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Producing more with less 

We are living on a planet with finite resources and since it is the only place that can 

sustain our welfare and civilization both for the present and the foreseeable future, 

we must ensure that our population can grow sustainably and in harmony with the 

environment. Since the industrial revolution, due to recurrent advances in (food) 

technology, hygiene and medicine the human population has boomed at an 

accelerated pace, increasing almost 4-fold since 1900 and expected to exceed 9 billion 

in 2050. This growth was sustained by the significant advances in technology with the 

mechanization and intensification of agriculture which, combined with leaps in 

genetics and plant breeding science, resulted in the green revolution (between the 

1930s and 60s) . This doubled yields for the major staple crops and ensured that 

enough food could be produced to support the growing human population (Pingali 

2012).  

Currently however the same challenge not only has re-appeared, as population growth 

is continuing to rise, but is increasingly harder to address due to the risk of depleting 

the finite/non-renewable natural resources of the earth. The consumption of natural 

resources such as fossil fuels, on which industrialization is majorly based, has 

additionally led to an inevitable increase in atmospheric CO2, which is expected to 

continue to rise, even if appropriate measures are taken (Pan et al. 2014). The effects 

of the elevated CO2 concentrations on our climate can already be detected, with record 

high temperatures being observed and expected to further rise to different projected 

magnitudes depending on the measures taken as well as changes in precipitation 

patterns (Trenberth 2011). In addition, agricultural intensification, while 

advantageous, has questionable sustainability, itself contributing to CO2 rise (Gitz 

and Ciais 2004) and further evidenced by the rapid depletion of water resources 

(agriculture is the biggest fresh water consumer among all human activities), land 

deterioration from continuous cultivation including increased salinization in irrigated 

lands and coastal areas and agrochemical and fertilizer pollution (Savci 2012). 

Moreover the genetic erosion of crops with only a few cultivars per crop covering the 

majority of cultivated land makes them increasingly vulnerable to disease pandemics 

and the changing environmental conditions (Keneni et al. 2012) with increasing 

efforts being undertaken to incorporate genetic variation from wild species to increase 

crop stress resilience (Warschefsky et al. 2014). 

Thus, under the current conditions the goal is to increase global agricultural 

productivity while limiting inputs to maintain sustainability. Key to this goal, except 

increasing the yield potential of crops and optimizing cultivation methods, is to be 
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able to maintain crop yield and performance under less than optimal conditions such 

as abiotic stress conditions (drought, salinity, nutrient insufficiency etc.) and 

pathogen and pest attacks. Maximizing performance under such limiting conditions is 

also of great importance in bridging the yield inequalities that are observed in 

different parts of the world, which are largely due to different resource inputs 

(Mueller et al. 2012). 

 

Stress combinations 

Field conditions by themselves are stress environments and that is the reason why 

field crops hardly ever realize their true yield potential as for instance evidenced by 

huge yield gaps when comparing experimental plots with farm data (Lobell et al. 

2009). This presumes that crop plants are subjected to a variety of stresses during 

their lifecycle. These stresses, though in many occasions probably mild, may have a 

significant impact on productivity. Stress factors include not only abiotic stress factor 

like drought and temperature but also various pathogens and pests, such as insects 

and nematodes. For these biotic stress factors intervention with agrochemicals is 

often necessary when there is no genetically-based resistance to ensure high yields. As 

in many occasions either chemical protection is not complete or genetic resistance is 

partial or not durable, crops are experiencing biotic stress that can be concurring with 

abiotic stress. 

Climate change significantly influences both abiotic stress incidence and pathogen 

ecophysiology. Most projections indicate an increased frequency of adverse 

environmental conditions affecting agriculture (Trnka et al. 2014). On the other hand 

there is already evidence for spread of pathogens towards the earth poles due to 

increased winter temperature, while longer seasons due to warmer weather allow 

more generations during a single season (Bebber 2015; Garrett et al. 2006). This 

generates higher probabilities of intra-species evolution of more virulent strains. 

Climate change can also change the responses of the hosts. This may result in 

decreased or enhanced resistance, although for stress conditions aggravated by 

climate change such as drought and heat stress most studies indicate a dampening 

effect on resistance (Bostock et al. 2014; Cheng et al. 2013a). 

Generalizations however cannot be easily made due to  the multitude of overlapping 

layers involved in abiotic and biotic stress response (Fig.1) evident by the  numerous 

reports of pathosystem-specific responses. ABA signalling for example can contribute 

to increased resistance or susceptibility, depending on the host-pathogen combination 

and stress conditions (Adie et al. 2007; Hok et al. 2014; Mang et al. 2012; Ulferts et al. 
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2015). Moreover evidence so far indicates that the responses under combined stress 

are unique (Rasmussen et al. 2013). Thus to maximize the chance to identify key 

regulatory components involved in adaptation and tolerance specific combinations of 

stresses should be treated as distinct stress conditions. 

 

 

Figure 1. Overlapping components of plants responses to abiotic and biotic stress. 

 

The need to expand research to crops: tomato as a stepping stone between Arabidopsis 

and crops 

With the current and upcoming challenges in covering population nutritional 

demands the increasing importance of research translation is accentuated, as basic 

research has focused since the dawn of the genomics era on the non-crop model dicot 

species Arabidopsis thaliana (Koornneef and Meinke 2010). Tomato (Solanum 

lycopersicum) can be an optimal “bridge” between the model plant and other crops as 

it combines attributes of both a model plant with genetic and genomic resources such 

as mapping populations and mutants (Emmanuel and Levy 2002; Park et al. 2014; 
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Pascual et al. 2015) with a larger pool of readily crossable wild relatives that can 

contribute novel alleles for agronomic trait improvement (Koenig et al. 2013). Tomato 

is also economically the most important vegetable crop in the world (Lin et al. 2014). 

The tomato plant exhibits features such as fleshy fruit, a sympodial shoot, and 

compound leaves, all being important agronomic traits that other model plants (e.g., 

rice and Arabidopsis) do not possess (Kimura and Sinha 2008). Tomato is closely 

related to many cultivated species such as potato, eggplant, pepper and tobacco, 

enabling accelerated (or even instant) research translation to all these crops. 

Moreover, it is cultivated both in the greenhouse and in open field conditions in 

temperate Mediterranean climates, and the latter is thought to be most affected by 

climate change (Giorgi and Lionello 2008). 

Genomic resources are increasing with the sequence of cultivated and wild relatives 

boosting tomato breeding, with a huge potential of relieving the bottleneck that was 

experienced when tomato was originally domesticated in its region of origin and when 

it was transported later on to Europe (Aflitos et al. 2014; Lin et al. 2014). Wild 

relatives are especially important, as approximately 20-fold higher SNP rates are 

discovered in these species in comparison with the variation among the cultivated 

varieties (Aflitos et al. 2014). Having the same number of chromosomes and ploidy 

level as the cultivated varieties (2n=2x=24), high genomic synteny (Stack et al. 2009) 

and being in most occasions readily intercrossable has made the wild relatives an 

important source of alleles increasing the economic value of tomato and its robustness 

against diseases and pests (Aflitos et al. 2014; Bleeker et al. 2012). Linkage drag of 

introgressed regions, in many occasions due to recombination inhibition by the 

presence of chromosomal rearrangements such as inversions (Verlaan et al. 2011), 

results in the carry-over of undesirable wild alleles constraining wild species 

utilization. The increased adoption of marker and genomics-assisted breeding and the 

construction of introgression line (IL) libraries (Chitwood et al. 2013; Eshed and 

Zamir 1995) in combination with single base resolution of nucleotide variation and 

association with desired phenotypes (Lin et al. 2014) offers unlimited power in further 

improving tomatoes overcoming the existing barriers. 

 

Salt stress adaptation and tolerance  

High soil salinity is considered a major threat for agricultural productivity in semi-

arid or coastal areas due to its increased occurrence in irrigated lands, which account 

for a major part of world food production (Flowers 2004). Thus, salinity is also an 

important abiotic stress limiting (tomato) crop cultivation. Salt stress persistence 
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throughout the plants’ lifetime likely leads to co-occurrence with additional stress 

factors, either abiotic (e.g. heat, drought) or biotic (fungi, insects etc.) justifying 

further research on the impact of  stress combinations that include salinity. 

Salinity stress is characterized by an osmotic and an ionic component. The initially 

perceived osmotic stress results in growth inhibition due to turgor reduction, and 

reduction in photosynthesis due to stomatal closure. Ionic stress builds up gradually 

and the intracellular accumulation of Na+ can eventually lead to direct toxic effects 

due to enzyme inhibition or indirect effects due to reduced K+ influx (Munns and 

Tester 2008). The plant’s tolerance to salinity stress is characterized by the 

adaptation potential to osmotic stress and the ability to cope with ionic stress. Ionic 

stress can be either avoided by limiting Na+ uptake from the roots or restricting its 

transport to the shoot, or tolerated by efficiently compartmentalizing the increased 

Na+ concentrations in the aerial parts  in places where it cannot directly interact with 

the cellular functions and exert its toxicity,, like the vacuole (Adem et al. 2014; Plett 

and Møller 2010). Additional scavenging of excess reactive oxygen species (ROS) due 

to photosynthesis inhibition and membrane damage is also of great importance in 

achieving tissue tolerance (Adem et al. 2014; Miller et al. 2010).  

Various approaches have been employed that aim at increased salt tolerance in 

tomato but efforts were less successful than expected, possibly due to the polygenic 

nature of salt tolerance (Cuartero et al., 2006). QTL discovery was undertaken using 

segregating populations originating most frequently from crosses between salt 

sensitive tomato cultivars and salt tolerant wild tomato species such as Solanum 

pimpinellifolium and Solanum pennellii (Asins et al. 1993; Frary et al. 2010; Villalta 

et al. 2007). The results confirmed the complex genetic architecture of salinity 

tolerance, with tolerance traits having medium to low heritability and individual 

QTLs explaining a fraction of the total variation (Monforte et al. 1996; Villalta et al. 

2007).  

Salinity tolerance determinants in tomato have also been studied at the biochemical 

and molecular level. Elevated antioxidant enzymes activities are critical for the 

efficient scavenging of ROS in the salt tolerant wild species Solanum pennellii (Frary 

et al. 2010; Mittova et al. 2003). The significance of Na+  concentration in the leaves for 

tomato salinity tolerance however is obscure. Correlation analyses in populations 

segregating for salinity tolerance have demonstrated a reduced association of Na+ 

accumulation and yield parameters (Asins et al. 2010; Villalta et al. 2007). On the 

other hand, transgenic approaches manipulating Na+ exclusion and 

compartmentation provide support for their relative importance in achieving salt 

tolerance (Huertas et al. 2012; Zhang and Blumwald 2001). K+ homeostasis is also 
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important, as shown by the overexpression in tomato plants of K+/H+ antiporters, 

which resulted in a greater capacity to retain intracellular K+ and in enhanced 

salinity stress tolerance (Leidi et al. 2010; Rodri ́guez-Rosales et al. 2008). Recently, 

the importance of homeostasis of plant hormones such as ABA, auxin, cytokinin, 

ethylene and jasmonates during salinity stress has been revealed, which were shown 

to be directly controlling plant growth and senescence under stress conditions 

(Albacete et al. 2008; Ghanem et al. 2008; Ghanem et al. 2012). Since many of these 

hormones participate in both abiotic and biotic stress responses, they may be involved 

in crosstalk between these responses and possibly be determinants of plant 

phenotypic responses under combined stress conditions. 

 

Powdery mildew resistance in tomato  

Powdery mildew caused by the biotrophic Ascomycete Oidium neolycopersici is a 

significant threat for tomato cultivation both in the field and in the greenhouse 

(Panthee and Chen 2010). Breeding efforts are focused on identifying resistance genes 

in the wild tomato germplasm and introducing them in commercial cultivars through 

marker-assisted selection (Seifi et al. 2014a). Several loci conferring resistance to O. 

neolycopersici have been identified. Ol-1 and Ol-4 are dominant resistance genes that 

originate from S. habrochaites and S. peruvianum, respectively (Bai et al. 2004; 

vander Beek et al. 1994) and are located on the long arm of chromosome 6. The Ol-1 

mediated resistance is characterized by multiple-cell slow hypersensitivity response 

(HR), while the Ol-4 gene is homologous to the Mi-1 gene encoding a CC-NBS-LRR 

protein and confers resistance through fast single-cell HR (Li et al. 2007; Seifi et al. 

2014). The ol-2 gene, discovered in an accession of S. lycopersicum var. cerasiforme 

(Ricciardi et al. 2007), is located near the centromere region of chromosome 4, and 

encodes a loss-of-function allele of a gene homologous to the Mlo gene of barley (Bai et 

al. 2008b). ol-2 confers race non-specific resistance through increased papillae 

formation and callose deposition at the site of the attempted penetration (Li et al. 

2007).  

 

Stress crosstalk and response to stress combinations in tomato 

There are only few studies focused on tomato responses under abiotic and biotic stress 

combination. Increased soil salt concentration resulted in enhanced susceptibility to 

soil borne diseases and Phytophthora spp. (DiLeo et al. 2010; Triky-Dotan et al. 2005). 

On the other hand, drought stress resulted in reduction of susceptibility to powdery 

mildew and Botrytis cinerea concomitant with ABA concentration increase (Achuo et 
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al. 2006). 

Evidence for abiotic and biotic stress resistance crosstalk in tomato has been mostly 

found with mutants defective in the ABA signaling pathway. The ABA deficient 

mutant sitiens, which exhibits reduced tolerance to salinity stress (Mäkelä et al. 

2003), was more resistant to Botrytis cinerea, involving elevated SA- but not JA-

responsive gene expression (Audenaert et al. 2002). The enhanced resistance observed 

is a result of timely production of ROS that in turn induce cell wall modifications that 

restrict pathogen penetration (Asselbergh et al. 2007). The sitiens mutant was also 

reported to be more resistant to the biotrophic bacterium Pseudomonas syringae 

(Thaler and Bostock 2004) and the biotrophic fungus O. neolycopersici (Achuo et al. 

2006). More recently it has been demonstrated that the ABA-inducible MYB 

transcription factor AIM1 regulates responses to both salt stress and B. cinerea 

infection (AbuQamar et al. 2009). Down regulation of ABA-inducible AIM1 results in 

increased sensitivity to salinity stress, elevated accumulation of Na+ and 

susceptibility to the pathogen, suggesting an involvement of ABA-regulated ion fluxes 

in the defense responses against B. cinerea. 

Biochemical and molecular studies of basal disease resistance regulation in tomato 

have revealed certain differences compared to the observations in the model plant, 

Arabidopsis thaliana. Salicylic acid and jasmonic acid/ethylene mediated defense 

responses are effective against biotrophs and necrotrophs, respectively, and act 

antagonistically with each other in Arabidopsis. In tomato however, salicylic acid-

mediated defense gene expression appears to be ineffective for resistance against the 

biotroph O. neolycopersici, but enhances resistance against the necrotroph Botrytis 

cinerea (Achuo et al. 2004). Furthermore, jasmonate-deficient (def1) mutant tomato 

plants exhibited among others increased susceptibility to biotrophic bacteria and the 

oomycete Phytophthora infestans (Thaler et al. 2004), indicating hormonal 

interactions and their functions on defense pathways in tomato might significantly 

deviate when compared with  Arabidopsis . 

 

Objectives and scopes of this thesis  

The research described in this thesis was initiated to increase our understanding of 

the biological processes underlying adaptation and resistance to combined salt stress 

and powdery mildew but also to highlight ways to efficiently breed for tolerance to 

stress combinations in crops. Our strategy involved the employment of different 

approaches to identify regulatory components of combined salt stress and powdery 

mildew (PM) resistance in tomato by a forward genetic approach utilizing an IL 
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population segregating for both traits, as well as targeted approaches that investigate 

the response of well-defined tomato Ol-genes (Ol-1, ol-2 and Ol-4) to PM under 

different salt stress regimes. In addition, the effect of major stress regulating 

hormones was examined in tomato lines that combined resistance genes with 

manipulations of hormonal pathways, with the aim to reveal critical contributions of 

hormone signalling to combined stress adaptation. Finally transcription factors of the 

WRKY family as putative cross regulatory components of both abiotic and biotic stress 

tolerance were investigated to further assess their potential in breeding for combined 

stress tolerance. This included assessing any complexities arising from pleiotropic 

effects. 

In Chapter 2, mechanisms underlying cross regulation of abiotic and biotic stress 

adaptation and tolerance, ranging from morpho-physiological to biochemical and 

genetic or epigenetic aspects, are extensively reviewed and discussed. Emphasis was 

additionally given to specific disease resistance mechanisms such as R-gene resistance 

and pre-invasive defense responses such as callose and papillae. Many of the potential 

overlapping mechanisms are covered and targets for genetic improvement of crops to 

combined stress are provided and discussed.  

In Chapter 3, a S. habrochaites LYC4 IL population was evaluated under salt stress 

and PM individually and under combination of these stresses. The IL population 

segregated for both salt stress tolerance and PM resistance and various new genetic 

loci contributing to tomato salt stress tolerance, partial PM resistance and/or both 

were discovered. Salt stress had an additive negative effect increasing susceptibility 

to PM and reducing phenotypic variation for disease resistance. The results provide 

genomic targets for allele mining for salt stress tolerance and disease resistance in S. 

habrochaites LYC4, which has been recently sequenced, as well as insights on the 

genetic architecture of combined stress tolerance. 

In Chapter 4, we examined the impact of different salinity stress severities 

representing mild and severe stress and of different monogenic PM resistance 

mechanisms on the outcome of combined salt stress and PM challenge. The resistance 

mechanisms included an R-gene mediated hypersensitivity response and pre-invasive 

defense mediated by the susceptibility gene mlo. We observed a significant interaction 

of PM resistance with salt stress severity, which was dependent on the resistance 

mechanism. R-gene resistance was stable across all treatments examined and could 

be the most readily available source for achieving tolerance to abiotic and biotic stress 

combinations.  

In Chapter 5, we evaluated the effects of three major hormonal pathways, ABA, JA 
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and ET, on the PM resistance conferred by the above mentioned resistance genes (Ol-

1, ol-2 and Ol-4) under combined stresses. A significant negative effect of ethylene 

overproduction was observed on PM resistance mediated by Ol-1 and ol-2 , which was 

aggravated under combined stress. On the other hand, ABA deficiency alleviated the 

increased PM susceptibility and senescence observed under combined stress for Ol-1, 

while it resulted in a minor increase in PM susceptibility for ol-2 under control 

conditions. JA deficiency effects were minor and tended to decrease increase PM 

resistance conferred by Ol-1 and ol-2. Ol-4 was exceptionally robust to all hormonal 

perturbations. 

In Chapter 6, we identified and cloned tomato WRKY transcription factors that were 

likely to be involved in stress response based on their homology to Arabidopsis 

thaliana WRKY genes with known involvement in the stress response. 

Overexpression and silencing transgenic lines were examined for their tolerance to 

salt stress, to powdery mildew infection as well as to these stress factors combined. 

The results confirmed broad functions for the tomato WRKY genes with several 

contributing to increased salt tolerance and/or PM resistance. Exceptional phenotypes 

were observed in SlWRKY23 transgenic overexpression and silencing lines, with 

overexpression increasing salt tolerance but resulting in PM hyper-susceptibility and 

silencing resulting in necrotic symptoms and PM resistance. This highlights a 

potentially significant role in the cross-regulation of abiotic and biotic stress 

signalling.  

In Chapter 7, we summarize all findings and discuss these in both molecular and 

physiological context, and we examine their relevance for improved breeding efficiency 

aimed at increased tolerance to powdery mildew and salt stress combinations. We 

discuss the potential of these results to be extrapolated to other crops, pathosystems 

and abiotic stresses and provide recommendations on targets for future research to 

enhance our understanding of combinatorial stress adaptation.  
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Abstract 

Plants growing in their natural habitats are often challenged simultaneously by 

multiple stress factors, both abiotic and biotic. Research has so far been limited to 

responses to individual stresses, and understanding of adaptation to combinatorial 

stress is limited, but indicative of non-additive interactions. Omics data analysis and 

functional characterization of individual genes has revealed a convergence of 

signalling pathways for abiotic and biotic stress adaptation. Taking into account that 

most data originate from imposition of individual stress factors, this review 

summarizes these findings in a physiological context, following the pathogenesis 

timeline and highlighting potential differential interactions occurring between abiotic 

and biotic stress signalling across the different cellular compartments and at the 

whole plant level. Potential effects of abiotic stress on resistance components such as 

extracellular receptor proteins, R-genes and systemic acquired resistance will be 

elaborated, as well as crosstalk at the levels of hormone, ROS and redox signalling. 

Breeding targets and strategies are proposed focusing on either manipulation and 

deployment of individual common regulators such as transcription factors or 

pyramiding of non- (negatively) interacting components such as R-genes with abiotic 

stress resistance genes. We propose that dissection of broad spectrum stress tolerance 

conferred by priming chemicals may provide an insight on stress cross regulation and 

additional candidate genes for improving crop performance under combined stress. 

Validation of the proposed strategies in lab and field experiments is a first step 

towards the goal of achieving tolerance to combinatorial stress in crops.  

 

Keywords: salinity, drought, disease resistance, R- genes, crosstalk, hormones, 

transcription factors, post-translational modifications 
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Introduction 

Plants are sessile and cannot escape stressful conditions originating from the physical 

environment (abiotic stress) and from interactions with insects and microorganisms 

such as fungi and bacteria (biotic stress). The on-going change in climate conditions 

due to mostly anthropogenic causes such as the increase in CO2 emissions (Peters et 

al. 2011) exaggerates agricultural land deterioration due to temperature rise. This 

results in increased evapotranspiration, intensifying drought episodes (Zhao and 

Running 2010) and increasing soil salinization, augmenting the 7% of the total and 

30% of the irrigated agricultural land already affected by salinity (Munns and Tester 

2008). Available data and projections on the effect of climate change on pathogen 

spread are not conclusive, although the evidence points to increased reproductive 

potential and geographic expansion that will lead to interactions with both more hosts 

and different pathogen strains, increasing the chances for the rise of more virulent 

strains (Garrett et al. 2006). Therefore, the chances of plants encountering abiotic 

and/or biotic stress in the future are likely to be higher, with more frequent stress 

interactions.  

Plants have developed a multitude of defense responses that allow them to adapt, 

survive and reproduce under stress conditions (Pieterse et al. 2009). With the 

advancement of ~omics technologies and on-going functional characterizations of 

individual genes, it has become apparent that environmental adaptation is under 

tight regulation, which is critical for plant survival (López et al. 2008). Many 

components of this regulatory network are involved in responses to different stresses 

but may function antagonistically or some responses are prioritized over others, 

compromising plant resistance to multiple stresses simultaneously (Glazebrook 2005; 

Yasuda et al. 2008). 

Major components of the regulatory networks underlying environmental stress 

adaptation, pathogen recognition and defense include reactive oxygen species 

signalling (ROS) (Miller et al. 2008), plant hormones (Bari and Jones 2009; Peleg and 

Blumwald 2011), changes in redox status (Munne-Bosch et al. 2013) and inorganic ion 

fluxes, such as Ca2+(Martí et al. 2013). Based on ~omics data analyses these 

components appear to be at least partly shared between both abiotic and biotic stress 

signalling, indicating crosstalk and convergence of mechanisms in these pathways 

and the existence of a general stress response (Walley et al. 2007).  

The nature of pathogen perception dictates that physical barriers such as the cuticle, 

stomata and cell walls are also critical for timely pathogen recognition and 

interception (Asselbergh et al. 2007). As data generated by ~omics analyses derive 
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from a mixture of different cell types and tissues, these spatially important 

interactions may be missed and these datasets may lead to erroneous conclusions 

about components shared and their significance in abiotic and biotic stress crosstalk. 

Moreover, as combinatorial stress potentially results in novel interactions between 

signalling components, extrapolation of results from studies with single stress 

conditions should be done with care.  

Here we will elaborate on the mechanisms involved in adaptation and tolerance to 

combinatorial abiotic and biotic stress, with a focus on dehydration/salt stress and 

fungal and bacterial pathogens interaction. This review will particularly emphasise 

interactions that potentially arise during the pathogenesis timeline and were as yet 

given little attention. We will discuss molecular components with potentially critical 

roles in abiotic and biotic stress tolerance crosstalk, and propose breeding approaches 

towards effective crop improvement against combinatorial stress. 

 

Evidence of crosstalk 

Evidence at the phenotypic and physiological level  

Studies on the commonly occurring combination of drought and heat stress have 

revealed that  physiological and molecular responses of plants exposed to both 

stresses are markedly different from their response to the individual stresses (Rizhsky 

et al. 2004). Similarly, there are numerous reports about abiotic stress (mostly 

drought and salinity) affecting pathogen resistance, which is indicative of interaction 

between abiotic and biotic stress. There are reports of disease resistance attenuation 

by high humidity and high temperature (Wang et al. 2005; Wang et al. 2009). In most 

cases abiotic stress predisposes plants to subsequent pathogen infection (Sanogo 2004; 

Triky-Dotan et al. 2005; You et al. 2011), although positive effects on resistance to 

foliar pathogens have also been reported (Achuo et al. 2006; Wiese et al. 2004).  

There is evidence that different levels of abiotic stress have a significantly different 

impact on disease susceptibility (Desprez-Loustau et al. 2006; Soliman and Kostandi 

1998). Salinity stress, in particular, exerts its damaging effect through both osmotic 

effects and ion toxicity resulting from ion accumulation (mainly Na+ and Cl-). As NaCl 

is an antifungal agent (Blomberg and Adler 1993) it could potentially exert a direct 

toxic effect on fungal growth after accumulation inside the plants (Fig.1). In line with 

this argument are the many examples of reduction of fungal pathogenicity by metal 

accumulation (Fones et al. 2010; Poschenrieder et al. 2006), and a similar trend is 

observed for NaCl accumulation (Soliman and Kostandi 1998). Therefore salt stress-
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pathogen interactions may be highly influenced by stress intensity, which affects the 

degree of accumulation of salt in the plant.  

 

Figure 1. A scheme for the effects of abiotic and biotic stress at the plant level. A 

combination of abiotic stress with pathogen infection potentially derails hormone and 

systemic ROS homeostasis. Pathogen infection has been shown to impair stomata 

closure under non-stress conditions, with the dynamics of this interaction under 

abiotic stress being unknown. Senescence is a common component of both abiotic and 

biotic stress that can potentially be amplified under combinatorial stress. Systemic 

ROS signals generated after pathogen encounter  may alter water relation and salt 

uptake through their effects in root hydraulic conductance and  ion transport. Abiotic 

stress through ABA signaling negatively affects signals that trigger systemic acquired 

resistance, enhancing pathogen spread from the initial site of infection. Ion 

accumulation (Na+, Cl-) under salt stress can have a direct toxic effect on pathogen 

growth. 
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The different tolerance strategies of the host against ion toxicity (ion exclusion at the 

roots and/or ion compartmentalisation in the above ground organs inside the vacuoles) 

can impact on the outcome of plant-pathogen interactions under salt stress. Therefore, 

it appears that the outcome of the interaction in most occasions is plant, genotype, 

pathogen and stress intensity dependent. Moreover abiotic stress, except for 

potentially dampening or strengthening signalling responses for pathogen defense 

deployment, could create more or less favourable conditions for pathogen growth by 

additionally influencing the physiological status of the plant such as water and ion 

content. This could create more or less favourable conditions for pathogen growth.  

Vice versa, plant responses to abiotic stress can be affected by prior interactions with 

pathogenic fungi. Pathogen infection has been shown to reduce photosynthesis and 

water use efficiency (WUE) and induce abnormal stomata opening patterns, and all of 

these are critical for plant tolerance to abiotic stress (Bilgin et al. 2010; Grimmer et 

al. 2012). Salicylic acid (SA) signalling ,induced after infection with biotrophic fungi, 

can attenuate abscisic acid (ABA) signalling that is orchestrating plant adaptive 

responses to abiotic stress (Kim et al. 2011c). Infection by a root pathogen was shown 

to increase shoot Na+ and Cl- content under saline conditions in Phaseolus vulgaris 

(You et al. 2011) (Fig.1). Finally genetically heightened resistance to pathogens is 

often accompanied by a fitness cost that may generally affect the plant performance 

under both abiotic stress and stress-free conditions (Huang et al. 2010; Todesco et al. 

2010). 

A direct interaction of pathogen virulence factors with stress tolerance components of 

the plant host was demonstrated for the P. syringae type III effector HopAM1 that 

targets HSP70 (Jelenska et al. 2010) involved in heat tolerance and stomata closure 

under stress (Clement et al. 2011). Overexpression of HopAM1 in Arabidopsis 

thaliana results in increased sensitivity to ABA and salt stress, providing proof of 

direct manipulation of abiotic stress signalling components (Goel et al. 2008). 

 Interaction of plants with microorganisms can also be beneficial to abiotic tress 

tolerance. For instance, infection of plants with RNA viruses improved tolerance to 

drought (Xu et al. 2008). Infection with the vascular pathogen Verticillium spp. 

increased Arabidopsis thaliana drought tolerance due to de novo xylem formation, 

which enhances water flow (Reusche et al. 2012). Symbiosis with fungal endophytes 

(Marquez et al. 2007) as well as association of plant roots with non-pathogenic 

rhizobacteria and mycorrhizal fungi increases plant vigour under stress conditions 

through, among others, interactions with hormonal pathways and the sustainment of 

water and source-sink relations (Dodd and Perez-Alfocea 2012). Remarkably, 

rhizobacteria colonization is also shown to enhance plant resistance to fungal 
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pathogens and insects, via systemic signalling that triggers immunity (induced 

systemic resistance, ISR) (Berendsen et al. 2012). 

Further evidence for abiotic and biotic stress resistance crosstalk comes from studies 

of the effects of exogenous application of chemicals that sensitize plant defense 

responses, a phenomenon called priming (Goellner and Conrath 2008). For example, 

application in Arabidopsis thaliana of β-aminobutyric acid (β-ABA), a non-protein 

amino acid, results in enhanced resistance to a wide range of stresses including heat, 

drought and salinity stress, as well as enhanced resistance to biotrophic as well as 

necrotrophic fungi (Ton et al. 2005). Exogenous application of SA renders many crop 

plants more tolerant to an extensive array of abiotic stresses (Horváth et al. 2007), 

and similar observations have also been reported after treatment with jasmonates 

(Walia et al. 2007).  

 

Evidence for crosstalk from whole genome expression analyses 

Evidence for regulatory crosstalk between abiotic and biotic stress response at the 

molecular level comes mostly from observations of expression patterns of genes under 

independent imposition of the single stress conditions. In Arabidopsis thaliana a 

significant number of genes up-regulated by salinity stress are also induced in 

response to biotic stresses (Ma et al. 2006).  Whole genome expression meta-analysis 

experiments under different abiotic and biotic stress treatments revealed a significant 

number of genes that are  commonly regulated under abiotic and biotic stress 

conditions (Ma and Bohnert 2007; Shaik and Ramakrishna 2013; 2014). Functional 

categories enriched in the 197 commonly regulated genes identified by (Ma and 

Bohnert 2007) include response to ABA, SA, jasmonic acid (JA) and ethylene (ET), 

major stress hormones controlling adaptation to abiotic and biotic stress. Several 

members of signalling pathways involving mitogen activated protein kinase (MAPK), 

Ca2+, reactive oxygen species (ROS), phospholipids, mitochondrial functions, vesicle 

trafficking and apoptosis were induced under biotic as well as abiotic stresses (Ma and 

Bohnert 2007). Transcription factors (TFs) appear to be major orchestrators of stress 

crosstalk with members of WRKY, MYB, ERF, NAC and HSF displaying similar 

induction patterns across stress treatments (Ma and Bohnert 2007; Shaik and 

Ramakrishna 2013). On the other hand, another study  using co-expression data to 

identify cis-regulatory elements (CREs) of stress responses identified distinct CREs 

for the response to abiotic and biotic stressors (Zou et al. 2011). In addition, a number 

of  CREs identified for both types of stress appear to oppositely regulate the 

expression of  downstream genes in response to abiotic or biotic stress.  
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A different approach, yeast two-hybrid assays targeting major regulators of rice 

abiotic and biotic stress response, identified proteins that are present in multiple 

interactomes (Seo et al. 2011; Sharma et al. 2013). These include OsMPK5, the wall-

associated kinase 25 (WAK25), sucrose non-fermenting-1-related protein kinase-1 

(SnRK1), and WRKY family transcription factors.  

Recently, examination of the transcriptional response of different Arabidopsis 

thaliana accessions to combinations of abiotic and biotic stressors revealed that across 

the treatments on average 60% of expression changes under combinatorial stress 

could not be predicted by the changes in response to the individual stresses 

(Rasmussen et al. 2013). The functional categories enriched in the affected genes were 

similar to those discovered after transcriptome meta-analyses of individual stressors, 

i.e. stress hormone responses, ROS and MAPK signalling and regulation of 

hypersensitivity response.  The response of many of these transcripts was cancelled or 

prioritized under stress combination in comparison with the individual stress pointing 

to potential antagonistic interactions with detrimental effects on plant adaptation 

under combinatorial stress. In a similar study, the increased susceptibility to a virus 

after simultaneous application of drought and heat stress was accompanied by down 

regulation of pathogenesis related (PR) genes and R-genes, which were otherwise 

induced under single viral stress (Prasch and Sonnewald 2013). This indicates a direct 

negative effect of abiotic stress on major defense executors, that adds up to the 

antagonistic regulation observed in other signalling pathways. These studies clearly 

emphasise that even though regulatory pathways overlap between stresses, 

combinatorial stress needs to be treated and studied as a unique condition. Further 

functional characterization of individual gene members  playing key roles in these 

pathways is required to extract meaningful conclusions.  

  

Abiotic-biotic stress interaction interface 

As mentioned above, abiotic and biotic stress interactions can occur at multiple levels, 

depending on the type of the stress (osmotic, ionic), the lifestyle and infection strategy 

of the pathogen (biotroph/necrotroph, infection by direct penetration/ through stomata 

etc.) as well as the pathogenesis stage. We will summarize molecular components that 

according to evidence mentioned above participate in stress crosstalk. We will follow 

the pathogenesis timeline highlighting first extracellular interactions taking place at 

the epidermis and the apoplast during the initial stages of pathogenesis and moving 

on to the interactions in the intracellular environment during pathogen colonization 

(Fig.2). As information under combined stress is limited, and a detailed coverage of all 
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potential interactions is not possible, our intention is to provide leads for future 

research that will aid to further dissect plant adaptive responses and tolerance under 

combined abiotic and biotic stress. 
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Figure 2. A scheme for the interaction interface and overlapping signaling pathways 

of abiotic and biotic stress at the cellular level. Both stress factors affect the 

homeostasis of chemical signals at the apoplastic space such as  Ca2+, ROS and pH 

levels. Abiotic stress potentially affects the structure and properties of preformed and 

inducible physical barriers that function against pathogen penetration. Signaling 

nodes such as RBOHs and RLKs and other cell wall (CW) kinases localized at the 

plasma membrane, and MAPKs are shared by both stressors, with downstream signal 

specificity under stress combination remaining elusive. ABA signaling, central for 

adaptation to abiotic stress, negatively impinges on defense hormone signaling, while, 

pathogen dependent, positive interactions are observed for JA signaling. ABA-SA 

interaction is two sided, as activation of SA signaling by pathogen challenge 

attenuates ABA responses. ABA positively contributes to pre-invasion defense, 

enhancing callose deposition. Rewiring of secretory machinery under abiotic stress 

potentially affects its function in the exocytosis of antimicrobial compounds at the site 

of infection. Nuclear translocation of R-genes is negatively affected under abiotic 

stress. Redox state, as well as metabolite concentration such as sugars and amino 

acids (AA), function as drivers for post-translational modifications, modulating the 

activity of target proteins/transcription factors. Previously/simultaneously 

encountered stress effect on chromatin and DNA methylation status, potentially 

impacts on expression patterns of the recipient genes under stress combination. 

Transcription factor activation and binding to stress responsive gene promoters is a 

convergence point regulating the signal output under combinatorial stress with 

diverse outcomes.  

 

Extracellular interface 

Cuticular layer  

The cuticle and cell wall constitute the first layers of defense against microbial 

attackers. They not only serve as physical barriers against pathogen penetration, but 

also as sensitive sensors for the timely activation of the intracellular and systemic 

defense responses. Arabidopsis thaliana mutants in long-chain acyl-CoA synthetase 2 

(LACS2), a gene that is involved in cuticle biosynthesis, exhibit increased 

permeability of the cuticular layer which leads to increased resistance to Botrytis 

cinerea (Bessire et al. 2007).  Interestingly, ABA deficiency causes similar cuticular 

defects and heightened resistance to B. cinerea through faster induction of defense 

responses and H2O2 production both in Arabidopsis and tomato, indicating a link 

between abiotic stress signalling, cuticle structure and defense responses (Curvers et 

al. 2010). In the study by Xiao et al. (2004) however, lacs2 Arabidopsis mutants show 

no alteration in the resistance against the necrotroph Alternaria brassicicola and 
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biotrophs, and even increased susceptibility against P. syringae. The latter 

observation points to a positive contribution of a thicker cuticle to resistance against 

P. syringae, indicating that the effects may be pathogen-specific (Tang et al. 2007). 

The well-documented increase in cuticular thickness under conditions of water 

deficiency (Kosma et al. 2009) may thus result in alteration in the deployment of the 

pathogen defense response. The cuticle does appear to be a sensor of the osmotic 

status and to be essential for the up-regulation of ABA biosynthesis genes under 

osmotic stress (Wang et al. 2011b) through a yet not clearly defined mechanism; 

cuticle disruption by pathogens may therefore affect osmotic stress acclimation.  

 

Cell wall-apoplastic space 

Cell walls similarly appear to be an integrated signalling component for the defense 

against pathogens.  Changes in pectin properties and composition in the Arabidopsis 

powdery mildew-resistant (pmr) mutants  pmr5 and pmr6 resulted in a SA, JA and 

ET independent increase in resistance to powdery mildew species (Vogel et al. 2004). 

Cellulose deficiency caused either by non-functional cellulose synthase genes or by 

chemical treatment enhances the synthesis of the defense hormones SA, JA and ET 

and signalling and results in increased resistance to pathogens (Hématy et al. 2009). 

Intriguingly, these responses were attenuated when plants were grown under high 

osmotic pressure which reduced the turgor pressure (Hamann et al. 2009), suggesting 

that the defense response may be initiated by sensing the increased turgor pressure 

as a result of cell wall weakening. Osmotic stress, which is a common component of 

many abiotic stresses, may therefore interfere with the ability of plants to sense 

damage to the cell wall, due to already reduced turgor, resulting in inadequate 

activation of defense mechanisms.   

The above mentioned alterations in plant pathogen interactions in cell wall 

component biosynthesis mutants may be the consequence of the erroneous activation 

of integral receptor proteins such as RLKs and RLPs (receptor-like kinases and 

receptor-like proteins respectively) which survey the cell wall integrity and bind to 

MAMPs and DAMPs (Microbial and Damage Associated Molecular Patterns, 

respectively). Upon activation these transmembrane proteins (e.g. the receptor-like 

kinase family WAK), send signals for the elicitation of downstream defense responses. 

Changes of cell wall structure and adherence to the plasma membrane upon exposure 

to abiotic stresses may affect their functional integrity. This is emphasized by the 

observation that NDR1, an essential component of disease resistance mediated by CC-

NB-LRR genes (McHale et al. 2006), is functioning in cell wall-plasma membrane 
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adhesion. Down-regulation of NDR1 resulted in alterations in the cell wall-plasma 

membrane interaction and compromised resistance to virulent P. syringae (Knepper 

et al. 2011). Abiotic stress may also affect the abundance of cell wall receptors by 

influencing their transcript levels. THE1 is a member of the CrRLK1L receptor-like 

kinase family that is involved in cell wall damage sensing and subsequent control of 

the downstream accumulation of ROS, and its expression is down-regulated under 

abiotic stress but up-regulated after pathogen challenge (Lindner et al. 2012), while 

similar expression patterns are observed for the WAK gene family (Shaik and 

Ramakrishna 2013).  

Pathogen recognition activates a battery of defense responses that target the 

apoplastic space. These include local cell wall enforcement, secretion of antifungal 

compounds at the site of intended penetration and up-regulation of enzymes with 

fungal cell wall degrading activities (Van Loon et al. 2006). These events are 

characterized and regulated by signature changes in pH, reactive oxygen species 

homeostasis and the redox state. Simultaneous exposure to abiotic stress can 

potentially impinge on the generation and decoding of these signatures, affecting 

subsequent responses. For example, apoplastic pH is transiently decreased following 

fungal infection (Felle et al. 2004), while an increase in pH is observed under salt 

stress (Geilfus and Muhling 2011). Moreover the downregulation of cell wall 

peroxidases under abiotic stress (Shaik and Ramakrishna 2014) can potentially 

dampen the production of ROS signatures that trigger defense responses (Daudi et al. 

2012). Physical barriers enforcement after pathogen encounter through crosslinking of 

lignin monomers by ROS, which are produced by apoplastic peroxidases, NADPH 

oxidases and germin-like proteins, prevent pathogen penetration. Lignin content was 

found to be reduced under mild drought conditions to facilitate the maintenance of 

growth under conditions of decreased turgor pressure (Vincent et al. 2005), but severe 

stress resulted in increased lignin content (Lee et al. 2007a). These findings may 

provide insight on the mechanisms leading to differential responses under combined 

stress across different abiotic stress intensities. 

 

Vesicular trafficking and callose deposition 

Another form of inducible defense response at the site of penetration is the formation 

of papillae that contain callose, antimicrobial secondary metabolites such as phenolic 

compounds, and reactive oxygen species (ROS). Antimicrobial compounds are 

accumulating through vesicles originating from cellular compartments, such as the 

Golgi apparatus, which become polarized towards the site of infection (Underwood 
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and Somerville 2008). The significance of vesicle-mediated secretion in plant 

immunity has been demonstrated by the discovery of mutants defective in exocytosis 

of vesicles (with mutations in SNARE complex proteins HvROR2 and AtPEN1), which 

display diminished penetration resistance to powdery mildew pathogens (Collins et al. 

2003). Vesicular trafficking appears to be rewired in an opposite way under salt 

stress, as vesicles containing Na+ are fused with the central vacuole to maximize 

compartmentalization of Na+ (Hamaji et al. 2009). Interestingly, knockout of different 

SNARE proteins resulted in increased salt tolerance (Hamaji et al. 2009), indicating 

possible antagonistic interactions of salt stress and pathogen infection at the level of 

vesicle trafficking, although further comprehensive experiments are required to 

substantiate this hypothesis. 

Callose is a β-1,3-glucan polymer that is deposited at the sites of attempted fungal 

penetration in the form of papillae. It is an important inducible defense mechanism, 

with enhanced deposition being observed after exogenous application of priming 

chemicals like β-ABA. A mutant screen for plants defective in β-ABA -induced priming 

identified among others mutants in the ABA biosynthesis gene zeaxanthin epoxidase 

(ABA1) (Ton et al. 2005). These mutants failed to exhibit both β-ABA-induced callose 

deposition against H. parasitica and increased tolerance to salt stress, thereby 

providing a link between the induction of abiotic and biotic stress responses by β-ABA. 

In accordance with these observations the callose mediated increased resistance of the 

ocp3 Arabidopsis mutant to necrotrophic pathogens requires ABA (Garcia-Andrade et 

al. 2011). Moreover ocp3 mutants accumulate higher levels of ABA, and are more 

drought tolerant (Ramírez et al. 2009). Therefore ocp3, a homeodomain transcription 

factor, appears to be a convergence point for ABA and callose regulation that can be 

manipulated to enhance resistance under combinatorial stress. 

 Callose accumulation appears to be a point of convergence of abiotic and biotic 

signalling as variability in environmental conditions, which affect the redox state of 

the plant, such as light intensity, have a significant impact on the magnitude of 

callose deposition after pathogen elicitation (Luna et al. 2011).  As callose deposition 

is a major component of the pre-invasion defense of plants (Ellinger et al. 2013), 

detailed characterization of the regulation of callose accumulation under abiotic stress 

may be invaluable in building combined stress tolerance in crops. 

 

Intracellular signalling interactions 

Interconnections between Ca2+ and ROS signalling  
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Changes in calcium fluxes and production of reactive oxygen species are among the 

earliest plant responses to abiotic stress and pathogen challenge. The decoding of both 

signals relies on “signature” spatiotemporal patterns and oscillations specific to the 

stress encountered (Dodd et al. 2010; Mittler et al. 2011). Moreover, both components 

are highly interconnected: Ca2+ signalling components such as calmodulins (CaMs) 

and calcium-dependent protein kinases (CDPKs) regulate ROS production by 

NADPH-oxidases (Takahashi et al. 2011). ROS vice versa affect Ca2+ signalling 

through regulation of Ca2+ permeable channels (Demidchik et al. 2007). It is plausible 

that there are either unique signatures for combinations of stresses, or that there is 

interference between the abovementioned signals that potentially dampens or 

strengthens the downstream responses.  

Whole genome expression analyses coupled with promoter motif identification 

provided further evidence that Ca2+ orchestrates the early responses to both biotic and 

abiotic stress as the overrepresented motif “CGCGTT” identified in the promoters of 

the commonly regulated genes, contains the core “CGCG” Ca2+ responsive cis-element 

(Walley et al. 2007). The investigation of mutants defective in the induction of a 

hypersensitive response after pathogen infection has led to the identification of genes 

encoding for cyclic nucleotide gated channels (CNGCs) which are non selective cation 

transporters (Clough et al. 2000). members of which are also involved in salt and heat 

stress tolerance through regulation of Ca2+ fluxes (Finka et al. 2012; Guo et al. 2010). 

Furthermore, Ca2+ downstream signalling components have been shown to mediate 

responses to both abiotic and biotic stress stimuli. The CAMTA3 transcription factor 

is important for cold acclimation of  Arabidopsis by stimulating the expression of 

CBF1, CBF2 and ZAT12 that are also involved in adaptation to dehydration and 

oxidative stress (Doherty et al. 2009). Moreover, CAMTA3 negatively regulates SA 

accumulation and plant defenses through calmodulin (CaM) binding (Du et al. 2009). 

Other proteins interacting with CaM include transcription factor families like NAM, 

WRKY and MYB (Popescu et al. 2007) many members of which are involved in abiotic 

and biotic stress crosstalk.   

CDPKs have a unique feature to both bind calcium and functionally decode the 

message by target protein phosphorylation. They appear to represent a central node 

in the regulation of abiotic and biotic stress responses (Schulz et al. 2013). For 

example, Arabidopsis CPK4 and CPK11 positively regulate ABA responses and their 

down-regulation renders plants salt-sensitive (Zhu et al. 2007), and are important for 

the oxidative burst and defense responses (Boudsocq et al. 2010). In addition, CDPKs 

regulate ROS production through phosphorylation-mediated regulation of RBOH 

activity (Dubiella et al. 2013). StCDPK4 and StCDPK5 mediated phosphorylation 
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increases the activity of StRBOHs and the increased ROS production results in a 

stronger hypersensitivity response after pathogen challenge, favouring resistance 

against biotrophic pathogens but compromising resistance against necrotrophic fungi 

(Kobayashi et al. 2012). Recently, the calcium-dependent protein kinase OsCPK12 

was shown to increase salt stress tolerance and decrease blast disease resistance in 

rice through reduced ROS production as a result of down-regulation of RBOH 

expression, enhanced expression of antioxidant genes such as APX, and increased 

sensitivity to ABA (Asano et al. 2012).  

Dissecting the spatiotemporal and molecular specificity of Ca2+ and ROS signalling 

components is crucial for determining their precise functions in stress responses 

(Baxter et al. 2013), as is elegantly demonstrated by the identification of different 

Ca2+  binding affinities regulating the activation of two soybean CaMs (Gifford et al. 

2013). 

 

Signal relay by MAPKs  

Mitogen activated protein kinases (MAPKs) are centrally positioned in Ca2+- ROS 

crosstalk and regulation as well as in the signal output after stress exposure. MAPK 

signalling cascades are relayed through MAPK kinase kinases (MAP3Ks) and MAPK 

kinases (MAP2Ks). Hydrogen peroxide (H2O2) has been shown to mediate activation of 

the three major and well-studied Arabidopsis MAPKs, MAPK3, 4 and 6, through 

MAP3Ks and other kinases (Rentel et al. 2004; Teige et al. 2004). These MAPKs 

appear to have an overlapping function in signal transduction upon abiotic stress and 

pathogen challenge. Activation of Arabidopsis MAPK3 and MAPK6 as well as their 

homologues in tobacco WIPK and SIPK (Segonzac et al. 2011) after PAMP recognition 

is essential for fungal and bacterial resistance (Asai et al. 2002). The importance of 

MAPK3 and MAPK6 in plant immune responses is highlighted by the discovery that 

the P. syringae effector HopAI1 directly interacts and inactivates both, promoting 

virulence (Zhang et al. 2007). Additionally, MAPK6 is directly involved in regulating 

ethylene biosynthesis in Arabidopsis by activation through phosphorylation of ACS2 

and ACS6, which results in an increase in ethylene biosynthesis (Liu and Zhang 

2004).  MAPK4 acts as a negative regulator of defense responses and SA accumulation 

by phosphorylating MEKK2, a MAP3K protein (Kong et al. 2012).  

 On the other hand down regulation of MAPK3 resulted in altered stomata opening 

patterns in response to ABA and H2O2 in Arabidopsis (Gudesblat et al. 2007). 

Moreover, the ABA-induced expression of AtCAT1, which is involved in H2O2 

homeostasis, is controlled by an AtMKK1-AtMAPK6 signalling cascade (Xing et al. 
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2008). Constitutive activation of AtMAPK4 and AtMAPK6 rendered plants more 

tolerant to cold and salt stress (Teige et al. 2004) and CAT2 and tAPX, which are 

involved in H2O2 regulation, appear to be regulated by AtMAPK4 (Pitzschke et al. 

2009). In rice OsMAPK5 appears to be a convergence point of abiotic and biotic stress 

responses, as its silencing results in sensitized defense responses and resistance to 

fungal and bacterial pathogens at the expense of salt and drought tolerance (Xiong 

and Yang 2003).   

These examples emphasize the complexity of MAP kinase mediated defense signalling 

with diverse and sometimes overlapping functions of different members of the 

signalling pathway. Downstream targets of MAPK6 overlapped 60% with MAPK3 

targets, while a 50% overlap was observed between MAPK3 and MAPK4 targets 

(Popescu et al. 2009). Probably, the one-dimensional overlap can be resolved by 

multidimensional regulation, such as different spatiotemporal transcription and 

protein subcellular localization, activation thresholds, feedback loops with 

phosphatases and scaffolding (Samajova et al. 2013; Tena et al. 2011). Many of the 

above-mentioned components appear to be an integral part of broad stress tolerance 

priming by exogenous application of chemicals (Beckers et al. 2009; Xia et al. 2009), 

and the detailed study of MAPK activation, localization and substrate affinity under 

these conditions can increase our understanding of plant responses under stress 

combinations.  

  

Hormone signalling 

Plant hormones are central to the integration of environmental stimuli in the 

coordination of growth under optimal and stress conditions, including the regulation 

of defense responses after pathogen attack. Plant hormones do not act independently, 

and extensive synergistic or antagonistic interaction between hormonal pathways is 

observed in development and stress responses after exogenous application, or through 

mutant analysis (Wolters and Jurgens 2009). Transcriptomic studies have aided in 

unveiling these interactions (Nemhauser et al. 2006), and it was recently shown that 

hormonal pathways can be directly connected with each other by protein-protein 

interactions between their signalling components (Hou et al. 2010; Zhu et al. 2011).  

ABA is the major hormone that positively contributes to adaptation to osmotic stress, 

a major component of several abiotic stresses. Its involvement in the regulation of 

defense responses has been a topic of recent comprehensive reviews (Asselbergh et al. 

2008; Ton et al. 2009). The consensus is that ABA negatively regulates defense 

responses against both biotrophic and necrotrophic pathogens through negative 
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interactions with SA and JA/ET biosynthesis and signalling; ABA biosynthesis 

mutations show sensitization of these signalling pathways after pathogen challenge 

(Achuo et al. 2006; De Torres Zabala et al. 2009; Sanchez-Vallet et al. 2012). 

Comprehensive analyses of ABA deficient mutants revealed further pleiotropic 

alterations that may be part of ABA-defense crosstalk such as reduced cuticle 

thickness and sensitized H2O2 production  in response to B.cinerea in tomato 

(Asselbergh et al. 2007) and altered cell wall composition in Arabidopsis (Sanchez-

Vallet et al. 2012). Moreover ABA compromised a chemically induced systemic 

acquired resistance (SAR) through suppression of SA biosynthesis in Arabidopsis, 

while genetically enhanced ABA catabolism reversed this effect (Yasuda et al. 2008).   

Nevertheless, ABA signalling can positively contribute to pre-invasive defense 

responses and to early defense signalling against certain necrotrophic pathogens (Adie 

et al. 2007). ABA positively contributes to resistance against pathogens that infect 

through stomata, such as P. syringae (Melotto et al. 2006), as well as to other pre-

invasion defense mechanisms such as callose deposition (Adie et al. 2007; Garcia-

Andrade et al. 2011; Ton and Mauch-Mani 2004).    

Identification of downstream regulatory nodes that channel interactions between 

hormonal pathways is of great importance in fine-tuning resistance to both abiotic 

and biotic stress. Besides transcription factors, which will be discussed in a following 

section, other regulators of the transcriptional machinery have been uncovered to 

function in stress crosstalk. RNA chaperones such as RNA helicases are shown to 

regulate transcription in response to various stressors (Li et al. 2008; Mazzucotelli et 

al. 2008).  MED25, a subunit of the Mediator complex which is a component of the 

transcriptional machinery, is involved in the antagonistic crosstalk between ABA and 

JA (Chen et al. 2012). In a recent report the Arabidopsis  pathogenesis-related protein 

2 (PR2), which encodes b-1,3-glucanase involved in callose degradation, was shown to 

be down regulated in response to ABA, partly elucidating ABA mediated capacitation 

of callose deposition. The ahg2-1 mutant in Arabidopsis accumulates both ABA and 

SA and has increased expression of defense related genes, which is an indication that 

ABA and SA do not always act antagonistically. Transcriptome analysis of the ahg2-1 

mutant revealed complex interactions between ABA and SA signalling involving 

altered mitochondrial and RNA metabolism (Nishimura et al. 2009), highlighting 

multilevel connections between the two signalling pathways that add to the 

complexity and hinder straightforward conclusions.  

Recent research has highlighted the direct involvement of the growth hormones 

gibberellin, cytokinin, auxin and brassinosteroid in responses to adverse growth 

conditions and pathogen attack (Robert-Seilaniantz et al. 2011). For example, GA 
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signalling directly regulates JA signalling, mediated through direct binding of the GA 

repressor protein DELLA to JAZ proteins and relieving JA signalling repression (Hou 

et al. 2010). DELLA proteins appear to be central nodes in abiotic and biotic stress 

cross-talk. ABA and ET signalling promote DELLA stabilization which positively 

affects ROS detoxification (beneficial for acclimation to abiotic stress) through higher 

expression of ROS detoxification genes (Achard et al. 2008). DELLAs also sensitize JA 

signalling (through binding of DELLAs to JAZ) at the expense of SA signalling, 

enhancing resistance to necrotrophic pathogens (Navarro et al. 2008). This may 

provide an explanation for the often-observed positive correlation between resistance 

to abiotic stress and resistance to necrotrophs (AbuQamar et al. 2009; Navarro et al. 

2008; Ramírez et al. 2009). 

Cytokinins were shown to positively regulate defense responses to biotrophic 

pathogens (Argueso et al. 2012b) via SA accumulation, and increased defense gene 

expression through interaction of the cytokinin response regulator ARR2 with TGA3, 

a TF central for defense gene activation (Choi et al. 2010). This suggests that the 

increased cytokinin catabolism observed under abiotic stress-induced senescence may 

potentially contribute to further down-regulation of SA responses and increased 

susceptibility to biotrophic pathogens.  

The roles of auxin and brassinosteroids in stress responses and their potential 

participation in stress crosstalk remains elusive. Auxin signalling shows antagonistic 

crosstalk with SA (Wang et al. 2007), although auxin contributes to reduced 

senescence (Kim et al. 2011a) which may be of great importance under exposure to a 

stress combination. Brassinosteroid (BR) signalling positively affects abiotic stress 

tolerance, as is evident by both BR exogenous application (Divi et al. 2010) and 

genetic de-repression of the BR signalling pathway (Koh et al. 2007). BR signalling 

probably interacts synergistically with ABA signalling and stimulates ROS 

detoxification (Divi et al. 2010). BR’s involvement in defense signalling is rather 

complicated. In tobacco and rice exogenous application of BRs appeared to clearly 

enhance resistance to a wide range of pathogens (Nakashita et al. 2003). Similar 

results were obtained in cucumber, which showed heightened resistance to Fusarium 

oxysporum as a result of activated production of H2O2 by NADPH oxidase and 

expression of defense related genes (Li et al. 2013b). On the contrary BRs appear to be 

negatively regulating resistance to the root-infecting oomycete Pythium graminicola 

by antagonising SA and GA related defense responses (De Vleesschauwer et al. 2012). 

BR signalling shares LRR-RLK and BAK1 proteins with PAMP immune signalling 

(Chinchilla et al. 2009). Contradictory effects of BR signalling on immune responses 



35 
 

have been recently reported in Arabidopsis (Albrecht et al. 2012; Belkhadir et al. 

2012; Lin et al. 2013), which require further study. 

 It is clear that hormonal crosstalk is extensive and occurs in multiple combinations. 

Further understanding of plant responses under combined stress exposure is required 

to dissect the multilevel responses under these conditions. As an example of the 

underlying complexity, both drought stress and exogenous ABA application result in 

an increased endogenous ABA content in tomato, but they differentially affect 

resistance to powdery mildew and Botrytis, with drought enhancing and ABA 

application compromising resistance (Achuo et al. 2006). Notably the ABA-deficient 

tomato mutant sitiens exhibited increased resistance similar to the effect of drought 

(Achuo et al. 2006). The complexity of interactions under abiotic stress is further 

emphasized by transcriptome analyses under abiotic stress in which up-regulation of 

a significant number of JA/ET-responsive genes and accumulation of their transcripts 

was observed (Huang et al. 2008; Walia et al. 2007). Besides the effects of direct 

hormonal interactions on abiotic and biotic stress tolerance mechanisms additional 

indirect interactions should be considered, such as the alteration of developmental 

programs and the regulation of senescence which may be critical for evolutionary 

species fitness and yield performance in crop plants (Wu et al. 2012a).  

 

Cellular redox state  

The cellular redox state is the sum of reducing and oxidising redox-active molecules 

(Potters et al. 2010) and it acts both as a sensor of environmental perturbations (as 

most of them impose oxidative stress) and as a buffer against these perturbations to 

maintain cellular homeostasis. It acts as a central integrator of ROS, energy and 

metabolic regulation under stress as well as optimal conditions. Its major constituents 

are ascorbate, glutathione (GSH), NADP(H), small proteins acting as antioxidants 

like thioredoxin and glutaredoxins as well as many diverse metabolites such 

phenolics, amino acids, carotenoids and tocopherols. The cellular redox state is 

dependent on both their accumulation and their reduction-oxidation state (Potters et 

al. 2010). Genetic manipulation of redox homeostasis results in altered hormone 

homeostasis and responses to pathogens and abiotic stresses (Mhamdi et al. 2010), 

exemplifying its significance. As abiotic and biotic stress commonly impinge on the 

redox status (albeit not in a similar manner (Foyer and Noctor 2005)), redox 

homeostasis is potentially a central orchestrator of the phenotypic response to stress 

combinations. Redox perturbations after imposition of a stress factor may affect 

responses to subsequent challenges by additional stressors, thereby shaping the 
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response to combined stresses. For example, a transient increase in glutathione 

content drives the antagonistic crosstalk between SA and JA signalling (Koornneef et 

al. 2008) and glutathione oxidation appears to drive the induction of both SA and JA 

pathways (Mhamdi et al. 2013).  

Plant hormone signalling can directly perturb the redox status by modifying the 

expression and activities of antioxidant enzymes. ABA induces the expression of 

catalase, activating also at the same time the production of the ROS hydrogen 

peroxide through AtMAPK6 signalling (Xing et al. 2008). SA inhibits the function of 

catalase and cytosolic ascorbate peroxidase (Corina Vlot et al. 2009) and several 

glutathione transferases (Tian et al. 2012). 

 Programmed cell death (PCD) is a plant response to developmental and 

environmental stimuli (e.g. in senescence) and pathogen defense (in the form of HR) 

that is initiated and regulated by redox changes, like an increased oxidation ratio of 

GSH and ascorbate (De Pinto et al. 2012). Ascorbate peroxidase (APX) appears to be 

central in the redox regulation leading to PCD. Decreased activity of APX isoforms 

was observed in heat-induced PCD (Locato et al. 2009), and overexpression or down-

regulation in Arabidopsis of a thAPX increased or decreased, respectively, sensitivity 

to NO-induced cell death (Tarantino et al. 2005). APX isoforms are also commonly up-

regulated under abiotic stress (Miller et al. 2008). Considering the important role of 

APX in the drought-heat stress interaction (Koussevitzky et al. 2008) it is of great 

interest to explore APX enzyme regulation under combinatorial stress.  

Redox status changes can directly impact protein function through post-translational 

modifications. One pronounced example of post-translational modifications controlling 

protein activity and localization is the interplay of S-nitrosylation and thioredoxin-

mediated reduction in the control of the oligomeric and monomeric state of NPR1 

(Tada et al. 2008), a master regulator of SA mediated defense responses and recently 

proposed as a SA receptor (Wu et al. 2012b). The function of many more proteins 

appears to be regulated by S-nitrosylation, among them AtRBOHD as mentioned 

above (Yun et al. 2011), SA binding protein 3 (SABP3), methionine 

adenosyltransferase 1, the metabolic enzymes glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) and glycine decarboxylase (GDC), as well as metacaspase 

9(Astier et al. 2011). Identification of the dynamics of post-translational modifications 

on these and newly identified proteins under various stress combinations will shed 

light on their significance for plant adaptation responses to these conditions.  

NO was recently found to exhibit biphasic control over cell death triggered by 

pathogens and pro-oxidants in Arabidopsis. In initial stages S-nitrosothiol (SNO) 
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accumulation results in enhanced and accelerated cell death (Yun et al. 2011). 

However, constitutively high SNO levels decreased cell death through S-nitrosylation 

mediated reduction in AtRBOHD activity (Chen et al. 2009a; Yun et al. 2011). This 

differential regulation might have implications in conditions of combined abiotic and 

biotic stress as both result in increased NO levels. At a certain plateau concentration 

of NO, signalling components may be desensitized or inversely regulated, as 

exemplified by AtRBOHD, with detrimental effects on stress acclimation.  

Redox changes and post-translational modification appear to be integral in priming 

for stress tolerance after exogenous application of chemicals (Tanou et al. 2009). This 

provides a potential explanation of the mechanism of action of diverse chemicals in 

plant defense sensitization. H2O2 and NO priming for salt tolerance in citrus 

moderately increased the abundance of oxidized and S-nitrosylated proteins, which 

then remained relatively similar after the application of stress. Non-treated plants 

were more stress sensitive and exhibited increased protein carbonylation and 

oxidation (Tanou et al. 2012). As both compounds provide increased tolerance to both 

abiotic and biotic stress, further characterisation including the timing and magnitude 

of these post-translational modifications under different stress treatments and under 

stress combination may help to better understand the redox changes leading to stress 

cross-tolerance.  

 

Metabolite homeostasis and signalling 

Metabolites are the end products of gene expression and protein activities and 

therefore are the penultimate regulatory component for the phenotypic expression 

under stress conditions. As metabolites can have multiple functions such as being 

energy carriers, structural molecules and redox regulators or exerting direct 

antimicrobial activity against pathogens, uncovering their regulation and homeostasis 

under combined stress is of great significance. 

Adaptation to both abiotic and biotic stress impinges significantly on primary 

metabolism homeostasis. Synthesis of antimicrobial metabolites and defense proteins 

is energy demanding (Bolton 2009), while abiotic stress potentially leads to energy 

deprivation as photosynthesis is reduced under abiotic stress (De Block et al. 2005). 

As a result, it is fair to assume that under stress combinations these strong 

antagonistic effects will result in disturbed energy balance. However, recent results 

challenge the carbohydrate deprivation notion under mild dehydration stress 

(Hummel et al. 2010) and further experimental data under combined stress are 

required for firm conclusions.  More evidence that sugar homeostasis and signalling 
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drives defense responses are demonstrated by the  down regulation of cell wall 

invertases. This results in dampening of defense responses and increased 

susceptibility to pathogens as a result of decreased availability of carbohydrates to 

fuel the defense responses at the site of infection (Essmann et al. 2008). Cell wall 

invertases appear to be down regulated under abiotic stress (Wingler and Roitsch 

2008)  and as the regulation of their activity is a convergence point of hormonal and 

sugar signals for stress tolerance and senescence progression (Wingler and Roitsch 

2008), fine tuning of their expression might be a focal point in enhancing combined 

stress tolerance. The metabolic status of the host is also crucial for pathogen growth 

as it appears that pathogens manipulate different aspects of plant metabolism to 

achieve optimal conditions for their growth (Chen et al. 2010b). 

The significance of amino acid homeostasis for the induction and regulation of defense 

responses was recently highlighted (Zeier 2013). Amino acids may function as 

precursors in hormone biosynthesis and affect the redox state through their chemical 

properties or as precursors of redox regulators such as glutathione. Amino acid 

abundance can impact hormone signalling through conjugation mediated regulation of 

hormone activity (Woldemariam et al. 2012). Amino acid concentration appears to be 

significantly perturbed by abiotic stress as is revealed by metabolomics studies (Obata 

and Fernie 2012). On the other hand a direct link between amino acid abundance and 

activation of SA-induced defense responses was recently demonstrated with heat-

shock factor HsfB1, the translation of which is initiated under conditions of 

phenylalanine starvation (Pajerowska-Mukhtar et al. 2012). Phenylalanine appears to 

be accumulated under abiotic stress conditions (Urano et al. 2009; Widodo et al. 2009) 

and its potential as a molecular switch between abiotic and biotic stress repsonses 

should be explored. 

Metabolic alterations under abiotic stress include the accumulation of compounds 

such as the raffinose family oligosaccharides raffinose and galactinol and the amino 

acid proline. These exhibit osmoprotective and antioxidant functions and have been 

positively correlated with abiotic stress tolerance (Korn et al. 2010). Galactinol 

overproduction was recently associated with increased resistance to necrotrophic 

pathogens (Mi et al. 2008). Moreover, proline metabolic regulation at the site of 

pathogen infection is important for both HR deployment and containment, probably 

through modulation of ROS levels as shown by expression and functional studies of 

proline dehydrogenase (Senthil-Kumar and Mysore 2012). Myo-inositol metabolic 

regulation appears to be a convergence point for abiotic and biotic stress responses. 

Myo-inositol is accumulating under most abiotic stress conditions and is positively 

contributing to tolerance as a compatible solute (Tan et al. 2013). A negative 
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relationship between myo-inositol accumulation and pathogen resistance and PCD 

initiation was found in Arabidopsis, with a positive correlation between myo-inositol 

depletion and increased SA production and cell death (Chaouch and Noctor 2010).  

Analysis of mutants that exhibit qualitative and quantitative alterations in the 

accumulation of fatty acid metabolites demonstrated that fatty acids are not only 

structural components of the cellular membranes, but they also exert a multitude of 

signalling functions. Fatty acid release from the membranes after pathogen encounter 

triggers the defense response (Savchenko et al. 2010). Linolenic acid (18:3) is a 

precursor for the production of the major cellular signalling components JA and 

oxylipins (Reinbothe et al. 2009). A reduction of the levels of oleic acid (18:1) triggers 

constitutive defense responses that are independent of SA signalling (Kachroo et al. 

2001), but dependent on NO production (Mandal et al. 2012). Fatty acid homeostasis 

is disturbed under abiotic stress, as membrane composition changes are vital for the 

maintenance of membrane rigidity and functionality. Dehydration stress is shown to 

result in a reduction in 18:3 and increase in 18:1 lipid levels (Upchurch 2008), and 

increased 18:3 levels by FAD3 or FAD8 overexpression enhanced drought tolerance in 

tobacco (Zhang et al. 2005). Manipulation of fatty acid composition can provide further 

insight into their function under stress combination.  

  

Transcription factors 

Regulatory modules like MAPKs-based pathways and core hormone signalling 

modules control the expression of a vast number of genes and therefore their 

manipulation in most cases have severe pleiotropic effects. Identification of 

downstream regulators involved in abiotic and biotic stress crosstalk such as 

transcription factors (TFs) is important for more targeted manipulation and 

adaptation of plants to multiple stresses. The appropriate fine-tuning of their 

expression is an important aspect towards translation of scientific knowledge in crop 

plant improvement (Kasuga et al. 2004).   

Bioinformatics and functional analyses have demonstrated that TFs involved in stress 

crosstalk comprise a diverse collection of members of the largest TF families in plants, 

such as NAC, MYB, AP2/ERF, WRKY and others, reflecting the complexity of the 

genetic regulatory networks underlying stress crosstalk (Atkinson and Urwin 2012; 

Shaik and Ramakrishna 2014). Many members of these families are involved in 

regulation of leaf senescence, an integral component of both abiotic and biotic stress 

(Breeze et al. 2011). Moreover, in most cases the TFs identified are stress hormone-
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regulated, and therefore potentially act as molecular switches for the fine-tuning of 

hormonal responses.  

Characterization of the mechanism of action of the candidate transcription factors 

involved in stress crosstalk is of great importance. For example a TF with positive 

contribution to both abiotic and biotic stress tolerance can be directly useful for 

breeding combined stress tolerance. Functional characterization of several TFs has 

revealed various members that confer both abiotic and biotic stress tolerance. 

Overexpression of the rice OsNAC6 conferred tolerance to salt and dehydration stress 

as well as resistance to blast disease (Nakashima et al. 2007). Similarly, in wheat, 

overexpression of the R2R3MYB gene TaPIMP1 results in drought stress tolerance 

and resistance to Bipolaris sorokiniana through increased expression of abiotic stress 

(many of them ABA inducible) and defense-related genes (Zhang et al. 2012). 

Members of the AP2/ERF TF family have been shown to be positive regulators of both 

abiotic and biotic stress (Jung et al. 2007; Zhang et al. 2009). DREB TFs are also 

members of the AP2/ERF family and important contributors to abiotic stress tolerance 

(Liu et al. 2013a) that may have additional signalling functions for biotic stress 

tolerance. AtDREB2A was upregulated in plants overexpressing the CC-NB-LRR gene 

ADR1 which conferred pathogen resistance and drought tolerance (Chini et al. 2004). 

Overexpression of OsDREB1B in tobacco resulted in increased resistance to abiotic 

stress and also virus infection (Gutha and Reddy 2008).  

Overexpression of AtHSFA1b provided stress hormone independent, but H2O2 

signalling dependent increased tolerance to drought and resistance to bacterial and 

oomycete pathogens (Bechtold et al. 2013). It appears that the HSF TF gene family 

has broad biological functions in ROS signalling and defense responses and systemic 

acquired resistance regulation (Miller et al. 2008; Pick et al. 2012), which can be 

further exploited for building broad stress tolerance into crops. Whole genome 

expression meta analyses can provide evidence of potential antagonistic regulation in 

different stress responses for a given TF, by analysing expression patterns under 

different stress conditions (Shaik and Ramakrishna 2014). Detailed characterization 

of spatiotemporal expression and cis-element binding patterns is however required for 

the understanding of the underlying mode of regulation. This was recently elegantly 

demonstrated in the characterization of OsWRKY13 which exhibits tissue specific 

expression and condition specific binding to cis-elements of downstream genes and 

thereby inversely regulated resistance to drought and bacterial infection of rice (Xiao 

et al. 2013) 

Functional conservation of TF functions across species can be exploited to take 

advantage of the wealth of experimental data generated in the model plant 
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Arabidopsis thaliana. For example the Arabidopsis AtBOS1, an R2R3MYB TF, as well 

as its homologue in tomato SlAIM1 appear to regulate tolerance to abiotic and biotic 

stress in the same way, as mutant plants exhibit reduced tolerance to salt stress as 

well as to Botrytis infection (AbuQamar et al. 2009; Mengiste et al. 2003). Further 

similar efforts should be undertaken to accelerate the translation of experimental 

observations obtained in model plants species to crops. 

The results obtained by the functional characterization of TFs are encouraging as 

many of them appear to regulate cross-resistance in a unidirectional manner, in 

contrast to the observations at the level of hormonal regulation that point to 

antagonistic relationships. Therefore, their manipulation offers many opportunities to 

bypass the antagonistic effects on abiotic and biotic stress tolerance observed in the 

more upstream regulatory nodes. 

 

Epigenetic modifications 

Epigenetic modifications such as DNA cytosine methylation and histone residues 

methylation and acetylation contribute to the transcriptional control of amongst 

others adaptive responses to environmental stimuli (Mirouze and Paszkowski 2011). 

A significant portion of these modifications appears to be persistent across 

generations and significantly contributes to phenotypic variation (Johannes et al. 

2009). While cytosine methylation generally has repressive effects on gene 

transcription, leading to gene silencing, histone modifications can lead to 

transcriptional activation through local chromatin de-condensation which facilitates 

the accessibility of transcription factors (Liu et al. 2010). Recently, epigenetic 

modifications and specifically chromatin-regulated gene activation have been 

proposed to govern priming responses (Conrath 2011). Genome wide approaches 

studying DNA methylation under abiotic and biotic stress have demonstrated 

widespread methylation alterations (Bilichak et al. 2012; Dowen et al. 2012). It would 

be of particular interest to further examine the occurrence of differential alterations 

and their impact under combinatorial stress.  

Functional studies of chromatin remodelling enzymes have revealed a functional 

involvement of these enzymes in the regulation of both abiotic and biotic stress 

responses. Histone deacetylase 19 (HDA19) mutants exhibit enhanced basal 

expression of many SA-responsive genes (Kim et al. 2008) but decreased expression of 

ABA and JA/ET-responsive genes, and the mutants are hypersensitive to salt stress 

(Chen et al. 2010c). The histone lysine methyltransferase ATX1 is likely to be involved 

in dehydration stress signalling, as atx1 mutants were sensitive to drought and ATX1 
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methyltransferase activity positively regulated the expression of the ABA biosynthesis 

enzyme NCED3 (Ding et al. 2011). Interestingly, down-regulation of the transcription 

factor WRKY70 during dehydration stress coincided with decreased presence of ATX1 

at the WRKY70 gene locus (Ndamukong et al. 2010).  

Chromatin structure can also be altered by the active deposition of variants of the 

canonical histones. Deposition of one of these variants, H2A.Z, is linked to 

transcriptional activation in response to environmental stimuli (Coleman-Derr and 

Zilberman 2012), and disruption of this mechanism leads to misregulated responses to 

both pathogens and elevated temperature (Kumar and Wigge 2010; March-Diaz et al. 

2008).  

It would be highly interesting to investigate how a previously imposed stress 

predisposes plants at the methylation and chromatin level for the encounter of a 

subsequent stress, (de)sensitizing subsequent responses. This type of 

acclimation/predisposition may even be a useful tool for preparing seeds and 

propagated material for stressful environments. 

 

R-gene resistance and systemic acquired resistance 

The plant immune system consists of successive layers counteracting suppression of 

defense responses by pathogens through secretion of effector proteins (Hemetsberger 

et al. 2012). Recognition of the effectors by corresponding R-genes belonging to NB-

LRR protein family or the effect of effectors on intracellular host proteins (guarded 

proteins) results in effector-triggered immunity (ETI). This is usually but not always 

manifested by localized cell death, termed the hypersensitivity response (Coll et al. 

2011). The complexity in the regulation of ETI is outlined by network analyses of 

individual and combined hormone mutants, which revealed compensatory interactions 

in contrast to synergistic interaction observed in PTI (PAMP-triggered immunity) 

(Tsuda et al. 2009), and which may explain the robustness of ETI to genetic 

perturbations. This robustness may be ideal in building tolerance to combinatorial 

stress through pyramiding R-genes with genes conferring abiotic stress tolerance.  

However, it is becoming clear that there are multiple aspects of regulation at the NB-

LRR protein level that are indispensable for the deployment of R-gene resistance 

(Heidrich et al. 2012). These include spatial regulation of NB-LRR accumulation in 

cellular compartments (e.g. the nucleus). Reduction of nuclear NB-LRR accumulation 

was shown to be responsible for the heat stress attenuation of disease resistance 

conferred by the proteins SNC1 and RPS4 in Arabidopsis(Mang et al. 2012; Zhu et al. 
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2010). Interestingly, mutants with reduced sensitivity to heat-induced defense 

inhibition were found to be based on changes in among others ABA biosynthesis 

enzymes, indicating that abiotic stress factors may affect R-gene compartmentation 

through ABA biosynthesis and signalling, although no further evidence is available. 

In addition, chaperone-mediated transport and folding of NB-LRR protein is 

important for their activity (Hubert et al. 2009a). The heat shock protein HSP90 is a 

component of this chaperone machinery. HSP90 is also required for the maintenance 

of folding of other proteins under stress conditions (Wang et al. 2004), and could 

potentially become limiting for proper R-gene signalling or stress protection under 

combined stress conditions. The recent discovery that NB-LRR protein accumulation 

is controlled by microRNAs (Zhai et al. 2011) adds a novel layer of regulation that 

would be interesting to investigate under different stress conditions (Kulcheski et al. 

2011).  

Initial pathogen perception and interception through PTI or ETI triggers systemic 

signals that prime plant defense responses to effectively counter subsequent infection 

attempts and limit spreading of the disease. This is referred to as systemic acquired 

resistance (SAR). Many compounds and genes have been identified that function in 

mobile signal generation and transport. Conversion of MeSA produced at the infection 

site to SA at the systemic tissues appears to be a prerequisite for SAR manifestation 

(Park et al. 2007). Additional metabolites such as pipecolic acid, dehydroabietinal, 

azelaic acid, and glyceraldeyde-3phospate probably function in the amplification of the 

signal, with no clear conclusions yet on their precise placement in the SAR circuit 

pathway (Dempsey and Klessig 2012). SAR has been shown to be affected by 

environmental conditions such as exposure to light (Griebel and Zeier 2008) and 

abiotic stresses such as salinity, through ABA suppression of SA biosynthesis (Yasuda 

et al. 2008). The further investigation of the patterns of accumulation and transport of 

these metabolites under conditions of combined abiotic and biotic stress may reveal 

potential connections between their regulation and plant phenotypic responses to 

combined stress. 

 

Approaches for gene identification and breeding for tolerance to stress combination 

In accordance with individual abiotic and biotic stressors, each abiotic 

stress/pathogen/host combination should be treated independently as,\despite the 

potential universal applicability of some interactions that were characterized in 

Arabidopsis, many unique interactions may be crucial for the phenotypic response.  As 

a result improving crops to these complex stress conditions first requires  an extensive 
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phenotypic characterization at different levels of cellular regulation, i.e. transcription, 

translation, post-translation, and metabolites, as well as at different stages of plant 

development. As evidence from research on individual abiotic and biotic stress 

responses points to a strong dependency on developmental (Skirycz et al. 2010) as well 

as environmental factors (Luna et al., 2011), the environmental conditions and 

developmental stages of the plants should be appropriately defined before any 

interpretation of the phenotypic and molecular response can be done. Finally the 

different layers of defense can be differentially affected by abiotic stress imposition 

(Fig. 2); therefore, the outcome of the interaction will vary with the defense 

mechanisms employed and on the pathogens involved.  

Breeding for resistance to combinatorial stress is challenging. However various novel 

approaches can aid in dissecting interactions between various types of stressors and 

identifying genetic components that can be breeding targets. The combination of 

different ~omics technologies has enabled the molecular dissection of plant 

phenotypes (Baerenfaller et al. 2012; Nagano et al. 2012). They provide information 

about the biological function of the whole gene set of an organism, and overlapping 

expression patterns  might imply participation in common pathways (Quackenbush 

2003), enabling more efficient reverse genetic approaches. Utilization of`~omics in 

combination with forward genetic approaches like association mapping (Chan et al. 

2011) may narrow down the candidate genes responsible for the observed phenotypes 

and provide targets for functional characterization,   further manipulation and 

improvement of crops through breeding. As mentioned previously, currently there are 

limited studies on the ~omics characterization of combined abiotic and biotic stress 

tolerance, however functional characterization of differentially regulated genes is 

starting to provide interesting candidates for combined stress tolerance and their 

mode of action (Atkinson et al. 2013). 

Manipulations that induce resistance to abiotic and biotic stress such as application of 

priming chemicals, followed by comprehensive phenotypic characterization can be 

used for candidate gene identification and molecular processes underlying stress 

cross-tolerance. Utilization of pre-existing chemical libraries for compounds that can 

prime abiotic and /or biotic stress tolerance and identification of their mode of action 

through chemical genetics approaches can both provide biotechnological targets for 

crop stress improvement and an opportunity to directly use the identified chemical in 

agricultural practice if no unintended side effects are observed (Hicks and Raikhel 

2009; McCourt and Desveaux 2010; Okamoto et al. 2013). Moreover as the effects of 

chemical priming are shown to in part to be exerted through induction of 

phosphorylation and other post-translational modifications (Beckers et al. 2009), 
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probing these modifications and genetically manipulating the underlying codons to 

constitutively mimic them (Riano-Pachon et al. 2010) can result in altered responses 

under combinatorial stress.  

Breeding for resistance to exposure to combined abiotic and biotic stress by 

incorporation of genetic components regulating the response to both stresses faces 

various challenges. For example, transcription factors can have thousands of binding 

sites across the genome (Lu et al. 2013), increasing the chance of unwanted pleiotropic 

effects and therefore more sophisticated deployment should be employed.  Both 

expression regulation and binding specificity can be altered through promoter and 

binding domain engineering (Cox 3rd et al. 2013; Desai et al. 2009) which can be aided 

by comparative genomic approaches (Korkuc et al. 2014) and applied through novel 

site-specific mutagenesis techniques (Liu et al. 2013b). As selective and stimulus 

specific transcription factor binding drives stress responses regulation (Xiao et al. 

2013), implementation of the above methods will aid to fine-tune downstream targets 

towards the desired phenotypic response. A potential drawback of transcription factor 

utilization is that resistance typically achieved by this approach is partial, and 

potentially prone to numerous antagonistic effects between stresses that cannot be 

predicted and can hinder efficient deployment for crop improvement to combined 

stresses. 

Pyramiding genes that provide increased tolerance to either stress and do not 

(negatively) interact with each other offers an alternative route. Strong resistance 

mediated by R-genes, that appear to be robust to perturbations, can be pyramided 

with well-characterized genes conferring abiotic stress tolerance (Hu and Xiong 2013) 

(Kissoudis et al. unpublished data). R-gene robustness can be assessed by testing 

resistance responses under different abiotic stressors prior to pyramiding. The 

drawback of this approach is the quick breakdown of resistance due to evolving 

pathogens, and the fact that necrotrophic fungi resistance cannot be acquired with 

these genes. R-gene stacking aided by novel biotechnological approaches can reduce 

the risk of breakdown of R-gene mediated resistance.  

Pre-invasion defense mechanisms can be exploited, especially the one that is conferred 

by preformed or inducible physical barriers such as callose and antimicrobial 

compound deposition at the site of attempted penetration. As discussed earlier, callose 

deposition appears to be positively regulated by ABA signaling, therefore positive or 

no interaction should be expected under abiotic stress.  Genes such as the OCP3 

transcription factor can be utilized, and for instance pyramiding abiotic stress 

tolerance with resistance conferred by mlo loss of function which sensitizes callose 

deposition at the site of infection for resistance against powdery mildew (Buschges et 
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al. 1997) may be a viable route (Kissoudis et al. unpublished data). However 

pleiotropic effects reported in mlo mutants such as compromised resistance against 

necrotrophic pathogens (Kumar et al. 2001) and accelerated senescence (Piffanelli et 

al. 2002) can have adverse consequences under stress combination. 

The mechanisms through which abiotic stress tolerance is conferred can have a 

differential effect on disease resistance. As mentioned earlier, drought tolerance 

through ABA upregulation at the whole-plant level is expected to have antagonistic 

effects with SA signaling and therefore compromises resistance to biotrophs. Localized 

ABA sensitization in stomata (Bauer et al. 2013) can overcome these drawbacks and 

offer an advantage for resistance against pathogen that infect through stomata. 

Manipulation of developmental traits such as root system architecture can be 

beneficial for drought tolerance (Uga et al. 2013) with potentially no adverse effects on 

disease resistance, as they employ cell type specific signaling. Deployment of genes 

that have a protective function on proteins and cellular components under abiotic 

stress, such as dehydrins, LEA proteins or RNA chaperones (Kang et al. 2013) that 

apparently are downstream components of abiotic stress adaptation and mostly 

function through their structural properties, can minimize interaction with biotic 

stress signaling.  Moreover, under salt stress, increased tolerance through Na+ 

compartmentalization in the vacuoles may offer an advantage in comparison with Na+ 

exclusion, as Na+ at high concentrations can have adverse effects on pathogen feeding 

and development. 

Approaches that result in greater antioxidant capacity such as the accumulation of 

flavonoids appear to confer resistance to abiotic and oxidative stress (Nakabayashi et 

al. 2014) while overproduction of their derivatives, anthocyanins, increase resistance 

to the necrotrophic pathogen Botrytis cinerea in tomato by minimizing ROS burst 

(Zhang et al. 2013). Therefore engineering for increased flavonoid accumulation can 

be promising in conferring resistance to multiple stressors, however it is unknown 

how it can affect the deployment of hypersensitivity response due to disturbed ROS 

homeostasis and thus resistance against biotrophic pathogens. 

Exploitation and deployment of different strategies (Fig.3) under different abiotic 

stress/pathogen combinations will demonstrate their feasibility and applicability, 

further leading towards the goal of breeding for crops that maintain their robustness 

and yield performance under diverse environmental conditions.  
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Figure 3. Approaches for building combined abiotic and biotic stress tolerance in 

plants. Two strategies are proposed through either the manipulation of genetic 

components which potentially regulate resistance to both stresses in a preferentially 

unidirectional manner, or the pyramiding of genes that independently confer abiotic 

or biotic stress resistance and do not (negatively) interact. The selection of individual 

components might differ depending on the pathogen and the abiotic stress scenario. 
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Abstract 

Abiotic and biotic stress factors are the major constrains for the realization of crop 

yield potential. As climate change progresses, the spread and intensity of abiotic as 

well as biotic stressors is expected to increase, with increased probability of crops 

being exposed to both types of stress. Shielding crops from combinatorial stress 

requires a better understanding of the plant’s response and its genetic architecture. In 

this study, we evaluated resistance to salt stress, powdery mildew and to both 

stresses combined in tomato, using the S. habrochaites LYC4 introgression line (IL) 

population. The IL population segregated for both salt stress tolerance and powdery 

mildew resistance. Using SNP array marker data, QTLs were identified for salt 

tolerance as well as Na+ and Cl- accumulation. Salt stress increased the susceptibility 

of the population to powdery mildew in an additive manner. Phenotypic variation for 

disease resistance was reduced under combined stress as indicated by the coefficient 

of variation (CV). No correlation was found between disease resistance and Na+ and 

Cl- accumulation under combined stress Most genetic loci were specific for either salt 

stress tolerance or powdery mildew resistance. These findings increase our 

understanding of the genetic regulation of responses to abiotic and biotic stress 

combinations and can provide leads to more efficiently breeding for tomatoes and 

other crops with a high level of disease resistance while maintaining their 

performance in combination with abiotic stress.  

 

Keywords: combined stress, stress interactions, crosstalk, phenotypic variation, ion 

homeostasis 
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Introduction 

Crops grown in open fields encounter multiple unfavorable conditions for optimal 

plant growth and yield, of both abiotic and biotic origin. The ongoing climate change, 

accelerated by the increase in atmospheric CO2 concentration (Peters et al. 2011), is 

resulting in an average rise in temperature and decrease in precipitation especially in 

regions with temperate climates (Dai 2013), which further intensifies agricultural 

land deterioration due to extended periods of drought and an increase in soil salinity 

(Munns and Tester 2008; Zhao and Running 2010). Moreover, an increase in 

temperature and ambient CO2 concentration could directly influence plant pathogens 

spread and geographic distribution. While studies show that on many occasions the 

effects on pathogenicity are pathosystem-specific (Coakley et al. 1999), the consensus 

is that elevated temperatures will result in pathogen geographic expansion and 

enhanced fecundity, increasing the chances for host range expansion and rise of more 

virulent strains (Garrett et al. 2006; Harvell et al. 2002). As predictions point to 

increased possibilities of plants encountering abiotic and/or biotic stress, exposure to 

combined stresses is expected to become more frequent. 

The limited data available for plant responses under abiotic and biotic stress 

combinations point to predominantly negative interactions at the phenotypic level 

(Mittler 2006; Kissoudis et al. 2014). Increased soil salt concentration results in 

enhanced susceptibility to soil borne diseases in tomato (Triky-Dotan et al. 2005) and 

other crop species (Al-Sadi et al. 2010; You et al. 2011), and similar trends are 

observed under water deficit (Jordan et al. 1984). Observations of the effects of abiotic 

stress on foliar pathogens are on the other hand mixed, with studies reporting either 

enhanced (Achuo et al. 2006; Wiese et al. 2004), or decreased resistance (Roubtsova 

and Bostock 2009; Sanogo 2004). Abiotic stress severity can affect responses to abiotic 

and biotic stress combinations (Soliman and Kostandi 1998), and therefore the 

outcome of the interaction may be dependent on the specific environmental conditions 

under which it occurs. 

Indications for stress regulatory crosstalk can be found at the phenotypic level, and 

are evident as well at the gene expression level (Kissoudis et al. 2014). Recently, the 

transcriptome of Arabidopsis subjected to combinations of various abiotic and biotic 

stressors was analyzed (Atkinson et al. 2013; Prasch and Sonnewald 2013; Rasmussen 

et al. 2013). The striking commonality of all these studies is the unique responses 

observed under stress combinations that could not be predicted by the response to 

individual stressors. Moreover it was observed that the response of a significant 

number of transcripts was cancelled or prioritized under stress combinations in 
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comparison with the individual stress, suggesting antagonistic interactions with 

potential detrimental effects on plant adaptation under combined stress. 

Apart from the characterization of individual genes involved in both abiotic and biotic 

stress (Asano et al. 2012; Ramírez et al. 2009) and the recent reports on 

transcriptomic characterization of the response to various stress combinations in 

Arabidopsis, the genetic architecture of plant response to combinatorial stress has not 

been investigated.  

In this paper we study the interaction between salinity stress and powdery mildew 

(PM) infection in tomato. Tomato (Solanum lycopersicum L.) possesses unique 

properties, as it is both an economically important crop, the first vegetable in 

production in the world (FAOSTAT, 2011), and a model plant species, due to its 

diploid, relatively compact, and recently sequenced genome (Sato et al. 2012) and its 

large genetic and genomic resources (Ranjan et al. 2012). Tomato productivity is 

affected by a high incidence of increased soil salinity in the areas of cultivation 

(Cuartero et al. 2006). Additionally, fungal pathogens can significantly limit 

productivity by colonizing the foliage or the fruits. The biotrophic ascomycete Oidium 

neolycopersici (causing powdery mildew) is one of the economically most important 

foliar pathogens of tomato, both in the greenhouse and in open field conditions (Jones 

et al. 2001).  

 We evaluated a Solanum habrochaites introgression line (IL) population (accession 

LYC4 as the donor) in the background of cultivated tomato (cv. Moneymaker, Finkers 

et al. 2007b) for our study. S. habrochaites is native to high altitude habitats in the 

Andean mountains (Grandillo et al. 2011), and various accessions were used as a 

source for cold tolerance (Venema et al. 2008) and resistance to a wide range of fungal 

pathogens (Grandillo et al. 2011) including PM (Huang et al. 2000). The LYC4 

population was evaluated previously for Botrytis resistance (Finkers et al. 2007b) and 

parthenocarpy (Gorguet et al. 2008).  

The results presented in this paper show that the LYC4 IL population segregated for 

both salt stress tolerance and PM resistance. QTLs conferring resistance to the 

individual stresses were identified using a high density SNP array for accurate 

localisation of introgressions. In addition the effect of salt stress on the genetic factors 

involved in PM resistance was evaluated. Various new genetic loci contributing to 

tomato salt stress tolerance and PM resistance were discovered. Salt stress increased 

susceptibility to PM, reducing phenotypic variation for disease resistance. These 

results provide novel genetic resources for enhancing salt stress tolerance and PM 
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resistance in tomato and enhance our understanding for plant responses under abiotic 

and biotic stress combinations. 

 

Materials and Methods 

Plant material 

The core collection of a S. habrochaites LYC4 introgression line (IL) population in the 

genetic background of S. lycopersicum cv. Moneymaker (MM), consisting of 31 ILs 

covering most of the tomato genome, was used in this study (Finkers et al. 2007b). 

The population was originally generated aiming at maximum coverage of the wild 

species genome and parts of each chromosome being present in at least three ILs as 

assessed with AFLP markers. Twenty nine of the ILs were genotyped using a custom 

made single nucleotide polymorphism (SNP) Infinium array containing 5528 SNPs, as 

described by (Víquez-Zamora et al. 2013). The introgressed regions according to the 

SNP data were visualized using the software Graphical GenoTypes 2 (Van Berloo 

2008). 

Experimental conditions and treatments 

Experiments were carried out in the Unifarm greenhouse facilities of Wageningen 

University & Research Centre. The photoperiod regime was 16 hours light and 8 

hours dark. Greenhouse air humidity was 70%. Additional lighting (100 Wm-2) was 

used if the incoming shortwave radiation was below 200 Wm-2. 

Tomato seeds were sown in peat and transplanted to 3L pots filled with vermiculite. 

The plantlets were irrigated with half strength Hoagland’s nutrient solution every 

two days initially, and every day in the final week of the experiment. Due to spatial 

restrictions and PM containment measures the simultaneous assessment of all four 

treatments was not possible, therefore, two subsequent and partially overlapping 

experiments were carried out. In the first experiment, salt stress was applied to the 

population by the addition of 100 mM NaCl to the nutrient solution of three weeks-old 

plants (5 plants per line), for 21 days. The pots were watered until leaching, to ensure 

uniformity of the treatment and to prevent NaCl accumulation. The concentration of 

NaCl in the pots was regularly monitored by measuring the Electrical Conductivity 

(EC) of the leachate after the completion of the irrigation.  

In the second experiment, PM and combined salt stress-PM resistance were assesed 

as follows: 3-week old plants (4 plants per line) were watered with a solution 
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containing 100 mM NaCl for 1 week. Subsequently, PM was applied to both (4-week 

old) salt stressed and non-salt stressed plants according to (Bai et al. 2003) by 

spraying a suspension of 5x104 conidia.ml-1 (prepared by washing conidial spores from 

leaves of heavily infected (sporulation stage) MM plants). The plants were grown for 

another two weeks after inoculation. 

 

Traits measured 

Salt stress experiment 

Chlorophyll content was measured using a SPAD-502 meter (Minolta, Osaka, Japan) 

at the third and fourth leaf counting from the bottom, one day before harvest. Plant 

height and shoot fresh weight (FW) were recorded at the end of the experiment. Dry 

weight was determined after drying the plant tissues in a forced-air oven at 700C until 

the samples reached stable weight. salt tolerance index was calculated as the ratio of 

(fresh or dry) shoot biomass under salt stress and biomass under control conditions for 

each genotype. 

 

Powdery mildew and combined stress experiment 

The disease severity was expressed as disease index (DI), assessed at 12 dpi (days 

post inoculation). DI was expressed on a scale from 0-5, slightly modified from (Bai et 

al. 2003), to increase the resolution of infection incidence in order to obtain a more 

quantitative measure of disease resistance. The values corresponded to macroscopic 

observations of PM growth and sporulation where 0 = healthy plant, no visible 

sporulation, 1 = < 0.1-10 % of foliar area affected, slight sporulation, 2 = 10-20 % area 

affected, 3 = 20 – 30 % area affected, 4 = 30-50 % area affected and 5 = > 50% area 

affected with abundant sporulation. 

 

Ion chromatography 

For the ion content determination the oven-dried leaves of tomato plants were ground 

to fine powder using a hammer mill with 1 mm sieve. The powder was ashed at 575oC 

for 6 hours. Ashed samples were dissolved by shaking for 15 minutes in 1 ml 3M 

formic acid at 99oC and then diluted with 9 ml MilliQ water. A final 500x dilution was 

subsequently prepared by mixing 0.2 ml sample solution with 9.8 ml MilliQ water. 

The concentration of Na+, K+, Ca2+, Mg2+ and Cl-, PO4
3- and SO4

2- of each sample was 

measured using Ion Chromatography (IC) system 850 Professional (Metrohm 

Switzerland). The anions were determined using Metrosap A 150, 150/4.0 mm column 

equipped with a Metrosap C5/5 Supp 4/6 Guard column and the cations with 

Metrosap C4 Supp 4, 250/4.0 mm column equipped with a Metrosap A Supp 4/6 Guard 

column.  
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Statistical and bioinformatics analyses 

Experiments were carried out in a Split plot design with 5 replications for the salinity 

stress experiments and 4 replications for the PM and combined stress experiment. 

Statistical analyses were performed using Genstat 15th edition. Introgression lines 

with trait values significantly different from the recurrent parent (MM) were 

identified using a two-sided Dunnett test (Dunnett 1955) at a type I error rate of α = 

0.05, and the underlying introgression was assigned as a QTL. Correlations between 

traits were calculated using the Pearson correlation coefficient (p≤0.05). The 

Coefficient of Variation (CV= s / x ̄*100 ) was used to estimate trait phenotypic 

variation of the population. The discovered QTLs were surveyed for underlying 

candidate genes with Marker2Sequence software (Chibon et al. 2012) using as input 

the position of the distal-most SNP markers of the S. habrochaites LYC4 introgressed 

region. 

Results 

Genotyping of ILs 

The custom made, Illumina Infinium based array described in (Víquez-Zamora et al. 

2013) was used for the genotyping of the S. habrochaites LYC4 ILs. 1508 SNPs out of 

5528 (27.2%) were polymorphic between the S. lycopersicum and S. habrochaites 

LYC4 parental lines after SNP filtering with the quality control criteria (Víquez-

Zamora et al. 2013,Supp. Table 1). The markers were landmarked on the genomic 

sequence of tomato (Víquez-Zamora et al. 2013), which facilitated precise localization 

of the introgressions of interest and subsequent investigation of underlying putative 

candidate genes located in the introgressed regions. As expected the size of the 

introgressions in many occasions deviated significantly on what was predicted by the 

genetic distances examined previously with AFLP markers (Finkers et al. 2007b). On 

some occasions (such as in ILs 2-3 and 8-2) introgression were revealed in different 

chromosomes compared to the ones originally assigned (Supp. Table 1, Supp. Fig.1). 

However as these are only a handful of exceptions we maintained the naming of the 

lines of the population as reported previously (Finkers et al. 2007b). 

 

Variation in phenotypic traits 

S. habrochaites LYC4 (LYC4) was selected from different tomato wild species and 

tomato breeding lines that were evaluated for salt tolerance and powdery mildew 

(PM) resistance. LYC4 exhibited significantly higher salt Tolerance index (calculated 

as the ratio of total above ground FW under salinity stress and that under control 
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conditions, expressed as percentage, 74.2% compared to 56.5% of MM), and was highly 

resistant to PM (DI score of 0.7 compared to 4 of MM). Therefore, the S. habrochaites 

LYC4 IL population in the background of S. lycopersicum cv. MM as described in 

(Finkers et al. 2007b) was chosen for this study.  

The frequency distribution of the population growth (total above ground fresh 

biomass) under non-stress conditions revealed a normal distribution (Shapiro-Wilk 

test, p=0.903) after excluding LYC4, which had significantly lower biomass than the 

population (Fig.1a). Similarly, relative FW under salt stress (salt tolerance index-see 

below) followed a normal distribution (Shapiro-Wilk test, p= 0.267) (Fig.1b). 

Interestingly, the majority of the population exhibited increased salt stress tolerance 

compared to the recurrent parent (MM). 

 

Figure 1. Frequency distribution of: a) shoot FW under control conditions, b) relative 

shoot FW under salt stress 100mM NaCl (salt tolerance index), c) PM resistance 

under control conditions,  d) PM resistance under salt stress (100mM NaCl) of the 

31ILs and the two parental lines of the S. habrochaites LYC4 population. The mean 

values of the two parental lines are indicated by arrows. 
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On the other hand, the disease index (DI) frequency distribution deviated from 

normality, exhibiting negative skewness. This was due to the majority of the 

individuals of the population being susceptible to PM, and none exhibiting the level of 

resistance of the donor parent LYC4 (Fig.1c). DI frequency distribution under 

combined salt stress and PM was similarly negatively skewed, but with an increased 

degree of skewness indicating that salt stress further enhanced disease susceptibility 

(Fig.1d). 

Identification of QTLs for salt tolerance and ion accumulation 

FW and DW under salt stress were highly correlated (r=0.9, p<0.0001), however 

variation between ILs was more pronounced for FW. Therefore, salt tolerance index 

was determined as ratio of total above ground FW under salinity and FW under 

control conditions expressed as percentage, normalizing the differences in growth of 

the different genotypes under control conditions.  

Ten ILs (IL1-2, IL1-4, IL2-3, IL3-2, IL4-2, IL8-2, IL9-1, IL10-2, IL10-3, IL10-4) 

exhibited higher salt tolerance index compared to the recurrent parent MM (Dunnett 

test, p<0.05, Fig. 2a, Table 1). Salt tolerance of those lines ranged from 67-80% 

maintenance of growth under saline conditions compared to 56.5% of MM, with IL8-2 

exhibiting the highest degree of tolerance. Among those lines, IL2-3 and IL3-2 

additionally exhibited significantly higher FW compared to the recurrent parent 

under salt stress (108.7g and 113.2g, respectively, compared to 89 g for MM).  

Putative QTLs for salt tolerance reside in the introgressed regions of the salt tolerant 

lines. Several lines carried large introgressions, covering almost complete 

chromosomes (e.g. ILs 2-3, 3-2 and 8-2), and therefore pinpointing underlying 

candidate genes from the numerous genes in these introgressions is not possible. 

Shared introgressions between different ILs conferring salt tolerance provides a 

strong and more precise indication for a QTL. Both ILs 1-4 and 9-1 carried a ~ 4Mbp 

introgression at the top of Chr. 9, while a common overlapping region of ~2.7 Mbp at 

the bottom of Chr. 10 was shared between ILs 10-2, 10-3 and 10-4. 
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IIntrogression 
llines  

GGenomic region (s) References Candidate genes 

Salt tolerance 
iindex 

 
  

IL1-2 N/A, AFLP data only   

IL1-4 Chr2: 36411532.. 41371688, 
Chr9: 48774.. 4715716, CChr11: 
64251736.. 51936800 (het) 

Li et al. 2011  

IL2-3 Chr1: 25476.. 84030880 Li et al. 2011 NHX3, NHX4,SOS1, Cu/ZnSOD1 

IL3-2 Chr3: 1410013.. 57499392 Foolad 1999  

IL4-2 Chr4: 3071610.. 44938712 (het), 
CChr4: 46110324.. 61886216 

  

IL8-2 Chr7: 428378.. 58142204, CChr7: 
58189028.. 60992576 (het) 

Asins et al. 
2013 

HKT1;1,  HKT1;2, 

IL9-1 Chr9: 48774.. 3988469, CChr9: 
62248928.. 67116024 (het) 

 APX, MDHAR, GRX, ACCox, 
EIN2, HSFa3, HSP70 

IL10-2 Chr:10: 53339848.. 63662428   

IL10-3 Chr:10: 53339848.. 63662428   

IL10-4 Chr:10: 60924880.. 63662428  Aquaporin, ERF1,10,Peroxidase, 
GST 

    

Na++ ccontent (salt 
stress)  

 
  

IL12-1 Chr12: 161288.. 52930616 Huertas et al. 
2012 

SOS2 

IL12-3 N/A, AFLP data only   

    

Cl-- ccontent (salt 
stress)  

 
  

IL8-2 Chr7: 428378.. 58142204, Chr7: 
58189028.. 60992576 (het) 

  

IL12-3 N/A, AFLP data only   

    

K++ ccontent (salt 
stress)  

 
  

IL9-1 
Chr9: 48774.. 3988469, Chr9: 
62248928.. 67116024 (het) 

 K+ channel,  Cyclic nucleotide 
gated channel 

 
 
 
 

 

  
 
 

TTable.1 Summary of the LYC4 ILs that exhibited significant differences for the different traits 
measured compared to the recurrent parent MM. The precise location of the introgressed 
segments carried is provided, as well as previous studies that have identified QTLs for the same 
trait in the vicinity of those regions and the putative candidate genes present. 
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KK+/ Na+  rratio 
((salt stress)  

 
  

IL2-3 CChr1: 25476.. 84030880  NHX3, NHX4,SOS1 

IL6-3 CChr6: 40011792.. 43431840  H+-ATPase 

IL9-1 CChr9: 48774.. 3988469, Chr9: 
62248928.. 67116024 (het) 

 K+ channel,  Cyclic nucleotide 
gated channel 

IL12-1 CChr12: 74699.. 47436216, Chr12: 
48239308.. 52930616 

Huertas et al. 
2012 

SOS2 

IL12-3 N/A, AFLP 
data only 

    

PPowdery mildew 
rresistance 

 
  

IL3-2  CChr3: 1410013.. 57499392   

IL4-2 CChr4: 3071610.. 44938712 (het), 
CChr4: 46110324.. 61886216 

 RLK, Ser/Threonine kinase 

IL4-3 CChr4: 58808024.. 63693464, 
CChr9: 48774.. 3988469 

 RLK, Ser/Threonine kinase, PAL, 
PR1a , ACCox, EIN2 

IL6-2 CChr6: 37310260.. 40010168, 
CChr7: 56595944.. 61110872 

 RLK,  Ser/Threonine kinase , 
Peroxidase , ACCox,  

IL9-1 CChr9: 48774.. 3988469, CChr9: 
62248928.. 67116024 (het) 

 NBS-LRR, RLK, PAL,PR1a, 
ACCox, EIN2 

IL12-3 N/A, AFLP data only   

    

PPowdery mildew 
rresistance (salt stress) 

 
  

IL4-2  CChr4: 3071610.. 44938712 (het), 
CChr4: 46110324.. 61886216 

  

IL4-3 CChr4: 58808024.. 63693464, 
CChr9: 48774.. 3988469 

  

IL9-1 CChr9: 48774.. 3988469, CChr9: 
62248928.. 67116024 (het) 

  

IL10-1 CChr9: 48774.. 5464892, CChr10: 
242877.. 49064720 
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Figure 2. Graphical genotypes and the respective performance of ILs significantly 

different to the recurrent parent (MM) for: a) salt stress tolerance, b) PM resistance 

under control conditions, c) PM resistance under salt stress. The S. habrochaites 

LYC4 introgressed segments are depicted as dark (homozygous) and light 

(heterozygous) blue squares in MM genetic background (orange). 

As ion toxicity in the shoot is an important aspect of salt stress, the population was 

profiled for ion concentrations in shoots under both control and salt stress conditions. 

The genetic effects of introgressions on variation in concentrations of the 

macronutrients Na+, Cl-, K+, Ca2+, Mg2+, PO4
3- and SO4

2+ and the consequences for salt 

tolerance and DI were investigated (Table 2). No significant differences in ion 

concentrations were identified between the ILs and MM under control conditions. 

Under salt stress, introgression lines IL12-1 and IL12-3 accumulated significantly 

less Na+ compared to MM (18.2 and 18.6 compared to 25.5mg/g dry biomass 
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respectively, Table 1). IL12-3 was not genotyped with the SNP array, however using 

the AFLP data from Finkers et al. (2007b), the introgressed region was shown to 

overlap with that of IL12-1. Therefore, a common genetic factor potentially underlies 

the reduced Na+ accumulation in those lines. IL8-2 and IL12-3 accumulated 

significantly less Cl- compared to MM (30.1 and 28.2 compared to 41.6 mg/g dry 

biomass respectively).  

 

Table 2. Means (n=4) and range of measured ions in the parental and introgression 

lines under control (C)  and salt stress treatment (S).  

  MM LYC4  ILs 

  Mean± s.d. (mg/g) Mean 

(mg/g) 

Range 

Na+ c 8.3± 0.6 11.6±2.8     8.1 5.6-12.8 

 s 25.6±3 30.3±3.8  22.7 18.2-29.2 

       

K+ c 34.3±4.7 41.9±3  34.4 26.9-41.2 

 s 25.2±1.5 25.6±2.7  27.4 19.9-33 

       

K/Na c 4.1±0.4 3.8±1.1  4.4 2.4- 5.8 

 s 1±0.05 0.9±0.03  1.2 0.74-1.67 

       

Cl- c 12.1±2.1 11.6±0.2  11.8 7.9-19.2 

 s 41.6±5.9 44.3±7.1  35.3 28.3-42.9 

       

Ca2+ c 11.1±0.7 10.71±0.7  10.9 8.6-14.8 

 s 10.9±1.6 11.8±2  10.5 7.7-12.4 

       

Mg2+ c 12.7±0.4 10.7±0.5  11.9 8.9-15.5 

 s 13.4±1.8 14.3±2.1  13.4 10.7-15 

       

PO4
3- c 17.7± 1.3 22.7±1.8  17.5 12.7-23.9 

 s 14.5±1.5 16.9±3.4  15.8 11.2-19.5 

       

SO4
2- c 20.6± 1.4 9.4±0.7  17.7 12.5-24.4 

 s 14.8± 1.1 11.4±1.9  15.8 11.9-19.9 
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K+ concentration was significantly higher in IL9-1 (33.0 compared to 25.2 mg/g dry 

biomass in MM). K+/ Na+ ratio, considered to be an indicator for salt tolerance 

(Shabala and Cuin 2008), was significantly increased in the lines IL2-3, IL6-3, IL9-1, 

IL12-3 and IL12-1 compared to MM. Finally, except for SO4
2- in IL3-1 which exhibited 

a significantly higher content-, Ca2+, Mg2+ and PO4
3- concentrations were not 

significantly different in any of the ILs under salt stress. 

Correlation analyses 

Correlation analysis (Pearson r, p<0.05) under control conditions revealed a positive 

correlation between FW and SO4
2- concentration (r=0.61) and a negative correlation 

with PO4
3- concentration (r= -0.43). Under salt stress only a few significant 

correlations were observed (Supp. Table 2). Growth under salt stress was correlated 

with growth under non-stress conditions, however the degree of correlation (r=0.7, 

p<0.001) suggests a considerable differential effect of salt stress on growth, supported 

by the statistically significant interaction observed between FW and stress levels in 

an ANOVA analysis (p<0.001). Relative growth under salt stress was strongly 

negatively correlated with growth under non-stressed conditions (r=-0.54, p=0.0015), 

indicating that large plants on average are less tolerant to salt stress than smaller 

plants. Relative growth under salt stress was not correlated with any of the ions 

measured, except for Na+ for which a weak positive correlation was observed (r=0.37, 

p=0.039).  

QTLs for powdery mildew resistance 

S. habrochaites LYC4 exhibited a high level of resistance against PM, with limited 

disease symptoms (no HR observed). Several introgression lines (IL3-2, IL4-2, IL4-3, 

IL6-2, IL9-1 and IL12-3) had increased resistance compared to MM, however they 

were considerably more susceptible than LYC4 (mean DI range 2.2-3.0 compared to 

4.0 for MM and 0.7 for LYC4, Fig.2b, Fig.3, Table 1). Partial resistance in IL3-2, 

which carries an introgression covering a large part of Chromosome 3, was 

characterized by the development of necrotic (HR-like) lesions at the site of fungal 

spore development. All other lines exhibited quantitative resistance with no visible 

cell d 

eath. IL4-3 and IL9-1 both carry a ~4Mbp introgression at the top of Chr. 9. However, 

IL4-3 has an additional introgression at Chr. 4 that overlaps for ~3Mbp with the 

introgressed segment of IL4-2, a line that was also more resistant. IL6-2 carries two 

introgressions of ~2.7 and 4.8 Mbp on chromosomes 6 and 7, respectively. The AFLP 

marker data point to a large introgression in IL12-3 at the bottom arm of Chr. 12.  
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Correlation analysis of DI with growth and ion content revealed a positive correlation 

with FW (r= 0.47, p=0.006) and a negative with PO4
3- content (r=-0.31, p=0.047), while 

no significant correlation was observed between DI and chlorophyll content.  

 

Figure 3. PM resistance under control conditions (black bars) and under salt stress 

conditions  (light grey bars) of the 31 S. habrochaites LYC4 ILs and the two parental 

lines. The lines are in ascending order of susceptibility under non-salt stress 

conditions. Asterisks indicate significant differences between the introgression lines 

and the recurrent parent MM (Dunnett test, p<0.05). 

 

Combined salt and PM stresses 

Salt stress imposition significantly increased the susceptibility to PM of the 

population (mean DI of 4.45 compared to 3.65 without salt stress, p<0.001). The effect 

was more pronounced when only the lines with significantly greater resistance than 

MM under either stress condition were included (ILs 3-2, 4-2, 4-3, 6-2, 9-1, 10-1 and 

12-3, mean DI of 3.93 compared to 2.78 without salt stress, p<0.001).  

Three out of four ILs identified with significantly reduced DI under combined stress 

conditions (ILs 4-2, 4-3 and 9-1) had also significantly reduced DI under non-salt 

stress conditions (Fig. 2c, Fig.3,  Table 1). Only IL10-1 exhibited increased resistance 

to PM uniquely under salt stress; it was only marginally (non-significantly) more 

resistant than MM under non-salt stress conditions.  

To evaluate the effect of combinatorial stress on the phenotypic variation of the 

population for PM resistance, the coefficient of variation (CV) values for DI were 



64 
 

compared under PM and combined PM and salt stress. The CV under the combination 

of stresses was considerably lower than under PM infection (12.63% compared to 

18.92%), which might indicate that the phenotypic variation for PM was reduced 

under salt stress (Fig.4a). This could also be a result of the population susceptibility 

shifting towards the maximum of the disease score scale. However, when CV was 

calculated for the lines that were more resistant under either conditions a similar 

trend was observed (14.53% , mean=3.93 (combined stress) compared to 18.56%, mean 

=2.78 (PM only), Fig.4b). 

 

Figure 4. Phenotypic variation of PM resistance under non-salt stress and salt stress 

conditions expressed as the coefficient of variation (CV) estimated in a) the whole IL 

population (31 lines) b) ILs more resistant compared to MM under either control or 

salt stress conditions (7 lines). 

No significant differences were observed between the ILs and MM for ion content 

under combined salt stress and therefore no QTLs could be assigned. 
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DI in non-salt stressed plants was significantly correlated with DI under combined 

stress (r=0.77, p<0.0001, Fig. 5), suggesting minor interaction of salt stress with the 

genotypic differences in plant susceptibility, supported by the (marginally) non-

significant (p=0.092) interaction observed, after ANOVA analysis. No further 

significant correlations were identified under combined stress, except a weak positive 

correlation of DI with chlorophyll content (r=0.32). 

 

Figure 5. Pearson correlation (r) between PM resistance (DI) under non-stress control 

conditions and under salt stress. 

 

Discussion 

Salt stress and powdery mildew individually pose a significant threat to tomato 

production, and the probability of these occurring at the same time may result in non-

additive effects on plant fitness. Therefore we examined the responses of the S. 

habrochaites LYC4 IL population to both separately applied salt stress and PM and 

the combination of these stresses. Even though the experiments were done in the 

greenhouse in a controlled environment, small differences in the environmental 

conditions between both experiments that influence the plants’ performance and the 

measurements could not be avoided. Therefore, direct comparisons of the trait values 

measured in the two different experiments need to be done with caution. 

Nevertheless, QTL co-localization will be discussed, as most of the QTLs identified 

were reproducible in subsequent experiments with the selected ILs.  
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S. habrochaites LYC4 carries significant variation for tolerance and ion homeostasis 

under salt stress 

Several S. habrochaites introgressions contributed significantly to salt tolerance, and 

our results indicate that under the stress conditions applied the IL lines that were 

larger in size were more affected by salt stress. The more vigorous (or high yielding) 

genotypes under non-stress conditions are often also the best-performing plants under 

mild stress in particular, with usually no crossover interactions (Blum 2005). The salt 

concentration applied in our experiments (100mM NaCl) is considered to exceed this 

crossover point for tomato (Maggio et al. 2007). This is supported by the significant 

interactions between plant biomass and salinity level and the moderate correlation 

between plant biomass under control and salt stress conditions. Interestingly, two ILs 

with higher FW than the recurrent parent MM under both control and salt stress 

(IL3-2 and 2-3) also exhibited a higher salt tolerance index. These properties make 

them valuable starting material for salt tolerance breeding, especially  IL2-3 which 

was previously shown to out-yield, under control conditions, the parental line MM 

while IL3-2 had substantially lower fruit yields (Finkers 2007).  

Several genomic regions of LYC4 contributed to an increased salt tolerance index. 

Many of the QTLs identified in this study co-localized with previously discovered 

stress tolerance-contributing loci in segregating populations derived from crosses with 

wild tomato species (Table 1). The introgressed region in Chr. 1 of IL2-3 coincides 

with QTLs identified in previous studies for enhanced germination, vegetative growth 

and fruit yield under salt stress (Foolad 1999; Villalta et al. 2007). In this region, 

many candidate genes reside that are involved in the regulation of ion homeostasis, 

such as NHX3, NHX4 and SOS1 (Gálvez et al. 2012; OlÍas et al. 2009), and for redox 

homeostasis such as Cu/ZnSOD1 (Chen et al. 2009). Notably, IL2-3 exhibited lower 

Na+ accumulation (19.9mg/g compared to 25.5mg/g dry biomass of MM) , but it was 

marginally below the significance cut-off level and therefore no QTL was assigned. An 

introgressed segment from Chr. 7 present in IL8-2 had the strongest association with 

salt tolerance index. Two HKT genes were recently found to reside on Chr. 7, 

potentially being causal for a QTL controlling Na+ and K+ concentration (Asins et al. 

2013). However the introgression of IL8-2 covers almost the whole Chr.7, so linking it 

with the HKT function should be done with caution. IL8-2 also exhibited significantly 

lower Cl- accumulation, which was shown to contribute to salt tolerance in barley 

(Tavakkoli et al. 2011).  

The introgressed segments on chromosomes 9, 10 and 12 found in the IL set used for 

this study are relatively small. IL9-1 exhibited higher levels of K+, as well as higher 
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K/Na ratio compared to MM under salt stress. A putative potassium channel, and 

cyclic nucleotide gated channels involved in K+ transport (Shabala and Cuin 2008) 

reside in the introgressed region of this line as well as other genes involved in plant 

stress responses. (Table 1). The introgressed region on Chr. 10 contains ethylene 

response factors (ERFs) involved in stress tolerance and growth regulation under 

abiotic stress (Cheng et al. 2013; Dubois et al. 2013) as well as aquaporins, GSTs and 

RLKs.  

No correlation was found between salt tolerance index and ion content, except for Na+ 

accumulation, which was weakly positively correlated. The lack of correlation is 

evidenced by the limited co-localization of QTLs for salt tolerance index and ion 

content (Supp. Table 4), as well as the insignificant contribution to salt tolerance of a 

shared introgression in Chr. 12, resulting in lower Na+ accumulation, carried by ILs 

12-1 and 12-3. The type and the size of the population may have limited the discovery 

of correlations, as usually unique introgressions are present in the different ILs, 

which despite the possibility of co-regulating different traits, is present in only a few  

individuals of the population, resulting in non-statistically significant associations. 

However previous  studies have as well identified a non-significant correlation of Na+ 

accumulation with salt stress tolerance in tomato (Rao et al. 2013; Villalta et al. 

2008). In fact, Na+ can be used as an osmoticum facilitating water status 

maintenance, as it was observed in S. pimpinellifolium (Bolarin et al. 2001). and this 

is reflected as well in our results where LYC4 is more tolerant compared to MM 

despite having higher Na+ accumulation, suggesting that Na+ tissue tolerance (by 

storing Na+ in the vacuole or older leaves) contributes to LYC4 salt tolerance. On the 

other hand the lack of co-localization between many salt tolerance and ion content 

QTLs, offers the opportunity to combine them through pyramiding and examine 

epistatic interactions that additionally affect salt tolerance. 

S. habrochaites LYC4  introgression contribute to partial resistance to powdery 

mildew 

S. habrochaites LYC4 exhibited a high level of resistance to PM. None of the 

introgression lines exhibited the same level of resistance. This phenomenon was also 

observed in a previous study of this IL population on resistance to Botrytis cinerea 

(Finkers et al. 2007b). It can be either a result of incomplete representation of the 

wild species genome in the IL population, or the breakdown of epistatic interactions 

between loci, which  are common in plant defense signaling (Alcázar et al. 2009). 

Resistance to PM in LYC4 is not the result of HR. In addition LYC4 was previously 

found to be resistant to various pathogens and insects (Finkers et al. 2007a; Yu et al. 
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2010). Therefore increased basal resistance, or secretion of secondary metabolites 

(antibiosis) and leaf surface structure such as the trichomes (antixenosis), may 

contribute to resistance (Nonomura et al. 2009), which should be further examined in 

this population. 

Introgressions conferring PM resistance do not coincide with previously identified 

regions with PM resistance genes (Li et al. 2007; Li et al. 2012). All previously 

identified genes confer strong resistance to PM, in contrast to the QTLs reported here. 

Because of the size of the introgressions, no specific  genes can be pinpointed for 

increased resistance, though several candidate genes are present (Table 1), on many 

occasions (such as the RLKs) in multiple copies. 

Salinity stress has a negative impact on powdery mildew resistance 

Salt stress (100mM) increased PM susceptibility in all genotypes of the population. 

This is in agreement with the majority of studies in literature reporting a suppressive 

effect of abiotic stress on defense responses and increase in susceptibility. In 

Arabidopsis thaliana abiotic stressors were shown to suppress various aspects of the 

defense response. Salt stress inhibited salicylic acid (SA) biosynthesis and the 

induction of systemic acquired resistance (Yasuda et al. 2008), while drought and heat 

stress suppressed basal and R-gene mediated resistance against a virus (Prasch and 

Sonnewald 2013).  Contrarily, a  previous study in tomato reported a weak positive 

effect of salt stress (100mM) on PM resistance (Achuo et al. 2006). These observations 

can be a result of the longer period the plants experienced salt stress (14 days vs 7 in 

our study), which may have allowed  a buildup of Na+ and Cl- concentration to toxic 

for the fungus levels We have observed a significant positive impact of  Na+ and Cl-  

accumulation on powdery mildew resistance in experiments with varied salt stress 

levels, with mild salt stress increasing susceptibility while stronger salt stress is 

reversing the effect (unpublished results).  

Powdery mildew resistance QTLs were fewer under combined salt stress than under 

only PM stress alone but they were mostly shared between the two treatments. This 

result, in conjunction with the high correlation of DI between both conditions, 

indicates that salinity stress had a general suppressive effect on the defense response 

rather than a specific interaction. Observations from molecular studies further 

support this conclusion, as several components of the defense signaling network 

appear to be down-regulated under abiotic stress (Mang et al. 2012; Prasch and 

Sonnewald 2013). Both the fewer QTLs identified as well the reduced phenotypic 

variability of PM resistance under combined stress point to a negative impact of salt 
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stress on the expression of genotypic variation under these conditions, potentially 

altering the adaptive potential/fitness. Phenotypic plasticity is considered pivotal in 

the plant’s ability to adapt to changing environments (Ghalambor et al. 2007; Nicotra 

et al. 2010), and a reduction of this phenotypic plasticity when exposed to multiple 

stresses can have additional detrimental effects on plants and crop productivity. 

Moreover, it highlights an additional aspect that may pose a challenge for breeding for 

resistance to combined stresses: reduction in phenotypic variation can negatively 

affect selection efficiency when resistance is partial or quantitatively controlled. On 

the other hand  selection for increased resistance under combined stress can be more 

robust when resistance is controlled by a single (or few) R-genes as it can quickly 

eliminate R-genes that become nonfunctional under these conditions.  

Na+ and Cl-
 accumulation under salt stress can have a harmful effect on both the host 

and the pathogen (Blomberg and Adler 1993). However, no significant correlation 

between disease severity and Na+ and Cl- accumulation was found in our study. It is 

possible that the concentration of NaCl applied did not result in the accumulation of 

Na+ and Cl-
  up to levels that were toxic for the fungus (evidenced by the increased 

fungal growth under salt stress). The severity of the stress can influence the 

magnitude of impact of another stress (Soliman and Kostandi 1998).  Preliminary 

results in our laboratory indicated that the impact of salt stress on PM growth may 

depend on the severity of the applied stress (unpublished results). The lack of 

correlation of internal salt accumulation with PM growth may therefore be explained 

by relatively low (subtoxic) levels of Na+ and Cl Alternatively, the genetic variability 

in the population for Na+ and Cl- accumulation and/or disease resistance may be too 

limited, as evidenced by the small number of QTLs identified under salt stress alone 

and none under stress combination. In addition, the weak positive correlation between 

DI and chlorophyll content may point to the significance of nutrient availability for 

fungal growth, and could be indicative of the negative interaction between salt 

tolerance and disease under combined stress. Salt tolerance is often characterized by 

delayed senescence and the maintenance of chlorophyll, a nitrogenous compound, 

under stress can positively interact with pathogen growth by facilitating (biotrophic) 

pathogen nutrition (Walters and Bingham 2007). 

Our data point to distinct genetic architectures for salt stress tolerance and PM 

resistance in the LYC4 IL population, with few QTLs shared (Supp. Table 3) and no 

significant correlations observed. The shared QTLs are relatively large, with possibly 

different genes being responsible for resistance to either stress. The introgression of 

IL9-1 (resistant under all stress conditions), may contribute to multiple stress 

tolerance. Although there are genes present in the introgressed region that have a 
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clear function in pathogen response and resistance (RLKs, PRs, PAL), there are also 

multiple genes encoding TFs, redox and ethylene signaling components that have 

broad functions in stress responses. Therefore, further dissection of multiple and 

combined stress tolerance in IL9-1 is needed, using different approaches such as fine 

mapping, transcriptomics analyses and reverse genetics. 

In conclusion, several genomic regions were identified in the S. habrochaites LYC4 IL 

population that can contribute to salt stress tolerance and PM resistance in tomato. 

Salt stress predisposed plants towards increased susceptibility to PM. The reduction 

in phenotypic variation under stress combination may have additional implications on 

plant and crop performance and breeding efforts. As no correlation was observed 

between salt stress tolerance and PM resistance, the different components appear to 

not interact with each other. Therefore, a strategy of combining resistance and 

tolerance traits may be successful. With the availability of the tomato genome 

sequence and high throughput phenotypic analyses, phenotypic responses and 

tolerance to stress combination can be precisely associated with the genotype and 

breeding of combinatorial stress resilient crops may be feasible. 
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Abstract 

Stress conditions in agricultural ecosystems can occur in variable intensities. 

Different resistance mechanisms to abiotic stress and pathogens are deployed by 

plants. Thus, it is important to examine plant responses to stress combinations under 

different scenarios. Here, we evaluated the effect of different levels of salt stress 

ranging from mild to severe (50, 100 and 150mM NaCl) on powdery mildew (PM) 

resistance and overall performance of tomato introgression lines with contrasting 

levels of partial resistance, as well as isogenic lines carrying the PM resistance genes 

Ol-1 (associated with slow Hypersensitivity Response; HR), ol-2 (a mlo mutant 

associated with papilla formation) and Ol-4 (a R gene associated with fast HR). PM 

resistance was affected by salt stress in a genotype and stress intensity dependent 

manner. In susceptible and partial resistant lines, increased susceptibility was 

observed under mild salt stress (50mM) which was accompanied with accelerated cell 

death-like senescence. On the contrary, severe salt stress (150mM) reduced disease 

symptoms. Na+ and Cl- accumulation in the leaves was linearly related to the 

decreased pathogen growth under severe stress, suggesting a more direct role for the 

salt in suppressing PM growth. In contrast, complete resistance mediated by ol-2 and 

Ol-4 was unaffected under all treatment combinations, and was associated with a 

decreased growth penalty. Increased susceptibility and senescence under combined 

stress of the variety Moneymaker (MM) and the NIL Ol-1 was associated with the 

induction of ethylene and jasmonic acid pathway genes as well as of the cell wall 

invertase gene LIN6. These results highlight the significance of stress severity and 

resistance type on the plant’s performance under abiotic and biotic stress 

combination. 

 

Keywords: stress severity, callose, R-gene resistance, cell death, ethylene, invertase 
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Introduction 

Plants in their natural environment are continuously exposed to a variety of stress 

factors, both abiotic and biotic, and thus have evolved a multitude of defense 

mechanisms in order to maintain their fitness and successfully reproduce (Mickelbart 

et al. 2015; Roux et al. 2014).  Under natural conditions, both the timing and the 

intensity of the stressors can vary, thus appropriate fine-tuning of the defense 

responses is required to minimize detrimental effects on plant fitness (Brown and 

Rant 2013; Des Marais and Juenger 2010). Stress interactions between abiotic and 

biotic agents are projected to become more prevalent with the observed and predicted 

changes in global climate patterns. The average temperature increase and decrease in 

precipitation especially in regions with temperate climates (Cook et al. 2015; Dai 

2013) can accelerate agricultural land deterioration leading to yield losses (Lobell et 

al. 2011). In the same way, increased temperatures can result in geographic 

expansion of pathogens and enhanced fecundity, increasing the chances for host range 

expansion and rise of more virulent strains (Garrett et al. 2006; Harvell et al. 2002). 

Field crops are grown under the same variable conditions, however as they are bred 

and selected under relatively controlled conditions, several trade-offs might have been 

overlooked that can result in negative interactions under field conditions (Brown and 

Rant 2013; Hückelhoven et al. 2013; McGrann et al. 2014). It is thus of great 

importance to examine plant responses to combinations of abiotic and biotic stress 

factors, important variables that are relevant to crop yields (Kissoudis et al. 2014; 

Soliman and Kostandi 1998).  

Studies aimed at elucidating interactions between abiotic and biotic stress responses 

are limited. The majority of these studies concludes a negative impact of abiotic stress 

(mostly drought and salinity stress) on pathogen resistance (Suzuki et al. 2014), 

however positive effects have also been reported on resistance to foliar pathogens in a 

plant and/or pathogen specific manner (Kissoudis et al. 2014). Plant response and 

performance under different stress levels is not linear (Cheng et al. 2013a; Maggio et 

al. 2007; Malkinson and Tielbörger 2010; Muralidharan et al. 2014) and this can 

significantly impact the phenotypic responses under stress combinations. An early 

study on maize susceptibility to smut disease (Ustilago maydis) under different salt 

stress concentrations concluded that disease severity decreased when salt stress 

increased to 9 dS/m and an inverse relationship between disease susceptibility and 

plant Cl- content was observed (Soliman and Kostandi 1998). Resistance to pathogens 

can also be differentially affected by the imposition of various types of abiotic stress. 

For example, rice resistance to Magnaporthe grisea mediated by dominant resistance 

(R)-genes was not affected by cold stress or ABA application,  in contrast to this 
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plant’s basal resistance without the resistance gene (Koga et al. 2004). Contrarily, 

heat stress was shown to negatively impact the resistance controlled by Arabidopsis 

R-genes, SNC1 and RPS4, in an abscisic acid (ABA) dependent manner (Mang et al. 

2012). In barley, mlo-mediated recessive resistance to powdery mildew was 

compromised during recovery after drought stress (Baker et al. 1998).  

Functional molecular studies have added pieces to the puzzle of interactions between 

abiotic and biotic stress signalling components with the identification of several genes 

and transcription factors involved in stress crosstalk (Liu et al. 2012a; Yokotani et al. 

2013). ABA appears to be a central modulator of the regulatory crosstalk, directly 

impacting salicylic acid biosynthesis, the major regulatory hormone for defense 

responses against biotrophic pathogens (De Torres Zabala et al. 2009; Yasuda et al. 

2008). In some cases, successful pathogenesis of a number of pathogens involves the 

manipulation of the ABA pathway (De Torres-Zabala et al. 2007; Kazan and Lyons 

2014). On the other hand, enhanced callose deposition, a significant line of defense 

enhancing plant penetration resistance against pathogens, is positively regulated by 

the ABA pathway (Cao et al. 2011). Thus ABA-defense signalling interactions appear 

to be complex, and the outcome is greatly affected by the host and pathosystem as 

well as by the timing of infection (Chen et al. 2013; Ton et al. 2009).  

 Our research is focused on the response and performance of tomato under combined 

salinity stress and powdery mildew infection. We have previously reported a negative 

impact of salinity stress (100mM NaCl) on powdery mildew resistance in a tomato 

Introgression Line (IL) population exhibiting partial resistance to powdery mildew 

(Kissoudis et al., 2015). In this study we advance a step further, examining the effects 

of different salt stress levels representative of mild and severe stress on powdery 

mildew resistance. We selected the above mentioned ILs with contrasting resistance. 

In addition, we used near-isogenic lines (NILs) which carry monogenic resistance 

genes, namely Ol-1 (no gene characterized yet), ol-2 (an mlo mutant) and Ol-4 (an 

NBS R-gene) (Seifi et al. 2014). These Ol-genes confer resistance to powdery mildew 

(Oidium neolycopersici), albeit through different mechanisms (Bai et al. 2013). Our 

results indicated a significant interaction of powdery mildew resistance with salt 

stress severity that was dependent on resistance mechanism. The detailed coverage of 

the different variables both in terms of stress intensity and type of disease resistance 

gene provides significant insights on realistic scenarios of abiotic-biotic stress 

interactions, and potentiates efficient and targeted crop breeding for combined stress 

tolerance. 
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Materials and Methods 

Plant material 

Introgression lines (ILs) 2-3, 3-2, 4-2, 4-3, 6-2, 6-3, 8-2, 9-1 and 10-4 harbouring 

introgressions of S. habrochaites LYC4 in the genetic background of S. lycopersicum 

cv Moneymaker  (MM) were selected on the basis of their salt tolerance and/or 

powdery mildew resistance (Kissoudis et al., 2015). Additionally, the NILs  carrying 

resistance loci Ol-1, ol-2 and Ol-4 were used. The resistance conferred by Ol-1, ol-2 

and Ol-4 is associated with slow HR, papilla formation and fast HR, respectively (Bai 

et al. 2005),  

The pathogenic fungus O. neolycopersici originated from infected commercial tomato 

plants (Lindhout et al. 1994) and was maintained on MM plants in a greenhouse 

compartment at 20±3 °C with 70±15% relative humidity (RH). 

Experimental conditions and treatments 

Experiments were carried out at the Unifarm greenhouse facilities of Wageningen 

University & Research Centre. The photoperiod regime was 16 hours light and 8 

hours dark. Greenhouse air humidity was 70%. Additional lighting (100 Wm-2) was 

used if the incoming shortwave radiation was below 200 Wm-2.  

Two independent experiments were carried out in two different years in Spring (April-

May). Plants were grown in pots filled with vermiculite and were irrigated with half 

strength Hoagland’s nutrient solution till leaching of the solution at regular intervals, 

avoiding accumulation of nutrients and NaCl.  

In the first experiment plants of all the above mentioned genotypes were evaluated for 

their susceptibility to powdery mildew under different salt stress regimes. Three-week 

old plants (4 plants per line) were watered with a solution containing different 

concentrations of NaCl (0- no salt stress, 50, 100 and 150 mM NaCl). Eight days after 

the initiation of salt treatments, plants were inoculated with powdery mildew by 

uniformly spraying a suspension of 5x104 conidia.ml-1. Plants were grown for another 

25 days post inoculation (dpi) in order to observe secondary infection symptoms.  

In the second experiment only NIL-Ol-1, -ol-2 and -Ol-4 and the recurrent parent cv. 

MM were evaluated. Three-week old plants (4 plants per line) were watered with 0, 50 

and 150 mM NaCl. In this case, eight days after the salt treatments half of the plants 

were spatially isolated and were not sprayed with powdery mildew, resulting in three 

treatments: no salt stress/not inoculated, salt stress/not inoculated, salt 

stress/inoculated). Plants were grown for another 20 days after inoculation.  
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Plant performance evaluation under salt stress and powdery mildew infection  

Chlorophyll content was measured using a SPAD-502 meter (Minolta, Osaka, Japan) 

at the third and fourth leaf counting from the bottom, on the fifth day after pathogen 

inoculation, before symptom appearance. Fresh and dry weight were measured as 

described previously (Kissoudis et al., 2015). The disease severity was expressed as 

disease index (DI) to a scale from 0 to 5, according to (Kissoudis et al. 2015), assessed 

at 10, 15 and 25 dpi for the first experiment and at 15 dpi for the second experiment. 

In addition to DI, a measure of the visual stress response was introduced to describe 

the accelerated senescence phenotypes observed at the later stages of infection under 

salt stress:   

0 = healthy plant, 1 = 0.1 - 10 % of foliar area affected, 2 = 10-20 % area affected with 

yellowing and moderate wilting, 3 = 20 – 30 % area affected with severe wilting, 4 = 

30-50 % area affected with severe wilting and moderate leaf abscission and 5 = > 50 % 

area affected with severe wilting and leaf abscission.  

 

Ion content  

Sampling for ion content determination differed between the two experiments. In the 

first experiment the 4th leaf counting from the bottom was sampled at 10dpi, shortly 

after symptom appearance, in order to assess the relationship between disease 

severity and ion concentration. In the second experiment, the top five leaves were 

sampled at 20dpi, the endpoint of the experiment, in order to examine differences in 

actively growing tissues, potentially linked to growth performance, and to avoid the 

dying bottom leaves of susceptible genotypes under combined stress conditions. The 

ion analysis included Na+, Cl-, K+, PO4
3-, SO4

2-, Mg2+ and Ca2+ and quantification was 

performed as described previously (Kissoudis et al., 2015). 

Histological analyses of in situ callose deposition  

Leaf disks (1.3 cm in diameter) were sampled from leaflets of the 4th leaf counting 

from the bottom on the 3rd day after pathogen inoculation, from the middle of the 

leaflets on both sides of the central vein. Staining was carried out in 24-well plates, 

with leaf disks placed with their abaxial side up. Callose deposition visualization was 

performed according to (Luna et al. 2011; Ton et al. 2005) with slight modifications. 

Leaf disks were placed in 96% ethanol to remove chlorophyll and after a 1-min wash 

in 0.07 M K2HPO4 (pH=9) stained for 2 hrs in 0.05% (w/v) aniline blue in 0.07 M 

K2HPO4 (pH=9) at room temperature. Leaf disks were subsequently mounted on glass 

slides with 70% glycerol. Callose was quantified from digital photographs as the 
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number of white pixels (fluorescence, callose intensity) relative to the total number of 

plant-derived pixels. 

Gene expression and pathogen quantification with qPCR  

Leaflets for the gene expression analyses were sampled 6dpi from the 3rd and 4th leaf 

counting from the bottom, before pathogen mycelium growth was visible. Leaflets for 

pathogen quantification were sampled 14 dpi inoculation from the 4th and 5th leaf 

counting from the bottom, when pathogen growth from the primary infection was 

highest. 

RNA for gene expression analyses was isolated with the RNeasy plant mini kit 

(Qiagen). Plant and fungal DNA for pathogen quantification analyses was extracted 

with DNeasy plant mini kit (Qiagen). RNA was treated with DNAse I (Invitrogen) to 

eliminate residual DNA. cDNA synthesis was performed with 1μg RNA template 

using  iScriptTM cDNA Synthesis Kit  (BioRAD). Quantitative real-time PCR was 

conducted using the iQ SYBR Green supermix (Bio-Rad) and the CFX96 Real-Time 

system (Bio-Rad).  

The reaction mix contained 5 µl 2x iQ SYBR GREEN super mix, 1 µl Forward primer 

(3 µM), 1 µl Reverse primer (3 µM) and 3 µl cDNA (or DNA, 20ng) template, into a 

final volume of 10 µl. Thermocycling conditions were 950C for 3 minutes, followed by 

40 cycles of 950C for 30 seconds and 600C for 30 seconds. Primers used for fungal 

quantification were Fw-On-CGCCAAAGACCTAACCAAAA and Rv-On-

AGCCAAGAGATCCGTTGTTG (Gao et al. 2014b). Primers for tomato elongation 

factor 1α (EF) were Fw-EF-GGAACTTGAGAAGGAGCCTAAG and Rv-EF-

CAACACCAACAGCAACAGTCT. The primers used for the expression analysis of 

selected tomato genes are provided in Supplementary Table 1.  Relative expression 

was calculated using the 2-Δ ΔCt method (Livak and Schmittgen 2001). 

Statistical analysis 

 Experiments were carried out in a Split plot design with 4 replications for the salt 

stress, powdery mildew and combined stress treatments. Statistical analyses were 

performed using Genstat 15th edition. Correlations between traits were calculated 

using the Pearson correlation coefficient (p≤0.05).  The relationship between 

elemental concentration (independent variable) and disease severity (dependent 

variable) was examined with multivariate regression analysis. 
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Results 

Effect of salt stress severity on powdery mildew resistance  

To examine the effect of salinity stress intensity on powdery mildew resistance, we 

evaluated the response of nine S. habrochaites LYC4 ILs, selected from a previous 

study (Kissoudis et al. 2015), in which they were shown to carry introgressions for 

either salinity tolerance and/or powdery mildew resistance.  We applied three levels of 

stress, which are considered to be low (50mM), intermediate (100mM) and high 

(150mM NaCl) salinity stress for most crops including tomato (Munns and Tester 

2008).  

Powdery mildew disease severity was on average the highest at 50mM NaCl, but 

decreased  at higher salt concentrations (Fig. 1a). In particular at 10dpi the average 

disease index was 65% higher in plants grown at 50mM NaCl compared to no salt 

stress conditions. This effect of salt stress on disease index was more pronounced in 

ILs that exhibited a higher level of resistance e.g. ILs 3-2, 4-3 and 9-1 (Sup Fig. 1). 

A unique response was observed under combined salt stress and powdery mildew 

infection with leaves initially exhibiting increased epinasty, even before visible 

pathogen growth.  

 

 

Figure 1. a) Disease index averaged across the LYC4 ILs and the recurrent parent 

MM  under powdery mildew without salt (0mM NaCl) and in combination with 50, 

100 and 150 mM NaCl, measured at 10, 15 and 25 days post inoculation (dpi), b) 

Senescence index across the same genotypes and treatments  at 15 dpi. Statistically 

significant differences (P≤0.05) are designated with different letters. 
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Figure 2 a) Disease and b) senescence index of NIL-O-1, -ol-2 and -Ol-4 (written as Ol-

1, ol-2, Ol-4 in the figure) and the recurrent parent MM  under powdery mildew 

without salt (0mM  NaCl) and in combination with 50,100 and 150 mM NaCl, 

measured at15 dpi, c) leaf phenotypes under  different powdery mildew and combined 

stress treatments. Asterisks denote statistically significant differences (P≤0.05) 

between powdery mildew and combined stress treatments for individual genotypes. 
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Shortly after the mildew appearance (9-10dpi) yellowing and wilting were observed, 

which in more susceptible genotypes led to up to 50% leaf abscission. These 

accelerated senescence and leaf abscission phenotypes were expressed as a visual 

stress index (scale 0-5). Similarly to disease index, senescence index was highest at 

50mM NaCl (Fig. 1b).  

In addition to the LYC4 ILs, NIL-Ol-1, -ol-2, and -Ol-4, conferring monogenic 

resistance to powdery mildew through different mechanisms (Bai et al. 2005) were 

evaluated under the same treatment scheme. The responses under combined stress 

were largely disparate among the different genotypes. Resistance in NIL-Ol-1 was 

partially compromised at 50 and 100 mM NaCl stress, while resistance was partially 

restored at 150 mM NaCl stress. Additionally, NIL-Ol-1 exhibited accelerated 

senescence and runaway cell death, leading to leaf abscission. Resistance in NIL-ol-2 

and –Ol-4, on the contrary, was not affected by salt stress at any salt stress level. No 

wilting or senescence symptoms were observed in either of the genotypes (Fig.2 a, b, c; 

Supp. Fig. 2).  

Relationship between different disease resistance responses with ion content and gene 

expression 

The ions Na+, Cl-, K+, PO4
3-, SO4

2-, Mg2+ and Ca2+ were measured at 10dpi to determine 

any possible relationship between leaf ion concentration and disease severity under 

salt stress. Both shoot Na+ and Cl- concentrations increased linearly with increased 

NaCl application (Fig. 3a, b). K+ and SO4
2- concentrations were decreased under salt 

stress with no differences observed between the different salinity levels, while no 

significant changes were observed for PO4
3-, Mg2+ and Ca2+ (Supp. Fig. 3).  

We examined whether there was a causal relationship between the decreased disease 

index with increased ion contents at higher stress levels using multiple stepwise 

regression. We used LYC4 ILs and NIL-Ol-1 along with the recurrent parent MM, in 

which resistance was affected by salt stress (Fig. 1 and 2). DI under salt stress 

conditions subtracted from that under non-salt stress conditions (only PM infection-DI 

change) was used as the dependent variable, which was strongly correlated with Na+  

and with Cl-  concentrations. Na+ and Cl- concentration increase accounted for 50% and 

55% of the variation in DI change, respectively (Fig. 3c, d). The addition of the rest of 

the ions to the model led to a slight decrease in the variance explained (46.7%), and 

separately (without Na+ and Cl-) these ions did not contribute significantly to 

variation in disease index either (p=0.068, 18% variance explained).   
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Figure 3 a, b ) Averaged concentrations of Na+ and Cl- across the LYC4 ILs and the 

recurrent parent MM  under powdery mildew without salt and in combination with 

salt stress. Statistically significant differences (P≤0.05) are designated with different 

letters. c,d) Regression analysis between Na+ and Cl- concentration and disease index 

change across the different salinity treatments in combination with powdery mildew. 

R2=percentage of variance of DI change explained by Na+ and Cl- concentration.  

 

Correlations for the different growth, ion content and disease susceptibility traits 

measured were calculated within each stress level (Supp. Table 2). Under powdery 

mildew infection (no salt stress), DI was weakly negatively correlated with Fresh 

Weight (FW) and Dry Weight (DW) (r= -0.4 and -0.39 respectively) and SO4
2- 

concentration (r= -0.52). At 50mM NaCl these correlations were no longer significant 

with DI, which was then negatively correlated with Ca2+ concentration (r= -0.47). The 

senescence index was positively correlated with fresh and dry weight (r= 0.5 and 0.52 

respectively) and negatively correlated with PO4
3- concentration (r= -0.5). No 

significant correlations were observed between DI and any of the traits measured at 

100mM NaCl. Finally at 150mM NaCl the negative effect of Na+ and Cl- accumulation 

on plant performance was apparent, with a negative correlation observed for shoot 

Na+  and (especially) Cl- concentrations with fresh and dry weight (Supp. Table 2).   
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Examining expression markers for major hormonal and other biochemical pathways 

involved in resistance to stress and defense to pathogens in selected ILs (Il3-2, 8-1 and 

9-1) revealed a noticeable trend in the underlying molecular responses under different 

intensities of salt stress and powdery mildew infection. Averaged across genotypes the 

expression of ACCase, encoding a biosynthetic enzyme of ethylene, was highest under 

the combination of mild salt stress (50mM) NaCl. A similar (but less strong) response 

was observed for the JA biosynthesis and response genes AOS and LOXD, 

respectively.PR1a expression was significantly upregulated under combined stress, 

with MM exhibiting the greatest induction among the genotypes. On the other hand 

induction of NCED, an ABA biosynthesis enzyme, was modest at both mild and severe 

salt stress combinations with powdery mildew. (Supp. Fig. 4). 

Performance of NILs under salt stress, powdery mildew and their combination 

The above mentioned results indicated a significant effect of the genotype and the 

stress intensity on powdery mildew resistance under salt stress. In a second 

experiment we focused on the NILs carrying the Ol-genes and the response to 50 and 

150mM NaCl, as they exhibited the most contrasting responses. Plants were exposed 

to no stress, single stress (salt or powdery mildew) as well as to combined stress and 

were compared to non-stressed plants.  

Similar to the first experiment mild salt stress (50mM NaCl) increased susceptibility 

and senescence of MM and Ol-1 was observed, while at severe salt stress (150mM 

NaCl this effect was reversed. The resistance of NIL-ol-2 and -Ol-4 was not affected in 

any of the treatments, and senescence was hardly increased. Fungal biomass was 

quantified and the results confirmed the visual DI scores (Fig. 4). 

MM and all NILs showed decreased plant fresh weight under salt treatment (FW, Fig. 

5a). Upon powdery mildew infection a reduction of 20% in terms of fresh weight was 

observed for MM and NIL-Ol-1, and 15% for NIL-ol-2. NIL-Ol-4 on the other hand 

showed no significant reduction in FW.  

Under combined stresses (both salt stress and powdery mildew infection), MM and 

NIL-Ol-1 exhibited a further significant decrease in biomass of 15 and 12% compared 

to salt stress only. NIL-ol-2 and -Ol-4 were less affected; 5 and 4% decrease in biomass 

in 50mM NaCl with powdery mildew (significant only for NIL-ol-2), while they 

maintained their performance to similar levels with salt stress alone in 150mM NaCl 

with powdery mildew (Fig. 5a).  
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Figure 4. Relative Oidium neolycopersici fungal biomass in MM and  NIL-O-1, -ol-2 

and-Ol-4 (written as Ol-1, ol-2, Ol-4 in the figure) under powdery mildew infection 

alone and in combination with 50 and 150mM NaCl. Values are normalized with that 

of MM under powdery mildew infection (no salt stress). Asterisks denote statistically 

significant differences (P≤0.05) between powdery mildew and combined stress 

treatments for individual genotypes. 

 

Under the assumption that ion concentration was related with growth performance of 

the plants, analysis, sampling for ion content analysis was carried out at the end of 

the experiment, The top five leaves were collected to avoid sampling of senescing (or 

abscised) leaves from MM and NIL-Ol-1 plants. Both Na+ and Cl- concentrations were 

slightly increased under combined salt stress with powdery mildew compared to salt 

stress alone (Fig. 5b, c). Small differences were observed between genotypes, with the 

relative increase of Na+ and Cl- concentration under combined stress being higher in 

NIL-ol-2 and NIL-Ol-4 compared to MM. No significant differences were observed for 

the other ions, except for a higher concentration of SO4
2-, and to a lesser extent K+, 

Mg2+ and Ca2+ in NIL-Ol-1 under powdery mildew and combined stress compared to 

non-stress and salt stress only (Supp. Fig. 5). 
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Figure 5 a) Above ground biomass (FW) of NIL-O-1, -ol-2 and -Ol-4 (written as Ol-1, 

ol-2, Ol-4 in the figure) and the recurrent parent MM under salt stress (0, 50, 150mM 

NaCl) or powdery mildew alone, and their combination. Level 0 for salinity stress 

corresponds to stress-free control conditions, while level 0 for powdery mildew-

combined stress corresponds to powdery mildew infection alone (no salt stress). b) Na+ 

and c) Cl- concentration of Ol-lines and MM under the same treatment scheme 

Asterisks denote statistically significant differences (P≤0.05) between salinity and 

powdery mildew-combined stress for individual genotypes. 
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Callose deposition 

In situ callose deposition at the leaf level was evaluated by aniline blue staining and 

examined by UV epifluoresence microscopy. Callose deposition, is an important 

penetration resistance mechanism against pathogens and powdery mildew in 

particular and is associated with ol-2-mediated resistance. Under powdery mildew 

infection NIL-ol-2 exhibited the highest intensity of callose deposits. Much less callose 

deposits were observed in NIL-Ol-1 and MM and were almost absent in NIL-Ol-4. 

Under salt stress with powdery mildew decreased callose depositions  were observed 

in all genotypes. Callose deposition under 50 and 150mM was almost abolished in MM 

and NIL-Ol-1 and was much lower in NIL-ol-2, especially under 150mM NaCl (Fig. 

6a, b) 

Gene expression analyses 

In order to link the responses of MM and NILs to specific pathways, we measured 

expression of marker genes in defense hormonal pathways, such as ROS, antioxidant 

and ion homeostasis pathways   For the ABA pathway, no significant expression 

changes were observed for the ABA-synthesizing enzyme NCED under salt stress 

compared to control conditions. However, a reduction of NCED expression (2-fold for 

MM and NIL-Ol-1) was observed under combined stress versus salt stress alone. A 

significant reduction in the expression of DHN-TAS was observed under combined 

stress for MM and NIL-Ol-1 (ranging from 2- to 7-fold), while an induction was 

observed in NIL-ol-2 (8-fold under 50mM NaCl and 2-fold for 150mM NaCl with 

powdery mildew).  

For the ethylene pathway, a dramatic expression induction of ethylene biosynthesis 

genes, ACCase and ACCox was observed in MM and NIL-Ol-1 under combined stress 

(ranging from 50- to 400-fold for ACCase). Similarly, in MM and NIL-Ol-1, the 

jasmonic acid biosynthesis and signalling genes AOS and LOXD were highly 

upregulated.  The pathogenesis- related gene PR1a was induced up to 70- and 45 fold 

in MM and NIL-Ol-1 respectively; the cell-wall invertase LIN6 was induced up to 230-

fold for MM and 50-fold for NIL-Ol-1. 

Contrasting responses were observed for the ROS signalling involved genes, RBOHD 

and RBOHF. On one hand, the RBOHD expression was increased under powdery 

mildew and combined stress. The induction was higher in NIL-ol-2 and -Ol-4 (2-fold 

higher compared to MM and NIL-Ol-1). On the other hand, the RBOHF expression 

was reduced 2-fold under powdery mildew and combined stress in all genotypes, 

except NIL-Ol-1 which exhibited a 2-fold induction under combined stress. 
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Figure 6 a). Callose deposits in leaves as visualized with UV microscopy after aniline 

blue staining, b) quantification of callose deposition relative to MM under powdery 

mildew infection (no salt stress). Asterisks denote statistically significant differences 

(P≤0.05) between powdery mildew and combined stress treatments for individual 

genotypes. 



87 
 

 

Figure 7. Expression of genes-markers for hormonal, abiotic and biotic stress 

signalling pathways in MM, and NIL-Ol-1, -ol-2 and -Ol-4 (written as Ol-1, ol-2, Ol-4 

in the figure), relative to EF1a, which was used as a housekeeping gene. Treatment 

and labelling scheme are the same as Fig.4. Asterisks denote statistically significant 

differences (P≤0.05) between powdery mildew and combined stress treatments for 

individual genotypes. 
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Differential responses were also observed among the different genotypes for the 

antioxidant enzymes APX and SOD. Expression of both genes was significantly 

reduced under powdery mildew and combined stress in MM and NIL-Ol-1 (an average 

of 3- fold decrease for APX and 2-fold decrease of SOD), while in NIL-ol-2 and NIL-Ol-

4 their expression remained stable or was slightly increased. 

In the rest of the genes examined, expression of the MLO gene (a negative regulator of 

disease resistance) was increased (especially in NIL-Ol-1) under powdery mildew and 

combined stress, while the Na+-H+ antiporter NHX3 expression was decreased under 

combined stress in comparison to salt stress only, with the stronger reduction (2.5-

fold) observed in NIL-Ol-1. 

 

Discussion 

The results presented here address two dimensions related to the complexity of plant 

responses under combinatorial stress: abiotic stress intensity and resistance 

mechanism. Both variables are of great importance for crop cultivation practices, as 

plants are exposed to variable stress intensities during their lifetime and the cultivars 

deployed often have different mechanisms of resistance.  

Mild salt stress has the most significant impact on susceptibility in partially resistant 

lines 

In our study, the susceptible control MM and the LYC4 ILs with partial resistance to 

powdery mildew showed comparable responses to single and combined stresses . 

Under mild (50 mM) and moderate (100 mM) salt stress the observations are in 

agreement with many studies reporting a negative effect of abiotic stress on disease 

resistance (Kissoudis et al. 2014; Prasch and Sonnewald 2013; Yasuda et al. 2008). 

Interestingly, mild salt stress most severely promoted disease susceptibility and leaf 

wilting and senescence. Severe salt stress (150 mM) on the other hand partly reversed 

this effect, with susceptibility for some genotypes being even lower than for plants 

under no salt stress. This still came at the expense of overall plant performance and 

growth, as severe salt stress imposed a severe growth penalty. These observations are 

of great importance for agricultural practices and the potential threat of abiotic and 

biotic stress combinations for plant productivity. Mild stress conditions are the most 

prevalent in agricultural lands, and therefore are highly relevant (Vadez et al. 2013). 

The reduction of susceptibility under high salt stress has limited relevance for 

agricultural production because of to the severe growth penalty; most of the major 

crops are considered glycophytes and have reduced growth and productivity by at 
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least 50% at salt levels of 150 mM NaCl (equalling EC values of 15-20)  (Munns and 

Tester 2008).  

Apart from its effect on powdery mildew susceptibility, the stress combination of salt 

and PM resulted in another unique response, i.e. accelerated leaf wilting, senescence 

and leaf abscission, which was not observed under salt stress or powdery mildew 

alone. Cell death and apoptosis are shared in the responses to the single stress factors 

and finely regulated (Demidchik et al. 2014; Miller et al. 2009; Petrov et al. 2015; 

Torres et al. 2005). The stress combination may have disrupted these balances 

resulting in uncontrolled cell death/senescence phenotype. Such a response is an 

important aspect of the negative interaction of defense pathways when plants are 

exposed to these stresses at the same time, and such a response can be detrimental for 

plant productivity (Gregersen et al. 2013).  

A direct fungal toxicity role for Na+ and Cl-? 

A unique component differentiating salt stress from other abiotic stresses such as 

drought or heat is Na+ and Cl- accumulation. This often has a toxic effect on the plant, 

but is toxic to the fungus as well; NaCl is known as an antifungal agent (Blomberg 

and Adler 1993) and it could potentially exert a direct toxic effect on fungal growth 

after accumulation in the plants. Our results point to a direct influence of Na+ and Cl- 

on pathogenicity as observed between the different salt stress levels. This is in line 

with the many examples of reduction of fungal pathogenicity by metal accumulation 

(Fones et al. 2010; Poschenrieder et al. 2006), and a similar trend is observed for smut 

disease and NaCl accumulation in maize (Soliman and Kostandi 1998). The decreased 

susceptibility observed under severe stress conditions may therefore be a unique 

aspect of salt stress that cannot be extrapolated to other abiotic stresses such as 

drought. Yet increased drought severity also appeared to decrease susceptibility to 

powdery mildew in garlic mustard (Enright and Cipollini 2011) and to Sclerotinia 

sclerotiorum (a necrotrophic fungus) and Pseudomonas syringae pv. tabaci (a hemi-

biotrophic bacterial pathogen) in Nicotiana benthamiana (Ramegowda et al. 2013).  

Except Na+ and Cl-, a weak negative correlation was evident between  SO4
2- and Ca2+ 

concentration and increased disease resistance. Though no strong conclusions can be 

drawn, these observations highlight the importance of the nutritional status of the 

plant in the incremental build-up (or breakdown) of basal quantitative resistance. 

Both SO4
2- and Ca2+ nutrition improve disease resistance (Jiang et al. 2013c; Kruse et 

al. 2007), and thus perturbation of their homeostasis under combined stress 

potentially contributes to derailing plant defenses.  
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Robustness and decreased fitness cost of mlo and R-gene based resistance to powdery 

mildew under salt stress combination. 

In contrast to the relatively uniform response of LYC4 ILs under combined stress, 

stark differences were observed between the Ol-NILs conferring monogenic resistance 

through different mechanisms. While NIL-ol-2 and NIL-Ol-4 had a robust resistance 

phenotype under all treatments of combined stress with maintenance of (almost) 

complete resistance and no accelerated senescence response, resistance in NIL-Ol-1 

succumbed under combination with salt stress, resembling LYC4 ILs. 

Gene expression analyses reflected the phenotypic differences, similar gene 

expression patterns were shown in the susceptible MM, LYC4 ILs with partial 

resistance and NIL-Ol-1 with complete resistance to powdery mildew. The massive 

induction of ethylene biosynthesis genes in NIL-Ol-1 which was absent in NIL-ol-2 

and NIL-Ol-4, may underlie its increased susceptibility and senescence under stress 

combination. Ethylene signalling has been demonstrated to be a prerequisite for 

symptom development after pathogen infection in tomato (O'Donnell et al. 2003). The 

very strong induction observed uniquely under combined stress in this study is likely 

to accelerate senescence and leaf abscission, potentiating the action of H2O2 and 

resulting in programmed cell death (PCD) processes (Bar-Dror et al. 2011; Sakamoto 

et al. 2008), in line with our observations of accelerated senescence in NIL-Ol-1 under 

combined stresses.  

The very strong induction of the cell-wall invertase LIN6 specifically under powdery 

mildew and combined stress in NIL-Ol-1 may additionally contribute to the observed 

phenotypes. Cell wall invertases (CWI) are induced after pathogen infection 

(Moghaddam and Van Den Ende 2012), however their contribution to plant defense 

during pathogenesis is still not known. Several studies report a positive contribution 

of CWIs in plant resistance (Bonfig et al. 2010; Essmann et al. 2008; Sonnewald et al. 

2012), however in tomato an opposite observation is reported with CWIs contributing 

to symptom development in response to Xanthomonas campestris pv. vesicatoria 

(Kocal et al. 2008). Co-silencing of Lin6 and Lin8 CWIs in tomato reduces the 

induction of pathogenesis related (PR-) genes together with pathogenesis symptom 

development (Kocal et al. 2008). In addition to the upregulation in  response to 

pathogens,  PR-proteins have been involved in processes like senescence and leaf 

abscission (Van Loon et al. 2006).The very high CWI induction under stress 

combination in NIL-Ol-1 along with PR1a (not observed in individual stress 

treatments) would therefore seem more likely to contribute to symptom development 

and the acceleration of senescence and leaf abscission. 
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Performance in terms of biomass was (also) significantly impacted by powdery mildew 

and combined stress, in line with the notion that induction of defense responses 

against pathogens comes at a cost (Bolton 2009). However combined stress exhibited 

even greater cost than powdery mildew and salt stress alone, which was most 

pronounced in MM and NIL-Ol-1. On the other hand NIL-Ol-4 did not show any 

additional fitness cost under stress combination. Fitness cost in MM and NIL-Ol-1 

might be due to increased senescence and a potential photosynthesis down regulation 

in response to the activation of defense hormone signalling especially of ethylene and 

jasmonic acid (Bilgin et al. 2010). Down regulation of adaptive and protective 

mechanisms involved in abiotic stress tolerance such as ABA signalling (evidenced by 

the reduction in DHN-TAS expression) and the reduced expression of APX and SOD 

under combined stress, potentially contributed to decreased tolerance (Faize et al. 

2011; Muñoz-Mayor et al. 2012), while the latter might also have decreased the 

threshold for the cell death responses observed as increased senescence (Stael et al. 

2015; Yao and Greenberg 2006). Na+ and Cl- concentrations in the leaves were slightly 

more increased under stress combination than under only salt stress, which may 

additionally contribute to the augmented growth penalty under these conditions. NIL-

Ol-4 however did not show any fitness cost despite exhibiting the stronger increase in 

Na+ and Cl- under combined stress compared to salt stress alone. 

 

What are the causal mechanisms underlying the contrasting responses of NILs with 

different resistance mechanisms? 

The question remains whether the alterations observed in hormone and sugar 

signalling (ethylene/ jasmonic acid signalling and CWI induction) are the cause or the 

consequence for the dramatic differences observed in the differential response of NIL-

Ol-1, -ol-2 and -Ol-4. Resistance of the three isogenic lines is based on completely 

different mechanisms. The Ol-1 gene, likely a non NBS-LRR gene, confers incomplete 

dominant resistance characterized by a multiple-cell delayed cell death (slow HR,  

(Seifi 2011a)). The cell death in NIL-Ol-1 can retard but not completely stop fungal 

development  (Bai et al. 2005; Li et al. 2007). The ol-2 gene (an mlo mutant) confers 

non-race specific resistance through papillae formation at the fungal penetration 

sites. The Ol-4 gene is an Mi-1-like gene (an NBS-LRR gene) and confers complete 

race-specific resistance associated with single-cell death (fast HR)(Bai et al. 2005; Li 

et al. 2007; Seifi et al. 2011b). 

Early signalling events in both abiotic and biotic stress include Ca+ fluxes and ROS 

generation whose specific signatures orchestrate downstream responses (Demidchik 
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et al. 2014; Segonzac et al. 2011) and pre-invasive defense responses such as callose 

deposition. The expression of two antioxidant enzyme genes was reduced and RBOH 

gene expression altered in the Ol-NILs under stress combination, indicating that 

these signatures may be changed and the deployment of defense mechanisms may be 

different. These changes might have altered the ROS footprint in NIL-Ol-1 and have 

led to defense breakdown and accelerated cell death. Ol-1-mediated resistance is 

prone to breakdown when cellular homeostatic mechanisms are perturbed as shown in 

ALS silenced plants, while resistance conferred by Ol-4 was not affected after by same 

manipulation (Gao et al. 2014b) 

Callose deposition was also significantly affected under combined stress. It was 

almost completely diminished in NIL-Ol-1 under combined stress. Although callose 

deposition is  not the major contributor to Ol-1-mediated resistance against powdery 

mildew (Li et al. 2007; Li et al. 2012), the decreased callose deposits might have 

additionally contributed to accelerated pathogen growth under combined stresses. 

Callose deposits were much higher in NIL-ol-2 and became very low at higher salt 

stress levels (150mM NaCl). Callose deposition regulation is complex and while it has 

been shown to be positively regulated by ABA signalling (Ton et al. 2009), under salt 

stress conditions multiple factors might be affected such as altered redox status and 

vesicular trafficking, both important regulatory and functional components for callose 

formation (Hamaji et al. 2009; Luna et al. 2011).  

R-gene (of the TIR-NB-LRR class) function was shown to be affected by abiotic stress, 

heat in particular (Mang et al. 2012) and to be regulated by proteins involved in heat 

stress tolerance (Hubert et al. 2009b). However, the Ol-4-mediated resistance was not 

affected at all by salt stress in our experiments, which may be due to the different 

plant response to salt stress than to heat. In addition,  the Ol-4 is a CC-NB-LRR gene, 

which confers resistance through different routes than TIR-NB-LRR genes (Teh and 

Hofius 2014), such as being autophagy independent. R-gene mediated effector 

triggered immunity (ETI) is characterized by compensatory relationships (Tsuda et al. 

2009) and its defense output is stronger and more prolonged compared to PTI (Tsuda 

et al. 2013), thus more robust and less prone to negative regulation from 

environmental or genetic factors (Cui et al. 2015).  

 

Conclusions and breeding routes for achieving robust combined powdery mildew and 

salt stress tolerance in tomato. 

We conclude that the impact of combined salinity and powdery mildew on tomato 

plants is dependent both on the salt stress severity and the mechanism of disease 
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resistance. Negative interactions were generally observed under mild salt stress, 

relevant for most agricultural scenarios, including increased powdery mildew 

susceptibility, leaf senescence and decreased biomass. These effects were partly 

reversed under severe salt stress but this significantly impacted plant biomass. HR-

based disease resistance appears to be the most robust both in terms of resistance and 

overall plant performance under combined stress, closely followed by mlo-based 

disease resistance. Since R-gene resistance appears to be more stable to 

environmental and genetic perturbations, the additional pyramiding of salt tolerance 

genes to R-gene mediated resistance  is expected to be more straightforward as fewer 

interactions can be expected (Kissoudis et al. 2014). A drawback is that pathogens can 

easily overcome R-gene resistance, thus pyramiding multiple R-genes is essential as 

well. The recessive ol-2 gene has the advantage that it is race non–specific, thus more 

stable over time. However, mlo-based resistance may be accompanied by increased 

senescence at the later stages of plant development (Piffanelli et al. 2002), and this 

can be further accelerated by abiotic stress. Fine-tuning of ethylene 

biosynthesis/response might be a key in mitigating the adverse effects of abiotic and 

biotic stress combination in genotypes with partial disease resistance. Ethylene 

biosynthesis down regulation significantly increased grain yield of maize under 

drought  (Habben et al. 2014) and can potentially contribute to increased crop 

resilience under scenarios of biotic stress combinations. 

The here reported results may be transferable and translated to other crops, as the 

core stress tolerance/defense response genetic regulation appears to be universal, 

despite the existence of species-specific responses. However each stress (abiotic or 

biotic) has some unique properties (e.g. toxic effects of Na+ and Cl- on pathogens are 

unique to salt stress) that need to be taken into account. Moreover, studies should be 

extended to cover the entire life cycle of plants, as plant age might significantly 

influence the phenotypic response (senescence in particular).  
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Abstract 

Plant hormones are paramount to plant adaptation to changing environmental 

conditions and interactions with microorganisms. There is currently limited 

knowledge on their significance in the response to stress combination. Using near 

isogenic lines (NILs) that carry the Ol-1, ol-2 and Ol-4 gene for resistance to tomato 

powdery mildew caused by Oidium neolycopersici, this study focused on the responses 

of these NILs to powdery mildew and salt stress combination. In these NILs, marker 

genes for monitoring hormonal pathways showed differential expression pattern upon 

powdery mildew infection. Further by crossing these NILs with tomato mutants 

notabilis (ABA-deficient), defenseless1 (JA-deficient) and epinastic (ET overproducer) 

the cross-talk among hormonal pathways was further investigated. Among the 

mutants, epinastic resulted in increased susceptibility of NIL-Ol-1 and breakdown of 

NIL-ol-2 resistance, accompanied by reduced callose deposition, effects that were more 

pronounced under combination with salt stress. On the other hand notabilis, resulting 

in H2O2 overproduction greatly reduced susceptibility of NIL-Ol-1 under combined 

stress accompanied however by heightened sensitivity to salt stress. Callose 

deposition reduction led to partial resistance breakdown in NIL-ol-2 which was 

reversed under combined stress. NIL-Ol-4 resistance remained robust across all 

mutant and treatment combinations. We discuss the critical role that hormone 

signalling appears to have for the outcome of combined stress and powdery mildew in 

terms of resistance and plant fitness integrating observations from physiological,  

histochemical and gene expression analyses. These significant insights obtained 

extend our understanding of hormonal regulation of combined stress responses and 

can aid in narrowing down targets for improving crop performance under stress 

combinations. 

 

Keywords:  abscisic acid, senescence, callose, ROS burst, chitinase 
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Introduction 

Plant hormones are central to plant adaptation to changing environmental conditions 

as well as interactions with other pathogenic and non-pathogenic   organisms. To 

maximize fitness under different stress scenarios, resource allocation must be 

precisely prioritized and thus hormonal signalling pathways are delicately 

interconnected and inter-regulated (Denancé et al. 2013). Understanding the 

underlying regulatory mechanisms of hormone crosstalk is of increased importance 

due to the current global climate change that is projected to further intensify 

unfavourable conditions for crop plant production (Challinor et al. 2014; Lobell et al. 

2011; Trnka et al. 2014). A significant consequence of climate change is the increased 

frequency of stress combinations that plants are exposed to, especially of abiotic 

factors with pathogenic microorganisms (Garrett et al. 2006; Kissoudis et al. 2014; 

Suzuki et al. 2014). Significant progress has been made in understanding hormone 

cross regulation under stress. Abscisic acid (ABA) is the major orchestrator of 

adaptation and tolerance to abiotic stress (Yoshida et al. 2014), while interplay 

between salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) regulates resistance 

responses towards pathogenic fungi (Pieterse et al. 2012). Considerable 

understanding has been established about the functional relationship between 

hormone signalling in defense responses. In the model plant Arabidopsis thaliana, SA 

is the main player in responses to biotrophic pathogens, while JA and ET, 

antagonistically with SA, mount defense against necrotrophs (Robert-Seilaniantz et 

al. 2011). These distinctions in many occasions are not clear-cut, as interactions 

between hormonal pathways appear to be hormone concentration and timing of 

induction dependent (Koornneef et al. 2008; Pieterse et al. 2009). Moreover, it appears 

that there are species-specific responses that are distinct from those reported in 

Arabidopsis. For example, in barley activation of systemic acquired resistance is 

under the control of ERF and WRKY transcription factors, but not of SA (Dey et al. 

2014). In tomato however, SA enhances resistance against necrotrophic pathogens 

such as Botrytis, while increasing susceptibility against biotrophs (Achuo et al. 2004).  

With regard to interaction between abiotic and biotic stresses, a mostly antagonistic 

interaction was observed between ABA and defense signalling across many plant 

species. ABA was shown to negatively interact with both SA and JA/ET signalling, 

compromising resistance to pathogens and systemic acquired resistance (Anderson et 

al. 2004; Ulferts et al. 2015; Yasuda et al. 2008). Observations in ABA deficient 

mutants that exhibit increased disease resistance further strengthen this notion, 

though in many cases increased resistance is attained through pleiotropic changes 

occurring in ABA-depleted plants (Curvers et al. 2010; Mang et al. 2012; Sanchez-
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Vallet et al. 2012). On the contrary, there are also a significant number of studies 

reporting on a positive role of ABA signalling especially in pre-invasive defense 

responses through priming for cell wall fortifications and callose deposition (Garcia-

Andrade et al. 2011; Ton et al. 2009). Thus, even though the majority of the studies 

indicate a negative role of ABA in defense responses, this does not preclude a 

potential beneficial contribution in specific pathosystems or at specific stages during 

pathogenesis.  

As hormones are involved in the control of numerous physiological processes in plants, 

elucidation of hormonal interaction patterns is of significant importance to 

understand plants’ responses under stress combinations. Combined stress research is 

still in its infancy, but the results of recent studies strongly indicate the presence of 

non-additive interactions at both the phenotypic and the gene expression levels 

(Kissoudis et al. 2014; Prasch and Sonnewald 2013b; Rasmussen et al. 2013). The 

complexity of interactions under combined abiotic and biotic stress is further 

emphasized by the differential regulation of a significant number of both SA and 

JA/ET-responsive genes under abiotic stress (Huang et al. 2008; Walia et al. 2007). 

How the up-regulation of defense signalling pathways under combined stress may 

affect adaptation to abiotic stress has not been established yet, though there is 

evidence that up-regulation of SA signalling dampens ABA responses (Kim et al. 

2011b).  

Our research is focused on the regulation of tomato resistance responses to the 

combination of salt stress and powdery mildew (PM) caused by Oidium neolycopersici. 

We demonstrated that PM resistance was negatively affected by 100mM NaCl in an 

introgression line (IL) population segregating for partial PM resistance (Kissoudis et 

al. 2015). Further research indicated that salt stress has the highest impact on 

disease susceptibility under intermediate concentrations, while salt concentrations 

imposing severe stress showed an opposite effect (Chapter 4). Combined stress 

impacted plant performance, significantly more than the individual stresses, which 

was manifested by accelerated senescence and leaf abscission. However, this response 

was strongly conditioned by the type of resistance responses to PM  as indicated by 

the examination of near-isogenic lines (NILs) carrying the resistance genes Ol-1, ol-2 

and Ol-4 (Chapter 4). Ol-1 enhances basal defense by inducing delayed cell death 

(DCD) in the late stages of pathogen infection (Li et al. 2007; Seifi 2011b) and 2014). 

The recessive gene ol-2, which encodes a membrane protein homologous to barley 

MLO, mediates resistance to PM by inducing callose deposition and cell wall 

fortification to stop PM at penetration stage (Bai et al. 2008a). Ol-4, is an NBS-LRR 

gene homologue to Mi-1 (Seifi 2011b) and 2014) that triggers a hypersensitivity 
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reaction (HR) and thereby prevents the PM colonization after formation of primary 

haustoria (Bai et al. 2003; Li et al. 2006). Expression analysis of selected pathway 

marker genes indicated a significant role of ethylene and JA, which were uniquely 

highly upregulated in the susceptible genotypes under combined stress (Chapter 4).  

Here we evaluated the effects of three major hormonal pathways, ABA, JA and ET, on 

tomato resistance to powdery mildew conferred by different Ol-genes. Two 

complementary strategies were adopted in this work. First we monitored the 

expression of marker genes for different phytohormone pathways by using NILs that 

carry each of the different Ol-genes (Ol-1, ol-2 and Ol-4). Then we evaluated whether 

PM resistance in these NILs is compromised in single (either salt or PM) and 

combined stresses (salt and PM) when JA, ET and ABA pathways are impaired. Our 

results provided a better understanding of how major hormonal pathways can affect 

tomato resistance and plant performance under combined PM and salt stresses.  

Material and Methods 

Plant and fungal materials 

The recessive epinastic (epi), and notabilis (not) tomato mutants and their respective 

backgrounds AC (Ailsa Craig), and VNF8, were obtained from the Tomato Genetic 

Resource Center (TGRC), University of California, Davis, California. The tomato 

defenseless1 (def1) recessive mutant was obtained from Dr. C.A. Ryan, Washington 

State University. The near-isogenic lines, NIL-Ol-1, NIL-ol-2 and NIL-Ol-4 (in the 

background of S. lycopersicum cv Moneymaker (MM)), which confer monogenic 

resistance to PM through different mechanisms, are described in (Bai et al. 2005). 

Each of the NILs was crossed with the epi, not, and def1 mutants, with the exception 

of NIL-Ol-4 crossing with not mutant. By subsequent selfing and selection for Ol-

genes and the hormonal mutations (described below), F3 and F4 plants that were 

homozygous for both the Ol-gene and mutations were identified and used in the 

following experiments. 

The pathogenic fungus O. neolycopersici originated from infected commercial tomato 

plants and was maintained on MM plants in a greenhouse compartment at 20±3 °C 

with 70±15% relative humidity (RH). 

Selection for the presence of Ol-genes and hormonal mutations 

Selection for homozygous Ol-genes was carried out by using gene-based or tightly-

linked molecular markers for the resistance genes (Bai et al. 2005). The primers used 

for genotyping were: F-TGCTCTAACAAAATCACCAAAATC and R-
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AAATGGTCAAACAAAGTCTATTGAG for Ol-1,  F-ACCCTTAAGAAATAGGGCAAA 

and R- ACCATCATGAACCCATGTCT for ol-2, and : F-GAACCGGATGTGTCCTTGAC 

and R-TTCTCCGAGACTTTGAACAAGA for Ol-4. 

DNA isolation was carried out according to (Wang et al. 1993) with some 

modifications. About 10 mg of leaf tissue was homogenized for 5 minutes in a blender 

with 20 μl of 0.5 N NaOH. Then 20 μl of 100 mM Tris-HCl was added and thoroughly 

mixed, and  5 μl of this homogenate was diluted with 95 μl of 100 mM Tris-HCl. The 

PCR reaction mix contained 0.12 µl of Phire Hot Start II DNA Polymerase (Thermo 

Scientific), 2 µl Forward primer (5 µM), 2 µl Reverse primer (5 µM), 1 µl of the diluted 

leaf homogenate as a DNA template and 1µl of PVP (10% w/v) as a chelating agent for 

impurities, into a final volume of 11 µl. The amplification profile was 40 cycles of 98 ◦C 

for 5 seconds, 54 ◦C for 5 seconds and 72 ◦C for 10 seconds. 

Different selection approaches were used to select for plants with a homozygous 

hormonal mutation, depending on whether the gene and the polymorphism 

underlying the mutation is known. The not mutation is well characterized and is the 

consequence of a specific A/T base pair deletion in the coding sequence that has 

resulted in a frameshift mutation (Burbidge et al. 1999), indicating that it is a null 

mutant. Plants homozygous for the not mutation were selected based on sequencing 

an amplicon containing the location of the A/T mutation at position 597 of the ORF 

(primers used not-F- GTTCGAAACGGAGCTAACCC, not-R- 

AACAAGTCCGAAGAGCCCA). The gene mutation causing the epi  phenotype is not 

known , but mutant seedlings carrying the epi mutation are significantly shorter 

when germinated in the dark compared to wild type plants (Barry et al. 2001). Thus, 

seeds were germinated in the dark and plants showing no etiolation were selected as 

homozygous plants carrying the epi mutation. Selection for the def1 mutant was done 

on the basis that this mutation affects JA biosynthesis (Howe et al. 1996). Thus, the 

mutants are unable to synthesize the hormone under conditions normally inducing JA 

biosynthesis and signalling, such as wounding. To test this, we pierced a single leaflet 

of the wild type, JA deficient parental lines and evaluated the induction of the JA 

marker leucine aminopeptidase A (LapA) 24hr after wounding with primers; F-

ATCTCAGGTTTCCTGGTGGAAGGA, R-AGTTGCTATGGCAGAGGCAGAG. RNA 

isolation was performed with a MagMAX™-96 Total RNA Isolation Kit in a 

KingFisher™ Flex Magnetic Particle Processor according to manufacturer’s  

instructions, and expression of the LapA gene was evaluated. An average of 100-fold 

difference in expression was observed between wild type (wt) plant and homozygous 

def1 mutant, thus it could be used safely as a qualitative marker for selecting the 

mutant.  
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Experimental conditions and treatments 

Experiments were carried out with a photoperiod regime of 16 hours light and 8 hours 

dark. Greenhouse air humidity was 70%. Additional lighting (100 Wm-2) was supplied 

if the incoming radiation was below 200 Wm-2. Plants were grown in pots filled with 

vermiculite and were irrigated with half strength Hoagland’s nutrient solution at 

regular intervals till leaching of the solution, in order to avoid accumulation of 

nutrients and NaCl.  

The experiments were carried out twice in different years (2013,2014) in the period of 

April-May. In the first experiment, homozygous plants (4 plants per line) of all 

resistance genotypes x mutant combinations (e.g. Ol-1xdef plants, etc) were evaluated 

for their susceptibility to PM or in combination with salt stress, along with plants 

selected from the segregating population that carry the Ol-genes but not the hormonal 

mutations. For each combination, 6 to 8 plants were tested. Three-week old plants 

were watered with half strength Hoagland solution containing either zero (no salt 

stress) or 50 mM NaCl (mild salt stress). Eight days after the initiation of salt 

treatments, plants were inoculated with PM by uniformly spraying a suspension of 

5x104 conidia*ml-1 prepared by washing conidial spores from leaves of heavily infected 

(sporulation stage) MM plants. Plants were further grown for 20 days after 

inoculation.  

In the second experiment, all resistance genotypes x mutant combinations were 

similarly assessed (excluding the genotypes from the population that carry the Ol-

genes but not the hormonal mutations)). In addition, we included a non-PM treatment 

(only salt stress). Half of the plants from Ol-1xepi or Ol-1xnot (selected based on their 

explicit phenotypes) were spatially isolated eight days after the salt treatments and 

were not sprayed with powdery mildew, which allowed to have plants receiving all 

possible treatment combinations (no salt stress/not inoculated, no salt 

stress/inoculated, salt stress/not inoculated, salt stress/inoculated). Plants were 

further grown for 20 days after inoculation. 

Plant performance evaluation under salt stress and powdery mildew  

The disease severity was assessed at 10, 15 and 25 days post inoculation (dpi) for the 

first experiment, and at 15 dpi for the second experiment as disease index (DI) on a 

scale from 0 to 5 as described before (Kissoudis et al. 2014). In addition to DI, a 

measure of the extent of senescence (senescence index (SI)) was introduced to describe 

the accelerated senescence phenotypes observed at the later stages of infection under 

salt stress: 0 = healthy plant, 1 = 0.1 - 10 % of foliar area affected, 2 = 10-20 % area 
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affected with yellowing and moderate wilting, 3 = 20 – 30 % area affected with severe 

wilting, 4 = 30-50 % area affected with severe wilting and moderate leaf abscission, 

and 5 = > 50 % area affected with severe wilting and leaf abscission. 

 

Ion content analysis 

The five youngest leaves (counting from the top of the plant) were sampled at 20dpi, 

the endpoint of the second experiment, in order to examine differences in actively 

growing tissues, potentially linked to growth performance, and avoid the dying bottom 

leaves of susceptible genotypes under combined stress conditions. The concentration 

of Na+, Cl-, K+, PO4
3-, SO4

2-, Mg2+ and Ca2+ was measured with ion chromatography as 

described previously (Kissoudis et al. 2015).  

In situ histological analyses of H2O2 accumulation and callose deposition  

Leaf disks (1.3 cm in diameter) were sampled from leaflets of the 4th leaf counting 

from the bottom on the 3rd day after pathogen inoculation. To ensure uniformity, leaf 

disks were taken from the middle of the leaflets on both sides of the central vein. 

Staining was carried out in 24-well plates, where leaf disks were placed with the 

abaxial side up. For H2O2 visualization, leaf disks were stained in 1 mg/ml DAB (3-3’-

diaminobenzidine), pH =3.7 for 16 h in the dark and were subsequently transferred to 

96% ethanol for 24h to remove chlorophyll according to (Martinez De Ilarduya et al. 

2003). Leaf disks were mounted on glass slides with 70% glycerol. DAB staining 

intensities were quantified from digital photographs by the number of dark-brown 

DAB pixels relative to total pixels corresponding to plant material. 

Callose deposition visualization was performed according to (Luna et al. 2011; Ton et 

al. 2005) with slight modifications. Leaf disks were initially placed in 96% ethanol to 

remove chlorophyll and after a 1-min wash in 0.07 M K2HPO4 (pH=9), were stained 

for 2 hrs in 0.02% (w/v) aniline blue in 0.07 M K2HPO4 (pH=9) at room temperature. 

Leaf disks were mounted on glass slides with 70% glycerol. Callose was quantified 

from digital photographs by the number of white pixels (fluorescence, related to 

callose intensity) relative to the total number of pixels covering plant material using 

Adobe Photoshop. 

Gene expression and pathogen quantification analyses with qRT-PCR 

For the time course expression study on hormonal marker genes in the NILs with only 

PM challenge, the same time series that was used previously for cDNA-AFLP 

profiling (Li et al. 2007) was used in this experiment. In brief, this time series 
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included cDNAs from plants of MM, NIL-Ol-1, NIL-ol-2 and NIL-Ol-4. Non-inoculated 

(mock) and PM-inoculated leaves (2nd and 3rd) of three plants per line were collected at 

1, 3, 5, 7 and 9 dpi. For each line, the cDNAs from mock samples from different time 

points were mixed and used as calibrator for qRT-PCR analysis.  

To evaluate the expression of stress, defense and hormone marker genes under salt 

and PM stresses, the 3rd and 4th leaf counting from the bottom was sampled at 6 dpi, 

when pathogen mycelium growth is not visible. Sampling of the 4th and 5th leaf 

counting from the bottom for pathogen quantification was carried out 14 dpi, when 

pathogen growth from the primary infection had reached its peak. For each genotype, 

3 to 5 plants were used.  

RNA template for gene expression analyses was isolated with the RNeasy plant mini 

kit (Qiagen), while plant and fungal DNA for pathogen quantification analyses was 

extracted with DNeasy plant mini kit (Qiagen). RNA was treated with DNAse I 

(Invitrogen) to eliminate residual DNA. cDNA synthesis was performed with 1μg RNA 

template using iScriptTM cDNA Synthesis Kit (BioRAD). Quantitative real-time PCR 

was conducted using the iQ SYBR Green supermix (Bio-Rad) and the CFX96 Real-

Time system (Bio-Rad). The reaction mix contained 5 µl 2X iQ SYBR GREEN super 

mix, 1 µl Forward primer (3 µM), 1 µl Reverse primer (3 µM) and 3 µl cDNA (or DNA, 

20 ng) template, in a final volume of 10 µl. Thermocycling conditions were 95 0C for 3 

minutes, followed by 40 cycles of 95 0C for 30 seconds and 60 0C for 30 seconds. 

Primers used for fungal quantification were Fw-On-CGCCAAAGACCTAACCAAAA 

and Rv-On-AGCCAAGAGATCCGTTGTTG. Primers for tomato elongation factor 1α 

(EF) were Fw-EF-GGAACTTGAGAAGGAGCCTAAG and Rv-EF-

CAACACCAACAGCAACAGTCT (Gao et al. 2014b). The primers used to monitor the 

expression of tomato genes are provided in (Supplementary Table 1). Relative 

expression was calculated using the 2-Δ ΔCt method (Livak and Schmittgen 2001). 

 

Results 

Time course expression analysis of hormonal pathways in NILs. 

To monitor changes in JA, SA, ET, and ABA pathways, the expression levels of 

marker genes or these pathways were measured in the NILs and MM, in a time 

course from 1 to 9 dpi with PM. Significant differences were observed in the 

expression patterns and in the magnitude of induction for some of these pathway 

related genes in the NILs and MM (Fig 1).  
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SA induces expression of a group of pathogenesis-related genes (PR genes) in 

Arabidopsis including PR-2, which is often used as a marker gene for SA pathway 

(Uknes et al. 1992). The tomato PR-2 gene (Domingo et al. 1994) was induced in 

response to Phytophthora infestans as well as in response to Benzothiadiazole (BTH, 

an analog of SA) (Beyer et al. 2001). Therefore, we used PR-2 as a marker gene for the 

SA pathway in this study (see SlPR-2 in Supplementary Table 1).  

Figure 1. Expression of a) PR-2, b) Chitinase9, c) LOXD and  d) rd22 (markers for SA, 

ET, JA, and ABA pathways, respectively) in MM, and NIL-Ol-1, -ol-2, and -Ol-4 in a 

time-course after inoculation with PM. Second and third leaves were sampled at 1, 3, 

5, 7, and 9 days post inoculation (dpi) from powdery mildew-inoculated and -non-

inoculated (control) plants (n=4). 

At 1 dpi, there was an induction in the PR-2 expression in NIL-ol-2 and NIL-Ol-4, but 

very little induction in NIL-Ol-1 and MM. At the last time point (9 dpi), the PR-2 

expression was increased in MM, NIL-Ol-1 and NIL-Ol-4, with the highest level in 

NIL-Ol-1 (approximately 9-fold induction compared to non-inoculated plants).  

The ET pathway signalling was monitored through the expression of the Chitinase9 

(Chi9) gene, which has been used as a marker gene for ET pathway in tomato (Barry 

et al. 2001). The expression level of Chi9 did not show great fluctuations across 

genotypes and time points with the exception of NIL-Ol-1 in which a marked up-



105 
 

regulation was observed in the later time points (4.5- and 8-fold induction at 7 and 9 

dpi, respectively). 

The lipoxygenase D (LOXD) gene has been shown to be induced by JA in tomato 

(Heitz et al. 1997), thus we used this gene as a marker for the JA pathway. Its 

expression was relatively stable or slightly down-regulated across all genotypes till 

7dpi, but a marked up-regulation was observed in all genotypes at 9 dpi, which was 

strongest in MM and NIL-ol-2 (increase of approximately 6 and 4-fold, respectively, 

compared to control conditions).  

In Arabidopsis, rd22 is an ABA-responsive gene (Shinozaki et al. 2003). By performing 

TBLASTN in tomato Unigene database (http://solgenomics.net) the homologues of 

these genes in tomato (EU679376.1) were retrieved and used as the tomato rd22 

orthologue. Similar to the JA marker LOXD, the rd22 expression was relatively stable 

among genotypes in the time points from 1-7dpi and was significantly up-regulated at 

9dpi. MM showed the highest expression, 8.5-fold increase compared to control 

conditions, while all NILs exhibited a 4-fold upregulation.  

Effects of hormonal mutants on the PM resistance in the NILs under combined 

stresses 

In order to evaluate the effect of hormones on tomato PM resistance conferred by 

different Ol-genes (Ol-1, ol-2 and Ol-4), we crossed the NILs with the tomato 

hormonal mutants def1 (JA-deficient) (Howe et al. 1996), not (ABA-deficient) 

(Burbidge et al. 1999) and epi (ET overproducer) (Fujino et al. 1988). F3 and/or F4 

plants that were homozygous for each Ol-gene (Ol/Ol) and mutation (m/m) were 

selected for each cross combination and evaluated for PM resistance/susceptibility 

under no stress and salt  stress condition. 50mM NaCl was applied which represents a 

mild salt stress that is representative for agricultural production conditions and has 

been shown to greatly affect resistance in combination with PM (Chapter 4). The 

mutants and their background lines, as well as plants from the crosses that are 

homozygous for individual Ol-genes but do not carry the hormone mutations (null 

segregants) were evaluated for PM susceptibility. The hormone mutants and their 

background lines were all susceptible to PM, and not significantly different from the 

susceptibility of MM . The  null hormone mutant segregants however were as 

resistant as the NILs, suggesting that the resistance conferred by the Ol-genes was 

not affected by the genetic background crosses (data not shown).  

 

http://solgenomics.net/
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Similar to our previous results (Chapter 4), application of 50mM NaCl significantly 

increases the PM susceptibility of MM and NIL-Ol-1, while the resistance level of 

NIL-ol-2 and NIL-Ol-4 was not affected (Fig. 2). The resistance conferred by Ol-1 and 

ol-2, but not Ol-4 was significantly affected when combined with the hormone mutants 

(Fig.2, Supp. Fig.1) .  

Resistance conferred by the Ol-1 gene was compromised in plants carrying the epi 

mutation without salt stress (e,g. average DI of 3.2 for Ol-1xepi compared to 0.6 for 

NIL-Ol-1), and susceptibility of Ol-1xepi plants was further increased under salt 

stress (e.g. DI of 4.3 for Ol-1xepi with salt compared to 3.2 without salt, Fig. 2a). The 

significant increase in susceptibility of the Ol-1xepi plants was accompanied by 

almost complete abolishment of the accelerated senescence and cell death symptoms 

under salt stress observed in NIL-Ol-1  (senescence index-SI of 0.6 compared to 2.8 for 

NIL-Ol-1, Fig. 2b ). The Ol-1xnot plants showed a level of resistance similar to NIL-

Ol-1 plants without salt stress. However, ABA deficiency markedly increased the 

compromised Ol-1-conferred resistance under salt stress  (DI of 0.7 for Ol-1xnot 

compared to 2.4 for NIL-Ol-1, Fig. 2a), and additionally reduced the accelerated 

senescence and leaf abscission phenotype (SI of 1 compared to 2.8 for NIL-Ol-1, Fig. 

2b). JA deficiency impacted senescence in PM treated Ol-1xdef  plants with increased 

yellowing and older leaves abscission (Supp. Fig.1a,c). 

For the ol-2-mediated resistance, increased susceptibility was observed in ol-2xdef, ol-

2xepi and ol-2xnot plants. Under salt stress, this susceptibility was significantly 

further increased for ol-2xepi plants (DI of 1.2 with salt compared to 0.8 without salt), 

while it was significantly decreased for ol-2xdef and ol-2xnot plants (DI of 0.3 and 0.5 

with salt compared to 1 and 1.5 respectively without salt). No significant differences 

were observed for senescence under either PM infection or combined stress between 

NIL-ol-2 and any of the ol-2x hormone mutant plants. 
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Figure 2. a) Disease and b) senescence index of NIL-O-1, -ol-2, -Ol-4,the recurrent 

parent MM  and their crosses with different hormone mutants under powdery mildew 

individually (no salt stress) and in combination with 50 mM  NaCl  measured at15 

dpi. Error bars depict standard error (n=6). Asterisks denote statistically significant 

differences (P≤0.05) between powdery mildew and combined stress treatments for 

individual genotypes 

 

PM quantification by means of qPCR was in line with the visual scoring, in many 

occasions revealing even greater differences between genotypes or treatments. Only 

for NIL-Ol-1 plants and Ol-1xdef plants under combined stress the qPCR results 

revealed a smaller difference  compared to what our visual scoring suggested, 

potentially due to the senescence symptoms leading to an overestimation of visual 

disease score  (Fig. 3).  
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Figure 3. Relative Oidium neolycopersici fungal biomass (calculated  as the ratio of 

fungal ITS gene amplification in comparison with tomato EF1a and normalized with 

the values of MM under powdery mildew infection (no salt stress)) in MM and NIL-Ol-

1, -ol-2, and -Ol-4 and their respective mutants under powdery mildew infection alone 

and in combination with 50 mM NaCl. Asterisks denote statistically significant 

differences (P≤0.05) between powdery mildew and combined stress treatments for 

individual genotypes. 

  

Performance and fitness cost of NIL-Ol-1 and NIL-ol-2 crosses with the epi  and not 

mutants under combined stress  

Explicit phenotypes were observed in Ol-1xepi, Ol-1xnot, ol-2xepi, ol-2xnot plants, 

which were studied in more detail under control conditions, salt stress (50 mM) only, 

PM only, and combined salt stress and PM, allowing a comparison of growth 

performance cost under the different stress conditions. These Ol-gene and mutant 

combinations are particularly interesting as ABA is the major hormone orchestrating 

abiotic stress responses in plants (Yoshida et al. 2014), while ET signalling was shown 

to be crucial for plant susceptibility and senescence responses under combined stress 

(Chapter 4).  

The Ol-1xepi and ol-2xepi plants had reduced biomass under conditions without stress 

compared to the respective NIL line, but had increased biomass under salt stress 

relative to biomass under control conditions. In contrast and as expected, ABA 
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deficiency conferred by the not mutation significantly increased reduction of biomass 

under salt stress relative to control conditions (Fig. 4). PM resulted in a decrease in 

aboveground fresh weight in all Ol-gene x mutant combinations. The combination of 

salt and PM imposed an even greater growth penalty than salt stress alone. While the 

reduction in performance between salt stress only and combined salt stress-PM was 

lower in the not mutants crosses, the growth reduction under salt stress per se was 

far greater in the ABA deficient plants compared to the NILs (Fig.4).  

 

Figure 4. Aboveground biomass (FW) of MM, NIL-O-1, -ol-2, and their crosses with 

the hormone mutants under control conditions (0) and salt stress (50mM NaCl) on the 

x-axis, and with or without powdery mildew (black vs. light grey). Level 0 for salinity 

stress corresponds to stress-free control conditions, while level 0 for powdery mildew-

combined stress corresponds to powdery mildew infection alone (no salt stress) 

Asterisks denote statistically significant differences (P≤0.05)  between salinity and 

powdery mildew-combined stress for individual genotypes. 

 

Ion content, and especially Na+ and Cl- concentration was shown to impact PM 

susceptibility (Chapter 4).  The Ol-1xepi and Ol-1xnot plants  accumulated a higher 

amount of Na+ and Cl- under salt stress compared to the respective parental NILs 

(Suppl. Fig.2). However, the Ol-1xepi and ol-2 x epi plants exhibited a significant 

reduction in the concentration of Na+ and Cl- under combined PM and salt stress 

compared to salt stress only, while the Ol-genexnot combinations had increased Na+ 

and Cl- concentrations under these conditions. K+ content was significantly higher in 

Ol-1xepi and ol-2xepi plants under all conditions examined.  
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Histological analyses of callose deposition and H2O2 accumulation  

Callose deposition at the sites of attempted pathogen penetration increases plant 

resistance and is involved in ol-2-mediated resistance(Bai et al. 2008b; Ellinger et al. 

2013) . 

 

Figure 5. a) Callose deposits in leaves of MM, NIL-Ol-1 and ol-2 and their respective 

crosses with epi and not mutants as visualized with UV microscopy after aniline blue 

staining, b) quantification of callose deposition relative to MM under powdery mildew 

infection (no salt stress).  

A 

B 



111 
 

As shown previously (Chapter 4), NIL-ol-2 exhibited increased callose deposits 

compared to NIL-Ol-1 and MM upon PM infection, and additional salt stress 

decreased callose deposits in all genotypes (Fig.5).  

Examination of hydrogen peroxide generation with DAB staining indicated slightly 

higher ROS production in NIL-Ol-1 compared to MM after PM infection, while no 

significant differences were observed for NIL-ol-2. A massive H2O2 increase was 

observed in both Ol-1xnot and ol-2xnot plants. The epi mutation on the other hand did 

not have a considerable impact on H2O2 accumulation (Fig.6a and b). 

 

 

A 
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Figure 6. H2O2 visualization after DAB staining in MM, NIL-Ol-1 and ol-2 and their 

respective crosses with epi and not mutants under a) control and salt stress, b) 

powdery mildew and combined stress. 

 

Expression analyses 

Gene expression of additional marker genes for the biosynthesis and signalling of 

major hormonal pathways, ROS, antioxidant and ion homeostasis pathways involved 

in abiotic and biotic stress responses of tomato were determined a day prior to 

powdery mildew symptom development (Fig.7). The expression of the ABA 

biosynthesis gene NCED was either reduced (in Ol-1xepi plants) or stable (in ol-2xepi 

plants) under combined stress compared to salt stress only. In the not mutant this 

gene contains a mutation that causes a frameshift mutation. It may be transcribed 

but does not code for a functional enzyme. ABA deficiency in not is in line with the 

modest expression levels (significantly lower compared to NILs) of the ABA catabolic 

gene, ABAOH, and the dehydrin gene, DHN-TAS under all conditions. Dehydrin 

expression was highly induced in in Ol-1xepi and o1-2xepi plants under salt stress  

B 
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Figure 7. Expression of genes-markers for hormonal, abiotic and biotic stress 

signalling pathways in MM, NIL-Ol-1 and ol-2 and their respective crosses with epi 

and not mutants, relative to EF1a, which was used as a housekeeping gene. 

Treatment and labelling scheme are the same as Fig.4. Asterisks denote statistically 

significant differences (P≤0.05) between powdery mildew and combined stress 

treatments for individual genotypes. 
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(50- and 6-fold, respectively), but this response was completely abolished under 

combined stress, while it was exceptionally induced under combined stress in NIL-ol-

2. 

Under combined stress,  an induction of ET biosynthetic genes ACCase and ACCox 

(ACO1) was observed in NIL-Ol-1,accompanying the increased susceptibility and 

senescence response. This induction was significantly reduced Ol-1xepi and Ol-1xnot 

plants,. On the other hand, CHI9 was vastly induced in both Ol-1xnot and ol-2xnot 

plants (up to 20-fold compared to NIL-Ol-1 and NIL-ol-2) and this was maintained in 

all the (stress) treatments.  

Expression levels of AOS and LOXD, nodes of the JA pathway, were significantly 

reduced in ol-2xepi and ol-2xnot crosses under salt and combined stress treatments 

(reductions up to 6-fold). PR1a induction observed in NIL-Ol-1 after PM and combined 

stress (25- and 70-fold higher, respectively, compared to non-stress conditions) was 

greatly reduced in both Ol-1xepi and Ol-1xnot plants, despite the higher basal 

expression in these plants. The strong induction of invertase Lin6 observed in NIL-Ol-

1 under combined stress (see also Chapter 4) was greatly reduced in Ol-1xepi and Ol-

1xnot plants.  

Discussion 

Plant hormones are central modulators of plant responses to environmental stress 

and pathogen attack. Hormonal regulation is therefore important for adaptation to 

both abiotic and biotic stresses (Peleg and Blumwald 2011; Robert-Seilaniantz et al. 

2011). Our results showed differential response of the major hormonal pathways 

involved in abiotic (ABA) and biotic stress (JA, ET) in response to PM, salt stress and 

PM and salt stress combined in tomato NILs carrying different genes for resistance to 

PM (Fig.8), as exemplified by growth response, histochemical development of disease 

and by gene expression of key genes involved in different signaling  pathways. 

The epi mutation compromises the Ol-1- and ol-2-mediated PM resistance  

The Ol-1 gene confers incomplete PM resistance by inducing delayed cell death (DCD) 

at the late stage of PM infection (Li et al., 2007; Seifi et al. 2011a). The gene is not 

cloned yet, but it likely is a non NBS-LRR gene enhancing basal defense. The ol-2 

gene is a mlo-mutant and mediates resistance to PM by inducing callose deposition to 

stop PM at penetration stage (Bai et al. 2005). 
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Figure 8. Schematic summary of the phenotypes of the hormone mutants epi, not and 

def1 crosses with NILs-Ol-1,-ol-2 and –Ol-4 under powdery mildew and powdery 

mildew/salt stress combination in comparison with the NIL-Ols under the same 

treatments. 

 

The PM resistance mediated by the Ol-1 and ol-2 gene was compromised by the epi 

mutation, suggesting a negative role of ethylene signaling in Ol-1- and ol-2-mediated 

resistance to PM. In addition, salt stress had an additional negative effect on the PM 

susceptibility of Ol-1xepi and ol-2xepi plants, indicating an additive effect of this 

abiotic stress and ethylene in compromised Ol-1- and ol-2-mediated resistance. This is 

in line with the established role of ethylene in susceptibility for biotrophic pathogens 

in Arabidopsis and several other plant species through negative interaction with 

salicylic acid signaling (Pieterse et al. 2009). Ethylene signaling appears to be 

involved in disease symptom development against Xanthomonas campestris pv. 
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vesicatoria in tomato, which additionally requires the sequential induction of 

jasmonates and SA (O'Donnell et al. 2003).  

The epi mutant has been shown to overproduce ethylene (Fujino et al. 1988). This can 

be reflected by the expression of ACCase which showed an approximate 10-fold 

induction compared to WT. No differences were observed in ACO1 expression, the 

final enzyme in ethylene biosynthesis. This is in accordance with previous studies 

that showed that ACC (the product of ACCase and the rate-limiting compound for 

ethylene synthesis) is increased in the epi mutant (Fujino et al. 1988).  

However, epi is a mutant with pleotropic phenotypic effects severely affecting plant 

morphology, such as reduced growth and leaf epinasty (Barry et al. 2001; Fujino et al. 

1988). There is a striking difference between the increased senescence and cell death 

observed in NIL-Ol-1 and the complete absence of senescence and cell death in Ol-

1xepi plants under combined stress, which seems to contradict the known promotion 

of senescence by ethylene (Penfold and Buchanan-Wollaston 2014). Ethylene 

overproduction is also shown to stimulate ROS production and the accompanying 

symptoms (Bartoli et al. 2013). However this did not occur in epi plants, in accordance 

with the absence of senescence symptoms. In NIL-Ol-1, increased susceptibility under 

combined stress was accompanied by an induction in the expression of ethylene 

biosynthesis and response genes ACC and ACO1, but not for CHI9. In Ol-1xepi plants, 

this increase was only modest for ACC and ACO1, thus ethylene biosynthesis might 

have not exceeded a certain threshold to impact senescence.  

 Similar observations on the lack of important ethylene-induced symptoms such as 

increased senescence were reported previously for this mutant (Barry et al. 2001). 

Additional pleiotropic alterations at the cellular level have been observed for epi, 

especially changes of the epidermal cells which  are different from the wild type by 

having a more round shape and being swollen (Barry et al. 2001). These changes can 

be functionally significant for biotic stress responses through a potential effect on the 

cytoskeleton dynamics and the secretion and deposition of anti-fungal compounds. 

Manipulation of these processes resulted in a significant compromise of exocytosis 

mechanisms which are linked to the transport of antifungal compounds at the site of 

infection and increased susceptibility in PAMP-mediated resistance, but had no 

impact on HR-mediated resistance (Hardham et al. 2007; Henty-Ridilla et al. 2014; 

Miklis et al. 2007). This shares significant similarity with our findings of reduced 

callose deposition in Ol-1xepi and ol-2xepi plants while the HR based resistance 

conferred by Ol-4 was unaffected by the epi mutation. 
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The not mutation influences differently the PM resistance mediated by the Ol-1 and 

ol-2 gene  

The not mutation induces ABA deficiency and had both positive and negative impacts 

on disease resistance conferred by the Ol-genes, depending on the Ol gene and the 

combination with salt stress. It slightly but significantly increased susceptibility of 

NIL-ol-2 after PM infection only, while no significant changes were observed for NIL-

Ol-1. Under combined stress, the increased susceptibility and senescence of NIL-Ol-1 

was significantly alleviated in the Ol-1xnot plants. In ol-2xnot plants a slight decrease 

of susceptibility was also observed under combined stress. These results indicate a 

complex interaction between ABA signaling and disease resistance as pointed out by 

numerous previous studies (Audenaert et al. 2002; Curvers et al. 2010; De Torres 

Zabala et al. 2009; Mang et al. 2012) and the addition of salt stress adds one more 

layer of complexity.  

Both ROS production (increased) and callose deposition (decreased) were significantly 

affected in Ol-1xnot and ol-2xnot plants and might underlie the differential resistance 

responses between the resistance-hormone combinations under different treatments. 

A ROS-induced oxidative burst has been considered as a means of defense against 

pathogens and was shown to contribute to defense against Botrytis cinerea in the 

tomato ABA deficient mutant sitiens (Asselbergh et al. 2007). However, recent 

findings support a minimal effect on pathogenicity for the ROS-induced oxidative 

burst (Samalova et al. 2014). In ol-2xnot plants, reduced callose deposition may have 

allowed increased PM penetration, with the further growth of the pathogen overriding 

the effect of increased ROS levels. The addition of salt stress partially decreased 

disease symptoms in ol-2xnot plants, accompanied by increased callose deposition. 

This increased callose deposition potentially results from the partial restoration of 

ABA signaling by exposure to stress, positively affecting callose deposition. The not 

mutant  has 10-15% ABA compared to WT, and the addition of salt stress may have 

resulted in induction of additional tomato NCED genes, as evidenced by the 10-fold 

induction of the ABA marker DHN-TAS. Ol-1xnot exhibited higher callose deposition 

under combined stress compared to PM only. The elevated levels of Na+ and Cl- 

concentration under combined stress might add to salinity-induced increased 

resistance; the levels observed in the not mutants at 50mM NaCl, were similar to the 

levels observed in MM plants under 150mM NaCl, and this was shown to reduce 

disease progression in our previous study (Chapter 4). 

Not mutants exhibited a unique increase in the expression of CHI9, which is 

considered as a component of ET signaling in tomato (Wu and Bradford 2003) and has 

direct antifungal properties (Hong and Hwang 2006). 
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The most pronounced effect of the not mutation under combined stress was the 

marked attenuation of senescence and leaf abscission in Ol-1xnot plants. This 

occurred despite the very high levels of ROS observed, which are known to be 

associated with senescence (Gregersen et al. 2013), although H2O2 alone was 

insufficient in triggering cell death in tobacco in response to bacteria (Mur et al. 

2005). Our results indicate that ABA induces  senescence, with recent studies 

supporting these findings (Yang et al. 2014b). Uncontrolled cell death and senescence 

under combined stress may therefore be mediated through the control of the ABA 

pathway. Ethylene signaling regulation might be also important for this phenotypic 

response as the expression of ethylene biosynthesis and response genes was reduced 

in the not crosses with Ol-genes. Literature describes both synergistic and 

antagonistic regulation of ABA and ET, though under abiotic stress ABA appears to 

enhance ethylene levels (Albacete et al. 2009). ABA deficient not and sitiens mutants 

have lower ET content compared to WT plants (Nitsch et al. 2012), thus the effect of 

ABA deficiency might be mediated by ethylene signaling.  

Concordance of hormonal pathway induction during PM pathogenesis with 

phenotypes of Ol-gene and mutant crosses 

 Ethylene signaling is induced in NIL-Ol-1 compared to MM and other NILs at 7 and 

9 dpi (Fig. 1), and the epi mutation might be disrupting this pattern resulting in 

increased susceptibility. Stress induced ABA signaling appears to contribute to 

susceptibility in NIL-Ol-1 and is induced in the susceptible MM in response to PM 

infection, which agrees with the restoration of the compromised Ol-conferred 

resistance in Ol-1xnot plants. 

JA signaling is induced in the resistant NIL-ol-2 challenged with PM, but disruption 

of JA signaling in the ol-2xdef mutant results in partial breakdown of resistance. This 

information on synagonistical interaction of abiotic stress with defense pathways can 

be of great significance for the maintenance of resistance of ol-2 under combined 

stress. 

Fitness cost and benefit NIL-Ol-1 and NIL-ol-2 crosses with epi and not under 

combined stress 

Despite its positive effect in decreasing senescence under combined stress, ABA 

deficiency had a severe plant performance cost in terms of fresh weight under salt and 

combined stress. The ABA pathway appears to be a major node in the negative 

crosstalk of adaptation to abiotic and biotic stress (Sanchez-Vallet et al. 2012; Yasuda 

et al. 2008). Thus ABA signaling should be studied in more detail under combined 
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stress, including examination of downstream signaling components such as 

transcription factors and kinases to identify nodes that enhance disease resistance but 

do not affect abiotic stress adaptation and vice -versa (Garcia-Andrade et al. 2011). 

Ethylene overproduction in the epi mutant crosses resulted in better relative growth 

performance under salt as well as combined stress, despite the increase in PM 

susceptibility. However, the growth penalty of the Ol-gene x epi plants under control 

conditions should be taken into account when considering the epi mutation for 

improving stress tolerance of commercially grown tomato under multiple stress 

conditions. Nevertheless, the potential of adapting ethylene signaling for improving 

crop resilience is further supported by several studies identifying a positive 

contribution of ethylene signaling components in adaptation to abiotic stress (Cheng 

et al. 2013b; Jiang et al. 2013b; Peng et al. 2014). 

ABA, JA and ET pathways have no influence on the resistance mediated the Ol-4 

gene  

In contrast to Ol-1 and ol-2 , the resistance mediated by Ol-4 was unaffected under all 

treatment and with mutant combinations. Ol-4 is a homolog to the Mi-1 gene coding 

NBS-LRR protein (Seifi 2011b). It triggers HR in a single epidermal cell where the 

fungal growth can be stopped completely (Bai et al. 2003; Li et al. 2006). R-gene 

resistance is based on effector triggered immunity (ETI) which is characterized by 

compensatory relationships between its different signalling components and its 

defense output is stronger and more prolonged compared to PAMP triggered 

immunity (PTI) (Tsuda et al. 2009), thus it is more robust and less prone to negative 

regulation from environmental or genetic factors. Since resistance conferred by R 

genes is not affected by large genetic perturbations disrupting whole hormonal 

pathways, it has the potential to be stable in combination with larger changes in 

hormone signaling pathways conferring abiotic stress tolerance.  

In conclusion ethylene appears to be central in the responses under combined stress, 

increasing susceptibility despite being beneficial for plant salt tolerance. ABA and JA 

role on the other hand appears to be more complicated as their effect was dependent 

on the type of resistance and the co-occurrence of salt stress. ABA deficiency appears 

to limits senescence symptoms, with however significant trade-offs on plant salt 

tolerance and growth. Thus a more delicate approach should be carried to identify 

specific components of ABA with fewer pleiotropic effects, to be effectively 

implemented in increased combined stress tolerance in crops. Further research is 

required to delineate the synagonistic and antagonistic relationships between 

signalling components under combined stress and to implement them with precision 
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breeding. Alternatively the stacking of robust R-genes, like Ol-4 with well-established 

abiotic stress tolerance inducing genes and loci can be followed providing robust 

resistance under abiotic and biotic stress combination, with the prerequisite that no 

negative interactions on the underlying signalling pathways occur. 
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Abstract 

WRKY is a transcription factor family unique to plants with diverse functions in 

defense pathways, abiotic stress tolerance and developmental programs. Family 

members are characterized by the conserved WRKY domain and significant sequence 

variation in the remainder of the protein, which is translated into distinct functions 

even for closely related genes. We utilized the extensive functional characterization of 

the Arabidopsis thaliana WRKY family to identify tomato homologues of Arabidopsis 

WRKY genes that are involved in defense responses (AtWRKY 11, 29, 48, 70 and 72). 

In total 13 tomato WRKY homologues were identified for these genes, of which 9 were 

successfully over-expressed, and 12 stably silenced via RNAi in transgenic tomato 

lines. The transgenic lines were evaluated for their response to salt stress, powdery 

mildew resistance and the combination of these stresses. Lines overexpressing 

SlWRKY11 and SlWRKY23, and RNAi lines of SlWRKY7 and SlWRKY9 showed both 

increased biomass and improved salt tolerance. For SlWRKY11 and SlWRKY23 

overexpression (OE) lines, this was accompanied by a moderate increase in oxidative 

stress tolerance. The SlWRKY6-OE line showed strongly improved salt stress 

tolerance, but a growth penalty under control conditions. Exceptional phenotypes 

were observed for the SlWRKY10-OE line (stunted growth) and the RNAi line 

SlWRKY23-RNAi (necrotic symptoms), but these phenotypes were partly restored to 

normal under salt stress. Both these lines exhibited increased resistance to powdery 

mildew, but this was compromised when the plants were put under salt-stress as well. 

Important functions for tomato WRKY genes were revealed in both the abiotic and 

biotic stress response and several genes should be further explored to elucidate their 

downstream regulatory functions that lead to increased stress tolerance. 

 

Keywords: salt stress tolerance, oxidative stress, ROS burst, lesion mimic, growth-

defense trade-off 
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Introduction 

Transcription factors play crucial roles in regulating stress-inducible gene expression, 

which leads to adaptation of plants to biotic and abiotic stresses (Mizoi et al. 2012; 

Puranik et al. 2012; Singh et al. 2002). The plant-specific WRKY family was initially 

shown to function in plant defense responses, but was later found to be involved in the 

regulation of diverse functional processes such as growth, development, hormone-

mediated pathways, and abiotic stresses (Bakshi and Oelmuller 2014). Members of 

this gene family are therefore candidate genes for contributing to crop resilience 

against numerous stress conditions.  

WRKYs are a superfamily of transcription factors carrying the highly conserved 

WRKY domain, a 60 amino acid region at the N-terminal end, which contains the 

highly conserved WRKYGQK sequence at the N-terminus followed downstream by a 

Cx4–5Cx22–23HxH or Cx7Cx23HxC zinc-finger motif (Rushton et al. 2010). Based on the 

number of binding domains and features of the zinc-finger-like motif, WRKY families 

are grouped into three major groups (Rushton et al. 2010). Several NB-LRR proteins 

carry WRKY domains (Rushton et al. 2010) that may act as negative regulators of 

downstream defense signalling (Noutoshi et al. 2005). 

The WRKY superfamily comprises numerous members in all plant species studied to 

date, including 74 in Arabidopsis, 182 in soybean, 102 and 98 in indica and japonica 

rice, respectively, and 81 in tomato (Bencke-Malato et al. 2014; Huang et al. 2012; 

Ross et al. 2007; Ulker and Somssich 2004). 

WRKY protein function is mediated by the binding of the WRKY domain to W-boxes 

in the promoters of downstream regulated genes. Its specificity varies depending on 

the sequence variation of the W-box (Franco-Zorrilla et al. 2014), the amino acid 

variation of the WRKY-binding domain (Brand et al. 2013), interactions with other 

proteins and transcription factors (Hu et al. 2013; Lai et al. 2011) and post-

translational modifications (Ishihama and Yoshioka 2012). WRKYs are not only 

transcriptional activators but many members have repressor functions (Yokotani et 

al. 2013a) and are involved in regulatory cascades and loops including self-regulation 

or cross-regulation between family members (Cheng et al. 2015; Yan et al. 2013). 

Numerous expression and functional studies, primarily in Arabidopsis and rice but 

also at an accelerating pace in other crop species, outline the involvement of WRKY 

genes in different aspects of plant biology and stress and defense responses (Bakshi 

and Oelmuller 2014). These studies indicate that different WRKY family members 
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can have either positive or negative impact on plant stress tolerance, thus both 

overexpression and silencing studies are essential to uncover their functions.  

The importance of WRKY TFs in resistance to pathogens is evidenced by the fact that 

pathogen effectors target WRKYs to dampen defense responses (Sarris et al. 2015). 

Furthermore, overexpression of a number of WRKYs has led to primed defense 

responses and disease resistance (Dang et al. 2014; Yu et al. 2012; Zheng et al. 2006). 

Several other WRKY genes however have been shown to function as negative 

regulators of defense responses (Journot-Catalino et al. 2006; Liu et al. 2014) 

indicating complex relationships in the WRKY regulatory web to optimize the plant’s 

defense response. 

WRKY members are also directly involved in abiotic stress signaling and tolerance. 

Expression of ABA-responsive genes is altered in AtWRKY40 or AtWRKY40 ⁄ 

AtWRKY18 knockout lines (Shang et al. 2010). MAP kinase-mediated activation of 

OsWRKY30 confers drought tolerance in rice (Shen et al. 2012). ThWRKY4 mediates 

abiotic stress tolerance in te halophytic species Tamarix hispida by modulating stress 

responses involving ROS through enhanced peroxidase activity (Zheng et al. 2013). 

WRKY members can be regulators of transpiration (efficiency) under drought stress 

by modulating stomatal aperture (Ding et al. 2014; Li et al. 2013a). The broad 

functions of WRKYs are highlighted in functional studies where single WRKY genes 

affect resistance to a number of abiotic stresses and phytopathogens (Dang et al. 2013; 

Sun et al. 2015). A desirable outcome for breeding would indeed be increased 

resistance to multiple stress factors with a single gene (Qiu and Yu 2009). However, 

opposite effects on abiotic and biotic stress from a single gene have also been reported 

(Yokotani et al. 2013). WRKYs were shown to be significant regulators of an 

important component of crop performance under multiple stress factors, i.e. 

senescence programming (Besseau et al. 2012),  

Tomato WRKY genes have rarely been studied and only recently a genome-wide 

bioinformatics analysis was carried out revealing 81 putative WRKY genes (Huang et 

al. 2012). In this study, we utilized information on functional characterization of 

Arabidopsis WRKYs 11, 29, 48, 70 and 72, which are involved in defense responses, to 

identify and clone tomato WRKY genes with putative functions in stress response. 

Bioinformatics and in silico analysis of the tomato genes indicated that these are 

strongly regulated both under biotic and abiotic stress. Taking this information into 

account, WRKY overexpression (OE) and silencing (RNAi) transgenic tomato lines 

were examined for their tolerance to salt stress, powdery mildew infection as well as a 

combination of both stresses. The results confirmed the broad functions of this tomato 
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WRKY gene set, with several genes contributing to increased salt tolerance or 

powdery mildew resistance.  

 Materials and Methods  

WRKY gene cloning and generation of transgenic plants 

The sequences of the Arabidopsis WRKYs 11, 29, 48, 70 and 72 were queried for 

homologous sequences in tomato using BLAST. Thirteen tomato WRKY genes 

exhibited high sequence homology to the above-mentioned genes (Table 1). The full 

gene sequence was cloned for nine of the thirteen genes, and these were used to create 

tomato WRKY overexpression lines. For twelve out of thirteen genes, except for 

WRKY81, RNAi constructs were designed from gene specific regions (Supplementary 

Table 1). Transformation, transformant selection and plant regeneration was carried 

out as described in (Gao et al. 2014a; Huibers et al. 2013). 

Plant material and growth conditions 

Transgenic tomato (Solanum lycopersicum L. cv. Moneymaker, MM) plants of the T1 

generation carrying either overexpression or RNAi constructs for the different WRKY 

genes (Table 1) were evaluated in this study. At least two independent transformation 

events (lines) per gene were evaluated (4 plants per line). 

The seeds of overexpression T0 WRKY tomato lines and MM were disinfected and 

selected in vitro for the presence of the transgene. For this, seeds were washed in 

ethanol (95%) for one minute and rinsed once with sterile water. The seeds were 

subsequently disinfected in 1.5% NaOCl solution for 15 minutes followed by three 

washes in sterile water. The disinfected seeds were sown in MS medium (pH 5.8, 0.8% 

agar) supplemented with the antibiotic kanamycin (100 mg/l) for the selection of 

plants carrying the transgene (except for MM). Every 3-4 weeks, plantlets were 

propagated on MS medium supplemented with 20 mg/l of cefotaxime to avoid bacterial 

infections. Rooted explants with uniform size were used in the greenhouse 

experiments. For all treatments, the plants were transplanted into 3l pots containing 

vermiculite in the greenhouse and watered with ½ Hoagland medium.  

Salt stress treatment and evaluation of plant performance 

The transplanted in vitro plants were grown in the greenhouse for 2 weeks to 

acclimatize and subsequently treated with 100 mM NaCl for 4 weeks. Salt solution 

was applied until saturation of the solution (until leaching was observed from the 

pots) to maintain an appropriate and uniform salt concentration.  

Growth parameters, shoot length and fresh weight, were measured at the end of the 

experiment (4 weeks after salt treatment), samples were taken for electric leakage, 
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and samples were dried for ion analysis (see below). Chlorophyll content was 

measured 3 weeks after salt treatment using Minolta chlorophyll meter, SPAD-502. 

Three measurements per plant were made on fully expanded mature leaflets and the 

average value was taken for each individual plant.   

Electrolyte leakage  

To assess the level of oxidative stress tolerance, electrolyte leakage of leaf disks 

immersed in paraquat solution was measured. Twelve (12) leaf disks (~7mm in 

diameter) were cut from leaflets of each line by cutting with a metal leaf borer and 

were subsequently put in a tube containing 20 ml of MQ ultrapure water 

supplemented with 1µM paraquat solution. The samples were incubated overnight 

under dark for 12 hrs. Then, the tubes were transferred to the light. The electrical 

conductivity of the solution was measured twice, i.e. at 24hrs and 48hrs after transfer 

to the light, using an EC meter (Cond 315i, WTW, Germany) Then, samples were 

autoclaved at 121˚C for 5 min and the final electrical conductivity was measured after 

cooling down. The electrolyte leakage (EL%) was calculated in percentage as described 

in the study by (Dionisio-Sese and Tobita 1998): 

 

 

Where ECi: initial electrical conductivity (24 or 48hrs); ECf: final electrical 

conductivity (after autoclaving). 

 

Ion content analysis  

Dried leaves and stems were used for ion content analysis (Na+, K+, Ca2+, Mg2+, SO4
2-, 

PO4
3+, and Cl-). The dried samples were ground with a mill with 1mm mesh. 

Approximately 30 mg mg of the resulting powder was ashed in an oven for 6 hrs at a 

maximum temperature of 575˚C. The analyses were performed as described 

previously (Kissoudis et al. 2015). 

In situ H2O2 accumulation histological analysis 

Leaf disks (1.3 cm in diameter) were sampled from leaflets of the 4th leaf counting 

from the bottom 2 weeks after the initiation of salt stress treatment from only salt-

treated plants. To ensure uniformity, leaf disks were taken from the middle of the 

leaflets on both sides of the central vein. Staining was carried out in 24-well plates, 

with leaf disks placed with the abaxial side up. For H2O2 visualization, leaf disks were 

stained in 1 mg/mL DAB (3-3’-diaminobenzidine), pH =3.7, for 16 h in the dark and 

EL= ECi/ECf* 100 

 

 

 

 

 

100 
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the disks were subsequently transferred to 96% ethanol for 24h to remove chlorophyll 

according to (Martinez De Ilarduya et al. 2003). Leaf disks were mounted on glass 

slides with 70% glycerol.  

Powdery mildew and combined stress treatments  

The Wageningen isolate of powdery mildew Oidium neolycopersici was applied on 4-

week old plants (for combined stress eight days after the start of the salt treatment of 

100mM NaCl) by uniformly spraying a suspension of 5x104 conidia.ml-1. Plants were 

evaluated 10 days after inoculation. The disease severity was expressed as disease 

index (DI) on a scale from 0 to 5, according to (Kissoudis et al. 2015).  

Gene expression analysis  

Primer design  

To monitor WRKY expression with qPCR, gene-specific primers were designed using 

the web-based primer design program (http://www.ncbi.nlm.nih.gov/tools/primer-

blast/; Supplementary Table 2). Primers were designed outside the RNAi construct 

towards the 3ꞌ end of the sequence region. Multiple alignments were made of each of 

the WRKY genes against all the tomato WRKYs to identify non-conserved regions of 

the coding sequence to be used for primer design.  

Examining expression of stress related genes 

The expression of putative candidate genes indicative for hormonal biosynthesis, ion 

homeostasis, cell death regulation, NADPH-oxidase, and ROS-scavenging was 

analysed with real-time qPCR (Supplementary Table 3). Elongation factor (EF1a) was 

used as reference (housekeeping) gene. 

RNA isolation and cDNA synthesis 

Leaf samples were taken from the second leaf counting from the top (first to be 

moderately expanded) of salt treated and control plants 2 weeks after the initiation of 

salt stress. The samples were immediately frozen in liquid nitrogen and stored at -80˚C 

before RNA extraction. The leaf samples were ground thoroughly in liquid nitrogen 

with mortar and pestle. RNA was isolated using an RNeasy Plant Mini Kit (Qiagen) 

following the manufacturer’s instruction. The concentration and quality of the isolated 

RNA was checked with a nanodrop spectrometer and 2% agarose gel electrophoresis, 

respectively. One µg of total RNA was treated with RNase-free DNase I (Invitrogen), 

and DNase I was inactivated with 1µl of 25 mM EDTA solution. The RNA was then 

reverse transcribed using iScriptTM cDNA synthesis kit following the manufacturer’s 

instruction.  

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Quantitative real-time PCR (qRT-PCR) 

After cDNA synthesis, real-time qPCR was used to examine and quantify the 

expression level of the WRKY genes targeted for overexpression or silencing in each of 

the WRKY lines under control conditions. The reaction mix containing 5ul SYBR 

GREEN super mix, 1 µl forward primer, 1 µl reverse primer, and 3 ul template cDNA 

was prepared with a final volume of 10ul. The PCR amplification was set as initial 

denaturation at 95˚C for 5 minutes, followed by 39 cycles of 94˚C  for 10s, 59˚C for 30s 

followed by a melt curve analysis. Relative expression of the genes was determined 

from the difference in cycles observed to reach the threshold (∆∆Ct) between the 

target genes and reference gene. Elongation factor (EF1a) was used as a reference 

gene in each PCR reaction. Each sample analysis was performed with two biological 

and two technical replicates. The expression level relative to the reference gene 

expression level was calculated using the formula; 2-∆∆Ct (Livak and Schmittgen 2001). 

Promoter sequence analysis and other bioinformatics analyses 

The 1000bp sequences of upstream promoter regions of WRKY genes were 

downloaded from SGN (http://solgenomics.net/). The predicted cis-element motifs in 

the promoter regions were discovered using plant PAN 

(http://plantpan.mbc.nctu.edu.tw/) and plantCARE 

(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) databases. 

The mRNA, protein and promoter sequences were aligned with MAFFT 

(http://mafft.cbrc.jp/alignment/server/) and phylogenetic trees were constructed with 

the Neighbour Joining method. Conserved domains were identified with NCBI online 

tool (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). 

Statistical analysis  

The experiment was carried out in a split plot design with four replications. Data 

were evaluated statistically with GenStat 16th edition. Significance was determined by 

analysis of variance (ANOVA). The treatment means were compared by Fisher 

protected least significance difference (LSD) test with a significance level of p<0.05.  

 

 

 

 

http://solgenomics.net/
http://plantpan.mbc.nctu.edu.tw/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://mafft.cbrc.jp/alignment/server/
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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Results 

Identification of WRKY homologues in tomato 

Multiple homologous tomato WRKY genes were identified for each of the Arabidopsis 

genes (WRKYs 11, 29, 48, 70 and 72) queried. Thirteen genes (Table 1) were further 

evaluated.  

 

Table 1: Tomato WRKY genes examined. Unigene codes,  SGN annotation and 

information on their expression pattern according to literature (Huang et al. 2012)  

and tomato microarray repositories (http://ted.bti.cornell.edu)/ are provided. 

Similarity with  Arabidopsis WRKY genes  based on the protein sequence (protein-

protein BLAST) is provided.  

Tomato Unigene  SGN annotation 
BLASTp 

(Arabidopsis) 

 

SGN-U565155 

SlWRKY8 

(Moderately expressed, induced drought/salt/ 

pathogen) 

 

 

15,11,17,39,74 

 

SGN-U565159 SlWRKY25 27,29,65,16,22 

SGN-U571282 

 

SlWRKY6 

(Induced under drought) 

42,6,31,72 

 

 

 

SGN-U587314 

SlWRKY22 

(repressed under drought/ increased under biotic) 

 

27,22,29,65,16 

 

SGN-U602602 SlWRKY23 27 

SGN-U578656 

 

SlWRKY81 

 
62,46,53,63 

 

SGN-U563809 

SlWRKY11 

(highly expressed, induced salt/drought, mixed 

response to pathogens) 

 

 

 

11,17,39,74 

 

http://ted.bti.cornell.edu)/
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Messenger RNA and protein sequence analysis confirmed that all of them carried the 

invariable WRKYGQK amino acid sequence as part of the WRKY domain (Fig.1a). 

Variation was observed outside of the core sequence with amino acid variants of 

different hydrophilicity and structure (Figure 1b, c) potentially altering the binding 

specificity of the proteins. Outside of the WRKY domain, the sequences were highly 

variable between the identified WRKY genes.  

Neighbor Joining (phylogenetic) analysis of both mRNA and protein sequence displays 

the high variability of the different SlWRKY genes with SlWRKY81 being the most 

distant. Yet several highly similar genes were identified as well, such as SlWRKY 10 

and 11. All genes had a single WRKY domain, and SlWRKY7, 8, 10 and 11 carried a 

Zn-finger DNA binding domain as well (Fig. 2a). Protein lengths varied from 203 to 

570 amino acids. 

Promoter sequence alignment and analysis revealed even greater variability between 

the WRKY genes that was not following the pattern of relatedness at the protein level. 

For example promoters of the highly similar SlWRKY 10 and 11 exhibited weak 

similarity, potentially indicating distinct mechanisms of regulation at the level of 

transcription (Fig. 2b).  

Tomato Unigene SGN annotation 
BLASTp 

(Arabidopsis) 

 

SGN-U576890 

SlWRKY10 

(low expressed, induced by pathogens) 

 

11,74,15,17,19 

 

 

SGN-U577936 

SlWRKY48 

(moderately induced by drought/pathogen) 

 

71,28,57,68,43 

 

SGN-U571278 SlWRKY73 
72,61, 9, 6, 47, 

42 

SGN-U571280 
SlWRKY74 

(Low expressed) 

72,61, 9, 6, 47, 

42 

SGN-U573117 

SlWRKY7 

(low expressed, drought/salt inducible, 

repressed by pathogen) 

7,11,17 

 

 

SGN-U581993 
SlWRKY9 

 

9,72,61,31 

 



131 
 

 

 

Figure 1. Protein sequence alignment of the WRKY DNA-binding domain and 

visualization of amino acid properties with Jalview: a) ClustalX similarity colour 

scheme b) hydrophobicity  properties of amino acids with the most hydrophobic 

residues coloured red and the most hydrophilic ones coloured blue c) amino acid burial 

propensity with the highest depicted with  blue while the lowest is green. 
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Figure 2. Neighbour Joining phylogenetic tree of a) WRKY protein sequence (the 

presence and position of WRKY and Zinc-finger domains are depicted) and b) the 1000 

bp upstream promoter sequence of each gene. 
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The gene promoters were further queried for the presence of transcription factor-

binding cis-acting elements. Several biotic stress-related cis-acting regulatory 

elements were found in the promoter regions. In addition, several abiotic stress 

responsive elements were present in all promoters, indicating that tomato WRKYs 

may respond to multiple signals and might be involved in adaptation to various stress 

conditions. Numerous homeobox binding domains for Homeodomain (HD) 

transcription factors were present in all gene promoters, as well as WRKY-binding W-

box domains, possibly indicating feedback regulation or cross regulation between 

different WRKY TFs. Most of the promoters carried the ABA and abiotic stress- 

responsive ABRE and ACGT domains. Putative ethylene responsive elements (ERE) 

were found in the SlWRKY7 promoter region. In addition, a putative heat stress 

responsive cis- acting element (HSE) was found in the SlWRKY23 and SlWRKY9 

promoter region. Finally guard cell-specific expression elements were found in 

SlWRKY6 and SlWRKY23 promoters.  

The publicly available microarray databases (http://ted.bti.cornell.edu)/ and the recent 

bioinformatics and expression analysis of the WRKY family in tomato (Huang et al. 

2012) provided further information on WRKY expression patterns and response to 

abiotic and biotic stress factors. The consensus of these data pointed to highly induced 

expression of SlWRKY6 under drought. SlWRKY11 and SlWRKY10 exhibited 

contrasting expression profiles with SlWRKY11 being highly and constitutively 

expressed and even further stimulated by drought and salt stress, with variable 

expression patterns in response to pathogens, while SlWRKY10 was expressed at low 

levels under normal conditions and induced only after pathogen infection. SlWRKY7 

exhibited contrasting expression patterns in response to abiotic or biotic stress, being 

induced by salt and drought stress, but repressed after pathogen infection (Table 1).  

The WRKY genes used in this study showed a wide range of expression under control 

conditions in cultivar Moneymaker (MM) (Fig. 3). Most of the genes were expressed at 

low levels compared to the housekeeping gene EF1a, (SlWRKY48, SlWRKY23, 

SlWRKY74 and SlWRKY10), while high expression levels were observed for 

SlWRKY7, SlWRKY11 and SlWRKY8.  

Generation and validation of transgenic plants  

For 9 SlWRKY genes transgenic overexpressor plants were successfully obtained and 

for 12 SlWRKY genes RNAi lines were made, with the exception of SlWRKY81. All T0 

plants produced fruits and seeds, but for SlWRKY10 the stunted phenotype was 

accompanied by a very low number of fruits and seeds.  

http://ted.bti.cornell.edu)/
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Figure 3. Expression of the endogenous WRKY genes in MM leaves in control 

conditions. Error bars depict standard error (n=3). 

 

The expression of the overexpressed or silenced WRKY genes in the transgenic lines 

was evaluated and compared to that of the native genes in MM (Table 2). Among the 

overexpression lines the highest expression compared to the native gene was observed 

for SlWRKY48 lines (~300-fold highest expression) and high expression levels were 

also measured in SlWRKY10 (~120-fold) and SlWRKY6 (30-40–fold), while 

SlWRKY11 exhibited only moderate overexpression (3.5-fold). No overexpression was 

observed for SlWRKY22 lines and only one line of SlWRKY8 showed significant 

upregulation (Table 2). Silencing was successful for many but not all target genes and 

ranged from 2 to 10-fold relative to the native gene expression levels (Table 2). Lines 

that did not show considerable overexpression or silencing were not analysed further 

(SlWRKY22 and -81 OE lines and WRKY8, -25, -6, -22, -81, -73, 74 RNAi lines).  

Most of the lines (especially the RNAi lines) did not differ significantly from MM in 

terms of growth. Few lines exhibited increased growth relative to MM especially in 

terms of plant height, such as SlWRKY23-OE, SlWRKY11-OE, SlWRKY7-RNAi and 

SlWRKY9-RNAi (Fig. 4a,b, Supp. Fig. 1) 
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Table 2. Fold difference in the expression of the tomato WRKY genes in the respective 

overexpression or RNAi (S) lines compared to MM. Only lines significantly different 

than MM  (p≤0.05) are included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.  

 

WRKY OE Lines G.E. Relative to MM ± s.e. 

WRKY 6-1 38.35 ± 3.21 

WRKY 6-3 29.07 ±4.65 

  
WRKY 8-3 6.42 ±0.87 

  
WRKY 10-1 118.1 ±7.32 

  
WRKY 11-1 3.39 ±0.34 

WRKY 11-3 3.87 ±0.45 

  
WRKY 23-1 21.71 ±2.34 

WRKY 23-2 17.39 ±3.45 

WRKY 23-3 67.66 ±4.32 

  
WRKY 25-2 2 ±0.27 

  
WRKY 48-2 314.1 ±17.86 

WRKY 48-3 295.4 9±21.56 

  

WRKY RNAi Lines G.E. Relative to MM ± s.e. 

WRKY 7-1S 0.52±0.17 

WRKY 7-2S 0.1 ±0.03 

  
WRKY 9-2S 0.16 ±0.051 

WRKY 9-3S 0.29 ±0.064 

  
WRKY 11-1S 0.19 ±0.02 

  
WRKY 10-1S 0.35 ±0.04 

WRKY 10-2S 0.52 ±0.14 

  
WRKY 23-2S 0.4 ±0.15 

WRKY 23-3S 0.14 ±0.02 

  
WRKY 48-1S 0.14 ±0.04 
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On the other hand, severe negative (pleiotropic) effects were observed for SlWRKY10-

OE with stunted growth, SlWRKY6-OE had reduced growth and increased branching 

and SlWRKY23-RNAi demonstrated increased cell death symptoms and reduced 

growth (Supp. Fig. 2).  

 

Figure 4. Growth of tomato WRKY transgenics under control conditions: a)plant 

height and b) shoot fresh weight.  WRKY genes with significant differences in either 

of the traits are presented. WRKY naming ending in “S” refers to RNAi lines. 

Asterisks denote significant differences (P≤ 0.05) compared to MM. 

 

Performance of WRKY transgenics under salt stress  

Transgenic lines were evaluated for their response to salt stress, with a focus on lines 

that had significantly different performance compared to MM. Lines SlWRKY23-OE, 

SlWRKY11-OE, SlWRKY7-RNAi and SlWRKY9-RNAi showed both higher absolute 

and relative growth (ratio of growth under saline conditions and normal conditions in 

%) under salt stress compared to MM (ranging from 68 to 72% compared to 63% of 
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MM, Supp. Fig.1). SlWRKY8-OE and SlWRKY6 -OE showed high relative salt 

tolerance (77-86%), though for SlWRKY8-OE only a single line with significant 

overexpression was recovered thus additional lines need to be examined to confirm 

this result. Exceptional phenotypes were observed for SlWRKY23-RNAi and 

SlWRKY10-OE under salt stress. The cell death symptoms in SlWRKY23-RNAi 

observed under control conditions were relieved by salt stress, leading to significantly 

better performance than MM (Supp. Fig.2). SlWRKY10-OE exhibited even higher 

growth under salt stress compared to control conditions (106% relative salt tolerance), 

indicating that salinity counteracts the negative pleiotropic effects of SlWRKY10 

overexpression to some extent (Fig. 5a).  

 

Figure 5. Abiotic stress tolerance of tomato WRKY transgenics : a) relative salt 

tolerance expressed  as the percentage of fresh weight under salt stress divided by 

fresh weigh in control conditions for the same genotype, b) relative electrolyte leakage 

after paraquat treatment as a proxy for membrane damage and oxidative stress 

tolerance. Asterisks denote significant differences (P≤ 0.05) compared to MM.  
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Oxidative stress tolerance and ion contents under salt stress  

Determinants of salt tolerance such as oxidative stress tolerance and regulation of 

Na+, Cl- and other ion concentrations were further examined. Lines SlWRKY23-OE 

and SlWRKY11-OE exhibited reduced electrolyte leakage compared to MM, while for 

the other lines exhibiting salt tolerance (SlWRKY6-OE, SlWRKY7-RNAi and 

SlWRKY9-RNAi) this was not significantly different from MM. The highest electrolyte 

leakage was observed for SlWRKY10-OE (89.3%), followed by SlWRKY23-RNAi (83-

87%), both higher than MM (72%) (Fig. 5b). No significant differences were observed 

for leaf Na+, Cl- and K+ content between all the transgenic lines examined and MM 

under salt stress, but for SlWRKY10-OE leaf Na+ and Cl- concentrations were 

significantly higher (45.7 and 46.4 compared to 32.6 and 36 mg/g for MM, 

respectively) (Supp. Fig.3). 

 

Cell death reduction of SlWRKY23-RNAi and SlWRKY10 under salt stress and ROS 

burst 

The exceptional phenotypes of SlWRKY23-RNAi and SlWRKY10-OE led us to further 

explore ROS presence and activity in these lines. Under control conditions both 

SlWRKY23-RNAi and SlWRKY10-OE had high levels of ROS production in leaves as 

indicated by DAB staining (Figure 7), with SlWRKY23-RNAi having high targeted 

ROS production leading to necrotic spots formation, while SlWRKY10-OE leaves had 

uniform high ROS production. Under salt stress, DAB staining was significantly 

reduced in SlWRKY23-RNAi with disappearance of the ROS foci, while SlWRKY10-

OE DAB staining was reduced to a lesser extent (Fig.  6a). Electrolyte leakage data of 

leaf disks in distilled water supported the results from DAB staining with leakage 

under salt stress that was even lower than under control conditions for SlWRKY23-

RNAi despite the presence of higher concentrations of Na+ and Cl- electrolytes, 

indicating that membrane damage in this line under control conditions is very high 

and is strongly suppressed under salt stress. SlWRKY23-OE and MM showed the 

opposite response, with SlWRKY10-OE displaying more electrolyte leakage under 

control compared to MM, and less increase under salt stress (Fig. 6b). 
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Figure 6. a) H2O2 visualization after DAB staining in MM, WRKY23OE and RNAi and 

WRKY10OE under control and salt stress (100mM NaCl), b) relative electrolyte 

leakage of leaf disks sampled from control and salt treated plants in MQ ultrapure 

water. Asterisks denote significant differences (P≤ 0.05) compared to MM for the same 

treatment. Error bars depict standard error (n=4). 
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Gene expression analysis under salt stress  

Several stress response expression markers were analysed in genotypes and lines that 

exhibited significant differences in salt tolerance (Fig.7 a, b). SlWRKY6-OE showed 

both high expression and further induction of ACCase (marker for ethylene 

biosynthesis) under salt stress and a similar pattern was observed for LOXD (a node 

in the JA pathway). MCA1 expression was the highest compared to the other 

genotypes. On the other hand SlWRKY6-OE exhibited relatively low expression of 

NCED1 that was not further induced under salt stress. 

 

 

a 
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Figure 7. Expression analysis genes-markers for hormonal, abiotic and biotic stress 

signalling pathways, relative to EF1a, in selected a) overexpression and b) RNAi 

WRKY lines.  Error bars depict standard error (n=4). 

 

b 
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Expression patterns of most of the examined genes in SlWRKY11-OE were similar to 

MM, with the exception of RBOHD, which was 1.8-fold upregulated in SlWRKY11-OE 

under salt stress compared to a 2-fold downregulation in MM.  

In SlWRKY10-OE the expression of ACCase, RBOHD and MCA1 was downregulated 

under salt conditions (5-, 3-, and 4-fold respectively). SlWRKY10-OE exhibited the 

lowest expression of NCED1 of all lines under both conditions. 

The RNAi lines SlWRKY7-RNAi and SlWRKY9-RNAi exhibited increased expression 

of APX1 under both control and salt stress. The observed stress-mediated reduction of 

cell death in SlWRKY23-RNAi was reflected in expression patterns of genes related to 

ROS and cell death: the elevated expression of ACO3, LOXD, MCA1, and RBOHD 

under control conditions (the highest among the lines examined) was greatly reduced 

under salt stress (Fig. 7b). 

Resistance to powdery mildew and combined stress  

The majority of the lines exhibited susceptibility levels to powdery mildew and to 

combined stress that were similar to MM (Fig. 8). However, contrasting phenotypes 

were observed in SlWRKY23-OE and RNAi lines. SlWRKY23-OE was highly 

susceptible to powdery mildew (higher than MM) and its susceptibility was further 

increased under combined stress. In contrast, SlWRKY23-RNAi exhibited increased 

PM resistance accompanied by cell death, especially line SlWRKY23-3RNAi, 

correlating with the higher level of silencing of the WRKY23 gene in this line (Fig. 9). 

Combined stress significantly reversed this effect, increasing susceptibility to powdery 

mildew. SlWRKY10-OE exhibited increased resistance to PM, with the addition of salt 

stress counteracting this effect and increasing susceptibility (Fig. 9). SlWRKY8-OE 

also showed higher resistance compared to MM, though not to the same extent as 

SlWRKY23- RNAi and SlWRKY10-OE. However, this resistance was not decreased 

under combined stress.  
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Figure 8. Disease index of overexpression and RNAi WRKY lines 10 days after 

inoculation with powdery mildew alone or in combination with 100mM NaCl. 

Asterisks denote significant differences (P≤ 0.05) compared to MM for the same 

treatment. Error bars depict standard error (n=4). 

 

Discussion 

WRKY transcription factors were originally discovered as important regulators of 

plant defense responses (Rushton et al. 2010) and were later shown to be part of an 

intricate signalling web, modulating multiple aspects of plant growth and 

development and adaptation to environmental conditions (Bakshi and Oelmuller 

2014). In this paper we demonstrate that several tomato WRKY genes play important 

roles both in salt stress tolerance and powdery mildew resistance, and can be 

important nodes in the crosstalk between abiotic stress and defense signalling 

pathways.  

In this study, the strongest effects on plant morphology were generally observed for 

the WRKY overexpression lines rather than the WRKY RNAi lines, probably as a 

result of genetic redundancy. The increased growth especially in terms of plant height 

of SlWRKY23-OE, SlWRKY11-OE, SlWRKY7-RNAi and SlWRKY9-RNAi indicates 

that the first two are positive regulators of growth while the last two are probably 

negative regulators. All genes carried homeobox and light regulated elements in their 

promoters indicating that they may be involved in  regulation of  developmental 

processes (Alabadí and Blázquez 2009).  
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Figure 9. Leaf  phenotypes of MM, WRKY23OE and RNAi and WRKY10OE after 10 

days of powdery mildew (PM) inoculation alone or in combination with 100mM NaCl. 
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Growth penalties were observed for SlWRKY6-OE and SlWRKY10-OE. SlWRKY6 is 

homologous to AtWRKY6, of which overexpression in Arabidopsis resulted in small, 

stunted transgenic plants that showed altered leaf morphologies and changes in 

flowering time (Robatzek and Somssich 2002).Expression analysis of genes involved in 

key regulatory pathways in both lines provided information on possible mechanisms 

underlying the growth penalties. The very high induction of ethylene biosynthesis 

genes indicated an involvement of ethylene, which is implicated in growth retardation 

(Kim et al. 2012). The growth penalty of SlWRKY23-RNAi lines on the other hand 

was uniquely accompanied by increased cell death, which was reflected in the 

expression data by significantly higher expression of cell death and ROS marker 

genes MCA1 and RBOHD compared to MM. 

With respect to salt tolerance, lines that showed increased growth compared to MM 

(SlWRKY23-OE, SlWRKY11-OE,  SlWRKY7-RNAi and SlWRKY9-RNAi) exhibited 

better growth compared to MM not only in absolute but also in relative growth 

(compared to their biomass under control conditions). Differences were in the range of 

6-10%, but this relatively moderate effect on growth and salt tolerance was confirmed 

in another experiment (data not shown). Thus, manipulation of WRKY expression can 

be a viable means of increasing salt tolerance without negative pleiotropic effects. 

Several WRKY genes from different species have been shown to be able to confer 

abiotic stress tolerance either through overexpression (Wang et al. 2013; Xiong et al. 

2010; Zhou et al. 2008) or loss of function/silencing (Jiang and Deyholos 2009; Ren et 

al. 2010). None of the four tomato WRKY genes mentioned above (SlWRKY23, 

SlWRKY11, SlWRKY7 and SlWRKY9) exhibited high homology with previously 

characterized genes involved in abiotic stress tolerance. However, both the presence of 

abiotic stress responsive elements in their promoters and analysis of co-regulatory 

networks of their closest Arabidopsis homologues (http://string-db.org/) indicated the 

possibility of interaction with other abiotic stress response components such as HSPs, 

HSFs and calmodulin for SlWRKY11-OE as an example. 

SlWRKY6-OE lines were among the most salt tolerant of all the WRKY transgenics 

(with SlWRKY8-OE), but the plants had considerably less biomass than MM. 

Irrespective of the negative effect on growth, SlWRKY6 appeared to be an important 

modulator of abiotic stress tolerance, being significantly induced under drought as 

indicated by data in the tomato transcriptomics repository (Table 1). The presence in 

the SlWRKY6 promoter of a cis element for guard cell-specific expression might be an 

indication of its involvement in stomatal behaviour and regulation. The homologous 

Arabidopsis gene AtWRKY6 was originally discovered as a positive regulator of 

senescence (Robatzek and Somssich 2002). A similar effect on senescence was 



146 
 

observed for SlWRKY6-OE alongside the increased expression of gene expression 

markers for ethylene production. Subsequent research revealed the involvement of 

AtWRKY6 in nutrient acquisition. It enhances sensitivity to  phosphate deficiency 

(Chen et al. 2009b) but is a critical component in adaptation to boron deficiency 

(Kasajima et al. 2010). Thus, further study of SlWRKY6-OE binding targets in tomato 

may provide insights in adaptive responses to other abiotic stressors in addition to 

salt stress.  

The regulation of salt tolerance involving the above-mentioned WRKY genes was not 

a result of altered Na+ and Cl- concentrations in the plants. Therefore, ion uptake and 

transport appeared to be unchanged, and not under the control of these WRKY genes. 

The increased salt tolerance of SlWRKY8-OE, SlWRKY23-OE and SlWRKY11-OE 

might be the result of improved oxidative stress tolerance as compared to MM. WRKY 

TFs were shown to regulate the antioxidant (defense) response by reducing H2O2 and 

enhancing peroxidase activity (Miao et al. 2004; Zheng et al. 2013). Our expression 

data however did not provide conclusive results on which signaling pathways may be 

involved for the tomato WRKYs examined and more comprehensive examination of 

the antioxidant status of these lines should be undertaken determination and  

quantification of enzyme and antioxidant activity. 

Exceptional responses to salt stress were observed for the lines that exhibited 

remarkable significant pleiotropic effects under non stress conditions: SlWRKY10-OE 

and SlWRKY23-RNAi. SlWRKY10-OE responded to salt stress with a surprising 

increase in biomass as compared to control conditions, while SlWRKY23-RNAi 

displayed a significant reduction of cell death and necrotic spots. The increased 

resistance to powdery mildew of these lines compared to MM was decreased with the 

additional exposure to salinity. Under control conditions, high expression levels of 

defense-related genes such as cell death and ROS markers MCA1 and RBOHD, and 

the ethylene pathway were observed, but all of these genes were downregulated under 

salt stress. We conclude that both these WRKY genes are important regulators of 

tomato pathogen defense responses; SlWRKY10 is a positive regulator (increased 

tolerance found with overexpression) and SlWRKY23 is a negative regulator 

(increased tolerance with silencing), and that both these regulatory functions are 

counteracted by salt stress. The negative role of SlWRKY23 in disease resistance is 

further supported by the ultra-susceptible phenotype of the over-expressor line 

SlWRKY23-OE. Knockout mutants of the closest homologue of SlWRKY23 in 

Arabidopsis, AtWRKY27, showed delayed symptoms in response to the bacterial 

pathogen Ralstonia solanacearum (Mukhtar et al. 2008), providing an additional 

indication of functional convergence for WRKY genes of the two genetically distant 
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species. SlWRKY10 is a close homologue of AtWRKY74, which appears to be co-

regulated with receptor-like and serine/threonine protein kinases involved in defense 

(http://string-db.org)/. Assuming that SlWRKY10 shares functional similarity with 

AtWRKY74, a constitutive upregulation of defense signalling could be underlying the 

increased resistance to PM in the SlWRKY10-OE overexpressor line.  

The primed defense responses of SlWRKY10-OE and SlWRKY23-RNAi and their 

compromised growth indicate that both SlWRKY10 and SlWRKY23 are nodes in the 

widespread phenomenon of growth-defense tradeoff observed in plants (Huot et al. 

2015), with resources being invested in defense and thus compromising biomass 

accumulation. This phenomenon was found to be under hormonal control (Denancé et 

al. 2013; Shyu and Brutnell 2015), which agrees with our results of higher expression 

of the ethylene synthesis pathway. The increased growth of SlWRKY10-OE and the 

cessation of cell death in SlWRKY23-RNAi under salt stress and the decreased 

resistance to powdery mildew under combined stress are indicative of a negative 

interaction of the salt stress response with the pathogen defense response in these 

transgenic lines. This is further evidenced by the reversal of the upregulation of 

defense pathway genes under salt stress. These observations are in line with studies 

in Arabidopsis and tomato (De Torres Zabala et al. 2009; Kim et al. 2011c; Kissoudis 

et al. 2015; Prasch and Sonnewald 2013; Yasuda et al. 2008) where negative 

interactions have been observed between components of abiotic and biotic stress 

responses, mediated by hormonal pathways, and agree with SlWRKY23’s  role as a 

significant node balancing abiotic and biotic responses.  

SlWRKY11 and SlWRKY10 have highly similar sequences in the DNA-binding 

domain with only a few polymorphic amino-acids (Fig.1), but showed extremely 

different morphological features. This exemplifies that even slight changes in protein 

sequence may have a significant effect on TF binding to downstream promoter 

sequences (Brand et al. 2013) and needs to be further explored.  

In conclusion, the functional characterization of tomato homologues of selected 

Arabidopsis defense-related WRKY genes revealed functions that go beyond defense 

responses, and that include growth control, salt stress tolerance and cell death 

control. Among those genes, SlWRKY23 stood out as an important node in the cross-

regulation of abiotic and biotic stress tolerance and regulation of cell death, that 

should be further studied with its downstream targets should be identified. SlWRKY6 

appears to be part of abiotic stress adaptation, senescence and ethylene signalling. 

SlWRKY10 functions at the crossroads of defense/growth control and appears to be a 

component in relaying the negative impact of abiotic stress on defense. Further 

functional characterization including interactions with other proteins, cis-element 
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targets and identification of downstream target genes for transcriptional regulation 

may reveal the mechanisms and pathways of which these WRKYs are an intricate 

part (Inoue et al. 2013; Lozano-Durán et al. 2013; Xiao et al. 2013). The presence of 

W-box genes in all WRKY gene promoters examined indicates the significant 

contribution of cross and self-regulation among WRKY genes, forming transcription 

networks and feedback loops which is demonstrated in numerous WRKY genes (Chen 

et al. 2010a; Cheng et al. 2015). 

In addition to further detailed studies on signalling cascades, lines such as 

SlWRKY11-OE and SlWRKY7-RNAi that showed increased salt tolerance with 

apparently no cost in plant performance under control conditions are promising 

candidates for increased stress tolerance without unintended side-effects in tomato.  
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General discussion 

Plant responses to abiotic-biotic stress combinations are underlined with high 

complexity due to the multitude of interactions expected between two living 

organisms - the plant and the pathogen- and the additional dimension of abiotic stress 

exposure. We chose to study the interaction between tomato and powdery mildew 

under salt stress in an effort to gain insight of plant responses to two major factors 

limiting plant productivity, which can be representative of a wider array of abiotic 

stresses and pathogenic fungi. We uncovered specific responses to combined salt 

stress and powdery mildew that were dependent on both stress intensity and 

pathogen resistance mechanism. Explicit physiological and hormonal responses were 

observed with exaggerated senescence and induction of the ethylene pathway that 

potentially contribute to the fitness cost under combined stress. In addition, members 

of the WRKY transcription factor family were identified that regulate powdery mildew 

resistance and cell death in a salt stress-dependent manner. Our results point that 

tolerance to salt stress and  powdery mildew combination can be effectively realized 

by pyramiding genes/loci conferring salt tolerance with R-gene resistance genes, as 

the Ol-4 R-gene exhibited the highest robustness under combined stress. 

Can combined salt stress and powdery mildew challenge provide a representative 

view of abiotic-biotic stress interactions 

It is of great importance, especially in exploratory studies, to elucidate interactions 

that can be representative of a variety of pathogens and stress conditions in order to 

increase the translation potential to crop performance under field conditions. 

Salinity stress incorporates components that are shared with other abiotic stresses, 

such as osmotic and oxidative stress and the induction of autophagy and senescence 

(Liu et al. 2009). Under field conditions salinity stress is frequently affecting plants 

throughout their lifetime, (although dynamic alterations might occur due to changing 

ground water level that can bring salt towards the soil surface by capillary forces). 

Therefore, pathogen infection in most occasions follows salt stress. This contrasts 

drought or heat stress, which can occur at various timepoints and can be either 

preceding or following pathogen infection, adding more layers of complexity to the 

outcome of these interactions. 

The unique component of salt stress is ion imbalance imposed by high Na+ and Cl- 

concentrations which might interfere with early signaling in pathogen defense, such 

as changes in ion fluxes (Yoshioka et al. 2006). It may also affect cell death with 
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leakage of K+ ions (Demidchik et al. 2014), and can thus have a significantly higher 

impact on these processes than other abiotic stresses. Vesicular trafficking under salt 

stress appears to be rewired with vesicles containing Na+ fused with the central 

vacuole to maximize compartmentalization of Na+ (Hamaji et al. 2009), which 

contrasts with vesicular movement during pathogen infection that becomes polarized 

towards the site of infection carrying antimicrobial compounds (Underwood and 

Somerville 2008). High Na+ and Cl- accumulation during salt stress can uniquely act 

as protective mechanism to pathogen feeding, due to the toxicity of these ions, similar 

to the protective effect of heavy metals in heavy metal hyper accumulators (Boyd 

2007).   

Powdery mildew is both economically important for tomato productivity and can be 

considered a model for biotrophic pathogens for tomato (Seifi et al. 2014). Biotrophic 

pathogenesis involves suppression of immune responses through manipulation of host 

defenses, in contrast to necrotrophic pathogenesis where secretion of phytotoxins and 

cell wall degrading enzymes promote host tissue necrosis prior to colonization (Laluk 

and Mengiste 2010). Therefore there are active interactions between the host cellular 

machinery and the pathogen during biotrophic pathogenesis that are potentially more 

prone to be impacted by a concurrent abiotic stress. Additionally, resistance to 

biotrophic pathogens is characterized by different mechanisms. A first line of defense 

responds to extracellular molecular patterns of pathogens with the production of 

antimicrobial compounds, pathogenesis-related proteins and structural barriers such 

as callose, which hamper pathogen penetration and usually do not culminate in a 

hypersensitivity response (HR). A second line of defense is triggered by the 

recognition of pathogen effectors resulting in a similar but significantly amplified 

response leading to HR and localized cell death (Cui et al. 2015; Dodds and Rathjen 

2010; Laluk and Mengiste 2010; Tsuda and Katagiri 2010). Tomato genetic resources 

resistant to powdery mildew have been identified and characterized that cover the 

abovementioned mechanisms (Li et al. 2007; Li et al. 2012), offering a unique 

opportunity to identify mechanism-specific effects of abiotic stress on disease 

resistance. 

Resistance to biotrophic pathogens appears to exhibit more antagonistic relationships 

between abiotic stress signaling and signaling to necrotrophic pathogens, as evidenced 

by the negative interactions of ABA and SA signaling (Kim et al. 2011c; Yasuda et al. 

2008) and the frequently opposing phenotypes in relation to abiotic and biotic stress 

tolerance after single gene manipulations (Asano et al. 2012; Campo et al. 2012). In 

contrast there are numerous reports of resistance to necrotrophic pathogens 

accompanied by abiotic stress tolerance (AbuQamar et al. 2009; Navarro et al. 2008; 
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Ramírez et al. 2009; Zhu et al. 2014). Therefore, despite some exceptions, abiotic 

stress-biotrophic pathogen interactions can provide significant insights towards the 

elucidation of negative interactions between abiotic and biotic stress signaling and 

this may lead to the identification of molecular nodes that bypass this antagonism and 

that have  a great potential for achieving combined stress tolerance in crops.  

 

What have we learned from tomato salt stress and powdery mildew interactions 

Additive negative effects of salt stress on powdery mildew susceptibility in partially 

resistant S. habrochaites LYC4 population. 

Identification of genotypes that exhibit multi-stress tolerance is of significant 

importance in delineating the (co-)regulation of abiotic and biotic stress adaptation 

and tolerance and understanding their genetic architecture by forward genetic 

studies.  S. habrochaites LYC4 carried these attributes, being resistant to both high 

salinity and powdery mildew, thus offering the unique opportunity to examine the 

segregation of both traits and other related secondary traits in an introgression line 

population.  

We show in Chapter 3 that salt stress (100mM NaCl) had a universal suppressing 

effect on powdery mildew resistance across all ILs, with no significant genotype x 

treatment interactions, indicating that the effects are additive. These observations 

translate to a general suppressive effect of salt stress on quantitative, partial disease 

resistance, resembling the antagonistic interactions observed at the gene expression 

level, with the opposite regulation of many genes involved in abiotic stress response 

compared to  the biotic stress response (Rasmussen et al. 2013; Zou et al. 2011), and 

the suppressing role of ABA on SA signaling (De Torres Zabala et al. 2009). However 

these results should be interpreted under the prism of potential breakdown of additive 

and epistatic interactions in the IL population, as individual lines carry single 

introgressions altering the trans-regulation of signaling pathways. Epistatic 

interactions are of great importance in plant defense responses with signaling 

cascades that include protein-protein interactions and modifications via 

phosphorylation (Adachi et al. 2015; Chinchilla et al. 2007), and these may have been 

disrupted in the individual intogression lines. Investigation of different segregating 

population types such as RIL populations that can incorporate epistatic interactions, 

can increase the detection power of genotype x treatment interactions under multiple 

stress conditions (Landers and Stapleton 2014). 
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Despite the issues above, IL populations offer significant advantages when examining 

the presence of favorable allelic variance for agronomic traits in wild relatives, 

limiting aberrant phenotypes that may mask the effect of useful alleles. S. 

habrochaites LYC4 is an important source of allelic variation for several traits, with 

QTLs being identified for Botrytis cinerea (Finkers et al. 2007) and fruit 

parthenocarpy (Gorguet et al. 2008) which were further expanded in the Chapter 3 

study on salt stress tolerance and powdery mildew resistance.  

 Despite the fact that in many occasions the introgression is relatively large, there are 

several likely candidate genes in the introgressed regions of IL lines with increased 

salt stress resistance, These include the NHX transporters on chromosome 1 and the 

SOS2 kinase on chromosome 12, which could be evaluated for allelic variation and 

potential advantageous functionality under salt stress. 

Although no strong powdery mildew resistance was identified in the ILs, the partial 

powdery mildew resistance observed in IL9-1 co-segregated with salt tolerance. Its 

short introgression houses genes involved in ethylene signaling and redox control, as 

well as multiple receptor like kinase (RLK) genes. These are all potentially important 

regulators in stress crosstalk, with the latter being increasingly recognized as nodal 

points of ABA and defense signaling (Hok et al. 2014; Paparella et al. 2014), and can 

be the building blocks for both understanding and achieving combined stress 

tolerance.   

Stress severity and resistance type dependent responses to combined stress: ethylene 

and ABA as significant modulators of susceptibility and fitness.  

Perhaps not surprising, tomato responses to combined salt stress and powdery mildew 

were highly affected by the severity level of the salt stress, with increased 

susceptibility under mild stress, which was reversed at higher salt stress levels 

(Chapter 4). Plant physiological and biochemical responses under different stress 

levels are not linear (Cheng et al. 2013a; Maggio et al. 2007; Malkinson and 

Tielbörger 2010; Muralidharan et al. 2014) which is also evidenced by the strikingly 

small overlap between transcriptome profiles under mild and severe stress in 

arabidopsis (Clauw et al. 2015; Harb et al. 2010).  

NaCl accumulation in the leaf tissues under salt stress can impede pathogen feeding 

from the host. NaCl is toxic to the pathogen, similar to the negative effect of heavy 

metal accumulation on pathogen growth (Fones et al. 2010). However this might not 

be the only reason for the limited pathogen growth under severe stress conditions. 

Additional structural and physiological changes might take place, such as changes in 
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the cell wall structure, wax composition  and the leaf microenvironment. For example 

lignin content was found to be reduced under mild drought conditions to facilitate the 

maintenance of growth under conditions of decreased turgor pressure (Vincent et al. 

2005), but severe stress resulted in increased lignin content (Lee et al. 2007a). Wax 

depositions increase under osmotic stress to restrict water loss (Cameron et al. 2006) 

and have a significant role in pathogen perception and defense. Responses however 

appear to be pathogen-specific with high wax increasing susceptibility to P. syringae 

and the necrotroph Sclerotinia sclerotiorum (Bourdenx et al. 2011), but positively 

contributing to resistance to cereal powdery mildew Erisyphe gramminis in wheat and 

Lolium (Carver et al. 1990; Kader et al. 1995).  

Tomato NILs NIL-ol-2 and NIL-Ol-4 were not impacted by the imposition of any salt 

stress concentration, implicating that mlo-mutant and R-gene resistance are robust 

under salt stress and exhibit small fitness costs in comparison to salt stress 

individually. An interesting question is whether this is a salt specific effect, or can 

similar responses be expected under different abiotic stress conditions such as 

drought, heat and nutrient deficiency.  

NIL-ol-2 maintained its resistance despite the observed decrease in callose depositions 

at higher salt stress levels (Chapter 4). Callose depositions are positively regulated by 

ABA signaling (Garcia-Andrade et al. 2011) and this is evidenced by the reduction of 

callose and increase in susceptibility in the ol-2xnotabilis ABA deficient mutant. Yet 

we observed significant reduction in callose development with increased salt stress 

concentrations. It appears that under salt stress multiple signaling components are 

affected, including the redox state and structural changes in the cytoskeleton  that 

might interfere with the production or transport of callose to the sites of infection 

(Luna et al. 2011; Miklis et al. 2007; Wang et al. 2011a). Callose might not be the only 

mechanism of action by which the mlo mutation confers powdery mildew resistance 

(Lipka et al. 2010). However, considering that decreased resistance in ol-2xnotabilis  

was accompanied reduction in callose deposition, we can hypothesize that Na+ and Cl- 

toxicity contributed to NIL-ol-2 maintenance of resistance at high salt concentrations 

despite loss of callose deposition. That would imply that the observed NIL-ol-2 

robustness might be salt stress-specific, which would agree with the partial resistance 

breakdown observed under drought stress (Baker et al. 1998). 

Ol-4 R-gene mediated resistance exhibited the highest robustness, being stable across 

treatments and genetic perturbations (Chapter 4). Compared to PTI and basal 

resistance (characterized by compensatory relationships, (Tsuda et al. 2009)) R-gene 

effector triggered immunity (ETI) defense output is stronger and more prolonged 
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compared to PTI (Tsuda et al. 2013), thus more robust and less prone to negative 

regulation from environmental or genetic factors (Cui et al. 2015). However, heat 

stress was shown to negatively impact the resistance controlled by Arabidopsis R-

genes SNC1 and RPS4 (in an abscisic acid (ABA) dependent manner (Mang et al. 

2012)) and Mi-1 (which is considered a homologue of Ol-4 (Seifi et al. 2011b)), 

hampering nematode resistance (Marques de Carvalho et al. 2015). In all cases heat 

interferes with R-gene function posttranslationally and in Arabidopsis it reduces their 

accumulation in the nucleus (Mang et al. 2012). It would thus be of great interest to 

further evaluate the stability of Ol-4 under different stress scenarios. 

The highest impact of salt stress and powdery mildew combination was observed in 

genotypes with partial disease resistance. The stress exaggerated susceptibility, 

senescence and reduced growth and was accompanied by strong induction of hormonal 

pathways, in particular ethylene and jasmonate, and a steep induction of cell wall 

invertase expression (Chapter 4). The same induction patterns are observed under 

powdery mildew infection only, albeit at a lower level, thus differences between the 

two conditions appear to be quantitative rather than qualitative and unsettle cellular 

and whole plant homeostasis. Similarly to other signaling molecules such as ROS, 

quantitative differences in hormone signal output can result in vastly different 

phenotypic responses ranging from stress acclimation to cell death (Brosché et al. 

2014; Mittler et al. 2011). 

Manipulations that entail the inhibition induction of entire signaling pathways, such 

as in our approach with the hormone mutants in Chapter 5, lack the depth to 

precisely delineate interactions dependent on the relative expression levels of the 

different signaling components. Therefore, despite the strong phenotypic effects of the 

ethylene-overproducing mutant and its increased susceptibility (Chapter 5), it cannot 

be simply concluded that attenuation of ethylene signaling will enhance combined 

stress tolerance. Ethylene signaling significantly contributes to enhanced salt stress 

tolerance through regulation of ROS detoxification and of the K+/Na+ ratio (Amjad et 

al. 2014; Jiang et al. 2013b; Peng et al. 2014). Like ethylene, jasmonates positively 

contribute to senescence, but are additionally involved in abiotic stress adaptation 

and stomata closure (Savchenko et al. 2014; Zhao et al. 2014) as well as callose 

deposition in response to pathogens (Scalschi et al. 2015). This  would explain the 

increased susceptibility of ol-2 when crossed with the jasmonate deficient mutant 

defenseless (Chapter 5). ABA signaling appears to have a catalytic role in 

exaggerating senescence and susceptibility under combined stress. In the ABA-

deficient notabilis mutant senescence and susceptibility were attenuated, but the 

plant growth was severely compromised by the salt stress.  
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 Delineation of hormone signaling pathways and detailed characterization of cross 

regulatory nodes by targeted genetic manipulation appears to be quintessential for 

achieving combined stress tolerance with small or no fitness cost, or unintended side 

effects.  Hormone profiling under combined stress and comparison with abiotic stress 

only (Albacete et al. 2008; Ghanem et al. 2012) is an approach that can identify 

signature organ-specific profiles.  

Hormone-regulated transcription factors that integrate ABA and/ or ethylene 

signaling and that are known to contribute to abiotic and biotic stress tolerance, such 

as members of ERF, NAC and WRKY TF families (Chen et al. 2013; Dang et al. 2013; 

Park et al. 2001; Yi et al. 2004) are starting points in identifying synergistic and 

antagonistic branching points of hormone signaling.   

WRKY transcription factors at the crossroads of abiotic and biotic stress tolerance 

WRKY transcription factors are at the core of both biotic and abiotic stress responses 

of plants. WRKYs have been repeatedly and independently identified in transcriptome 

meta-analyses as nodal points in stress cross-regulation (Ma and Bohnert 2007; Shaik 

and Ramakrishna 2014). WRKYs have recently been shown to be targets of pathogen 

effectors for the suppression of plant immunity (Le Roux et al. 2015; Sarris et al. 

2015) and to be directly involved in ROS burst following pathogen attack by 

promoting RBOH transcriptional activation (Adachi et al. 2015).  On the other hand, 

three Arabidopsis WRKYs (AtWRKY18, -40 and -60) are part of the core ABA 

signaling machinery cooperatively repressing the ABA transcriptional activators ABI4 

and ABI5 (Liu et al. 2012b).  

The striking and contrasting phenotypes of SlWRKY23 overexpression and silencing 

lines described in Chapter 6 suggest that this gene is a non-redundant node in abiotic 

and biotic stress crosstalk in tomato. Overexpression lines exhibited significantly 

higher salt tolerance than the parental lines, but the most explicit differences were 

observed for powdery mildew resistance, with hyper-susceptibility in the SlWRKY23 

overexpression lines and resistance accompanied by cell death in the RNAi lines. Cell 

death was even more pronounced under conditions without infection or stress, 

resembling the phenotype of lesion mimic mutants (Bruggeman et al. 2015). These 

observations indicate that SlWRKY23 may be involved in the control of ROS 

equilibrium under stress. It is however puzzling that salt stress, which enhances ROS 

production as well, suppresses the SlWRKY23 RNAi phenotypes. Perhaps SlWRKY23 

is a branch in the ABA signaling relay and a node in the ABA-SA antagonistic 

relationship. Thus its loss of function might shift the equilibrium towards SA 
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signaling, enhancing defense and inducing cell death under control conditions. 

Enhancement of ABA signaling by salt stress potentially results in the dampening of 

SA signaling, suppressing the pleiotropic effects of SlWRKY23 silencing. The 

identification of the downstream targets of SlWRKY23 and potential association with 

R-genes or RLKs can shed additional light on its function. 

Genetic redundancy and compensatory relationships might have contributed to the 

mild phenotypic changes as demonstrated by most of the WRKY transgenics 

(especially the RNAi lines). Notable exception was SlWRKY10 overexpression, which 

resulted in powdery mildew resistance and reduced growth and salt stress imposition 

enhancing susceptibility and restoring growth (Chapter 6). Thus, SlWRKY10 might be 

a node of  defense and growth trade-offs in tomato similarly to WRKY40 in 

Arabidopsis (Lozano-Durán et al. 2013). AtWRKY40 is a negative regulator of defense 

and associates with the brassinosteroid-regulated transcription factor BZR1 to 

promote growth at the expense of immune signaling. 

Remarkably, SlWRKY11 exhibits high sequence similarity with SlWRKY10 in the 

DNA binding domain but overexpression of SlWRKY11 translates to opposite 

phenotypic responses with slightly increased growth and salt tolerance. These 

observations indicate that even slight changes in protein sequence of the DNA-binding 

domain may have a significant effect on TF binding to downstream promoter 

sequences (Brand et al. 2013). This phenomenon was observed in other (even allelic) 

pairs of transcription factors with high sequence similarity  (Du et al. 2014; Tao et al. 

2011; Tao et al. 2009), and can be further explored to understand transcription factor 

binding specificity. 

Thus, expression manipulation of  specific (but not all) WRKY transcription factors 

can be a viable means of increasing salt tolerance apparently without negative 

pleiotropic effects. Alleviating redundancy by combining multiple WRKY genes might 

lead to even stronger effects. 

Directions for future research 

Different stresses, different adaptive responses and tolerance mechanisms 

Abiotic stress factors such as drought, cold, heat and salt stress share similar 

properties such as the imposition of secondary oxidative stress but these also possess 

unique features. Calcium signature responses during early stress perception depend 

on the type of stress (Whalley and Knight 2013). Gene expression profiles are 

significantly different under different stress factors (Rabbani et al. 2003), and unique 
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and often opposing physiological and biochemical responses are observed, such as the 

contrasting plasma membrane lipid remodelling during heat and cold stress (Ruelland 

and Zachowski 2010) and opposing stomata responses during drought and heat stress 

(Zhao et al. 2013). Stomatal opening for example is beneficial under heat stress, 

however it might increase the pathogenicity of stomatal invading pathogens, while 

drought induced stomatal closure might decrease pathogenicity. Heat stress in many 

occasions results in the breakdown of R-gene mediated resistance (Marques de 

Carvalho et al. 2015; Zhu et al. 2010). Conclusions however are not straightforward, 

as elevated temperatures (and low temperatures as well) can significantly impact the 

physiology of the pathogen, restricting its growth and pathogenicity (Peduto et al. 

2013).  

Plant nutritional status and potential nutritional imbalances or deficiencies can be 

detrimental for plant health as abundance of most nutrients (including K+, PO4
3-, 

SO4
2- , Fe3+ and Mg2+) in many (but not all) occasions have been shown to reduce 

susceptibility to various pathogens (Amtmann et al. 2008; Huber and Jones 2013; 

Walters and Bingham 2007; Ye et al. 2014). Nitrogen though is a notable exception. 

When abundantly available it increases the nutritional value of the plant tissues for 

the pathogens, increasing virulence and susceptibility (Fagard et al. 2014), though 

several exceptions have been observed especially in the Solanaceae (Hoffland et al. 

2000; Veresoglou et al. 2013). 

Tolerance to abiotic stresses can be achieved through different physiological and 

biochemical routes, each one with potentially distinct impacts on pathogenesis. For 

example drought stress tolerance can be acquired via whole plant potentiation of ABA 

signaling (Okamoto et al. 2013), ROS detoxification (Lee et al. 2007b), reduction of 

transpiration via increased synthesis of epicuticular wax (Bourdenx et al. 2011), 

cytokinin overproduction resulting in senescence alleviation (Reguera et al. 2013)  as 

well as by deeper rooting allowing greater soil water extraction and stress avoidance 

(Uga et al. 2013). Potentiated ABA signaling or increased ROS detoxification might 

negatively interfere with SA signaling and cell death/hypersensitivity response 

respectively (Cao et al. 2011; De Pinto et al. 2012; De Pinto et al. 2006). Cytokinin 

manipulation can be beneficial in combating senescence induced under combined 

stress and to augment defense responses (Argueso et al. 2012a; Jiang et al. 2013a), 

but this might be a double-edged sword as maintenance of green tissue can be optimal 

for biotrophic pathogen feeding (Walters and McRoberts 2006). Stress avoidance 

strategies mediated by increased water uptake through improved root anatomical 

features and/or aquaporin expression and reduced water loss via stomata might be the 

smoother strategy to limit interaction between abiotic and biotic stress adaptation. 
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Stress avoidance strategies by limiting Na+ and Cl- uptake however might not be the 

preferred strategy under salt stress, as we showed that Na+ and Cl- accumulation in 

the leaves can be toxic and limiting fungal growth (Chapter 4). Strategies aiming at 

ion compartmentalization in the above ground organs inside the vacuoles (He et al. 

2005) might therefore be more beneficial under combined stress.  

The length of the period at which the plants are exposed to abiotic stress can 

significantly affect the outcome under combinatorial stress. Stress can be persistent, a 

common occurrence for salinity and nutrient deficiencies, and of variable length, 

intermittent or terminal for instance with drought, heat and cold. Plant adaptation to 

prolonged stress was shown to vary significantly from short-term stress, with altered 

hormonal interactions (Yang et al. 2014a), cell wall anatomical changes such as 

increased lignification under prolonged drought (Moura et al. 2010) and significant 

build-up of Na+ and Cl- under salt stress (Yer et al. 1991). Therefore the outcome of 

abiotic and biotic stress combination under prolonged stress might considerably 

resemble our observations of short term severe abiotic stress. 

Different pathogens, different pathogenicity mechanisms and lifestyles 

Biotrophic and necrotrophic pathogens employ distinct virulence strategies that can 

translate in significantly disparate outcomes when the plants are also exposed to 

abiotic stress factors. The majority of reports indicate an increase of susceptibility 

under abiotic stress, similar to biotrophic pathogens  (Al‐Sadi et al. 2010; You et al. 

2011)  Necrotrophs actively produce H2O2  and induce an oxidative burst in the host  to 

facilitate tissue death and maceration (Choquer et al. 2007) and the increased levels 

of ROS correlate with fungal growth and cell death (Laluk et al. 2011; Łaźniewska et 

al. 2010). Capacitation of the plant antioxidant machinery has been shown to increase 

tolerance to necrotrophs (Plazek and Zur 2003) and therefore can be a common ground 

in improving tolerance to both abiotic and biotic stress from necrotrophs. 

Overexpression of wheat ERF1 did result in tolerance to cold and Rhizoctonia cerealis 

(Zhu et al. 2014).  

Infection by pathogens that penetrate the root/vascular tissue can be directly affected 

by the changes in soil moisture and salt concentrations, although soil-borne fungi 

generally can withstand lower water potentials than plants (Cook and Papendick 

1972). While salt stress appears to enhance root rot disease caused by Fusarium 

oxysporum f. sp. radicis-lycopersici and Phytophthora sojae in tomato and soybean 

respectively, drought stress reduces the incidence of vascular tissue pathogen 

Verticillium albo-atrum in alfalfa, possibly because of  reduced xylem flow as a result 
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of lower transpiration (Pennypacker et al. 1991). In an apparent mutualistic 

relationship Verticillium infection enhances drought tolerance in Arabidopsis via 

increased cambial activity resulting in xylem hyperplasia (Reusche et al. 2012). On 

the other hand negative interactions for plant fitness were observed in Phaseolus 

vulgaris, which exhibited increased shoot Na+ and Cl- content after concurrent salt 

stress and infection by the root pathogen Macrophomina phaseolina (You et al. 2011). 

Thus boosting antioxidant defense might be a viable route in achieving resistance to 

abiotic stress combinations with necrotrophic pathogens while the pathogen or stress 

type specific interactions observed for root pathogens might require pathosystem 

specific approaches. 

Deep dive into molecular crosstalk of early abiotic and biotic stress adaptive responses 

Unravelling the differences in early signaling in response to stress combinations in 

comparison with individual stresses can be key in rewiring signaling pathways and 

achieving combined stress resilience. 

Early patterns of ion fluxes, such as calcium waves, are signatures for stress specific 

responses (Stephan and Schroeder 2014).  Components involved in ion flux changes 

are to a significant degree shared between abiotic and biotic stress. Several ion 

channels appear to function in both salinity adaptation and signaling for defense 

responses induction and cell death, such as CNGCs (Clough et al. 2000), K+-permeable 

channels (Demidchik et al. 2014; Shabala et al. 2006) as well as Na+ and Cl-  

transporters (NHX and CLC respectively) (Chen et al. 2014b; Guo et al. 2014). NHX1 

Na+-H+ antiporter activity was shown to be involved in regulation of vacuolar pH and 

cellular oxidation for the optimal induction of plant defense (Chen et al. 2014b). 

Investigation of the function of ion transporters and channels under stress 

combination may provide clues about agonistic or antagonistic interactions especially 

considering that numerous members of these transporter families are involved in ion 

homeostasis during salt stress and contribute to salt stress tolerance (Gálvez et al. 

2012; Guo et al. 2008). 

 Redox status is a regulator of the activity of many proteins via post translational 

modifications (Spoel and Loake 2011; Yang et al. 2015). Central redox regulators such 

as ascorbate peroxidase (APX) and glutathione peroxidase (GPX) crucially contribute 

to plant environmental adaptation, with increased expression and/ or activity of both 

enzymes shown to be beneficial for abiotic stress tolerance, but also to increase 

pathogen susceptibility (Gou et al. 2015; Herbette et al. 2011). Reduced APX activity 
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on the other hand resulted in lower ROS detoxification capacity, potentiating cell 

death (de Pinto et al. 2013). Thus, fine tuning redox status in response to 

environmental variation and pathogen challenge is crucial for plant fitness. This was 

elegantly demonstrated in wheat where moderate reduction of APX increases Puccinia 

striiformis f. sp tritici resistance, while further reduction results in increased 

programmed cell death and senescence (Gou et al. 2015). This is in line with our 

observation that the increase in programmed cell death and senescence under 

combined stress is coinciding with reduction in APX expression (Chapter 4). Further 

monitoring of redox state kinetics under combined stress and in comparison with 

individual stress conditions might elucidate functional relationships between 

antioxidants concentration, enzyme activity and phenotypic responses. 

Cellular component recycling upon stress mediated by autophagy responses is critical 

for optimal resource allocation in response to abiotic stress and cell death initiation 

(but also containment) under pathogen attack (Liu and Bassham 2012). Autophagy 

execution is dependent on the function of ATG genes, and their manipulation has 

provided significant insights on their importance in development and for stress 

adaptation (Lv et al. 2014). Autophagy initiation positively contributes to abiotic 

stress, nutrient deficiency tolerance and defense against necrotrophic pathogens (Lenz 

et al. 2011). Remarkably, it can have either pro-survival (restricting cell death) or pro-

death functions (runaway cell death) against biotrophic pathogens, depending on the 

pathogen (Liu and Bassham 2012). Interestingly cell death initiation by TIR-NB-LRR 

genes requires a functioning autophagy pathway, while no such requirement was 

observed for CC-NB-LRR genes (Hofius et al. 2009). The gene underlying the Ol-4 

locus is a CC-NB-LRR gene, potentially explaining its robustness as potential 

autophagy miss-regulation under salt stress would not affect its functions in 

immunity. Another dimension of complexity especially important under stress 

combinations is the observation that the outcome of autophagy is dependent on stress 

intensity, as the Arabidopsis atg5 mutant exhibited enhanced stay-green phenotypes 

under mild osmotic, salt and oxidative stress, but reversal of this phenotype under 

severe stress resulting in cell death (Sakuraba et al. 2014). 

Protein-protein interactions and their functional associations are important for 

relaying the stress signal especially in response to pathogen infection (Gassmann and 

Bhattacharjee 2012; Inoue et al. 2013) and in many occasions the formation of R-gene 

complexes with chaperones such as HSP proteins is essential for their function (Chen 

and Shimamoto 2011). It has been proposed that heat stress reduces the availability 

of HSPs to form chaperones with R-genes (Lee et al. 2012), explaining in part many 
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observations of R-gene resistance breakdown  under heat stress. Resistance protein 

trafficking and endocytic recycling regulates receptor localization and defense 

signaling (Frescatada-Rosa et al. 2015). Similar processes are induced under abiotic 

stress and increased endocytic recycling appears to enhance salt tolerance and reduce 

ROS production (Tian et al. 2015). Thus it would be interesting to monitor 

intracellular trafficking responses under stress combinations. 

 Environmental stress conditions might alter gene expression patterns via condition-

specific cis-element binding of the same transcription factor. This was recently 

demonstrated in the characterization of OsWRKY13 which exhibits tissue-specific 

expression and condition-specific (drought in comparison to Xanthomonas oryzae 

infection)  binding to cis-elements of downstream genes and thereby inversely 

regulating resistance to drought and bacterial infection in rice (Xiao et al. 2013). 

Similarly Arabidopsis ERF1 in response to biotic stress was bound  to GCC boxes 

exclusively, while under abiotic stress there was specific binding to DRE elements 

(Cheng et al. 2013b). It would be intriguing to investigate if differential  binding is 

occurring with the tomato WRKY transcription factors investigated in Chapter 6 

(especially WRKY10) in relation to the effects of salt stress in combination with 

powdery mildew.   

Implications and applications for crop improvement to stress combinations 

Achieving robustness to stress combinations in crops and designing breeding 

strategies to maximize efficacy and efficiency to achieve this goal is highly 

challenging. The innumerous possibilities of abiotic stress-pathogen combinations 

along with the in many occasions quantitative differences of the same regulatory 

pathways differentiating resistance or susceptibility, require precise fine-tuning of 

genetic regulation. 

We propose that tomato performance improvement strategies under powdery mildew 

and salt stress combination should be adapted to abiotic stress intensity and type of 

resistance (Fig.1). Under mild stress priority should be given to senescence 

alleviation, while when the target environments are characterized by high salt 

concentrations, salinity tolerance should be prioritized, preferably by tissue Na+, Cl- 

and oxidative stress tolerance to minimize the growth penalty imposed by salt. 

Whether these approaches are applicable to other abiotic stresses (e.g. drought) and 

pathogen combinations remains to be elucidated by future research. 
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Uncovering the interactions in the ethylene-invertase-cytokinin regulatory triangle is 

critical to manipulate and confine the increased senescence/cell death/leaf abscission 

phenotypes that we characteristically observed under combined stress (Chapter 4 and 

5) and that can significantly hamper plant performance and reproductive potential 

(Shinozaki et al. 2015). We suggest that quantitative differences due to the excessive 

induction of both ethylene and cell wall invertases under combined stress are causal 

for the phenotypes observed, disturbing senescence programming and source-sink 

relations. Each in isolation can positively contribute to stress tolerance (Albacete et al. 

2014; Peng et al. 2014; Rivero et al. 2009; Tauzin and Giardina 2014). Inter-

regulatory relationships were shown by overexpression of cell wall invertase which 

lowered ethylene and increased cytokinin concentrations in tomato (Albacete et al. 

2014). Further understanding of cytokinin/invertase-ethylene interactions under 

combined stress can enable approaches to effectively control their signaling and 

activity output, for instance by manipulation of ERF and/or NAC transcription factors 

involved in ethylene control of senescence (Kim et al. 2014; Koyama et al. 2013).  

 Receptor-like kinases (RLKs) have emerged as major regulatory hubs in abiotic and 

biotic stress signaling inter-regulation especially in relation to ABA signaling (Hok et 

al. 2014; Paparella et al. 2014). Their implementation might be ideal to restrict ABA 

signaling effects on potentiation of senescence and dampening of defense signaling.   

Our observation that R-gene resistance by the CC-NB-LRR gene Ol-4 was not affected 

by abiotic stress and hormonal perturbations is promising for achieving combined 

stress tolerance by pyramiding abiotic stress tolerance genes with such an R-gene 

(Fig.1). It will be important to examine if this stability is maintained under other 

stress conditions, and if it applies to R-genes of both the TIR- and CC-NB-LRR class 

(discussed earlier). mlo-mutant-mediated resistance exhibited a similar high 

robustness under salt stress. However resistance breakdown under drought has been 

reported (Baker et al. 1998) as well as pleiotropic effects such as increased senescence 

at the later stages of plant development (Piffanelli et al. 2002), or compromised 

resistance to other pathogens (Kumar et al. 2001; McGrann et al. 2014), which might 

hinder its utilization in breeding. Pleiotropy is frequently observed when plant 

susceptibility genes (S-genes) are knocked down (Hückelhoven et al. 2013) thus 

identification of mlo or other S-gene allelic variants with minimal fitness cost can 

enable their effective utilization.  
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Figure 1. Proposed strategies for achieving combined salt stress and powdery 

resistance configured in relation to resistance type and abiotic stress severity. 

ET:ethylene, CK:cytokinin, TF: transcription factor, RLK: receptor-like kinases     

Gene stacking is greatly facilitated by genetic engineering and a combination of 

multiple R-gene stacking along with genes conferring tolerance to various abiotic 

stress conditions (Li et al. 2014) may significantly improve crop resilience to stress 

combinations. R-gene deployment is not applicable for resistance to necrotrophic 

pathogens and other routes should be followed such as the expression of protease 

inhibitors and chitinases (Chen et al. 2014a). 

Minimizing antagonistic interactions when pyramiding abiotic and biotic stress 

tolerance genes is cornerstone. In addition to tissue- and condition - regulation of 

expression, the utilization of rootstocks (where applicable) conferring tolerance to soil-

related abiotic stresses such as salt, drought or nutrient deficiencies (Albacete et al. 

2015; Estañ et al. 2005) and/or soil-borne pathogens (Guan et al. 2012), in 

combination with resistance factors in the scion can limit unintended interactions 

(although systemic signaling to some extend my still occur (Haroldsen et al. 2012)). 

Exploitation of natural variation is increasingly facilitated by the advancement of 

sequencing, molecular marker and genetic engineering  technologies (Bolger et al. 

2014), and wild species can be an ideal source of allelic variation for stress tolerance 

as they grow and reproduce in marginal habitats (Ortiz 2015). For example S. 

habrochaites LYC4, exhibiting both abiotic and biotic stress tolerance, is ideal 

starting material for allele mining, especially genes present in IL9-1, with numerous 
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RLKs in the introgressed region (Chapter 3). The information on allelic variation and 

its phenotypic impact can the starting point of superior allele generation by targeted 

gene editing (Rinaldo and Ayliffe 2015) accelerating improvement and limiting 

pleiotropy and fitness cost. 

Implementation of high throughput phenotyping such as thermal imaging for 

transpiration and fluorescence imaging for monitoring stress severity, nutrient 

deficiencies and diseases (Furbank and Tester 2011) along with high resolution 

recording of the environment (Campbell et al. 2015; Nagano et al. 2012) can provide 

unequivocal genotype-phenotype associations across environmental variables, greatly 

facilitating improvement for highly complex traits such as resistance to stress 

combinations. 
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Summary 

Projections on the impact of climate change on agricultural productivity foresee 

prolonged and/or increased stress intensities and enlargement of a significant number 

of pathogens habitats. This significantly raises the occurrence probability of (new) 

abiotic and biotic stress combinations. With stress tolerance research being mostly 

focused on responses to individual stresses, our understanding of plants’ ability to 

adapt to combined stresses is limited.  

In an attempt to bridge this knowledge gap, we hierarchized in chapter 1 existing 

information on individual abiotic or biotic stress adaptation mechanisms taking into 

consideration different anatomical, physiological and molecular layers of plant stress 

tolerance and defense. We identified potentially crucial regulatory intersections 

between abiotic and biotic stress signalling pathways following the pathogenesis 

timeline, and emphasized the importance of subcellular to whole plant level 

interactions by successfully dissecting the phenotypic response to combined stress. We 

considered both explicit and shared adaptive responses to abiotic and biotic stress, 

which included amongst others R-gene and systemic acquired resistance as well as 

reactive oxygen species (ROS), redox and hormone signalling, and proposed breeding 

targets and strategies.   

In chapter 3 we focused on salt stress and powdery mildew combination in tomato, a 

vegetable crop with a wealth of genetic resources, and started with a genetic study. S. 

habrochaites LYC4 was found to exhibit resistance to both salt stress and powdery 

mildew. A LYC4 introgression line (IL) population segregated for both salt stress 

tolerance and powdery mildew resistance. Introgressions contributing to salt 

tolerance, including Na+ and Cl- accumulation, and powdery mildew resistance were 

precisely pinpointed with the aid of SNP marker genotyping. Salt stress (100mM 

NaCl) combined with powdery mildew infection increased the susceptibility of the 

population to powdery mildew in an additive manner, while decreasing the phenotypic 

variation for this trait. Only a few overlapping QTLs for disease resistance and salt 

stress tolerance were identified (one on a short region at the top of Chromosome 9 

where numerous receptor-like kinases reside). Most genetic loci were specific for 

either salt stress tolerance or powdery mildew resistance indicating distinct genetic 

architectures. This enables genetic pyramiding approaches to build up combined 

stress tolerance.  

Considering that abiotic stress in nature can be of variable intensities, we evaluated 

selected ILs under combined stress with salinity ranging from mild to severe (50, 100 
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and 150mM NaCl) in chapter 4. Mild salt stress (50mM) increased powdery mildew 

susceptibility and was accompanied by accelerated cell death-like senescence. On the 

contrary, severe salt stress (150mM) reduced the disease symptoms and this 

correlated with leaf Na+ and Cl- content in the leaves. The effects of salt stress on 

powdery mildew resistance may be dependent on resistance type and mechanisms. 

Near Isogenic Lines (NILs) that carry different PM resistance genes (Ol-1 (associated 

with slow hypersensitivity response, HR), ol-2 (an mlo mutant associated with papilla 

formation) and Ol-4 (an R gene associated with fast HR) indeed exhibited differential 

responses to combined stress. NIL-Ol-1 resembled the LYC4 ILs response, while NIL-

ol-2 and NIL-Ol-4 maintained robust resistance and exhibited no senescence 

symptoms across all combinations, despite the observed reduction in callose 

deposition in NIL-ol-2. Increased susceptibility, senescence and fitness cost of NIL-Ol-

1 under combined stress coincided with high induction of ethylene and jasmonate 

biosynthesis and response pathways, highly induced expression of cell wall invertase 

LsLIN6, and a reduction in the expression of genes encoding for antioxidant enzymes. 

These observations underlined the significance of stress intensity and mechanism of 

resistance to the outcome of salt stress and powdery mildew combination, 

underscoring the involvement of ethylene signalling to the susceptibility response 

under combined stress. 

To examine the significance of hormone signalling in combined stress responses we 

evaluated crosses of tomato hormone mutants notabilis (ABA-deficient), defenseless1 

(JA-deficient) and epinastic (ET overproducer) with NIL-Ol-1, NIL-ol-2 and NIL-Ol-4 

in chapter 5. The highly pleiotropic epinastic mutant increased susceptibility of NIL-

Ol-1, but decreased the senescence response under combined stress, and resulted in 

partial breakdown of NIL-ol-2 resistance, accompanied by reduced callose deposition. 

The effects of ET overproduction on susceptibility were more pronounced under 

combined stress. ABA deficiency in notabilis on the other hand greatly reduced 

susceptibility of NIL-Ol-1under combined stress at the expense of stronger growth 

reduction, and induced ROS overproduction. Partial resistance breakdown in the ol-

2xnotabilis mutant accompanied by reduced callose deposition was observed, and this 

was restored under combined stress. Jasmonic acid deficiency phenotypic effects in 

defenseless mutants were subtle with modest increase in susceptibility for NIL-Ol-1 

and NIL-ol-2. For NIL-ol-2 this increased susceptibility was reverted under combined 

stress. NIL-Ol-4 resistance remained robust across all mutant and treatment 

combinations. These results highlight the catalytic role of ET and ABA signalling on 

susceptibility and senescence under combined stress, accentuating concomitantly the 

importance of signalling fine tuning to minimize pleiotropic effects. 
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The potential of exploiting transcription factors to enhance tolerance to multiple 

stress factors and their combination was investigated in chapter 6 through the 

identification and functional characterization of tomato homologues of AtWRKYs 11, 

29, 48, 70 and 72. Thirteen tomato WRKY homologues were identified, of which 9 

were overexpressed (using transformation with A. tumefaciens) and 12 stably silenced 

via RNAi in tomato cultivar Money Maker (MM). SlWRKY11-OE and SlWRKY23-OE 

and RNAi lines of SlWRKY7 and SlWRKY9 showed both increased biomass and 

relative salt tolerance. SlWRKY6-OE exhibited the highest relative salt stress 

tolerance, but had strongly decreased growth under control conditions. Exceptional 

phenotypes under control conditions were observed for SlWRKY10-OE (stunted 

growth) and SlWRKY23-RNAi (necrotic symptoms). These phenotypes were 

significantly restored under salt stress, and accompanied by decreased ROS 

production. Both lines exhibited increased resistance to powdery mildew, but this 

resistance was compromised under salt stress combination, indicating that these 

genes have important functions at the intersection of abiotic and biotic stress 

adaptation. SlWRKY23 appears to have a key regulatory role in the control of abiotic 

stress/defense and cell death control. 

Experimental observations are critically discussed in the General Discussion with 

emphasis on potential distinctive responses in different pathosystems and abiotic and 

biotic stress resistance mechanisms as well as genetic manipulations for effectively 

achieving combined stress tolerance. This includes deployment of individual common 

regulators as well as pyramiding of non-(negatively) interacting components such as 

R-genes with abiotic stress resistance genes, and their translation potential for other 

abiotic and biotic stress combinations. Understanding and improving plant tolerance 

to stress combinations can greatly contribute to accelerating crop improvement 

towards sustained or even increased productivity under stress.  
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Samenvatting 

Voorspellingen over de gevolgen van klimaatverandering voor de landbouw laten zien 

dat de stress langduriger en het stressniveau hoger wordt. Ook wordt verwacht dat de 

leefgebieden van verschillende pathogenen groter zullen worden. Dit heeft tot gevolg 

dat de kans groeter wordt dat gewassen worden blootgesteld aan (nieuwe) 

combinaties van zowel abiotische stress (o.a. droogte, hitte, zilte gronden) als biotische 

stress (ziektes en plagen). Onderzoek aan stress tolerantie van planten richt zich nu 

hoofdzakelijk op het weerstaan van één stress tegelijk. Kennis en begrip over de 

mogelijkheden van de plant zich aan te passen aan meerdere stress factoren tegelijk 

nog beperkt. 

In deze thesis wordt geprobeerd dit gebrek aan kennis aan te vullen. In hoofdtuk 2 

wordt bestaande kennis over de reactie van planten op individuele stress factoren in 

kaart gebracht en geordend. Hierbij worden de verschillende anatomische, 

fysiologische en moleculaire niveaus waarop de plant de stress factoren signaleert en 

zich verdedigt of aanpast besproken. Cruciale knooppunten van regulatie tussen 

abiotische en biotische signaleringsroutes zijn geïdentificeerd. De fenotypische 

respons na blootstelling aan gecombineerde abiotische en biotische stress factoren is 

gedetailleerd in kaart gebracht, waarmee het belang van interacties tussen de 

processen in enkele cellen en het functioneren van een volledige plant benadrukt 

wordt. De aanpassingen van de plant zowel aan een enkele stress als aan meerdere 

stressen tegelijk komen aan bod, zoals ziekteresistentiemechanismen via R-genen en 

via systemisch verkregen resistentie, maar ook de aanmaak van reactieve zuurstof-

verbindingen (Reactive Oxygen Species, ROS), en redox  en hormonale signalering. Op 

grond van deze informatie worden veredelingsdoelen en –strategieën voorgesteld. 

In hoofdstuk 3 wordt in een genetische studie ingezoomd op de combinatie van zout 

stress en gewone meeldauw (Oidium lycopersicum) infectie in tomaat. S. Habrochaites 

Lyc4 bleek zowel tolerant voor zoutstress als resistent tegen gewone meeldauw, en 

een Lyc4 populatie van introgressie lijnen (IL) splitste uit voor deze eigenschappen. 

Introgressies die bijdragen een zout tolerantie, zoals voor Na+ en Cl- ophoping in het 

blad, konden genetisch worden gekarteerd met behulp van SNP merkers. Zout stress 

(in dit geval blootstelling aan 100mM NaCl) gecombineerd met meeldauw infectie 

resulteerde in een additieve verhoging van de gevoeligheid voor meeldauw en een 

vermindering van de fenotypische variatie voor de ziekte. Slechts een paar QTLs voor 

meeldauw resistentie overlapten met QTLs voor zouttolerantie. Eén daarvan was 

gelegen in een klein gebied aan de bovenkant van chromosoom 9, waar ook een aantal 

receptor-achtige kinases (receptor-like Kinases) zijn gelokaliseerd. De meeste 
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gedetecteerde QTLs leverden een bijdrage aan ofwel zout tolerantie of gewone 

meeldauw resistentie, wat erop wijst dat de genetische factoren voor deze 

eigenschappen in de Lyc4 populatie weinig tot niet met elkaar overlappen. Dit houdt 

wel de mogelijkheid open van genetisch stapelen van genen voor ziekteresistentie en 

zouttolerantie om gecombineerde resistentie/tolerantie tegen ziekte en stress te 

verkrijgen. 

De mate van abiotische stress onder natuurlijke omstandigheden kan sterk variëren, 

van mild tot zeer ernstig. Daarom is in hoofdstuk 4 de respons op gecombineerde 

gewone meeldauw infectie en zoutstress bestudeerd met verschillende zoutstress 

niveaus: 50mM, 100mM en 150mM NaCl. De planten die blootgesteld werden aan 

milde zoutstress (50mM) waren gevoeliger voor gewone meeldauw dan de planten die 

groeiden zonder stress, en de bladeren verouderden sneller en hadden zelfs 

afstervingsverschijnselen. Echter, in planten gegroeid bij het hoogste stressniveau 

van 150mM waren de ziekteverschijnselen juist verminderd. Dit ging gepaard met 

hogere Na+ en Cl- concentraties in het blad. We hebben ook getest in hoeverre de 

veranderde ziektegevoeligheid onder zoutstress afhankelijk is van het type resistentie 

en resistentiemechanisme. Verschillende “Near Isogenic Lines (NILs) elk met andere 

meeldauw resistentiegenen werden getest (OL-1: geassocieerd bij de langzame 

overgevoeligheidsreactie (HR); ol-2: een mlo mutant betrokken bij aanmaak van 

papilla; Ol-4: een R-gen betrokken bij een snelle HR reactie), en bleken verschillend te 

reageren op gecombineerde stress. NIL-OL-1 liet een reactie zien die vergelijkbaar 

was met de Lyc4 lijnen: verhoogde infectie en snelle veroudering bij milde stress, en 

juist verminderde symptomen bij 150mM zout. NIL-ol-2 en NIL-OL-4 bleven 

daarentegen resistent tegen meeldauw bij alle stress niveaus en hadden ook geen 

verouderingssymptomen, niettegenstaande  verminderde callose afzetting van NIL-ol-

2. De verhoogde meeldauw infectie, versnelde veroudering en verminderde groei van 

NIL-OL-1 onder gecombineerde stress ging gepaard met verhoogde ethyleen en 

jasmonaat biosynthese en verhoogde activiteit van bijbehorende respons routes. 

Daarnaast was de expressie van het celwand invertase gen LeLIN6 sterk verhoogd, en 

expressie van genen betrokken bij anti-oxidant activiteit verlaagd. Deze resultaten 

laten zien dan de effectiviteit van meeldauw resistentie onder zoutstress sterk 

afhangt van het stressniveau maar ook van het type resistentie, en dat ethyleen een 

belangrijke rol speelt bij de reactie op en gevoeligheid voor meeldauw onder zilte 

condities. 

In hoofdstuk 4 wordt de rol van hormonen tijdens blootstelling aan gecombineerde 

stress factoren verder onderzocht in hormoon mutanten van tomaat.  De mutanten 

Notabilis (‘Abscisinezuur, (abscisic acid, ABA) deficiënt), defenseless (jasmijnzuur 
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(jasmonic acid, JA) deficiënt), en epinastic (Ethyleen (ET) overproductie) zijn gekruist 

met NIL-OL-1, NIL-ol-2 en NIL-OL-4. De combinatie van NIL-OL-1 met de pleiotrope 

mutant epinastic verminderde de meeldauw resistentie, en verminderde tegelijkertijd 

ook de door gecombineerde stress geïnduceerde versnelde veroudering. NIL-ol-2 in 

combinatie met epinastic reduceerde de afzetting van callose, en de verhoogde ET 

productie van de mutant verminderde de meeldauw resistentie met name tijdens 

gecombineerde zoutstress en meeldauw. Het ABA-tekort van notabilis daarentegen 

verhoogde het resistentieniveau van NIL-OL-1 onder gecombineerde stress, maar dat 

ging gepaard met sterke groeireductie en sterk verhoogde aanmaak van ROS. De ol-2 

x notabilis mutant was verminderd resistent en had minder callose afgezet, maar 

onder gecombineerde stress was de resistentie tegen meeldauw weer iets verhoogd, en 

werd ook meer callose afgezet. De jasmijnzuur deficiëntie in de defenseless x NIL-OL-

1 en defenseless x NIL-ol-2 lijnen had slechts een gering effect, met een kleine 

toename in meeldauw gevoeligheid. Deze nam weer af in defenseless x NIL-ol-2 onder 

zoutstress. defenseless x NIL-OL-4 was net zo resistent als NIL-OL-4 onder al de 

geteste omstandigheden. Deze resultaten benadrukken de belangrijke rol van de ET 

en ABA hormonale signaleringsroutes in ziektegevoeligheid en bladveroudering 

wanneer de plant blootgesteld wordt aan meeldauw en zoutstress tegelijk, en laat 

tegelijkertijd het belang zien van precieze regulering van de hormoonbalans in het 

beperken van pleiotrope effecten. 

Hoofdstuk 5 onderzoekt in hoeverre transcriptie factoren kunnen worden ingezet om 

de tolerantie tegen verschillende stress factoren tegelijk te verhogen. Dertien tomaat 

homologen van de WRKY transcriptiefactoren AtWRKY11, AtWRKY29,  AtWRKY48, 

WRKY70 en AtWRKY72 zijn geïdentificeerd, waarvan er 9 tot overexpressie zijn 

gebracht, en van 12 de expressie stabiel is geblokkeerd (RNAi) in het tomatenras 

Money Maker (MM). SlWRKY1-OE en SLWRKY23-OE) overexpressie lijnen en RNAi 

lijnen van SlWRKY7  en SlWRKY9 hadden een verhoogde (droge) biomassa, en waren 

ook nog relatief zout tolerant. Overexpressie van SlWRKY10 in  SlWRKY10-OE 

veroorzaakte onder normale groeicondities een sterke groeireductie, maar dit werd 

significant hersteld door zoutstress. SlWRKY23-RNAi met verlaagde expressie van 

SlWRKY23 had necrotische symptomen, maar ook deze verschijnselen waren veel 

minder aanwezig onder zoutstress. In beide gevallen weden aanzienlijk minder ROS 

geproduceerd onder zoutstress. Beide lijnen waren resistenter tegen meeldauw dan 

MM, maar onder zilte condities nam de resistentie af, wat erop wijst dat deze genen 

een belangrijke rol spelen in zowel de biotische als de abiotische respons. SlWRKY23 

lijkt daarbij een belangrijke rol toebedeeld in de regulatie van stress-geïnduceerde 

celdood. 
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De resultaten worden uitgebreid bediscussieerd met extra aandacht voor de 

verschillende manieren waarop de abiotische stress respons interacteert met 

verschillende resistentiemechanismen in de plant, en hoe specifieke onderdelen van 

de stress respons aangrijpen op deze resistentiemechanismen. Ook wordt bekeken hoe 

en welke genetische factoren kunnen bijdragen aan verhoogde tolerantie tegen zowel 

abiotische als biotische tolerantie/resistentie. De mogelijkheden van gebruik van 

individuele genen worden besproken, maar ook van stapelen van genen die niet 

negatief op elkaar inwerken, zoals R-genen en genen voor zoutstress tolerantie. 

Daarnaast wordt onderzocht in hoeverre de inzichten verworven in deze thesis over de 

interactie tussen de zoutstress respons en gewone meeldauw resistentie kunnen 

worden vertaald naar andere combinaties van abiotische en biotische stress factoren. 

Een beter begrip van de mechanismen die ten grondslag liggen aan verbeterde groei 

van planten die blootgesteld worden aan combinaties van stress factoren kan een 

grote bijdrage leveren aan de veredeling van gewassen met een duurzaam verhoogde 

opbrengst onder stressvolle omstandigheden. 
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