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Abstract 
Mahlet Teka Anche. (2016). Estimating host genetic effects on susceptibility and 
infectivity to infectious diseases and their contribution to response to selection. 
PhD thesis, Wageningen University, the Netherlands 

Genetic approaches aiming to reduce the prevalence of an infection in a population 
usually focus on improving host susceptibility to an infection. The prevalence of an 
infection, however, is also affected by the infectivity of individuals. Studies 
reported that there exists among host (genetic/phenotypic) variation in 
susceptibility and infectivity to infectious diseases. The effect of host genetic 
variation in susceptibility and infectivity on the prevalence and risk of an infection 
is usually measured by the value of the basic reproduction ratio, R0. R0 is an 
important epidemiological parameter that determines the risk and prevalence of 
an infection. It has a threshold value of 1, where major disease outbreak can occur 
when R0 > 1 and the disease will die out when R0 < 1. Due to this threshold 
property, genetic improvements aiming to reduce the prevalence of an infection 
should focus on reducing R0 to a value below 1. The overall aim of this thesis was to 
develop methodologies that allow us to investigate the genetic effects of host 
susceptibility and infectivity on the prevalence of an infection, which is measured 
by the value of R0. Moreover, we also aim to investigating the effect of relatedness 
among groupmates on the utilization of among host genetic variation in 
susceptibility and infectivity so as to reduce the prevalence of infectious diseases. 
The theory of direct-indirect genetic effects and epidemiological concepts were 
combined to develop methodologies. In addition, a simulation study was 
performed to validate the methodologies developed and examine the effect of 
relatedness on the utilization of genetic variation in susceptibility and infectivity. It 
was shown that an individual’s genetic effect on its susceptibility and infectivity 
affect the prevalence of an infection and that an individual’s breeding value for R0 
can be defined as a function of its own allele frequencies for susceptibility and 
infectivity and of population average susceptibility and infectivity. Moreover, 
simulation results show that, not only an individual’s infectivity but also an 
individual’s susceptibility represents an indirect genetic effect on the disease status 
of individuals and on the prevalence of an infection in a population. It was shown 
that having related groupmates allows breeders to utilize the genetic variation in 
susceptibility and infectivity, so as to reduce the prevalence of an infection. 



 
 

 
 
 
 



By the strength of The One 



 
 

 
 

 



Contents 

11  1 – General introduction 

23 2 – On the definition and utilization of heritable variation among hosts in 
reproduction ratio R0 for infectious diseases 

63 3 – Genetic analysis of infectious diseases: estimating gene effects for 
susceptibility and infectivity 

99  4 – The effect of polymorphisms in major histocompatibility complex (MHC) 
on individual susceptibility and infectivity to nematode infection in Scottish 
Blackface sheep 

121  5 – Estimating genetic co(variances) and breeding values for host 
susceptibility and infectivity from the final disease status of hosts exposed 
to epidemics in group-structured populations 

149 6 – General discussion 

169 Summary 

173 Curriculum Vitae 

177 Training and education 

181 Acknowledgements 

185 Colophon 





1 
General introduction 





1 General introduction 

13 

1.1 Introduction 

Infectious diseases impose a worldwide concern to the sustainability of livestock 

production, particularly due to their impact on the welfare and productivity of 

livestock. In addition to this, the fact that infectious diseases impose a threat to 

human health due to their zoonotic effect has raised the need to reduce the threat 

imposed by infectious diseases. In the past few decades, the existence of heritable 

variation among individuals in their response to different infectious diseases has 

been reported by studies on quantitative genetics of livestock diseases (Nicholas, 

2005). These findings have, therefore opened the door for animal breeders to use 

selective breeding for livestock with an improved response to infectious diseases as 

a complementary method to existing disease control strategies in order to reduce 

the impact of infectious diseases. 

 Among others, individual susceptibility and infectivity are important disease-

related traits that influence the transmission of an infection in a population. 

Individual susceptibility is the probability of an individual to become infected given 

it is exposed to a typical (average) infectious individual, whereas individual 

infectivity is the rate at which an individual transmits the infection to a typical 

susceptible individual. It is clear that there is phenotypic variation among 

individuals for these disease-related traits, which will impact the transmission and 

prevalence of an infection in the population. These traits might have genetic basis 

and it is therefore likely, that there exists among-individual genetic variation. 

Understanding the impact of genetic variation in these disease-related traits on the 

transmission of an infection, however, requires modelling of the disease dynamics 

in such a heterogeneous population. 

1.2 Epidemiology of infectious diseases 

Epidemiological modelling of disease dynamics involves the study of the 

mathematics underlying the change in number of infected individuals over time. A 

classical model used in these studies is the SIR model, where S stands for 

Susceptible, I for Infected, and R for Recovered. The SIR model is one of the 

variants of compartmental models that can be used to model disease dynamics in a 

population. The models can be implemented either deterministically or 

stochastically (Addy et al., 1991; Kermack and McKendrick, 1991a, b, c; Velthuis et 

al., 2007). In the classical SIR model, individuals move through the states in the 

order S → I → R. With stochasticity, these transmission events, i.e. S → I and I → R, 

occur with a certain rate (probability per unit of time) that is specified by the model 

parameters. These rates are the transmission rate 𝛽𝑆𝐼 𝑁⁄  for S → I with a 
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transmission rate parameter 𝛽, and the recovery rate  𝛼𝐼 for I → R with a recovery 

rate parameter 𝛼. Note that the symbols S, I and R denote both the disease status 

and the number of individuals with that disease status. The transmission rate 

parameter 𝛽 is the probability per unit of time that a typical infectious individual 

infects another individual in a totally susceptible population (Diekmann et al., 1990; 

Anderson et al., 1992). The recovery rate parameter α is the probability per unit of 

time for an infective individual to recover from an infection. In other words, for 

constant α, the infectious period is exponentially distributed with a mean duration 

of α
-1

 time units. 

 To facilitate the understanding of the basic SIR model, we use the deterministic 

equivalent of the stochastic SIR model that can be formulated in terms of ordinary 

differential equation as follows: 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 𝑁⁄  

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 𝑁⁄ − 𝐼𝛼 

𝑑𝑅

𝑑𝑡
= 𝛼𝐼 

where N is the total population size and, N = S + I + R. 

 In the basic SIR-model, an individual begins the transmission process as a 

susceptible individual, which can become infected by another individual that has 

been infected some time ago. The first equation describes the change in the 

number of susceptible individuals (𝑆) through time. The probability that a random 

contact of a susceptible is with an infectious individual is 𝐼 𝑁⁄ . Therefore, the rate 

at which infections occur is the product of the number of susceptible individuals 

(𝑆), the probability that a random contact of a susceptible individual is with an 

infectious individual 𝐼 𝑁⁄ , and the transmission rate parameter 𝛽. Thus, the rate of 

change in the number of susceptibles is given by −𝛽𝑆𝐼 𝑁⁄ . The second equation 

describes the change in the number of infected individuals (I) through time. This 

number increases due to susceptibles becoming infected, at a rate 𝛽𝑆𝐼 𝑁⁄ , and 

decreases either by complete recovery or death with a rate of recovery 𝛼𝐼. The last 

equation describes the change in the number of recovered. Figure 1.1 shows the 

change in the number of susceptible and infected individuals through time. 

 In epidemiology, an important population parameter that determines the risk 

and severity of an infection in the population is the basic reproduction ratio, R0. R0 

is the average number of new infected individuals (cases) produced by a typical 

infectious individual during its entire infectious lifetime in an otherwise naïve 

population. R0 has a threshold value of 1, which determines whether a major 
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disease outbreak can occur or whether the endemic equilibrium can exist. When R0 

< 1, only minor outbreaks can occur and the disease will die out. On the other 

hand, when R0 > 1, major outbreaks can occur and affect a larger fraction of the 

population, or an endemic equilibrium can exist.  

 In epidemiology, an infection is said to be endemic when the infection persists 

in the population with a certain fraction of individuals being infected all the time. 

Hence, all the time new infections will occur. These new infections could be due to 

the loss (lack) of immunity of the recovered individuals or due to the introduction 

of new susceptible individuals to the population. A steady state or an equilibrium 

exists when every infected individual passes the infection on to a single other 

individual on average. Thus, the average number of cases that an infectious 

individual produces, which is the effective reproduction ratio RE must be 1. In this 

case, the disease will neither die out nor increase exponentially. For endemic 

diseases, we thus have 𝑅𝐸 =  
𝑆

𝑁
𝑅0 = 1, where the fraction of individuals that is 

infected is given by 1 −
𝑆

𝑁
= 1 − 1/𝑅0 (where N is the total population size). Figure 

1.2 shows the relationship between the fraction infected and the basic 

reproduction ratio, which shows that the fraction that gets infected 1 −
𝑆

𝑁
 increases 

with increasing R0. 

 For epidemic diseases, the number of individuals that gets infected increases 

initially exponentially, but eventually only a fraction of individuals gets infected. 

This fraction is known as the final size,  1 − 𝑠∞. The final size is also a function of R0, 

and is given as the solution of the final size equation, ln 𝑠∞ = 𝑅0(𝑠∞ − 1) (Kermack 

and McKendrick, 1991a). Figure 1.2 shows the relationship between the value of R0 

and the fraction of individuals that gets infected by the end of an epidemic, 1 − 𝑠∞. 

For different values of R0, the final size of the epidemic varies, increasing with 

increasing the value of the R0. Note that the change in outcome (Figure 1.2) is the 

steepest near R0 = 1. 

 Thus, for both endemic and epidemic diseases, a breeding strategy to reduce 

the prevalence of an infection should reduce the value of the reproduction ratio R0, 

preferably to a value below 1.  

 Breeding for reduced R0, however, will involve a conceptual difference between 

quantitative genetics and epidemiology. In epidemiology on the one hand, R0 is a 

parameter referring to the whole population. In quantitative genetics on the other 

hand, breeding values are used which are properties of single individuals. Thus, 

breeding for reduced R0 requires defining the breeding value of all individuals for R0 

and from that the heritable variation for R0. 
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 Moreover, even though breeding for lower R0 would be an obvious goal for an 

epidemiologist who aims to reduce the prevalence of an infection, it might not be 

obvious for animal breeders. For animal breeders, using individual disease status 

(0/1) as a selection criterion would be more common. As mentioned above, 

however, the fraction of infected individuals, for both endemic and epidemic 

diseases, is coupled with the value of R0. Thus, breeding for reduced R0 will reduce 

the fraction of individuals that gets infected, which in turn reduces the disease 

incidence and prevalence in the population.  

 R0 is an emergent trait that arises when different individuals (susceptible and 

infectious) interact. As mentioned above, however, breeding for reduced R0 

requires defining individual breeding values for R0. Bijma (2011) has shown that 

results from the field of indirect genetic effects (IGEs) can be used to define 

individual breeding values for traits that are a property of the population, such as 

R0 (which is discussed in the 2
nd

 chapter of this thesis). In the next section of this

chapter, I will, therefore, briefly discuss what IGEs are and their role in the 

transmission of an infection in a population.  

Figure 1.1. Change in the number of susceptible S(t) (green dotted line) and 

infected individuals I(t) (red continuous line) through time, t. 
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1.3 Indirect genetic effects (IGEs) 

In classical quantitative genetics, the phenotypic value of an individual is 

decomposed into a heritable component 𝐴𝑖, known as the breeding value and non-

heritable environmental component 𝐸𝑖  (Lynch and Walsh, 1998). Thus, the 

phenotypic value can be written as: 

𝑃𝑖 = 𝐴𝑖 + 𝐸𝑖       [1] 

 In this equation, an individual’s breeding value 𝐴𝑖  is the sum of the average 

effect of genes carried by the individual on its own trait value. Because the 

breeding value affects the trait value of the individual itself, it is known as a direct 

genetic effect (DGEs).  

 In the presence of (social) interactions, however, an individual’s phenotypic 

value is also affected by the genes of its 𝑛 − 1 (where n denotes group size) 

groupmates. These effects on the phenotype are known as indirect genetic effects 

(IGEs) (Griffing, 1967). IGEs, which are also known as social or associative effects, 

are heritable effects of an individual on the phenotypic value of other individuals 

(Griffing, 1967, 1976, 1981; Moore et al., 1997; Wolf et al., 1998).  

Thus, in the presence of (social) interaction, the phenotypic value of an individual is 

modelled as: 

𝑃𝑖 = 𝐴𝐷,𝑖 + 𝐸𝐷,𝑖 + ∑ 𝐴𝐼,𝑗
𝑛−1
𝑗=1 + ∑ 𝐸𝐼,𝑗

𝑛−1
𝑗=1   [2] 

where 𝑃𝑖  is phenotypic value of individual i, 𝐴𝐷,𝑖  is the direct genetic effect of an 

individual’s genes on its own trait value, 𝐸𝐷,𝑖  is the non-heritable direct effect, 𝐴𝐼,𝑗  

is indirect genetic effect of all genes arising from individual j (j≠i) which is one of 

the (𝑛 − 1) groupmates of individual i, and 𝐸𝐼,𝑗  is the non-heritable indirect effect. 

When groupmates are unrelated, phenotypic variance is given by, 

𝜎𝑃
2 =  𝜎𝐴𝐷

2 + (𝑛 − 1)𝜎𝐴𝐼
2 + 𝜎𝑒

2   [3]

 In the presence of (social) interaction, we can define the total breeding value of 

an individual 𝐴𝑇,𝑖, which is the heritable effect of an individual on the population 

mean. It combines the individual’s direct and indirect genetic effect as follows: 

𝐴𝑇,𝑖 = 𝐴𝐷,𝑖 + (𝑛 − 1)𝐴𝐼,𝑖     [5] 

where 𝐴𝐼,𝑖 is indirect genetic effect of individual i on the trait values of its (𝑛 − 1) 

groupmates. Note that, in contrast to the phenotypic value (Equation 2), the total 

breeding value of an individual originates entirely from the focal individual i. As a 

result, variance in total breeding value which is the heritable variation that is 

available for response to selection will be: 

𝜎𝐴𝑇
2 = 𝜎𝐴𝐷

2 + 2(𝑛 − 1)𝜎𝐴𝐷,𝐼
+ (𝑛 − 1)2𝜎𝐴𝐼

2   [6]

where 𝜎𝐴𝑇
2  is variance in total breeding value, 𝜎𝐴𝐷

2  is variance in DGE, 𝜎𝐴𝐷,𝐼
 is

covariance between DGE and IGE and 𝜎𝐴𝐼
2  is heritable variance in IGEs. Thus, in the
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presence of (social) interaction, IGEs may increase the total heritable variance (𝜎𝐴𝑇
2

> 𝜎𝑃
2) (Griffing, 1967; Bijma et al., 2007).

 IGEs are a common phenomenon in both plants and animals (Frank, 2007). Even 

though IGEs are often considered to be associated with behaviour traits (Muir and 

Craig, 1998; Muir, 2005), they may also work in other ways, for example through 

the exposure to infections. An individual’s infectivity is the propensity of an 

infected individual to infect other susceptible individuals in its proximity. Hence, in 

the context of exposure to infections, individual infectivity can be regarded as an 

IGE of the individual. 

Figure 1.2. Relationship between the basic reproduction ratio R0 and the fraction of 

individual that gets infected ( 𝟏 − 𝒔∞) , for both endemic (red dotted line) and 

epidemic diseases (black dotted line). 

 Both natural and artificial selection will work to exhaust the existing heritable 

variation in traits that are part of individual fitness, such as individual’s 

susceptibility. An individual’s infectivity, on the other hand, is not part of individual 

fitness. This would prevent natural selection to exhaust heritable variation that 

may be present in infectivity. As a result, evolutionary theory predicts that a 

relatively larger heritable variation may be present in infectivity than in 

susceptibility. This indicates that there may accumulate a significant amount of 

heritable variation in infectivity, which can contribute to the total heritable 
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variation that reflects the potential of a population to respond to selection. In the 

next section of this chapter, I will discuss what appears to be lacking in the classical 

quantitative genetic analysis of infectious diseases and the aims of this thesis in an 

attempt to fill this gap.  

1.4 The gap 

Classical quantitative genetics analysis of disease-related traits is usually based on 

binary data, that is, data which solely indicate whether an individual became 

infected or not. In such analysis, only a direct genetic effect of the individual itself is 

usually fitted. Thus, it is implicitly assumed that an individual’s disease status is a 

function only of its own genes, which can be considered as an individual’s direct 

genetic effect (DGE) for susceptibility. Because individuals may infect each other, 

however, the prevalence and dynamics of an infection also depend on indirect 

genetic effects. Accumulating evidence on the existence of “superspreaders” in the 

transmission of an infection, especially in transmission of bacterial infections, 

suggests that there exists among host (phenotypic) variation in infectivity, which 

might have a genetic basis and affect the dynamics and prevalence of an infection 

(Diekmann and Heesterbeek, 2000; Lloyd-Smith et al., 2005).  

 As mentioned above, the existence of variation among individuals for different 

disease-related traits can be seen as an opportunity for animal breeders to use 

selective breeding for improved response to infectious diseases, as a 

complementary method to the existing disease control strategies. Selective 

breeding for reduced impact of infectious diseases, however, has proven difficult 

due to lower heritability estimates reported for the disease-related traits under 

selection (Bishop and Woolliams, 2010). One of the reasons for such low 

heritability estimates could be the failure of the conventional statistical methods 

used in parameter estimation to reflect the true genetic variance present in 

disease-related traits (Lipschutz-Powell et al., 2012a).  

 The standard linear mixed models used in quantitative genetic analysis do not 

capture genetic variation present in IGEs, such as in infectivity. This is because they 

connect the disease status of an individual to its own pedigree. Individual 

infectivity, on the other hand, is observed in the disease status of other individuals 

than the one carrying the gene. Thus standard analysis will overlook the heritable 

variation in infectivity that, when present, may contribute to the total heritable 

variation in the population (Lipschutz-Powell et al., 2012b). 

 Moreover, estimating breeding values and genetic variation in individual 

susceptibility and infectivity from data on individual infection status is 
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methodologically challenging. This is because the linear mixed models that are used 

in classical quantitative genetic analysis of infectious diseases do not take the non-

linear stochastic nature of infection dynamics into account. Thus, the fact that 

classical quantitative genetic analysis of infectious diseases fails to take the IGEs of 

infectivity and the stochastic nature of infection dynamics into account may have 

caused seemingly low heritability estimates for disease traits (Bishop and 

Woolliams, 2010). 

 In this thesis, we aim to fill this gap by developing methodology that takes the 

stochastic nature of an infection and the IGEs of infectivity into account in order to 

achieve the following goals. First, we aim to define breeding values and heritable 

variation for the basic reproduction ratio, R0 (chapter 2). Moreover, studies have 

shown that for traits affected by IGEs, such as individual disease status, group 

selection and relatedness among interacting individuals, increase response to 

selection (Griffing, 1967, 1976, 1981; Bijma and Wade, 2008). In the second 

chapter, we will also investigate selection mechanisms that affect utilization of 

heritable variation in R0. In the 3
rd

 chapter, we will develop a statistical model that

allows us to estimate gene effects for loci affecting susceptibility and infectivity of 

an individual. In this chapter, we will also investigate factors that affect the quality 

of estimates for the gene effects. In chapter 4, we will estimate the effect of major 

histocompatibility complex (MHC) polymorphisms on individual susceptibility and 

infectivity to nematode infection in a population of Scottish Blackface sheep. In 

chapter 5, we will develop a methodology to estimate breeding values and variance 

components for susceptibility and infectivity, and also investigate the effect of 

relatedness on the quality of the estimates. In chapter 6, the general discussion, I 

will discuss three main points in a broader perspective. First, I will discuss the 

breeding value for the basic reproduction ratio R0, and its relation to susceptibility 

and infectivity of an individual. Second, I will discuss selection strategies that can be 

used for reducing R0. Finally, I will discuss the practical implications of the findings 

of this thesis. 
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Abstract 

Infectious diseases have a major role in evolution by natural selection and pose a 

worldwide concern in livestock. Understanding quantitative genetics of infectious 

diseases, therefore, is essential both for understanding the consequences of 

natural selection and for designing artificial selection schemes in agriculture. The 

basic reproduction ratio, R0, is the key parameter determining risk and severity of 

infectious diseases. Genetic improvement for control of infectious diseases in host 

populations should therefore aim at reducing R0. This requires definitions of 

breeding value and heritable variation for R0, and understanding of mechanisms 

determining response to selection. This is challenging, as R0 is an emergent trait 

arising from interactions among individuals in the population. Here we show how 

to define breeding value and heritable variation for R0 for genetically 

heterogeneous host populations. Furthermore, we identify mechanisms 

determining utilization of heritable variation for R0. Using indirect genetic effects, 

next-generation matrices and a SIR (Susceptible, Infected and Recovered) model, 

we show that an individual’s breeding value for R0 is a function of its own allele 

frequencies for susceptibility and infectivity and of population average 

susceptibility and infectivity. When interacting individuals are unrelated, selection 

for individual disease status captures heritable variation in susceptibility only, 

yielding limited response in R0. With related individuals, however, there is a 

secondary selection process, which also captures heritable variation in infectivity 

and additional variation in susceptibility, yielding substantially greater response. 

This shows that genetic variation in susceptibility represents an indirect genetic 

effect. As a consequence, response in R0 increased substantially when interacting 

individuals were genetically related.  

Key words: Reproduction ratio R0, indirect genetic effect, emergent trait, breeding 

values, heritable variation, kin selection 
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2.1 Introduction 

Infectious diseases are widespread in humans, animals and plants. In natural 

populations, infectious diseases have a major role in the process of evolution by 

natural selection (Haldane, 1949; O'Brien and Evermann, 1988). In domestic 

populations, particularly in livestock, infectious diseases are imposing a worldwide 

concern owing to their impact on the welfare and productivity of livestock, and in 

the case of zoonosis, also because of the threat for human health. To contain the 

threat imposed by infectious diseases, different control strategies such as 

vaccination, antibiotic treatments and management practices have been 

implemented widely. However, the evolution of resistance to antibiotics by 

bacteria, evolution of resistance to vaccines by viruses and undesirable 

environmental impacts of antibiotic treatment put these strategies under question 

(Gibson and Bishop, 2005). Thus, there is a need to investigate additional control 

strategies, so as to extend the repertoire of possible interventions. A greater 

repertoire is favourable (1) because it allows for a change in approach when certain 

control measures fail and (2) because the use of combinations of control measures 

make emergence of resistance against control more difficult. 

 Several studies have demonstrated the existence of genetic variation for 

different disease traits for a wide variety of infectious diseases. Examples are 

clinical mastitis and Mycobactrium bovis infections in dairy cattle (Heringstad et al., 

2005). Such studies usually focus on estimating the genetic variance in individual 

disease status. As this approach connects an individual’s own disease status to its 

own pedigree, it only captures heritable variation in susceptibility (or resistance) to 

disease (Lipschutz-Powell et al., 2012). However, host genetic variation may be 

present also in other traits that affect the dynamics of infectious diseases in 

populations. Thus, to use a general term for such other traits, infectivity will also 

have an impact on the transmission of infectious diseases. There clearly exists 

(phenotypic) variation in infectivity as it can be seen from the occurrence of 

superspreaders (Lloyd-Smith et al., 2005). Thus, it is most likely that the classical 

quantitative genetic analysis based on individual disease status captures only part 

of the possible heritable variation in the host underlying infectious disease 

dynamics (Lipschutz-Powell et al., 2012). 

The ultimate goal of selective breeding for disease traits is to reduce the risk of an 

epidemic and/or to reduce the level of the endemic equilibrium. In epidemiology, 

the key parameter determining the risk and size of an epidemic and/or the level of 

the endemic equilibrium is the basic reproduction ratio, R0. R0 is the average 
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number of secondary cases produced by a typical infectious individual during its 

entire infectious life time, in an otherwise naïve population (Diekmann et al., 1990). 

R0 has a threshold value of 1, which determines whether a major disease outbreak 

can occur or whether the endemic equilibrium exists. When R0 < 1, the epidemic 

will die out. On the other hand, when R0 > 1 major outbreaks or an endemic 

equilibrium (persistence) can occur. Hence, breeding strategies to reduce the risk 

and prevalence of an infectious disease should aim at reducing R0, preferably to 

below a value of 1. 

 Breeding to reduce R0 raises a conceptual difference between quantitative 

genetics and epidemiology: R0 is an epidemiological parameter referring to an 

entire population, whereas quantitative genetics rests on the concept of breeding 

value, which refers to a single individual. It is clear that in a genetically 

heterogeneous population, R0 is a function of individual genotypes in the 

population, which in turn are a function of allele frequencies. Moreover, a change 

in allele frequencies will change R0, indicating R0 can respond to selection. Genetic 

improvement aiming to reduce R0 should ideally be based on the effects of an 

individual’s genes on R0, which would require defining individual breeding values 

for R0. Moreover, defining a breeding value for R0 would also allow defining 

heritable variation in R0, that is, the variation in individual breeding values for R0, 

which would give an indication of the prospects for genetic improvement with 

respect to R0. 

 For domestic populations, the subsequent question would be how to design 

breeding programs, so as to utilize optimally heritable variation in R0 and achieve 

the greatest possible rate of reduction in R0. The equivalent issue for natural 

populations would be what ecological conditions are favourable for efficient 

reduction of R0 by natural selection. For emergent traits that depend on multiple 

individuals, research in the field of indirect genetic effects (IGEs) suggests that 

group selection and relatedness among interacting individuals (‘kin selection’) can 

be used to increase response to selection (Griffing, 1967; Anderson and May, 1992; 

Andreasen, 2011; Bijma, 2011). This suggests that relatedness and group selection 

may be important mechanisms affecting the utilisation of heritable variation in R0, 

either by natural or artificial selection.  

Here we show how to define breeding value and heritable variation for R0 

for a genetically heterogeneous host population, where individuals differ for 

susceptibility and infectivity. For that purpose, we have adapted the theory of IGEs 

commonly applied to socially affected traits, using the epidemiological concept of 

next-generation matrices (NGMs) (Diekmann et al., 1990; Diekmann et al., 2010). 

Furthermore, we examine the mechanisms determining the utilization of heritable 
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variation in R0, focussing on the effects of kin selection on response in R0, and in 

susceptibility and infectivity. 

2.2 Method 

2.2.1 Dynamic model of infection 

In a completely naïve population where a microparasitic infection is introduced, the 

disease dynamics can be modelled with a basic compartmental stochastic SIR 

(Susceptible, Infected and Recovered) model. In this model, individuals move 

through the states in the order S → I → R (Anderson et al., 1992). Therefore, the 

possible events that an individual may encounter are infection and recovery. With 

stochasticity, these events occur randomly at a certain rate (probability per unit of 

time) specified by the model parameters. In the SIR-model, these parameters are 

the transmission rate parameter (β) for S → I, and the recovery rate parameter (α) 

for I → R. The transmission rate parameter β is the probability per unit of time that 

a typical infected individual infects another individual in a totally susceptible 

population (Diekmann et al., 1990; Anderson et al., 1992). When constant 

population density is assumed, the rate at which the susceptible population 

becomes infected is βSI/N, where S denotes the number of susceptible individuals, 

I the number of infectious individuals, and N the total number of individuals in the 

population (Kermack and McKendrick, 1991). The recovery rate parameter α is the 

probability per unit of time for an infective to recover from an infection. In other 

words, for constant , the infectious period is exponentially distributed with a 

mean duration of α
-1 

time units. 

 The transmission rate parameter, β, depends on the infectivity of infectious 

individuals and on the susceptibility of uninfected recipient individuals. Thus, in a 

homogeneous population where all individuals have the same level of infectivity 

and susceptibility, there is a single β that applies to the whole population, which 

can be defined as a function of these parameters,  

𝛽 = 𝛾𝜑𝑐,      (1) 

where 𝛾 is susceptibility, 𝜑 is infectivity and 𝑐 is average number of contacts an 

infectious individual makes per unit of time (See Table 2.1 for a notation key).
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Table 2.1. Notation key 

Symbol Meaning 

𝛾𝐺  Effect of G allele at susceptibility locus  

𝛾𝑔 Effect of g allele at susceptibility locus 

𝜑𝐹  Effect of F allele at infectivity locus 

𝜑𝑓 Effect of f allele at infectivity locus 

𝑝𝑔 Frequency of the 𝑔 allele for susceptibility 

𝑝𝑓 Frequency of the 𝑓 allele for infectivity 

𝛾̅ Average individual susceptibility  

𝜑̅ Average individual infectivity  

𝑟𝛾 Relatedness at susceptibility locus 

𝑟𝜑  Relatedness at infectivity locus 

𝛽𝑖𝑗  Pairwise transmission rate parameter between susceptible 

individual 𝑖 and infective individual 𝑗 

𝛼 Rate of recovery parameter 

C Contact rate 

R0 Basic reproduction ratio 

iRA ,0

Breeding value for R0 of individual i 

𝜎𝐴𝑇
Additive standard deviation in total breeding value 

𝐷 Measure of linkage disequilibrium  

𝐹𝐼𝑆 Measure of deviation from Hardy Weinberg Equilibrium 
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2.2.2 Dynamic model of infection with genetic heterogeneity 

In a genetically heterogeneous population, however, the transmission rate 

parameter β may vary among pairs of individuals. This pairwise transmission rate 

will depend on the infectivity genotype of the infectious individual, and on the 

susceptibility genotype of the recipient susceptible individual. The assumption that 

transmission depends on the infectivity of only the infectious individual and on the 

susceptibility of only the recipient individual is known as separable mixing 

(Diekmann et al., 1990). Thus, we may define the pairwise transmission rate 

parameter 𝛽𝑖𝑗  from an infectious individual j to a susceptible individual i as 

𝛽𝑖𝑗 = 𝛾𝑖𝜑𝑗𝑐,      (2) 

where 𝛾𝑖  denotes susceptibility of susceptible individual i, and 𝜑𝑗  denotes 

infectivity of infectious individual j. In Equation (2), c represents the average 

contact rate; any variation in contact rate among susceptible and infectious 

individuals is included in i  and i  because of the assumption of separable

mixing. 

 In the following, we model genetic heterogeneity in a diploid population using 

two bi-allelic loci, one locus for susceptibility effect (𝛾), and the other locus for 

infectivity effect (𝜑). The susceptibility locus has alleles G and g, with susceptibility 

values 𝛾𝐺  and 𝛾𝑔 respectively, and the infectivity locus has alleles F and f, with 

infectivity values 𝜑𝐹  and 𝜑𝑓, respectively. Furthermore, both loci are assumed to 

have additive allelic effects without dominance. Thus, genotypic values are given by 

𝛾𝐺𝐺 = 𝛾𝐺 + 𝛾𝐺 = 2𝛾𝐺, 𝛾𝑔𝑔 = 𝛾𝑔 + 𝛾𝑔 = 2𝛾𝑔 and 𝛾𝐺𝑔 = 𝛾𝑔𝐺 = 𝛾𝐺 + 𝛾𝑔, for 

susceptibility, and 𝜑𝐹𝐹 = 𝜑𝐹 + 𝜑𝐹 = 2𝜑𝐹; 𝜑𝑓𝑓 = 𝜑𝑓 + 𝜑𝑓 = 2𝜑𝑓 and 𝜑𝐹𝑓 =

𝜑𝑓𝐹 = 𝜑𝐹 + 𝜑𝑓 = 2𝜑𝐹  for infectivity. As we assumed additive gene action, average 

susceptibility in the population is given by 

𝛾̅ = 2𝑝𝑔𝛾𝑔 + 2(1 − 𝑝𝑔)𝛾𝐺, (3) 

and average infectivity is given by 

𝜑̅ = 2𝑝𝑓𝜑𝑓 + 2(1 − 𝑝𝑓)𝜑𝐹,    (4) 

where 𝑝𝑓 is the frequency of the f allele, and 𝑝𝑔 the frequency of the g allele, and 

the “2” arises because each individual carries two alleles. Note that 𝛾̅ and 𝜑̅ are 

average susceptibility and average infectivity over individuals, not average of 

allele effects. In a population as define here, there are nine genotypes of 

individuals because of the combinations of their genotype for susceptibility and 

infectivity. 
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 For this heterogeneous population, we can now construct the NGM. The NGM 

describes the number of infectious individual of each type in the next generation of 

the epidemic, produced by infectious individuals of each type in the current 

generation. Then, we can calculate R0 as the dominant eigenvalue of the NGM. 

Under the assumption of separable mixing, the dominant eigenvalue equals the 

trace of a matrix, and thus R0 can be obtained as the trace of the NGM (Diekmann 

et al., 2010). 

 Appendix 1 shows the NGM for the population with linkage equilibrium and in 

Hardy-Weinberg Equilibrium (HWE) described by Equations (2)-(4). R0 is given by 

the trace of the NGM: 

𝑅0 =  𝛾̅ 𝜑 ̅𝑐/𝛼 ,       (5) 

where 𝛼 is the recovery rate, which is assumed to be the same for all individuals in 

the population. 

 The NGM was also constructed for the more general case of a population that 

deviates from HWE and linkage equilibrium. For that case, R0 is given by (Appendix 

2): 

𝑅0 =  (𝛾̅ 𝜑̅ + 𝐷 
(1+𝐹𝐼𝑆)

2

(2𝛾𝑔−𝛾̅)(2𝜑𝑓−𝜑̅)

(1− 𝑝𝑔)(1−𝑝𝑓)
)

𝑐

𝛼
 , (6) 

where 𝐹𝐼𝑆 is the inbreeding coefficient and measures deviation of the population 

from HWE. It is a function of observed heterozygosity (𝐻𝑜) and expected 

heterozygosity (𝐻𝑒) in the population, 

𝐹𝐼𝑆 = 1 −  
𝐻𝑜

𝐻𝑒
.

 The D measures the deviation of the population from linkage equilibrium and 

expresses the excess of coupling phase haplotypes(Falconer and Mackay, 1996), 

𝐷 =  𝑝𝑔𝑓𝑝𝐺𝐹 − 𝑝𝐺𝑓𝑝𝑔𝐹 . 

The second term in brackets in Equation 6 is the covariance between susceptibility 

and infectivity of individuals in the population. When either (i) 𝐷 = 0, or 

(𝑖𝑖)𝐹𝐼𝑆 =  −1, that is, full dis-assortative ordering of alleles over diploid 

organisms (𝐻𝑜 = 2𝐻𝑒 = 1, which requires p = ½), or (iii) there is no variance in 

either of the two traits (𝛾̅ = 2𝛾𝑔  or 𝜑̅ = 2𝜑𝑓), then there is no covariance 

between the two traits and R0 is given by Equation (5). 
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Table 2.2. Scenarios and parameter values  

Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Allele effect at infectivity 

locus 

        𝜑𝑓 0.6 0.6 1 2.4 

        𝜑𝐹  1 1 1 0.6 

Variation at 

      Susceptibility locus Yes Yes Yes Yes 

      Infectivity locus Yes Yes No Yes 

Relatedness 𝒓 0 0 - 1 0 - 1 0 or 0.1 

Linkage Disequilibrium, D 0 0 0 -0.20 

Recombination rate θ 0.5 0.5 0.5 0 

NB: Throughout the four scenarios, contact rate, c = 2, recovery rate 𝛼 = 0.5 and 

allele effect at susceptibility locus 𝛾𝑔 = 1 and 𝛾𝐺 = 0.6 was used. Allele frequencies 

at both loci were set at 0.5. The 𝑟2 statistic corresponding to D = - 0.20 equals 0.64. 

2.2.3 Individual breeding value for R0 

Equation (5) gives R0, which is an emergent trait of the population, that is. a trait 

that arises when the different individuals (susceptible and infectious) interact 

(Dawkins, 2006). The objective here, however, is to define individual breeding 

values for R0. We use results from the field of IGEs to define breeding value for R0. 

An IGE is heritable effect of an individual on the trait value of another individual 

(Griffing, 1967; Griffing, 1976; Griffing, 1981; Moore et al., 1997; Wolf et al., 1998; 

Muir, 2005). Hence, infectivity is an IGE, as an individual’s infectivity affects the 

disease status of its contacts. Moore et al. (1997) and (Bijma et al., 2007) show how 

breeding value and genetic variance can be defined for such traits. Bijma (2011) 

shows how the approach can be generalized to any trait, including traits that are an 

emerging property of a population, such as R0. They propose a (total) breeding 

value that follows from the genetic mean of the population, rather than from 

individual trait values. 

In classical quantitative genetics, breeding value is the sum of the average 

effects of an individual’s alleles on its trait value, where the average effects equal 

the partial regression coefficients of individual trait values on individual allele count 

(Fisher, 1919; Lynch and Walsh, 1998). For traits affected by IGEs, the total 

breeding value is the sum of the average effects of an individual’s alleles on the 

mean trait value of the population (Bijma, 2011). For an emergent trait, however, 
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there is only a single trait value for the entire population, and the average effects 

of alleles on that trait follow from the partial derivatives of the trait value with 

respect to allele frequency, rather than from partial regression of individual trait 

values on allele count. This is analogous to the derivation of economic values in 

livestock genetic improvement. Applying this approach to R0 (Equation (5)) with 

linkage equilibrium and HWE, average effect of the g-allele equals 
𝜕𝑅0

𝜕𝑝𝑔
= 2𝜑̅(𝛾𝑔 − 𝛾𝐺)

𝑐

𝛼
, (7a) 

and the average effect of the f-allele on R0 equals 
𝜕𝑅0

𝜕𝑝𝑓
= 2𝛾̅(𝜑𝑓 − 𝜑𝐹)

𝑐

𝛼
, (7b) 

Consequently, the individual breeding value for R0 is given by 

𝐴𝑅0,𝑖 = 2[𝜑̅(𝛾𝑔 − 𝛾𝐺)𝑝𝑔,𝑖 + 𝛾̅(𝜑𝑓 − 𝜑𝐹)𝑝𝑓,𝑖]
𝑐

𝛼
, (7c) 

where 𝑝𝑔,𝑖  and 𝑝𝑓,𝑖  refer to the allele frequencies in individual i, thus taking values 

of 0, ½ or 1. The equation for 𝐴𝑅0,𝑖
 for the population that deviates from HWE and

with LD is presented in Appendix 2. 

In the following, we will refer to 𝐴𝑅0,𝑖 as the breeding value for R0 of

individual i. Note that, in contrast to the pairwise transmission rate parameter 𝛽𝑖𝑗, 

an individual’s breeding value for R0 is entirely a function of its own genes. This is 

because an individual transmits its own genes to its offspring, which may differ 

from the genes affecting its own disease phenotype.  

The relationship between the breeding values of the individuals in a 

population of n individuals and R0 of that population is: 

𝑅0   =  4 𝛾𝐺𝜑𝐹
𝑐

𝛼
+ 

∑ 𝐴𝑅0,𝑖
𝑛
𝑖=1

𝑛
− 4(𝛾𝑔 − 𝛾𝐺)(𝜑𝑓 − 𝜑𝐹)𝑝𝑔𝑝𝑓

𝑐

𝛼
(8) 

 The first term in Equation (8) is the intercept that determines the magnitude of 

R0, but it does not depend on the allele frequencies and is not needed in the 

breeding value. The last term is there because of the nonlinear relationship 

between R0 (Equation (5)) and susceptibility and infectivity. From Equation (8), it 

can be seen that changes in breeding value for R0 will lead to corresponding 

changes (in magnitude and direction) in R0 itself. Only when also the frequencies in 

whole populations (𝑝𝑔, 𝑝𝑓) are changing, the change in R0 will be more than the 

change in breeding values due to this last term. In that case, selection that reduces 

both susceptibility and infectivity will lead to a greater reduction in R0 than 

predicted by the breeding values. Response to selection in R0 will equal the change 

in average individual breeding value for R0, 

𝑑𝑅0 =  𝑑𝐴𝑅0
̅̅ ̅̅ ̅.      (9)
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 Hence, a (small) change in average individual breeding value for R0 due to 

selection will generate the same change in R0. Thus, just as with an ordinary 

breeding value (Fisher, 1919; Lynch and Walsh, 1998), for a small change in allele 

frequency, the change in mean breeding value for R0 equals response to selection 

in R0. 

2.2.4 Heritable variation in R0

Response to selection in any trait, including emergent traits such as R0, can be 

expressed as the product of intensity of selection ι, accuracy of selection ρ𝑇, and 

total genetic standard deviation for that trait 𝜎𝐴𝑇
 (Bijma, 2011),

𝑅 =  ι ρ𝑇  𝜎𝐴𝑇
     (10)

In the above equation, response to selection 𝑅 is change in mean trait value from 

one generation to the next. The selection intensity ι is the selection differential 

expressed in standard deviation units. Accuracy of selection ρ𝑇 is the correlation 

between the total breeding value and the selection criterion in the candidates for 

selection, and 𝜎𝐴𝑇
 is the standard deviation in total breeding value for the trait in

the candidates for selection. Selection intensity and accuracy of selection are scale 

free parameters and do not include any information about the heritable variance in 

the trait. Standard deviation in total breeding value, on the other hand, reflects the 

potential of the population to response to selection. Note that heritable variation 

in the context of Equation (10) strictly refers to the potential of a population to 

respond to selection, and may differ from the classical additive genetic variance in 

a trait. R0, for example, has no classical additive genetic variance, as there exist no 

individual phenotypes for R0. Thus, in the following, heritable variation in R0 will 

refer to the potential for genetic change in R0, and not to the additive genetic 

component of phenotypic variation in R0 among individuals. This conceptual 

difference is discussed in detail in Bijma (2011). 

From the above, it follows that heritable variation in R0 equals the variance in 

breeding value for R0 among individuals in the population. We drop the prefix 

“total” from breeding value and heritable variation, since R0 has no classical 

breeding value. Taking the variance of Equation (7c), assuming linkage equilibrium, 

shows that heritable variation in R0 equals  

𝑣𝑎𝑟(𝐴𝑅0
) =  2 (𝑝𝑔(1 − 𝑝𝐺)𝜑̅2 (𝛾𝑔 − 𝛾𝐺)

2
+ 𝑝𝑓(1 − 𝑝𝑓)𝛾̅2(𝜑𝑓 − 𝜑𝐹)

2
) (

𝑐

𝛼
)

2

 (11) 

where 𝑣𝑎𝑟(𝐴𝑅0
) is the variance among individuals in breeding value for R0. Hence,

Equation (11) shows how heritable variation in R0 depends on the susceptibility and 

infectivity effects of alleles and on the allele frequencies in the population. 
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The expression in Equation (11) may be recognized as the sum of the 

additive genetic variances at two independent loci. Additive genetic variance at a 

single locus is traditionally written as 𝟐𝒑(𝟏 − 𝒑)𝜶𝟐, 𝜶 denoting the average effect 

of an allele substitution(Falconer and Mackay, 1996). In Equation 11, the average 

effect 

at the susceptibility locus equals 𝝋̅(𝜸𝒈 − 𝜸𝑮)
𝒄

𝜶
, and average effect at the infectivity 

locus equals 𝜸̅(𝝋𝒇 − 𝝋𝑭)
𝒄

𝜶
 (see also Equation (7a-c)). 

2.2.5 Utilization of Heritable Variation in R0 

Efficient reduction of R0 by means of selective breeding requires selection schemes 

that optimally utilize the heritable variation in R0. Because an individual’s infectivity 

represents an IGE, that is, a heritable effect of the individual on the disease status 

of other individual within the same epidemiological unit, optimal breeding schemes 

for traits affected by IGEs may provide a clue for the design of optimal schemes for 

reducing R0. For traits affected by IGEs, group selection and relatedness among 

interacting individuals (‘kin selection’) increase response to selection (Griffing, 

1967; Griffing, 1976; Bijma and Wade, 2008). Moreover, Bijma (2011) shows that 

relatedness among interacting individuals in general tends to increase response to 

selection for traits that have an IGE. We, therefore, considered a group-structured 

population, where group mates can be genetically related. The objective of this 

section is not to precisely quantify or predict response to selection, but to identify 

and illustrate important factors affecting it. 

 To investigate mechanisms affecting response in R0, a simulation study was 

performed on a population with discrete generations. The genetic model was the 

same as described above. The population was sub-divided into 100 groups of 100 

individuals each. In each group, an epidemic was started by a single randomly 

infected individual. After the end of an epidemic, selection was based on individual 

disease status (0/1), where only those that escaped the infection were selected 

from each group to be parent of the next generation. For the next generation, 

selected parents were mated randomly and offspring genotypes were randomly 

sampled based on the parental genotypes. The size and the number of groups were 

kept constant throughout the generations. 

 Each group in the population was set up in such a way that group mates 

showed a certain degree of genetic similarity, which we refer to as “relatedness”, r, 

here. The term “relatedness” has different meanings in different scientific 

disciplines. In animal breeding, for example, relatedness is implicitly understood as 

“pedigree relatedness”. In sociobiology, such as in studies on the evolution of 
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altruism, on the other hand, relatedness is interpreted as a more general measure 

of genetic similarity, irrespective of the cause of that similarity; for example as a 

genetic regression coefficient (Hamilton, 1970); see also (Frank, 1998). Here we 

define relatedness as the correlation between the allele count of group mates, 

irrespective of the cause of that correlation. This definition agrees with the use of 

relatedness in animal breeding applications, such as selection index theory and 

genomic relationship matrices, where the current population is treated as the base 

population (Falconer and Mackay, 1996). 

 Relatedness at the susceptibility locus, 𝑟𝛾, and at the infectivity locus, 𝑟𝜑 , were 

allowed to differ. To achieve a certain relatedness among group mates, a fraction f 

of fully related individuals was added to each group, supplemented by a fraction 1-f 

of randomly selected individuals. We did not consider negative values for 

relatedness, because the lower bound for relatedness is practically zero when 

group size equals 100 individuals, (𝑟𝑚𝑖𝑛 = −1/99). Appendix 3 shows that the 

required fraction equals the square root of relatedness. Thus, a fraction √𝑟𝛾 of 

individuals that were fully related to each other at the susceptibility locus, and a 

fraction √𝑟𝜑 of individuals that were fully related to each other at the infectivity 

locus were added to each group. As each individual carries both loci, these 

additions cannot be done independently; details of the strategy to jointly make 

those additions are given in Appendix 4. 

 The simulation was further extended to allow for a certain degree of LD 

between both loci. However, for a given LD in the population, there exists an upper 

and lower bound for 𝑟𝛾 given 𝑟𝜑  and vice versa. For example, when both loci are in 

strong positive LD and relatedness is zero at the susceptibility locus, then it is not 

possible to have very high relatedness at the infectivity locus. Appendix 5 provides 

expressions for those bounds. 

 Four different scenarios were simulated (Table 2.2). First, a scenario with 

heritable variation at both the susceptibility and the infectivity locus and groups 

created randomly with respect to relatedness 𝑟 among group mates. No LD and a 

recombination rate θ of 0.5 between both loci were further assumed. Second, 

varying degrees of relatedness were used, which were the same at both loci. Third, 

to investigate a potential effect of relatedness on response in susceptibility, 

heritable variation was simulated at the susceptibility locus only, for varying 

degrees of relatedness among group mates. Finally, to investigate the potential 

effect of relatedness on response in R0 in the case where there is strong negative 

LD between both loci and no recombination, a scenario with a relatedness of either 

0 or 0.1 at both loci was simulated. 
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2.3 Simulation results 

In the first scenario, which had unrelated group mates, a response to selection was 

observed only at the susceptibility locus, where the G-allele became fixed after an 

average of 100 generations. At the infectivity locus, in contrast, only a random 

fluctuation of allele frequency was observed (Figure 2.1). Thus, with groups 

composed at random with respect to relatedness, no response was observed at the 

infectivity locus. As a result, in the final generation, the response in R0 was limited. 

 In the second scenario, which had related group mates, response to selection 

was observed at both loci, and the population became fixed for the G-allele at 

susceptibility locus and for F-the allele at the infectivity locus (Figure 2.2 and 2.3). 

In this case, selection resulted in a greater reduction of R0 than in the first scenario 

(Figure 2.4 vs. Figure 2.1). As relatedness among group mates increased, response 

was much faster in all three traits. As it was also faster on the susceptibility locus, 

this suggested that also the susceptibility locus showed an IGE. 

Figure 2.1 Allele frequency (F) at infectivity locus, allele frequency (G) at 

susceptibility locus and R0 when there is no relatedness among group mates 

(Scenario 1, Table 2.2). Results are from one representative replicate. 
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 To verify this IGE in susceptibility in the third scenario, we chose to have 

variation in the susceptibility only. Also in this case, the response at the 

susceptibility locus increased substantially when relatedness among group mates 

increased (Figure 2.5). For selection on individual phenotype, it is known that 

relatedness increases response in the IGEs, but not in the direct genetic effects 

(Griffing, 1976; Bijma and Wade, 2008). Thus this result suggests that (1) 

susceptibility not only has a direct genetic effect on the disease status of the 

individual itself but also has an IGE on the disease status of its groups mates, and 

(2) this indirect genetic variance is utilized by kin selection (see discussion), even in

the absence of genetic variance in infectivity.

 In the fourth scenario, which had strong negative LD and no recombination, the 

direction of response in R0 depended on the relatedness among group mates. 

Without relatedness, selection fixed the G-allele irrespective of the linked allele at 

the infectivity locus. As a consequence, selection increased the frequency of f-allele 

yielding an increase rather than decrease of R0. When relatedness 𝑟𝛾 = 𝑟𝜑 = 0.1 

was used, however, selection caused fixation of GF haplotype, resulting in a 

decrease in R0 (Figure 2.6). This result shows that kin-selection can prevent a 

maladaptive response to selection. 

2.4 Discussion 

The aim of this study was to define the breeding value and heritable variation for 

R0. This was done for a diploid host population with genetic variation for 

susceptibility and infectivity. Breeding values of individuals were derived by finding 

the R0, linearizing this value in the allele frequencies and substituting the 

individual’s allele frequencies. The heritable variation that measures the potential 

for response in R0 can then be found by taking the variance of the breeding values 

in the population. We applied this approach to a simple SIR-model with genetic 

variation in susceptibility and infectivity, and assuming separable mixing.  

The second focus of this paper was to investigate the mechanisms that affect 

response in R0. Since genetic relatedness between interacting individuals is 

expected to increase response in the general case (Bijma, 2011), we hypothesised 

that this result would extend to R0 and considered a group-structured population 

with related group members. Our results show that, with unrelated group 

members and no LD between both loci, selection based on individual disease status 

yields response in susceptibility only. In the absence of relatedness, response in 
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infectivity depends entirely on the correlation with susceptibility, which was zero in 

the absence of LD. 
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 Relatedness among group members increased response in R0 in two ways. First, 

with related group members, selection for individual disease status captures the 

heritable variation in infectivity. This occurs because an individual that carries the 

favourable allele for infectivity has group mates with a below-average infectivity, 

which increases its probability of escaping the epidemic, and thus being selected. 

Second, relatedness among group mates increases response in susceptibility. This 

occurs because an individual that carries the favourable allele for susceptibility on 

an average has fewer infected group mates, which increases its probability of 

escaping the epidemic and being selected. These results show that not only 

infectivity, but also susceptibility exhibits an IGE; at the same level of infectivity, 

individuals with lower susceptibility have a reduced chance of infecting others 

simply because they have a lower chance of being infected themselves. The net 

result of both mechanisms is a strong increase in response to selection in R0 when 

relatedness increases. To quantify the impact of relatedness on the accuracy of 

selection for R0, we calculated the correlation between the selection criteria 

(healthy/infected) and the breeding value for R0. 
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variation in the susceptibility only. Also in this case, the response at the 
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in the population. We applied this approach to a simple SIR-model with genetic 
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Using the parameter values presented in scenario 2, Table 2.2, accuracy of 

selection increased from 0.05 to 0.24 when relatedness increased from 0 to 1. 

Thus, our study further supports the claim of Bijma (2011) that relatedness is an 

important factor in utilization of heritable variation in traits affected by IGEs. 

 Our results suggest that relatedness among interacting individuals can be used 

in livestock breeding programs aiming to reduce disease incidence. In current 

breeding strategies in livestock, data on individual disease status is connected to 

the pedigree of individuals to estimate breeding values. When interacting 

individuals are unrelated, those breeding values capture only the direct genetic 

effect, that is, the direct genetic part of susceptibility. Breeding values can be 

improved by also considering IGEs, for example, by fitting direct-indirect genetic 

effects models to data on disease status (Lipschutz-Powell et al., 2012). However, 

estimating direct and indirect breeding values for disease status is 

methodologically challenging because the linear mixed models traditionally used in 

quantitative genetics do not fit the nonlinear dynamics of infectious diseases 

(Lipschutz-Powell et al., 2012). The use of related group members may offer a low-

tech solution, for capturing more of the heritable variation in R0 without the need 

to explicitly model IGEs. 
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infectivity depends entirely on the correlation with susceptibility, which was zero in 

the absence of LD. 
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In this work, we have assumed that the selection objective is to reduce R0. While 

this is probably the obvious choice for epidemiologists, it may be unexpected for 

breeders who are not very familiar with R0. For breeders, reducing disease 

incidence might be the more common objective. For example, in the context of our 

two-locus model, breeders might specify an objective 𝐻𝑖 = 𝑣𝛾𝑝𝑔,𝑖 + 𝑣𝜑𝑝𝑓,𝑖, where 

𝑣𝛾 and 𝑣𝜑 are the so-called economic values for susceptibility and infectivity, 

respectively, which would be the partial derivatives of disease incidence with 

respect to the population allele frequencies 𝑝𝑔 and𝑝𝑓. However, both objectives 

are very similar, both for epidemic and endemic diseases. For epidemic diseases, 

the ultimately affected fraction of the population, known as the final size 1 − 𝑠(∞), 

is determined by R0 , as is shown by the final size equation: ln 𝑠(∞) = 𝑅0(𝑠(∞) −

1)(Kermack and McKendrick, 1991). For endemic diseases, the equilibrium-affected 

fraction is given by: 1 − 𝑠(∞) = 1 − 1/𝑅0. Hence, the relationship between 

disease incidence and allele frequency occurs entirely via R0, both for epidemic and 

endemic diseases. Thus, when the objective is to decrease incidence, the economic 

values for any disease trait, say x, that is, the partial derivatives of incidence with 

respect to that trait, can be written as 

𝑣𝑥 =
𝜕𝑖

𝜕𝑥
=

𝜕𝑖

𝜕𝑅0

𝜕𝑅0

𝜕𝑥
. 

 In this expression, the 𝜕𝑖 𝜕𝑅0⁄  is a constant that is the same for all individuals in 

the population, and is independent of the disease trait considered (e.g. 

susceptibility or infectivity). Thus, the ranking of individuals will be the same, 

irrespective of whether they are ranked on breeding value for incidence or on 

breeding value for R0.  

Beware that breeding for incidence is not the same as breeding for susceptibility. 

When comparing breeding for susceptibility to breeding for R0 or incidence, the 

latter is to be preferred because it also covers the heritable variation originating 

from infectivity (e.g. Figure 2.4 vs. 2.1). 
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infectivity depends entirely on the correlation with susceptibility, which was zero in 

the absence of LD. 
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 With respect to the evolution of parasite virulence, also the key role of kin 

selection has been recognized (Levin and Pimentel, 1981; Frank, 1996; Galvani, 

2003). Much less attention has been given to the potential for kin selection acting 

on the host population. Using Monte Carlo simulation, Fix (1984) showed that the 

presence of kin groups in a small-scale human population considerably accelerated 

the increase in frequency of a resistance allele. Schliekelman (2007) seems to be 

the first who used rigorous mathematical modelling to investigate the impact of kin 

selection on the frequency of mutant alleles conferring resistance to the host. 

Moreover, despite the evidence of heterogeneity in infectivity (Woolhouse et al., 

1997; Lloyd-Smith et al., 2005; Doeschl-Wilson et al., 2011), little attention has 

been given to the effect of kin selection on the frequency of alleles affecting 

infectivity in the host population. Our simulations show that, at least in theory, kin 

selection can greatly accelerate the evolution of R0, because it utilizes the indirect 

genetic variance in both susceptibility and infectivity in the host population. For 

any actual case, the potential impact of kin selection will of course depend critically 

on the magnitude of this indirect genetic variance. Particularly, the component due 

to genetic variation in infectivity is unknown at present, but first steps towards 

estimating this component have recently been made (Lipschutz-Powell et al., 

2012). 
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Appendix 1 

This Appendix shows the construction of the Next Generation Matrix (NGM) 

(Diekmann et al., 2010) and R0 for a diploid population where there is no Linkage 

Disequilibrium between the locus a 

ffecting susceptibility and the locus affecting infectivity. In such population, we 

have nine types of individuals for the combination of their genotype for 

susceptibility (𝑔𝑔, 𝑔𝐺, 𝐺𝐺) and infectivity (𝑓𝑓, 𝑓𝐹, 𝐹𝐹). Thus the NGM has 9 rows 

and 9 columns. The column of the matrix represents the contributions to the next 

generation by infectious individuals of the genotype written above the column 

(“cause”). The rows indicate the genotypes of the susceptible individuals that 

become infected (“consequence”). In the following we present the NGM on three 

rows; the first row gives columns 1 through 3, the second columns 4 through 6, and 

the final row columns 7 through 9. The NGM uses the transmission rate parameters 

between genotypes, which are given by 

𝛽1 =  𝛾𝑔𝑔𝜑𝑓𝑓𝑐 𝛽2 =  𝛾𝑔𝑔𝜑𝑓𝐹𝑐 𝛽3 =  𝛾𝑔𝑔𝜑𝐹𝐹𝑐 

𝛽4 =  𝛾𝑔𝐺𝜑𝑓𝑓𝑐 𝛽5 =  𝛾𝑔𝐺𝜑𝑓𝐹𝑐 𝛽6 =  𝛾𝑔𝐺𝜑𝐹𝐹𝑐 

𝛽7 =  𝛾𝐺𝐺𝜑𝑓𝑓𝑐 𝛽8 =  𝛾𝐺𝐺𝜑𝑓𝐹𝑐 𝛽9 =  𝛾𝐺𝐺𝜑𝐹𝐹𝑐 
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 To verify this IGE in susceptibility in the third scenario, we chose to have 

variation in the susceptibility only. Also in this case, the response at the 

susceptibility locus increased substantially when relatedness among group mates 

increased (Figure 2.5). For selection on individual phenotype, it is known that 

relatedness increases response in the IGEs, but not in the direct genetic effects 

(Griffing, 1976; Bijma and Wade, 2008). Thus this result suggests that (1) 

susceptibility not only has a direct genetic effect on the disease status of the 

individual itself but also has an IGE on the disease status of its groups mates, and 

(2) this indirect genetic variance is utilized by kin selection (see discussion), even in 

the absence of genetic variance in infectivity. 

 In the fourth scenario, which had strong negative LD and no recombination, the 

direction of response in R0 depended on the relatedness among group mates. 

Without relatedness, selection fixed the G-allele irrespective of the linked allele at 

the infectivity locus. As a consequence, selection increased the frequency of f-allele 

yielding an increase rather than decrease of R0. When relatedness 𝑟𝑟𝛾𝛾 = 𝑟𝑟𝜑𝜑 = 0.1 

was used, however, selection caused fixation of GF haplotype, resulting in a 

decrease in R0 (Figure 2.6). This result shows that kin-selection can prevent a 

maladaptive response to selection. 

2.4 Discussion 
The aim of this study was to define the breeding value and heritable variation for 

R0. This was done for a diploid host population with genetic variation for 

susceptibility and infectivity. Breeding values of individuals were derived by finding 

the R0, linearizing this value in the allele frequencies and substituting the 

individual’s allele frequencies. The heritable variation that measures the potential 

for response in R0 can then be found by taking the variance of the breeding values 

in the population. We applied this approach to a simple SIR-model with genetic 

variation in susceptibility and infectivity, and assuming separable mixing.  

The second focus of this paper was to investigate the mechanisms that affect 

response in R0. Since genetic relatedness between interacting individuals is 

expected to increase response in the general case (Bijma, 2011), we hypothesised 

that this result would extend to R0 and considered a group-structured population 

with related group members. Our results show that, with unrelated group 

members and no LD between both loci, selection based on individual disease status 

yields response in susceptibility only. In the absence of relatedness, response in 
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infectivity depends entirely on the correlation with susceptibility, which was zero in 

the absence of LD. 
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 To verify this IGE in susceptibility in the third scenario, we chose to have 

variation in the susceptibility only. Also in this case, the response at the 

susceptibility locus increased substantially when relatedness among group mates 

increased (Figure 2.5). For selection on individual phenotype, it is known that 

relatedness increases response in the IGEs, but not in the direct genetic effects 

(Griffing, 1976; Bijma and Wade, 2008). Thus this result suggests that (1) 

susceptibility not only has a direct genetic effect on the disease status of the 

individual itself but also has an IGE on the disease status of its groups mates, and 

(2) this indirect genetic variance is utilized by kin selection (see discussion), even in 

the absence of genetic variance in infectivity. 

 In the fourth scenario, which had strong negative LD and no recombination, the 

direction of response in R0 depended on the relatedness among group mates. 

Without relatedness, selection fixed the G-allele irrespective of the linked allele at 

the infectivity locus. As a consequence, selection increased the frequency of f-allele 

yielding an increase rather than decrease of R0. When relatedness 𝑟𝑟𝛾𝛾 = 𝑟𝑟𝜑𝜑 = 0.1 

was used, however, selection caused fixation of GF haplotype, resulting in a 

decrease in R0 (Figure 2.6). This result shows that kin-selection can prevent a 

maladaptive response to selection. 

2.4 Discussion 
The aim of this study was to define the breeding value and heritable variation for 

R0. This was done for a diploid host population with genetic variation for 

susceptibility and infectivity. Breeding values of individuals were derived by finding 

the R0, linearizing this value in the allele frequencies and substituting the 

individual’s allele frequencies. The heritable variation that measures the potential 

for response in R0 can then be found by taking the variance of the breeding values 

in the population. We applied this approach to a simple SIR-model with genetic 

variation in susceptibility and infectivity, and assuming separable mixing.  

The second focus of this paper was to investigate the mechanisms that affect 

response in R0. Since genetic relatedness between interacting individuals is 

expected to increase response in the general case (Bijma, 2011), we hypothesised 

that this result would extend to R0 and considered a group-structured population 

with related group members. Our results show that, with unrelated group 

members and no LD between both loci, selection based on individual disease status 

yields response in susceptibility only. In the absence of relatedness, response in 
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(1
−

 𝑝𝑝
𝑓𝑓)

 β
5

2𝑝𝑝
𝑔𝑔(

1−
𝑝𝑝 𝑔𝑔

)2
 𝑝𝑝 𝑓𝑓

(1
−

 𝑝𝑝
𝑓𝑓)

 β
6

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔



𝑔𝑔(

1−
𝑝𝑝 𝑔𝑔

)(
1−

 𝑝𝑝
𝑓𝑓)

2 β 4
2𝑝𝑝

𝑔𝑔(
1−

𝑝𝑝 𝑔𝑔
)(

1−
 𝑝𝑝

𝑓𝑓)
2 β 5

2𝑝𝑝
𝑔𝑔(

1−
𝑝𝑝 𝑔𝑔

)(
1−

 𝑝𝑝
𝑓𝑓)

2  β
6

𝐺𝐺𝐺𝐺
𝐺𝐺𝐺𝐺

(1
−

𝑝𝑝 𝑔𝑔
)2  p

𝑓𝑓2 β 7
(1

−
𝑝𝑝 𝑔𝑔

)2  p
𝑓𝑓2  β

8
(1

−
𝑝𝑝 𝑔𝑔

)2  p
𝑓𝑓2  β

9
𝐺𝐺𝐺𝐺

𝐺𝐺𝐺𝐺
(1

−
𝑝𝑝 𝑔𝑔

)2 2 
𝑝𝑝 𝑓𝑓

(1
−

 𝑝𝑝
𝑓𝑓)

β 7
(1

−
𝑝𝑝 𝑔𝑔

)2 2 
𝑝𝑝 𝑓𝑓

(1
−

 𝑝𝑝
𝑓𝑓)

 β 8
(1

−
𝑝𝑝 𝑔𝑔

)2 2 
𝑝𝑝 𝑓𝑓

(1
−

 𝑝𝑝
𝑓𝑓)

 β 9
𝐺𝐺𝐺𝐺

𝐺𝐺𝐺𝐺
𝐺𝐺𝐺𝐺𝐺


 𝑔𝑔

)2 (1
−

 𝑝𝑝
𝑓𝑓)

2 β 7
(1

−
𝑝𝑝 𝑔𝑔

)2 (1
−

 𝑝𝑝
𝑓𝑓)

2 β 8
(1

−
𝑝𝑝 𝑔𝑔

)2 (1
−

 𝑝𝑝
𝑓𝑓)

2 β 9
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R0 is the dominant eigenvalue of the NGM. Since we have so-called separable 

mixing, where elements of the NGM are products of the rows and columns, the 

NGM has a single eigenvalue only, which therefore equals the trace of the NGM. 

Thus R0 is the sum of the diagonal elements of the NGM (given in bold above),  

𝑅0 = { 𝑝𝑔
2p𝑓

2𝛽1 +   𝑝𝑔
22 𝑝𝑓(1 − 𝑝𝑓)𝛽2 + 𝑝𝑔

2(1 − 𝑝𝑓)
2

𝛽3

+ 2𝑝𝑔(1 − 𝑝𝑔)p𝑓
2β4 + 2𝑝𝑔(1 − 𝑝𝑔)2 𝑝𝑓(1 −  𝑝𝑓)β5  + 2𝑝𝑔(1 − 𝑝𝑔)(1 −  𝑝𝑓)

2
β6

+(1 − 𝑝𝑔)2 p𝑓
2β7  +  (1 − 𝑝𝑔)22 𝑝𝑓(1 − 𝑝𝑓)β8  + (1 − 𝑝𝑔)2(1 −  𝑝𝑓)

2
β9 }

𝑐

𝛼

={(𝑝𝑔
2𝛾𝑔𝑔 +   2 𝑝𝑔(1 −  𝑝𝑔)𝛾𝑔𝐺 + (1 − 𝑝𝑔)

2
𝛾𝐺𝐺)(p𝑓

2𝜑𝑓𝑓 + 2 𝑝𝑓(1 −  𝑝𝑓)𝜑𝑓𝐹  +

(1 −  𝑝𝑓)
2

𝜑𝐹𝐹   )
𝑐

𝛼

= {(𝑝𝑔
2 2𝛾𝑔 +   2 𝑝𝑔(1 −  𝑝𝑔)𝛾𝑔 + 2 𝑝𝑔(1 −  𝑝𝑔)𝛾𝐺 + (1 −  𝑝𝑔)

2
2𝛾𝐺)(p𝑓

2  2𝜑𝑓 +

2 𝑝𝑓(1 − 𝑝𝑓)𝜑𝑓 + 2 𝑝𝑓(1 − 𝑝𝑓)𝜑𝐹  + (1 −  𝑝𝑓)
2

2𝜑𝐹}
𝑐

𝛼

=

{[𝑝𝑔(𝑝𝑔2𝛾𝑔 +   2(1 −  𝑝𝑔)𝛾𝑔) +  (1 −  𝑝𝑔)(𝑝𝑔2𝛾𝐺 + (1 − 𝑝𝑔)2𝛾𝐺][𝑝𝑓( 𝑝𝑓2𝜑𝑓 +

(1 −  𝑝𝑓)2𝜑𝑓 + (1 −  𝑝𝑓)(𝑝𝑓2𝜑𝐹  + (1 −  𝑝𝑓)2𝜑𝐹]}
𝑐

𝛼

= {[2𝑝𝑔𝛾𝑔 + 2(1 − 𝑝𝑔)𝛾𝐺][2𝑝𝑓𝜑𝑓 + 2(1 − 𝑝𝑓)𝜑𝐹]}
𝑐

𝛼

𝑅0 = 𝛾̅𝜑̅
𝑐

𝛼
       (A1)

in which 𝛾̅ = 2𝑝𝑔𝛾𝑔 + 2(1 − 𝑝𝑔)𝛾𝐺, and 𝜑̅ = 2𝑝𝑓𝜑𝑓 + 2(1 −  𝑝𝑓)𝜑𝐹  
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Appendix 2 

The NGM was also constructed for a the population that deviates from linkage 

equilibrium (LD) and Hardy Weinberg Equilibrium (HWE). Because of LD, the 

genotype gGfF has to be partitioned into the two possible haplotypes for this 

genotype, gfGF and gFGf. Hence, when accounting for LD, the NGM includes 10 

distinct genotypes, rather than the 9 considered in Appendix 1 (Table A2-1).  

Table A2-1. Possible haplotypes and genotypes  

Haplotypes 𝑔𝑓 𝑔𝐹 𝐺𝑓 𝐺𝐹 

𝑔𝑓 𝒈𝒇𝒈𝒇 𝑔𝑓𝑔𝐹 𝑔𝑓𝐺𝑓 𝑔𝑓𝐺𝐹 

𝑔𝐹 𝒈𝑭𝒈𝑭 𝑔𝐹𝐺𝑓 𝑔𝐹𝐺𝐹 

𝐺𝑓 𝑮𝒇𝑮𝒇 𝐺𝑓𝐺𝐹 

𝐺𝐹 𝑮𝑭𝑮𝑭 

To avoid over presentation of results, we only give the trace of the NGM, which 

equals R0 because of the separable mixing assumption, 

𝑅0 = {𝑝𝑔𝑓𝑔𝑓  𝛽𝑔𝑓𝑔𝑓 + 𝑝𝑔𝑓𝑔𝐹  𝛽𝑔𝑓𝑔𝐹 + 𝑝𝑔𝑓𝐺𝑓  𝛽𝑔𝑓𝐺𝑓 + 𝑝𝑔𝑓𝐺𝐹  𝛽𝑔𝑓𝐺𝐹 + 𝑝𝑔𝐹𝑔𝐹  𝛽𝑔𝐹𝑔𝐹 +

𝑝𝑔𝐹𝐺𝑓  𝛽𝑔𝐹𝐺𝑓 + 𝑝𝑔𝐹𝐺𝐹  𝛽𝑔𝐹𝐺𝐹 + 𝑝𝐺𝑓𝐺𝑓𝛽𝐺𝑓𝐺𝑓 + 𝑝𝐺𝑓𝐺𝐹  𝛽𝐺𝑓𝐺𝐹 + 𝑝𝐺𝐹𝐺𝐹  𝛽𝐺𝐹𝐺𝐹} 1/𝛼  

 (A2-1) 

Here 𝛽𝑣𝑤𝑥𝑦  represents the transmission rate parameter within a genotype, i.e., 

from genotype vwxy to genotype vwxy,   

cwyvxvwxy   .

For example, cFFgGgFGF   .

Haplotype frequencies are , 

𝑓𝑔𝑓 =  𝑝𝑔𝑝𝑓 + 𝐷 

𝑓𝑔𝐹 =  𝑝𝑔 (1 − 𝑝𝑓) − 𝐷 

𝑓𝐺𝑓 = (1 − 𝑝𝑔)𝑝𝑓 − 𝐷 

𝑓𝐺𝐹 =  (1 − 𝑝𝑔)(1 − 𝑝𝑓) + 𝐷  

Where D is the usual measure of linkage disequilibrium (see main text). 

Genotypes frequencies are 

𝑝𝑔𝑓𝑔𝑓 =  𝑓𝑔𝑓(𝑓𝑔𝑓 + (1 − 𝑓𝑔𝑓)𝐹𝐼𝑆) 

𝑝𝑔𝑓𝑔𝐹 =  2 𝑓𝑔𝑓 𝑓𝑔𝐹(1 − 𝐹𝐼𝑆) 

𝑝𝑔𝑓𝐺𝑓 =  2 𝑓𝑔𝑓 𝑓𝐺𝑓(1 − 𝐹𝐼𝑆) 

𝑝𝑔𝑓𝐺𝐹 =  2 𝑓𝑔𝑓𝑓𝐺𝐹(1 − 𝐹𝐼𝑆) 

𝑝𝑔𝐹𝑔𝐹 =  𝑓𝑔𝐹(𝑓𝑔𝐹 + (1 − 𝑓𝑔𝐹)𝐹𝐼𝑆) 
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𝑝𝑔𝐹𝐺𝑓 =  2 𝑓𝑔𝐹  𝑓𝐺𝑓(1 − 𝐹𝐼𝑆) 

𝑝𝑔𝐹𝐺𝐹 =  2 𝑓𝑔𝐹  𝑓𝐺𝐹(1 − 𝐹𝐼𝑆) 

𝑝𝐺𝑓𝐺𝑓 =  𝑓𝐺𝑓(𝑓𝐺𝑓 + (1 − 𝑓𝐺𝑓)𝐹𝐼𝑆) 

𝑝𝐺𝑓𝐺𝐹 =  2 𝑓𝐺𝑓 𝑓𝐺𝐹(1 − 𝐹𝐼𝑆) 

𝑝𝐺𝐹𝐺𝐹 =  𝑓𝐺𝐹(𝑓𝐺𝐹 + (1 − 𝑓𝐺𝐹)𝐹𝐼𝑆) 

After few steps of algebraic manipulation Equation A2-1will reduce to, 

𝑅0 =  (𝛾̅ 𝜑̅ + 𝐷 
(1+𝐹𝐼𝑆)

2
 
(2𝛾𝑔−𝛾̅)(2𝜑𝑓−𝜑̅)

(1− 𝑝𝑔)(1−𝑝𝑓)
)

𝑐

𝛼
,

Individual breeding values for R0 were obtained by linearizing R0 in the allele 

frequencies, using partial first derivatives, and subsequently substituting individual 

allele frequencies (i.e. 0, ½ or 1), 

𝐴𝑅0,𝑖 =  
𝜕𝑅0

𝜕𝑝𝑔
(𝑝𝑔,𝑖 − 𝑝̅𝑔) + 

𝜕𝑅0

𝜕𝑝𝑓
(𝑝𝑓,𝑖 − 𝑝̅𝑓). (A2-3) 

𝐴𝑅0,𝑖 =  2 (𝜑̅  { (𝛾𝑔 − 𝛾𝐺) − 𝐷
(1+𝐹𝐼𝑆)

2

𝛾𝑔

(1−𝑝𝑓)(1−𝑝𝑔)
2} 𝑝𝑔,𝑖 +  𝛾̅ {(𝜑𝑓 − 𝜑𝐹) −

𝐷
(1+𝐹𝐼𝑆)

2

𝜑𝑓

(1−𝑝𝑔)(1−𝑝𝑓)
2} 𝑝𝑓,𝑖) (A2-4) 

Appendix 3 

As mentioned in the main text, relatedness at the susceptibility locus, r and at the 

infectivity locus, r were allowed to be different. With a single bi-allelic locus, 

pairwise relatedness between individuals takes only three discrete values. 

However, our interest is in a continuum of the average relatedness among the 

individuals that together make up a group. To achieve a certain average 

relatedness among group mates, a fraction f of fully related individuals was added 

to each group, supplemented by a fraction 1-f of randomly selected individuals. In 

this appendix we show that the required fraction equals the square root of 

relatedness at each locus, that is a fraction  rf   of random individuals will be 

replaced by individuals that were fully related to each other at the susceptibility 

locus, and for the infectivity locus this is a fraction  rf  . We defined 
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relatedness as the correlation between the genotypes of two group mates, say x 

and y, 

)()(

)(
)(

yx

yx
yxcorrr

varvar

,cov
,      (A3-1) 

Since the same theory applies to both loci, we will show the derivation for the 

susceptibility locus only. 

Because the addition strategy should not change allele frequency in the population, 

nor affect the Hardy-Weinberg equilibrium, the population needs to have three 

types of groups. The first type has gg-individuals added to the group. The second 

type has gG -individuals added, and the third type has GG-individuals added. The 

number of groups of the first type equals 𝑛𝑜. 𝑔𝑟𝑜𝑢𝑝𝑠 ∗ 𝑝2, the number of groups of 

the second type equals  𝑛𝑜. 𝑔𝑟𝑜𝑢𝑝𝑠 ∗ 2𝑝(1 − 𝑝), and the number of groups of the 

third type equals 𝑛𝑜. 𝑔𝑟𝑜𝑢𝑝𝑠 ∗ (1 − 𝑝)2, where 𝑝 is the frequency of the 𝑔-allele.  

The frequency of g in the three types of groups is then, 

𝑝1 = (𝑓 + (1 − 𝑓)𝑝) (A3-2) 

𝑝2 = (0.5 𝑓 + (1 − 𝑓)𝑝) (A3-3) 

𝑝3 = ((1 − 𝑓)𝑝) (A3-4) 

To derive the correlation, we first derive the covariance between genotypic values 

of group members,  

𝑐𝑜𝑣(𝑥, 𝑦) = 𝐸(𝑥𝑦) − 𝐸(𝑦)𝐸(𝑥)   

𝐸(𝑥𝑦) =  𝑝2𝐸(𝑥𝑦|1)  + 2 𝑝(1 − 𝑝)𝐸(𝑥𝑦|2)  + (1 − 𝑝)2𝐸(𝑥𝑦|3) 

where, for example, 𝐸(𝑥𝑦|1) denotes the expectation of the product of the 

genotypic values of two group members in a group of type 1. To simplify the 

derivation, without loss of generality, g was given an effect of 1, and G an effect of 

0. Since we are interested in additive genetic relationship, resulting genotypic

values are 2 for gg, 1 for gG and 0 for GG. Thus x and y denote genotypic values, 

taking values of either 0, 1 or 2. The possible genotypes of two individuals and the 

corresponding values for 𝐸(𝑥𝑦|group type) are presented in the table below. Since 

the genotypic value for GG equals zero, any pair of individuals involving at least one 

GG-individual has E(xy) = 0, and is therefore left out of the table. 
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infectivity depends entirely on the correlation with susceptibility, which was zero in 

the absence of LD. 
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If we insert Equations A4-2 for 𝑝1 and Equation A4-3 and A4-4 for 𝑝2 and 𝑝3 

respectively and sum up all the elements in each of the three column for 𝐸(𝑥𝑦), we 

find, 

𝑝2𝐸(𝑥𝑦/1)  =  4𝑓2𝑝2 + 8𝑓𝑝3 − 8𝑓2𝑝3 + 4𝑝4 − 8𝑓𝑝4 + 4𝑓2𝑝4 

2 𝑝(1 − 𝑝)𝐸(𝑥𝑦/2)

=  2𝑓2𝑝 + 8𝑓𝑝2 − 10𝑓2𝑝2 + 8𝑝3 − 24𝑓𝑝3 + 16𝑓2𝑝3 − 8𝑝4

+ 16𝑓𝑝4 − 8𝑓2𝑝4 

(1 − 𝑝)2𝐸(𝑥𝑦/3) =  4𝑝2 − 8𝑓𝑝2 + 4𝑓2𝑝2 − 8𝑝3 + 16𝑓𝑝3 − 8𝑓2𝑝3 + 4𝑝4 −

8𝑓𝑝4 + 4𝑓2𝑝4 

And since  

𝐸(𝑥𝑦) =  𝑝2. 𝐸(𝑥𝑦/1) + 2 𝑝(1 − 𝑝)𝐸(𝑥𝑦/2)  + (1 − 𝑝)2𝐸(𝑥𝑦/3),  

Then 

𝐸(𝑥𝑦) = 4𝑓2𝑝2 + 8𝑓𝑝3 − 8𝑓2𝑝3 + 4𝑝4 − 8𝑓𝑝4 + 4𝑓2𝑝4 + 2𝑓2𝑝 + 8𝑓𝑝2 −

10𝑓2𝑝2 + 8𝑝3 − 24𝑓𝑝3 + 16𝑓2𝑝3 − 8𝑝4 + 16𝑓𝑝4 − 8𝑓2𝑝4 + 4𝑝2 − 8𝑓𝑝2 +

4𝑓2𝑝2 − 8𝑝3 + 16𝑓𝑝3 − 8𝑓2𝑝3 + 4𝑝4 − 8𝑓𝑝4 + 4𝑓2𝑝4  

𝐸(𝑥𝑦) =  2𝑓2𝑝 + 4𝑝2 − 2𝑓2𝑝2 

Next we need to calculate 𝐸(𝑥) and 𝐸(𝑦):  

𝐸(𝑥) = 𝐸(𝑦) =  [(2 𝑝2) + 1 (2𝑝(1 − 𝑝))] 

Then,  

𝐸(𝑥). 𝐸(𝑦) =  4𝑝2 

Then covariance will be 

𝑐𝑜𝑣(𝑥, 𝑦) = 2𝑓2𝑝 − 2𝑓2𝑝2 

Next, the variances are given by  

𝑉𝑎𝑟(𝑥) =  𝑉𝑎𝑟(𝑦)  = 2𝑝(1 − 𝑝)   

Then equation (A3-1) becomes, 

𝑐𝑜𝑟𝑟(𝑥, 𝑦) =  
2𝑓2𝑝−2𝑓2𝑝2

√2𝑝(1−𝑝)√2𝑝(1−𝑝) 

𝑐𝑜𝑟𝑟(𝑥, 𝑦) =  
2𝑓2𝑝

√4𝑝2−8𝑝3+4𝑝4
−

2𝑓2𝑝2

√4𝑝2−8𝑝3+4𝑝4
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Simplifying this expression yields 

𝑐𝑜𝑟𝑟(𝑥, 𝑦) = 𝑟 =  𝑓2 .   (A3-5) 

Thus to achieve a certain relatedness, a fraction 𝑓 = √𝑟 of fully related individuals 

should be added to each group. 

Appendix 4 

This Appendix contains an example demonstrating the strategy to make additions 

in each group, so as to achieve a certain relatedness for susceptibility and 

infectivity among group mates. We considered 100 groups, each with 100 

individuals. Let us assume that Linkage Disequilibrium (𝐷) = 0.15, and that the 

allele frequency at susceptibility locus is 0.5 and allele frequency at infectivity locus 

equals 0.6. Thus,  𝑝𝑔 = 0.5 and 𝑝𝑓 = 0.6. The 𝑟𝛾 = 0.75 𝑎𝑛𝑑 𝑟𝜑 = 0.6. It is assumed 

that the population is in Hardy-Weinberg Equilibrium. The haplotype frequencies 

will be,  

𝑓𝑔𝑓 = 𝑝𝑔𝑝𝑓 + 𝐷 

𝑓𝑔𝐹 = (1 − 𝑝𝑔)𝑝𝑓 − 𝐷 

𝑓𝐺𝑓 = 𝑝𝑔(1 − 𝑝𝑓) − 𝐷 

𝑓𝐺𝐹 = (1 − 𝑝𝑔)(1 − 𝑝𝑓) + 𝐷 

Table A4-1. Haplotype and genotype type frequencies assuming HWE. 

Haplotypes 𝑓𝑔𝑓 𝑓𝑔𝐹  𝑓𝐺𝑓 𝑓𝐺𝐹  

𝑓𝑔𝑓 𝑓𝑔𝑓
2 2𝑓𝑔𝑓𝑓𝑔𝐹  2𝑓𝑔𝑓𝑓𝐺𝑓 2𝑓𝑔𝑓𝑓𝐺𝐹 

𝑓𝑔𝐹  𝑓𝑔𝐹
2 2𝑓𝑔𝐹𝑓𝐺𝑓 2𝑓𝑔𝐹𝑓𝐺𝐹  

𝑓𝐺𝑓 𝑓𝐺𝑓
2 2𝑓𝐺𝑓𝑓𝐺𝐹  

𝑓𝐺𝐹  𝑓𝐺𝐹
2

Since 𝑟 = 𝑓2, then the fraction 𝑓𝛾 of individuals that are fully related at their

susceptibility locus will be √𝑟𝛾 =  √0.75 = 0.87. And the fraction 𝑓𝜑 of individuals 

that are fully related at their infectivity locus will be √𝑟𝜑 =  √0.6 = 0.77. 

Because the required fraction is lowest for the infectivity locus, we start with the 

infectivity locus. Thus, in each of the 100 groups we added √𝑟𝜑 × 100 = 77 

individuals that are fully related at their susceptibility and infectivity locus. The first 

100 × 𝑓𝑔𝑓
2 groups will contain 77 individuals with 𝑔𝑓𝑔𝑓 genotype,  100 × 2𝑓𝑔𝑓𝑓𝑔𝐹

groups will contain 77 individuals with 𝑔𝑓𝑔𝐹 genotype, 100 × 2𝑓𝑔𝑓𝑓𝐺𝑓 groups will 
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contain 77 individuals with 𝑔𝑓𝐺𝑓 genotype, 100 × 2𝑓𝑔𝑓𝑓𝐺𝐹  groups will contain 77 

individuals with 𝑔𝑓𝐺𝐹 genotype, 100 × 𝑓𝑔𝐹
2 groups contain 77 individuals with

𝑔𝐹𝑔𝐹 genotype, 100 × 2𝑓𝑔𝐹𝑓𝐺𝑓 groups will contain 77 individuals with 𝑔𝐹𝐺𝑓 

genotype, 100 × 2𝑓𝑔𝐹𝑓𝐺𝐹  groups contain 77 individuals 𝑔𝐹𝐺𝐹 genotype, 

100 × 𝑓𝐺𝑓
2 groups will contain 77 individuals with 𝐺𝑓𝐺𝑓 genotype, 100 × 2𝑓𝐺𝑓𝑓𝐺𝐹

groups will contain 77 individuals with 𝐺𝑓𝐺𝐹 genotype and finally, 100 × 𝑓𝐺𝐹
2

groups will contain 77 individuals with 𝐺𝐹𝐺𝐹.  

With respect to the infectivity locus, there are 𝑝𝑓
2 × 100 = 36 groups that contain

a fraction of individuals that are of ff, 2𝑝𝑓(1 − 𝑝𝑓) × 100 = 48 groups that contain 

a fraction of individuals that are of fF genotype and (1 − 𝑝𝑓)2 × 100 = 16 groups

that contain a fraction of individuals that are of FF genotype at their infectivity 

locus. Thus the desired additions for the infectivity locus are achieved. 

With respect to the susceptibility locus, we have 𝑝𝑔
2 × 100 = 25 groups that

contain 77 individuals that are of gg, 2𝑝𝑔(1 − 𝑝𝑔) × 100 = 50 groups that contain 

77 individuals that are of gG genotype and (1 − 𝑝𝑔)2 × 100 = 25 groups that

contain 77 individuals that are of FF genotype at their infectivity locus. For the 

susceptibility locus, however, the required number of individuals to be added 

equals 𝑛 × √𝑟𝛾 = 100 × 0.87 = 87. Since we have already added 77 individuals 

that are fully related at their susceptibility locus, what is left to add to the group is 

87 − 77 = 10 individuals Thus, the next addition will be 10 individuals that are 

fully related at their susceptibility locus, but taken at random with respect to their 

infectivity locus (so that relatedness as the infectivity locus is not affected). 

Therefore, for those groups that already have a fraction of individuals with gg 

genotype, we will add 10 more individuals that are off gg genotype. Analogously, to 

groups that already have a fraction of individuals with a certain genotype, 10 more 

individuals with that genotype are added.  Since the groups size is assumed to be 

100, the rest of the group, which are 100-87=13 individuals, will be assigned 

randomly. 

Appendix 5 

In this appendix we presented the lower (min) and upper (max) bound for 𝑟𝛾 given 

𝑟𝜑  and vice versa for a given linkage disequilibrium, D. These bounds follow from 

the fraction of available individuals for the second addition step (see Appendix 4), 

which depends on the allele frequencies, D, and relatedness at the locus in the first 

addition step. 
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Abstract 
Genetic selection of livestock against infectious diseases can complement existing 
interventions to control infectious diseases. Most genetic approaches that aim at 
reducing disease prevalence assume that individual disease status (infected/not-
infected) is solely a function of its susceptibility to a particular pathogen. However, 
individual infectivity also affects the risk and prevalence of an infection in a 
population. Variation in susceptibility and infectivity between hosts affects 
transmission of an infection in the population, which is usually measured by the 
value of the basic reproduction ratio R0. R0 is an important epidemiological 
parameter that determines the risk and prevalence of infectious diseases. An 
individual’s breeding value for R0 is a function of its genes that influence both 
susceptibility and infectivity. Thus, to estimate the effects of genes on R0, we need 
to estimate the effects of genes on individual susceptibility and infectivity. To that 
end, we developed a generalized linear model (GLM) to estimate relative effects of 
genes for susceptibility and infectivity. A simulation was performed to investigate 
bias and precision of the estimates, the effect of R0, the size of the effects of genes 
for susceptibility and infectivity, and relatedness among group mates on bias and 
precision. We considered two bi-allelic loci that affect, respectively, the individuals’ 
susceptibility only and individuals’ infectivity only. A GLM with complementary log-
log link function can be used to estimate the relative effects of genes on the 
individual’s susceptibility and infectivity. The model was developed from an 
equation that describes the probability of an individual to become infected as a 
function of its own susceptibility genotype and infectivity genotypes of all its 
infected group mates. Results show that bias is smaller when R0 ranges 
approximately from 1.8 to 3.1 and relatedness among group mates is higher. With 
larger effects, both absolute and relative standard deviations become clearly 
smaller, but the relative bias remains the same. We developed a GLM to estimate 
the relative effect of genes that affect individual susceptibility and infectivity. This 
model can be used in genome-wide association studies that aim at identifying 
genes that influence the prevalence of infectious diseases. 
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3.1 Background 
New and existing infectious diseases represent a major and increasing threat to 
domestic plants and animals, and to humans. Infectious diseases of animals are a 
worldwide concern, particularly because of their effects on the productivity and 
welfare of livestock and also because of their zoonotic threats to human health. In 
spite of the availability of antibiotic and vaccine treatments, the undesirable 
environmental impact of antibiotic treatments, the rapid evolution of bacteria to 
develop resistance to antibiotics and of viruses to escape vaccine protection 
illustrate the need for additional control strategies that can provide a useful 
complement to the currently used interventions to control disease (Bishop et al., 
2002). 

Host susceptibility and tolerance are two of the ways that individuals 
respond to pathogens. Several studies on the genetics of diseases in animals have 
shown that the host’s susceptibility and tolerance to infectious diseases have a 
genetic basis, and thus that genotypic differences exist between individuals 
regarding their susceptibility and tolerance to infectious challenges (Axford, 2000). 
A number of genome-wide association studies (GWAS) have reported single 
nucleotide polymorphisms (SNPs) associated with susceptibility to various 
infectious diseases (Kirkpatrick et al., 2011; Bermingham et al., 2014). 

Most genetic approaches that aim at reducing the prevalence of an 
infection assume that an individual’s disease status (infected/not-infected) is solely 
a function of its own genes and of non-genetic factors (Axford, 2000). Hence, these 
methods capture only the genetic variation in susceptibility or tolerance (strictly, 
this latter statement is restricted to the measurement of disease occurrence in 
groups of unrelated individuals (Anche et al., 2014)). However, the prevalence and 
dynamics of an infection depend also on the infectivity of infected individuals in the 
population. Moreover, accumulating evidence on the existence of 
“superspreaders” in the outbreaks of epidemics suggests that (phenotypic) 
variation in infectivity exists among hosts (Lloyd-Smith et al., 2005). Thus, the 
classical quantitative genetic approach of disease analysis based on individual 
disease status will capture only part of the heritable variation that is present in the 
host population and affects the dynamics of infectious diseases (Lipschutz-Powell 
et al., 2012). 

Between-host variation in susceptibility and infectivity affects the 
transmission of an infection in the population. This effect is measured by the value 
of the basic reproduction ratio R0. R0 is defined as the average number of 
secondary cases produced by one typical infectious individual during its entire 
infectious lifetime, in an otherwise naïve population (Diekmann et al., 1990a). R0 
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has a threshold value of 1, which implies that a major disease outbreak or a stable 
endemic equilibrium can only occur when R0 is greater than 1. When R0 is less than 
1, the epidemic will die out. Thus, in order to reduce disease incidence and 
therewith prevalence, breeding strategies should aim at reducing R0, preferably to 
a value less than 1. 

Genetic improvement that aims at reducing R0 should be based on 
individual breeding values for R0. An individual’s breeding value for R0 is the sum of 
the average effects of its alleles on R0 (Anche et al., 2014), which means that 
investigating the effects of genes on R0 is relevant. Anche et al. (2014) showed that 
an individual’s breeding value for R0 is a function of its genotype for susceptibility 
and infectivity, and of the population’s average susceptibility and infectivity. Thus, 
in order to estimate effects of genes on R0, the susceptibility and infectivity effects 
of the different alleles must be estimated. 

Disease data are often available only in binary form (0/1) that is, the value 
indicates whether an individual has become infected or not. Hence, methods for 
genetic analyses of disease traits have to be tailored to such data. Generalized 
linear models (GLM) are commonly used to analyse binary data, where the 
expected value of the binary response variable is linked to the explanatory 
variables (traits) by a linear equation after applying a link function (Velthuis et al., 
2003a). Velthuis et al. (2003a) showed that the effect of susceptibility and 
infectivity of hosts on the transmission rate parameter β can be estimated by fitting 
a GLM with a complementary log-log link function to binary disease data. Lipschutz-
Powell et al. (2014a) showed that a GLM with a complementary log-log link 
function can be used to link the probability of an individual to be infected to the 
susceptibility genotype of the individual itself and the infectivity genotypes of its 
infectious contacts. However, they observed that the infectivity component of the 
model was non-linear, and did not provide an explicit GLM or investigate the 
quality of estimates resulting from such a GLM. 

In this study, we developed a GLM to estimate the relative effects of genes 
on individual susceptibility and infectivity, and investigated the quality of the 
resulting estimates in terms of bias and precision. We also investigated the effect 
of R0, different sizes of the effects of susceptibility and infectivity genes and 
population structure with respect to relatedness on bias and precision of the 
estimates. The GLM was fitted to binary disease data (0/1) recorded at the end of 
the epidemic. Thus, the data analysed were counts of infected individuals of 
different genotypes. These data were obtained from a simulated genetically 
heterogeneous population in which individuals differed in susceptibility and 
infectivity. 
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3.2 Methods 
3.2.1 Population structure 
We assumed a diploid population with between-host genetic heterogeneity in 
susceptibility and infectivity. We modelled genetic heterogeneity in this population 
using two bi-allelic loci, one locus for the susceptibility effect )(γ  with alleles G and 

g and susceptibility values 𝛾𝛾𝐺𝐺  and 𝛾𝛾𝑔𝑔, and one locus for the infectivity effect )(ϕ
with alleles F and f and infectivity values 𝜑𝜑𝐹𝐹  and 𝜑𝜑𝑓𝑓, respectively. Both loci were 
assumed to have multiplicative allelic effects and the reason for this assumption is 
explained in the section “Generalized linear models”. 

3.2.2 Epidemiological model of disease dynamics 
Disease dynamics that are caused by a microparasitic infection can be modelled 
with a basic compartmental stochastic Susceptible, Infected and Recovered (SIR) 
model. In this model, two possible events can occur: infection of a susceptible 
individual, and recovery of an infectious individual (Kermark and McKendrick, 
1927). With stochasticity, these events occur randomly at a certain rate (probability 
per unit of time) specified by the model parameters and the state variables. In the 
SIR-model, these parameters are the transmission rate parameter (β) for S → I 
with rate 𝛽𝛽 𝑆𝑆𝑆𝑆

𝑁𝑁
, and the recovery rate parameter (α) for I → R with rate 𝛼𝛼𝛼𝛼, where N 

denotes population size, S the number of susceptible individuals and I the number 
of infectious individuals (in this study, we assumed that an individual will be 
infectious once it is infected, thus the terms infectious and infected will be used 
interchangeably; hence, the symbols S, I and R are used to denote both the disease 
status and the number of individuals with that disease status). The transmission 
rate parameter β describes the probability per unit of time for one infected 
individual to infect any other individual in a totally susceptible population 
(Diekmann et al., 1990a; Anderson et al., 1992) (this can be seen from the 
transmission rate NSIdtdS // β−= , for I = 1 and S = N). 

In the following, we will consider binary data at the end of an epidemic, 
which indicates for each individual whether it has become infected or not. Thus, 
binomial count data were available to quantify the occurrence of infected 
individuals according to genotype. As a step towards the GLM, first we derive the 
probability of an individual to become infected. 

In a genetically heterogeneous population, the transmission rate 
parameter β varies between pairs of individuals, and in addition to the contact rate 
(c), it will depend on the infectivity genotype of the infectious individual, and on 
the susceptibility genotype of the recipient susceptible individual. The assumption 
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that the transmission rate depends only on the infectivity of the infectious 
individual and the susceptibility of the recipient individual, and not on the 
combination of these two traits, is known as separable mixing (Diekmann et al., 
1990b). In other words, the two individuals that are in contact influence the 
transmission rate independently. Thus, the transmission rate of a specific 
susceptible individual with susceptibility genotype i from being susceptible to being 
infected when exposed to a single infectious individual with infectivity genotype j 
can be defined as: 

𝛽𝛽𝑖𝑖𝑖𝑖
1
𝑁𝑁

= 𝛾𝛾𝑖𝑖𝜑𝜑𝑗𝑗𝑐𝑐
1
𝑁𝑁

, (1) 

where 𝛾𝛾𝑖𝑖  denotes the susceptibility of the susceptible individual, and jj  denotes

the infectivity of the infectious individual. Note that the transmission rate in Eq. (1) 
refers to a single specific susceptible individual, whereas the transmission rate 
parameter β  defined above, refers to any susceptible individual among the N 

candidates. Hence, they differ by a factor of N. In Eq. (1), c represents the average 
contact rate between any pair of individuals and thus 𝑐𝑐 𝑁𝑁�  is the average contact
rate of a susceptible with a single infectious individual in a group of size N (this 

assumes faecal-oral transmission or similar routes, where 1
𝑁𝑁�  of the infectious

material ends up with the sender itself). Any variation in contact rate among 
different types of susceptible and infectious individuals is included in 𝛾𝛾𝑖𝑖  and 𝜑𝜑𝑗𝑗  
because of the assumption of separable mixing. 
 When one susceptible individual with susceptibility genotype i is exposed to 
one infectious individual with infectivity genotype j, the expected number of 
transmissions is the product of the transmission rate and the average length of the 

infectious period, and is equal to 𝛾𝛾𝑖𝑖𝜑𝜑𝑗𝑗𝑐𝑐
1
𝑁𝑁
1
𝛼𝛼

, where 1/α is the average length of the 

infectious period. The probability 𝑃𝑃𝑖𝑖𝑖𝑖  that the individual escapes infection follows 
from the zero term of the Poisson distribution, and is equal to: 

𝑃𝑃𝑖𝑖𝑖𝑖 =  𝑒𝑒−𝛽𝛽𝑖𝑖𝑖𝑖
1
𝑁𝑁 =  𝑒𝑒−𝛾𝛾𝑖𝑖 𝜑𝜑𝑗𝑗 𝑐𝑐𝛼𝛼

1
𝑁𝑁. (2a) 

 Here, it is assumed that the transmission rate parameter 𝛽𝛽 (and thus also 𝛾𝛾, 𝜑𝜑, 
and 𝑐𝑐/𝛼𝛼) is constant over time so that there is no over-dispersion and the Poisson 
distribution can be used. 
 At the end of the epidemic, the individual with susceptibility genotype i has 
been exposed not to only one but to all infectious group mates (strictly speaking 
this is true for the individuals escaping infection only). These group mates can be 
categorized by their infectivity genotype, j. Let Ij denote the number of infected 
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individuals with infectivity genotype j that have become infected during the 
epidemic and have infectivity 𝜑𝜑𝑗𝑗. Then the probability 𝑃𝑃𝑖𝑖  that the individual 
escapes all infection exposures by individuals of infectivity genotype j and still be 
susceptible by the end of the epidemic is equal to: 

𝑃𝑃𝑖𝑖,𝐼𝐼𝑗𝑗 = ∏ 𝑒𝑒−𝛾𝛾𝑖𝑖𝜑𝜑𝑗𝑗
𝑐𝑐
𝛼𝛼
1
𝑁𝑁𝐼𝐼𝑗𝑗 = 𝑒𝑒−𝛾𝛾𝑖𝑖 𝐼𝐼𝑗𝑗 𝜑𝜑𝑗𝑗 𝑐𝑐𝛼𝛼

1
𝑁𝑁. (2b) 

Thus, the probability 𝑃𝑃𝑖𝑖  that the individual with susceptibility genotype i 
escapes all infection exposures from all genotypes and still be susceptible by the 
end of an epidemic is equal to the product of all the probabilities that it escapes 
infection exposures from its infectious group mates of each genotype: 

𝑃𝑃𝑖𝑖 = ∏ 𝑒𝑒−𝛾𝛾𝑖𝑖 𝐼𝐼𝑗𝑗 𝜑𝜑𝑗𝑗 𝑐𝑐𝛼𝛼
1
𝑁𝑁𝑛𝑛

𝑗𝑗=1 =  𝑒𝑒−𝛾𝛾𝑖𝑖
𝑐𝑐
𝛼𝛼
1
𝑁𝑁∑ 𝐼𝐼𝑗𝑗 𝜑𝜑𝑗𝑗

𝑛𝑛
𝑗𝑗=1  , (3) 

where the summation is over the n infectivity genotypes; n = 3 for a single bi-allelic 
locus in a diploid population. 
 In Eq. (3), we can replace 𝐼𝐼𝑗𝑗  by 𝐼𝐼 ∗ 𝑓𝑓𝑗𝑗, where I is the total number of individuals 
that have been infected at the end of the epidemic and 𝑓𝑓𝑗𝑗 is the fraction of infected 
individuals of genotype j. This yields: 

𝑃𝑃𝑖𝑖 = 𝑒𝑒−𝛾𝛾𝑖𝑖
𝑐𝑐
𝛼𝛼
𝐼𝐼
𝑁𝑁∑ 𝑓𝑓𝑗𝑗𝜑𝜑𝑗𝑗 𝑛𝑛

𝑗𝑗=1  . (4) 
From Eq. (4), the probability that a susceptible individual with susceptibility 

genotype i has been infected by the end of the epidemic is equal to: 

1 − 𝑃𝑃𝑖𝑖 =  1 −  𝑒𝑒−𝛾𝛾𝑖𝑖
𝑐𝑐
𝛼𝛼
𝐼𝐼
𝑁𝑁∑  𝑓𝑓𝑗𝑗𝜑𝜑𝑗𝑗 𝑛𝑛

𝑗𝑗=1  . (5) 
 Thus, the probability that a susceptible individual has been infected depends on 
its own susceptibility, 𝛾𝛾𝑖𝑖, and on the arithmetic mean infectiousness ∑  𝑓𝑓𝑗𝑗𝜑𝜑𝑗𝑗  𝑛𝑛

𝑗𝑗=1  of 
its 𝐼𝐼 infectious group mates with different infectivity values 𝜑𝜑𝑗𝑗, with j = 1,… n. 
 In Andreasen (2011), equation 10, which is equivalent to our Equation (5), was 
presented as the final size equation for a population that is heterogeneous for 
susceptibility and infectivity (in epidemiology, the so-called final size equation gives 
the fraction of infected individuals of each type by the end of an epidemic). Our 
Equation 5 and 14 in Lipschutz-Powell et al. (2014b) follow a similar derivation but, 
in our case, the equation is applied to the end of the epidemic. 

3.2.3 Generalized linear model (GLM) 
A GLM, in its simplest form, specifies a linear relationship between a function of the 
mean of the observed variable 𝑦𝑦, and a set of observed predictor variables, 𝑥𝑥: 

ϕ�𝐸𝐸(𝑦𝑦)� = 𝑐𝑐0 + 𝑐𝑐1𝑥𝑥1 + ⋯𝑐𝑐𝑛𝑛𝑥𝑥𝑛𝑛, 
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where ϕ is the so-called link function, 𝑐𝑐0 is the intercept and the 𝑐𝑐𝑖𝑖  are the 
regression coefficients for the explanatory variables 𝑥𝑥𝑖𝑖, for i = 1, … n. The aim is to 
estimate ci coefficients. 
For binomial data where the probability of failure (to escape an infection) P is equal 
to the zero term of a Poisson distribution, as in the above Eq. (4), the 
complementary log-log link function is the default link function to connect 
explanatory variables 𝑥𝑥𝑖𝑖  with the observed variable 𝑦𝑦 of the linear model 
(McCullagh and Nelder, 1989). Applying the complementary log-log link function to 
1 − 𝑃𝑃𝑖𝑖  based on Eq. (4), yields: 

cloglog(1 − P𝑖𝑖) =  log�−log(𝑃𝑃𝑖𝑖)� =  log �𝑐𝑐
𝛼𝛼
� + log(𝛾𝛾𝑖𝑖) + log � 𝐼𝐼

𝑁𝑁
� + log∑  𝑓𝑓𝑗𝑗𝜑𝜑𝑗𝑗𝑛𝑛

𝑗𝑗=1  

(6) 

Thus, the dependent variables have now become the fraction of each i 
type of individual that did become infected (see below). 

The model in Eq. (6) is linear in log of susceptibility (𝛾𝛾𝑖𝑖) but not for 
infectivity (𝜑𝜑𝑗𝑗), since the logarithm of a sum does not equal the sum of the 
logarithms, as also observed by (Lipschutz-Powell et al., 2014b). In Eq. (6), the term 
∑  𝑓𝑓𝑗𝑗𝜑𝜑𝑗𝑗𝑛𝑛
𝑗𝑗=1  can be recognized as the arithmetic mean, since ∑  𝑓𝑓𝑗𝑗𝑛𝑛

𝑗𝑗=1  = 1. In order to 
further linearize Eq. (6), the arithmetic mean was approximated by a geometric 
mean, using the substitution ∑  𝑓𝑓𝑗𝑗𝜑𝜑𝑗𝑗𝑛𝑛

𝑗𝑗=1  ≈ ∏  𝜑𝜑𝑗𝑗𝑓𝑓𝑗𝑗𝑛𝑛
𝑗𝑗=1 . This yields: 

log�−log(𝑃𝑃𝑖𝑖)� ≈ log �𝑐𝑐
𝛼𝛼
� + log(𝛾𝛾𝑖𝑖) + log � 𝐼𝐼

𝑁𝑁
� +  ∑  𝑓𝑓𝑗𝑗 log (𝜑𝜑𝑗𝑗) 𝑛𝑛

𝑗𝑗=1 .  (7) 

 The approximation of the arithmetic mean regression by a geometric mean 
regression was investigated separately as explained in the ‘Appendix’. 
 In Eq. (7), the expectation of the response variable,  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(1 − 𝑃𝑃𝑖𝑖)  is a linear 
expression of  log (𝛾𝛾𝑖𝑖) and  log (𝜑𝜑𝑗𝑗). 
 Equation (7) is linear in the log of susceptibility (𝛾𝛾𝑖𝑖) and the log of infectivity 
(𝜑𝜑𝑗𝑗). To be able to formulate the model in terms of allele counts within individuals, 
rather than in terms of individual genotypes, it was assumed that the two alleles 
that make up the genotype within an individual act multiplicatively, so that their 
effects are additive on the log-scale. 
 Therefore, the genotypic values will be 𝛾𝛾𝐺𝐺𝐺𝐺 = 𝛾𝛾𝐺𝐺 × 𝛾𝛾𝐺𝐺 = 𝛾𝛾𝐺𝐺2, 𝛾𝛾𝑔𝑔𝑔𝑔 = 𝛾𝛾𝑔𝑔 × 𝛾𝛾𝑔𝑔 =
𝛾𝛾𝑔𝑔2 and 𝛾𝛾𝐺𝐺𝐺𝐺 = 𝛾𝛾𝑔𝑔𝑔𝑔 = 𝛾𝛾𝐺𝐺 ×  𝛾𝛾𝑔𝑔, for susceptibility, and 𝜑𝜑𝐹𝐹𝐹𝐹 = 𝜑𝜑𝐹𝐹 × 𝜑𝜑𝐹𝐹 = 𝜑𝜑𝐹𝐹2; 
𝜑𝜑𝑓𝑓𝑓𝑓 = 𝜑𝜑𝑓𝑓 × 𝜑𝜑𝑓𝑓 = 𝜑𝜑𝑓𝑓2 and 𝜑𝜑𝑓𝑓𝑓𝑓 = 𝜑𝜑𝐹𝐹𝐹𝐹 = 𝜑𝜑𝑓𝑓 × 𝜑𝜑𝐹𝐹  for infectivity. Furthermore, the 
effects of the 𝑔𝑔 and 𝑓𝑓 alleles were set to a value of 1, 𝛾𝛾𝑔𝑔 = 𝜑𝜑𝑓𝑓 = 1, so that log (𝛾𝛾𝑔𝑔) = 
log (𝜑𝜑𝑓𝑓) = 0. This is done without loss of generality, because the interest lies in the 
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relative effect of one allele to the other, that is the effect of 𝛾𝛾𝐺𝐺  relative to 𝛾𝛾𝑔𝑔 and 
the effect of 𝜑𝜑𝐹𝐹  relative to 𝜑𝜑𝑓𝑓 [note that this does not affect the estimates of 
relative allele effects since the absolute scale of the model is accounted for by the 
log(c/α)-term]. Using Eq. (7), the GLM for the diploid genetic model becomes: 

cloglog 𝐸𝐸 �𝑦𝑦𝑖𝑖
𝑛𝑛𝑖𝑖
� = 𝑐𝑐0 + 𝑐𝑐1𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺,𝑖𝑖 + 𝑐𝑐2𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹 +  𝑙𝑙𝑙𝑙𝑙𝑙 ( 𝐼𝐼

𝑁𝑁
),  (8)

where individuals are aggregated by their genotype, i. The cloglog is applied to the 
expectation of 𝑦𝑦𝑖𝑖

𝑛𝑛𝑖𝑖
, which is the fraction of infected individuals of genotype i, by the

end of the epidemic and 𝑦𝑦𝑖𝑖  follows a binomial distribution, 𝑐𝑐0 is the intercept 
measuring log(c/α), and 𝑐𝑐1 is the regression coefficient for the 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺 , where 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺 ,𝑖𝑖  = 0, 1 or 2 is the number of G alleles at the susceptibility locus of 
individuals of genotype 𝑖𝑖. The 𝑐𝑐2 is the regression coefficient for 𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹, which is 
the average of the number of F-alleles per individual at the infectivity locus in the 
infected group mates of the individuals of genotype i. It is calculated as 2 ∗
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 1 ∗ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓/𝐹𝐹𝑓𝑓  where 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  is the fraction of infected individuals with 
genotype “𝐹𝐹𝐹𝐹” and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑓𝑓𝑓𝑓/𝐹𝐹𝐹𝐹  is the fraction of infected individuals with genotype 
”𝑓𝑓𝑓𝑓" 𝑜𝑜𝑜𝑜 "𝐹𝐹𝐹𝐹”. The ”2” arises because individuals with the “𝐹𝐹𝐹𝐹” genotype carry two 
F alleles, while those with the ”𝑓𝑓𝑓𝑓" 𝑜𝑜𝑜𝑜 "𝐹𝐹𝐹𝐹” genotype carry only one F allele. The 

log ( 𝐼𝐼
𝑁𝑁

) corresponds to the total fraction of infected individuals in the group, which

is used as an offset in the GLM. Hence, estimates of c1 and c2 refer to the effect of a 
single allele, and represent the so-called average effect of an allele substitution on 
the log-scale (Falconer and Mackay, 1996). When fitting the model to binomial 
count data of those individuals of each genotype that are infected and estimating 
c0, c1 and c2, the effects of alleles G and F relative to 𝛾𝛾𝑔𝑔 = 𝜑𝜑𝑓𝑓 = 1 can be calculated 
as 𝛾𝛾�𝐺𝐺 = 𝑒𝑒𝑐𝑐1� and 𝜑𝜑�𝐹𝐹 = 𝑒𝑒𝑐𝑐2�, respectively. 

3.2.4 Simulation 
To investigate the bias and precision of the 𝛾𝛾�𝐺𝐺  and 𝜑𝜑�𝐹𝐹, one generation of a diploid 
population was simulated based on the above assumptions with respect to the 
effect of alleles at both loci. These two loci were the only genetic effects simulated. 
Furthermore, it was assumed that allele frequencies at both loci were equal to 0.5, 
that is, 𝑝𝑝𝑔𝑔 = 𝑝𝑝𝑓𝑓 = 0.5. The population was sub-divided into 100 groups of 100 
individuals each. Each group was set up in such a way that group mates showed a 
certain genetic relatedness, r, at both loci. Here, relatedness is defined as the 
correlation of allele counts between group mates, irrespective of what causes the 
correlation. To limit the number of scenarios to be tested, relatedness at the 
susceptibility locus, 𝑟𝑟𝛾𝛾, and at the infectivity locus, 𝑟𝑟𝜑𝜑 , were assumed to be the 



3 Genetic analysis of infectious diseases 

72 

same (note that relatedness at both loci is expected to be the same when the loci 
are not under selection). In order to have a certain degree of relatedness among 
group mates, a fraction of fully related individuals was added to each group, 
supplemented by randomly selected individuals. Since each individual carries both 
the susceptibility and the infectivity locus, these additions were done jointly (see 
Appendix 4 in (Anche et al., 2014) for a detailed description of the strategy to make 
these additions jointly). 

A basic stochastic SIR-model as described above was used to simulate the 
disease dynamics (Kermark and McKendrick, 1927). In each group, the epidemic 
began by one randomly infected individual. Then, the next event which could be 
either infection of a susceptible individual or recovery of infected individual was 
determined using Gillespie’s direct algorithm (Gillespie, 1977). The type of event, 
i.e. either infection or recovery, was decided by drawing a random number v1, from 
a uniform distribution, v1 ~ U(0,1). The next event was an infection of a susceptible 

individual if the random number v1 < 
∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑗𝑗

𝑆𝑆𝑖𝑖𝐼𝐼𝑗𝑗
𝑁𝑁𝑖𝑖

∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑗𝑗
𝑆𝑆𝑖𝑖𝐼𝐼𝑗𝑗
𝑁𝑁𝑖𝑖 +𝐼𝐼𝐼𝐼

, otherwise it was recovery of an

infected individual. The numerator of this ratio represents the total infection rate, 
and the denominator the total rate, i.e., the sum of the infection and recovery 
rates. The sampling of the specific individual that became infected depended on 
individual susceptibility. The probability that a susceptible individual of genotype i 

became infected was proportional to 
∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑗𝑗

𝑆𝑆𝑖𝑖𝐼𝐼𝑗𝑗
𝑁𝑁𝑖𝑖

∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝑗𝑗
𝑆𝑆𝑖𝑖𝐼𝐼𝑗𝑗
𝑁𝑁𝑖𝑖 +𝐼𝐼𝐼𝐼

. Hence, the transmission rates 

were updated based on the numbers of susceptible and infected individuals of each 

genotype, while the transmission rate parameter ijβ  remained constant. The

epidemic ended when there was no more infectious individual in the population or 
when there was no susceptible individual left to be infected. By the end of the 
epidemic, the number of individuals that got infected together with their 
genotypes for susceptibility and infectivity were recorded. The fraction of 
individuals of each genotype that got infected was the dependent variable in the 
analysis. 

We hypothesized that different epidemiological and genetic factors will 
affect the quality of the estimates, as measured by the bias and precision of 𝛾𝛾�𝐺𝐺  and 
𝜑𝜑�𝐹𝐹. For that purpose, we simulated different scenarios that are described below. 
The biases of the estimates were calculated by taking the difference between the 
‘true’ and estimated values and the precision of the estimates were calculated 
using the standard deviation (SD) of the estimates. 
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First, we simulated a basic scenario (scenario 1; Table 3.1), in which groups 
were created randomly with respect to relatedness among group mates. We 
calculated R0 using (Anche et al., 2014): 
𝑅𝑅0 = 𝛾̅𝛾𝜑𝜑� 𝑐𝑐 𝛼𝛼⁄ ,
where 𝛾̅𝛾 = 𝑝𝑝𝑔𝑔2𝛾𝛾𝑔𝑔𝑔𝑔 + 2𝑝𝑝𝑔𝑔�1 − 𝑝𝑝𝑔𝑔�𝛾𝛾𝑔𝑔𝑔𝑔 + (1 − 𝑝𝑝𝑔𝑔)2𝛾𝛾𝐺𝐺𝐺𝐺, 
and 𝜑𝜑� = 𝑝𝑝𝑓𝑓2𝜑𝜑𝑓𝑓𝑓𝑓 + 2𝑝𝑝𝑓𝑓�1 − 𝑝𝑝𝑓𝑓�𝜑𝜑𝑓𝑓𝑓𝑓 + (1 − 𝑝𝑝𝑓𝑓)2𝜑𝜑𝐹𝐹𝐹𝐹. 
Population parameters are in Table 3.1. In the basic scenario, R0 was set to 1.2. 

Table 3.1. Simulated scenarios 

For all scenarios, 𝛾𝛾𝑔𝑔 = 𝜑𝜑𝑓𝑓 = 1 and 𝑝𝑝𝑔𝑔 = 𝑝𝑝𝑓𝑓 = 0.5 

Second, to investigate the effect of R0 on the quality of 𝛾𝛾�𝐺𝐺  and 𝜑𝜑�𝐹𝐹, we simulated 
scenarios with different values of R0. We varied the contact rate c, so that R0 for a 
population consisting of groups with unrelated individuals varied from 0.6 (for 
which no major outbreaks can occur) to 6.1 (for which major outbreaks can occur; 
Table 3.1, scenario 2). 
 Third, to investigate the impact of the size of effects of the genes for 
susceptibility and infectivity on the quality of 𝛾𝛾�𝐺𝐺  and 𝜑𝜑�𝐹𝐹, we simulated scenarios 
with different effect sizes for a constant value of R0 = 1.2. We simulated all 
combinations of low, moderate and high values for 𝛾𝛾𝐺𝐺  and 𝜑𝜑𝐹𝐹  (Table 3.1, scenario 
3). 
 Furthermore, in all of the above-mentioned scenarios, relatedness between 
group mates was varied between 0 and 1 to investigate the effect of population 
structure with respect to relatedness on the quality of 𝛾𝛾�𝐺𝐺  and 𝜑𝜑�𝐹𝐹. Relatedness was 
assumed to be the same at both loci (see (Anche et al., 2014) for details). We used 
R software to fit the model with a glm function and a binomial distribution. 

Parameters Scenario 1 Scenario 2 Scenario 3 
Contact rate, c 1.5 0.75-7.5 1.5 
Recovery rate α 0.5 0.5 0.5 

𝛾𝛾𝐺𝐺  0.6 0.6 0.97, 0.6 and 0.37 
𝜑𝜑𝐹𝐹  0.6 0.6 0.3, 0.6 and 0.9 

Relatedness r 0-1 0-1 0-1 
R0 1.2 0.6-6.1 1.2 
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3.3 Results 
All estimates presented in this section are averages from 2000 replicates, except 
for Figure 3.1 which shows the results of all replicates. The black straight line in all 
Figures represents the true difference between 𝛾𝛾𝑔𝑔 and 𝛾𝛾𝐺𝐺  and between 𝜑𝜑𝑓𝑓 and 𝜑𝜑𝐹𝐹, 
and the bars indicate the standard deviation of these estimates among replicates. 

In the basic scenario, in which groups were created randomly with respect 
to relatedness, r = 0, we found that the susceptibility effect was slightly 
underestimated (1 −  𝛾𝛾�𝐺𝐺  in Figure 3.2) but the infectivity effect was considerably 
overestimated (1 − 𝜑𝜑�𝐹𝐹  in Figure 3.2). When the degree of relatedness among 
group mates increased, the bias of both estimates decreased, however, the effect 
of relatedness was more pronounced for infectivity (Figure 3.2). The error in 𝜑𝜑�𝐹𝐹, 
that is caused by the geometric mean approximation was quantified and found to 
be small (Table 3.3, Appendix 1). Moreover, the standard deviation of the 
estimated susceptibility effect increased only slightly, whereas the standard 
deviation of the estimated infectivity effect increased considerably as the degree of 
relatedness increased. 

A scatter plot for (1 −  𝛾𝛾�𝐺𝐺) and (1 − 𝜑𝜑�𝐹𝐹) of the 2000 replicates for the 
basic scenario where r = 0 shows that the estimated differences are uniformly 
distributed over their range without any pattern (Figure 3.1). 

This plot also shows that (1 − 𝜑𝜑�𝐹𝐹) is more often underestimated than 
overestimated, which agrees with the underestimation in Figure 3.2 for r = 0. 
In the second set of scenarios, where R0 was varied from 0.6 to 6.1, susceptibility 
and infectivity effects were also underestimated. Bias in 𝛾𝛾�𝐺𝐺  and 𝜑𝜑�𝐹𝐹  was smallest for 
values of R0 that ranged approximately from 1.8 to 3.1. Higher values of R0 
increased bias in 𝛾𝛾�𝐺𝐺  but had little effect on bias in 𝜑𝜑�𝐹𝐹  when group mates were 
unrelated (Figure 3.3, panel a). Bias in 𝜑𝜑�𝐹𝐹  and 𝛾𝛾�𝐺𝐺  decreased with increasing 
relatedness among group mates, except for 𝜑𝜑�𝐹𝐹  at high values of R0 (Figure 3.3, 
panels b, c and d). In contrast to the result for the unrelated groups, bias in 𝜑𝜑�𝐹𝐹  was 
larger at high values of R0 when related groups were used (Figure 3.3, panel a vs. 
panels b, c and d). For fully-related groups, i.e. r = 1, estimates for 𝜑𝜑�𝐹𝐹 and 𝛾𝛾�𝐺𝐺  and 
their standard deviation were nearly identical (Figure 3.3, panel d). For this 
scenario, the error in 𝜑𝜑�𝐹𝐹  as a result of the geometric mean approximation was also 
quantified and only a small error was found (Appendix, Table 3.4). 

For all values of R0, standard deviations of estimates were greater for 
infectivity effect than for susceptibility effect, except for r = 1 for which they were 
nearly identical. Standard deviations decreased considerably as relatedness among 
group mates increased, particularly for infectivity effect. For both susceptibility and 
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infectivity effects, standard deviations were smaller for values of R0 for which the 
bias in 𝛾𝛾�𝐺𝐺  and 𝜑𝜑�𝐹𝐹 was smallest, i.e. when R0 ranged approximately from 1.8 to 3.1.
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3.3 Results 
All estimates presented in this section are averages from 2000 replicates, except 
for Figure 3.1 which shows the results of all replicates. The black straight line in all 
Figures represents the true difference between 𝛾𝛾𝛾𝛾𝑔𝑔𝑔𝑔 and 𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  and between 𝜑𝜑𝜑𝜑𝑓𝑓𝑓𝑓 and 𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹, 
and the bars indicate the standard deviation of these estimates among replicates. 

In the basic scenario, in which groups were created randomly with respect 
to relatedness, r = 0, we found that the susceptibility effect was slightly 
underestimated (1 −  𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  in Figure 3.2) but the infectivity effect was considerably 
overestimated (1 − 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  in Figure 3.2). When the degree of relatedness among 
group mates increased, the bias of both estimates decreased, however, the effect 
of relatedness was more pronounced for infectivity (Figure 3.2). The error in 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹, 
that is caused by the geometric mean approximation was quantified and found to 
be small (Table 3.3, Appendix 1). Moreover, the standard deviation of the 
estimated susceptibility effect increased only slightly, whereas the standard 
deviation of the estimated infectivity effect increased considerably as the degree of 
relatedness increased. 

A scatter plot for (1 −  𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺) and (1 − 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹) of the 2000 replicates for the 
basic scenario where r = 0 shows that the estimated differences are uniformly 
distributed over their range without any pattern (Figure 3.1). 

This plot also shows that (1 − 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹) is more often underestimated than 
overestimated, which agrees with the underestimation in Figure 3.2 for r = 0. 
In the second set of scenarios, where R0 was varied from 0.6 to 6.1, susceptibility 
and infectivity effects were also underestimated. Bias in 𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  and 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  was smallest for 
values of R0 that ranged approximately from 1.8 to 3.1. Higher values of R0 
increased bias in 𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  but had little effect on bias in 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  when group mates were 
unrelated (Figure 3.3, panel a). Bias in 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  and 𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  decreased with increasing 
relatedness among group mates, except for 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  at high values of R0 (Figure 3.3, 
panels b, c and d). In contrast to the result for the unrelated groups, bias in 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  was 
larger at high values of R0 when related groups were used (Figure 3.3, panel a vs. 
panels b, c and d). For fully-related groups, i.e. r = 1, estimates for 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹 and 𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  and 
their standard deviation were nearly identical (Figure 3.3, panel d). For this 
scenario, the error in 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  as a result of the geometric mean approximation was also 
quantified and only a small error was found (Appendix, Table 3.4). 

For all values of R0, standard deviations of estimates were greater for 
infectivity effect than for susceptibility effect, except for r = 1 for which they were 
nearly identical. Standard deviations decreased considerably as relatedness among 
group mates increased, particularly for infectivity effect. For both susceptibility and 

3 
G

en
et

ic
 a

na
ly

si
s o

f i
nf

ec
tio

us
 d

is
ea

se
s 

76Fi
gu

re
 3

.1
. S

ca
tt

er
 p

lo
ts

 fo
r (

1
−
𝛾𝛾𝛾𝛾𝛾 𝐺𝐺𝐺𝐺

) a
nd

 in
fe

ct
iv

ity
 (1

−
𝜑𝜑𝜑𝜑𝜑
𝐹𝐹𝐹𝐹

).
 F

or
 th

e 
sc

en
ar

io
 w

he
re

 re
la

te
dn

es
s b

et
w

ee
n 

gr
ou

p 
m

at
es

 r 
= 

0 
an

dR
0  

1.

76



3 Genetic analysis of infectious diseases

75

infectivity effects, standard deviations were smaller for values of R0 for which the 
bias in 𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  and 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹 was smallest, i.e. when R0 ranged approximately from 1.8 to 3.1.
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In the third set of scenarios, different sizes of the effects of 𝛾𝛾𝐺𝐺  and 𝜑𝜑𝐹𝐹  were 
simulated. For both estimates, the relative bias did not change regardless of the 
size of the effect considered (Figures 3.4 and 3.5). In these scenarios also, both 
susceptibility and infectivity effects were underestimated regardless of the size of 
the effects considered, except when there was a large difference in infectivity 
effect and r = 1, there was a small overestimation (1 − 𝜑𝜑�𝐹𝐹  in Figure 3.5). Moreover, 
smaller relative standard deviations were found for both susceptibility and 
infectivity effects when effect sizes were larger, which indicates that the effects are 
better estimated when they are larger. For this scenario, the error in 𝜑𝜑�𝐹𝐹 as a result 
of the geometric mean approximation was also quantified and only a small error 
was found (Table 3.5, Appendix). 

3.4 Discussion 
In this work, a generalized linear model with a complementary log-log link function 
was developed to estimate the relative effects of genes on individual susceptibility 
and infectivity. The model was developed from an equation that describes the 
probability of an individual to become infected as a function of its own 
susceptibility genotype and of the infectivity genotypes of its infected group mates. 
This GLM was developed following Velthuis et al. (2003b) who developed a GLM for 
binary data on a transmission trial to estimate the effect of susceptibility and 
infectivity of hosts on the transmission rate parameter β. A simulation study was 
performed to investigate the quality of the GLM. From the statistical analysis of the 
simulated data, we obtained fairly precise estimates, except for some scenarios for 
which estimates were more biased, particularly for infectivity. The best estimates 
were found for schemes with intermediate R0 and related group members. For all 
the scenarios investigated, the sizes of the effects at both loci were 
underestimated. 

The main objective of this study was to develop a methodology to 
estimate gene effects and also to investigate its quality in terms of bias and 
precision of the estimates. To test the methodology without introducing additional 
assumptions that may contribute to estimation error, we assumed additive allele 
effects on the log-scale for both susceptibility and infectivity. Thus, allelic effects 
were simulated multiplicatively on the original scale. This was done for two 
reasons. First, we wanted to formulate the model in terms of allele counts within 
individuals, rather than in terms of individual genotypes. In other words, we did not 
intend to estimate dominance effects. Whether allele effects are more likely to be 
additive on the log-scale than on the original scale is unknown at present. Second, 
since the objective of this study was to investigate the quality of the model rather 
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than the assumptions on the genetic architecture, the data were simulated under a 
model that agreed with the assumptions of the statistical model. Bias and standard 
deviation of the estimates were smallest for R0 that ranged approximately from 1.8 
to 3.1. 
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3.3 Results 
All estimates presented in this section are averages from 2000 replicates, except 
for Figure 3.1 which shows the results of all replicates. The black straight line in all 
Figures represents the true difference between 𝛾𝛾𝛾𝛾𝑔𝑔𝑔𝑔 and 𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  and between 𝜑𝜑𝜑𝜑𝑓𝑓𝑓𝑓 and 𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹, 
and the bars indicate the standard deviation of these estimates among replicates. 

In the basic scenario, in which groups were created randomly with respect 
to relatedness, r = 0, we found that the susceptibility effect was slightly 
underestimated (1 −  𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  in Figure 3.2) but the infectivity effect was considerably 
overestimated (1 − 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  in Figure 3.2). When the degree of relatedness among 
group mates increased, the bias of both estimates decreased, however, the effect 
of relatedness was more pronounced for infectivity (Figure 3.2). The error in 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹, 
that is caused by the geometric mean approximation was quantified and found to 
be small (Table 3.3, Appendix 1). Moreover, the standard deviation of the 
estimated susceptibility effect increased only slightly, whereas the standard 
deviation of the estimated infectivity effect increased considerably as the degree of 
relatedness increased. 

A scatter plot for (1 −  𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺) and (1 − 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹) of the 2000 replicates for the 
basic scenario where r = 0 shows that the estimated differences are uniformly 
distributed over their range without any pattern (Figure 3.1). 

This plot also shows that (1 − 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹) is more often underestimated than 
overestimated, which agrees with the underestimation in Figure 3.2 for r = 0. 
In the second set of scenarios, where R0 was varied from 0.6 to 6.1, susceptibility 
and infectivity effects were also underestimated. Bias in 𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  and 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  was smallest for 
values of R0 that ranged approximately from 1.8 to 3.1. Higher values of R0 
increased bias in 𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  but had little effect on bias in 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  when group mates were 
unrelated (Figure 3.3, panel a). Bias in 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  and 𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  decreased with increasing 
relatedness among group mates, except for 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  at high values of R0 (Figure 3.3, 
panels b, c and d). In contrast to the result for the unrelated groups, bias in 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  was 
larger at high values of R0 when related groups were used (Figure 3.3, panel a vs. 
panels b, c and d). For fully-related groups, i.e. r = 1, estimates for 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹 and 𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  and 
their standard deviation were nearly identical (Figure 3.3, panel d). For this 
scenario, the error in 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  as a result of the geometric mean approximation was also 
quantified and only a small error was found (Appendix, Table 3.4). 

For all values of R0, standard deviations of estimates were greater for 
infectivity effect than for susceptibility effect, except for r = 1 for which they were 
nearly identical. Standard deviations decreased considerably as relatedness among 
group mates increased, particularly for infectivity effect. For both susceptibility and 
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The basic reproduction ratio R0 is an important factor that affects the size 
of an epidemic in a population, i.e. the fraction of individuals that are found to be 
infected by the end of an epidemic. When R0 is greater than 1 but near 1 in a group, 
there will be virtually no individuals infected and thus, there is hardly any variation 
in disease status, which results in inaccurate estimates of gene effects. Conversely, 
when R0 is much greater than 1, nearly all individuals will be infected, which again 
results in very little variation in disease status. (Table 3.2 indicates the fraction of 
infected individual for different values of R0 and relatedness among group mates). 
Thus, the relationship between R0 and the fraction of individuals infected affects 
the estimation of the effect on susceptibility and infectivity, since data on the final 
size of an epidemic were used for our estimation. This mechanism may explain why 
the estimated effect on susceptibility is best for intermediate R0. The effect of 
infectivity is more difficult to estimate and the bias is larger. 

For each scenario, more relatedness between individuals resulted in better 
estimates for both traits. This is because more relatedness creates more variation 
between groups, which results in groups with below or above average susceptibility 
and/or infectivity. This occurs because an individual with a lower susceptibility will 
also have related group mates with below average susceptibility, and vice versa. 
The same applies for infectivity. However, since we assumed absence of linkage 
disequilibrium (LD) between the susceptibility and infectivity loci, groups with 
below average susceptibility will not always have below average infectivity as well. 
Thus, only those groups with above average susceptibility and above average 
infectivity will have epidemics with a greater final size, i.e. the fraction of 
individuals that gets infected by the end of the epidemic, while those with below 
average susceptibility and infectivity will a lower final size. This variation improved 
estimates of the effects of susceptibility and infectivity. 
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3.3 Results 
All estimates presented in this section are averages from 2000 replicates, except 
for Figure 3.1 which shows the results of all replicates. The black straight line in all 
Figures represents the true difference between 𝛾𝛾𝛾𝛾𝑔𝑔𝑔𝑔 and 𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  and between 𝜑𝜑𝜑𝜑𝑓𝑓𝑓𝑓 and 𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹, 
and the bars indicate the standard deviation of these estimates among replicates. 

In the basic scenario, in which groups were created randomly with respect 
to relatedness, r = 0, we found that the susceptibility effect was slightly 
underestimated (1 −  𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  in Figure 3.2) but the infectivity effect was considerably 
overestimated (1 − 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  in Figure 3.2). When the degree of relatedness among 
group mates increased, the bias of both estimates decreased, however, the effect 
of relatedness was more pronounced for infectivity (Figure 3.2). The error in 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹, 
that is caused by the geometric mean approximation was quantified and found to 
be small (Table 3.3, Appendix 1). Moreover, the standard deviation of the 
estimated susceptibility effect increased only slightly, whereas the standard 
deviation of the estimated infectivity effect increased considerably as the degree of 
relatedness increased. 

A scatter plot for (1 −  𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺) and (1 − 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹) of the 2000 replicates for the 
basic scenario where r = 0 shows that the estimated differences are uniformly 
distributed over their range without any pattern (Figure 3.1). 

This plot also shows that (1 − 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹) is more often underestimated than 
overestimated, which agrees with the underestimation in Figure 3.2 for r = 0. 
In the second set of scenarios, where R0 was varied from 0.6 to 6.1, susceptibility 
and infectivity effects were also underestimated. Bias in 𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  and 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  was smallest for 
values of R0 that ranged approximately from 1.8 to 3.1. Higher values of R0 
increased bias in 𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  but had little effect on bias in 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  when group mates were 
unrelated (Figure 3.3, panel a). Bias in 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  and 𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  decreased with increasing 
relatedness among group mates, except for 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  at high values of R0 (Figure 3.3, 
panels b, c and d). In contrast to the result for the unrelated groups, bias in 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  was 
larger at high values of R0 when related groups were used (Figure 3.3, panel a vs. 
panels b, c and d). For fully-related groups, i.e. r = 1, estimates for 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹 and 𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  and 
their standard deviation were nearly identical (Figure 3.3, panel d). For this 
scenario, the error in 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹  as a result of the geometric mean approximation was also 
quantified and only a small error was found (Appendix, Table 3.4). 

For all values of R0, standard deviations of estimates were greater for 
infectivity effect than for susceptibility effect, except for r = 1 for which they were 
nearly identical. Standard deviations decreased considerably as relatedness among 
group mates increased, particularly for infectivity effect. For both susceptibility and 
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We have made a number of assumptions in building our methodology. In the 
derivation of Equation (5), we assumed that all individuals that escaped the 
infection had been exposed to all infected individuals. Of course, this assumption is 
true for the simulations done here. To what extent, this will be true for real data 
remains to be seen. It seems reasonable to assume that individuals in relatively 
small and well-defined groups get mixed up over space and time as is often the 
case in animal husbandry: for example, in fattening pigs with group sizes of 10 to 
30 individuals. The assumption is less reasonable for groups with a spatial 
structure, for example in tie stalls or when epidemics occur within barns subdivided 
into multiple groups. In such cases, data should be collected separately for 
different groups. We also assumed that epidemics could be completely recorded, 
so that the final disease status of all individuals is known, and all individuals that 
have escaped the infection have been exposed to all infected individuals. However, 
for reasons of, e.g., animal welfare and productivity, interventions are often carried 
out to limit the size of an epidemic. Hence, individuals may not have had the full 
potential to express their susceptibility and infectivity. For incomplete epidemics, 
the probability that an individual becomes infected follows from Equation (5) when 
only the infected individuals to which the focal individual has been exposed are 
considered (see also (Lipschutz-Powell et al., 2014b)). Thus, extension to 
incompletely observed epidemics is straightforward (see also application in 
(Velthuis et al., 2003b) and subsequent papers citing (Velthuis et al., 2003b)). 
 Bias and precision of estimates may be improved when data are recorded within 
shorter time intervals. This may be particularly helpful for cases with high R0. In such 
cases, each interval forms an incompletely observed epidemic, which can be 
analysed with the same GLM statistical approach (Velthuis et al., 2003b). When data 
are collected in sufficiently short time intervals, only a fraction of individuals will 
become infected in a single interval, even when R0 is high. This will contribute to 
accuracy of the estimates. Moreover, collecting data in short time intervals also 
provide information on the order of infections, i.e., which animal has infected which 
animal. This will increase the accuracy of estimated gene effects, particularly for 
infectivity (Pooley et al., 2014). Thus, using data from short time intervals can be 
complementary to using groups composed of related individuals and data from 
multiple epidemics. The derivation and resulting model for such cases is very similar 
to the one presented here, since the probability that an individual escapes infection 
follows from the zero-term of the Poisson distribution (see also [11, 9]). The key step 
is to identify the infectious individuals to which the focal individual has been 
exposed in a time period. 
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Lipschutz-Powell et al. (2014b) showed that, when there is genetic variation 
in susceptibility only, a complementary log-log link function can be used to 
link an equation that describes the probability of an individual to become 
infected to a linear model that includes the individual’s genotype for 
susceptibility. They also suggested that, when there is genetic variation in 
infectivity, a Taylor-series expansion of the model term for infectivity can be 
used to further linearize the model in infectivity. In our study, we obtained a 
linear model for infectivity by approximating the arithmetic mean by a 
geometric mean. We quantified the error due to this approximation and 
found only negligible errors in the estimates (Appendix). Thus, this 
approximation can be ruled out as the cause of the observed bias. This 
suggests that, for cases for which there is variation in infectivity, the 
geometric mean approximation is suitable to obtain a linear combination of 
the parameters of interest. A full investigation of the causes of the bias is 
beyond the scope of this study. However, the fact that a population of finite 
size, i.e., 100 individuals in each group, was used to estimate gene effects 
can be one of the reasons for the observed underestimation. 

Table 3.2. Fraction of individuals infected at the end of the epidemic 

r = 0 r = 0.25 r = 0.5625 r = 1 
R0=0.6 0.02 0.03 0.03 0.04 
R0=1.2 0.10 0.12 0.14 0.16 
R0=1.8 0.30 0.30 0.30 0.30 
R0=2.5 0.46 0.45 0.44 0.43 
R0=3.1 0.58 0.57 0.55 0.53 
R0=3.7 0.66 0.65 0.63 0.61 
R0=4.3 0.71 0.70 0.69 0.67 
R0=4.9 0.75 0.75 0.73 0.71 
R0=5.5 0.79 0.78 0.77 0.75 
R0=6.1 0.81 0.80 0.80 0.78 
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infectivity effects, standard deviations were smaller for values of R0 for which the 
bias in 𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  and 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹 was smallest, i.e. when R0 ranged approximately from 1.8 to 3.1.
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 Anche et al. (2014) defined breeding value and heritable variation in R0. They 
showed that an individual’s breeding value for R0 is a function of the population’s 
average susceptibility and infectivity, of the gene frequencies within the individual 
and of average effects of the alleles at both loci (Equation 7c in (Anche et al., 
2014)). However, Anche et al. (2014) assumed that effects of alleles at both loci 
were additive, whereas here we assumed that effects are multiplicative (so that 
they are additive on the log scale). Multiplicative effects introduce dominance. 
Hence, before applying the expressions for breeding value and heritable variation 
of (Anche et al., 2014) to estimates obtained from the methods proposed here, 
they need to be translated into average effects of alleles (Falconer and Mackay, 
1996). Using the common notation for the one-locus model (Falconer and Mackay, 
1996), the additive effect is half the difference in genotypic value between both 
homogyzotes, 𝑎𝑎𝛾𝛾 = �𝛾𝛾𝑔𝑔2 − 𝛾𝛾𝐺𝐺2�/2 and 𝑎𝑎𝜑𝜑 = �𝜑𝜑𝑓𝑓2 − 𝛾𝛾𝐹𝐹2�/2, the dominance deviation 
is the difference between the heterozygote and the average of both homozygotes, 
𝑑𝑑𝛾𝛾 = 𝛾𝛾𝑔𝑔𝛾𝛾𝐺𝐺 − �𝛾𝛾𝑔𝑔2 + 𝛾𝛾𝐺𝐺2�/2 and 𝑑𝑑𝜑𝜑 = 𝜑𝜑𝑓𝑓𝜑𝜑𝐹𝐹 − �𝜑𝜑𝑓𝑓2 + 𝜑𝜑𝐹𝐹2�/2, and the average 
effects of alleles are given by 𝛼𝛼𝛾𝛾 = 𝑎𝑎𝛾𝛾 + �𝑝𝑝𝐺𝐺 − 𝑝𝑝𝑔𝑔�𝑑𝑑𝛾𝛾 and 𝛼𝛼𝜑𝜑 = 𝑎𝑎𝜑𝜑 + �𝑝𝑝𝐹𝐹 −
𝑝𝑝𝑓𝑓�𝑑𝑑𝜑𝜑, where p denotes allele frequency (Falconer and Mackay, 1996). Hence, in 
Equations 7 and 11 of (Anche et al., 2014), 𝛾𝛾𝑔𝑔 − 𝛾𝛾𝐺𝐺  should be replaced by 𝛼𝛼𝛾𝛾, and 
𝜑𝜑𝑓𝑓 − 𝜑𝜑𝐹𝐹  should be replaced by 𝛼𝛼𝜑𝜑. For example, for 𝛾𝛾𝑔𝑔 = 1 and 𝛾𝛾𝐺𝐺 = 0.6, 
genotypic values are 𝛾𝛾𝑔𝑔𝑔𝑔 = 1, 𝛾𝛾𝑔𝑔𝑔𝑔 = 0.6 and 𝛾𝛾𝐺𝐺𝐺𝐺 = 0.36, the additive effect is 
𝑎𝑎𝛾𝛾 = (1 − 0.36)/2 = 0.32, the dominance deviation is 
𝑑𝑑𝛾𝛾 = 0.6 − (1 + 0.36) 2⁄ = −0.08, and the average effect is 𝛼𝛼𝛾𝛾 = 0.32 −
0.08(𝑝𝑝𝐺𝐺 − 𝑝𝑝𝑔𝑔). 

 In this study, we assumed a model with two bi-allelic loci, i.e. one locus that 
affects individual susceptibility and one locus that affects individual infectivity. 
Furthermore, we assumed that which locus affects infectivity and which locus 
affects susceptibility, are known. This may be the case with candidate gene 
approaches which include only the genes for which the function is related to the 
trait of interest. The effect of the putative causative gene is then examined by 
association study. In such studies, the GLM developed here can be applied to 
estimate and confirm the effect of the candidate gene on the trait of interest. 
However, applying a candidate gene approach is limited because it relies on 
knowing the functional relation between the genes and the trait of interest. The 
recent advances in molecular genomics allow us to genotype individuals for 
thousands of SNPs, and to perform GWAS in which all SNPs are examined for their 
association with the trait of interest. The GLM developed here can also be used in 
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GWAS that aim at identifying genes associated with susceptibility and/or infectivity. 
In such studies, it is not known whether a SNP affects infectivity and/or 
susceptibility. Hence, this has to be inferred from the significance of the estimated 
effects. To avoid the need to test all combinations of two SNPs, one could first 
screen SNPs for susceptibility effects, and then fit only the significant loci for 
susceptibility effects, together with all other loci for infectivity effects. Moreover, 
when modified so that gene effects are estimated as random effects, our model 
can probably be used for polygenic traits, for example in genomic prediction, for 
which effects of all genes are estimated simultaneously and the interest lies in 
predicting the breeding value of entire genotypes (Meuwissen et al., 2001). 

3.5 Conclusions 
We have developed a generalized linear model to estimate the relative effects of 
genes on individual susceptibility and infectivity. This model may be used in 
genome-wide association studies that aim at identifying genes that are involved in 
the prevalence of infectious diseases. 
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Appendix 
Geometric mean versus arithmetic mean in the estimation of gene 
effects on infectivity 
In this Appendix, we address one issue regarding the quality of the two estimators, 
which we use to recover the genetic parameters. In general, one would like to have 
estimators that give consistent estimates of the parameters. This implies that both 
the variance and the bias of the estimators for a sufficiently large dataset (size n) 
can be brought arbitrarily close to zero. Expressed in formulas for the relative 
infectivity and the relative susceptibility, which are the two parameters that we 
want to estimate, these requirements look like this: 

lim𝑛𝑛→ ∞ �
𝜑𝜑𝐹𝐹
𝜑𝜑𝑓𝑓
�

�
− �𝜑𝜑𝐹𝐹

𝜑𝜑𝑓𝑓
� = 0,

lim𝑛𝑛→ ∞ �
𝛾𝛾𝐺𝐺
𝛾𝛾𝑔𝑔
�

�
− �𝛾𝛾𝐺𝐺

𝛾𝛾𝑔𝑔
� = 0, 

lim𝑛𝑛→∞ var �𝜑𝜑𝐹𝐹
𝜑𝜑𝑓𝑓
�

�
= 0, 

lim𝑛𝑛→∞ var �𝛾𝛾𝐺𝐺
𝛾𝛾𝑔𝑔
�

�
= 0. 

In addition, one would like to know how fast the estimators approach these limits. 
That analysis is presented in the main text and is done by comparing simulations to 
the true values. There is, however, an issue with the asymptotic unbiasedness of 
the effect on infectivity (the first equation): the estimator for the effect of the 
relative infectivity is not unbiased, but instead we will show below that: 

lim𝑛𝑛→ ∞

𝐿𝐿𝐿𝐿𝐿𝐿�𝜑𝜑𝐹𝐹𝜑𝜑𝑓𝑓
�

�

𝐿𝐿𝐿𝐿𝐿𝐿�𝜑𝜑𝐹𝐹𝜑𝜑𝑓𝑓
�

= 𝑚𝑚�𝜑𝜑𝐹𝐹
𝜑𝜑𝑓𝑓
�, 

and we will derive the expression for the function m(.) and will show that it is close 
to 1 and always smaller or equal to 1. Note that m(.)=1 means no bias and m(.)<1 
means underestimation of the effect. 
As explained in the main text, the transmission rate parameter (β) is the product of 
the contact rate (c), susceptibility (γ) and infectivity (𝜑𝜑). Applying the 
complementary log-log link function results in Log(β) being in the expression for the 
expected value of the dependent variable. Thus, to see whether a linear relation is 
obtained between the explanatory variables to explain the expected value of the 
dependent variable, we can write that: 
Log(β) = Log(c) + Log(γ) + Log(φ). 
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 The heterogeneity in Log(γ) is straightforwardly incorporated in the model since 
each recipient counted in the dependent variable is only one type of susceptible 
individual. Thus, take γg = 1 and the other type has γ𝐺𝐺, then: 

𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽) = 𝐿𝐿𝐿𝐿𝐿𝐿(𝑐𝑐) + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐺𝐺  𝐿𝐿𝐿𝐿𝐿𝐿�γ𝐺𝐺� + 𝐿𝐿𝐿𝐿𝐿𝐿(𝜑𝜑), 
where 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐺𝐺  is equal to 1 if the recipient is G and 0 when the recipient is of type 
g, with additional modification for the three genotypes as explained in the main 
text. Thus, the estimated parameter is asymptotically unbiased using the GLM 
method. 
For heterogeneity in 𝜑𝜑, it is not straightforward because we are dealing with the 
arithmetic mean (𝜑𝜑𝐴𝐴𝐴𝐴) across all types of infectious individuals in the populations 
as was derived in the main text. Let us again look at the case with only two types of 
infectious individuals: 
𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽) = 𝐿𝐿𝐿𝐿𝐿𝐿(𝑐𝑐) + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐺𝐺  𝐿𝐿𝐿𝐿𝐿𝐿(𝛾𝛾𝐺𝐺) + 𝐿𝐿𝐿𝐿𝐿𝐿(𝜑𝜑𝐹𝐹𝑝𝑝𝐹𝐹 + 𝜑𝜑𝑓𝑓𝑝𝑝𝑓𝑓), 
where 𝑝𝑝𝐹𝐹  is the explanatory variable (𝑝𝑝𝑓𝑓 = 1 − 𝑝𝑝𝐹𝐹).
In order to obtain linearity in the explanatory variable for infectivity, 𝜑𝜑𝐴𝐴𝐴𝐴  is 
replaced by geometric mean 𝜑𝜑𝐺𝐺𝐺𝐺  with 𝜑𝜑𝐺𝐺𝑀𝑀 = ∏ 𝜑𝜑𝑗𝑗𝑝𝑝𝑗𝑗𝑛𝑛

𝑗𝑗=1  . The equation with two 
types of infectious individuals becomes: 
𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽) = 𝐿𝐿𝐿𝐿𝐿𝐿(𝑐𝑐) + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐺𝐺  𝐿𝐿𝐿𝐿𝐿𝐿�γ𝐺𝐺� + 𝑝𝑝𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿(𝜑𝜑𝐹𝐹) + 𝑝𝑝𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿(𝜑𝜑𝑓𝑓). 
This is a linear equation in 𝑝𝑝𝐹𝐹 , the explanatory variable, because 𝑝𝑝𝑓𝑓 = 1 − 𝑝𝑝𝐹𝐹 . 
Now, we calculate the systematic error (bias) made by the approximation of the 
arithmetic mean (𝜑𝜑𝐴𝐴𝐴𝐴) by a geometric mean (𝜑𝜑𝐺𝐺𝐺𝐺). For a bi-allelic genetic model, 
where there are two alleles, i.e. 𝜑𝜑𝐹𝐹  and 𝜑𝜑𝑓𝑓, with a frequency 𝑝𝑝𝐹𝐹  and (1 − 𝑝𝑝𝐹𝐹), 
respectively, the Log(𝜑𝜑𝐴𝐴𝐴𝐴) expression for the two alleles can be written as: 
Log(𝜑𝜑𝐴𝐴𝐴𝐴)  = Log(𝑝𝑝𝐹𝐹𝜑𝜑𝐹𝐹 + (1 − 𝑝𝑝𝐹𝐹)𝜑𝜑𝑓𝑓), 
Log(𝜑𝜑𝐴𝐴𝐴𝐴)  = Log((𝜑𝜑𝐹𝐹 − 𝜑𝜑𝑓𝑓)𝑝𝑝𝐹𝐹 + 𝜑𝜑𝑓𝑓).    (A1) 
Thus, the effect of 𝜑𝜑𝐹𝐹  compared to 𝜑𝜑𝑓𝑓 is measured by the coefficient of 𝑝𝑝𝐹𝐹 , i.e., the 
slope of the linear expression within the logarithm, but this is not a linear model. 
Note that if the number of data points (n) becomes larger and larger, the expected 
(average) observed values, i.e. the number of cases (y) among the number of 
susceptible (S), will after applying the cloglog link function become arbitrary close 
to the expression A1, or: 

lim𝑛𝑛→∞ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸 𝑦𝑦
𝑆𝑆

) = 𝐶𝐶0 + Log((𝜑𝜑𝐹𝐹 − 𝜑𝜑𝑓𝑓)𝑝𝑝𝐹𝐹 + 𝜑𝜑𝑓𝑓).

To obtain a linear model, we take the Log(𝜑𝜑𝐺𝐺𝐺𝐺) expression for the two alleles 
which can be written as: 
Log(𝜑𝜑𝐺𝐺𝐺𝐺)  = Log(𝜑𝜑𝐹𝐹

𝑝𝑝𝐹𝐹𝜑𝜑𝑓𝑓
1−𝑝𝑝𝐹𝐹),

Log(𝜑𝜑𝐺𝐺𝐺𝐺)  = 𝑝𝑝𝐹𝐹 Log(𝜑𝜑𝐹𝐹) + (1 − 𝑝𝑝𝐹𝐹) Log�𝜑𝜑𝑓𝑓�, 
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Log(𝜑𝜑𝐺𝐺𝐺𝐺) = 𝑝𝑝𝐹𝐹 Log �𝜑𝜑𝐹𝐹
𝜑𝜑𝑓𝑓
� + Log�𝜑𝜑𝑓𝑓�. (A2) 

Now the effect of the allele 𝜑𝜑𝐹𝐹  compared to 𝜑𝜑𝑓𝑓 is measured by the ratio of 
the two values instead of the difference as in expression A1. This ratio can thus be 
calculated as the antilog of the regression coefficient of 𝑝𝑝𝐹𝐹  which is the explanatory 
variable. In other words, from the GLM in Equation (8) in this paper, the estimated 
Log of the ratio of 𝜑𝜑𝐹𝐹  over 𝜑𝜑𝑓𝑓 is obtained from the regression coefficient 𝑐𝑐2.
Now the next issue that we address in this Appendix is to fit a linear equation for 
the Log(𝜑𝜑) as a function of allele frequency (𝑝𝑝𝐹𝐹) which is: 
log(𝜑𝜑𝐿𝐿𝐿𝐿𝐿𝐿) = 𝐴𝐴 ∙ 𝑝𝑝𝐹𝐹 + 𝐵𝐵.     (A3) 
If, in fact, the transmission depended on the 𝜑𝜑𝐺𝐺𝐺𝐺  rather than on 𝜑𝜑𝐴𝐴𝐴𝐴, we would 
have: 

𝐴𝐴 = log �𝜑𝜑𝐹𝐹
𝜑𝜑𝑓𝑓
� and 𝐵𝐵 = log�𝜑𝜑𝑓𝑓�. 

However, since the data come from a process where the observed 𝜑𝜑 is in fact the 

𝜑𝜑𝐴𝐴𝐴𝐴 , the resulting linear relationship will not (necessarily) have 𝐴𝐴 = log �𝜑𝜑𝐹𝐹
𝜑𝜑𝑓𝑓
�. 

As we are interested in the allele effects, we need to estimate the slope of 

the line, i.e. the regression coefficient (A) of  𝑝𝑝𝐹𝐹 , and compare it to log �𝜑𝜑𝐹𝐹
𝜑𝜑𝑓𝑓
�. To 

determine A, we need to find the best fitting linear relationship for Log(𝜑𝜑𝐿𝐿𝐿𝐿𝐿𝐿) from 
Log(𝜑𝜑𝐴𝐴𝐴𝐴) data (Figure A1). This was done and we showed that this estimated A is 

very close to Log �𝜑𝜑𝐹𝐹
𝜑𝜑𝑓𝑓
�, and we were able give an explicit expression for the bias 

with respect to this true value. 

Derivation of the expression for fitted line through Log(𝝋𝝋𝑨𝑨𝑨𝑨) 
The following shows how the A and B for the linear model in Equation (A3) can be 
obtained when this linear model is fitted to data generated by the non-linear 
relation between the explanatory variable (𝑝𝑝𝐹𝐹) and the observed effect Log(𝜑𝜑𝐴𝐴𝐴𝐴). 
For each value of 𝑝𝑝𝐹𝐹 , we observe a corresponding value for Log(𝜑𝜑𝐴𝐴𝐴𝐴), which gives 
a nonlinear relationship (Equation (A1) and Figure A1). Thus, in order to obtain a 
linear relationship between the parameter of interest (𝑝𝑝𝐹𝐹) and the dependent 
variable, we fit a line through this nonlinear relationship from which we estimate 
the effect (in this case, the Log of the effect of 𝜑𝜑𝐹𝐹  compared to 𝜑𝜑𝑓𝑓). To fit a line 
through the true relationship Log(𝜑𝜑𝐴𝐴𝐴𝐴), we sample random values for 𝑝𝑝𝐹𝐹  from a 
uniform distribution from 0 to 1 and calculate corresponding values of Log(𝜑𝜑𝐴𝐴𝐴𝐴) 
from Equation (A1). If we draw a least squares regression line through the random 
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numbers drawn from these (𝑝𝑝𝐹𝐹 , Log(𝜑𝜑𝐴𝐴𝐴𝐴)) pairs, the line passes through the 
average values sampled: 𝑝̅𝑝𝐹𝐹  and Log(𝜑𝜑𝐴𝐴𝐴𝐴)�������������.
This allows us to find B, since we know that 𝑝̅𝑝𝐹𝐹 = 1

2� , and Log(𝜑𝜑𝐴𝐴𝐴𝐴)������������� is:

Log(𝜑𝜑𝐴𝐴𝐴𝐴)������������� =  ∫ log��𝜑𝜑𝐹𝐹 − 𝜑𝜑𝑓𝑓�𝑝𝑝𝐹𝐹 + 𝜑𝜑𝑓𝑓� 𝑑𝑑𝑝𝑝𝐹𝐹
1
0 , 

Log(𝜑𝜑𝐴𝐴𝐴𝐴)������������� = (𝜑𝜑𝑓𝑓−𝜑𝜑𝐹𝐹)+𝜑𝜑𝐹𝐹 log𝜑𝜑𝐹𝐹−𝜑𝜑𝑓𝑓 log𝜑𝜑𝑓𝑓
𝜑𝜑𝐹𝐹−𝜑𝜑𝑓𝑓

. 

Hence, since Log(𝜑𝜑𝐴𝐴𝐴𝐴)������������� = 𝐴𝐴 ∙ 𝑝̅𝑝𝐹𝐹 + 𝐵𝐵, and 𝑝̅𝑝𝐹𝐹 = 1
2� ,

𝐵𝐵 =  Log(𝜑𝜑𝐴𝐴𝐴𝐴)������������� − 1
2

 𝐴𝐴, and thus

Log(𝜑𝜑𝐿𝐿𝐿𝐿𝐿𝐿) = 𝐴𝐴 ∙ 𝑝𝑝𝐹𝐹 +  Log(𝜑𝜑𝐴𝐴𝐴𝐴)������������� −  1
2
∙ 𝐴𝐴.

 Now we have an equation with only one unknown (A) and the solution for A, 
denoted Amin, can be found by taking the least squares optimization. This means 
that we can find the minimum solution for the squared difference between the 
Log(𝜑𝜑𝐴𝐴𝐴𝐴) and Log(𝜑𝜑𝐿𝐿𝐿𝐿𝐿𝐿) derived above. 

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴 ∫ �𝐴𝐴 ∙ 𝑝𝑝𝐹𝐹 + log(𝜑𝜑𝐴𝐴𝐴𝐴)������������ −  1
2
∙ 𝐴𝐴 − Log ��𝜑𝜑𝐹𝐹 − 𝜑𝜑𝑓𝑓� 𝑝𝑝𝐹𝐹 + 𝜑𝜑𝑓𝑓� �

21
0 𝑑𝑑 𝑝𝑝𝐹𝐹 . 

 This integral was evaluated with symbolic computer algebra using 
Mathematica. This is a straightforward evaluation but, at first, the expressions 
appear to be very big. Thus, we undertook some simplifications to find the A for 
which the minimum of the expression is attained. As the part between brackets is a 
linear expression in A, the result of the above equation is a quadratic equation in A, 
and thus can be written as: 
𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴 (𝐾𝐾2𝐴𝐴2 + 𝐾𝐾1𝐴𝐴 + 𝐾𝐾0). 
The equation between brackets is for an upward open parabola (if 𝐾𝐾2>0) and the 
minimum of this parabola is attained for: 

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 =  −𝐾𝐾1
2𝐾𝐾2

, where (when 𝜑𝜑𝐹𝐹 ≠ 𝜑𝜑𝑓𝑓):

𝐾𝐾1 =  
−6 𝜑𝜑𝐹𝐹�𝜑𝜑𝐹𝐹−𝜑𝜑𝑓𝑓�−6�𝜑𝜑𝐹𝐹−𝜑𝜑𝑓𝑓�𝜑𝜑𝑓𝑓+12𝜑𝜑𝐹𝐹𝜑𝜑𝑓𝑓Log (𝜑𝜑𝐹𝐹𝜑𝜑𝑓𝑓

)

12(𝜑𝜑𝐹𝐹−𝜑𝜑𝑓𝑓)2
=

−𝜑𝜑𝐹𝐹
2+𝜑𝜑𝑓𝑓

2+2𝜑𝜑𝐹𝐹𝜑𝜑𝑓𝑓Log �𝜑𝜑𝐹𝐹𝜑𝜑𝑓𝑓
�

2�𝜑𝜑𝐹𝐹−𝜑𝜑𝑓𝑓�
2  , and 

𝐾𝐾2 = 𝜑𝜑𝑓𝑓�𝜑𝜑𝑓𝑓−𝜑𝜑𝐹𝐹�+𝜑𝜑𝐹𝐹(𝜑𝜑𝐹𝐹−𝜑𝜑𝑓𝑓)

12(𝜑𝜑𝑓𝑓−𝜑𝜑𝐹𝐹)2
= 1

12
, thus 

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 =  
3𝜑𝜑𝐹𝐹2−3𝜑𝜑𝑓𝑓2−6𝜑𝜑𝐹𝐹𝜑𝜑𝑓𝑓Log [𝜑𝜑𝐹𝐹𝜑𝜑𝑓𝑓

]

(𝜑𝜑𝑓𝑓−𝜑𝜑𝐹𝐹)2
. 

Then, both the numerator and denominator of the above equation were divided by 
𝜑𝜑𝑓𝑓2 and this resulted in: 

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 =  
3�𝜑𝜑𝐹𝐹𝜑𝜑𝑓𝑓

�
2
−3−6�𝜑𝜑𝐹𝐹𝜑𝜑𝑓𝑓

�Log [𝜑𝜑𝐹𝐹𝜑𝜑𝑓𝑓
]

(1−�𝜑𝜑𝐹𝐹𝜑𝜑𝑓𝑓
�)2

. 
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Thus, Amin is a function of 𝜑𝜑𝐹𝐹
𝜑𝜑𝑓𝑓

 only. Note the similarity with Equation (A2) where 











=

f

F

φ
φA log . It should be noted that the Amin is the estimate (C2) that will be 

obtained asymptotically (i.e. when n→∞) from the GLM in Equation (8). Thus, we 
investigated the relation of this estimated value to the true expected value 

Log �𝜑𝜑𝐹𝐹
𝜑𝜑𝑓𝑓
� , to quantify the bias due to our approach. 

Let us assume that 𝜑𝜑𝐹𝐹
𝜑𝜑𝑓𝑓

= 𝑥𝑥, thus the above equation can be simplified as: 

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 =  3�𝑥𝑥
2−1−2𝑥𝑥Log (𝑥𝑥)�

(1−𝑥𝑥)2
. 

Still, 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 ≠  log �𝜑𝜑𝐹𝐹
𝜑𝜑𝑓𝑓
� ≠ log(𝑥𝑥), hence there is a non-zero bias. However, we can 

now define m(x) by 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚(𝑥𝑥) ∙ log(𝑥𝑥). The value of m quantifies the amount of 
relative bias that is obtained as a result of the geometric approximation; a value m 
= 1 indicates a zero bias. Thus: 

𝑚𝑚(𝑥𝑥) =  𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚
Log (𝑥𝑥)

= 3�𝑥𝑥2−1−2𝑥𝑥Log (𝑥𝑥)�
(𝑥𝑥−1)2Log (𝑥𝑥)

. (A4) 

Equation (A4) quantifies the amount of bias, the magnitude of which is 
numerically investigated below. However, first it is necessary to check Equation 
(A4) using some relationships that are known to hold for the underlying problem, 
for example: 

𝑚𝑚(𝑥𝑥) = 𝑚𝑚�1
𝑥𝑥
�, since it should not matter which allele is coded F or f. 

lim𝑥𝑥→1 𝑚𝑚(𝑥𝑥) = 1, since the arithmetic and geometric mean are identical when 

fF φφ = .

lim𝑥𝑥→0 𝑚𝑚(𝑥𝑥) = 0, and lim𝑥𝑥→∞𝑚𝑚(𝑥𝑥) = 0, since we always underestimate the 
effect because 0 ≤ m(x) ≤1 and thus it seems that m(x) will have to approach zero 
when the real effect becomes infinitely large (i.e., either x = 0 or x→∞). As a result, 
we will estimate a finite value for the effect even when the effect is infinite and, 
thus, we make an infinitely large error, i.e. m(x) = 0. All conditions hold as it can be 
checked using Equation (A4). 
Going back to the manuscript, we now look at Equation (8), which is, 

cloglog 𝐸𝐸 �𝑦𝑦𝑖𝑖
𝑛𝑛𝑖𝑖
� = 𝑐𝑐0 + 𝑐𝑐1𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺,𝑖𝑖 + 𝑐𝑐2𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹 +  𝑙𝑙𝑙𝑙𝑙𝑙 ( 𝐼𝐼

𝑁𝑁
), 

where 𝑐𝑐2, is the regression coefficient that we estimate. In other words, when 

applying the geometric mean approximation, we assume 2ˆ))(log( cxEst = ,
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whereas in fact, Log(𝑥𝑥) = 𝑐𝑐2̂
𝑚𝑚(𝑥𝑥)

, when we correct for the geometric mean

approximation. 

Since we assumed that 𝜑𝜑𝑓𝑓 = 1, then Log(𝑥𝑥) = Log �𝜑𝜑𝐹𝐹
𝜑𝜑𝑓𝑓
� = Log(𝜑𝜑𝐹𝐹) . Thus: 

Log(𝜑𝜑𝐹𝐹) = 𝑐𝑐2̂
𝑚𝑚(𝜑𝜑𝐹𝐹)

, (A5) 

Where,  𝑚𝑚(𝜑𝜑𝐹𝐹) =  3((𝜑𝜑𝐹𝐹)2−1−2(𝜑𝜑𝐹𝐹)Log[𝜑𝜑𝐹𝐹])
((𝜑𝜑𝐹𝐹)−1)2 Log[𝜑𝜑𝐹𝐹]

. (A6) 

 The result from Equation (A6) quantifies the amount of error that was obtained 
as a result of the geometric approximation. An 𝑚𝑚(𝜑𝜑𝐹𝐹) = 1 indicates no error, an 
𝑚𝑚(𝜑𝜑𝐹𝐹) < 1 indicates underestimation, while an 𝑚𝑚(𝜑𝜑𝐹𝐹) > 1 indicates overestimation 
of 𝜑𝜑𝐹𝐹. As 0 < 𝑚𝑚(𝜑𝜑𝐹𝐹)< 1, the estimated value is always too small. Hence, the 

geometric mean approximation is conservative. Furthermore, m(𝜑𝜑𝐹𝐹) = 𝑚𝑚(1
𝜑𝜑𝐹𝐹

) for

all 𝜑𝜑𝐹𝐹  and m(1) = 1, the further 𝜑𝜑𝐹𝐹  is away from 1 (the larger effect), the higher the 
error. Roughly speaking for values of 𝜑𝜑𝐹𝐹  between 0.333 and 3, the error is smaller 
than 5%; i.e., 0.95 < m < 1. 
 Now that we have quantified the amount of bias (Equations (A5) and (A6)), we 
can obtain the correct value. Note that in Equation (A5), the (true) value of 𝜑𝜑𝐹𝐹  
appears on both sides of the equation. Thus, we need an iterative procedure to 
obtain the real value. First, 𝜑𝜑�𝐹𝐹  is calculated by taking the exponential of 𝑐𝑐2 from the 
GLM analysis. Then, the error 𝑚𝑚(𝜑𝜑�𝐹𝐹) (Equation (A6)) followed by the new value for 
in log(𝜑𝜑𝐹𝐹) in Equation (A5) are estimated. 𝜑𝜑�𝐹𝐹 is then again calculated by taking the 
exponential of log(𝜑𝜑𝐹𝐹). This iteration process is then allowed to continue until 
there is no change in 𝜑𝜑�𝐹𝐹. 
 In the tables below, the biases obtained as a result of the geometric mean 
approximation are presented for the different scenarios investigated in the main 
text. This bias is calculated as the difference between 𝜑𝜑�𝐹𝐹  that is obtained after 
accounting for the error as a result of geometric mean approximation and 𝜑𝜑�𝐹𝐹  that 
is obtained when the error is not accounted for. Note that there is additional bias 
with respect to the true value which is of course known from the simulations. This 
bias is also small but larger than asymptotically expected from the GM 
approximation. 
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Table 3.3. Biases in estimated 𝜑𝜑𝐹𝐹  for scenario 1. 

r=0 r=0.25 r=0.5625 r=1 
0.000674 0.002126 0.002569 0.002698 

Table 3.4. Biases in estimated 𝜑𝜑𝐹𝐹  for scenario 2 

r=0 r=0.25 r=0.5625 r=1 
R0=0.6 0.000452 0.001309 0.002122 0.002706 
R0=1.2 0.000674 0.002126 0.002569 0.002698 
R0=1.8 0.001889 0.002498 0.002612 0.002671 
R0=2.5 0.002774 0.002467 0.002531 0.002565 
R0=3.1 0.003111 0.002364 0.002364 0.002492 
R0=3.7 0.003425 0.002181 0.002201 0.002375 
R0=4.3 0.003891 0.002032 0.002062 0.002223 
R0=4.9 0.004184 0.001891 0.001866 0.00208 
R0=5.5 0.004707 0.001798 0.001705 0.001903 
R0=6.1 0.005194 0.00167 0.001572 0.001743 

Table 3.5. Biases in estimated 𝜑𝜑𝐹𝐹  for scenario 3 

r=0 r=0.25 r=0.5625 r=1 
Small difference 8.60436E-05 9.26451E-05 7.50199E-05 5.75224E-05 
Moderate difference 0.000674 0.002126 0.002569 0.002698 
Large difference 0.002963 0.013645 0.017404 0.018417 
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infectivity effects, standard deviations were smaller for values of R0 for which the 
bias in 𝛾𝛾𝛾𝛾𝛾𝐺𝐺𝐺𝐺  and 𝜑𝜑𝜑𝜑𝜑𝐹𝐹𝐹𝐹 was smallest, i.e. when R0 ranged approximately from 1.8 to 3.1.
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Abstract 
Gastrointestinal nematode infections are one of the major diseases of domestic 
sheep, causing severe morbidity and loss of productivity. Loci located in or around 
the class II region of the Major HistoCompatability complex (MHC) on chromosome 
20 have been associated with susceptibility to nematode infection in sheep 
exposed to the species mixture of nematodes that occurs in Scotland, i.e. 
predominantly Teladorsagia circumcincta. To the best of our knowledge, however, 
there are no studies that have estimated the effect of MHC-genes on the ability of 
an individual to infect others (individual infectivity) with respect to this nematode 
infection. Thus, the aim of this study was to estimate the effect of polymorphisms 
in the MHC-genes on individual susceptibility, and also to get an indication of 
whether MHC-genes also have an effect on individual infectivity. For that purpose, 
data on six loci of the MHC with 7 to 22 alleles each were analysed with a 
Generalized Linear Model (GLM). The effect of each allele for each locus on 
individual susceptibility was separately estimated. However, for infectivity, the 
number of separate effects that can be estimated is restricted by the number of 
independent groups, and therefore principal component analysis was used to 
reduce the number of separate effects to be estimated. The first two principal 
components that explained most of the variance were used for deriving an 
explanatory variable that was used in the GLM. At each locus, several alleles were 
found to have a significant effect on individual susceptibility. Moreover, at each 
locus either both or one of principle component based variables was found to have 
a significant effect on individual infectivity. The later  suggests that there is at least 
one allele from the positive-weighted subset of alleles that has the same effect or 
larger when compared to any of   the allele in the negative-weighted subset. Thus, 
our result shows that, in addition to their effect on individual susceptibility, the 
MHC-genes have an effect on individual infectivity for nematode infections. This 
result suggests that studies on disease genetics should also consider the effect of 
MHC-genes on individual infectivity, in addition to their effect on individual 
susceptibility. 

Key words: Major histocompatibility complex, susceptibility, infectivity, principal 
component analysis, generalized linear model 
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4.1 Introduction 
Infectious diseases are one of the major causes of livestock mortality and reduced 
productivity, worldwide (Bishop et al., 2002). Moreover, the zoonotic nature of 
some infectious diseases poses a threat to human health. Different disease control 
and preventive measures, such as antibiotic treatments, vaccines and management 
practices are implemented to control the threat imposed by pathogens and 
parasites. However, the development of resistance to antibiotics and vaccines has 
reduced the efficiency of these control methods. This has led to a demand for 
additional methods that complement existing disease control strategies. 
 One of these strategies is breeding for reduced disease prevalence, which is 
possible because individual animals differ genetically in their response to infectious 
pathogens (Axford et al., 2000). This variation is present in different types of 
disease traits, one of which is any difference in host’s susceptibility to a given 
pathogen. As a result of research in quantitative genetics of livestock diseases, it is 
now common knowledge that individual animals vary genetically in their 
susceptibility to several infectious diseases (Bishop et al., 1996). Moreover, studies 
indicate that genetic variation in susceptibility to infectious pathogens plays an 
important role in the dynamics and prevalence of an infection in the population 
(Dwyer et al., 1997; Springbett et al., 2003). 
 The dynamics and prevalence of an infection in a population, however, is not 
only affected by genetic variation in individual susceptibility. Variation in other 
traits, such as individual infectivity, which is the ability of an individual to infect 
other (susceptible) individuals, may also exist, as can be seen (at least 
phenotypically) from the existence of ‘superspreaders’ (Lloyd-Smith et al., 2005). 
Such variation can also affect the dynamics and prevalence of an infection in the 
population (Diekmann and Heesterbeek, 2000).  
 Since an individual’s susceptibility is a component of an individual’s fitness, 
natural (and straightforward artificial) selection will work to exhaust genetic 
variation in susceptibility. Unlike individual susceptibility, however, individual 
infectivity is not part of an individual’s fitness. Consequently a large amount of 
genetic variation in infectivity could persist even under natural selection (Lipschutz-
Powell et al., 2012; Anche et al., 2014). Such genetic variation can potentially be 
utilized through selective breeding, so as to reduce disease prevalence in the 
population.  
 The reproduction ratio, R0, is an important epidemiological parameter that is a 
measure for the disease risk. It is a measure for epidemic size, and for the 
prevalence of an infection when endemic. R0 is defined as the average number of 
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secondary cases produced by a typical infectious individual during its entire 
infectious life time, in an otherwise naive population. R0 has a threshold value of 1, 
which implies that a major disease outbreak or a stable endemic equilibrium can 
only occur when R0>1. When R0 < 1 the disease will die out. Thus, in order to 
reduce disease prevalence in a population, breeding strategies should aim at 
reducing R0, preferably to a value below 1. We (Anche et al., 2014) showed that an 
individual’s breeding value for R0 is a function of its breeding values for 
susceptibility and infectivity, and of the population average susceptibility and 
average infectivity. Thus, in order to estimate effects of genes on R0, we need to 
estimate the effects of genes on both susceptibility and infectivity.  
 Gastrointestinal nematode infections are one of the major diseases of 
(domestic) sheep, causing severe morbidity and consequential loss of productivity 
(Coop et al., 1977). Two quantitative trait loci (QTL) are associated with resistance 
to the mixed, predominantly Teladorsagia circumcincta nematode infections in 
sheep in Scotland. One QTL is located in or around the class II region of the Major 
Histocompatability complex (MHC) on chromosome 20, and the other is located in 
or around the interferon-γ gene on chromosome 3 (Davies et al., 2006). One of the 
loci within the MHC that is found to be associated with faecal egg count (FEC), 
which is used as an indicator of host susceptibility to nematode infections, is the 
DRB1 locus (Buitkamp et al., 1995; Schwaiger et al., 1995; Buitkamp et al., 1996; 
Stear et al., 1996). To the best of our knowledge, however, there are no studies 
that have estimated the effect of MHC-genes on individual infectivity. Although FEC 
may also be seen as a measure of each individual host’s infectivity as it may not 
only be a measure for how often the host has become colonised, but that also the 
MHC-genes may affect an individual’s infectivity in other ways that may (e.g. 
survival in the host, egg-productivity of the worms in the host) or may not (viability 
of eggs) affect FEC. In turn like susceptibility also this infectivity may affect the 
transmission and dynamics of nematode infections in the population. Thus, in this 
study we aim to jointly estimate the effect of polymorphisms in MHC-genes on 
individual susceptibility and individual infectivity. Relative susceptibility is defined 
as the (relative) chance that a host with a certain MHC genotype is infected, i.e. the 
chance that a host with that MHC genotype had more than the threshold FEC. 
Relative differences in infectivity are estimated by using the difference between 
years in the type of MHC genes in the infected hosts to explain between year 
differences in infection rate (number of cases). Anche et al. (2015) have developed 
a Generalized Linear Model (GLM) that estimates the relative effects of an 
individual’ genes on its susceptibility and infectivity. Here, we use that model to 
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estimate the relative susceptibility and infectivity effects of MHC-polymorphisms 
on nematode infection in Scottish Blackface sheep. 

4.2 Materials and Methods 
4.2.1 Materials 
Approximately 1000 Scottish Blackface lambs from 38 rams and 492 ewes were 
used in this analysis. The data includes lambs that were born in the years 1992 – 
1996 (Davies et al., 2006). The lambs were kept on three separate fields together 
with their mothers until weaning, which occurred when they were about 3 or 4 
months of age. The lambs were then separated from their mothers and were 
allowed to graze all on the same pasture and were continuously exposed to the 
same natural mixture of nematodes on that pasture, predominantly Teladorsagia 
circumcinta as excreted by the lambs themselves. The lambs were treated with 
anthelmintics every 4 weeks, from 4 to 20 weeks of age. Faecal samples were 
collected from the rectum of the lambs at 4 weeks of age and thereafter at 4-week 
intervals until 20 weeks of age. Thus, during part of the recording period, lambs 
were together with their dams in the same flock. Faecal egg count (FEC) per gram 
of faeces was then recorded for each lamb by a modified McMaster test. At six or 
seven weeks after the final anthelmintic treatment, lambs were slaughtered, at 
that time they were about 6-7 months old. 
 All animals were from the same commercial flock. All animals were kept on the 
same pasture after weaning. For our analysis, we use the measurement after 
weaning at 20 weeks of age. In this study, therefore, animals born in the same year 
were considered as one flock. A flock defines the individuals that take part in the 
same endemic, i.e., the individuals that can potentially infect each other. Since the 
data include animals that were born in the years 1992 – 1996, we have data on 5 
flocks. In other words, we observed five endemics, infections that were considered 
independent. Moreover, the data were organized in such a way that individuals 
with a FEC greater than 100/(gram of faeces) were considered to be infected, while 
the rest was considered as non-infected and susceptible. This was done assuming 
that the threshold FEC can be used to demonstrate the purpose of this study, and 
thus we used a FEC of 100/gram of faeces to discriminate the two sub-classes. As a 
result, we have binary data on infection status, where individuals are classified as 
infected or not-infected (susceptible) based on their FEC.  

In addition to FEC, each individual was genotyped at 6 MHC loci at the 
class II region of the MHC. These were the DQA1, DQA2, DQB1, DQB2, DRB1 and 
DQA2like locus. Genotyping was done using PCR amplification and sequencing of 
exon 2 which carried most of the polymorphisms (Stear et al., 2005). At each locus, 
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there were multiple alleles, ranging from 7 to 22. Table 1 shows the frequency 
distribution of the markers (alleles) at each locus. After removal of animals with 
missing genotype or FEC, 828 lambs were used in this study. 

4.2.2 Methods 
Anche et al. (2015) developed a GLM to estimate the relative effect of genes on an 
individual’s susceptibility and infectivity. The model was developed from the so-
called final size equation (Andreasen, 2011), i.e. an equation that describes the 
probability of an individual to become infected, as a function of its susceptibility 
genotype and the infectivity genotypes of its infectious group mates. However, 
here we will apply the method to the data of a single measurement of an SIS 
infection that is endemic in a herd; again the number and type of susceptible and 
the number and type of infectious determine the chances of infection and the 
same equation and estimation procedure applies as in case of the final size. Again, 
as in case of the final size, we estimate here directly the reproduction ratio. The 
model yields estimates that are the log of the relative susceptibility and infectivity 
effect of alleles as compared to one reference allele. Hence, estimates of relative 
susceptibility and infectivity effects of alleles follow from the exponential of the 
estimated regression coefficients. The detailed steps taken to develop the GLM can 
be found in (Anche et al., 2015b). 
 To estimate the effect of MHC-genes on individual susceptibility and infectivity, 
each locus was analysed separately. Individual records on infection status and allele 
types provide information on the allele’s susceptibility effect. Since we have many 
more records than the number of unknown allele effects to be estimated (7 to 22 
alleles at each locus, and thus 6 to 21 relative effects), we can fit all the alleles at a 
locus in the GLM and estimate their effect on individual susceptibility.  
 To estimate the effects of MHC-alleles on infectivity, we have to consider the 
frequency of these alleles in the infected individuals in the flock. This is because the 
allele frequencies in the infected sheep affect the infection probability for all the 
recipient sheep in one flock in the same way. Note that for these data, a flock is the 
same as one year and because there are only 5 years (i.e. flocks) in the data set, 
there are only 4 informative contrasts that can be estimated. This implies that we 
can use only a small part of the possible variation in allele frequencies to estimate 
any infectivity effects. Therefore, we reduced the number of explanatory variables 
for infectivity by using principle component analysis (PCA) on the allele 
frequencies, for each locus separately. The first principle component (PC1) is the 
vector of weights for each allele that explains most of the variance in allele 
frequencies (between years), and PC2 explains most of the remaining variance, etc. 
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Typically, the elements of the PC have positive (𝑤𝑤𝑝𝑝) and negative weights (𝑤𝑤𝑛𝑛), and 
we used for the first two PC (PC1 and PC2) the following explanatory variable in the 
analysis: 

𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 =  
∑ 𝑤𝑤𝑖𝑖

𝑝𝑝𝑓𝑓𝑖𝑖
𝑝𝑝𝑚𝑚

𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖
𝑝𝑝𝑓𝑓𝑖𝑖

𝑝𝑝𝑚𝑚
𝑖𝑖=1 + ∑ 𝑤𝑤𝑖𝑖

𝑛𝑛𝑓𝑓𝑖𝑖
𝑛𝑛𝑛𝑛

𝑖𝑖=1

which is the sum of the positive weights divided by the absolute values of all the 
weights. This yields a value between 0 and 1. 𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 stands for the PC’s that are 

positively weighted. The 𝑓𝑓𝑝𝑝 and 𝑓𝑓𝑛𝑛 are the frequencies in each year of the positive-
weighted and negative-weighted alleles respectively. The regression coefficient of 
this explanatory variable obtained from the GLM is an estimate for the (log) effect 
on infectivity of the weighted average of positive-weighted subsets of alleles 
compared to the weighted average of negative-weighted subsets of alleles. This 
means for the estimated effect using this explanatory variable (𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝), that there is 
at least one allele in the positive-weighted subset that has the same effect or larger 
when compared to the allele with the most different effect in the negative-
weighted set of alleles.  
 For each locus, a separate analysis was performed. All the alleles of the 
individual itself for susceptibility, and the 𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 from the first two PC of its infected 
flock mates for infectivity were fitted simultaneously in the GLM. In a second 
analysis, we also fitted a fixed year effect in the GLM together with all the alleles of 
the individual itself. This was done to investigate whether year also has an effect on 
individual FEC, in addition to the effect of MHC- alleles (genes). 
 An allele with a high frequency in the population was set as a reference allele. 
Thus, susceptibility effects of all the other alleles at this locus were estimated 
relative to this reference allele. In other words, the effect of the reference allele 
was set to a value of 1 so that the logarithm of the effect is zero. The exponential of 
the estimated regression coefficients for the other alleles were then taken to 
obtain the relative effects of the alleles on individual susceptibility and of the sets 
of alleles for relative infectivity. This was done because the susceptibility and 
infectivity effects enter the GLM at the logarithmic scale (Equation 7 in (Anche et 
al., 2015)). The ingredients of a GLM analysis (see McCullagh and Nelder (1989)) are 
the dependent variable (here: cases/total number), explanatory variables (here: 
alleles of the individual and the PC of the alleles of the infected herd members as 
explained below),  a link function (here: complementary loglog), and a distribution 
of the error term (here: binomial). The final GLM (Equation 8 in (Anche et al., 
2015)) used in this study is: 
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cloglog( E �
𝑦𝑦𝑖𝑖,𝑗𝑗
𝑚𝑚𝑖𝑖,𝑗𝑗
�) =  𝑐𝑐0 + 𝑐𝑐2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2𝑗𝑗,𝑖𝑖 + 𝑐𝑐3𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖3𝑗𝑗,𝑖𝑖. . +𝑐𝑐𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑗𝑗 ,𝑖𝑖 + 𝑐𝑐𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝1 +

𝑐𝑐𝑏𝑏𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2 + log ( 𝐼𝐼
𝑁𝑁

) (1) 

where the cloglog is applied to the expectation of 
𝑦𝑦𝑖𝑖,𝑗𝑗
𝑚𝑚𝑖𝑖,𝑗𝑗

, which in this case is the 

fraction of infected individuals with genotype i at locus j (where yi,j is the total 
number of infected individuals with genotype i at locus j, and mi,j is the total 
number of individuals with genotype i at locus j). 𝑐𝑐0 is the intercept measuring the 
logarithm of the transmission rate parameter R0. (𝑐𝑐1 is not present in Equation 1 
since it is the regression coefficient for the reference allele, which was set to an 
effect of zero. We formulate the model in terms of allele count within individuals 
rather than individual genotypes, and thus assumed the two alleles that make an 
individual genotype act multiplicatively, so that their effects act additively on the 
logarithmic scale): 𝑐𝑐2,...𝑐𝑐𝑛𝑛 are regression coefficients for 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2𝑗𝑗,𝑖𝑖 through 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑗𝑗,𝑖𝑖, where 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2𝑗𝑗,𝑖𝑖 = 0, 1 𝑜𝑜𝑜𝑜 2, indicating the number of non-reference 

alleles at locus j of individuals with genotype i, and the same applies for the rest of 
the index variables in the model. 𝑐𝑐𝑎𝑎 is the regression coefficient for the 𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝1 

(again this applies to the allele frequencies so 𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝1 is a value between 0-2) and 𝑐𝑐𝑏𝑏 

is the regression coefficient for 𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2. The log ( 𝐼𝐼
𝑁𝑁

) is the total fraction of infected

individuals in each group (year), and was used as an offset in the GLM.  
 The 𝑐𝑐2, 𝑐𝑐3,... 𝑐𝑐𝑛𝑛 estimates represent the log of the allele substitution effects of 
allele 2 till allele n at locus j on individual susceptibility. The 𝑐𝑐𝑎𝑎 and 𝑐𝑐𝑏𝑏 estimates 
represent the log of the relative allele substitution effects of the positively-
weighted alleles on individual infectivity. The estimates 𝑐𝑐2 through 𝑐𝑐𝑛𝑛 and 𝑐𝑐𝑎𝑎 and 𝑐𝑐𝑏𝑏 
are on the log scale, and are relative to the reference allele. Thus, when 𝑠𝑠𝑠𝑠𝑠𝑠2𝑗𝑗 , 

𝑠𝑠𝑠𝑠𝑠𝑠3𝑗𝑗 , ..., 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑗𝑗  represent the susceptibility effects of alleles 2 till n at locus j, these 

can be calculated as 𝑠𝑠𝑠𝑠𝑠𝑠� 2..𝑛𝑛𝑗𝑗 = 𝑒𝑒𝑐̂𝑐2..𝑛𝑛 , and are relative to the reference allele number

1. Analogously, 𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝1,𝑗𝑗
and 𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2,𝑗𝑗

were used to represent the infectivity 

effect of the two subsets of positively-weighted alleles at locus j. Thus, infectivity 
effects of positively-weighted alleles were calculated as 𝑖𝑖𝑖𝑖𝑖𝑖� 𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝1,𝑗𝑗

= 𝑒𝑒𝑐̂𝑐𝑎𝑎  and 

𝑖𝑖𝑖𝑖𝑖𝑖� 𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2,𝑗𝑗
= 𝑒𝑒𝑐̂𝑐𝑏𝑏, respectively. 

Variables that did not have a significant effect, except those that were found to 
have a confounding effect with the rest of the effects, were removed from the 
model, starting from the variable with the highest p-value. The effect of a variable 
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was considered to be confounded if the change in the estimated regression 
coefficients of other variables was >25% when removing this variable from the 
model. A variable was also kept in the model if the Akaike’s Information Criterion 
(AIC) went up by more than 2.0 instead of down when removing the explanatory 
variable from the model. 

4.3 Results and Discussion 
4.3.1 Susceptibility 
In this study, we have used an individual FEC of 100/gram of faeces as a cut-off 
point to discriminate between those sheep that are infected and those that are 
not, which thus measures (indicates) whether or not the individual is “infected”. 
This measure allows the estimation of the effects of alleles on susceptibility. Within 
those individuals that are classified as infected, however, we have individuals with 
different FEC, which in turn could be a measure of the level of an individual’s 
infectivity. However, we have not included this in our analysis because the 
observed FEC may not reflect the average FEC over the whole infected  period. 
Estimated susceptibility effects of all the alleles that were found to have a 
significant effect, including those alleles that were found to have confounding 
effect (printed in italics), are presented in Table 4.2. The number of alleles with a 
significant effect relative to the reference allele varied among the loci (Table 4.2). 
At all the loci estimated effects of most of the alleles were smaller than one, 
suggesting a favourable effect of the alleles on individual susceptibility compared 
to the reference allele. Only four alleles, that is, one allele at locus DQA1, one allele 
at locus DQA2like and two alleles at locus DRB1, were found to have an estimated 
effect greater than one, indicating greater susceptibility than the reference allele. 
Allele AY265308 at locus DQA1, allele GU191459 at locus DQB1, allele ∗ 0308 at 
locus DRB1 and allele 𝐴𝐴𝐴𝐴312396 at locus DQA2like were found to have a 
confounding effect with the rest of the alleles, and thus were kept in the GLM even 
though their effects were not significant.  
One of the most polymorphic loci within the MHC that is known to have an 
association with susceptibility to nematode infections is the DRB1 locus. At this 
locus, allele I is most frequent and this allele has been used as reference allele in 
previous studies. Also in this study, we used allele I as a reference. In this study, G2 
allele was found to have an effect less than one, indicating favourable effect on 
individual susceptibility relative to the reference allele. This suggests that allele G2 
is associated with reduced individual susceptibility. 

This result agrees with previous studies (Schwaiger et al., 1995; Stear et 
al., 1996) that have used the same population of Scottish Blackface Sheep in their 
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analysis and found that allele G2 at the DRB1 locus is associated with reduced FEC. 
In addition to allele G2, 4 more alleles were found to have a significant effect on 
individual susceptibility compared to allele I at this locus (Table 4.2). For all the loci, 
the final model with all the significant variables fitted the in the GLM is given the 
appendix. 

Figure 4.2. Distribution of faecal egg count (FEC) across years and number of 
individuals that are infected. 
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was considered to be confounded if the change in the estimated regression 
coefficients of other variables was >25% when removing this variable from the 
model. A variable was also kept in the model if the Akaike’s Information Criterion 
(AIC) went up by more than 2.0 instead of down when removing the explanatory 
variable from the model. 

4.3 Results and Discussion 
4.3.1 Susceptibility 
In this study, we have used an individual FEC of 100/gram of faeces as a cut-off 
point to discriminate between those sheep that are infected and those that are 
not, which thus measures (indicates) whether or not the individual is “infected”. 
This measure allows the estimation of the effects of alleles on susceptibility. Within 
those individuals that are classified as infected, however, we have individuals with 
different FEC, which in turn could be a measure of the level of an individual’s 
infectivity. However, we have not included this in our analysis because the 
observed FEC may not reflect the average FEC over the whole infected  period. 
Estimated susceptibility effects of all the alleles that were found to have a 
significant effect, including those alleles that were found to have confounding 
effect (printed in italics), are presented in Table 4.2. The number of alleles with a 
significant effect relative to the reference allele varied among the loci (Table 4.2). 
At all the loci estimated effects of most of the alleles were smaller than one, 
suggesting a favourable effect of the alleles on individual susceptibility compared 
to the reference allele. Only four alleles, that is, one allele at locus DQA1, one allele 
at locus DQA2like and two alleles at locus DRB1, were found to have an estimated 
effect greater than one, indicating greater susceptibility than the reference allele. 
Allele AY265308 at locus DQA1, allele GU191459 at locus DQB1, allele ∗ 0308 at 
locus DRB1 and allele 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴312396 at locus DQA2like were found to have a 
confounding effect with the rest of the alleles, and thus were kept in the GLM even 
though their effects were not significant.  
One of the most polymorphic loci within the MHC that is known to have an 
association with susceptibility to nematode infections is the DRB1 locus. At this 
locus, allele I is most frequent and this allele has been used as reference allele in 
previous studies. Also in this study, we used allele I as a reference. In this study, G2 
allele was found to have an effect less than one, indicating favourable effect on 
individual susceptibility relative to the reference allele. This suggests that allele G2 
is associated with reduced individual susceptibility. 

This result agrees with previous studies (Schwaiger et al., 1995; Stear et 
al., 1996) that have used the same population of Scottish Blackface Sheep in their 
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4.3.2 Infectivity 
Infectivity effects of the two subsets of positively-weighted alleles (𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝1 and 
𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2) were estimated, and at locus DQA1 and DQA2, both subsets of alleles were 
found to have a significant effect on individual infectivity. At the rest of the loci, 
only one of the two subsets of alleles was found to have significant effect on 
individual infectivity (Table 2). In both cases, however, we are not able to pinpoint 
to the allele (s) with a significant effect. This is because we have fewer records than 
the number of variables to be estimated. However, estimated infectivity effects 
were comparable to estimated gene effect of MHC-genes on individual 
susceptibility (Table 2). 
 Correlations between estimated regression coefficients of the two subsets of 
positively-weighted alleles (𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝1 and 𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝2) were calculated for each locus. Only 
at locus DQA1 considerable correlations were observed (-0.17). One of the reasons 
for this correlation could be due to the fact that the two subsets share allele(s) that 
have a marked effect on infectivity. 
 Moreover, as mentioned in the Method section, year was fitted in the GLM as a 
fixed effect in order to investigate whether year has an effect on individual FEC in 
addition to the effect of MHC-genes. In this case, the last two years were found to 
have a significant effect on individual FEC for each locus analysed separately (Table 
4.3). Preliminary analysis of FEC supports this result where the last two years were 
found to have highest FEC than the first three years (Figure 4.2). Moreover, a 
confounding effect was observed between year effect and the susceptibility effects 
of MHC-genes at locus DQB1, DQB2 and at locus DQA2like. At locus DQB1, the 
effect of allele 𝐴𝐴𝐴𝐴238938 and 𝐺𝐺𝐺𝐺191460 that was found to be significant without 
fixed year effect disappeared when the fixed year effect of year was fitted in the 
model. At locus DQB2, on the other hand, in addition to the alleles that were found 
to have significant effect, one more allele, allele 𝐴𝐴𝐴𝐴238946, was also found to have 
a significant susceptibility effect. At locus DQA2like, the effect of allele 
𝐴𝐴𝐴𝐴312385 + 𝐴𝐴𝐴𝐴312397 was found to be not significant when fixed year effect 
was fitted in the model. At all the three loci, however, the change in estimated 
susceptibility effect of the rest of the alleles was not significant. 
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was considered to be confounded if the change in the estimated regression 
coefficients of other variables was >25% when removing this variable from the 
model. A variable was also kept in the model if the Akaike’s Information Criterion 
(AIC) went up by more than 2.0 instead of down when removing the explanatory 
variable from the model. 

4.3 Results and Discussion 
4.3.1 Susceptibility 
In this study, we have used an individual FEC of 100/gram of faeces as a cut-off 
point to discriminate between those sheep that are infected and those that are 
not, which thus measures (indicates) whether or not the individual is “infected”. 
This measure allows the estimation of the effects of alleles on susceptibility. Within 
those individuals that are classified as infected, however, we have individuals with 
different FEC, which in turn could be a measure of the level of an individual’s 
infectivity. However, we have not included this in our analysis because the 
observed FEC may not reflect the average FEC over the whole infected  period. 
Estimated susceptibility effects of all the alleles that were found to have a 
significant effect, including those alleles that were found to have confounding 
effect (printed in italics), are presented in Table 4.2. The number of alleles with a 
significant effect relative to the reference allele varied among the loci (Table 4.2). 
At all the loci estimated effects of most of the alleles were smaller than one, 
suggesting a favourable effect of the alleles on individual susceptibility compared 
to the reference allele. Only four alleles, that is, one allele at locus DQA1, one allele 
at locus DQA2like and two alleles at locus DRB1, were found to have an estimated 
effect greater than one, indicating greater susceptibility than the reference allele. 
Allele AY265308 at locus DQA1, allele GU191459 at locus DQB1, allele ∗ 0308 at 
locus DRB1 and allele 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴312396 at locus DQA2like were found to have a 
confounding effect with the rest of the alleles, and thus were kept in the GLM even 
though their effects were not significant.  
One of the most polymorphic loci within the MHC that is known to have an 
association with susceptibility to nematode infections is the DRB1 locus. At this 
locus, allele I is most frequent and this allele has been used as reference allele in 
previous studies. Also in this study, we used allele I as a reference. In this study, G2 
allele was found to have an effect less than one, indicating favourable effect on 
individual susceptibility relative to the reference allele. This suggests that allele G2 
is associated with reduced individual susceptibility. 

This result agrees with previous studies (Schwaiger et al., 1995; Stear et 
al., 1996) that have used the same population of Scottish Blackface Sheep in their 

111

4 
Ef

fe
ct

 o
f M

H
C 

on
 in

fe
ct

iv
ity

 a
nd

 su
sc

ep
tib

ili
ty

 

11
1

Ta
bl

e 
4.

1.
 A

lle
le

 ty
pe

 a
nd

 a
lle

le
 fr

eq
ue

nc
y 

at
 a

ll 
th

e 
lo

ci
 

Lo
cu

s D
Q

A1
 

Lo
cu

s D
Q

A2
 

Lo
cu

s D
Q

B1
 

Lo
cu

s D
Q

B2
 

Lo
cu

s D
RB

1 
Lo

cu
s D

Q
A2

lik
e 

Ty
pe

 
Fr

eq
ue

nc
y 

 
Ty

pe
 

Fr
eq

ue
nc

y 
 

Ty
pe

 
Fr

eq
ue

nc
y 

 
Ty

pe
 

Fr
eq

ue
nc

y 
 

Ty
pe

 
Fr

eq
ue

nc
y 

 
Ty

pe
 

Fr
eq

ue
nc

y 
 

92
.y

08
5

0.
07

89
 

*0
10

1
0.

39
41

 
20

32
 

0.
00

31
 

92
.y

09
9

0.
00

64
 

*0
30

8
0.

00
15

 
AY

31
23

78
 

0.
00

05
 

94
.b

08
9

0.
00

16
 

*0
10

2
0.

00
05

 
94

.b
07

6
0.

00
41

 
93

.o
05

5
0.

00
48

 
*0

80
1

0.
00

10
 

AY
31

23
85

 
0.

04
88

 

95
.y

04
2

0.
00

05
 

*0
10

3
0.

11
00

 
94

.y
08

9
0.

00
21

 
94

.b
08

9
0.

00
16

 
*1

30
1

0.
00

41
 

AY
31

23
94

 
0.

39
09

 

AY
26

53
08

 
0.

00
52

 
*0

20
1

0.
04

72
 

94
.y

16
4

0.
01

09
 

94
.y

14
5

0.
03

31
 

*1
90

1
0.

00
41

 
AY

31
23

96
 

0.
03

46
 

CC
C5

58
81

 
0.

02
80

 
*0

60
1

0.
03

30
 

AJ
23

89
36

 
0.

04
71

 
AJ

23
89

31
 

0.
03

15
 

A 
0.

05
60

 
G

U
19

14
59

 
0.

00
05

 

CC
C5

58
82

 
0.

00
31

 
*0

60
2

0.
20

65
 

AJ
23

89
38

 
0.

05
28

 
AJ

23
89

32
 

0.
02

35
 

B 
0.

01
54

 
AY

31
23

95
+A

Y3
12

39
7 

0.
00

05
 

HQ
72

86
59

 
0.

04
26

 
*0

90
1

0.
02

88
 

AJ
23

89
39

 
0.

05
49

 
AJ

23
89

33
 

0.
08

17
 

C 
0.

01
39

 
N

ul
l 

0.
52

36
 

M
33

30
4 

0.
06

75
 

*1
00

1
0.

05
61

 
AJ

23
89

41
 

0.
20

98
 

AJ
23

89
35

 
0.

08
55

 
D 

0.
18

80
 

Z2
84

18
 

0.
20

66
 

*1
10

1
0.

08
38

 
AJ

23
89

42
 

0.
03

16
 

AJ
23

89
37

 
0.

06
30

 
F 

0.
04

73
 

Z2
85

18
 

0.
08

83
 

*1
20

1
0.

00
31

 
AJ

23
89

45
 

0.
07

77
 

AJ
23

89
40

 
0.

00
43

 
G

1 
0.

02
72

 

N
ul

l 
0.

47
77

 
N

ul
l 

0.
03

72
 

G
U

19
14

53
 

0.
00

83
 

AJ
23

89
42

 
0.

00
05

 
G

2 
0.

13
15

 

G
U

19
14

54
 

0.
04

40
 

AJ
23

89
44

 
0.

04
59

 
H1

 
0.

00
51

 

G
U

19
14

59
 

0.
00

16
 

AJ
23

89
46

 
0.

13
41

 
H2

 
0.

00
92

 

G
U

19
14

60
 

0.
01

87
 

N
_a

ll4
 

0.
04

75
 

I 
0.

31
14

 

HQ
72

86
67

 
0.

06
32

 
N

_a
ll5

 
0.

02
88

 
L 

0.
08

01
 

N
ul

l 
0.

36
74

 
N

_a
ll7

 
0.

00
74

 
M

 
0.

05
29

 
N

_a
ll9

 
0.

00
64

 
N

 
0.

03
19

 
U

07
03

0 
0.

00
11

 
PQ

R 
0.

01
79

 



4 Effect of MHC on infectivity and susceptibility 

108

analysis and found that allele G2 at the DRB1 locus is associated with reduced FEC. 
In addition to allele G2, 4 more alleles were found to have a significant effect on 
individual susceptibility compared to allele I at this locus (Table 4.2). For all the loci, 
the final model with all the significant variables fitted the in the GLM is given the 
appendix. 

Figure 4.2. Distribution of faecal egg count (FEC) across years and number of 
individuals that are infected. 
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When a fixed year effect was fitted together with the 𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝 from the first two PC, 
we found that infectivity effects of MHC-genes were fully confounded with year 
effects. As a result, infectivity effects of the MHC-genes were not estimable. This 
suggests that variation between groups in the number of cases could be due to 
variation between years or due to the difference in infectivity effect of MHC-genes. 
Both could have these effects through changing the number of infective larvae in 
the pasture. However, since we have only one group per year, we cannot make a 
claim that either are the causes for the difference in the number of cases among 
groups.  
 As mentioned above, the effect of MHC-genes on individual infectivity and year 
effect were fully confounded and thus we were not able to disentangle the 
infectivity effect of MHC-genes and year on the number of cases. The main reason 
for that shortcoming is the fact that the data comes from only one flock per year 
(which were considered as groups in this study). Having multiple flocks within each 
year would have allowed to exclude the extra variation (noise) coming from the 
years and thus enables better understanding of the effect of MHC-genes on 
individuals infectivity. Another consequence of having few epidemiological groups 
is that we were unable to estimate the relative infectivity effects of each. This is 
because information about individual infectivity is inferred from comparison of 
different epidemiological groups. Thus, having observation on a large number of 
flocks would have also allowed us to estimate the relative infectivity effect of all 
MHC-genes at each locus.  
 As mentioned in the Material section, the lambs were kept with their dams for 
part of the recording period. Hence, the dams could also have been infected and 
could contribute to the disease status of individual lambs. Since the data did not 
include observation (FEC) on the dams, we were unable to correct for the 
contribution of the dams to the disease status of their lambs in our analysis. 
Moreover, it is possible that the same dam to have contributed infected lambs in 
different years. In this case, we cannot assume independency of epidemics 
between the different groups (years). This is because the same dam has 
contributed to the prevalence of infection in the different groups via the infected 
lambs. 

Table 4.2 Final model from the GLM analysis the overall reproduction ratio 
estimate from the intercept and the effects of MHC-genes (alleles) on individual 
susceptibility and infectivity 
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Locus DQA1 Regression 
coefficient (RC) 

𝑒𝑒𝑒𝑒𝑒𝑒(𝑅𝑅𝑅𝑅) P-value 

𝒔𝒔𝒔𝒔𝒔𝒔𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 0 1 
𝒔𝒔𝒔𝒔𝒔𝒔𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 -0.790 0.454 0.052 
𝑠𝑠𝑠𝑠𝑠𝑠CCC55881 -0.618 0.539 0.001 
𝑖𝑖𝑖𝑖𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊1 0.993 2.699 7.95e-05 
𝑖𝑖𝑖𝑖𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊2 -0.946 0.388 3.65e-05 

Locus DQA2 
𝑠𝑠𝑠𝑠𝑠𝑠∗0101 0 1 

𝑠𝑠𝑠𝑠𝑠𝑠∗0201 -0.316 0.729 0.009 
𝑠𝑠𝑠𝑠𝑠𝑠∗0901 -0.580 0.559 0.001 
𝑖𝑖𝑖𝑖𝑖𝑖WEV1 -0.366 0.694 0.026 
𝑖𝑖𝑖𝑖𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊2 -0.546 0.579 0.017 

Locus DQB1 
𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  0 1 

𝑠𝑠𝑠𝑠𝑠𝑠GU191459 3.268 26.261 0.956 
𝑠𝑠𝑠𝑠𝑠𝑠94.b076 0.839 2.314 0.013 
𝑠𝑠𝑠𝑠𝑠𝑠AJ238936 -0.351 0.704 0.004 
𝑠𝑠𝑠𝑠𝑠𝑠AJ238938 -0.247 0.781 0.036 
𝑠𝑠𝑠𝑠𝑠𝑠GU191460 -0.554 0.575 0.007 
𝑖𝑖𝑖𝑖𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊2 -0.472 0.624 0.024 

Locus DQB2 
𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  0 1 

𝑠𝑠𝑠𝑠𝑠𝑠AJ238944 -0.271 0.763 0.032 
𝑠𝑠𝑠𝑠𝑠𝑠N_all5 -0.471 0.624 0.004 
𝑖𝑖𝑛𝑛𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊2 -0.433 0.648 0.001 

Locus DRB1 
𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼  0 1 

𝒔𝒔𝒔𝒔𝒔𝒔∗𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 3.401 29.979 0.945 
𝑠𝑠𝑠𝑠𝑠𝑠∗1901 0.847 2.333 0.021 
𝑠𝑠𝑠𝑠𝑠𝑠D 0.162 1.176 0.010 
𝑠𝑠𝑠𝑠𝑠𝑠G1 -0.621 0.537 0.0002 
𝑠𝑠𝑠𝑠𝑠𝑠G2 -0.206 0.814 0.008 
𝑠𝑠𝑠𝑠𝑠𝑠𝐻𝐻1 -0.767 0.464 0.020 
𝑖𝑖𝑖𝑖𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊1 -0.799 0.449 5.09e-10 

Locus DQA2like 



4 Effect of MHC on infectivity and susceptibility 

115 

Note: Those alleles that are in bold and italic are alleles that have confounding 
effect with the other alleles with significant effect. For each locus, the first allele 
with a regression coefficient (RC) of zero is the reference allele for that locus. The 
effect of this allele was set at zero, thus no P-value is shown. 
The aim of this study was to estimate the relative effect of MHC-genes on 
individual susceptibility and also to indicate whether they also have an effect on 
individual infectivity. Even though the relative effect of specific alleles on individual 
infectivity could not be estimated, we were able to find significant association 
between MHC-genes and individual infectivity. This result supports our hypothesis 
that there will be genes which have effects on individual infectivity since both 
natural and artificial selection will not exhaust the genetic variation that may 
present in this trait. However, alternatively these differences can also be explained 
by differences in between years, which alternatively were found to have significant 
effect on FEC (Table 4.3). 

Significant associations between alleles at the MHC-genes and FEC, which is 
used as an indicator trait to measure individual susceptibility to nematode infection 
have been reported in a number of studies (Schwaiger et al., 1995; Buitkamp et al., 
1996). On the contrary, the association between MHC-genes and their effect on 
individual infectivity has not received much attention. One of the main reasons for 
studies to focus on the association between individual susceptibility and MHC-
genes could be due to individual’s disease status (infected/not infected) being 
merely a function of its own susceptibility and the non-genetic environmental 
factors only. This assumption makes sense since individual’s susceptibility reflects 
the probability an individual to be infected upon exposure to an infectious agent. 
However, studies have indicated that individual’s (disease) phenotype, is not only 
affected by its own susceptibility but also affected by infectivity (infectiousness) of 
infected individual in its proximity.  

The theory of direct-indirect genetic effect defines heritable effect of an individual 
on the trait value of the individual itself as direct genetic effect and heritable effect 
of an individual on the trait value of another individual as indirect (associative) 

𝑠𝑠𝑠𝑠𝑠𝑠Null  0 1 
𝒔𝒔𝒔𝒔𝒔𝒔𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 3.663 38.963 0.975 
𝑠𝑠𝑠𝑠𝑠𝑠AY312385 -0.426 0.653 0.006 

𝑠𝑠𝑠𝑠𝑠𝑠AY312385+AY312397 0.440 1.553 0.021 
𝑖𝑖𝑖𝑖𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊2 1.724 5.607 0.046 
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genetic effects (Griffing, 1967, 1976, 1981). It was showed by a number of studies 
that genetic variation present in direct and indirect genetic effects of an individual 
will contribute to the total genetic variation in the traits and thus may affect 
response to selection, both in magnitude and direction (Muir, 2005; Bijma et al., 
2007; Bijma, 2011). 

Table 4.3. Estimated year effect for all the loci analysed 
Years Regression Coefficient (RC) 𝑒𝑒𝑒𝑒𝑒𝑒(𝑅𝑅𝑅𝑅) P-value 
Locus DQA1 

1995 0.543 1.721 8.36e-09 
1996 0.594 1.758 3.01e-10 

Locus DQA 
1995 0.488 1.629 9.73e-08 
1996 0.562 1.754 3.80e-09 

Locus DQB1 
1995 0.521 1.684 1.47e-08 
1996 0.581 1.788 4.81e-10 

Locus DQB2 
1995 0.494 1.649 5.47e-08 
1996 0.582 1.790 9.03e-10 

Locus DRB1 
1995 0.556 1.744 2.63e-10 
1996 0.653 1.921 4.98e-13 

Locus DQA2like 
1995 0.453 1. 573 8.93e-05 
1996 0.536 1.709 9.15e-07 

Based on this theory, individual’s susceptibility can be considered as direct genetic 
effect since it affects the disease status of the individual itself. An individual’s 
infectivity, on the other hand, is the rate at which an individual transmits the 
infection to a typical susceptible individual and thus it can be regarded as indirect 
genetic effect. In fact, not only infectivity, but also susceptibility has an indirect 
genetic effect component as anybody in a population or in a group with more 
susceptible individuals has a higher chance of becoming infected (Anche et al., 
2014). 
 In the case of macroparasite infections, such as nematode infections, 
individual’s FEC, which indicates the amount of infectious material excreted by the 
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individual, can also be seen as a measure of individual’s infectivity. Thus, genetic 
variation that may be present in infectivity will affect the prevalence of an infection 
in the population. Therefore, studies on the disease genetics of nematode 
infections should consider the impact of individual’s infectivity since genetic 
variation, when present, can be utilized to affect the prevalence of an infection in 
the population. Therefore, there should be more focus on designing experiments in 
such a way that data could be recorded in multiple epidemiological groups in the 
population, so as to better capture genetic effect of MHC-genes on individual 
infectivity. 

4.4 Conclusion 
Our results suggest that MHC-genes may have a genetic effect on individual 
infectivity in addition to their effect on individual susceptibility to nematode 
infection. Thus, studies on the disease genetics of sheep should also focus on the 
effect of MHC-genes on individual infectivity, since variation in infectivity can be 
used to select for a lower prevalence of infection.  
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 Appendix 
Using the final size equation (Andreasen, 2011), we previously showed that the 
transmission rate parameters for a discrete number of types for a SIR type 
dynamics can be estimated from a single (cross sectional) observation after the 
outbreak is over (Anche, Bijma, and De Jong, 2015). The number of cases for 
each type observed to have ever been infected during the outbreak can only 
have been caused by the infected individuals during the outbreak, which are the 
same individuals as the cases. Except for the index case, which is infected from 
outside the population, all other individuals have infected each other. Although 
this seems a story like the one by the baron von Münchhausen, who pulled 
himself out of the swamp by his own moustache, it does really work as shown 
by comparing outcomes of simulations (with known parameters) to the 
estimated parameters (Anche et al., 2015).  
 The same approach can be applied to estimating the transmission rate 
parameters from a population observed at its endemic equilibrium caused by 
SIS dynamics. The SIS assumption implies that the host will become susceptible 
again after recovery, i.e. when its infectious period ends. At the endemic 
equilibrium for the SIS dynamics, a constant distribution over types is observed 
with random fluctuations around the endemic steady state. In a single cross 
sectional, we observe the number of infected/infectious individuals and their 
genotypes. So this provides an estimate of the steady state in terms of numbers 
infected for the different genotypes. Moreover, as we observe in a single cross 
sectional all individuals that were infected between 0 and T days ago, where T is 
the duration of the infected/infectious period, we also observe the number and 
genotypes of new cases during a time period T. Because of the equilibrium, 
these have been caused by infected individual that come from the same 
distribution as observed in the cross sectional. This leads to the same 
relationship between cases C and infecteds I as for the final size situation, 
where here the transmission rate parameters are estimated for a time period 
equal to the infectious period T: 

𝐶𝐶𝑖𝑖
𝑁𝑁𝑖𝑖

=1- 𝑒𝑒−𝛾𝛾𝑖𝑖 𝜑𝜑𝑗𝑗 𝑐𝑐𝛼𝛼
1
𝑁𝑁. 
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Abstract 
The basic reproduction ratio R0 is an important epidemiological parameter that 
determines the risk and prevalence of an infection. It has a threshold value of 1, 
where major disease outbreaks can occur when R0 > 1. When R0 < 1, only minor 
outbreaks can occur and the disease will die out. Thus, any breeding strategy 
aiming to reduce the risk and prevalence of an infection should reduce R0 ideally, in 
combination with other control measures, to a value below 1. Breeding for reduced 
R0, however, requires estimating genetic parameters (i.e.,(co)variances) and 
breeding values for R0. An individual’s breeding value for R0 is a function of its gene 
effects on susceptibility and infectivity. Thus, genetic variance present in individual 
susceptibility and infectivity will contribute the heritable variation in R0. Because of 
methodological challenges, such as including the nonlinear and stochastic nature of 
disease dynamics into linear mixed models, estimating genetic variances in 
susceptibility and infectivity has proven difficult. Thus, the aim of this study was to 
develop a methodology to estimate genetic (co)variances and breeding values for 
susceptibility and infectivity, by taking the nonlinear and stochastic nature of 
disease dynamics into account. To that end, we have developed a generalized 
linear mixed model (GLMM). A simulation study was performed to investigate the 
accuracy of estimated (co)variances and breeding values. We included the effect of 
relatedness among group mates in this investigation. While the estimated genetic 
variance in susceptibility closely resembled the simulated value, the genetic 
variance in infectivity was severely over-estimated, except when groups consisted 
of a few families. Estimates of genetic parameters and breeding values for 
infectivity improved when groups consisted of a few families. Accuracies of 
estimated breeding values for both traits increased when traits were positively 
correlated. On the other hand, for both traits, smaller biases were found when 
negative correlation was assumed. 

Key words: generalized linear mixed model, susceptibility, infectivity, breeding 
value, genetic variance, relatedness 
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5.1 Introduction 
Infectious diseases contribute an important set of problems to the sustainability of 
the livestock industry, mainly due to their impact on the productivity and welfare 
of livestock. In addition to that, due to their zoonotic nature and/or their ability to 
transfer antibiotic resistance to human pathogens, several infectious diseases, such 
as bovine tuberculosis and MRSA, pose a threat to human health. Different disease 
control strategies, such as vaccination and antibiotic treatments, are used to 
control the threats imposed by infectious diseases. However, the evolution of 
resistance by bacteria to the antibiotics and of viruses to escape the vaccines has 
led to an increased demand for alternative disease control strategies that can 
complement the existing methods.  
 In the past few decades, a number of studies have reported the existence of 
heritable variation among individuals in their response to different infectious 
diseases (Nicholas, 2005). As a result, these findings have opened the door for 
animal breeders to use selective breeding for livestock with an improved response 
to infectious diseases. 
 Among others, individual host susceptibility and infectivity are two disease-
related traits that play an important role in the transmission of an infection in a 
population. Individual susceptibility is the probability of an individual to become 
infected upon exposure to a typical infectious individual. Individual infectivity is the 
probability that an infected individual transmits the infection to a typical 
susceptible individual, given contact (Anderson et al., 1992). Studies have reported 
phenotypic variation among individuals in their susceptibility to infectious diseases 
(Axford et al., 2000). Moreover, it is clear that susceptibility to infectious diseases 
has a genetic basis and that there exists genetic variation among individuals 
(Nicholas, 2005). Such heterogeneity influences the prevalence of an infection in a 
population (Springbett et al., 2003). 
 Quantitative genetic analyses of livestock diseases tend to focus on genetic 
variation in individual susceptibility to an infection. This is because these analyses 
implicitly assume that the only genetic effect affecting an individual’s disease status 
(0/1) comes from its own genes. As a result, these studies capture genetic variation 
present in susceptibility only. The existence of ‘superspreaders’ in disease 
outbreaks, however, suggests that there exists (phenotypic) variation in infectivity 
among individuals that could affect the prevalence of an infection in a population 
(Lloyd-Smith et al., 2005). Evolutionary genetic arguments also suggest that a 
relatively large genetic variation may exist in infectivity, as opposed to 
susceptibility (Anche et al. 2014, Chapter 2). This is because both natural and 
artificial selection work to exhaust genetic variation present only in those traits 
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that are part of individual fitness, such as susceptibility (Denison et al., 2003). 
Unlike individual susceptibility, however, individual infectivity does not affect the 
disease status of the individual itself, and is therefore not part of an individual’s 
fitness. Thus, in the absence of group or kin selection (Bijma and Wade, 2008), 
natural or artificial selection is hindered from exhausting genetic variation that may 
be present in infectivity.  
 The risk and severity of an epidemic, and the level of an endemic equilibrium in 
a population, is measured by R0, which is a central parameter in epidemiology. R0 is 
the average number of new cases produced by one typical infectious individual in a 
completely susceptible population. R0 has a threshold value of 1. Major disease 
outbreaks or an endemic equilibrium can occur only when R0 > 1, while the disease 
will die out when R0 < 1. Due to this threshold property, any breeding strategy that 
aims to reduce disease prevalence should ideally aim to reduce R0 to a value below 
1, in combination with other control measures.  
 Selection for reduced R0 is ideally based on individual estimated breeding values 
for R0. Anche et al. (2014) showed that individual breeding value for R0 can be 
defined combining results from the field of indirect-genetic effects with the 
epidemiological concept of the next generation matrix. It was shown that individual 
breeding value for R0 is a function of gene effects on susceptibility and infectivity. 
Subsequently, heritable variation in R0, which reflects the potential of a population 
to respond to selection, equals the variance in breeding values for R0 among 
individuals. The results show that heritable variation in susceptibility and infectivity 
contribute to the heritable variation R0. 

Estimating heritable variation in infectivity has been difficult, since an 
individual’s infectivity does not surface in its own disease status, but in the disease 
status of other individuals that come into contact with the focal individual. Recent 
advances in the field of quantitative genetics have, however, opened the door to 
consider the genetic effect of an individual on trait values of other individuals, 
which is known as an indirect genetic effect (IGEs). An IGE is a heritable effect of an 
individual on the trait value of another individual. With regard to the transmission 
of infectious diseases, infectivity, which is an individual’s propensity to infect its 
contacts, can be considered as an indirect genetic effect. Anche et al. (2014) also 
found that, not only infectivity, but also susceptibility exhibits an indirect genetic 
effect. This occurs because a highly susceptible individual will have a higher 
probability to be infected, which increases the probability that highly susceptible 
individuals will infect others. 
Estimation of genetic parameters for infectivity is more complicated than for 
ordinary traits affected by IGE (Lipschutz-Powell et al., 2012) This is because an 
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individual’s infectivity is expressed only when the individual is infected itself, and 
because infectious diseases show non-linear dynamics over time. The ordinary 
linear mixed models used for traits affected by IGE in quantitative genetics do not 
take the non-linear and stochastic nature of infectious disease dynamics into 
account, and ignore the conditional expression of IGE (Muir 2005; Bijma et al. 
2007b). Thus those models need to be extended.  
 Anacleto et al. (2015) developed Bayesian methodology to estimate genetic 
(co)variances and breeding values based on disease status data recorded over time. 
However, time-series data on disease status may also not always be available. 
Hence, there is a need for methods that can be implemented using a single record 
on an individual’s disease status. (Velthuis et al., 2003; Lipschutz-Powell et al., 
2012; Anche et al., 2015) have shown that binary disease-status data can be 
analysed using a generalized linear model with a complementary log-log link 
function. However, they have not investigated the estimation of genetic variance 
components and breeding values with such models. 

 Thus, the aim of this study is to develop methodology for estimating 
individual breeding values and variance components for susceptibility and 
infectivity. We will develop a generalized linear mixed model to estimate those 
variance components and breeding values from the final disease status of 
individuals in populations that have undergone an epidemic.  

Furthermore, previous studies have shown that relatedness among group 
mates affects the accuracy of estimating breeding values and variance components 
for traits affected by IGE (Griffing, 1967, 1976, 1981; Bijma and Wade, 2008; Bijma, 
2010; Wade et al., 2010). Hence, we also aim to investigate the effect of 
relatedness among groupmates on the bias and accuracy of estimated breeding 
values and variance components. For that purpose, we simulated epidemics in 
genetically heterogeneous populations, where individuals differ genetically in their 
susceptibility and infectivity, and recorded the final disease status (0/1) of 
individuals.  

5.2 Material and methods 
5.2.1 Simulated population and scenarios 
We simulated a paternal half-sib family structure, where the parents were 
unrelated. The population consisted of N = 10,000 individuals, from 100 sires with 
100 offspring per sire, where each offspring had a unique dam. The population was 
sub-divided into 100 groups, each group consisting of 100 individuals.  
We hypothesized that the degree of relatedness among group mates will affect the 
accuracy of estimated variance components and breeding values for susceptibility 
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and infectivity. To test this hypothesis, we simulated scenarios where the average 
degree of relatedness among group mates varied. This was done by varying the 
number of sires that contributed offspring to each group. We simulated six 
scenarios, where individuals were either allocated to groups at random, or the 
number of sires contributing to a group was 10, 5, 4, 2 or 1 (Table 5.1). 
 Parental transmitting abilities for susceptibility (γ) and infectivity (ϕ), which are 
half of the breeding values, were drawn from a bivariate normal distribution with 

mean zero and variance = ¼*�
𝜎𝜎𝐴𝐴𝛾𝛾
2 𝜎𝜎𝐴𝐴𝛾𝛾,𝐴𝐴𝜑𝜑

𝜎𝜎𝐴𝐴𝛾𝛾,𝐴𝐴𝜑𝜑 𝜎𝜎𝐴𝐴𝜑𝜑
2 �, where 𝜎𝜎𝐴𝐴𝛾𝛾

2 = 0.04 is variance in 

breeding values for susceptibility ( γA ), 𝜎𝜎𝐴𝐴𝜑𝜑
2 = 0.04 is variance in breeding values in 

infectivity ( φA ), and 𝜎𝜎𝐴𝐴𝛾𝛾 ,𝐴𝐴𝜑𝜑 is the covariance between breeding values for

susceptibility and infectivity. Offspring phenotypes for susceptibility and infectivity 
were obtained by adding a Mendelian sampling deviation to the transmitting ability 
of both parents, and subsequently adding the population mean susceptibility and 

infectivity, .6.1== φγ  With these inputs, the average susceptibility and

infectivity were 4 standard deviations away from zero. Hence, occasionally it 
occurred that negative values for susceptibility and infectivity were sampled. 
Whenever this happened, those values were set to zero. Non-genetic variance for 
susceptibility and infectivity was not simulated, because the sampling of the event 
(infection or recovery, see below) introduces the required noise. 
 To examine the impact of the genetic correlation between susceptibility and 
infectivity on the accuracy of estimated breeding values and variance components, 
we simulated scenarios where the genetic correlation between susceptibility and 
infectivity was either zero, 0.5, or -0.5. This was done for all the scenarios 
considered (See Table 1).  
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Table 5.1. Input values and scenarios 
Scenarios Number of sires 
1st scenario Random1 
2nd scenario 10 sires 
3rd scenario 5 sires 
4th scenario 4 sires 
5th scenario 2 sires 
6th scenario 1 sire 

Note: scenarios indicate the number of sires contributing offspring to each group in 
the population and for all the scenarios, variance in susceptibility and infectivity 
was 0.04. Contact rate c = 2 and recovery rate α = 2 was also used for all the 
scenarios. 1 With random allocation of sires to groups, the expected number of 
distinct sires per group equals 63.2.  

5.2.2 Epidemiological model 
The dynamics of an infection in the population were simulated using the stochastic 
SIR-model. In this model, the possible events that can occur are infection of a 
susceptible individual or recovery of infected individual. With stochasticity, these 
events occur with a certain rate defined by two model parameters. The first 
parameter is the transmission rate parameter β , for the transmission of a 

susceptible individual to become infected, S → I, with a rate 𝛽𝛽 𝑆𝑆𝑆𝑆
𝑁𝑁

, where N denotes 

population size, S the number of susceptible individuals and I the number of 
infectious individuals. Hence, symbols S, I and R denote both the disease status and 
the number of individuals with this disease status, and S + I + R = N. The other 
parameter is the recovery rate parameter for the transition of an infected 
individual to the recovery state, I → R, with a rate αI.  
 The transmission rate parameter is the probability per unit of time for one 
infected individual to infect any other individual in a totally susceptible population. 
When we have a genetically heterogeneous population, where individuals differ in 
their susceptibility and infectivity, the transmission rate parameter varies between 
pairs of individuals. For a pair of individuals, the transmission rate will depend on 
the breeding value for susceptibility of the susceptible individual, the breeding 
value for infectivity of the infectious individual and the average contact rate. The 
assumption that transmission rate depends only on susceptibility of the susceptible 
individual and infectivity of the infectious individual, but not on the combination of 
both traits, is known as separable mixing (Diekmann et al., 1990). Thus, the 
transmission rate of a specific susceptible individual i with breeding value for 



5 Genetic parameters in host susceptibility and infectivity 

128 

susceptibility 𝐴𝐴𝛾𝛾,𝑖𝑖 from being susceptible to being infected when exposed to a 
single infectious individual j with breeding value for infectivity 𝐴𝐴𝜑𝜑,𝑗𝑗  can be defined 
as: 

𝛽𝛽𝑖𝑖𝑖𝑖
1
𝑁𝑁

=  𝐴𝐴𝛾𝛾,𝑖𝑖𝐴𝐴𝜑𝜑,𝑗𝑗𝑐𝑐
1
𝑁𝑁

    [1]

where c is the average contact rate of an individual with an arbitrary other 
individual. Thus 𝑐𝑐

𝑁𝑁
 is the average contact rate of a susceptible individual with a

single specific infectious individual in a group of size N. We did not simulate genetic 
heterogeneity in the recovery rate. Hence, there was a single recovery rate 
parameters, α, that applied to all individuals. 

In each group, an epidemic was started by one randomly infected individual. 
The type of the next event was then determined by using Gillespie’s direct 
algorithm (Gillespie, 1977). The type of event, i.e. either infection or recovery, was 
decided by drawing a random number v1, from a uniform distribution, v1 ~ U(0,1). 
The next event was an infection of a susceptible individual if the random number 
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otherwise it was a recovery of a random infected individual. The numerator of this 
ratio represents the total infection rate, and the denominator the total rate, i.e., 
the sum of the infection and recovery rates. The sampling of the specific individual 
that became infected depended on individual susceptibility. The probability that 
susceptible individual i became infected was proportional to its breeding value for 
susceptibility 𝑨𝑨𝜸𝜸,𝒊𝒊. The number of susceptible S, and infectious I, individuals 
changes through the progression of the epidemic and thus the rate is updated 
accordingly. The epidemic was allowed to run until there was either no infectious 
individual anymore or no susceptible individual left to be infected in the 
population. In each group, each individual was assigned a phenotype of 1, if it had 
been infected, and 0 otherwise. As a result, we have binary data by the end of the 
epidemic. The simulation of the population and the epidemic process was done in 
R-statistical software. 

5.2.3. Statistical Model 
To estimate the relative effects of single genes on susceptibility and infectivity, 
Anche et al. (2015) presented a generalized linear model with a complementary-
log-log link function, where gene effects were estimated as fixed effect. Here, we 
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develop the analogous mixed model, where we have random genetic effects for 
entire animals, and a fixed overall mean effect. 
Consider the probability 𝑃𝑃𝑖𝑖𝑖𝑖  that individual i escapes infection when exposed to 
infectious individual j. From the zero term of the Poisson distribution, 

𝑃𝑃𝑖𝑖𝑖𝑖 =  𝑒𝑒−𝛾𝛾𝑖𝑖𝜑𝜑𝑗𝑗
𝑐𝑐
𝛼𝛼
1
𝑁𝑁. [2] 

where iγ  is susceptibility of focal individual i, and jφ  is infectivity of its infectious

group mate j. The probability that individual i is still susceptible at the end of the 
epidemic, is the product of all the probabilities that it escapes infection exposures 
from each of its I infectious group mates, 

𝑃𝑃𝑖𝑖,𝐼𝐼𝑗𝑗 = ∏ 𝑒𝑒−𝛾𝛾𝑖𝑖𝜑𝜑𝑗𝑗
𝑐𝑐
𝛼𝛼
1
𝑁𝑁𝑖𝑖

𝑗𝑗=1  =  𝑒𝑒−𝛾𝛾𝑖𝑖
𝑐𝑐
𝛼𝛼
1
𝑁𝑁∑ 𝜑𝜑𝑗𝑗

𝐼𝐼
𝑗𝑗=1  [3] 

where the summation is over the I infected group mates of focal individual i. 
This result is analogous to equation 3 in Anche et al. (2015), who considered three 
categories of infectious individuals in a population, each corresponding to a 
genotype at a single bi-allelic locus. In this study, however, each individual has a 
unique breeding value. Thus we cannot categorize individuals, and the summation 
is over all infectious group mates of an individual. The complementary log-log of (1-
Pi) for the Pi given by Equation 3 is 

log(− log(𝑃𝑃𝑖𝑖)) = log �𝑐𝑐
𝛼𝛼
� + log(𝛾𝛾𝑖𝑖) + log �1

𝑁𝑁
� + log�∑ 𝜑𝜑𝑗𝑗𝐼𝐼

𝑗𝑗=1 �. [4] 

The objective is to implement Equation 4, treating susceptibility and 
infectivity as random variables. In ordinary random-effect models, the expectation 
of a random variable is zero (Lynch and Walsh, 1998). In Equation 4, however, γ and 
ϕ include the average susceptibility and infectivity, which violates the model 
assumptions. Thus, to make the expectation of random effects zero, we need to 
partition γ and ϕ  into a population average and a term that has expectation zero. 

This can be achieved by defining breeding values, say γa  and φa ,  on a

multiplicative scale, so that 

)1( ,iγi aγγ += (5a) 

and 

)1( ,iφi aφφ += , (5b) 

so that .0][][ == φγ aEaE Hence, the relationship between the (ordinary)

additive breeding values and the multiplicative breeding values is as follows, 

iγiγ aγA ,, = , and iφiφ aφA ,, = .

Thus,  
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log(𝛾𝛾𝑖𝑖) = log(𝛾̅𝛾(1 + 𝑎𝑎𝛾𝛾,𝑖𝑖)) = log(𝛾̅𝛾) + log(1 + 𝑎𝑎𝛾𝛾,𝑖𝑖) ≈ log(𝛾̅𝛾) + 𝑎𝑎𝛾𝛾,𝑖𝑖 [6] 
 The last step assumes that a is relatively small compared to 1. 
Analogously:  
log�∑ 𝜑𝜑𝑗𝑗𝐼𝐼

𝑗𝑗=1 � = log(∑ 𝜑𝜑 � (1 + 𝑎𝑎𝜑𝜑,𝑗𝑗)𝐼𝐼
𝑗𝑗=1 ) = log(𝜑𝜑 � ) + log�∑ (1 + 𝑎𝑎𝜑𝜑,𝑗𝑗)𝐼𝐼

𝑗𝑗=1 �, [7] 
and: 

log�∑ (1 + 𝑎𝑎𝜑𝜑,𝑗𝑗)𝐼𝐼
𝑗𝑗=1 � = log �𝐼𝐼�1 + 𝑎𝑎�𝜑𝜑�� = log(𝐼𝐼) + log�1 + 𝑎𝑎�𝜑𝜑� ≈

log(𝐼𝐼) + 𝑎𝑎�𝜑𝜑 [8] 
where 𝑎𝑎�𝜑𝜑 is average (multiplicative) breeding value over the infected group 

mates of individual i, 𝑎𝑎�𝜑𝜑 =  1
𝐼𝐼
∑ 𝑎𝑎𝜑𝜑,𝑗𝑗
𝐼𝐼
𝑗𝑗=1

Finally, substituting Equations 6 and 7 into Equation 4 yields 

log(− log(𝑃𝑃𝑖𝑖)) = log �𝑐𝑐
𝛼𝛼
� + �log(𝛾̅𝛾) + 𝑎𝑎𝛾𝛾,𝑖𝑖� + �log(𝜑𝜑 � ) + log(𝐼𝐼) +

1
𝐼𝐼
∑ 𝑎𝑎𝜑𝜑,𝑗𝑗
𝐼𝐼
𝑗𝑗=1 � + log(1

𝑁𝑁
) [9] 

Rearranging Equation 8 gives, 

log(− log(𝑃𝑃𝑖𝑖)) = log �𝑐𝑐
𝛼𝛼
𝛾̅𝛾𝜑𝜑 � � + 𝑎𝑎𝛾𝛾,𝑖𝑖 + 1

𝐼𝐼
∑ 𝑎𝑎𝜑𝜑,𝑗𝑗
𝐼𝐼
𝑗𝑗=1 + log( 𝐼𝐼

𝑁𝑁
) [10] 

 Equation 9 indicates that (co)variances for susceptibility and infectivity can 
be estimated using a generalized linear mixed model, with a fixed intercept, 
random genetic effects for susceptibility and infectivity, and an offset equal to 

log( 𝐼𝐼
𝑁𝑁

).

Thus, the following  generalized linear mixed model (GLMM) with random 
genetic effects for susceptibility and infectivity was fitted, 
𝐲𝐲 = 𝟏𝟏𝜇𝜇 + 𝐙𝐙𝟏𝟏𝒂𝒂𝜸𝜸 + 𝐙𝐙𝟐𝟐𝒂𝒂𝝋𝝋 + 𝐕𝐕𝐕𝐕 + 𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 + 𝐞𝐞   [11] 
where 𝐲𝐲 is vector of observations on disease status, containing 0s for individuals 
that are still susceptible at the end of the epidemic, and 1s for individuals that 
have been infected in the course of the epidemic. 𝟏𝟏 is a vector of ones for the 
mean 𝜇𝜇, which is an estimator of log(𝑐𝑐

𝛼𝛼
𝛾̅𝛾𝜑𝜑 � ). Since the basic reproduction ratio

for an SIR model with heterogeneity in susceptibility and infectivity is given by 

φγR α
c=0 (Anche et al. 2014), μe ˆ  is an estimate of R0. 𝒁𝒁𝟏𝟏 is a diagonal

incidence matrix for the random genetic effect of susceptibility ( γa )and 𝒁𝒁𝟐𝟐 is

an incidence matrix for the random genetic effects for infectivity ( φa )  of the

infected group mates of a focal individual. In the row of focal individual i, 𝒁𝒁𝟐𝟐 has 
off-diagonal elements equal to I/1  in the columns for each infected group 
mate of i. Thus, in contrast to ordinary IGE-models (Muir, 2005), Z2 has entries 
only for those group mates that have been infected.  𝒂𝒂𝜸𝜸 is a vector of random 
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genetic effects for susceptibility, and 𝒂𝒂𝜸𝜸 is a vector of random genetic effects 
for infectivity. In addition to random genetic effects, the GLM contained a 
random group effect, denoted by Vg, where 𝐕𝐕 is an incidence matrix linking 
records to groups and 𝐠𝐠 is a vector of iid (identical and independently 
distributed) random group effects. The random group-effect was included to 
account for covariance among group mates due to sampling, which is not 
completely accounted for by the offset log(I/N). 
The (co)variance structure of the random genetic terms was  

𝑉𝑉𝑉𝑉𝑉𝑉 �
𝑎𝑎𝛾𝛾
𝑎𝑎𝜑𝜑� = 𝐂𝐂⊗ 𝐀𝐀 where ⊗ indicates the Kronecker product of both matrices,

𝐂𝐂 = �
𝜎𝜎𝑎𝑎𝛾𝛾
2 𝜎𝜎𝑎𝑎𝛾𝛾,𝑎𝑎𝜑𝜑

𝜎𝜎𝑎𝑎𝛾𝛾,𝑎𝑎𝜑𝜑 𝜎𝜎𝑎𝑎𝜑𝜑
2 � and A is the additive genetic relationship matrix (Lynch

and Walsh, 1998). 
 The GLMM was fitted with a binomial distribution and complementary log-
log link function in the ASReml 3.0 statistical software (Gilmour et al., 2009). 
Since the first randomly chosen individual that started the epidemic does not 
express its susceptibility, this individual was excluded from the analysis as 
dependent variable but not as explanatory variable.  
 The above mixed model produces estimates of breeding values and 
variances that refer to the multiplicative breeding value, a, rather than the 
simulated additive breeding value, A. Thus, to investigate the quality of the 
estimates in terms of their accuracies and biases, estimated breeding values 
and variance components were back-transformed to the additive scale. 
Estimated additive breeding values were  

iγiγ aγA ,, ˆˆ = , [12] 

and 

iφiφ aφA ,, ˆˆ = . [13] 

Analogously, estimated additive genetic variances were 
𝜎𝜎�𝐴𝐴𝛾𝛾
2 =  𝛾̅𝛾2𝜎𝜎�𝑎𝑎𝛾𝛾

2 , 

and 
𝜎𝜎�𝐴𝐴𝜑𝜑
2 =  𝜑𝜑�2𝜎𝜎�𝑎𝑎𝜑𝜑

2 . 



5 Genetic parameters in host susceptibility and infectivity 

132 

5.3 Results 
5.3.1 Bias and precision of estimated genetic variances  
Results presented here are from 1000 replicates. Biases in estimated genetic 
variances were calculated as the difference between the true value and the 
average estimated value.  
 Figure 5.1A shows the bias in the estimated variance in susceptibility for the 
case where the correlation between susceptibility and infectivity was zero. 
Results show a little over-estimation, except for the case where all offspring in a 
group descend from the same sire, in which case the variance in susceptibility is 
was not estimable. Hence, relatedness, as measured by the number of sires 
contributing offspring to a group, had little effect on the bias. 
When the genetic correlation between susceptibility and infectivity was 
positive, the bias in the estimated variance in susceptibility was a little higher 
than when no correlation was assumed, but still relatively small (Figure 5.1B). 
When the genetic correlation between susceptibility and infectivity was 
negative, the direction of the bias depended on relatedness between group 
mates; over-estimation was observed for groups composed at random with 
respect to relatedness, while underestimation was observed for groups 
composed of 5 or fewer sires (Figure 5.1C). 
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𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝛾𝛾𝛾𝛾,𝑎𝑎𝑎𝑎𝜑𝜑𝜑𝜑 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝜑𝜑𝜑𝜑
2 � and A is the additive genetic relationship matrix (Lynch

and Walsh, 1998). 
 The GLMM was fitted with a binomial distribution and complementary log-
log link function in the ASReml 3.0 statistical software (Gilmour et al., 2009). 
Since the first randomly chosen individual that started the epidemic does not 
express its susceptibility, this individual was excluded from the analysis as 
dependent variable but not as explanatory variable.  
 The above mixed model produces estimates of breeding values and 
variances that refer to the multiplicative breeding value, a, rather than the 
simulated additive breeding value, A. Thus, to investigate the quality of the 
estimates in terms of their accuracies and biases, estimated breeding values 
and variance components were back-transformed to the additive scale. 
Estimated additive breeding values were  

iγiγ aγA ,, ˆˆ = , [12] 

and 

iφiφ aφA ,, ˆˆ = . [13] 

Analogously, estimated additive genetic variances were 
𝜎𝜎𝜎𝜎𝜎𝐴𝐴𝐴𝐴𝛾𝛾𝛾𝛾
2 =  𝛾𝛾𝛾𝛾𝛾2𝜎𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝛾𝛾𝛾𝛾

2 , 

and 
𝜎𝜎𝜎𝜎𝜎𝐴𝐴𝐴𝐴𝜑𝜑𝜑𝜑
2 =  𝜑𝜑𝜑𝜑𝜑2𝜎𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝜑𝜑𝜑𝜑
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Figure 5.1. Box-whisker plots of bias in estimated variance in susceptibility, for an 
increasing degree of relatedness among group mates, and for different genetic 
correlations (0, 0.5 and -0.5) between susceptibility and infectivity. Values are true 
values minus estimates, so positive values indicate under-estimation. The true 
variance was 0.04. Error-bars indicate the standard deviation of the estimate 
among replicates. In the scenario with one sire per group, the variance in 
susceptibility was not identifiable. Hence, the result from this scenario is presented 
as not estimable (NE). 

 Bias was substantially greater for infectivity than for susceptibility (Figure 5.1 vs 
5.2). For most of the scenarios simulated, variance in infectivity was overestimated 
(Figure 5.2). When all group mates descended from a single sire, the variance in 
infectivity was not identifiable. For groups consisting of offspring of at least two 
sires, the bias showed a strong relationship with the relatedness among group 
mates. The genetic variance in infectivity was severely over-estimated when group 
mates were unrelated, irrespective of the genetic correlation between 
susceptibility and infectivity. When the genetic correlation between susceptibility 
and infectivity was zero, the bias decreased with increasing relatedness, and 
became near zero for groups composed of offspring of two sires only (Figure 5.2A). 
When the genetic correlation between susceptibility and infectivity was positive, 
the bias also decreased with relatedness, but considerable overestimation 
remained for groups descending from only two sires (Figure 5.2B). When the 
genetic correlation between susceptibility and infectivity was negative, the bias 
changed sign when relatedness increased, resulting in underestimation for groups 
descending from only two sires (Figure 5.2C).  
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genetic effects for susceptibility, and 𝒂𝒂𝒂𝒂𝜸𝜸𝜸𝜸 is a vector of random genetic effects 
for infectivity. In addition to random genetic effects, the GLM contained a 
random group effect, denoted by Vg, where 𝐕𝐕𝐕𝐕 is an incidence matrix linking 
records to groups and 𝐕𝐕𝐕𝐕 is a vector of iid (identical and independently 
distributed) random group effects. The random group-effect was included to 
account for covariance among group mates due to sampling, which is not 
completely accounted for by the offset log(I/N). 
The (co)variance structure of the random genetic terms was  
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2 � and A is the additive genetic relationship matrix (Lynch

and Walsh, 1998). 
 The GLMM was fitted with a binomial distribution and complementary log-
log link function in the ASReml 3.0 statistical software (Gilmour et al., 2009). 
Since the first randomly chosen individual that started the epidemic does not 
express its susceptibility, this individual was excluded from the analysis as 
dependent variable but not as explanatory variable.  
 The above mixed model produces estimates of breeding values and 
variances that refer to the multiplicative breeding value, a, rather than the 
simulated additive breeding value, A. Thus, to investigate the quality of the 
estimates in terms of their accuracies and biases, estimated breeding values 
and variance components were back-transformed to the additive scale. 
Estimated additive breeding values were  

iγiγ aγA ,, ˆˆ = , [12] 

and 

iφiφ aφA ,, ˆˆ = . [13] 

Analogously, estimated additive genetic variances were 
𝜎𝜎𝜎𝜎𝜎𝐴𝐴𝐴𝐴𝛾𝛾𝛾𝛾
2 =  𝛾𝛾𝛾𝛾𝛾2𝜎𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝛾𝛾𝛾𝛾

2 , 

and 
𝜎𝜎𝜎𝜎𝜎𝐴𝐴𝐴𝐴𝜑𝜑𝜑𝜑
2 =  𝜑𝜑𝜑𝜑𝜑2𝜎𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝜑𝜑𝜑𝜑
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Figure 5.2. Box-whisker plots of bias in estimated variance in infectivity, for an 
increasing degree of relatedness among group mates, and for different genetic 
correlations (0, 0.5 and -0.5) between susceptibility and infectivity. Values are true 
values minus estimates, so positive values indicate under-estimation. The true 
variance was 0.04. Error-bars indicate the standard deviation of the estimate 
among replicates. In the scenario with one sire per group, the variance in infectivity 
was not estimable (NE). The arrow for the random group composition serves to 
indicate that the bar extends much further down. 

5.3.2 Bias and accuracy of estimated breeding values 
Results presented in this section are from 50 replicates. The bias of estimated 
breeding values (EBV) was calculated as the regression coefficient of the true 
breeding values on the estimated breeding values, where a value of one indicates 
absence of bias. With Best Linear Unbiased Prediction, the regression coefficient of 
the true values on the estimates should equal one for random effects; (Henderson, 
1975). The accuracies of estimated breeding values were calculated as the 
correlation between true and estimated breeding values. For the estimation of 
breeding values, the variances and co-variances of susceptibility and infectivity 
were fixed to their true (i.e. used in the simulation) values. Hence, results show the 
quality of EBV for the case where the genetic (co)variances are known, rather than 
estimated.  
 Figure 5.3 shows the regression coefficient of the true breeding value for 
susceptibility on the estimated breeding value. Regression coefficients are 
systematically smaller than one, indicating that the variance in EBV is too large. In 
other words, EBV over-predict the differences among sires in true breeding values 
for susceptibility. Regression coefficients did not show a clear relationship with 
relatedness among group mates, nor with the genetic correlation between 
susceptibility and infectivity. 
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genetic effects for susceptibility, and 𝒂𝒂𝒂𝒂𝜸𝜸𝜸𝜸 is a vector of random genetic effects 
for infectivity. In addition to random genetic effects, the GLM contained a 
random group effect, denoted by Vg, where 𝐕𝐕𝐕𝐕 is an incidence matrix linking 
records to groups and 𝐕𝐕𝐕𝐕 is a vector of iid (identical and independently 
distributed) random group effects. The random group-effect was included to 
account for covariance among group mates due to sampling, which is not 
completely accounted for by the offset log(I/N). 
The (co)variance structure of the random genetic terms was  

𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉 �
𝑎𝑎𝑎𝑎𝛾𝛾𝛾𝛾
𝑎𝑎𝑎𝑎𝜑𝜑𝜑𝜑� = 𝐂𝐂𝐂𝐂𝐂 𝐂𝐂𝐂𝐂 where ⊗ indicates the Kronecker product of both matrices,

𝐂𝐂𝐂𝐂 = �
𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝛾𝛾𝛾𝛾
2 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝛾𝛾𝛾𝛾,𝑎𝑎𝑎𝑎𝜑𝜑𝜑𝜑

𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝛾𝛾𝛾𝛾,𝑎𝑎𝑎𝑎𝜑𝜑𝜑𝜑 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝜑𝜑𝜑𝜑
2 � and A is the additive genetic relationship matrix (Lynch

and Walsh, 1998). 
 The GLMM was fitted with a binomial distribution and complementary log-
log link function in the ASReml 3.0 statistical software (Gilmour et al., 2009). 
Since the first randomly chosen individual that started the epidemic does not 
express its susceptibility, this individual was excluded from the analysis as 
dependent variable but not as explanatory variable.  
 The above mixed model produces estimates of breeding values and 
variances that refer to the multiplicative breeding value, a, rather than the 
simulated additive breeding value, A. Thus, to investigate the quality of the 
estimates in terms of their accuracies and biases, estimated breeding values 
and variance components were back-transformed to the additive scale. 
Estimated additive breeding values were  

iγiγ aγA ,, ˆˆ = , [12] 

and 

iφiφ aφA ,, ˆˆ = . [13] 

Analogously, estimated additive genetic variances were 
𝜎𝜎𝜎𝜎𝜎𝐴𝐴𝐴𝐴𝛾𝛾𝛾𝛾
2 =  𝛾𝛾𝛾𝛾𝛾2𝜎𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝛾𝛾𝛾𝛾

2 , 

and 
𝜎𝜎𝜎𝜎𝜎𝐴𝐴𝐴𝐴𝜑𝜑𝜑𝜑
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Figure 5.3. Box and whisker plots for the regression coefficients of true breeding 
values of sires on their EBV, for susceptibility, for an increasing degree of 
relatedness among group mates, and for different genetic correlations (0, 0.5 and -
0.5) between susceptibility and infectivity. Error bars denote standard deviations 
among the estimated regression coefficients. 

 Figure 5.4 shows the corresponding results for infectivity. Also for infectivity, 
regression coefficients are systematically smaller than one, and tend to be lower 
than those for susceptibility. Thus, EBV for infectivity over-predict the differences 
among sires in true breeding values, and somewhat more than for susceptibility. 
When the genetic correlation between susceptibility and infectivity was zero, the 
over-prediction became smaller when relatedness among group mates increased, 
whereas the opposite was observed for a negative correlation between 
susceptibility and infectivity. 
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 The GLMM was fitted with a binomial distribution and complementary log-
log link function in the ASReml 3.0 statistical software (Gilmour et al., 2009). 
Since the first randomly chosen individual that started the epidemic does not 
express its susceptibility, this individual was excluded from the analysis as 
dependent variable but not as explanatory variable.  
 The above mixed model produces estimates of breeding values and 
variances that refer to the multiplicative breeding value, a, rather than the 
simulated additive breeding value, A. Thus, to investigate the quality of the 
estimates in terms of their accuracies and biases, estimated breeding values 
and variance components were back-transformed to the additive scale. 
Estimated additive breeding values were  

iγiγ aγA ,, ˆˆ = , [12] 

and 

iφiφ aφA ,, ˆˆ = . [13] 

Analogously, estimated additive genetic variances were 
𝜎𝜎𝜎𝜎𝜎𝐴𝐴𝐴𝐴𝛾𝛾𝛾𝛾
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Figure 5.4 Box and whisker plots for the regression coefficients of true breeding 
values of sires on their EBV, for infectivity, for an increasing degree of relatedness 
among group mates, and for different genetic correlations between susceptibility 
and infectivity. Error bars denote standard deviation among the estimated 
regression coefficients. 
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and Walsh, 1998). 
 The GLMM was fitted with a binomial distribution and complementary log-
log link function in the ASReml 3.0 statistical software (Gilmour et al., 2009). 
Since the first randomly chosen individual that started the epidemic does not 
express its susceptibility, this individual was excluded from the analysis as 
dependent variable but not as explanatory variable.  
 The above mixed model produces estimates of breeding values and 
variances that refer to the multiplicative breeding value, a, rather than the 
simulated additive breeding value, A. Thus, to investigate the quality of the 
estimates in terms of their accuracies and biases, estimated breeding values 
and variance components were back-transformed to the additive scale. 
Estimated additive breeding values were  

iγiγ aγA ,, ˆˆ = , [12] 

and 

iφiφ aφA ,, ˆˆ = . [13] 

Analogously, estimated additive genetic variances were 
𝜎𝜎𝜎𝜎𝜎𝐴𝐴𝐴𝐴𝛾𝛾𝛾𝛾
2 =  𝛾𝛾𝛾𝛾𝛾2𝜎𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝛾𝛾𝛾𝛾

2 , 

and 
𝜎𝜎𝜎𝜎𝜎𝐴𝐴𝐴𝐴𝜑𝜑𝜑𝜑
2 =  𝜑𝜑𝜑𝜑𝜑2𝜎𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝜑𝜑𝜑𝜑
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 For all scenarios, the accuracy of EBVs was greater for susceptibility than for 
infectivity (Figure 5.5 vs. 5.6). Accuracies of EBVs for susceptibility were moderate, 
and decreased with relatedness among group mates, particularly when the number 
of sires per group became small (Figure 5.5). The decrease of accuracy with 
relatedness was strongest when the correlation between susceptibility and 
infectivity was negative. 

Accuracies of EBVs for infectivity showed the opposite trend, and increased 
with relatedness among group mates in most cases (Figure 5.6). When the genetic 
correlation between susceptibility and infectivity was zero, accuracy was near zero 
when group members were unrelated, and increased to moderate values when 
group mates descended from a single sire (Figure 5.6A). When the genetic 
correlation was positive, accuracies were higher than for a correlation of zero, and 
increased only a little with relatedness (Figure 5.6B). When the genetic correlation 
was negative, accuracies were relatively independent of relatedness, except when 
the number of sires per group was small (Figure 5.6C). 
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genetic effects for susceptibility, and 𝒂𝒂𝒂𝒂𝜸𝜸𝜸𝜸 is a vector of random genetic effects 
for infectivity. In addition to random genetic effects, the GLM contained a 
random group effect, denoted by Vg, where 𝐕𝐕𝐕𝐕 is an incidence matrix linking 
records to groups and 𝐕𝐕𝐕𝐕 is a vector of iid (identical and independently 
distributed) random group effects. The random group-effect was included to 
account for covariance among group mates due to sampling, which is not 
completely accounted for by the offset log(I/N). 
The (co)variance structure of the random genetic terms was  

𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉 �
𝑎𝑎𝑎𝑎𝛾𝛾𝛾𝛾
𝑎𝑎𝑎𝑎𝜑𝜑𝜑𝜑� = 𝐂𝐂𝐂𝐂𝐂 𝐂𝐂𝐂𝐂 where ⊗ indicates the Kronecker product of both matrices,

𝐂𝐂𝐂𝐂 = �
𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝛾𝛾𝛾𝛾
2 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝛾𝛾𝛾𝛾,𝑎𝑎𝑎𝑎𝜑𝜑𝜑𝜑

𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝛾𝛾𝛾𝛾,𝑎𝑎𝑎𝑎𝜑𝜑𝜑𝜑 𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝜑𝜑𝜑𝜑
2 � and A is the additive genetic relationship matrix (Lynch

and Walsh, 1998). 
 The GLMM was fitted with a binomial distribution and complementary log-
log link function in the ASReml 3.0 statistical software (Gilmour et al., 2009). 
Since the first randomly chosen individual that started the epidemic does not 
express its susceptibility, this individual was excluded from the analysis as 
dependent variable but not as explanatory variable.  
 The above mixed model produces estimates of breeding values and 
variances that refer to the multiplicative breeding value, a, rather than the 
simulated additive breeding value, A. Thus, to investigate the quality of the 
estimates in terms of their accuracies and biases, estimated breeding values 
and variance components were back-transformed to the additive scale. 
Estimated additive breeding values were  

iγiγ aγA ,, ˆˆ = , [12] 

and 

iφiφ aφA ,, ˆˆ = . [13] 

Analogously, estimated additive genetic variances were 
𝜎𝜎𝜎𝜎𝜎𝐴𝐴𝐴𝐴𝛾𝛾𝛾𝛾
2 =  𝛾𝛾𝛾𝛾𝛾2𝜎𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝛾𝛾𝛾𝛾

2 , 

and 
𝜎𝜎𝜎𝜎𝜎𝐴𝐴𝐴𝐴𝜑𝜑𝜑𝜑
2 =  𝜑𝜑𝜑𝜑𝜑2𝜎𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎𝜑𝜑𝜑𝜑
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5.4 Discussion 
In this study, a generalized linear mixed model (GLMM) was developed to estimate 
genetic (co)variances and breeding values for susceptibility and infectivity from 
data on the final disease status of individuals at the end of epidemics. The model 
was developed from an equation that describes the probability that an individual 
has been infected as a function of its own breeding value for susceptibility and the 
breeding values for infectivity of its infected group mates. This model was 
developed following (Anche et al., 2015), who presented a generalized linear model 
(GLM) where genetic effects for susceptibility and infectivity were treated as fixed 
effect (See also Velthuis et al. (2003) and Lipschutz-Powell et al. (2014)). In Anche 
et al. 2015, it was shown that the estimation of the genetic effects as fixed effects 
could be done satisfactorily with the GLM as proposed in that paper. 
 However, breeding values should ideally be estimated as random effects, and 
thus a simulation study was performed to investigate the quality of the GLMM in 
terms of the bias and precision of the estimated genetic co(variances), and the bias 
and accuracy of the predicted breeding values. We also investigated the effect of 
relatedness among group mates on those quality measures. Results showed a small 
bias in the estimated genetic variance for susceptibility, except for groups 
consisting of a single family for which the variance in susceptibility clearly cannot 
be estimated when a (random) group-effect is included in the model.  
 In contrast, the genetic variance in infectivity was severely overestimated, 
particularly when relatedness among group mates was absent or low. When the 
true genetic (co)variances were used in the breeding value estimation, EBV for 
susceptibility showed moderate accuracy, while EBV for infectivity showed low to 
moderate accuracy. When the true genetic (co)variances were used, regression 
coefficients of true breeding values on EBV were considerably smaller than one, 
indicating that EBV over-predict the differences in the true breeding values.  
 We investigated the cause of the severe overestimation of the genetic variance 
in infectivity, and the reason why this overestimation decreased so substantially 
when relatedness among group mates increased (See Figure 5.2).  
First we analysed the fit of the model in the absence of genetic variation. Given the 
values of c, α, γ  and φ , we numerically solved the so-called final size equation

(Andreasen, 2011) to obtain the probability that an individual escapes infection. 
Then we simulated the final disease status (0,1) of individuals from a Bernoulli 
distribution with this probability. Subsequently, we observed the fraction of 
individuals infected during the outbreak in each group, I/N, and calculated the 
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probability, 
N
Iy

P
|

, that an individual escapes infection using Equation 3. Note that

Equation 3 uses the observed fraction of infecteds in each group. Finally, we 

calculated the variance in diseases status around its expected value, 
N
Iy

P
|

. From

the Bernoulli distribution, the expected variance in disease status equals 

)1(
||
N
Iy

N
Iy

PP − . However, the observed variance was only around half this value. 

This suggest that the model over-fits the data when the observed fraction of 
infecteds in a group is used as an explanatory variable.  
 Thus, we hypothesized that the over-fit also occurs in the linear model 
(Equation 10), because the offset, log(I/N), is taken from the observed data, which 
leads to an excessive correlation between the dependent variable and the offset in 
the prediction equation. In other words, while the model intends to specify the 
probability that an individual gets infected, the realized fraction of infected 
individuals is used as offset in the model. This inflates the predictive ability of the 
model.  
 The previous argument has focussed on the use of the offset and the effect on 
the variance of the residual. However, a similar phenomenon may occur with the 
infectivity term in the model, because the incidence matrix for infectivity is based 
on the realized number of infected group mates of an individual, i.e., the Z2 matrix 
in Equation 11 has an entry for each infected group mate. Thus, having established 
that the GLMM procedure as used in this paper overestimates the genetic variance 
in infectivity (see Results), we tested whether this was due to the fact that the 
explanatory variables for infectivity showed an excessive correlation with the 
observed disease status. We did this by artificially constructing a data set where 
this excessive correlation was not present. (Note that this cannot occur in any real 
dataset). In short, we tested whether the use of the observed number of infecteds 
as explanatory variable in the model causes the over-estimation of the variance in 
infectivity. For this purpose, we simulated data with genetic variation, but sampled 
the number and identity of the infectious individuals in each group at random. 
Subsequently, for each individual, we calculated the probability that it escapes 
infection from Equation 3. Thus, an individual’s probability to escape infection 
depended on its own susceptibility, and on the infectivity of its randomly sampled 
infectious group mates. Then we sampled the disease status (0,1) of each individual 
according to this probability. We used this latter disease status as the dependent 
variable, rather than the initial disease status that was sampled at random. Finally, 
we analysed the data with the model in Equation 10, using the infected individuals 



5 Genetic parameters in host susceptibility and infectivity 

146 

that were a priori sampled at random to create the incidence matrix for infectivity 
(Z2) and the offset, while using the disease status sampled from Equation 3 as the 
dependent variable. Hence, with this set-up, the excessive correlation between the 
dependent variable and the explanatory variables in Equation 11 is removed; the 
disease status of group members is sampled depending on I/N, but the resulting 
fraction of infecteds in the group may deviate by chance from this I/N. The 
resulting estimates of the genetic (co)variances showed no bias (results not 
shown), and the estimated variance of the group effect was practically zero. Hence, 
this result illustrates that the over-estimation of the genetic variance in infectivity 
occurs because the number of infected group mates in the explanatory variable for 
infectivity is taken from the dependent variable. This leads to an excessive 
correlation between the dependent variable and explanatory variable for 
infectivity, which causes the infectivity term in the model to absorb too much 
variance. 
 The above does not yet explain why the over-estimation of the genetic variance 
in infectivity decreases so sharply with relatedness among group mates. However, 
consider the variance due to the infectivity term in the linear model (Equation 10), 
for simplicity assuming a uniform relatedness (r) between group mates. This yields 

Var �1
𝐼𝐼
∑ 𝑎𝑎𝜑𝜑,𝑗𝑗
𝐼𝐼
𝑗𝑗=1 � = IrIσ

φa /))1(1(2 −+

Because I was large in our simulations (~90), the ))1(1( rI −+  term increases

very strongly with relatedness. Now suppose that the excessive-correlation 
phenomenon explained above creates a certain covariance, say C, between the 
dependent variable and the infectivity-term. In other words,   

Var�
1
𝐼𝐼
�𝑎𝑎𝜑𝜑,𝑗𝑗

𝐼𝐼

𝑗𝑗=1

� = 𝐶𝐶 

The “required” value of 2
φaσ  to accommodate this covariance equals

))1(1/( rICI −+ , which decreases strongly with r. In other words, when group

mates are more related, a smaller 2
φaσ  is needed to account for a certain

covariance. We think this explains why the over-estimation of the variance in 
infectivity decreases so sharply with relatedness among group mates. 
 As mentioned in the results, variance in susceptibility and infectivity was not 
estimable for the scenario when offspring are from one sire. In this case, the sire 
variance is completely confounded with the group variance. When the correlation 
between susceptibility and infectivity was positive, accuracies of estimated 
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breeding values were higher for both traits. The same result was found by 
(Lipschutz-Powell et al., 2012). This gain in accuracy could be due to the same 
reason as given by (Lipschutz-Powell et al., 2012), namely that the covariance 
contributes to the accuracy of estimated breeding values.  
 Anacleto et al. (2015) developed a Bayesian method to estimate genetic 
(co)variances for susceptibility and infectivity from time-interval data on binary 
disease status. In their disease model, infected individuals did not recover, but 
stayed infectious for the rest of their life (SI-Model). They found that genetic 
(co)variances for susceptibility and infectivity can be estimated accurately. Having a 
time-interval disease data improves the accuracy of estimating genetic effect for 
susceptibility and infectivity as it gives information on the order of infection, that is, 
on who infected whom (Pooley et al., 2014; Anche et al., 2015). For a short interval, 
the fraction of infectious individuals during the interval (explanatory variable) is not 
correlated with the fraction of new cases within that interval (dependent variable). 
In the statistical analysis, this is achieved by using the infected individuals at the 
beginning of the interval as explanatory variable and the new cases during the 
interval as dependent variable. If the interval is longer, the cases that occur during 
the interval will also contribute to the new cases within the interval and thus that 
information should ideally be used also in the explanatory variable. However, this 
introduces the excessive correlation phenomenon explained above, at least to 
some degree. The final size observation as used here is the extreme case where the 
whole epidemic is contained within the interval, and where the information about 
the first infected individual is not very informative as explanatory variable for the 
observed cases during the epidemic. Thus we used the infected individuals 
observed at the end of the interval as explanatory variables in the analysis. The 
latter approach seems to be ok for the estimation of fixed effects of genes (Anche 
et al. 2015), but not for the estimation of the random genetic effects for infectivity. 
 In summary, we considered the case where only the final disease status is 
known at the end of an epidemic. We believe this is the major cause of the 
difference in the quality of estimated genetic (co)variances and breeding values 
between both studies, rather than the difference in methodology (i.e. a Bayesian 
framework vs. a GLMM). This suggests that time-interval disease data provide 
better estimates of genetic parameters and breeding values and thus should be 
considered in the collection of data on infectious diseases. 
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6.1 Introduction 
The basic reproduction ratio, R0 is an important epidemiological parameter that 
determines the risk and severity of an epidemic and the existence of an endemic 
equilibrium in a population. R0 is the average number of new cases that a typical 
infectious individual produces during its entire infectious lifetime in a completely 
susceptible population. It has a threshold value of 1. When R0 < 1, only a minor 
disease outbreak can occur and the disease will die out. When R0 > 1, also major 
disease outbreaks can occur and the disease may become endemic. Because of this 
threshold property, any breeding strategy that aims to reduce the prevalence of an 
infection should reduce the value of R0 preferable to a value below 1. The 
reduction to below 1 can be achieved of course in combination with other 
mitigating measures.   
 An important concept in quantitative genetics is the breeding value, which is a 
property of a single individual. On the contrary, R0 is a parameter that refers to the 
entire population. Reducing R0 via breeding, therefore, requires defining individual 
breeding values and heritable variances for R0. In the 2nd chapter, we showed that 
individual breeding value and heritable variance for R0 can be defined by combining 
the indirect genetic effects theory of quantitative genetics and the epidemiological 
concept of the next generation matrix.  
 In the 3rd chapter of this thesis, we showed that gene effects for susceptibility 
and infectivity can be estimated using a Generalized Linear Model (GLM), which 
was developed from an equation that describes the probability of an individual to 
be infected as a function of its own susceptibility and the average infectivity of its 
infectious group mates. This was done in order to show that the relative effects of 
genes on individual susceptibility and infectivity can be estimated using a model 
that takes the stochastic nature of an epidemic into account. Furthermore, in this 
chapter, we showed the effect of the value of R0 and the degree of relatedness 
among groupmates on the bias and precision of the estimated gene effects in 
susceptibility and infectivity.  
 In the 4th chapter, we showed that a GLM developed in the 3rd chapter can be 
used to estimate the effect of Major Histocompatibility Complex (MHC) 
polymorphisms on individual susceptibility and infectivity for nematode infections 
in sheep. In this chapter, the MHC polymorphisms were found to have an effect on 
individual infectivity in addition to their effect on individual susceptibility. In the 5th 
chapter we showed that breeding values and additive genetic (co)variances for 
susceptibility and infectivity can be estimated from binary data with a Generalized 
Linear Mixed Model (GLMM)). However, estimates for infectivity showed 
considerable bias and reasons for this bias are discussed.  
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 This thesis is among the first few studies (see also Lipschutz-Powell et al., 
2012b; Lipschutz-Powell et al., 2012c) towards understanding the effects of genetic 
heterogeneity in susceptibility and infectivity on the risk and severity of an 
epidemic, which is determined by the value of R0. Thus, with the aim of indicating 
the possible extensions and practical implications of this thesis, in this last chapter 
of the thesis, I will discuss three points in broader perspective. In the first section of 
this chapter, I will discuss how to define individual breeding values for the basic 
reproduction ratio, R0 and its relation to susceptibility and infectivity traits of an 
individual. In the second section of this chapter, I will discuss selection strategies 
that could be used for increasing selection response in R0. Finally, I will discuss the 
practical implications of the findings of this thesis. 
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6.2 Breeding value for R0 
The aim of animal breeding is to genetically improve livestock populations, that is, 
to have a next generation that performs better than the current generation. These 
genetic improvements are achieved by selecting those individuals that are 
genetically superior than the rest of the population and using them as parents of 
the next generation. The genetic superiority of an individual animal is reflected by 
its breeding value. The individual breeding value is twice the expected deviation of 
the phenotypic value of its offspring from the population mean (Falconer and 
Mackay, 1996). Since we cannot observe the breeding value of an individual, they 
need to be estimated (predicted) from already existing phenotypic information. In 
classical quantitative genetics, different phenotypic information sources, such as 
own performance and offspring/sib-information are used to estimate individual 
breeding values (Lynch and Walsh, 1998). With recent advances made in high-
throughput genotyping technologies, genomic information is used to estimate 
(predict) individual (genomic) breeding values (Meuwissen et al., 2001). Once we 
have estimated individual breeding values, individual animals can be ranked based 
on their estimated breeding values and we can select the individuals with the best 
estimated breeding values to be parents of the next generation.  
 With regard to infectious diseases, the ultimate goal of selective breeding 
would be to have a population with reduced risk and size of an epidemic and/or 
reduced equilibrium prevalence of an endemic disease. The risk and size of an 
epidemic and/or the level of the endemic equilibrium depends on the value of R0 
(Diekmann et al., 1990). The larger R0 is, the larger is the risk and size of an 
epidemic and the level of the endemic equilibrium, which is reflected by the 
fraction of individuals that gets infected (Figure 2 in chapter 1). Thus, breeding 
strategies aiming to reduce the risk and size of an epidemic and/or the level of 
endemic equilibrium should reduce R0.  
 Classical livestock genetic improvement focuses on the genetic merit of an 
individual that is transmitted to its offspring. As mentioned above, the genetic 
merit of an individual is reflected by its breeding value. Genetic improvement for 
reduced R0, should therefore be based on average effects of individual genes on R0. 
This would then require to define and/or estimate individual breeding values for R0.  
R0 is an emergent trait of a population; i.e. it cannot be attributed to a single 
individual. The parameter R0 is determined by how susceptible and infectious 
individuals interact in a population. Bijma (2011) has, however, shown that the 
result from the field of indirect genetic effects, which states that the trait value of 
an individual depends on multiple individuals, can be extended to traits that are an 
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emergent property of the population. In the 2nd chapter of this thesis we have 
shown that the approach proposed by Bijma (2011) and the epidemiological 
concept of the next generation matrix (Diekmann et al., 2010), can be used to 
define individual breeding value for R0. As a result, we have shown that individual 
breeding value for R0 can be defined as average gene effects at susceptibility and 
infectivity locus, and of population’s average susceptibility and infectivity.  
 In the 3rd chapter of this thesis, we have shown that gene effects for 
susceptibility and infectivity can be estimated using a generalized linear model 
(GLM). Together with the average susceptibility and infectivity that can also be 
obtained from the model, these estimated gene effects thus can be used to 
formulate individual breeding values for R0. 
 In the 2nd and 3rd chapter of this thesis, we have assumed that susceptibility is 
affected by one locus and infectivity is affected by another locus, each locus with 
two alleles. This is of course a simplified assumption, chosen to illustrate the effect 
of genetic heterogeneity on R0. In reality, however, it is highly unlikely that we will 
find genes with such major effects. In fact, a common assumption in quantitative 
genetics is that quantitative traits are determined by a large number of loci each 
locus with a small effect (Fisher, 1918). It is most likely that this assumption holds 
also for susceptibility. The presence of ‘Superspreaders’, however, suggest that 
there could be few major genes with bigger effect and many with small effect on 
individual infectivity. In any of cases, the effect of the alleles is summed over all the 
loci within an individual, and the sum is known as the breeding value of an 
individual (Falconer and Mackay, 1996). Thus, to account for this fact, the gene 
effects in equation 7c of the 2nd chapter of this thesis need to be formulated in 
terms of breeding values. 
Using equation 7c presented in chapter 2 and translating the average gene effects 
for susceptibility and infectivity into their respective breeding values, breeding 
value for R0 can be formulated as follows: 
𝐴𝐴𝑅𝑅0,𝑖𝑖 = [𝜑𝜑�  𝐴𝐴𝛾𝛾,𝑖𝑖 + 𝛾̅𝛾 𝐴𝐴𝜑𝜑,𝑖𝑖]  [1] 
where 𝜑𝜑�  is population average infectivity, 𝛾̅𝛾 is population average susceptibility, 
𝐴𝐴𝛾𝛾,𝑖𝑖 is individual breeding value for susceptibility and 𝐴𝐴𝜑𝜑,𝑖𝑖  is individual breeding 
value for infectivity.  
Based on this equation, breeding value for R0 is the weighted sum of breeding 
values in susceptibility and infectivity, population average infectivity and 
susceptibility being the weighting factors. This can be seen as a selection index 
where the selection index is the sum of estimated individual breeding values of an 
individual for different traits weighted by their respective “economic” weights. 
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In the 5th chapter of this thesis, we have made an attempt towards estimating 
breeding values and (co)variances in susceptibility and infectivity using a 
generalized linear mixed model (GLMM) from a binary data. We fitted a direct-
indirect genetic effects model with complementary log-log link function where the 
dependent variable was assumed to have a binomial distribution. The estimated 
breeding values together with the population means for susceptibility and 
infectivity can thus be used to define/assign individual breeding value for R0. Once 
we have individual estimated breeding values for R0, we can then select those with 
the best breeding value for R0 to be parents of the next generation and breed for 
reduced R0.  
In this thesis, I try to show how animal breeders can use breeding for reduced R0 as 
a complementary method to reduce the risk and size of an epidemic and the 
equilibrium prevalence of an endemic infection. Even though breeding for reduced 
R0 might be the obvious choice for epidemiologists, it may not be the expected 
choice for animal breeders. For animal breeders, breeding for reduced disease 
incidence/prevalence and risk might be an obvious choice. Thus, one might ask why 
animal breeders should want to breed for reduced R0 while they can breed for 
reduced disease incidence/prevalence and risk. As mentioned above, the risk and 
size of an epidemic and the level of endemic equilibrium is determined by the value 
of R0. In addition to that, it was shown that individual breeding value for R0 is a 
function of individual breeding values and population averages in susceptibility and 
infectivity (Equation 1). With this knowledge in mind, when the aim is to reduce R0, 
the amount of selection response that can be obtained depends on the structure of 
the data, which is usually binary indicating the disease status (infected/not-
infected) of the individual from which individual breeding values for R0 is 
estimated. When the data comes from a population where there is no family 
structure, the disease status of an individual captures part of the genetic variation 
present in its susceptibility. Thus, when individuals are selected based on their 
estimated breeding values, it will result limited selection response in R0. When the 
data is from a population where there exists relatedness among individuals, disease 
status of an individual captures the genetic variation present in susceptibility and 
infectivity. Thus, selection based on individual breeding value for R0 will bring about 
greater selection response in R0 and thus greater reduction in the risk and size of an 
epidemic and the level of endemic equilibrium.  
On the other hand, when the objective is to breed for reduced disease 
incidence/prevalence, breeder may use disease status of individuals as a selection 
criterion. In this case, the amount of selection response that can be obtained 
depends on the type of selection strategy applied. When breeders selects among 
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unrelated individuals, breeding for reduce disease incidence will result in 
limited response. This is because individual selection among unrelated individuals 
captures the genetic variation present in susceptibility only (see section 6.3.2 
for details). Furthermore, due to the nonlinear relationship between the value of 
R0 and the incidence/prevalence of an infection, breeding for 
reduced disease incidence/prevalence brings about a smaller response in 
reducing the risk and size of an epidemic. 
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6.3 Selection response in R0 
Responses to selection in any given trait, including R0, can be expressed as the 
product of selection intensity i, accuracy of selection 𝜌𝜌𝑇𝑇 and total genetic standard 
deviation 𝜎𝜎𝑇𝑇 (Bijma, 2011).  
𝑅𝑅 = 𝜄𝜄 𝜌𝜌𝑇𝑇 𝜎𝜎𝑇𝑇     [2] 

Response to selection, 𝑅𝑅, refers to the change in mean value of the trait from one 
generation to the next generation. Selection intensity is selection differential 
expressed in standard units. Accuracy of selection is the correlation between the 
total breeding value and the selection criterion in the selection candidates. Both 
selection intensity and accuracy of selection are scale-free parameters and thus 
provide no information about the heritable variance in the trait. Total genetic 
standard deviation, however, is the parameter that provides information about the 
potential of a population to respond to selection. With regard to R0, this total 
genetic standard deviation refers to the total genetic standard deviation in R0. 
Bijma et al. (2007b) have shown that three factors determine the amount of 
response to selection that can be obtained in traits that are affected by direct and 
indirect genetic effects of individuals, such as individual disease status. These are: 
(1) the amount of genetic variation present in the direct and indirect genetic effects 
and covariance between the traits, which is the total genetic variance in the trait 
(2) the type of selection strategy used, that is, individual versus group selection and 
(3) the degree of relatedness among interacting groupmates. The last two factors 
can be considered as factors that determine the utilization of the heritable variance 
present in a trait. Out of the three factors which are outlined to be determinants of 
response to selection, the amount of genetic variation in susceptibility and 
infectivity and the degree of relatedness among groupmates, were observed to 
have an effect on the amount of selection response that can be obtained in R0 
when individuals are selected based on their disease status (in the 2nd chapter of 
this thesis). In the next sections, I will discuss the relationship between the three 
factors and selection response in R0 when the selection criterion is individual 
disease status. 
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6.3.1 Heritable variance in susceptibility and infectivity 

In the 2nd chapter of this thesis, it was shown that that heritable variance in R0 can 
defined by taking variance in breeding values for R0. As a result, it was shown that 
heritable variance present in susceptibility and infectivity will contribute to the 
heritable variance in R0. Individual susceptibility can be defined as the probability of 
an individual to be infected upon exposure to an infection. Individual infectivity, on 
the other hand, is the probability of an individual to infect an average susceptible 
individual given contact.  
The theory of direct-indirect genetic effects states that, an individual has two 
unobserved genetic effects: an effect expressed on the trait value of the individual 
itself, which is known as direct genetic effect (DGE), and an effect expressed on the 
trait value of another individual in its proximity, which is known as indirect genetic 
effect (IGE) (Griffing, 1967, 1976, 1981; Moore et al., 1997; Wolf et al., 1998). IGEs, 
which are also known as associative effects, can be considered as a heritable 
component in the environment that an individual experiences. Based on the direct-
indirect genetic effects theory, the average effect of individual’s genes on its 
susceptibility to an infection can be considered as a DGE, and the average effect of 
individual’s genes on its infectivity can be considered as an IGE. It was shown by 
Bijma et al.(2007b) that in the presence of interaction, heritable variance in IGEs 
can contribute to the total heritable variance that reflects the potential of a 
population to respond to selection. This suggests that genetic variation present in 
the direct effect of susceptibility and indirect effect of individual’s infectivity 
contribute to the total heritable variation in R0. 
A number of genome-wide association studies have reported the existence of 
single nucleotide polymorphisms (SNPs) that are associated with susceptibility to 
different infectious diseases (Pant et al., 2010; Kirkpatrick et al., 2011; Sherlock et 
al., 2013; Bermingham et al., 2014). Heritability estimates for susceptibility to 
infectious diseases also indicate the presence of exploitable genetic variation in 
susceptibility to infectious diseases (Heringstad et al., 2005; Gonda et al., 2006). In 
addition to that, in the 2nd chapter of this thesis it was found that susceptibility has 
an indirect genetic effect, which is expressed on the disease status of other 
individuals in its proximity. That is to say, an individual that is in a group with highly 
susceptible group mates will have a higher probability to be infected than an 
individual that is in a group with less susceptible individuals. A similar phenomenon 
was observed by Bishop and Stear (1997), who showed that selection for resistance 
yielded greater response than predicted from classical quantitative genetics, due to 
changes in the epidemiology of the disease. This suggests that a reasonable 
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heritable variance may still be available that can be utilized by artificial or natural 
selection.  
Unlike traits that are part of an individual’s fitness, such as the direct effect of an 
individual’s susceptibility, an individual’s infectivity is not part of its fitness. As a 
result, both natural and artificial selection do not exhaust the heritable variance 
that may be present in infectivity (at least in the absence of kin-selection). The 
presence of “superspreaders” also suggests the presence of genetic variation 
among hosts in their infectivity (Woolhouse et al., 1997; Lloyd-Smith et al., 2005). 
Summing all, reasonable variance may exist in susceptibility and as well as in 
infectivity, that will contribute to the heritable variance in R0. Thus, the next 
question would be what selection strategies could be used to utilize the heritable 
variance present in these traits, and thus provide increased response in R0. In the 
next sections, I will discuss possible selection strategies and their potential in the 
utilization of heritable variation in R0 and selection response for R0. 

6.3.2 Classical individual selection versus group selection 

For a given trait, response to selection can also be predicted as the regression 
coefficient of the total breeding value of an individual on the selection criterion, 
multiplied by the selection differential. As a result, an expression for selection 
response with any level of selection measured by 𝑔𝑔 and with relatedness measured 
by r among groupmates in a group of size n was provided by Bijma et al. (2007b) as: 

𝑅𝑅 =  �𝑔𝑔[(𝑛𝑛 − 1)𝑟𝑟 + 1]𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇2 + (1 − 𝑔𝑔)𝜎𝜎𝑃𝑃,𝑇𝑇𝑇𝑇𝑇𝑇�
𝜄𝜄
𝜎𝜎𝐶𝐶

[3] 

where 𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇2  is the heritable variance in total breeding value in the population and 
𝜎𝜎𝑃𝑃,𝑇𝑇𝑇𝑇𝑇𝑇  is the covariance between the phenotype of an individual and its total 
breeding value. 𝜄𝜄

𝜎𝜎𝐶𝐶
 is the selection gradient, which is the regression coefficient of

fitness on the selection criterion (Falconer and Mackay, 1996). 
In equation [3], the factor 𝑔𝑔 measures the level on which selection acts, that is, 

individual versus group selection. When 𝑔𝑔 = 0, selection is made based on 
individual trait value, that is, individual (mass) selection. On the other hand, when 
𝑔𝑔 = 1, it represents selection on the sum of the trait values of the entire group, 
which is selection among groups. A 𝑔𝑔 =  −1/(𝑛𝑛 − 1), corresponds to selection of 
individuals on the deviation of their trait value from the mean trait value of their 
group (Bijma and Wade, 2008). 

Individual selection: In the absence of relatedness among groupmates, the 
above equation for response to individual selection becomes: 
𝑅𝑅 =  �𝜎𝜎𝑃𝑃,𝑇𝑇𝑇𝑇𝑇𝑇�

𝜄𝜄
𝜎𝜎𝐶𝐶

=  �𝜎𝜎𝐴𝐴𝐷𝐷
2 + (𝑛𝑛 − 1)𝜎𝜎𝐴𝐴𝐷𝐷𝐷𝐷�

𝜄𝜄
𝜎𝜎𝐶𝐶

   [4]
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This expression suggests that in the presence of indirect genetic effects, response 
to individual selection depends on the variance in the direct genetic effect 𝜎𝜎𝐴𝐴𝐷𝐷

2 , and 
the genetic correlation between the direct and indirect genetic effects 𝜎𝜎𝐴𝐴𝐷𝐷𝐷𝐷. Thus, 
individual selection will ignore the heritable variation present in the indirect 
genetic effect of an individual and thus provides limited response to selection. 

With regard to infectious diseases, individual selection refers to selection of 
individuals that are not-infected are selected to be parents of the next generation. 
When considering breeding for reduced R0, and when breeders would have to rely 
on individual’s disease status (infected/not-infected) as a selection criterion, the 
amount of selection response that can be obtained depends on the structure of the 
population. When unrelated individuals are housed together, the disease status of 
an individual captures the direct genetic effect of the individual itself only. This 
phenomenon was observed in the 2nd chapter of this thesis, where it was shown 
that when groups are composed of random individuals, individual selection based 
on their disease status captures the heritable variation present in the direct genetic 
effect of susceptibility only and thus led to limited response in R0. Moreover, based 
on the above expression, response to individual selection in the absence of 
relatedness among individuals could also lead to negative response to selection 
(Bijma et al., 2007b). This happens for the case where genetic covariance between 
the direct and indirect genetic effects, 𝜎𝜎𝐴𝐴𝐷𝐷𝐷𝐷  < 0, which could result in |(𝑛𝑛 − 1)𝜎𝜎𝐴𝐴𝐷𝐷𝐷𝐷| 
to exceed the variance in the direct genetic effect, 𝜎𝜎𝐴𝐴𝐷𝐷

2 . With regard to infectious 
disease, this applies to the case where individuals with lower susceptibility are 
more infectious. Simulation results from the 2nd chapter of this thesis support this 
claim, where it was shown that when there exists relatively strong negative linkage 
disequilibrium between susceptibility and infectivity, which was considered as the 
only measure of correlation, selection based on individuals’ diseases status results 
in selection response in R0 in the opposite direction, i.e. increased R0.  

Group selection: In this case, individuals in a group with an average phenotypic 
value above a certain threshold are selected to be parents of the next generation, 
that is, 𝑔𝑔 = 1 (Equation 3). Based on the expression provided by Bijma et al., 
(2007a), group selection makes the total heritable variance in the trait to be the 
factor that determines selection response. As a result, group selection always leads 
to positive response to selection.  
The expression for group selection given by Bijma et al. (2007a) is: 
𝑅𝑅 = [(𝑛𝑛 − 1)𝑟𝑟 + 1]𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇2 ( 𝜄𝜄

𝜎𝜎𝐶𝐶
)   [5]
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The later equation also suggests that selection response is greater when selection 
is made between family groups (r > 0) than between groups with unrelated 
individuals.  

When breeders consider groups as selection units in their aim to breed for 
reduced R0, their selection criterion might be to select for those groups with 
fewer/no individuals that gets infected. The probability of the group to have 
fewer/no individuals that gets infected is higher when a group is composed of 
individuals with lower than average susceptibility and infectivity. Thus, when 
selecting those groups with fewer/no infected individuals to contribute parents of 
the next generation, we will capture heritable variance in both susceptibility and 
infectivity and thus, increase response in R0.  

In Bijma et al. (2007a), the effect of group selection on response to selection 
was reported to be more pronounced when selection is made between groups 
composed of families. This also applies for increasing selection response in R0 in a 
way that the probability for a group to be composed of individuals with lower than 
average susceptibility and infectivity is higher because of relatedness. Thus, the 
probability for the group to have fewer/no infected individual is increased. As a 
result, genetic variation in susceptibility and infectivity is captured, which leads to 
increased response in R0. Thus, breeders should consider keeping families in groups 
when the aim is to reduce R0 by selective breeding. 
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6.3.3 Relatedness among interacting groupmates 

Relatedness: In this case, selection is made between relatives within a group. It was 
shown by (Bijma et al., 2007b) that relatedness converts covariance between 
individual phenotype and the total breeding value into total heritable variance, 
which is always positive and thus leads to positive selection response. The 
expression for response to individual selection when relatedness among interacting 
individuals is r=1 is provided by (Bijma et al., 2007a): 
𝑅𝑅 = 𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇2 ( 𝜄𝜄

𝜎𝜎𝐶𝐶
)    [6]

With regard to breeding for reduced R0, it was shown in the 2nd chapter of this 
thesis that considerable increased selection response in R0 was obtained when 
selecting among individuals that were present in groups of related individuals. This 
happens, because relatedness allows us to capture the genetic variation present in 
the indirect genetic effect of susceptibility and infectivity. This occurs, because 
individuals with less susceptibility and infectivity will, on average, have groupmates 
with below average susceptibility and infectivity (since they are related). As a 
result, they will have higher probability to escape the infection and be selected as 
parents of the next generation. Thus, when relatives are kept in a group, individual 
selection captures the genetic variation present in the indirect genetic effect of 
susceptibility and infectivity and provides increased response in R0.  

In the 3rd chapter of this thesis, it was also shown that relatedness has an effect 
on the bias of the estimated gene effects on individual susceptibility and infectivity. 
It was also shown that when the degree of relatedness among groupmates is 
higher, the bias in estimated gene effects is smaller. 
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6.4 Practical implication 
Throughout this thesis, we focused on developing methodologies that elucidate the 
impact of genetic variation in two disease-related traits, namely susceptibility and 
infectivity on the risk and final size of an infection in a population, which is 
determined by the value of R0. R0, being a parameter that determines the risk and 
final size of an infection, we suggest that breeding for reduced R0 should be 
considered as a complementary method to the existing disease control strategies 
that aim to reduce the risk and final size of an infection in a population. Moreover, 
we have shown that individual breeding value for R0 is a function of individual 
breeding value and population averages for susceptibility and infectivity. This 
suggests that, in order to have individual breeding values for R0, we need to 
estimate individual breeding values for susceptibility and infectivity.  

Advancements in the field of quantitative genetics have made estimation of the 
indirect genetic effect (IGE) of an individual possible through the use of indirect-
genetic effect (IGE) model. The IGE-models can also be used to estimate individual 
breeding values for susceptibility and infectivity from phenotypic disease data, 
which are usually binary. Lipschutz-Powell et al. (2012b) have made the first 
attempt to estimate the variance in susceptibility and infectivity using the IGE-
model. Results from (Lipschutz-Powell et al., 2012c), however, indicated that the 
linear IGE-model has a shortcoming in estimating breeding values for the indirect 
genetic effect of infectivity using binary disease data accurately. This shortcoming 
was also observed in chapter 5 of this thesis, where a generalized linear mixed 
model (GLMM) was used to estimate breeding values and variances in susceptibility 
and infectivity. One reason for this shortcoming could be the fact that the model 
captures the variation in disease dynamics among the different groups, which 
cannot be explained by random group effect or by an offset as variance in 
infectivity. This has led to an overestimation of genetic variance in infectivity. 
Moreover, it was observed that not only breeding values and variances infectivity 
are estimated less accurately, but also population average susceptibility and 
infectivity were not estimated accurately. However, the advancement made in this 
thesis (chapter 5) and by (Lipschutz-Powell et al., 2012a), can be considered as a 
first step towards estimating breeding values and variance in susceptibility and 
infectivity from disease data and for animal breeders to consider breeding for 
reduced R0 in their breeding program. 

Recent advances in molecular genetics have made genotyping of individuals for 
thousands of genetic markers, such as single nucleotide polymorphisms (SNPs) 
across the genome feasible. SNPs, which are the most common source of genetic 
variation that have been used in genome-wide association studies (GWAS) in order 



6 General discussion 

164 

to identify genes that are associated with a number of quantitative traits (Cochran 
et al., 2013; Mancini et al., 2013; Duchemin et al., 2014). GWAS have also been 
applied to identify genes that are associated with susceptibility to various 
infectious diseases (Pant et al., 2010; Kirkpatrick et al., 2011; Sherlock et al., 2013; 
Bermingham et al., 2014; LaRose et al., 2015). In addition to their application to 
identify genes associated with individual susceptibility to infectious diseases, GWAS 
can also be used to identify genes that are associated with individual infectivity, 
from which the gene effects on R0 can be estimated.  

As mentioned in the first section of this chapter, it is likely that individual 
susceptibility is affected by many genes each with small effect and infectivity by 
fewer major genes with big effect and large number of genes with small effects. 
Thus, in order to pick up the effect of all the possible genetic variations, we need to 
genotype individuals for thousands of dense SNP markers from which the gene 
effects are estimated to predict individual breeding values for susceptibility and 
infectivity.  

As an alternative to genome-wide SNP genotyping, one could densely genotype 
chromosomal regions (candidate genome regions) that are known to have 
association with susceptibility to infection, such as the major histocompatibility 
complex (MHC). The major histocompatibility complex (MHC) is one of the major 
genes that affect disease susceptibility/resistance against different infectious 
diseases (Lamont, 1989; Schwaiger et al., 1995; Grimholt et al., 2003). In fact, in 
chapter 4, the MHC was also found to have an effect on the infectivity of 
individuals for nematode infection in the Scottish Blackface sheep. Through the 
application of candidate gene approach, these results will help us to select for 
individuals with genes that have desirable effects on individual susceptibility and 
infectivity to infectious diseases. 

The advancements made in the molecular genetics not only allows the 
discovery of genes that are associated with different quantitative/diseases traits, 
but also open the door for animal breeders and the livestock industry to utilize 
these genetic variations to select and breed for improved livestock population, 
through the application of marker assisted selection (MAS) and genomic selection.  

Genomic selection: Genomic selection is a variant of MAS that uses predicted 
breeding value from large number of estimated SNP effects across the genome to 
select individuals to be parents of the next generation (Meuwissen et al., 2001; 
Goddard and Hayes, 2007). The key property of this approach is that thousands of 
markers that are assumed to be in linkage disequilibrium with the actual 
quantitative trait loci (QTL) are used to cover the whole genome and predict 
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breeding values. It was shown that an accuracy > 50% can be attained in predicting 
breeding values using high-density SNP markers (Hayes et al., 2009).  

The success made in the application of genomic selection to genetically improve 
different quantitative traits show that with the availability of marker information 
and appropriate statistical tools, genomic selection can also be applied for 
improvement of disease traits and reduction of disease prevalence in a population.  
It was mentioned in Pooley et al. (2014) that information from multiple epidemic 
(groups) are needed to estimate gene effect for infectivity accurately. The 
availability of records from multiple epidemic groups is challenging, since in real 
situations, animals are often kept in one big stable rather than in multiple small 
groups. Alternative to that, one can use data from shorter time-intervals where 
each interval is considered as incomplete epidemic in order to predict individual 
breeding value for infectivity with reliable accuracy (Anacleto et al., 2015). This is 
because time-interval disease data allows us to observe the order of an infection, 
that is, on who infects who and thus provides better information about 
infectiousness of individuals. On the other hand, when time-interval disease data is 
coupled with records on a number of groups, it will allow us to capture the genetic 
variation present among individual in their susceptibility and infectivity to a larger 
extent.  

In chapter 3, we have developed a generalized linear model (GLM) that can 
allow us to estimate gene effects in susceptibility and infectivity. With the 
availability of genomic and phenotypic data, the GLM that was developed in 
chapter 3 can also be used in genomic predictions of breeding values for 
susceptibility and infectivity, which can thus be used to predict individual breeding 
values for R0, from which genomic selection can be applied for reduced R0.  



6 General discussion 

166 

6.5 References 
Anacleto, O., L. A. Garcia-Cortés, D. Lipschutz-Powell, J. A. Woolliams, and A. B. 

Doeschl-Wilson. 2015. A Novel Statistical Model to Estimate Host Genetic 
Effects Affecting Disease Transmission. Genetics 201: 871-884. 

Bermingham, M. et al. 2014. Genome-wide association study identifies novel loci 
associated with resistance to bovine tuberculosis. Heredity 112: 543-551. 

Bijma, P. 2011. A general definition of the heritable variation that determines the 
potential of a population to respond to selection. Genetics: genetics. 
111.130617. 

Bijma, P., W. M. Muir, E. D. Ellen, J. B. Wolf, and J. A. M. Van Arendonk. 2007a. 
Multilevel selection 2: Estimating the genetic parameters determining 
inheritance and response to selection. Genetics 175: 289-299. 

Bijma, P., W. M. Muir, and J. A. Van Arendonk. 2007b. Multilevel selection 1: 
quantitative genetics of inheritance and response to selection. Genetics 
175: 277-288. 

Bijma, P., and M. Wade. 2008. The joint effects of kin, multilevel selection and 
indirect genetic effects on response to genetic selection. Journal of 
evolutionary biology 21: 1175-1188. 

Bishop, S., and M. Stear. 1997. Modelling responses to selection for resistance to 
gastro-intestinal parasites in sheep. Animal Science 64: 469-478. 

Cochran, S. D., J. B. Cole, D. J. Null, and P. J. Hansen. 2013. Discovery of single 
nucleotide polymorphisms in candidate genes associated with fertility and 
production traits in Holstein cattle. BMC genetics 14: 49. 

Diekmann, O., J. Heesterbeek, and J. A. Metz. 1990. On the definition and the 
computation of the basic reproduction ratio R 0 in models for infectious 
diseases in heterogeneous populations. Journal of mathematical biology 
28: 365-382. 

Diekmann, O., J. A. P. Heesterbeek, and M. G. Roberts. 2010. The construction of 
next-generation matrices for compartmental epidemic models. J R Soc 
Interface 7: 873-885. 

Duchemin, S., M. Visker, J. Van Arendonk, and H. Bovenhuis. 2014. Fine-mapping of 
a candidate region associated with milk-fat composition on Bos Taurus 
Autosome 17. In: 10th World Congress on Genetics Applied to Livestock 
Production 

Falconer, and Mackay. 1996. Introduction to quantitative genetics. 4th ed. Harlow: 
Pearson Education Limited; . 



6 General discussion 

167 

Fisher, R. A. 1918. XV.—The Correlation between Relatives on the Supposition of 
Mendelian Inheritance. Transactions of the royal society of Edinburgh 52: 
399-433. 

Goddard, M. E., and B. Hayes. 2007. Genomic selection. Journal of Animal Breeding 
and Genetics 124: 323-330. 

Gonda, M., Y. Chang, G. Shook, M. Collins, and B. Kirkpatrick. 2006. Genetic 
variation of Mycobacterium avium ssp. paratuberculosis infection in US 
Holsteins. Journal of dairy science 89: 1804-1812. 

Griffing, B. 1967. Selection in Reference to Biological Groups .I. Individual and 
Group Selection Applied to Populations of Unordered Groups. Aust J Biol 
Sci 20: 127-&. 

Griffing, B. 1976. Selection in Reference to Biological Groups .5. Analysis of Full-Sib 
Groups. Genetics 82: 703-722. 

Griffing, B. 1981. A Theory of Natural-Selection Incorporating Interaction among 
Individuals .2. Use of Related Groups. J Theor Biol 89: 659-677. 

Grimholt, U. et al. 2003. MHC polymorphism and disease resistance in Atlantic 
salmon (Salmo salar); facing pathogens with single expressed major 
histocompatibility class I and class II loci. Immunogenetics 55: 210-219. 

Hayes, B., P. Bowman, A. Chamberlain, K. Verbyla, and M. Goddard. 2009. Accuracy 
of genomic breeding values in multi-breed dairy cattle populations. Genet 
Sel Evol 41: 51. 

Heringstad, B., Y. Chang, D. Gianola, and G. Klemetsdal. 2005. Genetic association 
between susceptibility to clinical mastitis and protein yield in Norwegian 
dairy cattle. Journal of dairy science 88: 1509-1514. 

Kirkpatrick, B., X. Shi, G. Shook, and M. Collins. 2011. Whole‐Genome association 
analysis of susceptibility to paratuberculosis in Holstein cattle. Animal 
genetics 42: 149-160. 

Lamont, S. 1989. The chicken major histocompatibility complex in disease 
resistance and poultry breeding. Journal of dairy science 72: 1328-1333. 

LaRose, J., D. Wilson, and K. Rood. 2015. Identification of single nucleotide 
polymorphisms associated with mastitis resistance in dairy cows. 

Lipschutz-Powell, D., J. A. Woolliams, P. Bijma, and A. B. Doeschl-Wilson. 2012a. 
Indirect Genetic Effects and the Spread of Infectious Disease: Are We 
Capturing the Full Heritable Variation Underlying Disease Prevalence? Plos 
One 7: e39551. 

Lipschutz-Powell, D., J. A. Woolliams, P. Bijma, and A. B. Doeschl-Wilson. 2012b. 
Indirect genetic effects and the spread of infectious disease: are we 
capturing the full heritable variation underlying disease prevalence? 



6 General discussion 

168 

Lipschutz-Powell, D. et al. 2012c. Bias, accuracy, and impact of indirect genetic 
effects in infectious diseases. Frontiers in genetics 3. 

Lloyd-Smith, J. O., S. J. Schreiber, P. E. Kopp, and W. M. Getz. 2005. Superspreading 
and the effect of individual variation on disease emergence. Nature 438: 
355-359. 

Lynch, M., and B. Walsh. 1998. Genetics and analysis of quantitative traits. Sinauer 
Sunderland, MA. 

Mancini, G. et al. 2013. Association between single nucleotide polymorphisms 
(SNPs) and milk production traits in Italian Brown cattle. Livestock Science 
157: 93-99. 

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total 
genetic value using genome-wide dense marker maps. Genetics 157: 1819-
1829. 

Moore, A. J., E. D. Brodie, and J. B. Wolf. 1997. Interacting phenotypes and the 
evolutionary process .1. Direct and indirect genetic effects of social 
interactions. Evolution 51: 1352-1362. 

Pant, S. D. et al. 2010. A principal component regression based genome wide 
analysis approach reveals the presence of a novel QTL on BTA7 for MAP 
resistance in holstein cattle. Genomics 95: 176-182. 

Pooley, C., S. Bishop, and G. Marion. 2014. Estimation of single locus effects on 
susceptibility, infectivity and recovery rates in an epidemic using temporal 
data. In: Proceedings of the 10th World Congress on Genetics Applied to 
Livestock Production. Vancouver, Canada 

Schwaiger, F.-W. et al. 1995. An ovine major histocompatibility complex DRB1 allele 
is associated with low faecal egg counts following natural, predominantly 
Ostertagia circumcincta infection. International journal for parasitology 
25: 815-822. 

Sherlock, R. et al. 2013. Whole genome association analysis of susceptibility to 
paratuberculosis in New Zealand dairy cattle. In: Proceedings of the 
Twentieth Conference of the Association for the Advancement of Animal 
Breeding and Genetics, Translating Science into Action, Napier, New 
Zealand, 20th-23rd October 2013. p 195-198. 

Wolf, J. B., E. D. Brodie III, J. M. Cheverud, A. J. Moore, and M. J. Wade. 1998. 
Evolutionary consequences of indirect genetic effects. Trends in Ecology & 
Evolution 13: 64-69. 

Woolhouse, M. E. et al. 1997. Heterogeneities in the transmission of infectious 
agents: implications for the design of control programs. Proceedings of the 
National Academy of Sciences 94: 338-342. 



Summary





Summary 

171 

Summary 

Infectious diseases of animals are a major concern to the livestock industry, 

particularly due to their effect on the welfare and productivity of livestock. In 

addition to that, the zoonotic nature of some infectious diseases poses a threat to 

public health.  

 Studies have reported that there exists among host genetic variation for 

different disease related traits. These findings suggest that breeders can implement 

selective breeding as a complementary method to the existing disease control 

strategies to genetically improve host populations in order to decrease the 

prevalence of infectious diseases in livestock populations. 

 Genetic approaches aiming to reduce the prevalence of an infection usually 

focus on reducing individual susceptibility to an infection. The prevalence of an 

infection, however, is affected also by the infectivity of infectious individuals. Host 

genetic variation in susceptibility and infectivity affects the transmission of an 

infection in a population, the total effect of which is measured by the basic 

reproduction ratio, R0. R0 is the average number of new cases produced by a typical 

infectious individual during its entire infectious lifetime in a completely susceptible 

population. It is an important epidemiological parameter that determines the 

prevalence and risk of an infection in a population. Moreover, R0 has a threshold 

value of 1, where a major disease outbreak can occur only when R0 > 1. When R0 < 

1, only minor disease outbreaks can occur and the disease will die out. Thus, 

breeding strategies that aim to reduce the prevalence of an infection should reduce 

the value of R0 below 1. Since the theory of response to selection rests on the 

concepts of breeding value and heritable variance, genetic strategies to reduce R0 

requires the definition and estimation of breeding values for and heritable variance 

in R0.  

 In Chapter 2, we show how to define individual breeding values and heritable 

variation for R0, by combining the quantitative genetic theory of indirect genetic 

effects, the epidemiological concept of the next generation matrix, and a 

Susceptible-Infectious-Recovered (SIR) model of an infectious disease. As a result, 

the individual breeding value was defined as a function of an individual’s allele 

frequencies for susceptibility and infectivity and the population average 

susceptibility and infectivity. Moreover, we show that, when interacting individuals 

are unrelated, selection of individuals based on their own disease status captures 

genetic variation in susceptibility only, resulting in a limited response in R0. When 

interacting individual are related, however, selection of individuals based on their 

disease status also captures genetic variation in infectivity and additional variation 

in susceptibility, resulting in substantially greater response in R0. This result shows 
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that, not only infectivity, but also susceptibility to infectious diseases has an 

indirect genetic effect on the disease status of individuals. 

 In Chapter 3, we developed a generalized linear model (GLM) to estimate the 

relative effects of genes on individual susceptibility and infectivity. The GLM was 

developed from an equation that describes the probability of an individual to 

become infected as a function of its own susceptibility genotype and the infectivity 

genotypes of its infectious contacts. We investigated the quality of the GLM in 

terms of the bias and precision of the estimates. The bias was smaller when R0 was 

between 1.8 and 3.1, and when relatedness among group mates was higher. 

 In Chapter 4, we used the GLM developed in Chapter 3 to estimate the effects 

of polymorphisms in the MHC-genes on individual susceptibility and infectivity for 

nematode infection in sheep. We found that, in addition to their effect on 

individual susceptibility, the MHC-genes have an effect on individual infectivity for 

nematode infection. 

 In Chapter 5, we developed a generalized linear mixed model (GLMM) to 

estimate individual breeding values and genetic (co)variances in susceptibility and 

infectivity from binary disease data. For susceptibility, additive genetic variance and 

breeding values were estimated with acceptable accuracy. For infectivity, however, 

the estimated additive genetic variance showed a very large bias, and estimated 

breeding values showed low accuracy. Relatedness among group mates 

significantly reduced the bias in the estimated genetic variance for infectivity, and 

increased the accuracy of estimated breeding values for infectivity.  

 In the General Discussion (Chapter 6) I discuss three points: First, I discuss the 

individual breeding value for R0, and its relation to susceptibility and infectivity of 

the individual. Second, I discuss selection strategies that can be used for reducing 

R0. Finally, I discuss the practical implications of the findings of this thesis. I 

conclude that, with advancements made in statistical methods and quantitative 

and molecular genetics, breeders should consider breeding for reduced R0 in their 

breeding goal when the aim is to reduce the prevalence and risk of an infection. 
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