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Summary

The flight height of marine birds is one of the most important factors determining the risk of collision of 

marine birds with offshore wind turbines. Therefore, a literature study is carried out to collect and 

integrate the available information in order to discuss the current knowledge status and gaps concerning

the following issues:

The flight height distribution of seabirds

The major factors influencing flight height

The possible implications of flight height distributions and influencing factors for the seabird 

collision risk for offshore wind farms

Flight height of birds can be detected by several methods comprising visual observations, tagging, high-

definition imagery and radar. There are limitations to all methods applied to determine flight heights. 

Flight heights of seabirds are often reported, but (semi) quantitative data for many seabird species over 

the entire relevant altitude range (up to approx. 300 m above sea level) are scarce. Average flight 

heights differ considerably among groups of residential and migration seabirds such as gulls, divers, 

gannets, scoters, guillemots and auks. Flight altitude distributions are modelled for 25 seabird species

derived from all available flight height data assigned to height bands during boat-based surveys of 

offshore wind farms in the UK, the Netherlands, Denmark, Belgium and Germany. Most seabird species 

fly within 20 m height above sea level for more than 90% of their time during flight. The species with 

relative high flight altitudes are gulls and the Northern Gannet. Flight percentages at wind turbine rotor 

height (ca. 20-150 m above sea level) based on evaluation on an extensive literature review are 

available allowing to rank seabird species. These percentages range from 0 to 35.

The influence of a number of factors on the flight height of seabirds is reviewed. Many knowledge gaps 

exist. In general flight height is lower during rain/precipitation, certain time of day (night), foraging, 

habitat type and spatial arrangement (above sea), and presence of fishing boats. On the other hand 

flight height is higher during migration and orientation. The influence of wind speed, wind direction, 

season, distance to coast, and offshore wind farm (e.g. also configuration and type of turbines) on flight 

height is variable depending on the seabird species.

The majority of the seabird species has a low risk for collision to offshore wind turbine blades because 

they fly almost exclusively under the rotor swept altitude. However a few species are considered at 

relatively high potential collision risk due to their flight height percentage in the height range of 20 to 

150 m above sea level. These are mainly the gull species and the Northern Gannet. Factors that raise the 

flight height of seabirds to wind rotor height will probably also increase the collision risk for collision to 

wind turbines, whereas the opposite will be expected for factors reducing flight height. It should be kept 

in mind that apart from flight height there are more factors determining the collision risk: flight 

manoeuvrability, percentage of time flying, nocturnal activity and avoidance behaviour of wind farm 

(large scale avoidance) or wind turbines (small scale avoidance).
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Nederlandse samenvatting

De vlieghoogte van zeevogels is één van de meest belangrijke factoren die het risico voor botsing van 

zeevogels met offshore windturbines bepaalt. In deze studie is een literatuuronderzoek uitgevoerd om 

informatie te verzamelen en te analyseren ter bepaling van het huidige kennisniveau en kennisleemten 

ten aanzien van de volgende onderwerpen:

De vlieghoogteverdeling van zeevogels

De belangrijkste factoren die de vlieghoogte beïnvloeden

De mogelijke implicaties van vlieghoogteverdeling en beïnvloedende factoren voor het risico van 

botsingen van zeevogels met offshore windparken

De vlieghoogte van vogels kan worden gedetecteerd met verschillende methoden zoals

zichtwaarnemingen, zenderen, grote beeldscherpte opname en radar. Aan al deze methoden zijn 

beperkingen verbonden.

Vlieghoogte van zeevogels wordt vaak gerapporteerd, maar (semi)kwantitatieve gegevens voor veel 

zeevogels over de gehele relevante hoogterange (tot ca. 300 meter boven de zeespiegel) zijn schaars.

Dec gemiddelde vlieghoogte verschilt behoorlijk tussen groepen van residerende en migrerende 

zeevogels zoals meeuwen, duikers, jan van genten, zee-eenden, zeekoeten en alken.

Vlieghoogteverdelingen zijn gemodelleerd voor 25 zeevogelsoorten, afgeleid van alle beschikbare 

vlieghoogtegegevens toegekend aan hoogtelagen gedurende waarnemingen vanaf boten van offshore 

windparken in de UK, Nederland, Denemarken, België en Duitsland. De meeste zeevogelsoorten vliegen 

op minder dan 20 meter boven de zeespiegel voor meer dan 90% van hun vliegtijd. De soorten met een 

relatief hoge vlieghoogte zijn meeuwen en de Jan van Gent. Vlieghoogtepercentages op windturbinerotor

hoogte (ca. 20-150 boven de zeespiegel) gebaseerd op evaluatie van een uitgebreide literatuurreview 

zijn beschikbaar waarmee zeevogelsoorten zijn gerangschikt. Deze percentages variëren van 0 to 35. 

De invloed van een aantal factoren op de vlieghoogte van zeevogels is onderzocht. Er bestaan veel 

kennisleemten. In het algemeen is de vlieghoogte lager gedurende regen en andere neerslag, tijd van 

de dag (nacht), foerageren, habitat type en ruimtelijke structuur (ook in de hoogte), en aanwezigheid 

van vissersschepen. Anderzijds is de vlieghoogte hoger tijdens migratie en oriëntatie. De invloed van

windsnelheid, windrichting, seizoen, afstand tot de kust, en offshore windpark (bijv. ook configuratie en 

type windturbines) op vlieghoogte is variabel en afhankelijk van de zeevogelsoort.

De meerderheid van de zeevogelsoorten heeft een laag risico op botsingen met offshore windturbines 

omdat deze bijna de gehele tijd onder de rotorhoogte vliegen. Een gering aantal soorten worden 

verondersteld een relatief hoog potentieel risico op botsingen te lopen vanwege hun hogere 

vlieghoogtepercentage in de hoogterange van 20 tot 150 m boven de zeespiegel. Dit zijn voornamelijk 

meeuwen en de Jan van Gent. Factoren die de vlieghoogte van zeevogels verhogen tot de hoogte van 

windturbinerotoren zullen waarschijnlijk ook het risico voor botsingen met windturbinerotoren vergroten,

terwijl het tegenovergestelde wordt verwacht voor factoren die de vlieghoogte verlagen. Men dient zich 

te realiseren dat er naast de vlieghoogte meerdere factoren zijn die het risico op botsingen mede 

bepalen: vliegwendbaarheid, vliegtijdpercentage tijdens een etmaal, nachtactiviteit en vermijding van 

windparken (grootschaligere ontwijking) of windturbines (kleinschalige ontwijking).
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1 Introduction

1.1 Background

Avian flight heights are currently a focus of interest in terms of assessing possible impacts of offshore 

and inland wind farms on birds by collision. Certain bird species may be at higher risk due to the time 

spent at the altitude that matches the wind turbine rotor blade altitude. Thus the flight height distribution 

of bird species is of major importance as is also stated by Bradbury et al. (2014) and Johnston et al. 

(2014). Certain environmental or anthropogenic factors may influence the flight height of birds and 

thereby raising or reducing collision risks of birds (Hüppop et al., 2006). However an overview of these 

factors is not available and knowledge gaps may exist. In this study we focus on flight heights of 

seabirds in relation to collision risk for offshore wind farms. Terrestrial birds only fly over sea in migration 

periods and are not considered here. This subject is dealt with in a parallel study by Bureau 

Waardenburg (Krijgsveld et al., 2015).

Flight height is widely considered to be of high importance in determining the risk of collision of marine 

birds with offshore wind turbines (Band, 2012; Cook et al., 2012). Marine birds that only fly very low 

over the water will be below the area swept by turbine blades, whereas marine birds that habitually fly at 

greater heights may experience a greater risk of collision with blades if flight heights coincide with rotor 

swept areas of a wind farm.

1.2 Assignment

The aim is to provide an overview of the current knowledge and knowledge gaps concerning:

The flight height distribution of seabirds

The major factors influencing the flight height

The possible implications of flight height distributions and influencing factors for the seabird 

collision risk for offshore wind farms

The information is collected by literature search.

This study is part of the BO project Vervolg Uitvoering Masterplan (VUM) Ecologische effectmeting 
windenergie op zee.
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2 Detection methods

Flight height of birds can be detected by several methods. Johnston et al. (2014) mention that the most 

important methods for determination of flight heights of seabirds comprise visual observations, tagging, 

high-definition imagery and radar. Tagging data may overcome some bias associated with weather 

conditions and nocturnal behaviour (Bridge et al., 2011; Stumpf et al., 2011; Klaassen et al., 2012), but 

offers a restrictive sample size and is not suitable for all species (Burger & Shaffer, 2008). High-definition 

digital imagery is increasingly common in aerial surveys of offshore windfarms (Buckland et al., 2012), 

but data are hard to use on a species specific basis and restricted to lower air space. Radar may 

positively bias estimates of flight altitudes as low-flying birds are under-recorded due to reflections from

the sea surface (Hüppop et al., 2006) and species specific information is sparse (Schmaljohann et al.,

2008). Consequently, migrants which may fly above 1000 m are not usually seen by visual observers, 

either on the ground or in aeroplanes but are included in radar data sets (Hüppop et al., 2006; Krijgsveld 

et al., 2011), and different methods might bias estimates of flight height in different ways. Studies using 

radar and visual observations suggest that most seabird movements occur at lower altitudes, while 

observations at higher altitudes are migrating passerines or waders (Krijgsveld et al., 2011).

Hüppop et al. (2006) applied several methods for observation of bird migration, including flight altitudes,

and discussed the advantages and disadvantages of these methods. These methods comprise sea 

watching, ship-based surveys, ship radar, thermal imaging, video camera and microphone, searching 

collision victims.

There are limitations to all methods applied to determine flight heights. Most data discussed by Hüppop 

et al. (2006) were collected during ship-based surveys, and issues associated with observer safety and 

the detectability of birds limited the data collection to hours of daylight, with moderate winds and good 

visibility. Information about variation in flight behaviour during different conditions is therefore limited. 

However, many of the studied species are considered less likely to forage during the night than during 

the day (e.g. Garthe & Hüppop, 2004). A key concern about the use of visual observations to estimate 

flight altitudes is that the data will be negatively biased as recording birds at higher altitudes is difficult 

(Johnston et al., 2014). 
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3 Flight height

Information on flight height values of seabirds is found in many publications, but only a few provide 

(semi) quantitative values for many seabird species over the entire relevant altitude range (up to 

approx. 300 meter above sea level). We therefore focus on the latter publications comprising Krijgsveld 

et al. (2005, 2011), Cook et al. (2012), Furness et al. (2013), Bradbury et al. (2014) and Johnston et al. 

(2014). 

Krijgsveld et al. (2011) recorded flight activity of local seabirds (such as gulls, divers, gannets, scoters, 

guillemots and auks), migrating seabirds (such as divers and scoters) and migrating non-marine birds 

(such as thrushes and geese) at a broad altitude band (measured up to 1385 m high). The research was 

carried out for the Offshore Wind farm Egmond aan Zee (OWEZ) between April 2007 and June 2010, 

following a baseline study at Meetpost Noordwijk that took place between 2003 and 2005 (Krijgsveld et 

al., 2005). Flight altitudes were obtained by vertical radar observations both during the day and at night 

and with visual observations during daytime. Gulls flew mostly below 50m, occasionally higher up to 

200m. Seabirds (alcids, divers, sea ducks, skuas and tubenoses) flew mostly low above the sea, at 

altitudes up to 50 m, and mostly below 15 m. Most cormorants flew up to 100 m, occasionally higher.

The average flight altitudes for these and other seabird groups are shown in Table 1.

Table 1 Average altitude of seabirds flying near Meetpost Noordwijk (Krijgsveld et al., 
2005)

Species group Average altitude (m) 

Gulls 36.8 

Terns 27.6 

Gannets 25.6 

Cormorants 23.8 

Divers 19.0 

Sea ducks 18.5 

Skuas 16.2 

Alcids 11.9 

Tubenoses 11.3 

Cook et al. (2012) reviewed and modelled flight heights of seabirds. They used studies that applied three 

different methodologies to the calculation of seabird flight heights: 

Assignment to flight classes during boat-based surveys undertaken to inform EIAs;

Estimation of height during land-based sea-watching;

Measurement by radar.

The modelling was carried out by estimating continuous distributions of flight heights for each bird 

species, assuming the same distribution across all sites. These distributions were fitted with a flexible 

curve, not constrained to any specific distributional form. This was based on boat-based data primarily 

because information on flight heights was required at a species-specific level. Digital aerial surveys and 

video imagery techniques on flight heights are therefore not used although they have potential and 

might offer a future alternative to data from boat surveys. Digital aerial surveys have been widely used 

in recent years to inform the EIA process for offshore wind farms. These methods have the potential not 

only to inform on baseline numbers of birds, but also on flight heights. Cook et al. (2012) found only two

radar studies that recorded flight heights, one focussing on Common Eider in Alaska (Day et al., 2004) 
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and a second considering migrating Black-headed and Lesser Black-backed Gulls in in the Netherlands 

(Shamoun-Baranes et al., 2006). They conclude that the sample sizes involved in these studies are 

presently too small to make generalizations about species flight behaviour. It should be noticed that 

there are other radar studies on seabirds available from which flight height information may be derived 

(Myres, 1963; Alerstam et al., 1974a; Alerstam et al., 1974b; Zhalakevicius, 1977; Dirksen et al., 1998; 

Dirksen et al., 2005).

The flight height data presented by Cook et al. (2012) should be considered in relation to sites which are 

used by birds on a daily basis only. Attempts to model flight heights at sites where a significant 

proportion of birds is likely to be passing through as part of their migration were unsuccessful as the 

models failed to converge. This may imply that flight heights at these sites can be highly variable, and 

that they should be considered on an individual basis, or modelled within specific seasons. It is also 

worth noting that no data were available covering species flight heights at night. This is of concern given 

that several key seabird species, such as Northern Fulmar and Black-legged Kittiwake, are believed to be 

fairly active at night (Garthe & Hüppop, 2004).

For each of the 25 seabird species, Cook et al. (2012) modelled all available flight height data assigned 

to height bands during boat-based surveys of offshore wind farms in the UK, the Netherlands, Denmark, 

Belgium and Germany. They applied a spline function, which fits a curve to the data. They assumed that 

for each species, flight heights would follow a similar distribution across all study sites. For each 

bootstrap the proportion of birds flying at each height between 0 and 300 m above sea-level, in 1 m 

intervals, was calculated. The final results presented are the median of all of these values, and the 

associated 95 % confidence intervals calculated from the bootstrap values. For most species, tight 

confidence limits indicated that data were reasonably consistent between sites. Exceptions were found 

for Common Eider and Great Cormorant as models for these two species failed to converge. 

Distinguishing between sites where Common Eiders were likely to be recorded during migration and 

those where they were resident, had no impact on model performance. The authors conclude that this 

may indicate that flight behaviour in Common Eiders and Great Cormorant is highly variable between 

sites.

In order to derive the potential exposure OWF, for each species the proportion of birds flying within a 

generic collision risk window, defined as covering a range from 20 m to 150 m above sea-level, was 

calculated.

The Band collision risk model (Band 2012) also uses the data on flight height distributions, as produced 

by the modelling presented by Cook et al. (2012). For collision risk modelling, Cook et al. (2012) 

recommend that consideration should be given to results using both the site-specific and their modelled 

flight height data.

Furness et al. (2013) estimated the percentage of flight at turbine height (ca. 20-150 above sea level). 

They based their evaluation on an extensive literature review. Their results on flight height are less 

detailed than those of Johnston et al. (2014) but are also interesting to present here. Furness et al. 

(2013) ranked 37 seabird species on the flight percentage at wind turbine blade height. Flight altitude 

includes birds in all activities (such as foraging, commuting, migrating). It may vary seasonally, but 

there are too few data available at present to test this possibility. The percentage of a species’ flight 

altitude at turbine blade height (20-150 m a.s.l.) ranged from values of 0 to 35. Bradbury et al. (2014) 

updated and extended the flight height data of Furness et al. (2013) to 54 seabird species.

Johnston et al. (2014) provide data from visual surveys of the flight height of 25 marine bird species on 

32 potential offshore wind farm development sites carried out by observers mainly on boats, but also on 

offshore platforms and shore. This publication is mainly based on the extensive work reported by Cook et 
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al. (2012). These data are very detailed and the generic flight height distributions of seabirds are 

currently used in the Band models for risk of bird collision risks for offshore wind farms (Band, 2012). For 

25 seabird species the modelled flight height distributions are shown in Figure 1. A clear difference 

among these species can be seen. Most species fly within 20 meter height above sea level for more than 

90% of their flying time (Figure 2). The species with relative high flight altitudes are large gulls and 

Common Eider. However in The Netherlands high flying Common Eiders are not observed at sea and 

along the coast (Mardik Leopold, IMARES, pers. com.).

For 25 bird species the flight height percentages from Johnston et  al. (2014) were compared with those 

from Bradbury et al. (2014) (see Figure 3). There is a high correlation (R2=0.92) between the flight 

height percentages at rotor blade height in case the Common Eider is left out the dataset. The flight 

height percentages of both datasets differ less than a factor 2 for 17 of the 25 bird species (see Table 2).

Figure 1 Modelled flight height distributions of 25 seabird species. Source of data: Johnston et al. (2014)
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Figure 2: Flight height frequency below 20 meter above sea level of 25 seabird species. Source of data: 
Johnston et al. (2014)

Figure 3: The percentage birds flying at wind turbine blade height (20-150 m a.s.l.) according to the 
Bradbury method and the Band model (data from Johnston et al., 2014). The line depicts the relationship 
between the methods. Left figure: for 25 seabird species (including Eider). Right figure for 24 seabird 
species (without Eider because of the enormous deviation).



12 of 25 Report number C024/16

Table 2:  The percentage birds flying at wind turbine blade height (20-150 m a.s.l.) according to the 
Bradbury method and the Band model (data from Johnston et al., 2014).

Species Bradbury et al. (2014) Johnston et al. (2014)

Herring Gull 35% 32.0%

Great Black-backed Gull 35% 32.5%

Lesser Black-backed Gull 30% 28.2%

Common Gull 25% 21.9%

Black Headed Gull 20% 13.9%

Little Gull 15% 15.1%

Kittiwake 15% 15.0%

Gannet 12% 12.6%

Arctic Skua 10% 2.6%

Great Skua 10% 5.9%

Sandwich Tern 10% 7.0%

Common Tern 10% 7.4%

Cormorant 8% 1.7%

Shag 8% 12.6%

Red-throated Diver 5% 6.2%

Black-throated Diver 5% 8.1%

Arctic Tern 5% 4.0%

Common Scoter 3% 1.9%

Eider 2% 34.7%

Fulmar 1% 1.0%

Guillemot 1% 0.4%

Razorbill 0.5% 2.7%

Little Auk 0.5% 3.6%

Puffin 0.5% 0.0%

Manx Shearwater 0% 0.0%
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4 Factors affecting flight height

Flight height of seabirds can potentially be influenced by many factors, both environmental and 
anthropogenic:

Wind speed
Wind direction
Rain and other precipitation
Time of the day/Day-Night
Season
Distance to coast
Foraging
Habitat type and spatial arrangement
Migration
Offshore wind farms
Other factors

These factors are dealt within the following sections. A synthesis is elaborated in section 5.2. It should be 

noted that the studies often greatly differ in the level of detail, time and spatial scale and the scope; 

some focussing on specific seabird species and other on seabirds in general.

4.1 Wind speed

Birds may avoid areas of heavy wind and rain or spend more time at or under the water surface in these 

conditions (Johnston et al., 2014), although Procellariiformes (such as Northern Fulmar Fulmarus 

glacialis and Manx Shearwater Puffinus puffinus) may have higher flight altitudes during strong winds 

(Spear & Ainley, 1997). Consequently, the absence of data collected during poor weather may bias 

estimates of the proportion of birds at risk, both when using the modelled distributions and existing 

methods. Data were also summarized across the year as a whole, again reflecting how they are currently 

used. Consequently, these data may include observations of migrating birds. 

Ainley et al. (2015) evaluated the effect of wind speed and wind direction on two key characteristics of 

seabird behaviour, flight height and flight behaviour. They used cluster analysis to partition 104 seabird 

species into morphological groupings based on degree of divergence in morphology from Pennycuick’s 

“standard seabird,” with subgroups evident among and within flappers, glide-flappers, and flap-gliders

(Pennycuick, 1989). Seabird flight height and behavior varied among groups and subgroups and changed 

as a function of wind speed and direction relative to travel, with the probability of more gliding and flying 

above 10 m increasing as wind speed increased.

A detailed experiment with tagged Lesser Black-backed Gulls revealed that the flight height of these 

birds was unaffected by wind (Corman & Garthe, 2014).

From this information it can be concluded that the response of flight height to increasing wind speed is 

variable depending on bird species.
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4.2 Wind direction

In general headwinds result in a lower flight altitude. 

A detailed experiment with tagged Lesser Black backed Gulls revealed that the flight height of these birds 

was unaffected by wind (Corman & Garthe, 2014). However, gulls flying from sea to their colonies have 

been seen to fly very low over the waves (Mardik Leopold, IMARES, pers. com.). 

Spear & Ainley (1997) studied the influence of wind direction and wind speed on migrating seabirds. 

Extensive low-altitude transoceanic migration by seabirds may be related to opportunistic foraging along 

the migration route, which would require consistent low-altitude flight. If this is true, migrating seabirds 

should respond to the wind in a way that would result in a compromise between optimal foraging and 

efficient flight. Consistent with this idea, Arctic Terns migrating in the Antarctic flew mostly into 

headwinds (a flight direction similar to that of terns and skuas we observed over a much wider 

geographic range, many of which were in migration) and foraged along the migration route. This finding 

suggests that headwind flight is acceptable or even preferred during migration.

Flight altitudes of Common Eiders during migration in Alaska were significantly lower during headwinds 

than during crosswinds and tailwinds (Day et al., 2004). The flight altitude of divers is dependent on

wind direction, with mostly low-altitude flights in headwind conditions and higher flight altitudes during 

tailwind situations (Krijgsveld et al., 2011).

Overall we can conclude that flight height is lower in headwind, and higher in tailwind but dropping with 

higher tailwind speed, whereas for some species no influence of wind direction is found.

4.3 Rain and precipitation

Little information is found on the influence of rain and precipitation on flight height. In general 

precipitation results in a lower flight altitude (Hüppop et al., 2006). Seabirds may avoid areas of rain or 

spend more time at or under the water surface in these conditions (Johnston et al., 2014), however 

specific information is lacking. Migrating birds fly at lower altitudes at rainy nights because Hüppop et al. 

(2006) noticed that the percentage of birds migrating under 200 m was distinctly higher in rainy nights

than in nights without rain.

4.4 Time of the day/Day-night

Lesser Black-backed Gulls flew lower at night than during the day. Foraging trips during the day might be 

conducted at higher altitudes than those at night because of better visibility (Corman & Garthe, 2014).

During migration, time of day has an effect on flight altitude (Hüppop et al., 2006). Whatever the time of 

day or season of the year, the highest percentage of flights was almost exclusively registered in the 

lowest 100 m. This is particularly evident in the daytime and to a lesser extent also in the morning and 

evening periods. At night, most birds also migrate at altitudes below 200 m in a seasonally varying 

proportion. Altitude distribution differences between nights may be due to a different range of species. 

Many diurnally migrating species of seabirds and waterfowl migrate mostly at very low altitudes. 

Krijgsveld et al. (2011) found that especially at night the flight activity of migrating birds occurred at 

both higher and lower altitudes.

From this information it can be concluded that the flight altitude is generally lower at night, lower but 

sometimes higher during migration.
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4.5 Season

In the literature we did not find information on the influence of season on the flight height of seabirds. 

For pooled migrating birds (combination of occurring bird species) flight activity varies highly between 

seasons (Krijgsveld et al., 2011). In the winter and summer season flight altitudes were low, reflecting 

the dominance of gulls and to a lesser extent other local seabirds that fly at low altitudes. In the spring 

some species like arctic waders migration to their breeding grounds fly at very high altitudes (Hüppop et 

al., 2006), using high-altitude tailwinds (Alerstam, 1978; Liechti & Bruderer, 1998; Green & Piersma, 

2003).

From this we can conclude that the flight altitude is lower in summer and winter (dominance of local 

seabirds), higher in spring and autumn (dominance of migrating birds). There is a lack of species specific 

information for seabirds.

4.6 Distance to coast

Camphuysen (2011) registered the flight height of Lesser Black-backed Gulls with GPS loggers and found 

a distinct pattern. This was a broad zone of 5-25m altitude along the coast, followed by a nearly equally 

wide zone of distinctly lower altitudes and more extreme altitude values at the far end of the feeding 

range. The low flight altitude zone is seen as a zone of more frequent water contact. This is an area 

which is used by large beam trawlers and therefore also used by gulls forging on discards. The zone 

nearby and parallel to the coast is less used for foraging at the water surface. This is interpreted as the 

commuting zone to and from the colony where the gulls fly at higher altitudes. Water depth and distance 

to the coast probably are the key factors for this flight pattern. This is not completely in line with the 

findings of Corman & Garthe (2014) that the outbound and inbound flights of Lesser Black-backed Gulls 

occurred at similar heights.

In general the flight altitude of low migrating birds can be seen to be distinctly lower offshore than on 

the coast or inland (Hüppop et al., 2006). This was also found by Stumpf et al. (2011) for Marbled 

Murrelets (Brachyramphus marmoratus) using radar to quantify flight heights. 

From this information it can be concluded the effect of distance to coast on the flight height is variable 

(lower and higher) depending on the bird species.

4.7 Foraging

The flight height is also influenced by foraging behaviour. This is demonstrated by Camphuysen (2011) 

and Corman & Garthe (2014) for Lesser Black-backed Gulls equipped with specifically programmed GPS 

data loggers to ensure accurate flight-height measurements in the southern North Sea during the 

incubation period. Foraging Lesser Black-backed Gulls vary their flight heights according to their 

destination, time of day, and flight type. Straight flights represented commuting between different 

foraging sites and/or the breeding colony, while tortuous flights probably indicated active foraging. 

Straight commuting flights were made at higher altitudes than tortuous flights. For orientation of Lesser 

Black-backed Gulls flight height is higher. The lower flight altitude somewhat further from the coast and 

the colony is probably connected with the foraging strategy. Here most foraging will occur, with more 

frequent water contact of the birds and the presence of trawlers providing a chance for scavaging on 

discards.

From this information it can be concluded that foraging behaviour as compared with not foraging 

behaviour (commuting, migrating) requires lower flight height.
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4.8 Habitat type and spatial arrangement

Corman & Garthe (2014) found that GPS-logged Lesser Black-backed Gulls flew lower over the sea than 

over land.

Hüppop et al. (2006) mentioned that the greater unevenness of the landscape creates turbulence – more 

or less depending on the exact topography of the land surface – which are hardly ever encountered at 

sea. Low stratum winds reach speeds that are greater and more constant over sea than they do over 

land. Accordingly, tailwinds at low altitudes are more favourable at sea than over land, which could be 

one reason for the lower flight altitudes at sea.

Stumpf et al. (2011) used radar to quantify flight heights, passage rates and flight behaviour of Marbled 

Murrelets between nesting sites and feeding sites on the Olympic Peninsula, Washington. They concluded 

that flight height likely varies with the topography and the spatial arrangement (including elevation) of 

suitable habitat, next to other factors like distance from the ocean and weather. Another example can be 

given for Manx Shearwaters, flying very low above the sea surface (Figure 2) and often breeding at high 

coastal altitudes, like the highlands of Wales and Scotland up to 1000 m altitudes (Mardik Leopold, 

IMARES, pers. com.).

From this information it can be concluded that flight height of seabirds above sea is lower than 
flight height above land.

4.9 Migration

The influence of several types of circumstances during migration on the flight heights of birds has 

already been described above. However it is important to discriminate migration from daily use of sea 

habitat by local birds in order to find possible general patterns for flight height. Therefore the influence of 

migration is briefly treated in this paragraph. During migration, birds are likely to fly at greater altitudes 

than when foraging or commuting between sites (Garthe & Hüppop, 2004; Krijgsveld et al., 2011). Birds 

try mostly to fly in the altitude stratum in which their energy costs are lowest. The choice of stratum may 

also be influenced by a variety of other parameters, such as the length of the intended flight and the 

experience of the bird (Hüppop et al., 2006). 

Hüppop et al. (2006) investigated year-round bird migration over the North Sea with regard to offshore 

wind farms. The authors investigated the potential risks of birds endangered by offshore wind farms and 

their behaviour when facing wind farms (flight distances, evasive movements, influence of light, collision 

risk). There exists a comprehensive literature on bird migration over the North Sea but with respect to 

questions regarding environmental effects and impacts connected with the construction of offshore wind 

turbines, severe knowledge gaps became obvious, including the proportion of birds flying in altitudes up 

to 200 m (as high as the future wind energy plants) and the influence of weather, wind, precipitation and 

visibility on the flight altitude.
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4.10 Offshore wind farms

Radar studies at Horns Rev and Nysted showed that many birds entering the wind farm reorientate to fly 

through the empty “lanes” between turbine rows, minimising collision risk. The Nysted Thermal Animal 

Detection System (TADS, a remote infrared video monitoring system) and radar studies confirmed that 

waterbirds (mostly Eider) reduced their flight altitude within the wind farm, flying more often below rotor 

height than they did outside the wind farm (Petersen et al., 2006).

Camphuysen (2011) investigated the possible effects of windfarms on the flight altitude of Lesser Black-

backed Gulls with GPS loggers and visual observations. On average the flight altitude inside the windfarm 

was slightly higher than outside the wind farm.

The difference between the findings of Petersen et al. (2006) and Camphuysen (2011) means that 

different seabird species may react differently concerning the direction of the adjustment of flight height.

Krijgsveld et al. (2011) found that seabird species adjusted their flight altitude when approaching the 

windfarm. Large gulls, small gulls and gannets tended to increase their flight altitude, whereas terns 

tended to lower their flight altitude inside the wind farm. Cormorants did not alter their flight altitude.

From the available information it can be concluded that the influence of a windfarm on flight height of 

seabirds is variable (lower, higher, no change) depending on the species of concern.

4.11 Other factors

In this study a limited number of factors influencing flight height are discussed. There may be other 

factors that need attention, for instance the presence of fishing boats providing discards. Large numbers

of gulls follow fishing boats and fly at lower altitudes as compared to the situation without fishing boats. 

Another relevant factor may be the autumn passage of skuas chasing fish eating bird like gulls and terns 

to higher flight altitudes (Mardik Leopold, IMARES, pers. com.).
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5 Discussion and conclusion

In this chapter the available information relevant to the three questions addressed in this study will be 

discussed. This will be done by integrating the information collected and analysed in the previous 

chapters, and discussing the current knowledge status and gaps concerning:

The flight height distribution of seabirds

The major factors influencing flight height

The possible implications of flight height distributions and influencing factors for the seabird 

collision risk for offshore wind farms

5.1 Flight height

At present a rough insight in the flight height distribution of seabirds on the North Sea exists. Cook et al. 

(2012) and Johnston et al. (2014) collected experimental site observation data and modelled this to 

produce generic flight height distributions for 25 seabird species. Bradbury et al. (2014) and Furness et 

al. (2013) provided useful flight height data in relation to dangerous offshore wind turbine altitudes

(between 20 and 150 meter above sea level).

Cook et al. (2012) mentioned that flight heights are often recorded during boat-based surveys prior to 

construction, with flying birds assigned to height bands. This existing methodology for recording flight 

heights is limited in as far as the wide bands typically used make it impossible to discern whether a 

species is exploiting the full height of the band or merely a narrow section at the lower or upper end.

There is an urgent need for further research into the flight heights of seabirds. Ideally, this would include 

direct measurements of flight height through the tagging of individual birds and the monitoring of 

movements at a broader scale through the use of technologies such as radar, as well as through visual 

observations. This would produce means and the variation around flight height values, also during 

adverse weather conditions and at night (when collisions are more likely to occur) and could be used to 

express the probabilities of birds occurring in particular flight bands.

Shamoun-Baranes et al. (2006) also mentioned that detailed measurements of the vertical distribution of 

different species of birds are sparse in scientific literature. The main reason is the technical difficulty in 

collecting such data. Measurements of flight altitudes of birds require special equipment, for example, 

radar, tracking devices such as GPS loggers placed on individual birds, or following birds with aircraft. 

Studies that have collected data on the flight altitudes of particular species are either highly focused on 

one species or group of birds, or on birds flying in the lowest air layers where flight altitudes can be 

estimated visually. Most of these studies have concentrated on migrating birds rather than local 

movements of seabirds.

5.2 Factors influencing flight height

A summary of the factors affecting flight height of seabirds as analysed in chapter 4 is given in Table 3.

It should be noticed that the drawing of conclusions is hampered by many knowledge gaps. In general 

flight heights can be influenced by any of the factors considered in this study. Flight height is reduced by 

5 factors (rain/precipitation, time of day (night), foraging, above sea (as opposed to above land),

presence of fishing boats, raised by 2 factor (migration, orientation), and variable (either reduced or 

raised) by 5 factors (wind speed, wind direction, season, distance to coast, offshore wind farm) 

depending on the seabird species.
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These findings reveal that many factors may influence the flight altitudes of birds. However, few studies 

focused on the dynamics of flight altitudes of several species of seabirds and terrestrial birds during their 

local flights over sea or land, outside the migration seasons, in relation to weather conditions.

The timing within the daily and annual routine of the bird probably plays an important role in influencing 

flight altitudes, because of changing adaptive pressures during the day and year (Shamoun-Baranes et 

al. 2006).

Individual birds may alter their flight height behaviour according to weather conditions (wind speed, wind 

direction, precipitation), time of day, foraging strategy and whether commuting, migrating, foraging, 

presence of offshore wind farms (Garthe & Hüppop, 2004; Petersen et al., 2006; Shamoun-Baranes et 

al., 2006; Krijgsveld et al., 2011; Stumpf et al., 2011; Corman & Garthe, 2014; Ainley et al., 2015). The 

response is not always generic for seabirds because interspecies differences do also occur. 

Table 3: Summary of the factors affecting flight height and their major effect

Factor 

 

Situation to compare Flight height change 

Wind speed High wind speed versus low wind 

speed 

Variable (lower, higher, no change) depending on bird species 

Wind direction Headwind, tailwind, crosswind Lower in headwind; higher in tailwind but dropping with 

higher tailwind speed 

Rain/precipitation 

 

Rain versus no rain Lower in rain, birds may settle on the water during heavy rain 

or hail 

Time of the day Night versus day Lower at night, lower but sometimes higher during migration 

Season More options (spring, summer, 

autumn, winter, migration period) 

Lower in summer and winter (dominance of local seabirds), 

higher in spring and autumn (dominance of migrating birds) 

Foraging Foraging versus not foraging 

(commuting, migrating) 

Lower 

Distance from the 

coast 

Increasing distance Variable (lower and higher) depending on bird species 

Habitat type and 

spatial arrangement 

Sea versus land Lower above sea 

Migration 

 

Migration versus non migration 

(habitat use) 

Higher 

Offshore wind farms Presence of OWP versus absence 

of OWP 

Variable (Lower, higher, no change) depending on bird 

species 

Fishing boat Presence of fishing boat versus 

absence of fishing boat 

Lower for discards eating bird species 

5.3 Implications for the seabird collision risk for offshore wind farms

In general seabirds fly relatively low above the sea surface (see Figure 2), compared to landbirds 

migrating over the sea. The majority of the seabird species therefore will have a low risk for collision to 

offshore wind turbines because they fly almost exclusively under the rotor swept altitude. A few species 

are considered at relatively high potential collision risk with considerable flight height percentages in the 

height range of 20 to 150 m a.s.l.. These are mainly the gull species, the Northern Gannet and the 

Common Eider. For instance Corman & Garthe (2014) measured that 89% of recorded flight heights for 

Lesser Black-backed Gulls were below 20 m above sea level, indicating an overlap of 11% with the rotor 

swept area of most operating wind turbines. Johnston et al. (2014) and Bradbury et al. (2014) found 

even higher overlap values amounting to 28% and 30% respectively.
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It should be kept in mind that apart from flight height there are more factors determining the collision 

risk: flight manoeuvrability, percentage of time flying, nocturnal activity and avoidance (Bradbury et al., 

2014). Ainley et al. (2015) suspected that most of the gliders among the seabirds, would be highly 

vulnerable to offshore wind farms due to their flight height behaviour when winds are strong and their 

smaller manoeuvrability as compared to the flappers among the seabirds.

Factors that raise the flight height of seabirds to rotor height will probably also increase the collision risk 

for wind turbines, whereas the opposite will be expected for factors reducing flight height. As described 

in paragraph 5.2, the factors raising the flight height are migration, season, wind speed, wind direction

(tail wind), distance to coast, offshore wind farm, depending on the seabird species. This means that 

more seabird species than the ones already mentioned above may become at risk. The extent of the 

effects is not known.
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6 Quality Assurance

IMARES utilises an ISO 9001:2008 certified quality management system (certificate number: 124296-

2012-AQ-NLD-RvA). This certificate is valid until 15 December 2015. The organisation has been certified 

since 27 February 2001. The certification was issued by DNV Certification B.V. Furthermore, the chemical 

laboratory of the Fish Division has NEN-EN-ISO/IEC 17025:2005 accreditation for test laboratories with 

number L097. This accreditation is valid until 1th of April 2017 and was first issued on 27 March 1997.  

Accreditation was granted by the Council for Accreditation.  
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