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Chapter 1

Introduction



4 Introduction

1.1 Tropical forest change

Forests have played a major role as source of food, fuel and raw materials throughout

human history. When cleared, forests provided land for agriculture and settlements.

In addition, forests play an important role in the global carbon cycle, as sinks and

storage of carbon, and provide a range of other ecosystem services (e.g. biodiversity,

watershed protection). Currently, forests cover about 30.6% of the earth’s land surface

(FAO, 2015). Up to the early twentieth century, most deforestation occurred in the

temperate forests in Europe, North America and Asia. During the twentieth century,

however, deforestation practically came to a halt in these regions but rapidly increased

in tropical forests (FAO, 2012). The growing demand for food, fibre and fuel has

accelerated the pace of gross forest loss in the tropics and tropical forest change is

estimated to have emitted approximately 1.4 Pg C yr–1 to the atmosphere since the

1990s (Houghton, 2012). Not only does tropical deforestation contribute to greenhouse

gas (GHG) emissions, it also destroys an important global carbon sink that is critical

in future climate change mitigation.

1.2 REDD+

The new Paris Agreement, approved by 195 countries under the auspice of the

United Nations Framework Convention on Climate Change (UNFCCC), calls for

limiting global warming to “well below” 2°Celsius. An important part of the climate

agreement relates to reducing emissions from deforestation and forest degradation,

and enhancing carbon stocks (REDD+) in non-Annex I (mostly developing) coun-

tries. In essence, REDD+ can be seen as a set of requirements and guidelines for

financially rewarding developing countries for their efforts to reduce carbon emissions

and enhance carbon removals related to deforestation and forest degradation.

Reducing emissions from deforestation in developing countries was first dis-

cussed in 2005 at the international UNFCCC Conference of Parties (COP), but only

started receiving more attention two years later at the 13th COP in Bali as part of

the ‘Bali action plan’. At this time five eligible REDD+ activities were specified:

(i) reducing emissions from deforestation; (ii) reducing emissions from forest degra-

dation; (iii) conservation of forest carbon stocks; (iv) sustainable management of

forests; and (v) enhancement of forest carbon stocks. In the following years more

methodological guidance and decisions relating to REDD+ were negotiated at the

COPs. An important step was reached at the 15th COP in Warsaw in 2013, where

the Warsaw framework on REDD+ was adopted which provides an overall and near



1.3 Drivers of tropical forest change 5

complete framework for REDD+ implementation.

Within the REDD+ framework, countries are encouraged to design and imple-

ment national REDD+ policies and measures. National capacity for implementing

REDD+ should be built up in phases: (i) an initial ‘readiness’ phase to begin

the development of national strategies or action plans, policies and measures,

and capacity-building; (ii) followed by REDD+ implementation, further capacity-

building, technology development and transfer, and the start of results-based

demonstration activities; and (iii) evolving into results-based actions that should be

fully measured, reported and verified (UNFCCC, 2010). The UNFCCC also calls on

countries to identify and address drivers of deforestation and forest degradation in

order to ensure effective REDD+ policies and measures (UNFCCC, 2009b).

Currently, more than 40 countries are developing national REDD+ strategies

and policies, and hundreds of REDD+ projects have been initiated across the tropics

(Angelsen and Brockhaus, 2009). A large part of the readiness efforts have focused

on capacity building for national forest monitoring and MRV, since these systems

are essential for the success of REDD+.

1.3 Drivers of tropical forest change

For decades the common view was that growing populations of shifting cultivators

and smallholders were the main driver of forest changes. More recently, agricultural

production for domestic urban growth and agricultural exports to other countries

became the primary drivers of tropical deforestation, with the impact of smallholders

decreasing (DeFries et al., 2010). In particular in the Amazon region and Southeast

Asia, agribusinesses (cattle ranching, soybean farming and oil palm plantations)

were identified as main drivers of post-1990 deforestation (Rudel et al., 2009;

Boucher et al., 2011). However, tropical deforestation and degradation in Africa

remains dominated by small-scale processes (DeFries et al., 2010; Fisher, 2010).

Economic growth based on the export of primary commodities and increasing

demand for timber and agricultural products in a globalizing economy are identified

as main underlying drivers of deforestation and degradation across the pan-tropics

(Rademaekers et al., 2010). Population growth and population density are closely

interrelated with increased demand for agricultural land, pressures on fuel wood,

easier access to remote forests due to infrastructure development, land tenure

arrangements, agro-technological change and increased demand for forest products

(Rademaekers et al., 2010). Poor governance, corruption, low capacity of public

forestry agencies, land tenure uncertainties, and inadequate natural resource planning
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and monitoring can be important underlying factors of deforestation and degradation

as well, especially regarding the enforcement of forest policies and combatting illegal

logging (Rademaekers et al., 2010).

In the REDD+ debate the term ‘driver’ is used broadly, but for analysis, as-

sessment and intervention strategies it is important to separate proximate/direct

causes and underlying/indirect causes of deforestation and forest degradation (Geist

and Lambin, 2001). Proximate causes are human activities or immediate actions

that directly impact forest cover and loss of carbon. These causes can be grouped

into categories such as agriculture expansion (both commercial and subsistence),

infrastructure extension and wood extraction. Underlying causes are complex

interactions of fundamental social, economic, political, cultural and technological

processes that are often distant from their area of impact. These underpin the

proximate causes and either operate at the local level or have an indirect impact

from the national or global level. They are related to international (i.e. markets,

commodity prices), national (i.e. population growth, domestic markets, national

policies, governance) and local circumstances (i.e. change in household behaviour)

(Geist and Lambin, 2001, 2002; Obersteiner et al., 2009).

Although agricultural expansion has been identified as the key driver of defor-

estation in the tropics (Kaimowitz and Angelsen, 1998; Chomitz, 2007; Gibbs et al.,

2010), drivers vary regionally and change over time (Rudel et al., 2009; Boucher

et al., 2011). Assessment of direct and indirect drivers and their interaction on

the national level are just starting to emerge and are often generic and incomplete

(Kissinger et al., 2012). Analyses of drivers have largely been based on local or

regional case studies (Geist and Lambin, 2002) or on coarser assessments on the

continental and global scales (DeFries et al., 2010; Rademaekers et al., 2010) with

less focus on the national level.

1.4 Monitoring of tropical forests and land use

change

1.4.1 REDD+ MRV

For REDD+ activities to be effective, accurate and robust methodologies to estimate

emissions from deforestation and forest degradation are crucial (UNFCCC, 2009b,a).

Therefore, a national monitoring, reporting and verification (MRV) system is

required which follows the international Good Practice Guidelines (GPG) of the
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intergovernmental Panel on Climate Change (IPCC) (Grassi et al., 2008; UNFCCC,

2009b; GOFC-GOLD, 2014). Measuring forest carbon emissions on the national

level involves estimating and monitoring changes in two key variables: (i) area

of deforestation and degradation (activity data); and (ii) terrestrial carbon stock

densities per unit area (emission factors) (IPCC, 2006). Finally, national MRV

should follow the reporting principles of the UNFCCC that include transparency,

consistency, comparability, completeness and accuracy (Grassi et al., 2008).

The IPCC identifies three different approaches to estimate activity data (Pen-

man et al., 2003). In Approach 1 the total area of forest area change is identified

without accounting for conversions between forest and other land uses, while

Approach 2 does involve tracking these forest-land use conversions in a non-spatially

explicit manner. Approach 3 consists of sampling or wall-to-wall mapping techniques

to derive spatially explicit land use conversion information (GOFC-GOLD, 2014).

Carbon stock information on the various forest carbon pools can be obtained at

different Tier levels according to the IPCC guidelines (Penman et al., 2003). Tier

1 uses default IPCC values (i.e. per ecological zone), while Tier 2 uses more

country-specific carbon stock data. In Tier 3 more disaggregated data of carbon

stocks in different pools are available from national inventories, through repeated

measurements and supported by modelling. Spatially explicit data on carbon stock

is valuable due to the large variation in forest biomass relating to environmental

(slope, soil type, etc.) and anthropogenic factors (management practices, land use

history, etc.) (Gibbs et al., 2007). Country or region specific carbon stock data

are traditionally derived from forest field-inventories, which are valuable but often

limited in geographic representativeness (Houghton, 2005; Gibbs et al., 2007; Asner,

2009; Saatchi et al., 2011a).

Remote sensing is commonly considered an essential REDD+ observation tool

(Herold and Johns, 2007) and in combination with ground measurements it provides

an objective, practical and cost-effective solution for developing and maintaining

REDD+ MRV systems (Achard et al., 2007; DeFries et al., 2007; Herold and Johns,

2007; Hansen et al., 2008a; UNFCCC, 2010). Forest degradation is a more complex

matter as it comprises a variety of degradation processes (fire, selective logging,

etc.) with different effects on forest carbon and requiring different indicators to

be monitored using field and remote sensing methods (Herold et al., 2011). The

remote sensing monitoring objective for REDD+ is not only to map deforestation,

but also to support policy formulation and implementation. The long-term viability

of REDD+ depends on altering business-as-usual activities in sectors currently

driving emissions from forests. Consequently, identifying land use, land-use change

and forestry activities in REDD+ countries, in particular those that are linked to
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the drivers of deforestation and forest degradation, is an essential component of a

REDD+ strategy.

1.4.2 Monitoring drivers of tropical forest change

Monitoring and provision of robust information on drivers and the related activities

that lead to deforestation and forest degradation provide an essential data stream

for countries in their REDD+ strategy and policy design and its implementation

(Herold and Skutsch, 2011). Identifying forest change drivers (locally, nationally,

internationally) is needed for several reasons: to help track their activities over time,

to attribute emissions to specific causes, to design dedicated mitigation actions that

address them, and to assess the impact of these.

Linking forest area changes to specific activities and follow-up land use is es-

sential for assessing drivers and their impact for a particular location. Information

useful for assessing which drivers are present in particular locations and to attribute

land use change to specific activities and drivers can come from remote sensing

analysis (GOFC-GOLD, 2011). The size of deforestation clearings, for example, is a

strong indicator and discriminator between commercial vs. subsistence agricultural

expansion as a deforestation driver. Size can be determined from analysis of

deforestation polygons mapped with common satellite sensors (DeFries et al., 2007).

In addition, the spatial context and location (such as shape, distance to settlements

and previous forest change, location of concessions) and the presence or absence of

other features such as new roads and infrastructure can help in the interpretation

to better understand the causes of change. Remote sensing time series analysis can

also provide information on land use following deforestation, for example row crops

or pasture, which helps to assess the commodities driving deforestation. Spatial

assessments are important to capture the space-time complexity of drivers to track

their impacts over time and to support region-specific strategies to reduce emissions.

Besides assessing the role of drivers in terms of deforestation area it is also

important for national REDD+ policy development to assess GHG emissions from

different drivers. Attribution and estimation of GHG emissions associated with

different drivers have commonly not been performed on the national level. The

majority of countries have limited capacities for carbon stock assessment so data

on carbon stocks and emission estimation are often not available (Romijn et al., 2012).

Underlying causes of forest change such as international markets, trade poli-

cies, technological change and population growth, are not readily detectable using
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remote sensing and ground data, and rely more on economic and social indicators,

data sources and trend analysis (Kissinger et al., 2012). However, the link between

data about deforestation patterns and underlying causes are important for developing

reference (emission) levels where understanding of which drivers are important is

essential in order to take national circumstances into account and construct plausible

future scenarios that may deviate from historical trends (Herold et al., 2012).

However, there are difficulties to establish clear links between underlying factors

and deforestation/degradation patterns (Angelsen, 2008). Proximate causes of

deforestation and forest degradation are often easier to monitor and to quantify,

because they relate more to specific deforestation and degradation events on the

ground.

1.5 Problem statement and research objectives

Most tropical developing countries have a limited capacity for monitoring forest area

change and carbon stocks (Romijn et al., 2012). Currently not a single developing

country has implemented a national MRV system for emissions from deforestation

and forest degradation (Asner, 2011), although some non-annex I countries have

forest area change monitoring systems (e.g. Brazil for the Amazon region1, India2).

Challenges and barriers for establishing a national forest monitoring system range

from technical to scientific and from institutional to operational level (Asner, 2011).

In addition, the need for data on drivers and activities causing forest carbon

change have been highlighted as central components in REDD+ readiness efforts

(UNFCCC, 2010). Monitoring drivers (e.g. deforestation by agricultural expansion,

fuelwood extraction, etc.) for REDD+ puts an emphasis on monitoring and

tracking human activities, where remote sensing has an important role. Different

activities and drivers will need different methods for monitoring (GOFC-GOLD,

2014). For example, large scale deforestation can be monitored by Landsat-type

(30m resolution) satellite imagery, while selective logging will likely require finer

resolution optical imagery or LiDAR (Light Detection and Ranging) data (DeFries

et al., 2006; Herold et al., 2011). Thus, MRV design is dependent on the drivers and

processes of deforestation and forest degradation within a country and as such is also

linked to REDD+ strategies and policies. Despite this important role, quantitative

national-level information on these drivers and processes, and the related carbon

emissions, is scarce.

1INPE 2010. Monitoramento da Floresta Amazônica basileira por Satelite, Projecto PRODES.
2FSI 2011. India state of forest report 2011 (www.fsi.nic.in).



10 Introduction

There is progress being made regarding several gaps (e.g. data, remote sens-

ing methodologies, capacity building) and approaches are being put forward to

manage the challenges associated with monitoring tropical forests for REDD+

(Maniatis and Mollicone, 2010; Grainger and Obersteiner, 2011; Herold and Skutsch,

2011; Bucki et al., 2012; Law et al., 2012). However, many gaps still remain (e.g.

Romijn et al. 2012) and knowledge about and experience with the availability,

potentials and limitations of various remote sensing data sources and methods for

forest monitoring for REDD+ is scattered among researchers and practitioners.

The main objective of this thesis is to explore the role of remote sensing for

monitoring tropical forests for REDD+ in general, and for assessing land use and

related carbon emissions linked to drivers of tropical deforestation in particular. To

achieve this, this thesis investigates the following research questions:

A What is the current role and potential of remote sensing technologies and

methodologies for monitoring tropical forests for REDD+ and for assessing

drivers of deforestation?

B What is the current state of knowledge on drivers of deforestation and degra-

dation in REDD+ countries?

C What are land use patterns and related carbon emissions following deforestation,

capitalising on available land use and biomass remote sensing data?

1.6 Thesis outline

This thesis consists of four main chapters, each addressing one or more of the research

questions presented in Section 1.5.

Chapter 2 reviews the availability, potential and limitations of different remote

sensing data sources for REDD+ forest monitoring with a focus on synergies among

various approaches and it provides recommendations on how to improve the role of

remote sensing for implementing REDD+.

Chapter 3 provides an assessment of proximate drivers of deforestation and

forest degradation by synthesizing empirical data reported by countries as part of

their REDD+ readiness activities, national communications and scientific literature.

In addition, in this chapter the relative importance and patterns of different

deforestation and forest degradation drivers are assessed to study driver variability

in space and time.
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Chapter 4 presents an assessment of land use patterns following deforestation

and related carbon losses in South America at continental and national scales using

a comprehensive, systematic remote sensing analysis.

Chapter 5 capitalised on newly available remote sensing information on land

use following deforestation (Chapter 4), above-ground live biomass density and

tree cover at similar spatial resolutions. This chapter explores how to combine

these datasets to improve carbon emission factor estimates by using spatially and

temporally consistent high resolution remote sensing datasets, and by incorporating

the carbon stock of the land use following deforestation.

Chapter 6 presents the main conclusions of this thesis and discusses the re-

sults with respect to the research questions. Chapter 6 further discusses the

implication of these results and provides an outlook for the assessment of drivers of

forest change, forest monitoring systems and the broader land use sector.





Chapter 2

Synergies of multiple remote

sensing data sources for REDD+

monitoring

This chapter is based on:

De Sy, V., Herold, M., Achard, F., Asner, G.P., Held, A., Kellndorfer, J., Verbesselt,

J., 2012. Synergies of multiple remote sensing data sources for REDD+ monitoring.

Current Opinion in Environmental Sustainability, 4, 696–706
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Abstract

Remote sensing technologies can provide objective, practical and cost-effective so-

lutions for developing and maintaining REDD+ monitoring systems. This paper

reviews the potential and status of available remote sensing data sources with a fo-

cus on different forest information products and synergies among various approaches

and evolving technologies. There is significant technical capability of remote sensing

technologies but operational usefulness is constrained by lack of consistent and con-

tinuous coverage, data availability in developing countries, appropriate methodologies

for national-scale use and available capacities in developing countries. Coordinated

international efforts, regional cooperation and continued research efforts are essential

to further develop national approaches and capacities to fully explore and use the

potential remote sensing has to offer for REDD+ forest monitoring.
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2.1 Introduction

Under the United Nations Framework Convention on Climate Change (UNFCCC),

negotiations are in progress to develop a mechanism to reduce emissions from

deforestation and forest degradation, and the role of conservation, sustainable man-

agement of forests and enhancement of forest carbon stocks in developing countries

(REDD+) (Pistorius, 2012; Visseren-Hamakers et al., 2012). Robust data and

methodologies for estimating greenhouse gas (GHG) emissions from and removals

by forests are crucial for REDD+ (GOFC-GOLD, 2011; Herold and Skutsch, 2011).

There is need for establishing national measurement, reporting and verification

(MRV) systems in developing countries based on the IPCC Good Practice Guidelines

(GPG) (GOFC-GOLD, 2011; Herold and Skutsch, 2011). Measuring forest carbon

emissions on the national level involves estimating and monitoring changes in two key

variables: (i) area of deforestation and degradation (activity data) and (ii) terrestrial

carbon stock densities per unit area (emission factor) (Penman et al., 2003). In

addition, the need for data on drivers and activities causing forest carbon change,

and consideration of developing country capacities have been highlighted as central

components in the development of REDD+ MRV systems (Herold and Skutsch, 2011).

Remote sensing is commonly considered an essential REDD+ observation tool

(Herold and Johns, 2007) and in combination with ground measurements it provides

an objective, practical and cost-effective solution for developing and maintaining

REDD+ MRV systems (Achard et al., 2007; DeFries et al., 2007; Herold and Johns,

2007; Herold and Skutsch, 2011). Types of remote sensing data include optical

and thermal, Synthetic Aperture Radar (SAR) and Light Detection And Ranging

(LiDAR) data. Remote sensing can provide time-series data in many developing

countries with historic forest monitoring gaps and can aid in comparing historic

and future forest cover changes with the desired consistency. Given the REDD+

requirements, remote sensing can contribute to several relevant forest information

products or services (see Section ‘State of the art’).

Despite the potential of remote sensing approaches, confusion remains among

researchers and practitioners on the suitability of various remote sensing data sources

and methods for forest monitoring. The aim of this paper is to review the availability,

potential and limitations of different remote sensing data sources for REDD+ forest

monitoring with a focus on synergies among various approaches; and to provide

recommendations on how to improve the role of remote sensing for implementing

REDD+. It is beyond the scope of this paper to discuss specific national REDD+

MRV systems. National REDD+ MRV systems are still in the design phase, and
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the suitability and cost-efficiency of the various remote sensing techniques and

approaches will depend on specific national circumstances and capacities.

2.2 State of the art

2.2.1 Monitoring of forest area change

A remote sensing based national monitoring system of forest area change should

measure gains and losses in forest area using the IPCC GPG (Penman et al., 2003).

The use of time-series of observations in continuous and consistent manner to obtain

accurate results and compare changes in the longer term is central (DeFries et al.,

2007; Verbesselt et al., 2010; GOFC-GOLD, 2011). To date, the primary tool for

monitoring national-scale forest area change in the tropics is optical medium spatial

resolution (10–30 m) data (DeFries et al., 2007; GOFC-GOLD, 2011). Landsat

TM and ETM+ satellite data are most commonly used owing to their observation

continuity from the 1980s onward and their global free data access policy (Wulder

et al., 2011; Hansen and Loveland, 2012), although recent problems with Landsat

5 and 7 create uncertainty about future use. Other relevant data sources are the

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER),

Système Pour l’Observation de la Terre (SPOT), Indian Remote Sensing Satellite

(IRS), Disaster Monitoring Constellation (DMC) and the Chinese-Brazilian resource

Satellite (CBERS) which are free for developing countries (Powell et al., 2007).

Methodologies are well established (DeFries et al., 2007; Achard et al., 2010) and

limitations are more related to long-term continuity of these systems and data

availability (wall-to-wall or full coverage, persistent cloudiness and seasonality),

country capacities and costs for processing and analysis (Herold and Skutsch, 2011).

Operational wall-to-wall systems exist for the Brazil Amazon (PRODES) and India

(NFI) (GOFC-GOLD, 2011). Alternatives for wall-to-wall mapping are systematic

sampling (Eva et al., 2010; FAO, 2011b) and hotspot analysis (Hansen et al., 2008a;

Romijn et al., 2012).

Using multiple sensors in synergy with different spectral, spatial and temporal

resolutions can increase cost-efficiency and can resolve issues of limited optical

coverage, cloudiness and seasonality. The suitability depends on national circum-

stances such as cost of data and technical capabilities, clearing size and patterns

of deforestation, phenology of forests and overall size of country and forest area

(DeFries et al., 2007; Romijn et al., 2012).
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Coarser resolution (250–1000 m) optical data (MODIS, MERIS) are commonly

not suitable for determining forest area change in minimum mapping units (<1 ha)

required for REDD+ (Morton et al., 2005; Bontemps et al., 2012). However, owing

to their higher temporal resolution (daily) and large coverage they have a function in

sampling and stratification strategies, hotspot detection and pan-tropical monitoring

for consistency among national efforts (Achard et al., 2007, 2010; Wulder et al., 2010;

GOFC-GOLD, 2011).

Spaceborne SAR sensors (e.g. ERS1/2 SAR, JERS-1, ENVISAT-ASAR, ALOS

PALSAR, Cosmo Skymed SAR) are ideal to compliment optical sensors because of

all-weather availability and can provide multi-temporal datasets suitable for tropical

forest monitoring at local to regional scales and for early detection of deforestation

(Almeida–Filho et al., 2009; Achard et al., 2010; Rahman and Sumantyo, 2010;

Walker et al., 2010; GOFC-GOLD, 2011). The combined processing or fusion of SAR

and optical data for forest monitoring and land cover assessment has been applied in

case studies with promising and accurate results (Erasmi and Twele, 2009; Lehmann

et al., 2012).

The use of commercial spaceborne (RapidEye, IKONOS, Quickbird) and air-

borne fine resolution optical sensors and airborne LiDAR is limited for monitoring

forest area change at national scale owing to relatively high costs and limited coverage

but it can be useful in subnational hotspot monitoring (see Section ‘Subnational

hotspot monitoring’).

2.2.2 Near real-time deforestation detection

The detection of active forest change (hotspots) is important for REDD+ implemen-

tation when tracking forest area change that requires immediate response or interven-

tions. Coarse resolution optical sensors (MODIS, MERIS) currently make consistent

and frequent measurements over large areas which makes them ideal for identifying

locations of rapid change for further analysis with finer spatial resolution data or as

an alert system for controlling deforestation (GOFC-GOLD, 2011). The Brazilian

institute for Space research (INPE) has an operational near real-time warning system

(DETER) to map large deforestation events (>25 ha) in the Amazon using MODIS

and CBERS-2 data based on bi-temporal change analysis (Shimabukuro et al., 2006;

GOFC-GOLD, 2011). Other near real-time change detection methods utilizing coarse

optical satellite data are available in the research domain (Jiang et al., 2010; Verbesselt

et al., 2012); including the use of both optical and SAR data (Almeida–Filho et al.,

2009). However, further work is needed to evaluate and validate these methods for
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near real-time forest disturbance detection.

2.2.3 Land use change patterns and tracking of human activities

Information on land use change patterns and tracking of human activities can

generate understanding about proximate causes and drivers of deforestation and

forest degradation, which is fundamental for developing REDD+ policies and

implementation strategies (Herold and Johns, 2007; Herold and Skutsch, 2011).

Remote sensing can help to provide information on the type and intensity of land

changes, shape and pattern of deforestation and degradation, and can track forest

disturbances and dynamics using time-series. For example, the fate of the deforested

land combined with available national datasets (e.g. distance to roads, market

accessibility, . . . ) provides land use transitions and trajectories, corresponding to

‘Approach 3’ of the IPCC GPG (Penman et al., 2003). Approach 3 involves using

spatially explicit land conversion information derived from sampling or wall-to-wall

mapping techniques, for the assessment of activity data.

Mapping land use change is more challenging than mapping land cover. How-

ever, good results can be expected by using dense and long time-series to assess

changes in rate, pattern and shape of deforestation (Hansen et al., 2009; Kennedy

et al., 2010). Also, forest activity data obtained by community-based monitoring can

be a valuable source of information (Fry, 2011; Larrazábal et al., 2012). The remote

sensing survey of the FAO (FAORSS) (FAO, 2011b), a global forest remote sensing

survey based on a systematic sampling design, provides information at global to

regional scale on deforestation since 1990 and has improved knowledge of drivers and

processes of deforestation, afforestation and natural expansion of forests (Gibbs et al.,

2010). A number of studies have been done on local scale (Armenteras et al., 2010;

Munsi et al., 2012) but national-scale quantitative, spatially explicit information on

the drivers of deforestation remains scarce (Stach et al., 2009; Potapov et al., 2012),

and thus emphasize a data gap that remote sensing can contribute in filling.

2.2.4 Forest degradation monitoring

Common human induced forest degradation activities in the tropics that reduce

forest carbon stocks include extraction of forest products for subsistence and local

markets, industrial/commercial extraction of forest products (for international

markets) or uncontrolled anthropogenic wildfire (see Section ‘Monitoring of wildfires

and burnt area’) (Herold et al., 2011). Many developing countries do not have the

data and capacities to provide carbon emission estimates on forest degradation for
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historical periods (Herold et al., 2011). Robust approaches for the use of remote

sensing data in degradation mapping are not yet available. The use of remote sensing

data for monitoring forest degradation is more complicated and less efficient than

for deforestation (Herold and Johns, 2007) and not all types of degradation can be

monitored with high certainty (GOFC-GOLD, 2011; Herold et al., 2011).

Different methods are needed to derive activity data and emission factors for

different degradation processes depending on the type of degradation, available data,

capacities and resources, and the possibilities and limitations of various measurement

and monitoring approaches (GOFC-GOLD, 2011; Herold et al., 2011). Commercial

extraction is usually associated with substantial canopy damages and changes in

infrastructure (roads, log landings), which makes it easier to observe with remote

sensing. Wood extraction for local use is often more difficult to monitor with

remote sensing as canopy changes tend to be subtle and gradual, and there is less

infrastructural change. Local forest inventories and community-based monitoring are

therefore valuable tools to monitor this type of degradation in terms of activity data

and emission factors (Skutsch et al., 2011).

Activity data of forest degradation can be assessed with direct or indirect re-

mote sensing approaches (GOFC-GOLD, 2011). Medium to fine spatial resolution

optical, SAR or LiDAR sensors are needed (Asner et al., 2005; Matricardi et al.,

2005; Souza et al., 2005a,b; Mollicone et al., 2007; Matricardi et al., 2010; Herold

et al., 2011) to directly observe canopy damage, small clearings and structural forest

changes. Often forest degradation is a more gradual process than deforestation and

requires longer and dense time-series of observations (Huang et al., 2010; Kennedy

et al., 2010). Frequent monitoring (annual to inter-annual) is necessary because the

optical signature of the degradation (closing of canopy gaps) often disappears within

1–2 years (Souza et al., 2005a; Herold et al., 2011). The indirect approach focuses

on observing human infrastructures associated with extraction of forest products. It

has been successful in identifying degraded forest areas (Asner et al., 2005; Potapov

et al., 2008) over longer periods with less frequent observations but lower quality

than the direct approach.

Emission factors or changes in forest carbon stocks owing to degradation are

usually measured through forest field sampling and forest inventories (Herold et al.,

2011) but repeated in situ measurements of degradation emission factors are scarce.

There is increasing evidence that spaceborne SAR and particularly airborne LiDAR

can measure changes in forest carbon resulting from forest degradation (Asner et al.,

2010; Trisasongko, 2010; Asner et al., 2011b; Mascaro et al., 2011; Ryan et al., 2012).

Although progress has been made, current remote sensing methodologies are not
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considered mature enough for operational implementation at national scales (Hansen

and Loveland, 2012), although subnational jurisdictional scales such as political

states and departments are becoming increasingly tractable (Asner, 2011).

2.2.5 Monitoring of wildfires and burnt area

Biomass burning represents a direct and significant emission source of carbon and

other trace gasses (e.g. methane) in tropical and subtropical regions. Monitoring

carbon emissions from biomass burning entails 3 categories: detection of active

fires, mapping post-fire burnt areas (fire scars and regeneration) and fire charac-

terization (e.g. fire severity, energy released) (Lentile et al., 2006; Herold et al., 2011).

Active fire products are available in near real-time and multi-year global ac-

tive fire data are generated using thermal infrared bands from coarse spatial

resolution sensors such as AVHRR, Along Track Scanning Radiometer (ATSR),

MODIS or from the Geostationary Satellite system (GOES) (Justice et al., 2002; Xu

et al., 2010). Active fire data sets are useful for assessing fire history and effectiveness

of REDD+ related fire management activities (GOFC-GOLD, 2011) but are less

relevant for estimating emissions.

Several satellite-derived multi-year global burnt area datasets have been devel-

oped from coarse resolution optical sensors such as AVHRR, MODIS, ATSR-2 and

SPOT-VGT (Justice et al., 2002; Simon et al., 2004; Plummer et al., 2005; Giglio

et al., 2009, 2010). These datasets can be used in combination with biogeochemical

or fuel load models to estimate emissions (Schultz et al., 2008; van der Werf et al.,

2009, 2010). The current burnt area products may not provide enough spatial

resolution for compiling detailed emission inventories on national level but they can

be integrated with finer resolution data (GOFC-GOLD, 2011).

An alternative to using burnt area models (indirect approach) is to directly

measure the energy released by actively burning fires (fire characterization), using

mid-infrared and thermal wavelengths, from which the total biomass consumed

can be derived (Ichoku and Kaufman, 2005; Smith and Wooster, 2005). However,

this approach requires fine spatial and temporal resolutions to get accurate results,

consequently the method is still in the research phase and not yet operationally

viable for REDD+ monitoring (GOFC-GOLD, 2011).
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2.2.6 Biomass mapping

Forest carbon densities are traditionally assessed using field-based inventories, which

are valuable but expensive, time-consuming and inherently limited in geographic

representativeness (Houghton, 2005; Gibbs et al., 2007; Asner, 2009; Saatchi et al.,

2011b). Many developing countries do not have forest inventories of sufficient quality

(DeFries et al., 2007; Romijn et al., 2012). It is possible to derive continuous and

spatially detailed biomass estimates from remote sensing observations, which can be

used in the stratification, analysis and quantitation of carbon stocks and emission

factors (Goetz et al., 2009).

Recently two studies developed wall-to-wall pan-tropical benchmark maps from

satellite data of forest carbon density at 500 m (Baccini et al., 2012) and 1 km

resolution (Saatchi et al., 2011b). These coarse resolution data are an important step

but cannot estimate carbon stocks of tropical forests for specific countries with the

certainty required for REDD+ (Gibbs et al., 2007). Airborne, very fine resolution

optical sensors however can measure forest carbon stocks with higher certainty (Gibbs

et al., 2007). Airborne LiDAR sensor approaches have been successful in providing

fine resolution estimates of forest carbon density for small areas (Asner et al., 2010;

Saatchi et al., 2011a), and thus are gaining acceptance among government agencies

willing and able to invest in airborne LiDAR systems. A satellite based LiDAR

system would provide more global coverage and would greatly extend capabilities to

estimate carbon stocks for all forest types (Baccini et al., 2012), but currently there

is no satellite with vegetation LiDAR sensors operational (Gibbs et al., 2007). Until

then, fine resolution cost-effective mapping of carbon stocks for project-scale and

national-scale assessments will rely on an integration of optical satellite imagery and

airborne LiDAR samples of forest carbon density (Asner, 2009; Asner et al., 2010).

SAR sensors on board several satellites (ERS-1, JERS-1, Envisat, ALOS PALSAR)

have been used to quantify forest carbon stocks in relatively young or degraded

forests, but will be less useful for mature, higher biomass forests because of signal

saturation (Gibbs et al., 2007; Böttcher et al., 2009). However, integration with

optical satellite data and selected field measurements produces good results up to

400 tonnes of aboveground biomass per hectare (Lucas and Armston, 2007).

There are currently no standard practices or methods for measuring above-

ground forest biomass through remote sensing or field inventory networks at national

scales in REDD+ countries. The U.S.D.A. Forest Service Forest Inventory and Anal-

ysis (FIA) network enables national-scale biomass estimation following UNFCCC

requirements and could be used as a model for implementation of standardized

practices in tropical REDD+ countries. Furthermore, multi-sensor synergies among
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optical, radar and LiDAR technologies are rapidly overcoming the limitations of

individual sensors, and the range of spatial, thematic and temporal information

thus achieved can be used to augment and enhance plot-scale estimates of forest

biomass and carbon stocks (Goetz et al., 2009). Moreover, new developments in

compliance-ready REDD+ MRV at the lower jurisdictional scales of states, provinces,

and departments show that a combination of tactical field plots and remote sensing

can be implemented in a cost-effective manner to make carbon emissions monitoring

a reality (Asner et al., 2011a, 2012). In any event, accurate biomass field data

remain crucial to calibrate and improve the accuracy of biomass maps. Integrating

remote sensing and in situ data for this purpose is an active and urgent research

topic (Avitabile et al., 2011).

2.2.7 Subnational hotspot monitoring

The intensity of forest changes and REDD+ implementation activities or projects

varies within countries and not all areas need to be monitored with the same level

of detail and accuracy. In fact, specific areas of active change or dedicated REDD+

implementation activities should be monitored with more precision and accuracy. For

example, limitations of finer spatial resolution sensors are the high costs, technical

complexity and relatively small coverage (Böttcher et al., 2009). Especially in coun-

tries where monitoring capacities are low it can be more efficient and pragmatic to

dedicate major monitoring efforts on subnational hotspots, in particular to cover more

challenging issues such as GHG emissions from forest degradation or GHG removals

from sustainable management of forests (Herold and Skutsch, 2011). A national strat-

ification by human activities affecting forest carbon can integrate the subnational

monitoring into the national system, but a clear understanding of drivers and pro-

cesses affecting carbon stock within a country is necessary (Herold and Skutsch, 2011).

Stratification can be done by identifying locations of rapid and large deforestation us-

ing national monitoring of forest and land use change with coarse to medium resolu-

tion optical sensors or expert knowledge to be analysed with satellite (e.g. IKONOS,

QUICKBIRD, TerraSAR-X, Cosmo Skymed) or airborne fine resolution optical, SAR

or LiDAR sensors (Hansen et al., 2008a; Broich et al., 2011). Furthermore, fine reso-

lution sensors and subnational hotspot analysis can provide verification and accuracy

assessment of coarser resolution analysis, training data to calibrate algorithms and a

link to ground based measurements (e.g. forest inventories) and national estimation

approaches (DeFries et al., 2007; GOFC-GOLD, 2011).
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2.2.8 Forest type mapping

Forest type maps provide spatially explicit information on native, primary, secondary

forests, plantations and tree species that can be useful for stratification purposes,

estimating biomass, forest planning and biodiversity monitoring. The spectral and

spatial resolution of most spaceborne optical sensors is not sufficient to differentiate

consistently between forest types (GOFC-GOLD, 2011). However, fine resolution

optical imagery can distinguish forest types based on spectral response or textural

measures (e.g. regular spacing of plantation trees). Accuracies can be enhanced by

using inter-annual multi-temporal data (seasonal dynamics) (Boyd and Danson, 2005)

or longer time-series (plantation cycles) (GOFC-GOLD, 2011). Fine spatial resolution

radar and LiDAR sensors can identify forest types based on vegetation structure

(Balzter, 2001; Dassot et al., 2011). Airborne hyperspectral sensors and the synergy of

LiDAR and optical data, where structural and spectral information is combined, show

most promise (Koch, 2010; GOFC-GOLD, 2011). The heterogeneity of forest types

in the tropics makes mapping more difficult in comparison with temperate regions.

So far, there are no standardized methods or classification schemes for tropical forest

types (Sánchez-Azofeifa et al., 2009).

2.3 Synthesis and recommendations

2.3.1 Technical capabilities of remote sensing sensors

Remote sensing technologies are constantly evolving in terms of available satellite

and airborne sensors, analysis methods, and experiences to use them for specific

applications such as REDD+. Consequently, there is a challenge to keep track of

the utility of different sensors suitable for REDD+ needs. Table 2.1 gives a synthesis

of the technical capabilities of different remote sensing sources to contribute to the

generation of REDD+ information products. It is obvious that remote sensing has, in

general, great capabilities for contributing to the REDD+ monitoring process but not

one sensor type alone can provide all the information necessary to monitor forests. It

is rather a range of sensors that are needed to provide data streams for the different

forest change information products.

2.3.2 Operational capabilities of remote sensing sensors

Despite the technical capabilities (Table 2.1), there are constraints which limit the

operational use of various remote sensing data for REDD+ monitoring in developing
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Table 2.1: Technical capabilities of remote sensing sensors for the generation of

(national) REDD+ information products (black = very suitable, dark grey = suitable,

grey = contributing and light grey = limited to no technical capabilities)

Forest

information

product

Sensor type

Optical/thermal Radar/SAR LiDAR

Coarse Medium Fine Medium Fine Satellitea Airborneb

Forest area change

monitoring

Near real-time

deforestation

detection

Land use change

patterns and tracking

of human activities

Forest degradation

monitoring

Monitoring of

wildfires and burnt

areas

Biomass mapping

Sub-national hotspot

monitoring

Forest type mapping

a Large footprint
b Small footprint

A footprint is defined as the ground instantaneous field-of-view, which is a measure of the ground

area viewed by a single detector element in a given instant in time.

countries. Having a satellite acquiring data is not enough to assume that the data are

always accessible and useful for developing countries. Observations should be contin-

uous (time-series) and ideally providing global coverage. In addition, raw observation

data should be operationally processed to image datasets suitable for analysis, and

the capacities in developing countries should be available to sustainably produce and

use remote sensing products. Table 2.2 gives an overview of the status of these 3

requirements for the different sensor types. There are still significant operational

constraints to be bridged, especially regarding the affordability and availability of

standard fine resolution optical, SAR and LiDAR data. There are a multitude of sen-

sors available but limitations exist in making the existing data available for REDD+
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purposes. This emphasises the need for international coordination and cooperation

between space agencies and implementation institutes to ensure global coverage and

processing of tropical forests with different types of data, better access for develop-

ing countries to time-series archives and current adequate quality data at reasonable

costs, and the need to build capacities in REDD+ countries.

2.3.3 Status of remote sensing use for REDD+ monitoring

The potential usefulness and suitability of many of the mentioned remote sensing

data sources (Tables 2.1 and 2.2) for REDD+ monitoring can be judged by the

maturity of approaches depending on whether they are mainly research subjects or

are actively used by developing countries (Table 2.3). Commonly, remote sensing

research starts from local project level studies, and if suitable moves towards

larger area demonstrations or even global level analysis. Table 2.3 emphasizes the

variability in operational level. Monitoring forest area change is most mature while

approaches for mapping forest types or biomass are not yet used by many developing

countries. This highlights, for some information products, the need to invest in

fundamental research and move from small case studies to large area demonstrations.

For others the need is to synthesize the experiences from research towards the use in

developing countries. Often the appropriate and suitable methodology for generating

forest information products is dependent on national circumstances (data costs and

availability, technical capabilities, size of forest area, drivers), which makes further

research on country level essential to determine national data needs and monitoring

strategies. Regional and international coordinated effort is necessary to provide

technical guidance on best practices and develop and validate appropriate methods

for different country circumstances.

Most developing countries have to deal with a rather large capacity gap re-

garding national forest monitoring for REDD+ (Romijn et al., 2012) and remote

sensing is currently only sparsely used by developing countries for their national

monitoring (Tables 2.2 and 2.3). So, technology transfer and capacity building are an

important aspect of the REDD+ process; not only for the international community

but there also is an important role for remote sensing related regional cooperation

(sharing capacities and costs) and South-South cooperation.

2.3.4 Synergies of different data sources

Methodologies for REDD+ MRV systems should preferably be as simple and straight-

forward as possible and if, for example, one single observation data source allows the
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Table 2.2: Operational availability of different remote sensing data sources for REDD+

(black = very good, dark grey = good, grey = some and light grey = limited to no

availability)

Operational availability

Sensor type

Earth

observation

system

or program

Continuous

observation

program for

global coverage

Pre-processed

global image

datasets

generated &

accessible

Capacities to

sustainably

produce/use

map products in

developing

countries

O
p

ti
c
a
l/

th
e
r
m

a
l

Coarse

MODIS

MERISa

VIIRS

Medium

Landsat TM/ETM i.e. Brazil

ASTER

SPOT commercial i.e. Congo Basin

CBERS

IRS South Asia i.e. India

DMC satellites commercial

Fine

IKONOS

RapidEye commercial i.e. Mexico

Quickbird/

Worldview

regional

sampling

Airborne

S
A

R

Satellite

ALOS

PALSAR-JERS
seeb

ENVISAT

ASAR-JRSa

regional

coverage

TERRARSAR-X/

Tandem-X,

CosmoSkyMed

regional

sampling

L
iD

A
R Satellite ICESAT-GLAS seec

Airborne
some national

datasets

a ENVISAT acquisitions have ceased as of 8 April 2012.
b if ALOS-2 launches in 2012 to replace the failed ALOS-1
c if ICESAT-2 launches in 2016 to replace ICESAT-1
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Table 2.3: Operational level of forest information products in REDD+ context (black =

high, dark grey = intermediate, grey = low and light grey = limited to no operationality)

Forest

information

product

Operational level

Local pilot and

research studies

Large area research

demonstrations

Operational use at

national level

Forest area change

monitoring i.e. Brazil,India

Near real-time deforestation

detection
only Brazil

Land use change patterns

and tracking of human

activities

i.e. Indonesia

Forest degradation

monitoring

Monitoring of wildfires and

burnt areas

Biomass mapping

Sub-national hotspot

monitoring

Forest type mapping

derivation of suitable information products then this should be the choice. Using

multiple data sources increases complexity of the analysis and can also result in prob-

lems with consistency and transparency when using time-series. However, the synergy

among multiple sensors with different spectral, spatial and temporal resolutions can

be useful to increase cost-efficiency and resolve issues of data coverage, clouds, sea-

sonality, and the trade-off between spatial and temporal resolutions. The potential

for key synergies is summarized in Table 2.4. The need for synergies can be driven by

regional circumstances (i.e. using optical and SAR time-series in cloudy areas), or can

be a more fundamental need especially for assessing biomass, biomass burning, forest

degradation and carbon emissions (Eva et al., 2012). In general, the synergetic use

of data sources as described in Table 2.4 is subject to research and not operationally

applied. The benefits of this synergetic use of data sources need to be balanced

against the significant additional capacities and resources required for applying them

in developing countries.
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Table 2.4: Key synergy potentials for generating improved forest information products

Forest information

product

Key synergies in REDD+ context

Forest area change

monitoring

Use of optical medium resolution (Landsat) and SAR time-series

Near real-time

deforestation detection

Combining coarse spatial resolution optical data (at high

temporal resolution) with medium spatial resolution optical data

(at moderate temporal resolution)

Land use change patterns

and tracking of human

activities

High temporal (coarse optical data) and medium resolution

optical dense time-series data with ancillary datasets

Forest degradation

monitoring

Multiple remote sensing sources necessary depending on

processes and activities e.g. commercial versus locally driven

degradation processes

Monitoring of wildfires and

burnt areas

Use of thermal and optical remote sensing data

Biomass mapping Combination of LiDAR, SAR and/or optical data with in situ

data

Sub-national hotspot

monitoring

Combining optical coarse to medium resolution data with fine

resolution data (optical, SAR and LiDAR)

Forest type mapping Optical fine resolution data and LiDAR or SAR

2.3.5 Summary of key messages

The review in this paper clarifies the potential and status of different available

remote sensing approaches for REDD+ monitoring. Remote sensing is an essential

component of monitoring forests for REDD+ on different spatial and temporal scales

for a number of different information products; including deforestation, reforesta-

tion and afforestation, forest degradation, biomass and biomass burning. In summary:

There is technical capability of remote sensing technologies to provide a range

of forest information products for REDD+ with different types of sensors useful for

various monitoring targets.

There are many suitable remote sensing sensors available but their operational

usefulness for REDD+ is often constrained by lack of consistent and continuous

coverage and by data availability in developing countries in a suitable format for

change analysis. Coordinated international efforts of the remote sensing community

and data providers should improve this situation, in particular in the view of future

planned satellite missions such as Landsat Data Continuity Mission and Sentinel-2 to
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be launched from 2013. In this way countries have the confidence that investments in

building capacity for use of remote sensing forest monitoring will provide long-term

benefits under REDD+.

The transition from remote sensing research to more operational generation of

information products on the national level requires additional efforts including more

dedicated demonstration activities, the development of best practice guidelines, and

the need to work closely with developing countries.

Particular research efforts are needed to further develop and consolidate ap-

propriate approaches for different national circumstances, including the exploration

of synergies among different data sources and for integration of remote sensing and

ground data for emissions estimation.

Remote sensing capacities do exist in developing countries and technological

transfer and capacity development as part of South-South and regional cooperation

need to be further developed.
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Abstract

Countries are encouraged to identify drivers of deforestation and forest degradation in

the development of national strategies and action plans for REDD+. In this letter we

provide an assessment of proximate drivers of deforestation and forest degradation by

synthesizing empirical data reported by countries as part of their REDD+ readiness

activities, CIFOR country profiles, UNFCCC national communications and scientific

literature. Based on deforestation rate and remaining forest cover 100 (sub)tropical

non-Annex I countries were grouped into four forest transition phases. Driver data

of 46 countries were summarized for each phase and by continent, and were used as

a proxy to estimate drivers for the countries with missing data. The deforestation

drivers are similar in Africa and Asia, while degradation drivers are more similar

in Latin America and Asia. Commercial agriculture is the most important driver

of deforestation, followed by subsistence agriculture. Timber extraction and logging

drives most of the degradation, followed by fuelwood collection and charcoal pro-

duction, uncontrolled fire and livestock grazing. The results reflect the most up to

date and comprehensive overview of current national-level data availability on drivers,

which is expected to improve over time within the frame of the UNFCCC REDD+

process.
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3.1 Introduction

Understanding drivers of deforestation and degradation is fundamental for the

development of policies and measures that aim to alter current trends in forest

activities toward a more climate and biodiversity friendly outcome. Parties to

the United Nations Framework Convention on Climate Change (UNFCCC) are

developing a mechanism for reducing emissions from deforestation and forest degra-

dation, enhancing forest carbon stocks, sustainable management and conservation

of forests (REDD+) in developing non-Annex I countries (UNFCCC, 2010). In

addition to the discussion on policy incentives and modalities for measurements,

reporting and verification (MRV), the issue of identifying drivers and activities

causing forest carbon change on the national level for REDD+ monitoring and

implementation has received increasing attention in the REDD+ debate (Benndorf

et al., 2007; UNFCCC, 2010). The UNFCCC negotiations (UNFCCC, 2009b, 2010)

have encouraged developing countries to identify land use, land use change and

forestry activities, in particular those that are linked to the drivers of deforestation

and forest degradation, and to assess their potential contribution to the mitigation of

climate change. Understanding is needed for assessing not only how much forests are

changing but also how to define proper policies, and national REDD+ strategies and

implementation plans (Boucher, 2011; Rudorff et al., 2011). Projections of expected

developments, such as required for setting forest reference levels (UNFCCC, 2011),

need to be based on knowledge of context-specific drivers or activities and their

underlying causes, and perhaps should be considered separately for deforestation and

degradation processes (Huettner et al., 2009). Thus, in addition to the fundamental

importance of national data on forest area change and associated changes in forest

carbon stocks to estimate emissions and removals, the need for national data on

type and relative importance of deforestation and degradation drivers is rising to an

almost equal level of relevance to support national REDD+ activities.

Despite this relevance, quantitative national-level information on drivers and

activities causing deforestation and forest degradation are widely unknown. For

example, the question of how much or what fraction of deforestation (emissions)

in a country is caused by a specific driver (i.e. expansion of agriculture versus

infrastructure) cannot be answered for many developing countries. Scientific re-

search in the past (Geist and Lambin, 2001) has mainly been based on local-scale

studies or regional to global assessments (DeFries et al., 2010; Boucher et al.,

2011). They have highlighted the importance of differentiating between proximate

or direct drivers and underlying or indirect causes. Proximate or direct drivers

of deforestation are human activities that directly affect the loss of forests and
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Figure 3.1: Four phases of the FT model as applied in this study.

thus constitute proximate sources of change, that result from complex interac-

tions of underlying forces in social, political, economic, technological and cultural

domains (Geist and Lambin, 2001). Direct drivers can be grouped into different

categories such as agriculture expansion, expansion of infrastructure and wood

extraction (Geist and Lambin, 2001). Although agricultural expansion has been

determined as the key driver of deforestation in the tropics (Gibbs et al., 2010),

drivers vary regionally and change over time (Rudel et al., 2009; Boucher et al., 2011).

The forest transition (FT) model identifies characteristic, human-induced changes

and varying drivers of forest cover dynamics over time at the national scale (Rudel

et al., 2005; Lambin and Meyfroidt, 2010). Mather (1992) introduced the FT concept

to explain the transition from decreasing to expanding forest cover that has taken

place in many developed countries. The model has subsequently been tested in

several developing countries (Rudel et al., 2005; Kauppi et al., 2006) and it was

found that forest cover at the national level followed an inverse J-shaped curve over

time, based on empirical observation (Figure 3.1). Mustard et al. (2004) and DeFries

et al. (2004) expanded the concept to incorporate the intensification of agriculture

and urbanization that generally occurs in the course of economic development and

accompanies the forest transition.
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Given the current gap in knowledge and understanding of drivers on national,

regional and global levels, the research presented in this letter aims to provide an as-

sessment of proximate drivers of deforestation and forest degradation by synthesizing

empirical data from tropical and sub-tropical developing (non-Annex I) countries.

While national data on proximate drivers have commonly not been available in

the past, the recent efforts for REDD+ readiness, and national REDD+ plan and

strategy development, have generated new information provided by countries. For

example, all countries participating in the World Bank Forest Carbon Partnership

Facility (FCPF, 2011) are asked to develop readiness plan proposals that include

an assessment on deforestation and degradation drivers. Similar efforts are ongoing

as part of the UN-REDD program (www.un-redd.org) and some research projects.

Based on this information, the research efforts presented here follow two objectives.

1. Derive and, as far as possible, quantify deforestation and degradation drivers

from existing national REDD+ reports and studies.

2. Assess the relative importance and patterns of different deforestation and forest

degradation drivers reflecting approximately the period 2000–2010, to study

driver variability in space (by continent) and time (using the FT model).

The results provide the first comprehensive and comparative assessment of drivers

on the national level and provide input to the ongoing UNFCCC REDD+ negotia-

tions, where the issue and importance of drivers is still subject to considerable debate

(UNFCCC, 2010).

3.2 Data and methodology

3.2.1 The forest transition model

All 100 non-Annex I countries in this study were grouped into four FT phases (Figure

3.1) based on two factors: percent forest cover and rate of forest area change. The

four FT phases are pre-transition, early transition, late transition and post-transition,

which generally represent a time sequence of national development. Pre-transition

countries have high forest cover and low deforestation rates. In early-transition

countries, forest cover is lost at an increasingly rapid rate. Late-transition countries

with a rather small fraction of remaining forests exhibit a slowing of the deforestation

rate and eventually come into the post-transition phase, where the forest area change
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Figure 3.2: Decision tree for FT categorization.

rate becomes positive and forest cover increases through reforestation. The FT

model reflects a broad-scale typology of tropical developing countries, applicable as

a proxy for analyzing the temporal variability of drivers of deforestation and forest

degradation.

In general, our methodology followed the one described by da Fonseca et al. (2007),

where developing countries were stratified into four categories based on remaining

forest cover and deforestation rate. A decision tree (Figure 3.2) was developed for

categorizing all 100 countries into four FT phases using the percentage forest cover

of 2010 and forest area change rates based on the 2010 Global Forest Resources

Assessment (FRA) by FAO (FAO, 2010). Forest area change rates were calculated

based on the amount of annual forest change relative to forest cover in 1990 for four

periods: 1990–2000, 2000–05, 2005–10 and 2000–10. An annual forest area change

rate of 0.25% was used to separate between pre- and early-transition countries as this

is the annual average of 2005–10 for our study area. A forest area change rate of 0%

and forest cover of 15% and 50% were selected as additional thresholds.

3.2.2 Definitions and types of drivers

The definition of drivers of deforestation and forest degradation in the REDD+ de-

bate are often not clear. In scientific literature, there is a common separation of prox-

imate/direct or underlying/indirect causes. It is often more difficult to establish clear
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links between underlying (or predisposing) factors and deforestation than between

direct causes and deforestation. In this study, we will analyze data on the proximate

or direct drivers, i.e. human activities that directly affect the loss of forests, and use

the term ‘driver’ to indicate proximate drivers. This choice is based on available data

and the way countries are reporting data on drivers.

The drivers are considered separately for deforestation and forest degradation. De-

forestation in this letter denotes the (complete) removal of trees and the conversion

from forest into other land uses such as agriculture, mining etc, with the assumption

that forest vegetation is not expected to naturally regrow in that area. Forest degra-

dation denotes thinning of the canopy and loss of carbon in remaining forests, where

damage is not associated with a change in land use and where, if not hindered, the

forest is expected to regrow. In some specific cases multiple proximate drivers work

in combination, i.e. forest clearing for timber followed by land use change for agricul-

ture. In this case and to avoid double counting, the land use change (to agriculture)

has been identified as the primary cause of deforestation. Five deforestation drivers

(Table 3.1) and four forest degradation drivers (Table 3.2) were considered in this

study. We use these broad categories to provide a set of driver types for comparative

analysis that allow for the variation in detail and quality of information reported by

countries.

3.2.3 Data sources and analysis of drivers

Since countries have not been obliged to report on drivers, there are no compre-

hensive, recent and quantitative assessment data available concerning drivers of

deforestation and forest degradation on a national level. Thus, this study builds upon

new and useful REDD+ readiness related data sources to help fill this gap including

26 Readiness Preparation Proposals (R-PP) and ten Readiness Plan Idea Notes

(R-PIN) prepared for the World Bank Forest Carbon Partnership Facility (FCPF,

2011) by hosting countries. It is important to note that these data are basically

self-reported by countries and they were taken on board independent of what these

reports are based on. As another source of data, Matthews et al. (2010) describe

proximate drivers of deforestation throughout history for 25 tropical countries

by reviewing existing literature and data. In addition, we used several CIFOR

country profiles (http://www.forestclimatechange.org/) that include driver and

activity information for deforestation and forest degradation, and UNFCCC National

Communications and other reports that have recently become available. Most of

these data sources were developed between 2008 and 2011 and reflect more or less

the period of 2005–2010 or 2000–2010 when the report has time series data. In total,

driver data were available for 46 of the 100 (sub)tropical non-Annex I countries
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Table 3.1: Categories of deforestation drivers.

Category

Agriculture (commercial) • Forest clearing for cropland, pasture and tree plantations

• For both international and domestic markets

• Usually large to medium scale

Agriculture (subsistence) • For subsistence agriculture

• Includes both permanent subsistence and shifting cultivation

• Usually by (local) smallholders

Mining All types of surface mining

Infrastructure Roads, railroads, pipelines, hydroelectric dams

Urban expansion Settlement expansion

Table 3.2: Categories of forest degradation drivers.

Category

Timber/logging • Selective logging

• For both commercial and subsistence use

• Includes both legal and illegal logging

Uncontrolled fires Includes all types of wildfire

Livestock grazing in forest On both large and small scales

Fuelwood/charcoal • Fuelwood collection

• Charcoal production

• For both domestic and local markets

Table 3.3: Availability of national datasets per continent and FT phase (dark gray, no

national datasets available; light gray, limited national datasets available (≤2)).

Amount of national datasets

available/total datasets

Forest transition phase Africa America Asia

Pre-transition 3/3 4/6 0/4

Early transition 10/19 6/11 6/9

Late transition 4/18 5/9 3/6

Post-transition 0/6 2/4 3/5
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(Appendix 3.A). These 46 countries account for 78% of the total forest area (in

2010), and 81% of forest loss (in 2000–2010) of the 100 countries under consideration,

according to 2010 FAO FRA data (FAO, 2010), and cover a range of FT phases in

each continent (Table 3.3). However, for some continent-FT phase combinations

there are no or limited data available, namely for post-transition countries in Africa

and Latin America and pre-transition countries in Asia.

The different data sources were analyzed and summarized to provide the cur-

rent ‘best’ estimate of the relative importances of different drivers. First, all data

were categorized given the driver categories listed in Tables 3.1 and 3.2. The relative

importance of a driver within a country is reported in different formats in the

different sources, either as a ratio scale (quantitative information), an ordinal scale

(ranking) or a nominal scale (listing). The aim was to get as much quantitative

information as possible about the relative importance of deforestation and forest

degradation drivers as a national fraction (e.g., commercial agriculture was at 40%

the most important cause of deforestation on the national level). Table 3.4 shows how

different data scales were processed to allow for comparison. Depending on the scale

of the source data, the same approach was used for all countries to ensure consistency.

When ratio-scale data were available, this value was directly used. Ordinal data

were quantified by assigning ratios (e.g. 3:2:1) in order of decreasing importance

and assuming an equal interval. In the case of more than one dominant driver,

the estimation procedure was adapted accordingly with the same weight for drivers

reported as equally important (see example in Table 3.4). For nominal-scale data

the values for attributing ratios were assumed equal. In cases where multiple and

different-scale data sources exist for a country we prioritized the most quantitative

data, so ratio data were preferred over ordinal data and ordinal data over nominal

data. When multiple but same-scale data sources were available for a country, the

average values were used. As shown in Table 3.4, countries with the highest quality

ratio-scale data reflect 47% of the total forest loss (of 100 countries) and ordinal-scale

data are available for countries responsible for 20% of the total forest loss. Although

19 countries have only nominal-scale data, these countries tend to be smaller in size

and with lower contributions to forest loss (14% of total forest loss).

3.2.4 Estimations for countries without driver data

The country driver data were aggregated for different continents and FT phases and

also analyzed in that context (see Sections 3.3.2 and 3.3.3). The aggregation by

continents and forest transition phases can be used as suitable proxies to describe

the country circumstances in terms of active deforestation and degradation drivers;
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Table 3.4: Method of quantifying the national fraction of drivers (A, B and C are

examples of drivers) with respect to three scales of source data.

Scale of

data source
Example Quantification

No.

countries

Total forest loss

for 100 countries

(FAO, 2010) (%)

Ratio scale

(quantity)

Drivers A = 60%,

B = C = 20%

A = 60%,

B = C = 20%
12 47

Ordinal scale

(ranking)

Drivers A >B >C

→ A:B:C = 3:2:1

A = 50% (3/6),

B = 33.3% (2/6),

C = 16.7% (1/6)

15 20

Drivers A = B >C

→ A = B:C =

2:2:1

A = 40% (2/5),

B = 40% (2/5),

C = 20% (1/5)

Nominal

scale (listing)

Main drivers are

A, B and C

A = B = C =

33.3% (1/3)
19 14

Table 3.5: Data availability and data estimation procedures for situations with limited

or no driver data using proxy information (see Table 3.6).

Annotation

in Table

3.6

Availability driver data Proxy estimation

(no)

Sufficient driver data: three or more

countries belonging to the same

continent and FT phase exist

Driver data are averaged

a

Few (<3) countries belonging to the

same continent and FT phase exist

but similar data are available from

countries belonging to the continent

with similar drivers and the same FT

phase

Driver data of these countries and

countries belonging to the continent

with similar drivers and FT phases are

averaged

b

Few (<3) countries belonging to the

same continent and FT phase exist

and no similar data are available

Driver estimation is based on average

of less than three countries belonging

to the same continent and FT phase

c

No driver data but similar data are

available from countries belonging to

the continent with similar drivers and

the same FT phase

Driver data of countries belonging to

the continent with similar drivers and

FT phases are averaged

d
No driver data and no similar data

available

Driver data for countries with the

same FT phase of all continents are

averaged
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i.e., it can be assumed that a country (without current data on drivers) will have a

similar situation to other countries on the same continent and the same FT phase

where empirical data are available. Thus, building upon the continent and FT model

proxies, the study has derived estimates for situations where currently limited country

data have been reported (see Table 3.3). For situations with sufficient driver data,

the driver data were averaged. Table 3.5 explains the data estimation procedures for

situations with limited or no driver data using proxy information.

3.3 Results

3.3.1 Categorization of 100 tropical non-Annex I countries into FT

phases

The 100 non-Annex I (sub)tropical countries are categorized into four FT phases (see

Appendix 3.A) using the decision tree (Figure 3.2). Exceptions on the decision tree

were made for Thailand and Costa Rica. These countries, while just not fulfilling

the criteria, clearly belong in the post-transition phase. Of the 100 non-Annex I

countries, 13 countries are in the pre-transition phase, 39 in early transition, 33 in

late transition and 15 in post-transition. Thus the majority (72) of the 100 countries

are either in early or late transition, which are the phases of rapid deforestation.

The spatial distribution of FT phases across the (sub)tropics (Figure 3.3) shows that

many pre-transition countries in Africa and America are located around the equator,

surrounded by early-transition countries, and with late-transition countries mostly

located in sub-tropical regions.

Forest cover (FAO, 2010) and intact forest area values (Potapov et al., 2008),

both for 2005, were averaged for each FT phase for all 100 countries (Figure 3.4).

The forest cover transition follows the conceptual framework shown in Figure 3.1.

Intact forest area follows a similar FT curve to forest cover but the change in intact

forest cover from the late- to post-transition phase remains quite small, suggesting

that a large proportion of forests in post-transition countries remains degraded. The

difference between forest cover and intact forest area, i.e. the disturbed forest area

fraction, is an important indicator of degraded forest area.

3.3.2 Analysis of drivers for each continent

The driver data are summarized and analyzed for three continents, Africa, America

and Asia (including Oceania) (Figure 3.5(A)). Agriculture is the main driver of
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Figure 3.3: Spatial distribution of national FT phases.

Figure 3.4: Average forest cover (FAO, 2010) and intact forest area in 2005 for each

FT phase.

deforestation, but with differences in geographic distribution of the importance

of commercial versus subsistence agriculture. Commercial agriculture is the most

important driver in Latin America (68%), while in Africa and Asia it contributes

to around 35% of deforestation. Local and subsistence agriculture is quite equally

distributed among the continents (27–40%), which makes sense since this type of

land use (change) remains widespread in all areas in the tropics and sub-tropics.

Overall, agriculture reflects around 80% of deforestation worldwide, which is in line
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with estimates provided by Geist and Lambin (2001) for the 1980s and 1990s. Mining

plays a larger role in Africa and Asia than in Latin America. Urban expansion is

most significant in Asia. DeFries et al. (2010) state that further urban population

growth is expected across the tropics, which will likely be associated with increased

pressure on tropical forests.

Timber extraction and logging account for more than 70% of total degrada-

tion in Latin America and Asia (Figure 3.5(C)). Fuelwood collection and charcoal

production is the main degradation driver for the African continent, and is of small

to moderate importance in Asia and Latin America. Uncontrolled fires are most

prominent in Latin America. In terms of absolute net forest area change over the

period 2000–10 (Figure 3.5(B)), the largest driver remains commercial agriculture,

with the largest deforested area located in Latin America. In Africa and Asia,

subsistence and commercial agriculture contribute roughly equally to forest area

change.

3.3.3 Analysis of drivers for each FT phase

The driver data are summarized and analyzed for four FT phases (Figure 3.6). The

relative area contribution of commercial agriculture rises until the late-transition

phase, after which it decreases again (Figure 3.6(A)). The relative importance

of subsistence agriculture remains fairly stable throughout the different phases,

while the relative importance of urban expansion and infrastructure is largest in

the post-transition phase. The total area deforested, however, is largest in the

early-transition phase and is driven by agriculture expansion (Figure 3.6(B)). This is

in line with the FT model, where forest area change rates level off toward the later

transition stages, and so total deforested area decreases as well. Intensification of

agriculture and urbanization is expected in the course of economic development and

decelerating deforestation, that generally accompanies the FT model (DeFries et al.,

2004; Mustard et al., 2004). Mining seems to play an important role in deforestation

in the pre-transition phase, but this is likely due to the presence of some resource-rich

countries with large remaining forest cover in this phase (e.g. Guyana, Democratic

Republic of the Congo).

Regarding degradation (Figure 3.6(C)), the relative degraded area caused by

timber and logging activities is most pronounced in all phases but decreases in

the late-transition phase. In the late-transition phase, fuelwood and charcoal as

well as uncontrolled fires are much more prominent. This can be attributed to the

fact the forest timber resources maybe largely exploited in the late transition and
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Figure 3.5: Continental-level estimations of the relative area proportion (A) and

absolute net forest area change (km2 yr–1 ; (FAO, 2010) for the period 2000–10 (B) of

deforestation drivers; and of the relative disturbed forest area fraction of degradation

drivers (C), based on data from 46 tropical and sub-tropical countries.

the remaining forest area receives increasing pressure for wood fuel, in particular

in many African woodland countries that are in the late-transition phase. In the

post-transition phase, economic development will likely cause a decline in fuelwood

collection and charcoal production as other energy sources become available, and

timber extraction is usually better managed in this phase, which will cause a decline

in the prevalence of fires.

3.3.4 Considerations and estimations for countries without driver

data

Overall, the patterns of deforestation drivers are quite similar in Africa and Asia,

while degradation patterns are more similar in Latin America and Asia (Figure 3.5).

Building upon this relationship and the usefulness of the continent and FT model
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Figure 3.6: Forest transition phase estimations of the relative area proportion (A), and

absolute net forest area change (km2 yr–1 ; (FAO, 2010) for the period 2000–10 (B) of

deforestation drivers, and of the relative disturbed forest area fraction of degradation

drivers (C), based on data from 46 tropical and sub-tropical countries.

proxies, the study has derived estimates for situations where currently limited country

data have been reported, in particular for post-transition countries in Africa and Latin

America, and the pre-transition countries in Asia. This provides an approach for

incorporating all countries and can provide useful best current estimates for global

policy development. The aim of the results presented in Table 3.6 is to estimate

the importance of deforestation and degradation drivers, based on currently available

data, for all 100 countries and thus to provide a pan-tropical assessment. It also

highlights some of the remaining data gaps (estimates with an annotation, see Table

3.6) that will be potentially filled as countries progress in the REDD+ readiness phase.

Table 3.5 in the methodology section indicates the procedures followed for annotated

estimates with no or limited data availability.
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3.4 Discussion and conclusion

The study analyzed national data from 46 tropical and sub-tropical countries

(reflecting ∼78% of the forest areas, and 81% of forest loss (in 2000–10) of all 100

tropical and sub-tropical countries, see Appendix 3.A) on drivers of deforestation and

forest degradation that have been provided as part of REDD+ readiness documents

and activities. Data on the drivers have been derived from national-level data, but,

given the variability and different levels of confidence for these data, the analysis

presented here uses aggregate averages with FT phases and continents as a proxy. As

the need to report on drivers of deforestation and degradation is a new requirement

for developing countries, the quality of the country data varies. Thus, the presented

results are only based on aggregated data that allow for a pan-tropical assessment of

the importance of different drivers, stratified by phases of the forest transition model

and by continent.

The results highlight that commercial agriculture is the most prevalent deforestation

driver, accounting for 40% of deforestation and most prominent in the early-transition

phase. The other important land use is local/subsistence agriculture, which is related

to 33% of deforestation. Other drivers are of less importance, with mining accounting

for 7%, infrastructure for 10% and urban expansion for 10% of the total. Thus,

according to this study, agriculture alone causes 73% of all deforestation, which is

in line with findings of Geist and Lambin (2002). The importance of deforestation

drivers varies for the different FT phases and for different continents. For decades the

common view was that growing populations of shifting cultivators and smallholders

were the main driver of forest changes. More recently, it has been argued that

commercial actors play an increasingly larger role in the expansion of agriculture

into the forest (Geist and Lambin, 2002). This seems at least to be valid for the

Amazon region and Southeast Asia. Here agribusinesses, producing for international

markets (cattle ranching, soybean farming and oil palm plantations), were identified

as main drivers of post-1990 deforestation (Rudel et al., 2009; Boucher et al., 2011).

Looking at the development of deforestation drivers through time (Figure 3.6) the

contribution of commercial agriculture increases. Currently, deforestation in Africa is

still largely driven by small-scale subsistence activities (DeFries et al., 2010; Fisher,

2010), but this might change in the coming years. While the four African countries

with the largest forest areas (Democratic Republic of the Congo, Angola, Zambia

and Mozambique) (FAO, 2011a) are still in the pre- and early-transition phase,

forest loss rates and the influence of commercial globalized agriculture are expected

to increase, as these countries move to the next phase.
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Regarding forest degradation, timber extraction and logging are related to

about 52%, fuelwood collection and charcoal production 31%, uncontrolled fire

9% and livestock grazing 7% of forest degradation. The most prominent degra-

dation driver for the Latin American and Asian continents is timber extraction

and logging (>70%). Fuelwood collection and charcoal is the main degradation

driver for the African continent (48%). This emphasizes that local small-scale

activities (fuelwood collection, charcoal production and livestock grazing in forests)

are the most relevant in large parts of Africa, while in the majority of the other

country cases forest degradation is dominated by commercial wood extraction.

The importance of the fuelwood/charcoal driver decreases in the post-transition

phase. This can be explained by urbanization tied to economic development,

and a progressing reliance on other energy resources. Commercial timber and log-

ging activities on the other hand become more important in the post-transition phase.

The results presented here offer a first synthesis of REDD+ driven national-

level data reported by countries on forest change, supported by data from other

sources, to generate new understanding for national estimates of drivers of forest loss

and degradation. It highlights that the availability of quantitative data on drivers is

variable and still uncertain in many countries’ cases, with only 12 of 100 countries

being able to provide quantitative data, also highlighting the current limitations and

data gaps. This study used national estimates of forest loss based on the FAO Forest

Resource Assessment (FAO, 2010). However, other data sources are available, such

as the remote sensing based estimates of Hansen et al. (2010), which might divert

from the FAO estimates. One avenue of further research is assessing the sensitivity

of driver estimation to uncertainties related to these different datasets. In addition,

within the REDD+ context, the national driver data should ultimately be linked

to emissions. In a recent study by Houghton (2012), emission factors are linked

to specific drivers, and this can be used as a starting point for further research on

national emissions categorized by drivers.

Thus, this study focus on a larger area synthesis and also provided first coarse

estimates using the continent and FT model as a proxy in countries where no data

have been available so far: mainly to support current global policy synthesis. While

the UNFCCC (2010) encourages countries to further identify and describe REDD+

activities and drivers, it is expected that such national data will improve over

time. In particular, the increasing use of satellite remote sensing tools for national

monitoring will be a key data source that will allow for a better national-level

tracking of deforestation and forest degradation events and types, and the activities

that cause them (Gibbs et al., 2010; Hansen et al., 2010).
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3.A Appendix

Table 3.A1: Database of categorization and data sources for 100 tropical non-Annex I

countries. (Note. Data sources written in italics were available but not used due to the

coarser data scales. R-PIN: a Readiness Plan Idea Note is a report for the REDD+

financing mechanism of the Forest Carbon Partnership Facility (FCPF). R-PP: a

Readiness Preparation Proposal is a report which the selected countries have to prepare

as a follow up to the R-PIN (http://forestcarbonpartnership.org/fcp/). CIFOR:

country profile report focused on socio-economic context of REDD, by Center for

International Forestry Research (CIFOR). Matthews et al : country analysis of

deforestation and forest degradation drivers by Department of Energy and Climate

Change (DECC) of UK government (Matthews et al., 2010). NC: National

communication to the UNFCCC.

Country Continent Forest transition

phase

Data source Scale of

data source

Angola Africa Phase 2 (early

transition)

Matthews et al. Nominal

Antigua and Barbuda America Phase 3 (late

transition)

– –

Argentina America Phase 3 (late

transition)

R-PP

Matthews et al.

Ratio

Bahamas America Phase 1

(pre-transition)

– –

Bangladesh Asia Phase 3 (late

transition)

– –

Belize America Phase 2 (early

transition)

– –

Benin Africa Phase 3 (late

transition)

– –

Bhutan Asia Phase 1

(pre-transition)

– –

Bolivia America Phase 2 (early

transition)

R-Pin

CIFOR

(Matthews et

al.)

Ratio

Botswana Africa Phase 2 (early

transition)

– –

Brazil America Phase 2 (early

transition)

NC

Mongabay

(Matthews et

al.) CIFOR

Ratio

Burkina Faso Africa Phase 2 (early

transition)

– –

Continued on next page
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Table 3.A1 Continued from previous page

Country Continent Forest transition

phase

Data source Scale of

data source

Burundi Africa Phase 3 (late

transition)

– –

Cambodia Asia Phase 2 (early

transition)

R-PP

Matthews et al.

Ordinal

Cameroon Africa Phase 2 (early

transition)

CIFOR

Mongabay

(R-Pin)

(Matthews et

al.)

Ratio

Cape Verde Africa Phase 4

(post-transition)

– –

Central African

Republic

Africa Phase 2 (early

transition)

R-PP Ordinal

Chad Africa Phase 3 (late

transition)

– –

Chile America Phase 4

(post-transition)

R-Pin Nominal

China Asia Phase 4

(post-transition)

– –

Colombia America Phase 1

(pre-transition)

R-PP Ratio

Comoros Africa Phase 3 (late

transition)

– –

Congo Africa Phase 1

(pre-transition)

R-PP Ordinal

Costa Rica America Phase 4

(post-transition)

R-PP Nominal

Cote d’Ivoire Africa Phase 4

(post-transition)

– –

Cuba America Phase 4

(post-transition)

– –

Democratic Republic

of the Congo

Africa Phase 1

(pre-transition)

R-PP

Matthews et al.

Ordinal

Dominica America Phase 3 (late

transition)

– –

Dominican Republic America Phase 3 (late

transition)

– –

Ecuador America Phase 2 (early

transition)

Matthews et al. Nominal

El Salvador America Phase 3 (late

transition)

R-Pin Ordinal

Equatorial Guinea Africa Phase 2 (early

transition)

R-Pin Ordinal

Continued on next page
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Table 3.A1 Continued from previous page

Country Continent Forest transition

phase

Data source Scale of

data source

Eritrea Africa Phase 3 (late

transition)

– –

Ethiopia Africa Phase 3 (late

transition)

R-PP

Matthews et al.

Nominal

Fiji Asia Phase 2 (early

transition)

Carbon

Partnership

Ordinal

Gabon Africa Phase 1

(pre-transition)

R-PP

(Matthews et

al.)

Nominal

Gambia Africa Phase 4

(post-transition)

– –

Ghana Africa Phase 3 (late

transition)

R-PP Ratio

Guatemala America Phase 2 (early

transition)

R-PP Nominal

Guinea Africa Phase 2 (early

transition)

– –

Guinea-Bissau Africa Phase 2 (early

transition)

– –

Guyana America Phase 1

(pre-transition)

R-PP Interim

Report

Ratio

Haiti America Phase 3 (late

transition)

– –

Honduras America Phase 3 (late

transition)

R-Pin Nominal

India Asia Phase 4

(post-transition)

– –

Indonesia Asia Phase 2 (early

transition)

CIFOR

R-PP

NC (Mongabay)

(Matthews et

al.)

Ratio

Jamaica America Phase 2 (early

transition)

– –

Kenya Africa Phase 3 (late

transition)

R-PP Nominal

Lesotho Africa Phase 4

(post-transition)

– –

Lao People’s

Democratic Republic

Asia Phase 2 (early

transition)

R-PP

Matthews et al.

Nominal

Liberia Africa Phase 2 (early

transition)

R-PP Ordinal

Madagascar Africa Phase 2 (early

transition)

R-PP

Matthews et al.

Nominal

Continued on next page
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Table 3.A1 Continued from previous page

Country Continent Forest transition

phase

Data source Scale of

data source

Malawi Africa Phase 2 (early

transition)

– –

Malaysia Asia Phase 2 (early

transition)

Matthews et al. Ratio

Mali Africa Phase 3 (late

transition)

– –

Mauritania Africa Phase3 (late

transition)

– –

Mauritius Africa Phase 2 (early

transition)

– –

Mexico America Phase 3 (late

transition)

R-PP

Matthews et al.

Ratio

Micronesia (Federated

States of)

Asia Phase 1

(pre-transition)

– –

Mozambique Africa Phase 2 (early

transition)

R-Pin Nominal

Myanmar Asia Phase 3 (late

transition)

Matthews et al. Ordinal

Namibia Africa Phase 3 (late

transition)

– –

Nepal Asia Phase 3 (late

transition)

R-PP

Matthews et al.

Nominal

Nicaragua America Phase 2 (early

transition)

R-Pin Nominal

Niger Africa Phase 3 (late

transition)

– –

Nigeria Africa Phase 3 (late

transition)

– –

Pakistan Asia Phase 3 (late

transition)

– –

Palau Asia Phase1

(pre-transition)

– –

Panama America Phase 3 (late

transition)

R-PP Nominal

Papua New Guinea Asia Phase 2 (early

transition)

R-PP

Matthews et al.

Ratio

Paraguay America Phase 2 (early

transition)

R-Pin Nominal

Peru America Phase 1

(pre-transition)

R-PP

Matthews et al.

Ordinal

Philippines Asia Phase 4

(post-transition)

Matthews et al. Ordinal

Continued on next page



54 Deforestation and forest degradation drivers

Table 3.A1 Continued from previous page

Country Continent Forest transition

phase

Data source Scale of

data source

Rwanda Africa Phase 4

(post-transition)

– –

Saint Lucia America Phase 1

(pre-transition)

– –

Saint Vincent and the

Grenadines

America Phase 2 (early

transition)

– –

Samoa Asia Phase 1

(pre-transition)

– –

Sao Tome and

Principe

Africa Phase 3 (late

transition)

– –

Senegal Africa Phase 2 (early

transition)

– –

Sierra Leone Africa Phase 2 (early

transition)

– –

Singapore Asia Phase 3 (late

transition)

– –

Solomon islands Asia Phase 2 (early

transition)

– –

Somalia Africa Phase 3 (late

transition)

– –

South Africa Africa Phase 3 (late

transition)

– –

Sri Lanka Asia Phase 2 (early

transition)

– –

Sudan Africa Phase 3 (late

transition)

Matthews et al. Nominal

Surinam America Phase 1

(pre-transition)

R-PP Nominal

Swaziland Africa Phase 4

(post-transition)

– –

Tanzania Africa Phase 2 (early

transition)

R-PP

Matthews et al.

Ordinal

Thailand Asia Phase 4

(post-transition)

R-Pin

Matthews et al.

Ordinal

Timor-Leste Asia Phase 2 (early

transition)

– –

Togo Africa Phase 3 (late

transition)

– –

Trinidad and Tobago America Phase 2 (early

transition)

– –

Uganda Africa Phase 2 (early

transition)

R-PP

Matthews et al.

Ordinal

Continued on next page
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Table 3.A1 Continued from previous page

Country Continent Forest transition

phase

Data source Scale of

data source

Uruguay Africa Phase 4

(post-transition)

– –

Vanuatu Asia Phase 3 (late

transition)

R-Pin Nominal

Venezuela America Phase 2 (early

transition)

– –

Vietnam Asia Phase 4

(post-transition)

CIFOR

R-PP

(Matthews et

al.)

Ratio

Zambia Africa Phase 2 (early

transition)

Matthews et al. Nominal

Zimbabwe Africa Phase 2 (early

transition)

– –

Concluded
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Abstract

Land use change in South America, mainly deforestation, is a large source of anthro-

pogenic CO2 emissions. Identifying and addressing the causes or drivers of anthro-

pogenic forest change is considered crucial for global climate change mitigation. Few

countries however, monitor deforestation drivers in a systematic manner. National-

level quantitative spatially explicit information on drivers is often lacking. This study

quantifies proximate drivers of deforestation and related carbon losses in South Amer-

ica based on remote sensing time series in a systematic, spatially explicit manner.

Deforestation areas were derived from the 2010 global remote sensing survey of the

Food and Agricultural Organisation Forest Resource Assessment. To assess proxi-

mate drivers, land use following deforestation was assigned by visual interpretation

of high-resolution satellite imagery. To estimate gross carbon losses from deforesta-

tion, default Tier 1 biomass levels per country and ecozone were used. Pasture was

the dominant driver of forest area (71.2%) and related carbon loss (71.6%) in South

America, followed by commercial cropland (14% and 12.1% respectively). Hotspots

of deforestation due to pasture occurred in Northern Argentina, Western Paraguay,

and along the arc of deforestation in Brazil where they gradually moved into higher

biomass forests causing additional carbon losses. Deforestation driven by commercial

cropland increased in time, with hotspots occurring in Brazil (Mato Grosso State),

Northern Argentina, Eastern Paraguay and Central Bolivia. Infrastructure, such as

urban expansion and roads, contributed little as proximate drivers of forest area loss

(1.7%). Our findings contribute to the understanding of drivers of deforestation and

related carbon losses in South America, and are comparable at the national, regional

and continental level. In addition, they support the development of national REDD+

interventions and forest monitoring systems, and provide valuable input for statistical

analysis and modelling of underlying drivers of deforestation.
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4.1 Introduction

Land use change, mainly deforestation, is the second largest source of anthropogenic

CO2 emissions, and causes a net reduction of carbon storage in terrestrial ecosystems

as well as other environmental impacts such as biodiversity loss (IPCC, 2013).

The vast majority of land use change occurs in tropical regions, with Central and

South America having the highest net emissions from land use change from the

1980s to 2000s (IPCC, 2013). Reducing emissions from deforestation and forest

degradation, and enhancing carbon stocks (REDD+) in (sub-) tropical countries is

thus a necessary component of global climate change mitigation. Within the REDD+

framework, participating countries are given incentives to develop national strategies

and implementation plans that reduce emissions and enhance sinks from forests

and to invest in low carbon development pathways. Identifying and addressing the

causes or drivers of anthropogenic forest change is considered crucial within the

REDD+ framework (UNFCCC, 2014), and should be incorporated in national forest

monitoring systems.

Few countries, however, monitor deforestation drivers in a systematic manner

and national-level quantitative spatially explicit information on drivers is often

lacking (De Sy et al., 2012; Hosonuma et al., 2012). The distinction between

proximate and underlying drivers is important for assessment purposes. Proximate

or direct drivers of deforestation are human activities that directly affect the loss of

forests (Geist and Lambin, 2001), and can be assessed by linking forest area change to

specific human activities and follow-up land use (De Sy et al., 2012). Remote sensing

can provide essential information on the intensity, type and pattern of deforestation,

and on the follow-up land use in order to attribute deforestation to specific human

activities (Gibbs et al., 2010; De Sy et al., 2012; GOFC-GOLD, 2014). Statistical

analysis and modelling of this information, in turn, can be useful for the assess-

ment of underlying drivers (Kissinger et al., 2012) which are complex interactions of

social, political, economic, technological and cultural forces (Geist and Lambin, 2001).

Forest loss and related carbon losses in South America have been extensively

studied from the continental to the (sub)national scale (DeFries et al., 2002; Baccini

et al., 2012; Eva et al., 2012; Harris et al., 2012; Hansen et al., 2013; Achard et al.,

2014; Beuchle et al., 2015; Velasco Gomez et al., 2015) but the link to specific

proximate drivers is not made. Clark et al. (2012) and Graesser et al. (2015) studied

land use change across the South American continent in a systematic manner with

MODIS imagery which gives some insight into drivers of deforestation. MODIS

imagery, however, cannot accurately detect small-scale agricultural clearings (<25



60 Land use patterns and related carbon losses in South America

ha) and infrastructure expansion due to its low spatial resolution (GOFC-GOLD,

2014). Other research that links forest loss or forest carbon emissions to drivers

used aggregated continental scale (Geist and Lambin, 2002; Hosonuma et al., 2012;

Houghton, 2012) or local scale data (Morton et al., 2006; Barona et al., 2010; Clark

et al., 2010; Müller et al., 2012, 2014; Gibbs et al., 2015). Several studies link overall

deforestation rates directly to underlying drivers (DeFries et al., 2010; Malingreau

et al., 2012). Linking driver-specific deforestation rates (e.g. agricultural expansion)

to relevant underlying drivers (e.g. agricultural commodity prices) can provide more

insight into complex deforestation pathways.

Although it is clear that agricultural expansion is the main driver of defor-

estation in South America (Geist and Lambin, 2002; Gibbs et al., 2010; Hosonuma

et al., 2012; Houghton, 2012), less is known about the magnitude and the spatial

and temporal distribution of different types of agricultural and non-agricultural

drivers contributing to forest loss and related carbon emissions. Gaining insight in

spatiotemporal dynamics is essential since drivers of forest loss vary from region to

region and change over time (Rudel et al., 2009; Boucher et al., 2011).

Accordingly, our research aims to quantify proximate drivers of deforestation,

their spatiotemporal dynamics and related carbon losses in South America at

continental and national scales using a comprehensive, systematic remote sensing

analysis. This new dataset will provide insight into complex deforestation pathways

and be a valuable source of information for international climate change mitigation

and REDD+ monitoring strategies.

4.2 Data and methods

The 2010 global Remote Sensing Survey of the United Nations Food and Agricultural

Organisation (FAO) Forest Resource Assessment was used as input to determine

deforestation areas (Section 4.2.1). To assess proximate drivers, land use following

deforestation was assigned by visual interpretation of high-resolution satellite imagery

(Section 4.2.2). To estimate gross carbon losses from deforestation, default Tier 1

biomass levels per country and eco-zone were used (Section 4.2.3).

4.2.1 Forest area loss

In a coordinated effort, the European Joint Research Centre (JRC) and the FAO

produced estimates of forest land use change from 1990 to 2005 for the Remote Sens-
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ing Survey of the Global Forest Resources Assessment 2010 of FAO (FAO FRA-2010

RSS) (FAO & JRC, 2012). These estimates were based on a systematic sampling

design with sample units of 10 × 10 km centred on each degree latitude–longitude

confluence point (Eva et al., 2012; FAO & JRC, 2012; Achard et al., 2014).

Unfortunately the FAO FRA-2010 RSS currently only covers a limited time

period from 1990 to 2005. As mentioned in the introduction, other deforestation

datasets are available (e.g. Hansen et al. (2013)) that provide wall-to-wall data

extending to 2010 or even later. The FAO FRA-2010 RSS, however, employs a

land use classification that is better suited for assessing drivers than a land cover

classification. In addition, the FAO FRA-2010 RSS is a global study with consistent

methods and time series that could be extended to include more recent periods.

Despite the time period limitation, and in view of the paucity of quantitative data

on deforestation drivers and related carbon losses, this study provides an unique and

relevant overview of the drivers of deforestation in South America, as well as showing

that this is achievable with a sample-based time series approach.

We briefly describe the methodology of the FAO FRA-2010 RSS dataset (FAO

& JRC, 2012), because it served as input data for our study. Medium resolution

satellite imagery (mainly Landsat) was acquired for each sample unit, as close as

possible to reference years 1990, 2000 and 2005. After preprocessing, the satellite

imagery was used in an automated multi-date image segmentation to subdivide

the sample unit (10 000 ha) into delineated areas (polygons) with similar spectral

and structural attributes. The target minimum mapping unit was 5 ha. On the

segmented imagery, a supervised automated land cover classification was carried out,

which later was converted to a land use classification with the help of expert human

interpretation. The main land use classes were Forest, Other wooded land, and Other

land, which are based on FAO forest definitions (FAO, 2010). Areas lacking data due

to clouds, poor satellite coverage or low quality imagery in any of the reference years

were considered an unbiased loss of information and were not analysed. This sample

grid provided 1542 sample units in South America, of which 1392 sample units had

data for all years and were consequently processed (Figure 4.1).

4.2.2 Follow-up land use

Land use following a deforestation event was assigned a more detailed land use class,

i.e. follow-up land use class, as a proxy for the proximate cause of change. Assessing

land use is more challenging than assessing land cover, as factors other than spectral

reflectance are important. So, expert human interpretation and relatively fine-scale
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Figure 4.1: Location of sample units (FAO & JRC, 2012), and FAO ecological zones

(FAO, 2001) in South America.

satellite imagery are required to interpret the proximate causes of deforestation. To

assign follow-up land use in this study, we used parameters such as land cover, the

presence of certain features within or near changed areas (e.g. crop rows, watering

holes, fences) and to a limited extent the spatial context and location of change (e.g.

distance to settlements, concessions).

Table 4.1 gives an overview of the follow-up land use classes and their descrip-

tions, that we used as proxies for the proximate deforestation driver. These land use

classes are based on the proximate deforestation drivers as described in Hosonuma
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et al. (2012) i.e. agricultural expansion, mining, infrastructural and urban expansion.

The class ‘other land use’ was added for deforested areas where no clear human

activity could be distinguished. The ‘other land use’ subclasses are chosen in such

a way that our classification could be translated to IPCC land categories (e.g.

wetlands, grasslands) (IPCC, 2013) and FAO land use definitions (e.g. other wooded

land) (FAO, 2010). The water class was added to account for forest loss due to

inundation by lakes, meandering rivers and dam reservoirs.

We have used several key criteria to classify land uses. Cropland can be detected

by plough lines, rectilinear shapes, and nearby roads and infrastructure (Clark

et al., 2010). We used field size as a proxy for agricultural development and

mechanisation (Kuemmerle et al., 2013; Fritz et al., 2015). We classified cropland

with very small to small fields (<2 ha) as smallholder cropland, and cropland with

medium to large fields (>2 ha) as commercial cropland (>2 ha). Tree crops can

be recognised by perennial vegetation and the regular spacing of the tree plants

(Clark et al., 2010). Pasture can be distinguished by trails and watering holes, and

is usually more heterogeneous in colour and texture than cropland (Clark et al., 2010).

In order to achieve a detailed follow-up land use classification, we performed

the following steps:

1. We selected those polygons of each sample unit within the FAO FRA-2010 RSS

dataset that were deforested, either in the interval between 1990 and 2000 or

2000 and 2005 according to the FAO FRA-2010 RSS classification, i.e. changed

from Forest to Other wooded land or to Other land.

2. Each of these deforested polygons was assigned a single follow-up land use class

(Table 4.1) by means of visual interpretation by an expert. If more than one

land use was present, the most dominant one in terms of area or human activity

(e.g. a road with shrubs on the side is assigned road) was chosen. For the visual

interpretation a variety of satellite imagery was used such as Landsat, Google

Earth imagery (Google Earth, 2015) and ESRI world imagery basemaps. For

the Brazilian Amazon, Terraclass 2008 data (Coutinho et al., 2013) was used

to help with the interpretation. We used satellite imagery acquired as close as

possible to the deforestation period (e.g. 2000 or 2005).

3. In addition to follow-up land use, the source and year of the satellite imagery

used for the interpretation (e.g. Google Earth 2009) and the confidence (low–

medium–high) in the interpretation was documented.

4. For the areas with low confidence, e.g. due to low resolution imagery, land use

and remote sensing experts with local knowledge were consulted. These experts

were provided with the follow-up land use classification and descriptions in order
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Table 4.1: Follow-up land use classes and their description.

Follow-up land use Description

Mixed agriculture Mix of agricultural land uses

Commercial crop Land under cultivation for crops, characterised by medium

(2–20 ha) to large (>20 ha) field sizes

Smallholder crop Land under cultivation for crops, characterised by very small

(<0.5 ha) to small field sizes (0.5–2 ha)

Tree crops Miscellaneous tree crops (e.g. coffee, palm trees), orchards

and grovesA
g
ri

cu
lt

u
re

Pasture Land used predominantly for grazing; in either

managed/cultivated (pastures) or natural (grazing land)

setting; includes grazed woodlands

In
fr

a
st

ru
ct

u
re

Urban and Settlements Urban, settlements and other residential areas

Roads and built-up Roads, built-up areas and other transport, industrial and

commercial infrastructures

Mining Land used for extractive subsurface and surface mining

activities (e.g. underground and strip mines, quarries and

gravel pits), including all associated surface infrastructure

Other land use (general) All land that is not classified as forest, agriculture,

infrastructure, mining and water

Bare land Barren land (exposed soil, sand, or rocks)

Other wooded land Land not classified as forest, spanning more than 0.5 ha;

with trees higher than 5 m and canopy cover of 5%–10%, or

trees able to reach these thresholds in situ, or with a

combined cover of shrubs, bushes and trees above 10%. It

does not include land that is predominantly under

agricultural or urban land use (FAO, 2010)

Grass and herbaceous Land covered with (natural) herbaceous vegetation or grasses

O
th

er
la

n
d

u
se

Wetlands Areas of natural vegetation growing in shallow water or

seasonally flooded environments. This category includes

Marshes, swamps, and bogs

Water Natural (river, lake etc) or man-made waterbodies (e.g.

reservoirs)

Unknown land use All land that cannot be classified (e.g. due to low resolution

imagery)
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to classify the areas based on their local knowledge, and additional sources

available to them such as high resolution satellite imagery and land use maps.

5. Finally, all areas were double checked, and if necessary corrected for errors and

consistency. This means each forest loss area has been looked at least twice by

one or more experts.

In the end, 77.8% of follow-up land use classification was assigned with high confi-

dence, 17.6% with medium confidence and only 4.6% with low confidence. In general,

small-scale land uses, such as smallholder cropland, were classified with less confi-

dence due to their smaller scale and because these land uses occur more in locations

with higher cloud cover and with lower availability of high resolution imagery (An-

dean countries, Amazon rainforest). In addition, the class ‘other land use’ also had a

higher portion of low confidence classification since it is not always possible to assess

whether these areas are used for agriculture. For all land uses, the confidence level

was also influenced by the date of the available imagery.

4.2.3 Carbon losses

Gross carbon loss per sample unit was calculated using spatially explicit forest

biomass information. A recent study by Langner et al. (2014) combined a global

forest mask derived from the Globcover-2009 map (Bontemps et al., 2011), FAO

ecological zones (eco-zones; FAO (2001)) and the pan-tropical above ground biomass

(AGB) datasets of Saatchi (Saatchi et al., 2011b) and Baccini (Baccini et al., 2012)

to derive mean AGB levels in forests (for intact, non-intact and overall forest) per

eco-zone and country as an alternative to IPCC Tier 1 values.

We used the country eco-zone AGB forest values derived from the combined

Saatchi and Baccini AGB maps (Table 3 in supplementary information of Langner

et al. (2014)). We used AGB values for the overall forest category since we did not

have information on whether the deforested area had intact or non-intact forest.

For those AGB forest values where the number of samples per eco-zone was too

small, we used the combined AGB values of that eco-zone at the continental (South

America) or tropical scale. If these AGB values were also not present we used

IPCC Tier 1 AGB values for America (IPCC, 2006). For Argentina and Chile,

which were not included in Langner et al. (2014), we used the same procedure. Ta-

ble 4.2 provides an overview of the AGB values per country eco-zone used in our study.

We derived total biomass from AGB by applying equation 4.1 used by Saatchi

et al. (2011b):
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Total Biomass = AGB + 0.489 ∗AGB0.89 (4.1)

Total carbon was considered to be 50% of total biomass as in Achard et al. (2014).

We considered only the maximum potential loss of carbon stock from deforestation,

assuming a carbon stock of zero in potential follow-up land uses, that could be emitted

to the atmosphere over a long time period. We did not account for soil carbon

loss.

4.2.4 Aggregation to regional scale

Deforestation and related carbon losses per driver were scaled up from the sample

to the continental and national scales using a statistical extrapolation similar to

FRA-2010 RSS (FAO & JRC, 2012). Cloudy areas were considered an unbiased loss

of data, with the assumption that cloudy areas had the same proportion of land uses

as cloud-free areas within a single sample unit. This was accomplished by considering

the ratio of forest area or carbon loss per driver proportional to the ‘visible land’ area

of the sample unit. The ‘visible land’ area was the full sample unit area (100 km2)

minus cloudy and ‘permanent water’ areas (i.e. sea or inland water in all considered

years).

Estimates of forest area and carbon losses per driver for each sample unit for

the two periods (1990–2000 and 2000–2005) were annualised based on the acquisition

dates of the imagery for that sample unit, with the assumption that the change rates

were constant during the two time intervals. The average time length across all

sample units was 11.9 years for the 1990–2000 epoch and 4.9 years for the 2000–2005

epoch.

Each sample unit was assigned a weight (wi) (4.2), equal to the cosine of its

latitude (coslati), because the actual area represented by a sample unit decreased

with latitude due to the curvature of Earth:

wi =
coslati∑
i coslati

(4.2)

The proportions of forest area changes and carbon losses per driver were extrap-

olated to a given region (the full continent or one specific country) using the

Horvitz–Thompson direct estimator (Särndal et al., 1992) (4.3)
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xc =
1

M
×

n∑
i=0

(wi × xic) , (4.3)

where

M =
n∑

i=0

wi (4.4)

and where xic is the proportion of forest cover change or carbon loss in the ith sample

unit and wi is the weight of the ith sample unit. The total area of change or total

loss of carbon for this region (Driverregion) is then obtained from:

Driverregion = A× xc, (4.5)

where A is the total area of the region (excluding permanent water).

We used the usual variance estimation of the mean for this systematic sampling as

follows:

s2 =
1

M
×

n∑
i=0

wi × (xc − xic)
2

(4.6)

The standard error (SE) is then calculated as:

SE = A× s√
n

(4.7)

The SE represents only the sampling error. Countries or states with a SE of more

than 35% for forest area and carbon losses estimates were not reported at the national

scale (i.e. French Guyana, Guyana, Ecuador and Chile).

4.3 Results

4.3.1 Deforestation and carbon losses per driver from 1990 to 2005

We estimated that total deforested area and related gross carbon losses in South

America from 1990 to 2005 reached 57.7 million ha and 6 460 Tg C, respectively
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Table 4.3: Estimates of deforested area (103 ha (SE) and per cent of total) and related

carbon loss (Tg C (SE) and per cent of total) per follow-up land use from 1990 to 2005.

Area Carbon loss

Follow-up land use 103 ha (SE) % Tg C (SE) %

Mixed agriculture 470 (233) 0.8 57 (32) 0.9

Smallholder crop 1 168 (272) 2.0 173 (42) 2.7

Commercial crop 8 100 (1463) 14.0 782 (162) 12.1

Tree crops 243 (75) 0.4 20 (6) 0.3

Pasture 41 118 (3244) 71.2 4 624 (431) 71.6

Agriculture total 51 099 (3618) 88.5 5 657 (472) 87.6

Infrastructure 985 (346) 1.7 124 (52) 1.9

Other land use 3 770 (517) 6.5 433 (65) 6.7

Water 1 748 (543) 3.0 228 (79) 3.5

Unknown land use 131 (108) 0.2 18 (15) 0.3

Other total 6 634 (897) 11.5 802 (123) 12.4

Total 57 733 (3837) 100 6 460 (501) 100

(Table 4.3). Agriculture was the dominant follow-up land use (88.5%), in partic-

ular pasture (71.2%) and to a lesser extent commercial cropland (14.0%). In the

non-agricultural category, other land use was the largest driver (6.5%). This class

can be further subdivided in other wooded land (4.4%), wetlands (1.4%), grass and

herbaceous (0.6%) and bare land (0.1%). The contribution of smallholder cropland

(2.0%), infrastructure (1.7%) and water (3.0%) was small. Within the infrastructure

class, urban and settlements accounted for 0.9%, roads and built-up areas for 0.6%

and mining for 0.2% of deforestation. The water driver can be divided into natural

(1.3%) and man-made water bodies (1.8%). Unknown land use only represented a

small fraction (0.2%) of total deforestation.

The spatially explicit nature of our dataset shows the distribution of follow-up

land use across the continent (Figure 4.2(a)). The Brazilian arc of deforestation

was dominated by pasture expansion, except for a commercial crop agriculture

cluster in Mato Grosso State. Considerable deforestation, mainly due to the

expansion of pasture, occurred in the Brazilian Pantanal and Cerrado ecoregions.

Toward the Atlantic coast, in the Mata Atlântica ecoregion, the follow-up land use

became more diverse with a mix of pasture, commercial cropland and tree crops.

Pasture expansion was also an important driver of deforestation in the Western

Paraguayan and Argentinean Chaco. Commercial crop expansion was prevalent in

Eastern Paraguay, Central Bolivia (around La Paz) and Northern Argentina; while
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smallholder crop expansion occurred mostly in the Andean region (Peru, Ecuador,

Colombia, Venezuela and Bolivia).

Forest biomass levels in East Brazil, Paraguay and Argentina were much lower

than in the Brazilian Amazon (Figure 4.2(b)). This influenced the relative contribu-

tion of follow-up land uses for forest carbon losses as compared to deforested area

(Table 4.3). For example, commercial crop agriculture proportionally contributed

more to deforested area (14.0%) than to forest carbon losses (12.1%) indicating that

this follow-up land use, as well as tree crops, occurred more in lower forest biomass

eco-zones as compared to pasture, mixed and smallholder crop agriculture, water

and infrastructure.

Deforestation drivers at the national level varied in their contribution to de-

forestation (Figure 4.3, for more detail see Table 4.A1 in Appendix 4.A). Pasture

expansion caused at least 35% or more of forest loss in all countries except in

Peru (19.9%) where smallholder cropland (41.9%) was a more dominant driver.

In Argentina deforestation caused by commercial cropland (43.4%) was almost as

dominant as pasture driven deforestation (44.6%). Commercial crop expansion

could also be found in Paraguay (25.5%) and Bolivia (27.2%), while in Colombia

smallholder crop and mixed agriculture (23.6% together) was more important for

deforestation. In Bolivia one fifth (20.0%) of deforestation was followed up by other

land use, mostly wetlands (13.4%) and other wooded land (6.0%). For other land

use in Peru (16.2%) most was other wooded land (8.9%) and wetlands (7.3%). In

Colombia (12.7%) and Venezuela (13.7%) other land use, mainly other wooded land

also played a considerable role in deforestation. In Peru infrastructure was a relatively

large driver (5.6%) compared to the other countries, due to mining activities (2.0%)

and substantial urban, roads and built-up development (3.7%). Water as a follow-up

land use contributed considerably to deforestation in Venezuela (38.2%) due to two

large dam projects. In Peru (14.2%) and Bolivia (5.9%) deforestation followed up by

water was the result of natural processes such as meandering rivers.

Brazil emitted the most carbon from 1990 to 2005 (4372 Tg C), followed by Bolivia

(488 Tg C), Argentina (297 Tg C) and Colombia (289 Tg C). Paraguay (179 Tg C),

Venezuela (174 Tg C) and Peru (170 Tg C) had less forest carbon losses in the same

period (Table 4.A2 in Appendix 4.A).
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Figure 4.2: (a) Forest area loss (ha) and (b) related forest carbon losses (Mg C) per

follow-up land use from 1990 to 2005, in South America.

4.3.2 Trends in annual deforestation and carbon losses per driver from

1990 to 2000 and 2000 to 2005

Annual deforestation increased from 3.62 to 4.46 million ha yr–1 between the periods

1990–2000 and 2000–2005, while the related carbon losses increased from 0.41 to

0.50 Pg C yr–1 (Table 4.4). The increase in carbon losses was partly driven by

an increase of forest area loss due to commercial cropland, pasture and other land

use. Water, mixed and smallholder crop agriculture, on the other hand, decreased as

drivers of deforestation. Not all the increase in carbon losses can be attributed to an

increase in forest area loss alone. Pasture (+9.17 Tg C yr–1) and commercial crop

expansion (+8.79 Tg C yr–1) caused additional carbon losses by occurring more in

higher forest biomass ecozones in the 2nd period, only minimally countered by other
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Figure 4.3: Area proportion of deforestation driver from 1990 to 2005 (%) at the

national scale.

drivers occurring more in lower forest biomass eco-zones (Table 4.4).

Clearly, the spatial distribution of hotspots of deforestation and their change in time

has an influence on forest carbon losses. Moving hotspots of the two main defor-

estation drivers, crop agriculture (commercial and smallholder) (Figure 4.4(a)) and

pasture (Figure 4.4(b)), illustrate this effect. Pasture expansion in Brazil occurred

more and deeper in the Amazon (especially Rondônia and Pará States) in the 2nd

period, and less in lower forest biomass ecoregions of the Cerrado and Mata Atlântica.

In Paraguay, pasture expansion into forests moved away from urbanized areas in the

first period to mainly the Alto Chaco region in the second period. Hot spots of crop

expansion occurred in Mato Grosso State and the lowlands around Santa Cruz in

Bolivia mainly in the 2nd period, while in Southern Paraguay crop expansion moved

from Alto Paraná Department to central Paraguay. In Peru we see both crop and

pasture related deforestation occurring deeper in the Amazon in the second period.

In Northern Argentina, pasture and crop expansion occurred mainly near important

highways.
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Table 4.4: Estimates of deforested area (103 ha yr–1 (SE)) and related carbon loss (Tg

C yr–1 (SE)) per follow-up land use for 1990–2000 and 2000–2005, and the change in

carbon loss (Tg C yr–1) in the second period additional to the change in forest area loss.

1990–2000 2000–2005 Additional

change in

carbon loss
Follow-up

land use

Area Carbon loss Area Carbon loss

Mixed

agriculture

36 (21) 5 (3) 25 (12) 2 (1) -0.78

Smallholder

crop

85 (22) 13 (3) 58 (13) 9 (2) 0.02

Commercial

crop

409 (84) 37 (7) 802 (180) 82 (21) 8.79

Tree crops 13 (3) 1 (0) 22 (11) 2 (1) -0.46

Pasture 2 642 (224) 295 (30) 3 062 (307) 351 (39) 9.17

Agriculture

total

3186 (244) 351 (31) 3969 (359) 445 (45) 16.73

Infrastructure 64 (25) 8 (4) 62 (17) 7 (2) -0.31

Other land

use

232 (38) 27 (5) 324 (60) 36 (6) -2.07

Water 128 (47) 18 (7) 93 (42) 11 (4) -2.33

Unknown

land use

9 (7) 1 (1) 9 (7) 1 (1) -0.04

Other total 433 (73) 54 (10) 489 (77) 55 (8) -4.75

Total 3 619 (261) 405 (34) 4 458 (382) 500 (48) 11.98

4.4 Discussion

In this study we quantified proximate drivers of deforestation and related carbon

losses in South America between 1990 and 2005. Previous estimates of deforestation

ranged from 3.74 to 4.09 million ha yr–1 for the 1990s, and 3.28 to 4.87 million ha

yr–1 for (part of) the 2000s (DeFries et al., 2002; Hansen et al., 2008b, 2010; Eva

et al., 2012; Harris et al., 2012; Achard et al., 2014; FAO, 2015). Previous estimates

for carbon losses from deforestation ranged from 306 to 698 Pg C y–1 for the 1990s,

and 322 to 845 Pg C yr–1 for (part of) the 2000s (DeFries et al., 2002; Baccini

et al., 2012; Eva et al., 2012; Harris et al., 2012; Houghton, 2012; Achard et al.,

2014; Tyukavina et al., 2015). Our estimates of deforestation and related carbon

emissions are of similar magnitude, but comparisons between studies are difficult due

to differences in methodology, forest definition, considered time frame and region
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Figure 4.4: Changes in annual rate of deforestation (ha yr–1) followed up by crop

agriculture (a) and pasture (b) between the periods 1990–2000 and 2000–2005, in South

America.

(Keenan et al., 2015). The latter is also the case for previous studies (Hosonuma

et al., 2012; Houghton, 2012) on proximate drivers of deforestation.

Agricultural expansion, in particular pasture, was the most dominant driver of

deforestation in South America. Gross carbon losses from forest conversion to

pasture were 4 624 Tg C from 1990 to 2005. In the same time frame, carbon losses

amounted to 782 Tg C for commercial crop agriculture and 173 Tg C for smallholder

crop agriculture. Before the 1990s deforestation was mostly attributed to shifting

cultivators and smallholder colonists (Rudel et al., 2009). More recent decades saw

the rise of large-scale agribusinesses, increasingly producing for international markets,

as the main agents of deforestation (Rudel, 2007; Rudel et al., 2009; Pacheco and
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Poccard-Chapuis, 2012). Our data confirmed this, especially in Brazil, Argentina,

Paraguay and Bolivia where large ranches and commercial crop agriculture were the

main drivers. In the Andean countries (Peru, Colombia and Venezuela) smallholder

and mixed agriculture were still important drivers of deforestation.

Our study shows that the annual rate of deforestation driven by commercial

crops doubled in the early 2000s compared to the 1990s. Although much of the

increase in deforestation in the early 2000s could be attributed to commercial crop

expansion, this driver contributed to only 14% of overall deforestation in South

America. Our study identified hotspots of forest conversion for crop agriculture

in Mato Grosso State (Brazil), Bolivia, Argentina and Paraguay. Several studies

showed that the expansion of commercial crops (e.g. soybean) increased substantially

in these regions (Morton et al., 2006; Macedo et al., 2012; Müller et al., 2012;

Graesser et al., 2015). A large part of this expansion, however, was conversion

of pasture and not forests (Graesser et al., 2015). Even so, crop expansion still

places direct pressure on forests (Morton et al., 2006) and can be an indirect

driver of land use change by pushing pasture lands forward into the forest frontier

(Nepstad et al., 2006; Barona et al., 2010; Arima et al., 2011). These dynamics

changed after 2005 when deforestation slowed down in the Amazon, particularly in

Mato Grosso State, coinciding with a fall in crop commodity prices and the imple-

mentation of policy measures such as improved monitoring and enforcement, and

other control actions (Macedo et al., 2012; Malingreau et al., 2012; Gibbs et al., 2015).

Hotspots of pasture- and crop-driven deforestation moved into higher forest

biomass eco-zones in the early 2000s which caused additional carbon losses. Efforts

to reduce carbon emissions might be in vain when countries only concentrate on

reducing the deforested area without taking into account variations in forest biomass.

However, beyond carbon emissions, the environmental impact (e.g. biodiversity

loss) of high deforestation rates in low-carbon biomes such as the Cerrado in Brazil

and the Chaco in Paraguay is considerable. This emphasises the importance of

spatial and temporal information, not only on drivers of deforestation but also on

biodiversity and other safeguards, in designing effective REDD+ interventions. In

this study we used mean forest biomass values per eco-zone to estimate carbon losses

as a simple and conservative approach (Langner et al., 2014). In reality, however,

there are gradations of forest biomass within eco-zones (Saatchi et al., 2011b; Baccini

et al., 2012) which might influence the spatial and temporal dynamics of carbon

losses from different drivers.

Infrastructure, including urban expansion and roads, contributed little (1.7%)

to deforestation as a direct driver. As an indirect driver, however, urbanisation can
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contribute significantly to deforestation because it changes consumption patterns and

increases the demand for agricultural products (DeFries et al., 2010). Better road

infrastructure in the Amazon opened up the forest frontier and expanded the market

for cattle (Rudel, 2007). In Peru, infrastructure was a relatively important driver,

mostly due to (illegal) mining activities (2.0% of deforestation) which in addition

to forest carbon losses also causes other environmental impacts (Swenson et al.,

2011; Asner et al., 2013). The example of Venezuela shows that large infrastructure

projects, such as dams, can make a substantial contribution (37.8% of deforestation)

to national forest carbon emissions.

Deforestation drivers and their relative importance on the national level emphasise

the need to understand drivers to design effective REDD+ policies. Countries have

a variety of policy- and incentive-based interventions at their disposal (Angelsen

and Brockhaus, 2009; Kissinger et al., 2012) to affect local to national drivers,

which ideally should be adapted to the characteristics of these drivers. For example,

countries mostly affected by deforestation due to commercial agriculture might opt

for different interventions than countries mostly affected by deforestation due to

smallholder agriculture. Most drivers of deforestation originate outside the forest

sector which indicates that REDD+ interventions should include non-forest sectors

such as the agricultural, urban and mining sectors instead of only focusing on forest

interventions such as sustainable forest management. Salvini et al. (2014) found that

most countries focus more on forest degradation than on deforestation interventions,

and that countries with higher quality data on drivers include more non-forest sector

interventions (e.g. agricultural intensification) in their REDD+ readiness docu-

ments. Clearly, REDD+ countries are struggling with designing effective REDD+

policy interventions partly due to limited understanding of their deforestation drivers.

Unfortunately, our data only covers the timeframe between 1990 and 2005.

This limits the applicability for designing up-to-date REDD+ strategies since, as

discussed above, the drivers and processes of deforestation in South America have

undergone changes after 2005. An important aspect to consider for further research

is the influence of the temporal resolution on the follow-up land use. High resolution

imagery is usually only available for few points in time within the 1990–2005 time-

frame. The immediate follow-up land uses might be missed if a land use transition

(e.g. pasture to crop) has occurred between the deforestation event and the closest

available high-resolution imagery. In contrast, some land uses only become apparent

after some time has passed (e.g. cleared land for urban development). Most REDD+

countries, however, have low capacities for forest monitoring (Romijn et al., 2012)

and often do not have spatial quantitative data on drivers of deforestation at their

disposal (Hosonuma et al., 2012). This study provides insight into specific drivers
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of deforestation that can help REDD+ countries with targeted capacity-building

and the stepwise improvement of their national forest monitoring systems to provide

more up-to-date and detailed information on drivers of deforestation. In turn this

allows for the (re)design of more effective national REDD+ strategies (Salvini et al.,

2014).

4.5 Conclusions

In this paper we quantified proximate drivers of deforestation and related carbon

losses in South America based on remote sensing time series in a systematic, spatially

explicit manner. This contributes to the understanding of drivers of deforestation

and related carbon losses at the national and continental level and allows for

comparisons across national and regional boundaries. In addition, this spatially

explicit quantitative information on deforestation can provide valuable input for

statistical analysis and modelling of underlying drivers of deforestation. Our findings

can also support the development of national REDD+ interventions and forest

monitoring systems.

Our results show the importance of temporal and spatial patterns of defor-

estation drivers. The future priorities for getting more insight into drivers of

deforestation in a REDD+ context lie in expanding the geographical area to all

REDD+ focus areas (Central America, Sub-Saharan Africa, South East Asia), in

using more recent remote sensing time series, and in using more detailed forest

biomass maps to capture spatial forest biomass gradations.
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Abstract

Reducing emissions from deforestation and forest degradation, and enhancing carbon

stocks (REDD+) is a crucial component of global climate change mitigation, and sys-

tematically measuring, reporting and verifying forest carbon emissions and removals is

essential. Remote sensing can provide continuous and spatially explicit above-ground

biomass (AGB) estimates, which can be valuable for the analysis and quantification of

carbon stocks and emission factors. Unfortunately, there is little information on the

fate of the land following tropical deforestation and of the associated carbon stock.

This study assessed carbon emission factors in a spatially explicit manner across the

tropics, represented by eight South American countries, eight Asian countries and

eleven African countries, by capitalising on newly available remote sensing data on

land use following deforestation, AGB density and tree cover with high spatial res-

olutions. In South America, pasture was the most common post-deforestation land

use (74%), with commercial crop (11%) a distant second. In Africa deforestation is

often followed by smallholder crop (57%) with a smaller role for pasture (12%). In

the Asian countries, tree crops are the most dominant agricultural follow-up land use

(32%), followed by smallholder crop (23%). Emission factors showed high spatial vari-

ation within eco-zones and countries. Eco-zone averaged forest carbon stocks often

did not accurately represent carbon stock of the specific forests that have undergone

change. Emissions factors for specific land use conversions were mostly dependent

on the spatial dynamics of the land use in combination with initial forest biomass.

The fraction of carbon lost was more robust, which might offer some shortcuts for

REDD+ countries for generating local emission factors from forest inventory data or

good quality biomass maps. Our approach yields considerable progress towards better

quantification of carbon fluxes from deforestation, and gives added insight into their

link to human activities.
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5.1 Introduction

At the Paris climate conference (COP21) in December 2015, a global climate

deal was adopted by 195 countries. This agreement within the United Nations

Framework Convention on Climate Change (UNFCCC) aims to limit global warming

caused by anthropogenic greenhouse gas emissions, to below 2°Celsius. Land use

change, mainly deforestation, is the second largest source of anthropogenic CO2

emissions, with the majority of this land use change occurring in tropical regions

(IPCC, 2013). Reducing emissions from tropical deforestation is therefore a crucial

component of global climate change mitigation. Within the ‘Reducing emissions

from deforestation and forest degradation, and enhancing carbon stocks’ (REDD+)

framework, participating countries are encouraged to develop national strategies

and implementation plans that reduce emissions and enhance sinks from forests.

Systematically measuring, reporting and verifying (MRV) forest carbon emissions

and removals is essential within the REDD+ framework.

The IPCC provides guidance to national greenhouse gas inventory compilers

on estimating CO2 emissions and removals for land use, land use change and forestry

(LULUCF) (IPCC, 2006). Carbon emissions from deforestation can be estimated

by combining activity data with emission factors. Activity data (AD) here refer to

the change in forest area, while emission factors (EF) refer to the changes in carbon

stock per unit area, e.g. tons carbon emitted per hectare of deforestation.

The IPCC identifies 3 approaches to estimate AD related to deforestation (IPCC,

2006). In Approach 1 the total of each land use area change is identified without

accounting for conversions between forest and other land uses, while Approach

2 tracks forest land use conversions to other specific land uses in a non-spatially

explicit manner. Approach 3 consists of sampling or wall-to-wall mapping techniques

to derive spatially explicit land use conversion information (GOFC-GOLD, 2014).

Tracking land use conversions is desirable because human activities (i.e. drivers)

can be attributed to forest area change, which can be useful for REDD+ policy

making and implementation (De Sy et al., 2015). This is preferably done in a

spatially explicit manner, in light of the spatio-temporal dynamics of drivers of forest

area change (De Sy et al., 2015). Remote sensing is considered essential for mon-

itoring forest and other land use changes (Herold and Johns, 2007; De Sy et al., 2012).

Carbon stock or flow information on the forest carbon pools can be obtained

at each Tier according to the IPCC guidelines (IPCC, 2006). Tier 1 uses global

default IPCC values (i.e. per ecological zone), while Tier 2 uses country-specific
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carbon stock or flow data. In Tier 3 more disaggregated data of carbon stocks in dif-

ferent pools are available from national inventories, through repeated measurements

and supported by modelling. Similar to AD, spatially explicit data on carbon stock

is valuable due to the large variation in forest biomass relating to environmental

(slope, soil type etc.) and anthropogenic (management practices, land use history

etc.) factors (Gibbs et al., 2007). Country or region specific carbon stock data are

traditionally derived from forest inventories, which are valuable but often limited in

geographic representativeness (Gibbs et al., 2007).

Capacities of REDD+ countries for forest area change monitoring at the na-

tional level have improved (Romijn et al., 2015), and some operational sub-national

monitoring systems exist in REDD+ countries (e.g. for Brazilian Amazon). How-

ever, in many REDD+ countries forest inventories are of insufficient quality and

progress is slow (Romijn et al., 2015), which means that many countries will have

to rely on IPCC Tier 1 default values or simplified assumptions until they build

sufficient capacity. Remote sensing can provide continuous and spatially explicit

above-ground biomass (AGB) estimates, which can be valuable for the analysis and

quantification of carbon stocks and emission factors (Goetz et al., 2009; Saatchi

et al., 2011b; Baccini et al., 2012). For example, Langner et al. (2014) provide im-

proved Tier 1 values, based on pan-tropical AGB maps and other remote sensing data.

Several large scale studies have estimated carbon emissions from tropical de-

forestation for the 1990s and 2000s, using spatially explicit AD and EF data (DeFries

et al., 2002; Baccini et al., 2012; Harris et al., 2012; Achard et al., 2014; Tyukavina

et al., 2015; De Sy et al., 2015). All of these studies, however, only consider gross

estimates of carbon emission, and do not consider the carbon stock of the land

use following deforestation. The fate of the land, and associated carbon stock, will

influence the total carbon losses from deforestation. For example, it is generally

assumed that large-scale mechanised clearing for commercial agriculture results in

a more complete removal of biomass than for smallholder farming and pastures

(Houghton, 2012). Unfortunately, there is little spatially explicit information on

the fate of the land following tropical deforestation (De Sy et al., 2015), and of the

associated carbon stock. Integrating information on land use following deforestation,

and its carbon stock into emission factors will provide more insight into the complex

spatial dynamics of tropical forest carbon loss, and will be a valuable source of

information for REDD+ monitoring and strategies.

Recently, new remote sensing data has become available that can help to ad-

dress this issue. De Sy et al. (2015) quantified land use following deforestation

in South America for the periods 1990–2000 and 2000–2005, with a methodology
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that can be extended to other tropical areas. Zarin et al. (2016) extended the

methodology of Baccini et al. (2012) to generate a pan-tropical map of above-ground

live woody biomass density at 30 m resolution for circa the year 2000. Hansen et al.

(2013) released a globally consistent 30 meter resolution dataset of tree cover loss

and gain for the years 2000 to 2013. These new datasets allow for the co-location

of forest loss, post-deforestation land use and biomass estimates at similar spatial

resolutions. Accordingly, our study aims to:

1. Explore how to combine these datasets to improve carbon emission factor esti-

mates by including the carbon stock of the land use following deforestation

2. Assess and analyse carbon emission factors in a spatially explicit manner, taking

into account land use following deforestation

3. Make recommendations on the use of these emission factor estimates as input

for REDD+ forest monitoring

5.2 Material and methods

Our study area covers twenty-seven countries across the tropics: eight South Amer-

ican countries (Argentina, Bolivia, Brazil, Colombia, Ecuador, Paraguay, Peru and

Venezuela), eight Asian countries (Cambodia, Indonesia, Lao PDR, Malaysia, Papua

New Guinea, Philippines, Thailand and Vietnam) and eleven African countries

(Angola, Democratic Republic of Congo, Ethiopia, Kenya, Malawi, Mozambique,

Namibia, South Africa, Tanzania, Zambia and Zimbabwe). Figure 5.1 gives a concep-

tual overview of the steps in our methodology.

5.2.1 Activity data and land use following deforestation per sample

unit

Land use following deforestation was obtained by extending the methodology of De Sy

et al. (2015) to our study area. This methodology is based on assessing a detailed

(follow-up) land use classification for each forest loss area identified by the Remote

Sensing Survey of the Global Forest Resources Assessment 2010 of FAO (FAO FRA-

2010 RSS) (FAO & JRC, 2012) (Figure 5.1a and b). We briefly describe this dataset as

it was the basis for the assessment of land use following deforestation. FAO FRA-2010

RSS is a spatially explicit dataset of forest land use change from 1990 to 2005 (Fig-

ure 5.1a). The FAO FRA-2010 RSS used a systematic sampling design with sample

units of 10× 10 km centred on each degree latitude–longitude confluence point (Eva

et al., 2012; FAO & JRC, 2012; Achard et al., 2014). For each sample unit, medium
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Figure 5.1: Conceptual framework of the methodological steps and datasets
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resolution satellite imagery (mainly Landsat), as close as possible to reference years

1990, 2000 and 2005, was used in an automated multi-date image segmentation to

subdivide the sample unit into delineated areas (polygons) with similar spectral and

structural attributes. The target minimum mapping unit was 5 ha. Then, a super-

vised automated land cover classification was carried out. This was later converted

to a land use classification with the help of expert human interpretation. The main

land use classes were Forest, Other wooded land, and Other land, which are based

on FAO forest definitions (FAO, 2010). Areas lacking data due to clouds or poor

satellite coverage were considered an unbiased loss of information. For this study, we

only used the 1990 to 2000 data, as this corresponds best with the pan-tropical map

of above-ground live woody biomass density (further referred to as AGB map). For

this timeframe this sample grid provided 1394, 331 and 894 sample units for the South

American, Asian and African study areas, respectively. Due to the limited extent of

the AGB map, for estimating EFs the number of sample units was reduced to 1167

and 842 in respectively South America and Africa. Figure 5.2 gives an overview of the

study area, all sample points and the FAO ecological zones (eco-zones) (FAO, 2001)

in our study area.

Land use following deforestation was obtained by assigning a more detailed (follow-

up) land use classification for each forest loss area (polygon) identified by the FAO

FRA-2010 RSS (Figure 5.1b). The follow-up land use classification was done by visual

interpretation, using parameters such as land cover, the presence of certain features

within or near changed areas (e.g. crop rows, watering holes, fences) and the spatial

context and location of change (e.g. distance to settlements, concessions). Table 5.1

gives an overview of the follow-up land use classes and their descriptions. A variety of

satellite imagery was used for the visual interpretation such as Landsat, Google Earth

imagery (Google Earth, 2015) and ESRI world imagery base maps. De Sy et al. (2015)

provides more details on the follow-up land use classification methodology.

5.2.2 Emission factors per sample unit

The emission factor per follow-up land use for each sample unit was estimated by

estimating forest carbon stock before deforestation (CForest), and the carbon stock of

the land use following deforestation (CFLU). We only considered the five main land

uses following deforestation: pasture, commercial cropland, smallholder cropland,

perennial/tree crop and other land use.

A pan-tropical 30 meter resolution AGB map (Zarin et al., 2016) was used to

derive the mean AGB density for forest and follow-up land uses for each sample

unit (Figure 5.1c). This wall-to-wall AGB map represents AGB density for the year
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Table 5.1: Follow-up land use classes and their description.

Follow-up land use Description

Mixed agriculture Mix of agricultural land uses

Commercial crop Land under cultivation for crops, characterised by medium

(2–20 ha) to large (>20 ha) field sizes

Smallholder crop Land under cultivation for crops, characterised by very small

(<0.5 ha) to small field sizes (0.5–2 ha)

Tree crops Miscellaneous tree crops (e.g. coffee, palm trees), orchards

and grovesA
g
ri

cu
lt

u
re

Pasture Land used predominantly for grazing; in either

managed/cultivated (pastures) or natural (grazing land)

setting; includes grazed woodlands

In
fr

a
st

ru
ct

u
re

Urban and Settlements Urban, settlements and other residential areas

Roads and built-up Roads, built-up areas and other transport, industrial and

commercial infrastructures

Mining Land used for extractive subsurface and surface mining

activities (e.g. underground and strip mines, quarries and

gravel pits), including all associated surface infrastructure

Other land use (general) All land that is not classified as forest, agriculture,

infrastructure, mining and water

Bare land Barren land (exposed soil, sand, or rocks)

Other wooded land Land not classified as forest, spanning more than 0.5 ha;

with trees higher than 5 m and canopy cover of 5%–10%, or

trees able to reach these thresholds in situ, or with a

combined cover of shrubs, bushes and trees above 10%. It

does not include land that is predominantly under

agricultural or urban land use (FAO, 2010)

Grass and herbaceous Land covered with (natural) herbaceous vegetation or grasses

O
th

er
la

n
d

u
se

Wetlands Areas of natural vegetation growing in shallow water or

seasonally flooded environments. This category includes

Marshes, swamps, and bogs

Water Natural (river, lake etc) or man-made waterbodies (e.g.

reservoirs)

Unknown land use All land that cannot be classified (e.g. due to low resolution

imagery)
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Figure 5.2: Location of sample units (FAO & JRC, 2012), and ecological zones (FAO,

2001) in the study area

c. 2000, and was derived from 40 000 Geoscience Laser Altimeter System (GLAS)

LiDAR footprints distributed across the tropics. These GLAS-derived estimates were

converted to a continuous gridded dataset using randomForest models with Landsat

7 ETM+ and other ancillary datasets as input (Baccini et al., 2012; Zarin et al., 2016).

We used the Hansen tree cover dataset (Hansen et al., 2013), which has the

same resolution (30m) as the AGB map, as a forest mask for the year 2000 (Figure

5.1c) with forest defined as more than 10% tree cover. Although the FAO FRA- 2010

RSS provides a forest – non-forest classification, with forest defined as land spanning

more than 0.5 hectares and a canopy cover of more than 10 percent (FAO, 2010),

we used a minimum mapping unit of 5 ha. Within the 5 ha mapping unit, dominant

forest patches might be mixed with small patches of other land uses and vice versa,

which results in relatively higher AGB values for follow-up land use polygons and

relatively lower AGB values for forest polygons. In addition since both datasets are

from circa 2000, they might not exactly match temporally (e.g. the FRA-2010 RSS

dataset is using imagery around 1st July 2000 as a target date but depending on data
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availability imagery is spread along the period 1999–2002, see Beuchle et al. (2011)).

Use of the Hansen tree cover map corrected for this and for spatial inaccuracies

between the FAO FRA-2010 RSS and AGB map, by masking out forest pixels in the

follow-up land use polygons and non-forest pixels in stable forest polygons. An exam-

ple for pasture and cropland is shown in Figure 5.1c. On the left, the follow-up land

use polygons are combined with the AGB map. It is clear that there is a mismatch of

timing of the deforestation event for the crop fields in the centre. The FAO FRA-2010

identified these fields as deforested before 2000, while in the AGB map high biomass

levels are still present, which is associated with the presence of forest cover. This

can be corrected by applying the Hansen tree cover mask as the right of Figure 5.1c

shows. Only the pixels that were not covered by the forest mask (shown in blue and

yellow) were used for estimating mean biomass. The pasture field at the top of the

sample unit illustrates how we corrected for spatial inaccuracies along the edges of

the field, and for the presence of tree cover within the field. For the analysis of mean

AGB for tree crops, the tree cover mask was not applied because the Hansen tree

cover dataset does not distinguish between trees in natural forest and tree plantations.

Our activity data represent areas deforested before 2000, so we can directly

estimate the mean AGB of the follow-up land use per sample unit with zonal

statistics using the masked AGB map. Since forest loss occurred before 2000, we

used the mean AGB of the remaining stable forest (i.e. forest from 1990 to 2005)

within a sample unit as a proxy for the AGB of the forest before deforestation.

We derived total biomass from AGB for both follow-up land use and stable forest

per sample unit by applying the equation 5.1 used by Saatchi et al. (2011b):

Total Biomass = AGB + 0.489 ∗AGB0.89 (5.1)

Total carbon was considered to be 50% of total biomass as in Achard et al. (2014).

We did not account for soil carbon loss.

Finally we derived the emission factor per follow-up land use (EF) per sample

unit by:

EF = CForest − CFLU (5.2)

We also calculated the percentage of carbon lost (EF%):
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EF% = EF/CForest ∗ 100 (5.3)

5.2.3 Scaling to regional level

Forest area loss, mean forest carbon stock of all forests, forest carbon stock of forests

that were cleared (CForest), carbon stock of the land use following deforestation

(CFLU) and emission factors per follow-up land use were scaled to the national,

eco-zone (FAO, 2001) and continental level. The legal Amazon in Brazil (Acre,

Amapá, Amazonas, Pará, Rondônia, Roraima and Tocantins, part of Mato Grosso

and most of Maranhão) was added as a regional unit of analysis.

To scale up forest area loss per follow-up land use to the country, eco-zone

and continental scales, the forest area loss within each sample unit is made propor-

tional to the ‘visible land’ area of the sample unit. The ‘visible land’ area was the

full sample unit area (100 km2) minus cloudy and ‘permanent water’ areas (i.e. sea

or inland water in all considered years). In addition, each sample unit was assigned a

weight (wi) (5.4), equal to the cosine of its latitude (coslati), because the actual area

represented by a sample unit decreased as latitude increased due to the curvature of

Earth:

wi =
coslati∑
i coslati

(5.4)

The proportions of forest area changes per follow-up land use were then extrapolated

to a given region using the Horvitz-Thompson direct estimator (Särndal et al., 1992)

(5.5).

xc =
1

M
×

n∑
i=0

(wi × xic) , (5.5)

where

M =

n∑
i=0

wi (5.6)

and where xic is the proportion of forest area change in the ith sample unit and wi is

the weight of the ith sample unit. The total area of forest area change per follow-up

land use for this region (FLUregion) is then obtained from:
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FLUregion = A× xc (5.7)

where A is the total area of the region (excluding permanent water).

The variance of the estimation of the mean for this systematic sample was

calculated as follows:

s2 =
1

M
×

n∑
i=0

wi × (xc − xic)
2

(5.8)

The standard error (SE) is then calculated as:

SE = A× s√
n

(5.9)

The SE represents only the sampling error.

For scaling up the mean carbon stocks of all forests, the carbon stocks of

forests that were cleared (CForest), the carbon stocks of the land uses following

deforestation (CFLU) and emission factors per follow-up land use (EF) to regional

(i.e. country, eco-zone and continental) scales a weighted mean of all sample unit

values within that specific region was calculated, using the same weight (wi) and

‘visible land area’ as above. If there were less than five sample units for a follow-up

land use in a region, the results are not shown. If there were less than ten sample

units present, an annotation was added.

5.3 Results

5.3.1 Deforestation per follow-up land use from 1990 to 2000

We estimated that the total deforested area from 1990 to 2000 reached 34.8 million

hectare for the South American study area, 13.0 million hectare for the African study

area and 1.7 million hectare for the Asian study area (Table 5.2). In all regions

agriculture is the dominant follow-up land use. In the South American countries,

deforestation is followed by pasture (73.7%) and to a lesser extent by commercial

cropland (11.0%). In Africa deforestation is more often followed by smallholder

cropland (56.8%), with a smaller role for pasture (12.0%). In the Asian countries,
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tree crops (32.0%) are the most dominant agricultural follow-up land use, followed

by smallholder cropland (23.0%). In the non-agricultural category, other land use

was important in the Asian region (38.7%), particularly other wooded land (31.2%),

most likely fallows and swiddens. Other land use was less important in the African

(18.4%) and South American regions (6.8%). Infrastructure accounted for 7.7% of

deforestation in the African region, mainly due to settlement areas (7.3%). In the

Asian countries, infrastructure as follow-up land use was much less (3.7%) important,

consisting mainly of road expansion (1.5%) and mining (1%). In the South American

countries, infrastructure expansion (1.7%) mainly comprised settlement (1%) and

road expansion (0.4%).

Figure 5.3 shows the distribution of follow-up land uses across the study areas. As

mentioned above, pasture is particularly dominant as follow-up land use in South

America (Figure 5.3a), especially in the Brazilian arc of deforestation, the Brazilian

Pantanal and Cerrado ecoregions, Western Paraguay and the Argentinian Chaco.

Deforestation followed by commercial cropland was more prevalent in the Brazilian

Mato Grosso State, Eastern Paraguay, Central Bolivia and Northern Argentina,

while smallholder cropland expansion mainly occurred in the Andean countries.

Among the African countries, hotspots of deforestation can be found in Mozambique,

Democratic Republic of the Congo, Tanzania and Zambia, mainly due to smallholder

cropland expansion and other land use (Figure 5.3b). Smallholder cropland is also the

most dominant follow-up land use in Angola, Botswana, Ethiopia, Malawi, Swaziland

and Zimbabwe. Deforestation followed by pasture is predominant in Botswana, Kenya

and Somalia, and occurs to a lesser extent in Angola, Ethiopia, Zimbabwe, Namibia

and Tanzania. Commercial cropland and tree crop as follow-up land use is less

common in this region, but some hotspots of commercial cropland expansion can be

found in Southern Zambia, with some occurrences in Kenya, South Africa and Zambia.

In the Asian region (Figure 5.3c), most deforestation between 1990 and 2000

occurs in Indonesia, mostly in North Sumatra and South Kalimantan. Tree crop

is an important follow-up land use in Indonesia, as well as other land use (mostly

other wooded land). In Malaysia, Thailand and the Philippines, tree crop is the

dominant follow-up land use. In Vietnam, Cambodia and Lao PDR on the other

hand, most deforestation is followed by smallholder cropland. Smallholder cropland

is also important in Thailand, the Philippines and Papua New Guinea. In this last

country, most deforestation is followed by other land use, such as other wooded land

and grassland. Also in Cambodia and Lao PDR, deforestation is often followed by

other wooded land. Pasture is not a common follow-up land use, and can only be
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found in Lao PDR and Thailand.

5.3.2 Emission factors per follow-up land use

Table 5.3 presents the mean carbon stock of all forests (Mg C ha–1) within an eco-zone,

and the mean carbon stock of forests (CForest in Mg C ha–1) that were cleared and

followed by pasture, commercial cropland, smallholder cropland, tree crop and other

land use. In our African study region, the mean carbon stock of forests (112 Mg C

ha–1) was significantly higher than the mean carbon stock of forests cleared for pasture

(37 Mg C ha–1), commercial cropland (42 Mg C ha–1), smallholder cropland (50 Mg C

ha–1) and other land use (33 Mg C ha–1). In our Asian and South American study area

we saw a similar pattern for all follow-up land uses. In the South American tropical

rainforest forest conversion to smallholder croplands (157 Mg C ha–1) and pasture (117

Mg C ha–1) occurred in forests that contained a higher carbon stock than forests that

were converted to commercial cropland (99 Mg C ha–1). In contrast, in respectively

the tropical moist deciduous and tropical dry forests of this continent, deforestation

followed by commercial cropland (90 Mg C ha–1, 91 Mg C ha–1) happened in forests

with a higher carbon stock than deforestation followed by pasture (71 Mg C ha–1, 46

Mg C ha–1). In the Asian study area, mean carbon stocks in forests that were later

cleared for tree crops (141 Mg C ha–1) were mostly higher than in forests cleared for

smallholder cropland (119 Mg C ha–1) and other land uses (131 Mg C ha–1).

In Table 5.4 the mean carbon stock of the follow-up land uses (CFLU) are shown on

the continental and eco-zone level. In the South American tropical rainforest higher

carbon stocks remained on land converted to smallholder cropland (8.3 Mg C ha–1)

or other land use (8.6 Mg C ha–1) in comparison to land converted to pasture (4.0

Mg C ha–1) or commercial cropland (1.9 Mg C ha–1). In the South American tropical

moist deciduous forest, more carbon stock remained on commercial cropland (5.5 Mg

C ha–1) than on pastureland (1.7 Mg C ha–1), whereas the opposite was true for the

South American tropical rainforest. In the African tropical dry forest more carbon

stock remained on commercial cropland (5.8 Mg C ha–1) than on pastureland (3.3 Mg

C ha–1).

Figure 5.4 shows the spatial variability of emission factor (EF) estimates per follow-

up land use across the three continents. Emission factors for pasture ranged widely

from 170 Mg C ha–1 in the Brazilian tropical rainforest to 20 Mg C ha–1 in the

Kenyan tropical montane region. In the Asian region, pasture EFs were all in the

100 to 150 Mg C ha–1 range, but in the South American and African regions they

showed more spatial variability. Emission factors related to commercial cropland

displayed a similar range and spatial variability from 23 Mg C ha–1 in the tropical

dry forest of Namibia to 126 Mg C ha–1 in the Bolivian tropical rainforest. Emission
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Figure 5.3: Forest area loss (ha) per follow-up land use from 1990 to 2000 in South

America (A), Africa (B) and Asia (C)
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factors related to smallholder cropland were consistently high in Asia, most of South

America, and in the Democratic Republic of Congo, with a maximum of 193 Mg C

ha–1 in the Indonesian tropical rainforest. In the other African countries the EFs

for smallholder cropland were lower with a minimum of 17 Mg C ha–1 in Somalia,

and spatial variability was higher. The EFs associated with tree crops were relatively

low in South America and Africa, while higher values could be found in Asia. They

showed high variability across all continents, with a maximum of 140 Mg C ha–1 in

the tropical rainforest of Malaysia. For EFs from other land uses, we found values

ranging from 17 Mg C ha–1 in the Bolivian tropical dry forest to 173 Mg C ha–1 in

the Brazilian tropical rainforest, with high spatial variability in Africa, and to a lesser

extent in South America.

Aggregated EFs at the continental level (Figure 5.5, left), showed that continental

EFs for all follow-up land uses are lowest in the African region (27 – 43 Mg C ha–1).

The highest continental EFs could be found in the Asian region (64 – 124 Mg C

ha–1), except for commercial cropland (86 Mg C ha–1) which had a slightly higher

EF in South America (90 Mg C ha–1). For the other follow-up land uses, EFs in

South America were positioned in the middle (45 – 110 Mg C ha–1). Continental

EFs for smallholder croplands were generally higher than for pasture and commercial

cropland. Continental EFs for pasture and commercial cropland were quite similar,

except in the Asian region, where the continental EF for pasture was higher than

for commercial cropland. On the eco-zone level in the South American region, EFs

for commercial cropland were higher than for pasture, except in the tropical rain-

forest where the opposite was found. On the Asian continent, other land use had

the highest continental EF, while on the African continent it was lowest. In South

America the continental EF for other land use was similar to continental EFs for

commercial cropland and pasture. On the eco-zone level, for all continents, no clear

pattern emerged for other land use EFs. Emission factors for tree crops were in

general low but showed high variability across eco-zones. On the African and South

American continent, slightly higher EFs occurred in the tropical rainforest compared

to other eco-zones. On the Asian continent, EFs were highest in the tropical moun-

tain system. In Asia and South America, the percentage carbon lost (Figure 5.5,

right) tended to be more comparable across follow-up land uses and eco-zones than

EF estimates. In Africa, the percentage of carbon lost was generally lower than in

Asia and South America. In addition, there was more variability of the percentage of

carbon lost within eco-zones, and for smallholder cropland across different eco-zones.

The percentage of carbon lost when converting forest to tree crop plantations was an

exception, as it was lower than for all other forest conversions; moreover, it showed

high variability across the whole study area.

Aggregated EFs on the national level (Figure 5.6) show that most EFs in Africa are
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Figure 5.4: Spatial distribution of emission factors (Mg C ha–1) per continent and

follow-up land use
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Figure 5.5: Emission factor and percentage carbon loss per follow-up land use in 2000,

aggregated at continent and eco-zone level (All values can be found in Table 5.A1 in

Appendix 5.A)
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Figure 5.6: Emission factors per follow-up land use in 2000, aggregated to country

level (All values can be found in Table 5.A2 and Table 5.A3 in Appendix 5.A)
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at most 50 Mg C ha–1, except for smallholder cropland in the Democratic Republic

of Congo (150 Mg C ha–1). The highest EFs occurred in the Asian countries with

most EF estimates between 100 and 150 Mg C ha–1, except for tree crop which in

most countries had an EF lower than 100 Mg C ha–1. In South America, higher

EFs for smallholder cropland in the Brazilian legal Amazon region (149 Mg C ha–1),

Colombia (146 Mg C ha–1) and Ecuador (159 Mg C ha–1) stood out. Emission factors

for pasture were lower for Paraguay (39 Mg C ha–1) and Venezuela (67 Mg C ha–1)

than for the rest of this region (91 – 109 Mg C ha–1).

5.4 Discussion

Our results show that agriculture was the most dominant land use following

deforestation which occured between 1990 and 2000, but the dominance of specific

agricultural land uses differ per continent. The findings for the Amazon region and

for South East Asia are in line with previous studies that identified commercial

agriculture, increasingly producing for international markets (cattle ranching,

soybean farming and oil palm plantations), as the main driver of deforestation since

the 1990s (Geist and Lambin, 2002; Rudel et al., 2009; Boucher et al., 2011; Romijn

et al., 2013; Stibig et al., 2014). In contrast, deforestation in most of Africa is still

largely due to small-scale and subsistence agriculture (DeFries et al., 2010; Fisher,

2010; Hosonuma et al., 2012). Small-scale and subsistence agriculture is also an

important factor in deforestation in the Andean region and parts of the Asian region

(Vietnam, Cambodia and Lao PDR).

In Papua New Guinea, Indonesia, Lao PDR and Cambodia, other land uses

made up a considerable (>40%) part of deforested areas. In Indonesia, this other

land use mainly consisted of shrublands where no specific human activity could be

identified. In the lowlands of Indonesia, this could partly be a consequence of the

misuse of subsidies for establishing plantations (Romijn et al., 2013). Companies,

which receive a licence and subsidies to establish plantations, instead only clear the

forest to sell the timber and then abandon the land. In the highlands of Sumatra and

Borneo and in montane mainland South East Asia, these shrublands are more likely

to be part of swidden landscapes (Fox et al., 2014; Mertz, 2009). In Papua New

Guinea, deforestation processes and the following land use trajectories were not so

clear. Other studies found (unsustainable) logging to be an important driver of forest

clearing, but fire and subsistence activities (agriculture, fuelwood collection and

grazing) also played a role (Shearman et al., 2009; Stibig et al., 2014). In Lao PDR

and Cambodia the other land use appeared to be linked to subsistence activities as

well. Similarly, part of the other land use following deforestation in African countries
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could be found around villages, where fuelwood collection, grazing and fire were likely

to have caused deforestation. In the African tropical dry forests, remote sensing

techniques have difficulties mapping areas of open woodlands. At such low tree cover

densities the distinction between forest (10% tree cover) and other wooded land (5 –

10% tree cover) is difficult to determine, which can cause errors in identifying areas

of deforestation (Lambin, 1999; FAO & JRC, 2012; Keenan et al., 2015).

Our estimates of mean forest carbon stock of all forests within an eco-zone

are comparable to alternative Tier 1 values derived from a wall-to-wall study

(Langner et al., 2014) using a 500 meter AGB map from circa the year 2007 (Baccini

et al., 2012) and a forest mask based on Globcover-2009 land cover map (Bontemps

et al., 2011). Table 5.5 gives an overview of IPCC Tier 1 values, alternative Tier 1

values by Langner et al. (2014, from table 2b in sup. mat.), both converted from

AGB to total biomass and then to carbon stock according to our methodology, and

estimates from this study. Our estimates tend to be higher than the alternative Tier

1 values in Africa and Asia, but lower for the tropical rainforest and tropical dry

forest in South America. These differences could be explained by differences in pixel

size used, timing and geographical extent. A smaller range for biomass values can

be expected for larger pixel sizes due to spatial averaging (Mitchard et al., 2013).

IPCC values are higher than our estimates, likely because IPCC default values are

mainly derived from mature forest stands (Gibbs et al., 2007). In general, large

uncertainties are associated with pan-tropical AGB maps, in particular in areas with

few field data. However, these maps can provide reasonable carbon stock estimates

when aggregated over large regions (Mitchard et al., 2013).

Our results show that mean carbon stocks of all forests within an eco-zone are often

higher than the carbon stock of those forests that were cleared (Table 5.3). This

indicates that mean carbon stocks across an eco-zone do not accurately represent

the carbon stock of forest areas that have undergone change. This can introduce

substantial bias in carbon emission estimates. We used carbon stocks of stable forests

(i.e. forests remaining forests from 1990 to 2005) as a proxy for carbon stocks of

forests that were cleared between 1990 and 2000. This might not be a perfect proxy

as cleared forests might have had different biomass content than stable forests (e.g.

in case of previous degradation), but since we lack time-series of spatially explicit

AGB values we consider it as the best proxy available at the moment. This highlights

the importance of time-series of spatially explicit data for both forest area change

and forest carbon stock analyses.

For the IPCC Tier 1 default values, it is assumed that all biomass is cleared

when preparing land for pasture and cropland use. The default IPCC Tier 1
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Table 5.5: IPCC default carbon stock values, mean carbon stock estimates (Mg C

ha–1) from Langner et al. (2014), and mean carbon stock estimates (Mg C ha–1) for all

forests from this study. Values are mean (S.E.).

Region IPCCb Langner et al (2014)b This studyc

Tropical

rainforest

Africa 195 137 171

Asiaa 220 156 168

S. America 189 164 156

Tropical

moist

deciduous

forest

Africa 164 61 81

Asiaa 183 115 138

S. America 140 91 90

Tropical dry

forest

Africa 77 48 57

Asiaa 102 102 122

S. America 134 77 58

Tropical

shrubland
Africa 46 28 38

Tropical

mountain

system

Africa 27–297 91 116

Asiaa 33–226 164 172

S. America 39–146 136 133

Subtropical

humid forest
S. America 140 77 109

a Values for insular Asia for IPCC and Langner et al. (2014)
b AGB values from Table 2a in sup. Mat. of Langner et al. (2014), converted to total biomass

with Eq 5.1, assuming carbon stock is 50% of total biomass
c Values for All forests from Table 5.3

value for carbon stock in above-ground biomass for non-woody annual crops after

one year is 5 Mg C ha–1, with a zero net accumulation of biomass carbon stocks

occurring in the cropping system (Table 5.9 in IPCC 2006). For grasslands, the Tier

1 total (above- and below-ground) non-woody biomass carbon stock ranges from

4.35 (dry tropics) to 8.05 (moist and wet tropics) Mg C ha–1 (Table 6.4 in IPCC

2006, converted from dry matter to C). The AGB map used in this study (Zarin

et al., 2016) is primarily made for estimating and mapping AGB of live woody

vegetation in forests. While the IPCC provide Tier 1 estimates for the non-woody

vegetation, we provide estimates of the carbon stock of live woody vegetation still

present after deforestation. This indicates that not all woody vegetation is cleared,

or that regrowth occurs. For example up to 20% of the forest carbon stock can

remain after forest conversion to smallholder cropland. For perennial (tree) crops



106 Estimation of carbon emission factors from tropical deforestation

the IPCC does provide default coefficients for above-ground woody biomass. The

IPCC Tier 1 values for mature tree crops range from 9 Mg C ha–1 in the dry tropics

to 50 Mg C ha–1 in the wet tropics (Table 5.1 in IPCC 2006). Carbon stocks for

tree crop show high variability across our study area. This can be partly because

tree crops might be at different stages of maturity, contain different carbon stocks at

maturity, and have different harvest cycles. Part of this variability, negative emission

factors and the relatively high values from our study, can be explained from the

presence of natural trees since we did not use the forest mask for this land use category.

In Africa, low emissions factors can be explained mostly by deforestation taking

place in low carbon density forests. In addition, the most important follow-up land

uses are smallholder cropland and other land use where substantial woody biomass

remains after forest clearing. The only relatively high EF in the African region can

be found in the Democratic Republic of Congo for forest conversion to smallholder

cropland in the high carbon density tropical rainforest of the Congo Basin. This

region is known for shifting cultivation practices with cycles of clearing, cultivation

and forest regrowth (Mayaux et al., 2004; Potapov et al., 2012) which explains the

high carbon stocks we found in this region for smallholder cropland ( >20 Mg C ha–1).

In South America the main drivers of deforestation are clearing for pastures

and for commercial crops such as soybean. Forest clearing for mechanised agri-

culture, associated with commercial croplands, typically involves a more thorough

removal of biomass than clearing for pasture and small-scale agriculture (Houghton,

2012). Our results (Table 5.3) do not fully support this for all eco-zones. Whether

forest conversion to commercial cropland or to pasture has a higher emission factor

depends more on the initial biomass of the forest. In the Amazon, for example, forest

conversion to pasture mostly occurs at the forest frontier where forests have higher

carbon densities than forests in Mato Grosso State where commercial cropland

expansion mostly occurs. Subsequently, the EF for pasture is higher than the EF

for commercial cropland in the legal Amazon. In Paraguay the EF for commercial

cropland is more than double than that of pasture. Cropland expansion in Paraguay

occurs in the tropical moist deciduous forest while pasture expansion mostly occurs

in the lower biomass tropical dry forests.

For our methodology we combined activity data that were obtained using a

land use definition of forest (FAO FRA 2010-RSS) with a forest mask that used a

tree cover definition. The largest discrepancy between these 2 datasets (FAO FRA

210 RSS and Global Tree Cover change from Hansen et al. 2013) can be found for

deforestation followed by smallholder cropland and other land use in Democratic

Republic of Congo, and for other land use in the rest of Africa and parts of South
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America (Figure 5.4). This can be explained by the difference in scale (30 m pixel

versus 5 ha polygon), regrowth cycles of shifting cultivation and other land uses, and

the previously mentioned difficulty of remote sensing to distinguish between forest

(>10%) and other wooded land (5 – 10%).

A full analysis of carbon emissions from tropical deforestation would involve

among others quantification of land cover change, fate of the cleared land, initial

carbon stock of vegetation, mode of clearing and fate of cleared carbon, and soil

carbon stock and its response to land cover change (Ramankutty et al., 2007;

Houghton, 2012). This study makes progress towards a more complete analysis of

carbon emissions from tropical deforestation. The co-location of data on forest loss,

biomass and fate of the land provides further opportunities to link follow-up land use

to other aspects such as fate of the carbon and land use management practices.

Our EF estimates are based on historical (1990–2000) data on deforestation

and biomass, which results in emission factors which are representative for this

period. Our results show that emission factors for most land uses are mainly

determined by the initial forest carbon stock. A study by De Sy et al. (2015)

illustrated that hotspots of forest conversion by specific drivers change over time

and accordingly the key areas of deforestation change to lower or higher biomass

forests, which would influence the emission factors. The percentages of carbon lost

seem to be more robust, and less dependent on initial forest biomass, which might

offer some shortcuts to generating local emission factors from forest inventory data.

Ideally, mean EF estimates per follow-up land use would be derived for country and

eco-zone combinations, but the systematic sampling design of our forest loss and

land use dataset would result in few samples for some zones, increasing the risk of

deriving non-representative values. Since REDD+ countries are unlikely to have

detailed information on the fate and carbon stock of the land following deforestation,

we recommend the use of our country or eco-zone estimates of percentage of carbon

lost combined with good quality forest biomass estimates.

This study links deforestation with the fate of the land, deriving initial forest

carbon stock and remaining carbon stock of land use following deforestation, using

high resolution spatially and temporally consistent remote sensing datasets. This

yields considerable progress towards better quantification and insight into carbon

fluxes from deforestation, and their link to human activities. It provides a valuable

dataset for attributing forest loss and carbon emissions to underlying drivers of

deforestation, and for incorporating land use management and fate of the land into

carbon emission estimates. In addition, REDD+ countries can use our emission

factor estimates on the eco-zone and country level (Table 5.A1, Table 5.A2 and Table
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5.A3 in Appendix 5.A) instead of IPCC Tier 1 values.
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Table 5.A2: Mean emission factor estimates (EF) (Mg C ha–1), aggregated to

(sub-)national level. Values are mean (S.E.).

Region Pasture
Commercial

crop

Smallholder

crop
Tree crop Other land use

Angola 42 (17)* — 38 (17) — —

DRC — — 149 (35)* 45 ( 41)* —

Ethiopia 33 (18)* — 32 (14)* — —

Kenya 28 (12) — 31 (27)* — —

Mozambique 29 (9)* — 43 (14) — 43 (15)

Namibia 20 (10)* — — — —

Tanzania — — 49 (24) — 35 (15)

Zambia — 34 (20)* 46 (15) — 32 (11)

Zimbabwe — — 24 (9) — 31 (11)

Cambodia — — 81 (33)* — 103 (27)*

Indonesia — — 147 (39) 75 (37) 125 (37)

Lao PDR — — 121 (21) — 137 (22)

Malaysia — — — 53 (36) 137 (26)

PNG — — 139 (32) — 135 (27)

Philippines — — 123 (15)* 37 (44)* 124 (12)*

Thailand — — 115 (16) 60 (40) 120 (8)

Vietnam — — 115 (22) 96 (15)* 110 (30)

Argentina 91 (24) 98 (7) — — 90 (10)*

Bolivia 97 (33) 93 (29)* — — 96 (29)

Brazil 93 (31) 86 (24) 94 (56) 52 (32) 82 (34)

Legal Amazon 106 (26) 90 (21) 149 (26)* 54 (30)* 96 (33)

Colombia 109 (29) — 146 (32) — 106 (21)

Ecuador — — 159 (19)* — —

Paraguay 39 (24) 91 (5)* — — 83 (24)

Peru — — 109 (31) — —

Venezuela 67 (20) — — — 71 (26)

*
less than ten sample units present
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Table 5.A3: Mean fraction of initial carbon lost (Clost), aggregated to (sub-)national

level. Values are mean (S.E.).

Region Pasture
Commercial

crop

Smallholder

crop
Tree crop Other land use

Angola 0.93 (0.02) — 0.87 (0.08) — —

DRC — — 0.85 (0.15) 0.26 (0.22) —

Ethiopia 0.94 (0.05) — 0.79 (0.22) — —

Kenya 0.90 (0.05) — 0.88 (0.03) — —

Mozambique 0.91 (0.08) — 0.82 (0.07) — 0.82 (0.06)

Namibia 0.97 (0.03) — — — —

Tanzania — — 0.90 (0.04) — 0.82 (0.09)

Zambia — 0.82 (0.03) 0.82 (0.04) — 0.81 (0.08)

Zimbabwe — — 0.90 (0.09) — 0.82 (0.07)

Cambodia — — 0.98 (0.02) — 0.98 (0.01)

Indonesia — — 0.93 (0.05) 0.49 (0.22) 0.94 (0.02)

Lao PDR — — 0.98 (0.01) — 0.95 (0.06)

Malaysia — — — 0.34 (0.18) 0.96 (0.02)

PNG — — 0.96 (0.02) — 0.88 (0.06)

Philippines — — 0.91 (0.03) 0.27 (0.31) 0.94 (0.04)

Thailand — — 0.99 (0.01) 0.47 (0.30) 0.98 (0.01)

Vietnam — — 0.97 (0.02) 0.75 (0.13) 0.96 (0.03)

Argentina 0.91 (0.05) 0.96 (0.04) — — 0.84 (0.08)

Bolivia 0.96 (0.04) 0.98 (0.02) — — 0.92 (0.05)

Brazil 0.97 (0.03) 0.99 (0.02) 0.96 (0.05) 0.61 (0.33) 0.93 (0.07)

Legal Amazon 0.97 (0.03) 0.99 (0.02) 0.94 (0.04) 0.64 (0.31) 0.92 (0.07)

Colombia 0.93 (0.04) — 0.97 (0.02) — 0.91 (0.13)

Ecuador — — 0.92 (0.07) — —

Paraguay 0.93 (0.04) 0.90 (0.06) — — 0.93 (0.04)

Peru — — 0.89 (0.06) — —

Venezuela 0.92 (0.07) — — — 0.92 (0.03)
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Synthesis
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6.1 Main findings

The main objective of this thesis was to explore the role of remote sensing for moni-

toring tropical forests for REDD+ in general, and for assessing land use and related

carbon emissions linked to drivers of tropical deforestation in particular. Based on this

objective, three research questions were defined in Section 1.5. Each of these questions

is addressed below, based on the main findings from the previous chapters.

6.1.1 What is the current role and potential of remote sensing technolo-

gies and methodologies for monitoring tropical forests for REDD+

and for assessing drivers of deforestation?

We addressed this research question in Chapter 2, 4 and 5. In Chapter 2 we reviewed

the availability, potential and limitations of different remote sensing data sources

for REDD+ forest monitoring with a focus on synergies among various approaches.

Types of remote sensing data include optical and thermal, Synthetic Aperture

Radar (SAR) and Light Detection And Ranging (LiDAR) data. Given the REDD+

requirements, remote sensing can contribute to several relevant forest information

products or services such as monitoring of forest area change, land use change

patterns, forest degradation, subnational forest change hotspots, wildfires and burnt

areas. In addition, it can contribute to near real-time deforestation detection and

mapping of biomass and forest types.

Our review of the technical capabilities of remote sensing sensors for the

generation of REDD+ information products revealed that, in general, great technical

capabilities exist but not one sensor type alone can provide all the information

necessary to monitor forests. It is rather a range of sensors that are needed to provide

data streams for the different forest change information products. Having a satellite

acquiring data is not enough to assume that the data are always accessible and useful

for developing countries. There are still significant operational constraints to

be bridged regarding the provision of continuous observations with global coverage,

the generation and availability of pre-processed image datasets suitable for change

analysis, and the capacities in developing countries to sustainably produce and use

remote sensing products.

Commonly, remote sensing research starts from local project level studies, and

if suitable moves towards larger area demonstrations or even global level analysis.

We looked at the current operational role of remote sensing forest information

products by looking whether they are mainly research subjects or are actively
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used by REDD+ countries. Monitoring forest area change is most mature while

approaches for mapping biomass are not yet used by many developing countries.

Most developing countries have to deal with a rather large capacity gap regarding

national forest monitoring for REDD+ and remote sensing is currently only sparsely

used by developing countries for their national monitoring.

The synergy among multiple sensors with different spectral, spatial and tem-

poral resolutions can be useful to increase cost-efficiency and resolve issues of

data coverage, clouds, seasonality, and the trade-off between spatial and temporal

resolutions. We identified several key synergy potentials for generating improved

forest information products. In general, the synergetic use of data sources as

described in Chapter 2 is subject to research and not operationally applied. The

benefits of this synergetic use of data sources need to be balanced against the signif-

icant additional capacities and resources required for applying them in developing

countries. Using multiple data sources increases complexity of the analysis and

can also result in problems with consistency and transparency when using time-series.

In response to these findings we provided recommendations in Chapter 2

on how to improve the role of remote sensing for implementing REDD+. For

some information products, there is a need to invest in fundamental research

and move from small case studies to large area demonstrations. For others the

need is to synthesize the experiences from research towards the use in developing

countries. Often the most appropriate and suitable methodology for generating

forest information products is dependent on national circumstances (data costs

and availability, technical capabilities, size of forest area, drivers), which makes

further research at country level essential to determine national data needs and

monitoring strategies. A regional and international coordinated effort is necessary

to build the necessary capacities in REDD+ countries, and to provide technical

guidance on best practices and develop and validate appropriate methods for different

national circumstances. International coordination and cooperation between space

agencies and data providers is essential to provide consistent and continuous global

coverage and ensure the availability of data at reasonable costs and in a format

suitable for analysis. There is also an important role for regional and South-South

cooperation regarding technology transfer and sharing of regional capacities and costs.

The review of Chapter 2 revealed that national-scale quantitative, spatially

explicit information on the drivers of deforestation remains scarce and thus empha-

sized a data gap that remote sensing can contribute in filling. Remote sensing can

provide information on land change patterns and associated human activities, which

can generate understanding about proximate causes and drivers of deforestation
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and degradation. In Chapter 4 and 5 we explored how to quantify and assess land

use following deforestation and associated carbon losses using remote sensing data

sources. We illustrated that a spatially-explicit analysis of drivers of deforestation

is possible, mainly using freely available remote sensing data sources and a fairly

simple and straightforward methodology. In Section 6.1.3 we will dive deeper into

the results of this analysis.

6.1.2 What is the current state of knowledge of drivers of deforestation

and degradation in REDD+ countries?

In Chapter 3 we provided an assessment of proximate drivers of deforestation and

forest degradation by synthesizing data from existing national REDD+ reports and

studies. For 100 tropical and sub-tropical REDD+ countries we reviewed the data

reported by these countries as part of their REDD+ readiness activities, including 26

Readiness Preparation Proposals (R-PP) and ten Readiness Plan Idea Notes (R-PIN)

prepared for the World Bank Forest Carbon Partnership Facility (FCPF, 2011).

Additional sources of data were a review on drivers of deforestation throughout

history for 25 tropical countries (Matthews et al., 2010), CIFOR country profiles,

UNFCCC National Communications and other reports that have recently become

available.

In Chapter 3 we illustrate that quantitative national-level information on drivers

and activities causing deforestation and forest degradation are widely unknown. For

example, the question of how much or what fraction of deforestation (emissions)

in a country is caused by a specific driver (e.g., expansion of agriculture versus

infrastructure) cannot be answered for many REDD+ countries. It highlights that

the availability of quantitative data on drivers is variable and still uncertain for many

countries, with only 12 out of 100 countries being able to provide quantitative data.

Another 15 countries had ordinal-scale data, and 19 countries had nominal-scale

data. Our analysis also provided preliminary coarse estimates using the continent

level estimates and a forest transition model as a proxy in countries where no data

have been available so far. Given the variability and different levels of confidence for

these data, the presented results are only based on aggregated data that allow for a

pan-tropical assessment of the importance of different drivers, stratified by phases of

the forest transition model and by continent.

This study offered a first synthesis of REDD+ driven national-level data re-

ported by countries on forest change, which was a valuable input for the support of

global REDD+ policy (e.g. Kissinger et al. 2012). On the national level, however,
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it is of limited value due to the use of coarse and aggregated proxies. Chapter 4

and 5 of this thesis illustrate the importance of spatially-explicit (sub-)national data

on proximate drivers, which is currently lacking in most REDD+ countries. In

addition, within the REDD+ context, the national driver data should ultimately be

linked to emissions. The increasing use of satellite remote sensing tools for national

monitoring will allow for a better national-level tracking of deforestation and forest

degradation events and types, and the activities that cause them (Gibbs et al., 2010;

Hansen et al., 2010).

6.1.3 What are land use patterns and related carbon emissions following

deforestation, capitalising on available land use and biomass remote

sensing data?

In Chapter 4, we quantified proximate drivers of deforestation from 1990 to 2005,

their spatiotemporal dynamics and related carbon losses in South America at

continental and national scales using a comprehensive, systematic remote sensing

analysis. The 2010 global Remote Sensing Survey of the 2010 FAO Forest Resource

Assessment was used as input to determine deforestation areas. To assess proximate

drivers, land use following deforestation was assigned by visual interpretation of

high-resolution satellite imagery. To estimate gross carbon losses from deforestation,

alternative Tier 1 biomass levels per country and eco-zone were used. In Chapter

5 we used newly available remote sensing data sources on biomass and forest cover

to assess and analyse carbon emission factors in a spatially explicit manner by

including the carbon stock of the land use following deforestation. For this analysis

we extended the assessment of land use following deforestation to eight South East

Asian countries, and eleven African countries for the 1990 to 2000 period.

Our quantification of land use following deforestation in Chapter 4 and Chap-

ter 5 highlighted that agriculture was the most dominant land use, but the

dominance of specific agricultural land uses differed per continent. In South America,

pasture was the most common post-deforestation land use, with commercial crop a

distant second. In Africa deforestation is often followed by smallholder crop with a

smaller role for pasture. In the Asian countries, tree crops are the most dominant

agricultural follow-up land use, followed by smallholder crop. The findings for the

Amazon region and for South East Asia are in line with previous studies that identi-

fied agribusinesses, increasingly producing for international markets (cattle ranching,

soybean farming and oil palm plantations), as the main drivers of deforestation since

the 1990s (Geist and Lambin, 2002; Rudel et al., 2009; Boucher et al., 2011; Romijn

et al., 2013; Stibig et al., 2014). In contrast, deforestation in most of Africa is still
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largely due to small-scale subsistence agriculture (DeFries et al., 2010; Fisher, 2010;

Hosonuma et al., 2012). Small-scale subsistence agriculture is also an important

factor in deforestation in the Andean region and parts of the Asian region (Vietnam,

Cambodia and Lao PDR). Our results also revealed that, especially in Africa and

Asia, deforestation is often followed by shrubland with no clear land use. Partly

this is due to the limitation of our methodology. Small-scale and dispersed land

uses such as subsistence activities (crop, fuelwood collection) and nomadic grazing

are not always identifiable by visual interpretation of satellite imagery. Here, our

dataset would benefit from more local data and knowledge of land use dynamics, for

example from field campaigns or community monitoring. Aside from this, unclear

follow-up land use also exposed land use dynamics that are interesting from a policy

perspective, such as the misuse of subsidies for establishing palm oil plantations in

Indonesia (Romijn et al., 2013). Infrastructure, such as road and urban expansion,

contributed little as proximate drivers of forest area loss (Chapter 4 and Chapter

5). This is in contrast to findings from Chapter 2 where these drivers contributed

substantially to deforestation. As underlying driver, however, urbanization can

contribute significantly to deforestation because it changes consumption patterns

and increases the demand for agricultural products (DeFries et al., 2010), while

better road infrastructure opens up forest frontiers (Rudel, 2007). This indicates

that REDD+ countries do not always separate the direct and underlying effects of

drivers in their reporting.

In Chapter 4 we also looked at the temporal dimension of land use patterns

following deforestation in South America. Our research showed that the annual rate

of deforestation driven by commercial crops doubled in the early 2000s compared to

the 1990s. In addition, hotspots of pasture- and crop-driven deforestation moved into

higher forest biomass eco-zones in the early 2000s which caused additional carbon

losses. On the one hand this shows that gaining insight in spatiotemporal dynamics

is essential since drivers of forest loss vary from region to region and change over

time (Rudel et al., 2009; Boucher et al., 2011). On the other hand it reveals a major

limitation of our dataset which currently only covers a limited time period from 1990

to 2005. This limits the applicability for designing up-to-date REDD+ strategies

since the drivers and processes of deforestation might have undergone changes after

2005. Despite the time period limitation, and in view of the paucity of quantitative

data on deforestation drivers and related carbon losses, this thesis provides a unique

and relevant overview of drivers of deforestation as well as showing that this is

achievable with a sample-based time-series approach.

In Chapter 4 we used a simple and conservative approach to estimate carbon

losses with mean forest biomass values per eco-zone. In reality, however, there are
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gradations of forest biomass within eco-zones (Saatchi et al., 2011b; Baccini et al.,

2012) which might influence the spatial and temporal dynamics of carbon losses from

different drivers. In Chapter 5 we explored the integration of our data on land use

following deforestation with a newly available 30 meter resolution pan-tropical map

of above-ground live woody biomass (Zarin et al., 2016) and a globally consistent

30 meter resolution dataset of tree cover loss (Hansen et al., 2013) to provide more

insight into the spatial dynamics of carbon emission factors. We also considered the

carbon stock present on the land after deforestation, something that is often not

included in studies on forest carbon emissions due to a lack of information on the

fate of the land.

Our results in Chapter 5 showed that average forest carbon stocks across an

eco-zone do not accurately represent the specific forest areas that have undergone

change, which can introduce substantial uncertainties in carbon stock and emission

estimates. Deforestation often occurs in forest with lower than average carbon

stocks. Our estimates of the carbon stock of live woody vegetation still present after

deforestation indicated that not all woody vegetation is cleared, or that regrowth

occurs. For example, up to 20% of the forest carbon stock can remain after forest

conversion to smallholder cropland. Forest clearing for mechanised agriculture,

associated with commercial crops, typically involves a more thorough removal of

biomass than clearing for pasture and small-scale agriculture (Houghton, 2012). Our

results do not fully support this for all eco-zones. Whether forest conversion to

commercial crop or to pasture has a higher emission factor depends more on the

spatial dynamics of both land uses and the initial biomass of the forest. Similarly,

emission factors for forest conversion to smallholder crop are high because these

conversions happen mostly in high biomass forests. So, carbon emission factors for

most land uses are for a large part dependent on the initial forest carbon stock. The

percentages of carbon lost seem to be more robust and less dependent on initial

forest biomass. Since REDD+ countries are unlikely to have detailed information on

the fate and carbon stock of the land following deforestation, we recommend the use

of our country or eco-zone estimates of the percentage of carbon lost combined with

good quality forest biomass estimates.

Our findings contribute to the understanding of drivers of tropical deforesta-

tion and related carbon losses, and are comparable at the national, regional and

continental level. In addition, the importance of spatially explicit time-series of

land use and biomass data is emphasized for gaining more insight into complex

deforestation pathways. Our data can support the development of national REDD+

interventions and forest monitoring systems, and provide valuable input for statistical

analysis and modelling of underlying drivers of deforestation.
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6.2 Reflection and outlook

The Paris climate agreement on climate change mitigation that was just recently

agreed upon requires many countries to improve their greenhouse gas (GHG) emis-

sion inventories in the near future. In many developing countries emissions from land

use, including from land use change, are the largest contributors to GHG emissions.

We cannot make progress on reducing anthropogenic emissions from land use change

if we are not able to monitor these land use change emissions and attribute them to

human activities. This thesis contributes to the quantification of land use change and

drivers of deforestation and related carbon emissions. In this section I provide an

outlook for further research and reflect upon remote sensing of land use and carbon

losses from tropical deforestation, national forest monitoring for REDD+, the impor-

tance of tracking drivers at the international scale, and the importance of considering

monitoring for REDD+ in the context of the broader land use sector.

6.2.1 Remote sensing of land use and carbon losses from tropical defor-

estation

This thesis demonstrates the use of remote sensing datasets in quantifying historical

land use following deforestation and related carbon losses. Furthermore, this thesis

contributes to the understanding of spatio-temporal dynamics of forest carbon loss,

and what drives this loss for the 1990 to 2005 timeframe. Our approach is based on

a consistent method using time-series that can be extended to include more recent

periods and other tropical countries. However, our method of visual interpretation

of land use by a few experts is labour intensive, which puts a limit on incorporating

higher spatial (wall-to-wall) and temporal observations to provide more up-to-date

and detailed information on drivers of deforestation as well as associated carbon

changes.

Advances in remote sensing satellites and sensors, high performance processing

and storage platforms create unprecedented opportunities for assessing tropical land

use and carbon change in the future. One such advance is the global quantification

of year-to-year changes in global forest cover from 2000 to 2012 (Hansen et al., 2013).

This dataset is extended on a yearly basis, and will start providing deforestation

information in near real-time (Popkin, 2016). A wall-to-wall assessment of land

use following deforestation with a similar spatial (30 meter) and temporal (yearly)

scale would provide more insight into proximate drivers of deforestation. However,

assessing land use/cover based on spectral properties of land surfaces is still

challenging, and requires cutting-edge spectral, spatial and/or temporal properties



6.2 Reflection and outlook 121

of remote sensing sensors. Fortunately, data availability, as well as the spatial,

spectral, and temporal resolution of observations are constantly increasing. The

new Sentinels satellite missions from the European Space Agency have dedicated

sensors for land monitoring at high resolutions. Imagery from the recently launched

Sentinel-2A satellite can be used in combination with US’s Landsat imagery, which

will increase temporal coverage. Multi-temporal (e.g. the use of dense time-series)

and multi-sensor methods (e.g. Reiche et al. 2016) for a more automated extraction

of land use signals from remote sensing data should be further explored.

The Geo-wiki project has shown that it is possible to improve global land

cover maps by combining open access to high resolution satellite imagery from

Google Earth with crowd-sourcing into a single web application (Fritz et al., 2012).

A similar approach could be tested for providing more up-to-date and detailed

information on proximate drivers of land use following deforestation with the use of

crowdsourcing for visual interpretation.

Above-ground biomass mapping is also evolving towards global maps with higher

spatial resolutions. In this thesis, we capitalised on a newly available 30 m spatial

resolution AGB map (Zarin et al., 2016) that extended the methodology from an

earlier coarser resolution (500 m) version (Baccini et al., 2012). Likewise, the NASA

Jet Propulsion Laboratory will release an updated higher resolution (100 m) version

of their 1 km AGB map (Saatchi et al., 2011b). These high resolution AGB maps will

provide added opportunities to assess carbon emissions from forest change. However,

global AGB maps might show notable differences in AGB patterns at national scales

(Mitchard et al., 2013). Improved AGB estimates at the local to national level can

be achieved by integrating existing AGB maps with additional, country-specific

reference datasets (Avitabile et al., 2016). There will be an increase in the temporal

resolution of these maps with the launch of the GEDI mission from NASA1 and the

Earth Explorer Biomass mission from ESA2. With time-series of biomass maps the

assessment of temporal dynamics of forest carbon losses and associated drivers can

be improved.

Our dataset and methodology opens several other interesting avenues for a

more comprehensive accounting of biomass emissions from deforestation. In this

thesis we have incorporated carbon density of post-clearing land use for the estima-

tion of forest carbon emission factors. Several other steps can be done to complete

the estimation of carbon emission factors related to forest conversions. Soil organic

1http://science.nasa.gov/missions/gedi/

2http://www.esa.int/Our Activities/Observing the Earth/The Living Planet Programme

/Earth Explorers/Future missions/Biomass
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carbon stock change fractions can be linked to specific land use change types (Don

et al., 2011). In addition, the information on land use following deforestation can

be linked to land use management, the mode of clearing (e.g. fire, mechanised

clearing) and fate of the cleared carbon to better estimate carbon emissions from

deforestation.

6.2.2 National forest monitoring for REDD+

This thesis is motivated by the need for national-level quantitative data on drivers

of tropical forest change. We have mainly focused on a comparative assessment of

national drivers of deforestation at pan-tropical level. Assessing drivers of forest

change and carbon emissions in a spatially explicit way will be a challenge for

REDD+ countries. Most countries are still struggling with operational monitoring

of forest area change and carbon emissions (Romijn et al., 2015), and often rely on

simple methods and default values. The emission factor estimates presented in this

thesis can be used as an alternative to the IPCC Tier 1 values. Our assessment of

emissions factors, in addition to other studies (e.g. Langner et al. 2014; Baccini

et al. 2012) suggests that it is timely to revise the current IPCC Tier 1 values and

provide new Tier 1 values based on spatially-explicit biomass data.

Our methodology is suitable for operational (sub-)national monitoring of drivers

because we used a low-technology approach (visual interpretation) which uses mostly

freely available datasets and imagery (Landsat, Google Earth). In addition, there

is no need for intensive (pre-)processing of satellite imagery and the systematic

sampling design reduces costs and time for analysis. This all makes our methodology

accessible for countries with various levels of technical capacities.

Both the tree cover data (Hansen et al., 2013) and the AGB map (Zarin et al., 2016)

are available via Global Forest Watch (www.globalforestwatch.org). Unfortu-

nately, the FAO FRA-2010 RSS (FAO & JRC, 2012) data is not freely available

at the moment. As an alternative, tropical forest cover change data from the

TREES-3 project (http://forobs.jrc.ec.europa.eu/trees3/) of the European

Joint Research Centre could be used. This dataset is similar to the FAO FRA-2010

RSS (i.e. systematic sampling design, 10 by 10 km squares), but only covers the

tropics and uses a land cover instead of a land use definition. Land cover can

be converted to land use by first automatically converting land cover classes to

preliminary land use classes. As a second step, human expert interpretation is

required to provide the context necessary for the accurate categorization of land use,

especially where exceptions to the automated reclassification exist (e.g. temporary
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un-stocked land) (FAO & JRC, 2012). Since land use following deforestation also

needs expert interpretation, these steps can be performed at the same time. At the

moment the TREES-3 data covers two periods: 1990 to 2000 and 2000 to 2010. It is

unclear whether this period will be extended.

The current one degree sampling scheme is not suited for smaller countries or

for subnational analysis, and it needs to be intensified to produce reliable results at

the national level (Achard et al., 2010). Intensifying the grid can also be done for

specific regions of interests (hot-spots) (Eva et al., 2010). The assessment of land

use following deforestation could be improved by using additional data available in a

country (e.g. land use maps, statistics, local knowledge) and data from community

monitoring. A systematic sampling grid is considered a straightforward and practical

way to integrate data from existing national surveys and forest inventories (Eva

et al., 2010). The systematic sampling grid can also be used to collect other relevant

data such as socio-economic and biodiversity data, which is important for linking to

broader development goals and policies.

Monitoring forest in the REDD+ context puts extra emphasis on measurement,

reporting and verification of (the change in) anthropogenic forest carbon emissions,

and identifying drivers of deforestation and forest degradation. In their current

design, forest inventory and monitoring systems are often not relevant for national

policy development as they lack basic data on socio-economic issues related to forest

change, such as land use, rural and urban population growth and other factors

that are linked to forest changes. Incorporating such information will likely make

countries gain a deeper understanding of what activities are driving deforestation and

how these activities are linked to other (non-forest) sectors. This will allow countries

to define and prioritise REDD+ strategies in the context of broader development

objectives, such as rural development or low carbon development strategies.

We showed in this thesis that most drivers of deforestation originate outside

the forest sector, which indicates that REDD+ interventions should include non-

forest sectors such as the agricultural, urban and mining sectors instead of only

focusing on forest interventions such as sustainable forest management. An analysis

of REDD+ readiness documents linking proposed interventions to the quality of

driver data reported in these documents yielded that countries with higher quality

data on drivers include more non-forest sector interventions (e.g. agricultural

intensification) (Salvini et al., 2014). This illustrates that REDD+ countries are

struggling with designing effective REDD+ policy interventions, partly due to limited

understanding of their deforestation drivers. In addition, it means that data from

outside the forestry sector are invaluable for understanding drivers and the impacts
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Table 6.1: Comparing national capacities for forest area change monitoring (Romijn

et al., 2012) with the quality of reported data on drivers (Hosonuma et al., 2012) for 45

REDD+ countries.

Forest area change monitoring capacity

Low Medium High Total

Quality of

driver data

Low 7 8 3 18

Medium 3 10 2 15

High 2 4 6 12

Total 12 22 11 45

of REDD+ policies.

Identifying and assessing drivers at the national level requires resources and

efforts additional to the regular estimation and reporting for GHG accounting.

Countries should integrate and combine capacity development efforts for monitoring

drivers with on-going national forest monitoring for REDD+. In particular countries

should, where possible, link monitoring of activity data (i.e. forest area change) with

monitoring of drivers. Looking at current country capacities, there is a tendency

that countries with higher capacities for forest area change monitoring are able to

provide higher quality driver data (Table 6.1). However, there are also cases that

deviate from this trend in two ways: 1) where monitoring capacities are lower some

countries are still able to provide good driver data – emphasizing that data on drivers

are derived from other national efforts (i.e. from other sectors) and that these efforts

need to be well coordinated and integrated in REDD+ monitoring and capacity

building, and 2) where countries are able to provide good activity data, but still need

to expand and integrate the efforts to also identify the drivers; an effort that should

be done in an integrated way.

Building a national forest monitoring system, with added requirements of MRV and

tracking drivers, is a complex undertaking. A wide variety of spatial and non-spatial

observations and measurements coming from different sources, and involving many

stakeholders will have to be integrated in an adequate information system to support

decision-making and evaluate the effect of interventions. This will require transfor-

mational change in terms of national cross-sectoral coordination in many REDD+

countries. In light of this, it would be useful to set up an interdisciplinary research

study on institutional capacities linked to REDD+ MRV, similar to the assessment

of more technical capacities (Romijn et al., 2012, 2015). This will generate useful in-

sights for capacity building and for guidance on developing national forest monitoring
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and MRV systems for specific national circumstances.

6.2.3 Underlying drivers of deforestation

This thesis contributes to increased understanding of regional trends of land use

change related to deforestation. Many underlying drivers that influence land use

change have an international scope (Geist and Lambin, 2002; Rudel et al., 2009;

Boucher et al., 2011) which makes it difficult for countries to track or address them.

For example, the global demand for commodities like soya, beef and oil palm is an

important driver of the conversion of tropical forests into agricultural land. Under-

standing proximate drivers, rates and patterns of deforestation is key for linking de-

forestation and underlying drivers more closely. The quantified national forest losses

and carbon emissions per driver that we presented in this thesis can be linked to

national statistics, and socio-economic and policy indicators, which can greatly con-

tribute to improving the accuracy of models that link deforestation and underlying

drivers. Comparative pan-tropical assessments of proximate drivers of deforestation

in combination with underlying drivers will provide more insight into land change is-

sues such as the displacement or ‘leakage’ of land use (Meyfroidt et al., 2013), carbon

emissions from commodity supply chains (Karstensen et al., 2013; Zaks et al., 2009),

and the effectiveness of transnational efforts to curb emissions for deforestation.

6.2.4 Linking with the broader land use sector

There are several reasons why it is important to take a more holistic look on

GHG emissions from the land use sector. Forests, agriculture and other land uses

are crucial for the achievement of a wide range of sustainable development goals

(SDGs). These SDGs are a new universal set of goals that target, among others,

poverty eradication, food security, sustainable management of natural resources and

climate change. Competing demands for land, issues of food security, climate change

mitigation and adaptation objectives in tropical landscapes cannot be effectively

addressed in isolation. These intertwined functions of the tropical landscape have

implications for national natural resource and GHG monitoring systems.

Some activities or land uses that result in deforestation can also result in ad-

ditional GHG emissions after the deforestation event. The most prominent case

is agriculture that releases significant amounts of GHG depending on the type of

crops or livestock, management type (i.e. irrigation), use of fire, fertilizer use, and

soil carbon characteristics (i.e. organic peatland soils). Measuring and monitoring

these emissions requires different methods and approaches, and additional capacities
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and resources. But they can also be an opportunity for REDD+ strategies, for

example, if a country combines agricultural Nationally Appropriate Mitigation

Actions (NAMAs) – to provide a separate financial stream to help change farming

practices – with a results-based REDD+ programme. In addition, most drivers

of deforestation originate outside the forest sector. To track the effectiveness of

REDD+, land use information from outside the forest sector needs to be integrated

in REDD+ MRV. In addition, when focusing only on land use change happening in

relation to deforestation, important indirect land use changes that drive deforestation

might be missed (Barona et al., 2010; Arima et al., 2011).

For all the above mentioned reasons, it is important to consider REDD+ MRV

and forest monitoring in the context of a broader vision for land use and natural

resource monitoring. An integrated forest and land use information system will

be more capable of providing policy-relevant information for reaching sustainable

development goals, climate change mitigation and adaptation.
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Mayaux, P., Bartholomé, E., Fritz, S., Belward, A., 2004. A new land-cover map of

Africa for the year 2000. Journal of Biogeography, 31, 861–877.

Mertz, O., 2009. Trends in shifting cultivation and the REDD mechanism. Current

Opinion in Environmental Sustainability, 1, 156–160.

Meyfroidt, P., Lambin, E.F., Erb, K.H., Hertel, T.W., 2013. Globalization of land use:

distant drivers of land change and geographic displacement of land use. Current

Opinion in Environmental Sustainability, 5, 438–444.

Mitchard, E.T., Saatchi, S.S., Baccini, A., Asner, G.P., Goetz, S.J., Harris, N.L.,

Brown, S., 2013. Uncertainty in the spatial distribution of tropical forest biomass:

a comparison of pan-tropical maps. Carbon Balance Management, 8, 10.

Mollicone, D., Achard, F., Federici, S., Eva, H.D., Grassi, G., Belward, A., Raes,



138 REFERENCES

F., Seufert, G., Stibig, H.J., Matteucci, G., et al., 2007. An incentive mechanism

for reducing emissions from conversion of intact and non-intact forests. Climatic

Change, 83, 477–493.

Morton, D.C., DeFries, R.S., Shimabukuro, Y.E., Anderson, L.O., Arai, E., del Bon

Espirito-Santo, F., Freitas, R., Morisette, J., 2006. Cropland expansion changes de-

forestation dynamics in the southern Brazilian Amazon. Proceedings of the National

Academy of Sciences of the United States of America, 103, 14637–14641.

Morton, D.C., DeFries, R.S., Shimabukuro, Y.E., Anderson, L.O., Del Bon Esṕırito-
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Summary

The new Paris Agreement, approved by 195 countries under the auspice of the United

Nations Framework Convention on Climate Change (UNFCCC), calls for limiting

global warming to “well below” 2°Celsius. An important part of the climate agree-

ment relates to reducing emissions from deforestation and forest degradation, and

enhancing carbon stocks (REDD+) in non-Annex I (mostly developing) countries.

Over the last decades the growing demand for food, fibre and fuel has accelerated

the pace of forest loss. In consequence, tropical deforestation and forest degradation

are responsible for a large portion of global carbon emissions to the atmosphere,

and destroy an important global carbon sink that is critical in future climate change

mitigation.

Within the REDD+ framework, participating countries are given incentives to

develop national strategies and implementation plans that reduce emissions and

enhance sinks from forests and to invest in low carbon development pathways. For

REDD+ activities to be effective, accurate and robust methodologies to estimate

emissions from deforestation and forest degradation are crucial. Remote sensing is an

essential REDD+ observation tool, and in combination with ground measurements

it provides an objective, practical and cost-effective solution for developing and

maintaining REDD+ monitoring systems. The remote sensing monitoring objective

for REDD+ is not only to map deforestation but also to support policy formulation

and implementation. Identifying and addressing drivers and activities causing forest

carbon change is crucial in this respect. Monitoring drivers (e.g. deforestation by

agricultural expansion, fuelwood extraction etc.) for REDD+ puts an emphasis

on monitoring and tracking post-deforestation land use activities. Despite the

importance of identifying and addressing drivers, quantitative information on these

drivers, and the related carbon emissions, is scarce at the national level.

Most tropical developing countries have a limited capacity for monitoring for-

est area change and carbon stocks. There is progress being made regarding several



gaps (e.g. data, remote sensing methodologies, capacity building) and approaches

are being put forward to manage the challenges associated with monitoring tropical

forests for REDD+. However, many gaps still remain and knowledge about and ex-

perience with various remote sensing data sources and methods for forest monitoring

for REDD+ is scattered among researchers and practitioners. This thesis explores

the role of remote sensing for monitoring tropical forests for REDD+ in general,

and for assessing land use and related carbon emissions linked to drivers of tropical

deforestation in particular.

Chapter 2 reviews the availability, potential and limitations of remote sensing

data sources with a focus on different forest information products and synergies

among various approaches and evolving technologies. This study shows that

although remote sensing technologies provide significant opportunities to support

forest monitoring objectives, their operational usefulness is constrained by a lack of

consistent and continuous coverage, data availability, and appropriate methodologies

for national-scale use and available capacities in developing countries. Coordinated

international efforts, regional cooperation and continued research efforts are essential

to further develop national approaches and capacities to fully explore and use the

potential remote sensing has to offer for REDD+ forest monitoring.

Chapter 3 provides an assessment of proximate drivers of deforestation and

forest degradation by synthesizing empirical data reported by countries as part of

their REDD+ readiness activities, national communications and scientific literature.

The availability and quality of national data on deforestation and forest degradation

drivers varied, with only 12 out of 100 countries being able to provide quantitative

data. Given the variability and different levels of confidence for these data, we present

a pan-tropical assessment of the importance of different drivers by phases of the forest

transition model and by continent, based on aggregated national data. Commercial

agriculture is the most important driver of deforestation, followed by subsistence

agriculture. Timber extraction and logging drives most of the degradation, followed

by fuelwood collection and charcoal production, uncontrolled fire and livestock

grazing. This study provides the first comprehensive and comparative assessment

of drivers on the national level and highlights the current limitations and data gaps

regarding national data on drivers of deforestation and forest degradation.

Chapter 4 explores how proximate drivers of deforestation and related carbon

losses can be quantified in a systematic, spatially explicit manner, based on remote

sensing time series. This study quantifies land use patterns and related carbon losses

following deforestation in South America between 1990 and 2005 at continental

and national scales using a comprehensive, systematic remote sensing analysis.



Deforestation areas were derived from the 2010 global remote sensing survey of the

FAO Forest Resource Assessment. To assess proximate drivers, land use following

deforestation was determined by visual interpretation of high-resolution satellite

imagery. Gross carbon losses from deforestation were estimated using Tier 1 biomass

levels per country and eco-zone combined with the deforested area. In Brazil,

Argentina, Paraguay and Bolivia large ranches and commercial crop agriculture were

the main drivers of deforestation and carbon losses. In the Andean countries (Peru,

Colombia and Venezuela) smallholder and mixed agriculture were important drivers

of deforestation. In addition, hotspots of pasture- and crop-driven deforestation

were found to move into higher forest biomass eco-zones in the early 2000s causing

additional carbon losses. This insight emphasizes the importance of spatial and

temporal information on drivers of deforestation in designing effective REDD+

interventions.

Chapter 5 capitalised on newly available remote sensing information on land use

following deforestation (Chapter 4), above-ground live biomass density and tree cover

at similar spatial resolutions. This chapter explores how to combine these datasets to

improve carbon emission factor estimates by using spatially and temporally consistent

high resolution remote sensing datasets, and by incorporating the carbon stock of the

land use following deforestation. We extended the quantification of land use following

deforestation to 27 countries across the pan-tropics. This revealed that in South

America, pasture was the most common post-deforestation land use (74%), with

commercial crop (11%) a distant second. In Africa deforestation is often followed by

smallholder crop (57%) with a smaller role for pasture (12%). In the Asian countries,

tree crops are the most dominant agricultural follow-up land use (32%), followed by

smallholder crop (23%). Our approach yields considerable progress towards better

quantification of carbon fluxes from deforestation, and gives added insight into

their link to human activities. In addition, the resulting emission factor estimates

on the eco-zone and national level can be used as input for REDD+ forest monitoring.

This research conducted in this PhD contributes to the understanding of the

role of remote sensing in forest monitoring for REDD+ and in the assessment of

drivers of deforestation. In addition, this thesis contributes to the improvement of

spatial and temporal quantification of land use and related carbon emissions linked

to drivers of tropical deforestation. The results and insights described herein are

valuable for ongoing REDD+ forest monitoring efforts and capacity development as

REDD+ moves closer to becoming an operational mitigation mechanism.
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