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ABSTRACT

Production of food contributes to climate change and other forms of environmental impact. In-
put data used in environmental impact assessment models, such as life cycle assessment (LCA)
and nutrient balance (NB) analysis, may vary due to seasonal changes, geographical conditions
or socio-economic factors (i.e natural variability). Moreover, input data may be uncertain, due to
measurement errors and observational errors that exist around modelling of emissions and tech-
nical parameters (i.e. epistemic uncertainty). Although agricultural activities required for food
production are prone to natural variability and epistemic uncertainty, very few case studies in
LCA and NB analysis made a thorough examination of the effects of variability and uncertainty.
This thesis aimed to enhance understanding the effects of variability and uncertainty on the re-
sults, by means of uncertainty and sensitivity analysis. Uncertainty analysis refers to the estimation
of the uncertainty attribute of a model output using the uncertainty attributes of the model in-
puts. There are three types of sensitivity analyses: (I) a local sensitivity analysis addresses what
happens to the output when input parameters are changed, i.e. the intrinsic model behaviour
of a parameter; (II) a screening analysis addresses what happens to the output based on the un-
certainty range of the different input parameters; and (III) a global sensitivity analysis addresses
how much the uncertainty around each input parameter contributes to the output variance. Both
the screening analysis and the global sensitivity analysis combine the intrinsic model behaviour
with the information of uncertainty around input parameters. Applying uncertainty analysis and
sensitivity analysis can help to reduce the efforts for data collection, support the development
of mitigation strategies and improve overall reliability, leading to more informed decision mak-
ing in environmental impact assessment models. Including uncertainty in environmental impact
assessment models showed that: (1) the type of uncertainty analysis or sensitivity analysis ap-
plied depends on the question to be addressed and the available information; (2) in some cases
it is no longer possible to benchmark environmental performance if epistemic uncertainty is in-
cluded; (3) including correlations between input parameters during uncertainty propagation will
either increase or decrease output variance, which can be predicted beforehand; (4) under specific
characteristics of the input parameters, ignoring correlation has a minimal effect on the model
outcome. Systematically combining a local and global sensitivity analysis in environmental im-
pact assessment models: (1) resulted in more parameters than found previously in similar studies
(for the case studies discussed in this thesis); (2) allowed finding mitigation options, either based
on innovations (derived from the local sensitivity analysis) or on management strategies (derived
from the global sensitivity analysis); (3) showed for which parameters reliability should be im-
proved by increasing data quality; (4) showed that reducing the (epistemic) uncertainty of the
most important parameters can affect the comparison of the environmental performance.
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CHAPTER 1

General introduction

1.1 Background

Food is essential to sustain and enhance human life. Nowadays, food produc-
tion is generally acknowledged as one of the drivers of environmental pres-
sure [Tilman and Clark, 2014]. Agricultural land, for example, covers approx-
imately one third of the earth’s land that is not permanently frozen [Bajželj
et al., 2014]. The majority of this land is used for production of animal-source
food [Steinfeld et al., 2006]. The agricultural sector not only uses natural
resources, such as land, energy, water and fossil phosphorus, but also con-
tributes to climate change, acidification, water pollution and biodiversity loss.
The global livestock sector, for example, contributes to approximately 14.5% of
all anthropogenic greenhouse gas emissions, mainly via emissions of carbon
dioxide (CO2), methane (CH4), and nitrous oxide (N2O) [Gerber et al., 2013].
An increase in the demand for food products is still expected, because of the
growth of the global human population, growing incomes and changes in di-
ets. The challenge to produce this food in an environmentally friendly way,
therefore, becomes even more urgent. To develop strategies to produce food
with a low environmental impact, the environmental impact of food needs to
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1.1. BACKGROUND CHAPTER 1.

be quantified.
Quantifying the environmental impact of agricultural activities, such as

crop or livestock production, requires great care, since the input data nat-
urally vary due to, for example, seasonal changes, geographical conditions
and socio-economic factors. Moreover, uncertainties, such as measurement er-
rors in observations, exist around modelling of emissions and technical input
parameters. Once you acknowledge that variability and uncertainties exist,
questions arise such as: how does variation of input parameters influence the re-
sults? Which input parameters explain most of the variation of the model output? Do
input uncertainties have an effect on the comparison between the environmental im-
pacts of two products? To answer the questions raised by the acknowledgement
of variability and uncertainty, one is naturally led to the field of uncertainty
and sensitivity analysis.

1.1.1 Quantification of environmental impact

Quantification of environmental impact originating from the production and
use of materials, substances or products from a chain perspective, based on
physical principles, can be divided into two main approaches [Wrisberg et al.,
2002]. (I) Region-oriented approaches, where the system boundary of a specific
area and time interval (e.g., The Netherlands, 01/01/2015 until 31/12/2015) is
the starting point to determine which activities are included. Region-oriented
approaches can concern a specific year and economic sector, or all processes
controlled by one company, such as a farm. Four examples of region-oriented
approaches are: (1) material flow analysis, concerning material flows through
a region or company, e.g. iron or plastics; (2) substance flow analysis, con-
cerning specific elements such as nitrogen or phosphorus; (3) nutrient balance
analysis, concerning input and output of nutrients or substances through a
region or a farm; and (4) environmental input-output analysis, focusing on
pollution of industrial trade of, e.g. a country. (II) Function-oriented approaches,
where the function of the product is the starting point and defines the sys-
tem boundary, ideally from cradle-to-grave. Function-oriented approaches
can be time independent, but often consider the production of the final prod-
uct for a specific year, and only processes from power plants, companies or
farms are considered that belong to the studied production chain. Examples
of function-oriented approaches are life cycle assessment and cumulative en-
ergy requirement analysis.

12
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A region-oriented approach widely used in agriculture is a nutrient bal-
ance analysis. A nutrient balance is computed as the difference between nutri-
ents entering a system and leaving the system; the system itself is considered
as a black box. The difference between nutrient inputs and outputs is gener-
ally called the nutrient surplus, and is assumed lost to the environment [Sut-
ton et al., 2013]. Nutrient losses contribute to, for example, eutrophication,
acidification, emission of greenhouse gas emissions [Sutton et al., 2013], and
depletion of fossil phosphorus [Suh and Yee, 2011]. A nutrient balance can be
computed at a range of levels, varying from crop or animal, to farm or, for
example, the entire European Union [Aarts et al., 1992; Schröder et al., 2003;
Lesschen et al., 2011]. Nutrients generally considered in agriculture are nitro-
gen and phosphorus, because these nutrients are essential for plant growth.
A nutrient balance can be used to identify where and why losses occur, and
to develop mitigation strategies to reduce these losses.

A function-oriented approach widely used in agriculture is life cycle as-
sessment (LCA), which quantifies relevant resource use and emissions of a
product over the entire production chain. LCA can be used to quantify all
different types of environmental impacts (e.g. eutrophication, climate change,
eco-toxicity), and is increasingly applied in agriculture [Guinée et al., 2010].
An environmental impact that is often considered related to livestock produc-
tion is climate change, due to the large contribution of livestock to the global
anthropogenic emissions of greenhouse gases [Gerber et al., 2013]. In such
cases, one often speaks of the carbon footprint of an agricultural activity or
product. An LCA can be used to identify where in the chain most emissions
occur, and develop mitigation strategies to reduce these emissions.

1.1.2 Origins of variability and uncertainty in environmental
modelling

Nutrient balance analysis and life cycle assessments can both be used to de-
velop a model that quantifies environmental impact. Collecting data for en-
vironmental impact assessment models is often perceived as a laborious task
[Lloyd and Ries, 2007; Björklund, 2002]. Moreover, required data contains
uncertainty due to measurement errors, or can vary widely due to natural
circumstances. Most studies that quantify environmental impact, do not con-
sider the impact of variability or uncertainties of input data on their results.
Many studies aim at quantification of, for example, the carbon footprint of one

13
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kilogram of food. Most of these studies use only point values (i.e. a singles
value that represents each data point in the environmental impact assessment
model) and overlook the range of possible realisations, and could therefore
be misleading [Björklund, 2002], or might provide a false sense of accuracy
[De Koning et al., 2010]. For example, nutrient balances can be used to bench-
mark farms, by means of quantifying the nutrient use efficiency (NUE). The
NUE of one farm then is used to compare its environmental performance to
other farms within the peer group. A higher NUE means that the farm is per-
forming better. In such a situation, the peer group can learn from this farm,
and incorporate similar mitigation strategies to improve their NUE. When in-
corporating measurements uncertainties in the calculation of the NUE, how-
ever, it might no longer be possible to rank the NUE of farms anymore, as it
might not be possible to make a distinction in NUEs between the farms.

Origins of variability and uncertainty in environmental impact assessment
models can be divided into two broad categories: (I) natural variability and
(II) epistemic uncertainty.

Natural variability relates to observable variation, which means it is inherent
to the system and therefore cannot be reduced [Walker et al., 2003]. Although
it is possible to strive for reduction of natural variability in time or space, the
observed variation cannot be reduced. An example of natural variability in
agriculture is variation between annual crop yields of wheat, which exist in
time, i.e. across years, and in space, i.e. across countries or soil types. Another
example is the variation in diet preferences amongst consumers, which makes
it impossible to calculate the carbon footprint of one day of food.

Epistemic uncertainty originates from a lack of knowledge and can be re-
duced by gaining more or better data [Walker et al., 2003]. Epistemic un-
certainty includes errors from measurement instruments, or those introduced
by the observer. For example, in case a weighting scale is not available to
determine the weight of a cow, the weight can be estimated based on body
measurements, such as body length, heart girth and height [Francis et al.,
2004; Lesosky et al., 2012]. Literature shows that body weight can be esti-
mated from single heart girth measurements with reasonable accuracy. Heart
girth measurements, however, can result in measurement errors because the
positioning of the cow can easily affect the result [Heinrichs et al., 1992]. More
sources of natural variability and epistemic uncertainty are found in Table 1.1.

The theoretical distinction made between natural variability and epistemic
uncertainty, however, may be not so clear in practice. An example is the epis-

14
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Table 1.1: Examples of natural variability and epistemic uncertainty.
Category Examples of sources
Natural variability Climate variability, soil type, genetic differ-

ences, variation in temperature, differences
in management strategies, geographical differ-
ences, consumer preferences

Epistemic uncertainty Measurement errors, errors in observations, er-
rors of measurement instruments, estimates of
experts, lack of knowledge

temic uncertainty ranges that are given by the intergovernmental panel on
climate change (IPCC) around the emission factors of N2O from application
of fertiliser. This range is often interpreted as epistemic uncertainty, but might
include also natural variation due to differences in climate conditions or soil
types, which is in fact caused by natural variability. Both natural variability
and epistemic uncertainty are also found for the parameter annual milk yield
per cow. Annual milk yield per cow can vary naturally due to genetic dif-
ferences, or differences in feeding strategies, whereas milk yields can also be
prone to the same measurement error (i.e. epistemic uncertainty).

Many experience natural variability or epistemic uncertainty around data
for input parameters in environmental assessment models, making the exact
environmental impact difficult to quantify.

1.2 Incorporating variability and uncertainty in en-
vironmental impact assessment

Uncertainty analysis can be used to propagate epistemic uncertainties and
natural variability of input parameters through an environmental impact as-
sessment model (Table 1.2). From now on, when the term uncertainty anal-
ysis is used, it can refer to the analysis of the magnitude and consequences
of both epistemic uncertainty and natural variability of the input parameters.
The term uncertainty in uncertainty analysis can be interpreted as a quantita-
tive value either representing epistemic uncertainty or natural variability. An
uncertainty analysis quantifies the uncertainty of the output based on the un-
certainty of the input parameters. For example, what is the uncertainty around

15
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greenhouse gas emissions of 1 kg of milk? These types of methods require the
knowledge of a distribution function (e.g. a normal distribution), or a least a
parameter of dispersion, such as the variance, to propagate the input uncer-
tainties through the environmental impact assessment model.

In addition to the uncertainty analysis, a sensitivity analysis can be used
to study the effect of input uncertainties on the output of an environmental
impact assessment model. Two commonly used approaches for sensitivity
analysis are local sensitivity analysis and global sensitivity analysis. Termi-
nology often used in case of uncertainty analysis and sensitivity analysis is
defined in Table 1.2.

Most studies of environmental impact assessment models assume that the
input parameters can vary independently [Lloyd and Ries, 2007; Bojacá and
Schrevens, 2010]. However, in certain cases correlations exist between input
parameters, for example, a correlation can be expected between crop yield
and fertiliser. This means that if fertiliser rate is increased, crop yield (to some
extent) also increases. Including correlations in the sampling design can an-
swer questions such as: what is the effect of including correlations between crop
yield and fertiliser on the model output? What is the effect of including correlations
between input parameters on the global sensitivity analysis? Including correlations
can affect both uncertainty analysis and sensitivity analysis, but requires in-
formation of the presence of correlations coefficients of the input parameters,
such as the variance for uncorrelated parameters or a covariance for correlated
parameters, to propagate the input uncertainties through the environmental
impact assessment model.

A local sensitivity analysis quantifies the effect on the output when an
input parameter is changed. For example, what would be the effect on greenhouse
gas emissions per kg of milk when a cow would produce 5% more milk with the same
amount of feed? In general, these type of methods consider the effect of a
change independent of other input parameters and do not consider the actual
range over which the input parameters can vary (Figure 1.1). These types of
methods are especially useful when data availability is limited to point values.

A screening analysis quantifies the effect on the output when an input pa-
rameter is changed according the to uncertainty range of an input parameter.
For example, what would be the effect on greenhouse gas emissions per kg of pork
when variation of manure production in pigs vary with 3%? In general, this type
of method also considers the effect of a change independent from other in-
put parameters. These types of methods are especially useful when only little

16



CHAPTER 1. 1.2. VARIABILITY AND UNCERTAINTY

Table 1.2: Uncertainty versus sensitivity: definitions of uncertainty (analysis)
and sensitivity (analysis).

Concept Definition
Uncertainty a property attributable to an input parameter or

an output parameter. In the context of this thesis
it relates to quantitative uncertainty. Uncertainty
of the input parameters can be given as a proba-
bility distribution function (for instance, a normal
distribution with a specified mean and standard
deviation).

Uncertainty analysis refers to the estimation of the uncertainty attribute
of a model output using the uncertainty attributes
of the model inputs.

Sensitivity a property attributable to how a model output be-
haves as the result of the variation of an input pa-
rameter [Saltelli et al., 2008]. There are three types
of sensitivity analyses.

Local sensitivity
analysis

addresses what happens to the output when input
parameters are changed, i.e. the intrinsic model
behavior of a parameter. The parameters that have
the largest effect on the model output are referred
to as the most influential parameters.

Screening analysis addresses what happens to the output based on
the uncertainty range of the different input param-
eters.

Global sensitivity
analysis

addresses how much the uncertainty around each
input parameter contributes to the output variance
[Saltelli et al., 2008].
Both the screening analysis and the global sensitiv-
ity analysis combine the intrinsic model behaviour
with the information of uncertainty around input
parameters. The parameters that change the model
output most or explain most of the output variance
are referred to as the most important parameters.
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x1 

x2 

x3 

x4 

Model 
f(x1, x2 , x3 , x4) 

Model output 
y=f(x1, x2 , x3 , x4) 

Local sensitivity analysis 

xj 

y

Figure 1.1: An illustration of a local sensitivity analysis for a model with
four input parameters (x1, . . . , x4). Each input parameter is changed indepen-
dently; the influence of parameter x1 for example, can be expressed as the
effect of changing x1 on the output y.

information is available on the input uncertainties.
A global sensitivity analysis can be seen as an extension of uncertainty

propagation: it determines how much each input parameter contributes to
the output variance. A global sensitivity analysis considers the actual varia-
tion over all input parameters simultaneously (Figure 1.2). For example, how
much does the annual variation around crop yield of wheat contribute to the uncer-
tainty around the greenhouse gas emissions? What is the impact of incorporation of
covariance on the global sensitivity analysis? In general (but not always), these
methods require full knowledge of the input uncertainties (i.e. distribution
functions) and information regarding the covariance if the input parameters
are correlated.

Incorporating uncertainty in an environmental impact assessment model
will strengthen the model outcomes. It will provide knowledge about the
range of model outputs, which enables more informed decision-making. At
present, however, a standardised methodology how to propagate uncertainties
or which type of sensitivity analysis to use, is missing.
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Figure 1.2: An illustration of a global sensitivity analysis for a model with four
parameters: the variance decomposition (pie chart) explains the output vari-
ance (histogram), given the distribution functions of the four input parameters
on the left hand side of the figure.
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1.3 Knowledge gaps

To determine the effect of input uncertainties on the output, most environ-
mental impact assessment studies that performed a local sensitivity analysis
use a straightforward method, i.e. a one-at-a-time (OAT) approach. An OAT
approach varies an input parameter with, e.g. 5 or 10%, and subsequently
quantifies the impact on the model output [Suh and Yee, 2011; Van Middelaar
et al., 2012; Van Zanten et al., 2015a; Yang et al., 2011]. This procedure is usu-
ally repeated for a limited number of input parameters. The input parameters
that cause most change in model output are considered to be the most influ-
ential parameters. The OAT approach, however, has two weaknesses. First,
the number of input parameters assessed is usually a subset of the total avail-
able input parameters, implying that potential influential parameters might
be overlooked. Second, the actual uncertainty ranges of input parameters are
ignored: some input parameters may vary only with 5%, while others may
vary with a factor ten or hundred. Their impact on the model output, there-
fore, might be under- or overestimated. The OAT approach is often chosen
because of its simplicity, as it is not necessary to gather additional data or to
derive, for example, ranges or distribution functions for all input parameters
[Björklund, 2002]. Moreover, data availability for environmental impact as-
sessment models is often very limited. Even with limited data, however, it is
still possible to perform uncertainty or sensitivity analysis.

Even in case no other data are available than the point values used in the
model, a local sensitivity analysis can be performed. The multiplier method
[Heijungs and Suh, 2002; Heijungs, 2010] (MPM), for example, determines
the local sensitivity of all input parameters in an LCA model, and does not
require actual ranges over which input parameters can vary. The MPM, there-
fore, accommodates the first weakness of OAT methods mentioned, as it sys-
tematically explores the sensitivity of all input parameters. MPM can be used
to explore areas of potential mitigation options [Heijungs, 1996]. Once these
parameters are indicated, a further examination is required to see if these
parameters can be improved, by e.g. technical innovations or by improving
management. However, since MPM only quantifies the intrinsic sensitivity
of the input parameters within the model, and does not include the actual
uncertainty of the input parameters, this method is not suitable to make com-
parisons.

In case only limited amount of data is available, for example, the ranges
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of input parameters are known, we can perform a screening analysis. The
method of elementary effects [Saltelli et al., 2008; Campolongo et al., 2007]
(MEE), for example, calculates the sensitivity of input parameters based on
their actual ranges, by exploring model outputs of those ranges. MEE can
be used to determine how uncertainty around the input parameters affects
the output. MEE does include an uncertainty range for each input param-
eter, and, therefore, partly accommodates the second weakness of the OAT
approach. Also, this screening analysis can be used to indicate important pa-
rameters that contain opportunities for improvement regarding environmen-
tal performance [Saltelli et al., 2008; Campolongo et al., 2007]. Since MEE is
a screening analysis, it is can also be used to find parameters that should be
taken into account in a subsequent global sensitivity analysis, i.e. it focuses the
data collection to the most important parameters before performing a global
sensitivity analysis. As only the ranges are used of the input parameters, be-
cause the distribution functions could not (yet) be defined, the uncertainty
of the model output is of limited value. For example, the model output of
the MEE method cannot be used to determine significant differences between
two product alternatives, which can be done with uncertainty propagation of
distributions functions using Monte Carlo simulation.

So far, no study combined the MPM and MEE in an environmental impact
assessment model, to see if a combination of methods leads to more insight in
parameters that can contain potential improvement options, or if their uncer-
tainty needs to be reduced to improve the reliability of the results.

In case full knowledge about the uncertainties is available, including the
distribution function (e.g. a normal distribution), mean and a parameter of
dispersion (e.g. standard deviation), uncertainty propagation can be per-
formed by means of a simulation on the basis of stochastic sampling. Cur-
rent practice in LCA is dominated by one type of sampling, namely Monte
Carlo sampling [Lloyd and Ries, 2007], but there are several other methods
to propagate uncertainties [Lloyd and Ries, 2007], such as Latin hypercube
sampling, which uses a smart sampling design that can potentially reduce the
sample size of the simulation, just as (randomised) quasi Monte Carlo sam-
pling. Fuzzy interval arithmetic [Lloyd and Ries, 2007], makes use of only
three data points (mean, minimum and maximum value) to propagate uncer-
tainties. Analytical uncertainty propagation [Heijungs, 1996], uses only the
mean and a parameter of dispersion to propagate uncertainties. However,
these methods have not been compared in a consistent manner to see if one of
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these methods performs better than the other.
After uncertainty propagation, a global sensitivity analysis can be per-

formed that can be used to explain where the output uncertainty comes from,
i.e. which parameters are most important in explaining the output variance.
A global sensitivity analysis can also be used to determine which of the input
parameters contribute only minor to the output variance and thus can be set to
a fixed value to simplify data collection of similar future studies [Saltelli et al.,
2008]. In LCA literature, different methods for global sensitivity analysis have
been used that quantify the contribution to output variance. Sampling-based
methods employ regression-like techniques that use the distribution function,
such as the squared standardised regression coefficients and the squared Pear-
son correlation coefficient or squared Spearman (rank) correlation coefficient
[Saltelli et al., 2008]. In contrast, analytical methods (the so-called key issue
analysis; [Heijungs, 1996]) only require a parameter of dispersion to calculate
the contribution to the output variance for each parameter. Outside the LCA
domain, a much wider set of methods have been developed and applied, such
as random balance design and the Sobol’ method [Sobol’, 2001; Saltelli et al.,
2008], which also both use the distribution functions. So far, the application
of different methods for global sensitivity analyses in environmental impact
assessment models, such as LCAs and nutrient balances, have been limited.
For these methods, it is not known if there is one method that performs better
than the other methods.

A common strategy in environmental impact assessment models, is to look
for improvement options, and to do so, two product alternatives are com-
pared. A suitable approach is to use a discernibility analysis [Henriksson
et al., 2015; Heijungs and Kleijn, 2001], where random drawings from two
sampling (e.g. Monte Carlo) runs are compared and a frequency distribution
is determined of how much one alternative is better than the other. Incorpo-
rating uncertainties in this way, improves environmentally friendly decision-
making and benchmarking. So far, no study has yet combined the knowledge
of a global sensitivity analysis in a benchmarking study in environmental im-
pact assessment models, such as a nutrient balance, to see if reducing input
uncertainties influence the result of benchmarking.

In addition, very few studies incorporated correlations in the sample de-
sign of environmental impact assessment models [Wei et al., 2014; Bojacá and
Schrevens, 2010]. So far, no study has yet included the effect of correlations
on the global sensitivity analysis in environmental impact assessment model
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and applied it to a case study of food production. Moreover, none explored
how to quantify the effect of ignoring correlations between input parameters
on the output variance and in global sensitivity analysis.

Even though case studies of food production are especially prone to natu-
ral variability and epistemic uncertainties, very few case studies made a thor-
ough examination of all the parameters in the model. Therefore, I come to the
overall aim of this thesis:

The aim of this thesis is to explore how uncertainty and sensitivity anal-
ysis can help to reduce the efforts for data collection, support the de-
velopment of mitigation strategies and improve overall reliability of in-
formed decision-making in environmental impact assessments models.

To do so, the following topics were addressed:

• Comparing different methods for uncertainty propagation and sensi-
tivity analysis that include uncertainty, and find their applicability, for
example by combining results of different methods;

• Determining the effect of correlations in uncertainty propagation and
global sensitivity analysis;

• Application to case studies in food production systems.

An overview of the applied methods in each chapter can be found in Fig-
ure 1.3.

1.4 Thesis outline

In Chapter 2, a local sensitivity analysis and a screening analysis are applied
in an LCA case study of pork. Input uncertainties in pork production systems
come from epistemic uncertainties around emission factors, and natural vari-
ability around technical parameters such as crop yields and feed intake. The
results the screening analysis (which requires ranges) was combined with the
results of the local sensitivity analysis (which requires only point values), to
provide improvement options related to data quality and management strate-
gies.
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In Chapter 3, methods for uncertainty propagation are compared on their
data requirements, accuracy and efficiency, applied to artificial case studies of
electricity production and wild caught fish.

In Chapter 4, methods for global sensitivity analysis are compared, based
on data requirements and capability to explain the output variance. The meth-
ods will be applied to an artificial case study of wild-caught fish and electricity
production.

In Chapter 5, a novel method is introduced that quantifies the effect of
including or ignoring correlations in the sampling design on the output un-
certainty and global sensitivity analysis. The method can be used when both
correlation between two input parameters and the variance (of one of) the
input parameters is unknown. To show how the method can be used, the
method is applied to an artificial case study of electricity production.

In Chapter 6, a local and a global sensitivity analysis is applied to a case
study of milk production in Germany. Uncertainties are caused by epistemic
uncertainty around emission factors and natural variability around technical
parameters such as crop yield and dry matter feed intake. Also, correlation
between fertiliser rate and crop yields, and feed intake and milk yield are
taken into account. The aim is to identify input parameters that can be set to
a fixed value to reduce data collection efforts, by combining the results of a
local and a global sensitivity analysis.

In Chapter 7, epistemic uncertainties are incorporated in benchmarking of
nutrient use efficiency of dairy farms. First, the effect of incorporating the
uncertainties on the ranking of the farms is determined. Second, parameters
are identified which explain most of the output variance for different farm
typologies. Third, the uncertainties of the most important parameters are
reduced; to see if reducing the input uncertainties influence benchmarking.

In Chapter 8, the value of uncertainty and sensitivity analysis in envi-
ronmental assessment models is discussed, and recommendations are given
towards future research.
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Abstract

This study aimed to identify the most essential input parameters in the assessment of greenhouse
gas emissions (GHG) along the pork production chain. We identified most essential input pa-
rameters by combining two sensitivity-analysis methods: the multiplier method and the method
of elementary effects. The former shows how much an input parameter influences assessment of
GHG emissions, whereas the latter shows the importance of input parameters on uncertainty in
the output. For the method of elementary effects, uncertainty ranges were implemented only for
input parameters that were identified as being most influential based on the multiplier method or
that had large uncertainty ranges based on the literature. Results showed that the most essential
input parameters are the feed-conversion ratio, the amount of manure, CH4 emissions from ma-
nure management and crop yields, especially of maize and barley. Combining the results of both
methods allowed derivation of mitigation options, either based on innovations (e.g. novel feeding
strategies) or on management strategies (e.g. reducing mortality rate), and formulation of options
for improving reliability of the results. Mitigation options based on innovations were shown to
be most effective when directed at improving the feed-conversion ratio; decreasing the amount
of manure produced by pigs; improving maize, barley and wheat yields; decreasing the number
of sows or piglets per growing pig needed and improving efficiency of N-fertiliser production.
Mitigation options based on management strategies were shown to be most effective when farm-
ers strive to reduce feed intake, reduce the application of N fertiliser to maize and barley, and
reduce the number of sows per growing pig needed towards best practices. Finally, the method of
elementary effects showed that reliability of assessing GHG emissions of pork production could
be improved when uncertainty ranges are reduced, for example, around direct and indirect N2O
emissions of the main feed crops in the pig diet and the CH4 emissions of manure. Also the
reliability could be improved by improving data quality of the most essential parameters. Com-
bining two types of sensitivity-analysis methods identified the most essential input parameters in
the pork production chain. With this combined analysis, mitigation options via innovations and
management strategies were derived, and parameters were identified that improved reliability of
the results.

2.1 Introduction

Environmental impacts of the agri-food industry have been of increasing con-
cern; in particular awareness about environmental impacts of animal produc-
tion are increasingly acknowledged [Steinfeld et al., 2006]. The livestock sec-
tor, for example, is responsible for about 15% of the total anthropogenic emis-
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sions of greenhouse gases [Gerber et al., 2013]. Worldwide, pork production
explains about 9% of greenhouse gas (GHG) emissions of the livestock sector
[Gerber et al., 2013].

In general, the environmental impact of pork production is quantified us-
ing life cycle assessment (LCA) [Baumann and Tillman, 2004]. To quantify
GHG emissions of the entire pork production chain, we need to define values
for input parameters, such as feed-conversion ratios, crop yields, nitrogen ap-
plication ratios, and emission factors. Uncertainty around these input values
can cause a large variation in GHG emissions estimates. For example, within
the IPCC Tier 1 framework, direct N2O emissions of N from fertiliser and ma-
nure and crop residues vary by a factor of ten: 0.003 to 0.03 kg N2O per kg N
applied [IPCC, 2006c].

To quantify to what extent environmental impacts of the pork production
chain varied and to explore the robustness of the results, Basset-Mens and
Van Der Werf [2005]; Basset-Mens et al. [2005]; Van Der Werf et al. [2005]
identified ranges of some of their input parameters and assessed the effect of
these ranges on the output. Basset-Mens and Van Der Werf [2005] for example,
concluded that N2O emissions of feed crops caused large uncertainty around
estimates of total GHG emissions, indicating that the impact of the feed crops
is high, as are the uncertainty ranges around their emissions. None of these
studies systematically explored the effect, or contribution, of each individual
input parameter to the output. However, it is possible to assess the importance
of each individual parameter in an LCA model by performing a sensitivity
analysis.

Most LCA studies that performed a sensitivity analysis used a straight-
forward method, i.e. a one-at-a-time (OAT) approach. An OAT approach
selects an input parameter and changes it e.g. 10%, and subsequently quanti-
fies the effect on model output [Suh and Yee, 2011; Van Middelaar et al., 2012;
Van Zanten et al., 2015a; Yang et al., 2011]. By exploring the impact of input
parameters on the output, the robustness of the results is explored. The input
parameters that cause most change in model output are considered to be the
most influential parameters.

The OAT approach is often chosen because of its simplicity as it is not
necessary to gather additional data or to derive, for example, ranges or dis-
tribution functions for all input parameters [Björklund, 2002]. However, the
OAT approach has two weaknesses. First, the number of input parameters
assessed is usually a subset of all input parameters, implying that potential
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influential parameters might be overlooked. Second, the arbitrary choice of
10% may not reflect the actual uncertainty range of the input data. Some in-
put parameters may vary only 5%, while others may vary by a factor of ten.
Therefore, the actual effect on the output might be under- or overestimated.

Two methods for sensitivity analysis are available that overcome these
weaknesses. The multiplier method (MPM) determines the influence of all
input parameters in an LCA model, and, therefore, accommodates the first
weakness. MPM was first introduced in LCA by Heijungs [1994], but to our
knowledge has not been applied to an agricultural case study in LCA. MPM
can be used to determine areas of potential mitigation options [Heijungs, 1996]
but does not take into account the actual ranges over which the input param-
eters can vary.

In contrast, the method of elementary effects (MEE) does include an uncer-
tainty range for each input parameter, and, therefore, accommodates the sec-
ond weakness mentioned. MEE calculates the importance of the input param-
eters based on their actual ranges, by exploring model outputs within these
ranges. MEE can be used to determine how much the uncertainty around the
input parameters affects the output. The parameters that affect the output
most, based on their uncertainty range, are referred to as the most important
parameters. It should be noted that although MEE provides a sampled model
output, it is primarily used for sensitivity analysis belonging to the area of
screening methods [Saltelli et al., 2008]. MEE was originally designed by Mor-
ris [1991] and expanded by Campolongo et al. [2007]. To our knowledge, MEE
has only been applied to LCA studies outside livestock production e.g. cocoa
production by Mutel et al. [2013] and detergent production by De Koning et al.
[2010].

This study aims to identify the most essential parameters in an LCA model
of GHG emissions of pork production by combining results of the two sensitivity-
analysis methods. First, MPM is applied, including all input parameters in
the model, and second MEE is applied, which explores consequences of ac-
tual ranges in uncertainty. Combining results of both methods may help to
formulate potential mitigation options and increase reliability of LCA results.
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2.2 Material and methods

2.2.1 Matrix formulation in LCA

To facilitate the use of the sensitivity-analysis methods applied in this study,
we used matrix-based LCA [Heijungs and Suh, 2002]. The inventory totals
equal:

g = BA�1f (2.1)

Input parameters of an LCA consist of technical parameters and emissions
or resource use. The technology matrix A contains the technical parameters
of various production processes included in the chain, such as production of
feed or storage of manure, presented as a set of linear equations. Each column
represents a production process. The associated emissions are found in the
B-matrix, e.g. the kg CH4 per kg manure storage per year. The A-matrix
is scaled to produce the amount given by the functional unit f (e.g. kg of
growing pig). To calculate the total environmental impact per impact category
(h), the inventory result (g) is multiplied by the characterisation matrix (Q):

h = Qg (2.2)

In this case, Q contains the characterisation factors of GHG emissions for
global warming potential (GWP) on a 100-year time interval: carbon dioxide
(CO2), biogenic methane (CH4,bio): 28 kg CO2 e/kg biogenic methane, fossil
methane (CH4,fossil): 30 kg CO2 e/kg fossil methane; and nitrous oxide (N2O):
265 kg CO2 e/kg nitrous oxide [Myhre et al., 2013], thus reducing to a vector
q0, and h to a scalar h. All modelling in this paper is done in MATLAB,
and the code is available upon request to the authors. We only considered
elements in A and in B to contain uncertainty; f and Q remained fixed.

2.2.2 Multiplier method

MPM predicts the change in the result h of a small change around the default
value of each input parameter in A or B. A derivation of the method can be
found in Heijungs [2010]. MPM uses the first-order partial derivatives ∂(h,m)

∂(A,i,j)

and ∂(h,m)
∂(B,i,j) to estimate the influence around each input parameter. To compare

the influence of the input parameters, the partial derivatives are normalised
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with respect to their original value Aij and Bkj, where Aij and Bkj are elements
of A and B respectively, and hm are the impact categories in h. The multipliers
equal:

h(h, m; A, i, j) =
Aij

hm

∂(h, m)
∂(A, i, j)

(2.3)

h(h, m; B, k, j) =
Bkj

hm

∂(h, m)
∂(B, k, j)

(2.4)

Full expressions of the multipliers of Equations (2.3) and (2.4) are given in
Heijungs [2010]. The multiplier will give not only the magnitude but also the
direction of change, and can either be positive or negative. The multipliers can
be interpreted as how much a 1% change in the input will affect the output
(in %). For illustrational purposes, we will also use the absolute effect, given
by |h|.

2.2.3 Method of elementary effects

MEE uses the actual ranges of each input parameter. A range is defined as a
minimum and a maximum for each parameter, and can originate from vari-
ability or epistemic uncertainty. Variability in input parameters arises from
e.g. variation in crop yields or N-fertiliser rates over years; it is inherent to the
data and cannot be reduced. Epistemic uncertainty comes from unknowns
around an input parameter [Walker et al., 2003], and is for example found for
the IPCC emission factors of N2O emissions of fertiliser application. Gaining
more knowledge about an input parameter, e.g. by better measurements, can
reduce epistemic uncertainty [Chen and Corson, 2014].

The minimum and maximum value for each input parameter can be used
to calculate the combination of all minima and maxima, but in the case of 100
parameters, this would lead to 2100 ⇡ 1030 calculations. This approach may
not be feasible, especially for large models. To overcome this problem, MEE
selects two points within the range for each input parameter and calculates the
change in the output based on this change in the input parameter, changing
each parameter only once. To perform MEE, the range of each input parameter
is divided into three equal parts (it does not use the default value, as MPM
does). If a parameter ranges from 0 to 1, for example, the division would
lead to (0; 1/3); (1/3; 2/3); (2/3; 1). It is possible to create smaller or larger
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divisions, but this is a common choice [Campolongo et al., 2007; Saltelli et al.,
2008]. Starting from an arbitrary starting point, one parameter is selected at
random and changed with a predefined step size dA,i,j or dB,k,j, set to 2/3 of
the range of each input parameter [Campolongo et al., 2007]. This is repeated
until each parameter has changed once (one trajectory has been performed)
and the elementary effects EE(A, i, j) and EE(B, k, j) can be calculated for each
parameter Aij and Bkj by dividing the change in output by the step size D
(equal to 2/3):

EE(A, i, j) =
h(Aij + dA,i,j)� h(Aij)

D
(2.5)

EE(B, k, j) =
h(Bkj + dB,k,j)� h(Bkj)

D
(2.6)

The above procedure is repeated several times. A measure of importance
is found by calculating µ⇤, which is the (absolute) mean of the average ele-
mentary effects1:

µ⇤(A, i, j) =
1
R

R

Â
r=1

|EE(A, i, j)| (2.7)

µ⇤(B, k, j) =
1
R

R

Â
r=1

|EE(B, k, j)| (2.8)

where R is the number of trajectories (usually set to 10). The set of µ⇤
values can be ranked from the most to the least important parameter2.

2.2.4 Framework for combining MPM and MEE

We combined MPM and MEE based on a figure in Heijungs [1996], which
distinguished between the influence and the importance of input parameters

1As the trajectories are chosen at random, one can imagine that the choice of the trajectories
can be closer or further apart. In an optimal situation, one would like the trajectories to be as
far apart as possible. Campolongo et al. [2007] proposed a brute force approach that selects e.g.
ten more optimal trajectories from a set of 100. As this model is linear, e.g. the ranking of the
parameters did not change for multiple runs, we did not include this part of the methodology as
it takes much more computational effort in terms of run-time and memory usage.

2Another indicator that can be calculated is the s, which is an indicator for the interaction or
non-linear effects: if the elementary effect of a certain parameter changes for different trajectories,
the magnitude of the elementary effect depends on either the configuration of the model or the
presence of nonlinear effects, but this will not be discussed in this paper.

33



2.2. MATERIAL AND METHODS CHAPTER 2.
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Figure 2.1: Framework for combining MPM and MEE. The most influential
and important parameters are shown in the top right corner (essential param-
eters). Adapted from Heijungs [1996].

on output uncertainty. If an input parameter is both influential and impor-
tant, the parameter is considered as essential (Figure 2.1). We used MPM to
determine the influence and MEE to determine the importance of each input
parameter.

We adapted the figure from Heijungs [1996], to identify mitigation options
based on innovations or management strategies (Figure 2.1). The horizontal
axis ranks the most influential parameters, which therefore could have most
impact if they are reduced. These mitigation options reflect innovations in the
production chain. The vertical axis ranks the parameters that are most impor-
tant to output uncertainty, caused by their variability due to e.g. differences
in management practises, or epistemic uncertainties. Input parameters that
are highly important and highly influential can be used to identify potential
mitigation strategies (i.e. essential parameters, Figure 2.1, top right corner).
Environmental impacts of the livestock sector, for example, can be reduced if
farmers adapt their management strategies towards those farmers, with a rel-
atively low environmental impact. In addition, reliability can be improved by
reducing the epistemic uncertainties that are shown to be important, which
are also found in the direction of the vertical axis. Reducing the epistemic
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uncertainty ranges of input parameters that affect the output highly would
lead to smaller ranges of uncertainty around the output, hence more reliable
conclusions. Epistemic uncertainties can be reduced by better measurements.
Reliability can also be improved by improving data quality of the most essen-
tial parameters.

2.2.5 Case study: pork production chain

Pork production system

The pig production model is based mainly on Van Zanten et al. [2015b] and
the functional unit is one kg body weight of a growing pig. The model of
Van Zanten et al. [2015b] describes a growing-pig production chain in the
Netherlands in which soya bean meal is replaced by rapeseed meal. Environ-
mental impacts of the following processes in the pig chain were considered
and are explained below: production of crop inputs (e.g. fertiliser), feed pro-
cessing (e.g. milling), piglet production (rearing), manure management, pig
housing, and enteric fermentation from pigs (Figure 2.2). The supplemen-
tary material (Table 2.6) provides the compositions of diets for growing pigs,
piglets, gilts and sows.

Diet compositions were an average representation for the year 2012 and
were composed based on the procedure described by Bikker et al. [2011]. The
average diet contained four diets, one for each quarter of the year. The diets
were formulated using a commercial linear programming tool for feed (i.e.
Bestmixr, Adifo, Maldegem, Belgium), which optimises a diet by minimis-
ing the cost of the diet [Nuscience, 2012]. The diets had to meet the average
nutritional requirements for the pigs in Dutch practice, e.g. growing pig di-
ets contained 9.68 MJ net energy per kg feed. To assess the average growth
performance (aligned with the nutritional content of the diet), annual average
company data of Dutch pig farms were used [Agrovision, 2012]. Piglets had a
start weight of 25 kg. After 118 days, growing pigs were ready for slaughter,
weighing 118 kg on average. In case of a multifunctional process (e.g. pro-
duction of soya bean oil and soya bean meal), economic allocation was used,
which is the partitioning of environmental impacts between co-products based
on the relative economic value of the outputs [Guinée, 2002]. Economic allo-
cation is used most commonly in LCA studies of livestock products [De Vries
and De Boer, 2010].
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Figure 2.2: Production processes in the pork production chain; solid boxes are
production processes, while dotted boxes refer to emissions.

Inventory

Data were collected for each of the stages in the production process of pork
(Figure 2.2): (1) production of crop inputs; (2) crop cultivation, including
transportation and processing; (3) feed production; (4) pork production; (5)
manure management; (6) enteric fermentation and (7) housing of the pigs
(supplementary material, Table 2.7). For MPM, all default data can be found
in the supplementary material. For MEE, we tried but were unable to deter-
mine ranges for all input parameters. Based on the literature (e.g. uncertainty
ranges around direct N2O emission factors) and our own analysis with MPM
(Section 2.3.2), we identified the most important parameters to be included.
Input parameters (technical parameters and emissions) for which we could
quantify uncertainty ranges are discussed in more detail below (Table 2.1 to
2.4).

The pork production chain contained 354 input parameters; all were anal-
ysed in MPM, and 46 were considered in MEE. Ranges for MEE were based
on variability in farm data and epistemic uncertainties around the input pa-
rameters.
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Table 2.1: Default values of the feed composition of five ingredients that were
largest in mass-share for pig, gilt, sows and piglets, including a range in the
total feed intake of the growing pig.

Pig
production

Gilt
production

Sow
production

Piglet
production

Feed intake (kg) 244
(234-352)3,4

4035 11746 297

Barley (%) 12.9 6.78 13.7 32.1
Maize (%) 26.7 25.0 21.1 21.5
Rapeseed meal (%) 10.2 10.0 1.30 n/a
Soya bean meal (%) 7.50 4.25 3.70 12.9
Wheat (%) 20.9 20.4 12.4 11.0
Other (%) 21.8 33.6 47.8 22.5

Production of crop inputs and crop cultivation

Diets of growing pigs, piglets, sows and gilts consisted of 31 ingredients in
total (supplementary material, Table 2.6) and represented a mean feed intake
of 244 kg, ranging from 234-352 kg (Table 2.1), including feed intake related to
mortality of growing pigs (Table 2.7). Uncertainty ranges were assumed only
for the five ingredients that contributed most to GHG emissions in the diet
of the growing pig, identified with the MPM method. These five ingredients
were barley, maize, rapeseed (meal), soya bean (meal) and wheat. Data on feed
processing and feed transportation are given in the supplementary material
(Table 2.8).

Default values and ranges for yields and N-fertiliser applications for the
five main ingredients in the pig diet were defined (Table 2.2). Ranges are
caused by (natural) variability around the input parameters. The default data
of the technical parameters that were fixed, e.g. inputs for crop production,
are given in in the supplementary material (Table 2.8).

3Personal communication M. Dolman (May 11, 2015)
4kg feed per growing pig
5kg feed per gilt
6kg feed per sow per year
7kg feed per piglet
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Table 2.2: Default values and ranges of yields and fertiliser application rates
per crop type per year.

Ingredient Yield (kg DM8/ha) N-fertiliser application (kg N/ha)
Default9 Range10 Default9 Range11,12

Barley 5520 4824 – 5809 130 76 – 130
Maize 7621 5917 – 7621 150 64 – 294
Rapeseed 3040 2800 – 3477 73.4 49 – 7813

Soya bean 4800 4342 – 5099 9 0 – 1214

Wheat 6010 5245 – 6451 55 43 – 6413

Table 2.3: Emission factors for CO2 emissions and direct/indirect N2O emis-
sions based on IPCC Tier 1 per crop per year.

Emission factor (kg/crop yr) Default Range
CO2 from liming 0.12 0.06 – 0.12
CO2 from urea 0.2 0.1 – 0.2
Direct N2O 0.01 0.003 – 0.03
Indirect N2O from leaching 0.0075 0.005 – 0.025
Indirect N2O from volatilisation 0.01 0.002 – 0.05

Direct and indirect N2O and CO2 emissions due to liming and urea ap-
plication were quantified, including their ranges according to IPCC Tier 1
(supplementary material, Equations (2.9) - (2.17)). The ranges are caused by
epistemic uncertainties around the emission factors given in IPCC [2006c]. For
the other feed ingredients, default values were included [Vellinga et al., 2013].
CO2 emission factors from urea application and liming, direct and indirect
N2O emission factors of the five main ingredients (barley, maize, rapeseed,
soya bean and wheat), and their ranges, were also included (Table 2.3).

8DM: dry matter
9Default: Garcia-Launay et al. [2014]

10Range: FAOSTAT (based on 5 years: 2009 - 2013) for France (barley, maize, rapeseed, wheat)
and Brazil (soya bean)

11Minimum: Basset-Mens and Van Der Werf [2005] (red label, solid manure for barley, maize
and wheat converted to N)

12Maximum: Meul et al. [2012], except for barley: Garcia-Launay et al. [2014]
13Adjusted for N area and N fertiliser
14For two harvests per year
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Table 2.4: Emission factors for direct and indirect N2O emissions and CH4
emissions from manure per animal per growing period (110 days). D: default;
R: range.

Emission factor Type Pig
production

Gilt
production

Sow
production

Tier

Direct N2O D 0.0127 0.0162 0.0306 215

(kg N2O/animal) R 0.0064 – 0.0254 0.0081 – 0.0323 0.0153 – 0.0612
Indirect N2O 16 D 0.0159 0.0202 0.0382 215

(kg N2O/animal) R 0.0019 – 0.0953 0.0024 – 0.1212 0.0046 – 0.2294
CH4 D 1.36 0.933 3.66 2
(kg CH4/animal) R 1.36 – 5.33 0.933 – 31.1 3.66 – 31.1
CH4
fermentation

D 1.5 1.5 1.5 1

(kg CH4/animal) R 0.75 – 2.25 0.75 – 2.25 0.75 – 2.25

Emissions due to manure management and enteric fermentation

Handling and storage of manure causes emissions of CH4 and direct and
indirect N2O emissions (Table 2.4). Emissions from manure were based on
IPCC rules: for CH4 and N2O a Tier 2 approach was used, whereas for enteric
fermentation a Tier 1 approach was used. Ranges are caused by epistemic
uncertainties around the emission factors given in IPCC [2006b] and IPCC
[2006c]. An extended table can be found in the supplementary material (Table
2.9).

In summary, we identified ranges due to variability in the total feed in-
take of growing pigs, yields and N-fertiliser application rates of the five main
ingredients of pig diets, and the number of sows and gilts needed per grow-
ing pig (the replacement rate). The mortality rate of the sows and gilts was
included in the replacement rate. In addition, ranges due to epistemic un-
certainties were found for CO2 and N2O emissions of feed-crop production,
CH4 emissions due to enteric fermentation and N2O, and CH4 emissions of
manure management based on the IPCC Tier 1 and Tier 2 frameworks. We
assumed that all input parameters could vary independently; however, three

15N excretion in manure was specific for the Netherlands; for emission factors and the gas
fractions of volatilisation, default values of the IPCC were used.

16Indirect N2O emission due to volatilisation was not considered because all pigs were indoors.
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exceptions were made:

• In general, when feed intake increases, manure production and N excre-
tion increases as well [CBS, 2010]. Therefore, we assumed a proportional
relation between feed intake and manure production, i.e. the amount of
manure produced (and N excreted) was increased in direct proportion
to feed intake, e.g. if feed intake increased 10%, manure production of
the growing pig also increased 10%.

• In general, when N fertilisation increases, crop yield increases. There-
fore, we assumed that the random values drawn for N fertilisation and
crop yield followed a similar sampling pattern, e.g. when a high value
for N-fertilisation was drawn, this resulted in a high value for crop yield
and vice versa. This means that if one randomly draws a sample at 2/3
of the uncertainty range for N fertilisation, also for crop yield a sample
at 2/3 of the range is selected. But if crop yield is selected first in the
trajectory, for example at 1/3 of the uncertainty range, for N fertilisation
a sample at 1/3 of the uncertainty range is selected as well.

• The random values drawn for N fertilisation and crop yield were used to
calculate the emissions from cultivation (i.e. CO2 emission from liming
and urea application, direct and indirect N2O emissions). The emission
factors of the CO2 and N2O emissions of cropping were still assumed to
vary independently from the N fertilisation and the crop yield, because
the emission factors also depend on temperature and soil type, etc. Also,
the N2O and CH4 emission factors from manure management varied
independently from the amount of manure, because the emission factors
depended not only on the amount of manure but other external factors
such as climate conditions [IPCC, 2006b].

2.3 Results and discussion

2.3.1 Pork production

GHG emissions per kg body weight (BW) of a growing pig were 2.61 kg CO2 e
per kg BW, of which 21% came from crop inputs and 46% came from feed pro-
duction (Figure 2.3). Manure management contributed 17% of the total emis-
sions, housing 11%, and enteric fermentation 4.7% (Figure 2.3). These results
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Figure 2.3: Greenhouse gas emission of 1 kg growing pig emitted during its
growing period (110 days).

corresponded to those found in the literature, in which feed production (crop
cultivation, production of crop inputs) and manure management explained
most of the emissions [Basset-Mens and Van Der Werf, 2005; Dalgaard, 2007;
Van Zanten et al., 2015b].

Based on minimum and maximum values (Table 2.1 to 2.4), minimum and
maximum GHG emissions were were 1.83 and 5.00 kg CO2 e per kg grow-
ing pig, respectively. Estimates for pork production chains are demonstrated
to vary from 3.9 - 10 kg CO2 e per kg meat [De Vries and De Boer, 2010],
converted to kg edible product, this resulted in 3.5 - 9.5 kg CO2 e per kg edi-
ble product.

2.3.2 Multiplier method

First we applied MPM, considering the default data only. The most influential
parameters were feed intake (input feed), followed by manure produced by the
growing pig (manure output) and yield of maize (maize output) (respectively #1, #2
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and #3, Table 2.5). Regarding crop inputs, the most influential parameter was
the output of N fertiliser, which can be interpreted as the efficiency of the N
fertiliser production. Regarding crop cultivation, yield of maize (maize output),
followed by yield of barley (barley output) and yield of wheat (wheat output) were
most influential. Regarding manure management and fermentation, manure
produced by the growing pig was most influential, followed by CH4 emissions due
to manure and enteric fermentation of the growing pig.

2.3.3 Method of elementary effects

As described (Section 2.2.5), defining the ranges for MEE depended on results
of MPM (Table 2.5), and the literature. Based on results of the MPM, we
defined ranges for the yields of the five main ingredients of pig diets and
N-fertiliser application. Even though indirect N2O emissions did not show
up in the top ten most influential input parameters of the feed ingredients
of MPM, we included them as well because Basset-Mens and Van Der Werf
[2005] showed that the uncertainty ranges of these emissions are high and will
influence the results. We defined ranges for the methane emissions of manure
and fermentation, and also for the N2O emission of manure. A range for feed
intake of the growing pig was defined, but not for the maize ratio in the pig
diet, because the diets were fixed. We were not able to define ranges for the
parameters related to crop inputs, such as N-fertiliser production.

Parameters with the highest elementary effect contributed most to the un-
certainty in the results and are considered the most important input param-
eters: feed intake of the growing pig (input feed) (#1, Figure 2.4), followed
by methane emissions from manure (#2, Figure 2.5), followed by N-fertiliser
input for maize cultivation (#3, Figure 2.6).

2.3.4 Discussion of the sensitivity-analysis methods

Applying MPM for sensitivity analysis overcomes arbitrary choices of se-
lecting a subset of input parameters, as done in traditional OAT sensitivity-
analysis methods. One disadvantage of MPM is that the effect of uncertainty
ranges around input parameters on model output is not included. MEE al-
lowed us to include the uncertainty ranges of input parameters that were

17Number of sows required per pig is based on the replacement rate of the sows and on the
number of piglets per sow per year.
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Table 2.5: Multipliers (h) of the most influential parameters, whose values
can be interpreted as follows: increasing an input parameter (i.e. N-fertiliser
output) by 1% will change the global warming potential (GWP) –0.097%. The
ten most influential parameters of the LCA model are shown in bold-italic
print. Rank 1 identifies the most influential parameter (i.e. with the largest
multiplier). Only parameters with a relatively high influence, i.e. |h| > 0.03,
are shown. FCR: Feed Conversion Ratio.

.

Stage Process Flow Multiplier Rank
within
stage

Overall
rank

Interpretation

Production of crop
inputs

N-fertiliser
production

Fertiliser output –0.097 1 8 Efficiency of fertiliser
production

N2O emission +0.061 2 n/a
CO2 emission +0.034 5 n/a

Diesel production Diesel output –0.042 3 Efficiency of diesel production
CO2 emission +0.040 4 n/a

Urea fertiliser
production

Urea fertiliser
output

–0.030 6 Efficiency of urea fertiliser
production

Crop cultivation
and processing

Production of
maize

Maize output –0.14 1 3 Yield of maize

Input N-fertiliser +0.048 5 N-fertiliser rate
Direct N2O
emission

+0.034 7 n/a

Production of
barley

Barley output –0.097 2 9 Yield of barley

Production of
wheat

Wheat output –0.093 3 10 Yield of wheat

Direct N2O
emission

+0.030 8 n/a

Production of soya
bean meal

Soya bean meal
output

–0.053 4 Milling yield of soya bean

Production of soya
bean

Soya bean output –0.039 6 Yield of soya bean
before milling

Production of rape
meal

Rapeseed meal
production

–0.034 9 Milling yield of rapeseed

Production of
other feed
ingredients

Production of
phytase

Phytase output –0.033 1 n/a

CO2 emission +0.033 2 n/a
Feed production Pig feed

production
Input maize +0.11 1 5 Maize ratio, pig diet

Input wheat +0.091 2 Wheat ratio, pig diet
Input barley +0.062 3 Barley ratio, pig diet

Pork production Pig production Input feed +0.52 1 1 Feed conversion ratio
Input piglets +0.11 2 6 Number of piglets per pig;

piglet mortality
Input sows +0.10 3 7 Number of sows per pig17

Sow production Input feed +0.081 4 FCR, sow
Piglet production Input feed +0.077 5 FCR, piglet

Manure
management

Manure
production, pig

Manure output +0.15 1 2 Production of manure
by growing pig

CH4 emission +0.12 2 4 n/a
Enteric
fermentation

Enteric
fermentation, pig

CH4 emission +0.043 1 n/a

Housing pig Energy use Energy input +0.064 1 n/a
CO2 emission +0.060 2 n/a
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Figure 2.4: Elementary effects (µ⇤) of technical parameters. Feed intake is the
most important parameter in the LCA model. Numbers at the end of the bars
indicate the overall rank of the 10 parameters that contributed most to output
uncertainty.
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Figure 2.5: Elementary effects (µ⇤) of parameters causing most uncertainty
in the results of manure management and enteric fermentation. MP: manure
production; EF: enteric fermentation. Numbers at the end of the bars indi-
cate the overall rank of the 10 parameters that contributed most to output
uncertainty.
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Figure 2.6: Elementary effects (µ⇤) of parameters causing most uncertainty
(i.e. |µ⇤| > 1) in the result of crop cultivation. Numbers at the end of the bars
indicate the overall rank of the 10 parameters that contributed most to output
uncertainty.
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available in the single-issue LCA model. However, one disadvantage of MEE
is that it is based only on minimum and maximum values, thus excluding
a distribution function or an average value. Other methods for sensitivity
analysis are available which belong to the area of global sensitivity analy-
sis, such as squared standardised regression coefficients [Saltelli et al., 2008],
which quantify how much each input parameter contributes to output vari-
ance [Campolongo et al., 2007; Saltelli et al., 2008]. To apply a global sensi-
tivity analysis, more data are required, such as the standard deviation and a
distribution function. Because these types of data were not available in this
study, we could not apply this method. However, we were interested mainly
in influential input parameters that could give direction for future innova-
tions; important parameters that could improve farm management strategies
and improve reliability of results, which could also be derived with MEE.

There are two disadvantages to the way in which we applied MEE. First,
we were not able to identify ranges for all input parameters; therefore, we
might have missed potentially important input parameters. Second, we as-
sumed that all input parameters either varied independently, or were directly
related (i.e. N fertiliser and crop yield), which probably overestimates what
happens in reality. However, MEE is less suitable for implementing corre-
lations than more data-intensive global sensitivity-analysis methods, such as
using the squared standardised regression coefficients as a proxy for a sensi-
tivity index.

One of the most influential input parameters was the amount of manure
produced by the growing pig, which was directly related to feed intake. That
increased feed intake resulted in increased manure production and N excre-
tion is plausible; however, assuming that it does so in direct proportion re-
mains questionable. In addition to feed intake, factors such as water intake
can also change the amount and N content of manure. However, ignoring a
relation between feed intake and manure production and N excretion would
have resulted in underestimating CH4 and indirect and direct N2O emissions.
To what extent manure production and N excretion are over- or underesti-
mated in relation to feed intake, however, remains unclear.

2.3.5 Combining MPM and MEE

The results of MPM identified a different set of parameters than MEE. By
combining results of the two sensitivity-analysis methods, we could extract
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Figure 2.7: Most essential parameters in the LCA model of pork production.
Parameters along the horizontal axis (log-scale) are the most influential pa-
rameters identified by MPM. Parameters along the vertical axis are the most
important parameters identified by MEE. Circles: parameters containing epis-
temic uncertainty; diamonds: parameters containing variability. Parameters on
the horizontal axis (triangles) are those for which no ranges could be defined.
MPM: multiplier method; MEE: method of elementary effects.

the most essential parameters to identify GHG mitigation strategies for pork
production and improve reliability of the results. The most influential pa-
rameters are feed intake of the growing pig, followed by manure produced by the
growing pigs and yield of maize (Figure 2.7), while the most important param-
eters are feed intake of the growing pig, followed by methane emissions of manure
and by N fertiliser of maize. Feed intake of the growing pig is therefore considered
the most essential parameter in the LCA model of GHG emissions of pork
production. A change in feed intake immediately affects the amount of feed
produced and the corresponding emissions of the feed ingredients.
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Parameters with input uncertainties that affect the output (i.e. high impor-
tance), such as the direct N2O emissions of barley and maize (from leeching
and volatilisation), have in fact a low influence. Applying only MPM would
have led to overlooking these parameters. In contrast, parameters that have
relatively high influence, but for which no uncertainty ranges could be de-
fined (e.g. N-fertiliser production), might have been underestimated if only
MEE had been applied.

2.3.6 Formulating mitigation options and improving reliabil-
ity

The most influential parameters (Figure 2.7, horizontal axis), have the most
impact when they are reduced. Innovation options to improve the most influ-
ential parameters, such as decreasing feed intake of growing pigs, decreasing
the amount of manure produced, increasing yields of feed ingredients in pig
diets, decreasing the number of sows needed per growing pig, decreasing
piglet mortality, and increasing efficiency of N-fertiliser production, will have
a large effect on results. These mitigation strategies result in increased effi-
ciency that will have an effect throughout the production chain.

Mitigation options via e.g. management strategies can be formulated by
looking at the most important parameters (Figure 2.7, vertical axis) affected
by natural variability (Figure 2.7, diamonds), such as feed intake and fertiliser
application. Natural variability in parameters can be caused by variability
in climate, soil types or temperature, or differences in genetics, geography or
farm management. Farmers can strive to reduce environmental impacts of the
pig production chain by adapting their management strategies towards those
of the most successful farmers. For example, farmers can improve the feed
conversion ratio (kg dry matter feed intake/kg growth), but doing so is not
easy, because it depends on several factors, such as feed quality, feed access,
pig health, and climate conditions e.g. temperature and humidity of the stalls.

Reliability of GHG assessments can be improved by looking at param-
eters with epistemic uncertainties (Figure 2.7, circles). Epistemic uncertain-
ties around emission factors for indirect N2O emissions and CH4 emissions
of manure, and direct N2O emissions of maize and barley cultivation have
the most effect on the reliability of results. Decreasing uncertainty ranges of
these emission factors would decrease those around the output, hence provide
more reliable conclusions. However, reducing uncertainty around the indirect

48



CHAPTER 2. 2.4. CONCLUSION

N2O emission of maize production would not mean that GHG emissions are
actually reduced, only that the results are more reliable. Estimates can be
improved by taking measurements in the field. Reliability could be also be
improved by improving data quality of the most essential parameters.

Mitigation strategies, either in the form of technical innovations or im-
proved management practices related to feed intake, would reduce GHG emis-
sions the most. Feed cultivation has higher impact than other stages of pork
production. However, our results showed that besides feeding strategy, miti-
gation strategies related to manure management are also important. If feed-
related mitigation strategies are assessed, possible trade-offs with manure
management should also be considered, as they might have a high impact
on the results.

2.4 Conclusion

We applied two methods for sensitivity analysis, MPM and MEE. Combining
both methods allowed us to determine the most essential parameters in the
model, from which we could derive mitigation options based on innovation
and management strategies, and to formulate options for improving reliabil-
ity of estimates of GHG emissions of a pork production chain. Mitigation op-
tions based on innovation (e.g. novel feeding strategies) would be suggested
for the most influential parameters in the model (identified by MPM): feed
intake, amount of manure produced by growing pigs, crop yields of the main
feed ingredients, number of sows required for one growing pig and fertiliser-
production efficiency. Mitigation options based on management strategies
(e.g. reducing mortality rate) would be suggested for technical parameters
with high variability (identified by MEE) such as feed intake, crop yields and
number of sows per pig. The uncertainty ranges can be used as margins of im-
provement within the pork production chain. In addition to that, MEE showed
that reliability could be improved most when uncertainty ranges around di-
rect and indirect N2O emissions of the main feed crops in the pig diet and the
CH4 emissions of manure production are reduced.

Combining two sensitivity-analysis methods identified the most essential
input parameters in the pork production chain, while allowing for uncertain-
ties around input data. With this combined analysis, potential targets for
mitigation options via innovations and management strategies were derived,
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and parameters were identified that improved reliability of the results.
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Supplementary material

Data required determining technical parameters

Table 2.6: Average diet composition pigs, gilts, sows and piglet; the five main ingre-
dients are given in bold. Reference: Van Zanten et al. [2015a] and for growing pigs
Bikker et al. [2011].

Ingredient Pig (%) Gilt (%) Sow (%) Piglet (%)
Animal fat 2 2 0.7 2
Barley 12.9 6.78 13.7 32.1
Bread meal 2.75 2.25 1.58 1.75
Maize 26.7 25 21.1 21.5
DL-Methionine 0.03 0.02 0.01 0.14
Lactic Acid n/a n/a n/a 1
Limestone 1.06 0.9 1.11 1
L-Lysine HCL 0.34 0.3 0.24 0.45
L-Threonine 0.06 0.05 0.07 0.12
L-Tryptofaan 0.02 n/a n/a n/a
Monocalciumphosphate 0.13 0.11 0.38 0.66
Palm kernel expeller 1 n/a 3.25 n/a
Phytase 0.62 0.65 0.65 0.65
Potato protein n/a n/a n/a 1.35
Premix 0.4 0.4 0.4 0.4
Rapeseed expeller 1 n/a 0.84 n/a
Rapeseed meal 10.2 10 1.3 n/a
Salt 0.32 0.3 0.54 0.6
Soya bean hulls n/a 2.54 6 n/a
Soya bean meal 7.5 4.25 3.7 12.9
Soya beans heat treated n/a n/a n/a 0.11
Sugar beet pulp n/a 5 8.82 1
Sugarcane molasses 2.9 2 2.4 1.44
Triticale 1.5 1.13 n/a n/a
Wheat 20.9 20.4 12.4 11
Wheat middling 3.69 10.2 15.7 5
Sunflower oil 0.69 0.41 0.49 0.5
Sunflower seed meal 3.29 5 3.49 3
Whey powder n/a n/a n/a 1

Table 2.7: Default values and ranges for breeding and housing Van Zanten et al.
[2015a]

Value Ranges Unit
Breeding18 0.01731 0.01454 - 0.02363 Number of gilts/pig

0.03397 0.02853 - 0.04637 Number of sows/pig
1.022 n.a. Number of piglets/pig

Housing19 0.8 n.a. m2/pig
2.25 n.a. m2/gilt
2.25 n.a. m2/sow
0.35 n.a. m2/piglet

18The amount of sows and gilts required for the production of one pig included death rate.
19For piglets, gilts and sows we compensated for the difference in m2 used per animal place in

comparison with the m2 used per finishing pig place based on Dutch regulations (policy docu-
ment, 2007)



Table 2.8: Technical parameters for crop production. Sum of transportation of crop
ingredients (N, P, K, lime, pesticides) to the farm, transportation of to the feed factory
or drying (barley, maize and wheat) or to feed mill (rapeseed, soy), and from the
factory to the Netherlands.

Barley Maize20 Rapeseed Soya bean Wheat Ref.
Land of origin France France France Brazil21 France GL22

cryield (kg dm/ha year) 5520 6518 3040 4800 6010 GL22

Allocation (%) n/a n/a 0.25 0.59 n/a CvM20

Seeds (kg/ha year) 125 20 3 110 140 GL22

Pesticides (kg act. sub./ha year) 8.96 1 1.13 5 1.97 GL22

N fertiliser (kg/ha year) 130 150 73.4 9 55 GL22

Urea (kg N/ha year) 24.7 0 91.6 18 110 CvM20

P fertiliser (kg/ha year) 37 56.8 50 180 26 GL22

K fertiliser kg/ha year 34 63 50 180 24 GL22

Lime (kg/ha year) 298 298 298 2160 298 CvM20

N manure (kg/ha year) 10 101 16 0 10 GL22

Diesel (kg/ha year) 84 85 92 160 83 GL22

Agricultural machinery (kg/ha year) 18.7 21.7 20.4 39 18.6 GL22

Yield before drying (kg dm/ha year) n/a 7621 n/a n/a n/a CvM20

Electricity for drying (kWh/kg) n/a 0.008 n/a n/a n/a CvM20

Lorry (tkm) 785 1130 420 529 785 CvM20

Rail (tkm) 8416 10948 3661 0 8808 CvM20

Sea (tkm) 0 0 0 45492 0 TS23

Crop production
The direct N2O emissions from crop production are quantified using Equation 11.1
[IPCC, 2006c] (adjusted amount of N in mineral soils that is mineralised is zero: Fsom =
0):

N2Odirect,cropproduction =
44
28

⇣
Ns f + Nm + Ncr

⌘
EF1 (2.9)

where: Ns f (kg N/year) is the amount of N in synthetic fertiliser, Nm (kg N/year) the
amount of N in manure, Ncr (kg N/year) the amount of N in crop residues en EF1 (kg
N2O - N/(kg N year)) the emission factor of direct N from fertiliser, manure and crop
residues. The amount of N in crops (Ncr) is estimated by Equation 11.6 (adjusted: no
area burnt areaburnt = 0, pastures are renewed every year f racrenew = 1, considering 1
hectare: area = 1:

Ncr = cryield

h
Rag · Nag (1 � f racrem) + Rbg · Nbg

i
(2.10)

where: cryield (kg dm/ha) is the crop yield, Rag (kg dm/dm) the ratio of above ground
residue dry matter to the harvest yield, Nag (kg N/kg dm) is the N content of above-
ground residues, f racrem (%) is the fraction of above-ground residues that is removed,

20Van Middelaar et al. [2012]
21Central-West Brazil
22Garcia-Launay et al. [2014]
23TS: Assumptions in this study.



Rbg (kg dm/kg dm) is the ratio of below-ground crop residues to harvested yield and
Nbg (kg N/kg dm) the N content of below-ground crop-residues. Rag is calculated by:

Rag =
AGDM · 1000

cryield
(2.11)

where AGDM (Mg/ha) is the above-ground residue, which can be estimated by:

AGDM =
cryield · slope

1000
+ intercept (2.12)

and Rbg can be estimated by:

Rbg = RBG�BIO · AGDM · 1000 + cryield

cryield
(2.13)

where RBG�BIO (%) is the ratio of below-ground residues to aboveground biomass.

The indirect N2O emissions from crop production come from leaching and volatil-
isation. Leaching is quantified using Equation 11.10 (adjusted, leaching of mineralised
N and N leaching from urine and dung is zero: Fsom = 0 and FPRP = 0:

N2Oleaching,cropproduction =
44
28

⇣
Ns f + Nm + Ncr

⌘
· Fracleach · EF5 (2.14)

where Fracleach (%) is the fraction of N added to managed soils and EF5 (kg N2O/kg
leached) is the emission factor for N2O emissions from leaching. The indeirect N2O
emissions due to volatilisation are calculated with Equation 11.9 (adjusted, FPRP = 0):

N2Ovolatilisation,cropproduction =
44
28

⇣
Ns f · Fracgas f + Nm + Fracgam

⌘
· EF4 (2.15)

where Fracgas f (%) is the fraction of synthetic fertiliser that volatilises, Fracgam (%)
is the fraction of manure that volatilises and EF4 (kg N-N2O/(kg NH3-N+NOx-N
volatilised)) is the emission factor of N2O emissions of atmospheric deposition of N.

The CO2 emission factor for liming are calculated using Equation (11.12) (adjusted,
no dolomite liming Mdolomite = 0):

CO2liming = 1000 · 44
12

· Mlime · EFlime (2.16)

where Mlime (ton C/year) is the annual amount of limestone (CaCO3) and EFlime (ton
C/ton limestone) is the emission factor. The annual CO2 emissions due to urea fertili-
sation are given by:



CO2urea f ertilisation = 1000 · 44
12

· Murea · EFurea (2.17)

where Murea (ton C/year) is the amount of urea applied per year and EFurea (ton C/ton
urea) is the emission factor.

Manure management

Table 2.9: Direct and indirect N2O and CH4 emissions IPCC Tier 2. Values are
given for the growing period (kg / year).

Pig Gilt Sow Reference
Manure (kg) 356 420 1649 RIVM24
N-content (%) 0.0114 0.0122 0.0059 RIVM
N-content (kg) 4.04 5.14 9.73
EF3 (kg N2O/kg N) 0.002 0.002 0.002 Table 10.2125

(0.001 – 0.004) (0.001 – 0.004) (0.001 – 0.004)
Direct N2O (kg N2O/year) 0.0127 0.0162 0.0306

(0.0064 – 0.0254) (0.0081 – 0.0323) (0.0153 – 0.0612)
EF4 (kg N2O-N/kg N) 0.01 0.01 0.01 Table 11.326

(0.01 – 0.05) (0.01 – 0.05) (0.01 – 0.05)
Fracgam (%) 0.25 0.25 0.25 Table 10.2225

(0.15 – 0.3) (0.15 – 0.3) (0.15 – 0.3)
Indirect N2O (kg N2O/year) 0.0159 0.0202 0.0382

(0.0019 – 0.0953) (0.0024 – 0.1212) (0.0046 – 0.2294)
VS 15.29 10.51 41.22
B0 (m3 CH4/kg manure) 0.34 0.34 0.34
MCF 0.39 0.39 0.39
CH4 (kg CH4/year) 1.36 0.933 3.66

(1.36 – 5.33) (0.933 – 31.1) (3.66 – 31.1)

Direct N2O emissions from manure management (Equation 10.25, adjusted) [IPCC,
2006b]:

N2Odirect,manure =
44
28

NexEF3 (2.18)

where Nex is the amount of excreted N in manure per animal per year and EF3 is the
emission factor for direct N2O emissions from manure (kg N2O/kg).

Indirect N2O emissions from manure management (Equation 10.26 and 10.27, ad-
justed)

N2Oindirect,manure,volatilisation =
44
28

Nex · Fracgam · EF4 (2.19)

where Fracgam is the fraction of manure that volatilises. The CH4 emission for manure
management was available for Tier 2 (Equation 10.23, adjusted):

CH4manure = VS · 365 · B0 · 0.67 · MCF
100

(2.20)

24Coenen et al. [2012]
25IPCC [2006b]
26IPCC [2006c]



where VS is the daily volatile solid excreted (kg DM/day), B0 maximum methane
producing capacity for manure (m3 CH4/kg), MCF the methane conversion factor
(%). Results can be found in Table 2.9.
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Abstract

Life cycle assessment (LCA) calculates the environmental impact of a product over its entire life
cycle. Uncertainty analysis in LCA is usually performed using Monte Carlo sampling. In this
study, Monte Carlo sampling, Latin hypercube sampling, quasi Monte Carlo sampling, analytical
uncertainty propagation and fuzzy interval arithmetic were compared based on e.g. convergence
rate and output statistics. Each method was tested on three LCA case studies, which differed in
size and behaviour. Uncertainty propagation in LCA using a sampling method leads to more (di-
rectly) usable information compared to fuzzy interval arithmetic or analytical uncertainty propa-
gation. Latin hypercube and quasi Monte Carlo sampling provide more accuracy in determining
the sample mean than Monte Carlo sampling and can even converge faster than Monte Carlo
sampling for some of the case studies discussed in this paper.

Software and data availability

All modelling done in this paper is done in MATLAB R�; the code and data can be forwarded
by the first author upon request. In addition, software for life cycle assessment calculations
based on matrix representation is available at CML, and was developed by Reinout Heijungs,
Leiden University. The software CMLCA can be downloaded free of charge from: www.cmlca.eu,
programming language Delphi, system requirement Windows XP or higher (32 bits), no special
hardware requirements.

3.1 Introduction

Life cycle assessment (LCA) is an established method to calculate the environ-
mental impact of a product over its entire life cycle [Curran, 2012]. It has also
been applied in areas such as business strategy, product innovation, policy
development and eco-labelling [Cooper and Fava, 2006]. It has been used to
quantify environmental emissions of production systems [e.g. Whittaker et al.,
2013], and to make decisions about potential options to reduce the environ-
mental impact of products [Carvalho et al., 2012; Levis et al., 2013; Tillman,
2000]. According to the ISO 14040 standardised framework for (environmen-
tal) life cycle assessment, an LCA consists of four phases: goal and scope
definition, inventory analysis, impact assessment and interpretation. The goal
and scope phase includes definition of the boundary of the product life cycle,
the functional unit (main output of the system) and allocation method. In
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the inventory analysis, data about resource use and emissions related to each
production process are collected and are translated to environmental impacts.
During the final phase the results are presented and interpreted.

During the inventory analysis, data are collected from different systems
along the chain. These data can be highly variable, especially if they originate
from systems that depend on weather conditions, like agriculture [Brentrup
et al., 2000]. Results of an LCA, therefore, are uncertain due to lack of knowl-
edge about the true value of its model parameters [Björklund, 2002; Heijungs
and Huijbregts, 2004]. LCAs that demonstrate a single point value as their
result, overlook the range of possible realisations of output data, and could
therefore be misleading [Björklund, 2002], or might provide a false sense of
accuracy [De Koning et al., 2010]. At present, a standardised definition for un-
certainty in LCA [Björklund, 2002; Heijungs and Huijbregts, 2004; Finnveden
et al., 2009] and a standardized methodology how to propagate uncertainties
are missing. Application of uncertainty propagation in LCA might be ham-
pered due to long calculation time [Ciroth et al., 2004], caused by the large
amount of data elements (i.e. input parameters); lack of consensus about rel-
evant applicable methods or missing information on the required descriptive
statistics of input parameters [Björklund, 2002]. Incorporating uncertainty,
however, increases reliability of results and improves decision making.

Various types and sources of uncertainty can be distinguished [Björklund,
2002; Heijungs and Huijbregts, 2004; Finnveden et al., 2009]. In this paper, we
focus on parameter uncertainty, following the definition of Björklund [2002]
and Heijungs and Huijbregts [2004]. Parameter uncertainty includes e.g. in-
accuracy of measurements, erroneous data, incomplete data, round-off errors
and (natural) variability. A comprehensive paper of Lloyd and Ries [2007]
showed the broad scope of techniques and methods available to researchers
in LCA towards propagation of (parameter) uncertainty. Uncertainty propa-
gation is currently dominated in LCA literature by one type of method (i.e.
Monte Carlo sampling), but there are several other methods on propagating
uncertainties [Lloyd and Ries, 2007]. These methods would be better at cop-
ing with the large size of LCA inventories and considerably reduce computa-
tional effort (i.e. calculation time and memory usage) [Heijungs, 2010], or can
be applied when limited knowledge about the input uncertainties is present
[Heijungs et al., 2005].

So far, these methods of uncertainty propagation have not been compared
in a consistent manner. Methods examined in this paper were selected from
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Lloyd and Ries [2007], because they are most commonly applied. The fol-
lowing methods were selected: Monte Carlo sampling (MCS) and (standard)
Latin hypercube sampling (LHS), analytical uncertainty propagation (AUP)
and fuzzy interval arithmetic (FIA) [Lloyd and Ries, 2007]. In addition, we
also selected another type of sampling method: (randomised) quasi Monte
Carlo sampling (QMCS) that showed promising results (e.g. Subramanyan
et al. [2008] in LCA and Tarantola et al. [2012] more in general).

The performance of these uncertainty propagation methods may depend
on size, behaviour of the case study (linear or non-linear) and properties of
the input parameters [Saltelli et al., 2010; Tarantola et al., 2012]. To illus-
trate the performance of the methods, we therefore examined different input
parameters for three case studies that differed in size and behaviour. Two
small artificial case studies were selected that differed with respect to their
behaviour and a bigger linear case study representing an existing production
system of a northeast Atlantic fishery.

This study aims to (1) give more insight into Monte Carlo sampling, Latin
hypercube sampling, quasi Monte Carlo sampling, fuzzy interval arithmetic
and analytical uncertainty propagation, and (2) compare the uncertainty prop-
agation methods to show the performance, advantages and disadvantages of
each method used when applied in LCA. We start with a recap of matrix rep-
resentation in LCA, followed by an introduction to each of the five uncertainty
propagation methods. Subsequently, all five methodologies are applied to the
case studies and their results are compared on different criteria.

3.2 Materials and methods

3.2.1 Preliminary on notation and terminology

In order to calculate the environmental impact (g) corresponding to a func-
tional unit (f), a model of the following form is constructed [Heijungs, 2002]:

g = BA�1f (3.1)

The (square) technology matrix A represents production processes which are
given in each column, the rows represent product flows. The matrix is con-
structed in such a way that e.g. in the first column electricity is produced that
is subsequently used for fuel production in the second column. This results
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in a large matrix with interlinked production processes, which is scaled to
produce the amount given by the functional unit vector f (the scaling vector s
equals: s=A�1f). The intervention matrix B represents the input of raw mate-
rials and output of emissions corresponding to each production process of the
technology matrix A. In most LCAs a readily available database is used for
A, like the ecoinvent v2.2 database [ecoinvent, 2010], which is currently made
up out of 4087 processes. The size of this square A-matrix, therefore, is large,
although many elements are zero. When using readily available databases
like the ecoinvent database, as is quite common in LCA, the size of A causes
calculation of the environmental impact to be of high computational effort.
This is due to the calculation of the inverse of A, which slows down the calcu-
lation. Especially when performing an uncertainty analysis using a stochastic
approach and large amounts of simulations are required. This illustrates the
exploration of low demanding sampling methods to decrease calculation time
and memory usage.

3.2.2 Uncertainty propagation methods

In the next section five uncertainty propagation methods will be discussed:
MCS, LHS, QMCS, AUP and FIA. Subsequently, a description of the case
studies and their model parameters are given, followed by a description of
how the methods are compared.

Monte Carlo sampling

Uncertainty propagation using a sampling approach started with the devel-
opment of MCS in 1949 [Metropolis and Ulam, 1949], quickly becoming wide-
spread [Burmaster and Anderson, 1994; Helton et al., 2006]. MCS consists of
drawing (pseudo-) random numbers from a set of input parameters (k) with
known distribution functions to obtain the sampled distribution of the output
parameter [Helton et al., 2006]. While MCS might be computationally de-
manding, it has the advantage that it can be used to compare output statistics
like the mean or parameter of dispersion between two studies. A disadvan-
tage is the long calculation time due to a large number of simulations that
have to be performed before the output uncertainty can be determined. The
standard error of the mean (SEM) can be used as a measure of the conver-
gence rate of the sampling method. The SEM describes how much variation
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Table 3.1: Descriptive statistics and additional requirements for implementa-
tion of Monte Carlo sampling (MCS), Latin hypercube sampling (LHS), quasi
Monte Carlo sampling (QMCS), Fuzzy interval arithmetic (FIA) and analytical
uncertainty propagation (AUP) in life cycle assessment.

Method Inputs Outputs Additional requirements
MCS pdf, µ, f1 e.g. x̄, s (pseudo-) Random sample generator
LHS pdf, µ, f e.g. x̄, s Stratified sampling approach, (pseudo-)

random sample generator
QMCS pdf, µ, f e.g. x̄, s Quasi-random numbers, randomisation

method
FIA S, vc, d± v̄c, d̄± Construction of a possibility function
AUP s s First order Taylor approximation

is expected around the sample mean for a specific sample size. In theory, the
standard error of the mean of MCS convergences as O(s/

p
N), where s is the

standard deviation of the sample and N is the sample size. This means that
the convergence rate does not depend on the amount of input parameters. In
order to apply MCS, the following input is required: the type of distribution
function (e.g. log-normal, triangular) of each input parameter, a central value
(such as the mean (µ)) and a parameter of dispersion (f), such as the standard
deviation (s) of the probability density function in case of normal distribu-
tions. The result of applying this method is a sampled distribution of g (Table
3.1).

Latin hypercube sampling

LHS is a variant of Monte Carlo sampling employing a stratified sampling
approach. The distribution functions of the input variables are divided in
equally probable (i.e. stratified) subgroups from which random numbers are
drawn, which are subsequently combined at random [Helton et al., 2006]. The
idea behind LHS is that input parameters are sampled more uniformly than
(psuedo-) random sampling, resulting in a faster convergence rate. LHS has
been suggested, therefore, as a promising alternative to MCS for uncertainty

1pdf: probability density function (distribution function) µ: mean; f: parameter of dispersion;
x̄: mean of the sample; s standard deviation of the sample; S: shape; vc: core value; d±: upper
and lower bound; s: standard deviation.
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Figure 3.1: Density plot for MCS, LHS and (unscrambled) QMCS in two di-
mensions. Each plot is divided into a 16x16 grid, showing exactly 4 points in
each grid cell in case of QMCS. MCS and LHS result in less equally distributed
samples; N=1024.

propagation in LCA by Heijungs [2010] and Peters [2007], and it is used in
LCA amongst others by Basson and Petrie [2007]; De Koning et al. [2010];
Geisler et al. [2005] and Huijbregts et al. [2000]. Many improvements have
been made to the original LHS design, such as maximin LHS [Morris and
Mitchell, 1995] and Latin supercube sampling [Tarantola et al., 2012], but we
will only focus on the original design, referred to in this paper as standard
LHS. In order to apply this method, similar type of information as for MCS is
required (Table 3.1).

Quasi Monte Carlo sampling

The QMCS procedure is similar to MCS, but uses quasi-random numbers
to sample from the distribution functions [Sobol’, 1967; Saltelli et al., 2010].
Quasi-random numbers are deterministic numbers that are equally distributed
for a given distribution function [Tarantola et al., 2012]. The convergence rate
can be faster than MCS, the standard error of the mean converges approxi-
mately as O(s/N) [Caflisch, 1998]. There are many types of quasi-random
numbers, but in this paper we have chosen for the Sobol’ sequence, because
this method outperformed the (improved) LHS design for many test cases
[Tarantola et al., 2012]. The quasi-random numbers are scrambled (i.e. ran-
domised) to allow for calculation of the standard error later on, and performs
optimal when the sample size equals a power of 2, i.e. N = 2i, where i is a
non-negative integer. To illustrate the difference in the sampled distributions
of MCS, LHS and (unscrambled) QMCS, three density plots are given for two
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uniformly distributed parameters in Figure 3.1. The sample space is divided
into a grid of 256 squares and one counts how many points are present in
each square of the grid. QMCS corresponds to exactly four points for each
square in the grid, while the amount of points for both MCS and LHS range
from zero to ten. This means that in case of two input parameters the output
distribution using QMCS remains equally distributed, while MCS and LHS
do not. For an overview of the required inputs, see Table 3.1.

Analytical uncertainty propagation

Analytical uncertainty propagation (AUP) can be used to determine the vari-
ance of the output uncertainty based on the variance of each uncertain input
variable (Table 3.1). The variance of the output is described as a function of
the variances of the uncertain input parameters. This function is given by a
Taylor series expansion of Equation (3.1), and therefore is an approximation
of the output uncertainty. In this study, we have chosen for the method ac-
cording to Heijungs [2010] because it only demands information about the
variance of the input data, whereas the shape of each distribution function is
not required. This is an advantage when limited knowledge about the input
data is available. Another advantage of AUP is that it is not computationally
demanding [Heijungs, 2010]. One of the disadvantages is that a first order
approximation is considered here, therefore it is suitable for small input un-
certainties, but may not be for large input uncertainties [Heijungs, 2010]. AUP
has been used by for example Heijungs et al. [2005], and in a slightly different
form by Hong et al. [2010] and Imbeault-Tétreault et al. [2013].

Fuzzy interval arithmetic

Fuzzy interval arithmetic (FIA) determines the output uncertainty by assign-
ing possibility functions to each input variable. This is done by assigning a
possibility of one to the most plausible value(s) (i.e. the core value(s)) and zero
to the most unlikely values (beyond the upper and lower bounds). In order
to propagate the possibility functions, intervals described by the lower (d�)
and upper bounds (d+) are created for different heights of each possibility
function (so-called a-cuts) and these intervals are simultaneously propagated
through the model [Cruze et al., 2013]. The main advantage of this method is
that only a few a-cuts (e.g. 10 or 20) are needed to give insight into the output
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uncertainty; therefore, this approach is not seen as computationally demand-
ing. In order to apply this method, the following information is required: the
core value, the upper and lower bound of the possibility function, and the
type of possibility function of each input variable, which is usually triangular
or trapezoid shaped (Table 3.1). In this paper, core values are set equal to the
means of the probability density functions. For the upper and lower bounds,
a distance of ±10 and ± 60% of the mean was taken and a triangular shape
was selected. The result of applying this method is a possibility function with
a core value of height equal to one, and an upper and lower bound. This is
contrary to probability functions where the total area under the probability
function equals one, and it is therefore not possible to compare this result di-
rectly to stochastic results or to perform statistical tests based on probability
theories. This is seen as a disadvantage, but nevertheless, it has been used on
several occasions in LCA (see e.g. Clavreul et al. [2013]; Tan et al. [2004]; Tan
[2008]). Transformation of probability functions to possibility functions are for
example described in André and Lopes [2012] or Mauris et al. [2001]. To be
able to compare the FIA to the results of the sampling methods, we followed
André and Lopes [2012] to transform the fuzzy interval to the most likely
probability density function [Eq. 15 in André and Lopes, 2012], to which a 6th

order polynomial was fitted. The polynomial will be compared to a normal
distribution coming from MCS.

3.2.3 Description of the case studies

Case study 1

Case study 1 is a small artificial model describing 1 MWh electricity produc-
tion containing input parameters (k=5; see Figure 3.2). Details of case study
1 and 2 can be found in e.g. Heijungs [2002]. The model shows linear be-
haviour for small changes in the input parameters. All input parameters were
assumed to be either from a normal distribution or a log-normal distribution
function. In the results, input uncertainties are indicated as a coefficient of
variance (CV=s/µ). The CV of all input parameters were assumed to be 5%
in case of normal distribution, because larger CV can reverse the sign of the
input parameters, resulting in unrealistic drawings. In case of a log-normal
(log-N) distribution, the CV was assumed to be 5% or 30%. Table 3.2 gives
an overview of the distributions of the input parameters for each case study
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Figure 3.2: Flow diagram of case study 1 and 2, describing a product system
producing 1 MWh electricity, only in case study 2 electricity production is
required for fuel production (arrow 3).

Table 3.2: Type of distribution function of all of the input parameters for each
case study (the coefficient of variation is given between brackets).

Case study 1 Case study 2 Case study 3
Normal (5%) Normal (5%) Normal (5%)
Log-N (5%) Log-N (5%) Log-N (5%)
Log-N (30%) - Log-N (30%)

studied in this paper. In case of FIA, the possibility function and boundaries
are described in Section 3.2.2.

Case study 2

Case study 2 is similar to case study 1 but adjusted in such a way that it shows
non-linear behaviour by assuming that 300 kWh of electricity is required for
fuel production (see Figure 3.2). As a consequence, small changes in the input
parameters will result in large changes in the output. All input parameters
(k=6) were assumed to be from a normal distribution or a log-normal distribu-
tion. The CV’s of all input parameters were assumed to be 5% in case of nor-
mal distribution and log-normal distributions, because larger CV can reverse
the sign of the input parameters, resulting in unrealistic drawings. In case of
FIA, the possibility function and boundaries are described in Section 3.2.2.
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Figure 3.3: Flow diagram of case study 3, describing the production of 1 kg
landed white fish, only catch and on-board processing are within the scope of
this case study.

Case study 3

Case study 3 describes a large production system of a northeast Atlantic
whitefish trawling fishery. We used a production system of fish as our case
study because environmental impact of fisheries has been of increasing inter-
est [e.g., Ziegler et al., 2003; Vázquez-Rowe et al., 2010] and the daily catch is
associated with high natural variability. For this paper a Norwegian bottom
trawl fishery targeting cod and haddock in the northeast Atlantic was consid-
ered. The supply chain is limited to fishing by a single vessel, operating from
Northern Norway and going out on fishing trips of one to two weeks. The fish
is landed in various ports along the Norwegian coast. Twice-daily data was
provided on fuel use and fish production for 2011 and 2012. Detergent and
other chemical use, the lifespan and construction material of the vessel were
provided on an annual basis. Environmental impact of background processes,
e.g. the production of iron ore for the production of steel of the vessel, were
taken from ecoinvent v2.2 [ecoinvent, 2010]. The goal of this LCA was to as-
sess the greenhouse gas emissions of 1 kg landed white fish. All greenhouse
gas emissions were allocated to the landed white fish, which were headed
and gutted at sea. The boundary of the life cycle and the production chain is
given in Figure 3.3. We assessed the impact of landed white fish on climate
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Table 3.3: Selection of data used to calculate the CO2 e of 1 kg of whitefish.
The global warming potential (GWP) is given in kg CO2 e/kg

Description Amount2 Unit GWP Reference
Life time vessel 30.0 years n/a n/a
Reinforcing steel 2.03 kt 1.45 ecoinvent [2010]
Chromium steel 226 t 4.50 ecoinvent [2010]
Life time rigg 1.00 year n/a ecoinvent [2010]
Life time trawls 0.33 year n/a ecoinvent [2010]
Rubber parts 4.24 t 5.76 ecoinvent [2010]
Chain and iron 4.06 t 1.47 ecoinvent [2010]
Sweaper 16.0 t 2.11 ecoinvent [2010]
Polyethylene netting 1.24 t 1.93 ecoinvent [2010]
Dynema (ropes) 46.0 kg 2.32 ecoinvent [2010]
Nylon twine 67.0 kg 9.68 ecoinvent [2010]
Combination rope 564 kg 2.32 ecoinvent [2010]
Plastic balls 1.25 t 5.76 ecoinvent [2010]
Sack 2.25 t 2.32 ecoinvent [2010]
Flexigrid 450 kg 2.32 ecoinvent [2010]
Anti-fouling 362 kg/year 2.89 ecoinvent [2010]
Tap-water use 1.39 kt/year 3.14 ·10�4 ecoinvent [2010]
Cooling agent 180 kg/year 2.11 ecoinvent [2010]
Detergents 1.40 t/year 0.886 ecoinvent [2010]
Fuel use in port 36.7 t/year 3.73 Cooper [2004]
Lubricating oil 13.9 t/year 4.27 Cooper [2004]
Fuel use fishing 3.12 kt/year 3.73 Cooper [2004]
Total landings 6.18 kt/year n/a n/a

change, by summing the greenhouse gases emissions of carbon dioxide (CO2),
methane (CH4) and nitrous oxide (N2O) to their CO2 equivalent (CO2 e), us-
ing a global warming potential (GWP) of 100 years [IPCC, 2007]. There was no
uncertainty placed on the GWP-values; biogenic emissions were not taken into
account. An overview of the (aggregated) data of the foreground system can
be found in Table 3.3. The production process of fish resulted in a technology
matrix A of size 35x35. We considered only the greenhouse gas equivalents for
the intervention matrix B. In total k=115 input parameters were considered.
All input parameters including the ones from the ecoinvent database, were as-
sumed to be either normally or log-normally distributed. The CV of all input
parameters were assumed to be 5% in case of a normal distribution, because
larger CV can reverse the sign of the input parameters, resulting in unrealistic
drawings. In case of a log-normal distribution, CV was assumed to be 5% or
30% (Table 3.2). In case of FIA, the possibility function and boundaries are
described in Section 3.2.2.

3.2.4 Ways of analysis

The methods for uncertainty propagation were compared based on the fol-
lowing criteria:

2WhiteFish [2013]

68



CHAPTER 3. 3.3. RESULTS

• Convergence rate: the convergence rate can be determined using the
standard error of the mean (SEM) for an increasing sample size. The
SEM is calculated by taking the standard deviation of the distribution
of the sample means. When two SEM’s are compared, the sample with
the smallest SEM reflects the true mean more accurately. The empirical
standard error of the sample mean is plotted with respect to the sample
size, and compared to the theoretical predictions. This can only be done
for the sampling approaches. The sample size (N) increases from 32 to
1024. For each run (R), the sample mean is calculated from an inde-
pendent sample of Nxk random or quasi random numbers, each run is
repeated fifty times.

• Descriptive statistics: several descriptive statistics can be derived from
the five methods. In this paper, the mean and standard deviation are
given for MCS, LHS and QMCS. In case of AUP only the standard de-
viation can be derived; in case of FIA we present the core value and the
upper and lower bound of the model output.

• Computational effort: for each method the amount of memory usage
and calculation time were discussed.

3.3 Results

All five methods were applied to the three case studies. FIA will be discussed
separately, as it is not possible to compare the results directly to the other four
methods.

3.3.1 Results of case study 1

Figure 3.4 shows the standard error of the sample mean for MCS, LHS and
QMCS (with increasing sample size). All five input parameters are normally
distributed with a CV of 5%. For each method, the points in the graph are de-
rived as follows: first, the mean is calculated from a sample size of 32, this is
repeated 50 times. Subsequently, the standard error of the fifty sample means
is calculated and plotted in the figure. This procedure is repeated for each
sample size. The theoretical convergence rate (TCR) of s/

p
N for MCS and
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Figure 3.4: Convergence rate of the standard error of the sample mean for
MCS, LHS and QMCS applied to case study 1 (k=5, CV=5%) on a log-log
scale (base 2). All input parameters are normally distributed; TCR: theoretical
convergence rate.

the approximate theoretical rate of s/N for QMCS are also presented, where s
is based on the standard deviation in case R=50, N=1024 for MCS and QMCS
respectively (Table 3.4). Figure 3.4 shows that the standard error of MCS con-
verges as s/

p
N, whereas the standard error of LHS and QMCS convergence

as approximately s/N. LHS and QMCS converge, therefore, faster than MCS,
i.e., the slope of the LHS and QMCS plot is steeper. Moreover, LHS and QMCS
start at a smaller standard error, indicating higher accuracy of the sample
mean. Subsequently, the distributions of the input parameters were changed
from normal to log-normal. Figure 3.5 shows the standard error of the sam-
ple mean when all input parameters are log-normally distributed with a CV
of 5%. Again LHS and QMCS converge faster than MCS and show a higher
accuracy. Figure 3.6 shows the convergence rate when all input parameter are
log-normally distributed with a CV of 30%. In that case, QMCS converges
faster than MCS and LHS for each sample size. LHS seems to converge at a
similar rate as MCS, but with a higher accuracy.

Table 3.4 shows the mean and standard deviation for fifty independent
runs (R=50); each run having a sample size of 1024, for a CV of 5% or 30%
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Table 3.4: Greenhouse gas emissions (kg CO2 e/MWh electricity) of four
methods explored (the standard deviation is shown between brackets) for
different CV’s of the input parameters; R=50, N=1024, k=5. Analytical un-
certainty propagation (AUP) is based on a single calculation.

Normal
(5%)

Log-N
(5%)

Log-N
(30%)

Monte Carlo sampling 120 (8.05) 120 (8.01) 133 (54.2)
Latin hypercube sampling 120 (8.08) 120 (8.05) 133 (54.1)
Quasi Monte Carlo sampling 120 (8.07) 120 (8.03) 133 (54.3)
Analytical uncertainty propagation 120 (8.00) 120 (8.00) 120 (48.0)

Figure 3.5: Convergence rate of the standard error of the sample mean for
MCS, LHS and QMCS applied to case study 1 (k=5, CV=5%). All input pa-
rameters are log-normally distributed.
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Figure 3.6: Convergence rate of the standard error of the sample mean for
MCS, LHS and QMCS applied to case study 1 (k=5, CV=30%). All input
parameters are log-normally distributed.

and different distributions of the input parameters (normal or log-normal).
The standard deviation calculated with AUP is also shown, together with the
deterministic output. Results show that the means and standard deviations
are rather similar for all three sampling methods, regardless of the distribution
of the input parameters. In case of small uncertainties in the input parame-
ters (CV=5%), AUP and the sampling methods give approximately the same
results for the standard deviation.

3.3.2 Results of case study 2

Figure 3.7 shows the standard error of the sample mean for MCS, LHS and
QMCS (with increasing sample size). All six input parameters are normally
distributed with a CV of 5%. Results shows that QMCS convergence faster
than MCS. LHS seems to converge at a similar rate as MCS, but with a higher
accuracy. Subsequently, the distribution of the input parameters was changed
from normal to log-normal. Figure 5.25 shows the standard error of the sam-
ple mean when all input parameters are log-normally distributed with a CV
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Figure 3.7: Convergence rate of the standard error of the sample mean for
MCS, LHS and QMCS applied to case study 2 (k=6, CV=5%). All input pa-
rameters are normally distributed.

of 5%. In that case, QMCS converges faster than MCS and LHS for (almost)
each sample size. LHS seems to converge at a similar rate as MCS, but with
a higher accuracy. Table 3.5 shows the mean and standard deviation for fifty
independent runs (R=50); each run having a sample size of 1024, for a CV of
5% and different distributions of the input parameters (normal or log-normal).
The standard deviation calculated with AUP is also shown, together with the
deterministic output. Results show that the means and standard deviations
are rather similar for all three sampling methods, regardless of the distribution
of the input parameters. AUP gives a lower value for the standard deviation
than the sampling methods.

3.3.3 Results of case study 3

Figure 3.9 shows the standard error of the sample mean for MCS, LHS and
QMCS (with increasing sample size). All 115 input parameters are normally
distributed with a cv of 5%. Results show that the standard error of MCS
converges as s/

p
N. The standard error of LHS and QMCS convergences as

approximately s/N, hence LHS and QMCS converge faster than MCS. LHS
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Figure 3.8: Convergence rate of the standard error of the sample mean for
MCS, LHS and QMCS applied to case study 2 (k=6, CV=5%). All input pa-
rameters are log-normally distributed. The standard error of 50 runs is shown
for increasing sample size.

Table 3.5: Greenhouse gas emissions (kg CO2 e/MWh electricity) of four
methods explored (the standard deviation is shown between brackets) for
different CV’s of the input parameters; R=50, N=1024, k=6. Analytical un-
certainty propagation (AUP) is based on a based on a single calculation.

Normal (5%) Log-N (5%)
Monte Carlo sampling 313 (69.6) 313 (69.8)
Latin hypercube sampling 313 (69.7) 313 (69.6)
Quasi Monte Carlo sampling 313 (70.5) 313 (69.6)
Analytical uncertainty propagation 300 (57.7) 300 (57.7)
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Figure 3.9: Convergence rate of the standard error for MCS, LHS and QMCS
applied to case study 3 (k=115, CV=5%). All input parameters are normally
distributed. The standard error of 50 runs is shown for increasing sample size.

shows a higher accuracy than QMCS for each sample size. Subsequently,
the distribution of the input parameters was changed from normal to log-
normal. Figure 3.10 shows the convergence rate when input parameters are
log-normally distributed with a CV of 5%, and Figure 3.11 shows the conver-
gence rate when input parameters are log-normally distributed with a CV of
30%. In case of CV of 5%, LHS and QMCS converge faster than MCS, and
LHS shows a higher accuracy for each sample size than QMCS. In case of
CV of 30%, LHS and QMCS converge at a similar rate as MCS, but show a
higher accuracy. Table 3.6 shows the mean and standard deviation for fifty
independent runs (R=50); each run having a sample size of 1024, for a CV of
5% or 30% and different distributions of the input parameters (normal or log-
normal). The standard deviation calculated with AUP is also shown, together
with the deterministic output. Results show that the means and standard
deviations are rather similar for all three sampling methods, regardless of the
distribution of the input parameters. In case of small uncertainties in the input
parameters (CV=5%), AUP and the sampling methods give the same results
for the standard deviation.
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Figure 3.10: Convergence rate of the standard error for MCS, LHS and QMCS
applied to case study 3 (k=115, CV=5%). All input parameters are log-
normally distributed. The standard error of 50 runs is shown for increasing
sample size.

Figure 3.11: Convergence rate of the standard error for MCS, LHS and QMCS
applied to case study 3 (k=115, CV=30%). All input parameters are log-
normally distributed. The standard error of 50 runs is shown for increasing
sample size.
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Table 3.6: Greenhouse gas emissions (kg CO2 e/kg whitefish) of four meth-
ods explored (the standard deviation is shown between brackets) for different
CV’s of the input parameters; R=50, N=1024, k=115. Analytical uncertainty
propagation (AUP) is based on a based on a single calculation.

Normal
(5%)

Log-N
(5%)

Log-N
(30%)

Monte Carlo sampling 1.95
(0.13)

1.96
(0.13)

2.16
(0.87)

Latin hypercube sampling 1.96
(0.13)

1.96
(0.13)

2.16
(0.88)

Quasi Monte Carlo sampling 1.96
(0.13)

1.96
(0.13)

2.16
(0.88)

Analytical uncertainty propagation 1.95
(0.13)

1.95
(0.13)

1.95
(0.78)

3.3.4 Results FIA

Table 3.7 shows the results of FIA for case study 1, 2 and 3. Core values
remain the same, but the upper and lower bounds diverge with an increase
in range. For a range of d±=60%, for example, the core value, especially
for case study 3, lies no longer in the centre of the range. This is caused
by a large range of (one of) the input parameters. It indicates that one or
more parameters are approaching the asymptote as described by Cruze et al.
[2013]. It is not possible to compare the results of FIA directly to the sampling
methods. First, a transformation from a possibility function to a probability
function has to be made, as described in Section 3.2.2. The results of FIA of
case study 3 for input parameters with a range of ± 10% were transformed to
a probability density function. Figure 3.12 shows the triangular fuzzy interval
of case study 3. From the fuzzy interval, the most likely probability function
(ml pdf) is constructed, through which a polynomial is fitted [André and
Lopes, 2012]. The polynomial can be compared to the result of a probability
density function constructed from MCS from which all input parameters are
normally distributed with a CV of 5%, the mean and standard deviation of
the sample distribution are given in Table 3.6. The fitted polynomial and the
probability density function produce roughly the same result. This means that
the output of FIA with a range of 10% of the input parameters gives roughly
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Figure 3.12: Fuzzy interval transformed to most likely probability density
function for case study 3; ml pdf: most like probability density function.

the same result as MCS with normally distributed input parameters with a
CV of 5%.

Table 3.7: Core value (kg CO2 e/functional unit) for the output of case study
1, 2 and 3, the range is shown between brackets

Range Case study 1 Case study 2 Case study 3
10% 120 (98.2-147) 300 (245-367) 1.95 (1.59-2.38)
60% 120 (30.0-480) 300 (75.0-1.20 ·103) 1.95 (0.49-7.80)

3.3.5 Computational effort of propagation methods

Computational effort of uncertainty propagation methods is relevant when
large amount of input parameters are considered that potentially slow down
the calculation. LHS and QMCS come with additional calculations compared
to MCS and might therefore increase calculation time. Random numbers that
are drawn for each sample in case of MCS, can be overwritten for the next
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Table 3.8: Comparison of convergence rates for MCS, LHS and QMCS, for case
study 1, 2, and 3 for different properties of the input parameters.

Case study 1 (k = 5) Case study 2 (k = 6) Case study 3
(k = 115)

Normal
(5%)

LHS⇠QMCS>MCS QMCS>LHS3⇠MCS LHS4⇠QMCS>MCS

Log-N
(5%)

LHS⇠QMCS>MCS QMCS>LHS3⇠MCS LHS4⇠QMCS>MCS

Log-N
(30%)

QMCS>LHS3⇠MCS n/a LHS5⇠QMCS5⇠MCS

random number, keeping memory use constant. Calculation time, therefore,
increases linearly with the amount of random drawings. In case of LHS, how-
ever, memory use increases linearly with the sample size because it is not
possible to draw only one random number from each equally probable sub-
group without knowing (i.e. storing) from which subgroup previous random
numbers are drawn. Also in case of QMCS calculation time increased. An
indication of the difference in calculation time for MCS versus QMCS is given
for case study 3. Applying QMCS when 115 parameter were considered, for
a sample size of 1024, took about twice as long compared to MCS.

Calculation time as well as memory usage of FIA and AUP are low com-
pared to the other sampling methods. AUP requires only a single calculation;
FIA requires about 11 calculations to generate an output, which was far less
than even the fastest converging sampling method that was studied here.

3.4 Discussion

The uncertainty propagation methods were compared based on convergence
rate, descriptive statistics and computational effort. Convergence rate could
be determined for sampling methods only. Table 3.8 presents an overview of
the results of the sampling-based methods. Comparing our results to pub-
lications outside the LCA domain, Helton et al. [2006] found that LHS did
not outperform MCS, but they applied the sampling methods to non-linear

3LHS shows a higher accuracy than MCS.
4LHS shows a higher accuracy than QMCS.
5LHS and QMCS show a higher accuracy than MCS.
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functions. We also found comparable convergence rates of LHS and MCS,
although LHS showed a higher accuracy in determining the sample mean in
our case. Deutsch and Deutsch [2012], Kollig and Keller [2002] and McKay
et al. [1979] showed an improvement of LHS over MCS for several test cases.
Tarantola et al. [2012] showed that QMCS method outperformed Latin super-
cube sampling (an improvement of the standard LHS design) for most of the
test functions. Based on our results, and the results we found in literature, we
conclude that LHS or QMCS can converge faster than MCS, but it depends
on specific characteristics of the model (size, behaviour) and properties of the
input parameters.

Regarding AUP, we want to point out an LCA-paper of Heijungs and
Lenzen [2014], who made a comparison between MCS and AUP. The authors
also concluded that AUP in form of a first order Taylor approximation will
work best for small uncertainties.

There are also some limitations on the case studies described here. First,
case study 1 and 2 represent an artificial production system and might, there-
fore, not represent the behaviour of actual case studies in LCA. Second, in
each case study, we had to assume the type of distribution function and their
dispersion parameters. Although the most common type of distribution func-
tions were chosen [Lloyd and Ries, 2007], other distribution functions might
influence the performance of sampling methods. Third, in each case study
we assumed that all parameters are independent. This leads to either over- or
underestimation of the output uncertainty. Most studies in LCA neglect corre-
lations [Lloyd and Ries, 2007]. This might not be realistic for each parameter;
e.g. a higher fossil fuel consumption would lead to higher CO2 emission. This
knowledge could be incorporated by creating a covariance matrix, however,
this was ignored.

3.5 Conclusions

From the results in this paper, we concluded:

• For each LCA case study that was considered in this paper, LHS and
QMCS outperformed MCS in terms of accuracy in determining the sam-
ple mean, regardless the type of distribution function or the coefficient
of variation of the input parameters.
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• Characteristics (size, behaviour) of the LCA case study and the proper-
ties of the input parameters influenced the convergence rate. For exam-
ple, LHS converged faster than MCS in case study 3 (large, linear) but
equally fast as MCS in case study 2 (small, non-linear).

• AUP works best for small uncertainties of the input parameters and
linear case studies; it required less memory than the sampling methods.

• FIA uses less memory compared to the sampling methods. Other con-
clusions for FIA are less explicit. A characteristic of FIA is that it is a de-
terministic process, this can be seen as an advantage (no extreme values)
or a disadvantage (not comparable to sampling methods or determine
a statistical difference between two scenarios). Moreover, transforming
FIA to a probability framework takes up additional calculations.

• Uncertainty propagation in LCA using a sampling-based method leads
to more (directly) usable information compared to FIA or AUP. AUP can
be favourable over the sampling methods when large amount of input
parameters are considered and input uncertainties are small. LHS and
QMCS provide more accuracy in determining a sample mean than MCS
and can even converge faster for some of the case studies discussed in
this paper.
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Abstract

Input parameters required to quantify environmental impact in life cycle assessment (LCA), can
be uncertain due to e.g. temporal variability or unknowns about the true value of emission
factors. Uncertainty of environmental impact can be analysed by means of a global sensitivity
analysis to gain more insight into output variance. This study aimed to: (1) give insight into
and (2) compare methods for global sensitivity analysis in life cycle assessment. Five methods
that quantify the contribution to output variance were evaluated: standardised regression coef-
ficient, Spearman correlation coefficient, key issue analysis, Sobol’ method and random balance
design. To be able to compare the performance of global sensitivity methods, two case studies
were constructed: one small hypothetical case study describing electricity production, that is sen-
sitive to a small change in the input parameters, and a large case study describing a production
system of a northeast Atlantic fishery. Input parameters with relatively small and large input
uncertainties were selected. The comparison of the sensitivity methods was based on four as-
pects: (I) sampling design, (II) output variance, (III) explained variance, and (IV) contribution
to output variance of individual input parameters. The evaluation of the sampling design (I)
relates to the computational effort of a sensitivity method. Key issue analysis does not make
use of sampling and was fastest, whereas the Sobol’ method had to generate two sampling ma-
trices, and therefore, was slowest. The total output variance (II) resulted in approximately the
same output variance for each method, except for key issue analysis, which underestimated the
variance especially for high input uncertainties. The explained variance (III) and contribution to
variance (IV) for small input uncertainties, was optimally quantified by standardised regression
coefficients and the main Sobol’ index. For large input uncertainties, Spearman correlation co-
efficients and the Sobol’ indices performed best. The comparison, however, was based on two
case studies only, which might not be representative. Most methods for global sensitivity anal-
ysis performed equally well, especially for relatively small input uncertainties. When restricted
to the assumptions that quantification of environmental impact in LCAs is linear, standardised
regression coefficients, Spearman correlation coefficients or key issue analysis can be used for
global sensitivity analysis. The choice for one of the methods depends on the available data, the
magnitude of the uncertainties in input data and aim of the study.

4.1 Introduction

LCA calculates the environmental impact of a product or production process
along the entire chain. Input parameters required to describe the production
chain, can be uncertain due to e.g. temporal variability or unknowns about the
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true value of emission factors. Uncertainty in the input parameters will cause
an uncertainty around the outcome of an LCA. In this paper, uncertainty can
refer to variability or epistemic uncertainty [Chen and Corson, 2014; Clavreul
et al., 2013] of the input parameters. Variability (e.g. natural, temporal, ge-
ographical) is inherent to natural systems such as agriculture and cannot be
reduced. Epistemic uncertainty refers to unknowns in the system and can be
reduced by gaining more knowledge about the system. Analysing this uncer-
tainty can be done by means of a sensitivity analysis, and can help to gain
more insight into the robustness of the result, to prioritise data collection or
to simplify an LCA model. Many LCA studies have been performed over the
last decade, and interest in addressing uncertainty propagation is increasing
[Groen et al., 2014; Heijungs and Lenzen, 2014; Lloyd and Ries, 2007]. Few
studies, however, apply a systematic and consistent sensitivity analysis to ad-
dress the effect of input uncertainties on the output [Mutel et al., 2013]. An
explanation might be that ISO 14044 recommends a sensitivity analysis as part
of the LCA framework to identify the importance of the input uncertainties,
but does not recommend a specific technique.

A sensitivity analysis can be performed by varying an input parameter
and, as such, determine the effect on the result. Furthermore, if the distribu-
tions function of the input parameters is known, it is possible to calculate the
contribution to the output variance. The first approach belongs to the area
of local sensitivity analysis. A local sensitivity analysis determines the effect
of a (small) change in one of the input parameters at a time. The second ap-
proach belongs to the area of global sensitivity analysis. A global sensitivity
analysis can be seen as an extension of uncertainty propagation: it determines
how much each input parameter contributes to the output variance. The main
differences between a local and global sensitivity analysis are illustrated in
Table 4.1. In this paper we focus on global sensitivity analysis, which requires
a case study of which the distribution functions of the input parameters are
known.

In Figure 4.1, the procedure of a global sensitivity analysis is illustrated
with a schematic LCA model, containing four input parameters. First, the
input parameters and their uncertainties are represented by probability den-
sity functions (step 1). Second, uncertainty propagation is performed with
e.g. Monte Carlo simulation, which propagates uncertainty through the LCA
model (step 2) to obtain a distribution function of the output. Third, the vari-
ance of the output is calculated (step 3). After the uncertainty propagation is

85



4.1. INTRODUCTION CHAPTER 4.

Table 4.1: Main differences in requirements of input data and of results of a
sensitivity analysis between local and global sensitivity analysis.

Local sensitivity analysis Global sensitivity analysis
Synonyms One at a time approach; dif-

ferential analysis; marginal
analysis; perturbation analy-
sis

Contribution to variance;
variance-based sensitivity
analysis; key issue analysis

Requirements Point value (central value) Central value, parameter of
dispersion and probability
density function; method for
uncertainty propagation

Result Ranking of sensitive input
parameters

Contribution to output vari-
ance of each input parame-
ter; uncertainty distribution
of output; ranking

Examples Partial derivatives; change
due to methodological
choice or input parameter

Regression or correlation
techniques; Taylor approxi-
mation; Sobol’ indices

performed, a method for global sensitivity analysis is selected (step 4), which
determines how much each input parameter contributes to the output vari-
ance (step 5). In the example of Figure 4.1, the sensitivity analysis shows that
parameter 1 and to a lesser extent parameter 2 are the ones that contribute
most to the output variance.

In LCA literature, five methods for global sensitivity analysis have been
mentioned that quantify the contribution to output variance: (1) (standard-
ised) regression coefficients, as was suggested by Huijbregts et al. [2001], and
applied in LCA by e.g. Aktas and Bilec [2012]; Basset-Mens et al. [2009];
Sugiyama et al. [2005]; Vigne et al. [2012]; (2) Pearson correlation coefficient
[Heijungs and Lenzen, 2014; Onat et al., 2014]; (3) Spearman (rank) correlation
coefficient [Chen and Corson, 2014; Geisler et al., 2005; Heijungs and Lenzen,
2014; Mattila et al., 2012; Mattinen et al., 2014; Sonnemann et al., 2003; Wang
and Shen, 2013]; (4) key issue analysis, which applies a first order Taylor ex-
pansion around the LCA model to estimate the output variance, thus avoiding
sampling; key issue analysis in LCA has been developed by Heijungs [1996]
and applied in LCA by e.g. Heijungs et al. [2005]; Jung et al. [2014]; and (5)
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Step 4: Global 
sensitivity analysis

Parameter 1

Parameter 2

Parameter 3

LCA model

Step 1: Define input 
distributions

Step 3: Calculate 
output distribution

Parameter 4

Parameter 1

Parameter 4

Step 5: Determine 
contribution to output 
variance (%)

Parameter 2

Parameter 3

Step 2: 
Propagate 
uncertainty      

Figure 4.1: Illustration of global sensitivity analysis in LCA (based on Saltelli
et al. [1999])
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Fourier amplitude sensitivity test has been applied by De Koning et al. [2010].
Outside the LCA domain, a much wider set of approaches have been devel-

oped and applied, such as random balance design and the Sobol’ method, that
also quantify the contribution to output variance [Saltelli et al., 2008; Sobol’,
2001; Tarantola et al., 2012, 2006]. The random balance design is closely re-
lated to the Fourier amplitude sensitivity test. To our knowledge, random
balance design has been not yet been applied in LCA. The application of the
Sobol’ method in LCA has been limited, see for example [Wei et al., 2014],
and for a characterisation model that can be applied in LCA [Cucurachi et al.,
2014].

For most of the methods, it is not known under which conditions they
perform optimally, or if there is a method that performs better than the other
methods in LCA. The aim of this study is two-fold: (1) to study the appli-
cability of a number of previously suggested methods for global sensitivity
analysis to LCA and (2) to compare the methods based on their ability to ex-
plain the output variance. To be able to compare the performance of global
sensitivity methods, two case studies were constructed: one small hypotheti-
cal case study describing electricity production, that was sensitive to a small
change in the input parameters, and a large case study describing a produc-
tion system of a northeast Atlantic fishery.

4.2 Methods for global sensitivity analysis in LCA

4.2.1 Sampling procedure with matrix based LCA

In this paper, we use matrix formulation for LCA (for an explanation see Hei-
jungs and Suh [2002]). A matrix formulation of the LCA model will facilitate
the use and discussion of the global sensitivity methods. Matrix based LCA
quantifies the total emissions and resource use (g) of a product over its entire
life cycle by:

g = BA�1f (4.1)

The production processes are represented by v = 1 to y columns in the
square technology matrix A (size x ⇥ y), the rows (u = 1 to x) represent a
specific product flow. For example, if electricity is produced in one column,
other production processes given in other columns can use it as input. The
inventory matrix B (size z ⇥ y) consists of use of resources and emissions
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Table 4.2: Meaning of symbols.
Symbol Meaning Symbol Meaning
A or auv Technology matrix P or pij Sampling matrix for

uncertain input parameter
in A and B

B or bwv Intervention matrix Q Sampling matrix
b0 or bv Intervention vector in case

w = 1
R Sampling matrix column j

comes from Q and all other
k � 1 columns come from P

cj Regression coefficients r Correlation coefficients
ei Error or residual term Sj Sensitivity index for

parameter j
f Final demand vector s Scaling vector
g Inventory vector containing

sample of CO2 values
u Row of A

i Index variable of sample
matrix P

v Column of A or B

j Input parameter w Row of B
k Total number of input

parameters
x Number of rows in A

l Total number of input
parameters (Sobol’ method)

y Number of columns in A
and B

M Maximum oscillation
frequency

z Number of rows in B and g

N Sample size g b0A�1

pj All input parameter A and B w frequency

corresponding to each production process. Using the final demand vector f
(size w = 1 to z), the production processes are scaled to produce the desired
amount. In this paper we will only consider CO2 emissions from each pro-
duction process (so z = 1, transforming B into a row vector b (size y). The
main LCA equations in this paper is therefore

g = b0A�1f (4.2)

where the prime (’) indicates transposition. An overview of the symbols in-
troduced in this section can be found in Table 4.2.

Because elements of A and b0 will be uncertain, we developed general
formulas based on a row vector p0 that contains all elements of A and b0.
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Thus:
pv+(u�1)y = auv

and
pxy+v = bv

We may choose to restrict p0 to contain uncertain elements of A and b0 only,
to save memory. Using this notation, Equation (4.2) can be conceived as

g = g(p)f

where g(p) is a function based on combining the underlying matrices A and
b0. All global sensitivity methods applied in this paper, except for key issue
analysis, require sampling for uncertainty propagation. In this paper, we used
Monte Carlo sampling to generate random numbers, and a random balance
design to generate equi-distributed numbers, from the distribution functions
of the input parameters to generate an output distribution (Figure 4.2). The
sampling matrix P (size N ⇥ k) contains i = 1 to N random numbers drawn for
each input parameter j = 1 to k of matrix A and b0. For example, Monte Carlo
sampling could lead to drawing the following random numbers: 1.04, 0.96,
0.92 for the first three parameters. Combining these values and the realisa-
tions for the other parameters in Equation (4.2) will lead to the first realisation
of 5.1 kg CO2. This procedure is repeated N times, the whole simulation
is repeated 50 times. In this section, six measures, also called sensitivity in-
dices, that quantify the contribution to output variance are introduced. The
mathematical notations in case of matrix based LCA are given, the full deriva-
tion can be found in the supplementary material. All sensitivity methods are
programmed in MATLAB and can be forwarded by the first author upon re-
quest. Calculating sensitivity indices, there are four aspects that can differ per
method. The comparison of the sensitivity methods will be based on these
four aspects:

(I) The sampling design (i.e., how the rows of P are constructed);

(II) The total output variance;

(III) The total output variance (II) that is explained by the method (this is
ideally 100%);

(IV) The contribution to (III) of the individual input parameters.
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Figure 4.2: Monte Carlo sampling approach for matrix based calculations in
LCA, EF: emission factor.

The relation between the output variance (II), explained variance (III) and
the contribution to variance (IV), is visualised in Figure 4.3.

In general, the variance of the model output in Equation (4.2) is given by
the conditional variance of parameter pj and a residual term (or error term):

var(g) = var
�
E(g|pj)

�
+ E

�
var(g|pj)

�
(4.3)

The conditional variance var
�
E(g|pj)

�
is the “expected reduction in vari-

ance that would be obtained if parameter could be fixed” [Saltelli et al., 2010].
E is the expected value and var(g) = 1

N�1 Âi(gi � g)2, and g = 1
N Âi gi. The

variance explained by each of the parameter can be given by the correlation
ratio [McKay et al., 1999] and [Saltelli et al., 2008, Equation 1.25]:

Sj =
var

�
E(g|pj)

�

var(g)
(4.4)

Where the ratio Sj is the (main) sensitivity index. A derivation of the
sensitivity index and why it is equal to the standardised regression coefficient
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Figure 4.3: Relation between total output variance, explained output variance
and contribution to variance by the individual input parameters.

can be found in the supplementary material, Equations (4.21) to (4.24). The
expressions for the sensitivity indices for each method are found in the boxed
equations in the next subsections.

4.2.2 Regression- or correlation based methods for sensitivity
analysis

The contribution to variance can be quantified using regression or correlation.
First the general framework of a regression model is introduced. According
to the theory of multiple linear regressions, g can be described by:

gi = c0 +
k

Â
j=1

cj pij + ei (4.5)

Where the constant c0 represents the intercept, cj the slope (or regression
coefficient) and ei the error term, which is assumed to be normally distributed
with a constant variance. The sensitivity index using standardised regression
coefficients (SRC) is equal to:

SSRC
j =

var(pj)

var(g)
(cj)

2 (4.6)

Where var(pj) =
1

N�1 Âi(pij � pj)
2 and pj =

1
N Âi pij. The full description of

Equation (4.6) is given in the supplementary material, Equations (4.25) - (4.29).
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The SSRC
j , similar to the Pearson correlation coefficient squared, are not

robust to outliers [Hamby, 1994; Saltelli and Sobol’, 1995]. An alternative to
the Pearson correlation coefficient is using its rank transformed counterpart,
in the form of the Spearman rank correlation coefficient. The Spearman cor-
relation coefficient (SCC) calculates the linear dependence between the input
and output parameter. Each draw of input parameter pij is rank-transformed
to p(i)j, and gi is rank-transformed to g(i). The SCC is calculated as follows:

rSCC
j =

Âi

⇣
p(i)j � pj

⌘ ⇣
g(i) � g

⌘

r
Âi

⇣
p(i)j � pj

⌘2
Âi

⇣
g(i) � g

⌘2
(4.7)

The sensitivity index using SCC is equal to:

SSCC
j = (rSCC

j )2 (4.8)

The full description of Equation (4.8) is given in the supplementary material,
Equation (4.30). In this paper, sensitivity indices based on SRC and SCC are
calculated from the same simulations.

4.2.3 Key issue analysis using a first order Taylor expansion

Key issue analysis (KIA) is a method for analytically determining the contri-
bution to variance (or variance decomposition) by means of a first order Taylor
expansion. The first order Taylor expansion around the central values (pj) of
Equation (4.2) results in:

gj = g(pj) = g(pj) +

 
∂g(pj)

∂pj

!
�

pj � pj
�

(4.9)

Because the total output variance var(g) is estimated by the first order
Taylor expansion, the variance explained by the individual parameters will
always be equal to 100% (Figure 4.3). The variance according to KIA, there-
fore, may be of a different magnitude than the output variance obtained by
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sampling. The sensitivity index using KIA is equal to:

SKIA
j =

var(pj)

var(g)

 
∂g
∂pj

!2

(4.10)

The full derivation of Equation (4.10) is given in the supplementary mate-
rial, Equations (4.31)-(4.33).

4.2.4 Variance decomposition methods for sensitivity analysis

Sobol’ indices

In case of variance-based methods for sensitivity analysis, the variance of
Equation (4.2) is rewritten as the sum of the variance of all first order con-
ditional variances and higher order terms (supplementary material, (4.35)-
(4.36)):

var(g) = Â
j

var
�
E(g|pj)

�
+

Â
l

Â
j>l

�
var

�
E(g|pj, pl)

�� var
�
E(g|pj)

�� var (E(g|pl))
�
+ · · · (4.11)

To calculate the conditional variances of Equation (4.4), we have adopted the
sampling algorithm described by [Saltelli et al., 2010]. The sampling algo-
rithm fixes one parameter to calculate the variance reduction in the output.
The sampling algorithm requires two sampling matrices. In addition to the
sampling matrix P, a second sampling matrix Q is generated in the same way,
independent of P. From P and Q a third sampling matrix is derived R, from
which column j comes from Q and all other k � 1 columns come from P.
For each matrix P, Q and R, output of the model is calculated using Equa-
tion (4.2), resulting in g(P), g(Q) and g(R). The variance is calculated through
the identity: var(g) = E(g2)� E2(g). The variance equals:

var(g) =
1
N Â

i
(g(P)i)

2 �
 

1
N Â

i
g(P)i

!2

(4.12)
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Likewise, the conditional variance is given by:

var
�
E(g|pj)

�
=

1
N Â

i
g(Q)

⇣
g(Rj)i � g(Q)i

⌘
(4.13)

The sensitivity index, applying Sobol’s main effect (SME) index (supplemen-
tary material, Equation (4.38)), is equal to:

SSME
J =

1
N Âi g(Q)

�
g(Rj)i � g(Q)i

�

1
N Âi (g(P)i)

2 �
⇣

1
N Âi g(P)i

⌘2 (4.14)

The Sobol’ total effect index (STE) calculates how much input parameter j
explains of the output variance, including all possible interactions with other
parameters:

SSTE
j = Sj + Sjl + Sjm + · · ·+ Sjlm + · · · Sjlm···k (4.15)

The total effect index equals the “expected variance that would be left if all
[parameters] but [parameter pj] could be fixed” [Saltelli et al., 2010]), and is
based on the quantification of the residual term in Equation (4.3):

E
�
var(g|p⇠j)

�
=

1
2N Â

i

⇣
g(P)i � g(Rj)i

⌘2
(4.16)

The Sobol’ total effect index (supplementary material, Equation (4.40)), is
equal to:

SSTE
j =

1
2N Âi

�
g(P)i � g(Rj)i

�2

1
N Âi (g(P)i)

2 �
⇣

1
N Âi g(P)i

⌘2 (4.17)

In case of an LCA model without outliers, all interaction terms (e.g. Sjl
and other higher order terms in Equation (4.15)) are approximately zero, so:
SSTE

j ⇡ SSME
j , in case of models containing outliers, SSTE

j > SSME
j . This also

means that the sum of the total sensitivity index for an LCA model containing
outliers can be larger than 100 % (supplementary material, Equations (4.41)-
(4.42)).
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Random balance design

The theory of Fourier series states that any (periodic) function can be written
as a sum of wave functions. Random balance designs (RBD) calculate the
conditional variance by rewriting the LCA model in Equation (4.2) in terms
of sums of sine and cosine functions. We use complex numbers to facilitate
notation of sine and cosine, thus using e

p�1w, where we prefer to write
p�1

over i, allowing us to remain using i as an index variable. For this method, we
use the discrete Fourier transformation to convert an equally spaced periodic
function of size N. The model output of Equation (4.2) in terms of Fourier
coefficients are given in the supplementary material, Equation (4.45). The
Fourier coefficients are given by:

g(pw) =
1
N

N�1

Â
i=0

g(pij)e�
p�1pwi/N (4.18)

where w represents the frequency domain, which is divided in equally spaced
segments: w = 1 to N � 1. The parameters that contribute most to the output
variance will resemble the wave-like shape of the input parameter. This means
that the most sensitive parameters have the highest amplitude and that the
amplitude of the wave of the output is a measure of the conditional variance
of input parameter j. The total variance is given by:

var(g) =

 
1
N

N�1

Â
w=1

|g(pw)|
!2

(4.19)

A similar expression is found for the conditional variance of each input pa-
rameter (Equation (4.49)). The sensitivity index using RBD is equal to:

SRBD
j =

2
⇣

ÂM
w=1 |gj(pw)|

⌘2

⇣
ÂN�1

w=1 |g(pw)|
⌘2 (4.20)

Where M is equal to the maximum oscillation frequency and gj(pw) is the
reordered model output for parameter j. The derivation of the sensitivity
index in Equation (4.20) can be found in the supplementary material, Equa-
tions (4.44)-(4.50).
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Figure 4.4: Case study 1: production of 1 MWh electricity [Groen et al., 2014].

4.3 Case studies

A hypothetical of the production of 1 MWh of electricity was selected (the
original version of the case study appeared in [Heijungs and Suh, 2002]). The
case study consisted of two processes: fuel production and electricity produc-
tion (Figure 4.4). In Figure 4.4, parameter 1 equals the electricity production,
parameter 2 equals fuels use for electricity production, parameter 3 equals
electricity use of fuel production, parameter 4 equals fuel production, param-
eter 5 equals CO2 emissions during fuel production and parameter 6 equals
CO2 emissions during electricity production. The case study is set up in such
a way that a small change in one of the input parameters, results in a large
change of the output.

We assumed that the input parameters were log-normally distributed and
the relative standard deviation (i.e. coefficient of variation: CV = s/µ)
equalled: 5% or 30% for two different scenarios. All input parameters are
assumed log-normally distributed to avoid drawing random numbers with
an incorrect sign. This is admittedly a weak argument, but our main purpose
is to construct a toy example to study the sensitivity indices, not to build a re-
alistic system. We selected a relatively small and large coefficient of variation
because we wanted to explore if the Sobol’ total sensitivity indices and the
Spearman correlation coefficients would explain more of the output variation
in case of outliers.

The second case study describes a whitefish fishery in the northeast At-
lantic. The functional unit equalled 1 kg landed whitefish. The flow diagram
shown in Figure 4.5. Five input parameters we wish to highlight are parameter
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Figure 4.5: Case study 2: production of 1 kg of landed whitefish from the
northeast Atlantic [Groen et al., 2014].

a: total amount of landed fish; parameter b: emission factor fuel combustion;
parameter g: fuel production; parameter d: emission factor fuel production,
and parameter e: fuel use. The fishery consists of a single vessel, making trips
of approximately two weeks, landing their fish in Tromsø, Norway. Data com-
prised of annual averages of the vessel and gear, fuel, lubricants, anti-fouling,
detergents, cooling agents, and total catch and were collected by the vessel
owner. Background data, such as the CO2 emissions during steel production
from the vessel, came from the ecoinvent database v2.2 [ecoinvent, 2010]. In
total 115 input parameters were considered. Also in this case study, we as-
sumed that all input parameter were log-normally distributed with a CV of 5
or 30%.

4.4 Results

In this section we will discuss the sampling design (I); total output variance
(II); the explained variance (III) and the contribution to the output variance of
the individual input parameters as given by the sensitivity indices Sj (IV).
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Table 4.3: Sample design and calculation of the output variance for the six
sensitivity indices.

Methods Uncertainty
propagation

Sampling design (I) Runs

Standardised
regression coefficient

Sampling Random N

Spearman correlation
coefficient

Sampling Random N

Key issue analysis Analytical N/A 1
Sobol’ main effect Sampling 2x Random 2N
Sobol’ total effect Sampling 2x Random 2N
Random balance de-
sign

Stratified
sampling

Wave-like, equally dis-
tributed and of size 2N

N

4.4.1 Sampling design

The differences in uncertainty propagation methods requires differences in
sample designs and, therefore, in computational effort between methods (Ta-
ble 4.3). SRC, SCC and RBD both require N runs, but for the Sobol’ indices
(SME and STE) 2N runs are needed to calculate the indices. This means that
this method is more computationally demanding than the other sampling
methods. Although KIA requires only a single calculation, it does not produce
a distribution function of the output, making it more difficult to compare two
or more studies. RBD is using the discrete Fourier series, which allowed us
to use the Fast Fourier Transformation algorithm, which is computationally fast
[Frigo and Johnson, 2005].

4.4.2 Output variance and explained variance

Table 4.4 shows the mean, total output variance (II) and variance explained
by the global sensitivity method (III) of case study 1, in case of a parameter
of dispersion of CV=5% and CV=30%, for a sample size of N=4096 and 50
repetitions. In order to make a proper comparison, we ran an additional
Monte Carlo simulation where we calculated the output variance based on
N = 106, and we considered this as the best approximation of the output
variance.
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Table 4.4: Mean and variance for CO2 using different sensitivity methods
for case study 1 (N=4096; 50 repetitions), using standardised regression co-
efficients (SRC); Spearman correlation coefficients (SCC); key issue analysis
(KIA); Sobol’ main effect (SME); Sobol’ total effect (STE); and random balance
design (RBD). II: total output variance; III: variance explained.

CV = 5% N = 106 SRC SCC KIA SME STE RBD
Mean (kg CO2) 128 128 128 128 128 128 128
II (kg2) 80.8 80.7 80.7 80 80.8 80.8 81
III (%) - 99.6 94.9 100 97.8 101 90.6
Residual (%) - 0.04 5.1 n/a 2.2 n/a 9.4
CV = 30%
Mean (kg CO2) 145 145 145 128 145 145 145
II (103 kg2) 4.3 4.27 4.27 2.88 4.35 4.35 4.29
III (%) - 81.7 94 100 91.6 110 79.7
Residual (%) - 18.3 6 n/a 8.4 n/a 20.3

For CV=5%, all methods produced approximately the same mean and out-
put variance for this case study. Variance explained by most methods added
up to approximately 100%, suggesting that very few outliers were present.
For CV=30%, most methods produced approximately the same mean and
output variance. However, KIA estimated the total output variance consider-
ably lower than the sampling based methods. Furthermore, SRC explained
less than SCC, which suggested the presence of outliers. STE also showed a
value much larger than 100%, which also suggested the presence of outliers.
RBD explained less of the output variance than other methods. Note that the
mean value for CO2 is larger when the CV is larger, although the mean value
of the input parameters is the same. This is an effect of the asymmetric distri-
bution used. KIA neglects the shape of the distribution and therefore misses
this effect.

Table 4.5 shows the mean and the output variance (II) for case study 2
in case of a parameter of dispersion of CV = 5% and CV = 30%. Case
study 2 contains 115 parameters, the variance explained (III) is shown of the 5
most contributing parameters and the for all 115 parameters, because all other
parameters contribute ⌧ 1%.

For CV = 5%, all methods produced approximately the same mean and
output variance. Most methods explained approximately 100% of the vari-
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ance, suggesting that very few outliers were present. For CV = 30%, most
methods produced approximately the same mean and output variance, ex-
cept for KIA. KIA estimated the total output variance considerably lower than
the sampling based method. In case of RBD, the output explained by 5 or by
115 parameters differed considerably, suggesting that RBD overestimated the
sensitivity indices of low contributing parameters.

Table 4.5: Mean, output variance and variance explained by 5 or 115 parame-
ters for CO2 using different sensitivity methods for case study 2 (N = 4096; 50
repetitions), using standardised regression coefficients (SRC); Spearman cor-
relation coefficients (SCC); key issue analysis (KIA); Sobol’ main effect (SME);
Sobol’ total effect (STE); and random balance design (RBD). II: total output
variance; III: variance explained.

CV = 5% N = 106 SRC SCC KIA SME STE RBD
Mean (kg CO2) 1.96 1.96 1.96 1.95 1.96 1.96 1.96
II (kg2) 0.017 0.017 0.017 0.0168 0.0169 0.0169 0.017
III 1 (%) - 5 - 99.2 95.4 100 95.1 101 90.2
III 2 (%) - 115 - 99.2 95.5 100 95.2 101 101
Residual (%) - 0.80 4.50 n/a 4.80 n/a und.3
CV = 30%
Mean (kg CO2) 2.16 2.16 2.16 1.95 2.16 2.16 2.16
II (kg2) 0.76 0.758 0.758 0.606 0.775 0.775 0.766
III1 (%) - 5 - 87.2 94.4 100 93.6 103 83.3
III2 (%) - 115 - 87.3 94.5 100 93.6 103 94
Residual (%) - 12.7 5.5 n/a 6.4 n/a 6

4.4.3 Sensitivity index

Figure 4.6 shows the sensitivity index (IV) of each parameter of case study
1 for a parameter of dispersion of CV = 5% and CV = 30%, scaled to the
benchmark output variance computed with N = 106. We scaled the graphs

1Variance explained by five most contributing parameters.
2Variance explained by all 115 parameters.
3und: undefined. Because the explained variance was more than 100% due to an overesti-

mation of the sensitivity indices of the low contributing parameters, the residual could not be
defined.
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Figure 4.6: Contribution to output variance for sensitivity methods applied
to case study 1 (N=4096; 50 repetitions; CV=5% or CV=30%) for the sensi-
tivity index (SRC, SCC, KIA, SME, RBD) or total sensitivity index (STE) for
each parameter (1-6) is shown. SRC: standardised regression coefficient; SCC:
Spearman correlation coefficient; KIA: key issue analysis; SME: Sobol’ main
effect index; STE: Sobol’ total effect index; RBD: random balance design; 1:
electricity production; 2: fuels use electricity production; 3: electricity use fuel
production; 4: fuel production; 5: CO2 emissions fuel production; 6: CO2
emissions electricity production.

to this benchmark to compensate for methods that predicted a lower output
variance. For example, for a CV of 30%, KIA arrived at an output variance
of 0.606, which is approximately 20% lower than the output variance with a
sample size of N = 106. In case of applying SRC to case study 1 (CV =
5%), parameter 1 was responsible for 57% of the output variance. For each
method, parameter 1 and 5 contributed most to the output variance, the exact
contribution, however, differed per method. Parameter 2, 4 and 6 each have a
contribution of approximately 1-6%, parameter 3 contributed less than 0.7% to
the output variance. There are some differences in the ranking of parameter
2, 4 and 6 between the various methods.
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Figure 4.7: Contribution to output variance for sensitivity methods applied to
study 2 (N=4096; 50 repetitions; CV=5% or CV=30%) for the sensitivity index
(SRC, SCC, KIA, SME, RBD) or total sensitivity index (STE) for each param-
eter (a-e) is shown. SRC: standardised regression coefficient; SCC: Spearman
correlation coefficient; KIA: key issue analysis; SME: Sobol’ main effect index;
STE: Sobol’ total effect index; RBD: random balance design; a: catch of white-
fish; b: emission factor fuel combustion; g: production of fuel; d: emission
factor fuel production; e: fuel use.

Figure 4.7 shows the sensitivity index (III) of the five most dominant pa-
rameter in case of a parameter of dispersion of CV = 5% and CV = 30%.
The sensitivity indices (III) are shown only for the five most contributing pa-
rameters, because all other parameters contribute ⌧ 1%. Although for each
method, parameter a and b contributed most to the output variance, the exact
contribution differed per method. All methods agreed on the much smaller
contribution (around 1%) of parameter g, d and e, although there are differ-
ences in the precise value, as well as in the ranking.
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4.5 Discussion

Table 4.6 gives an indication of performance of the sensitivity methods, ap-
plied to the two case studies, under conditions of small (CV = 5%) and large
input uncertainties (CV = 30%). The evaluation of the sampling design (I) re-
lates to the computational effort of a sensitivity method: KIA does not make
use of sampling and was fastest. RBD was faster than SRC and SCC due to
the implementation of the Fast Fourier Transformation algorithm. SME and
STE have to generate two sampling matrices, and therefore, were slowest. The
total output variance (II) calculated with each method resulted in approxi-
mately the same output variance, except for KIA, which underestimated the
output variance especially in case of high input uncertainties. The variance
that is explained by each method (III) is equal to the sum of the sensitivity co-
efficients (IV). In case of small input uncertainties, SRC and SME performed
best, whereas in case of large input uncertainties, SCC or SME in combination
with STE performed best.

Table 4.6: Performance of the sensitivity methods on a scale from poor (– –),
insufficient (–), neutral (0), sufficient (+) to good (++). SRC: standardised
regression coefficient; SCC: Spearman correlation coefficient; KIA: key issue
analysis; SME: Sobol’ main effect index; STE: Sobol’ total effect index; RBD:
random balance design.

SRC SCC KIA SME STE RBD
Sample design (computational ef-
fort) (I)

– – ++ – – – – 0

Ability to calculate total output vari-
ance (II):
Small input uncertainty (CV=5%) ++ ++ + ++ ++ ++
Large input uncertainty (CV=30%) ++ ++ – – ++ ++ ++
Ability to explain output variance (III)
and calculate sensitivity indices (IV):
Small input uncertainty (CV=5%) ++ + +4 ++ + +
Large input uncertainty (CV=30%) – + – –4 + ++ –

4Although strictly speaking, KIA explains 100% of the variance, this 100% of the variance that
is calculated, which is shown to be an underestimation.
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There were some limitations to the case studies that were used to evalu-
ate the sensitivity methods. First, all parameters are assumed to be uncorre-
lated, which is a simplification because of lack of data. When correlations are
present, including correlated inputs will increase the accuracy of the outcome
of the global sensitivity analysis [Jacques et al., 2006; Xu and Gertner, 2008b].
Models with correlated inputs can be found in Xu and Gertner [2008b]) for
SRC, in Jacques et al. [2006] for the Sobol’ indices and in Xu and Gertner
[2008a] for RBD. Second, the performance indicators in Table 4.6 are based
on two case studies with two different sets of input parameters, which is lim-
ited. Other types of distributions functions or case studies with more input
parameters, for example, were not considered. Third, we only considered the
inventory stage in this paper. Usually, an LCA includes a midpoint or even an
endpoint assessment. In general, the midpoint to inventory calculation step
is assumed to be linear, but the inventory to midpoint or midpoint to end-
point relations could be nonlinear, in these cases the Sobol’ methods might
be preferred because it is better able to include nonlinear effects [Iooss and
Lemaître, 2014; Sobol’, 2001]. An illustrative example is given in [Cucurachi
et al., 2014], where sensitivity indices were quantified in case of impact assess-
ment of noise on human health, resulting in high values for STE compared to
SME, illustrating the benefit of using Sobol’ indices as a measure of global
sensitivity.

Figure 4.8 gives an overview of the best performing methods in case of
large (CV = 30%) or small (CV = 5%) input uncertainty and a situation being
sensitive (case study 1) or not sensitive (case study 2) to small changes in the
input parameters. In practice, LCAs are usually insensitive to small changes
in the input parameters, because the underlying mathematical model is con-
structed from a set of linear equations. When restricted to the assumptions
that LCAs are linear up to the midpoint assessments, SCC, SRC or KIA could
be used for global sensitivity analysis. The choice for a global sensitivity
method, however, also depends on: (1) data availability to the LCA practi-
tioner; (2) the magnitude of the uncertainties in the input data, and (3) the
aim of the study. If only a parameter of dispersion could be defined and not a
probability distribution function, applying KIA is a feasible option, especially
when input uncertainties are small. If probability distribution functions are
provided, either SRC (low input uncertainties) or SCC (large input uncertain-
ties causing outliers) are most feasible.

If the goal of the LCA is to determine whether there is a significant dif-
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SCC SME & STE

SRC or KIA SRC or KIA

Sensitive to small changes
(case study 1)

Insensitive to small changes
(case study 2)

Small input uncertainty
(cv = 5%)

Large input uncertainty 
(cv = 30%)

Figure 4.8: Overview of the best performing methods in case of large (CV =
30%) or small (CV = 5%) input uncertainty and sensitive (case study 1) or not
(case study 2) to small changes in the input parameters.

ference between scenarios or innovations, SRC or SCC can determine the in-
put parameters which contribute most to the output variance and, therefore,
should be known most accurately before calculating P-values. When inter-
ested in the performance of a single production system, SRC, SCC or KIA can
help to indicate parameters that could contain opportunities for improvement
regarding environmental performance [Heijungs, 1994]. When repeating an
LCA of similar goal and scope, the input parameters that contribute only mi-
nor to the output variance according to SCC, SRC or KIA, can set to a fixed
value to simplify data collection.

4.6 Conclusion

The aim of this study was two-fold: (1) to study the applicability of a num-
ber of previously suggested methods for global sensitivity analysis to LCA
and (2) to compare the methods based on their ability to explain the output
variance, using a number of case studies. Five methods that quantify the
contribution to output variance were evaluated: standardised regression coef-
ficient (SRC), Spearman correlation coefficient (SCC), key issue analysis (KIA),
Sobol’ indices (STE and SME) and random balance design (RBD). Most meth-
ods performed approximately equally well for quantifying output variance
and contribution to variance of the input parameters, especially for relatively
small input uncertainties. In case of large input uncertainties, methods ro-
bust to outliers such as Spearman correlation coefficient or the Sobol’ indices
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performed better than the other methods.
When restricted to the assumptions that quantification of environmental

impact in LCAs is linear, standardised regression coefficients, Spearman cor-
relation coefficients or key issue analysis can be used for global sensitivity
analysis. The choice for one of the methods depends on the available data, the
magnitude of the uncertainties in the input data and the aim of the study.
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General framework for sensitivity indices

If we consider a linear function Y(X):

E(Y|X) = cX + c0 (4.21)

Then c is given by the regression coefficient (Equation (4.28)):

c =
cov(X, Y)

var(X)
(4.22)

Use: var(cX) = c2var(X). The variance of Equation (4.21) is given by:

var (E(Y|X)) = var (cX + c0) = c2var(X) (4.23)

The correlation ratio, in case of a linear function, is given by:

var (E(Y|X))
var(Y)

=
c2var(X)
var(Y)

=
cov(Y, X)2

var(X)var(Y)
= Sj (4.24)

Which is equal to the squared correlation coefficient in Equation (4.30). Equation (4.24)
shows that in case of a linear function, the correlation ratio, or the explained variance,
is equal to the standardised regression coefficients (Equation (4.29)) and the squared
correlation coefficient (4.30), without the rank transformation.

Standardised regression coefficients

The part of the output variance that is explained by the linear regression model is
given by:

var(g) ⇡ var(Pc) (4.25)

Equation (4.25) can be rewritten as:

var(g) ⇡ Â
j

c2
j var(pj) (4.26)

Subsequently, we divide both sides of Equation (4.26) by the variance var(g). Equa-
tion (4.26) becomes:

1 ⇡ Â
j

c2
j

var(pj)

var(g)
(4.27)



Where the unstandardised regression coefficient, found by least square fitting, equals:

cj =
Âi(pij � p̄j)(gi � ḡ)

Âj(pij � p̄j)2 (4.28)

The sensitivity index is found by standardising the regression coefficient by the stan-
dard deviations of P and g, and taking its square:

SSRC
j =

⇣
Âi(pij � p̄j)(gi � ḡ)

⌘2

Âi(pij � p̄j)2 Âj(pij � p̄j)2

⇣
1

N�1 Âi(pij � p̄j)
⌘2

⇣
1

N�1 Âi(gi � ḡ)
⌘2

=

⇣
Âj(pij � p̄j)(gi � ḡ)

⌘2

Âi(pij � p̄j)2 Âi(gi � ḡ)2 (4.29)

Spearman rank correlation

The sensitivity index for the parameters are found by squaring the correlation coeffi-
cient in Equation (4.6):

SSCC
j = r2

j =

⇣
Âi(p(i)j � p̄j)(g(i) � ḡ)

⌘2

Âi(p(i)j � p̄j)2 Âi(g(i) � ḡ)2 (4.30)

When comparing Equation (4.29) to Equation (4.30), expect for the rank transforma-
tion, the expression are exactly the same. This means that the squared standardised
regression coefficient SSRC

j is equal to the squared Pearson correlation coefficient.

Key issue analysis

The variance of g of Equation (4.9) equals:

var(g) = Â
j

var

 
p̄j +

∂g
∂pj

!
(pj � p̄j) (4.31)

Use: var(x + c) = var(x) and var(cx) = c2var(x), where c is a constants, to arrive at:

var(g) = Â
j

 
∂g
∂pj

!2

var(pj) (4.32)



Dividing both sides by var(g), results in:

1 = Â
j

 
∂g
∂pj

!2 var(pj)

var(g)
(4.33)

The derivatives are determined using matrix perturbation theory [Heijungs and Suh,
2002]:

SKIA
j =

8
>><

>>:

var(pj)
var(g) (BA�1s)2 j 2 A

var(pj)
var(g) (s)

2 j 2 B

(4.34)

Sobol’ method

In case of variance-based methods for sensitivity analysis, Equation (4.1) is rewritten
as the following ANOVA decomposition:

g = ḡ + Â
j

gj + Â
l

Â
j>l

gjl + . . . gjl..k (4.35)

Where the input parameters are represented by j = 1 to k and l = 1 to k and ḡ equals
the mean (or expectancy) of g. The variance of Equation (4.35) is given by (ḡ drops out
because it is a constant):

var(g) =var

0

@ḡ + Â
j

gj + Â
l

Â
j>l

gjl + . . . gjl..k

1

A

=Â
j

var(gj) + Â
l

Â
j>l

vargjl + . . . (4.36)

Which in turn equals Equation (4.11). The sensitivity indices are found by dividing
both sides of Equation (4.11) by var(g):

1 = Sj + Â
l

Â
j>l

Sjl + . . . Sjl..k (4.37)

If only variance contribution up to the first order term (or main sensitivity index) Sj is
considered, Equation (4.37) reduces to:

SSME
j =

var
⇣

Ep⇠j(g|pj)
⌘

var(g)
(4.38)



which is the conditional variance or the expected reduction in variance that would be ob-
tained if parameter pj could be fixed [Saltelli et al., 2010]. Note that Equation (4.38) is of
a similar form as Equation (4.24), which was our general framework for the sensitivity
indices. When we follow the best practise approach described by Saltelli et al. [2010] for
the sampling algorithms available to calculate the conditional variance, Equation (4.38)
is given by Equation (4.14). The total sensitivity index (SSTE

j ) calculates how much
input parameter pj explains of the output variance, including all possible interactions
with other parameters:

SSTE
j = Sj + Â

l
Â
j>l

Sjl + . . . Sjl..k (4.39)

The total sensitivity index (SSTE
j ) equals the expected variance that would be left if all

[parameters] but [parameter pj] could be fixed [Saltelli et al., 2010]. The total sensitivity
index is given by:

SSTE
j =

Ep⇠j

⇣
varpj (g|p⇠j)

⌘

var(g)
(4.40)

For example, in case of three input parameters the total sensitivity of Equation (4.39)
index becomes for parameter 1:

SSTE
1 = S1 + S12 + S13 + S123 (4.41)

And parameter 2:
SSTE

2 = S2 + S21 + S23 + S213 (4.42)

Explaining why the sum of the total sensitivity index for an LCA model containing
outliers will be: Âj SSTE

j > 100%.

Random balance design

A random balance design (RBD) is an alternative to the Fourier Amplitude Sensitiv-
ity Test (FAST) [Tarantola et al., 2006]. The idea behind RBD is that the output of our
model given by the identity: var(g) = E(g2)� E2(g), can be quantified by the so-called
Fourier coefficients. The theory of Fourier series states that any periodic function can
be written as a sum of wave functions. For this method, we use the discrete Fourier
transformation to convert an equally spaced periodic function of size N. First, a peri-
odic sampling design is applied to the distribution functions of the input parameters
in Equation (4.1). To that end, N equally spaced sample points are generated over
[�p, p] for each parameter pj:

tij = �p +
2p

N
(i � 1) (4.43)



Subsequently, k random permutations are created and the sample points (tij) are trans-
lated to a wave. The (stratified) sample matrix equals:

pRBD
ij (tij) = F�1

j

✓
1
2
+

1
p

arcsin(sin(tij))

◆
(4.44)

Where F�1
j corresponds to the inverse distribution function of each parameter. The

output g(pRBD
ij ) is calculated. To calculate the output variance, the model output is

expanded using the discrete Fourier transform:

g(pij) =
N�1

Â
w=0

g(pw)e
p

(�1)pwi/N (4.45)

And the discrete Fourier coefficients are given by:

g(pw) =
1
N

N�1

Â
i=0

g(pij)e�
p

(�1)pwi/N (4.46)

The total variance is given by var(g) = E(g2)� E2(g):

var(g) =
1
N

N�1

Â
i=0

g(pij)
2 � (g(pw=0))

2 (4.47)

Parseval’s identity is used:

var(g) =
1

N2

N�1

Â
w=0

|g(pw)|2 � 1
N2 |g(pw=0)|2 =

1
N2

N�1

Â
w=1

|g(pw)|2

=

 
1
N

N�1

Â
w=1

|g(pw)|
!2

(4.48)

To calculate the conditional variance for each input parameter, the model output is
reordered with respect to ti in increasing order (which is the inverse permutation):
gj(pij). When you look at the reordered model outputgj(pij), we expect for dominant
parameters that they highly resemble the wave-like shape of the input parameter, as
was given in Equation (4.44). This also means that the most sensitive parameters have
the highest amplitude. For the conditional variance, the summation goes up to M = 4
[Tarantola et al., 2006], and because M is smaller than the Nyquist frequency (N/2),



the conditional variance is multiplied by a factor two:

var
⇣

Ep⇠j(g|pj)
⌘
= 2

 
1
N

M

Â
w=1

|gj(pw)|
!2

(4.49)

Where gj(pw)equals the re-ordered model output for parameter pj. The sensitivity
index is equals:

SRBD
j =

2
⇣

ÂM
w=1 |gj(pw)|

⌘2

⇣
ÂN�1

w=1 |g(pw)|
⌘2 (4.50)





CHAPTER 5

Ignoring correlation in uncertainty and sensitivity analysis in
life cycle assessment: what is the risk?
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Abstract

Life cycle assessment (LCA) is an established tool to quantify the environmental impact of a
product. Incorporation of uncertainty propagation in LCA is nowadays widely acknowledged.
Currently, most LCA studies that include uncertainty analysis ignore correlations between input
parameters during uncertainty propagation, due to e.g. unfamiliarity with methods that include
correlations or lack of data. The effect of ignoring these correlations on the output variance, how-
ever, remains unclear: it is not known if and under which conditions it can lead to erroneous
conclusions. Two approaches to include correlations between input parameters during uncer-
tainty propagation are studied: an analytical approach and a sampling approach. The use of both
approaches is illustrated for an artificial case study of electricity production. Results demonstrate
that that both approaches yield approximately the same output variance and sensitivity indices
for this specific case study. Furthermore, we demonstrate that the analytical approach can be
used to quantify the risk of ignoring correlations between input parameters during uncertainty
propagation in LCA. We demonstrate that: (1) we can predict if including correlations among
input parameters in uncertainty propagation will increase or decrease output variance; (2) we can
quantify the risk of ignoring correlations on the output variance and the global sensitivity indices.
Moreover, this procedure requires only little data regarding the input parameters.

5.1 Introduction

Life cycle assessment (LCA) is an established tool to quantify the environmen-
tal impact of a product [Curran, 2012]. The presence of uncertainty and vari-
ability around data, such as input parameters in LCA, is widely acknowledged
[Lloyd and Ries, 2007; Björklund, 2002], and several studies implemented
uncertainty propagation by means of, for example, Monte Carlo simulation
[Lloyd and Ries, 2007; Finnveden et al., 2009; Imbeault-Tétreault et al., 2013].
Data collection for LCA is perceived as the most time consuming step [Björk-
lund, 2002] and even if the presence of uncertainty and variability is acknowl-
edged, data might not always be available to construct distribution functions
needed for uncertainty analysis. An additional complication is the potential
presence of correlations between input parameters. For example, when both
fuel combustion and the corresponding emissions of CO2 are considered as
stochastic input parameters, a correlation might be present a between fuel
combustion and the emissions of CO2. Although the amount of CO2 emis-
sions relates directly to the carbon content of fuel, other (external) factors,
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such incomplete combustion for low temperatures or quality of the fuel, can
cause a presence of a correlation between the two parameters. Currently, in
most LCA case studies that include uncertainty propagation, correlations be-
tween input parameters are ignored [Björklund, 2002], even though the effect
of ignoring these correlations on the output variance is unclear [Bojacá and
Schrevens, 2010; Wei et al., 2014]. There can be several reasons why correla-
tions are ignored: (1) there is no data available on the correlation coefficients,
(2) including correlation coefficients in uncertainty propagation complicates
the subsequent uncertainty and sensitivity analysis, which is usually not avail-
able in standard LCA software, or (3) unfamiliarity with methods that include
correlations during uncertainty propagation. To our knowledge, in only three
studies [Cucurachi et al., 2015; Bojacá and Schrevens, 2010; Wei et al., 2014]
correlations between input parameters were included.

Ignoring correlations between input parameters in the sample design, how-
ever, could lead to under- or overestimation of the output variance. This can
lead to incorrect decision making regarding environmental mitigation strate-
gies, or more tangible, to ecological or health risks [Tukker, 2002; Cowell et al.,
2002]. For example, a common strategy in LCA is to look for improvement
options, and to do so, two product alternatives are compared. A suitable ap-
proach is to use a discernibility analysis [Heijungs and Kleijn, 2001; Henriksson
et al., 2015], where random drawings from two Monte Carlo runs are com-
pared and the percentage is given how often one alternative is better than
the other. If the output variance of greenhouse gas emissions of a reduction
strategy is overestimated due to ignoring correlations between input parame-
ters, this could lead to false negatives. This means the actual variance is lower
and the comparison between both products would have led to different re-
sults if correlations had been taken into account. Another example concerns
the application of a threshold analysis, where due to e.g. legal boundaries for
ammonia emissions on farms or toxicity levels in soils, a certain thresholds
may not be exceeded. Ignoring correlations could lead to an underestima-
tion of the output variance and therefore it can appear that the emissions of a
product remain under the threshold, while in fact they are not.

In this paper, we first show how to handle correlations between input pa-
rameters for uncertainty propagation and global sensitivity analysis in LCA,
by using an analytical approach and a sampling approach. Subsequently, we
demonstrate that the analytical approach can be used to quantify the risk of
ignoring correlations between input parameters during uncertainty propaga-
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tion in LCA, based on minimum data requirement. To this end, a hypothetical
case study about electricity production is formulated on which the procedure
is applied.

5.2 Methods for uncertainty propagation and global
sensitivity analysis for correlated input param-
eters in LCA

Methods for global sensitivity analysis describe how much of the output vari-
ance can be explained by the variance of each uncertain or variable input
parameter. In linear models (such as LCA), a global sensitivity index is rep-
resented by a ratio explaining how much each input parameter contributes
to the output variance. For LCAs with uncorrelated input parameters, the
squared standardised regression coefficients can be used as a global sensitiv-
ity index [Groen et al., 2015a; Mutel et al., 2013; Saltelli et al., 2008]. For more
complicated, non-linear impact assessment methods, advanced methods such
as the Sobol’ method can be used [Cucurachi et al., 2015].

In case of correlated input parameters in the LCA model, the regression
model no longer holds [Xu and Gertner, 2008b] and should be adjusted [Xu
and Gertner, 2008b]. In this paper, matrix-based notation for LCA is intro-
duced, followed by the corresponding notation for global sensitivity indices
with correlated input parameters [Xu and Gertner, 2008b], for an analytical
and a sampling approach. The analytical approach is later on used to deter-
mine criteria for ignoring correlation in LCAs.

5.2.1 Matrix-based LCA

To facilitate the use of both approaches, matrix-based LCA [Heijungs, 2002]
is used, where all production processes are described in the A-matrix and the
accompanying resource use and emissions in the B-matrix. To compare the
analytic and stochastic approach for correlated input parameters in LCA, first
an artificial case study is introduced to show how both approaches work. In
this example, we will look at the production of electricity. The production of
10 kWh electricity requires 2 liter of diesel. For the production of 10 kWh
electricity 1 kg CO2 is emitted, for the production of 100 liter diesel, 10 kg
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CO2 is emitted. In matrix notation this looks like:

A =

✓
10 0
�2 100

◆
(5.1)

The A matrix contains three parameters unequal to zero. The corresponding
CO2 emissions can be given by:

B =
�
1 10

�
(5.2)

The B-matrix contains two input parameters. In this example, we are inter-
ested in the production of 1000 kWh electricity. The functional unit is given
in the f-vector:

f =
✓

1000
0

◆
(5.3)

To calculate the total CO2 emissions for the production of 1000 kWh electricity,
the inverse of the A needs to be calculated:

g = BA�1f = Bs (5.4)

Where s equals the scaling vector. In general, not only CO2 emissions can be
considered here, but many more emissions, but to simplify the example we
used a single type of emissions turning the B-matrix into a row-vector b and
the g-vector into a scalar g. The locations and names of the input parameters
can be found in Table 5.1.

5.2.2 Including uncertainty and variability in LCA

We assumed that all the input parameters were normally distributed. To that
end, we made a slight adaptation to the original matrix-based LCA notation.
We now assume that the elements in the A-matrix and the B-matrix are re-
placed by normally distributed stochastic variables, and that the original val-
ues of the elements in the A-matrix and the B-matrix are now the means of
the corresponding normal distributions. For example, this means that the first
element of the stochastic A-matrix, is now a stochastic variable:

a11 ⇠ N(µA,1,1, sA,1,1) (5.5)
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Table 5.1: The location of the distribution functions in the LCA model are
given as a triplet: first the matrix is specified, matrix (A or B), followed by
the row index (i or k), and column index (j) in A and B. The corresponding
mean (µ), standard deviation (s), and coefficient of variation (CV) of the input
parameters are also given.

Element µ s CV(%)
A, 1, 1 10 0.09 0.9
A, 2, 1 -2 0.23 11.5
A, 1, 2 0 0 n/a
A, 2, 2 100 12 12
B, 1, 1 1 0.15 15
B, 1, 2 10 1.2 12

The new notation, including the mean (µ), standard deviation (s) and coeffi-
cient of variation: CV = s

|µ| , are found in Table 5.1. Furthermore, we assumed
a correlation between the parameter found at A, 1, 1 and B, 1, 1; and between
the parameter at A, 2, 2 and B, 1, 2 given by the Pearson correlation coefficient
of rA,1,1;B,1,1 = 0.8 and rA,2,2;B,1,2 = 0.9 respectively. For example, the variance
of the parameter at A, 1, 1 equals:

sA,1,1;A,1,1 = s2
A,1,1 = 0.092 = 0.0081 (5.6)

And the covariance between parameter A, 1, 1 and B, 1, 1 equals:

sA,1,1;B,1,1 = sB,1,1;A,1,1 = rA,1,1;B,1,1 · sA,1,1 · sB,1,1 = 0.8 · 0.09 · 0.15 = 0.0108
(5.7)

The covariance matrix (S) has a general structure of:

S =

✓
S(A, A) S(A, B)
S(B, A) S(B, B)

◆
(5.8)
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Where S(A, B) = S(B, A). This leads the the covariance matrix (S) of:

S =

0

BBBBBB@

0.0081 0 0 0 0.0108 0
0.0529 0 0 0 0

0 0 0 0
144 0 12.96

0.0225 0
1.44

1

CCCCCCA
(5.9)

Our main interest lies in determining the variance of stochastic output pa-
rameter s2(g, k), which can be approximated using an analytical approach
s̃2(g, k)and a sampling approach ŝ2(g, k).

5.2.3 Sensitivity indices for correlated input parameters

Two approaches were used to calculate the sensitivity indices, an analytical
approach (represented by a tilde) and a sampling approach (represented by a
hat). For the analytical and the sampling approach, the total partial variance
contribution (s2

T) of each individual input parameter (p 2 {(A, 1, 1), ...(B, 1, 2)})
can be given by an uncorrelated part (s2

U) and a correlated part (s2
C):

s2
T(g, k; p) = s2

U(g, k; p) + s2
C(g, k; p) (5.10)

The total (ST(g, k; p)), uncorrelated (SU(g, k; p)) and correlated (SC(g, k; p))
sensitivity indices for the analytical and sampling approach respectively, are
given by:

S̃T(g, k; p) =
s̃2

T(g, k; p)
s̃2 or ŜT(g, k; p) =

ŝ2
T(g, k; p)

ŝ2 (5.11)

S̃U(g, k; p) =
s̃2

U(g, k; p)
s̃2 or ŜU(g, k; p) =

ŝ2
U(g, k; p)

ŝ2 (5.12)

S̃C(g, k; p) =
s̃2

C(g, k; p)
s̃2 or ŜC(g, k; p) =

ŝ2
C(g, k; p)

ŝ2 (5.13)

Where s̃2 is equal to the output variance approximated up to first order by the
analytical approach in Equation (5.14) and ŝ2 is estimated by the sampling
approach given in Equation (5.26).
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Analytical approach

The variance of Equation (5.4), including the correlations, can be given using
a first order Taylor approximation [Heijungs, 2010]:

s̃2(g, k) ⇡

s̃2
U(g,k)

z }| {

Â
i,j

✓
∂(g, k)

∂(A, i, j)

◆2
s2

A,i,j + Â
j

✓
∂(g, k)

∂(B, k, j)

◆2
s2

B,k,j

+

s̃2
C(g,k)

z }| {

2 Â
i,j,l,m

∂(g, k)
∂(A, i, j)

∂(g, k)
∂(A, l, m)

sA,i,j;A,l,m

+ 2 Â
j,m

∂(g, k)
∂(B, k, j)

∂(g, k)
∂(B, k, m)

sB,k,j;B,k,m

+ 2 Â
i,j,m

∂(g, k)
∂(A, i, j)

∂(g, k)
∂(B, k, m)

sA,i,j;B,k,m (5.14)

Where ∂(g,k)
∂(A,i,j) = ∂gk

∂aij
, etcetera. Please note that s̃2

C(g, k) is equal to the last
three terms in this equation. Although the analytical expression in Equation
(5.14) contains a number of elements to be filled, we can already notice several
things. First, there is no need to define distribution functions, only a mean
and a standard deviation or variance is sufficient to propagate the input un-
certainties (or variability of the input parameters) up to first order. Second,
the first two elements in Equation (5.14) are equal to the output variance if no
correlations were involved. Third, the effect of the correlations, given in the
third, fourth and fifth element in Equation (5.14), are added to the variance.
This means that given a positive or negative covariance, and the sign of the
derivatives, we can derive if the output variance will decrease or increase. We
come back to this in Section 5.4.2.

Sampling approach

The sampling approach for uncertainty propagation and the ensuing global
sensitivity analysis consists of several steps. First, the distributions functions,
means and standard deviations of the input parameters are determined, to-
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gether with correlations. We assume all input parameters are normally dis-
tributed. Second, the input parameters are described as joint distributions
functions, using the covariance matrix (Equation (5.9)). Third, uncertainty
and variability of input parameters were propagated through the LCA model
by means of Monte Carlo simulation, or alternative sampling strategy. Details
can be found in the supplementary material. Subsequently, the total partial
variance (ŝ2

T(g, k; p)), uncorrelated partial variance (ŝ2
U(g, k; p)) and the corre-

lated partial variance (ŝ2
C(g, k; p)) are calculated. Finally, the sensitivity indices

are calculated based on Equations (5.11) - (5.13), using Equation (5.26).

5.2.4 Quantifying the effect of correlation in uncertainty prop-
agation

Using Equation (5.14), we can determine if a correlation between two param-
eters will either increase or decrease the output variance, depending on the
sign of the correlation coefficient and the partial derivative. Subsequently,
we can determine how much the output variance is under- or overestimated
considering the correlations at hand. We return to the example given in Sec-
tion 5.2.2, and we only consider the correlation between parameter at location
A, 1, 1 and B, 1, 1. For reasons of comprehensibility, we removed the correla-
tion between parameter at locations A, 2, 2 and B, 1, 2 (i.e. rA,2,2;B,1,2 = 0). We
will use this example to determine how much the output variance is under-
or overestimated as a function of the correlation coefficient r and the relative
variance CV of the parameter at B, 1, 1 (variance of the parameter at A, 1, 1 is
fixed to 0.9%). This approach is based on the work of Smith et al.[Smith et al.,
1992]. The measure of under- or overestimation is given by:

h̃(CV, r) = log(s̃2
U/s̃2) or ĥ(CV, r) = log(ŝ2

U/ŝ2) (5.15)

The logarithm is taken to make sure that a factor of 2 and a factor of 0.5 appear
as equal.

5.2.5 Quantifying the effect of correlation on global sensitiv-
ity analysis

To quantify the effect of the correlation coefficients on the global sensitivity
analysis, a comparison is made between the total sensitivity index (ST) coming
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from the correlated model (Equation 5.11) and the sensitivity index ignoring
correlations (SU;r=0):

S̃U;r=0(g, k; p) =
s̃2

U;r=0(g, k; p)

s̃2
U

or ŜU;r=0(g, k; p) =
ŝ2

U;r=0(g, k; p)

ŝ2
U

(5.16)

Where r = 0 refers to an LCA model in which there is no correlation between
any two pairs of input parameters.

5.3 Comparing the analytical and sampling approach

The output variance from the analytical approach (s̃2 = 206.7) and the sam-
pling approach (ŝ2 = 207.2) were almost equal. The sensitivity indices from
the analytical and sampling approach are compared in Table 5.2. The deriva-
tion of the sensitivity indices of the analytical approach are described in equa-
tions (5.17) - (5.25). In the case of our example (k = 1), the uncorrelated partial
variance of each input parameter is given by [Xu and Gertner, 2008b]:

s̃2
U(g, 1; A, 1, 1) = (1 � 0.82)

✓
∂(g, 1)

∂(A, 1, 1)

◆2
s2

A,1,1 (5.17)

s̃2
U(g, 1; A, 2, 1) = (1 � 0)

✓
∂(g, 1)

∂(A, 2, 1)

◆2
s2

A,2,1 (5.18)

s̃2
U(g, 1; A, 1, 2) = 0 (5.19)

s̃2
U(g, 1; A, 2, 2) = (1 � 0.92)

✓
∂(g, 1)

∂(A, 2, 2)

◆2
s2

A,2,2 (5.20)

s̃2
U(g, 1; B, 1, 1) = (1 � 0.82)

✓
∂(g, 1)

∂(B, 1, 1)

◆2
s2

B,1,1 (5.21)

s̃2
U(g, 1; B, 1, 2) = (1 � 0.92)

✓
∂(g, 1)

∂(B, 1, 2)

◆2
s2

B,1,2 (5.22)

Note that the uncorrelated partial variance for parameter A, 2, 1 is equal to
the partial variance if no correlation had been present. The correlated partial
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Table 5.2: Comparing output variance and sensitivity indices for correlated in-
put parameters, using the analytical method (tilde) and the sampling method
(hat), N = 5000.

Element S̃T S̃U S̃C ŜT ŜU ŜC
A, 1, 1 0.5769 0.0020 0.5749 0.5734 0.0021 0.5713
A, 2, 1 0.0256 0.0256 0 0.0240 0.0255 -0.0016
A, 1, 2 0 0 0 0 0 0
A, 2, 2 0.0003 0.0053 -0.0050 0.0005 0.0053 -0.0048
B, 1, 1 0.9668 0.3919 0.5749 0.9671 0.3940 0.5730
B, 1, 2 0.0003 0.0053 -0.0050 0.0003 0.0053 -0.0050

variance is equal to:

s̃2
C(g, 1; A, 1, 1) = s̃2

C(g, 1; B, 1, 1) = 2
∂(g, 1)

∂(A, 1, 1)
∂(g, 1)

∂(B, 1, 1)
sA,1,1;B,1,1

+ 0.82
✓

∂(g, 1)
∂(A, 1, 1)

◆2
s2

A,1,1 + 0.82
✓

∂(g, 1)
∂(B, 1, 1)

◆2
s2

B,1,1 (5.23)

s̃2
C(g, 1; A, 2, 1) = s̃2

C(g, 1; A, 1, 2) = 0 (5.24)

s̃2
C(g, 1; A, 2, 2) = s̃2

C(g, 1; B, 1, 2) = 2
∂(g, 1)

∂(A, 2, 2)
∂(g, 1)

∂(B, 1, 2)
sA,2,2;B,1,2

+ 0.92
✓

∂(g, 1)
∂(A, 2, 2)

◆2
s2

A,2,2 + 0.92
✓

∂(g, 1)
∂(B, 1, 2)

◆2
s2

B,1,2 (5.25)

The sensitivity indices are calculated based on equations (5.11) - (5.13). As can
be seen in Table 5.2, the total (ST), uncorrelated (SU) and correlated (SC) contri-
bution of each parameter p are almost the same for the analytical and the sam-
pling approach. Although this is what we would have expected, the exercise
of deriving both methods adds to understanding how a correlated sampling
approach works. However, the analytical approach has the advantage that it
is less data intensive, only covariance matrix needs to be constructed and it
requires only a single calculation to calculate the output variance. The main
disadvantage is that there is no output distribution formed during the calcu-
lation process (e.g in the form of a histogram), as is the case for the sampling
approach. As LCA is often used to compare two types of products, comparing
two distribution functions can be very helpful during decision making or to
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highlight similarities between products.

5.4 Risks of ignoring correlation

5.4.1 Update on notation

In Section 5.3 we showed that the analytical approach and the sampling ap-
proach resulted in approximately same results for the output variance and
the sensitivity indices. Therefore, from here on we continue the notation in a
more general sense, i.e. we omit the use of hat and tilde from now on, as we
assume that either the analytical approach (tilde) and the sampling approach
(hat) will both result in the same outcome.

5.4.2 The effect of ignoring correlation in uncertainty propa-
gation

As mentioned in Section 5.2.3, it is possible to determine how much the out-
put variance will increase or decrease based on the signs of the partial deriva-
tives and covariance in Equation (5.14). In Table 5.3, we listed all the possible
combinations of the partial derivatives in case of positive (r > 0) and negative
(r < 0) correlations between two input parameters. The first thing we notice is
that a positive correlation between two parameters does not necessarily mean
that the output variance increases. But there is more to be said, both on the
location of the correlations and the sign of the partial derivatives. In theory,
every stochastic parameter can be correlated with any of the other stochastic
parameters. In case of n model parameters, using symmetry, (n2 � n)/2 po-
tential correlations could be identified. For a small (but realistic) LCA with
250 input parameters, this is equal to 31,125 potential correlations coefficients.
Collecting data on covariances of more than 30, 000 input parameters, how-
ever, would be an appalling task. But when we look at what the parameters
actually represent, a great number of these correlations can be assumed zero.
Each production process in the A-matrix (and the corresponding emissions in
the B-matrix) is represented by a single column, it could be argued that in
most cases, correlations appear within a column as the production processes
itself are independent. For example, it can be expected that correlations either
appear between an element in A and B (e.g. more fuel leads to more CO2
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Table 5.3: Effect of including correlation on the output variance of the most
common partial derivatives, + means that the output variance increases when
a correlation is included between two input parameters, � means that the
output variance decreases when a correlation is included.

∂(g,k)
∂(A,l,m) <0 ∂(g,k)

∂(B,k,m) >0

r > 0 ∂(g,k)
∂(A,i,j) <0 + �
∂(g,k)

∂(B,k,j) >0 � +

r < 0 ∂(g,k)
∂(A,i,j) <0 � +
∂(g,k)

∂(B,k,j) >0 + �

emissions) or between two elements in A (e.g. more fertilizer input leads to
higher yields); or between two elements from B in one column (e.g. more CO2
emissions are associated with more N2O emissions). Applying such rules of
the thumb can decrease the amount of potential correlations to be assessed
drastically. Regarding the signs of the partial derivatives, in most cases:

• The partial derivative ∂(g,k)
∂(B,k,j) is positive, because it is equal to the (pos-

itive) scaling factor s [Heijungs, 2010], which is only negative for e.g.
avoided emissions;

• The partial derivative ∂(g,k)
∂(A,i,j) is negative, because it is equal to a negative

factor multiplied with the (positive) scaling factor [Heijungs, 2010].

For all combinations of the (most common) derivatives and the sign of the
correlation coefficient the effect on the output variance is given in Table 5.3.

Let us consider the example of Section 5.2.2, where we considered a pos-
itive correlation between the production of fuel (an element of A) and CO2

emissions (an element of B). The partial derivative ∂(g,k)
∂(A,i,j) is negative, and

∂(g,k)
∂(B,k,j) is positive. Combining this with the positive correlation, means that
the covariance term in Equation (5.14) will be negative and thus decrease the
total output variance when the correlations were taken into account. The con-
tour plot in Figure 5.1 shows how much we under- or overestimate the output
variance, as a function of the correlation coefficient r and the magnitude of
the CV of the parameter at location (B, 1, 1). The correlation coefficient varied
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Figure 5.1: Log-ratio between output variance of an uncorrelated and a cor-
related model as given by Equation (5.15) as function of the correlation coef-
ficient (r) and the coefficient of variation (CV) of the parameter at location
(B, 1, 1); h = 0: both models predict the same output variance, h < 0 out-
put variance is underestimated when correlations are ignored; h > 0: output
variance is overestimated when correlations are ignored.
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between r = �1 and r = 1, the CV of the parameter at location (B, 1, 1) varied
between CV = 0% and CV = 30%. When the correlation equals zero, both
models predict the same output variance. When the values of the contour
plot are negative, the output variance is underestimated when correlation is
ignored. Figure 5.1 shows that there is a region on the contour map, where
results are only slightly under- or overestimated, which, depending on the
research at hand, could be considered as acceptable.

Figure 5.1 shows that including correlation is most important for a rela-
tively small variance of the parameter at location (B, 1, 1) (CV ⇡ 4%) and a
large correlation coefficient (|r| > 0.5). This can be explained: for a large
CV of the parameter at location (B, 1, 1) (i.e. CV is close to 30%), parame-
ter (B, 1, 1) becomes so dominant in explaining the variance, that the effect
of the correlation with the parameter at location (A, 1, 1) can be ignored. In
contrast, for a very small CV of the parameter at location (B, 1, 1), the pa-
rameter at location (A, 1, 1) becomes more dominant in explaining the output
variance, and the contribution of the parameter at location (B, 1, 1) can be ig-
nored. Only when both parameters contribute, the effect of their correlation
becomes present as seen in Figure 5.1. The effect also becomes stronger when
the correlation increases.

5.4.3 The effect of ignoring correlation in sensitivity analysis

Considering the effect of correlations in more detail, we look at the uncorre-
lated and correlated sensitivity indices (SU and SC). The effect of the mag-
nitude of the correlation (r) and the CV on the sensitivity indices SU and SC
is shown for the parameter at location (B, 1, 1) in Figure 5.2 and Figure 5.3
respectively. The correlation coefficient r is varied between -1 and 1 and the
CV is varied between 0 and 30%. In case of the uncorrelated sensitivity in-
dex (SU(B, 1, 1)) in Figure 5.2, the contribution of this index is largest when
the correlation coefficient is close to zero and the CV is relatively large (Fig-
ure 5.2). In case of the correlated sensitivity index (SC(B, 1, 1)) in Figure 5.3,
the contribution of this index is largest when the correlation is strong (close
to �1 or +1) and when the CV is relatively large (Figure 5.3).

The correlated sensitivity index is negative for positive correlations and a
relatively small CV (< 10%), which can be explained by looking at Equation
(5.23): the second and third term are alway positive, the first term is negative
for positive correlations. For relatively small CV-values, the first term will
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Figure 5.2: The uncorrelated sensitivity index (SU(B, 1, 1)) as a function of the
correlation coefficient (r) and coefficient of variation (CV).
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Figure 5.3: The correlated sensitivity index (SC(B, 1, 1)) as a function of the
correlation coefficient (r) and coefficient of variation (CV).
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Figure 5.4: The total sensitivity index (ST(B, 1, 1)) in light grey, the correlated
sensitivity index (SC(B, 1, 1)) in dark grey and the sensitivity index from the
uncorrelated model (SU;r=0(B, 1, 1)) in white, with a CV of 25%, 5% and 1%;
CV of the parameter at location(A, 1, 1) is 0.9 %

be larger than the second and third term combined, leading to a negative
contribution of the correlated sensitivity index.

For uncertainty propagation, correlations seemed especially important for
large correlation coefficients (|r| > 0.5) and for relatively small CV (⇡ 4%;
Figure 5.1). For the global sensitivity analysis, the uncorrelated and corre-
lated sensitivity indices contribute most for relatively large CV (> 5%), which
seems partly contradictory at first sight. To that end, a comparison is made
between the total sensitivity index (ST) coming from the correlated model
(Equation (5.11)) and the sensitivity index (SU;r=0) coming from the uncorre-
lated model for the parameter at location (B, 1, 1) using Equation (5.16).

In Figure 5.4 the total sensitivity index (ST) in light grey, the correlated
sensitivity index (SC) in dark grey and on the righthand side the sensitivity
index from the uncorrelated model (SU;r=0) is shown in white for a CV of
25%, 5% and 1%. Figure 5.4 shows that for a CV of 25%, the uncorrelated
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Figure 5.5: The total sensitivity index (ST(B, 1, 1)) in light grey, the correlated
sensitivity index (SC(B, 1, 1)) in dark grey and the sensitivity index from the
uncorrelated model (SU;r=0(B, 1, 1)) in white, with a CV of 25%, 5% and 1%;
CV of the parameter at location (A, 1, 1) is 12%.

and the correlated model show the same sensitivity index, which confirms
our findings from Figure 5.1. However, for a CV of 5%, the uncorrelated
model overestimates the sensitivity index of the parameter at location (B, 1, 1)
for positive correlation, and underestimates the sensitivity index for negative
correlation, in accordance with Figure 5.1. For a relatively small CV of 1%,
the uncorrelated model overestimates the sensitivity index of the parameter
at location (B, 1, 1) for positive correlation, and underestimates the sensitivity
index for negative correlation.

In Figure 5.1 and Figure 5.4, the relative variation of the parameter at lo-
cation (A, 1, 1) was relatively small: 0.9%. Figure 5.5 shows what happens
when we make the parameter (A, 1, 1) more important, i.e. the relative vari-
ation is set to 12%. In that case, the uncorrelated sensitivity index, shown by
the white bar in Figure 5.5, underestimates the sensitivity indices, especially
for relatively small variations of CV = 1% and CV = 5%. Note also that
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in Figure 5.5, by chance, the total sensitivity index for the correlated model
(S̃T(B, 1, 1)) for r = 0.9 and CV = 25% give the same result as the sensitiv-
ity index for the uncorrelated model (SU;r=0(B, 1, 1)). This also happens for
r = 0.6 and CV = 5% and is caused by overcoming the negative contribution
to the correlated sensitivity index (SC(B, 1, 1)). In case of positive correlation
coefficients, the first term in Equation (5.23) will be negative and larger than
the second and third term combined, leading to a negative contribution of the
correlated sensitivity index.

5.5 Discussion and conclusion

Including correlations between input parameters for uncertainty propagation
and global sensitivity analysis in LCA studies requires detailed knowledge
about the correlation coefficients and the variances of the input parameters,
which is often not available. Currently, correlations between input parameters
are usually ignored, which can lead to under- or overestimation of the output
variance. We described two approaches for including correlations between
input parameters in LCA: an analytical approach and a sampling approach.
It was shown that both approaches yielded approximately the same output
variance and sensitivity indices for a specific case study. In addition, we
demonstrated that the analytical approach can be used to predict an increase
or decrease of the output variance when correlations between input parame-
ters are included (Table 5.3). Ignoring correlations between input parameters
in uncertainty propagation, can therefore lead to an under- or overestimation
of the output variance, and affect the subsequent global sensitivity analysis.
The risk of this under- or overestimation is described in Figure 5.6 for the case
of a positive correlation coefficient (r > 0). Using the analytical approach
we quantified the effect of ignoring correlations between input parameters on
the output variance in Equation (5.14), and on the contribution to the out-
put variance. The analytical expression of this approach required minimum
knowledge of the input parameters, such as the mean and the variance of
the input parameters and the correlations between the input parameters; but
not about the type of distribution function. We decreased data requirement
further, by describing analytical expression of this newly adapted approach
as a function of the CV and the correlation coefficient between the studied
parameters, which is the least possible amount of data required to predict the
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Positive correlation 
coefficient (ρ>0) 

Where does the 
correlation occur? 

Between a technical 
parameter (element of 
A)  and an emission or 
resources use element 
(element of B).  

Between two emissions 
or resources use 
elements (both 
elements of B). 

Between two technical 
parameters (both 
elements of A). 

Output variance 
increases. 

Output variance 
decreases. 

Effect on uncertainty analysis when 
correlation is ignored: 
•  False negative discernibility 

analysis; 
•  False positive threshold analysis. 

Effect on uncertainty analysis when 
correlation is ignored: 
•  False positive discernibility 

analysis; 
•  False negative threshold analysis. 

Effect on global sensitivity 
analysis when correlation is 
ignored: 
•  Important parameters 

underestimated. 

Figure 5.6: Decision tree describing the risk of ignoring correlations between
input parameters on the output variance and the conclusion drawn from the
subsequent uncertainty analysis, depending on the location of the correlation
coefficient in the model. Results are described for a positive correlation coef-
ficient, if the correlation coefficient is negative; the opposite of the bold italic
words is true.
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effect.
The matrix-based LCA model discussed in this paper, however, was only

given up to the inventory phase (g). In the impact assessment phase that
sums up emissions belonging to the same impact category, it is not included
yet. For example, all greenhouse gas emissions are combined by multiply-
ing the inventory vector g with the characterisation matrix Q. Furthermore,
only normally distributed input parameters for the sampling approach were
considered. As many studies in LCA considered normally distributed input
parameters, this distribution type was selected over other type of distributions
functions. Further research can focus on other type of distribution function.
Moreover, approach as described in Equation (5.14) was only applied to a sin-
gle case study. However, the method can be applied to any (matrix-based)
LCA with correlated input parameters, to identify if including correlations
will affect the output variance or the global sensitivity indices.

To quantify the risk of ignoring correlations between input parameters dur-
ing uncertainty propagation in LCA, based on little data regarding the input
parameters, we demonstrated that: (1) we can predict if including correlations
among input parameters in uncertainty propagation will increase or decrease
output variance; (2) we can quantify the risk of ignoring correlations on the
output variance and the global sensitivity indices.
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Supplementary material
This section is based on the work of Xu and Gertner [Xu and Gertner, 2008b], and is
adjusted here to correspond with the terminology of the LCA model described in this
paper. For the sampling approach, the total output variance was estimated by:

ŝ2(g, k) =
1

N � 1

N

Â
r=1

(gr � ḡ)2 (5.26)

Where ḡ is the mean: ḡ = 1
N Â ĝr, and N is the sample size. The total partial variance

ŝ2
T(g, k; p) of parameter p is estimated by [Xu and Gertner, 2008b]:

ŝ2
T(g, k; p) =

1
N � 1

N

Â
r=1

(ĝp
r � ḡ)2 (5.27)

and ĝp
r is derived from simple linear regression. The uncorrelated partial variance

ŝ2
U(g, k; p) can be estimated by:

ŝ2
U(g, k; p) =

1
N � 1

N

Â
r=1

(ĝ�p
r � ḡ)2 (5.28)

Where ĝ�p is derived from linear regression: it is based on the regression coeffi-
cients of the estimated residual g over all parameters but p.

The correlated partial variance is given by:

ŝ2
C(g, k; p) = ŝ2

T(g, k; p)� ŝ2
U(g, k; p) (5.29)

The sensitivity indices are calculated by Equations (5.11) - (5.13), where the vari-
ance ŝ2(g, k) is given by Equation (5.26).
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Abstract

Life cycle assessment (LCA) studies of food products, such as dairy, require many input parame-
ters that are often affected by variability and uncertainty. Moreover, correlations may be present
between input parameters, e.g. between feed intake and milk yield. The purpose of this study
was to identify which input parameters are essential to assess the greenhouse gas (GHG) emis-
sions of milk production, while accounting for correlations between input parameters, and using
a systemic approach. Three diets corresponding to three grazing systems (zero-, restricted and
unrestricted grazing) were selected, which were defined to aim for a milk yield of 10,000 kg en-
ergy corrected milk (ECM) cow�1 year�1. First, a local sensitivity analysis was used to identify
which parameters influence GHG emissions most. Second, a global sensitivity analysis was used
to identify which parameters are most important to the output variance. The global analysis in-
cluded correlations between feed intake and milk yield and between N-fertiliser rates and crop
yields. The local and global sensitivity analyses were combined to determine which parameters
are essential. Finally, we analysed the effect of changing the most important correlation coefficient
(between feed intake and milk yield) on the output variance and global sensitivity analysis. The
total GHG emissions for 1 kg ECM ranged from 1.08 to 1.12 kg CO2 e, depending on the grazing
system. The local sensitivity analysis identified milk yield, feed intake, and the CH4 emission
factor of enteric fermentation of the cows as most influential parameters in the LCA model. The
global sensitivity analysis identified the CH4 emission factor of enteric fermentation, milk yield,
feed intake and the direct N2O emission factor of crop cultivation as most important parameters.
For both grazing systems, N2O emission factor for grazing also turned out to be important. In
addition, the correlation coefficient between feed intake and milk yield turned out to be impor-
tant. The systematic approach resulted in more parameters than previously found. By combining
a local and a global sensitivity analysis, parameters were determined which are essential to assess
GHG emissions of milk production. These parameters are the CH4 emission factor of enteric fer-
mentation, milk yield, feed intake, the direct N2O emission factor of crop cultivation and the N2O
emission factor for grazing. Future research should focus on reducing uncertainty and improving
data quality of these essential parameters.

6.1 Introduction

Due to a growing human population and changing consumption patterns, the
environmental impact of food production is increasing [Gerber et al., 2013].
Dairy products, such as milk or cheese, are an important source of protein
in human diets. Global protein consumption from dairy products increased
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from 7 g capita�1 day�1 in 2001 to 8 g capita�1 day�1 in 2011 and is expected
to increase further [FAO, 2015]. Dairy cattle across the world, however, are
responsible for approximately 20% of the global greenhouse gas (GHG) emis-
sions produced by the livestock sector, which is almost 3% (1.4 gigatonnes
CO2 e) of all anthropogenic emissions [Gerber et al., 2013]. In 2013, approxi-
mately one third of all global milk was produced in Europe [FAO, 2015]. Many
studies, therefore, aimed to assess and monitor GHG emissions of European
dairy production systems [Crosson et al., 2011; De Vries and De Boer, 2010;
Yan et al., 2011].

At present, life cycle assessment (LCA) is a commonly accepted method to
quantify GHG emissions of dairy production systems [De Vries and De Boer,
2010]. An LCA quantifies the use of resources and emissions to air, water and
soil, of a product over the entire life cycle [ISO, 2006a,b]. Quantification of
GHG emissions, therefore, is a single-issue LCA, also referred to as a carbon
footprint analysis.

Performing an LCA of food products requires many input parameters,
which are rarely easy to obtain and are often affected by natural variability
and contain epistemic uncertainty [Walker et al., 2003]. Natural variability re-
lates to observable variation, resulting from, for example, variation in weather
conditions or differences in farm management, whereas epistemic uncertainty
originates from a lack of knowledge about input parameters, including errors
resulting from the instrument or those introduced by the observer [Walker
et al., 2003]. To accurately assess and monitor GHG emissions from dairy
production systems, we, therefore, need to identify sources of variability and
uncertainty of input parameters and incorporate their impact in the GHG as-
sessment.

Several studies examined the impact of natural variability [Henriksson
et al., 2011; Lovett et al., 2008] or epistemic uncertainty on the GHG assessment
of milk production [Flysjö et al., 2011; Gibbons et al., 2006], whereas others ex-
plored the combined impact of natural variability and epistemic uncertainties
[Basset-Mens et al., 2009; Chen and Corson, 2014; Ross et al., 2014; Zehetmeier
et al., 2014]. These studies, however, explored only a limited number of input
parameters, and did not systematically explore all parameters, which might
imply that potential essential parameters are overlooked. Moreover, above-
mentioned studies did not account for potential correlations between input
parameters, which might result in an under- or overestimation of the output
variance, and an underestimation of the most important parameters [Groen
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and Heijungs, 2016].
The aim of this study is to use a systematic approach to identify which

input parameters influence the GHG emissions of milk production most, and
which parameters contribute most to the output uncertainty of GHG emis-
sions while accounting for correlations between input parameters. To this
end, we combined a local and global sensitivity analysis to analyse the in-
fluence of the input parameters and the effect of variability and uncertainty
on the total GHG emissions of German milk production and a future milk
production of 10,000 kg ECM (energy corrected milk) cow�1 year�1. Flysjö
et al. [2011] found that by comparing grazing systems of dairy production
systems, a different set of essential parameters showed up for each grazing
system. Therefore, we included three different grazing systems, based on the
main grazing systems in Germany.

For these parameters, and for parameters that contained high uncertain-
ties based on literature, we constructed distribution functions to be able to
propagate uncertainties through the LCA model and apply the global sensi-
tivity method. We combined the results of this local sensitivity analysis with a
global sensitivity analysis, to determine which input parameters were essen-
tial in the LCA model of milk production.

6.2 Materials and methods

6.2.1 Milk production system

GHG emissions were analysed for model dairy production systems in Ger-
many, from cradle-to-farm gate. A cradle-to-farm gate assessment implies
that emissions are included for relevant processes up to the moment that milk
left the farm gate (Figure 6.1). The production of diesel, seeds, fertiliser, lu-
bricants, energy, feed and milk were included in the system, whereas the
production of machinery, buildings, and water required for cleaning and as
drinking water were excluded. We assumed a stable dairy herd, and fattening
of surplus calves outside the farm.

The functional unit was 1 kg ECM (ECM: 4% fat and 3.4% protein, Spiek-
ers et al. [2009]) leaving the farm gate. All GHG emissions were allocated
to this functional unit. In case of a multifunctional production process of
feed ingredients, such as production of rapeseed oil and meal, GHG emis-
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sions were allocated to these multiple outputs based on their economic values
(i.e. economic allocation). Economic allocation of feed ingredients is the most
common method used in LCA studies for livestock products [De Vries and
De Boer, 2010].

We modelled a typical German dairy system with 120 Holstein-Friesian
cows. A 305-day milk production of 10,000 kg ECM was assumed, anticipating
an increase in milk yield after abolition of milk quota [EC, 2009], with a dry
period of 60 days. The replacement rate was 40% [Zehetmeier et al., 2012]; age
at first calving was 25 months. Dairy cows and heifers were loosely housed
in stables with cubicles and slatted floors, being most common in Germany,
implying slurry-based manure management [Haenel et al., 2014]. During their
first 60 days, calves were housed in groups, on a solid floor embedded with
straw, as imposed by law [Haenel et al., 2014]. It was assumed that the slurry
of all cattle is untreated and stored in a slurry tank with natural crust, which is
most common in Germany [Haenel et al., 2014]. The manure produced by the
cows and the replacement heifers was applied to the grassland used for the
cultivation of silage, pasture and hay as well as to cropland for the cultivation
of field grass silage, replacing artificial fertiliser based on N content. The share
of manure applied to the grasses and crops depended on the grazing system
(see below).

Emissions from crop cultivation, i.e. CO2 emission from calcium ammo-
nium nitrate (CAN) fertiliser and lime application, direct and indirect N2O
emissions from application of artificial fertiliser, manure and crop residues
were included according to IPCC Tier 2 IPCC [2006c], using German (aver-
age) data for crop yields and N fertiliser rates and German emission factors
[Haenel et al., 2014]. Approximately 23% of the CAN fertiliser is assumed to
consist of CaCO3 which contributes to CO2 emissions [Strogies and Gniffke,
2014]. The direct N2O emissions from grazing, CH4 and direct N2O emissions
from manure storage were included according to IPCC Tier 2, and CH4 emis-
sions from enteric fermentation of the cows were included according to IPCC
Tier 3 [IPCC, 2006b,c], using German average data for feed content charac-
teristics and German emission factors [Haenel et al., 2014]. CH4 from enteric
fermentation of the replacement heifers were included according to IPCC Tier
2 [IPCC, 2006b], adapted for Germany in 2014 [Haenel et al., 2014].
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Figure 6.1: System boundaries and production processes involved in the pro-
duction of 1 kg of energy corrected milk.

6.2.2 Diets

We compared three grazing systems, i.e. zero-grazing (i.e. 0 h day�1; ZG),
restricted grazing (i.e. 10 h day�1; RG), and unrestricted grazing (i.e. 20.5
h day�1; UG), grazing time from April till October (182 days year�1), that
reflected the most common pasture types in Germany, resulting in three dis-
tinct diets. All three diets were formulated to ensure a milk yield of 10,000 kg
ECM. The diets consisted of grass-based feed ingredients, such as grass silage,
pasture and hay, and crop-based feed ingredients, such as field grass silage,
maize silage, beet pulp silage, soybean meal, rapeseed meal, triticale (Triticose-
cale Wittm.) and dairy concentrate (Table 6.1). The exact composition of the
diets was formulated according to feed content characteristics, such as useable
crude protein and net energy for lactation, based on Krauß et al. [2015].

The diets for the replacement heifers from birth to age of first calving
(760 days) were calculated according to Kirchgessner et al. [2011]; Spiekers

1Feed intake replacement heifers: kg dry matter (760 days)�1; dairy cows: kg dry matter
year�1.

2Rapeseed meal (32%), rapeseed oil (1%), sugar beet molasses (32%) and wheat (36%) [Spiekers
et al., 2009] and is assumed to be equivalent to calf rearing fodder.
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Table 6.1: Diets for dairy cows and replacement heifers in a zero-grazing (ZG),
restricted grazing (RG) and unrestricted grazing (UG) system.

Dairy cows Replacement
heifers

ZG RG UG ZG UG
Feed intake1 (kg dry matter) 7,292 7,228 7,236 5,397 5,192
Grassland based feed, except pasture (%) 27 15 14 53 34
Pasture (%) 0 22 38 0 28
Field grass silage (%) 11 8 6 - -
(High quality) maize silage (%) 26 21 13 43 34
Sugar beet pulp (%) 7 4 4 - -
Soybean meal (%) 1 1 1 - -
Rapeseed meal (%) 6 5 3 - -
Triticale (%) 5 11 14 - -
Dairy concentrate2 (%) 16 13 8 4 4

et al. [2009]; Weiß et al. [2011]. They covered a daily gain of at least 700 g
body weight per day. Based on a combination of dry matter intake, need for
metabolised energy and raw protein, two diets were formulated for the re-
placement heifers. One diet was formulated for replacement heifers that are
housed indoor the whole year around. These heifers are assumed to replace
dairy cows in the ZG system. The second diet was formulated for replace-
ment heifers having unrestricted pasture access in summer. These heifers are
assumed to replace dairy cows in both the RG and UG system. The feed
intake for replacement heifers until the first calving is presented in Table 6.1.

6.2.3 Use of matrix formulation to assess GHG emissions

To facilitate the local and global sensitivity analyses, we used a matrix-based
approach commonly applied in LCA calculations (for more detail see Hei-
jungs and Suh [2002]). In matrix notation, each individual production process
(e.g. the production of 1 kg fertiliser) is represented as a column in the tech-
nology matrix A. Parameters that are given in A are referred to as technical
parameters. The accompanying resource use and emissions, in this case the
GHG emissions corresponding to the amount of fertiliser produced in the A-
matrix, are found in the supporting matrix B. The production processes are
linked to each other, e.g. production of seeds is used for the production of
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one kg of sugar beets. The A-matrix is scaled to produce the amount defined
as the functional unit (f); likewise the B-matrix is scaled to quantify the total
resource use and emissions (g):

g = BA�1f (6.1)

Subsequently, the impact category totals are quantified by multiplying the
g-vector with the characterisation factors:

h = Qg (6.2)

In our case, Q contains the characterisation factors of GHG emissions for
global warming potential (GWP) on a 100-year time interval: carbon dioxide
(CO2), biogenic methane (CH4, bio): 28 kg CO2 e/kg methane, fossil methane
(CH4, fossil): 30 kg CO2 e/kg methane; and nitrous oxide (N2O): 265 kg
CO2 e/kg nitrous oxide [Myhre et al., 2013]. Because we only consider GHG
emissions, as this is a single-issue LCA, Q is reduced to a row vector q0 and
the scalar gives the total amount of GHG emissions expressed in CO2 e/kg
ECM.

6.2.4 Quantifying the effect of uncertainty

Sensitivity analysis

In general, a distinction can be made between two types of sensitivity anal-
ysis: a local and a global sensitivity analysis [Saltelli et al., 2008]. A local
sensitivity analysis looks at small changes around the original input values
(or default values) and assesses the effect of those small changes on the out-
put. Parameters that influence the output most are referred to as the most
influential (Figure 6.2) input parameters. A local sensitivity analysis requires
only information about the mean; information of the uncertainty around the
input parameters is not needed. In LCA, a local sensitivity analysis can be
quantified by means of the multiplier method (MPM). MPM was first intro-
duced by Heijungs [1994] and is applied in LCA [Groen et al., 2015b; Jung
et al., 2014; Wei et al., 2014]. A global sensitivity analysis decomposes the
output variance to the individual input parameters. It can be used to assess
which parameter contributes most to the output variance, which are referred
to as the most important (Figure 6.2) input parameters. To apply a global sen-
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High 
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Minor parameters Influential parameters 

Important parameters Essential parameters 

Figure 6.2: Framework for combining MPM and MEE. The horizontal axis
shows the influence of input parameters, the vertical axis shows the impor-
tance of input parameters. Parameters that are both influential and important
are shown in the top right corner (essential parameters) (Figure from Groen
et al. [2015b]). Originally adapted from Heijungs [1996].

sitivity analysis, full knowledge of the input parameters is required, in the
form of probability density functions. In LCA, the most common method
for global sensitivity analysis is calculating the standardised regression coef-
ficients [De Koning et al., 2010; Geisler et al., 2005; Mutel et al., 2013]. As we
will consider correlated input parameter, we will use standardised regression
coefficients for correlated parameters as described in general by Xu and Gert-
ner [2008b] and applied in LCA by Wei et al. [2014] and Groen and Heijungs
[2016]. Figure 6.2 illustrates influence and importance of input parameters and
shows that parameters that influence the output most and contribute most to
the output variance are the most essential input parameters.

Because we were unable to determine distribution functions for all input
parameters, a local sensitivity analysis was performed first, to capture the
most influential parameters in the model. For the parameters that were most
influential, and for parameters that contained high uncertainties based on
literature, we constructed distribution functions to be able to propagate un-
certainties through the LCA model and apply the global sensitivity method.

147



6.2. MATERIALS AND METHODS CHAPTER 6.

Local sensitivity analysis

MPM quantifies the effect of a small change around the default value of each
input parameter in A or B on h [Heijungs, 2010]. The partial derivatives
∂(h,m)
∂(A,i,j) and ∂(h,m)

∂(B,i,j) are normalised with respect to their original value Aij and
Bkj, where Aij and Bkj are elements of A and B respectively. The normalised
partial derivatives are called multipliers, and are used as estimators of local
sensitivity around each input parameter. The multipliers equal:

h(h, m; A, i, j) =
Aij

hm

∂(h, m)
∂(A, i, j)

(6.3)

h(h, m; B, k, j) =
Bkj

hm

∂(h, m)
∂(B, k, j)

(6.4)

The expression of the multipliers in Equation (6.3) and (6.4) can be found in
Heijungs [2010]. The multipliers in these equations can be interpreted as the
relative effect of a marginal increase (i.e. 1%) of each input parameter. For
illustrational purposes, we will also use the absolute effect, given by: |h|.

Global sensitivity analysis

The global sensitivity analysis consists of five steps: (1) determine distribution
function of input parameters, which is explained in Section 6.2.5; (2) deter-
mine correlations between input parameters, also explained in Section 6.2.5;
(3) propagation of uncertainty through the LCA model using Monte Carlo
simulation with a correlated sampling design; (4) determine the output vari-
ance; and (5) determine the contribution to the output variance (i.e. global
sensitivity analysis) using standardised regression coefficients corrected for
correlated input parameters. Step 3 to 5 are described in detail below.

Uncertainty propagation for correlated input parameters (step 3) We made use of
a correlated sampling design that also allowed us to incorporate a covariance
matrix. Based on the covariance matrix, the random values are drawn from the
distribution functions described in Section 6.2.5, preserving the correlations
between the input parameters. For each run, a random number is drawn for
each input parameter and the output is calculated according to Equation (6.2).

Determine the output variance (step 4) Based on the uncertainty propagation,
a distribution function of the output h is generated. The sampled output
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h contains N response values, the sampling matrix contains N ⇥ k random
values, where i = 1 to N is the sample size and p = 1 to k are the amount of
input parameters. The output variance ŝ2

h is calculated as:

ŝ2
h =

1
N � 1

N

Â
i=1

(hi � h)2 (6.5)

Where h is the mean: h = 1
N ÂN

i=1 hi.
Determine the contribution to the output variance (step 5) We calculated the

standardised regression coefficients adjusted for correlated input parameters,
based on the paper of Xu and Gertner [2008b]. The main idea behind this
theory is that the total partial variance (ŝ2

T(h; p)) caused by parameter p can
be split into an uncorrelated (U) and a correlated (C) part:

ŝ2
T(h; p) = ŝ2

U(h; p) + ŝ2
C(h; p) (6.6)

Based on Equation (6.6), the total partial variance is estimated first; the cor-
related partial variance (ŝ2

C(h; p)) can be estimated by subtracting the uncorre-
lated partial variance from the total partial variance (see Groen and Heijungs
[2016] for more detail). The total sensitivity index is given by:

ŜT(h; p) = ŝ2
T(h; p)/ŝ2

h (6.7)

Also, the correlated and the uncorrelated sensitivity index can be calculated,
but they are not discussed in this paper.

6.2.5 Uncertainties in input data

Determine distribution functions of input parameters

Both the technical parameters in A and the GHG emissions in B contain uncer-
tain input parameters. Based on the local sensitivity analysis, we implemented
distribution functions for 33 input parameters. Distribution functions related
to crop cultivation were constructed for:

• Artificial N-fertiliser rates for all feed ingredients (Table 6.2);

• Yield per ha of all feed ingredients (Table 6.2);
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• Emission factors of direct and indirect N2O emissions due to application
of artificial N fertiliser (Table 6.3);

• Emission factors of direct and indirect N2O emissions due to application
of manure (Table 6.3);

• Emission factors of direct and indirect N2O emissions from crop residues
(Table 6.3);

• Emission factors of direct N2O emissions due to application of manure
during grazing (only for RG and UG).

Distribution functions related to animal production were constructed for:

• Dry matter feed intake cow�1 year�1 (Table 6.4);

• Milk production cow�1 year�1 (Table 6.4);

• Annual replacement rate (Table 6.4);

• Emission factor of CH4 emissions from enteric fermentation of cows and
replacement heifers (Table 6.3);

• Emission factor of CH4 emissions from the storage of manure of cows
and replacement heifers (Table 6.3).

The mean and standard deviation of the yields and N-fertiliser rates for
all crops, except soybeans, were obtained from KTBL [2015]. Mean and stan-
dard deviation of soybean, which we assumed to originate from Brazil, were
based on Garcia-Launay et al. [2014]. KTBL [2015] only provided data for low,
medium and high yields for the feed ingredients as well as fertiliser rates;
we interpreted the data for low and the high production of crops as the 95%
confidence interval and assumed a normal distribution (Table 6.2).

The mean and the standard deviation from emission factors of crop cul-
tivation (i.e. direct and indirect N2O emissions from application of artificial
fertiliser, manure and crop residues), direct N2O emissions from grazing, CH4
and direct N2O emissions from manure storage and CH4 emissions from en-
teric fermentation were included according to ranges given by IPCC Tier 3,
adapted for Germany in 2014 [Haenel et al., 2014] (Table 6.4).

3Based on KTBL [2015] and Garcia-Launay et al. [2014], adapted for a normal distribution.
4Based on KTBL [2015] and Garcia-Launay et al. [2014], adapted for a normal distribution.
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Table 6.2: Mean and standard deviation of crop yields, N from fertiliser. The
distributions functions are assumed to be normal [Haenel et al., 2014]

Yield Artificial fertiliser
(kg dry matter ha�1) (kg N ha�1)
Mean3 (std. dev) Mean4 (std. dev)

Grassland:
Grass silage 8,663 (1,455) 169 (34)
Pasture 10,170 (1,699) 162 (34)
Hay 7,756 (1,464) 109 (26)
Cropland:
(High quality) maize silage 14,500 (1,276) 197 (17)
Field grass silage 14,632 (862) 201 (24)
Sugar beet 14,100 (1,199) 108 (11)
Triticale 5,146 (877) 89 (15)
Soybean 2,400 (112) 9 (2)
Rapeseed 3,159 (323) 119 (11)
Wheat 30,624 (3,906) 197 (26)

Variation of dry matter feed intake cow�1 year�1 was assumed to be ±5%,
reflecting health issues among cows of one breed, housing and weather con-
ditions [Gruber et al., 2004]. We assumed that the variation of the dry matter
feed intake corresponded to a 2.5–97.5% interval of a normal distribution;
hence the coefficient of variation (CV = s/µ) equalled approximately 2.5%
for all grazing systems, and was used to calculate the standard deviation (Ta-
ble 6.4). We assumed that the composition of the diets, however, remained
fixed. The variation around milk yield was assumed to be ±7%, due to ge-
netic variations [Veerkamp et al., 2000]. We assumed the variation of milk cor-

5We used emission factors (EFs) according to Haenel et al. [2014], which mostly relies on IPCC
[2006a], representing country specific data for Germany. However, the EF for leaching (0.025 kg
N2O-N (kg N)�1 [IPCC, 2006a]) seems to be rather high compared to the new value of 0.0075 kg
N2O-N (kg N)�1 [IPCC, 2006c]. IPCC [2006c] argues that EF has been changed because the EF
for groundwater and surface drainage as well as the EF for rivers was too high. We decided to
use the latter factor, as this EF is also used in the comparable studies of Chen and Corson [2014];
Flysjö et al. [2011]; Ross et al. [2014].

6ZG – zero-grazing system
7RG – restricted grazing system
8UG – unrestricted grazing system
9Based on Gruber et al. [2004].
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Table 6.3: Mean and (standard deviation) of the emissions factors regarding
crop cultivation, manure storage and enteric fermentation of the cows and
replacement heifers; n.a: not applicable; DM: dry matter.

Emission factor Crop
cultivation

Manure storage Enteric
fermentation

Mean (std. dev) Mean (std. dev) Mean (std. dev)
Direct N2O (%) 0.0125 (0.0051) 0.005 (0.003) n.a.
Indirect N2O,
leaching (%)

0.0075 (0.0088)5 n.a. n.a.

Indirect N2O,
deposition (%)

0.01 (0.005) n.a. n.a.

Direct N2O of
N excreted (%)

0.02 (0.02)

CH4 (kg CH4/
kg N excreted)

n.a. ZG6: 0.18 (0.037)

RG7: 0.15 (0.031)
UG8: 0.12 (0.024)

CH4 (kg CH4/
kg DM feed)

n.a. n.a. 0.021 (0.0043)

Table 6.4: Mean and standard deviation of feed intake, milk yield and replace-
ment rate of three grazing systems; ZG: zero-grazing, RG: restricted grazing;
UG: unrestricted grazing; DM: dry matter; ECM: energy-corrected milk.

Feed intake Milk yield Replacement
rate

(kg DM cow�1 year�1) (kg ECM cow�1 year�1) (%)
Mean9 (std. dev) Mean (std. dev) Mean (std. dev)

ZG 7,292 (186) 10,036 (345) 0.4 (0.051)
RG 7,228 (184) 10,068 (322) 0.4 (0.051)
UG 7,236 (185) 10,042 (322) 0.4 (0.051)

responded to a 2.5–97.5% interval of a normal distribution; the coefficient of
variation equalled approximately 3.5% for all grazing systems (Table 6.4). The
variation around the replacement rate was assumed to be ±10% [Zehetmeier
et al., 2012]. We assumed the variation of the replacement rate corresponded
to a 2.5–97.5% interval of a normal distribution; the coefficient of variation
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equalled approximately 13% (Table 6.4). Furthermore, a maximum replace-
ment rate of 50% was assumed to be an unrealistic model output, because
we assumed that raising of own replacement heifers imply a maximum of re-
placement rate of 50%. Random values drawn higher than 50% in the Monte
Carlo simulation were therefore removed.

Determining dependencies and correlations

Before we can propagate the uncertainties through the LCA model, we first
need to take into account that there might be dependencies between input pa-
rameters and correlations between the variances around the input parameters
(step 2 of the global sensitivity analysis). In this study we made a distinction
between three types of dependencies:

1. A proportional relation was assumed between feed intake and manure
production [Haenel et al., 2014] because the diet composition remained
fixed. For example, if feed intake increased by 5%, manure production of
the dairy cow also increased by 5%. The feed intake of the replacement
heifers was assumed fixed; therefore, no such relation was applied.

2. The equations for the emissions for crop cultivation of the IPCC, i.e. the
direct and indirect N2O emissions, were also implemented in the sample
design. For example, the sampled values of the crop yields were used to
calculate the direct N2O emissions of the crops.

3. We included a correlation between the N-fertilisation rate and crop yield.
We took data from KTBL [2015]; LEL [2014], and found a correlation of
r = 1 between all crop yields and fertiliser applications. In addition,
we assumed a correlation between feed intake and milk production,
because the milk production depends on the intake of useable crude
protein and net energy with feed. A correlation of r = 0.5 [Henriksson
et al., 2011] between the dry matter feed intake and milk production was
included. However, the emission factors of the N2O emissions of crop
cultivation and grazing are still assumed to vary independently from the
N fertilisation and crop yield, because the emission factors also depend
on other factors, such as the N content of crop residues, soil type and
weather conditions. Also, the N2O and CH4 emission factors from ma-
nure management and enteric fermentation varied independently from
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the amount of manure and the feed intake, because the emission fac-
tors did not only depend on the amount of manure, but also on other
external factors such as climate conditions [IPCC, 2006b].

In theory, correlations may appear between all input parameters that vary,
but we assumed that correlations only appear between parameters of the same
part of the dairy production systems, so only between parameters belonging
to crop cultivation (Table 6.2) and animal production (Table 6.4). The replace-
ment rate and the milk yield were not correlated, because we already assumed
a replacement rate that is related to the milk yield of 10,000 kg ECM cow�1

year�1 and the breed of Holstein Friesian. The variation of the milk yield was
too small to find a valid correlation between milk yield and replacement rate
in the literature.

The effect of correlation on uncertainty analysis and global sensitivity anal-
ysis

Data regarding the correlation coefficient between N-fertiliser rate and crop
yield, and between dry matter feed intake and milk yield, came from differ-
ent sources than the mean values of the parameters, and were therefore not
considered adequate. Therefore, we determined the effect of changing the cor-
relation coefficient between the most important parameters, on the uncertainty
propagation and the sensitivity index. The effect of changing the correlation
coefficient on the output variance and the global sensitivity index is described
in Section 6.3.5. Details of this method are described by Groen and Heijungs
[2016]. The measure of over- or underestimation of the correlation coefficient
on the variance is given as:

h =
ŝ2

U
ŝ2

h
(6.8)

Where ŝ2
U is the variance from the LCA model that ignored correlations be-

tween input parameters and ŝ2 is the variance from the LCA model that in-
cluded correlations between input parameters, as was given in equation (6.5).
Furthermore, the sensitivity index from the LCA model that ignored correla-
tions is equal to:

ŜU;r=0(h; p) = ŝ2
U;r=0(h; p)/ŝ2

U (6.9)
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Where ŝ2
U;r=0(h; p) is the partial variance of parameter p, and r = 0 refers to

an LCA model in which there is no correlation between any two pairs of input
parameters [Groen and Heijungs, 2016].

6.3 Result and discussion

6.3.1 Greenhouse gas emissions of milk production

The total GHG emissions for 1 kg ECM for the ZG diet were 1.08 kg CO2 e.
For the RG system, 1.12 kg CO2 e was emitted and for the UG system, 1.11 kg
CO2 e was emitted per kg ECM.

These results are in line with figures found in the literature for comparable
milk yields and grazing systems in Germany. The GHG emissions per kg ECM
found in our study, for example, are 15% higher than found by Zehetmeier
et al. [2014] and 5% higher than found by Zehetmeier et al. [2012]. Compared
to results from other European studies with similar milk yields and grazing
systems, e.g. Ross et al. [2014], the results found in our study are similar when
an average milk yield for one grazing system is assumed. The differences can
be explained by several reasons. We for example used the new equivalency
factors for the GWP as published by Myhre et al. [2013]. When equivalency
factors from IPCC [2007] were used, the GHG emissions were reduced by 1-
6%, depending on the grazing system (ZG 1.07 kg CO2 e, RG 1.05 kg CO2
e, 1.06 kg CO2 e). In addition, our study is based on German average data
for the crop yields and fertiliser rates, which include e.g. a wide range of
soil types and efficiencies for the crop yields. Comparable studies are usually
based on actual data from experimental farms, which can be assumed to be
more efficient and developed than the average German farm.

The relative contribution of single parts of the production process to GHG
emissions is shown in Figure 6.3. Enteric fermentation of cows and replace-
ment heifers is responsible for approximately 50% of the total GHG emissions.
This percentage is in line with results from other studies dealing with zero-
grazing systems [Ross et al., 2014; Zehetmeier et al., 2014]. All processes be-
longing to the production of feed add up to 23% of the GHG emissions in our
study. The auxiliary emissions mainly originated from the production of the
crop inputs (production of CAN, P2O5 and K fertiliser) and on-farm electricity
use.
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Figure 6.3: Relative contribution of GHG sources to GHG emissions of 1 kg
energy corrected milk in a zero-grazing system.

Of the total GHG emissions, 59% consists of CH4 emissions, 28% of N2O
emissions and 13% of CO2 emissions. These results reflect the figures found
in the literature, accordingly, the contribution of CH4 emissions vary from
46%- 63% [Flysjö et al., 2011; Henriksson et al., 2011], the contribution of N2O
emissions vary from 19% - 35% [Henriksson et al., 2011; Ross et al., 2014] and
the share of CO2 emissions from 10% - 24% [Basset-Mens et al., 2009; Ross
et al., 2014].

The relative contributions of the other two grazing systems (RG and UG)
follow a similar pattern as the ZG system. Other studies also show relatively
small differences between GHG emissions related to different grazing systems
[Flysjö et al., 2011; Ross et al., 2014]. The reason for the resemblance between
our results is that the emissions from crop cultivation (higher in a ZG system),
are interchanged for the direct N2O emissions from excreta during grazing in
RG and UG grazing systems.
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Figure 6.4: Multipliers of the most influential parameters (|h| > 0.05) and
their corresponding emissions, for cows in a zero-grazing system

6.3.2 Local sensitivity analysis

Figure 6.4 shows the multipliers for the most influential parameters in the
LCA model for a ZG system. Apart from milk yield, CH4 emissions from en-
teric fermentation and dry matter feed intake of cows are the most influential
parameter in the LCA model; increasing methane emissions due to enteric fer-
mentation of the cows by 1% will increase the GHG emissions by 0.39%. The
second most influential parameter is dry matter feed intake; increasing feed
by 1% (while keeping the same milk production) will increase the GHG emis-
sions by 0.29%. Crop yields also stand out as relative influential parameters.
The N2O emissions from crop cultivation, however, are less influential.

For the RG and UG system, the results were the same, apart from the
components of the feed: especially for the UG system the yield and the N2O
emissions from the pasture became more important. The results are shown in
the supplementary material, Figure 6.8 and 6.10.

The only study which is comparable to our approach of the local sensi-
tivity analysis is the one-at-a-time approach of Flysjö et al. [2011].That study,
however, only includes five technical parameters and four emission factors,
which are varied within different ranges (e.g. an increase of 10%, 20% and
100%). To make their results comparable to ours, we recalculated their re-
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sults to an increase of 10%, assuming a linear behaviour of the parameters. In
Flysjö et al. [2011], the most influential parameter is dry matter feed intake,
followed by the emission factor of the enteric fermentation, and the emission
factor for direct N2O emissions from N in excreta deposited during grazing.
The system reflects a UG system and is in line with our results for a UG sys-
tem. However, since our study included all parameters in the local sensitivity
analysis, also replacement rate and crop yields turned out to be influential.
The MPM method, therefore, facilitated ranking and comparing the influence
of all input parameters.

Based on the results of the local sensitivity analysis, combined with knowl-
edge from literature, 25 technical parameters and 8 emission factors were se-
lected for the subsequent global sensitivity analysis. The technical parameters
that were selected consisted of 11 N-fertiliser rates and 11 crop yields; replace-
ment rate, feed intake and milk yield. The emission factors that were selected
consisted of: the emission factor of direct and indirect N2O emissions from
cultivation, N2O emissions from manure excretion during grazing, N2O and
CH4 emissions of manure storage and CH4 emission factor of enteric fermen-
tation of the cows. Details on the uncertainty around these input parameters
are described in Section 6.2.5. Although not all emission factors showed up
as influential in Figure 6.4 (e.g. direct and indirect N2O emissions from crop
cultivation), based on literature [Basset-Mens et al., 2009; Chen and Corson,
2014; Flysjö et al., 2011] these parameters were found important and therefore
included.

6.3.3 Global sensitivity analysis

Uncertainty propagation

The mean and standard deviation of the GHG emissions per kg of ECM for
the three grazing systems resulting from the Monte Carlo simulation can be
found in Table 6.5.

To compare our results of the uncertainty analysis with other studies, we
calculated the relative variation by dividing the standard deviation by the
mean value. We found a CV between 12% (RG) and 13% (ZG and UG). This
is in line with relative variations found by Flysjö et al. [2011] with 16% (RG,

10The sample size was lower than 5000 because in 125 of the Monte Carlo runs, a value for the
replacement rate higher than 0.5 was drawn and these runs were excluded from further analysis.

158



CHAPTER 6. 6.3. RESULT AND DISCUSSION

Table 6.5: Mean and standard deviation of the GHG emissions per kg ECM
for zero-grazing (ZG), restricted grazing (RG) and unlimited grazing (UG).

ZG (N=4875)10 RG UG
Mean (kg CO2 e/kg ECM) 1.08 1.12 1.11
Standard deviation (kg CO2 e/kg ECM) 0.14 0.14 0.15

Sweden) and Lovett et al. [2008] with 15%-16% (RG and UG, Ireland). But
rather high when compared to the 7% found by Basset-Mens et al. [2009], the
9% found by Henriksson et al. [2011] and the 4%-9% found by Zehetmeier
et al. [2014]. However, as each study is based on a different set of parameters
included in the uncertainty propagation the comparison should be treated
with care.

Contribution to variance

Figure 6.5 shows the total sensitivity indices (ŜT), of the parameters that con-
tribute most to the output variance. The variance of emission factor of CH4
emissions from enteric fermentation, followed by direct N2O emission factor
of crop cultivation, milk yield, dry matter feed intake, yield and N fertilizer
rate of grass silage, and indirect N2O emission factor of leaching, contributed
most to the output variance. The replacement rate, CH4 and N2O emission
factor from manure the cows were less important. CH4 from enteric fermen-
tation of the replacement heifers were also less important.

For the RG and UG systems a similar result was found. Only the N2O
emissions from the pasture contributed more to the output uncertainty than
the other feed components. The results are shown in the supplementary ma-
terial (Figure 6.9 and 6.11).

That only a couple parameters show up as important is in line with earlier
work [Heijungs et al., 2005]. We identified four studies that performed a (vari-
ant of a) global sensitivity analysis for dairy production systems. Basset-Mens
et al. [2009] and Ross et al. [2014] calculated the (standardised) regression co-
efficients (not the squared standardised regression coefficients, which can be
used to explain the output variance), so we could only compare their results
based on the ranking of the parameters, and not on how much the parameters
explained. Basset-Mens et al. [2009] concluded that dry matter feed intake,
excreta during grazing and CH4 emissions of enteric fermentation were most
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Figure 6.5: Parameters that explain most of the output variance, given by the
total sensitivity index (ŜT , for cows in a zero-grazing system. Only parameters
that explain more than 0.001 are shown, (ŜT > 0.001).

important, while Ross et al. [2014] concluded that N2O animal manure (man-
agement and application), CH4 enteric fermentation and CH4 animal manure
were most important. Chen and Corson [2014] used the squared correlation
coefficient to quantify how much a parameter contributes to the output vari-
ance. The squared correlation coefficient is equal to the squared standardised
regression coefficient [Groen et al., 2015a], and can also be used to explain
the output variance. Chen and Corson [2014] only focused on the epistemic
uncertainties of emission factors. For a conventional system (RG), they con-
cluded that the emission factor of manure on pasture contributed approxi-
mately 70%, followed by cattle housing and manure storage (⇠10%), manure
spreading (⇠10%), mineral fertilisation (⇠5%), N2O deposition and leaching
(⇠5%). The only study that used the same method for the global sensitivity
analysis was Zehetmeier et al. [2014], but they considered only four parame-
ters. They concluded that, N2O from N input into soil contributed 75% to the
output variance, followed by replacement rate (19%) and CH4 from enteric
fermentation of dairy cows (6%).

To summarise, our results were in line with the studies already performed,
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but added insight by including more parameters (thirty-three, both technical
parameters and emissions factors) and performing a global sensitivity analysis
aiming at explaining the output variance, and not just the regression coeffi-
cients, which overestimate the importance of the parameters. In addition, this
study showed the importance of the emission factor of direct N2O emissions,
replacement rate, and the importance of the yield and fertiliser rate of the
main crops.

6.3.4 Combining local and global sensitivity analysis

Figure 6.6 combines the most influential parameters from the local sensitiv-
ity analysis with the most important parameters from the global sensitivity
analysis for all three grazing systems. Parameters that were selected from the
local sensitivity analysis changed the outcome with more than 0.1% when the
input parameters were changed with 1% (i.e. |h| > 0.1). Parameters that were
selected from the global sensitivity analysis contributed more than 1% to the
output variance (i.e. ŜT > 0.01). The only difference between the systems is
the EF for N2O from grazing. As the ZG system did not include grazing, the
EF did not show up in the results. In contrast, related to the EF in the UG
system is the second most important parameter.

Figure 6.6 shows that when combining the two methods, the emission fac-
tor of CH4 emissions from enteric fermentation, the emission factor of direct
N2O emission of crop, milk yield, and dry matter feed intake of the dairy
cows are most essential. Also, N-fertiliser rate and yield of grass silage, the
replacement rate of cows, the emissions factor of CH4 emissions from enteric
fermentation of the replacement heifers, and the indirect N2O emission fac-
tor of leaching are an essential set of parameters. For parameters of which
variability or uncertainty was not included due to a lack of data, but that
did show up in the local sensitivity analysis (i.e. production of CAN fer-
tiliser and rapeseed meal), we applied a default uncertainty of 10%. As can
be seen in Figure 6.6, the importance of those two parameters remained mi-
nor. Depending on the grazing system, the emission factor of N2O for grazing
become more essential with increasing grazing time (given by the squares in
Figure 6.6), while emissions from crop cultivation become less essential.

Both reducing uncertainty and increasing data quality can improve relia-
bility. The epistemic uncertainty of parameters (given by the circles in Fig-
ure 6.6) can be reduced by gaining more knowledge of the parameters or
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Figure 6.6: Combination of the most influential parameters parameters
(|h| > 0.1) on the horizontal (log-) axis and the most important parameters
(ŜT > 0.01) on the vertical axis. 1: Emission factor (EF) enteric fermentation
cows, 2: EF direct N2O, crop cultivation, 3: milk yield; 4: dry matter feed
intake, 5: N-fertiliser rate grass silage, 6: yield grass silage; 7: EF indirect
N2O, leaching, 8: replacement rate, 9: EF enteric fermentation, replacement
heifers, 10: EF CH4 manure management cows, 11: production of CAN fer-
tiliser; 12: production of processed rapeseed meal. 13: EF N2O from grazing,
unrestricted grazing system 14: EF N2O for grazing, restricted grazing system
The asterisk (*) indicates parameters that were varied with a default varia-
tion of 10%. �: parameters containing epistemic uncertainties; ⇧: parameters
containing variability; ⇤: do not exist in zero grazing system.
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improve measurements. Parameters containing natural variability (given by
the diamonds in Figure 6.6) that are essential should be of high quality before
drawing conclusions. Parameters that were included in both the local and
global sensitivity analysis, but do not show up in Figure 6.6, or appear in the
left bottom corner can be of lower data quality. These parameters could be set
to a fixed value in future studies, as both their influence and contribution to
the output variance is low.

6.3.5 The effect of the correlation coefficient on the results

The effect of the correlation coefficient is more or less independent from the
grazing system, because for each grazing system, dry matter feed intake and
milk yield turned out to be important parameters. Therefore, the conclusions
made on the following results are applicable for all three grazing systems.

The correlation coefficient between dry matter feed intake and milk yield
is r = 0.5, based on Henriksson et al. [2011]. However, we were not sure of
the value for this correlation coefficient because the data source did not match
with the data source we used for the yields and the feed intake. Therefore, we
tested what the effect was of varying the correlation between r = 0 and r = 1
on the output variance and the global sensitivity index.

The effect of ignoring correlation between dry matter feed intake and milk
yield on the output variance is shown in Figure 6.7 by the grey dots. For
example, if a correlation of 0.5 between dry matter feed intake and milk yield
is ignored, the output variance is underestimated with approximately 8%,
if a correlation of 1 is ignored, the output variance is underestimated with
approximately 14%.

In Figure 6.7, also the results are given for the effect of changing the cor-
relation coefficient on the global sensitivity index for milk yield. The grey bar
on the left presents what happens if correlation between the two parameters
was completely ignored (i.e. r = 0). The white bar represents the value that
we have currently chosen (i.e. r = 0.5). Figure 6.7 shows that ignoring the
correlation between dry matter feed intake and milk yield would lead to an
underestimation of the importance of both parameters (dry matter feed intake
and milk yield) and the output variance would be underestimated.

The effect of choosing the accurate correlation coefficient between dry mat-
ter feed intake and milk yield is clearly demonstrated to be important. And
although the magnitude of the correlation between these two input param-

163



6.4. CONCLUSION CHAPTER 6.

0.75 

0.8 

0.85 

0.9 

0.95 

1 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

U
nd

er
es

tim
at

io
n 

of
 th

e 
ou

tp
ut

 v
ar

ia
ne

 (%
) 

G
lo

ba
l s

en
si

tiv
ity

 in
de

x 

Correlation coefficient 

Figure 6.7: On the left vertical axis, the effect of varying the correlation co-
efficient between dry matter feed intake and milk yield between r = 0 (i.e.
ignoring correlation; grey bar) and r = 1 on the global sensitivity index of
milk yield are shown. The white bar represents our current assumption. The
effects of ignoring the correlation coefficients on the output variance are rep-
resented by the grey dots on the right vertical axis.

eters is unknown, they remain one of the most important parameters in the
LCA model. A reasonable assumption of variation of the correlation coeffi-
cients between milk yield and dry matter feed intake is found in Veerkamp
et al. [2000], where the lower limit is given as 0.34 for a high diversity in breed
and a large number of animals, and an upper limit is given as 0.66 for a lower
diversity in breed or animals specific for a certain region.

6.4 Conclusion

Parameters that are essential to assess the GHG emission of milk production
are: the emission factor of CH4 emissions from enteric fermentation, milk
yield, dry matter feed intake of the dairy cows and the emission factor of
direct N2O emission of crop cultivation. Depending on the grazing system,
the emission factor of N2O emissions from grazing become more important
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with increasing grazing time. To improve reliability, the epistemic uncertainty
of the emissions factors could be reduced by gaining more knowledge of the
parameters or improve measurements. Also, parameters of minor importance,
such as the emission factors of CO2 emissions from liming or other parameters
that turned out low in the local and the global sensitivity analysis could be
set to a fixed value in future studies to reduce data collection efforts. In
addition, data regarding variability of essential parameters should be of high
quality before drawing conclusions, such as milk yield, dry matter feed intake,
replacement rate and the N-fertiliser rate and crop yield of the most important
crops.

The correlation coefficient between feed intake and milk yield seemed to
be important, however, better data is needed to determine the strength of the
correlation coefficient. Future research should focus on reducing uncertainty
and improving data quality of the most essential parameters.
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Figure 6.8: Multipliers of the most influential parameters (|h| > 0.05) and their corre-
sponding emissions, for cows in a restricted grazing system.
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Figure 6.9: Parameters that explain most of the output variance, given by the total
sensitivity index (ŜT), for cows in a restricted grazing system. Only parameters that
explain more than 0.001 are shown, (ŜT > 0.001).
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Figure 6.10: Multipliers of the most influential parameters (|h| > 0.05) and their
corresponding emissions, for cows in an unrestricted grazing system.
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Figure 6.11: Parameters that explain most of the output variance, given by the total
sensitivity index (ŜT), for cows in an unrestricted grazing system. Only parameters
that explain more than 0.001 are shown, (ŜT > 0.001).
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Abstract

A nutrient balance quantifies differences in nutrients entering and leaving the system, and can
be used to determine nutrient losses. A nutrient balance, therefore, is commonly used as a tool
to benchmark the environmental performance of dairy farms. Benchmarking nutrient losses of
farms, however, may lead to biased conclusions because of differences in major decisive char-
acteristics between farms, such as soil type and production intensity, and because of epistemic
uncertainty of input parameters caused by errors in measurement devices or observations. This
study aimed to benchmark nutrient losses by comparing nitrogen use efficiency (NUEN; calcu-
lated as N output per unit of N input) of farm clusters with similar characteristics while including
epistemic uncertainty, using Monte Carlo simulation. Subsequently, the uncertainty of the pa-
rameters explaining most of the output variance was reduced to examine if this would improve
benchmarking results. Farms in cluster 1 (n=15) were located on sandy soils and farms in cluster
2 (n=17) on loamy soils. Cluster 1 farms were more intensive in terms of milk production per
hectare and per cow, had less grazing hours, and fed more concentrates compared to farms in
cluster 2. The mean NUENof farm in cluster 1 (43%) was higher than of farms in cluster 2 (26%).
Input parameters that explained most of the output variance differed between clusters. For clus-
ter 1, input of feed and output of roughage were most important, whereas for cluster 2, the input
of mineral fertiliser (or fixation) was most important. For both clusters, the output of milk was
relatively important as well. Including the epistemic uncertainty of input parameters showed that
only 37% of the farms in cluster 1 (out of 105 mutual comparisons) differed significantly in terms
of their NUEN, whereas in cluster 2 this was 82% (out of 120 comparisons). Therefore, bench-
marking NUENof farms in cluster 1 was no longer possible, whereas farms in cluster 2 could still
be ranked when uncertainty was included. After reducing the uncertainties of the most important
parameters, 72% of the farms in cluster 1 differed significantly in terms of their NUEN, and in
cluster 2 this was 87%. Results indicate that reducing epistemic uncertainty of input parameters
can significantly improve benchmarking results. The method presented in this study, therefore,
can be used to draw more reliable conclusions regarding benchmarking nutrient losses of farms.

7.1 Introduction

Nitrogen (N) is an important nutrient for milk production. The input of N
into European milk production systems has increased in the past decades,
mainly via purchase of fertiliser and feed, but also via atmospheric deposition
and biological fixation [Powell et al., 2010]. These increased N inputs have
also increased N losses to the environment, via leaching of nitrate (NO3

– )

170



CHAPTER 7. 7.1. INTRODUCTION

and emissions of N-gases, such as nitrous oxide (N2O) and ammonia (NH3).
These N losses contribute to environmental problems, such as eutrophication,
acidification and global warming [Whitehead, 1995; Smith et al., 1999]. To
reduce N losses, the European Union introduced legislation, such as the Ni-
trates Directive [EU, 2011], which set limits on N application per hectare to
reduce NO3

– leaching.
There has been on-going studies and discussions on how to reduce N

losses of dairy farms in Europe [Aarts et al., 1992; Schröder et al., 2003; Nevens
et al., 2006; Phuong et al., 2013; Mihailescu et al., 2015]. Calculating the nu-
trient balance at farm level is the most commonly used approach to evaluate
how efficient nutrient inputs have been used. In the Netherlands, for exam-
ple, dairy farms are obliged to quantify their annual nitrogen and phosphorus
balance from 2016 onwards [Veeteelt, 2015]. A nutrient balance reflects the dif-
ference in nutrients entering and leaving a system, and allows computation of
environmental indicators, such as the nutrient use efficiency (NUE) or the nu-
trient surplus per ha of a farming system [Spears et al., 2003]. NUE generally
is computed as the amount of nutrients in valuable outputs of a system over
the amount of nutrients in all inputs of that system [Nevens et al., 2006].

Due to the simplicity of the method and relatively low data requirement,
the nutrient balance has been used as a tool to benchmark the environmental
performance of farms [Oenema et al., 2003; Schröder et al., 2003]. Benchmark-
ing farms based on, for example, their NUE, however, may lead to biased
conclusions because of two reasons. First, as pointed out by Schröder et al.
[2003], comparing the NUE of farms is justified only if they have similar ma-
jor decisive characteristics. These characteristics can be based on: (unman-
ageable) physical factors, such as soil type and climatic conditions [Roberts,
2008; Powell et al., 2010]; long term strategic decisions, such as the degree
of self-sufficiency (e.g. grass-based versus concentrate-based), production in-
tensity, or manure management system [Nevens et al., 2006]; and short term
tactical decisions, such as choice of the feed crop, or grazing regime [Nevens
et al., 2006]. In addition, operational decisions (i.e., day to day decisions), and
other management skills of the farmer, such as the capacity to reduce losses
(e.g. losses of feed, nutrients, milk or cows (culling)), can have an impor-
tant influence on the NUE of a farm [Nevens et al., 2006]. Variation in NUE
among dairy farms, therefore, does not only originates from physical factors
but also from strategic and tactical decision-making. Second, comparing nu-
trient losses of farms may be affected by epistemic uncertainty of input data,
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caused by errors in measurement devices or errors around observations. Epis-
temic uncertainty can arise from e.g. errors in practically determining the N
fixation by clover, measurement errors around the feed intake of the cows or
estimations around the N-content of the animals [Oenema et al., 2015]. In-
creasing knowledge or better measurements can reduce epistemic uncertainty
[Walker et al., 2003; Groen et al., 2015a].

Previous studies focused on examining the epistemic uncertainties of nu-
trient flows by looking into e.g. quantity of nutrient inputs [Mulier et al.,
2003; Gourley et al., 2012; Oenema et al., 2015]. However, they did not ex-
amine the impact of epistemic uncertainties on benchmarking results, nor did
they benchmark farms with similar decisive farm characteristics.

The objectives of this study were to benchmark the nutrient losses by com-
paring nitrogen use efficiency (NUEN) of farms with similar decisive char-
acteristics while including epistemic uncertainty, and to examine which in-
put parameters explain most uncertainty of NUEN results. In addition, the
epistemic uncertainties of input parameters that explain most of the output
variance were reduced, to examine if this would significantly improve bench-
marking results.

7.2 Materials and methods

7.2.1 Case study: European specialised dairy farms

We used data of specialised dairy farms from Dairyman. Dairyman was a
project directed at improving regional prosperity through better resource util-
isation on 113 dairy farms in different European countries [Dairyman, 2010].
From the 113 farms, 32 specialised dairy farms were selected. Specialised
dairy farms were defined as farms that have less than 5% non-dairy purpose
animals, and less than 10% of their agricultural area in use for non-dairy pur-
pose activities. These 32 dairy farms were located in different countries and
regions (i.e. Netherlands, Ireland, Belgium (Flanders, Wallonia), Germany
and Luxembourg). Selected dairy farms differed in soil types (i.e. sandy soil,
loam soil), milk production (i.e. milk production per cow and per ha), graz-
ing hours per year, and feed import (i.e. kg concentrate usage per cow per
year; Table 7.1). From these farms, farm data from the year 2010 were used as
baseline values to determine all N-flows.
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Table 7.1: Characteristics of the 32 European specialised dairy farms used in
this study.

Characteristics Unit Mean Min Max
Agricultural area ha 65 25 270
Herd size number of dairy cows 90 37 384
Milk production kg milk cow�1 year�1 7689 5700 9853
Milk production kg milk ha�1 year�1 12598 3448 26300
Grazing hours hour year�1 2857 0 5146
Concentrate usage kg cow�1 year�1 1215 317 2459

7.2.2 Defining homogenous farm clusters

To enable benchmarking of NUEN of farms with similar characteristics, farms
were sorted into homogenous groups (i.e. typologies) based on their char-
acteristics (Table 7.1). For this purpose, we used a two-step cluster analysis,
because it allows using both continuous and categorical variables as cluster-
ing criteria [Chiu et al., 2001]. To perform a cluster analysis with n criteria,
a sample size of 2n farms is required [Formann, 1984]. Since our sample size
included 32 farms, we selected 5 criteria for the cluster analysis, namely graz-
ing hours, soil type, concentrate per cow per year, milk production per cow
per year and milk production per ha [De Vries et al., 2015; Daatselaar et al.,
2015]. The analysis was performed in the statistical software package IBM
SPSS statistics 22 [SPSS, 2015].

7.2.3 System boundary and model assumptions of calculating
NUEN

The NUEN was quantified at farm level, implying that only on-farm flows
and losses were considered. The N-flows through a dairy farm included in
this study are visualised in Figure 7.1. Inputs of N include N in mineral fer-
tilisers, manure, animals, concentrates, roughages, biological N fixation and
atmospheric N deposition. Outputs of N include N in animals, milk, manure
and roughage. Stock changes (defined as final stock minus initial stock) of the
mineral fertilisers, manure, animals, concentrates and roughages were taken
into consideration during the computation processes. Manure output was
subtracted from the total fertiliser inputs (i.e. through mineral fertiliser and

173



7.2. MATERIALS AND METHODS CHAPTER 7.
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Figure 7.1: N-flows on a dairy farm to assess nutrient use efficiency; the pro-
duction processes are given by the solid boxes, the N-flows are given by the
arrows. A detailed description of the input parameters can be found in Ta-
ble 7.2.

manure). If the total manure output of the farm exceeded its total fertiliser
input, excessive manure was treated as a loss. The internal N-flow from crop
production to feed storage was based on the energy requirements of the herd,
minus feed input and stock changes of feed. Losses of N from manure storage
were based on storage type and the baseline values of manure N and inde-
pendent of the in- and output of production processes in further calculations
[EEA, 2013].

7.2.4 Matrix based calculation for on-farm NUEN

We used the matrix-based approach developed by Suh and Yee [2011] to quan-
tify the N-efficiency of the 32 dairy farms. This approach was used to describe
the herd and crop balance (Figure 7.1) in one equation, which facilitates the
global sensitivity analysis to examine epistemic uncertainty. A matrix-based
approach allows for the presence of loops and parallel components, as is of-
ten the case on dairy farms (e.g. manure is used for the production of feed
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crops, which are consequently fed to the animals, producing manure). This
approach requires a detailed insight into the nutrient flows within the farm.

The difference between the matrix-based approach to assess the farm N-
balance and the more common nutrient balance is that in case of the matrix-
based approach the internal flows are also given (e.g. the flows between ma-
nure storage and crop production, or crop production and feed storage), just
as in a substance flow analysis. In the common nutrient balance, the farm is
considered as a black box (e.g. Oenema et al. [2015] and Mu et al. [2016]). For
more details, see the supplementary material.

In the matrix-based approach, the internal N-flows in Figure 7.1 are de-
scribed by the V and U matrix, where the V-matrix describes how much kg
N is supplied (rows) to each production process (columns). The U-matrix de-
scribes how much kg N is used (columns) by each production process (rows)
[Suh and Yee, 2011]. The N-flows are corrected for the stock changes (s) on the
farms. Combined, they are quantified in a matrix A for each (intermediate)
process. The vector (b) gives the amount of nutrients extracted (r) to pro-
duce 1 unit of final product, which, in this case, is determined by the valuable
outputs of the farm:

b = r
⇣

VT � U + ŝ
⌘�1

= rA�1 (7.1)

In our case, the four elements in b represent the production processes of
Figure 7.1 (animal husbandry, manure storage, crop production, feed storage).
The nitrogen use efficiency (NUEN) for the production process of the animal
husbandry is quantified by:

NUEN = 1/bhusbandry (7.2)

A detailed example of this procedure can be found in the supplementary
material of Suh and Yee [2011].

7.2.5 Quantifying the effect of epistemic uncertainty on bench-
marking

To quantify the effect of epistemic uncertainties of the input parameters on
the benchmarking, the distribution functions of the parameters need to be
defined first. Subsequently, the input uncertainties are propagated through

175



7.2. MATERIALS AND METHODS CHAPTER 7.

the NUEN model.

Defining distribution functions

Each parameter in the NUEN model was considered as an uncertain param-
eter, only the N-flow from crop production to feed storage and the N losses
during manure storage were fixed. The N-flow from crop production was
fixed, because it was based on the energy requirements of the herd. The N
losses during manure storage were fixed, because they were based on storage
specific emission factors. All input parameters are assumed to be normally
distributed. The coefficient of variation (CV = s/µ) described the epistemic
uncertainty of the parameters and was based on Oenema et al. [2015] (Ta-
ble 7.6). Based on the equation for the CV, the standard deviation was calcu-
lated per farm, because each farm had a different (i.e. farm specific) mean.

Quantifying the effect of epistemic uncertainty on benchmarking

The propagation of the uncertainties of the input parameters through the
NUEN model (Equation (7.1)) was done using Monte Carlo simulation and
was performed for all farms in each cluster. From each distribution function
(Table 7.1) a random value was drawn, and used to calculate the NUEN. The
output uncertainty was given by the variance:

var(NUEN) =
1

N � 1

N

Â
i=1

(NUENi � NUEN)
2 (7.3)

Where the mean is given by: NUEN = 1
N Âi NUENi , for a sample size of

N = 5000. We performed a discernibility analysis [Heijungs and Kleijn, 2001]
to determine if the input uncertainties had an effect on benchmarking. To
determine if there was a significant difference between farms the farms within
a cluster were pairwise compared for the results for each Monte Carlo run.
This means that we counted how many times the NUEN of one farm was
better than another farm, expressed as a frequency. A significance level of 5%
was chosen [Heijungs and Kleijn, 2001; Henriksson et al., 2015]. This means,
for example, that if farm A has a lower NUEN than farm B in 630 out of 1000
runs, difference in NUEN of the two farms was considered as not significant.
But, if farm A had a lower NUEN than farm C in 12 out of 1000 runs, than
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farm C was considered as significantly better than farm A.

7.2.6 Explaining output uncertainty for different farm typolo-
gies

To identify which input parameter contributed most to the output uncertainty
within a specific farm cluster, a global sensitivity analysis was performed by
calculating the squared standardised regression coefficients (Sj) as a measure
for the sensitivity index [Groen et al., 2015a; Saltelli et al., 2008]:

Sj =
var(pj)

var(NUEN)
(bj)

2 (7.4)

Where var(pj) gives the variance of each input parameter (pj) based on Ta-
ble 7.6 and bj is equal to the regression coefficient.

7.3 Results

7.3.1 Farm clusters

Two homogeneous groups of farms, i.e. farm clusters, were derived from
the cluster analysis. Farms in the first group, further referred to as farms in
cluster 1, are located on sandy soils and relatively intensive in terms of milk
production per cow and per hectare (Table 7.2). The number of grazing hours
is low, whereas the amount of purchased concentrates per cow per year is
high relative to the other farm cluster. Farms in cluster 2 are located on loam
soils, and are less intensive when compared to farms in cluster 1. The number
of grazing hours is higher, whereas the amount of concentrates per cow per
year is lower than on farms in cluster 1. The average NUEN of farms in cluster
1 is higher than of farms in cluster 2.

7.3.2 The effect of epistemic uncertainties on benchmarking

For each farm, the input uncertainties of Table 7.6 were propagated through
the NUEN model (Equations (7.1) and (7.2)). For each farm in both clusters, a

1Characteristics of these two clusters are significantly different (p<0.05)
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Table 7.2: Results of the cluster analysis, showing the farm characteristics for
15 farms in cluster 1 and 17 farms in cluster 2, given by the mean (standard
deviation) of each characteristic or a categorical characteristic per cluster.

Characteristics1 Unit Cluster 1 Cluster 2
Soil type n.a. Sandy Loam
Milk production kg milk cow�1 year�1 8519 (854) 6956 (878)
Milk production kg milk cow�1 ha�1 15970 (5108) 9623 (3792)
Grazing hours hours cow�1 year�1 1115 (1099) 4393 (1175)
Concentrate use kg cow�1 year�1 1719 (499) 770 (207)
NUEN % 43 (10) 26 (12)

mean and a variance were derived (Figure 7.2, cluster 1; Figure 7.3, cluster 2).
The results of the discernibility analysis for cluster 1 can be found in Ta-

ble 7.3. For example, farm 5 had a lower NUEN than farm 1, and a higher
NUEN than the other farms, except when compared to farm 8 and farm 14. In
case of farm 6, only 53% of the Monte Carlo runs show a higher NUEN than
farm 3, meaning their performance is almost indistinguishable taking the epis-
temic uncertainties of the input parameters into account.

For farm 1, approximately 4% of the Monte Carlo runs resulted in a neg-
ative value for N losses of crop production, implying soil N depletion. This
is explained by the importance of deposition as an N input on this farm, and
the large uncertainty of this parameter (CV = 17%; Table 7.6). The negative
values, therefore, are more likely related to the uncertainty of deposition, than
to display a realistic model outcome. The drawings including a negative value
for deposition, therefore, were removed from the analysis.

Applying the 5% significance level, results show that farm 1 is most ef-
ficient when taking the epistemic uncertainty of the input parameters into
account, followed by farm 5, which is only not significantly better than farm 8
and 14. The two least efficient farms are farm 3 and 6. The NUEN of the other
farms turned out to be very similar (Table 7.3).

The results of the discernibility analysis for cluster 2 are found in Table 7.4.
For farm 2, approximately 46% of the Monte Carlo runs resulted in a negative
value for N losses of crop production, implying soil N depletion. This is

2Approximately 4% of the Monte Carlo runs were excluded from the analysis due to unrealistic
model outcomes.
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Figure 7.2: Box plot for the 15 farms in cluster 1. The horizontal line in
each box gives the mean, the box gives the 75% interval, and the plusses are
realisations that appear outside the 75% interval.

Table 7.3: Results of discernibility analysis for cluster 1 based on pairwise
comparing Monte Carlo runs between farms. The column and row numbers
1 to 15 represent the 15 farms. The percentages show how often a farm (row)
has a higher NUEN than another farm (column). When a-value of 0.05 is
applied, values between 2.5% and 97.5% indicate that the NUEN of the farms
are no longer considered as significantly different. The significant different
farms are given by the bold-printed percentages.

% 12 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12 100 100 100 100 100 100 100 100 100 100 100 100 100 100
2 0 100 5 0 100 25 5 78 47 52 19 54 7 89
3 0 0 0 0 48 0 0 0 0 0 0 0 0 0
4 0 95 100 2 100 85 43 99 92 88 70 97 42 100
5 0 100 100 98 100 100 95 100 100 99 98 100 91 100
6 0 0 52 0 0 0 0 0 0 0 0 0 0 0
7 0 75 100 15 0 100 13 93 69 71 37 79 16 97
8 0 95 100 57 5 100 87 99 93 90 73 97 49 100
9 0 22 100 1 0 100 7 1 22 31 6 24 1 67
10 0 53 100 8 0 100 31 7 78 55 23 57 9 88
11 0 48 100 12 1 100 29 10 69 45 23 50 11 81
12 0 81 100 30 2 100 63 27 94 77 77 84 28 97
13 0 46 100 3 0 100 21 3 76 43 50 16 5 88
14 0 93 100 58 9 100 84 51 99 91 89 72 95 99
15 0 11 100 0 0 100 3 0 33 12 19 3 12 1
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Figure 7.3: Box plot for the 17 farms in cluster 2. The horizontal line gives
the mean, the box gives the 75% interval, and the plusses are realizations that
appear outside the 75% interval.

explained by the importance of N fixation on this farm, in combination with
a relatively large uncertainty of this parameter (CV = 30%). Similar to farm
1 in cluster 1, negative values were assumed to display an unrealistic model
outcome. Because of the high percentage of unrealistic model outcomes, it
was decided to remove farm 2 from further analysis.

Applying the 5% significance level, results show that farm 1 is most ef-
ficient (only not significantly different from farm 10 and 17). Ranking the
farms based on their NUEN shows the following result: (1) farm 1; (2) farm 17
(only not significantly higher than farm 10); (3) farm 10 (only not significantly
higher than farm 16); (4) farm 16 (only not significantly higher than farm 6);
(5) farm 6 (only not significantly higher than farm 4 and 15); (6) farms 4 and
15; (7) farms 8 and 12 (only not significantly higher than farm 14); (8) farm
14; (9) farms 5, 7 and 9 (only not significantly higher than farm 3); (10) farm 3
(only not significantly higher than farms 11 and 13); (11) farms 11 and 13.

Contrary to the first cluster, including the epistemic uncertainties still al-
lowed for some kind of ranking, although most farms overlapped with at least
two other farms.

4Approximately 46% of the Monte Carlo runs were excluded from the analysis due to unreal-
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Table 7.4: Results of discernibility analysis for cluster 2 based on pairwise
comparing Monte Carlo runs between farms. The column and row numbers
1 to 17 represent the 16 farms4. The percentages show how often a farm (row)
has a higher NUEN than another farm (column). When a-value of 0.05 is
applied, values between 2.5% and 97.5% indicate that the NUEN of the farms
are no longer considered as significantly different. The significant different
farms are given by the bold-printed percentages.

% 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 100 100 100 100 100 100 100 95 100 100 100 100 100 99 62
3 0 0 12 0 14 0 14 0 82 0 92 1 0 0 0
4 0 100 100 31 100 99 100 0 100 98 100 100 57 4 0
5 0 88 0 0 59 0 59 0 100 0 100 2 0 0 0
6 0 100 69 100 100 100 100 0 100 100 100 100 76 9 0
7 0 86 0 41 0 0 49 0 100 0 100 1 0 0 0
8 0 100 1 100 0 100 100 0 100 45 100 93 2 0 0
9 0 86 0 41 0 51 0 0 100 0 100 1 0 0 0
10 5 100 100 100 100 100 100 100 100 100 100 100 100 90 8
11 0 18 0 0 0 0 0 0 0 0 83 0 0 0 0
12 0 100 2 100 0 100 55 100 0 100 100 94 2 0 0
13 0 8 0 0 0 0 0 0 0 17 0 0 0 0 0
14 0 99 0 98 0 99 7 99 0 100 6 100 0 0 0
15 0 100 43 100 24 100 99 100 0 100 98 100 100 2 0
16 1 100 96 100 91 100 100 100 11 100 100 100 100 98 1
17 37 100 100 100 100 100 100 100 92 100 100 100 100 100 99

7.3.3 Explaining the output variance

The global sensitivity analyses explained how much of the output variance
can be explained by the variance of the individual input parameters. The
results of the global sensitivity analysis can be found in Figure 7.4 (cluster 1)
and Figure 7.5 (cluster 2).

Results show that in case of cluster 1, the input of concentrates, roughage,
mineral fertiliser, and deposition, and the output of milk, roughage, and ma-
nure explain most of the output variance. Input of animals and manure, stock
change of each of the inputs, and output of animals did not show up as im-
portant explanatory parameters in any of the farms, except for stock change of
mineral fertiliser for farm 12. Further analysis showed that both the quantity
as well as the N content of each parameter is approximately equally important
in terms of their contribution to the output variance.

Figure 7.5 shows that in case of cluster 2, the input of mineral fertiliser,
and, for some farms, deposition and fixation, and the output of milk and an-

istic model outcomes of farm 2, therefore, this farm was excluded from further analysis.
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Figure 7.4: Sensitivity indices (Sj) for each input parameter, explaining how
much each parameter contributes to the output variance for each farm in clus-
ter 1. SC: stock change. An empty cell means that these parameters were
equal to zero; 0% means that this parameter contributed 0% to the output
variance.

Figure 7.5: Sensitivity indices (Sj) for each input parameter, explaining how
much each parameter contributes to the output variance for each farm in clus-
ter 2. SC: stock change. An empty cell means that these parameters were
equal to zero. Output of manure is not included because none of the farms in
cluster 2 exported manure. Farm 2 was excluded from the global sensitivity
analysis.
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Table 7.5: Effect of decreasing the input uncertainties of the most important
parameters to 1%, for both clusters.

Cluster 1 Cluster 2
Total number of pairwise comparisons 105 120
Significantly different farms before reducing input
uncertainty

39 (37%) 99 (83%)

Significantly different farms after reducing input
uncertainty

76 (72%) 104 (87%)

imals explain most of the output variance. Input of concentrates, roughage
and manure and stock change of animals did not show up as important ex-
planatory parameters in any of the farms in cluster 2.

7.3.4 Effect of decreasing uncertainty on benchmarking

To analyse if decreasing epistemic uncertainty can improve benchmarking,
we reduced the uncertainty of the most important input parameters and reran
the discernibility analysis. For cluster 1, the input uncertainty was reduced to
1% for: input of concentrates, roughage, mineral fertiliser, deposition and the
output of milk, roughage, and manure (Figure 7.4). For cluster 2, the input
uncertainty was reduced to 1% for: input of mineral fertiliser, and the output
of milk and animals (Figure 7.5). Table 7.5 shows how many pairwise compar-
isons were made in both cluster, and how many were significantly different,
before and after reducing input uncertainty. Results show that reducing the
uncertainty of the most important input parameters based on the global sen-
sitivity analysis, improved the ability to find significant differences between
the NUEN of the farms in both clusters. Benchmarking, therefore, can be im-
proved when input uncertainties are reduced, especially for the farms in the
first cluster.

7.4 Discussion

This study builds on, and extends the principles regarding epistemic uncer-
tainty of nitrogen flows on dairy farms presented by [Oenema et al., 2015].
Although we used the same coefficients of variations of input parameters, re-
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sults of our study and Oenema et al. [2015] show important differences. Based
on our analysis, input of concentrates and roughage, and output of milk and
roughage explain most of the output variance in cluster 1. Input of mineral
fertiliser and fixation, and output of animals and milk explain most of the
output variance in cluster 2. Oenema et al. [2015], however, concluded that N
fixation, atmospheric deposition and stock changes of roughage and manure
explain most of the output variance when determining the NUEN of dairy
farms. Differences between our study and Oenema et al. [2015] can be ex-
plained by two reasons. First, the characteristics of the farms were different.
In general, Oenema et al. [2015] included farms with a lower input of feed,
but a higher stock change of roughage, and a higher N input through fixation
compared to the farms in our study. Uncertainties related to stock changes
of feed are higher than uncertainties related to input of feed, whereas uncer-
tainties related to N fixation is highest among all N flows. Second, Oenema
et al. [2015] used a different approach to determine N intake during grazing.
In our study, N intake from grazing and on-farm roughage production was
fixed based on feed requirements and the baseline values of input of pur-
chased feed. Oenema et al. [2015] changed the N-intake from grazing with
a change in roughage and concentrate intake, which consequently influenced
the importance of feed parameters. The contribution of the input of feed to
the output variance was therefore found to be lower in Oenema et al. [2015]
than in our study.

Dairy farms in Europe show different decisive characteristics. For exam-
ple, most farms in the Netherlands are intensive farms because land resources
are limited. The main N inputs on these farms are through purchased con-
centrates and roughages. In Ireland, however, most farms are grass-based
extensive farms. The main N inputs on these farms are through purchased
mineral fertiliser and N fixation. Comparing NUE of Dutch and Irish farms
can lead to biased conclusions because of inherent differences between sys-
tems. Clustering of farms into groups with similar decisive characteristics,
therefore, is a prerequisite for benchmarking the NUE of farms and facilitates
the identification of major parameters. When comparing results of the global
sensitivity analysis between the two farm clusters, for example, input of feed
and output of roughage show up to be most important in case of cluster 1,
whereas the input of mineral fertiliser (or fixation) is most important in case
of cluster 2. Results show that the importance of parameters can vary between
farm type (clusters). Methods to improve benchmarking of farms, therefore,
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should account for differences in decisive characteristics. The method pre-
sented in this study, can contribute to more solid conclusions regarding the
performance of farms in terms of their NUE.

Several methodological limitations could have affected the results of this
study. A first limitation comprises the coefficients of variations that were used.
Coefficients were based on Oenema et al. [2015], focussing on Dutch dairy
farms only. Farms in our study are from different countries in Europe. Results
of the uncertainty and global sensitivity analysis might have been different if
country specific coefficients of variation were applied, but such information
was not available. Second, changes in soil N-stock were not considered in this
study due to data limitations. In practice, soil N-stock changes can have an
important influence on the N balance of a farm. Assessing changes in soil N
stock at the farm level is difficult but can significantly improve interpretation
of nutrient balance results [Godinot et al., 2014]. Third, results of the discerni-
bility analysis are influenced by the significance level that is chosen. In this
study, a significance level of 5% was applied. Increasing the significance level
facilitates benchmarking, but decreases the reliability of the results.

Reducing epistemic uncertainty and benchmarking NUE of farms with
similar decisive characteristics can contribute to the identification of improve-
ment options. Based on the variability between farms within a cluster, farm
specific management options to reduce nutrient losses can be identified. Eval-
uating the (causes of) variability between farms within a farm cluster, there-
fore, can be a next step for further improving the NUE of farms.

7.5 Conclusion

Benchmarking the NUE of dairy farms requires an approach that accounts for
differences in major decisive characteristics among farms, and for the impact
of epistemic uncertainties of input parameters. The parameters that are most
important in terms of epistemic uncertainty (i.e. explain most of the output
variance), however, can vary among farm types. Clustering farms based on
their main characteristics and understanding and reducing the impact of epis-
temic uncertainty of major parameters can significantly improve benchmark-
ing results. The method presented in this study, therefore, can contribute to
more solid conclusions regarding the performance of farms in terms of their
nutrient use efficiency.
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Supplementary material

Input data

Table 7.6: Description of the parameters and their epistemic uncertainty given by the
relative uncertainty (CV), which was taken from Oenema et al. [2015].

Process Type Parameter (kg N) Description CV
(%)

Remark

Crop pro-
duction

Resource in-
put

N-fixation Grassland area (ha) 5

Legume yield (kg/ha) 10
N-fixation (kg N/kg legume) 30

Deposition Farm area (ha) 5
N-deposition (kg N/ha) 17

Mineral fertiliser Mineral fertiliser (kg) 2.5
N-content mineral fertiliser (kg N/kg) 2.5

Stock change mineral fer-
tiliser

Stock change mineral fertiliser (kg) 7.5

N-content stock change mineral fertiliser (kg N/kg) 2.5
Export Roughage Roughage (kg) 7.5

N-content roughage (kg N/kg) 7.5
Losses N-losses crops n.a. n.a Function

Feed storage Resource in-
put

Roughage Roughage (kg) 7.5

N-content roughage (kg N/kg) 7.5
Stock change roughage n.a. 17 GEP5

Fertiliser
storage

Resource in-
put

Manure Manure (kg) 5

N-content manure (kg N/kg) 7.5
Stock change manure n.a. 22 GEP

Losses N emissions from ma-
nure storage

n.a. Fixed

Milk and an-
imal

Resource in-
puts

Animals Number of animals (-) 2

production Life-weight per animal (kg) n.a.
N-content per animal 5
(kg N/kg)

Stock change animals n.a. 5.68 GEP
Concentrates Concentrates (kg) 2.5

N-content concentrates 2.5
(kg N/kg)

Stock change concen-
trates

n.a. 11 GEP

Final use Milk Milk (kg) 1
N-content milk (kg N/kg) 2

Animals Number of animals (-) 2
Life-weight per animal (kg) n.a.
N-content animal (kg N/kg) 5

Export Manure Manure (kg) 5
N-content manure (kg N/kg) 7.5

5GEP: Gaussian error propagation is used to determine the CV of parameters when there is
a lack of information to separate the N-content from the items in the stock change and therefore
only the kg N of stock change is available (e.g., roughage can include different items with different
N contents). Details on the method can be found in [Heijungs and Lenzen, 2014].



Matrix-based on-farm nutrient use efficiency
Figure 7.6 shows a nutrient balance of a dairy farm. The total input of N (in kg) is
given by the dark grey boxes, the light grey boxes give the output. The uptake from
the stock change of concentrates (C) is subtracted from the total input of concentrates,
because it is considered as an input to the farm. The addition to the stock of animals
(A) is considered as a useful output of the farm, and is therefore added to the output of
animals. The amount of produced manure that is exported is subtracted from the input
of fertilisers (i.e., mineral fertiliser and manure). Hence, manure export is considered
to offset a farm’s fertiliser input. However, if export of manure exceeded the input of
fertiliser, it was considered as a loss. The nutrient use efficiency of nitrogen (NUEN)
on this farm is equal to 44%.

Feed storage

Crop production Animal husbandry

Manure storage

154 (R)

Losses

Losses

926 (D) 5589 (M) + 
627 (A) + 91 (A)

Nutrient Balance
A: Animal
C: Concentres
D: Deposition
F: Fixation
M: Milk 
MA: Manure
MF: Mineral fertilizer
R: Roughage 

Total input: 14461

Total output: 6307

NUEN: 44%

9903 (C) - 319(C) 

7397 (MF) - 3600 (MA)

Figure 7.6: Nutrient balance of a dairy farm, in kg N. The total input of N (in kg) is
given by the dark grey boxes, the output is given by the light grey boxes.

Figure 7.7 shows the same farm, with similar assumptions as described above,
but then the NUEN is quantified using a matrix-based approach as described by Suh
and Yee [2011]. When the same assumptions are applied, the matrix-based approach
results in the same efficiency of 44%. However, a difference is that the efficiency of
the production processes (i.e. crop production, feed storage, animal husbandry and
fertiliser storage), are given with respect to the whole farm, not of the individual
processes, in case of the matrix-based approach. For example, the efficiencies of feed
storage and animal husbandry are 100%, when looking at the individual processes,
because there are no losses. The matrix-based NUEN however, incorporates the losses
that occurred elsewhere on the farm in the efficiency of the individual production
processes. For example, the efficiency of feed storage equals 28%, which is determined
by the efficiency of the previous processes, such as crop production, and input of



roughage. The efficiency of animal husbandry equals the efficiency of the farming
system (44%), because it comprises the efficiency of all former processes.

Feed storage

Crop production Animal husbandry

Manure storage

154 (R)

Losses926 (D) 5589 (M) + 
627 (A) + 91(A)

9903 (C) - 319 (C) 

7397 (MF) – 3600 (MA)

Matrix-based Nutrient Balance
A: Animal
C: Concentres
D: Deposition
F: Fixation
M: Milk 
MA: Manure
MF: Mineral fertilizer
R: Roughage 

Resource input: 14461

Final use: 6307

NUEN: 44%

66%

100%

77%

100%28%

28%

44%

22%

32%

Losses

Figure 7.7: Nutrient balance of a dairy farm, in kg N. The total input of N (in kg)
is given by the dark grey boxes, the output is given by the light grey boxes. The
efficiencies in the bottom right corner display the efficiencies quantified with the matrix
based nutrient balance, the efficiencies in the bottom left corner display the efficiencies
quantified looking only at the in- and outputs of that specific production system. If
an efficiency of 100% is give, it means that there are no losses at that process. The
efficiency of 32% in the top left corner (animal husbandry) displays the efficiency when
the export of manure is considered as a loss.

Figure 7.8 shows for the same farm, what happens if the export of manure is no
longer subtracted from the input of fertiliser, but considered as an individual export
of the farm. In that case, for the matrix based nutrient balance, there are now two
efficiencies, one describing the useful output we considered earlier (milk and animal)
and one describing the production of manure.

In this paper, we always subtracted manure from the input of fertiliser, including
both mineral fertiliser and manure. However, some farms exported roughage. Based
on the same principles as described above (i.e., considering the export of manure as an
output), export of roughage was considered as an output. This resulted in a slightly
different NUEN than what would have been calculated using the normal nutrient bal-
ance approach, but differences were minor (1 – 2%).



Matrix-based Nutrient Balance
A: Animal
C: Concentres
D: Deposition
F: Fixation
M: Milk 
MA: Manure
MF: Mineral fertilizer
R: Roughage 

Final use: 6307

NUEN, husbandry: 61%

Export: 3600

NUEN, manure: 47%

Feed storage

Crop production Animal husbandry

Manure storage

154 (R)

Losses

Losses

926 (D) 5589 (M) + 
627 (A) + 91(A)

9903 (C) - 319 (C) 

7397 (MF)
66%

100%

77%

100%44%

44%

61%

47%3600 (MA)

Figure 7.8: Nutrient balance of a dairy farm, in kg N, when export of manure is con-
sidered as an output. The total input of N (in kg) is given by the dark grey boxes, the
output is given by the light grey boxes. The efficiencies in the bottom right corner dis-
play the efficiencies quantified with the matrix based nutrient balance, the efficiencies
in the bottom left corner display the efficiencies quantified looking only at the in- and
outputs of that specific production system. If an efficiency of 100% is given, it means
that there are no losses at that process.



CHAPTER 8

General discussion

8.1 Introduction

The challenge to produce food in an environmentally friendly way has be-
come urgent [Steinfeld et al., 2006; Gerber et al., 2013]. To develop strategies
to produce food with a low environmental impact, environmental assessment
models are developed that quantify the total environmental impact associated
with food production, such as life cycle assessment or nutrient balance anal-
ysis. Input data required for these environmental impact assessment mod-
els, however, may vary due to seasonal changes, geographical conditions or
socio-economic factors (natural variability). Moreover, input data may be un-
certain, due to measurement errors and observational errors that exist around
modelling of emissions and technical parameters (epistemic uncertainty). Al-
though agricultural activities and food production are prone to natural vari-
ability and epistemic uncertainty, very few case studies made a thorough ex-
amination of the effects of variability and uncertainty on the result.

The aim of this thesis was to enhance the understanding of the effects
of variability and uncertainty on the results. This was done by exploring
how uncertainty analysis and sensitivity analysis can help to reduce the ef-
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forts for data collection, support the development of mitigation strategies and
improve overall reliability, leading to more informed decision making in en-
vironmental impact assessment models. To that end, methods for uncertainty
analysis and sensitivity analysis were combined, and the effect of correlations
in uncertainty propagation and global sensitivity analysis were explicitly ac-
counted for. To be able to formulate case study specific suggestions that could
improve reliability and point to potential mitigation strategies in food produc-
tion, methods were applied to case studies of dairy and pork production.

This chapter starts with discussing the value of uncertainty analysis and
sensitivity analysis in environmental impact assessment models, followed by
the value of matrix notation (Section 8.2). Subsequently, recommendation of
the use of methods for uncertainty and sensitivity analysis are given (Sec-
tion 8.3). This chapter ends with an overview of the conclusions (Section 8.4).

8.2 The value of uncertainty analysis and sensitiv-
ity analysis in environmental impact assessment
models

8.2.1 Local sensitivity analysis

Local sensitivity analysis in environmental impact assessment models, such as
life cycle assessment (LCA) and nutrient balance (NB) analysis, are generally
performed using a one-at-a-time (OAT) approach. An OAT approach takes
a parameter, increases it e.g. 5% and quantifies the effect on the model out-
put. OAT approaches in LCA or NB analysis usually consider a subset of all
available parameters, based on expert judgment or perhaps a quantitative cri-
terion, such as the contribution of the individual input parameter to the total
environmental impact. However, when the selection of the input parameters
considered for the local sensitivity analysis is based on such principles, in-
fluential (technical) parameters might be overlooked. For example, efficiency
parameters (e.g. replacement rate or reproductive performance) are not di-
rectly related to emissions, only to their prior production processes. These
subsets, therefore, might not contain all potential influential parameters. A
systematic approach that considers the influence of all input parameters in
LCA can only be done using the multiplier method.
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In Chapter 6, for example, the multiplier method was used to identify the
most influential parameters in an LCA that assessed greenhouse gas (GHG)
emissions of milk production. Results showed that local sensitivity analysis
identified milk yield, feed intake, and the emission factor of CH4 from enteric
fermentation of the cows, replacement rate and crop yields as most influential
parameters in the LCA model. Moreover, previous studies performing a local
sensitivity analysis using an OAT approach, overlooked influential parameters
such as replacement rate and crop yields.

In contrast to LCA, no such a systematic method is yet available for matrix-
based NB analysis. Currently, studies that did performed a local sensitivity
analysis, performed followed an OAT approach [Suh and Yee, 2011]. Future
research can focus on developing a similar approach for matrix-based NB
analysis.

Some LCA and NB studies [Huang et al., 2013; Kim and Dale, 2002; Sayagh
et al., 2010; Beltran et al., 2016], use a sensitivity analysis to refer to the effect
of different modelling decisions on the model output, such as the effect of
changing allocation techniques or characterisation factors. An explanation
might be that ISO 14044 [2006] recommends performing a sensitivity analysis,
which is defined as “systematic procedures for estimating the effects of the
choices made regarding methods and data on the outcome of a study” [ISO,
2006b]. This definition not only refers to data, but also to methods used in a
study, which indeed could refer to different allocation methods and charac-
terisation factors. Although the effect of a methodological decision, such as
the allocation method used, is very important to the model outcome and the
subsequent interpretation, they should not be referred to as sensitivity analy-
sis. Moreover, the ISO standard does not make a distinction between a local
sensitivity analysis (which does not include information of the uncertainty or
variability around input parameters) and a global sensitivity analysis (which
does include uncertainty or variability).

The lack of distinction between local and global sensitivity analysis, has
led in some studies [Flysjö et al., 2011; Basset-Mens et al., 2005] to include
information about the uncertainty of the input parameters in, what is referred
to as, a sensitivity analysis. For example, Basset-Mens et al. [2005] explored
the effect of an increase of 1% for some parameters, that were assumed to
vary only little, and 200% for other parameters, that were assumed to vary a
lot. Results in Chapter 2, for example, showed that influential parameters in
an LCA study of pork production were the feed conversion ratio, CH4 emis-
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sions from manure management and crop yields, especially maize. However,
previous studies on this topic [Basset-Mens et al., 2005; Basset-Mens and Van
Der Werf, 2005] included uncertainty ranges of the input parameters as well,
and could therefore not be compared with the results presented in Chapter 2.

Referring to modelling decisions as a sensitivity analysis or including un-
certainty information in a OAT approach leads to an ambiguous definition
of the terminology of uncertainty and sensitivity analysis, because: (1) refer-
ring to a change in method or modelling structure has nothing to do with the
intrinsic sensitivity of the model, and should therefore be given a different
label, such as modelling decisions; (2) combining uncertainty information in
an OAT approach belongs to the area of screening analysis, which is strictly
speaking not a local sensitivity analysis [Saltelli et al., 2008; Mutel et al., 2013].
Also, if uncertainty information is included in an OAT approach, it becomes
less evident what it means to mutually compare the parameters, because it
does not give the influence of the input parameters to the model output, as
the magnitude of the uncertainty is incorporated as well.

Developing a standardised definition and method for local sensitivity anal-
ysis in LCA and NB analysis, will increase comprehensibility between studies
and will enhance comparability of results.

8.2.2 Uncertainty analysis

Uncertainty propagation refers to propagation of uncertainty and variability
around input parameters through an environmental impact assessment model
to generate output data. Uncertainty analysis refers the subsequent analysis
of the generated output data, such as determining the output variance, deter-
mining a confidence interval etc.

Uncertainty propagation can be done using e.g. sampling approaches or
analytical approaches. In Chapter 3, three sampling approaches (i.e. Monte
Carlo sampling, Latin hypercube sampling, quasi Monte Carlo sampling), one
analytical approach (i.e. on the basis of a Taylor series), and one fuzzy ap-
proach (i.e. fuzzy interval arithmetic) were compared, based on convergence
rate and output statistics. The sampling methods led to more (directly) us-
able information, compared to fuzzy interval arithmetic or analytical uncer-
tainty propagation. Latin hypercube and quasi Monte Carlo sampling pro-
vided more accuracy in determining the sample mean than Monte Carlo sam-
pling. The Latin hypercube and quasi Monte Carlo sampling methods also
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converged faster than Monte Carlo sampling for some of the case studies dis-
cussed in Chapter 3. The application of the more advanced sampling meth-
ods, therefore, might be less fruitful for applications in LCA, as the improve-
ment mainly manifested itself in the number of runs generated. This seems
less relevant in environmental impact assessment models, because the algo-
rithm behind LCA and NB analysis does not require much run time. The
latter depends on the specific software used and the capacity of the com-
puter, nonetheless, classical Monte Carlo sampling seems a valuable sampling
method to apply in LCA and NB studies.

The preference of a sampling approach versus an analytical for uncertainty
propagation can depend on the amount of available information. A sampling
approach requires a distribution function, including a parameter of disper-
sion such as the variance. Analytical uncertainty propagation as described in
Chapter 3, does not require a distribution function, but only a parameter of
dispersion. When less data is available about the uncertainty or variability of
the input parameters, the analytical approach will become more suitable.

In Chapter 7, for example, we used an NB to benchmark nutrient losses on
farms for two different farming systems. Our aim was to explore the impact
of measurement errors (epistemic uncertainty) on the benchmarking of farms
within two different farming systems. The first farming system contained in-
tensive farms, in terms of e.g. milk production per hectare (ha) and purchased
concentrates per cow, whereas the second system included grass-based farms,
with a lower milk production per ha. The distribution function and the pa-
rameters of dispersions of parameters required to assess the NB were obtained
from the literature. We assumed that the epistemic uncertainties around the
N-flows were measured at different locations, using different measurement
tools, and, therefore, could vary independently from each other. Uncertainty
propagation could be performed using Monte Carlo sampling. The uncer-
tainty analysis showed that benchmarking of concentrate-based farms was no
longer possible when the epistemic uncertainty of input parameters was in-
cluded, whereas including epistemic uncertainty did not affect benchmarking
of grass-based farms.

In Chapter 6, where we assessed greenhouse gas (GHG) emissions of milk
production, a correlation was assumed between N-fertiliser application and
crop yield; and between feed intake and milk production. Again, uncertainty
propagation was performed using a sampling approach. We showed that, in
the uncertainty analysis, the correlation between feed intake and milk produc-
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tion decreased the output variance.
To implement a correlation coefficient between input parameters during

uncertainty propagation, as done in Chapter 6, information is needed not
only on the distribution functions, but also on the correlation coefficients be-
tween input parameters. Using a sampling approach for uncertainty propa-
gation with correlated input parameters, therefore, becomes even more data
intensive. In Chapter 5, we demonstrated how to predict the effect of ignoring
correlations in uncertainty analysis in LCA, using analytical uncertainty prop-
agation. More detailed, in Chapter 5 we demonstrated that (1) we can predict
if including correlations among input parameters in uncertainty propagation
will increase or decrease output variance; (2) we can quantify the risk of ig-
noring correlations on the output variance and the global sensitivity indices.
Moreover, this procedure requires only little data availability regarding the
input parameters.

We conclude, therefore, that both sampling and analytical uncertainty
propagation are indispensable in environmental impact assessment models.
The analytical approach is especially useful when data is limited (e.g. only
the variance of the input parameters is available). In contrast, the sampling
approaches are more suitable when full knowledge is available (e.g. a distri-
bution function, including a parameter of dispersion).

8.2.3 Global sensitivity analysis

A global sensitivity analysis quantifies the contribution of the variances of the
individual input parameters to output variance. More specifically, a sensitiv-
ity index explains how much each input parameter contributes to the output
variance. For example, the squared standardised regression coefficients can
be interpreted as a sensitivity index. In Chapter 4, we compared rather com-
mon methods for global sensitivity analysis in LCA, namely methods based
on regression or correlation approaches [Geisler et al., 2005] and key issue
analysis [Heijungs, 1996], to less commonly applied methods in LCA, such as
the Sobol’ method and random balance design.

The comparison of the sensitivity methods was based on four aspects: (I)
sampling design, (II) output variance, (III) explained variance, and (IV) con-
tribution to output variance of individual input parameters, and illustrated
for two hypothetical case studies. The evaluation of the sampling design (I)
relates to the computational effort of a sensitivity method. Key issue analysis
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does not make use of sampling (it is an analytical approach) and was fastest,
whereas the Sobol’ method had to generate two sampling matrices, and there-
fore, was slowest. The total output variance (II) resulted in approximately the
same output variance for each method, except for key issue analysis, which
underestimated the variance, especially for high input uncertainties. The ex-
plained variance (III) and contribution to variance (IV) for small input un-
certainties, was optimally quantified by standardised regression coefficients
and the main Sobol’ index. For large input uncertainties, Spearman corre-
lation coefficients and the Sobol’ indices performed best. Therefore, it was
concluded that these less commonly applied methods did not outperform the
common methods. Moreover, they asked for more unconventional algorithms,
and may be more cumbersome to implement compared to the more frequently
used methods based on linear regression or correlation approaches. However,
the use of the Sobol’ method seemed better at explaining the output variance
when input uncertainties are high. Also, other studies showed that the Sobol’
method might be more useful in the impact assessment model [Cucurachi
et al., 2014]. Also, when the impact on the environment is quantified such
as for toxicity, which contains potential non-linear relations [Posthuma et al.,
2002] the Sobol’ method might become more useful. If future environmental
impact assessment studies become more advanced in terms of including non-
linear impact assessment, the Sobol’ and random balance design methods as
discussed in Chapter 4, may become more useful. Based on the results pre-
sented in Chapter 4, the squared standardised regressions coefficient (or the
squared correlation coefficient), is considered as the most useful proxy for a
sensitivity index.

For example, in Chapter 7, where we used an NB to benchmark nutrient
losses on farms for two different farming systems, a global sensitivity analysis
was applied using the squared standardised regression coefficients. We found
that parameters that explained most of the output variance differed between
systems. For the more concentrate-based system, input of feed and output of
roughage were most important, whereas for the grass-based system, the input
of mineral fertiliser (or fixation) was most important. Moreover, we showed
that reducing epistemic uncertainty of the most important input parameters
significantly improved benchmarking results.

In Chapter 6 we identified the most important input parameters to assess
the greenhouse gas emissions of milk production, for three different grazing
systems. We adapted the regression-based global sensitivity analysis to al-
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low for correlated input parameters between feed intake and milk yield; and
fertiliser rate and crop yield. We showed that the emissions factor of CH4
emission from enteric fermentation of cows, milk yield, feed intake and the
emission factor of direct N2O emissions from crop cultivation, are the most im-
portant parameters for a zero grazing system. For restricted and unrestricted
grazing systems, however, N2O emission factor from manure excretion during
grazing becomes increasingly more important.

When comparing the results of other studies to our results, we found that
e.g. Ross et al. [2014] calculated the regression coefficients, so we could only
compare their results based on the ranking of the parameters, and not on
how much the parameters explained. Several studies implemented regres-
sion coefficients (not standardised and not squared) [Basset-Mens et al., 2009;
Aktas and Bilec, 2012], or standardised regression coefficients (not squared)
[Sugiyama et al., 2005; Vigne et al., 2012], or correlation coefficients (not squared)
[Mattila et al., 2012; Mattinen et al., 2014; Wang and Shen, 2013] as a measure
for a global sensitivity index. For example, regression or correlation coeffi-
cients that are not squared, cannot be mutually compared, and are therefore
less suitable as a measure for a global sensitivity index. In Table 8.1, based on
the case study represented in Chapter 4, the squared standardised regression
coefficients and the squared (Pearson) correlation coefficients were compared
to the standardised regression coefficients, the regression coefficients and the
correlation coefficient.

For example, ranking the importance of the parameters in Table 8.1, in
case of the (squared) standardised regression coefficients or the (squared) cor-
relation parameter 1 is most important, but when looking at the regression
coefficients, parameter 5 is most important. The squared standardised re-
gression coefficient or the squared correlation coefficient are the most useful
proxies for a global sensitivity index, because they can be added to each other.

Currently in the ISO standard for LCA, there is no method recommended
for a global sensitivity analysis. Developing a standardised definition and
method for global sensitivity analysis in LCA and NB studies, will increase
comprehensibility between studies and will enhance the comparison of results
between studies.
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Table 8.1: Comparison of the regression and correlation coefficients, applied to
the case study presented in Chapter 3 (in adapted form) containing six input
parameters. In the last row, the total explained output variance is given. CV:
coefficient of variation (s/µ). Only the squared standardised regression and
squared correlation coefficients can be added up, and are expressed in (%),
the other coefficients cannot be added up, displayed by not applicable (n.a.) in
the last row. (S(R))RC: (squared (standardised)) regression coefficients; (S)CC:
(standardised) correlation coefficients.

Parameter (CV) Analysis of output variance by:
SSRC SRC RC SCC CC

1 (15.0%) 58.1% -0.762 -13.0 56.4% -0.751
2 (11.5%) 1.08% -0.104 -11.6 1.15% -0.107
3 (–) – – – – –
4 (20.0%) 3.53% -0.188 -0.241 5.10% -0.226
5 (15.0%) 34.7% 0.589 100 35.9% 0.599
6 (8.00%) 0.450% 0.0669 2.13 0.590% 0.0766
Output variance explained: 97.9% n.a. n.a. 99.1% n.a.

8.2.4 The value of matrix notation in environmental impact
assessment models

The environmental impact assessment models described in this thesis, LCA
and NB analysis, both rely on matrix notation, to facilitate the application of
uncertainty and sensitivity analysis. In matrix notation, the production pro-
cesses are described by technical parameters given in the A-matrix. The cor-
responding emissions (and resource use) are given in the B-matrix. One may
wonder, does matrix notation have any added value for sensitivity analysis?
Uncertainty propagation using Monte Carlo simulation and global sensitiv-
ity analysis by means of standardised regression coefficients can also be per-
formed for environmental impact models that do not make use of matrix no-
tation. However, performing an analytical local sensitivity analysis that con-
siders all input parameters, such as the multiplier method, applied in Chap-
ter 2 and 6, requires a functional form of the impact assessment model, such as
the matrix-based approach developed by [Heijungs and Suh, 2002]. Although
other functional forms have been proposed [Ciroth et al., 2004; Clavreul et al.,
2013] matrix notation seems to be the most straightforward approach.
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When we also consider correlations between input parameters, the alge-
braic notation gives clear insight into the effect of the correlations on the un-
certainty propagation (Chapter 5). Using matrix notation, it was possible to
predict the effect of including correlations during uncertainty propagation on
the output variance and the global sensitivity analysis. Without the matrix
formulation, it would have been impossible to make a sweeping generalisa-
tion towards all different kind of case studies. To facilitate sensitivity analysis,
matrix notation in LCA may not be eminent to implement uncertainty and
sensitivity analysis, but it facilitates the algorithm implementation required
to perform the methods, which otherwise would have been cumbersome to
implement.

In Chapter 2 and 6, greenhouse gas emissions were calculated for pork pro-
duction and milk production respectively. To quantify the greenhouse gasses
for crop cultivation, manure management and enteric fermentation, equations
were implemented between the technical parameters in the A-matrix (e.g. fer-
tiliser applied, manure produced and feed intake) and the GHG emissions
in the B-matrix. For example, for the emissions of crop cultivation, the CO2
and indirect and direct N2O emissions depended directly on the application
of fertilisers and crop yield.

The aggregation level of the production process determined which param-
eters showed up in the local and global sensitivity analysis. For example, in
Chapter 2, we showed that CH4 emissions of manure turned out to be in-
fluential. However, the sensitivity analysis was modeled on the level of the
total emissions, reflecting the parameters in the A and B matrix. Therefore,
the influence of underlying factors determined by the type of manure storage
system, such as the methane producing capacity, depending on temperature,
wind speed etc., remains unknown. Further expanding crop and livestock
models in LCA and NB analysis, can help to explain which underlying factors
are important to make better estimations regarding environmental impacts.
Future improvements can also be made regarding implementation of non-
linear relationships. For example, it was assumed that N fertilisation and
crop yield were correlated. At some stage, however, one additional input of
N fertiliser will increase crop yield less than the previous unit of input, a phe-
nomenon referred to as the law of diminishing returns. Therefore, a non-linear
dependency, combined with a correlation factor (i.e. other circumstances, such
as soil pH and humidity influence the dependency as well), might be a bet-
ter representation of reality. Expanding knowledge on potential relationships
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between input parameters, establish equations to implement these relations
in environmental impact assessment models, and combine these equations
with correlations between input parameters, can improve further assessments
using environmental impact models. If the matrix notation might need to
be adapted, or expanded to allow for the extensions of livestock models and
underlying relations needs to be further developed.

8.3 Recommendations for future implementation of
uncertainty and sensitivity analysis

8.3.1 Recommended analysis and methods

The uncertainty or sensitivity analysis to be applied depends on the question
to be addressed and the available information. An overview of (generally)
formulated research questions and the corresponding type of analysis and the
recommended method (based on the results of this thesis), can be found in
Table 8.2.

For example, in Chapter 2, very limited data were available and we were
interested in determining which input parameters were most influential. There-
fore a local sensitivity analysis, using the multiplier method was applied
(question A.2, Table 8.2). In addition, a global sensitivity was applied (ques-
tion D.2, Table 8.3), for those parameters, which either turned out to be in-
fluential, or were known to be uncertain, based on literature. In Chapter 6,
full knowledge was available regarding the input parameters including corre-
lations between some of the input parameters. We applied a global sensitivity
analysis, to determine which parameters were most important to the output
variance (question E.1 Table 8.3), which parameters could be set to a fixed
value in improved data collections (question E.1, Table 8.3) and if correlations
among parameters influenced the output variance (question C.3/E.3 Table 8.2
/Table 8.3). In Chapter 7, we studied benchmarking farms while account-
ing for epistemic uncertainties of input parameters (question B.6, Table 8.2)
and identifying which input parameters explain most of the output variance
(question C.3, Table 8.2).
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Table 8.2: Methods for uncertainty analysis and sensitivity analysis corre-
sponding to research questions addressed [continues in Table (8.3)].

Research questions correspond-
ing to type of uncertainty or sen-
sitivity analysis

Preferred method in
this thesis

Data require-
ments

A. Local sensitivity analysis
1. Which parameter changes the
output value most?

Multiplier method Point values

2. Which parameters are most in-
fluential?
3. Of which parameters a high
data quality is most urgent?
4. Which parameters are unlikely
to influence the model output?
5. On which parameters should
potential mitigation strategies be
focused?

B. Uncertainty analysis (neglecting correlation)
1. Which product alternative is
better when uncertainties are in-
corporated?

Uncertainty propagation
via e.g. Monte Carlo
sampling

Distribution
functions,
including a
parameter of
dispersion (e.g.
variance)

2. What is the likelihood that one
product alternative performs bet-
ter than the other?
3. Does the environmental impact
of a product exceed the allowed
boundary?
4. What is the confidence interval
of the mean model output?
5. What happens to the output
variance when input uncertainties
are reduced?

C. Uncertainty analysis (including correlations)
1. Do correlations between pa-
rameters decrease the output vari-
ance?

Uncertainty propaga-
tion adjusted for corre-
lated parameters, or:

Distribution
functions, covari-
ance, or:

2. What is the effect of ignoring
correlations?

analytical uncertainty
propagation adjusted for
correlated parameters

covariance

3. Will ignoring correlations affect
decisions?
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Table 8.3: Methods for uncertainty analysis and sensitivity analysis corre-
sponding to research questions addressed [continued from Table (8.2)].

Research questions correspond-
ing to type of uncertainty or sen-
sitivity analysis

Preferred method in
this thesis

Data require-
ments

D. Global sensitivity analysis (neglecting correlations)
1. On which parameters should
improved data collection be fo-
cused?

Method of elementary
effects, or:

Range, or:

2. Which parameters are most
important for the output uncer-
tainty?

Regression- (or
correlation-) based
method, or:

distribution func-
tions, or:

3. Of which parameters should
(epistemic) uncertainties be re-
duced to improve reliability of re-
sults?

key issue analysis variance

4. Which parameters can be set to
a fixed value to decrease data col-
lection efforts of future studies?

Regression- (or
correlation-) based
method, or:

Distribution
functions, or:

5. Which parameters contribute
most to the output variance?

key issue analysis variance

6. Can decreasing epistemic un-
certainties of the most important
input parameters reduce the out-
put variance?

E. Global sensitivity analysis (including correlations)
1. Which parameters can be set to
a fixed value to decrease data col-
lection efforts of future studies?

Regression- (or
correlation-) based
method, or:

Distributions
functions, covari-
ance, or:

2. Which parameters contribute
most to the output variance?

key issue analysis
adjusted for correlated
input parameters

covariance

3. Does correlation influence the
importance of input parameters?
4. Can correlations be ignored?
5. On which correlation coeffi-
cients should data collection be fo-
cused?
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High 

Low 

Importance 

High Low Influence 

Minor parameters Influential parameters 

Important parameters Essential parameters 

Figure 8.1: Parallel incorporation of local and global sensitivity analysis.
Adapted from Heijungs [1996].

8.3.2 Combining local and global sensitivity analysis

Environmental impact assessment models, such as LCA, are based on many
input parameters; therefore, it might be difficult to collect high quality data
for all input parameters. A parallel implementation of local and global sensi-
tivity analysis, such as in Chapter 2 and Chapter 6, gives a direct overview of
the most influential (identified by a local sensitivity analysis) and important
(identified by a global sensitivity analysis) model parameters. Parameters that
are considered to be both influential and important, are considered to be the
most essential parameters in the model, and can be used to further improve
reliability or for development of mitigation strategies (Figure 8.1).

The importance of a parameter can originate from variability or epistemic
uncertainty. A distinction between variability and uncertainty may in prac-
tice not be straightforward. However, it facilitates directions of mitigation
strategies, which can be focused on essential parameters containing natural
variability, and improvement of reliability, which can be focused on essential
parameters that contain epistemic uncertainties (Figure 8.1).

Examples of parameters that are important, but not influential, are N-
fertiliser rates of crop cultivation (as we showed in Chapter 6). The importance
of these parameters is caused by, for example, variability in N-fertiliser rates
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between years. An example of parameters that are influential, but not impor-
tant are parameters that can be estimated very accurately, for example, the
production of N fertilisers, and can for example be improved by innovations.

In Chapter 2, we focused on developing mitigation strategies and improv-
ing reliability of results. By combining local and global sensitivity analysis the
most essential input parameters for environmental impact assessment in the
pork production chain can be identified. Combining the results of these two
analyses allowed to derive mitigation options, either based on innovations
(e.g. novel feeding strategies) or on management strategies (e.g. reducing
mortality rate), and to formulate options for improving reliability of results
(e.g. decreasing epistemic uncertainties). Also reliability could be improved if
data quality of the most essential parameters were improved.

In Chapter 6, we focused on improving reliability of results only. By com-
bining a local and a global sensitivity analysis, parameters could be deter-
mined which are essential to assess GHG of milk production, focusing only
on the reliability of the results. Essential parameters are the emission factor of
CH4 emissions from enteric fermentation, milk yield; DM feed intake of the
dairy cows and the emission factor of direct N2O emission of crop cultivation.
Future research can focus on reducing uncertainty and improving data quality
of the most essential parameters.

A local and global sensitivity analysis should, therefore, be seen as com-
plementary. Moreover, in most environmental impact assessment models,
data availability is limited and combining local and global sensitivity anal-
ysis makes sure that parameters are not overlooked.

8.4 Conclusions

This thesis shows that using a systematic approach for uncertainty analysis
and sensitivity analysis improves overall reliability, reduces efforts for im-
proved data collection and supports the development of potential mitigation
strategies, especially for case studies of food production, where epistemic un-
certainty and variability are ubiquitous.

Methods for uncertainty analysis and sensitivity analysis can be selected
depending on the available data and the research question. By combining a
local and global sensitivity analysis, we can identify the most essential input
parameters for environmental impact assessment. This leads to more insight
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in the influence and the uncertainty around the input parameters on the re-
sults, also when data availability is limited. This also allows deriving mitiga-
tion options in food production. Moreover, improving the value of uncertainty
and sensitivity analysis in environmental impact assessment models, specifi-
cally in life cycle assessment (LCA) and nutrient balance (NB) studies, can be
increased by standardising the use of definitions and methods.

More specifically:

• Uncertainty propagation in LCA using a sampling method leads to more
(directly) usable information compared to analytical uncertainty propa-
gation (Chapter 3).

• The choice for a method for global sensitivity analysis depends on the
available data, the magnitude of the uncertainties in input data and aim
of the study (Chapter 4).

• It can be predicted that including correlations among input parameters
in uncertainty propagation in LCA can increase or decrease output vari-
ance. The effect of ignoring correlations on the output variance and
the global sensitivity indices can be quantified, based on minimum data
requirements (Chapter 5).

• Including uncertainty influences the outcome of decision-making tools.
Reducing (epistemic) uncertainty of input parameters can significantly
improve benchmarking of environmental performance. (Chapter 7).
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Summary

Production of food contributes to climate change. To develop strategies to
produce food with a low environmental impact, environmental assessment
models, such as life cycle assessment (LCA) or nutrient balance (NB) analysis
are applied. Input data required for these models, may vary due to seasonal
changes, geographical conditions or socio-economic factors. Moreover, input
data may be uncertain, due to measurement errors and observational errors
that exist around modelling of emissions and technical parameters. Although
agricultural activities and food production are prone to natural variability and
epistemic uncertainty, very few case studies made a thorough examination of
the effects of variability and uncertainty on the result.

This thesis aimed to enhance understanding the effects of variability and
uncertainty on the results. This was done by exploring how uncertainty anal-
ysis and sensitivity analysis can help to reduce the efforts for data collection,
support the development of mitigation strategies and improve overall relia-
bility, leading to more informed decision making in environmental impact
assessment models. To that end, methods for uncertainty analysis and sen-
sitivity analysis were combined, and the effect of correlations in uncertainty
propagation and global sensitivity analysis were explicitly accounted for. To
be able to formulate case study specific suggestions that could improve relia-
bility and point to potential mitigation strategies in food production, methods

225



were applied to case studies of dairy and pork production.
To derive mitigation options and improve reliability in the assessment of

greenhouse gas emissions (GHGs) along the pork production chain, two sen-
sitivity methods were combined: the multiplier method and the method of
elementary effects. The multiplier method showed how much the input pa-
rameter influences the assessment of GHGs, whereas the method of elemen-
tary effects showed the importance of input parameters on the output uncer-
tainty. By combining the result of the multiplier method and the method of
elementary effects, the essential parameters were identified. Results of this
study showed that the most essential input parameter are the feed conver-
sion ratio, the amount of manure, CH4 emissions from manure management
and crop yields, especially maize and barley. Combining the results of both
methods allowed finding mitigation options, either based on innovations (e.g.
novel feeding strategies) or on management strategies (e.g. reducing mortality
rate). Furthermore, reliability could be improved by increasing data quality
of the most essential parameters (Chapter 2).

Uncertainty propagation in environmental impact assessment models such
as LCA, are usually performed using Monte Carlo sampling. However, other
methods for uncertainty propagation are available, and it was unknown which
method performed best. Monte Carlo sampling, Latin hypercube sampling,
quasi Monte Carlo sampling, analytical uncertainty propagation and fuzzy in-
terval arithmetic were compared based on convergence rate and output statis-
tics. Each method was tested on three LCA case studies, which differed in size
and behaviour. Results showed that uncertainty propagation in LCA using a
sampling method leads to more (directly) usable information compared to
fuzzy interval arithmetic or analytical uncertainty propagation. Latin hyper-
cube and quasi Monte Carlo sampling provide more accuracy in determining
the population mean than Monte Carlo sampling and can even converge faster
than Monte Carlo sampling for some of the case studies discussed (Chapter 3).

Global sensitivity analysis in environmental impact assessment models,
such as LCA, can be performed using several different methods. However,
which method is most suitable was unknown. Five methods and coefficients
that can be used for global sensitivity analysis were compared: standard-
ised regression coefficient, Spearman correlation coefficient, key issue anal-
ysis, Sobol’ method and random balance design. To be able to compare the
performance of global sensitivity methods, two hypothetical case studies were
constructed. The comparison of the sensitivity methods was based on four as-



pects: (I) sampling design, (II) output variance, (III) explained variance, and
(IV) contribution to output variance of individual input parameters. Key issue
analysis does not make use of sampling and was fastest, whereas the Sobol’
method had to generate two sampling matrices, and therefore, was slowest
(I). The total output variance (II) resulted in approximately the same output
variance for each method, except for key issue analysis, which underestimated
the variance especially for high input uncertainties. The explained variance
(III) and contribution to variance (IV) for small input uncertainties, was opti-
mally quantified by standardised regression coefficients and the main Sobol’
index. For large input uncertainties, Spearman correlation coefficients and the
Sobol’ indices performed best. We concluded that the standardised regression
coefficients, Spearman correlation coefficients or key issue analysis could be
used for global sensitivity analysis in environmental impact assessment mod-
els (Chapter 4).

Incorporation of uncertainty propagation in LCA is nowadays widely ac-
knowledged. Currently, most LCA studies that include uncertainty analysis
ignore correlations between input parameters during uncertainty propagation,
due to unfamiliarity with methods that include correlations or lack of data.
The effect of ignoring these correlations on the output variance, however, re-
mains unclear: it is not known if and under which conditions it can lead to
erroneous conclusions. Two approaches to include correlations between in-
put parameters during uncertainty propagation were studied: an analytical
approach and a sampling approach. The use of both approaches is illustrated
for an artificial case study of electricity production. Results demonstrated
that that both approaches yield approximately the same output variance and
sensitivity indices for this specific case study. Furthermore, we demonstrated
that the analytical approach can be used to quantify the risk of ignoring cor-
relations between input parameters during uncertainty propagation in LCA.
We concluded that: (1) we can predict if including correlations among in-
put parameters in uncertainty propagation will increase or decrease output
variance; (2) we can quantify the risk of ignoring correlations on the output
variance and the global sensitivity indices. Moreover, this procedure requires
only little data regarding the input parameters (Chapter 5).

LCA of dairy products such as milk, require many input parameters that
are often affected by variability and uncertainty. Moreover, correlations may
be present between input parameters, e.g. between feed intake and milk yield.
Three diets corresponding to three grazing systems (zero-, restricted and un-



restricted grazing) were selected, which were defined to aim for a given milk
yield. First, a local sensitivity analysis was used to identify which parameters
influence GHG emissions most. Second, a global sensitivity analysis was used
to identify which parameters are most important to the output variance. The
global sensitivity analysis included correlations between feed intake and milk
yield and between nitrogen (N) fertiliser rates and crop yields. The local and
global sensitivity analyses were combined to determine which parameters are
essential. Finally, we analysed the effect of changing the most important corre-
lation coefficient (between feed intake and milk yield) on the output variance
and global sensitivity analysis. The mean GHG emissions for 1 kg energy
corrected milk ranged from 1.08 to 1.12 kg CO2 e, depending on the grazing
system. The most essential parameters were the CH4 emission factor of en-
teric fermentation, milk yield, feed intake, the direct N2O emission factor of
crop cultivation For both grazing systems, the N2O emission factor for graz-
ing also turned out to be important. In addition, the correlation coefficient
between feed intake and milk yield turned out to be important. Moreover,
systematically combining the local and global sensitivity analysis resulted in
more parameters than previously found (Chapter 6).

A nutrient balance quantifies differences in nutrients entering and leaving
the system and can be expressed in e.g. nutrient use efficiency (NUE). NUE is
commonly used to benchmark the environmental performance of dairy farms.
Benchmarking farms, however, may lead to biased conclusions because of dif-
ferences in major decisive characteristics between farms, such as soil type and
production intensity, and because of epistemic uncertainty of input parame-
ters. To compare NUE of farms, farms were clustered based on similar charac-
teristics, which resulted in farming systems. Farming system 1 was located on
sandy soils and were more intensive in terms of milk production than farms in
farming system 2. Farming system 2 was located on loamy soils. First, Monte
Carlo sampling was used to propagate input uncertainties through the nutri-
ent balance. Including the epistemic uncertainty of input parameters showed
that benchmarking NUE of farms in farming system 1 was no longer possible,
whereas farms in farming system 2 could still be ranked when uncertainty
was included. Second, a global sensitivity analysis was performed to quantify
how much the input parameters contributed to the output variance, using the
squared standardised regression coefficients. Input parameters that explained
most of the output variance differed between framing systems. For farming
system 1, input of feed and output of roughage were most important. For



farming system 2, the input of mineral fertiliser was most important. Third,
the uncertainty of the parameters explaining most of the output variance was
reduced to examine if this would improve benchmarking results. After reduc-
ing the uncertainties of the most important parameters, benchmarking results
significantly improved (Chapter 7).

Improving the value of uncertainty analysis and sensitivity analysis in en-
vironmental impact assessment models, specifically in LCA and NB analysis,
would benefit from standardising the use of definitions and methods. Cur-
rently in the ISO standard for LCA, there is no method recommended for
either a local nor global sensitivity analysis. Developing a standardised defi-
nition and method for global sensitivity analysis in LCA and NB studies, will
increase comprehensibility between studies and will enhance the comparison
of results between studies. The uncertainty analysis or sensitivity analysis to
be applied depends on the question to be addressed and the available informa-
tion. However, in most environmental impact assessment models, data avail-
ability is limited and combining local and global sensitivity analysis makes
sure that parameters are not overlooked. A local and global sensitivity anal-
ysis should, therefore, be seen as complementary. Moreover, we concluded
that both sampling approach for uncertainty propagation and analytical un-
certainty propagation are indispensable in environmental impact assessment
models. The analytical approach is especially useful when data is limited. In
contrast, the sampling approaches are more suitable when full knowledge is
available (Chapter 8).

This thesis showed that using a systematic approach to uncertainty and
sensitivity analysis improves overall reliability, reduces efforts for improved
data collection and supports the development of potential mitigation strate-
gies, especially for case studies of food production, where epistemic uncer-
tainty and variability are ubiquitous.





Populair-wetenschappelijke samenvatting
(Summary in Dutch)

Achtergrond

De productie van voedsel kan nadelige gevolgen voor het milieu hebben, zoals
een bijdrage aan klimaatverandering door de uitstoot van broeikasgassen. De
belangrijkste broeikasgassen in de landbouw zijn CO2 (koolstofdioxide), N2O
(lachgas) en CH4 (methaan). De uitstoot van broeikasgassen tijdens voedsel-
productie vindt bijvoorbeeld plaats bij bemesting van landbouwgrond (in de
vorm van CO2 en N2O), verbranding van fossiele brandstoffen bij transport
van veevoer ingrediënten (in de vorm van CO2) en tijdens de mestopslag (in
de vorm van CH4). Om deze vervuiling terug te dringen, moeten eerst de
desbetreffende productieprocessen in kaart gebracht worden.

Echter, productieprocessen in de landbouw zijn onderhevig aan natuurlijke
variatie: externe invloeden, zoals van het weer en klimaat. Daarnaast zijn alle
cijfers ook nog onderhevig aan epistemische onzekerheid: ze kunnen meetfouten
bevatten, of men weet niet zeker of de cijfers die worden gebruikt ook wel
exact hetzelfde productieproces weerspiegelen. De cijfers die nodig zijn als
invoer van een model om de milieu-impact van een product te berekenen,
zijn dus onderhevig aan onzekerheden. Dit leidt tot onzekerheid rondom
de uitkomst van een milieu-impact model. Daarmee lijkt het meenemen van
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onzekerheid in eerste instantie alleen maar te leiden tot nog meer vragen:
hoe beïnvloedt natuurlijke variatie de modeluitkomst? Zijn de verschillen die ik vind
in de modeluitkomst nog wel significant als ik onzekerheden meeneem van de input
variabelen? Welke variabelen zijn verantwoordelijk voor de meeste spreiding rondom
de uitkomst? Over deze vragen, en nog vele anderen, gaat dit proefschrift.

Een uitleg van de schuingedrukte terminologie en methodes, die gebruikt
worden in dit proefschrift, is terug te vinden in de kaders.

Onzekerheid: in de context van dit proefschrift is het een parapluterm voor zowel na-
tuurlijke variatie (variatie door verschillen in klimaat, weersinvloeden, menselijk han-
delen) als epistemische onzekerheid (onzekerheid door gebrek aan kennis maar ook
bijvoorbeeld meetfouten, of ontbrekende data). Spreiding: de gekwantificeerde onze-
kerheid rondom een datapunt van een input variabele of een output variabele. Standaard-
afwijking: spreiding van een dataset, bijvoorbeeld van de normale verdeling. Distri-
butiefunctie: de kansverdeling waarmee een variabele beschreven wordt, bijvoorbeeld
bij een standaard normale verdeling vallen 99.7% van de waardes van de kansverdeling
binnen ±3x de standaardafwijking van de gemiddelde waarde van de verdeling. Corre-
latie: (lineaire) samenhang tussen twee grootheden.

Doel van dit proefschrift

Het doel van mijn proefschrift is de betrouwbaarheid verbeteren van modellen
die milieu-impacts kwantificeren, gebruik makend van methodes voor onze-
kerheidsanalyse en gevoeligheidsanalyse. Hiervoor heb ik verschillende methodes
met elkaar vergeleken en expliciet gekeken naar het effect van correlatie op
de spreiding rondom de uitkomst van milieu-impact modellen. Alle methodes
gebruikt in dit proefschrift zijn toegepast op voedselproductiesystemen.

Gevoeligheid: hoe sterk een variabele doorwerkt op de modeluitkomst. Er bestaan drie
soorten gevoeligheidsanalyses: (1) lokale gevoeligsheidsanlyse: kwantificeert wat er ge-
beurt met de modeluitkomst als de input variabelen één voor één een heel klein beetje
worden veranderd; (2) screening analyse: kwantificeert wat er gebeurt met de modeluit-
komst als de input variabelen één voor één worden veranderd tussen hun daadwerke-
lijke minimum en maximum waardes; (3) globale gevoeligheidsanalyse: kwantificeert
hoeveel van de spreiding rondom de output variabele kan worden verklaard door de
input variabelen, door middel van de gevoeligheidsindex.



Enkele resultaten uitgelicht

In Hoofdstuk 2 worden twee methodes voor gevoeligheidsanalyse gecombi-
neerd: de “multiplier methode" (een lokale gevoeligheidsanalyse) en de “me-
thode van elementaire effecten" (een screening methode). De methodes worden
toegepast op een productie systeem in de varkenshouderij, inclusief de keten
voorafgaand aan de houderij, zoals de productie van de veevoer ingrediënten.
De resultaten van beide methodes worden met elkaar gecombineerd om tot
suggesties tot reductie van milieu-impacts te komen en om betrouwbaarheid
van de modeluitkomst te verhogen.

Variabele: een grootheid in het model, bijvoorbeeld brandstof (in liter), elektriciteit (in
kWh) of broeikasgas (in kg CO2). De variabelen die het model ingaan worden input
variabelen genoemd, de modeluitkomst wordt ook wel de output variabele genoemd.
Bijvoorbeeld, om de totale broeikasgassen van melk te bepalen is 10 liter diesel nodig.
In dit geval is 10 de variabele (ook al varieert deze niet daadwerkelijk). Het kan ook zijn
dat er gemiddeld 10 liter diesel nodig is, maar dat er een spreiding om dit gemiddelde
ligt met een standaardafwijking van 0.5. In dat geval is de variabele gelijk aan de dis-
tributiefunctie, met een gemiddelde van 10 en een standaardafwijking van 0.5. Model:
in de context van dit proefschrift gaat het om modellen die de milieu-impact van een
productiesysteem bepalen. Deze modellen bevatten meerdere input variabelen (meestal
in de orde van enkele honderden) en meestal één output variabele, bijvoorbeeld het
broeikasgas CO2.

In Hoofdstuk 3 en 4 worden verschillende methodes voor onzekerheids-
en globale gevoeligheidsanalyse met elkaar vergeleken op verschillende aspecten:
(1) type onzekerheidspropagatie (wel of geen gebruik makend van sampling), (2)
hoe goed ze zijn in het bepalen van de spreiding rondom de uitkomst , en (3)
hoe goed ze zijn in het verklaren van spreiding rondom de uitkomst. Metho-
des die het meest geschikt zijn (binnen milieu-impact modellen) zijn Monte
Carlo simulatie voor onzekerheidspropagtie en op regressie gebaseerde metho-
den voor globale gevoeligheidsanalyse, de ‘kwadratisch gestandaardiseerde
regressie coefficient’ fungeert dan als de gevoeligheidsindex.



Onzekerheidspropagatie: het voortplanten van onzekerheden rondom input variabelen
door een model, wat resulteert in onzekerheid in de output variabele van dat model.
Onzekerheidsanalyse: analyseren van de onzekerheid van de uitkomst, bijvoorbeeld het
bepalen van de spreiding, of het vergelijken van twee distributiefuncties. Sampling: het
trekken van random getallen uit een distributiefunctie. Bijvoorbeeld: uit een uniforme
verdeling tussen 0 en 1, kunnen de eerste drie samples zijn: 0.1; 0.8; 0.2. Monte Carlo
simulatie: door middel van sampling de spreiding rondom de output variabele van een
model schatten.

In sommige gevallen is er sprake van correlatie tussen de spreiding van
twee (of meer) variabelen binnen een model. Binnen de landbouw kan men
bijvoorbeeld denken aan een correlatie tussen voerinname en melkproductie
van een koe. Als de voerinname en melkproductie beiden variëren zullen
deze twee variabelen gelijk optrekken, maar niet helemaal: de temperatuur in
de stal, de samenstelling van het voer, de gezondheid van de koe, kunnen ook
allemaal invloed hebben op deze onderlinge afhankelijkheid. Het is echter
vaak lastig om de waarde voor de correlatiecoëfficiënt boven tafel te krijgen,
in sommige gevallen is deze waarde simpelweg niet aanwezig.

In Hoofdstuk 5 wordt, zonder dat vooraf de waarde van de correlatie-
coëfficiënt bekend is, bepaald in welke gevallen correlatie tussen variabelen
genegeerd kan worden. Het blijkt dat, in sommige gevallen, het meenemen
van correlatie geen tot weinig invloed heeft op de spreiding rondom de uit-
komst, noch op de gevoeligheidsanalyse. In deze gevallen is het dus mogelijk
om de correlatiecoëfficiënt te negeren, wat mogelijk veel tijd bespaart die be-
ter besteed kan worden aan het verbeteren van de datakwaliteit van de andere
variabelen. In sommige gevallen is heeft de correlatie wel een groot effect op
de spreiding en de gevoeligheidsanalyse, dan is het dus wel noodzakelijk om
de echte waarde van de correlatiecoëfficiënt te achterhalen. In Hoofdstuk 6
wordt de in Hoofdstuk 5 beschreven procedure toegepast op een productie-
systeem binnen de melkveehouderij. Hier blijkt dat de correlatiecoëfficiënt
tussen voerinname en melkproductie wel degelijk van belang is, en dus niet
zonder meer genegeerd kan worden.

In Hoofdstuk 7 worden de milieu-impacts van verschillende boerenbe-
drijven met elkaar vergeleken op het gebied van efficient nutriënten gebruik.
Vooraf waren de distributiefuncties van alle variabelen bekend. Vervolgens
werden verschillende methodes voor onzekerheids- en gevoeligheidsanalyse
toegepast. De onzekerheidsanalyse liet zien dat het meenemen van epistemi-



sche onzekerheden, er in sommige gevallen toe leidde dat de bedrijven geen
significant verschillend nutrient gebruik hedden. Vervolgens wordt een glo-
bale gevoeligheidsanalyse toegepast, waardoor de variabelen konden worden
bepaald die het meest bijdroegen aan de spreiding van de uitkomst. Vervol-
gens worden de standaardafwijkingen van de belangrijkste variabelen in het
model verkleind, wat leidt tot meer onderling verschillende bedrijven.

In Hoofdstuk 8 worden enkele aanbevelingen gedaan, die zich erop rich-
ten de betrouwbaarheid van toekomstige studies met behulp van milieu-impact
modellen te vergroten. Ten eerste, het standaardiseren van methoden voor
onzekerheids- en gevoeligheidsanalyse in wetenschappelijke literatuur leidt er
toe dat de onderlinge vergelijkbaarheid tussen studies verbetert. Ten tweede,
het in tandem uitvoeren van lokale en globale gevoeligheidsanalyse geeft be-
ter inzicht in de meest essentiële variabelen dan het toepassen van slechts
één methode, met name voor variabelen waarvoor het niet mogelijk is om
een spreiding te vinden. Ten derde, door vooraf de grootte van het effect
van correlaties tussen input variabelen op de modeluitkomst te bepalen (zoals
beschreven in Hoofdstuk 5), kan het risico van het negeren op de spreiding
rondom de modeluitkomst worden bepaald.

Deze drie punten dragen bij aan het vergroten van de betrouwbaarheid
van milieu-impact modellen, en dragen daarmee bij aan het formuleren van
strategieën om toekomstige milieu-impact van voedselproductie verder te re-
duceren.
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