Effect of grass silages, differing in maturity and nitrogen fertilisation, on in vitro methane production

F.M. Macome^{1,2}, W.H. Hendriks^{1,2}, J.Dijkstra¹, D.Warner¹ W.F. Pellikaan¹ J.W. Cone¹, J.T. Schonewille² ¹Animal Nutrition Group, Wageningen University ²Faculty of Veterinary Medicine, Utrecht University felicidade.macome@wur.nl

Background

Methane (CH_4), production by has received considerable attention in recent years due its contribution to global warming. Moreover, CH_4 synthesis in the rumen represent a significant loss of dietary energy.

Conclusions

- Gas production decreased with advancing maturity.
- CH_4 production was affected by maturity and N fertilisation.

In vitro CH_4 production showed a weak correlation with the in vivo CH_4 expressed in (ml/g OM).

Objectives

- To determine in vitro CH_4 production of grass silages differing in maturity and N-fertilisation rate when incubated with rumen fluid from donor cow adapted to specific feed & non-adapted rumen inoculum from cows not adapted to specific feed.
- To compare in vitro results with the in vivo data on CH_4 production measured simultaneously using donor cows adapted to each grass silages.

Materials & Methods

Grass fields (predominantly rye grass) were fertilized with low N (L; 65 kg N/ha) or high N (H; 150 kg N/ha). each grass field was harvested at early maturity (EM), mid maturity (MM) and late maturity (LM), and ensiled. Donor cows were fed with these 6 grass silages (n = 2) as part of complete ration. Complete ration consists of 80% (DM basis) grass silage and 20% concentrate.

Table 1. Effect of maturity and N-fertilization on chemical composition (g/kg of DM) of grass silages.

	Low N			High N		
	EM	MM	LM	EM	MM	LM
DM yield	2023	3214	3535	2055	3609	5796
(kg/ha)						
OM	903	924	934	895	902	914
CP	149	106	78	197	173	120
Sugars	98	190	179	54	79	69
NDF	476	501	561	459	507	603
ADF	282	288	315	280	298	353
ADL	20	24	26	21	22	32

Figure 2. Effect of fertilisation level of grass silages on gas and CH₄ production after 72h of incubation either adapted or mixed rumen fluid.

- Gas production was measured using a fully automated system (Cone et al., 1996).
- In vitro CH_4 production was measured using automated gas production techniques as described by Pellikaan et al. (2011).
- In vivo CH_4 data were measured in climate controlled respiration chambers.

Figure 3. Relationship between in vivo and in vitro CH_4 measured from cows fed grass silages differing in maturity and N fertilisation rates.

References Cone et al. (1996) Anim. Feed Sci. Technol. 61, 113-128. Pellikaan et al. (2011). Anim.Feed Sci. Tecnol. 168, 196-205.