Together with our clients, we integrate scientific know-how and practical experience to develop livestock concepts for the 21st century. With our expertise on innovative livestock systems, nutrition, welfare, genetics and environmental impact of livestock farming and our state-of-the-art research facilities, such as Dairy Campus and Swine Innovation Centre Sterksel, we support our customers to find solutions for current and future challenges.

The mission of Wageningen UR (University & Research centre) is ‘To explore the potential of nature to improve the quality of life’. Within Wageningen UR, nine specialised research institutes of the DLO Foundation have joined forces with Wageningen University to help answer the most important questions in the domain of healthy food and living environment. With approximately 30 locations, 6,000 members of staff and 9,000 students, Wageningen UR is one of the leading organisations in its domain worldwide. The integral approach to problems and the cooperation between the various disciplines are at the heart of the unique Wageningen Approach.

Ontwikkeling van de N-balans, het N-verlies en de beddingsamenstelling van vrijloopstal Koonstra in 2014/2015

Herman de Boer
Ontwikkeling van de N-balans, het N-verlies en de beddingsamenstelling van vrijloopstal Koonstra in 2014/2015

Herman de Boer

Dit onderzoek is door Wageningen UR Livestock Research uitgevoerd voor het publiek-private samenwerkingsprogramma Duurzame Zuivelketen, gefinancierd door ZuivelNL en het Ministerie van Economische Zaken (als Beleidsondersteunend onderzoek: BO-22.02-012-005)

Wageningen UR Livestock Research
Wageningen, januari 2016

Livestock Research aanvaardt geen aansprakelijkheid voor eventuele schade voortvloeiend uit het gebruik van de resultaten van dit onderzoek of de toepassing van de adviezen.

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden door middel van druk, fotokopie, microfilm of op welke wijze dan ook zonder voorafgaande toestemming van de uitgever of auteur.

Livestock Research Rapport 945
Inhoud

Woord vooraf .. 5

Samenvatting .. 7

1 Inleiding ... 9

2 Materiaal & methoden .. 10
 2.1 Beschrijving stal en stalvloer .. 10
 2.2 Beddingmanagement .. 11
 2.3 Gegevensverzameling .. 11
 2.3.1 Gegevensverzameling door de melkveehouder 11
 2.3.2 Gegevensverzameling bij een bedrijfsbezoek 11
 2.4 Methodiek voor berekening NPK-balans en N-verlies uit de stal 12
 2.5 Metingen en berekeningen per balanspost .. 14
 2.5.1 NPKstrooisel .. 14
 2.5.2 NPKruwvoer .. 14
 2.5.3 NPKkrachtvoer .. 14
 2.5.4 NPKdrijfmest ... 15
 2.5.5 NPKbedding .. 15
 2.5.6 NPKmelk ... 17
 2.5.7 NPKdieren.. 17

3 Resultaten .. 18
 3.1 Beddingeigenschappen .. 18
 3.1.1 Beddingtemperatuur .. 18
 3.1.2 Beddinghoogte .. 19
 3.1.3 Dichtheid bedding .. 20
 3.1.4 Porositeit bedding .. 20
 3.1.5 Deeltjesgrootte bedding .. 21
 3.2 Samenstelling veestapel .. 22
 3.3 Resultaten per balanspost .. 22
 3.3.1 NPKstrooisel .. 22
 3.3.2 NPKruwvoer .. 23
 3.3.3 NPKkrachtvoer .. 24
 3.3.4 NPKdrijfmest ... 24
 3.3.5 NPKbedding .. 26
 3.3.6 NPKmelk ... 30
 3.3.7 NPKdieren .. 31
 3.4 NPK balans .. 31

4 Discussie .. 36
 4.1 Effect afwijkingen PK-balans op N-verlies ... 36
 4.2 Niveau N-verlies vrijloopstal Koonstra .. 36
 4.3 Relatie N-verlies met C/N-verhouding bedding .. 37

Conclusies ... 39

Referenties ... 40

Bijlagen ... 41

 Bijlage 1. NPK-balansen per meetmoment ... 41
Woord vooraf

Paul Galama
Projectleider onderzoek Vrijloopstallen
Samenvatting

Een aantal Nederlandse melkveehouders stapt de laatste jaren over van een ligboxenstal met een roostervloer naar een vrijloopstal met een organische bedding. Deze overstap heeft meerdere effecten, waaronder op de stikstofkringloop op het melkveebedrijf. Stikstof (N) verdwijnt uit deze kringloop onder andere door vervluchtiging uit de stal, uit de mestopslag en na het uitrijden van mest op het land. N-vervluchtiging kan negatieve effecten hebben op de milieukwaliteit en leiden tot verlies van productiviteit. Daarom is het wenselijk om het N-verlies door vervluchtiging op het melkveebedrijf zo laag mogelijk te houden. Om inzicht te krijgen in de milieu- en productiviteitseffecten van de overstap van een ligboxenstal naar een vrijloopstal is het onder andere nodig om inzicht te krijgen in de hoeveelheid N die vervluchtigt uit de vrijloopstal en dit te vergelijken met de ligboxenstal. Het onderzoek in dit rapport richtte zich op het vaststellen van het N-verlies door vervluchtiging uit de vrijloopstal van de familie Koonstra in Vinkenbuurt (Overijssel). De vloer van deze stal bestond uit een deel organische bedding met houtsnippers (liggedeelte) en een deel roostervloer (loopgedeelte). De houtsnippers werden gecomposteerd bij een doeltemperatuur van 50 tot 55°C. Tijdens de compostering werd er via de stalvloer lucht door de bedding gezogen. Het hoofddoel van de compostering was om voldoende vocht te verdampen en daarmee de bedding droog te houden. Dit is vooral van belang tijdens de koude, natte winterperiode. Een nevendoel was om tijdens de compostering de met mest uitscheiden N te binden in bacteriële biomassa en daarmee het N-verlies door vervluchtiging te verminderen. Het gerapporteerde onderzoek had de volgende doelen: 1) vaststellen van het niveau van N-verlies uit deze stal en de ontwikkeling daarvan over de tijd; 2) vaststellen van de bijdrage van de bedding aan het verlies; 3) verklaring van de ontwikkeling van het N-verlies uit de stal op basis van veranderingen in beddingeigenschappen; 4) vaststellen van de indicatieve bijdrage van de aanwending van mest op het land aan het totale N-verlies uit deze stal; en 5) vergelijking van het totale niveau van N-verlies (stal + land) uit deze vrijloopstal met dat van een referentie ligboxenstal. Het N-verlies uit de stal werd vastgesteld door het berekenen van N, P (fosfor) en K (kalium) balansen per twee tot drie weken over een periode van vijf maanden, inclusief winterperiode. NPK werd in de stal aangevoerd met strooisel (houtsnippers), ruwvoer en krachtvoer, en vastgelegd in de bedding, drijfmest, melk en dieren. Het verschil tussen aangevoerde en vastgelegde N was het N-verlies. Om de benodigde gegevens te verzamelen werd het bedrijf tijdens de balansperiode iedere twee tot drie weken bezocht. Bij ieder bezoek werd de aanwezige hoeveelheid bedding en drijfmest gemeten en bemonsterd en een aantal beddingeigenschappen gemeten. De melkveehouder hield de aanwezige aantallen dieren per diercategorie bij, evenals de gevoerde rantsoenen, de hoeveelheden aangevoerde houtsnippers en het toegepaste beddingmanagement. De melkveehouder bepaalde ook iedere drie dagen de beddinghoogte en -temperatuur. De hoeveelheid geproduceerde melk werd overgenomen van de overzichten van de melkfabriek. Met de verzamelde gegevens werd per bezoekdatum (= meetmoment) de cumulatieve (oplopende) NPK-balans en het cumulatieve N-verlies berekend. De resultaten laten een N-verlies uit de stal over de balansperiode zien van 468 kg N, 11% van de N-excretie met mest in de stal. Dit verlies lag aan de onderkant van het N-verlies gerealiseerd in andere vrijloopstallen en op hetzelfde niveau als dat van een referentie ligboxenstal (11%). Het cumulatieve N-verlies over de eerste drie maanden van de balansperiode was -3%. Inclusief de indicatieve N-vervluchtiging tijdens en na toediening van drijfmest en gecomposteerde bedding op het land was de totale N-vervluchtiging uit vrijloopstal Koonstra 14% van de N-excretie en daarmee lager vergeleken met 19% uit de referentie ligboxenstal. Een indicatieve (grove) splitsing van het N-verlies tussen bedding en roostervloer bleek niet betrouwbaar; daardoor kon er geen goede indicatie verkregen worden welk deel van het N-verlies van de bedding en welk deel van de roostervloer afkomstig was. Er was tijdens de balansperiode geen significante inverse relatie tussen het cumulatieve N-verlies uit de stal en C/N-verhouding van de bedding (bovenlaag). De gelijktijdige daling van zowel N-verlies als C/N-verhouding werd eerder waargenomen bij een vrijloopstal met eveneens een bedding bestaande uit twee lagen en beluchting van de bedding door lucht er doorheen te zuigen. De doelstelling om tijdens de compostering een groot deel van de mest uitgescheiden N te binden in bacteriële biomassa werd gerealiseerd. Een hogere N-binding en
daardoor minder N-verlies hadden waarschijnlijk gerealiseerd kunnen worden door eerder & meer nieuwe houtsnippers bij te strooien. De resultaten van vrijloopstal Koonstra bevestigen het eerdere beeld dat stallen met intensieve compostering van houtsnippers de potentie hebben om een laag N-verlies te realiseren, en dat intensief composteren tot lager N-verlies leidt dan extensief composteren.
1 Inleiding

Een aantal Nederlandse melkveehouders stapt de laatste jaren over van een ligboxenstal met roostervloer naar een vrijloopstal met (deels) een organische bedding. Een belangrijke reden voor deze overstap is het realiseren van een beter dierenwelzijn in de stal. Naast een beter dierenwelzijn heeft de overstap ook andere effecten, waaronder op de stikstofkringloop van het melkveebedrijf. Stikstof (N) verdwijnt uit deze kringloop onder andere door vervluchtiging uit de stal, uit de meststoplag en na het uittreden van mest op het land. N kan vervluchtigen in de vorm van ammoniak (NH₃), lachgas (N₂O), stikstofgas (N₂) en overige stikstofoxiden (NOₓ). De vervluchtiging van ammoniak kan bijdragen aan verzuring en eutrofiëring van de natuur en de vervluchtiging van lachgas aan opwarming van de aarde. De vervluchtiging van stikstofgas heeft geen directe negatieve effecten op de omgeving. Echter, door het verdwijnen van N uit de bedrijfskringloop moet er meer N op het bedrijf aangevoerd worden om de productiviteit van de bodem, het gewas en de koeien op peil te houden. Gebeurt deze aanvoer met dierlijke mest of kunstmest, dan leidt dit alsnog tot een hogere milieubelasting. In de praktijk hebben melkveehouders weinig ruimte om extra N met dierlijke mest of kunstmest van buiten het bedrijf aan te voeren. In dat geval leidt het verdwijnen van N uit de bedrijfskringloop tot een daling van de productiviteit van het bedrijf op langere termijn. Gezien het bovenstaande is het wenselijk om het niveau van N-vervluchtiging op het melkveebedrijf zo laag mogelijk te houden.

Om inzicht te krijgen in milieu- en productiviteitseffecten van de omschakeling van een ligboxenstal naar een vrijloopstal is het dus nodig om inzicht te krijgen in de totale hoeveelheid N die vervluchtigt uit de vrijloopstal en deze te vergelijken met de ligboxenstal. N vervluchtigt niet alleen uit de stal maar ook na het uittreden van mest uit de stal op het land. Een stalsysteem met een relatief lage N-vervluchtiging direct uit de stal kan een relatief hoge N-vervluchtiging na mestaanwending hebben, en omgekeerd. Bij de ligboxenstal met productie van drijfmest wordt bijna de helft van de totale N-vervluchtiging (stal + land) na het emissiearm uittreden van de mest op het land gerealiseerd (zie paragraaf 2.4). Om een meer volledig en betrouwbaar beeld te hebben van de N-vervluchtiging van een stalsysteem is het gewenst om de N-vervluchtiging direct uit de stal en na mestaanwending gezamenlijk te beoordelen.

Vrijloopstallen met een organische bedding verschillen o.a. in het type gebruikt strooisel en het management van de bedding. Daardoor kunnen er tussen vrijloopstallen grote verschillen zijn in het niveau van N-verlies (Galama et al., 2015) en is het wenselijk het N-verlies voor meerdere vrijloopstallen vast te stellen. Het onderzoek in dit rapport richtte zich op het vaststellen van het N-verlies door vervluchtiging uit de vrijloopstal van de familie Koonstra in Vinkenbuurt (Overijssel). De vloer van deze stal bestond grotendeels uit een organische bedding met houtsnippers (liggedeelte) en een klein deel roostervloer (sta- en loopgedeelte). De bedding werd gecomposteerd bij een doeltemperatuur van 50 tot 55°C. Tijdens de compostering werd er via de stalvloer lucht door de bedding gezogen. Het hoofddoel van de compostering was om voldoende vocht te verdampen en daarmee de bedding droog te houden. Dit is vooral van belang tijdens de koude, natte winterperiode. Een nevendoel was om tijdens de compostering de met mest uitgescheiden N te binden in bacteriële biomassa en daarmee het N-verlies door vervluchtiging te verminderen. Het uitgevoerde onderzoek had de volgende doelen: 1) vaststellen van het niveau van N-verlies uit deze stal en de ontwikkeling daarvan over de tijd; 2) vaststellen van de bijdrage van de organische beddijiving aan het verlies; 3) verklaring van de ontwikkeling van het N-verlies uit de stal op basis van veranderingen in beddingeigenschappen; 4) vaststellen van de indicatieve bijdrage van de aanwending van mest op het land aan het totale N-verlies uit deze stal; en 5) vergelijking van het niveau van N-verlies uit deze vrijloopstal met dat van een referentie ligboxenstal. Het N-verlies werd vastgesteld door het berekenen van N, P (fosfor) en K (kalium) balansen per twee tot drie weken over een meetperiode (balansperiode) van ruim 5 maanden (van 12 december 2014 en 15 mei 2015).
2 Materiaal & methoden

2.1 Beschrijving stal en stalvloer

De N-, P- en K-balans (afgekort NPK-balans) van vrijloopstal Koonstra werd niet berekend voor de hele stal maar alleen voor het rechter deel, waar de melkgevende koeien waren gehuisvest (Figuur 1). Het overgrote deel van het totale vloeroppervlak (1688 m²) bestond uit bedding (1356 m²), met daarnaast een smalle strook roostervloer (332 m²) achter de centrale voergang. De drijfmestkelder onder de roostervloer in het rechter staldeel was gescheiden van de drijfmestkelder in het linker staldeel. De (kleine) hoeveelheid drijfmest die de koeien uitscheidden tijdens het bezoek aan de melkstal (linksonder in de plattegrond) werd niet meegenomen bij de berekening van de NPK-balans. Omdat de voergang niet onderkelderd was, was het oppervlak van de drijfmestkeldervloer (vrijwel) gelijk aan het oppervlak van de roostervloer. De roostervloer bestond uit een Altez Welzijnsvloer (BWL 2013.01, RAV-nr. A 1.21). Tijdens de balansperiode bleven de koeien op stal en werd er geen weidegang toegepast. Het doel daarvan was om complicaties bij de berekening van de balansen te minimaliseren.

![Figuur 1](image-url)

Plattegrond van vrijloopstal Koonstra, met in het midden de voergang, rechts daarvan een strook roostervloer (groen) en daarnaast de vrijloopbedding (geel). De NPK balans in dit rapport werd berekend voor het rechter staldeel (gele + groene oppervlak)

De vloer onder de vrijloopbedding bestond uit gestort beton met daarin beluchtingsbuizen. De beluchtingsbuizen lagen in de lengterichting van de stal, op een onderlinge afstand van 1,5 m, met beluchtingsgaatjes in de buizen op een onderlinge afstand van 1,05 m. Dit gaf gemiddeld één beluchtingsgaatje per 1,58 m². Met een centrale ventilator (nominale capaciteit 5000 m³ uur⁻¹; gemeten gemiddeld debiet onderafzuiging 2054 m³ uur⁻¹) werd er regelmatig lucht via de beluchtingsgaatjes door de bedding gezogen.
2.2 Beddingmanagement

De bedding bij vrijloopstal Koonstra bestond uit twee lagen: een bovenlaag van relatief fijne houtsnippers met een hoogte van 20 tot 30 cm en een onderlaag van wat grovere houtsnippers met een hoogte van 20 tot 30 cm. Het doel was de bovenlaag intensief te composteren, terwijl de onderlaag vooral bedoeld was om een goede beluchtning te realiseren. De ervaring uit de vorige periode was dat de onderlaag nauwelijks composteerde. Bij start van de balansperiode werd de bovenlaag vervangen, terwijl de onderlaag van de vorige periode bleef liggen. De bedding werd gecomposteerd met een doeltemperatuur van 50 tot 55°C. De bedding werd automatisch belucht wanneer de temperatuur onderin de bedding hoger werd dan 35°C. De temperatuur werd gemeten met twee sensoren op het vloeroppervlak, die via een computer gekoppeld waren aan de ventilator. Tijdens de balansperiode werd naar schatting er per uur ruim een half uur lucht gezogen. De beluchtning was bedoeld om zuurstof in de bedding te brengen en waterdamp uit de bedding te zuigen. Iedere dag werd de bedding gefreesd tot een diepte van ruim 20 cm (Maschio frees, 100 pk tractorvermogen). Het frezen was bedoeld om de toplaag schoon te houden en de uitgescheiden mest goed te mengen met de rest van de toplaag. Frezen verkleint daarnaast ook de houtsnippers, waardoor er meer energie voor compostering beschikbaar kan komen. Achterop de frees was een hefbaar cultivator aangebracht, en tijdens het frezen werd op plaatsen met verdichting de bedding losgetrokken tot een diepte van 30 tot 35 cm. De balansperiode startte met de aanvoer van een grote partij verse houtsnippers. Tijdens de balansperiode werden nieuwe partijen houtsnippers aangevoerd om het composteringsproces van nieuwe energie te voorzien.

2.3 Gegevensverzameling

2.3.1 Gegevensverzameling door de melkveehouder

Om inzicht te krijgen in het verloop van het composteringsproces werd door de melkveehouder iedere drie dagen de beddingtemperatuur en -hoogte gemeten. De temperatuur werd gemeten op een diepte van 10, 20, 40 en 50 cm met een temperatuurmeter, bestaande uit een Testo 110 meetunit en een speciaal gemaakte stevige stalen insteekvoeler (Testo, Almere). De voeler had een totale lengte van 1,0 m en een diameter van 12 mm. De tip van de voeler had een lengte van 16 mm en een diameter van 5 mm; de opnemer in de tip van de voeler was temperatuurgeïsoleerd van de rest van de voeler. Beddingtemperatuur en -hoogte werden gemeten op de diagonale lijn van de bedding (van de ene hoek naar de andere), op vier plaatsen op regelmatige afstand van elkaar.

De melkveehouder hield daarnaast de volgende gegevens bij voor het rechter staldeel:
- het dagelijkse aantal aanwezige dieren per diercategorie
- de aanvoer van houtsnippers (hoeveelheid en datum)
- het dagelijks gevoerde ruwvoerrantsoen (hoeveelheid en samenstelling)
- het dagelijks gevoerde krachtvoerrantsoen (hoeveelheid en samenstelling)
- de geleverde hoeveelheden melk (overzichten melkfabriek)
- de afvoer van drijfmest (hoeveelheid en datum)
- de afvoer van gecomposteerde bedding (hoeveelheid en datum)
- het dagelijkse regime van beddingmanagement (bewerking)

2.3.2 Gegevensverzameling bij een bedrijfsbezoek

Tijdens de balansperiode werd het bedrijf iedere twee tot drie weken bezocht door een medewerker van Livestock Research. Dit was steeds dezelfde medewerker, behalve bij het tweede bezoek. Het
eerste bedrijfsbezoek was op 12 december 2014 en het laatste op 15 mei 2015. In totaal werd het bedrijf 9 keer bezocht. Bij ieder bezoek werden een aantal bedingiegenschappen gemeten en werd de beding bemonstert. Ook werd het drijfmeesteil in de kelder gemeten en werd de drijfmeest bemonstert. Daarnaast werden monsters genomen van tussentijds aangevoerde partijen houtsnippers. De gevolgde methodiek bij de uitvoer van bovenstaande metingen is gegeven bij de toelichting op de berekening van de balanspost waarvoor deze meting nodig was (paragraaf 2.5).

2.4 **Methodiek voor berekening NPK-balans en N-verlies uit de stal**

De cumulatieve (oplopende) NPK-balans van de vrijloopstal werd voor ieder meetmoment (=bedrijfsbezoek) berekend. De NPK-balans werd berekend als het verschil tussen de hoeveelheid NPK die tijdens een periode in de vrijloopstal werd aangevoerd minus de hoeveelheid NPK die tijdens deze periode in de stal werd vastgelegd. NPK werd aangevoerd met de balansposten strooisel, ruwvoer en krachtvoer, en vastgelegd in de balansposten drijfmeest, beding, melk en dieren. In formulevorm:

\[
\begin{align*}
\text{NPK-balans} &= \text{NPK-aanvoer} - \text{NPK-vastlegging} \\
\text{NPK-aanvoer} &= \text{NPKstrooisel} + \text{NPKruwvoer} + \text{NPKkrachtvoer} \\
\text{NPK-vastlegging} &= \text{NPKdrijfmeest} + \text{NPKbeding} + \text{NPKmelk} + \text{NPKdieren}
\end{align*}
\]

De hoeveelheden NPK per balanspost werden berekend met behulp van de gemeten en verzamelde gegevens (paragraaf 2.5). De P- en K-balansen werden op dezelfde manier berekend als de N-balans. Omdat P en K niet uit de stal verloren gaan door vervluchtiging of uitspoeling, hoort bij deze balansen de vastlegging gelijk te zijn aan de aanvoer. Een overschot of tekort op de P- of K-balans was het gevolg van toevallige en systematische fouten bij het verzamelen van de gegevens. Omdat de gegevens voor de P- en K-balans grotendeels op dezelfde manier werden verzameld als de gegevens voor de N-balans, en de balansen op dezelfde manier werden berekend, was de meetfout voor de drie balansen waarschijnlijk grotendeels vergelijkbaar. Afwijkingen op de P- en K-balans werden daarom gebruikt om de N-balans te corrigeren voor de meetfout. Verwacht werd dat met deze correctie het N-verlies nauwkeuriger berekend kon worden dan zonder correctie. Er is geen standaard methode om deze correctie uit te voeren. In dit onderzoek is de keuze gemaakt om een afwijking op de P-balans te gebruiken om de P-balans te corrigeren, een afwijking op de K-balans om de K-balans te corrigeren, en het gemiddelde van de afwijkingen op de P- en K-balans om de N-balans te corrigeren. Omdat het niveau van de meetfout per balanspost niet bekend was, werd de keuze gemaakt om de correctie voor de totale afwijking op de balans evenredig te verdelen over alle balansposten. De P- en K-balansen werden gecorrigeerd door zowel de totale aanvoer als de totale vastlegging met de helft van de geconstateerde afwijking te corrigeren. Een voorbeeld: bij een overschot op de P-balans van 10% werd de totale P-aanvoer met 5% verhoogd en de P-vastlegging met 5% verlaagd. De P-aanvoerposten werden daarvoor vermenigvuldigd met factor 1,05 en de P-vastleggingsposten met factor 0,95. Voor correctie van de N-aanvoerposten en N-vastleggingsposten werd het gemiddelde van de correctiefactoren voor de P- en K-balans gebruikt.

Het verschil tussen de gecorrigeerde N-aanvoer en gecorrigeerde N-vastlegging was het N-verlies door vervluchtiging uit de stal, zowel uit de beding als vanaf de roostervloer en uit de drijfmeestkelder. Het N-verlies kan op verschillende manieren worden uitgedrukt, bijvoorbeeld om aan te laten zien bij het uitdrukken van N-verlies voor andere staltypen maar ook om een duidelijker beeld te krijgen van de betekenis van het niveau van N-verlies. N-verlies werd daarom uitgedrukt als percentage van de N-aanvoer op de stalvloer, als percentage van N-excretie met mest op de stalvloer en per kg geproduceerde melk in de stal. N-verlies uitgedrukt als percentage van de N-aanvoer op de stalvloer geeft een indruk hoeveel er van de op de vloer aanwezige N verloren gaat. N-aanvoer op de stalvloer tijdens de balansperiode werd berekend als: \(N_{\text{aanvoer}} = N_{\text{strooisel}} + N_{\text{excretie}} \). N-excretie werd berekend als: \(N_{\text{ruwvoer}} + N_{\text{krachtvoer}} - N_{\text{melk}} - N_{\text{dieren}} \). Deze berekeningen werden uitgevoerd met de gegevens van de gecorrigeerde N-balans. N-verlies, uitgedrukt als percentage van N-excretie, geeft de mogelijkheid tot snelle vergelijking met het N-verlies uit een referentie ligboxenstal. N-vervluchtiging uit de ligboxenstal wordt meestal uitgedrukt in kg N per dierplaats per jaar. De term ‘dierplaats’ is echter wat algemeen
gedefinieerd en houdt geen rekening met het productieniveau van de dieren. Dit is wel het geval bij het uitdrukken van N-verlies per kg melk. Een kanttekening hierbij is dat er niet zuiver vergeleken kan worden tussen vrijloopstallen met verschillen in de bezettingsgraad van jongvee (N.B.: jongvee produceert geen melk maar draagt wel bij aan het N-verlies uit de stal).

De PK-excretie werd op dezelfde manier berekend als de N-excretie. Met de totale PK-excretie werd het percentage PK-excretie op de bedding berekend als: \((\text{PK}_{\text{bedding}} - \text{PK}_{\text{strooisel}}) / \text{PK}_{\text{excretie}}\). Het percentage PK-excretie op de roostervloer werd berekend als: 100% - % PK-excretie op de bedding. De verdeling van N-excretie over de bedding en de roostervloer kon niet rechtstreeks worden berekend, omdat een deel van de N-excretie kon vervluchtigen en het percentage vervluchtiging kon verschillen tussen bedding en roostervloer. Voor berekening van deze verdeling was het nodig om te weten welk percentage van de urine en feces op de bedding en roostervloer kwam te verantwoorden, en hoe de NPK-excretie verdeeld was over urine en feces. De verdeling van de NPK-excretie over urine en feces was niet bekend voor vrijloopstal Koonstra; daarom werd gebruik gemaakt van de gegevens uit ander onderzoek (Gustafson, 2000) (Tabel 1).

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>P</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excretie met urine (%)</td>
<td>62</td>
<td>0</td>
<td>82</td>
</tr>
<tr>
<td>Excretie met feces (%)</td>
<td>38</td>
<td>100</td>
<td>18</td>
</tr>
</tbody>
</table>

Het percentage feces dat op de bedding terechtkwam werd berekend als: % P-excretie op bedding / % P-excretie met feces (Tabel 1). Het percentage urine dat op de bedding terechtkwam werd berekend als: (% K-excretie op bedding - (% feces op bedding * % K-excretie met feces)) / % K-excretie met urine. Het percentage N-excretie op de bedding werd berekend als: (% feces op bedding * % N-excretie met feces) + (% urine op bedding * % N-excretie met urine).

Met het percentage N-excretie op de bedding werd berekend hoeveel N er op ieder meetmoment in de bedding aanwezig zou moeten zijn: (% N-excretie op bedding * N_{excretie} + N_{strooisel}). N-verlies uit de bedding werd vervolgens berekend als: N_{excretie} (bedding) + N_{strooisel} - N_{bedding}. Deze berekeningen werden ook gedaan voor de roostervloer.

De N-vervluchtiging uit een referentie ligboxenstal (met jaarrond opstallen) werd berekend op 10,6% van de N-excretie op basis van Velthof et al. (2009), gecorrigeerd voor het effect van een recente verhoging van de referentie NH3-emissiefactor met 23% (Ogink, 2012). N vervluchtigt niet alleen uit de stal, maar ook tijdens en na het uitrijden van de mest op het land\(^1\). Het is daarom noodzakelijk om bij de beoordeling van b.v. de milieubelasting van een stal de vervluchtiging uit de stal en na aanwending van mest op het land gezamenlijk te beoordelen. Daarom werd voor vrijloopstal Koonstra een indicatieve berekening gemaakt van de totale N-vervluchtiging inclusief het uittrijden van mest op het land. Deze vervluchtiging werd vergeleken met de totale N-vervluchtiging van de referentie ligboxenstal. De (indicatieve) N-vervluchtiging na het emissiearm uitrijden (zodebemesten) van drijfmest op grasland werd op basis van Velthof et al. (2009) berekend op 9,6% van de N in uit te rijden drijfmest en op 8,5% van de N-excretie in de stal. De totale N-vervluchtiging bij de referentie ligboxenstal werd daarmee berekend op 19,1% van de N-excretie. Dat betekent dat bijna de helft (45%) van de totale vervluchtiging na het uitrijden van mest optreedt. De verwachte N-vervluchtiging na het uitrijden van (stabiele) vrijloopstalcompost op het land is verwaarloosbaar klein (De Boer, 2013). Op basis van de hoeveelheid aanwezige N in drijfmest en gecomposteerde bedding werd voor de vrijloopstal de indicatieve N-vervluchtiging bij het uittrijden op grasland berekend als: N_{bedding} + 0 + N_{drijfmest} * 0,096.

\(^1\) Er kan ook N-vervluchtiging optreden wanneer de vrijloopstalcompost tijdelijk op het erf wordt opgeslagen. Het niveau van deze vervluchtiging is niet bekend en deze mogelijke bijdrage is voorlopig buiten beschouwing gelaten.
2.5 Metingen en berekeningen per balanspost

2.5.1 NPKstrooisel

De hoeveelheid NPK in de bedding die al in de stal aanwezig was en de hoeveelheid die werd aangevoerd op startdatum 12 december werd bepaald als onderdeel van de beddingmeting tijdens het bedrijfsbezoek op 12 december (zie paragraaf 2.5.5). De hoeveelheid NPK die na 12 december in de vrijloopstal werd aangevoerd met strooisel werd berekend als: hoeveelheid aangevoerd strooisel * NPK-gehalte strooisel. Strooisel bestond bij vrijloopstal Koonstra alleen uit houtsnippers. De hoeveelheden houtsnippers werden zowel op basis van gewicht als op basis van volume aangevoerd. Monsters van nog aanwezige partijen houtsnippers of apart gehouden houtsnippers werden verzameld tijdens het bedrijfsbezoek op 19 februari (aanvoer van 13 februari) en op 12 maart (aanvoer van 11 en 12 maart). Deze monsters werden door het ETE servicelaboratorium (Livestock Research, Wageningen) geanalyseerd op drogestof, as, totaal N, totaal P, totaal K en totaal C. De NPK-aanvoer met houtsnippers werd voor de partijen aangevoerd in de vrijloopstal tot en met 22 februari berekend met de samenstelling (en gemeten bulkdichtheid, bij aanvoer op volume) van het monster genomen op 12 februari en voor de partijen aangevoerd tot en met 23 april met de gemiddelde samenstelling van twee monsters genomen op 12 maart. Bulkdichtheden van aangevoerde houtsnippers werden op dezelfde manier gemeten als de bulkdichtheid van de bedding (paragraaf 2.5.5). Met de berekende aanvoer van hoeveelheid strooisel en NPK met strooisel per aanvoerdatum werd vervolgens de cumulatieve aanvoer van strooisel en NPK met strooisel per meetmoment berekend voor de balansperiode.

2.5.2 NPKruwvoer

De hoeveelheid NPK die in de vrijloopstal werd aangevoerd met ruwvoer werd per dag berekend als: dagelijks gevoerde hoeveelheid product per ruwvoersoort * NPK-gehalte per ruwvoersoort. Met de NPK-aanvoer per dag werd vervolgens de cumulatieve NPK-aanvoer per meetmoment berekend voor de balansperiode.

Het ruwvoer bestond uit graskuil en maïskuil (~48% snijmaïs, ~47% MKS, ~5% CCM (zonder spil)). De dagelijks gevoerde hoeveelheden product per ruwvoersoort werden overgenomen van de registratie door de voerrobot (Lely Vector, Lely, Maassluis). De NPK-gehalten in de kuilen waren bepaald door Blgg AgroXpertus (Wageningen). Het K-gehalte van de maïskuil was niet bepaald; daarvoor werd een gemiddelde (8,6 g kg⁻¹ ds) berekend op basis van de aandelen van de drie producten in de maïskuil en hun K-gehalten uit de Veevoedertabel (CVB, 2011). Van het totale gemengde (ruwvoer)rantsoen werd naar schatting (op basis van wekelijkse afgevoerde volumes) 0,5 tot 1% afgevoerd als restvoer. Dit restvoer werd gevoerd aan het jongvee en de droogstaande koeien in de andere helft van de stal. Vanwege de kleine hoeveelheid werd de aanvoer van NPK met ruwvoer voor deze afvoer niet gecorrigeerd.

2.5.3 NPKkrachtvoer

De hoeveelheid NPK die in de vrijloopstal werd aangevoerd met krachtvoer en mineralenmengsels werd per dag berekend als: dagelijks gevoerde hoeveelheid product per soort * NPK-gehalte per soort. Met de NPK-aanvoer per dag werd vervolgens de cumulatieve NPK-aanvoer per meetmoment berekend voor de balansperiode.

Het mengvoer bestond uit een eiwitmix (50% sojaschroot, 50% raapzaadschroot) en een energiemix (wisselende aandelen mais, bietenpulp en voertarwe). De mineralenmengsels bestonden uit een mineralenmix, zout en kalk. De dagelijks gevoerde hoeveelheden product per soort werden
overgenomen van de registratie door de voerrobot. De gebruikte NPK-gehalten waren afkomstig van de leverancier (Feijen, Dalfsen). Van het totale gemengde (krachtvoer) rantsoen werd naar schatting (op basis van wekelijks afgevoerde volumes) 0,5 tot 1% afgevoerd als restvoer. Dit restvoer werd gevoerd aan het jongvee en de droogstaande koeien in de andere helft van de stal. Vanwege de kleine hoeveelheid werd de aanvoer van NPK met krachtvoer voor deze afvoer niet gecorrigeerd.

2.5.4 NPK\textsubscript{drijfmest}

De hoeveelheid NPK die tijds de balansperiode in de vrijloopstal werd vastgelegd in geproduceerde drijfmest werd berekend op basis van de toename in hoeveelheid NPK in drijfmest in de kelder in de periode tussen 12 december 2014 en 19 februari 2015. Tijdens deze periode werd er geen mest uit de kelder gehaald. Daarna werd er, afgaande op de daling van het mestpeil, wel drijfmest uit de rechter kelder afgevoerd. Door de afvoer was de overblijvende laag mest minder representatief om daarmee de tussentijds geproduceerde hoeveelheid drijfmest te berekenen. Ook was het lastig om deze laag voldoende representatief te bemonsteren, omdat na afvoer de overblijvende mest vaak dikker is. Tussen 12 december en 19 februari werd de drijfmest in de kelder minimaal verstoorde. Deze periode werd daarom beschouwd als de meest zuivere meetperiode om de drijfmestproductie en NPK-vastlegging in drijfmest te berekenen.

De hoeveelheid NPK in drijfmest in de kelder werd berekend als: volume drijfmest * dichtheid drijfmest * NPK-gehalte drijfmest. Het drijfmestvolume in de kelder werd berekend als: drijfmesthoogte * oppervlakte keldervloer. De drijfmesthoogte werd bij ieder bedrijfsbezoek gemeten op 12 plaatsen, regelmatig verdeeld over de totale lengte van de roostervloer, en daarna gemiddeld. Vanwege de flappen onder de roostervloer kon de meetbuis alleen in een hoek van 70\(^\circ\) tussen de roosters gestoken worden. Dit gaf een overschatting van het gemeten drijfmestpeil van circa 5%. Voor deze overschatting werd gecorrigeerd door de gemeten waarden met factor 0,95 te vermenigvuldigen. De rechter drijfmestkelder bestond uit één aaneengesloten oppervlak van 332 m\(^2\). Rechts achter de stal (rechtsboven in de plattegrond, Figuur 1) bevond zich een mixerput met een vaste elektrische mestmixer. Voor aanvang van iedere drijfmestmeting werd de drijfmest in de kelder 5 tot 10 minuten gemixt.

Ieder bedrijfsbezoek werd de drijfmest bemonsterd. Het bleek niet mogelijk om de drijfmest te bemonsteren onder de roostervloer; de multisampler (lengte 1,8 m; diameter 35 mm) (Eijkelkamp, Giesbeek) kon niet door de openingen gestoken worden. Daarom werd de drijfmest bemonsterd uit de mixerput. Alle genomen monsters werden door het ETE-servicelaboratorium geanalyseerd op dichtheid, drogestof, as, totaal N, NH\textsubscript{4}-N, totaal P, totaal K en totaal C.

Met lineaire regressie (Genstat, 17e editie) werd de relatie tussen de toename van de hoeveelheid geproduceerde drijfmest en NPK in drijfmest (kelder + afvoer) en de tijd (datumwaarde) geanalyseerd voor de meetperiode. Met de afgeleide relaties werd de cumulatieve geproduceerde hoeveelheid drijfmest en NPK in drijfmest per meetmoment berekend voor de balansperiode.

2.5.5 NPK\textsubscript{bedding}

De hoeveelheid NPK die in de vrijloopstal werd vastgelegd in de bedding werd per meetmoment berekend als: hoogte bedding * oppervlakte bedding * bulkdichtheid bedding * NPK-gehalte bedding.

De bedrijfsbezoeken vielen uitgevoerd voor het dagelijkse moment van frezen. De totale beddengoedhoogte werd gemeten op 21 plaatsen verdeeld over het beddengoedoppervlak en daarna gemiddeld (Figuur 2). De hoogte van de onderlaag werd gemeten op vier plaatsen, regelmatig verdeeld over de diagonale lijn van de bedding (lijn met punten 1 tot 7, Figuur 2) en gemiddeld. De bulkdichtheid van zowel de onderlaag als de bovenlaag werd eveneens gemeten op de vier plaatsen op de diagonale lijn. Op deze plaatsen werd een gat in de bedding gespit, werd de hoogte van de onderlaag gemeten en werd het beddengoedmateriaal per laag verzameld en gemengd. De bulkdichtheid werd vervolgens bepaald door een emmer met een volume van 5 L te vullen met bedding en deze stevig aan te drukken. Het gewicht van de volle emmer werd vervolgens gedeeld door het volume. De
bulkdichtheid werd per laag gemiddeld over de vier meetplaatsen. Naast de bulkdichtheid werd ook de porositeit (luchtgehalte) van de bedding bepaald. De volle emmer werd daarvoor aangevuld met water tot het niveau van 5 L en opnieuw gewogen. Het verschil in gewicht tussen de volle emmer met en zonder water was een indicatie voor het volume lucht in de bedding, bij aanname dat alle poriën gevuld werden met water. De porositeit werd berekend als: (gewicht volle emmer met water - gewicht volle emmer zonder water) / volume emmer. De porositeit werd eveneens gemiddeld over de vier meetplaatsen. Bij alle metingen met gebruik van emmers werd gecorrigeerd voor het eigengewicht van de emmers.

![Figuur 2](https://example.com/figuur2.png)

Figuur 2 *Meetpatroon voor bepaling van de gemiddelde beddinghoogte (de onderkant van deze figuur is gelijk aan de onderkant van de stalplattegrond in Figuur 1)*

Op de vier plaatsen op de diagonale lijn werd ook de deeltjesgrootte van de bovenlaag gemeten. De emmer van 5 L werd gevuld met bedding, gewogen en gezeefd over twee zeven met vierkante mazen; eerst over een zeef met een maaswijdte van 12 x 12 mm en daarna over een zeef met een maaswijdte van 6 x 6 mm. Het overblijvende materiaal op beide zeven werd gewogen. Op basis van de gewichten kon het percentage deeltjes > 12 mm, > 6 < 12 mm en < 6 mm worden berekend.

De hoeveelheid bedding en NPK in de bedding werd apart berekend voor beide lagen en eerst voor de onderlaag. Voor de berekening van de hoeveelheid bedding en NPK in de onderlaag werd eerst de ontwikkeling van de gemeten hoogte van de onderlaag over de tijd, de bulkdichtheid en de tijd en de NPK-gehalten en de tijd geanalyseerd met lineaire regressie. Lineaire relaties werden geschikt gevonden om deze ontwikkelingen te beschrijven, omdat verwacht werd dat de samenstelling van de onderlaag over de tijd relatief weinig en daarnaast alleen geleidelijk zou veranderen. Aan de onderlaag werd namelijk geen materiaal toegevoegd en de composteringsactiviteit was gering. Lineaire relaties (mits significant) konden gebruikt worden om het effect van random meetfouten te verkleinen, waarmee naar verwachting ook de betrouwbaarheid van de berekening van de hoeveelheid bedding en NPK in bedding in de bovenlaag kon verbeteren. Een significante (P < 0,05) relatie werd alleen gevonden voor de ontwikkeling van de hoogte van de onderlaag (paragraaf 3.3.5). Met deze relatie werd vervolgens de hoogte van de onderlaag per meetmoment berekend. Bij de andere parameters werden de gemeten waarden gemiddeld over de balansperiode.

De hoogte van de bovenlaag werd vervolgens per meetmoment berekend door van de totale gemeten beddinghoogte de berekende hoogte van de onderlaag af te trekken. Vervolgens werd de hoeveelheid bedding en NPK in de bovenlaag per meetmoment berekend als: hoogte bovenlaag * oppervlakte bedding * bulkdichtheid bovenlaag * NPK-gehalte bovenlaag. De totale hoeveelheid bedding en NPK in
de bedding werd tenslotte berekend door per meetmoment de hoeveelheden in onderlaag en bovenlaag bij elkaar op te tellen.

2.5.6 \(\text{NPK}_{\text{melk}} \)

De hoeveelheid NPK die in de vrijloopstal werd vastgelegd in geproduceerde melk werd berekend als: hoeveelheid aan de fabriek geleverde melk * NPK-gehalte melk. De geleverde hoeveelheden melk, het eiwitgehalte, vetgehalte en ureumgetal werden per drie dagen gemeten en geregistreerd door de melkfabriek. Deze gegevens werden voor de balansberekeningen overgenomen van de leveringsoverzichten. Het N-gehalte in de melk werd berekend als: melkeiwitgehalte * 15,7% (CBS, 2011). Voor het P- en K-gehalte werd een standaardwaarde gebruikt van respectievelijk 1,0 en 1,6 g kg\(^{-1}\) melk (CBS, 2011). Met de berekende gegevens per drie dagen werd vervolgens per meetmoment de cumulatieve hoeveelheid geleverde melk en de in melk vastgelegde NPK berekend voor de balansperiode.

2.5.7 \(\text{NPK}_{\text{dieren}} \)

De veestapel in vrijloopstal Koonstra bestond alleen uit melkgevende koeien. In het lichaam van volwassen, melkgevende koeien kan zowel sprake zijn van NPK-vastlegging uit het opgenomen voer als van NPK-mobilisatie naar de melk. Dit is in de praktijk echter niet eenvoudig te meten. Verwacht mag worden dat er bij een normaal presterende veestapel geen sprake is van NPK-vastlegging of -mobilisatie van betekenis. Op grond daarvan werd besloten de post ‘NPK-vastlegging in dieren’ op de balans op nul te zetten.
3 Resultaten

3.1 Beddingeigenschappen

3.1.1 Beddingtemperatuur

De beddingtemperatuur, gemeten door de melkveehouder, varieerde tijdens de balansperiode op 10 cm diepte tussen de 15 en 48°C, op 20 cm tussen de 18 en 56°C, op 40 cm tussen de 25 en 53°C en op 50 cm diepte tussen de 22 en 44°C (Figuur 3). De temperatuur op 10 cm diepte was meestal lager dan dieper in de bedding vanwege het afkoelende effect van de omgevingstemperatuur. De hoogste temperatuur werd gerealiseerd op een diepte van 20 cm; dieper in de bedding was de temperatuur lager. Dit werd verklaard doordat in de onderlaag weinig compostering optrad, en deze laag vooral werd opgewarmd door composteringsactiviteit in de bovenlaag. De temperatuurrange varieerde relatief sterk over de balansperiode; een constante temperatuur van 50 tot 55°C werd niet gerealiseerd. Op twee momenten zakte de temperatuur ver terug, tot minimum waarden van 15 tot 20°C.

Figuur 3 Ontwikkeling van de temperatuur in de bedding van de vrijloopstal tijdens de balansperiode op 10, 20, 40 en 50 cm diepte (ieder meetpunt is het gemiddelde van vier submetingen)
3.1.2 Beddinghoogte

De beddinghoogte, gemeten door de melkveehouder, varieerde tussen de 53 en 62 cm tijdens de balansperiode (Figuur 4).

Figuur 4 Ontwikkeling van de beddinghoogte in de vrijloopstal tijdens de balansperiode, gemeten door de melkveehouder

De beddinghoogte, gemeten door de WLR-medewerker, varieerde tussen de 45 en 55 cm tijdens de balansperiode (Figuur 5). De hoogte van de onderlaag nam tijdens de balansperiode significant (P = 0,006) af, van 34 cm aan het begin van de balansperiode tot 21 cm aan het einde. De berekende hoogte van de bovenlaag nam significant (P = 0,035) toe, van 21 cm aan het begin tot 33 cm aan het einde.

Figuur 5 Hoogte van de bedding in de vrijloopstal tijdens de balansperiode, gemeten door de medewerker van WLR, gesplitst in hoogte van de bovenlaag, de onderlaag en de hele laag. De hoogte van de hele laag en onderlaag werd gemeten; de hoogte van de bovenlaag werd per meetpunt berekend als hoogte hele laag - hoogte onderlaag.
3.1.3 Dichtheid bedding

De dichtheid van de bovenlaag nam toe van 0,36 kg L\(^{-1}\) aan het begin van de balansperiode tot 0,52 aan het einde (Figuur 6). De dichtheid van de onderlaag varieerde tijdens de balansperiode tussen 0,27 en 0,35 kg L\(^{-1}\) (Figuur 6) en was gemiddeld 0,30 kg L\(^{-1}\).

![Figuur 6](image)

Figuur 6 Ontwikkeling van de dichtheid van de bovenlaag en onderlaag van de bedding in de vrijloopstal tijdens de balansperiode

3.1.4 Porositeit bedding

De porositeit van de bovenlaag varieerde tussen de 35 en 60% tijdens de balansperiode (Figuur 7) en was gemiddeld 49%. De porositeit van de onderlaag varieerde tussen de 55 en 65% (Figuur 7) en was gemiddeld 61%.

![Figuur 7](image)

Figuur 7 Ontwikkeling van de porositeit van de bovenlaag en onderlaag van de bedding in de vrijloopstal tijdens de balansperiode
3.1.5 Deeltjesgrootte bedding

De deeltjesgrootte in de bovenlaag nam tijdens de balansperiode geleidelijk af (Figuur 8). Het percentage deeltjes kleiner dan 6 mm nam toe van 11 tot 56%, het percentage deeltjes groter dan 12 mm nam af van 67 tot 22% en het percentage deeltjes tussen 6 en 12 mm bleef op een constant niveau rond 21%.

Figuur 8 Ontwikkeling van de deeltjesgrootte in de bovenlaag van de bedding, aandeel fractie in totaal gewicht

De deeltjesgrootte in de onderlaag nam tijdens de balansperiode niet duidelijk toe of af (Figuur 9). Het percentage deeltjes kleiner dan 6 mm varieerde tussen 11 en 44% (gemiddeld 27%), het percentage deeltjes groter dan 12 mm varieerde tussen de 40 en 71% (gemiddeld 56%) en het percentage deeltjes tussen 6 en 12 mm varieerde tussen de 16 en 20% (gemiddeld 18%).

Figuur 9 Ontwikkeling van deeltjesgrootte in de onderlaag van de bedding, aandeel fractie in totaal gewicht
3.2 Samenstelling veestapel

Tijdens de balansperiode waren er gemiddeld 81 dieren in de vrijloopstal aanwezig, bestaande uit alleen melkgevende koeien. Tijdens de balansperiode nam het aantal aanwezige koeien licht af (Figuur 10).

![Figuur 10](image-url) Ontwikkeling van het dagelijkse aantal aanwezige koeien in de vrijloopstal tijdens de balansperiode

3.3 Resultaten per balanspost

3.3.1 NPKstrooisel

De samenstelling van bemonsterde partijen strooisel (excl. aangevoerd en aanwezig materiaal op 12 december, zie daarvoor Tabel 5, Tabel 6) is gegeven in Tabel 2. In totaal (inclusief het aangevoerde en al aanwezige materiaal op 12 december) werd tijdens de balansperiode 347 ton houtsnippers aangevoerd, met daarin 1583 kg N, 149 kg P en 921 kg K (Figuur 11).

![Figuur 11](image-url) Aantal dieren per datum

Tabel 2

<table>
<thead>
<tr>
<th>Datum</th>
<th>Ds</th>
<th>As</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>C</th>
<th>C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-02-2015</td>
<td>570</td>
<td>7</td>
<td>2,91</td>
<td>0,25</td>
<td>1,42</td>
<td>284</td>
<td>98</td>
</tr>
<tr>
<td>12-03-2015</td>
<td>550</td>
<td>11</td>
<td>3,43</td>
<td>0,31</td>
<td>1,74</td>
<td>276</td>
<td>80</td>
</tr>
<tr>
<td>12-03-2015</td>
<td>442</td>
<td>11</td>
<td>3,36</td>
<td>0,29</td>
<td>1,15</td>
<td>222</td>
<td>66</td>
</tr>
</tbody>
</table>
Figuur 11 Cumulatieve aanvoer van strooisel en NPK met strooisel in de vrijloopstal tijdens de balansperiode

3.3.2 NPKruwvoer

In totaal werd met ruwvoer 4112 kg N, 654 kg P en 4460 kg K in de vrijloopstal aangevoerd (Figuur 12).

Figuur 12 Cumulatieve aanvoer van NPK met ruwvoer in de vrijloopstal tijdens de balansperiode
3.3.3 NPK\textsubscript{krachtoor}

In totaal werd met krachtvoer 2431 kg N, 344 kg P en 609 kg K in de vrijloopstal aangevoerd (Figuur 13).

Figuur 13
Cumulatieve aanvoer van NPK met krachtvoer in de vrijloopstal tijdens de balansperiode

3.3.4 NPK\textsubscript{drijfmest}

Een overzicht van de ontwikkeling in drijfmesthoogte en het drijfmestvolume in de rechter kelder is gegeven in Tabel 3 en een overzicht van de ontwikkeling in drijfmestsamenstelling in Tabel 4. Omdat er onduidelijkheden waren rondom hoeveelheid en tijdstip van drijfmestafvoer uit de rechter kelder kon er geen betrouwbaar overzicht van afgevoerde hoeveelheden gegeven worden. De meting van het drijfmestpeil bij het tweede bedrijfsbezoek (24 december) werd uitgevoerd door een andere WLR-medewerker; het gemeten drijfmestpeil bleek daardoor te hoog te zijn in verhouding tot de andere waarden en te leiden tot een uitblijver in de gegevens. De meetresultaten van het tweede bedrijfsbezoek zijn wel weergegeven in Tabel 3 en Tabel 4 maar niet gebruikt bij verdere verwerking van de gegevens.

Tabel 3
Ontwikkeling van de drijfmesthoogte (m) en drijfmestvolume (m3) in de drijfmestkelder van de vrijloopstal tijdens de balansperiode

<table>
<thead>
<tr>
<th>Datum</th>
<th>Drijfmesthoogte (m)</th>
<th>Drijfmestvolume (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-12-2014</td>
<td>1,18</td>
<td>392</td>
</tr>
<tr>
<td>24-12-2014</td>
<td>1,331</td>
<td>4411</td>
</tr>
<tr>
<td>10-01-2015</td>
<td>1,33</td>
<td>441</td>
</tr>
<tr>
<td>31-01-2015</td>
<td>1,38</td>
<td>459</td>
</tr>
<tr>
<td>19-02-2015</td>
<td>1,43</td>
<td>474</td>
</tr>
<tr>
<td>12-03-2015</td>
<td>1,38</td>
<td>458</td>
</tr>
<tr>
<td>31-03-2015</td>
<td>0,85</td>
<td>281</td>
</tr>
<tr>
<td>24-04-2015</td>
<td>0,48</td>
<td>159</td>
</tr>
<tr>
<td>15-05-2015</td>
<td>0,45</td>
<td>151</td>
</tr>
</tbody>
</table>

1 uitblijver, bedrijfsbezoek en meting uitgevoerd door een andere WLR-medewerker
Tabel 4
Ontwikkeling in samenstelling van drijfmest in de drijfmestkelder van de vrijloopstal tijdens de balansperiode (in g kg⁻¹ vers product; dichtheid in kg L⁻¹).

<table>
<thead>
<tr>
<th>Datum</th>
<th>Dichtheid</th>
<th>DS</th>
<th>As</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>C</th>
<th>NH₄-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-12-2014</td>
<td>1,03</td>
<td>74</td>
<td>18</td>
<td>4,19</td>
<td>0,69</td>
<td>4,43</td>
<td>32</td>
<td>2,01</td>
</tr>
<tr>
<td>24-12-2014</td>
<td>1,03</td>
<td>73</td>
<td>18</td>
<td>4,15</td>
<td>0,71</td>
<td>4,47</td>
<td>30</td>
<td>1,94</td>
</tr>
<tr>
<td>10-01-2015</td>
<td>1,03</td>
<td>76</td>
<td>8</td>
<td>4,13</td>
<td>0,69</td>
<td>4,48</td>
<td>31</td>
<td>2,06</td>
</tr>
<tr>
<td>31-01-2015</td>
<td>1,03</td>
<td>81</td>
<td>18</td>
<td>4,32</td>
<td>0,72</td>
<td>4,49</td>
<td>35</td>
<td>1,96</td>
</tr>
<tr>
<td>19-02-2015</td>
<td>1,02</td>
<td>82</td>
<td>19</td>
<td>4,64</td>
<td>0,76</td>
<td>4,64</td>
<td>35</td>
<td>2,06</td>
</tr>
<tr>
<td>12-03-2015</td>
<td>1,03</td>
<td>71</td>
<td>17</td>
<td>4,00</td>
<td>0,59</td>
<td>4,53</td>
<td>29</td>
<td>2,05</td>
</tr>
<tr>
<td>31-03-2015</td>
<td>1,03</td>
<td>65</td>
<td>16</td>
<td>3,69</td>
<td>0,55</td>
<td>4,36</td>
<td>28</td>
<td>1,84</td>
</tr>
<tr>
<td>24-04-2015</td>
<td>1,03</td>
<td>70</td>
<td>18</td>
<td>3,97</td>
<td>0,59</td>
<td>4,29</td>
<td>29</td>
<td>2,07</td>
</tr>
<tr>
<td>15-05-2015</td>
<td>1,02</td>
<td>61</td>
<td>16</td>
<td>3,34</td>
<td>0,50</td>
<td>3,95</td>
<td>27</td>
<td>1,70</td>
</tr>
</tbody>
</table>

Lineaire regressie gaf goede relaties tussen de ontwikkeling van de cumulatief geproduceerde hoeveelheid NPK in drijfmest en de tijd (Figuur 14). De relaties werden beschreven als:

Hoeveelheid (ton) op gekozen datum = -48690 + 1,169 * datumwaarde (P = 0,027; R²adj. = 92%)
N (kg) op gekozen datum = -331529 + 7,936 * datumwaarde (P = 0,009; R²adj. = 98%)
P (kg) op gekozen datum = -54522 + 1,3052 * datumwaarde (P = 0,002; R²adj. = 99%)
K (kg) op gekozen datum = -270718 + 6,491 * datumwaarde (P = 0,011; R²adj. = 97%)

Figuur 14
Ontwikkeling van de hoeveelheid aanwezige drijfmest en NPK in drijfmest in de kelder van de vrijloopstal tijdens de gekozen meetperiode (exclusief uitbijter op tweede meetmoment)

De totale drijfmestproductie over de balansperiode werd berekend op 180 ton en de totale vastlegging van NPK in geproduceerde drijfmest op 1222 kg N, 201 kg P en 1000 kg K (Figuur 15).
3.3.5 NPKbedding

De hoogte van de onderlaag nam sterk af tussen het eerste en tweede bedrijfsbezoek (Figuur 5). Deze afname lijkt onlogisch en was waarschijnlijk het gevolg van meting door een andere WLR-medewerker dan bij het eerste bedrijfsbezoek. De gemeten waarde (25 cm) was daardoor te laag in verhouding tot de andere waarden en leidde tot een uitbijter in de gegevens. Deze waarde is daarom niet gebruikt bij verdere verwerking van de gegevens. Lineaire regressie gaf een significante negatieve relatie tussen de ontwikkeling van de hoogte van de onderlaag en de tijd. Deze relatie werd beschreven als:

\[Y = 33,95 - 0,000801 \times X \quad (P = 0,002; \ R^2_{adj} = 79\%) \] (Figuur 16)

Figuur 15 Cumulatieve vastlegging van NPK in geproduceerde drijfmest in kelder van de vrijloopstal tijdens de balansperiode

Figuur 16 Ontwikkeling van de hoogte van de onderlaag van de bedding in de vrijloopstal tijdens de balansperiode, gemeten waarden en lineaire trendlijn (exclusief uitbijter op het tweede meetmoment)
De gevonden relatie werd gebruikt om de hoogte van de onderlaag per tijdstip te berekenen (Figuur 18). Lineaire regressie liet geen significante relatie zien tussen de ontwikkeling van de bulkdichtheid van de onderlaag en de tijd (P = 0,53). Daarom werd er voor de hele balansperiode gerekend met een gemiddelde bulkdichtheid (0,30 kg L⁻¹). De NPK-gehalten in de onderlaag waren op het eerste meetpunt relatief hoog vergeleken met later (Tabel 5). Na een eerste berekening van de hoeveelheden NPK in de onderlaag op alle meetpunten bleek dat deze op het eerste meetpunt duidelijk hoger waren dan later. Een afname van de hoeveelheden P en K in de grotendeels onbewerkte onderlaag was niet logisch; een toename als gevolg van eventueel lekken van P en K uit de bovenlaag lag meer voor de hand. Mogelijk was het monster van de onderlaag op het eerste meetmoment vervuild met restanten van de oude bovenlaag; dit zou de relatief hoge gehalten op dit meetpunt verklaren, evenals de relatief lage C/N-verhouding. Om overschatting van de hoeveelheden NPK in de onderlaag te voorkomen, werd de samenstelling van de onderlaag op het eerste meetpunt buiten de verdere verwerking van de gegevens gelaten. Na het weglaten van de samenstelling op het eerste meetpunt was er geen significante relatie tussen het N-gehalte en de tijd (P = 0,38), het P-gehalte en de tijd (P = 0,63) en het K-gehalte en de tijd (P = 0,59). Op basis van het ontbreken van significante relaties werd er voor de hele balansperiode gerekend met een gemiddeld N-gehalte (6,51 g kg⁻¹), P-gehalte (0,71 g kg⁻¹) en K-gehalte (4,38 g kg⁻¹).

Tabel 5
Ontwikkeling in de samenstelling van de onderlaag van de bedding in de vrijloopstal tijdens de balansperiode (in g kg⁻¹ product, behalve pH en berekende C/N-verhouding).

<table>
<thead>
<tr>
<th>Datum</th>
<th>DS</th>
<th>As</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>C</th>
<th>NH₄-N</th>
<th>NO₃-N</th>
<th>pH</th>
<th>C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-12-2014</td>
<td>589</td>
<td>71</td>
<td>8,35</td>
<td>1,21</td>
<td>7,29</td>
<td>296</td>
<td>0,49</td>
<td>< 0,01</td>
<td>7,6</td>
<td>35</td>
</tr>
<tr>
<td>24-12-2014</td>
<td>677</td>
<td>33</td>
<td>5,41</td>
<td>0,51</td>
<td>3,08</td>
<td>342</td>
<td>1,07</td>
<td>< 0,01</td>
<td>7,4</td>
<td>63</td>
</tr>
<tr>
<td>10-01-2015</td>
<td>660</td>
<td>61</td>
<td>7,68</td>
<td>0,93</td>
<td>5,44</td>
<td>316</td>
<td>1,09</td>
<td>< 0,01</td>
<td>7,7</td>
<td>41</td>
</tr>
<tr>
<td>31-01-2015</td>
<td>597</td>
<td>83</td>
<td>9,09</td>
<td>1,08</td>
<td>6,61</td>
<td>240</td>
<td>0,60</td>
<td>< 0,01</td>
<td>7,2</td>
<td>26</td>
</tr>
<tr>
<td>19-02-2015</td>
<td>627</td>
<td>32</td>
<td>5,69</td>
<td>0,59</td>
<td>3,80</td>
<td>326</td>
<td>0,71</td>
<td>< 0,01</td>
<td>7,6</td>
<td>57</td>
</tr>
<tr>
<td>12-03-2015</td>
<td>635</td>
<td>28</td>
<td>6,77</td>
<td>0,62</td>
<td>4,18</td>
<td>298</td>
<td>0,86</td>
<td>< 0,01</td>
<td>7,6</td>
<td>44</td>
</tr>
<tr>
<td>31-03-2015</td>
<td>706</td>
<td>22</td>
<td>5,59</td>
<td>0,57</td>
<td>3,75</td>
<td>359</td>
<td>0,35</td>
<td>< 0,01</td>
<td>6,8</td>
<td>64</td>
</tr>
<tr>
<td>24-04-2015</td>
<td>489</td>
<td>39</td>
<td>6,48</td>
<td>0,71</td>
<td>4,28</td>
<td>326</td>
<td>0,28</td>
<td>< 0,01</td>
<td>6,8</td>
<td>50</td>
</tr>
<tr>
<td>15-05-2015</td>
<td>849</td>
<td>40</td>
<td>5,34</td>
<td>0,69</td>
<td>3,88</td>
<td>341</td>
<td>0,32</td>
<td>< 0,01</td>
<td>7,1</td>
<td>64</td>
</tr>
</tbody>
</table>

¹ De PK-gehalten op dit meetpunt waren relatief hoog vergeleken met later, en de C/N-verhouding was relatief laag

Op basis van bovenstaande informatie werd de hoeveelheid bedding en NPK in de onderlaag berekend. De hoeveelheid bedding nam af van 130 ton aan het begin van de balansperiode tot 80 ton aan het einde. Ook de aanwezige hoeveelheden NPK namen af (Figuur 17); over de hele balansperiode werd 520 kg N, 57 kg P en 350 kg K in de onderlaag vastgelegd.
Figuur 17 Cumulatieve vastlegging van NPK in de onderlaag van de bedding van de vrijloopstal tijdens de balansperiode

De berekende hoogte van de bovenlaag is gegeven in Figuur 18. De NPK-gehalten in de bovenlaag namen aanzienlijk toe tijdens de balansperiode (Tabel 6). Er werd tijdens de balansperiode geen bedding uit de stal gehaald. Aan het einde van de balansperiode was er 232 ton bedding in de bovenlaag aanwezig, met daarin vastgelegd 2961 kg N, 469 kg P en 2876 kg K (Figuur 19).

Figuur 18 Hoogte van de bedding in de vrijloopstal tijdens de balansperiode, gesplitst in hoogte van de bovenlaag, de onderlaag en de hele laag. De hoogte van de hele laag werd gemeten, de hoogte van de onderlaag werd berekend op basis van een significante \(P < 0,05 \) lineaire relatie tussen de gemeten waarden en de tijd, en de hoogte van de bovenlaag werd berekend als: gemeten hoogte hele laag - berekende hoogte onderlaag.
Tabel 6
Ontwikkeling in de samenstelling van de bovenlaag van de bedding in de vrijloopstal tijdens de balansperiode (in g kg⁻¹ product, behalve pH en berekende C/N-verhouding).

<table>
<thead>
<tr>
<th>Datum</th>
<th>DS</th>
<th>As</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>C</th>
<th>NH₄⁻N</th>
<th>NO₃⁻N</th>
<th>pH</th>
<th>C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-12-2014</td>
<td>578</td>
<td>16</td>
<td>3,74</td>
<td>0,26</td>
<td>1,80</td>
<td>285</td>
<td>0,13</td>
<td>< 0,010</td>
<td>6,6</td>
<td>76</td>
</tr>
<tr>
<td>24-12-2014</td>
<td>556</td>
<td>30</td>
<td>5,37</td>
<td>0,62</td>
<td>3,56</td>
<td>271</td>
<td>0,16</td>
<td>< 0,010</td>
<td>6,9</td>
<td>50</td>
</tr>
<tr>
<td>10-01-2015</td>
<td>448</td>
<td>31</td>
<td>6,09</td>
<td>0,80</td>
<td>4,90</td>
<td>203</td>
<td>0,52</td>
<td>< 0,010</td>
<td>8,3</td>
<td>33</td>
</tr>
<tr>
<td>31-01-2015</td>
<td>425</td>
<td>72</td>
<td>10,39</td>
<td>1,55</td>
<td>8,62</td>
<td>190</td>
<td>0,22</td>
<td>< 0,010</td>
<td>8,2</td>
<td>18</td>
</tr>
<tr>
<td>19-02-2015</td>
<td>415</td>
<td>45</td>
<td>7,52</td>
<td>1,04</td>
<td>7,23</td>
<td>182</td>
<td>0,17</td>
<td>< 0,010</td>
<td>7,7</td>
<td>24</td>
</tr>
<tr>
<td>12-03-2015</td>
<td>403</td>
<td>47</td>
<td>7,77</td>
<td>1,12</td>
<td>6,83</td>
<td>185</td>
<td>0,28</td>
<td>< 0,010</td>
<td>7,8</td>
<td>24</td>
</tr>
<tr>
<td>31-03-2015</td>
<td>458</td>
<td>62</td>
<td>10,46</td>
<td>1,47</td>
<td>8,75</td>
<td>216</td>
<td>0,20</td>
<td>< 0,010</td>
<td>7,8</td>
<td>21</td>
</tr>
<tr>
<td>24-04-2015</td>
<td>425</td>
<td>72</td>
<td>11,26</td>
<td>1,79</td>
<td>10,42</td>
<td>183</td>
<td>0,17</td>
<td>< 0,010</td>
<td>8,2</td>
<td>16</td>
</tr>
<tr>
<td>15-05-2015</td>
<td>680</td>
<td>112</td>
<td>12,76</td>
<td>2,02</td>
<td>12,39</td>
<td>217</td>
<td>0,19</td>
<td>< 0,010</td>
<td>8,1</td>
<td>17</td>
</tr>
</tbody>
</table>

Figuur 19 Cumulatieve vastlegging van NPK in de bovenlaag van de bedding van de vrijloopstal tijdens de balansperiode

Aan het einde van de balansperiode was er in totaal 312 ton bedding in de vrijloopstal aanwezig, met daarin vastgelegd 3481 kg N, 526 kg P en 3226 kg K (Figuur 20).
3.3.6 \(\text{NPK}_{\text{melk}} \)

De gemiddelde melkproductie van de koeien in de vrijloopstal tijdens de balansperiode werd berekend op 22,4 kg per koe per dag en 8176 kg per koe per jaar. De totale melkproductie over de balansperiode was 280525 kg, het gemiddelde eiwitgehalte 3,64%, het gemiddelde vetgehalte 4,17% en het gemiddelde ureumgetal 22. De totale vastlegging van NPK in geproduceerde melk in de vrijloopstal over de balansperiode werd berekend op 1601 kg N, 281 kg P en 449 kg K (Figuur 21).
3.3.7 NPK\textsubscript{dieren}

De vastlegging van NPK in dieren was op nul gesteld (paragraaf 2.5.7).

3.4 NPK balans

\textbf{N-aanvoer}

De cumulatieve N-aanvoer in de vrijloopstal tijdens de balansperiode was 8126 kg (Figuur 22) \textit{(Fout! Verwijzingsbron niet gevonden.)}. Daarvan werd 19\% aangevoerd met strooisel, 51\% met ruwvoer en 30\% met krachtvoer.

\textbf{Figuur 22} \textit{Cumulatieve totale N-aanvoer in de vrijloopstal tijdens de balansperiode, gesplitst in aanvoer met strooisel, ruwvoer en krachtvoer}

\textbf{N-vastlegging}

De cumulatieve N-vastlegging in de vrijloopstal tijdens de balansperiode was 6304 kg (Figuur 23) \textit{(Fout! Verwijzingsbron niet gevonden.)}. Daarvan werd 19\% vastgelegd in drijfmest, 55\% in de bedding en 26\% in melk.
Figuur 23 Cumulatieve totale N-vastlegging in de vrijloopstal tijdens de balansperiode, gesplitst in vastlegging in drijfmest, bedding en melk

Ongecorrigeerde NPK-balans

De cumulatieve (ongecorrigeerde) NPK-balansen zijn per meetmoment gegeven in **Fout! Verwijzingsbron niet gevonden.**, Tabel 10 en Tabel 11 (Bijlage 1). De ontwikkeling van de cumulatieve N-balans over de tijd is ook gegeven in Figuur 24.

Figuur 24 Ongecorrigeerde cumulatieve N-balans van de vrijloopstal tijdens de balansperiode

Het verschil tussen aanvoer en vastlegging op de P-balans varieerde tussen de -3 en 21% (Figuur 25, Tabel 10). Het verschil tussen aanvoer en vastlegging op de K-balans varieerde tussen 0% en 30% (Figuur 25, Tabel 11).

Figuur 25 Afwijkingen op de cumulatieve PK-balans van de vrijloopstal tijdens de balansperiode
Gecorrigeerde N-balans en N-verlies
De gecorrigeerde cumulatieve NPK-balansen zijn per meetmoment gegeven in Tabel 12, Tabel 13 en Tabel 14 (Bijlage 1). De ontwikkeling van de gecorrigeerde cumulatieve N-balans over de tijd is ook gegeven in Figuur 26. Het cumulatieve N-verlies nam toe van 37 kg N bij het eerste balansmoment (tweede meetmoment) tot 468 kg N aan het einde van de balansperiode (Figuur 27).

Figuur 26 Gecorrigeerde cumulatieve N-balans van de vrijloopstal tijdens de balansperiode

Figuur 27 Gecorrigeerd cumulatief N-verlies uit de vrijloopstal tijdens de balansperiode

Het N-verlies, uitgedrukt als percentage van de cumulatieve N-excretie, daalde van 11% aan het begin van de balansperiode tot -3% eind maart en nam daarna weer toe tot 11% over de hele balansperiode (Figuur 28). Uitgedrukt als percentage van de netto N-aanvoer op de stalvloer (met strooisel en excretie) was het N-verlies over de hele balansperiode 8%. Per kg geproduceerde melk was het N-verlies over de hele balansperiode 1,67 g N.
Met de gecorrigeerde PK-balans (Tabel 13, Tabel 14) werd berekend dat over de balansperiode 66% van de P-excretie en 71% van de K-excretie op de bedding kwam. Met behulp van de verdelingspercentages van de NPK-excretie over urine en feces van Gustafson (2000) (Tabel 1) werd indicatief berekend dat over de hele balansperiode 66% van de feces en 73% van de urine op de bedding werd uitgescheiden. Daarmee kwam indicatief 70% van de totale N-excretie op de bedding en de overige 30% op de roostervloer. Uit de indicatieve splitsing van het N-verlies tussen bedding en roostervloer blijkt dat het N-verlies van de bedding over de hele balansperiode hoger was dan van de roostervloer (Figuur 29). Een negatief N-verlies van de roostervloer is niet realistisch (zie paragraaf 4.1); dit verlies zal in werkelijkheid hoger geweest zijn. Het gevolg daarvan is dat het N-verlies van de bedding in werkelijkheid lager is geweest dan hier indicatief weergegeven.

Figuur 28 Cumulatief N-verlies uit de vrijloopstal tijdens de balansperiode, als percentage van de cumulatieve N-excretie in de stal

<table>
<thead>
<tr>
<th>Datum</th>
<th>N-verlies (%) van N-excretie</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-14</td>
<td>2</td>
</tr>
<tr>
<td>12-01-15</td>
<td>4</td>
</tr>
<tr>
<td>12-02-15</td>
<td>6</td>
</tr>
<tr>
<td>12-03-15</td>
<td>8</td>
</tr>
<tr>
<td>12-04-15</td>
<td>10</td>
</tr>
<tr>
<td>12-05-15</td>
<td>12</td>
</tr>
</tbody>
</table>

Figuur 29 Indicatieve splitsing van het cumulatieve N-verlies uit de vrijloopstal tussen bedding en roostervloer
Het N-verlies uit de stal en vanaf het land (indicatief) was voor vrijloopstal Koonstra over de hele balansperiode 14% van de N-excretie in de stal (Tabel 7). Dit was lager dan het totale N-verlies van 19% voor de referentie ligboxenstal. Het indicatieve N-verlies uit de stal en vanaf het land was voor de bedding (19%) hoger dan voor de roostervloer (3%). Bij het totale niveau van N-verlies voor de roostervloer past weer de kanttekening dat 3% niet realistisch was; dit percentage hoorde hoger te zijn. Het gevolg daarvan is dat het totale N-verlies voor de bedding lager was dan indicatief berekend.

Tabel 7
N-verlies uit de vrijloopstal en na het uitrijden van mest op grasland (indicatief), gesplitst tussen de bedding en de roostervloer.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bedding</th>
<th>Roostervloer</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-excretie in stal (kg)</td>
<td>2959</td>
<td>1257</td>
<td>4216</td>
</tr>
<tr>
<td>N-verlies uit stal (kg)</td>
<td>561</td>
<td>-93</td>
<td>468</td>
</tr>
<tr>
<td>N-verlies op land (kg)</td>
<td>0</td>
<td>129</td>
<td>129</td>
</tr>
<tr>
<td>Totaal N-verlies stal + land (kg)</td>
<td>561</td>
<td>36</td>
<td>597</td>
</tr>
<tr>
<td>Totaal N-verlies stal + land (% van N-excretie)</td>
<td>19,0</td>
<td>2,9</td>
<td>14,2</td>
</tr>
</tbody>
</table>
4 Discussie

4.1 Effect afwijkingen PK-balans op N-verlies

De afwijkingen op de PK-balans hadden een relatief groot effect op het berekende N-verlies. Het is daarom van belang deze afwijkingen en de gevolgen voor het verlies wat nader te beoordelen. De afwijkingen op de PK-balans namen tot halverwege de balansperiode toe (Figuur 25), terwijl verwacht zou worden dat deze afwijkingen over de balansperiode afnemen. Immers, als er langer gemeten wordt en de berekeningen op meer gegevens gebaseerd zijn, kunnen absolute afwijkingen relatief kleiner worden en gaan uitmidden. Een duidelijke verklaring voor de waargenomen ontwikkeling kon niet gegeven worden. Een mogelijke oorzaak voor de relatief hoge (positieve) afwijking op beide balansen is mogelijk de opslag van het ruwvoer en vochtarme krachtvoer in de voerkeuken van de voerrobot. Als een partij voer daar langere tijd staat, kan deze indrogen, waardoor bij het inwegen en voeren het voer droger is dan direct uit de kuil, en uiteindelijk meer NPK gevoerd werd dan op basis van de kuilanalyses werd berekend. Tussen 6 januari en 8 maart werd een erg natte graskuil (17% DS) gevoerd, waarbij er vocht uit de kuil lekte. Ook in dat geval kan er meer NPK met deze kuil gevoerd zijn dan op basis van de kuilanalyses berekend. De afwijkingen op de PK-balans waren aan het einde van de balansperiode relatief hoog; de afwijking op de P-balans viel binnen de range van afwijkingen op eerder berekende balansen (De Boer 2015ab; Galama et al., 2015), terwijl deze bij de K-balans aan de bovenkant lag. Het gemiddelde niveau van afwijking was daardoor ook wat aan de hoge kant, waardoor de fout op het berekende N-verlies uiteindelijk ook groter was.

De opsplitsing van het N-verlies op basis van verdeling van de PK-excretie over bedding en roostervloer gaf bij deze balans onbetrouwbare resultaten. Bij eerdere berekende cumulatieve balansen was het N-verlies van de roostervloer aan het begin van de balansperiode soms negatief, maar waren de niveaus aan het einde tamelijk realistisch, hoewel mogelijk aan de lage kant (3 tot 5%). Het berekende negatieve N-verlies van de roostervloer in deze stal werd mogelijk veroorzaakt doordat er relatief veel excretie op de bedding kwam en relatief weinig op de roostervloer en in de drijfmestkelder. Daardoor konden absolute meetfouten (in kg) relatief grote effecten hebben. Daarnaast was ook de balansperiode relatief kort, waardoor de berekeningen op minder data gebaseerd waren. Het berekende negatieve N-verlies over de hele balansperiode heeft als consequentie dat de verdeling van N-verlies over bedding en roostervloer niet betrouwbaar en daardoor niet bruikbaar zijn, ook niet om vast te stellen vanaf welk vloertype het meeste N-verlies gerealiseerd werd. Hoewel dit ook vragen geeft over de juistheid van de berekende verdeling van PK-excretie over bedding en roostervloer, staat wel vast dat het overgrote deel van deze excretie op de bedding terechtkwam.

4.2 Niveau N-verlies vrijloopstal Koonstra

Het N-verlies uit vrijloopstal Koonstra tijdens de balansperiode 2014/2015 was met 11% van de N-excretie laag vergeleken met andere vrijloopstallen met compostering van houtsnippers en maar weinig hoger vergeleken met het niveau van vrijloopstal Wiersma tijdens balansperiode 2013/2014 (Tabel 8). Het N-verlies uitgedrukt per kg geproduceerde melk was voor vrijloopstal Koonstra lager vergeleken met dat van vrijloopstal Wiersma in 2013/2014 en het laagste van alle vrijloopstallen die tot nu toe gemeten zijn. Het is daarbij van belang te vermelden dat bij vrijloopstal Wiersma er een relatief laag aandeel (37%) van de totale N-excretie op de bedding terechtkwam; bij vrijloopstal Koonstra was dit aandeel (70%) beduidend hoger. Daardoor was de N-belasting van de bedding bij vrijloopstal Koonstra hoger, waardoor het risico op N-verlies toenam. Wel was de duur van de balansperiode bij vrijloopstal Koonstra (ruim vijf maanden) duidelijk korter dan bij vrijloopstal Wiersma (acht maanden); het is waarschijnlijk dat bij een balansperiode van acht maanden het N-verlies van vrijloopstal Koonstra duidelijk hoger was geweest dan nu gemeten. Het niveau van N-
verlies van vrijloopstal Koonstra bevestigt het eerdere beeld dat bij intensieve compostering van houtsnippers het N-verlies lager is dan bij een meer extensieve manier van composteren (De Boer, 2015ab; De Boer, 2016). Het composteringsproces verliep bij vrijloopstal Koonstra minder goed dan eerder bij vrijloopstal Wiersma; er waren perioden dat de temperatuur sterk terugviel en de bedding was regelmatig (te) nat. Ook was er een tijd lang sprake van het optreden van een storende laag tussen bovenlaag en onderlaag, waardoor de beluchting van de bedding, en daarmee het composteringsproces, verstoord werd. Deze combinatie van factoren heeft mogelijk het N-verlies gestimuleerd. Bij vrijloopstal Koonstra werd de bedding belucht door lucht door de bedding heen te zuigen in plaats van te blazen. Onduidelijk is of deze andere manier van beluchting een effect op het N-verlies heeft gehad.

Het N-verlies uit vrijloopstal Koonstra lag rond het niveau van het verlies van 11% uit de referentie ligboxenstal. Duidelijke verschillen in niveau van N-verlies tussen bedding en roostervloer konden niet vastgesteld worden (zie paragraaf 4.1). Inclusief het indicatief berekende N-verlies na uitrijden van de mest op het land was het totale N-verlies van vrijloopstal Koonstra (14%) lager dan dat van de referentie ligboxenstal (19%) (Tabel 7).

Tabel 8
N-verlies uit vrijloopstallen, afgeleid van de N-balans en op twee manieren uitgedrukt.

<table>
<thead>
<tr>
<th>Vrijloopstal</th>
<th>Strooisel</th>
<th>Management</th>
<th>% van N-excretie</th>
<th>g N kg⁻¹ melk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiersma 2013/2014¹</td>
<td>Houtsnippers</td>
<td>Intensieve compostering</td>
<td>8,7</td>
<td>2,5</td>
</tr>
<tr>
<td>Koonstra 2014/2015²</td>
<td>Houtsnippers</td>
<td>Intensieve compostering</td>
<td>11,1</td>
<td>1,7</td>
</tr>
<tr>
<td>Langenkamp 2014/2015³</td>
<td>Houtsnippers</td>
<td>Intensieve compostering</td>
<td>16,7</td>
<td>2,3</td>
</tr>
<tr>
<td>(Wiersma) Nr. 1⁴</td>
<td>Houtsnippers</td>
<td>Intensieve compostering</td>
<td>19,0</td>
<td>3,1</td>
</tr>
<tr>
<td>Nr. 3⁵</td>
<td>Grof hout</td>
<td>Extensieve compostering</td>
<td>34,9</td>
<td>5,0</td>
</tr>
<tr>
<td>Hartman 2013/2014⁶</td>
<td>Grof hout</td>
<td>Extensieve compostering</td>
<td>39,0</td>
<td>6,4</td>
</tr>
<tr>
<td>(Hartman) Nr. 4⁷</td>
<td>Grof hout</td>
<td>Extensieve compostering</td>
<td>39,9</td>
<td>5,8</td>
</tr>
<tr>
<td>Nr. 8⁸</td>
<td>GFT-compost</td>
<td>Bijstrooien/bewerken</td>
<td>43,9</td>
<td>13,5</td>
</tr>
<tr>
<td>Nr. 9⁹</td>
<td>GFT-compost</td>
<td>Bijstrooien/bewerken</td>
<td>63,0</td>
<td>7,9</td>
</tr>
</tbody>
</table>

¹ De Boer (2015a); ² dit rapport; ³ De Boer (2016); ⁴ Galama et al. (2015), gecodeerde stallen; ⁵ De Boer (2015b); ⁶ geen beluchting

4.3 Relatie N-verlies met C/N-verhouding beddig
Het hoofddoel van compostering was vochtverdamping. Een ander doel was om de met mest uitgescheiden N in bacteriële biomassa vast te leggen en daardoor N-vervluchtiging te verminderen. Het daarbij nagestreefde mechanisme is dat de bacteriën (en andere micro-organismen) de C-verbindingen in houtsnippers afbreken, groeien op de energie die daarbij vrijkomt en de voor groei benodigde N uit de omgeving opnemen. Zolang er in verhouding tot opneembare N een overmaat aan beschikbare energie met houtsnippers wordt aangevoerd, zal de hoeveelheid beschikbare N in de bedding beperkend zijn voor bacteriegroei. Daardoor is deze N nauwelijks beschikbaar voor verlies door vervluchtiging. De C/N-verhouding van de bedding is een grove maat voor de verhouding tussen beschikbare energie en beschikbare N.

Met de aanvoer van een grote hoeveelheid verse houtsnippers aan het begin van de balansperiode werd een grote voorraad potentiële beschikbare energie aangevoerd. Tegelijk was er weinig N in de bedding aanwezig. Het N-gehalte van het hout zelf was laag (Tabel 2) en er werd in verhouding tot de beschikbare energie uit de houtsnippers ook weinig N met mest aangevoerd. In deze situatie wordt een laag N-verlies verwacht. Toch was op de eerste twee balansmomenten (tweede en derde meetpunt) het N-verlies relatief hoog (Figuur 28). Naast een mogelijk relatief groot effect van meetfouten bij deze nog erg korte balansperiode is een andere mogelijke oorzaak dat het proces van N-vastlegging in deze korte periode nog onvoldoende op gang was gekomen. Dit werd mogelijk veroorzaakt door het gebruik van snippers van relatief harde houtsoorten (waaronder Acacia) en
doordat de snippers, vergeleken met de eerdere balans van Wiersma, weinig tot geen groen blad bevatten. Bij de balans van vrijloopstal Langenkamp (De Boer, 2016) was het N-verlies op het eerste balansmoment ook relatief hoog; bij deze stal werden ook snippers van relatief harde houtsoorten gebruikt en bevatten ze nauwelijks blad. Het cumulatieve N-verlies was op drie meetpunten negatief, evenals over de eerste drie maanden van de balansperiode (-3%). Het negatieve N-verlies kan veroorzaakt worden doordat het N-tekort zo groot is, dat er netto N uit de omgevingslucht wordt opgenomen. N kan uit de omgevingslucht worden opgenomen als NH₃ (Beck et al., 1997; Csehi, 1997) of als N₂, waarbij N₂ wordt gebonden door vrijlevende N₂-fixerende bacteriën (De Boer, 2015a). Na ruim drie maanden ontstond er een cumulatief N-verlies. Dit verlies kan ontstaan omdat door verdergaande afbraak van houtsnippers en de continue toevoeging van N met mest het relatieve N-tekort steeds verder afneemt, en er een overschot aan opneembare N ontstaat, dat verloren kan gaan door vervluchtiging. Door regelmatige toevoeging van verse, goed afbreekbare houtsnippers, bij verder een effectief en consequent beddingmanagement, kan de relatieve N-beschikbaarheid verlaagd worden en daarmee ook het niveau van N-verlies (De Boer, 2015a). Het bovenstaande mechanisme werd niet bevestigd door de relatie tussen het N-verlies en de C/N-verhouding van de bedding (bovenlaag) (Figuur 30) en lineaire regressie (Genstat, 17e editie) gaf geen significante relatie (P = 0,41). Hiervoor kon geen goede verklaring gevonden worden. Wel viel op, dat een gelijktijdige daling van zowel N-verlies als C/N-verhouding eerder ook werd gevonden bij vrijloopstal Hartman (De Boer, 2015b). Bij deze vrijloopstal was er ook een onbewerkte onderlaag en werd de bedding eveneens belucht door lucht erdoorheen te zuigen. Het beddingmateriaal bestond echter uit grovere houtdelen, en het beddingmanagement was gericht op extensieve compostering.

Figuur 30 Verloop van het cumulatieve N-verlies en de C/N-verhouding van de bedding in de vrijloopstal tijdens de balansperiode

Het relatief lage N-verlies van deze vrijloopstal had waarschijnlijk verder verlaagd kunnen worden door optimalisatie van het beddingmanagement. Op 19 februari en 12 maart was er sprake van een storende laag op de overgang tussen boven- en onderlaag. Dit werd mogelijk veroorzaakt door de aanvoer van een grote partij houtsnippers op 12 en 13 februari, waardoor de dikte van de bovenlaag toenam en de frees niet meer tot aan de onderlaag kwam. Dit leidde tot versmering en verdichting net onder de maximale freesdiepte. Door eerder en regelmatig nieuwe houtsnippers aan te voeren kan het optreden van dit type verdichting voorkomen worden; daarnaast levert dit een continue aanvoer van nieuwe energie om voldoende N te kunnen blijven binden en daarmee de kans op N-verlies te verlagen.
Conclusies

- Vrijloopstal Koonstra had tijdens een balansperiode van ruim vijf maanden (inclusief winterperiode) een N-verlies door vervluchtiging uit de stal van 11% van de N-excretie. Dit verlies lag aan de onderkant van het N-verlies gemeten aan andere vrijloopstallen en op hetzelfde niveau als dat van een referentie ligboxenstal (11%). Het cumulatieve N-verlies over de eerste drie maanden van de balansperiode was -3%.

- Inclusief de indicatieve N-vervluchtiging tijdens en na toediening van drijfmest en gecomposteerde bedding op het land was de totale N-vervluchtiging uit vrijloopstal Koonstra 14% van de N-excretie en daarmee lager vergeleken met 19% uit de referentie ligboxenstal.

- Een indicatieve (grove) splitsing van het N-verlies tussen bedding en roostervloer bleek niet betrouwbaar; daardoor kon geen goede indicatie verkregen worden welk deel van het N-verlies van de bedding en welk deel van de roostervloer afkomstig was.

- Er was tijdens de balansperiode geen significante inverse relatie tussen het cumulatieve N-verlies uit de stal en C/N-verhouding van de bedding (bovenlaag). Een gelijktijdige daling van zowel N-verlies als C/N-verhouding werd eerder waargenomen bij een andere vrijloopstal met een onbewerkte onderlaag en beluchting door lucht door de bedding te zuigen.

- De doelstelling om tijdens de compostering een groot deel van de met mest uitgescheiden N te binden in bacteriële biomassa werd goed gerealiseerd. Een hogere N-binding en daardoor minder N-verlies hadden waarschijnlijk gerealiseerd kunnen worden door eerder en meer nieuwe houtsnippers bij te strooien.

- De resultaten van vrijloopstal Koonstra bevestigen het eerdere beeld dat stallen met intensieve compostering van houtsnippers de potentie hebben om een laag N-verlies te realiseren, en dat intensief composeren tot lager N-verlies leidt dan extensief composeren.
Referenties

Bijlagen

Bijlage 1. NPK-balansen per meetmoment

Tabel 9

Ongecorrigeerde N-balans van de vrijloopstal, weergegeven per meetmoment tijdens de balansperiode, cumulatief in kg N.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>12-12</td>
<td>24-12</td>
<td>10-01</td>
<td>31-01</td>
<td>19-02</td>
<td>12-03</td>
<td>31-03</td>
<td>24-04</td>
<td>15-05</td>
</tr>
<tr>
<td>Aanvoer met houtsnippers</td>
<td></td>
</tr>
<tr>
<td>Aanvoer met ruwvoer</td>
<td></td>
</tr>
<tr>
<td>Aanvoer met krachtvoer</td>
<td></td>
</tr>
<tr>
<td>Vastgelegd in melk</td>
<td></td>
</tr>
<tr>
<td>Vastgelegd in bedding</td>
<td></td>
</tr>
<tr>
<td>Vastgelegd in drijfmest</td>
<td></td>
</tr>
<tr>
<td>Totaal aanvoer</td>
<td></td>
</tr>
<tr>
<td>Totaal vastgelegd</td>
<td></td>
</tr>
<tr>
<td>Verlies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12-12</td>
<td>24-12</td>
<td>10-01</td>
<td>31-01</td>
<td>19-02</td>
<td>12-03</td>
<td>31-03</td>
<td>24-04</td>
<td>15-05</td>
<td></td>
</tr>
<tr>
<td>Aanvoer met houtsnippers</td>
<td>0</td>
<td>1268</td>
<td>1268</td>
<td>1268</td>
<td>1459</td>
<td>1547</td>
<td>1547</td>
<td>1583</td>
<td>1583</td>
<td></td>
</tr>
<tr>
<td>Aanvoer met ruwvoer</td>
<td>0</td>
<td>255</td>
<td>583</td>
<td>1171</td>
<td>1694</td>
<td>2304</td>
<td>2798</td>
<td>3519</td>
<td>4112</td>
<td></td>
</tr>
<tr>
<td>Aanvoer met krachtvoer</td>
<td>0</td>
<td>215</td>
<td>477</td>
<td>832</td>
<td>1119</td>
<td>1420</td>
<td>1702</td>
<td>2125</td>
<td>2431</td>
<td></td>
</tr>
<tr>
<td>Vastgelegd in melk</td>
<td>0</td>
<td>128</td>
<td>307</td>
<td>533</td>
<td>746</td>
<td>954</td>
<td>1146</td>
<td>1392</td>
<td>1601</td>
<td></td>
</tr>
<tr>
<td>Vastgelegd in bedding</td>
<td>0</td>
<td>1499</td>
<td>1520</td>
<td>1895</td>
<td>1965</td>
<td>2279</td>
<td>2652</td>
<td>3214</td>
<td>3481</td>
<td></td>
</tr>
<tr>
<td>Vastgelegd in drijfmest</td>
<td>0</td>
<td>95</td>
<td>230</td>
<td>397</td>
<td>548</td>
<td>714</td>
<td>865</td>
<td>1055</td>
<td>1222</td>
<td></td>
</tr>
<tr>
<td>Totaal aanvoer</td>
<td>0</td>
<td>1738</td>
<td>2328</td>
<td>3270</td>
<td>4272</td>
<td>5270</td>
<td>6048</td>
<td>7227</td>
<td>8126</td>
<td></td>
</tr>
<tr>
<td>Totaal vastgelegd</td>
<td>0</td>
<td>1722</td>
<td>2057</td>
<td>2824</td>
<td>3259</td>
<td>3947</td>
<td>4663</td>
<td>5662</td>
<td>6304</td>
<td></td>
</tr>
<tr>
<td>Verlies</td>
<td>0</td>
<td>16</td>
<td>271</td>
<td>446</td>
<td>1013</td>
<td>1323</td>
<td>1385</td>
<td>1565</td>
<td>1822</td>
<td></td>
</tr>
</tbody>
</table>
Tabel 10
Ongecorrigeerde P-balans van de vrijloopstal, weergegeven per meetmoment tijdens de balansperiode, cumulatief in kg P.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>12-12</td>
<td>24-12</td>
<td>10-01</td>
<td>31-01</td>
<td>19-02</td>
<td>12-03</td>
<td>31-03</td>
<td>24-04</td>
</tr>
<tr>
<td>Aanvoer met houtsnippers</td>
<td>0</td>
<td>122</td>
<td>122</td>
<td>122</td>
<td>138</td>
<td>146</td>
<td>146</td>
<td>149</td>
<td>149</td>
</tr>
<tr>
<td>Aanvoer met ruwvoer</td>
<td>0</td>
<td>47</td>
<td>106</td>
<td>208</td>
<td>299</td>
<td>395</td>
<td>465</td>
<td>569</td>
<td>654</td>
</tr>
<tr>
<td>Aanvoer met krachtvoer</td>
<td>0</td>
<td>32</td>
<td>70</td>
<td>123</td>
<td>162</td>
<td>203</td>
<td>242</td>
<td>299</td>
<td>344</td>
</tr>
<tr>
<td>Vastgelegd in melk</td>
<td>0</td>
<td>22</td>
<td>53</td>
<td>92</td>
<td>129</td>
<td>166</td>
<td>200</td>
<td>243</td>
<td>281</td>
</tr>
<tr>
<td>Vastgelegd in bedding</td>
<td>0</td>
<td>168</td>
<td>182</td>
<td>253</td>
<td>252</td>
<td>306</td>
<td>354</td>
<td>484</td>
<td>526</td>
</tr>
<tr>
<td>Vastgelegd in drijfmest</td>
<td>0</td>
<td>16</td>
<td>38</td>
<td>65</td>
<td>90</td>
<td>117</td>
<td>142</td>
<td>174</td>
<td>201</td>
</tr>
<tr>
<td>Totaal aanvoer</td>
<td>0</td>
<td>200</td>
<td>298</td>
<td>452</td>
<td>599</td>
<td>744</td>
<td>852</td>
<td>1017</td>
<td>1147</td>
</tr>
<tr>
<td>Totaal vastgelegd</td>
<td>0</td>
<td>205</td>
<td>273</td>
<td>410</td>
<td>471</td>
<td>590</td>
<td>696</td>
<td>901</td>
<td>1008</td>
</tr>
<tr>
<td>Verlies</td>
<td>0</td>
<td>-5</td>
<td>25</td>
<td>42</td>
<td>128</td>
<td>154</td>
<td>156</td>
<td>116</td>
<td>139</td>
</tr>
</tbody>
</table>

Tabel 11
Ongecorrigeerde K-balans van de vrijloopstal, weergegeven per meetmoment tijdens de balansperiode, cumulatief in kg K.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>12-12</td>
<td>24-12</td>
<td>10-01</td>
<td>31-01</td>
<td>19-02</td>
<td>12-03</td>
<td>31-03</td>
<td>24-04</td>
</tr>
<tr>
<td>Aanvoer met houtsnippers</td>
<td>0</td>
<td>772</td>
<td>772</td>
<td>772</td>
<td>865</td>
<td>906</td>
<td>906</td>
<td>921</td>
<td>921</td>
</tr>
<tr>
<td>Aanvoer met ruwvoer</td>
<td>0</td>
<td>290</td>
<td>665</td>
<td>1349</td>
<td>1961</td>
<td>2623</td>
<td>3121</td>
<td>3854</td>
<td>4460</td>
</tr>
<tr>
<td>Aanvoer met krachtvoer</td>
<td>0</td>
<td>54</td>
<td>119</td>
<td>210</td>
<td>286</td>
<td>361</td>
<td>433</td>
<td>537</td>
<td>609</td>
</tr>
<tr>
<td>Vastgelegd in melk</td>
<td>0</td>
<td>35</td>
<td>85</td>
<td>147</td>
<td>207</td>
<td>266</td>
<td>320</td>
<td>389</td>
<td>449</td>
</tr>
<tr>
<td>Vastgelegd in bedding</td>
<td>0</td>
<td>1001</td>
<td>1119</td>
<td>1456</td>
<td>1686</td>
<td>1869</td>
<td>2116</td>
<td>2833</td>
<td>3226</td>
</tr>
<tr>
<td>Vastgelegd in drijfmest</td>
<td>0</td>
<td>78</td>
<td>188</td>
<td>325</td>
<td>448</td>
<td>584</td>
<td>708</td>
<td>863</td>
<td>1000</td>
</tr>
<tr>
<td>Totaal aanvoer</td>
<td>0</td>
<td>1115</td>
<td>1556</td>
<td>2331</td>
<td>3112</td>
<td>3889</td>
<td>4460</td>
<td>5313</td>
<td>5990</td>
</tr>
<tr>
<td>Totaal vastgelegd</td>
<td>0</td>
<td>1114</td>
<td>1392</td>
<td>1928</td>
<td>2341</td>
<td>2719</td>
<td>3144</td>
<td>4085</td>
<td>4674</td>
</tr>
<tr>
<td>Verlies</td>
<td>0</td>
<td>1</td>
<td>164</td>
<td>403</td>
<td>772</td>
<td>1171</td>
<td>1316</td>
<td>1228</td>
<td>1316</td>
</tr>
</tbody>
</table>
Tabel 12
Gecorrigeerde N-balans van de vrijloopstal, weergegeven per meetmoment tijdens de balansperiode, cumulatief in kg N.

<table>
<thead>
<tr>
<th>Balanspost</th>
<th>Datum</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>12-12</td>
<td>24-12</td>
</tr>
<tr>
<td>Aanvoer met houtsnippers</td>
<td></td>
<td>0</td>
<td>1275</td>
</tr>
<tr>
<td>Aanvoer met ruwvoer</td>
<td></td>
<td>0</td>
<td>256</td>
</tr>
<tr>
<td>Aanvoer met krachtvoer</td>
<td></td>
<td>0</td>
<td>217</td>
</tr>
<tr>
<td>Vastgelegd in melk</td>
<td></td>
<td>0</td>
<td>127</td>
</tr>
<tr>
<td>Vastgelegd in bedding</td>
<td></td>
<td>0</td>
<td>1490</td>
</tr>
<tr>
<td>Vastgelegd in drijfmest</td>
<td></td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>Totaal aanvoer</td>
<td></td>
<td>0</td>
<td>1748</td>
</tr>
<tr>
<td>Totaal vastgelegd</td>
<td></td>
<td>0</td>
<td>1712</td>
</tr>
<tr>
<td>Verlies</td>
<td></td>
<td>0</td>
<td>37</td>
</tr>
</tbody>
</table>

Tabel 13
Gecorrigeerde P-balans van de vrijloopstal, weergegeven per meetmoment tijdens de balansperiode, cumulatief in kg P.

<table>
<thead>
<tr>
<th>Balanspost</th>
<th>Datum</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>12-12</td>
<td>24-12</td>
</tr>
<tr>
<td>Aanvoer met houtsnippers</td>
<td></td>
<td>0</td>
<td>123</td>
</tr>
<tr>
<td>Aanvoer met ruwvoer</td>
<td></td>
<td>0</td>
<td>47</td>
</tr>
<tr>
<td>Aanvoer met krachtvoer</td>
<td></td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Vastgelegd in melk</td>
<td></td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>Vastgelegd in bedding</td>
<td></td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>Vastgelegd in drijfmest</td>
<td></td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Totaal aanvoer</td>
<td></td>
<td>0</td>
<td>203</td>
</tr>
<tr>
<td>Totaal vastgelegd</td>
<td></td>
<td>0</td>
<td>203</td>
</tr>
<tr>
<td>Verlies</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabel 14
Gecorrigeerde K-balans van de vrijloopstal, weergegeven per meetmoment tijdens de balansperiode, cumulatief in kg K.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12-12</td>
<td>24-12</td>
<td>10-01</td>
<td>31-01</td>
<td>19-02</td>
<td>12-03</td>
<td>31-03</td>
<td>24-04</td>
<td>15-05</td>
</tr>
<tr>
<td>Aanvoer met houtsnippers</td>
<td>0</td>
<td>1275</td>
<td>1208</td>
<td>1184</td>
<td>1290</td>
<td>1350</td>
<td>1362</td>
<td>1447</td>
<td>1448</td>
</tr>
<tr>
<td>Aanvoer met ruwvoer</td>
<td>0</td>
<td>256</td>
<td>555</td>
<td>1093</td>
<td>1498</td>
<td>2011</td>
<td>2464</td>
<td>3215</td>
<td>3761</td>
</tr>
<tr>
<td>Aanvoer met krachtvoer</td>
<td>0</td>
<td>217</td>
<td>455</td>
<td>776</td>
<td>990</td>
<td>1239</td>
<td>1499</td>
<td>1941</td>
<td>2224</td>
</tr>
<tr>
<td>Vastgelegd in melk</td>
<td>0</td>
<td>127</td>
<td>323</td>
<td>574</td>
<td>858</td>
<td>1119</td>
<td>1330</td>
<td>1542</td>
<td>1769</td>
</tr>
<tr>
<td>Vastgelegd in bedding</td>
<td>0</td>
<td>1490</td>
<td>1600</td>
<td>2042</td>
<td>2261</td>
<td>2673</td>
<td>3078</td>
<td>3559</td>
<td>3846</td>
</tr>
<tr>
<td>Vastgelegd in drijf mest</td>
<td>0</td>
<td>95</td>
<td>242</td>
<td>428</td>
<td>630</td>
<td>838</td>
<td>1004</td>
<td>1169</td>
<td>1350</td>
</tr>
<tr>
<td>Totaal aanvoer</td>
<td>0</td>
<td>1748</td>
<td>2218</td>
<td>3053</td>
<td>3779</td>
<td>4601</td>
<td>5325</td>
<td>6603</td>
<td>7434</td>
</tr>
<tr>
<td>Totaal vastgelegd</td>
<td>0</td>
<td>1712</td>
<td>2165</td>
<td>3044</td>
<td>3749</td>
<td>4629</td>
<td>5411</td>
<td>6270</td>
<td>6965</td>
</tr>
<tr>
<td>Verlies</td>
<td>0</td>
<td>37</td>
<td>52</td>
<td>9</td>
<td>30</td>
<td>-28</td>
<td>-86</td>
<td>334</td>
<td>468</td>
</tr>
</tbody>
</table>
Wageningen UR Livestock Research ontwikkelt kennis voor een zorgvuldige en rendererende veehouderij, vertaalt deze naar praktijkgerichte oplossingen en innovaties, en zorgt voor doorstroming van deze kennis. Onze wetenschappelijke kennis op het gebied van veehouderijsystemen en van voeding, genetica, welzijn en milieu-impact van landbouwhuisdieren integreren we, samen met onze klanten, tot veehouderijconcepten voor de 21e eeuw.

De missie van Wageningen UR (University & Research centre) is ‘To explore the potential of nature to improve the quality of life’. Binnen Wageningen UR bundelen 9 gespecialiseerde onderzoeksinstituten van stichting DLO en Wageningen University hun krachten om bij te dragen aan de oplossing van belangrijke vragen in het domein van gezonde voeding en leefomgeving. Met ongeveer 30 vestigingen, 6.000 medewerkers en 10.000 studenten behoort Wageningen UR wereldwijd tot de aansprekende kennisinstellingen binnen haar domein. De integrale benadering van de vraagstukken en de samenwerking tussen verschillende disciplines vormen het hart van de unieke Wageningen aanpak.