Condit en Xurian genomen om budgettaire redenen

Tabel B-14.5.4. Oplevert zomertarwe, Lelystad 2014 in ton/ha bij 15 % vocht.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>opbr. bij 15 % (ton/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>9,6 cd</td>
</tr>
<tr>
<td>Bactofil</td>
<td>5,5 a</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>9,1 bcd</td>
</tr>
<tr>
<td>Biochar hout 2,5 ton</td>
<td>9,5 bcd</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>9,8 d</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>9,0 bc</td>
</tr>
<tr>
<td>Condit</td>
<td>8,9 bc</td>
</tr>
<tr>
<td>Groencompost</td>
<td>9,5 bcd</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>8,8 b</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>9,6 cd</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>9,4 bcd</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>9,1 bc</td>
</tr>
</tbody>
</table>

Lsd 1) 0,684

1) Is het verschil tussen twee resultaten groter of gelijk aan de lsd, zijn de verschillen betrouwbaar

Tabel B-14.5.5. Stikstof en fosfaatgehalten en - berekende afvoer zomertarwe, Lelystad 2014

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>P₂O₅ gr/kg ds</th>
<th>N-totaal gr/kg ds</th>
<th>P₂O₅ afvoer kg/ha</th>
<th>N afvoer kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>3,7</td>
<td>15,2</td>
<td>30</td>
<td>121</td>
</tr>
<tr>
<td>Bactofil</td>
<td>4</td>
<td>13,6</td>
<td>18</td>
<td>62</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>3,9</td>
<td>15,1</td>
<td>30</td>
<td>114</td>
</tr>
<tr>
<td>Biochar hout 2,5 ton</td>
<td>3,9</td>
<td>15,5</td>
<td>31</td>
<td>123</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>4</td>
<td>15,4</td>
<td>32</td>
<td>125</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>3,9</td>
<td>15,3</td>
<td>29</td>
<td>115</td>
</tr>
<tr>
<td>Condit</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Groencompost</td>
<td>3,9</td>
<td>15,4</td>
<td>31</td>
<td>122</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>3,9</td>
<td>15,2</td>
<td>29</td>
<td>113</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>3,9</td>
<td>15,4</td>
<td>32</td>
<td>124</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>3,9</td>
<td>15,3</td>
<td>31</td>
<td>121</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

*) er zijn geen gewasmonsters in Condit en Xurian genomen om budgettaire redenen.
Tabel B-14.5.6. Opbrengst uien, Westmaas 2014.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>0-40mm ton/ha</th>
<th>40-60mm ton/ha</th>
<th>60-70mm ton/ha</th>
<th>>70mm ton/ha</th>
<th>opbrengst ton/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>2.9</td>
<td>40.4</td>
<td>17.0</td>
<td>4.7</td>
<td>65.1</td>
</tr>
<tr>
<td>Bactofil</td>
<td>2.4</td>
<td>35.7</td>
<td>15.2</td>
<td>3.7</td>
<td>57.0</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>2.1</td>
<td>30.0</td>
<td>17.8</td>
<td>9.3</td>
<td>59.3</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>2.2</td>
<td>36.2</td>
<td>18.6</td>
<td>4.9</td>
<td>61.9</td>
</tr>
<tr>
<td>Condit</td>
<td>1.3</td>
<td>29.2</td>
<td>18.7</td>
<td>9.2</td>
<td>58.3</td>
</tr>
<tr>
<td>Groencompost</td>
<td>1.9</td>
<td>34.4</td>
<td>22.2</td>
<td>10.2</td>
<td>68.7</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>2.1</td>
<td>35.8</td>
<td>21.7</td>
<td>5.8</td>
<td>65.5</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>2.6</td>
<td>38.4</td>
<td>18.4</td>
<td>7.0</td>
<td>66.4</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>2.3</td>
<td>37.7</td>
<td>17.8</td>
<td>4.5</td>
<td>62.4</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>2.6</td>
<td>33.3</td>
<td>13.3</td>
<td>4.0</td>
<td>53.2</td>
</tr>
</tbody>
</table>

Lsd 1): 0.937 7.244 6.367 5.950 9.468

F pr.<0.10 n.s. n.s. <0.10 n.s. n.s. <0.10

1) Is het verschil tussen twee resultaten groter of gelijk aan de Lsd, zijn de verschillen betrouwbaar.

Tabel B-14.5.7. Stikstof en fosfaatgehalten en afvoer uien, Westmaas 2014

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>P<sub>2</sub>O<sub>5</sub> gr/kg ds</th>
<th>N-totaal gr/kg ds</th>
<th>P<sub>2</sub>O<sub>5</sub> afvoer kg/ha</th>
<th>N afvoer kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigyps</td>
<td>3</td>
<td>17.8</td>
<td>22</td>
<td>130</td>
</tr>
<tr>
<td>Bactofil</td>
<td>3.2</td>
<td>13.2</td>
<td>21</td>
<td>86</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>2.9</td>
<td>17.4</td>
<td>20</td>
<td>121</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>3.1</td>
<td>16.4</td>
<td>22</td>
<td>119</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Groencompost</td>
<td>3.4</td>
<td>16.2</td>
<td>26</td>
<td>125</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>3.7</td>
<td>18.2</td>
<td>28</td>
<td>136</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>3</td>
<td>17.1</td>
<td>23</td>
<td>133</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>3</td>
<td>16.6</td>
<td>22</td>
<td>119</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

*) Er zijn geen gewasmonsters in Condit en Xurian genomen om budgettaire redenen.

Tabel B-14.5.8. Opbrengst en kwaliteit suikerbieten, Valthermond 2014.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>bruto ton/ha</th>
<th>suiker %</th>
<th>grond ton/ha</th>
<th>tarra %</th>
<th>K mmol/kg</th>
<th>Na %</th>
<th>AminoN %</th>
<th>WIN %</th>
<th>financ. €/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochar ECN</td>
<td>94.8</td>
<td>18.54</td>
<td>17.58</td>
<td>2.875</td>
<td>30.66</td>
<td>3.241</td>
<td>7.415</td>
<td>92.83</td>
<td>4362</td>
</tr>
<tr>
<td>Biochar Romchar</td>
<td>101.1</td>
<td>18.48</td>
<td>18.69</td>
<td>2.452</td>
<td>30.66</td>
<td>3.056</td>
<td>8.767</td>
<td>92.67</td>
<td>4622</td>
</tr>
<tr>
<td>Biochar hout</td>
<td>96.0</td>
<td>18.46</td>
<td>17.72</td>
<td>3.288</td>
<td>30.59</td>
<td>3.271</td>
<td>7.652</td>
<td>92.77</td>
<td>4376</td>
</tr>
<tr>
<td>Biochar norit</td>
<td>97.6</td>
<td>18.78</td>
<td>18.33</td>
<td>2.821</td>
<td>31.04</td>
<td>2.994</td>
<td>7.044</td>
<td>92.95</td>
<td>4571</td>
</tr>
<tr>
<td>Condit7%N</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Groencompost</td>
<td>95.8</td>
<td>18.32</td>
<td>17.55</td>
<td>3.433</td>
<td>28.63</td>
<td>3.796</td>
<td>7.821</td>
<td>92.81</td>
<td>4325</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>96.7</td>
<td>18.56</td>
<td>17.95</td>
<td>2.577</td>
<td>30.82</td>
<td>3.117</td>
<td>7.686</td>
<td>92.80</td>
<td>4450</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>97.3</td>
<td>18.56</td>
<td>18.06</td>
<td>2.841</td>
<td>29.98</td>
<td>3.457</td>
<td>8.362</td>
<td>92.77</td>
<td>4478</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>94.6</td>
<td>18.98</td>
<td>17.95</td>
<td>2.847</td>
<td>31.78</td>
<td>4.815</td>
<td>7.855</td>
<td>92.75</td>
<td>4478</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>98.2</td>
<td>18.46</td>
<td>18.13</td>
<td>3.197</td>
<td>29.47</td>
<td>3.611</td>
<td>9.240</td>
<td>92.66</td>
<td>4471</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Lsd 1): 3.381 0.358 0.555 1.420 2.504 0.795 1.507 0.425 141.3

F pr.<0.05 <0.05 <0.05 n.s. n.s. <0.01 n.s. n.s. <0.01

1) Is het verschil tussen twee resultaten groter of gelijk aan de Lsd zijn de verschillen betrouwbaar.

*) Er zijn geen opbrengstbepalings in Condit en Xurian uitgevoerd.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>bruto ton/ha</th>
<th>DKG</th>
<th>TM</th>
<th>DS%</th>
</tr>
</thead>
<tbody>
<tr>
<td>BactoFil</td>
<td>7.3 a</td>
<td>157.0 a</td>
<td>95.0 a</td>
<td>19.8 a</td>
</tr>
<tr>
<td>Condit</td>
<td>8.0 ab</td>
<td>169.7 a</td>
<td>94.3 a</td>
<td>20.3 a</td>
</tr>
<tr>
<td>GFT-compost</td>
<td>8.1 ab</td>
<td>169.8 a</td>
<td>97.2 a</td>
<td>20.8 a</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>10.2 b</td>
<td>167.5 a</td>
<td>96.4 a</td>
<td>20.7 a</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>9.6 ab</td>
<td>164.0 a</td>
<td>97.0 a</td>
<td>20.5 a</td>
</tr>
<tr>
<td>Rundermest</td>
<td>8.6 ab</td>
<td>164.9 a</td>
<td>100.0 a</td>
<td>20.8 a</td>
</tr>
<tr>
<td>Steenmeel</td>
<td>7.7 ab</td>
<td>153.8 a</td>
<td>92.2 a</td>
<td>20.2 a</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>7.6 a</td>
<td>148.6 a</td>
<td>91.7 a</td>
<td>20.5 a</td>
</tr>
<tr>
<td>LSD 1)</td>
<td>2.578</td>
<td>27.17</td>
<td>10.38</td>
<td>1.199</td>
</tr>
</tbody>
</table>

F pr. n.s. n.s. n.s. n.s.

1) Is het verschil tussen twee resultaten groter of gelijk aan de LSD, zijn de verschillen betrouwbaar.
<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>suikerbiet</th>
<th>zaaiuien</th>
<th>wintertarwe</th>
<th>zomergerst</th>
<th>zomertarwe</th>
<th>snijmais</th>
<th>zetmeelaardappel</th>
<th>Cons. aardappel</th>
<th>Pootaardappel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalk en Calciummeststoffen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrigyps</td>
<td>100.9 a</td>
<td>98.9 ab</td>
<td>100.4</td>
<td>bc</td>
<td>108.7 a</td>
<td>108.3 c</td>
<td>100.0</td>
<td>a</td>
<td>99.9 ab</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>97.1 a</td>
<td>97.7 ab</td>
<td>99.9</td>
<td>bc</td>
<td>104.4 a</td>
<td>104.7 bc</td>
<td>102.1</td>
<td>a</td>
<td>101.2 ab</td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>98.8 a</td>
<td>94.4 ab</td>
<td>100.7</td>
<td>c</td>
<td>105.5 a</td>
<td>103.7 bc</td>
<td>99.5</td>
<td>a</td>
<td>101.2 ab</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>99.1 a</td>
<td>100.3 ab</td>
<td>98.9</td>
<td>abc</td>
<td>105.2 a</td>
<td>108.3 c</td>
<td>95.3</td>
<td>a</td>
<td>106.1 a</td>
</tr>
<tr>
<td>Bodemverbeteraars met micro-organismen of die het bodemleven stimuleren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condit 7% N</td>
<td>100.6 a</td>
<td>89.8 a</td>
<td>96.1 a</td>
<td>100.9 a</td>
<td>104.0 bc</td>
<td>94.6 a</td>
<td>102.1 a</td>
<td>100.0</td>
<td>a</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>98.0 a</td>
<td>90.7 ab</td>
<td>98.0 ab</td>
<td>104.1 a</td>
<td>104.4 bc</td>
<td>97.6 a</td>
<td>106.9 a</td>
<td>99.2</td>
<td>a</td>
</tr>
<tr>
<td>BactoFil B10</td>
<td>98.6 a</td>
<td>92.5 ab</td>
<td>99.8 abc</td>
<td>101.3 a</td>
<td>61.7 a</td>
<td>98.1 a</td>
<td>96.5</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Overige producten: Biochar en steenmeel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar ECN</td>
<td>99.6 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>101.1 a</td>
<td>103.6 a</td>
</tr>
<tr>
<td>Biochar norit</td>
<td>98.6 a</td>
<td>98.7 abc</td>
<td>104.5 a</td>
<td>104.7 bc</td>
<td>103.6 a</td>
<td>98.7 ab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar Edinburgh</td>
<td>100.2 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>105.8 a</td>
<td></td>
</tr>
<tr>
<td>Biochar hout 2,5 ton</td>
<td>99.2 a</td>
<td>97.0 ab</td>
<td>99.3 a</td>
<td>107.2 bc</td>
<td>97.7</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>100.8 a</td>
<td>97.5 ab</td>
<td>98.2 abc</td>
<td>97.1 a</td>
<td>106.3 bc</td>
<td>100.0 a</td>
<td>95.8 a</td>
<td>99.6 ab</td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td>100.7 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98.0 a</td>
<td>99.8 a</td>
<td>100.2 a</td>
</tr>
<tr>
<td>Referenties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groencompost</td>
<td>101.0 a</td>
<td>101.2 b</td>
<td>99.3 abc</td>
<td>97.5 a</td>
<td>103.0 bc</td>
<td>96.1 a</td>
<td>107.5 a</td>
<td>102.2 a</td>
<td>101.4 b</td>
</tr>
<tr>
<td>Drijfmest</td>
<td>99.4 a</td>
<td>96.8 ab</td>
<td>98.7 abc</td>
<td>99.9 a</td>
<td>107.3 c</td>
<td>92.6 a</td>
<td>104.6 a</td>
<td>100.1 a</td>
<td>98.5 ab</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>100.1 a</td>
<td>100.0 ab</td>
<td>100.0 bc</td>
<td>100.0 a</td>
<td>100.0 b</td>
<td>100.0 a</td>
<td>100.0 a</td>
<td>100.0 ab</td>
<td></td>
</tr>
<tr>
<td>F.pr</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td><0.001</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

© Praktijkonderzoek Plant & Omgeving
Bijlage 15. Stikstof en fosfaatbalans 2010-2015
Tabel B-15 Stikstof en fosfaatbalans per locatie en jaar 2010-2015 in N en P2O5 in kg/ha.

N-balans

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Koll.waard</td>
<td></td>
</tr>
<tr>
<td>Agrigypsis</td>
<td>140</td>
<td>105</td>
<td>183</td>
<td>108</td>
<td>225</td>
<td>101</td>
<td>162</td>
<td>108</td>
<td>219</td>
<td>*</td>
<td>197</td>
<td>*</td>
<td>-22</td>
<td>-3</td>
<td>-36</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>-8</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>140</td>
<td>105</td>
<td>187</td>
<td>93</td>
<td>225</td>
<td>100</td>
<td>157</td>
<td>113</td>
<td>224</td>
<td>*</td>
<td>197</td>
<td>*</td>
<td>-17</td>
<td>-8</td>
<td>-37</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>-9</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>140</td>
<td>105</td>
<td>165</td>
<td>104</td>
<td>225</td>
<td>98</td>
<td>161</td>
<td>118</td>
<td>209</td>
<td>*</td>
<td>194</td>
<td>120</td>
<td>-21</td>
<td>-13</td>
<td>-44</td>
<td>31</td>
<td>22</td>
<td>22</td>
<td>-14</td>
</tr>
<tr>
<td>Condif</td>
<td>140</td>
<td>185</td>
<td>70</td>
<td>103</td>
<td>225</td>
<td>105</td>
<td>167</td>
<td>135</td>
<td>189</td>
<td>*</td>
<td>191</td>
<td>*</td>
<td>-27</td>
<td>50</td>
<td>-119</td>
<td>34</td>
<td>16</td>
<td>16</td>
<td>-16</td>
</tr>
<tr>
<td>Biochar norit</td>
<td>140</td>
<td>105</td>
<td>158</td>
<td>106</td>
<td>225</td>
<td>102</td>
<td>157</td>
<td>112</td>
<td>195</td>
<td>*</td>
<td>213</td>
<td>*</td>
<td>-17</td>
<td>-7</td>
<td>-37</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>-12</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>140</td>
<td>105</td>
<td>166</td>
<td>115</td>
<td>225</td>
<td>102</td>
<td>161</td>
<td>107</td>
<td>199</td>
<td>*</td>
<td>197</td>
<td>111</td>
<td>-21</td>
<td>-2</td>
<td>-33</td>
<td>28</td>
<td>9</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>Compost</td>
<td>140</td>
<td>105</td>
<td>160</td>
<td>97</td>
<td>225</td>
<td>97</td>
<td>148</td>
<td>117</td>
<td>200</td>
<td>*</td>
<td>199</td>
<td>*</td>
<td>-8</td>
<td>-12</td>
<td>-40</td>
<td>26</td>
<td>9</td>
<td>9</td>
<td>-9</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>140</td>
<td>105</td>
<td>177</td>
<td>108</td>
<td>225</td>
<td>102</td>
<td>166</td>
<td>114</td>
<td>216</td>
<td>*</td>
<td>194</td>
<td>*</td>
<td>-26</td>
<td>-9</td>
<td>-39</td>
<td>31</td>
<td>11</td>
<td>11</td>
<td>-11</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>140</td>
<td>105</td>
<td>176</td>
<td>108</td>
<td>225</td>
<td>102</td>
<td>158</td>
<td>125</td>
<td>204</td>
<td>*</td>
<td>18</td>
<td>*</td>
<td>-18</td>
<td>-20</td>
<td>-28</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>-22</td>
</tr>
</tbody>
</table>

Lelystad

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigypsis</td>
<td>90</td>
<td>169</td>
<td>170</td>
<td>117</td>
<td>120</td>
<td>188</td>
<td>136</td>
<td>112</td>
<td>*</td>
<td>73</td>
<td>121</td>
<td>152</td>
<td>-46</td>
<td>57</td>
<td>44</td>
<td>-1</td>
<td>36</td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>90</td>
<td>158</td>
<td>170</td>
<td>115</td>
<td>120</td>
<td>191</td>
<td>138</td>
<td>105</td>
<td>*</td>
<td>69</td>
<td>62</td>
<td>154</td>
<td>-48</td>
<td>53</td>
<td>46</td>
<td>58</td>
<td>37</td>
<td>37</td>
<td>29</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>90</td>
<td>169</td>
<td>170</td>
<td>114</td>
<td>120</td>
<td>189</td>
<td>130</td>
<td>106</td>
<td>*</td>
<td>83</td>
<td>114</td>
<td>160</td>
<td>-40</td>
<td>63</td>
<td>31</td>
<td>6</td>
<td>29</td>
<td>29</td>
<td>18</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>90</td>
<td>169</td>
<td>170</td>
<td>114</td>
<td>120</td>
<td>190</td>
<td>129</td>
<td>111</td>
<td>*</td>
<td>81</td>
<td>123</td>
<td>148</td>
<td>-39</td>
<td>58</td>
<td>33</td>
<td>3</td>
<td>42</td>
<td>42</td>
<td>18</td>
</tr>
<tr>
<td>Condit</td>
<td>90</td>
<td>169</td>
<td>105</td>
<td>117</td>
<td>120</td>
<td>191</td>
<td>132</td>
<td>101</td>
<td>*</td>
<td>114</td>
<td>125</td>
<td>*</td>
<td>-42</td>
<td>68</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>90</td>
<td>169</td>
<td>170</td>
<td>114</td>
<td>120</td>
<td>188</td>
<td>130</td>
<td>106</td>
<td>*</td>
<td>80</td>
<td>115</td>
<td>*</td>
<td>-40</td>
<td>63</td>
<td>34</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Biochar hout 2,5 ton</td>
<td>90</td>
<td>169</td>
<td>170</td>
<td>110</td>
<td>120</td>
<td>186</td>
<td>133</td>
<td>104</td>
<td>*</td>
<td>75</td>
<td>169</td>
<td>*</td>
<td>-43</td>
<td>65</td>
<td>35</td>
<td>17</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>90</td>
<td>169</td>
<td>170</td>
<td>111</td>
<td>120</td>
<td>190</td>
<td>135</td>
<td>114</td>
<td>*</td>
<td>77</td>
<td>122</td>
<td>159</td>
<td>-45</td>
<td>55</td>
<td>34</td>
<td>2</td>
<td>31</td>
<td>31</td>
<td>15</td>
</tr>
<tr>
<td>Compost</td>
<td>90</td>
<td>169</td>
<td>170</td>
<td>114</td>
<td>120</td>
<td>184</td>
<td>126</td>
<td>104</td>
<td>*</td>
<td>80</td>
<td>113</td>
<td>160</td>
<td>-36</td>
<td>65</td>
<td>34</td>
<td>7</td>
<td>24</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>90</td>
<td>169</td>
<td>170</td>
<td>115</td>
<td>120</td>
<td>191</td>
<td>133</td>
<td>102</td>
<td>*</td>
<td>86</td>
<td>124</td>
<td>157</td>
<td>-43</td>
<td>67</td>
<td>29</td>
<td>4</td>
<td>34</td>
<td>34</td>
<td>17</td>
</tr>
</tbody>
</table>
N-balans

<table>
<thead>
<tr>
<th></th>
<th>Aanvoer (N werkzaam)</th>
<th>Alvoer</th>
<th>Overschot</th>
<th>Overschot</th>
<th>Gemiddeld 2010-2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kunstmest</td>
<td>90</td>
<td>169</td>
<td>170</td>
<td>109</td>
<td>120</td>
</tr>
<tr>
<td>Bactofil</td>
<td>170</td>
<td>117</td>
<td>120</td>
<td>188</td>
<td>137</td>
</tr>
</tbody>
</table>

Westmaas

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AgriGypso</td>
<td>90</td>
<td>250</td>
<td>163</td>
<td>214</td>
<td>175</td>
<td>204</td>
<td>97</td>
<td>238</td>
<td>92</td>
<td>171</td>
<td>130</td>
<td>150</td>
<td>-7</td>
<td>12</td>
<td>71</td>
<td>43</td>
<td>45</td>
<td>54</td>
<td>36</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>90</td>
<td>250</td>
<td>149</td>
<td>214</td>
<td>175</td>
<td>205</td>
<td>97</td>
<td>207</td>
<td>98</td>
<td>86</td>
<td>147</td>
<td>-7</td>
<td>43</td>
<td>61</td>
<td>89</td>
<td>58</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>90</td>
<td>250</td>
<td>158</td>
<td>214</td>
<td>175</td>
<td>199</td>
<td>96</td>
<td>218</td>
<td>94</td>
<td>168</td>
<td>121</td>
<td>147</td>
<td>-6</td>
<td>32</td>
<td>64</td>
<td>46</td>
<td>54</td>
<td>52</td>
<td>40</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>90</td>
<td>250</td>
<td>120</td>
<td>198</td>
<td>175</td>
<td>202</td>
<td>99</td>
<td>206</td>
<td>108</td>
<td>169</td>
<td>119</td>
<td>147</td>
<td>-9</td>
<td>44</td>
<td>12</td>
<td>29</td>
<td>56</td>
<td>55</td>
<td>31</td>
</tr>
<tr>
<td>Condit</td>
<td>90</td>
<td>270</td>
<td>105</td>
<td>214</td>
<td>175</td>
<td>201</td>
<td>96</td>
<td>214</td>
<td>90</td>
<td>92</td>
<td>*</td>
<td>*</td>
<td>-6</td>
<td>56</td>
<td>15</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>90</td>
<td>250</td>
<td>141</td>
<td>208</td>
<td>175</td>
<td>205</td>
<td>103</td>
<td>216</td>
<td>93</td>
<td>164</td>
<td>125</td>
<td>*</td>
<td>-13</td>
<td>34</td>
<td>48</td>
<td>44</td>
<td>50</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Compost</td>
<td>90</td>
<td>250</td>
<td>148</td>
<td>214</td>
<td>175</td>
<td>203</td>
<td>94</td>
<td>205</td>
<td>110</td>
<td>167</td>
<td>136</td>
<td>160</td>
<td>-4</td>
<td>45</td>
<td>38</td>
<td>47</td>
<td>39</td>
<td>43</td>
<td>35</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>90</td>
<td>250</td>
<td>132</td>
<td>196</td>
<td>175</td>
<td>204</td>
<td>106</td>
<td>219</td>
<td>107</td>
<td>159</td>
<td>133</td>
<td>155</td>
<td>-16</td>
<td>31</td>
<td>25</td>
<td>37</td>
<td>42</td>
<td>49</td>
<td>28</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>90</td>
<td>250</td>
<td>142</td>
<td>204</td>
<td>175</td>
<td>202</td>
<td>96</td>
<td>203</td>
<td>125</td>
<td>166</td>
<td>119</td>
<td>144</td>
<td>-6</td>
<td>47</td>
<td>17</td>
<td>38</td>
<td>56</td>
<td>58</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Koll.waard</td>
<td>Lelystad</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Agrigyps</td>
<td>121</td>
<td>80</td>
<td>95</td>
<td>40</td>
<td>29</td>
<td>70</td>
<td>67</td>
<td>56</td>
<td>89</td>
<td>*</td>
<td>41</td>
<td>46</td>
<td>54</td>
<td>24</td>
<td>6</td>
<td>-12</td>
<td>24</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>122</td>
<td>101</td>
<td>115</td>
<td>41</td>
<td>50</td>
<td>73</td>
<td>70</td>
<td>63</td>
<td>94</td>
<td>*</td>
<td>41</td>
<td>49</td>
<td>52</td>
<td>38</td>
<td>21</td>
<td>9</td>
<td>24</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Brandkalik</td>
<td>121</td>
<td>80</td>
<td>95</td>
<td>40</td>
<td>0</td>
<td>70</td>
<td>69</td>
<td>58</td>
<td>88</td>
<td>*</td>
<td>41</td>
<td>48</td>
<td>52</td>
<td>22</td>
<td>7</td>
<td>-41</td>
<td>22</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>121</td>
<td>80</td>
<td>95</td>
<td>40</td>
<td>0</td>
<td>70</td>
<td>65</td>
<td>52</td>
<td>84</td>
<td>*</td>
<td>40</td>
<td>43</td>
<td>56</td>
<td>28</td>
<td>11</td>
<td>-40</td>
<td>27</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Condit</td>
<td>131</td>
<td>95</td>
<td>10</td>
<td>40</td>
<td>29</td>
<td>67</td>
<td>66</td>
<td>57</td>
<td>87</td>
<td>*</td>
<td>39</td>
<td>52</td>
<td>65</td>
<td>38</td>
<td>-77</td>
<td>-10</td>
<td>15</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>121</td>
<td>80</td>
<td>95</td>
<td>15</td>
<td>10</td>
<td>70</td>
<td>66</td>
<td>56</td>
<td>93</td>
<td>*</td>
<td>*</td>
<td>46</td>
<td>55</td>
<td>24</td>
<td>2</td>
<td>24</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar norit</td>
<td>130</td>
<td>80</td>
<td>0</td>
<td>43</td>
<td>33</td>
<td>70</td>
<td>64</td>
<td>60</td>
<td>88</td>
<td>*</td>
<td>42</td>
<td>49</td>
<td>66</td>
<td>20</td>
<td>-88</td>
<td>-9</td>
<td>21</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Biochar hout 5 ton</td>
<td>130</td>
<td>80</td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>70</td>
<td>63</td>
<td>59</td>
<td>86</td>
<td>*</td>
<td>41</td>
<td>48</td>
<td>67</td>
<td>21</td>
<td>-86</td>
<td>-41</td>
<td>22</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>Compost</td>
<td>133</td>
<td>113</td>
<td>33</td>
<td>40</td>
<td>29</td>
<td>70</td>
<td>61</td>
<td>61</td>
<td>88</td>
<td>*</td>
<td>44</td>
<td>50</td>
<td>72</td>
<td>52</td>
<td>-55</td>
<td>-15</td>
<td>20</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>121</td>
<td>80</td>
<td>95</td>
<td>40</td>
<td>29</td>
<td>70</td>
<td>68</td>
<td>54</td>
<td>90</td>
<td>*</td>
<td>42</td>
<td>44</td>
<td>53</td>
<td>26</td>
<td>5</td>
<td>-13</td>
<td>26</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Kunstmest</td>
<td>130</td>
<td>80</td>
<td>0</td>
<td>40</td>
<td>29</td>
<td>70</td>
<td>65</td>
<td>58</td>
<td>92</td>
<td>*</td>
<td>*</td>
<td>45</td>
<td>65</td>
<td>22</td>
<td>-92</td>
<td>25</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overschot

Gemiddeld 2010-2014

© Praktijkonderzoek Plant & Omgeving 117
P-balans

<table>
<thead>
<tr>
<th></th>
<th>Aanvoer</th>
<th>Afvoer</th>
<th>Overschot</th>
<th>Overschot</th>
<th>Gemiddeld 2010-2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Westmaas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrigyps</td>
<td>88</td>
<td>85</td>
<td>40</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>Betacal Carbo</td>
<td>89</td>
<td>85</td>
<td>40</td>
<td>0</td>
<td>125</td>
</tr>
<tr>
<td>Brandkalk</td>
<td>88</td>
<td>85</td>
<td>40</td>
<td>21</td>
<td>116</td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>88</td>
<td>85</td>
<td>40</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>Condit</td>
<td>88</td>
<td>85</td>
<td>15</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Xurian Optimum</td>
<td>88</td>
<td>85</td>
<td>40</td>
<td>33</td>
<td>128</td>
</tr>
<tr>
<td>Compost</td>
<td>93</td>
<td>85</td>
<td>40</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>Varkensdrijfmest</td>
<td>88</td>
<td>85</td>
<td>40</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>Kunstmest</td>
<td>90</td>
<td>85</td>
<td>40</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>Bactofill</td>
<td>40</td>
<td>0</td>
<td>120</td>
<td>100</td>
<td>29</td>
</tr>
</tbody>
</table>
Bijlage 16. Kostenindicatie bodemverbeteraars

Tabel B-16 Kostenindicatie bodemverbeteraars.

<table>
<thead>
<tr>
<th>Bodemverbeteraar</th>
<th>Eenheid</th>
<th>Gemiddeld e gift per jaar</th>
<th>Kosten product per eenheid</th>
<th>Gemiddelde kosten bodemverbeteraar per jaar</th>
<th>Kunstmeststrooier</th>
<th>Veldspuit</th>
<th>Loonwerk</th>
<th>Kostenbesparing kunstmest per jaar</th>
<th>Totaalkosten per jaar (kosten bodemverbeteraar+toediening-kunstmestbesparing)</th>
<th>Toediening over 6 jaar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrigips</td>
<td>kg/ha</td>
<td>1730</td>
<td>€ 0.03</td>
<td>€ 53</td>
<td>€ 90</td>
<td>€ 0.00</td>
<td>€ 144</td>
<td>€ 861</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandkalk</td>
<td>kg/ha</td>
<td>1118</td>
<td>€ 0.22</td>
<td>€ 240</td>
<td>€ 90</td>
<td>€ 0.00</td>
<td>€ 330</td>
<td>€ 1,982</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betacal carbo</td>
<td>kg/ha</td>
<td>2385</td>
<td>€ 0.00</td>
<td>€ 0</td>
<td>€ 90</td>
<td>€ 22</td>
<td>€ 68</td>
<td>€ 406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP-SOL</td>
<td>kg/ha</td>
<td>225</td>
<td>€ 0.55</td>
<td>€ 124</td>
<td>€ 25</td>
<td>€ 0</td>
<td>€ 149</td>
<td>€ 892</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condit 7%N</td>
<td>kg/ha</td>
<td>1300</td>
<td>€ 0.30</td>
<td>€ 390</td>
<td>€ 25</td>
<td>€ 144</td>
<td>€ 270</td>
<td>€ 1,623</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bactofil</td>
<td>kg/ha</td>
<td>0</td>
<td>€ 132</td>
<td>€ 83</td>
<td>€ 30</td>
<td>€ 91</td>
<td>€ 21</td>
<td>€ 127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar ECN</td>
<td>ton/ha</td>
<td>3</td>
<td>€ 1,000</td>
<td>€ 2,500</td>
<td>€ 90</td>
<td>€ 0</td>
<td>€ 2,590</td>
<td>€ 15,54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar Norit</td>
<td>ton/ha</td>
<td>4</td>
<td>€ 6,300</td>
<td>€ 23,625</td>
<td>€ 90</td>
<td>€ 0</td>
<td>€ 23,715</td>
<td>€ 142,290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar hout 5</td>
<td>ton/ha</td>
<td>4</td>
<td>€ 1,000</td>
<td>€ 4,166</td>
<td>€ 90</td>
<td>€ 0</td>
<td>€ 4,257</td>
<td>€ 25,540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochar Romchar</td>
<td>ton/ha</td>
<td>4</td>
<td>€ 1,000</td>
<td>€ 4,083</td>
<td>€ 90</td>
<td>€ 0</td>
<td>€ 4,173</td>
<td>€ 25,040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steenmeel</td>
<td>ton/ha</td>
<td>6</td>
<td>€ 190</td>
<td>€ 1,108</td>
<td>€ 90</td>
<td>€ 0</td>
<td>€ 1,198</td>
<td>€ 7,190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compost</td>
<td>ton/ha</td>
<td>10</td>
<td>€ 5</td>
<td>€ 48</td>
<td>€ 90</td>
<td>€ 61</td>
<td>€ 77</td>
<td>€ 463</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drijfmest</td>
<td>m³/ha</td>
<td>10</td>
<td>-€ 2</td>
<td>-€ 20</td>
<td>€ 140</td>
<td>€ 0</td>
<td>€ 119</td>
<td>€ 716</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Praktijkonderzoek Plant & Omgeving 119
Bijlage 17. Overzicht communicatie activiteiten

<table>
<thead>
<tr>
<th>Datum</th>
<th>Activiteit</th>
<th>Type</th>
<th>Opmerking</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 juli 2010</td>
<td>Veldexcursie van Tarwestudieclub Flevoland</td>
<td>Excursie</td>
<td>15 bezoekers</td>
</tr>
<tr>
<td>9 december 2010</td>
<td>Posterpresentatie op Biokennisdag</td>
<td>Open dag</td>
<td>70 bezoekers</td>
</tr>
<tr>
<td>2 februari 2011</td>
<td>Lezing voor bemestingsspecialisten DLV Plant</td>
<td>Lezing</td>
<td>10 bezoekers</td>
</tr>
<tr>
<td>18 februari 2011</td>
<td>Lezing Tarwestudieclub Flevoland</td>
<td>Lezing</td>
<td>15 bezoekers</td>
</tr>
<tr>
<td>19 februari 2011</td>
<td>Artikel Nieuwe Oogst</td>
<td>Vakbladartikel</td>
<td></td>
</tr>
<tr>
<td>17 maart 2011</td>
<td>Artikel Nieuwe Oogst 1 voor Flevoland</td>
<td>Nieuwsbrief</td>
<td>800 akkerbouwers in Flevoland</td>
</tr>
<tr>
<td>April 2011</td>
<td>Jaarrapportage bodemverbeteraars 2010</td>
<td>Rapport</td>
<td></td>
</tr>
<tr>
<td>Juni 2011</td>
<td>Nieuwsbrief 2 voor Flevoland</td>
<td>Nieuwsbrief</td>
<td>800 akkerbouwers in Flevoland</td>
</tr>
<tr>
<td>29 juni 2011</td>
<td>Akkerbouwvelddag</td>
<td>Open dag</td>
<td></td>
</tr>
<tr>
<td>30 juni 2011</td>
<td>Open dag Kollumerwaard</td>
<td>Open dag</td>
<td>400 bezoekers</td>
</tr>
<tr>
<td>Februari 2012</td>
<td>brochure PPO, PPO-publicatie nr 411.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April 2012</td>
<td>Jaarrapportage bodemverbeteraars 2011</td>
<td>Rapport</td>
<td></td>
</tr>
<tr>
<td>April 2012</td>
<td>Nieuwsbrief 3</td>
<td>Nieuwsbrief</td>
<td>800 akkerbouwers in Flevoland</td>
</tr>
<tr>
<td>9 juni 2012</td>
<td>Artikel Nieuwe Oogst</td>
<td>Vakbladartikel</td>
<td></td>
</tr>
<tr>
<td>20 juni 2012</td>
<td>Workshop op open dag proefbedrijf Rusthoeve</td>
<td>Lezing</td>
<td>50 workshop deelnemers</td>
</tr>
<tr>
<td>27 juni 2012</td>
<td>Akkervelddag/Biovelddag</td>
<td>Open dag</td>
<td>350 bezoekers</td>
</tr>
<tr>
<td>5 juli 2012</td>
<td>Open dag proefbedrijf Kollumerwaard</td>
<td>Open dag</td>
<td></td>
</tr>
<tr>
<td>9 juli 2012</td>
<td>Avondexcursie Lelystad</td>
<td>Excursie</td>
<td>15 bezoekers</td>
</tr>
<tr>
<td>22 augustus 2012</td>
<td>Posterpresentatie op aardappeldemodag</td>
<td>Open dag</td>
<td>6000 bezoekers</td>
</tr>
<tr>
<td>15 september 2012</td>
<td>Nieuwsbrief 4</td>
<td>Nieuwsbrief</td>
<td>800 akkerbouwers in Flevoland</td>
</tr>
<tr>
<td>Juni 2013</td>
<td>Nieuwsbrief Bodemverbeteraars nr 5</td>
<td>Nieuwsbrief</td>
<td>800 akkerbouwers in Flevoland</td>
</tr>
<tr>
<td>April 2013</td>
<td>Tussentijdse rapportage bodemverbeteraars 2010-2012</td>
<td>Rapport</td>
<td></td>
</tr>
<tr>
<td>5 september 2013</td>
<td>Biovelddag Lelystad</td>
<td>Open dag</td>
<td></td>
</tr>
<tr>
<td>14 november 2013</td>
<td>Lezing Stichting Veldleeuwerik Flevoland</td>
<td>Lezing</td>
<td></td>
</tr>
<tr>
<td>12 december 2013</td>
<td>Lezing Stichting Veldleeuwerik Flevoland</td>
<td>Lezing</td>
<td></td>
</tr>
<tr>
<td>16 november 2013</td>
<td>Artikel Nieuwe Oogst “Vergelijking bodemverbeteraars nog niet klaar”</td>
<td>Vakbladartikel</td>
<td></td>
</tr>
<tr>
<td>23 november 2013</td>
<td>Artikel Akkermagazine “Effect bodemverbeteraars moeilijk te verklaren”</td>
<td>Vakbladartikel</td>
<td></td>
</tr>
</tbody>
</table>

© Praktijkonderzoek Plant & Omgeving
<table>
<thead>
<tr>
<th>Datum</th>
<th>Activiteit</th>
<th>Type</th>
<th>Opmerking</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 februari 2014</td>
<td>Lezing telers Midden Beemster</td>
<td>Lezing</td>
<td></td>
</tr>
<tr>
<td>Maart 2014</td>
<td>Jaarrapportage Bodemverbeteraars 2013</td>
<td>Rapport</td>
<td></td>
</tr>
<tr>
<td>8 juli 2014</td>
<td>Tussenstand Bodem- en structuurverbeteraars; leveranciersbijeenkomst</td>
<td>Lezing</td>
<td></td>
</tr>
<tr>
<td>9 juli 2014</td>
<td>Artikel Nieuwe Oogst.nu; “Effect bodemverbeteraars moeilijk zichtbaar”</td>
<td>Vakbladartikel</td>
<td></td>
</tr>
<tr>
<td>15 juli 2014</td>
<td>Lezing knolselderijtelers Westmaas</td>
<td>Lezing</td>
<td></td>
</tr>
<tr>
<td>8 augustus 2014</td>
<td>Artikel Groente en Fruit “Bodem en structuurverbeteraars verhogen de productie nog niet”</td>
<td>Vakbladartikel</td>
<td></td>
</tr>
<tr>
<td>3 september 2014</td>
<td>Biologische veildag Lelystad</td>
<td>Open dag</td>
<td></td>
</tr>
<tr>
<td>6 november 2014</td>
<td>Nederlandse Bodemkundige Vereniging</td>
<td>lezing</td>
<td></td>
</tr>
<tr>
<td>December 2014</td>
<td>Nieuwsbrief Bodemverbeteraars nr 7</td>
<td>Nieuwsbrief</td>
<td></td>
</tr>
<tr>
<td>Maart 2015</td>
<td>Jaarrapportage Bodemverbeteraars 2014</td>
<td>Rapport</td>
<td></td>
</tr>
<tr>
<td>Maart 2016</td>
<td>Nieuwsbrief Bodemverbeteraars nr 8</td>
<td>Nieuwsbrief</td>
<td></td>
</tr>
<tr>
<td>April 2016</td>
<td>Eindrapport Bodemverbeteraars 2014-2015</td>
<td>Rapport</td>
<td></td>
</tr>
</tbody>
</table>
Bij Wageningen UR proberen plantonderzoekers de eigenschappen van planten te benutten om problemen op het gebied van voedsel, grondstoffen en energie op te lossen. Zo worden onze kennis van planten en onze moderne voorzieningen ingezet om de kwaliteit van leven in het algemeen en de innovatiekracht van onze opdrachtgevers in het bijzonder te vergroten.

De missie van Wageningen UR (University & Research centre) is 'To explore the potential of nature to improve the quality of life'. Binnen Wageningen UR bundelen 9 gespecialiseerde onderzoeksinstituten van stichting DLO en Wageningen University hun krachten om bij te dragen aan de oplossing van belangrijke vragen in het domein van gezonde voeding en leefomgeving. Met ongeveer 30 vestigingen, 6.500 medewerkers en 10.000 studenten behoort Wageningen UR wereldwijd tot de aansprekende kennisinstellingen binnen haar domein. De integrale benadering van de vraagstukken en de samenwerking tussen verschillende disciplines vormen het hart van de unieke Wageningen aanpak.