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No significant correlations were found for rosette size 
measured in our experiment, and ion accumulation data 
collected by Baxter et  al. (2010) (Supplementary Tables S3 
and S4). Although the experiments were conducted under 
different conditions, the lack of correlation would suggest 
that while ion homeostasis is a key factor, other mechanisms 
also contribute to plant growth under salt stress conditions. 
Similar trends were observed for some wheat varieties (Genc 
et al., 2007) indicating that besides sodium exclusion, other 
mechanisms affecting tissue tolerance play an important role 
in salinity tolerance. The group of the accessions with large 
rosettes included accessions previously identified as salt toler-
ant, such as Tsu-0 and Bur-0 (Rus et al., 2006; Katori et al., 
2010). Weaker correlations between rosette development in 
control and severe salt stress (500 mM NaCl, Table 1) imply 
that mechanisms other than growth maintenance, for instance 
ion exclusion, play a more dominant role in severe salt stress 
conditions. Our results show the value of assessing the salin-
ity tolerance based on the rosette development on multiple 

levels, such as projected rosette area, weight and electrolyte 
leakage.

Two accessions, An-1 and Pa-2, were identified as the out-
liers to the general trend, showing low cell damage despite 
their small size (Fig. 2C). It is very likely that the mechanisms 
underlying salinity tolerance in those accessions are differ-
ent from rosette development and could include efficient ion 
exclusion from the transpiration stream or enhanced tissue 
tolerance due to ion compartmentalization into the vacuoles. 
Therefore, An-1 and Pa-2 are interesting candidate accessions 
for further investigation of the molecular and genetic basis of 
their salinity tolerance. However, as those types of accessions 
are scarce, the allele frequency of genes underlying salinity 
tolerance in slow growing accessions is likely low and there-
fore they are more suitable for investigation in recombinant 
inbred lines population QTL studies (Kover and Mott, 2012).

GWAS revealed a number of  candidate genes underly-
ing rosette development under control and salt stress con-
ditions. Although significant correlations were observed 

Fig. 5. Natural variation in fresh weight per rosette area associates with unknown gene involved in rosette development. (A) Genome wide association 
study performed on the fresh weight per rosette area collected from plants grown at 300 mM NaCl showed an association with five loci with low minor 
allele frequency above 0.02 (Table 3). One of the SNPs was located in the coding region of At1g25370, circled in red, encoding an unknown gene. The 
associations were not observed for any other trait or condition studied. (B) The natural variation in the region was studied in 162 accessions sequenced 
by the 1001 Genomes Project belonging to the HapMap population (Supplementary Table S6). The uppermost graph represents the portion of missing 
data, while the middle graph represents deletions present in accessions other than Col-0. The lowest graph represents the sequence similarity compared 
with Col-0. The open reading frames (ORFs) are aligned in the lowest graph. The location of the SNP associated with FW/PRA at 500 mM NaCl is 
represented with the dashed line. The association was further confirmed by studying T-DNA insertion line, whose location is indicated in the graph 
representing the ORFs. The SALK number and primers used for genotyping are listed in Supplementary Table S5. (C) Natural variation in At1g25370 
expression in previous studies revealed Nok-1 as a natural knockdown mutant (Lempe et al., 2005) as reported by the eFP browser. Different colours 
represent the relative expression compared with Col-0. (D) The natural knockdown line Nok-1 and T-DNA insertion line fwa2 were tested for rosette 
growth in control and salt stress conditions. One-week-old plants grown under short-day conditions were treated with 0 or 75 mM NaCl applied from 
above for 6 weeks. The fresh weight of the rosette was used as an indicator of growth and salinity tolerance. The bars represent the average fresh weight 
of the rosette as calculated from 15 biological replicates per line per condition. The error bars represent standard error. The phenotypes of both lines were 
tested for significant differences from Col-0, which were calculated using ANOVA with Tukey’s post hoc test. The significance is indicated with * or ** for 
levels of 0.05 and 0.01, respectively.
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between the rosette size in control and salt stress conditions, 
no overlapping associations were shared between salt and 
control conditions, indicating that genetic variation respon-
sible for rosette development differs between control and 
salt stress conditions. None of  the candidate genes under-
lying the associations was previously described as being 
involved in salt stress tolerance. Since GWAS is known to 
be prone to false positive associations, the candidate loci 
remain tentative until further validation is provided. In 
order to confirm a selected number of  associations, available 
T-DNA lines and accessions previously established to have 
altered transcription levels of  candidate genes (Lempe et al., 
2005) were studied in more detail for their rosette pheno-
types. While in the large scale experiments (Supplementary 
Fig. S1) plants were watered with high salt from the bottom, 
the individual mutant lines were treated at an earlier devel-
opmental stage with low salt applied from above, which 
is thought to better reflect saline conditions in the field to 
reveal potential adaptive gain of  candidate genes for salin-
ity tolerance. Additionally, to pinpoint the genetic region 
causal to association, local genetic variation was examined 
by comparing the genetic regions proximal to associated 
SNPs of  the sequenced accessions (Ossowski et  al., 2008; 
Gan et  al., 2011) and identification of  the regions rich in 
polymorphisms.

Both approaches were complementary in the case of  the 
candidate gene identified with dry weight at 500mM NaCl, 
LRR-KISS (Fig.  3), which showed enhanced expression 
in salt stress conditions (Kilian et al., 2007). The domain 
encoding the kinase domain was observed to contain multi-
ple SNPs in several accessions (Fig. 3B), which might affect 
its kinase activity. Our results suggest that high LRR-KISS 
expression would enhance rosette growth maintenance 
under salt stress conditions (Fig. 3D, E); however the alleles 
causal to high LRR-KISS expression remain to be identi-
fied. For two other identified associations, corresponding to 
a KH domain-containing protein and an unknown protein, 
analysis of  T-DNA insertion lines and accessions carrying 
a low-expression allele suggested that those associations are 
linked to rosette development rather than specific response 
to salinity. Interestingly, since rosette development is tightly 
linked to salinity tolerance, the allelic variation in those 
candidate genes may still contribute to adaptation to saline 
environments.

Our results illustrate an important aspect of  abiotic 
stress biology, which is that salinity tolerance is linked to 
growth and development under control conditions. Low-
cost phenotyping methods estimating the rosette biomass, 
area and electrolyte leakage allowed identification of  novel 
putative candidate genes in Arabidopsis rosette develop-
ment and salt stress tolerance. Our preliminary validation 
of  the candidate genes identified by means of  GWAS con-
firms their involvement in rosette development as well as 
salt stress-specific inhibition of  rosette growth. Further 
characterization of  candidate genes identified will provide 
a better insight in the processes involved in shoot growth 
maintenance under salinity stress and the major molecular 
players therein.

Supplemental data

Supplementary data are available at JXB online. 
Figure S1. Assessment of salinity tolerance in Arabidopsis 

accessions. Experimental set-up.
Figure S2. The correlation between two experiments 

performed.
Figure S3. Natural variation in all rosette size-related phe-

notypes studied.
Figure S4. The correlation between different rosette pheno-

types collected from plants grown under salt stress conditions.
Table S1. Accessions used for the experiment performed in 

2012.
Table S2. Accessions used for the experiment performed in 

2013.
Table S3. Correlations between rosette phenotypes col-

lected in the experiment performed in 2012 and ion accumu-
lation collected by Baxter et al. (2010).

Table S4. Correlations between rosette phenotypes and 
electrolyte leakage collected in the experiment performed in 
2013 and ion accumulation collected by Baxter et al. (2010).

Table S5. T-DNA insertion lines and primers for 
genotyping.

Table S6. Accession sequences used for the study of 
sequence similarity retrieved from the 1001 Genomes Project 
website (1001genomes.org).
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