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1.1 Background 

Land cover (LC) is an essential environmental variable in understanding the 
interactions between mankind and nature. Change in LC is one of the main drivers 
of changes in earth systems such as climate (Verburg et al. 2011). For instance, the 
expansion of cropland and pasture at the cost of forests result in an increase of 
atmospheric carbon dioxide, and LC change can cause changes in land surface 
parameters and thus air temperature (Feddema et al. 2005; Verburg et al. 2011). 
Because of its importance, LC is identified as one of the Essential Climate 
Variables by the Global Climate Observing Systems (FAO 2008). 

The observation of global-scale LC is of importance to international initiatives, 
governments, and scientific communities in their understanding and monitoring of 
the changes affecting environment and the coordination of actions to mitigate and 
adapt to global change. As such, reliable and consistent global LC (GLC) datasets 
are sought to be used for various applications such as climate models, ecosystem 
modelling, hydrological models and so on (Verburg et al. 2011).  

In response to this need, a number of GLC maps have been produced from various 
initiatives and they differ in used input data, methodologies and validation (Herold 
et al. 2008). Due to the discrepancies among the GLC maps coupled with diverse 
user requirements, it is challenging for the users to select the GLC map that is the 
most suitable for their applications.  

1.2 Global land cover maps 

The advancement of remote sensing technologies in the last two decades has 
enabled the production of several GLC datasets. The first attempts to map GLC 
using remote sensing created 1 degree and 8 km coarse spatial resolution maps 
from AVHRR data (De Fries et al. 1998; DeFries and Townshend 1994). 
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Table 1.1. A summary of existing GLC maps and integrated maps 
Dataset name Spatial 

resolution 
Temporal 

frame 
Sensor Classificatio

n scheme 
and classes 

Accu-
racy % 

References 

GLC maps 
UMD   AVHRR  

1 degree 1 degree 1987 IGBP 12   (DeFries and 
Townshend 1994) 

8 km 8 km 1984 IGBP 14 85  (DeFries et al. 1998) 
1km 1 km 1992-1993 IGBP 14   (Hansen et al. 2000) 

IGBP-DISCover 1 km 1992-1993 AVHRR IGBP 17 67  (Loveland et al. 2000) 
MODIS   MODIS IGBP 17  

Collection 4 1 km 2001 71.6  (Friedl et al. 2002) 
Collection 5 500 m Yearly since 

2001 
74.8  (Friedl et al. 2010) 

GLC2000 1 km 2000 SPOT4 VGT LCCS 22 68.6  (Bartholomé and 
Belward 2005) 

Globcover   MERIS  LCCS 22  
2005 300 m 2004-2006 73.1  (Bicheron et al. 2008) 
2009 300 m 2009 67.5  (Bontemps et al. 

2011a) 
GLCNMO   MODIS LCCS 20  

Version 1 1 km 2003 81.2  (Tateishi et al. 2011) 
Version 2 500 m 2008 82.6  (Tateishi et al. 2014) 

Land cover CCI 300 m   MERIS /SPOT VGT LCCS 22 (CCI-LC 2014) 
2000 1998-2002    
2005 2003-2007    
2010 2008-2012 70.8   

FROM-GLC  30 m circa 2010 Landsat TM, ETM+ 9 63-65.5  (Gong et al. 2013) 
GLC250m_CN 250m   MODIS 11   (Wang et al.) 

2001 2000-2001 74.9   
2010 2009-2011 75.1   

Globeland30 30 m   LANDSAT TM, 
ETM7,  HJ-1 

10 80.3  (Chen et al. 2015) 
2000 2000 78.6   
2010 2010 80.3   

Integrated GLC maps 
SYNMAP 1 km 2000 IGBP, GLC2000, 

MODIS 
44   (Jung et al. 2006) 

GLC-share 1 km - Various products LCCS 11 82  (Latham et al. 2014) 
Hybrid GLC 300 m 2005 Globcover 2005, 

MODIS, GLC2000 
10 87.9  (See et al. 2015) 

FROM-GLC 
Hierarchy 

0.03-100 km Circa 2010 FROM-GLC-agg, 
MODIS, Globcover 

11 69.5-
73.5 

 (Yu et al. 2014) 

Integrated map 1 km 2000 MODIS, GLC2000, 
UMD 

14 61.3 (Iwao et al. 2011) 

Consensus LC 1 km - IGBP, GLC2000, 
MODIS2005, 

GlobCover  

LCCS 12  (Tuanmu and Jetz 2014) 

Integrated map 1 km 2000 MODIS, GLC2000, 
UMD, GLCNMO 

6 74.6  (Kinoshita et al. 2014) 
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Following these efforts, several 1 km resolution GLC maps such as the IGBP-
DISCover, UMD, MODIS and GLC2000 have been developed (Bartholomé and 
Belward 2005; Friedl et al. 2002; Hansen et al. 2000; Loveland et al. 2000). 
Medium resolution time-series satellite data enabled the development of 300m and 
500m resolution GLC maps such as Globcover, MODIS and LC-CCI (Arino et al. 
2007; CCI-LC 2014; Friedl et al. 2010). Recently, the release of Landsat archive 
further led to the production of high resolution (30m) GLC maps namely FROM-
GLC and Globeland30 (Chen et al. 2015; Gong et al. 2013). A summary of 
existing GLC maps is provided in Table 1.1.  

Efforts to improve GLC mapping have also focused on integrating existing GLC 
maps. Several integrated GLC maps were created by assigning LC classes based 
on properties such as map or per-class accuracy and agreement with other GLC 
maps (Iwao et al. 2011; Jung et al. 2006; Kinoshita et al. 2014; Tuanmu and Jetz 
2014). Regional and global LC datasets were harmonized and combined to create 
an integrated GLC map: GLC-Share (Latham et al. 2014). See et al. (2015) used a 
reference dataset collected by volunteers to integrate GLC maps based on their 
local accuracies.  

The available GLC maps differ from one another in terms of used data, methods 
and as well as spatial and thematic details (Table 1.1). Therefore, understanding 
the differences of available GLC map is important for the users. For this purpose, 
GLC maps are often harmonized in terms of thematic and spatial properties and 
they are compared against each other to assess spatial agreement (Fritz and See 
2005; Herold et al. 2008; McCallum et al. 2006).  

1.3 Global land cover map validation and reference datasets  

Accuracy assessment of a thematic map is an important part of the map-making 
process (Olofsson et al. 2012). This may be done for different purposes such as to 
provide an overall measure of the quality of map and to evaluate the utility of the 
maps for specific applications (Congalton and Green 2009; Stehman 2000; 
Stehman et al. 2011).  

In general, creating reference datasets and validating GLC maps follow three 
different steps: the sampling design, response design and analysis and estimation 
protocols (Stehman and Czaplewski 1998). Firstly, in sampling design protocol, 
aspects such as sampling units, sample size and sample selection scheme are 
defined to determine both the cost and statistical rigor of the accuracy assessment 
(Congalton and Green 2009). Secondly, aspects determining the agreement 
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between the map and reference classifications are reflected in the response design 
protocol. These include information sources for the reference classification, 
labelling and the definition of agreement between the reference and map 
classification. Since it is impractical to visit all the samples on the ground, satellite 
images are used to determine reference LC classes over large geographic areas 
(Wulder et al. 2006). Lastly, map accuracies are estimated in the analysis and 
estimation protocol. The standard way of reporting thematic accuracy of 
categorical maps is in the form of an error/confusion matrix to derive statistics 
such as overall and class specific accuracies and their confidence intervals 
(Congalton 1991; Foody 2002). 

The quality of existing GLC maps has been assessed in different ways such as 
using independent reference datasets (Bontemps et al. 2011a; Mayaux et al. 2006; 
Scepan et al. 1999; Tateishi et al. 2011), cross validation with calibration datasets 
(Friedl et al. 2010; Strahler et al. 2003) or comparing with existing regional maps 
(Hansen et al. 2000). The thematic accuracy of current GLC maps has been 
reported to vary between 61and 87% (Table 1.1). 

Several independent reference datasets have been created to validate GLC maps 
and these include the IGBP-DIS, GLC2000, GlobCover and FROM-GLC and so 
on (Bontemps et al. 2011a; Gong et al. 2013; Mayaux et al. 2006; Scepan et al. 
1999). In addition, other datasets that provide information on reference LC have 
also been generated. Examples are the training datasets for MODIS and GLCNMO 
maps, crowd-sourcing Geo-Wiki and View-IT datasets as well as other datasets 
such as FAO-FRA remote sensing survey datasets (Clark and Aide 2011b; Friedl et 
al. 2010; Fritz et al. 2009; Potapov et al. 2011; Tateishi et al. 2011). These datasets 
were created with different strategies in terms of sampling and response design 
protocols. The characteristics of existing and evolving reference datasets are 
summarized in Table 1.2. 
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Table 1.2. Characteristics of existing and evolving GLC reference datasets 
Dataset name Temporal 

frame 
Classificati
on scheme 
and class 

Number 
of sample 

Sampling 
scheme 

Sample 
unit size 

Labelled 
by  

Reference 
  

IGBP-
DISCover 

1990-1993 IGBP 16 379 Stratified 
random  

1x1km Regional  
experts 

(Scepan et al. 
1999) 

GLC2000 1999-2002 LCCS 22 1265 2 stage stratified 
cluster  

3x3km Regional 
experts  

(Mayaux et al. 
2006) 

Globcover   LCCS 22   Stratified 
random 

  International 
experts  

  
2005 circa 2005   4258 1.5x1.5km (Bicheron et al. 

2008) 
2009 circa 2009 4164 0.9x0.9 km (Bontemps et 

al. 2011a) 
GLCNMO           Regional 

experts  
  

Version 1 
validation 

circa 2000 LCCS 20 600 Stratified 
random  

1x1km (Tateishi et al. 
2011) 

Version  1 
training 

2000-2003  LCCS 14 1607 No sampling  > 3x3km 

Version 2 
validation 

circa 2008 LCCS 20 904 Stratified 
random 

 500 x500 m (Tateishi et al. 
2014) 

Version 2 
training 

circa 2008 LCCS 14 2080 No sampling  > 
500x500m 

MODIS/STE
P training 

till 2014 IGBP 17 2762 No sampling  1 to 376 
pixels  

Regional  
experts 

 (Friedl et al. 
2010) 

LC-CCI 2000, 2005, 
2010 

LCCS 22 13000 2 stage stratified 
cluster  

 SSU 
~1x1km 

Automated 
pre-labelling 
and experts 

(Achard et al. 
2011) 

Boston U. 
/GOFC-
GOLD 

circa 2010 LCCS 12 500 Stratified 
random  

5x5 km  Automated  
classification 

(Olofsson et al. 
2012) 

VIIRS Circa 2010 IGBP 17 circa 
5000 

Stratified and 
cluster  

1 x1km International 
experts 

 (GOFC-GOLD 
2014) 

FROM-GLC Circa 2010 10     250x250m International 
experts 

(Gong et al. 
2013) Training 91433 No sampling  

Validation 38664 Cluster 
Globeland30 2010 9 150000 2 stage stratified 

cluster  
30x30m International 

experts 
(Chen et al. 

2015) 
GLC-Share - 11 1000 Stratified 

random 
  experts (Latham et al. 

2014) 
DCP   6  4200 Systematic   1 x1km Volunteers 

and experts 
(Iwao et al. 

2006) 
GEO-WIKI Circa 2010 10 circa 

18600 
similar to 

FROM-GLC 
1 x1km  Volunteers 

and experts 
(Fritz et al. 

2009; 
Schepaschenko 

et al. 2015) 
VIEW-IT 2000-2010 7 46207 Stratified 

random and 
random  

250x 250m Volunteers (Clark and Aide 
2011b) 

FAO-FRA 1990, 2000, 
2005, 2010 

9 13689 Systematic   10 x 10 km Automated 
pre-labelling  

(Potapov et al. 
2011) 
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1.4 GLC map users and their requirements 

Information on the state and dynamics of LC is crucial for a wide range of 
scientific purposes (Bontemps et al. 2011b). Appropriate GLC maps are 
increasingly sought for many applications, e.g. climate modelling (Herold et al. 
2011; Verburg et al. 2011), forest resources assessments (FAO 2001), crop 
distribution modelling (You et al. 2009), agricultural land availability assessments 
(Cai et al. 2011) and biodiversity assessments (Joseph et al. 2009). As the purposes 
of applications vary, they have diverse requirements on GLC maps (e.g. spatial, 
temporal and thematic detail) and their quality assessments.  

In terms of spatial detail, climate modellers typically use GLC maps at 1km spatial 
resolution or coarser (Kooistra et al. 2010) whereas this resolution is too coarse for 
LC change studies to detect small-scale changes, e.g. by forest logging (GOFC-
GOLD 2011). In terms of thematic detail, some applications require a single LC 
class such as forest, cropland and built-up area distribution (Feldpausch et al. 2012; 
Fritz et al. 2015; Klein Goldewijk et al. 2010). While multiple LC classes are used 
for applications such as carbon density mapping to create a global scale map based 
on per-class biomass values (Ruesch and Gibbs 2008). A more detailed 
information on specific LC classes can also be required by the users. For instance, 
LC classes representing the degree of human interactions such as cropland, urban 
and mosaics of these classes with other LC classes are useful for land system 
modelling (Asselen and Verburg 2012; Letourneau et al. 2012). In terms of 
temporal domain, studies dealing with land change and then climate change require 
multi-date GLC maps, while this is not a strict requirement for other studies 
(Herold et al. 2011; Hibbard et al. 2010).  

The selection of GLC maps and their quality have a significant influence on the 
outcomes of these models (Hibbard et al. 2010; Nakaegawa 2011). For instance, 
Benítez et al. (2004) noted that the choice of GLC map influenced the model 
results by as much as 45% on the global cumulative carbon sequestration. Lower 
quality LC datasets can have strong effects on user applications (Ge et al. 2007; 
Sertel et al. 2010). The diverse user requirements should also be reflected in 
accuracy assessment of GLC maps and the reference datasets used for validation. 
To determine the fitness of GLC maps for certain applications, map accuracy 
assessments need to consider the perspectives of the users. Certain errors of GLC 
maps may be significant for specific users but not for others (DeFries and Los 
1999). For example, confusion error between water and snow/ice may not be as 
important for biomass estimation, as it is for albedo estimation.  
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1.5 Research needs  

Given the importance of GLC maps and better understanding of their quality for 
different applications, the issues of accuracy and inter-comparability of the 
different GLC maps have been a concern to many studies (Defourny et al. 2010; 
Herold et al. 2008; Herold et al. 2009b; Mayaux et al. 2006; McCallum et al. 
2006). However, gaps still exist in consistency, comparability and validation of 
GLC maps, particularly from user’s perspective (Foody 2002; Fritz et al. 2011b; 
Herold et al. 2008; Olofsson et al. 2012).  

Considerable efforts have been made to validate GLC maps using independent 
validation datasets to provide statistically rigorous assessments (Bontemps et al. 
2011a; Mayaux et al. 2006; Scepan et al. 1999; Tateishi et al. 2011). Despite 
efforts put into generating these reference datasets, their use is mainly limited to 
the original intended use and only a few studies reported re-using these datasets for 
other uses (FAO 2001; Göhmann et al. 2009). Currently, there is no assessment 
providing information on how these datasets can be used beyond their original 
scope and what the implications would be for specific user applications having 
different requirements on GLC maps and their validations. Such analyses is 
particularly important as international initiatives such as GOFC-GOLD released 
several GLC reference datasets and proper use of these datasets is recommended 
(GOFC-GOLD 2014).   

Since GLC maps are used for a large number of applications, user-oriented 
accuracy reporting can help in understanding the uncertainty and limitations of 
GLC maps on specific applications (DeFries and Los 1999). However, studies on 
accuracy reporting from users’ perspective of GLC maps are limited (DeFries and 
Los 1999; Mayaux et al. 2006). Furthermore, comparability of different GLC maps 
should be analysed considering the perspectives of the users. Most comparison 
studies focused on spatial (dis)agreement between different maps (Fritz et al. 
2011b; Hansen and Reed 2000; McCallum et al. 2006). However, information on 
which map provides better quality for specific application is still lacking as a 
comparative accuracy assessment of GLC maps for specific applications does not 
exist till date.   

The quality of GLC maps are commonly expressed by descriptive measures of 
overall accuracy and class specific accuracies from a confusion matrix (Mayaux et 
al. 2006; Scepan et al. 1999). These accuracies vary from region to region 
(Congalton 1988), and little information on the spatial variability of the GLC map 
accuracy is available so far. Spatial variation in map accuracies is important to 
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understand the regional GLC map quality and this information can be used to 
further improve the GLC maps. In particular, improved accuracy is required by the 
users as errors in GLC maps add to the uncertainties in the output of the 
applications (Bontemps et al. 2011b; Nakaegawa 2011). To improve GLC maps, 
existing GLC maps have been integrated based on their relative strengths (Iwao et 
al. 2011; Jung et al. 2006; Kinoshita et al. 2014). More research is needed to 
explore the benefit of using available reference datasets and spatial variation in 
map accuracy in improving GLC maps.  

Another aspect of GLC mapping needing more research concerns map thematic 
flexibility. Current GLC maps provide a single fixed legend. These fixed legends 
do not always meet the requirements of users. Moreover, translating fixed legends, 
particularly mosaic classes, to required legends can be ambiguous or even 
impossible (Friedl et al. 2002; Herold et al. 2008). Therefore, the efforts to 
improve GLC maps should also consider the thematic requirements of different 
users.   

1.6 Research objectives  

This research aimed to address the gaps and problems identified in the previous 
section. The main objective of this thesis is to assess, compare and improve GLC 
maps while accounting for user requirements. Accordingly, the following research 
objectives and related research questions were considered: 

1. To assess the re-usability of GLC reference datasets for different user 
communities 
• What is the suitability of GLC reference datasets from the perspectives 

of different user communities? 
2. To compare the recent GLC maps for specific applications using existing 

reference data 
• Which GLC map has the highest accuracy considering the 

perspectives of specific applications? 
3. To compare integration methods based on spatial variation in map 

accuracy and class presence using available GLC maps and reference 
datasets  
• What are the local accuracies of the recent GLC maps? 
• Which integration method performs best for improving the recent GLC 

maps? 
4. To integrate GLC datasets to derive improved user-specific GLC maps   
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• How can improved GLC maps be produced to address the thematic 
requirements of different users? 

1.7 Thesis outline 

This thesis consists of six content chapters, including this Introduction Chapter. 
Chapters 2 to 5 address the research questions presented in Section 1.6. Figure 1.1 
is a graphical outline of this thesis.  

Chapter 2 addresses research question 1 by reviewing the characteristics of 
existing reference datasets and assess the suitability of re-using these datasets 
considering the requirements of different user applications.  

Chapter 3 explores to answer research question 2 by reanalysing an existing 
reference dataset to make it suitable for comparing multiple maps and 
comparatively assessing the thematic accuracy of several GLC maps. In this, the 
importance of misclassification errors were also considered from the perspective of 
specific user applications.  

Chapter 4 deals with research question 3 and 4 by assessing the spatial variation of 
accuracy of recent GLC maps and comparing different integration methods to 
improve GLC maps. Several existing reference datasets were used in this analysis.  

Chapter 5 addresses research question 5 by creating an improved GLC map based 
on available GLC maps and reference dataset and demonstrating a concept of 
creating GLC maps with user-specific legends.  

Chapter 6 summarizes the main results of this thesis in relation to the research 
questions, discusses its added value and limitations and presents recommendations 
for further research. 
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Figure 1.1. Overview of and links between the chapters of this thesis. RQ denotes research 
question       
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Abstract 

Global land cover (GLC) maps and assessments of their accuracy provide 
important information for different user communities. To date, there are several 
GLC reference datasets which are used for assessing the accuracy of specific maps. 
Despite significant efforts put into generating them, their availability and role in 
applications outside their intended use have been very limited. This study analyses 
metadata information from 12 existing and forthcoming GLC reference datasets 
and assesses their characteristics and potential uses in the context of 4 GLC user 
groups, i.e., climate modellers requiring data on Essential Climate Variables 
(ECV), global forest change analysts, the GEO Community of Practice for Global 
Agricultural Monitoring and GLC map producers. We assessed user requirements 
with respect to the sampling scheme, thematic coverage, spatial and temporal 
detail and quality control of the GLC reference datasets. Suitability of the datasets 
is highly dependent upon specific applications by the user communities 
considered. The LC-CCI, GOFC-GOLD, FAO-FRA and Geo-Wiki datasets had 
the broadest applicability for multiple uses. The re-usability of the GLC reference 
datasets would be greatly enhanced by making them publicly available in an expert 
framework that guides users on how to use them for specific applications. 

Keywords: Global land cover; validation; reference datasets; user groups; dataset 
suitability for users 
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2.1 Introduction 

Observation of land cover at the global scale is essential for understanding and 
monitoring global change and for coordinating actions to mitigate and adapt to 
climate change (Herold et al. 2008). Information on these assessments is used by 
governments, scientific communities and international initiatives (Bontemps et al. 
2011b). Many climate models, dynamic vegetation models, hydrological models, 
and carbon (stock) models use land cover datasets as one of the model inputs 
(Hibbard et al. 2010; Verburg et al. 2011). These users have many different 
requirements on global land cover (GLC) maps and their accuracy assessments. 
Climate modellers, for example, typically use GLC maps at 1-km spatial resolution 
or coarser (Kooistra et al. 2010) whereas this resolution is too coarse for GLC 
change studies to detect small-scale changes, e.g. by forest logging (GOFC-GOLD 
2011). Accuracy assessment of GLC maps should account for these different user 
requirements and use suitable reference datasets in the assessments.  

Over the last two decades, several global land cover (GLC) maps have been 
produced using remote sensing data, and GLC mapping is progressing towards 
higher spatial resolution datasets (Mora et al. 2014). The summary of current GLC 
products and their future trends are discussed in detail by Mora et al. (2014). GLC 
maps are commonly validated using higher-quality reference data, such as 
independent validation datasets and regional maps, or they are cross validated 
against training datasets (Friedl et al. 2002; Hansen et al. 2000; Mayaux et al. 
2006). Currently, there are several independently-validated GLC datasets, namely 
IGBP-DIS, GLC2000, GlobCover5, GlobCover9, GLCNMO, and FROM-GLC 
(Bontemps et al. 2011a; Defourny et al. 2006; Gong et al. 2013; Mayaux et al. 
2006; Scepan et al. 1999; Tateishi et al. 2011). The accuracy of existing GLC maps 
typically varies between 67 and 81%, and while it is lower (10-50%) in some 
regions of the world (Frey and Smith 2007; Mora et al. 2014). The users of the 
GlobCover map and the Land Cover-Climate Change Initiative (LC-CCI) maps 
have stressed that the current quality of GLC maps should be improved (Bontemps 
et al. 2011b; Herold et al. 2011). The reason is that errors in GLC datasets add to 
modelling uncertainties; thus lower quality GLC datasets can have a strong impact 
on the final model outcomes (Nakaegawa 2011; Sertel et al. 2010).  

The generation of reference datasets for accuracy assessment of GLC maps is a 
difficult task. The current reference datasets were generated by visual 
interpretation of satellite images, regional maps and geo-tagged photos. Enormous 
effort is required to analyse a large number of satellite images and interpret the 
land cover type. For example, 39 international experts interpreted 379 confidence 
sites of the IGBP-DIS dataset during a two-week workshop (Scepan et al. 1999); 
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253 Landsat images were pre-processed, and international experts interpreted 1265 
sample sites for the GLC2000 dataset (Mayaux et al. 2006); and 16 international 
experts completed on-screen collection of ground data for 4258 sample sites for the 
GlobCov5 validation dataset (Defourny et al. 2011b). Despite the efforts put into 
generating these reference datasets and the scarcity of validation data, their use is 
mainly limited to the original intended use and only a few studies reported re-using 
these datasets for other uses (FAO 2001; Göhmann et al. 2009).  

In addition to the existing GLC validation datasets, there are a number of existing 
and evolving datasets that provide reference information for GLC maps and other 
global level assessments such as forest and agricultural studies. There are training 
datasets for MODIS and GLCNMO product generations (Friedl et al. 2010; 
Tateishi et al. 2011). Volunteer-based Geo-Wiki and View-IT datasets also provide 
an inexpensive way of collecting potentially useful land cover reference data 
(Clark and Aide 2011b; Fritz et al. 2009). Other datasets such as the FAO-FRA 
remote sensing survey focusing on a statistical sample-based assessment of global 
forest change have also been generated (Potapov et al. 2011).  

The above mentioned reference datasets on GLC have potential of being used for 
applications outside their original scope. A thorough analysis of the efficient use of 
all available data for GLC map validation and calibration has not been previously 
investigated. To move towards the efficient use of reference datasets for GLC map 
validation, Olofsson et al (2012) proposed a new reference dataset that is created 
independent of any GLC map. Boston University and the Global Observation for 
Forest Cover and Land Dynamics (GOFC-GOLD) are jointly generating a database 
for GLC map validation that can be augmented and used for different map 
validations (Olofsson et al. 2012; Stehman et al. 2012). However, the question of 
efficient use still remains for available and other upcoming GLC reference 
(GLCR) data. Currently, there is no assessment providing information on how 
these datasets can be used beyond their original scope and what the implications 
would be for specific user applications having different requirements on GLC 
maps and their validations. This situation can limit the value of the existing GLCR 
datasets for various applications and can hinder informed decision making 
concerning the usefulness of GLCR datasets for particular studies. 

The objectives of this chapter are to (1) analyse the published literature to provide 
information on GLCR datasets and their user requirements, and (2) assess the 
potential uses and limitations of different GLCR datasets for four targeted GLC 
map user groups, namely the climate modelling community, global forest change 
analysts, the Group on Earth Observation (GEO) community of practice (CoP) for 
global agricultural monitoring and producers of improved GLC maps. Analysing 
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the characteristics of the GLCR datasets and their re-usability is important for 
understanding and reducing inconsistencies of reference datasets for the GLC 
mapping community. This will also help users of GLC datasets to make better-
informed selections of reference datasets and reduce the uncertainty in their 
applications.   

Section 2.2 reviews the characteristics of the GLCR datasets as well as the main 
requirements of GLCR for different users groups and describes the methods for 
assessing the suitability of the GLCR datasets for different user groups. The results 
of the assessments are provided in Section 2.3. Section 2.4 discusses the results 
and the main findings of the study are concluded in Section 2.5. 

2.2 Methods  

The general procedure followed for the analysis is shown in Figure 2.1. We 
reviewed the main dataset characteristics which are related to GLCR datasets 
(Section 2.2.1). Next, we compared the GLCR metadata (Section 2.2.2). The main 
user requirements were identified through a literature review (Section 2.2.3). 
Finally, the suitability of GLCR datasets for user groups was assessed by using the 

Figure 2.1. General analysis procedure 
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metadata of the GLCR datasets and the identified user requirements (Section 
2.2.4).  

2.2.1 Characteristics of reference datasets 
Different characteristics related to the sampling and response design protocols 
need to be considered when generating and assessing reference datasets. 
Information from these protocols is used in the analysis and estimation protocols 
(Stehman and Czaplewski 1998). In addition, the thematic classification scheme 
determining the class legend, hierarchical classifiers and thematic detail of the land 
cover information need to be considered (Herold et al. 2006).  

Sampling design is an important aspect determining both the cost and statistical 
rigor of the thematic map accuracy assessment (Congalton and Green 2009). An 
appropriate sampling unit, sample size and sample selection scheme should be 
considered carefully depending on the purpose, budget, and extent of the study. 
Area sampling units of pixels, blocks of pixels, and polygons can be used for 
accuracy assessment, and their choice may have an impact on sampling schemes 
and accuracy estimates (Stehman and Czaplewski 1998). The minimum mapping 
unit (MMU) is also specified since it can influence the size of the area sampling 
units (Stehman and Wickham 2011). For statistically sound accuracy assessments 
using limited resources, different approaches are adopted to determine the required 
sample size, e.g. using confidence intervals, allowable error, and significance 
levels (Foody 2009; Janssen and Van der Wel 1994). Design-based probability 
sampling schemes, e.g. simple random, stratified and systematic samples, are 
frequently used to select the samples for a credible accuracy assessment (Stehman 
2000). Samples should have a known sample inclusion probability that is greater 
than zero (Stehman and Czaplewski 1998). The issue of choosing the right 
sampling scheme is extensively discussed in the literature (Stehman 2000; 
Stehman and Czaplewski 1998; Strahler et al. 2006).  

All aspects of determining the agreement between the map and reference 
classifications are reflected in the response design protocol (Stehman and 
Czaplewski 1998). This includes information sources for the reference 
classification, the labelling protocol and the definition of agreement between the 
reference and map classification. Since it is impractical to visit all the samples on 
the ground, satellite images with temporal coverage closer to the target map are 
used to determine land cover classes over large geographic areas (Wulder et al. 
2006). Generally, each sampling unit is assigned to a class using visual image 
interpretation. However, a visual interpretation can be subject to interpreter 
variability (different interpretation) and bias (incorrect interpretation) (Strahler et 
al. 2006). To reduce such errors, the confidence in interpretation is recorded, and it 
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is verified by other interpreters (Strahler et al. 2006). The issues of positional 
accuracy and heterogeneous areas also make reference data problematic and lead 
to uncertainty in the accuracy estimates of final map (Foody 2010; Powell et al. 
2004). Therefore, transparency in reference data generation is useful for further 
analysis.  

Final map accuracies are estimated in the analysis and estimation protocol 
(Stehman and Czaplewski 1998). The standard way of reporting thematic accuracy 
is in the form of an error/confusion matrix for categorical maps to derive statistics 
such as overall and class specific accuracies and their confidence intervals 
(Congalton 1991; Foody 2002). Detailed information on accuracy estimates can be 
found in the literature (Card 1982; Foody 2008; Stehman 1997). 

2.2.2 Metadata comparison 
This study examined the characteristics of the following existing GLCR dataset: 
IGBP-DIS, GLC2000, GlobCover 2005 and 2009, and GLCNMO. In addition, we 
considered the MODIS and GLCNMO training datasets as well as the FAO-FRA 
remote sensing survey datasets, which could also serve as a reference dataset for 
GLC map validation. The datasets under development for LandCover CCI map 
validations and by Boston University/GOFC-GOLD as well as volunteer-based 
“crowd-sourcing” datasets, such as Geo-Wiki and View-IT, were also included. 
For detailed information about these datasets, references are provided in Table 2.1.  

Table 2.1. Reference datasets used for assessment 
Dataset  Abbreviation Current state Source of information 
IGBP-DISCover IGBP-DIS 

Existing 

(Scepan et al. 1999) 
GLC 2000 GLC2000 (Mayaux et al. 2006) 

GlobCover 2005 GlobCov5 (Bicheron et al. 2008; Defourny et al. 
2011b) 

GlobCover 2009 GlobCov9 (Bontemps et al. 2011a) 
GLCNMO validation and 
training dataset 

GLCNMO-tr/val (Tateishi et al. 2011) 

MODIS training (STEP 
dataset) 

MODIS-tr (Friedl et al. 2010; Strahler et al. 
2003) 

FAO-FRA FAO-FRA (FAO and JRC 2012; Potapov et al. 
2011) 

GEO-WIKI Geo-Wiki 

On-going  

(Fritz et al. 2009; Fritz et al. 2011a) 
VIEW-IT View-IT (Clark and Aide 2011b) 
LC-CCI LC-CCI (Achard et al. 2011) 
Boston U. /GOFC-GOLD GOFC-GOLD (Olofsson et al. 2012)  
 

Based on the characteristics discussed in Section 2.2.1, we reviewed and compared 
the characteristics of the GLCR datasets. We also reviewed the current use of the 
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existing GLCR datasets and derived accuracy estimates. We considered the 
following characteristics of the GLCR datasets for comparison (Table 2.2).   

Table 2.2. The characteristics of reference datasets used for assessment 
Legend Sampling design Response design Current use 
• Classification scheme 
• Number of class 
• Classifier information 

provided 

• Sample unit type and 
size 

• Sample size 
• Sample selection 

scheme 
• Sample stratification 
• Inclusion probability 
• MMU 

• Source of information  
• Temporal coverage 
• Location accuracy 
• Labelling procedure 
• Sample verification 
• Confidence in 

interpretation 
• Majority classes and 

their fraction 

• Intended application 
• Other applications 
• Applied pre-

processing  
• Derived accuracy 

estimates 

2.2.3 Users of GLC validation and their requirements 
Information on the state and dynamics of land cover is crucial for a wide range of 
scientific purposes (Bontemps et al. 2011b). Appropriate GLC maps are 
increasingly sought for many applications, i.e. climate modelling (Herold et al. 
2011; Verburg et al. 2011), forest resources assessments (FAO 2001), crop 
distribution modelling (You et al. 2009), agricultural land availability assessments 
(Cai et al. 2011) and biodiversity assessments (Joseph et al. 2009). These 
applications have different requirements for GLC datasets and their validation 
(e.g., in terms of thematic and spatial details). In addition to varying user 
requirements, the existing GLC maps and reference datasets also have various 
characteristics resulting from different interests, mapping standards, methodologies 
and so on (Herold et al. 2008). It is important for users to make an informed 
decision when selecting appropriate GLC datasets to meet their requirements. This 
section provides a review of the requirements of the main users of GLC datasets 
and the implications for the map validation procedure, particularly for GLCR 
datasets. Such information can be useful for increasing the re-usability of GLCR 
datasets for applications by different user groups.  

2.2.3.1 Climate modelling community (ECV) 
Systematic land cover observation is essential for the climate modelling 
community (CMC) as land cover is identified as 1 of the 13 terrestrial Essential 
Climate Variables (ECV) by the Global Climate Observing Systems (GCOS) 
(FAO 2008). To support the work of UNFCCC and other international bodies on 
mitigation and adaptation to climate change, continuous monitoring of ECV to 
reduce uncertainties of the global climate system is required. In general, CMCs use 
land cover observations in the following ways (Herold et al. 2011): 
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• As a proxy for plant functional types (PFTs) related to land surface 
parameters 

• As a proxy for tracking human activities 
• As datasets for validating model outcomes or studying feedback 

effects. 

Herold et al. (2011) systematically analysed the user requirements of CMCs. The 
main CMCs such as GCOS, Global Terrestrial Observing System (GTOS) and 
Climate Modelling User Group (CMUG) stressed several requirements for GLC 
maps and their validation to improve climate modelling and reduce uncertainties. 
Firstly, statistically rigorous and independent GLC map validation is a prerequisite 
to determine the map fitness for CMCs (Bontemps et al. 2011b). Thus, a map 
validation procedure should follow internationally agreed and repeatable methods 
following the best practices suggested by the Committee on Earth Observation 
Satellites (CEOS) Working Group on Calibration and Validation (WGCV) 
(Strahler et al. 2006). The uncertainties of GLC data should be quantified and 
reduced as much as possible for the best and continuous observation of land cover 
ECV. A maximum of 15% error for the GLC maps is allowed by the CMCs 
(Herold et al. 2011). Furthermore, CMCs require continuous monitoring of GLC, 
and the need for stability in accuracy should be reflected by implementing multi-
date accuracy assessments (Bontemps et al. 2011b). The stability of multi-date data 
needs to be at least 85-90% (Herold et al. 2011). This highlights that reference 
datasets with stable multi-date records (no un-realistic land cover changes in time) 
that can provide accurate error estimates of the GLC data and uncertainty 
assessments are essential for CMCs (Herold et al. 2011; Hibbard et al. 2010).  

As GLC datasets are used as a proxy for PFTs, the relative importance of different 
class accuracies strongly varies depending on which parameter and PFT are 
estimated. However, the CMCs stressed that class-specific accuracies should be 
improved, which is very critical in grassland, shrub-land and wetland areas (Frey 
and Smith 2007; Poulter et al. 2011; Quaife et al. 2008). Moreover, CMCs also 
require consistency and comparability of land cover characterisation among the 
GLC datasets, and the use of a Land Cover Characterisation System (LCCS) is 
supported since it is currently the most comprehensive, internationally applied and 
flexible framework for land cover characterization (Herold et al. 2011). To 
summarize, CMC applications require GLC datasets and their accuracy 
assessments that are statistically rigorous, stable in multi-date assessment and 
flexible thematic characterization. Reference datasets used for the accuracy 
assessments should also meet these requirements. 
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2.2.3.2 Global forest change analysts  
Several globally consistent assessments of forest area and change have been 
carried out using wall-to-wall (FAO 2001; Hansen et al. 2010; Townshend et al. 
2012) and sample-based approaches (Achard et al. 2002; FAO 2007). As forest 
change is an important factor for the global carbon cycle, the information obtained 
from such assessments may be used in efforts to reduce emissions from 
deforestation and forest degradation (GOFC-GOLD 2011) as well as for different 
applications, e.g., global carbon sequestration modelling and carbon budget 
accounting and emission estimations (Benítez et al. 2004; Harris et al. 2012). 
Therefore, accuracy estimates and uncertainty information on forest change area 
are crucial for dataset comparability and reducing the uncertainty for further 
applications (Olofsson et al. 2013).  

Forest area and change estimation can be conducted using different approaches, 
e.g. (1) map pixel counting that is adjusted and improved by accounting for 
misclassification error using reference samples (de Bruin 2000a; GOFC-GOLD 
2011), (2) post-classification comparison of multiple maps (Olofsson et al. 2013; 
Van Oort 2005), (3) a dedicated sampling survey with area sample units (e.g. 5x5 
km, 10x10 km) (Eva et al. 2010; Gallego and Stibig 2012), (4) change detection 
analyses using multi-date satellite images (Townshend et al. 2012) and (5) 
calibration of a wall-to-wall assessment using sample-based estimates (Hansen et 
al. 2010). The GLCR datasets can be used for assessing global forest change 
products, as well as improving their area estimation (FAO 2001; GOFC-GOLD 
2011; Olofsson et al. 2013). Accuracies of such forest area and change estimates 
should be assessed and incorporated into the final estimates using reference 
datasets, and the uncertainty estimates should also be provided in the form of 
confidence intervals and sampling standard errors, etc. (McRoberts 2010; Olofsson 
et al. 2013). 

The preferred sample selection schemes are clustered, stratified sampling or 
systematic sampling for forest area and change analyses (Achard et al. 2002; 
Gallego and Stibig 2012; GOFC-GOLD 2011). Stratification could be based on 
knowledge driven or remote sensing based characterisation of possible forest 
change areas (Achard et al. 2002; Hansen et al. 2010; Strahler et al. 2006). A 
suitable forest definition should be considered since various forest definitions exist 
(GOFC-GOLD 2011). Reference datasets based on medium to high-resolution 
satellite images would be suitable as 1 to 5 ha MMU is commonly accepted for 
forest change monitoring (GOFC-GOLD 2011). The errors in the reference data 
have a great influence on the change detection accuracy (Foody 2010), thus 
statistically rigorous and high-quality reference data should be promoted for forest 
monitoring (GOFC-GOLD 2011).  
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In summary, global forest change analysts require reference  datasets that have 
statistical rigorousness, stability in multi-date records, a suitable sample selection 
scheme and forest definition, and spatial detail suitable for change detection. 

2.2.3.3 GEO Global Agricultural Monitoring CoP  
Agriculture is one of the main concerns and areas of societal benefits of the GEO 
(GEO 2012). It is essential for meeting the food demands of a rapidly growing 
population (Cassman et al. 2005) and is a factor in many environmental issues, e.g. 
tropical deforestation, biodiversity loss (Foley et al. 2005; Sachs et al. 2010). 
Aiming to support sustainable agriculture, the GEO implementation plan targets 
global mapping, monitoring and modelling of changes in agricultural land use and 
type (Béquignon et al. 2010). As such, international organizations, e.g. Joint 
Experiment for Crop Assessment and Monitoring and the Global Agriculture 
Monitoring Project, are working to facilitate the comparison and assessments of 
monitoring and modelling methods and to provide a continuous global agricultural 
monitoring system (Becker-Reshef et al. 2010; JECAM 2012).  

GLC maps are often used in combination with other statistical surveys to create 
global cropland products, e.g. the M3-Cropland layer for 2000 (Ramankutty et al. 
2008), the global map of yield and type of 175 distinct crops for 2000 (Monfreda et 
al. 2008) and a consolidated community global cropland map by synergizing GLC 
maps with various regional maps (Fritz et al. 2013; See et al. 2012 ). GLC datasets 
can provide the distribution of agricultural land cover; however, the capability to 
obtain information about agricultural land-use practices, such as crop type, yield 
and fertilizer use, is very limited from remote sensing based datasets (Monfreda et 
al. 2008; Pittman et al. 2010). Furthermore, the accuracy of GLC maps in 
capturing cropland classes varies from 56-76% for some GLC products, and 
inconsistencies in their estimates of cropland distribution and area are also evident 
(Fritz et al. 2011b). 

Accuracy assessments of GLC products providing information on the confidence 
of cropland area estimates and problematic areas are crucial for the uncertainty 
estimation of global cropland products. GLCR datasets can be used for improving 
and validating global cropland products. However, attention has to be paid to the 
definition of cropland and pasture (Goldewijk et al. 2007; Ramankutty et al. 2008). 
In addition, reference datasets having information on the main crop and 
management types are desirable since information on crop type is often lacking in 
GLC maps. Mosaic cropland classes cause uncertainty in cropland area estimation 
(Goldewijk et al. 2007), thus reference datasets with improved representation of 
mixed-unit classes or information on majority classes and their fraction could be 
useful (Fritz et al. 2011c; Herold et al. 2009a). Attention also needs to be given to 

http://www.geog.mcgill.ca/%7Enramankutty/Datasets/Datasets.html
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quality assurance as well as the rigorous validation and comparison of global 
agricultural datasets (Becker-Reshef et al. 2010; Fritz et al. 2013).  

Thus, global agricultural monitoring needs a sample that affords area estimation 
and have thematic detail in agricultural land cover, suitable definitions of cropland 
and pasture, and information on mosaic classes (majority classes). 

2.2.3.4 Producers of improved GLC maps 
The producers of GLC maps can also be regarded as users of GLC validation and 
reference data when the data are used for improving land cover maps. The GLC 
map producers underlined that the GLC products only reached an overall accuracy 
around 70% despite the significant developments in technology and methodology 
as well as the user requirement for improved accuracies (Defourny et al. 2012; 
Fritz et al. 2011b; Herold et al. 2011). General inability and inconsistency of GLC 
mapping approaches to clearly discriminate mixed trees, shrubs, and herbaceous 
vegetation have been noted (Herold et al. 2008; Huttich et al. 2011; Jung et al. 
2006).  

To overcome this issue, in addition to analysing and improving the uncertainty 
components of GLC maps summarized by Defourny et al. (2012), the available 
reference datasets could also be used in different ways. Reference datasets can be 
utilized to map the spatial accuracy and classification uncertainty of thematic maps 
for understanding error sources and describing map limitations (Kyriakidis and 
Dungan 2001; Powell et al. 2004; Strahler et al. 2006). The GLCR datasets could 
also be used to improve land cover maps using various approaches, i.e., map 
training using a large number of samples, especially at the global scale where one 
class can have different spectral signatures (Li and Zhang 2011; Loveland et al. 
2000), map calibration by analysing the posterior probability and reference data 
(Magnussen and de Bruin 2003) and creating synthetic maps based on several GLC 
maps (Fritz et al. 2009; Göhmann et al. 2009). A large number of samples having 
uniform spatial coverage and representation are promising for these purposes (Brus 
and De Gruijter 1997; Brus 2011).  

The key areas of improvement in GLC mapping also include a proper definition of 
mixed-unit classes using LCCS and an appropriate treatment of rare classes, e.g. 
urban and wetland classes (Defourny et al. 2011b; Herold et al. 2009a; Herold et 
al. 2008). Moreover, inconsistency among different GLC datasets is often 
attributed to landscape heterogeneity (Jung et al. 2006; McCallum et al. 2006; 
Pérez-Hoyos et al. 2012). Thus, reference datasets derived from fine-resolution 
satellite data and information on class proportions in heterogeneous samples could 
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be helpful to deal with this issue. The quality of reference datasets is also the main 
issue to examine when the aim is to improve GLC maps and their validation.  

Based on the above, a high sampling density and spatial coverage, detailed 
representation and flexible characterisation of land cover classes including rare 
classes and the characterisation of heterogeneous areas were deemed essential 
requirements from the map producer’s perspective. 

2.2.4 Re-usability assessment of GLCR datasets for different use cases 
This section focuses on the assessment of the GLCR datasets for their re-usability 
for the applications of four targeted GLC map user groups, e.g., CMC, global 
forest change analysts, GEO Global Agricultural Monitoring CoP and improved 
GLC map producers. Applications included calibration, validation and parameter 
(e.g. area) estimation of user-oriented global-scale maps that are available or being 
produced. The specific cases of four user-groups are summarized in Table 2.3.  

We used the upcoming Land cover-ECV GLC products as an example application 
for CMC since these map are being generated specifically for this group. Three 
consecutive maps are being created under the European Space Agency programme, 
Climate Change Initiatives, for global monitoring of ECVs to fulfil the 
requirements of GCOS (Defourny et al. 2011a). The currently available Global 
Forest Cover Loss (GFLC) map was adopted as an example case for global forest 
change estimation. Annual MODIS images for 2000 to 2005 with 500 m pixels 
were used to provide forest change hotspot areas on this map (Hansen et al. 2003). 
The beta version of the Global Hybrid Cropland Map (GHCM) was selected for 
the user group of GEO Global Agricultural Monitoring CoP. This map was 
generated through a mapping subtask of the GEO-Global Agricultural Monitoring 
System task led by IIASA (Fritz et al. 2013). A number of national and regional 
land cover products and crop statistics were combined synergized with GLC 
products to provide a global cropland map (Fritz et al. 2011c). The specifications 
of the upcoming GLC map, using recently launched Visible Infrared Imaging 
Radiometer Suite (VIIRS) satellite data, were used as an example of producing an 
improved GLC map. We analysed the suitability of GLCR datasets for calibrating 
and validating the VIIRS GLC map with the focus of increasing the quality of the 
map. 
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Table 2.3. Example cases of different user groups 

 Climate modelling 
community 

Global forest 
change analysts 

GEO Global 
Agricultural 

Monitoring CoP 

Producers of 
improved GLC 

maps 

Focus/aim of 
evaluation Map validation 

Map validation and 
calibration of area 

estimates 

Map validation and 
calibration of area 

estimates 

Map calibration and 
validation 

Map used for 
evaluation Land Cover-ECV 

Global Forest 
Cover Loss map 

(GFCL) 

Beta version of 
Community based  

Global Hybrid 
Cropland  map 

VIIRS 

Corresponding 
year 

2000, 2005, and 
2010 2000-2005 

2000, 2005, and 
1995-2000, 2010 
(various temporal 

extents) 

2012 

Spatial resolution 
300 m for 2005 and 

2010; 1 km for 
2000 

500 m 1 km 
 1 km 

Thematic detail 
and classification 

scheme 
LCCS 22 classes Tree percentage Cropland 

percentage IGBP 17 classes 

Reference (Defourny et al. 
2011a) 

(Hansen et al. 2003; 
Hansen et al. 2010) 

(Fritz et al. 2013; 
See et al. 2012 ) (NASA 2013) 

 

We evaluated the characteristics of the datasets against the user requirements. We 
selected user specific requirements which are reviewed in Section 2.2.3. We also 
included a general requirement namely the quality flag information of the GLCR 
datasets that is relevant to all the user groups considered. Moreover, map related 
requirements such as suitability in temporal coverage and spatial resolution also 
apply to all the user groups and are included in the analysis. Criteria for evaluating 
according to these user requirements were derived and the GLCR datasets were 
assessed for each criterion. User requirements and criteria of four user groups are 
summarised in Table 2.4. 
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We assigned scores ranging from 1 (unsuitable) to 5 (highly suitable) to the 
GLCR datasets for each criterion of the user groups according to detailed rubrics 
that are provided in Table A.1 (see Appendix in the online publication).  

The criteria scores were aggregated to derive one indicator value representing the 
dataset re-usability for given use cases. Firstly, all criteria were divided into 
trade-off and non-trade-off criteria since some criteria can be so essential that the 
strong performance of one criterion cannot compensate for the weak performance 
of another criterion. For instance, good performance of the class representation 
criterion cannot compensate for the weak performance of the stable multi-date 
sample criterion. We aggregated trade-off criteria scores using a weighted linear 
combination method (Malczewski 2000), and weights indicating the criteria 
importance were derived using Analytical Hierarchy Process (pairwise 
comparisons) developed by Saaty (1977). For example, the requirement of a 
flexible thematic land cover characterisation is represented by criteria on the 
classification scheme and thematic detail and presence of information on the 
classifier (Table 4). Since presence of information on classifiers is very important 
to make the legend adaptable to other legends, this criterion received five times 
more weight than the classification scheme and thematic detail. For example, if a 
dataset is assigned a score 3 (moderately suitable) to criterion of classification 
scheme and thematic detail and a score 2 (marginally suitable) to presence of 
classifiers information, the composite score for flexible thematic land cover 
characterisation equals 3x0.167+2x0.833=2.167  (rounded of to 2: marginally 
suitable). The weights of the trade-off criteria are calculated similarly; details are 
provided in Table 2.4.  

Finally, composite codes of trade-off criteria and all non-trade-off criteria were 
aggregated using the Ordered Weighted Averaging procedure of Yager (1988). 
With the trade-off and ORness measures of this approach, analysts can control 
the criterion substitutability and involved risk of the analysis results respectively. 
For non-trade-off criteria, the Boolean operators AND (minimum) and OR 
(maximum) can be used (Malczewski 2006). The AND-type combination can be 
associated with a pessimistic or risk-averse approach while the OR-type 
combination represents an optimistic or risk-taking strategy (Drobne and Lisec 
2009). In this analysis, the AND operator that yields a low-risk result with no 
trade-off was used. The criterion with a minimum score was given a weight of 1, 
and all others had zero weights in the aggregation process. In other words, if a 
dataset is evaluated as unsuitable on one criterion, the final composite code will 
also be unsuitable. 
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2.3 Results  

2.3.1 Metadata comparison 
The thematic classification scheme is important for legend harmonization for 
integrating the datasets. Table 2.5 shows different thematic classification schemes 
adopted for the datasets. Among them, IGBP and LCCS were the main 
classification schemes employed. 

Table 2.5. Classification schemes of the datasets 
Datasets IGBP LCCS Other Number of classes 

IGBP-DIS    16 
GLC 2000    22 
GlobCov5    22 
GlobCov9    22 

GLCNMO-val    20 
GLCNMO-tr    14 

MODIS-tr    17 
FAO-FRA    9 
LC-CCI    22 

GOFC-GOLD    12 
GEO-Wiki    17-22 
VIEW-IT    7 

 

Some datasets such as GLC2000, GlobCover and IGBP were interpreted 
according to the hierarchical classifiers and translated into the map legends to 
enable the use of the datasets for other purposes or maps. In terms of the thematic 
detail, most reference datasets using LCCS have 20-22 classes (except 
GLCNMO-tr and FAO-FRA), but the IGBP-DIS and MODIS-tr datasets have 16-
17 classes based on the IGBP scheme (Table 2.5). FAO-FRA, GOFC-GOLD and 
View-IT datasets have less thematic detail.  Metadata comparisons of the GLCR 
datasets are described in detail, i.e., in terms of sampling and response design 
protocols as well as the current uses. 

2.3.1.1 Sampling design  
In this section, we present the results from the comparison of the characteristics 
related to the sampling design protocol. Figure 2.2 demonstrates the sample unit 
type and sizes of the datasets. Pixels, blocks of pixels, polygons and area units 
were used as sampling units for the reference datasets. IGBP-DIS, GLCNMO-
val, VIEW-IT and Geo-Wiki datasets have a pixel sampling unit, whereas 
GLC2000 and GlobCover datasets used blocks of pixels. GLCNMO-tr and 
MODIS-tr datasets have polygon units with areas ranging from 0.09 km2 to over 
100 km2 and varying shapes. The FAO-FRA and GOFC-GOLD datasets adopted 



Assessing global land cover reference datasets for different user communities 
 

31 

area units. Because these area units are not dependent on a pixel or block of 
pixels of any GLC maps, they can be easily applied for validating different GLC 
maps.  These area sampling units have large spatial support areas, but they can be 
flexibly decreased since they have small MMUs (4 m and 5 ha respectively). 

 

Figure 2.2. Sample unit type and spatial support area of GLCR datasets (dashed arrows - 
flexible spatial support area, dashed lines - varying spatial support area) 

The sample size and sample selection scheme of the datasets can be found in 
Table A.2 (see Appendix in the online publication). Most GLCR datasets used 
stratified random sampling emphasizing class specific accuracies. IGBP-DIS, 
GOFC-GOLD and GLCNMO-val have sizes of 379 to 600 samples. The sample 
size of the GOFC-GOLD dataset can be increased if small secondary sampling 
units are used. The GlobCover datasets have around 4200 samples each, and 
View-IT has the highest sample size number (~46000). The FAO-FRA dataset 
employed systematic sampling of 13000 samples at each latitude and longitude 
intersection.   

Two-stage stratified clustered sampling, highlighting the priority classes and 
landscape complexity in a cost-effective way, was implemented for the GLC2000 
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dataset. A similar scheme was also adopted for the LC-CCI dataset. 2600 primary 
sampling units of this dataset were selected by sub-sampling of the FAO-FRA 
data and 5 secondary sampling units were selected systematically from each 
primary samples accounting total sample size of around 13000. Some datasets did 
not use a probability sampling scheme and thus statistical sample-based 
assessments cannot be drawn. These include the training datasets for GLCNMO 
and MODIS which have selective samples for training of land cover 
classification. However, they have substantial sample sizes ranging from 1600 to 
1860. The Geo-Wiki dataset has a large sample size (10 500 by October 2012) 
that is updated and increased as volunteers interpret more samples.   

Stratum allocation of the samples varies depending on the class abundance and 
priority, except for the IGBP-DIS and GLCNMO datasets that allocate 25 to 30 
samples in each stratum. In all probability sampling schemes, sample inclusion 
probabilities are different per stratum (Table A.2). All stratified sampling based 
datasets (except GOFC-GOLD) used stratifications that are targeted to particular 
land cover maps (Table A.2).   

2.3.1.2 Response design 
The comparison of information sources for the GLCR datasets shows that 
satellite imagery, open source maps, geo-tagged photos and other regional maps 
are the main sources of information (Table 2.6). Mid-resolution Landsat and Spot 
images together with time-series coarse-resolution NDVI profiles from Spot-
VGT, MERIS and MODIS sensors are used to address spatial and temporal 
variability of land cover classes. The possibility of very-high resolution satellite 
images in conjunction with Virtual or Google Earth/maps and other open source 
maps complements the reference data sources as well. Table 2.6 also shows the 
importance of geo-tagged photos as source data for the GLCR datasets.  

Other than the spatial resolution of source data, the quality of these data, 
particularly positional accuracy, is important. Positional accuracies of source data 
for the GLCR datasets were not documented except for the IGBP-DIS, GLC2000 
and FAO-FRA datasets (Table A.2). Spatial coverage of reference datasets is still 
limited in some classes or parts of the world, for example, for the IGBP-DIS 
(Snow/Ice and Water body classes) and GlobCover datasets (Pakistan, 
Afghanistan, Iran, Japan, Colombia, Central America and Eastern Brazil).  
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Table 2.6. Reference data sources of the validation datasets. 

 

NDVI 
profile from 
Spot-VGT, 

MERIS, 
MODIS 

Landsat, 
Spot, 
Aster 

imagery 

Classification 
of Quickbird, 

Geo-Eye 
imagery 

Open source 
Google Earth, 

Open street,  Bin 
and Yahoo maps 

Geo-tagged 
photos and 
Confluence 

photos 

Other 
regional 

maps and 
aerial 

photographs 
IGBP-DIS            
GLC 2000           
GlobCov5          
GlobCov9        

GLCNMO-val         
GLCNM- tr        
MODIS-tr            
FAO-FRA           
LC-CCI          

GOFC-GOLD            
GEO-WIKI          
VIEW-IT          

 

Figure 2.3 compares the temporal coverage of source data for the GLCR datasets. 
The GLCR datasets used source data from 1987 onwards.  Source data for many 
datasets are centred around the year 2000. Geo-Wiki and View-IT datasets 
provide greater temporal coverage; however, land cover changes may occur 
within this time frame, and this should be taken care. Time stamp on each sample 
record would be is useful for this, however, information on the availability of 
such time stamps in GLCR datasets are not provided in the literature.  

 

Figure 2.3. Temporal coverage of reference data sources for the validation datasets 
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A procedure for sample labelling is commonly carried out by visual image 
interpretation for the GLCR datasets except the upcoming datasets of LC-CCI 
and GOFC-GOLD, which are using automated classification (Table A.2). 
International and national/regional experts interpreted most GLCR datasets. In 
contrast, Geo-Wiki and View-IT datasets are interpreted by volunteers. 

To decrease the interpretation variability and bias, samples were also verified by 
different interpreters, and the confidence level of class assignments was recorded 
for GLCR datasets. Verification was done for many datasets internally during the 
creation of the datasets and externally consolidated by independent researchers 
(Table A.2). Among the datasets, IGBP-DIS, GlobCov5, and MODIS-tr datasets 
were verified and the interpretation confidence was recorded. LC-CCI and 
GOFC-GOLD datasets are planned to contain such information. GLC2000, 
GLCNMO-tr and FAO-FRA datasets were verified, but the interpretation 
confidence was not recorded. GlobCov9 and Geo-Wiki datasets are not verified 
yet, whereas the interpretation confidence information is available. There is no 
information provided for the GLCNMO-val dataset.  

Determination of the agreement between the map and reference classification is 
different for homogeneous and heterogeneous sampling units. In the 
homogeneous case, class coverage from 75% (GlobCover) to 80% (GLC2000) of 
a sampling unit is considered homogeneous. For heterogeneous samples 
consisting of two or more land cover types, often 2-3 main land cover types are 
recorded. Their fraction in the sample unit area was visually estimated for 
GLC2000 as well as GlobCov 5 and 9 datasets (Table A.2). A more objective 
way to quantify the fraction could be to use an automated approach. LC-CCI and 
GOFC-GOLD plan to provide such information calculated from automatic 
segmentation and classification. 

2.3.1.3 Current use of the existing GLCR datasets  
The GLCR datasets were used to calibrate and validate the target GLC maps. The 
literature review revealed that the reference datasets were also used for other 
purposes. Table 2.7 summarizes the current uses of the GLCR datasets, required 
pre-processing steps and calculated accuracy estimates.  

The IGBP-DIS dataset classes were translated into four generic classes and used 
to validate the global forest cover map of the FAO (Table 2.7). The GLC2000 
dataset was processed again to have 11 general classes for comparing the 
accuracies of available GLC maps. The GlobCov5 dataset was re-interpreted 
once more for the GlobCov9 datasets, and the MODIS-tr dataset is updated and 
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reused. The use of the reference datasets for other applications is limited to these 
few applications.  

Table 2.7. Current use of GLCR datasets 
Dataset Intended 

application 
(map accuracy 

assessment) 

Other application Pre-processing Estimates Source 

IGBP-DIS IGBP map FAO Global forest 
cover   

Translated into 4 
general classes 

Overall, class 
specific  accuracy, 
standard error, also 
for continental level 

(FAO 2001) 

GLC2000 GLC2000 MAP Validating IGBP, 
GLC2000, MODIS 

maps and their 
synergy  

Translated into 5 
and 11 generic 
classes; quality 
and consistency 
were checked  

Overall accuracy, 
class specific 

accuracy 

(Göhmann et 
al. 2009) 

GlobCov5 GlobCover map 
2005 

Some samples fed to 
the validation 
datasets for 

GlobCover 2009 

Re-interpretation Overall accuracy, 
class specific 

accuracy 

(Bontemps et 
al. 2011a) 

GlobCov9 GlobCover map 
2009 

        

GLCNMO-val GLCNMO map         

GLCNMO-tr GLCNMO 
training 

        

MODIS-tr MODIS GLC 
map 

MODIS: Global 
Urban Area mapping  

Revised for 
training 

  (Schneider et 
al. 2009) 

FAO-FRA Forest resources 
assessment  

      (Potapov, et 
al., 2011)  

LC-CCI      
GOFC-GOLD   Validating MODIS 

IGBP map in Europe 
Re-stratification Overall and class 

specific accuracies 
(Stehman et 

al. 2012) 
GEO-WIKI   African hybrid 

cropland map; 
Biofuel land 

availability map 

The percentage of 
cropland within a 
1 km pixel; extent 
of human impact 
and abandoned 
land as well as 
land cover type 
were recorded 

with confidence 
levels 

Overall accuracy, 
error of omission 

and commission for 
cropland delineation 

of 5 GLC maps 

(Fritz et al. 
2011c; Perger 

et al. 2012) 

VIEW-IT Land change of 
Latin America 

and the 
Caribbean  

Land change of 
Bolivia; 

deforestation and 
reforestation of Latin 

America and the 
Caribbean; forest 

change of 
Guatemala; land use, 

land cover map of 
Uruguay 

Generalized into 5 
classes 

Overall and class 
specific accuracies 

(Aide et al. 
2012; Clark 

and Aide 
2011a; López-

Carr et al. 
2011; Redo et 

al. 2012) 
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The situation is slightly better for Geo-Wiki and View-IT as they were used for 
several other applications.   

2.3.2 Use cases 
The final combined result from the re-usability assessment is shown in Figure 
2.4. The suitability level provided in Figure 2.4 can be a pessimistic evaluation 
since the lowest criterion score was defined to be the final suitability level. The 
detailed performance of the datasets for each criterion is provided in Table A.3 
(see Appendix in the online publication).  

2.3.2.1 Climate modelling community (ECV) 
Among the GLCR datasets, only the LC-CCI dataset seems most suitable for 
validating upcoming Land cover-ECV products (Figure 2.4). This is expected 
since the LC-CCI reference dataset is developed for this purpose. These maps and 
their validation procedure were designed to meet the requirements of CMC.  

Most datasets would be suitable from a statistical sampling point of view, except 
GLCNMO-tr, MODIS-tr and Geo-Wiki due to the absence of probability 
sampling. We assessed the datasets providing hierarchical classifiers as highly 
suitable for the flexible land cover characterisation requirement since different 
map legends can be drawn from this information. As the Land cover-ECV dataset 
will have consecutive maps for 2000, 2005 and 2010, most datasets were 
identified to be temporally suitable for one of the three maps except the IGBP-
DIS dataset for 1993.  

The stability over multi-date datasets is an important user requirement, and many 
datasets did not satisfy this requirement. The reason is that datasets were mostly 
designed for one time period. A few datasets provide records in multiple dates. 
For example, the Globcov5 and Globcov9 datasets have some samples that have 
two records in time. However, around 30% of such samples showed differences 
in land cover interpretation. This differences could be related to inconsistency of 
the interpretation procedure of the two datasets. The MODIS-tr dataset may have 
two records in time since it is regularly updated. It may be possible that reference 
samples could be analysed in different time frames in the case of the Geo-Wiki 
and View-IT datasets. However, stability remains of concern. In contrast, FAO-
FRA and LC-CCI samples from different epochs meet this requirement. The low 
performance of most datasets regarding the stability over multi-date datasets 
resulted in low overall performance. The criterion of an easily combined and 
augmented sampling scheme was not included for the final evaluation. If users 
are interested in combining the datasets, they are referred to the criterion 
performances listed in Table A.3.  
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  Figure 2.4. Usability of GLC validation datasets for different user groups 

 



Chapter 2 
 

38 

2.3.2.2 Global forest change analysts 
The FAO-FRA and LC-CCI datasets were identified as very suitable for 
assessing the GFCL map according to the requirements of global forest change 
analysts (Figure 2.4). This is mainly because the sole purpose of the FAO-FRA is 
to estimate forest change at the global scale, and the LC-CCI will be generated 
based mostly on the FAO-FRA datasets. One of the main requirements of this 
user group is the availability of a multi-date sample, and only FAO-FRA and LC-
CCI fully meet this requirement. In contrast, other datasets do not satisfy this 
requirement due to the absence of multi-date samples. For area estimation, all the 
datasets were evaluated as moderate to highly suitable depending on whether they 
used a block of pixels or area sampling unit. Most stratified sampling based 
datasets did not use stratification of potential forest change areas, which is 
important for this user group.  

In terms of thematic detail and forest definition, all the datasets were identified as 
moderately suitable to highly suitable as information on forest/non-forest classes, 
forest type, and forest density are provided. Datasets assessed as moderately 
suitable do not use the same tree height threshold in the forest definition. In terms 
of spatial detail, GLC2000 and GLCNMO-tr datasets were evaluated as 
unsuitable due to their large sample unit size, and the others were evaluated as 
moderately to highly suitable.  

2.3.2.3 Geo Global Agricultural Monitoring CoP  
The assessment shows that FAO-FRA, LC-CCI, and GOFC-GOLD datasets are 
very suitable to validate or calibrate the GHCM map. GlobCov 5 and 9 were 
identified as moderately suitable. GLCNMO-tr, MODIS-tr and Geo-Wiki datasets 
showed moderate suitability. A model-based approach can be adopted to utilize 
these datasets since statistical sampling-based assessment is not possible. A few 
datasets, such as IGBP-DIS, GLC2000 and GLCNMO-val, were evaluated as 
marginally suitable due to insufficient cropland sample size (less than 100). The 
large sample unit size of GLC2000 may be difficult to apply in heterogeneous 
areas. The View-IT dataset was identified as unsuitable owing to its small sample 
unit size compared to the target map.  

For the class representation criterion, we compared the number of cropland 
samples and most datasets were found to be moderately to highly suitable. We 
evaluated the datasets that were suitable for the target map in terms of the 
thematic detail requirement because the target map has only cropland and non-
cropland classes. Another important criterion is the information on majority 
classes and its fraction since map classes are represented as a percentage 
(cropland percentage) for each pixel. For this criterion, we assessed IGBP-DIS, 
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ClobCov5, and Geo-Wiki datasets as moderately suitable and the rest were very 
suitable to highly suitable. These datasets do not contain majority class 
information. Nevertheless, some information can be drawn from the legend. The 
GlobCov5 has information on majority classes, but their fraction was not 
quantified.  

2.3.2.4 Producers of improved GLC maps 
From the perspective of GLC map producers, the LC-CCI and GOFC-GOLD 
datasets were evaluated as very suitable for validating and calibrating the VIIRS 
map. Moreover, GlobCov9 and Geo-Wiki datasets were also evaluated as 
moderately suitable, and the rest were marginally suitable.  

Geo-Wiki and View-IT datasets were shown to be very suitable for the spatial 
coverage and class representation criterion due to a large number of samples. The 
only drawback of these datasets is that some regions and classes might have been 
represented poorly. Other datasets, except IGBP-DIS, were identified as 
moderately suitable for this criterion. Many datasets were found to be suitable for 
the flexible thematic characterisation criterion except the datasets which were 
identified as less suitable due to the absence of classifier information and a 
LCCS-based legend. This is because the VIIRS map will use the IGBP 
characterisation system. Most datasets generated before around 2010 were also 
evaluated as being difficult to re-use since the VIIRS map will be for 2012, and 
land cover change may have occurred within this time frame. The datasets were 
assessed as moderate to highly suitable for the characterisation of heterogeneous 
area requirements except for the GLC2000 dataset, which has a 3x3 km sample 
unit size. In terms of quality flag information, the datasets were evaluated as 
moderately to very suitable. The GlobCov5 dataset was evaluated as highly 
suitable since independent verification has been done for this dataset. In contrast, 
the GLCNMO-val dataset was assessed as marginally suitable due to the 
unavailability of information on verification and confidence recording.  

2.4 Discussion  

2.4.1 The characteristics of the GLCR datasets  
The comparison of characteristics of the GLCR datasets shows large differences 
in aspects such as sample unit size and type, sample selection scheme and 
temporal coverage (Table A.2). In contrast, thanks to the joint efforts made 
earlier on the harmonization of different GLC map legends (Herold et al. 2006), 
most datasets used LCCS in the interpretation (Table 2.5). LCCS is adopted more 
commonly due to its flexibility and ability to present various land cover types 
with a more standardized description (Di Gregorio 2005). Moreover, LCCS is 
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recognized as a main land cover language, and new GLC maps such as new GLC 
maps of MODIS collection 6 products will be migrated into the LCCS (Friedl et 
al. 2010; Herold et al. 2006).  

Most datasets used a stratified random or systematic sampling scheme because of 
the robustness in class-specific accuracies and cost (Table A.2) (Defourny et al. 
2011b; Mayaux et al. 2006; Scepan et al. 1999). In contrast, datasets such as 
GLCNMO-tr, MODIS-tr and Geo-Wiki were not based on probability sampling. 
Nevertheless, they provide a large number of samples. All datasets, except 
GOFC-GOLD, using stratified sampling were based on a stratification that is 
map-dependent. This restricts the use of datasets for other maps unless they are 
re-stratified. The GOFC-GOLD dataset used a stratification that is independent of 
any GLC map, thus aiming to be applicable to many maps (Olofsson et al. 2012).  

The data source comparison showed that most datasets made use of available 
satellite images (coarse to medium resolution), open source maps, geo-tagged 
photos and regional maps (Table 2.6) with temporal coverage concentrated 
around the year 2000 (Figure 2.3). Since most datasets were visually interpreted, 
the quality flag information, such as interpretation confidence and verification, is 
useful to have an estimate of the interpreters’ variability and bias (Strahler et al. 
2006). Such information is available for some of the datasets (Table A.2). Some 
datasets were only verified or they only report an interpretation confidence, or 
neither was done. When re-using GLCR datasets, quality flag information is 
important as reference datasets are often the result of classifications 
(interpretations) which are not error-free (Congalton and Green 2009; Herold et 
al. 2009b). Information on the confidence in interpretation could be used for 
analysing spatial variation in the accuracy of reference data. In addition, a certain 
amount of human variability is inevitable, especially in fragmented and seasonal 
landscapes (Gardin et al. 2011; Mayaux et al. 2006; Powell et al. 2004; Scepan et 
al. 1999). The users should also keep in mind that reporting an interpretation 
confidence may not be sufficient as some areas such as savannah and grasslands 
are commonly interpreted with a low confidence level. The confidence level in 
labelling could account for as much as a 10% difference in the classification 
accuracy of the IGBP-DISCover map (Scepan et al. 1999).  

This study showed that the GLCR datasets have limitations to applications 
outside the intended uses (Table 2.7). This could be due to the inaccessibility of 
the GLCR datasets to the public and inconsistencies among them. Currently, few 
datasets such as the IGBP confidence sites, GLCNMO-tr and Geo-Wiki are 
openly available to the public. Recent efforts by the GOFC-GOLD to make 
existing GLCR datasets available to the public can increase the re-use of GLCR 



Assessing global land cover reference datasets for different user communities 
 

41 

data substantially (Mora et al. 2014). Generating a dataset that can be used 
efficiently for validating multiple maps is also proposed for the improved 
utilization of GLCR datasets (Olofsson et al. 2012). Nevertheless, considering the 
enormous efforts made to generate existing GLCR datasets, their efficient use 
should also be emphasized and supported. Providing systematic information on 
the existing and forthcoming reference datasets is essential for such purposes.  

Due to inconsistencies in the accuracy assessment methods, a comparison of the 
recorded accuracies of GLC maps is problematic (Olofsson et al. 2012). Even 
though several studies focused on GLC map comparisons using per-pixel 
disagreement analysis (Giri et al. 2005; Hansen and Reed 2000; McCallum et al. 
2006), the inconsistencies of the accuracy assessment methods, in particular the 
characteristics of the reference datasets, have not been analysed previously. Our 
study focused on this and revealed considerable inconsistencies in the GLCR 
dataset characteristics, i.e. sampling units, sampling selection scheme as well as 
spatial, thematic and temporal details. Researchers and organizations are working 
towards reducing the inconsistencies of reference datasets and assessment 
methods, for example, CEOS-WGCV introduced guidelines on conducting 
statistically rigorous repeatable accuracy assessments (Strahler et al. 2006). The 
importance of such internationally accepted methods should be further 
emphasized.  

2.4.2 The suitability of the GLCR datasets for different user 
communities 

The suitability assessment of the GLCR datasets for the applications of four 
targeted user groups showed that the LC-CCI, GOFC-GOLD, FAO-FRA and 
Geo-Wiki datasets were generally more suitable for re-use than the other datasets 
(Figure 2.4). For the CMC and global forest change analysts use cases, the 
requirement of stable multi-date samples could not be satisfied by most datasets. 
Most GLCR datasets were not designed this way; however, high density sampling 
in transition zones could be helpful since the change mostly occurs in transition 
zones (Herold et al. 2008). The requirement on the thematic detail also varied 
across the user groups. For example, datasets such as the FAO-FRA were less 
suitable for the CMC and improved GLC map production use cases (Figure 2.4). 
In contrast, they were considered very suitable in the use cases of the Global 
forest change analysts and GEO Global Agricultural Monitoring CoP where there 
was no strict requirement on the thematic detail. Since forest change areas and 
cropland areas are not uniformly distributed in space, potential spatial distribution 
of these areas should be considered when selecting samples for reference data. 
We assessed whether this was considered for the GLCR datasets from the 
perspective of Global forest change analysts. Only a few datasets used 
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stratifications based on potential forest change areas when selecting samples 
(Table A.3). In general, most datasets were identified as moderately suitable or 
higher for the agricultural use case, whereas many were assessed as marginally 
suitable for the improved GLC map production case. 

Other than the user-group specific criteria, we also considered criteria (e.g. spatial 
resolution and temporal coverage) that are particularly related to target maps. The 
dataset suitability could vary depending on which map is being targeted within 
the same user group. For the production of an improved GLC map, for example, 
most datasets were identified as marginally suitable for validating and calibrating 
the VIIRS map due to temporal coverage. The dataset suitability can be different 
when another target map is considered, e.g. a GLC map for 2000.   

The re-usability of crowd-sourcing GLCR datasets for the improved GLC map 
producers and GEO Global Agricultural Monitoring CoP was demonstrated in 
our analysis (Figure 2.4). These datasets have been re-used more frequently than 
other datasets (Table 2.7). The quality of such datasets may be challenged, but 
preliminary results from the Geo-Wiki datasets show that most volunteers have 
experience in interpreting satellite data (Fritz et al. 2011a) and volunteers were 
trained in the case of the View-IT dataset (Clark and Aide 2011b). Nevertheless, 
a successful arrangement of the Geo-Wiki, providing a growing database of 
samples resulting from the collective efforts of volunteers in a cost-effective way, 
is appealing for GLCR data generation. Such efforts should be supported in the 
new generation of GLCR datasets.  

2.5 Conclusion 

A variety of applications with different purposes and requirements use GLC maps 
as an input, thus no single map can be optimal for all applications. This is also 
true for the GLCR datasets aiming to calibrate and validate GLC maps. This 
study therefore considered the varying requirements of user groups of GLC maps 
and assessed the re-usability of available and forthcoming GLCR datasets. 
Varying GLCR dataset suitability levels were obtained depending on the 
reference data characteristics, user requirements and target maps. The following 
datasets were identified as being most suitable for multiple user groups: LC-CCI, 
GOFC-GOLD, FAO-FRA and Geo-Wiki. We emphasise the potentiality of 
existing and forthcoming GLCR datasets for multiple use cases in this study. In 
particular, most datasets were found to be at least moderately suitable for the 
GEO Global Agricultural Monitoring CoP case and at least marginally suitable 
for the improved GLC map production case.  
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The analysed GLCR datasets revealed some limitations in meeting specific 
requirements of the user groups. Stable multi-date sample requirement of CMC 
and Global forest change analysts groups could not be satisfied by the GLCR 
datasets since most dataset were developed for a single time frame. The 
requirement on sample selection scheme and stratification based on potential 
forest change areas also resulted in limited suitability of GLCR datasets for 
Global forest change analysts. This is mainly because sampling stratifications did 
not consider potential forest change areas. The requirement on thematic detail of 
GLCR datasets were less strict for Global forest change analysts and GEO Global 
Agricultural Monitoring CoP use cases than for the CMC and improved GLC 
map production use cases. The scores on this criterion differed accordingly for 
the two groups. This exemplifies the importance of considering GLC validation 
from different user perspective.  

Coordinated international efforts are working to increase the integrity of GLC 
maps and reference datasets and to support the re-usability of available GLCR 
datasets by making them accessible to the public (Mora et al. 2014). By providing 
systematic information about GLCR datasets and their re-usability in different 
use cases, this study can contribute to better-informed decision making for the 
efficient use of GLCR datasets. Apart from assessing the re-usability of the 
GLCR datasets, this chapter presented a method that can be adopted for dataset 
evaluations in similar applications. The scope of the study was also to 
demonstrate the capability of the GLCR datasets and to emphasize an efficient re-
cycling of available reference datasets.  

The authors conclude that the following items should be prioritized in reference 
dataset generation to increase the general usability of GLCR datasets for multiple 
user applications:  

• Use of a probability sampling scheme with representations from each 
class and region is advantageous. 

• A LCCS-based legend with classifier information making the datasets 
adaptable to different map legends.  

• Use of a small MMU and a large sample unit area and updating the 
dataset regularly  

• Quality assurance information  
• Publicly available in an expert framework guiding proper usage. 
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Abstract 

Inputs to various applications and models, current global land cover (GLC) maps 
are based on different data sources and methods. Therefore, comparing GLC maps 
is challenging. Statistical comparison of GLC maps is further complicated by the 
lack of a reference dataset that is suitable for validating multiple maps. This study 
utilizes the existing Globcover-2005 reference dataset to compare thematic 
accuracies of three GLC maps for the year 2005 (Globcover, LC-CCI and 
MODIS). We translated and reinterpreted the LCCS (Land Cover Classification 
System) classifier information of the reference dataset into the different map 
legends. The three maps were evaluated for a variety of applications, i.e., general 
circulation models, dynamic global vegetation models, agriculture assessments, 
carbon estimation and biodiversity assessments, using weighted accuracy 
assessment. Based on the impact of land cover confusions on the overall weighted 
accuracy of the GLC maps, we identified map improvement priorities. Overall 
accuracies were 70.8±1.4%, 71.4±1.3% and 61.3±1.5% for LC-CCI, MODIS and 
Globcover respectively. Weighted accuracy assessments produced increased 
overall accuracies (80-93%) since not all class confusion errors are important for 
specific applications. As a common denominator for all applications, the classes 
mixed trees, shrubs, grasses and cropland were identified as improvement 
priorities. The results demonstrate the necessity of accounting for dissimilarities in 
the importance of map classification errors for different user application. To 
determine the fitness of use of GLC maps, accuracy of GLC maps should be 
assessed per application; there is no single-figure accuracy estimate expressing 
map fitness for all purposes. 

Keywords: Global land cover; accuracy assessment; comparison; reference 
dataset; user applications; weighted accuracy assessment 
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3.1 Introduction 

Global land cover maps (GLC) provide essential information for policies and 
scientific applications such as climate modelling, food security, biodiversity and 
environmental modelling (Verburg et al. 2011). Currently, several GLC maps 
exist, including the IGBP-DISCover (Loveland et al. 2000), GlobCover maps 
(Defourny et al. 2012), MODIS GLC maps (Friedl et al. 2010), LC-CCI maps 
(CCI-LC 2014) and FROM-GLC maps (Gong et al. 2013). These maps originate 
from various initiatives and they differ in used input data, methodologies and 
validations (Herold et al. 2008). Consequently, for users it is difficult to compare 
and select the GLC map that fits their application best.  

Several studies have compared GLC maps to highlight their strengths (Fritz et al. 
2011b; Giri et al. 2005; McCallum et al. 2006). These studies analysed spatial 
agreement among GLC maps, however, they do not provide information on 
comparative accuracies of the maps. Fritz et al. (2011b) and  Herold et al. (2008) 
compared the accuracy estimates of GLC maps after harmonizing reported 
confusion matrices with different legends into confusion matrices with a common 
legend. As this harmonization only concerns the confusion matrices, it remains 
unclear how the GLC maps are compared relative to the same reference dataset. 
Except for a few regional comparisons (Frey and Smith 2007; Wu et al. 2008), 
there are no reports on comparative accuracy assessments of GLC maps that use 
the same reference dataset. 

Comparative accuracy assessment of GLC maps is challenging because of lack of 
reference datasets that are suitable for multiple maps. Several GLC reference 
datasets were produced and used to validate specific GLC maps (Bontemps et al. 
2011a; Mayaux et al. 2006; Scepan et al. 1999). However, Olofsson et al. (2012) 
questioned the use of these datasets to validate multiple maps due to 
inconsistencies in their legends, sampling and response design protocols. Olofsson 
et al. (2012) proposed a new GLC reference dataset with flexible thematic and 
spatial representations and an adjustable sampling scheme to validate multiple 
maps. This dataset is under development. Existing datasets could be useful for 
validating multiple GLC maps if they satisfy the following criteria: (1) based on a 
probability sampling design, (2) employ UN Land Cover Classification System 
(LCCS) classifiers, (3) are quality flagged and (4) are publicly available  
(Tsendbazar et al. 2015a).  

Conventional accuracy reporting from confusion matrices assumes that all 
confusion errors are equally important. However, confusion between certain 
classes may have more impact on applications of land cover (LC) maps than other 
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confusions (DeFries and Los 1999). For example, confusion between water and 
snow/ice may not be as important for biomass estimation, as it is for albedo 
estimation. Several studies accounted for such differences and calculated GLC 
map accuracy for specific applications using weights derived from class 
similarities in terms of certain parameters (DeFries and Los 1999; Mayaux et al. 
2006). To date, however, a comparative accuracy assessment of GLC maps for 
specific applications does not exist.  

The objectives of this study are (1) to use the existing Globcover-2005 reference 
dataset for comparative assessment of thematic accuracy; (2) to compare the recent 
GLC maps and assess their strengths and weaknesses for specific applications; and 
(3) to identify priorities for improving the GLC maps for those applications. We 
quantitatively compared GLC maps for the year 2005, namely the Globcover, LC-
CCI and MODIS using the Globcover-2005 reference dataset that has flexible 
thematic information (i.e. LCCS-classifiers). Furthermore, we compared the 
thematic accuracies of the GLC maps to analyse which maps are the most accurate 
for applications of climate models namely General Circulation Models (GCM) and 
Dynamic Global Vegetation Models (DGVM), agriculture assessments, carbon 
estimation and biodiversity assessments. We then identified map improvement 
priorities (specific LC classes and LC confusions) by analysing LC classes and 
confusions with high impact on the weighted accuracy. Comparative assessment of 
GLC map accuracies for different applications can help users to better select GLC 
maps and to understand their uncertainty as model inputs. Moreover, the analysis 
of improvement priorities for the GLC maps is also beneficial to the GLC map 
producers. 

3.2 Material and methods 

3.2.1 Global land cover maps  
The GLC maps considered in this study are: the Globcover,  LC-CCI and MODIS 
maps for the year 2005. These maps were selected because they are temporally 
similar to the reference dataset.  

The Globcover project of the European Space Agency (ESA) provides GLC maps 
of 2005 and 2009 based on 300m resolution MERIS satellite data (Defourny et al. 
2011b). The Globcover-2005 map has an LCCS based legend with 22 classes. The 
thematic overall accuracy of the Globcover-2005 was reported as 73.1% (Bicheron 
et al. 2008).  

Building on the experience of Globcover maps, the ESA’s Land Cover-CCI (LC-
CCI) project produced three consecutive GLC maps for the epochs of 2000, 2005 
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and 2010 at 300m resolution using the MERIS data archive (CCI-LC 2014). These 
maps were specifically targeted to meet the requirements of climate modellers. The 
maps have an LCCS based legend with 22 classes. The LC-CCI project will 
conduct an accuracy assessment for the 2005 epoch map.  

Using data from the Moderate Resolution Imaging Spectroradiometer (MODIS), 
Boston University provides annual MODIS Collection-5 GLC maps at 500m 
resolution (Friedl et al. 2010). MODIS GLC maps provide five legends including a 
legend based on the International Geosphere-Biosphere Programme (IGBP) 
classification scheme. The overall accuracy of the 2005  map is 74.8% based on 
the cross-validation using the training dataset (Friedl et al. 2010). We used the 
GLC map with the IGBP legend (17 classes) in this study. Table 3.1 provides a 
summary of the GLC maps. 

Table 3.1. A summary of GLC maps used for comparison 
GLC map Globcover  LC-CCI MODIS 
Temporal frame 2005 
Spatial resolution 
at the Equator 

300 m 300 m 500 m 

Input data MERIS: Bi-monthly 
from 10-day composites 

MERIS global SR 
composite, SPOT-VGT 
time series (for updating) 

MODIS: Monthly EVI, 
LST and 7 bands from 8-
day composites 

Time of data 
collection 

2005-2006 2003-2007 2005 

Classification 
method 

(Un)supervised spatio-
temporal clustering; 
expert-based labelling 

Unsupervised spatio-
temporal clustering; 
machine learning 
classification  

Supervised decision tree 
boosting 

Classification 
scheme 

LCCS based:22 classes LCCS based: 22 classes 5 different legends 
including the IGBP (17 
classes) 

Reference (Bicheron et al. 2008; 
Defourny et al. 2011b) 

(CCI-LC 2014) (Friedl et al. 2010) 

 

We harmonized the map legends into 13 general classes for comparative 
assessment (Table 3.2). The Globcover legend does not have a separate class for 
DNL trees. Therefore, its harmonized legend has 12 classes. The harmonization 
followed the approach of Herold et al. (2008) that provides a table for harmonizing 
into 13 general LC classes based on the LCCS-based legend translation protocols. 
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Table 3.2. The lookup table for 13 general class legend and corresponding classes of the 
GLC maps 

Class 
Generalized land cover 

class Abbreviation Globcover* LC-CCI 
MODIS-

IGBP 
1 Evergreen Needleleaf Trees ENL trees 70 70 1 
2 Evergreen Broadleaf Trees EBL trees 40, 160, 170 50, 160, 170 2 

3 
Deciduous Needleleaf 
Trees 

DNL trees 
  80 3 

4 Deciduous Broadleaf Trees DBL trees 50, 60 60 4 

5 
Mixed/Other Trees (incl. 
mixtures) 

Mixed trees 
90, 100, 110 90, 100 5, 8, 9  

6  Shrubs Shrubs 130 120 6,7 
7 Herbaceous vegetation Grasses 120, 140 110, 130, 140 10 

8 

Cultivated and managed 
vegetation /agriculture 
(incl. mixtures) 

Cropland 

11, 14, 20, 30 10, 20, 30, 40 12, 14 
9 Wetland vegetation Wetland 180 180 11 

10 Urban/built up Urban  190 190 13 
11 Snow and Ice Snow and Ice 220 220 15 

12 Bare/sparse vegetation 
Bare/sparse 
vegetation 150, 200 150, 200 16 

13 Open water Water  210 210 17 
*The legend descriptions corresponding to the Globcover, LC-CCI and MODIS maps can be found in Table S2 in the 
supplementary data of the online publication. 

3.2.2 Global land cover reference dataset  
Comparative accuracy assessment was based on the reference dataset that was 
developed to validate the Globcover-2005 GLC map. This reference dataset was 
selected to compare the GLC maps since it has a probability sampling design and 
LCCS-classifier information while it is also readily accessible through the GOFC-
GOLD Land-Cover office.  

The design procedures to derive the Globcover-2005 reference dataset are 
described in Bicheron et al. (2008). The reference sample units were selected using 
a stratified random sampling scheme (Bicheron et al. 2008). The sample units 
correspond to 5x5 MERIS pixels (1.5km x1.5km area at the equator). This area 
matches to 5x5 pixels on the Globcover and LC-CCI maps and 3x3 pixels on the 
MODIS map. The reference LC information of more than 4000 sample sites was 
interpreted by international experts using web mapping capabilities including 
Google-Earth, Virtual-Earth and 8-years of NDVI profiles (Defourny et al. 2011b).  

To enhance the potential future use of the reference dataset, the LC at sample 
locations was characterised by LCCS-classifiers that categorize sets of diagnostic 
attributes of LC (e.g. vertical and horizontal structure, floristic composition)(Di 
Gregorio 2005). LC classes are defined by applying combinations of the LCCS-
classifiers. Depending on diagnostic attributes of LC, up to 6 levels of LCCS-
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classifiers were used for characterizing LC at the sample locations. The 
corresponding lookup table for the LCCS-classifiers is provided in Table S1 in the 
supplementary data of the online publication. In heterogeneous areas, a maximum 
of three dominant LC classes occupying the largest part of the sample unit area 
were reported.  

3.2.3 Translation and re-interpretation of the Globcover-2005 
reference dataset 

Translation and reinterpretation steps were followed to ensure the reference 
dataset’s quality and consistency (Figure 3.1). The LCCS-classifiers of the 
reference dataset were translated to the legends of the Globcover, LC-CCI and 
MODIS maps following a fixed protocol based on the translation guideline 
provided in Bicheron et al. (2008).  

For each legend, main LC classes were translated from the LCCS-classifier 
information per sample unit. For heterogeneous sample units (2 or 3 LC classes), 
two possible mosaic classes were created (e.g. mosaic of natural vegetation and 
cropland). The lookup table for translating main and mosaic LC classes can be 
found in Table S3-5 in the supplementary data of the online publication.  

The Globcover-2005 reference dataset does not provide quantitative class 
proportion information indicating relative dominance of LC classes within 
composite classes.  Therefore, it is difficult to identify the final LC classes of the 
reference sample, particularly in heterogeneous areas. To overcome this, we 
detected the reference sample sites with multiple general classes after harmonizing 
the translated LC classes (main and mosaic) of the reference datasets into 13 
general classes. For example, a site with rain-fed cropland, irrigated cropland and 
mixed tree classes could have two possible general LC classes after the 
harmonization (cropland and mixed trees). The detected sample sites were 
analysed to identify the source of uncertainty in the translation and they were 
eventually re-interpreted.  
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Figure 3.1. Translation and reinterpretation steps 

We re-interpreted the identified sample sites as well as other directly translatable 
sites with the availability of more and better source materials (i.e., very high 
resolution images). In the reinterpretation, we used images from Google-Earth and 
Bing maps, geotagged photos, the Global Land Survey Landsat-2005 reflectance 
and NDVI data, tree cover information from Vegetation continuous field (MODIS-
VCF) data and the global map of irrigated areas (Siebert et al. 2013). Sample sites 
were labelled according to the legends of the Globcover, LC-CCI and MODIS 
maps to obtain a GLC reference dataset in three legends. Figure 3.2 shows the 
spatial distribution of the sample processed in this step.  
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Figure 3.2. Spatial distribution of the Globcover-2005 reference dataset (grey dots) 

3.2.4 Thematic accuracy assessments  
The thematic accuracies of the GLC maps were calculated using confusion 
matrices. To build the confusion matrices, map categories corresponding to the 
reference sample locations were extracted; any heterogeneous sites with two or 
more map categories were assigned to the class occupying the majority of the site 
area. 

In the accuracy assessments, we adjusted confusion matrices from sample counts 
by accounting for the class proportions of the map (Card 1982). The overall 
accuracy and class-specific accuracies were derived following the method 
described by Card (1982). The variance and confidence level of the accuracies 
were calculated using the equations for stratified random sampling (Card 1982; 
Olofsson et al. 2013). Figure 3.3a illustrates the inputs to adjust the confusion 
matrix using class proportions. 

3.2.5 Weighted accuracy assessments and weight calculation for 
specific applications 

Weighted accuracies considering class similarities for specific applications were 
assessed for the GLC maps using the method described by Cohen (1968) and 
Rossiter (2004). Weighted overall accuracies (Aow), accuracy standard deviation 
(Saow) and confidence intervals (at 95% confidence level) were calculated based 
on the Equations 3.1-3.3. The matrices used for this calculation are shown in 
Figure 3.3b. 
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𝑨𝑨𝒐𝒐𝒐𝒐 = ∑ ∑ 𝒘𝒘𝒊𝒊𝒊𝒊
𝒓𝒓
𝒋𝒋=𝟏𝟏 .𝝆𝝆𝒊𝒊𝒊𝒊𝒓𝒓

𝒊𝒊=𝟏𝟏                                        (3.1) 

𝒔𝒔𝒂𝒂𝒂𝒂𝒂𝒂 = �𝑨𝑨𝒐𝒐𝒐𝒐∙(𝟏𝟏−𝑨𝑨𝒐𝒐𝒐𝒐)
𝒏𝒏

                                                (3.2) 

𝑨𝑨𝒐𝒐𝒐𝒐 ± [𝒔𝒔𝒂𝒂𝒂𝒂𝒂𝒂 ∙ 𝒁𝒁𝟏𝟏−𝜶𝜶]                                                (3.3) 

 nij- number of observation in row i, column j;ni+ - marginal sum of row 
(mapped class) i; n+j – marginal sum of column (reference class) j; n- total 
number of observations; pij -proportion of map area in row i, column j; pi+ -
proportion of map area in row i (classified); p+i -proportion of map area in 
column  i(adjusted by the reference data); Wij – weight correspond to map area 
P in row i and column j. 

In this study, we assessed the accuracy of GLC maps in terms of thematic 
similarity, climate models such as GCM and DGVM, agriculture assessments, 
carbon estimation and biodiversity assessments. Once the weights were defined, 
weighted accuracies were assessed for these applications using the confusion 
matrix and the adjusted confusion matrix (Figure 3.3). The following subsections 
describe the weight calculations for specific applications.  

3.2.5.1  Thematic similarity 
Thematic similarity between LC classes was defined based on thematic proximity 
from the legend. We assessed the thematic similarity between 13 LC classes 
following the method described in Mayaux et al. (2006). Similarity indices were 
assigned to each pair of LC classes for each of 7 LCCS-classifiers namely 

Figure 3.3. Procedures to derive adjusted confusion matrix (a) and weighted 
accuracies for specific application (b) 
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(non)vegetated, terrestrial/aquatic, managed/natural, life form, cover, height, leaf 
type and leaf cycle. Thematic similarities were then calculated as the average of 
the 7 scores. The scale of the similarity indices ranges from zero (meaning that the 
two LC classes are completely dissimilar) to one (meaning that the two LC classes 
are assumed to be identical for given applications). As the index increases, the 
seriousness of the confusion between the two classes is considered to diminish. 
Hence, the diagonals of the similarity matrix are composed of ones, while the off-
diagonals are between zero and one. This similarity matrix was used to provide the 
weights for assessing the GLC map accuracy in terms of thematic similarity.  

3.2.5.2 Agriculture assessments 
GLC maps are often used in combination with other statistical surveys to create 
global cropland maps (See et al. 2012 ). We included this application to illustrate 
an application that uses only one or few classes of GLC maps. As GLC maps do 
not have a separate class for pastureland, the similarity between the LC classes was 
defined based on the class “cropland”. In this case, the confusion of a cropland 
class with non-cropland classes or vice versa is considered a serious error. In 
contrast, the confusion within non-cropland classes does not have any impact. To 
reflect such differences, the similarity between cropland and non-cropland classes 
was set at zero (completely dissimilar) and similarity between non-cropland 
classes was set at one, meaning that they are identical for agriculture assessments.  

3.2.5.3 Global Circulation Models 
GLC maps are commonly used for climate models such as GCM and DGVM 
(Kooistra et al. 2010). We assessed the similarity between the LC classes for 9 
land surface parameters that are used for GCM. The global datasets of 9 land 
surface parameters of ecosystem types provided by Hagemann (2002) were used as 
reference. These are:  

• background surface albedo (1) 
• surface roughness length due to vegetation (2) 
• fractional vegetation cover for the growing (3) and dormancy seasons (4) 
• leaf area index for the growing (5) and dormancy seasons (6) 
• forest ratio (7) 
• plant-available total soil water holding capacity (8) 
• volumetric wilting point (9) 

The mean values per LC class were estimated by reclassifying the ecosystem types 
into 13 LC classes. After calculating LC class similarity for the 9 land surface 
parameters, the average similarity score from the similarity matrices was used as 
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the weights. The LC class similarity was calculated by modifying the method of 
Herold et al. (2011)(Equation 3.4). 

𝐖𝐖𝒂𝒂𝒂𝒂𝒂𝒂 = 𝐌𝐌𝐌𝐌𝐌𝐌�𝟎𝟎,𝟏𝟏 − �𝐏𝐏𝐏𝐏𝐏𝐏𝐚𝐚𝐚𝐚−𝐏𝐏𝐏𝐏𝐏𝐏𝐚𝐚𝐚𝐚�
𝑺𝑺𝑺𝑺(𝐏𝐏𝐏𝐏𝐏𝐏𝒂𝒂)

�                    (3.4) 

where, Waij is the similarity index for pair of classes (i,j), Parai and Paraj are values 
for the variable of interest for classes i and j, and  SD(Para) is the standard 
deviation of variable of interest. Herold et al. (2011) related the absolute difference 
of values of variable of interest to the range of variable of interest based on 
Gower’s similarity coefficient (Gower 1971), we used standard deviation for 
standardization to avoid excessive sensitivity to a single LC class having an 
extreme variable value. Note that such approach is commonly used for 
standardizing dissimilarity (i.e. the inverse of similarity) measures (Milligan and 
Cooper 1988).  

3.2.5.4 Dynamic Global Vegetation Models 
Plant functional types datasets, commonly derived from GLC maps, are used for 
DGVMs to simulate the effects of future climate change on natural vegetation and 
its carbon and water cycles (Kooistra et al. 2010; Lapola et al. 2008). To assess the 
similarity of LC classes in terms of DGVM, we used a table provided by Poulter et 
al. (2015) that lists fractions of 12 different plant functional types in LC classes. 
These plant functional types include: trees and shrubs (broadleaf evergreen, 
broadleaf deciduous, needle leaf evergreen and needle leaf deciduous (for trees 
only)), grass (natural and managed), bare soil, water and show/ice. For each of 
these plant functional types, the similarity of LC classes was calculated using the 
fraction of plant functional types in each LC class and Equation 3.4. These 
similarity matrices were then averaged to derive a general similarity matrix for 
DGVM.  

3.2.5.5 Carbon or biomass estimation  
One way of obtaining consistent forest carbon information at global scale is using 
biome-average approach that estimates average forest carbon stocks for broad 
forest categories and applies these estimates to GLC maps to derive total carbon 
stocks at global level (Ruesch and Gibbs 2008). We calculated the similarity of LC 
classes for carbon estimation using the global carbon density map developed by 
Ruesch and Gibbs (2008). This map is based on IPCC Tier-1 carbon density values 
and the GLC2000 map. As this map is based on a GLC map, we estimated median 
carbon density per LC class based on the reference sample. Median values rather 
than means were used because the former are less sensitive to extreme values 
caused by possible misclassification in the GLC2000 map. For each legend, a 
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similarity matrix of LC classes in terms of carbon estimation was calculated based 
on Equation 3.4. 

3.2.5.6 Biodiversity assessments  
In biodiversity assessments, LC datasets provide proxies for expected biodiversity 
and ecological processes and they are used for different species distribution models 
using known species-land-cover relationships (Tuanmu and Jetz 2014). To assess 
the accuracy of the GLC maps for biodiversity assessments, we used the publicly-
accessible species richness maps provided by Jenkins et al. (2013). The species 
richness map was created by summing up the species richness of birds, mammals 
and amphibians maps at 10x10km resolution. Numbers of species were extracted 
per reference sample location and median species richness per LC class was 
calculated for three legends. Using Equation 3.4, for each legend, a similarity 
matrix LC classes was calculated in terms of biodiversity applications.  

3.2.6 Identifying priorities for improving GLC maps  
The impact of LC classes on the overall weighted accuracy for each application 
was assessed to identify the priorities (specific LC classes and LC confusions that 
needs to be improved) for improving the GLC map accuracies. For this, we 
assumed that the confusion error of each class would be reduced by half by efforts 
to update the GLC maps. This 50% error reduction is used only to illustrate the 
impact of the LC class on the overall weighted accuracy. Any reduction percentage 
will produce similar priorities since the overall weighted accuracy calculation is a 
linear function (Equation 3.1).  

We created confusion matrices of the GLC maps with 50% less confusion 
(omission) error and more agreement (the 50% omissions were assumed to be 
corrected) for one LC class at a time, and transformed these into adjusted 
confusion matrices. Subsequently, the latter were used to assess the overall 
weighted accuracies based on the methods explained in Sections 3.2.4 and 3.2.5. 
The improvement on the overall weighted accuracy was analysed by comparing 
the overall weighted accuracy with reduced errors and the results from Section 
3.2.5.  

For a detailed assessment of improvement priorities, we repeated the above 
analysis on pairwise 50% reductions of confusion error between each LC class 
pairs.  
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3.3 Results and discussion 

3.3.1 Reference dataset translation and re-interpretation   
The LCCS-classifier information of the Globcover-2005 reference dataset was 
translated into LCCS-based Globcover and LC-CCI, IGBP-based MODIS legends. 
About half of the 3857 sites could be directly translated into the different legends. 
For the remaining sample sites, translation was problematic owing to several 
issues. Figure 3.4 shows the uncertainty sources of sample sites in the legend 
translation process. For translation to the Globcover and LC-CCI legends, one of 
the main issues was lack of classifier information related to trees and cropland 
types. For the MODIS-IGBP legend, differences in class definition were an 
important issue. Forest coverage classifiers of the LCCS such as open forest (10-
20%-60-70%) and very open to closed forest (15-100%) did not match with the 
definition of woody vegetation classes of the Globcover and the MODIS-IGBP 
legends.  

  
 

Figure 3.4: Sources of uncertainty of sample sites with translation issues 

In total, 21-25% of the sample sites had translation issues due to heterogeneous 
landscapes such as translating mixed units (mosaic classes) (6-7%) and problems 
due to lacking quantitative class proportion information (15-18%)( Figure 3.4). As 
mentioned in Section 3.2.3, information on class proportion in the sample unit area 
was not provided in the reference data. This caused problems in characterising 
heterogeneous landscapes. These issues were resolved by re-interpreting the 
dataset and by presenting the land cover in three legends that reflect the differences 
in class definitions. Although interpreter variability and bias are inevitable in 
human interpretation (Foody 2010), our re-interpretation created a consistent 
reference dataset for the purpose of this study.  

Although adapting an existing dataset for different applications requires significant 
effort, the result is a valuable contribution to the scarce reference datasets available 
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for comparative accuracy assessments of GLC maps. The use of existing reference 
dataset was previously discussed by (Tsendbazar et al. 2015a) who assessed the 
suitability of existing reference datasets for different applications. The efficient use 
of existing reference dataset is promoted by GOFC-GOLD (2014) which provides 
open access to several GLC reference datasets. These experiences of re-using 
reference datasets and analysing their suitability for re-use can be helpful in 
generating a new reference datasets (Fritz et al. 2011a; Olofsson et al. 2012) that 
can be directly applicable to multiple map validation. Our reference dataset will be 
made available through the GOFC-GOLD reference dataset portal (GOFC-GOLD 
2014). 

3.3.2 Thematic accuracy assessments of the GLC maps  
The confusion matrices of the GLC maps are provided in Table 3.3. The result 
shows that the overall accuracies of the LC-CCI and MODIS maps were similar 
(70.8±1.4% and 71.4±1.3% respectively). The overall accuracy of the Globcover 
map (61.3±1.5%) was less than the accuracy reported by Bicheron et al. (2008). 
The latter was based on a subset of 3167 sample sites where land cover could be 
determined with certainty while confusion errors concerning mosaic classes were 
disregarded in the assessment (Bicheron et al. 2008). In contrast, our accuracy 
estimate was based on the entire set of 3857 sample sites. Our results are consistent 
with those of previous studies that also reported around 70% overall accuracy for 
different GLC maps (Bontemps et al. 2011a; Mayaux et al. 2006).  

The class-specific accuracies were generally the lowest for the Globcover and the 
highest for the MODIS (Table 3.3). The mixed trees class in the Globcover map 
includes open DNL and ENL trees. Although, this difference was reflected in the 
reference datasets, mixed trees deemed to be over-represented at the cost of ENL 
trees in this map (producer’s accuracy is higher than user’s accuracy) (Table 3.3). 
The LC-CCI map had higher class-specific accuracies for tree classes other than 
mixed trees which was significantly under represented (low producer’s accuracy 
and high user’s accuracy) (Table 3.3). The LC-CCI map had higher class-specific 
accuracies for tree classes other than mixed trees which was significantly under 
represented (low producer’s accuracy and high user’s accuracy) (Table 3.3). The 
MODIS map had higher class-specific accuracies for tree classes except for DBL 
trees, which was considerably under-represented and confused with mixed trees 
class.  

All maps had high confusion errors for shrubs, grass and cropland classes. The 
Globcover map under-represented shrubs, whereas the MODIS over-represented 
this class (Table 3.3). The Globcover and LC-CCI maps had a high confusion 
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between grass and bare/sparse vegetation classes. In tundra regions, grass was 
under-represented, whereas it was over-represented in some areas of the Tibetan 
plateau and in Central Australia. Rare classes of urban and wetland areas were 
under-represented in the Globcover and MODIS maps (Table 3.3). Bare/sparse 
vegetation area was over-represented in the Globcover and LC-CCI maps. In 
contrast, the MODIS characterizes less bare/sparse vegetation area which was 
committed mostly to shrubland areas. These findings are consistent with previous 
studies that show inaccuracies in characterizing shrubs, grass and cropland classes 
due to low spectral separability and mixed vegetation components (Fritz et al. 
2011b; Herold et al. 2008).   

The stratification of the Globcover 2005 reference dataset was the Globcover map 
(Bicheron et al. 2008), and this makes the dataset map dependent. Since, the 
purpose of a stratification is to increase the precision of the accuracy assessment 
(Stehman 2009), the precision of the accuracy estimates for the GLC maps other 
than the Globcover may not be optimal, and it is likely to be over-estimated. 
Nonetheless, the calculated accuracy estimates are statistically sound as they are 
based on a probability sampling which has a large number of sample units. 

The weighted overall accuracies in terms of thematic similarity were 83.0±1.2%, 
86.5±1.1% and 89.7±1% for the Globcover, LC-CCI and MODIS maps, 
respectively. These figures are higher than overall accuracies in Table 3.3 since 
confusion between thematically similar LC classes such as mixed trees, shrubs and 
grass were deemed of less consequence (Figure 3.5a). 
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3.3.3 Thematic accuracy assessments of the GLC maps in specific 
applications  

Figure 3.5 shows the used similarity matrices for the applications considered in this 
work. GLC-map specific similarity matrices for carbon estimation and biodiversity 
assessments are provided in Table S6 in the supplementary data of the online 
publication; the averages given in Figure 3.5 are provided to illustrate the main 
findings.   

Figure 3.5 shows that similarity between LC classes varies according to the 
considered applications. The idea is easiest illustrated for agriculture assessments, 
where all non-cropland classes were considered mutually equivalent but jointly 
completely dissimilar from the cropland class (Figure 3.5b). For GCM, forest 
classes were moderately (0.4-0.6) similar to one another (Figure 3.5c). For DGVM, 
mixed tree class was less similar (0.4-0.5) from other classes as it represents 
several plant functional types (Figure 3.5d). For carbon estimation, classes of EBL 
and DBL trees with high carbon density were dissimilar (<0.1) from other classes 
(Table S6). For biodiversity assessments, the classes with high and low species 
richness (EBL tree and  bare/sparse vegetation or snow/ice respectively) stand out 
as being most dissimilar (typically <0.1) from the other classes (Table S6). In 
weighted accuracy analysis, confusions between similar classes were largely 
waived (regarded less important), whereas confusions between dissimilar LC 
classes were identified as severe errors (regarded more important). These 
differences in the importance of confusion errors per application highlight the need 
of assessing GLC map accuracy for specific applications (DeFries and Los 1999). 
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Figure 3.5. The similarity matrices (weights) used for weighted accuracy assessments 
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Figure 3.6.Weighted accuracies of the GLC maps for different applications 

Figure 3.6 shows the weighted overall accuracies (and accuracy confidence 
intervals) of the GLC map for specific applications. The overall weighted accuracy 
of the GLC maps varied between 80-92% for the applications considered. An 
accuracy increase was observed because confusions between easily confused 
classes such as mixed trees, shrubs and grass tended to be inconsequential for the 
applications (Figure 3.5). The MODIS map had the highest accuracy for all 
applications except the DGVM, where less credits were given to confusion errors 
between mixed trees, shrubs and grass. The LC-CCI map had slightly higher 
accuracy for DGVM.  

DeFries and Los (1999) and Mayaux et al. (2006) also reported higher overall 
weighted accuracies in their assessments for simple biosphere modelling and 
mapping perspective. Such user oriented map accuracy assessment will lead to 
more user confidence and thus underpins the credibility and usefulness of the land 
cover mapping program.  

The approach of deriving weights used in this study is similar to the work of 
Herold et al. (2011) and Knight (2002) in which the weights were derived by 
analysing the similarity between LC classes for specific applications. Other studies 
have used weighting based on expert opinion on the LC class importance for 
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certain applications (Kooistra et al. 2010) or LC class separability in case of 
producer’s perspective (Fritz and See 2005). To make weighted accuracy 
assessments reproducible for different studies, objectively derived weights are 
recommended (Knight 2002). In this study, the weights were derived quantitatively 
based on LC class similarities for specific applications.   

This study assessed the weighed thematic accuracies at the original resolution of 
the GLC maps. As GLC maps are often resampled to coarser resolution and used 
for different applications, differences in resolution should be taken into 
consideration when using accuracy estimates for uncertainty assessments of the 
applications.  

3.3.4 Improvement priorities of the GLC maps for specific 
applications  

Potential accuracy increase was analysed to identify improvement priorities of the 
GLC maps. Figure 3.7 shows the improvements of overall weighted accuracy when 
confusion errors of LC classes are reduced by 50%. The higher the accuracy 
improvement, the more the impact a LC class has on the overall weighted 
accuracy. In general, improvement was largest for the Globcover map and smallest 
for the MODIS map (Figure 3.7). With 50% reduced confusion errors of a LC 
class, the weighted accuracy improved up to 2% for all applications except 
agriculture assessments, which had up to 4% improvement (Figure 3.7).  

Figure 3.7 also indicates the classes that would contribute most to improving the 
GLC maps in terms of specific applications if confusion errors were reduced. 
According to our assessments, these priority classes of the GLC maps are: cropland 
vegetation for agriculture assessments, grass for GCM, mixed trees, grass and 
shrubs for DGVM, shrubs and mixed trees for carbon estimation, and grass and 
bare/sparse vegetation for biodiversity assessments. Besides the difference in 
improvement priority classes per application, the main priority classes for specific 
applications were in general the same as the highly confused classes in the 
confusion matrices (i.e. mixed trees, shrubs and grass) (Table 3.3). These classes 
occupy large areas in the world. 

The most pronounced effects of 50% reduction of confusion between LC pairs on 
the weighted accuracies are listed in Table S7 in the supplementary data of the 
online publication. Across all considered applications, reduced confusion between 
grass, cropland and bare/sparse vegetation classes showed largest improvements 
(up to 2%) on the weighted accuracy of the Globcover and LC-CCI maps. For the 
MODIS map, confusion between shrubs, grass and mixed trees was deemed to 
have a high impact on the overall weighted accuracy.  
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The results on the map improvement priorities can directly be used to enhance the 
GLC maps, particularly the LC-CCI and MODIS maps. Since the LC-CCI maps 
were developed specifically for climate modellers (CCI-LC 2014), priorities for 
improvement are set by the results obtained for GCM and DGVM. The MODIS 
map is regularly updated with new collections of MODIS data (Friedl et al. 2010). 
Although this map was developed without targeting specific applications, 
developers can target the classes that have high impact on the overall accuracy for 
multiple applications. For example, the efforts made on mixed tree and cropland 
classes would significantly benefit agriculture assessments, carbon estimation and 
DGVM applications. 
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3.4 Conclusions  

This study compared the thematic accuracy of the GLC maps using the Globcover-
2005 GLC reference dataset. Our analysis showed the possibility of using an 
existing GLC reference dataset for multiple map validations with additional 
considerations such as legend translation and re-interpretation. The LCCS-
classifier information of the reference dataset was useful for addressing the 
thematic differences of the three legends. The study highlights the use of existing 
GLC reference dataset for multiple map validation if the dataset has flexible 
thematic classifiers and quantitative class proportion information that are 
consolidated and verified.  

The overall accuracies of the LC-CCI and MODIS maps were around 70% which 
are similar to the previous GLC maps, despite several significant improvements in 
technology and methodology of GLC mapping. Moreover, the inability of the GLC 
mapping approaches to clearly discriminate mixed trees, shrubs and grass continue 
to be a problem even in recent GLC maps. Emphasis should be put on these classes 
to improve GLC maps as suggested by Herold et al. (2008). Future studies will 
focus on combining these GLC maps and existing reference datasets to create an 
improved GLC map.  

We demonstrated the weighted accuracy assessment of the GLC maps for five 
different applications by analysing the importance of LC confusion errors for the 
applications. Our results suggests the accuracy of GLC maps should be assessed 
per applications when the aim is to determine the fitness of GLC maps for an 
application; there is no single-figure accuracy estimate expressing map fitness for 
all purposes. For this reason, deriving the weights that denote the importance of 
confusion errors for an application is an important process, and this process should 
be well documented and reproducible.  

This study presented an approach to identify priorities for improving GLC maps by 
assessing the impact of LC class and confusions on the overall weighted 
accuracies. This approach can be applicable to other similar studies. The results 
from this analysis can be used to further improve the GLC maps such as the LC-
CCI and MODIS, which are progressively being updated. 
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Abstract 

Along with the creation of new maps, current efforts for improving global land 
cover (GLC) maps focus on integrating maps by accounting for their relative 
merits,  
e.g., agreement amongst maps or map accuracy. Such integration efforts may 
benefit from the use of multiple GLC reference datasets. Using available reference 
datasets, this study assesses spatial accuracy of recent GLC maps and compares 
methods for creating an improved land cover (LC) map. Spatial correspondence 
with reference dataset was modeled for Globcover-2009, Land Cover-CCI-2010, 
MODIS-2010 and Globeland30 maps for Africa. Using different scenarios 
concerning the used input data, five integration methods for an improved LC map 
were tested and cross-validated. Comparison of the spatial correspondences 
showed that the preferences for GLC maps varied spatially. Integration methods 
using both the GLC maps and reference data at their locations resulted in 4.5%–
13% higher correspondence with the reference LC than any of the input GLC 
maps. An integrated LC map and LC class probability maps were computed using 
regression kriging, which produced the highest correspondence (76%). Our results 
demonstrate the added value of using reference datasets and geostatistics for 
improving GLC maps. This approach is useful as more GLC reference datasets are 
becoming publicly available and their reuse is being encouraged.  

Keywords: global land cover; data integration; spatial accuracy; geostatistics;  
reference dataset.
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4.1 Introduction 

Multiple global land cover (GLC) maps have been produced over the past decades. 
These maps are used for various applications such as climate modeling, food 
security, biodiversity, ecosystem services and environmental monitoring (Verburg 
et al. 2011). Currently, GLC map production is progressing towards higher 
resolution maps, namely the Land Cover-CCI (LC-CCI) maps at 300 m resolution 
and the Fine Resolution Observation and Monitoring (FROM-GLC) and 
Globeland30 maps at 30 m resolution (Chen et al. 2015; Mora et al. 2014). 
However, these maps were developed using different input data and methods 
(Herold et al. 2008), and as a consequence, considerable disagreements amongst 
GLC maps have been found (Fritz et al. 2011b; Herold et al. 2008). Despite efforts in 
advancing GLC mapping approaches, the accuracy of GLC maps has not improved 
significantly and continues to be around 70% (Tsendbazar et al. 2016). Such 
accuracies mostly do not meet the requirements of GLC map users (Kooistra et al. 
2010) and thus, there is a need to improve GLC maps.  

A common approach to improving GLC maps has been the integration of existing 
GLC maps using a variety of methods (Jung et al. 2006; See et al. 2015). In map 
integration, pixels are assigned to land cover classes based on class labels from 
multiple GLC maps, sometimes in combination with other data sources. For 
example, Jung et al. (2006) created the SYNMAP by assigning the land cover (LC) 
class that multiple GLC maps agreed upon. Iwao et al. (2011) adopted a LC class 
favoured by the majority of GLC maps and a LC class with highest accuracy in 
case of no majority. Tuanmu and Jetz (2014) created a GLC map specifically for 
biodiversity and ecosystem modeling applications by integrating the reported LC 
class accuracies and the map resolution. Other researchers focused on map 
integration for cropland and forest biomass datasets (Fritz et al. 2015; Ge et al. 
2014). For example, Fritz et al. (2015) created a 1 km global cropland percentage 
map by integrating several cropland maps at global to national scales along with 
national crop statistics. Ge et al. (2014) generated a biomass map for Eastern 
Africa by fusing existing biomass maps using weights associated with the accuracy 
of source maps. This approach was improved and applied to a larger area to create 
an integrated pan-tropical biomass map using multiple reference datasets (Avitabile 
et al. 2015).  

Existing reference datasets that were built for calibrating and validating GLC maps 
can be re-used in the integration of GLC maps. However, only a few studies have 
considered these datasets for integration. For example, Kinoshita et al. (2014) 
assessed the presence probability of LC classes using logistic regression and the 
Degree Confluence Project (DCP) dataset and used this for integration.  
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See et al. (2015) created hybrid GLC maps using Geo-Wiki reference data within a 
geographically weighted kernel approach (Comber et al. 2013). Similarly, 
Schepaschenko et al. (2015) created a global hybrid forest cover map based on 
different forest and land cover maps and a dataset collected though the Geo-Wiki 
platform. The above studies made limited use of existing GLC reference datasets 
for integration and reported improvements on the integrated maps. Currently, 
several GLC reference datasets are being made accessible via the Global 
Observation of Forest and Land Cover Dynamics (GOFC-GOLD) reference data 
portal and Geo-Wiki platform (Fritz et al. 2011a; GOFC-GOLD 2014) and this 
enables assessment of their utility for improving existing GLC maps.  

The accuracy of GLC maps is often expressed in terms of global accuracies 
assessed from statistical sampling. Global accuracies do not inform about spatial 
variability in map accuracy, yet classification errors are not distributed evenly 
across the map (Carneiro and Pereira 2012). Spatial variation of map accuracy can 
be modeled using indicator kriging (de Bruin 2000a; Kyriakidis and Dungan 2001). 
Carneiro and Pereira (2012) and Kyriakidis and Dungan (2001) used indicator 
kriging to assess spatial accuracy of regional scale land cover maps. These types of 
assessments require a large number of reference sample sites with a good 
geographical spread, which explains why spatial variability of GLC map accuracies 
has hardly been studied. However, See et al. (2015) assessed spatial 
correspondence of GLC maps with the Geo-Wiki volunteer based reference data 
using geographically weighted kernel approach. With the available GLC reference 
datasets from the GOFC-GOLD and Geo-Wiki platform, the number of reference 
sample sites increases substantially and a combined reference dataset could be used 
to model the spatial variability of accuracy of large-scale LC maps.  

The objective of this chapter is to analyze and compare the spatial correspondence 
of recent GLC maps and to integrate available GLC maps and reference datasets 
for generating a LC map with improved correspondence to reference LC. Firstly, 
we assess the spatial correspondence of the recent GLC maps for the year 2010 ± 1 
with available GLC reference data. Our analysis involved the Globcover 2009, LC-
CCI 2010, MODIS 2010 and Globeland30 maps. The assessment focuses on 
Africa—a continent with complex heterogeneous landscapes that are known to 
causes inconsistencies among GLC maps (Huttich et al. 2011; Kaptué Tchuenté et 
al. 2011). Secondly, we test five different integration methods to create an 
improved LC map. Three of these methods are based on integration of GLC maps 
and reference datasets, one method is based on the GLC maps only and the other 
method is based on the reference datasets only. We assess the performance of the 
integration methods by cross-validation. Finally, we create an improved LC map 
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using the method selected by cross-validation and discuss the use of available 
reference datasets for integration. 

4.2 Data 

4.2.1 Global land cover maps  
The GLC maps included in this study are: Globcover, LC-CCI, MODIS and 
Globeland30 maps for the year 2010 (2009 for Globcover). The Globcover project 
of the European Space Agency (ESA) provided a GLC map for 2009 based on 300 
m resolution MERIS satellite data (Defourny et al. 2011b). This map has an LCCS 
(United Nations Land Cover Classification System) based legend with 22 classes 
and the thematic overall accuracy of the Globcover-2009 was reported as 70.7% 
based on 1484 homogenous sample sites (Bontemps et al. 2011a).  

Recently, ESA’s Land Cover-CCI (LC-CCI) project delivered three consecutive 
GLC maps for the epochs of 2000, 2005 and 2010 at 300 m resolution using the 
MERIS data archive (CCI-LC 2014). These maps were specifically targeted to 
meet the requirements of climate modelers. The maps also have an LCCS based 
legend with 22 classes. The overall thematic accuracy of the LC-CCI 2010 map 
was 74.4% based on the same reference sample as the Globcover-2009 validation.  

Using data from the Moderate Resolution Imaging Spectroradiometer (MODIS), 
Boston University provided annual MODIS Collection-5 GLC maps at 500 m 
resolution (Friedl et al. 2010). The MODIS GLC maps have five legends including 
a legend based on the International Geosphere-Biosphere Programme (IGBP) 
classification scheme with 17 classes. The accuracy of the MODIS GLC map of 
2010 has not yet been assessed. However, based on cross-validation using the 
training dataset, Friedl et al. (2010) reported an overall accuracy of 74.8% for the 
2005 map.  

The GlobeLand30 project of the Ministry of Science and Technology of China 
generated a GLC map for the year 2010. The GlobeLand30 map was derived from 
30 m resolution multispectral images of Landsat TM and ETM+ as well as the 
Chinese Environmental Disaster Alleviation Satellite (HJ-1). We used the 250 m 
resolution version of Globeland30, which contains LC class fraction information. 
This map has 10 LC classes. The overall accuracy of the map has been reported to 
be 83.5% (Chen et al. 2015). All above-mentioned map accuracies concern the 
global extent, and for specific regions such as Africa different accuracies are 
expected. Table 4.1 provides a summary of the used GLC maps.  
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All the GLC maps were cropped to the extent of Africa. The MODIS and 
Globeland30 maps were resampled to 0.00278 degrees resolution using nearest 
neighbor assignment to match the resolution of the Globcover and LC-CCI maps. 
The legends of the GLC maps were harmonized into eight general LC classes 
following the approach of Herold et al. (2008), which provides a table for 
harmonizing input classes into 13 general LC classes using LCCS-based legend 
translation protocols. Since the Globeland30 map does not have detailed forest 
classes, we used a single general forest class only (Table 4.2). Figure 4.1 presents 
the four GLC maps with the harmonized legend.  

Table 4.1. A summary of GLC maps used for comparison. 
GLC Map Globcover  LC-CCI MODIS Globeland30 

Spatial resolution 
at the Equator 300 m 300 m 500 m 250 m 

Input data 
MERIS: Bi-

monthly from 10-
day composites 

MERIS global SR 
composite,  

SPOT-VGT time 
series (for updating) 

MODIS: Monthly 
EVI, LST and 7 

bands from 8-day 
composites 

Landsat TM, ETM+ 
and HJ-1 

multispectral images 

Time of data 
collection 2009 2008–2012 2010 2010 ± 1 year 

Classification 
method 

(Un)supervised 
spatio-temporal 

clustering;  
expert-based 

labeling 

Unsupervised  
spatio-temporal 

clustering; machine 
learning classification  

Supervised 
decision tree 

boosting 

Integration of pixel 
and object based 
classification and 
Knowledge based 

interactive verification 

Classification 
scheme 

LCCS based:22 
classes 

LCCS based: 22 
classes 

5 different legends 
including the IGBP 

(17 classes) 
10 classes 

Reference (Bontemps et al. 
2011a) (CCI-LC 2014) (Friedl et al. 2010) (Chen et al. 2015) 

 

Table 4.2. General land cover classes and corresponding classes of the GLC datasets. 

Code Land Cover Class Globcover LC-CCI 

IGBP 
(MODIS, 
STEP and 

VIIRS) 

GLC200
0 

Geo-
Wiki  GLCNMO 

1 Forest 40–110, 
160, 170 

50–100, 160, 
170 1–5, 8, 9 1–10 1 1–5 

2 Shrubland 130 120 6, 7 11, 12 2 7 
3 Grassland 120, 140 110, 130, 140 10 13 3 8, 9 

4 Cropland (incl. 
mixtures) 11–30 10–40 12, 14 16–18 4 11, 12, 13 

5 Wetland vegetation 180 180 11 15 6 15 
6 Urban/built up 190 190 13 22 7 - 

7 Bare/sparse 
vegetation 150, 200 150, 200 16 14, 19 9 10, 16, 17 

8 Water and Snow/Ice 210, 220 210, 220 15, 17 20, 21 8, 10 - 
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Figure 4.1. Global land cover maps used in the analyses. 

4.2.2 Reference datasets 
The reference datasets used in this work are denoted as: GLC2000rd, GLCNMOrd, 
Geo-Wikird, MODIS/STEPrd, VIIRSrd and the Globcover-2005rd. The subscript 
“rd” is added here to avoid potential confusion between LC maps and reference 
datasets. GLC2000rd concerns the consolidated version (11 LC classes) of the 
reference dataset generated for validating the Global Land Cover 2000 map 
(Mayaux et al. 2006; Schultz et al. 2015). GLCNMOrd refers to the calibration 
dataset of Global Land Cover by National Mapping Organizations, which was used 
to generate a GLC map for 2003 (Tateishi et al. 2011). This dataset employs 14 LC 
classes, which were assigned to sample sites by international experts. 
MODIS/STEPrd has been used to calibrate the MODIS collection 4 and 5 GLC 
maps (Friedl et al. 2010). This dataset was developed and updated by Boston 
University and it has 17 LC classes according to the IGBP legend. Boston 
university also created VIIRSrd (Visible Infrared Imaging Radiometer Suite), 
which was used to validate the VIIRS surface type products (GOFC-GOLD 2014; 
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Olofsson et al. 2012). The reference LC of this dataset was assigned by visual 
interpretation of very high-resolution images using the same classes as 
MODIS/STEPrd. Geo-Wikird was developed through a volunteer based online 
platform and volunteers’ interpretation of the reference LC was validated by a 
group of experts (Fritz et al. 2009). Globcover 2005rd is a re-interpreted version of 
the reference dataset that was built for validating the Globcover 2005 GLC map 
(Bicheron et al. 2008; Tsendbazar et al. 2016). Detailed information on the 
characteristics of the available reference datasets are provided in (Tsendbazar et al. 
2015a). Although there are temporal differences between the used datasets, we 
deemed these to be of minor importance, since errors owing to LC changes over 
the time frame are negligible compared to misclassification errors of the GLC 
maps.  

These reference datasets are publicly accessible through the GOFC-GOLD 
Reference data portal, Geo-Wiki portal and International Steering Committee for 
Global Mapping (Fritz et al. 2009; GOFC-GOLD 2014; Tateishi et al. 2011).  

To cope with differences in sample site areas across the reference datasets, we 
assumed that the LC of the sample site corresponds to the LC of the centroid of that 
sample sites. Reference data were then compared to the LC classes of the GLC 
maps at the centroids of the reference sites. For the combined reference dataset, the 
legends of all reference datasets were harmonized into the eight general classes 
listed in Table 4.2 to correspond with GLC map harmonization as given in Section 
4.2.1.  

In total, 3887 sample sites within Africa were used in this study. Based on this 
reference dataset, model-based geostatistical analysis was used since in contrast to 
design-based inference it does not require a probability sampling design. Figure 4.2  
shows the sample distribution of each reference dataset (left) and the reference LC 
classes (right).  
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Figure 4.2. Spatial distribution of the reference datasets (left) and reference LC  
classes (right). 

4.3 Method 

4.3.1 Spatial correspondence assessment 
To assess spatial accuracy (spatial variation in map accuracy), we analyzed the 
spatial correspondence of the GLC map with the reference dataset. 
Correspondences between GLC maps and reference data were indicator coded. If 
the LC class of the reference sample site matched with that of a map, an indicator 
code 1 was assigned to that sample site. Conversely, an indicator code 0 was given 
to sites where the mapped LC differed from the reference class. Next, we analyzed 
spatial autocorrelation of the indicator-coded data (correspondence with reference 
LC) using indicator semivariograms. Nested variogram models were fitted to 
experimental semivariogram data obtained by the method of moment approach 
with binning of 3–5, 10–15 and intervals of 25 km (Pebesma and Wesseling 1998). 
Variograms were fitted by weighted least squares using Nj/h2

j as weights, where Nj 
denotes the number of point pairs in the j-th lag and hj is the corresponding lag 
distance.  

Spatial correspondence maps were created for each GLC map for Africa at 0.00278 
degrees resolution (300 m at the Equator) by indicator kriging (Bierkens and 
Burrough 1993) using the gstat package in R (Pebesma 2004). The spatial 
correspondence maps depict the local correspondence values ranging between 0 
and 1, which denotes the local probability that a particular map is correct. Figure 
4.3 demonstrates the semivariograms of spatial correspondence for the GLC maps 
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and used fitted models for the indicator kriging. To restrict the size of the kriging 
system, kriging was done with the nearest 50 observations.  

 

Figure 4.3. Semivariograms and fitted models for spatial correspondence of the Globcover 
(a), LC-CCI (b), MODIS (c), and Globeland30 (d) maps (model parameters: partial sills, 
range and nugget). 

4.3.2 GLC dataset integration 
Analyzing the local variation in map accuracy is useful for obtaining information 
on where a map is accurate and where not, and this information can be valuable in 
creating an improved GLC map. Previous integration efforts of GLC maps did not 
focus on the local variation in map accuracy except the work of See et al. (2015), 
who analyzed GLC maps with highest correspondence at a coarser grids of 0.25 
degrees using geographically weighted kernel approach. However, the resulting 
integrated maps have artifacts in the pattern of LC classes that are caused by the 
coarse grid kernels (See et al. 2015).  

Our study extends the principle of considering local variation of map accuracies 
and LC class probabilities for creating an improved LC map. We used a 
geostatistical approach to assess and model the spatial dependence of map accuracy 
and class probabilities. We compared different integration methods, as depicted in 
Figure 4.4, which represent a variety of choices concerning the use of input 
datasets. These include methods based on spatial correspondence of the GLC maps, 
agreement amongst input maps and the LC class presence probabilities, i.e., using 
both the GLC maps and the reference datasets. In addition, methods based on a 
conventional voting approach (Iwao et al. 2011), i.e., without using reference data, 
and a geostatistical method that relies only on the reference data, i.e., without using 
the GLC maps, were also compared. We first applied all methods to the sample 
locations. After selecting the integration method with highest correspondence by 
cross-validation (see Section 4.3.2.6), the latter was applied to the full extent of 
Africa. 
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Figure 4.4. Conceptual diagram of different integration methods.  

The following subsections describe the integration methods used in this study.  

4.3.2.1 Voting 
This integration method only uses the GLC maps as input. At each pixel location, 
the LC class corresponding to the majority of the mapped LC classes of the four 
input maps was assigned. In case of a tie, the LC class of a map that has the highest 
overall reported accuracy was assigned. Since there is no information on the 
accuracy of these maps in Africa, the reported global confusion matrices of the 
maps (see Table 4.1 for reference) were converted into confusion matrices for the 
eight generalized classes and the corresponding overall accuracy was calculated. 
The global accuracies at generalized class level were computed as 66%, 75.3%, 
85.4% and 83.5% for the Globcover, LC-CCI, MODIS and Globeland30, 
respectively. Accordingly, the MODIS LC class was assigned in case of ties.  

4.3.2.2 Spatial Correspondence (SC) 
This method (SC) uses both the GLC maps and reference datasets as inputs. Based 
on the spatial correspondence map for each GLC map resulting from the method 
described in Section 4.3.1, we selected the LC class of the map that has the highest 
spatial correspondence value at a pixel location.  
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4.3.2.3 Weighted Voting (WeVo) 
Weighted voting (WeVo) also uses both the GLC maps and the reference datasets. 
We created normalized weight maps using the spatial correspondence maps of the 
GLC maps. Let sci(x) denote the spatial correspondence of the i-th GLC map (i = 1, 
..., 4) at location x. Wi(x), the weight assigned to map i at location x, is then:  

𝑊𝑊𝑖𝑖(𝑥𝑥) =
𝑠𝑠𝑠𝑠𝑖𝑖(𝑥𝑥)

∑ 𝑠𝑠𝑠𝑠𝑖𝑖(𝑥𝑥)4
𝑖𝑖=1

 (4.1) 

LC classes were dummy coded into multiple 1 or 0 indicators, where 1 indicates 
that a LC class k (k = 1, .., 8) is present and 0 means k is absent. Using these 
indicator values, we assigned the weights to the classes mapped on each of the 
GLC maps. For each LC class k, a total weight of the LC class at x location was 
created by summing the class weights of the four GLC maps (Equations 4.2 and 
4.3).  

𝑤𝑤𝑖𝑖,𝑘𝑘(𝑥𝑥) = 𝑊𝑊𝑖𝑖(𝑥𝑥) ∗ 𝑘𝑘𝑖𝑖(𝑥𝑥) (4.2) 

𝑊𝑊𝑘𝑘(𝑥𝑥) = �𝑤𝑤𝑖𝑖,𝑘𝑘(𝑥𝑥)
4

𝑖𝑖=1

 (4.3) 

where k is the LC class, Wk(x) is the total weight of the LC class at location x, and 
Wi,k(x) is class weight of the GLC map. A LC class with highest total weight at a 
location (Wk(x)) was then selected for this method.  

4.3.2.4 Regression Kriging (RK) 
Regression kriging (RK) similarly uses both the GLC maps and the reference 
datasets. The general trend of probabilities of presence of LC classes were 
predicted using a multinomial logistic (MNL) regression model. These were locally 
adjusted by interpolating indicator residuals by simple kriging (Equation 4.4).  

𝑝𝑝𝑘𝑘(𝑥𝑥) = 𝜋𝜋𝑘𝑘(𝑥𝑥) + 𝜀𝜀𝑘𝑘(𝑥𝑥) (4.4) 

where 𝑝𝑝𝑘𝑘(𝑥𝑥) denotes the presence probability of a LC class at location x, 𝜋𝜋𝑘𝑘(𝑥𝑥) is 
a predicted probability trend of an LC class that was obtained by MNL regression 
(Kempen et al. 2009) and 𝜀𝜀𝑘𝑘(𝑥𝑥) is the indicator residuals for that class. The latter 
was obtained by simple kriging. MNL regression also uses indicator values of the 
LC classes. There is an indicator variable for all but one class (Kempen et al. 
2009). The MNL regression estimated a separate binary logistic regression model 
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for each of these indicator variables. For each indicator variable (k = 2, ..., 8), the 
log odds function for predicted probability is: 

ƞ𝑘𝑘(𝑥𝑥) = log �
𝜋𝜋𝑘𝑘(𝑥𝑥)

1 − 𝜋𝜋𝑘𝑘(𝑥𝑥)
� =𝛽𝛽0𝑘𝑘 + 𝛽𝛽1𝑘𝑘ℎ1(𝑥𝑥) + 𝛽𝛽2𝑘𝑘ℎ2(𝑥𝑥) + ⋯+ 𝛽𝛽𝑗𝑗𝑗𝑗ℎ𝑗𝑗(𝑥𝑥) (4.5) 

where ℎj (with j = 1, ..,4) are the explanatory variables (LC class of the four GLC 
maps at sample locations), 𝛽𝛽1𝑘𝑘 … 𝛽𝛽j𝑘𝑘 are the regression coefficients and 𝛽𝛽0𝑘𝑘 is the 
intercept. To ensure that all probabilities are in the interval [0,1] and that the 
probabilities sum to 1, Equations 4.6 and 4.7 were used (Kempen et al. 2009).  

𝜋𝜋𝑘𝑘(𝑥𝑥) =
exp(ƞ𝑘𝑘(𝑥𝑥))

� exp(ƞ𝑘𝑘(𝑥𝑥))8
𝑘𝑘=2

 (4.6) 

𝜋𝜋1(𝑥𝑥) = 1/� exp(ƞ𝑘𝑘(𝑥𝑥))
8

𝑘𝑘=2

 (4.7) 

where exp(ƞ𝑘𝑘(𝑥𝑥)) denotes the odds of class k at location x. This was implemented 
using the nnet package in R (Ripley et al. 2014).  

Next, regression residuals at sample locations were calculated and simple kriging 
was used to interpolate the regression residuals (𝜀𝜀𝑘𝑘(𝑥𝑥)) at un-sampled locations for 
all classes except water. For the water class, no spatial correlation was observed on 
the regression residuals based on the experimental semivariogram. Semivariograms 
were fitted using the same method as described in Section 4.3.1. Figure 4.5 
demonstrates the semivariograms of regression residual for the LC classes and 
fitted variogram models used for kriging.  
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Figure 4.5. Semivariograms and fitted models for residual kriging. 

After adjusting the predicted probabilities with residual kriging, any probability 
outside the interval [0, 1] was set to the closest bound, zero or one. Subsequently, 
the estimates pk(x) k = 1, …, K were normalized by their sum to meet the condition 
∑ 𝑝𝑝𝑘𝑘(𝑥𝑥) = 1𝐾𝐾
𝑘𝑘=1  (de Bruin 2000a). A pixel was assigned to the LC class having the 

highest probability.  

4.3.2.5 Indicator Kriging (IK) 
For comparison, the last integration method was based on indicator kriging that 
uses only the reference datasets. Based on these indicator variables for LC classes, 
the presence probability of LC classes was modeled at the test locations of the 
cross validation (see next section).  

Figure 4.6 shows the semivariograms and the fitted models used for modeling LC 
classes presence probability based on indicator kriging (Section 4.3.1). A LC class 
with highest modeled probability was selected for this method.  
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Figure 4.6. The semivariograms and fitted models used for Indicator Kriging. 

4.3.2.6 Cross-validation 
The performance of these methods was analyzed using 10 fold cross-validation. 
The reference sample sites were partitioned into 10 random subsamples. Nine 
subsamples (3498 ± 1 sample sites) were used to train the integration methods and 
one subsample (389 ± 1 sample sites) was used to validate the method performance 
by assessing the overall correspondence between the reference LC and LC from 
method outputs. This step was repeated 10 times so that each subsample was used 
for method training as well as validation and each sample site was used for 
validation exactly once. The median percentage of integrated LC classes locally 
corresponding with reference subsamples was then calculated. Note that these 
values should not be confused with the overall accuracy of LC maps since they are 
based on cross-validation using a heterogeneous sample rather than comparison 
against an independent reference dataset obtained by probability sampling. Based 
on the cross-validation results, the integration method having the highest 
correspondence with the reference LC was selected for creating an improved LC 
map.  
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4.4 Results and discussions 

4.4.1 Spatial correspondence of GLC maps in Africa 
The spatial correspondences of the GLC maps based on indicator kriging are 
provided in Figure 4.7. In terms of the spatial correspondence with reference LC, 
all four maps show similar trends. The Sahara desert and tropical rainforest regions 
were mapped with high correspondence, whereas the Sahel, and dry and moist 
savannah regions were generally mapped with low correspondence. In the latter 
regions, some differences in terms of spatial correspondence of the maps could be 
observed. For instance, the LC-CCI showed higher spatial correspondence related 
to cropland areas in Morocco and northern Algeria, Ethiopia, Eritrea, Sudan, 
Zambia, Zimbabwe and Angola. In other regions, the LC-CCI map tends to over-
represent the cropland class. The MODIS map had higher correspondence in 
Somalia, Kenya, Mozambique, Namibia, Botswana and western part of South 
Africa as it has more shrubland areas. The Globeland30 map had higher 
correspondence in the tropical forest regions of western Africa, Chad, Uganda, 
Tanzania, Madagascar, and eastern part of South Africa related to grassland areas. 
A general tendency of over-representing the grassland class was also observed for 
the Gloebeland30 in other regions. These differences are also highlighted in Figure 
4.7f, which illustrates the maps with highest correspondence at a given location. 
The strengths of the GLC maps over one another in different regions show the 
potential of creating an improved GLC map by integrating them.  

Figure 4.7e shows the maximum spatial correspondence of the four maps and this 
demonstrates that the Sahel and dry savannah regions of Africa were mapped with 
the lowest spatial correspondence in all four maps. This could be due to the 
presence of multiple LC classes (i.e., heterogeneous landscapes) in transition zones 
of major ecosystem, which are difficult to classify correctly, owing to spectral and 
thematic similarity. GLC maps often do not agree in these regions (Herold et al. 
2008; Kaptué Tchuenté et al. 2011). These regions should be the main focus of 
map improvement efforts including the development of new GLC maps.  

Information on the spatial variation in map correspondence is useful in uncertainty 
assessments of applications that use GLC maps and in map improvement efforts. It 
also provides confidence in using the GLC maps for regions with high map spatial 
correspondence and limited regional data availability.  

In terms of correspondence with reference LC classes aggregated over the entire 
African continent, MODIS had highest correspondence (63%) followed by 
Globeland30 (57.2%), LC-CCI (55.5%) and finally Globcover (50.8%).  
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Figure 4.7. Spatial correspondence of the GLC maps (a–d), maximum correspondence (e) 
and the map with highest correspondence (f). 

4.4.2 GLC dataset integration methods 
The result of the 10 fold cross-validation assessing the performances of the 
integration methods for an improved GLC map is presented in Figure 4.8. The 
medians of correspondence of integrated LC with reference data varied from 
62.3%–76% across different integration methods (Figure 4.8). The integration 
method based on only the GLC maps (Voting) resulted in the lowest 
correspondence of 62.3%, which is less than the 63% of the MODIS map. A 
possible explanation is that the voting rule will assign a pixel to a wrong class if the 
majority of input maps agrees to that class.  
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Figure 4.8. Correspondence of integrated LC with reference sample LC (10-fold  
cross validation). 

The integration methods based on both the GLC maps and reference datasets resulted 
in 67.5%–76% correspondence with the reference LC, which is at least 4.5%–13% 
higher than the correspondence of the input maps. The RK method produced the 
highest correspondence (76%) compared with the other integration methods. The 
RK method ensures to reduce the classification errors as much as possible by 
exploiting the “best” of the available data i.e., modeling global trends of the LC 
class probabilities using the GLC maps as explanatory variables and calculating the 
local deviations from the global trends near reference points using spatial correlation 
of the residuals between trends and reference data (Hengl et al. 2004). The smaller 
sill values of the fitted models for residual kriging compared to that of the indicator 
kriging (Figure 4.5 and Figure 4.6) are indicative of the contribution of MNL 
regression in explaining the LC class probabilities (Hengl et al. 2004). This also 
justifies the use of residual kriging to model the remaining unexplained spatial 
variation of LC class probabilities.  

Figure 4.8 shows that all methods using reference data produced higher 
correspondence than the Voting method. This could have been expected, since 
more data are being used. However, even IK that uses only reference data produced 
better correspondence than Voting. This underlines the importance of reference 
data in map improvement efforts. The spread in the cross-validation results 
obtained by IK is expected, since cross-validation repeatedly removes difference 
subsets of the reference data while IK is based on the reference data only. The 
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intermediate positions of SC and WeVo can be explained by the fact that they 
employ map spatial correspondence and agreements amongst input maps, rather 
than class specific probabilities as considered in the RK method. Using different 
methods,  
See et al. (2015) also observed limitations in using map spatial correspondence and 
agreement amongst map for integration. Our results demonstrate the advantage of 
using both the GLC maps and the reference data for integration where data abound 
while relying on the GLC maps only in places where the reference data is sparse.  

4.4.3 Integrated LC and LC probability maps of Africa 
Since the RK integration method had the highest correspondence with reference 
LC (see Section 4.4.2), we used this method to create an integrated LC map of 
Africa using the input GLC maps and reference datasets (Figure 4.9). The 
integrated map had similar pattern to the input maps in terms of forest and 
bare/sparse vegetation classes. The main difference between the integrated map 
and the input maps is the fact that more area of shrubland and relatively less area of 
cropland and grassland are present. On the other hand, the general patterns of the 
LC classes were similar to those of the reference data (Figure 4.2 right).  

 

Figure 4.9. Integrated LC map based on RK method. 
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Table 4.3 compares class-specific correspondences of RK integration and the input 
maps with the reference dataset. All LC class correspondences were derived by 
cross-validation (see Section 4.4.2). The RK method improved class 
correspondences for LC classes excluding forest, cropland, grassland and built-up. 
The forest, grassland and cropland classes were over-represented in the MODIS, 
Globeland30 and LC-CCI maps, respectively.  

Table 4.3. Class-specific correspondences of RK integration and the input GLC maps with 
reference data. 

 Globcover LC-CCI MODIS Globeland30 RK 
Forest 71.1 67.3 90.2 63.7 84.9 
Shrubland 11.9 21.3 26.9 17.3 70.8 
Grassland 18.4 18.9 27.1 70.4 41.1 
Cropland 57.7 79.2 66.7 76.0 75.0 
Wetland 25.0 31.5 59.8 52.2 67.0 
Built-up 74.5 91.5 78.7 91.5 89.4 
Bare/sparse vegetation 76.0 78.5 75.0 72.0 87.6 
Water and snow/ice 80.0 80.0 70.0 78.0 86.7 
Total 50.7 55.4 62.8 57.1 76.3 
 

Probability maps for each LC class produced by means of RK are shown in Figure 
4.10. While distinct high probability areas of forest, bare/sparse vegetation and 
water and snow/ice classes can be observed in Figure 4.10, the Sahel and savannah 
areas are represented by multiple classes such as shrubland, grassland and 
cropland, which had similar probabilities.  
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Figure 4.10. Probability maps of LC classes. 

 

Figure 4.11. RGB image of class probabilities of shrubland, grassland and cropland. Dark 
shades represent areas where none of these three classes has a presence probability. 

As the LC classes of the integrated map were selected based on the maximum 
presence probability, shrubland class superseded the grassland class by having a 
higher probability value in these regions and therefore more area of shrubland is 
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observed in Figure 4.9. This can be observed in Figure 4.11, which shows the 
combination of class probabilities of shrubland (red), grassland (green) and 
cropland (blue). Substantial areas in orange color highlight the combination of 
shrubland and grassland as probable classes with the presence probability of 
shrubland is higher than that of grassland (Figure 4.11). In contrast, the extent of 
areas with only shrubland as probable class (red) is considerably less. The 
combination of grassland and cropland as probable classes is shown in cyan color 
that can mostly be observed in the northern part of Sahel and eastern part of South 
Africa. Figure 4.11 illustrates the complexity of landscape with multiple probable 
class in the Sahel and savannah areas. For studies regarding these areas, consulting 
with the presence probability maps of the LC classes are recommended.  

The presence probability maps of the LC classes are helpful in understanding the 
uncertainties in class assignment in the integrated maps as well as the complexity 
of heterogeneous landscapes.  

4.4.4 On the use of available reference datasets for integration 
This study made use of GLC reference datasets that were developed from different 
initiatives. The combined reference dataset has rather dense spatial distribution 
over a large portion of the African continent, which is beneficial for geostatistical 
interpolation. In the Sahara desert, sample density was lower. Nevertheless, 
correspondence with the reference LC was high in this region (Figure 4.7) as bare 
areas are usually mapped with high accuracy (Herold et al. 2008). One should be 
cautious when integrating different reference datasets as they may have 
discrepancies in their legends, sampling design and response design (i.e., sample 
site area) (Tsendbazar et al. 2015a). To reduce the legend discrepancies of the 
reference datasets, we harmonized their legends into a common system with 8 
general classes. However, there may be some inconsistencies in the reference 
datasets due to the discrepancies in the definition of LC classes.  

Another issue is that reference datasets use different spatial supports. Our approach 
of using the centroids of reference sites provided a practical solution. However, 
differences in spatial support among reference data sets (and maps) are often a 
source of uncertainty about the true land cover. Block kriging and area-to-point 
(Goovaerts 2010; Kyriakidis and Yoo 2005) have been proposed for dealing with 
different spatial supports. Note that area-to-point kriging requires semivariograms 
at the fine spatial resolution, which may be difficult to acquire. Last, but not least, 
the integration approach of the reference datasets demonstrated in this study can be 
used for other studies that use geostatistical approaches. Since some reference 
datasets are not based on probability sampling, design-based statistical inference 
cannot be used. Moreover, design-based statistical inference using multiple 
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reference datasets with different statistical sampling designs requires known 
inclusion probabilities (Stehman 2014).  

4.5 Conclusion 

This study utilized the available GLC reference datasets from the GOFC-GOLD, 
Geo-Wiki and the International Steering Community for Global Mapping. These 
datasets were originated from various institutions and the diversity of the reference 
datasets characters (e.g., legend and sample site area) makes them challenging to 
be integrated and reused for other studies. Our study provides an example of 
dealing with such diversities by harmonizing the thematic and spatial support 
differences of the reference datasets and using them for model-based geostatistical 
estimations. Further initiatives on generating better and more consolidated GLC 
maps can be useful to reduce discrepancies and uncertainty caused by legend 
harmonization. The advantages of including different reference datasets for 
integration were demonstrated in this study. Such information is useful as more 
reference datasets are becoming available to the public thanks to GLC mapping and 
validation communities (Fritz et al. 2011a; GOFC-GOLD 2014).  

Our study analyzed and compared the spatial variation in thematic correspondence 
of GLC maps, namely the Globcover 2009, LC-CCI 2010, MODIS 2010 and 
Globeland30, with the reference datasets. Based on the spatial autocorrelation 
structure of map correspondence, we modeled the spatial correspondence of the 
GLC maps as a measure of spatial accuracy. The comparison of the spatial 
correspondence maps demonstrated generally uncertain areas in LC mapping in 
Africa that need attention for improvement efforts while the preferences for GLC 
maps varied spatially. This finding demonstrates a motivation of integrating GLC 
maps based on their spatial variation in map correspondence in order to create an 
improved GLC map. 

Aiming to create an improved LC map, we tested five different methods which are 
based on multiple GLC maps and reference datasets. The integration methods that 
employed both the GLC maps and the reference datasets resulted in 4.5%–13% 
higher correspondence with the reference LC classes than that of the input GLC 
maps. These methods exceeded the other two methods by making best use of the 
available data by calibrating the GLC maps with the help of reference datasets and 
relying on the GLC maps in places where the reference dataset is sparse. This 
result illustrates the benefit of using existing reference datasets and geostatistical 
approaches for map integration. In contrast, integration based on the agreement 
amongst the input maps without questioning their spatial correspondence did not 
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result in improved correspondence with reference LC. Nevertheless such 
approaches are commonly adopted for map integration efforts.  

The RK method, which ensures to reduce the classification errors as much as 
possible through MNL regression and kriging of the regression residuals, showed 
the highest correspondence with reference LC. This method was selected to create 
an integrated LC map and the LC class probability maps of Africa. Uncertainty in 
class assignment was higher in heterogeneous areas with mixtures of different LC 
classes than in homogenous areas. In heterogeneous areas such as the Sahel and dry 
and moist savannahs, the LC probability maps can be useful. This study was done 
for the extent of Africa. With increasing computational power and more data 
coming available, the approach can be extended to global coverage and other 
datasets can also be included as covariates. 
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Abstract 

Global scale land cover (LC) mapping has interested many researchers for last two 
decades as it is an input data source for various applications. However, current 
global land cover (GLC) maps often do not meet the accuracy and thematic 
requirements of specific users. This study aimed to create an improved GLC map 
by integrating available GLC maps and reference datasets. We also address the 
thematic requirements of multiple users by demonstrating a concept of producing 
GLC maps with user-specific legends. We used a regression kriging method to 
integrate Globcover-2009, Land Cover-CCI-2010, MODIS-2010 and Globeland30 
GLC maps along with several publicly available GLC reference datasets. Overall 
correspondence of the integrated GLC map with reference LC was 80% based on 
10-fold cross validation using 24681 sample sites. This is globally 10% and 
regionally 6-13% higher than the correspondence of the input GLC maps. 
Furthermore, based on LC class probability maps expected area fraction maps for 
LC classes at coarser resolution were created and used for characterizing mosaic 
classes for land system modelling and biodiversity assessments. As more reference 
datasets are becoming available to the public, GLC mapping can be further 
improved by using the pool of all available reference datasets. Class probability 
and area fraction maps allow tuning LC products to specific user needs. Future 
GLC mapping efforts should take this into consideration. 

 

Keywords: global land cover; data integration; user-specific legend, land cover 
fraction 



Integrating global land cover datasets for deriving user specific maps 
 

97 

5.1 Introduction 

Land cover (LC) is an essential environmental variable for understanding 
interactions between mankind and nature. Global scale LC mapping has therefore 
interested many researchers for last two decades. After the first attempts to produce 
a global land cover (GLC) map at 1 degree resolution using remote sensing (De 
Fries et al. 1998), multiple medium resolution (300-1000m) GLC maps such as the 
GLC2000, MODIS, Globcover and LC-CCI have been produced (Arino et al. 
2007; Bartholomé and Belward 2005; CCI-LC 2014; Friedl et al. 2010). Recently, 
the release of Landsat archive further led to the production of high resolution 
(30m) GLC maps namely the FROM-GLC and Globeland30 (Chen et al. 2015; 
Gong et al. 2013). Despite all advances, the overall accuracy of existing GLC maps 
typically varies between 67% and 81% (Mora et al. 2014).  

GLC maps are used as an input to various applications such as climate modelling, 
hydrological modelling, agricultural monitoring and biodiversity monitoring (Costa 
et al. 2003; Fritz et al. 2015; McCarthy et al. 2012; Verburg et al. 2011). It is 
challenging for the users to select the GLC map that is the most suitable for their 
applications because of diverse requirements and discrepancies among GLC maps 
in terms of used input data, methodologies and validation (Herold et al. 2008). 
Errors in GLC maps add to the uncertainties in the output of user applications 
(Nakaegawa 2011); therefore, improved accuracy of GLC map is required by the 
users (Bontemps et al. 2011b). This is particularly crucial in some regions of the 
world where GLC map accuracies range between a mere 10-50% (Frey and Smith 
2007) and in areas with mixed LC classes (e.g. mosaics of trees, shrubs, and 
herbaceous vegetation) that are typically mapped with low accuracy (Herold et al. 
2008; Tsendbazar et al. 2016).  

To create improved GLC maps, existing GLC maps are often integrated based on 
properties such as map or class specific accuracy and agreement with other GLC 
maps (Iwao et al. 2011; Jung et al. 2006; Kinoshita et al. 2014). Reference datasets 
that were produced for calibrating and validating GLC maps can also be used for 
integration since some reference datasets are publicly accessible through the 
GOFC-GOLD Reference Data portal, Geo-Wiki platform and International 
Steering Committee for Global Mapping (Fritz et al. 2009; GOFC-GOLD 2014; 
Tateishi et al. 2011). See et al. (2015) used the Geo-Wiki crowd-sourcing reference 
data to model the spatial correspondence of GLC maps and used this for map 
integration. Tsendbazar et al. (2015b) compared multiple integration methods that 
consider the spatial variation in map correspondence and LC class probabilities 
based on recent GLC maps and several publicly accessible reference datasets for 
the African continent. 
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Depending on the purpose of application, users of GLC maps may require different 
thematic classes. For example, some applications concern only a single LC class 
such as forest, cropland or built-up area (Feldpausch et al. 2012; Fritz et al. 2015; 
Klein Goldewijk et al. 2010), while multiple LC classes are needed for carbon 
density mapping based on per-class biomass values (Ruesch and Gibbs 2008). 
Other applications may specifically focus on a subset of  LC classes. For instance, 
land system modelling needs information on LC classes indicating the degree of 
human interactions such as cropland, urban and mosaics of these classes with other 
LC classes such as natural vegetation (Asselen and Verburg 2012; Letourneau et al. 
2012).  

Except for the MODIS GLC map, which has 5 different legends, current GLC 
maps employ a single fixed legend. These fixed legends do not always meet the 
requirements of users. Mosaics of urban with other LC which characterise many 
rural landscapes, for example, are not included in current GLC map legends, while 
such classes can be useful for understanding human interactions with the 
environment (Asselen and Verburg 2012). Moreover, translating fixed legends —
particularly mosaic classes— to required legends can be ambiguous or even 
impossible (Friedl et al. 2002; Herold et al. 2008). For example, in dynamic global 
vegetation models (DGVM), LC classes are translated to fractional plant function 
types (PFT). This translation assumes certain fractions of PFTs in different LC 
areas based on the definition of LC classes. Poulter et al. (2015) assumed that a  
mosaic class composed of cropland and natural vegetation contained four different 
PFTs (60% managed grass, 15% natural grass, 15% shrubs and 10% trees). These 
conversions were derived from expert knowledge and  the assumed fractions can be 
subject to error. 

GLC maps could address thematic requirements of several user applications if the 
area fraction of LC classes is provided. With area fraction maps of LC classes, 
users can characterize LC classes (e.g. mosaic classes) according to their 
requirement. This has been demonstrated by Asselen and Verburg (2012) who 
created a global scale land system map characterizing different levels of human 
interaction with the environment. In their study, specific mosaic LC classes 
representing different land systems were created based on fraction information of 
main LC types such as tree cover, cropland, urban and bare areas. In addition to 
improving map accuracy, GLC map integration should provide area fraction maps 
of LC classes in order to meet thematic requirements of different user applications.  

 In this study, we created an integrated GLC map and LC class probability maps 
and demonstrated the proof of concept of producing GLC maps with user-specific 
legends based on expected area fraction maps of LC classes. We used a regression 
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kriging method as described in Tsendbazar et al. (2015b) which was applied at 
global scale to create an integrated GLC map. Based on LC class probability maps 
produced from this integration, we created expected area fraction maps for LC 
classes at coarser resolution as many applications use GLC maps at coarse 
resolution (Herold et al. 2011). The LC expected area fraction maps were then used 
to create user-specific GLC maps from the perspectives of land system models and 
biodiversity assessment.  

5.2 Data and methods 

A flowchart of methodological steps adopted in this study to generate integrated 
GLC maps user-specific legends is provided in Figure 5.1. The following 
subsections describe the used GLC maps and reference datasets as well as methods 
for integrating GLC datasets  and creating user-specific legends.   

GLC maps:
• Globcover 2009
• LC-CCI 2010
• MODIS 2010
• Globeland30 2010

GLC reference data:
• GLC2000
• GLCNMO
• Geo-Wiki
• Globcover
• MODIS/STEP
• VIIRS

GLC user 
application:
• Land system models
• Biodiversity 

assessments

Regression kriging 
integration method

Integrated 
GLC map and 
LC probability 

maps

Expected area 
fraction of LC 

classes

GLC maps with 
user-specific 

legends
 

Figure 5.1. Flowchart of creating GLC maps with user-specific legends 

5.2.1 Global land cover maps 
The following recent GLC maps were used as inputs for our analysis: Globcover 
(2009), LC-CCI (2010), MODIS (2010) and Globeland30 (2010). The Globcover 
project of the European Space Agency (ESA) produced a GLC map for 2009 using 
MERIS satellite data at 300m resolution (Defourny et al. 2011b). This map 
characterizes 22 LC classes based on an LCCS (United Nations Land Cover 
Classification System). This map was validated using an independent reference 
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dataset and the thematic overall accuracy was 70.7% based on 1484 homogenous 
sample sites (Bontemps et al. 2011a). The Land Cover-CCI (LC-CCI) project, 
funded by the ESA, produced GLC maps for the epochs of 2000, 2005 and 2010 at 
300m resolution using the MERIS data archive (CCI-LC 2014). These maps were 
specifically produced to meet the requirements of climate modellers. The maps 
have 22 LC classes according to the LCCS. The LC-CCI 2010 map was validated 
using the same reference sample as the Globcover-2009 validation and the overall 
thematic accuracy of the LC-CCI 2010 map was 74.4%. Boston University 
provided annual GLC maps (MCD12Q1) at 500m resolution based on Moderate 
Resolution Imaging Spectroradiometer (MODIS) data (Friedl et al. 2010). The 
MODIS GLC maps have five different legends including a 17 class legend based 
on the International Geosphere-Biosphere Programme (IGBP) classification 
scheme. We used the GLC map of 2010 with IGBP legend. The accuracy of this 
map has not yet been assessed. Based on cross-validation using the training dataset, 
an overall accuracy of the 2005 map was 74.8% (Friedl et al. 2010). The 
GlobeLand30 project of the Ministry of Science and Technology of China 
generated GLC maps for the year 2000 and 2010. These maps were developed 
using 30m resolution multispectral images of Landsat TM and ETM+ as well as the 
Chinese Environmental Disaster Alleviation Satellite (HJ-1). The maps are 
accessible at 30 m and 250 m resolution. We used the 250 m resolution version of 
Globeland30, which contains LC class fraction information. This map has 10 LC 
classes. The overall accuracy of the map was reported to be 83.5% (Chen et al. 
2015).  

The MODIS and Globeland30 maps were resampled to 0.00278 degrees (300m at 
the Equator) resolution using nearest neighbor assignment to match the resolution 
of the other two maps. The map legends were harmonized into nine general LC 
classes based on the approach of Herold et al. (2008), which provides a table 
harmonizing the input classes into 13 general LC classes using LCCS-based legend 
translation protocols. Since the Globeland30 map does not have detailed forest 
classes, the five forest classes of Herold et al. (2008) were merged to one (Table 
5.1). The Globeland30 map has a “tundra” class that is a combination of shrubland 
and grassland. Since this class does not match with the legends of the other input 
maps, it was excluded from the analysis. Figure 5.2 presents the four GLC maps 
with the harmonized legend.   
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Figure 5.2. Input global land cover maps 
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5.2.2 Reference datasets 
We used existing GLC reference datasets that are publicly accessible through the 
GOFC-GOLD reference data portal, the Geo-Wiki platform and the International 
Steering Committee for Global Mapping (Fritz et al. 2009; GOFC-GOLD 2014; 
Tateishi et al. 2011). The reference datasets used in this work are denoted as: 
GLC2000rd, GLCNMOrd, Geo-Wikird, MODIS/STEPrd, VIIRSrd and the 
Globcover-2005rd. The subscript “rd” is added here to avoid potential confusion 
between GLC maps and reference datasets. GLC2000rd concerns the reference 
dataset generated to validate the Global Land Cover 2000 map (Mayaux et al. 
2006). The original version of this reference dataset with 22 LC classes was re-
analyzed by experts to have a consolidated reference dataset with generalized 11 
LC classes (Schultz et al. 2015). GLCNMOrd was created by Global Land Cover 
by National Mapping Organizations for calibration of a GLC map for 2003 
(Tateishi et al. 2011). This reference dataset has 14 LC classes, which were 
assigned by international experts. MODIS/STEPrd was developed and updated by 
Boston University for calibration of the MODIS collection 4 and 5 GLC mapping 
(Friedl et al. 2010). It has 17 LC classes with the IGBP legend. Boston university 
also created VIIRSrd (Visible Infrared Imaging Radiometer Suite) for validating 
the VIIRS surface type products (GOFC-GOLD 2014; Olofsson et al. 2012). This 
dataset has the same classes as MODIS/STEPrd and the reference LC labels were 
assigned by visual interpretation of very high resolution images. Geo-Wikird was 
developed through a volunteer based online platform. Volunteer interpretations of 
the reference LC were validated by a group of experts (Fritz et al. 2009). 
Globcover 2005rd was created to validate the Globcover 2005 GLC map (Bicheron 
et al. 2008). In the current study a re-interpreted version of the reference dataset by 
Tsendbazar et al. (2016) was used. Detailed information on the characteristics of 
the available reference datasets are provided in Tsendbazar et al. (2015a).  

Since the used reference datasets have different sample site areas (Tsendbazar et al. 
2015a),  we assumed that the LC of the sample site refers to the LC of the centroid 
of that sample site (Tsendbazar et al. 2015b). The reference datasets were 
combined and the legends of available reference datasets were harmonized into the 
same nine general classes used in the harmonized GLC maps (Table 5.1).  

The total number of reference sample sites used in this study was 24681 which 
comprises 2408 sites in Australia and Oceana, 10379 sites in Eurasia, 4715 sites in 
North America, 3298 sites in South America, and 3881 sites in Africa. Figure 5.3 
shows the sample distribution of each reference dataset (a) and the reference LC 
classes (b).   
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Figure 5.3. Spatial distribution of the reference datasets (a) and reference land cover 
classes (b) 
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Table 5.1. The generalised LC classes and their definitions 

Code Land cover 
class Globcover LC-CCI Globeland 

30 

IGBP 
(MODIS, 
STEP& 
VIIRS) 

GLC 
2000 

Geo-
Wiki  

GLCN
MO Definition 

1 Forest 40-110, 160, 
170 

50-100, 
160, 
170 

20 1-5, 8, 9 1-10 1 1-5 
Lands where forests 
cover is more than 10% 
of the total land cover.   

2 Shrubland 130 120 40 6,7 11, 12 2 7 
Lands where shrubs 
cover is more than 10% 
of the total land cover.   

3 Grassland 120, 140 110, 130, 
140 30 10 13 3 8,9 

Lands covered by 
natural grass with at 
least 10% of the total 
land cover 

4 
Cropland 
(incl. 
mixtures) 

11-30 10-40 10 12, 14 16-18 4 11, 
12,13 

Lands where crops 
comprise at least 40% 
of the total land cover.  

5 Wetland 
vegetation 180 180 50 11 15 6 15 

Lands with a semi-
permanent mosaic of 
water and herbaceous 
or woody vegetation.  

6 Urban/built 
up 190 190 80 13 22 7 - 

Land covered by 
buildings and other 
man-made structures 
and activities.  

7 Snow/Ice 220 220  100 15 21 8, - 
Lands covered by 
permanent snow, 
glacier and icecap. 

8 Bare/sparse 
vegetation 150, 200 150, 200 90 16 14, 19 9 10, 

16, 17 
Lands with vegetation 
cover lower than 10%.  

9 Water  210 210 60 17 20 10 - 

Water bodies in the 
land area, including 
river, lake, reservoir, 
pond, etc. 

 

5.2.3 Integration of GLC datasets 
We integrated the available GLC maps and reference datasets using the approach 
of Tsendbazar et al. (2015b). We used a regression kriging method that predicts 
local LC class presence probabilities since it produced the highest correspondence 
with reference data  in comparison to voting, spatial correspondence, weighted 
voting and indicator kriging methods (Tsendbazar et al. 2015b). LC classes at the 
reference sample locations were extracted and used as calibration dataset in the 
regression analysis. The data were also used for estimating semivariograms of the 
regression residuals. 

The presence probability of 9 LC classes were processed separately for five regions 
of the world (Figure 5.4) which were later merged to a global scale at 0.00278 
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degrees resolution. These regions were used to facilitate processing while avoiding 
boundary effects as the regions coincide with land and ocean borders.  

 
Figure 5.4. Boundary of the world regions used in the analysis 

For each region, the general trend of presence probabilities of LC classes were 
predicted using a multinomial logistic (MNL) regression (Kempen et al. 2009). 
Next, the predicted probabilities were locally adjusted by interpolating regression 
residuals using simple kriging (Equation 5.1).  

𝑝𝑝𝑘𝑘(𝑥𝑥) = 𝜋𝜋𝑘𝑘(𝑥𝑥) + 𝜀𝜀𝑘𝑘(𝑥𝑥)            (5.1) 

Here, pk(x) denotes the presence probability of LC class k at location x, 𝜋𝜋𝑘𝑘(𝑥𝑥) is a 
predicted probability trend of LC class k that was obtained by MNL regression and 
𝜀𝜀𝑘𝑘(𝑥𝑥) is the regression residual for that class. The latter has zero mean and is 
spatially correlated as modelled by a semivariogram; it is spatially interpolated 
using nearby reference data. A detailed description of this method can be found in 
Tsendbazar et al. (2015b). A semivariogram model was fitted for each class in each 
region following the method described in Tsendbazar et al. (2015b). For some LC 
classes, residual kriging was not used since no spatial correlation was observed in 
the regression residuals. The method was implemented using the nnet and gstat 
packages in R (Pebesma 2004; Ripley et al. 2014) and ran on the Amazon EC2 
cloud computing facility (Amazon 2010). 

After adjusting the predicted probabilities with residual kriging, any probability 
outside the interval [0, 1] was set to the closest bound, zero or one. Subsequently, 
the estimates pk(x) k=1, …, K were normalized by their sum to meet the condition 
∑ 𝑝𝑝𝑘𝑘(𝑥𝑥) = 1𝐾𝐾
𝑘𝑘=1  (de Bruin 2000a). In the integrated GLC map, pixels are assigned 

to the LC class having the highest probability .  
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The quality of the integrated GLC map was assessed by 10 fold cross-validation 
based on the reference dataset. For each region, the reference sample sites were 
partitioned randomly into 10 subsamples. Nine subsamples were used to train the 
integration method and one subsample was used to assess the integrated GLC map 
by calculating the overall correspondence between the reference LC and the 
integrated LC. This step was repeated 10 times so that each subsample was used 
for method training as well as validation while each sample site was only used once 
for validation. The median percentage of integrated LC classes locally 
corresponding with reference subsamples was calculated for each region. Note that 
these values should not be confused with the overall accuracy of LC maps since 
they are based on cross-validation using the calibration sample rather than 
comparison against an independent reference dataset obtained by probability 
sampling (Tsendbazar et al. 2015b).  

5.2.4 GLC maps with user-specific legends 
We proposed a concept of creating GLC maps with user-specific legends using LC 
class area fraction information. With this, GLC map users can create a flexible 
legend with class definitions (e.g. fraction thresholds) that fits their requirements. 
This concept was demonstrated from the perspectives of land system modelling 
and biodiversity assessments based on improved LC probability maps.  

Land system models present land use systems describing both the heterogeneity of 
land cover within the landscape and land-use intensity highlighting human-
environment interactions (Letourneau et al. 2012). Land use systems can include 
densely populated systems, cropland systems, grassland systems, forested systems 
and bare soils systems as well as mosaic systems which are combination of the 
main systems (Letourneau et al. 2012). For land system models, therefore, mosaic 
LC classes highlighting human influences to the environment can be useful in 
addition to the general LC classes. To create a GLC map from a perspective of land 
system models, we adopted several mosaic classes that were introduced in Asselen 
and Verburg (2012) and added these classes to the harmonized legend with nine 
general classes. The mosaic classes include peri-urban & villages (built-up:5-25 
%), mosaic cropland (20-50%) and grassland (20-50%), mosaic cropland (20-50%) 
and forest (15-40%), mosaic grassland (20-50%) and forest (15-40%), and mosaic 
grassland(20-50%) and bare (25-50%).  

We used LC presence probability maps obtained by regression kriging at 0.00278 
degrees resolution to create LC area fraction maps at 0.0834 degrees (5 arcminute) 
resolution that was used in land system model of Asselen and Verburg (2012). We 
selected the class probability maps instead of the integrated GLC map to avoid 
overestimation of frequent occurring classes (e.g. forests and cropland) and 
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underestimation of rare classes (e.g. urban and wetland). The expected fraction of 
LC classes in 5 arcminute resolution pixels (E[A𝑘𝑘]) was computed as follows (de 
Bruin 2000a): 

𝐸𝐸[𝐴𝐴𝑘𝑘] = 𝐸𝐸[𝑝𝑝𝑘𝑘] = ∑ 𝑝𝑝𝑘𝑘(𝑥𝑥𝑗𝑗)𝑛𝑛
𝑖𝑖=1 /𝑛𝑛       (5.2) 

where 𝑝𝑝𝑘𝑘(𝑥𝑥𝑗𝑗) is the probability of a class 𝑘𝑘 for given the data at pixel 𝑥𝑥𝑗𝑗, n is the 
number of pixels at the original resolution within the 5 arc minute pixel. Equation 
5.2 expresses that average class probabilities of pixels over a region (e.g. coarse 
resolution pixel) correspond to the expected class proportions in that region. Using 
the area fraction maps with 5 arcminute resolution, the mosaic classes were 
identified and the remaining general LC classes were assigned to the LC class 
having the maximum fraction. 

We used a similar approach for creating a GLC map from a biodiversity 
perspective. Land use types that represents human impact such as cropland and 
urban have negative impact on species richness and species abundance (Newbold 
et al. 2015). Hence, characterization of LC classes such as cropland and built-up 
areas can be important for biodiversity assessments. Mosaic of these classes with 
classes that have less human influence such as natural vegetation could also be of 
interest. Therefore, we added four mosaic classes that could be of interest to 
biodiversity analysists on the general legend with nine LC classes. The mosaic 
classes include mosaic built-up(5-25 %) and cropland (20-70%), mosaic built-up 
(5-25 %) and nature vegetation (20-70%), mosaic cropland (20-70%) and grassland 
(20-70%), and mosaic cropland (20-70%) and forest/shrubland (20-60%). Note that 
the applied class fraction thresholds can be adjusted depending on user preferences. 
Using the LC area fraction maps at 5 arcminute resolution, the mosaic classes were 
first assigned while the remaining nine main LC classes were again assigned to the 
LC class having the maximum fraction.  

5.3 Results  

5.3.1 Integrated GLC map and LC probability maps  
Each region was modeled by a distinct MNL regression model and a set of residual 
semivariograms. Figure 5.5 shows the nugget-to-sill ratios of the semivariogram 
models fitted to the regression residuals. The larger this ratio, the less the 
regression residuals are spatially correlated.  

In general, the regression residuals tended to be spatially correlated in Africa and 
Australia and Oceania where nugget-to-sill ratios were smaller compared to other 
regions. In Australia and Oceania, classes such as wetland, built-up, water and 
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snow/ice that occupy small parts showed high spatial correlation (nugget-to-sill 
ratio=0) in the residuals. In contrast, in South America, the presence probability of 
more common classes such as forests, shrubland, grassland and cropland were 
entirely based on the MNL regression as the regression residuals were spatially 
uncorrelated (nugget-to-sill ratio =1) (Figure 5.5). 

 
Figure 5.5. Nugget-to-sill ratio of the regression residuals 

The integrated LC maps of the regions were merged to create the GLC map shown 
in Figure 5.6.  

 
Figure 5.6. The integrated GLC map 
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The major patterns of homogeneous regions in the integrated GLC map are similar 
to those in the input GLC maps. These correspond to  regions such as tropical and 
temperate forests, deserts across Asia and Africa and large cultivated areas in the 
different continents. The main differences between the integrated GLC map and the 
input maps are in areas where the input maps disagree amongst each other. In the 
integrated GLC map, these regions are characterized by combinations of LC 
classes that are present in one of the input GLC maps. For example, the western 
plateau and interior lowlands of Australia and tundra regions of Russia were 
mapped as shrubland, grassland and bare/sparse vegetation classes in the integrated 
GLC map (Figure 5.6), while these areas are mostly mapped as bare/sparse 
vegetation and grassland in the LC-CCI and Globcover maps, shrublands in the 
MODIS map, and grassland in the Globeland30 map (Figure 5.2). Compared to the 
input maps, the integrated GLC map presents more shrubland areas in African 
savannah regions and more grassland areas in Northern Canada. This effect is 
caused by the reference datasets.  

LC class probability maps that were created from the integration of GLC datasets 
are presented in Figure 5.7. Forest, cropland, snow and ice, bare/sparse vegetation 
and water areas are spatially structured in zones with high probability and low 
probability. In contrast, transition areas of major biomes such as the Sahel and 
savannah region, tundra regions in Eurasia and North America and peripheries of 
Amazonian forests are characterized by approximately equal probabilities for 
multiple LC classes such as shrubland, grassland and bare/sparse vegetation.  
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Figure 5.7. Probability maps of LC classes  

Figure 5.7j shows the maximum probability values for different LC classes. Since 
the integrated GLC maps was based on a LC class that had the highest probability 
per pixel, this maximum probability map reveals information on the internal 
uncertainty of the integrated GLC map. The maximum probability value is lowest 
in areas such as transition areas of major biomes, tundra regions and central 
Australia, where multiple classes are possible based on the input GLC maps and 
reference data.  
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5.3.2 Cross validation of the integrated GLC map 
Figure 5.8 presents the correspondence of the integrated GLC map with the 
reference dataset at region level. The correspondence of the integrated GLC map 
was highest in Eurasia (81%) followed by South America, North America, and 
Australia and Oceania (79%) and Africa (76%). When compared with the 
correspondence of the input GLC maps, these results are at least 12% higher in 
Australia and Oceania and Africa, 9 % higher in Eurasia and North America and 
6% higher in South America. A plausible reason of the highest improvements in 
Australia and Oceania and Africa is that there was more room for improvements as 
the input maps had low correspondence with the reference data.  

 
Figure 5.8. Correspondence of integrated GLC map with reference dataset. 

Class-specific correspondence of the integrated GLC map with the reference 
dataset is provided in Table 5.2. The class-specific correspondence of the 
integrated GLC map was derived by cross-validation. Compared with the input 
maps, the integrated GLC map has a relatively high correspondence for the forest 
class in all regions except Africa. The correspondence of the shrubland class also 
improved except in South America. Mapping of grassland and cropland improved 
in regions other than Africa and South America. For rare classes such as wetland, 
built-up and water classes, the integrated map has the highest or one of the highest 
correspondences across all regions. Improved mapping of bare/sparse vegetation 
was achieved in all regions except Australia and Oceania. In this region, the 
Globecover and LC-CCI products had higher correspondence.  
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Table 5.2. Class-specific correspondence of the integrated GLC map compared with the 
input maps  

  Globcover LC-CCI MODIS Globeland30 Integrated 
  Africa 

Forest 71.1 67.3 90.2 63.7 84.9 
Shrubland 11.9 21.3 26.9 17.3 70.8 
Grassland 18.4 18.9 27.1 70.4 41.1 
Cropland 57.7 79.2 66.7 76.0 75.0 
Wetland 25.0 31.5 59.8 52.2 67.0 
Built-up 74.5 91.5 78.7 91.5 89.4 
Snow and ice  -  -  -  -  - 
Bare/sparse vegetation 76.0 78.5 75.0 72.0 87.6 
Water 80.0 80.0 70.0 78.0 86.7 

Eurasia 
Forest 69.4 78.4 77.5 79.0 87.0 
Shrubland 10.0 7.4 37.6 10.8 30.9 
Grassland 9.3 31.5 45.9 47.1 59.2 
Cropland 84.5 86.1 83.4 87.9 92.7 
Wetland 19.0 36.8 31.3 41.1 41.1 
Built-up 52.4 81.9 72.2 82.7 79.4 
Snow and ice 33.1 33.1 34.6 27.6 44.9 
Bare/sparse vegetation 77.4 70.0 51.2 58.6 81.3 
Water 75.3 80.5 53.2 73.4 74.0 

Australia and Oceania 
Forest 57.7 69.4 88.6 83.9 91.9 
Shrubland 20.5 39.5 65.8 8.2 74.7 
Grassland 14.2 21.1 22.2 53.1 57.5 
Cropland 80.9 75.3 70.3 80.2 82.7 
Wetland 0.0 4.0 44.0 36.0 44.0 
Built-up 53.3 66.7 86.7 80.0 86.7 
Snow and ice 37.5 37.5 25.0 100.0 62.5 
Bare/sparse vegetation 73.9 67.4 8.7 6.5 23.9 
Water 84.6 92.3 46.2 61.5 84.6 

North America 
Forest 83.1 79.1 81.6 74.6 90.6 
Shrubland 30.7 43.7 53.2 45.4 54.9 
Grassland 20.9 46.8 45.1 26.5 52.8 
Cropland 39.0 71.7 85.6 85.8 89.1 
Wetland 3.6 25.7 37.9 35.7 45.7 
Built-up 24.2 82.8 73.2 86.0 86.0 
Snow and ice 60.1 63.5 61.5 52.7 70.9 
Bare/sparse vegetation 41.6 36.8 9.5 6.5 50.6 
Water 75.6 81.4 59.6 89.7 81.4 

South America 
Forest 80.1 81.0 93.4 76.2 93.6 
Shrubland 35.7 51.1 44.5 47.1 38.3 
Grassland 6.9 15.2 31.4 56.6 44.1 
Cropland 78.9 84.6 57.5 78.1 79.7 
Wetland 35.9 29.7 65.6 46.9 54.7 
Built-up 35.1 78.4 64.9 73.0 83.8 
Snow and ice 59.3 66.7 40.7 51.9 66.7 
Bare/sparse vegetation 48.9 48.9 34.1 34.1 55.7 
Water 80.8 86.5 51.9 84.6 86.5 

 

The overall correspondence of the integrated GLC map was 79.6%, which is at 
least 10% higher than the input GLC maps whose correspondence ranged between 
59.6 and 69%.  
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5.3.3 GLC maps with user-specific legends 
GLC maps with two user-specific legends are shown in Figure 5.9. Figure 5.9a 
demonstrates a GLC map with specific mosaic legends for land system models. 
Mosaic grassland and forest areas were mostly mapped in the tundra regions of 
Eurasia and North America while the mosaic grassland and bare class occur mostly 
in the northern tundra regions along the borders of deserts of Eurasia and Australia. 
Small patches of mosaic cropland and grassland areas can be observed along 
cultivated areas on the British Isles, in northeastern China and in eastern Brazil. 
Mosaic cropland and forest areas are identified along the borders of Amazonian 
forest and Savannah regions in Africa. Due to the coarse resolution of this map, 
large metropolitan areas in Japan, the USA, Benelux, western Germany and the UK 
are mapped as built-up areas. More dispersed urban areas in central and eastern 
Europe and eastern China are mapped as peri-urban and villages in this map.   

Figure 5.9b presents a GLC map with specific mosaic classes for biodiversity 
assessments. Similar to Figure 5.9a, mosaic cropland and grassland class are 
mapped along the borders of main cultivated regions. However, owing to different 
area fraction thresholds, larger areas were assigned to this composite class. 
Substantial areas of mosaic cropland and forest/shrubland areas are mapped in the 
eastern USA, Brazil, central and eastern Europe, southwestern China and Savannah 
regions in Africa. Areas designated as peri-urban and villages in Figure 5.9a, are 
mapped mainly as mosaic of built-up and cropland areas in Figure 5.9b while 
mosaics of built-up and natural vegetation areas occur in small patches in western 
and eastern USA and east coast of Australia.  
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Figure 5.9. GLC maps with specific mosaic classes for land system models (a) and 
biodiversity assessments (b) 

5.4 Discussion 

5.4.1 Integration of GLC datasets 
We created an integrated GLC map and LC class probability maps by predicting 
the probability of LC classes using MNL regression and modelling the spatial 
variation in the regression residuals. The regression residuals were spatially 
correlated to at least some extent for most LC classes (Figure 5.5). Particularly, 
correlation of the regression residuals were in general higher in Africa and 
Australia and Oceania compared to the other regions. Owing to this correlation, the 
correspondence of the integrated GLC map with the reference LC was at least 12% 
higher than that of the input maps in these regions (Figure 5.8). This shows the 
benefit of the use of geostatistical approach based on the available GLC maps as 
well as the reference datasets in case of spatial correlation in regression residuals 
(Tsendbazar et al. 2015b). On the other hand, the correspondence increase was the 
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least in South America (6%) where the regression residuals of the major LC classes 
were not  spatially correlated. 

Previous GLC map integration efforts achieved 3-4.5% accuracy improvements 
(Kinoshita et al. 2014; See et al. 2015). Based on the 10-fold cross-validation, the 
integrated GLC map had an overall 10% increase in the correspondence with 
respect to the input maps and regionally the improvement was up to 13%. Even 
though these figures are not directly comparable to accuracies provided in previous 
studies (Kinoshita et al. 2014; See et al. 2015), they are convincingly based on a 
large sample (24681 sites).  

The maximum probability values that highlight the uncertainty of the integrated 
GLC map were low in areas such as transition areas of major biomes, tundra 
regions and central Australia, where the input maps disagreed (Figure 5.7j). These 
regions are known for being inconsistent amongst GLC maps (Fritz et al. 2011b; 
Herold et al. 2008) and having low spatial accuracies (Tsendbazar et al. 2015b). 
Such disagreement can be attributed to the complexity of heterogeneous landscapes 
(Herold et al. 2008). In the integrated map, these regions are mostly characterized 
by relatively small LC patches that emerge due to the influence of residual kriging 
using nearby reference data. This is another example demonstrating the role of 
reference datasets in map integration.  

For integration, this study used publicly available reference datasets generated 
from various initiatives. As more reference datasets are becoming available to the 
public, GLC mapping can be further improved by using the pool of all available 
reference datasets. However, reference datasets typically  differ in their design 
protocols (e.g. sample design, legend, sample site area) which has to be considered 
when using them for integration, as discussed by Tsendbazar et al. (2015b).  

5.4.2 GLC maps with user-specific legends  
GLC maps with user-specific legends (Figure 5.9) were created based on the 
integrated LC probability maps. The improved correspondence with reference LC 
(Figure 5.8) addresses the user requirement of reducing uncertainty about LC 
labelling. Furthermore, the maps in Figure 5.9 demonstrate the concept of 
producing GLC maps with user-specific legends based on area fraction estimates of 
LC classes. This approach makes it more flexible to address the different thematic 
requirements of multiple users. The new mosaic classes in Figure 5.9 occur mostly 
in heterogeneous landscapes where multiple LC classes have presence probability 
(Figure 5.7). This shows the importance of user-specific legends particularly in 
these regions.  
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Providing area fraction information of the LC classes can be useful not only to 
create user-specific mosaic LC classes, it can also be used for generalizing LC 
classes by summing class fractions for all composing classes. For example, the 
fraction for a class “non-vegetation” can be computed by summing the fractions of 
built-up, snow and ice and water. Moreover, users would be allowed to use their 
own area fraction thresholds for mapping mosaic classes. This can have 
implications for the area occupied by mosaic class as can be observed from Figure 
5.9, where both GLC maps had the mosaic of cropland and grassland class while 
this class of Figure 5.9b was substantially larger than that of Figure 5.9a due to the 
threshold difference. Users can also adjust LC class fraction thresholds for mosaic 
or non-mosaic classes depending on the cost of GLC map misclassification for 
specific applications. 

The expected fractions of LC classes at a coarser resolution were derived using the 
class probability maps following the method of de Bruin (2000a). Since the MNL 
regression used indicator data for class presence (zero or one), this integration 
method requires mutually exclusive LC classes. Therefore, class probability maps 
can be used to derive class fractions for coarser resolutions but not at the the 
pixel’s ground resolution (300 m resolution). The conversion method for the 
expected fractions of LC classes requires the LC regions (e.g., coarser resolution 
pixels) to be considerably larger than the pixels’ ground resolution (de Bruin 
2000a). Otherwise, the statistical concept of expected area fractions still holds but 
there is a logical conflict with the requirement of mutually exclusive LC classes 
(De Bruin 2000b). In this study, the expected fraction of LC classes were 
calculated at 30x30 coarser resolution than the probability maps. As many GLC 
map users conduct applications at coarser resolution (Herold et al. 2011), the 
applied method could be used to create other user-specific legends from the 
integrated GLC map developed in this study. For users requiring medium 
resolution GLC maps, recently developed high resolution (30m) GLC maps such as 
the Globeland30 (Chen et al. 2015) could be used to create GLC maps with user-
specific legends.  

Internally, uncertainty about the LC fractions (i.e. uncertainty owing to the 
estimated probabilities) cannot be directly assessed from the LC fraction maps. 
Such assessment would require simulation, as demonstrated by (de Bruin 2000a). 
However, simulation at global scale is computationally demanding and it was not 
included in the current study. Alternatively, external assessment of the quality of 
the fractional LC maps would require independent reference data with fractional 
information. Existing reference datasets rarely provide fraction information of LC 
classes (Tsendbazar et al. 2015a). The reference dataset of Boston University, 
which is under development, could be used for this purpose. In this dataset, the 



Integrating global land cover datasets for deriving user specific maps 
 

117 

reference LC of 5x5km area is classified using object-based analyses of sub-meter 
resolution images (Olofsson et al. 2012). Hence, sample unit area can be reduced 
depending on the requirement and fraction of LC classes within sample unit area 
can be estimated and used as reference. Also comparisons with other LC type 
fraction datasets such as hybrid global forest cover map by Schepaschenko et al. 
(2015) are possible. However, the latter should not be confused with validation 
because that would imply that the map used for comparison is deemed error free.  

Note that fractional forest cover as used in the legend of Figure 5.9, which follows 
the forest definition from Table 5.1, should not be confused with partial tree cover 
such as mapped by Hansen et al. (2013). This also applies to the fractions of other 
LC classes for which the original LC categories are maintained rather than element 
fractions which perhaps are easier to understand. In case a user requires element 
fractions rather than LC class fractions according to the legend definition in Table 
1, different datasets such as Landsat-based tree cover by Hansen et al. (2013) and 
global cropland percentage map by Fritz et al. (2015) should be used.  

5.5 Conclusions 

This study applied regression kriging that makes use of both the GLC maps and the 
available reference datasets to develop an improved GLC map. The integrated GLC 
map showed 10% improvement in global correspondence and regionally up to 13% 
increase in correspondence with reference LC compared to the input GLC maps. 
Benefits of using geostatistical approach and available reference dataset were 
demonstrated as regions with more spatial correlation in the regression residuals 
resulted in with higher increase in the correspondence. This finding encourages the 
efforts of releasing available reference datasets to the public by international 
communities such as the GOFC-GOLD, Geo-Wiki portal and International 
Steering Committee for Global Mapping (Fritz et al. 2011a; GOFC-GOLD 2014; 
Tateishi et al. 2011). As more reference datasets are becoming available to the 
public, GLC mapping can be further improved by using the pool of all available 
reference datasets.  

Along with the integrated GLC map, a probability map for each LC class was 
produced. Probability maps for LC classes are helpful in assessing the complexity 
of heterogeneous landscape and understanding the uncertainty of the integrated 
GLC map. Uncertainty in class assignment was higher in transition areas of major 
biomes and tundra regions where multiple LC classes had similar probabilities.  

In this study, two GLC maps with user-specific legends for land system models and 
biodiversity assessments were created to demonstrate the concept of creating GLC 



Chapter 5 
 

118 

maps that meet the thematic requirement of different users. Area fraction maps of 
GLC classes are useful to create flexible user-specific legends particularly related 
to mosaic classes and thus address the thematic requirements of multiple users. 
Tuning LC maps to specific user needs should be taken into consideration for 
future GLC mapping efforts. 
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6.1 Main Results 

Given the importance of GLC maps for a variety of user applications, this PhD 
research aimed to assess, compare and improve GLC maps while accounting for 
different user requirements. To address this objective, several research questions 
were answered in Chapters 2-5. This section summarizes the findings related to the 
research questions.   

1. What is the suitability of GLC reference datasets from the perspectives of 
different user communities? 

This research was formulated to assess the re-usability of GLC reference datasets 
in calibrating and validating GLC maps for different user communities. The 
research question is addressed in Chapter 2 in two steps. 

Firstly, a literature analysis was conducted to obtain metadata information on 
available and forthcoming GLC reference datasets. The main characteristics of 12 
GLC reference datasets in relation to the response design, sampling design 
protocols and current use of the datasets was reviewed. The results showed that the 
GLC reference datasets differ in aspects such as sample unit size and type, sample 
selection scheme as well as temporal coverage. The LCCS legend scheme and 
stratified random or systematic sample schemes were adopted in most datasets. In 
terms of response design, available satellite images, open source maps, geo-tagged 
photos and regional maps were used as source material for reference LC labelling, 
which was done by visual interpretation in most cases. Results showed that the 
existing GLC reference datasets have limitations to applications outside the scope 
of intended uses. Public accessibility of the datasets plays an important role for 
their efficient use.  

Secondly, the user requirements regarding GLC reference datasets were reviewed 
and potential uses and limitations were assessed for four targeted GLC map user 
groups. These user groups included the climate modelling community (CMC), 
global forest change analysts, the GEO community of practice (CoP) for global 
agricultural monitoring and producers of improved GLC maps. Findings revealed 
GLC reference datasets have varying suitability levels depending on the reference 
data characteristics, user requirements and target maps. In general, LC-CCI, 
GOFC-GOLD, FAO-FRA and Geo-Wiki were identified as being the most suitable 
datasets for multiple user groups. Most datasets were identified to be at least 
marginally suitable for the GEO Global Agricultural Monitoring CoP and the 
improved GLC map production cases. On the other hand, many datasets were 
considered unsuitable for CMC and global forest change analysts groups since they 
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do not have fixed spatial sampling units that are visited repeatedly in time to 
facilitate change assessments.   

The results of Chapter 2 stress the potentiality of GLC reference datasets for 
multiple uses and the need to provide public access to existing reference datasets 
which is likely to improve the usability of datasets outside their initially intended 
use.  

2. Which GLC map has the highest accuracy considering the perspectives of 
specific applications? 

This research question was answered in Chapter 3. Three GLC maps, i.e., 
Globcover, Land Cover-CCI and MODIS maps for the year 2005 were 
comparatively assessed. I re-interpreted and translated the existing reference 
dataset: Globcover-2005 into three different legends. This dataset was were used as 
reference for accuracy assessment. The results showed that the LC-CCI and 
MODIS maps had similar overall accuracy (70.8±1.4% and 71.4±1.3% 
respectively), while the Globcover map had the lowest accuracy (61.3±1.5%).  

Since the impact of confusion errors varies for different applications, the maps 
were compared from the perspectives of five applications, i.e., general circulation 
models (GCM), dynamic global vegetation models (DGVM), agriculture 
assessments, carbon estimation and biodiversity assessments. Weighted accuracy 
assessment was done by deriving weights based on similarity of LC classes from 
the perspective of the applications. The corresponding overall weighted accuracy 
of the GLC maps varied between 80-92%. An accuracy increase was observed 
because confusions between some classes tended to be inconsequential for the 
applications considered. The MODIS map had the highest accuracy for all 
applications except DGVM, for which the LC-CCI map had slightly higher 
accuracy. 

The impact of LC classes and confusions on the overall weighted accuracies were 
also assessed to identify priority classes and areas for improving GLC maps from 
the perspective of different applications.  

The findings of this chapter suggest that the accuracy of GLC maps should be 
assessed per applications when the aim is to determine the fitness of GLC maps for 
an application; there is no single-figure accuracy estimate expressing map fitness 
for all purposes.  

3. What are the local accuracies of the recent GLC maps? 
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Chapter 4 addressed this research question by assessing the spatial accuracy of the 
four recent GLC maps Globcover-2009, Land Cover-CCI-2010, MODIS-2010 and 
Globeland30. The assessment focused on Africa—a continent with complex 
heterogeneous landscapes that are known to cause inconsistencies among GLC 
maps. The study utilized GLC reference datasets that are publicly available from 
the GOFC-GOLD Reference Data portal, the Geo-Wiki platform and the 
International Steering Community for Global Mapping. 

It was found that the correspondence between GLC maps and the reference dataset 
varied spatially (Figure 4-7f). Regional differences in the quality of the GLC maps 
suggested the potential of creating an improved GLC map by integrating them. 

The Sahel and dry savannah regions in Africa were identified as the areas  with 
most uncertainty in LC class assignment.  

4. Which integration method performs best for improving the recent GLC maps? 

This research question was answered in Chapter 4. This research built on the  
answer to research question 3 that provided a motivation for integrating GLC maps 
based on their spatial variation in map correspondence. Geostatistical methods that 
are based on spatial variation in map accuracy and LC class probabilities were 
tested for improving the recent GLC maps. In addition, a conventional voting 
approach as commonly used for LC map integration (Iwao et al. 2011) was 
compared along with a geostatistical method that relies only on the reference data 
only. The performance of the methods was assessed by cross-validation.  

Except for the voting method, all methods produced an increased correspondence 
with reference LC. The geostatistical integration methods using both the reference 
data and the existing maps resulted in 67.5%–76% correspondence with the 
reference LC, which is at least 4.5%–13% higher than that of the input maps. 
Regression kriging produced the highest correspondence (76%). This method 
ensures to reduce the classification errors by modelling the LC class probabilities 
using multinomial logistic regression and adjusting the predicted probabilities by 
kriging the local regression residuals. An improved LC map and LC class 
probability maps of Africa were created using this method.  

The results of Chapter 4 highlight the benefits of using different reference datasets 
and geostatistical approaches for map integration.  

5. How can improved GLC maps be produced to address the thematic requirements 
of different users? 
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Chapter 5 addressed this research question. An improved GLC map and LC class 
probability maps were created using the regression kriging method that was 
introduced in Chapter 4.  

To answer the user aspect of research question 5, a concept of producing GLC 
maps with user-specific legends based on area fraction maps of LC classes was 
proposed. With LC class area fraction information, GLC map users can create a 
flexible legend that fits their requirements. Users can decide the number of LC 
classes as well as class definitions that involve fraction thresholds.  

To demonstrate this concept, I created GLC maps with user-specific legends from 
the perspectives of land system modelling and biodiversity assessments.  Based on 
LC class probability maps produced from the map integration, expected area 
fraction maps for LC classes at a coarser resolution were created. These were used 
to create additional mosaic classes that were considered useful for the user 
applications.  

As results of this research, an integrated GLC map was created and this map 
showed a 10% increase in the global correspondence and regionally up to 13% 
increase in correspondence with reference LC compared to the input GLC maps. 
Based on the integrated probability maps, two GLC maps with 5 arcminute 
resolution for land system models and biodiversity assessments were created. Each 
map had additional mosaic LC classes customized to the considered user 
applications. Area fraction maps of LC classes allowed creating user-specific 
mosaic classes and thus can address the thematic requirements of multiple users. 
This should be taken into account in future GLC mapping efforts 

6.2 Reflection and outlook 

6.2.1 Revisiting GLC mapping and validation 
This section revisits the developments in GLC mapping and validation including 
the assessments done in this thesis. The trends of GLC maps are discussed with 
respect to spatial, thematic and temporal properties along with their accuracy 
assessments and user considerations.  

Interest in mapping global scale LC makes GLC mapping an actively progressing 
field. In the last 5 years, at least 14 GLC maps have been produced and this 
accounts for more than half of the currently available GLC products. Figure 6.1 
summarizes the trends in GLC mapping including the assessments done in this 
thesis. Figure 6.1a shows the spatial resolution of GLC maps with respect to their 
published year. This figure shows a trend of GLC mapping progressing towards  
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Figure 6.1. Trends in GLC mapping 



Synthesis 
 

126 

higher resolution. In particular, with the release of the Landsat archive, high 
resolution (30m) GLC maps such as FROM-GLC and Globeland30 were 
developed (Chen et al. 2015; Gong et al. 2013). This is an important progress since 
high resolution satellite data can provide detail in heterogeneous landscapes (Mora 
et al. 2014). On the other hand, medium resolution times series data continue to 
have a significant role in GLC mapping due to their high temporal frequency and 
ability to characterize vegetation phenology (Friedl et al. 2002). The availability of 
multiple GLC maps led to the production of integrated maps such as presented in 
Chapter 5, which tend to have similar resolution as the maps used as input.  

In terms of thematic detail, maps before 2010 showed an increase in the number of 
classes (Figure 6.1b). However, since 2011 two diverging trends in thematic detail 
are observed. GLC maps that are based on medium resolution satellite data 
continue to have more detailed thematic information (20-22 classes). On the other 
hand, Landsat based maps have fewer classes due to the lack of information on 
intra-annual land dynamics. Integrated maps also have fewer classes due to legend 
harmonization of several GLC maps that were used as inputs. This is also the case 
for the integrated GLC map presented in Chapter 5, although in Chapter 5 user-
specific legends targeting specific user needs were also elaborated.  

Note that Figure 6.1 refers to the published year of GLC maps rather than their 
target years. In terms of target year, apart from the maps generated for the year 
around 1993, GLC maps mostly concern LC in  2000, 2005 and 2010 (Table 1.1).  

Figure 6.1c shows the number of reference sample sites used for assessing the 
accuracy of GLC maps. With increased availability of remote sensing data, more 
sample sites have been used for assessing map accuracies. In particular, Landsat 
based GLC maps were assessed using more than 30 000 sample sites. Other than 
data availability, crowd-based reference data collection efforts also enabled an 
increase in the number of sample sites used for accuracy assessment. This includes 
the Degree Confluence Project, which collects reference data based on photos and 
site descriptions gathered by volunteers who visited each confluence point of 
latitudes and longitudes (Iwao et al. 2006). Similarly, the Geo-Wiki platform 
collects global and regional scale reference data for LC through interpretation of 
satellite data or photo by volunteers (Fritz et al. 2009). This project collects 
reference data with a large number of sample sites that are being used to assess and 
calibrate multiple global scale maps (Fritz et al. 2015; Schepaschenko et al. 2015; 
See et al. 2015). Some reference datasets were made accessible to the public by 
international institutions such as the GOFC-GOLD and International Steering 
Committee for Global Mapping. Reusability of such available reference dataset 
was assessed in Chapter 2 and accessible data were also used for accuracy 
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comparison (Chapter 3) as well as calibration and validation of the integrated GLC 
map (Chapter 5).  

The accuracy of earlier GLC maps such as the map of the University of Maryland 
(Hansen et al. 2000) has not been assessed but over the last 15 years accuracy 
assessment has become commonplace. Except the 8-km resolution map of DeFries 
et al. (1998) who reported an overall accuracy range of 81.4 to 90.3%, maps 
produced before 2011 have a reported accuracy of around 70-75% (Figure 6.1d). 
Maps produced since 2011 have accuracies ranging from 61% to 87%.  Including 
the integrated GLC map presented in Chapter 5, at least 6 maps were reported to 
have an overall accuracy of 80% or more. This could suggest a weak trend of 
increasing reported accuracy (Figure 6.1d). The assessments done in Chapter 3 
showed higher accuracies when user’s perspective was accounted for. Note that the 
reported accuracies of the GLC maps are not directly comparable due to the 
differences in thematic detail and validation strategies such as reference sample 
size and accuracy calculation e.g. area weighted accuracy.  

As GLC maps are used for a variety of applications, requirements and perspectives 
of certain users have been considered in the map development procedure. The 
IGBP-DIScover and the LC-CCI maps were developed considering the 
requirements of modelling communities for climate, earth system and 
biogeochemical studies (CCI-LC 2014; Loveland et al. 2000). The MODIS 
collection 5 maps were developed with five different legends to address the 
thematic requirements of different users (Friedl et al. 2010). Map accuracy 
assessment as well as map integration have also been conducted by taking the 
perspective and need of specific users into account (DeFries and Los 1999; Jung et 
al. 2006; Tuanmu and Jetz 2014). The perspectives and requirements of certain 
users were addressed extensively in this thesis and this is discussed detail in the 
following section.   

6.2.2 Added value of this research 
This thesis aimed to address GLC map validation, comparison and integration from 
the perspective of GLC map users. In this scope: 

I. Chapter 2 assess the re-usability of current GLC reference datasets 
considering the requirements of specific user groups. 

II. Chapter 3 assess and compare the recent GLC maps from the perspective 
of several user applications. 

III. Spatial accuracy of several GLC maps are assessed and used for 
integration for an improved map in Chapter 4.  
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IV. An integrated GLC map is created and the concept of GLC maps with 
user-specific legend is demonstrated in Chapter 5.  

This PhD research assessed and demonstrated the importance of user requirements 
and perspectives in GLC mapping and validation. This was demonstrated in three 
different components related to reference datasets, accuracy assessment and map 
integration. Figure 6.2 provides an overview of user-oriented GLC mapping and 
validation addressed in this thesis.  
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Figure 6.2. An overview of user-oriented GLC mapping and validation of this thesis 

Firstly, given the need for reliable reference data, re-utilizing existing datasets for 
calibration and validation of GLC maps can be a useful approach. Several GLC 
reference dataset have become accessible for re-use by international communities 
and there are ongoing efforts to release new datasets (Fritz et al. 2011a; GOFC-
GOLD 2014). Owing to increased data availability, datasets with large numbers of 
sample sites have been produced recently (Figure 6.1). To make use of such 
datasets, it is important to know the dataset characteristics and suitability 
considering specific user requirements. Addressing this, Chapter 2 reviews 
systematically the metadata of several existing reference datasets and assessed their 
suitability in different applications. This assessment can be useful to re-use 
accessible datasets properly based on specific needs. Furthermore, this study is 
helpful for characterizing the specifications of new reference datasets that comply 
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with specific user requirements. This thesis also provides concrete examples on 
how the existing reference dataset can be used (Chapters 3-5). 

Secondly, this thesis address comparison of GLC maps from the perspective of 
specific user applications. A number of GLC maps have been produced till date 
and more are coming with the developments of new satellites e.g. VIIRS, Sentinel 
and Proba-V. The accuracies of these maps have been assessed using different 
reference datasets having varying properties on sampling and response design 
(Herold et al. 2008). As a result, the reported accuracies of GLC maps (such as in 
Figure 6.1) are not directly comparable and this makes it challenging for map users 
who are interested in using the best available map fitting certain criteria. This issue 
is addressed in Chapter 3 where a design-based statistical accuracy assessments of 
recent GLC maps is described which considers different user perspectives.  

Due to the lack of reference datasets that can be used to validate multiple maps, 
previous GLC map comparisons focused mostly on assessing agreement amongst 
several maps. Chapter 3 makes use of existing reference datasets with flexible 
thematic information to compare multiple maps. By providing comparative map 
accuracies, this assessment is useful for map users to know the best available map 
and to account user specific accuracies for their uncertainty assessments. An 
approach to objectively derive weights denoting the importance of 
misclassification errors is demonstrated and this can be used to consider other map 
user applications since the impact of misclassification errors varies depending on 
user applications (DeFries and Los 1999).  

Furthermore, this thesis contributes scientifically to assessments of local accuracy 
of GLC maps. Since classification errors are not distributed evenly across a map 
(Carneiro and Pereira 2012), assessing map local accuracy complements to the 
commonly practiced statistical global accuracy assessments. A model-based 
geostatistical approach that models local accuracy of several GLC maps is 
provided in Chapter 4. Previous research focused on spatial accuracy assessment of 
LC maps in a relatively small regions (Carneiro and Pereira 2012; Kyriakidis and 
Dungan 2001). In contrast, this study demonstrates that spatial accuracy of GLC 
maps can be assessed for a large region (e.g. continent). This puts demands on 
computational power and requires large numbers of sample sites. Both these issues 
are being solved with current technological developments and progress in reference 
data generation and this opens a possibility to asses local accuracy of current and 
upcoming GLC maps. 

Thirdly, this thesis also addresses requirements of improved map accuracy and 
flexible thematic information. Although there is a slight increase in reported 
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accuracies of GLC maps over recent years (Figure 6.1), these accuracies mostly do 
not meet the requirements of main map users (Kooistra et al. 2010). To improve 
accuracy, GLC maps have been integrated using a variety of methods (Jung et al. 
2006; See et al. 2015; Tuanmu and Jetz 2014). Chapter 4 of this thesis compares 
multiple integration methods. The chapter accounts for local variation of map 
accuracy in map integration (See et al. 2015) by using geostatistics. Using cross-
validation, regression kriging was shown to increase the correspondence of LC 
with reference data substantially. Based on this finding, an integrated GLC map is 
created in Chapter 5.  

Chapter 5 also demonstrates the possibility to create GLC maps with user-specific 
legends. Although users of GLC maps often have interests in differing thematic 
information, current GLC maps are produced with a fixed legend. To tackle this 
limitation, GLC maps with user-specific legends for specific applications are 
demonstrated based on expected area fraction maps of LC classes. The approach 
allows the users to characterize additional mosaic classes depending on their 
requirements.  

To conclude, this PhD research demonstrates the importance of requirements and 
perspectives of multiple users in GLC mapping and validation. Furthermore, 
benefits of using existing reference data in assessing, comparing and improving 
GLC maps are illustrated along with related advancing methods.  

6.2.3 Limitations of the applied research methods and possible 
solutions 

To better reflect the requirements and perspectives of different users for GLC 
mapping and validation, interaction with user groups is a key issue. This PhD 
research reflected the user’s requirements and perspectives by reviewing published 
scientific papers and previous reports on user requirement analyses. This is a 
passive form of analysing user needs and it could limit better understanding of 
user’s perspectives and needs. This can be improved by actively interacting with 
the users through a dedicated survey and facilitating user dialogs to engage users in 
mapping and improvement strategies. Furthermore, user engagement should not be 
a one way process only and map users should also proactively interact with the 
map producers to ensure the input GLC map for their analyses meet their 
requirements.   

Most global models that use GLC maps —in particular climate models— aggregate 
the maps to a  coarser resolution and use them in analyses e.g. by selecting the 
dominant LC class or area fraction information of LC classes within a grid 
(Nakaegawa 2011; Verburg et al. 2012). Assessments and comparisons of GLC 
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maps for different user perspectives in Chapter 3 and accuracy analyses of the 
integrated map in Chapter 5 were limited to the original resolution, not at the 
coarser resolution. Previous research has shown that the accuracy of GLC maps 
increased at coarser resolution due to spatial aggregation effect and area fraction at 
coarse resolution is strongly dependent on the original higher resolution data due to 
area ratio retention effect (Nakaegawa 2011; Yu et al. 2014).  Accuracy assessment 
of GLC maps at coarser resolution is important for uncertainty propagation 
assessments of user applications. This can be addressed by assessing spatially 
aggregated GLC maps using an area-based reference dataset. With such dataset, the 
sample unit area can be reduced depending on the target map. Potential reference 
datasets for this can be the datasets by Boston University and LC-CCI projects of 
the ESA, which are under-development (Achard et al. 2011; Olofsson et al. 2012).  

Existing GLC reference datasets were integrated and used for GLC map 
assessment and improvement using geostatistical approach (Chapter 4 and 5). This 
thesis does not deal with integration of GLC reference datasets for design-based 
accuracy assessments. Design-based statistical inference requires probability 
sampling. Reference datasets with probability sampling design could be integrated 
or re-used using methods introduced in Stehman et al. (2012) and (2014). These 
include methods to augment stratified random sampling (e.g. increase number of 
sample sites) and to re-use a stratified random sampling to maps with different 
strata. 

Furthermore, other differences in reference datasets in terms of e.g. thematic 
legend and spatial support can be reduced by joint efforts of GLC mapping 
community and following internationally accepted map validation strategies 
(Herold et al. 2006; Mora et al. 2014). 

6.2.4 Outlook 
Current developments in GLC mapping and monitoring is expected to progress 
further towards more innovative and operational products in the near future. This is 
inevitable due to (1) the continued importance of GLC monitoring and (2) 
developments in technological innovations. Recently, the Conference of the parties 
(COP 21) of the UNFCCC came to an agreement to stabilize global temperature 
increase and to reduce global emissions (UNFCCC 2015). Since changes in LC are 
one of the main drivers contributing to global greenhouse-gas emissions and 
climate, the need to monitor and map GLC remains essential. Furthermore, 
innovative developments in satellite missions are contributing to improvements in 
remotely sensed data in terms of spatial, temporal and spectral domain. Recently 
launched ESA’s Sentinel-1 and-2 missions can provide higher resolution (10-20m) 
optical and radar data with revisit times of a few days (ESA 2016). Sentinel-3 will 
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be launched to provide high temporal resolution optical and radar data with around 
300m spatial resolution (ESA 2016). Ensuring data continuity between SPOT-VGT 
satellites and Sentinel 3, the Proba-V mission was also recently launched to 
provide daily observations of land surface and vegetation at 100m to 1km 
resolution (VITO 2013). Monitoring  large regions using higher resolution (<10m) 
data is also foreseen with satellite missions such as SPOT-5 (Astrium 2012).  

With the current data-rich era of earth observation, mapping LC at global scale 
based on a single sensor data is feasible to a certain extent. However, to improve 
GLC mapping in terms of  spatial and temporal resolutions, fusing multi-sensor 
data is beneficial. For instance, high spatial and medium temporal resolution data 
(e.g. Sentinel-1 and-2) could be integrated with medium spatial and high temporal 
resolution data (e.g Sentinel-3 and Proba-V) to provide innovative high spatial and 
temporal resolution LC observations. While such innovate approach is useful to 
define the progresses of next generation GLC mapping, it is challenging to process 
global scale large volume of earth observation data and it calls for innovative 
methodical and technical solutions. Nevertheless, such efforts should be built upon 
existing two-decade experience and knowledge on GLC mapping. Focusing on 
uncertain areas and problematic classes of current GLC maps is an important step 
towards improvement in GLC mapping. In this respect, spatial and statistical 
accuracy assessments provided in Chapter 3 and 4 can be useful along with the 
integrated probability maps of LC classes presented in Chapter 5.  

Assessments of GLC change are also progressing towards monitoring at finer scale 
at which most human impact occurs (GOFC-GOLD 2011). Change in GLC can be 
assessed by post-classification comparison of Landsat based Globeland30 2000 and 
2010 maps (Jun et al. 2014). Several products are also available for global forest 
change monitoring based on Landsat data (Hansen et al. 2013; Kim et al. 2014). 
GLC change monitoring can also benefit from integration of multi-sensor data as 
well as multiple LC change maps at regional scale. Integration of multi-sensor data 
to obtain high spatial and temporal resolution data can allow monitoring fine scale 
LC change with stable historical observation. Next generation products on global 
land monitoring are encouraged to include near real time monitoring of LC changes 
and research and developments of such products are planned by the ESA’s 
Copernicus Land Monitoring Services (Copernicus-Programme 2015). 
Developments in forest change monitoring using time-series methods (Assunção et 
al. 2014; Verbesselt et al. 2010) can be useful for this. Furthermore, spatially 
combining national and regional scale LC change datasets to create LC change 
maps at global scale is also possible as demonstrated by Fuchs et al. (2015) who 
created decadal land cover/use change dataset for Europe.  
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Progresses in GLC map validation and reference data collection are emerging 
towards more international cooperation as well as to capitalize public knowledge. 
Many institutions are collaborating towards advancing methods and tools for 
operational map validation under the GEO framework (Chen et al. 2013). The role 
of international initiatives such as the CEOS Cal/Val working group and the 
GOFC-GOLD LC project office remains vital in supporting recommended 
practices for LC map validation, reference data sharing and jointly developing 
international knowledge on GLC map validation (Mora et al. 2014). In cooperation 
of the GOFC-GOLD, for example, Boston University is producing a reference 
dataset that can be used to assess multiple maps at different scales (Olofsson et al. 
2012). In addition, the GOFC-GOLD LC project office continue to share reference 
datasets from different institutions. On the other hand, capitalizing the knowledge 
of the public in reference data collection for LC is progressing actively after the 
successful implementation of the Geo-Wiki platform (Fritz et al. 2009). This is an 
efficient way of collecting reference information for large number of locations 
although its quality can be questioned. After validation by experts, these 
crowdsourced data have been utilized for multiple calibration and validation 
purposes for improved GLC maps, forest masks and cropland maps (Fritz et al. 
2015; Schepaschenko et al. 2015; See et al. 2015). While reference datasets with 
probability sampling are key for statistically rigorous accuracy assessments of GLC 
maps, crowdsourced data has value in calibration and integration of global scale 
LC products as proven in previous studies (Fritz et al. 2015; Schepaschenko et al. 
2015; See et al. 2015).  

Claims about advancements in GLC mapping and validation can only be made 
when the maps and their accuracies meet the requirements of the main map users. 
The ESA’s LC-CCI project has twice organized user requirement assessments by 
means of surveys and active communications with users (LC-CCI 2014). 
Furthermore, the LC-CCI project continues to facilitate user interaction through 
workshops and conferences to reflect on their needs and provide feedback. These 
experiences along with the outcomes of this thesis stress the need to account for 
user requirements in upcoming GLC assessments.  

  



Synthesis 
 

134 

 

 



 

135 

References 



References 
 

136 

Achard, F., Defourny, P., Bontemps, S., Herold, M., & Mayaux, P. (2011). Product 
validation plan: Land Cover CCI. Louvain-la-Neuve, Belgium: Université catholique de 
Louvain (UCL)-Geomatics. 

Achard, F., Eva, H.D., Stibig, H.J., Mayaux, P., Gallego, J., Richards, T., & Malingreau, 
J.P. (2002). Determination of deforestation rates of the world's humid tropical forests. 
Science, 297, 999-1002 

Aide, T.M., Clark, M.L., Grau, H.R., López-Carr, D., Levy, M.A., Redo, D., Bonilla-
Moheno, M., Riner, G., Andrade-Núñez, M.J., & Muñiz, M. (2012). Deforestation and 
Reforestation of Latin America and the Caribbean (2001–2010). Biotropica 

Amazon, E. (2010, 2016). Amazon elastic compute cloud (Amazon EC2).   Retrieved 15 
Oct, 2015, from https://aws.amazon.com/ec2/ 

Arino, O., Leroy, M., Ranera, F., Gross, D., Bicheron, P., Nino, F., Brockman, C., 
Defourny, P., Vancutsem, C., & Achard, F. (2007). GLOBCOVER-A Global Land 
Cover Service with MERIS. In, Envisat Symposium 2007 (pp. 23-27). Montreux, 
Switzerland 

Asselen, S., & Verburg, P.H. (2012). A Land System representation for global assessments 
and land‐use modeling. Global Change Biology, 18, 3125-3148 

Assunção, J., Gandour, C., & Rocha, R. (2014). DETERring deforestation in the Brazilian 
Amazon: environmental monitoring and law enforcement 

Avitabile, V., Herold, M., Heuvelink, G., Lewis, S., Phillips, O., Asner, G., Armston, J., 
Asthon, P., Banin, L., & Bayol, N. (2015). An integrated pan‐tropical biomass map 
using multiple reference datasets. Global Change Biology 

Bartholomé, E., & Belward, A. (2005). GLC2000: a new approach to global land cover 
mapping from Earth observation data. International Journal of Remote Sensing, 26, 
1959-1977 

Becker-Reshef, I., Justice, C., Sullivan, M., Vermote, E., Tucker, C., Anyamba, A., Small, 
J., Pak, E., Masuoka, E., & Schmaltz, J. (2010). Monitoring global croplands with 
coarse resolution earth observations: The Global Agriculture Monitoring (GLAM) 
project. Remote Sensing, 2, 1589-1609 

Benítez, P., McCallum, I., Obersteiner, M., & Yamagata, Y. (2004). Global supply for 
carbon sequestration: Identifying least-cost afforestation sites under country risk 
consideration. International Institute for Applied System Analysis 

Béquignon, J., Caughey, J., Cramer, W., Fellous, J.L., Heip, C., Justice, C., Key, J.R., 
Koike, T., Lacaux, J.P., Lafaye, M., Lafeuille, J., Mathieu, P.P., Ranchin, T., Scholes, 

https://aws.amazon.com/ec2/


 References 
 

137 

B., & Schroedter-Homscheidt, M. (2010). GEO AND SCIENCE: A report prepared by 
the European Space Agency in the framework of the GEO Science and Technology 
Committee in support of the GEO Task ST-09-01 “Catalyzing Research and 
Development (R&D) Resources for GEOSS”: European Space Agency. 

Bicheron, P., Defourny, P., Brockmann, C., Schouten, L., Vancutsem, C., Huc, M., 
Bontemps, S., Leroy, M., Achard, F., Herold, M., Ranera, F., & Arino, O. (2008). 
GLOBCOVER: Products Description and Validation Report. Toulouse, France: 
MEDIAS-France. 

Bierkens, M., & Burrough, P. (1993). The indicator approach to categorical soil data. 
Journal of Soil Science, 44, 361-368 

Bontemps, S., Defourny, P., Van Bogaert, E., Kalogirou, V., & Arino, O. (2011a). 
GLOBCOVER 2009: Products Description and Validation Report: UCLouvain and 
ESA. 

Bontemps, S., Herold, M., Kooistra, L., van Groenestijn, A., Hartley, A., Arino, O., 
Moreau, I., & Defourny, P. (2011b). Revisiting land cover observations to address the 
needs of the climate modelling community. Biogeosciences Discussions, 8, 7713-7740 

Brus, D., & De Gruijter, J. (1997). Random sampling or geostatistical modelling? Choosing 
between design-based and model-based sampling strategies for soil (with discussion)* 
1. Geoderma, 80, 1-44 

Brus, D.J. (2011). Statistical sampling strategies for survey of soil contamination. Dealing 
with Contaminated Sites, 165-206 

Cai, X., Zhang, X., & Wang, D. (2011). Land availability for biofuel production. 
Environmental Science and Technology-Columbus, 45, 334 

Card, D.H. (1982). Using known map category marginal frequencies to improve estimates 
of thematic map accuracy. Photogrammetric Engineering and Remote Sensing, 48, 431-
439 

Carneiro, J.D., & Pereira, M.J. (2012). Geostatistical stochastic simulation for spatial 
accuracy assessment of land cover maps derived from remotely sensed data 

Cassman, K.G., Wood, S., Choo, P., Cooper, H., Devendra, C., Dixon, J., Gaskell, J., Kahn, 
S., Lal, R., & Lipper, L. (2005). Cultivated systems. Ecosystems and human well-being: 
current state and trends, 1, 745-794 

CCI-LC. (2014). CCI-LC Product User Guide. Belgium: UCL-Geomatics. 



References 
 

138 

Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., & Lu, 
M. (2015). Global land cover mapping at 30m resolution: A POK-based operational 
approach. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 7-27 

Chen, L., Trinder, J., & Ban, Y. (2013). Report  of  ISPRS/GEO  Workshop  on  High  
Resolution  Global  Land  Cover  (GLC)  

Mapping, held in Beijing China on 27-28 April 2013. Beijing. 

Clark, M., & Aide, T.M. (2011a). An analysis of decadal land change in Latin America and 
the Caribbean mapped from 250-m MODIS data. In, ISPRS. Melbourne, Australia 

Clark, M.L., & Aide, T.M. (2011b). Virtual Interpretation of Earth Web-Interface Tool 
(VIEW-IT) for Collecting Land-Use/Land-Cover Reference Data. Remote Sensing, 3, 
601-620 

Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled 
disagreement or partial credit. Psychological bulletin, 70, 213 

Comber, A., See, L., Fritz, S., Van der Velde, M., Perger, C., & Foody, G. (2013). Using 
control data to determine the reliability of volunteered geographic information about 
land cover. International Journal of Applied Earth Observation and Geoinformation, 
23, 37-48 

Congalton, R.G. (1988). Using spatial autocorrelation analysis to explore the errors in maps 
generated from remotely sensed data. Photogrammetric Engineering and Remote 
Sensing, 54, 587-592 

Congalton, R.G. (1991). A review of assessing the accuracy of classifications of remotely 
sensed data. Remote Sensing of Environment, 37, 35-46 

Congalton, R.G., & Green, K. (2009). Assessing the accuracy of remotely sensed data: 
principles and practices. CRC 

Copernicus-Programme. (2015, 14 Dec 2015). Copernicus-The European Earth 
Observation Programme.   Retrieved Jan 16, 2016 

Costa, M.H., Botta, A., & Cardille, J.A. (2003). Effects of large-scale changes in land cover 
on the discharge of the Tocantins River, Southeastern Amazonia. Journal of Hydrology, 
283, 206-217 

de Bruin, S. (2000a). Predicting the areal extent of land-cover types using classified 
imagery and geostatistics. Remote Sensing of Environment, 74, 387-396 



 References 
 

139 

De Bruin, S. (2000b). Querying probabilistic land cover data using fuzzy set theory. 
International Journal of Geographical Information Science, 14, 359-372 

De Fries, R., Hansen, M., Townshend, J., & Sohlberg, R. (1998). Global land cover 
classifications at 8 km spatial resolution: the use of training data derived from Landsat 
imagery in decision tree classifiers. International Journal of Remote Sensing, 19, 3141-
3168 

Defourny, P., Bontemps, S., Martin, B., Brockman, C., Fomferra, N., Grit, K., & Krüger, O. 
(2011a). Landcover CCI: Product Specification Document: LandCover-CCI 
partnership. 

Defourny, P., Bontemps, S., Obsomer, V., Van Bogaert, E., & Arino, O. (2010). Accuracy 
assessment of Global Land Cover Maps-lessons learnt from Globcover and Globcorine 
experiences. In  

Defourny, P., Bontemps, S., Schouten, L., Bartalev, S., Cacetta, P., de Wit, A., di Bella, C., 
Gérard, B., Giri, C., Gond, V., Hazeu, G., Heinimann, A., Herold, M., Jaffrain, G., 
Latifovic, R., Lin, H., Mayaux, P., Mücher, S., Nonguierma, A., Stibig, H., Y. 
Shimabakuro, Van Bogaert, E., Vancutsem, C., Bicheron, P., Leroy, M., & Arino, O. 
(2011b). GLOBCOVER 2005 and GLOBCOVER 2009 validation : learnt lessons In, 
GOFC-GOLD Global Land Cover & Change Validation Workshop. Laxenburg, Austria 

Defourny, P., Mayaux, P., Herold, M., & Bontemps, S. (2012). Global Land-Cover Map 
Validation Experiences. Remote Sensing of Land Use and Land Cover (pp. 207-224): 
CRC Press 

Defourny, P., Vancutsem, C., Bicheron, P., Brockmann, C., Nino, F., Schouten, L., & 
Leroy, M. (2006). GLOBCOVER: a 300 m global land cover product for 2005 using 
Envisat MERIS time series. In, ISPRS Commission VII Mid-Term Symposium: Remote 
Sensing: from Pixels to Precesses (pp. 8–11). Enschede, Netherldans: Citeseer 

DeFries, R., Hansen, M., Townshend, J., & Sohlberg, R. (1998). Global land cover 
classifications at 8 km spatial resolution: the use of training data derived from Landsat 
imagery in decision tree classifiers. International Journal of Remote Sensing, 19, 3141-
3168 

DeFries, R., & Los, S. (1999). Implications of land-cover misclassification for parameter 
estimates in global land-surface models: an example from the simple biosphere model 
(SiB2). Photogrammetric Engineering and Remote Sensing, 65, 1083-1088 

DeFries, R., & Townshend, J. (1994). NDVI-derived land cover classifications at a global 
scale. International Journal of Remote Sensing, 15, 3567-3586 



References 
 

140 

Di Gregorio, A. (2005). Land cover classification system: classification concepts and user 
manual: LCCS. FAO 

Drobne, S., & Lisec, A. (2009). Multi-attribute decision analysis in GIS: weighted linear 
combination and ordered weighted averaging. Informatica, 33, 459-474 

ESA. (2016). Overview of Sentinel Satellites.   Retrieved 22 Jan, 2016, from 
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview4 

Eva, H., Carboni, S., Achard, F., Stach, N., Durieux, L., Faure, J.-F., & Mollicone, D. 
(2010). Monitoring forest areas from continental to territorial levels using a sample of 
medium spatial resolution satellite imagery. ISPRS Journal of Photogrammetry and 
Remote Sensing, 65, 191-197 

FAO. (2001). FRA 2000: Global Forest Cover Mapping. Rome: Forest Resources 
Assessment Programme, FAO. 

FAO. (2007). Global Forest Resources Assessment 2010. Rome: Forestry Department, 
FAO. 

FAO. (2008). Terrestrial Essential Climate Variables: for climate change assessment, 
mitigation and adaptation. Rome: FAO. 

FAO, & JRC. (2012). Global forest land-use change 1990–2005. Rome: FAO and JRC. 

Feddema, J.J., Oleson, K.W., Bonan, G.B., Mearns, L.O., Buja, L.E., Meehl, G.A., & 
Washington, W.M. (2005). The importance of land-cover change in simulating future 
climates. Science, 310, 1674 

Feldpausch, T.R., Lloyd, J., Lewis, S.L., Brienen, R.J.W., Gloor, M., Monteagudo 
Mendoza, A., Lopez-Gonzalez, G., Banin, L., Abu Salim, K., Affum-Baffoe, K., 
Alexiades, M., Almeida, S., Amaral, I., Andrade, A., Aragão, L.E.O.C., Araujo 
Murakami, A., Arets, E.J.M.M., Arroyo, L., Aymard C, G.A., Baker, T.R., Bánki, O.S., 
Berry, N.J., Cardozo, N., Chave, J., Comiskey, J.A., Alvarez, E., de Oliveira, A., Di 
Fiore, A., Djagbletey, G., Domingues, T.F., Erwin, T.L., Fearnside, P.M., França, M.B., 
Freitas, M.A., Higuchi, N., C, E.H., Iida, Y., Jiménez, E., Kassim, A.R., Killeen, T.J., 
Laurance, W.F., Lovett, J.C., Malhi, Y., Marimon, B.S., Marimon-Junior, B.H., Lenza, 
E., Marshall, A.R., Mendoza, C., Metcalfe, D.J., Mitchard, E.T.A., Neill, D.A., Nelson, 
B.W., Nilus, R., Nogueira, E.M., Parada, A., Peh, K.S.H., Pena Cruz, A., Peñuela, 
M.C., Pitman, N.C.A., Prieto, A., Quesada, C.A., Ramírez, F., Ramírez-Angulo, H., 
Reitsma, J.M., Rudas, A., Saiz, G., Salomão, R.P., Schwarz, M., Silva, N., Silva-Espejo, 
J.E., Silveira, M., Sonké, B., Stropp, J., Taedoumg, H.E., Tan, S., ter Steege, H., 
Terborgh, J., Torello-Raventos, M., van der Heijden, G.M.F., Vásquez, R., Vilanova, 
E., Vos, V.A., White, L., Willcock, S., Woell, H., & Phillips, O.L. (2012). Tree height 
integrated into pantropical forest biomass estimates. Biogeosciences, 9, 3381-3403 

http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview4


 References 
 

141 

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., 
Coe, M.T., Daily, G.C., & Gibbs, H.K. (2005). Global consequences of land use. 
Science, 309, 570-574 

Foody, G.M. (2002). Status of land cover classification accuracy assessment. Remote 
Sensing of Environment, 80, 185-201 

Foody, G.M. (2008). Harshness in image classification accuracy assessment. International 
Journal of Remote Sensing, 29, 3137-3158 

Foody, G.M. (2009). Sample size determination for image classification accuracy 
assessment and comparison. International Journal of Remote Sensing, 30, 5273-5291 

Foody, G.M. (2010). Assessing the accuracy of land cover change with imperfect ground 
reference data. Remote Sensing of Environment, 114, 2271-2285 

Frey, K.E., & Smith, L.C. (2007). How well do we know northern land cover? Comparison 
of four global vegetation and wetland products with a new ground-truth database for 
West Siberia. Global Biogeochemical Cycles, 21, GB1016 

Friedl, M.A., McIver, D.K., Hodges, J.C.F., Zhang, X.Y., Muchoney, D., Strahler, A.H., 
Woodcock, C.E., Gopal, S., Schneider, A., & Cooper, A. (2002). Global land cover 
mapping from MODIS: algorithms and early results. Remote Sensing of Environment, 
83, 287-302 

Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., & 
Huang, X.M. (2010). MODIS Collection 5 global land cover: Algorithm refinements 
and characterization of new datasets. Remote Sensing of Environment, 114, 168-182 

Fritz, S., McCallum, I., Schill, C., Perger, C., Grillmayer, R., Achard, F., Kraxner, F., & 
Obersteiner, M. (2009). Geo-wiki. org: The use of crowdsourcing to improve global 
land cover. Remote Sensing, 1, 345-354 

Fritz, S., McCallum, I., Schill, C., Perger, C., See, L., Schepaschenko, D., van der Velde, 
M., Kraxner, F., & Obersteiner, M. (2011a). Geo-Wiki: An online platform for 
improving global land cover. Environmental Modelling & Software, 31, 110-123 

Fritz, S., & See, L. (2005). Comparison of land cover maps using fuzzy agreement. 
International Journal of Geographical Information Science, 19, 787-807 

Fritz, S., See, L., McCallum, I., Schill, C., Obersteiner, M., van der Velde, M., Boettcher, 
H., Havlík, P., & Achard, F. (2011b). Highlighting continued uncertainty in global land 
cover maps for the user community. Environmental Research Letters, 6, 044005 



References 
 

142 

Fritz, S., See, L., McCallum, I., You, L., Bun, A., Moltchanova, E., Duerauer, M., Albrecht, 
F., Schill, C., Perger, C., Havlik, P., Mosnier, A., Thornton, P., Wood-Sichra, U., 
Herrero, M., Becker-Reshef, I., Justice, C., Hansen, M., Gong, P., Abdel Aziz, S., 
Cipriani, A., Cumani, R., Cecchi, G., Conchedda, G., Ferreira, S., Gomez, A., Haffani, 
M., Kayitakire, F., Malanding, J., Mueller, R., Newby, T., Nonguierma, A., Olusegun, 
A., Ortner, S., Rajak, D.R., Rocha, J., Schepaschenko, D., Schepaschenko, M., 
Terekhov, A., Tiangwa, A., Vancutsem, C., Vintrou, E., Wenbin, W., van der Velde, 
M., Dunwoody, A., Kraxner, F., & Obersteiner, M. (2015). Mapping global cropland 
and field size. Global Change Biology, 21, 1980-1992 

Fritz, S., See, L., You, L., Justice, C., Becker-Reshef, I., Bydekerke, L., Cumani, R., 
Defourny, P., Foley, J.A., Gilliams, S., Gong, P., Hansen, M., Hertel, T., Herold, M., 
Herrero, M., Kayitakire, F., Latham, J., Leo, O., McCallum, I., Obersteine, M., 
Ramankutty, N., Rocha, J., Tang, H., Thornton, P., Vancutsem, C., van der Velde, M., 
Wood, S., & Woodcock, C. (2013). The Need for Improved Maps of Global Cropland. 
Eos, Transactions American Geophysical Union, 94, 2 

Fritz, S., You, L., Bun, A., See, L., McCallum, I., Schill, C., Perger, C., Liu, J., Hansen, M., 
& Obersteiner, M. (2011c). Cropland for sub-Saharan Africa: A synergistic approach 
using five land cover data sets. Geophysical research letters, 38, L04404 

Fuchs, R., Herold, M., Verburg, P.H., Clevers, J.G., & Eberle, J. (2015). Gross changes in 
reconstructions of historic land cover/use for Europe between 1900 and 2010. Global 
Change Biology, 21, 299-313 

Gallego, F.J., & Stibig, H.J. (2012). Area estimation from a sample of satellite images: The 
impact of stratification on the clustering efficiency. International Journal of Applied 
Earth Observation and Geoinformation, 22, 139-149 

Gardin, S., Van Laere, S., Vancoillie, F., Anseel, F., Duyck, W., De Wulf, R., & Verbeke, 
L. (2011). Remote sensing meets psychology: a concept for operator performance 
assessment. Remote Sensing Letters, 2, 251 

Ge, Y., Avitabile, V., Heuvelink, G.B., Wang, J., & Herold, M. (2014). Fusion of pan-
tropical biomass maps using weighted averaging and regional calibration data. 
International Journal of Applied Earth Observation and Geoinformation, 31, 13-24 

GEO. (2012). Group on Earth Observations.   Retrieved 24 May, 2012, from 
http://www.earthobservations.org/about_geo.shtml 

Giri, C., Zhu, Z., & Reed, B. (2005). A comparative analysis of the Global Land Cover 
2000 and MODIS land cover data sets. Remote Sensing of Environment, 94, 123-132 

GOFC-GOLD. (2011). A sourcebook of methods and procedures for monitoring and 
reporting anthropogenic greenhouse gas emissions and removals caused by 

http://www.earthobservations.org/about_geo.shtml


 References 
 

143 

deforestation, gains and losses of carbon stocks in forests remaining forests, and 
forestation. Alberta,Canada: GOFC-GOLD Project Office, Natural Resources Canada. 

GOFC-GOLD. (2014). GOFC-GOLD Reference Data Portal.   Retrieved 22 Oct, 2014, 
from http://www.gofcgold.wur.nl/sites/gofcgold_refdataportal.php 

Göhmann, H., Herold, M., Jung, M., Schulz, M., & Schmullius, C. (2009). Prototyping a 
probability-based Best Map Approach for global land cover datasets at 1km resolution 
using MODIS, GLC2000, UMD and IGBP. In, 33rd ISRSE. Stresa, Italy 

Goldewijk, K.K., Van Drecht, G., & Bouwman, A. (2007). Mapping contemporary global 
cropland and grassland distributions on a 5× 5 minute resolution. Journal of Land Use 
Science, 2, 167-190 

Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H., Liu, 
S., Li, C., Li, X., Fu, W., Liu, C., Xu, Y., Wang, X., Cheng, Q., Hu, L., Yao, W., Zhang, 
H., Zhu, P., Zhao, Z., Zhang, H., Zheng, Y., Ji, L., Zhang, Y., Chen, H., Yan, A., Guo, 
J., Yu, L., Wang, L., Liu, X., Shi, T., Zhu, M., Chen, Y., Yang, G., Tang, P., Xu, B., 
Giri, C., Clinton, N., Zhu, Z., Chen, J., & Chen, J. (2013). Finer resolution observation 
and monitoring of global land cover: first mapping results with Landsat TM and ETM+ 
data. International Journal of Remote Sensing, 34, 2607-2654 

Goovaerts, P. (2010). Combining Areal and Point Data in Geostatistical Interpolation: 
Applications to Soil Science and Medical Geography. Mathematical geosciences, 42, 
535-554 

Gower, J.C. (1971). A general coefficient of similarity and some of its properties. 
Biometrics, 857-871 

Hagemann, S. (2002). An improved land surface parameter dataset for global and regional 
climate models. Max-Planck-Institut für Meteorologie 

Hansen, M., DeFries, R., Townshend, J., Carroll, M., Dimiceli, C., & Sohlberg, R. (2003). 
Global percent tree cover at a spatial resolution of 500 meters: First results of the 
MODIS vegetation continuous fields algorithm. Earth Interactions, 7, 1-15 

Hansen, M., DeFries, R., Townshend, J., & Sohlberg, R. (2000). Global land cover 
classification at 1 km spatial resolution using a classification tree approach. 
International Journal of Remote Sensing, 21, 1331-1364 

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., 
Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., 
Chini, L., Justice, C.O., & Townshend, J.R.G. (2013). High-Resolution Global Maps of 
21st-Century Forest Cover Change. Science, 342, 850-853 

http://www.gofcgold.wur.nl/sites/gofcgold_refdataportal.php


References 
 

144 

Hansen, M.C., & Reed, B. (2000). A comparison of the IGBP DISCover and University of 
Maryland 1km global land cover products. International Journal of Remote Sensing, 21, 
1365-1373 

Hansen, M.C., Stehman, S.V., & Potapov, P.V. (2010). Quantification of global gross forest 
cover loss. Proceedings of the National Academy of Sciences, 107, 8650-8655 

Harris, N.L., Brown, S., Hagen, S.C., Saatchi, S.S., Petrova, S., Salas, W., Hansen, M.C., 
Potapov, P.V., & Lotsch, A. (2012). Baseline Map of Carbon Emissions from 
Deforestation in Tropical Regions. Science, 336, 1573-1576 

Hengl, T., Heuvelink, G.B.M., & Stein, A. (2004). A generic framework for spatial 
prediction of soil variables based on regression-kriging. Geoderma, 120, 75-93 

Herold, M., Hubald, R., & Di Gregorio, A. (2009a). Translating and evaluating land cover 
legends using the UN Land Cover Classification System (LCCS). Jena, Germany: 
GOFC-GOLD. 

Herold, M., Mayaux, P., Woodcock, C.E., Baccini, A., & Schmullius, C. (2008). Some 
challenges in global land cover mapping: An assessment of agreement and accuracy in 
existing 1 km datasets. Remote Sensing of Environment, 112, 2538-2556 

Herold, M., van Groenestijn, A., Kooistra, L., Kalogirou, V., & Arino, O. (2011). User 
Requirements documents: Land Cover CCI. Louvain-la-Neuve, Belgium: Université 
catholique de Louvain (UCL)-Geomatics. 

Herold, M., Woodcock, C.E., di Gregorio, A., Mayaux, P., Belward, A.S., Latham, J., & 
Schmullius, C.C. (2006). A joint initiative for harmonization and validation of land 
cover datasets. Geoscience and Remote Sensing, IEEE Transactions on, 44, 1719-1727 

Herold, M., Woodcock, C.E., Stehman, S.V., Nightingale, J., Friedl, M.A., & Schmullius, 
C. (2009b). The GOFC-GOLD/CEOS land cover harmonization and validation 
initiative: technical design and implementation. In, 33rd ISRSE. Stresa, Italy 

Hibbard, K., Janetos, A., van Vuuren, D.P., Pongratz, J., Rose, S.K., Betts, R., Herold, M., 
& Feddema, J.J. (2010). Research priorities in land use and land‐cover change for the 
Earth system and integrated assessment modelling. International Journal of 
Climatology, 30, 2118-2128 

Huttich, C., Herold, M., Wegmann, M., Cord, A., Strohbach, B., Schmullius, C., & Dech, 
S. (2011). Assessing effects of temporal compositing and varying observation periods 
for large-area land-cover mapping in semi-arid ecosystems: Implications for global 
monitoring. Remote Sensing of Environment, 115, 2445-2459 



 References 
 

145 

Iwao, K., Nasahara, K.N., Kinoshita, T., Yamagata, Y., Patton, D., & Tsuchida, S. (2011). 
Creation of New Global Land Cover Map with Map Integration. Journal of Geographic 
Information System, 3, 160-165 

Iwao, K., Nishida, K., Kinoshita, T., & Yamagata, Y. (2006). Validating land cover maps 
with Degree Confluence Project information. Geophysical research letters, 33, L23404 

Janssen, L.L.F., & Van der Wel, F.J.M. (1994). Accuracy assessment of satellite derived 
land-cover data: a review. Photogrammetric Engineering and Remote Sensing, 60, 419-
426 

JECAM. (2012). Joint Experiment of Crop Assessment and Monitoring Retrieved 22, 
November, 2012, from http://www.jecam.org/ 

Jenkins, C.N., Pimm, S.L., & Joppa, L.N. (2013). Global patterns of terrestrial vertebrate 
diversity and conservation. Proceedings of the National Academy of Sciences, 110, 
E2602-E2610 

Joseph, S., Blackburn, G.A., Gharai, B., Sudhakar, S., Thomas, A., & Murthy, M.S.R. 
(2009). Monitoring conservation effectiveness in a global biodiversity hotspot: the 
contribution of land cover change assessment. Environmental monitoring and 
assessment, 158, 169-179 

Jun, C., Ban, Y., & Li, S. (2014). China: Open access to Earth land-cover map, 514, 434-
434 

Jung, M., Henkel, K., Herold, M., & Churkina, G. (2006). Exploiting synergies of global 
land cover products for carbon cycle modeling. Remote Sensing of Environment, 101, 
534-553 

Kaptué Tchuenté, A.T., Roujean, J.L., & De Jong, S.M. (2011). Comparison and relative 
quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land 
cover data sets at the African continental scale. International Journal of Applied Earth 
Observation and Geoinformation, 13, 207-219 

Kempen, B., Brus, D.J., Heuvelink, G.B., & Stoorvogel, J.J. (2009). Updating the 1: 50,000 
Dutch soil map using legacy soil data: a multinomial logistic regression approach. 
Geoderma, 151, 311-326 

Kim, D.-H., Sexton, J.O., Noojipady, P., Huang, C., Anand, A., Channan, S., Feng, M., & 
Townshend, J.R. (2014). Global, Landsat-based forest-cover change from 1990 to 2000. 
Remote Sensing of Environment, 155, 178-193 

http://www.jecam.org/


References 
 

146 

Kinoshita, T., Iwao, K., & Yamagata, Y. (2014). Creation of a global land cover and a 
probability map through a new map integration method. International Journal of 
Applied Earth Observation and Geoinformation, 28, 70-77 

Klein Goldewijk, K., Beusen, A., & Janssen, P. (2010). Long-term dynamic modeling of 
global population and built-up area in a spatially explicit way: HYDE 3.1. The 
Holocene 

Knight, J. (2002). Accuracy Assessment of Thematic Maps Using Inter-Class Spectral 
Distances. In, Forestry (p. 127). Raleigh, The USA: North Carolina State University  

Kooistra, L., Groenestijn, A., Kalogirou, V., Arino, O., & Herold, M. (2010). User 
requirements from the climate modelling community for next generation global 
products from land cover CCI project. In, ESA-iLEAPS-EGU joint Conference 2010. 
Frascati, Italy: ESA Special Publications SP-688 

Kyriakidis, P.C., & Dungan, J.L. (2001). A geostatistical approach for mapping thematic 
classification accuracy and evaluating the impact of inaccurate spatial data on 
ecological model predictions. Environmental and ecological statistics, 8, 311-330 

Kyriakidis, P.C., & Yoo, E.H. (2005). Geostatistical prediction and simulation of point 
values from areal data. Geographical Analysis, 37, 124-151 

Lapola, D.M., Oyama, M.D., Nobre, C.A., & Sampaio, G. (2008). A new world natural 
vegetation map for global change studies. Anais da Academia Brasileira de Ciências, 
80, 397-408 

Latham, J., Cumani, R., Rosati, I., & Bloise, M. (2014). FAO Global Land Cover (GLC-
SHARE) Beta-Release 1.0 Database. Rome, Italy: Land and Water Division, FAO  

LC-CCI. (2014). Overview of Phase 2: Land Cover CCI project.   Retrieved Jan 22, 2016, 
from http://www.esa-landcover-cci.org/?q=planification 

Letourneau, A., Verburg, P.H., & Stehfest, E. (2012). A land-use systems approach to 
represent land-use dynamics at continental and global scales. Environmental Modelling 
& Software, 33, 61-79 

Li, W., & Zhang, C. (2011). A Markov chain geostatistical framework for land-cover 
classification with uncertainty assessment based on expert-interpreted pixels from 
remotely sensed imagery. Geoscience and Remote Sensing, IEEE Transactions on, 49, 
2983-2992 

López-Carr, D., Davis, J., Jankowska, M.M., Grant, L., López-Carr, A.C., & Clark, M. 
(2011). Space versus place in complex human–natural systems: Spatial and multi-level 

http://www.esa-landcover-cci.org/?q=planification


 References 
 

147 

models of tropical land use and cover change (LUCC) in Guatemala. Ecological 
Modelling, 229 64-75 

Loveland, T., Reed, B., Brown, J., Ohlen, D., Zhu, Z., Yang, L., & Merchant, J. (2000). 
Development of a global land cover characteristics database and IGBP DISCover from 
1 km AVHRR data. International Journal of Remote Sensing, 21, 1303-1330 

Magnussen, S., & de Bruin, S. (2003). Updating cover type maps using sequential indicator 
simulation. Remote Sensing of Environment, 87, 161-170 

Malczewski, J. (2000). On the use of weighted linear combination method in GIS: common 
and best practice approaches. Transactions in GIS, 4, 5-22 

Malczewski, J. (2006). Ordered weighted averaging with fuzzy quantifiers: GIS-based 
multicriteria evaluation for land-use suitability analysis. International Journal of 
Applied Earth Observation and Geoinformation, 8, 270-277 

Mayaux, P., Eva, H., Gallego, J., Strahler, A.H., Herold, M., Agrawal, S., Naumov, S., De 
Miranda, E.E., Di Bella, C.M., Ordoyne, C., Kopin, Y., & Roy, P.S. (2006). Validation 
of the global land cover 2000 map. Geoscience and Remote Sensing, IEEE Transactions 
on, 44, 1728-1739 

McCallum, I., Obersteiner, M., Nilsson, S., & Shvidenko, A. (2006). A spatial comparison 
of four satellite derived 1km global land cover datasets. International Journal of 
Applied Earth Observation and Geoinformation, 8, 246-255 

McCarthy, D.P., Donald, P.F., Scharlemann, J.P.W., Buchanan, G.M., Balmford, A., 
Green, J.M.H., Bennun, L.A., Burgess, N.D., Fishpool, L.D.C., Garnett, S.T., Leonard, 
D.L., Maloney, R.F., Morling, P., Schaefer, H.M., Symes, A., Wiedenfeld, D.A., & 
Butchart, S.H.M. (2012). Financial Costs of Meeting Global Biodiversity Conservation 
Targets: Current Spending and Unmet Needs. Science, 338, 946-949 

McRoberts, R.E. (2010). Probability-and model-based approaches to inference for 
proportion forest using satellite imagery as ancillary data. Remote Sensing of 
Environment, 114, 1017-1025 

Milligan, G., & Cooper, M. (1988). A study of standardization of variables in cluster 
analysis, 5, 181-204 

Monfreda, C., Ramankutty, N., & Foley, J.A. (2008). Farming the planet: 2. Geographic 
distribution of crop areas, yields, physiological types, and net primary production in the 
year 2000. Global Biogeochemical Cycles, 22, GB1022 



References 
 

148 

Mora, B., Tsendbazar, N.-E., Herold, M., & Arino, O. (2014). Global Land Cover 
Mapping: Current Status and Future Trends. Land Use and Land Cover Mapping in 
Europe (pp. 11-30): Springer Netherlands 

Nakaegawa, T. (2011). Uncertainty in land cover datasets for global land-surface models 
derived from 1-km global land cover datasets. Hydrological Processes, 25, 2703-2714 

NASA. (2013, 18 Feb 2013). Visible Infrared Imaging Radiometer Suite (VIIRS).   
Retrieved 18 Feb, 2013, from http://npp.gsfc.nasa.gov/viirs.html 

Newbold, T., Hudson, L.N., Hill, S.L., Contu, S., Lysenko, I., Senior, R.A., Börger, L., 
Bennett, D.J., Choimes, A., & Collen, B. (2015). Global effects of land use on local 
terrestrial biodiversity. Nature, 520, 45-50 

Olofsson, P., Foody, G.M., Stehman, S.V., & Woodcock, C.E. (2013). Making better use of 
accuracy data in land change studies: Estimating accuracy and area and quantifying 
uncertainty using stratified estimation. Remote Sensing of Environment, 129, 122-131 

Olofsson, P., Stehman, S.V., Woodcock, C.E., Sulla-Menashe, D., Sibley, A.M., Newell, 
J.D., Friedl, M.A., & Herold, M. (2012). A global land-cover validation data set, part I: 
fundamental design principles. International Journal of Remote Sensing, 33, 5768-5788 

Pebesma, E.J. (2004). Multivariable geostatistics in S: the gstat package. Computers & 
Geosciences, 30, 683-691 

Pebesma, E.J., & Wesseling, C.G. (1998). Gstat: a program for geostatistical modelling, 
prediction and simulation. Computers & Geosciences, 24, 17-31 

Pérez-Hoyos, A., García-Haro, F.J., & San-Miguel-Ayanz, J. (2012). Conventional and 
fuzzy comparisons of large scale land cover products: Application to CORINE, 
GLC2000, MODIS and GlobCover in Europe. ISPRS Journal of Photogrammetry and 
Remote Sensing, 74, 185-201 

Perger, C., Fritz, S., See, L., Schill, C., Van Der Velde, M., Mccallum, I., & Obersteiner, 
M. (2012). A Campaign to Collect Volunteered Geographic Information on Land Cover 
and Human Impact. In, GI-Forum 2012: Geovizualisation, Society and Learning (pp. 
83-91). Salzburg, Austria 

Pittman, K., Hansen, M.C., Becker-Reshef, I., Potapov, P.V., & Justice, C.O. (2010). 
Estimating global cropland extent with multi-year MODIS data. Remote Sensing, 2, 
1844-1863 

Potapov, P., Hansen, M., Gerrand, A., Lindquist, E., Pittman, K., Turubanova, S., & 
Wilkie, M.L. (2011). The global Landsat imagery database for the FAO FRA remote 
sensing survey. International Journal of Digital Earth, 4, 2-21 

http://npp.gsfc.nasa.gov/viirs.html


 References 
 

149 

Poulter, B., Ciais, P., Hodson, E., Lischke, H., Maignan, F., Plummer, S., & Zimmermann, 
N. (2011). Plant functional type mapping for earth system models. Geoscientific Model 
Development, 4, 993-1010 

Poulter, B., MacBean, N., Hartley, A., Khlystova, I., Arino, O., Betts, R., Bontemps, S., 
Boettcher, M., Brockmann, C., Defourny, P., Hagemann, S., Herold, M., Kirches, G., 
Lamarche, C., Lederer, D., Ottlé, C., Peters, M., & Peylin, P. (2015). Plant functional 
type classification for Earth System Models: results from the European Space Agency's 
Land Cover Climate Change Initiative. Geosci. Model Dev. Discuss., 8, 429-462 

Powell, R., Matzke, N., & De Souza, C. (2004). Sources of error in accuracy assessment of 
thematic land-cover maps in the Brazilian Amazon. Remote Sensing of Environment, 90, 
221-234 

Quaife, T., Quegan, S., Disney, M., Lewis, P., Lomas, M., & Woodward, F.I. (2008). 
Impact of land cover uncertainties on estimates of biospheric carbon fluxes. Global 
Biogeochem. Cycles, 22, GB4016 

Ramankutty, N., Evan, A.T., Monfreda, C., & Foley, J.A. (2008). Farming the planet: 1. 
Geographic distribution of global agricultural lands in the year 2000. Global 
Biogeochemical Cycles, 22, GB1003 

Redo, D.J., Aide, T.M., Clark, M.L., & Andrade-NÚÑEz, M.J. (2012). Impacts of internal 
and external policies on land change in Uruguay, 2001–2009. Environmental 
Conservation, 39, 122-131 

Ripley, B., Venables, W., & Ripley, M.B. (2014). Package ‘nnet’. In: March 

Rossiter, D. (2004). Technical Note: Statistical methods for accuracy assesment of 
classified thematic maps: International Institute for Geo-information Science & Earth 
Observation (ITC)  

Ruesch, A., & Gibbs, H.K. (2008). New IPCC Tier-1 global biomass carbon map for the 
year 2000 

Saaty, T. (1977). A scaling method for priorities in hierarchical structures. Journal of 
Mathematical Psychology, 15, 234-281 

Sachs, J., Remans, R., Smukler, S., Winowiecki, L., Andelman, S.J., Cassman, K.G., 
Castle, D., DeFries, R., Denning, G., & Fanzo, J. (2010). Monitoring the world's 
agriculture. Nature, 466, 558-560 

Scepan, J., Menz, G., & Hansen, M.C. (1999). The DISCover validation image 
interpretation process. Photogrammetric Engineering and Remote Sensing, 65, 1075-
1081 



References 
 

150 

Schepaschenko, D., See, L., Lesiv, M., McCallum, I., Fritz, S., Salk, C., Moltchanova, E., 
Perger, C., Shchepashchenko, M., Shvidenko, A., Kovalevskyi, S., Gilitukha, D., 
Albrecht, F., Kraxner, F., Bun, A., Maksyutov, S., Sokolov, A., Dürauer, M., 
Obersteiner, M., Karminov, V., & Ontikov, P. (2015). Development of a global hybrid 
forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics. 
Remote Sensing of Environment, 162, 208-220 

Schneider, A., Friedl, M., & Potere, D. (2009). A new map of global urban extent from 
MODIS satellite data. Environmental Research Letters, 4, 044003 

Schultz, M., Tsendbazar, N., Herold, M., Jung, M., Mayaux, P., & Goehmann, H. (2015). 
Utilizing the Global Land Cover 2000 reference dataset for a comparative accuracy 
assessment of global 1km land cover maps MAPS. International Archives of the 
Photogrammetry, Remote Sensing & Spatial Information Sciences, 40-7/W3, 503-510 

See, L., Fritz, S., Thornton, P., You, L., Becker-Reshef, I., Justice, C., Leo, O., & Herrero, 
M. (2012 ). Building a Consolidated Community Global Cropland Map.   Retrieved 22, 
November, 2012, from http://www.earthzine.org/2012/01/24/building-a-consolidated-
community-global-cropland-map/ 

See, L., Schepaschenko, D., Lesiv, M., McCallum, I., Fritz, S., Comber, A., Perger, C., 
Schill, C., Zhao, Y., Maus, V., Siraj, M.A., Albrecht, F., Cipriani, A., Vakolyuk, M.y., 
Garcia, A., Rabia, A.H., Singha, K., Marcarini, A.A., Kattenborn, T., Hazarika, R., 
Schepaschenko, M., van der Velde, M., Kraxner, F., & Obersteiner, M. (2015). Building 
a hybrid land cover map with crowdsourcing and geographically weighted regression. 
ISPRS Journal of Photogrammetry and Remote Sensing 

Sertel, E., Robock, A., & Ormeci, C. (2010). Impacts of land cover data quality on regional 
climate simulations. International Journal of Climatology, 30, 1942-1953 

Siebert, S., Henrich, V., Frenken, K., & Burke, J. (2013). Update of the Digital Global Map 
of Irrigation Areas (GMIA) to Version 5 Bonn, Germany: Institute of Crop Science and 
Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn. 

Stehman, S.V. (1997). Selecting and interpreting measures of thematic classification 
accuracy. Remote Sensing of Environment, 62, 77-89 

Stehman, S.V. (2000). Practical Implications of Design-Based Sampling Inference for 
Thematic Map Accuracy Assessment. Remote Sensing of Environment, 72, 35-45 

Stehman, S.V. (2009). Sampling designs for accuracy assessment of land cover. 
International Journal of Remote Sensing, 30, 5243-5272 

http://www.earthzine.org/2012/01/24/building-a-consolidated-community-global-cropland-map/
http://www.earthzine.org/2012/01/24/building-a-consolidated-community-global-cropland-map/


 References 
 

151 

Stehman, S.V. (2014). Estimating area and map accuracy for stratified random sampling 
when the strata are different from the map classes. International Journal of Remote 
Sensing, 35, 4923-4939 

Stehman, S.V., & Czaplewski, R.L. (1998). Design and Analysis for Thematic Map 
Accuracy Assessment:: Fundamental Principles. Remote Sensing of Environment, 64, 
331-344 

Stehman, S.V., Olofsson, P., Woodcock, C.E., Herold, M., & Friedl, A. (2011). A global 
land cover validation dataset II: augmenting a stratified sampling design 

Stehman, S.V., Olofsson, P., Woodcock, C.E., Herold, M., & Friedl, M.A. (2012). A global 
land-cover validation data set, II: augmenting a stratified sampling design to estimate 
accuracy by region and land-cover class. International Journal of Remote Sensing, 33, 
6975-6993 

Stehman, S.V., & Wickham, J.D. (2011). Pixels, blocks of pixels, and polygons: Choosing 
a spatial unit for thematic accuracy assessment. Remote Sensing of Environment 

Strahler, A., Friedl, M., Schaaf, C., Zhang, X., & Hodges, J. (2003). Validation of the 
consistent-year v003 MODIS land cover product: Department of Geography, Boston 
University. 

Strahler, A.H., Boschetti, L., Foody, G.M., Friedl, M.A., Hansen, M.C., Herold, M., 
Mayaux, P., Morisette, J.T., Stehman, S.V., & Woodcock, C.E. (2006). Global land 
cover validation: Recommendations for evaluation and accuracy assessment of global 
land cover maps. European Communities, Luxembourg, 51 

Tateishi, R., Hoan, N.T., Kobayashi, T., Alsaaideh, B., Tana, G., & Phong, D.X. (2014). 
Production of Global Land Cover Data – GLCNMO2008. 2014, 6 

Tateishi, R., Uriyangqai, B., Al-Bilbisi, H., Ghar, M.A., Tsend-Ayush, J., Kobayashi, T., 
Kasimu, A., Hoan, N.T., Shalaby, A., Alsaaideh, B., Enkhzaya, T., Gegentana, & Sato, 
H.P. (2011). Production of global land cover data - GLCNMO. International Journal of 
Digital Earth, 4, 22-49 

Townshend, J.R., Masek, J.G., Huang, C., Vermote, E.F., Gao, F., Channan, S., Sexton, 
J.O., Feng, M., Narasimhan, R., & Kim, D. (2012). Global characterization and 
monitoring of forest cover using Landsat data: opportunities and challenges. 
International Journal of Digital Earth, 5, 373-397 

Tsendbazar, N., De Bruin, S., & Herold, M. (2015a). Assessing global land cover reference 
datasets for different user communities. ISPRS Journal of Photogrammetry and Remote 
Sensing, 103, 93-114 



References 
 

152 

Tsendbazar, N.E., de Bruin, S., Fritz, S., & Herold, M. (2015b). Spatial Accuracy 
Assessment and Integration of Global Land Cover Datasets. Remote Sensing, 7, 15804 

Tsendbazar, N.E., de Bruin, S., Mora, B., Schouten, L., & Herold, M. (2016). Comparative 
assessment of thematic accuracy of GLC maps for specific applications using existing 
reference data. International Journal of Applied Earth Observation and 
Geoinformation, 44, 124-135 

Tuanmu, M.-N., & Jetz, W. (2014). A global 1-km consensus land-cover product for 
biodiversity and ecosystem modelling. Global Ecology and Biogeography, 23, 1031-
1045 

UNFCCC. (2015). Adoption of the Paris Agreement. Proposal by the President. Geneva 
(Switzerland). 

Van Oort, P. (2005). Improving land cover change estimates by accounting for 
classification errors. International Journal of Remote Sensing, 26, 3009-3024 

Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. (2010). Detecting trend and 
seasonal changes in satellite image time series. Remote Sensing of Environment, 114, 
106-115 

Verburg, P.H., Asselen, S., Zanden, E.H., & Stehfest, E. (2012). The representation of 
landscapes in global scale assessments of environmental change. Landscape Ecology, 
28, 1067-1080 

Verburg, P.H., Neumann, K., & Nol, L. (2011). Challenges in using land use and land cover 
data for global change studies. Global Change Biology, 17, 974-989 

VITO. (2013). The Proba-V instrument.    

Wang, J., Zhao, Y., Li, C., Yu, L., Liu, D., & Gong, P. (2015). Mapping global land cover 
in 2001 and 2010 with spatial-temporal consistency at 250 m resolution. ISPRS Journal 
of Photogrammetry and Remote Sensing, 103, 38-47 

Wu, W., Shibasaki, R., Yang, P., Ongaro, L., Zhou, Q., & Tang, H. (2008). Validation and 
comparison of 1 km global land cover products in China. International Journal of 
Remote Sensing, 29, 3769-3785 

Wulder, M.A., Franklin, S.E., White, J.C., Linke, J., & Magnussen, S. (2006). An accuracy 
assessment framework for large‐area land cover classification products derived from 
medium‐resolution satellite data. International Journal of Remote Sensing, 27, 663-683 

Yager, R.R. (1988). On ordered weighted averaging aggregation operators in multicriteria 
decisionmaking. Systems, Man and Cybernetics, IEEE Transactions on, 18, 183-190 



 References 
 

153 

You, L., Wood, S., & Wood-Sichra, U. (2009). Generating plausible crop distribution maps 
for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization 
approach. Agricultural Systems, 99, 126-140 

Yu, L., Wang, J., Li, X., Li, C., Zhao, Y., & Gong, P. (2014). A multi-resolution global 
land cover dataset through multisource data aggregation. SCIENCE CHINA Earth 
Sciences, 57, 2317-2329 





 

155 

Summary 
  



Summary 
 

156 

Observation of global-scale land cover is of importance to international initiatives, 
governments, and scientific communities that endeavour to understand and monitor 
changes affecting the environment. Various applications such as climate models, 
ecosystem modelling and hydrological models use a number of global land cover 
(GLC) maps that were produced from different initiatives. The users have different 
requirements regarding spatial, temporal and thematic aspects of GLC maps as well 
as their accuracy. For example, climate modellers typically use GLC maps at 1km 
spatial resolution or coarser whereas this resolution is too coarse for land change 
science studies to detect small-scale changes. Furthermore, to determine the fitness 
of GLC maps for certain applications, map accuracy assessments need to consider 
the perspectives of the users as confusion between certain classes can have a strong 
impact on specific applications whereas for other applications they are 
inconsequential. Therefore, generation and assessment of GLC maps needs to 
account for different user requirements and perspectives. This PhD research aimed 
to account for different user requirements in assessing, comparing and as well as 
improving GLC maps. In the Introduction chapter of this thesis, the rationale of 
this PhD research is given and five research questions are elaborated.  

In Chapter 2, the characteristics of current GLC reference datasets that have been 
used for calibration and validation of GLC maps were reviewed and analysed. 
Twelve GLC reference datasets were further assessed in terms of their potential use 
in GLC map validation and calibration towards four GLC user groups, i.e., climate 
modellers, global forest change analysts, global agricultural monitoring community 
and map producers. Findings revealed varying GLC reference dataset suitability 
levels depending on the reference data characteristics, user requirements and target 
maps. Nonetheless, several datasets (LC-CCI, GOFC-GOLD, FAO-FRA and Geo-
Wiki) were identified as generally being suitable for re-use for multiple user 
groups. This chapter highlights the potentiality of GLC reference datasets for 
multiple uses and public access of existing reference datasets in improving the 
usability of the datasets outside their intended use.  

Chapter 3 presents a comparative assessment of thematic accuracies of GLC maps 
based on an existing reference dataset. The Globcover-2005 reference dataset was 
processed to assess and compare Globcover, LC-CCI and MODIS maps for the 
year 2005. These maps were evaluated from the perspective of several user 
applications i.e., general circulation models, dynamic global vegetation models, 
agriculture assessments, carbon estimation and biodiversity assessments, using a 
weighted accuracy assessment procedure. Overall accuracies of the maps ranged 
between 61.3 ± 1.5% and 71.4 ± 1.3%. The overall weighted accuracy varied 
between 80-92% for the considered applications. The latter accuracy is higher 
because confusions between some classes were deemed inconsequential for the 
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applications considered. To determine fitness of use of GLC maps, accuracy of 
GLC maps should be assessed per application; there is no single-figure accuracy 
estimate expressing map fitness for all purposes. 

Chapter 4 assesses the spatial accuracy of Globcover-2009, Land Cover-CCI-2010, 
MODIS-2010 and Globeland30 in Africa using publicly available GLC reference 
datasets. Spatial accuracy was modelled by the spatial autocorrelation structures of 
the local correspondence between map and reference data. Created correspondence 
maps showed spatial patterns indicating zonal differences in the degree with which 
different GLC maps matched the reference data. The results showed the 
potentiality of integrating current GLC maps along with reference data to create an 
improved GLC map. Different integration methods including geostatistical 
approaches were tested and assessed by cross-validation. The integration methods 
based on geostatistical approach resulted in 4.5%–13% higher correspondence with 
the reference LC than any of the input GLC maps. An integrated LC map and LC 
class probability maps were created using regression kriging, which produced the 
highest correspondence (76%). This chapter demonstrates the added value of using 
reference datasets and geostatistics for improving GLC maps.  

Chapter 5 follows up the findings of Chapter 4 and presents an improved GLC map 
and LC class probability maps. The integrated GLC map has 10% higher global 
correspondence and regionally up to 13% higher correspondence with reference LC 
than the individual input maps. To address the thematic requirements of different 
GLC map users, a concept of producing GLC maps with user-specific legends based 
on area fraction maps of LC classes is proposed. It is demonstrated by creating GLC 
maps with user-specific legends from the perspectives of land system modelling and 
biodiversity assessments. Based on LC class probability maps produced from map 
integration, expected area fraction maps for LC classes at coarser resolution were 
created. Based on these maps, two GLC maps at 5 arcminute resolution having 
additional mosaic LC classes which can be useful for the considered user 
applications were created. Area fraction maps of LC classes are useful for creating 
flexible user-specific legends particularly related to mosaic classes and hence they 
can address thematic requirements of multiple users. 

This PhD research demonstrates the importance of accounting for the requirements 
and perspectives of user applications in validating, comparing and improving GLC 
maps. The work also includes improving the efficient use of existing GLC 
reference datasets, comparative accuracy assessment of GLC maps using both the 
design based and model based approaches as well as presenting an integration 
method to improve current GLC maps to better meet different application needs.
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Cover illustration is a RGB composite of three global land cover maps highlighting 
the differences between them.   
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