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1
Beer is a globally consumed beverage, which is produced from malted barley, 

water, hops and yeast. While beer brewing probably started in the ancient Egyptian 

culture, the current traditional recipe dates back to the 14th century (Kunze, 2010). 

The main ingredients and processing principles have not changed much since 

then. Although it is possible to substitute malted barley with other starch or sugar 

sources such as sorghum, unmalted barley or sugar syrup, this does not happen in 

many premium brands due to the German ‘Reinheitsgebot’. This is a German purity 

law dating from the 15th century that states that the only ingredients permitted for 

beer are water, hops and barley (Stahleder, 1987). Many people and breweries still 

value this law. In recent years, however, the use of unmalted barley and exogenous 

enzymes has become more popular due to advantages such as simplifi ed 

processing and reduced environmental impact (Steiner, Auer, Becker, & Gastl, 2012).

1.1 Barley as a raw material

Barley is the main raw material in the brewing process. A cross section of the barley 

kernel is depicted in fi gure 1. The barley grain consists of three main structures, 

which are the bran, germ and endosperm. The bran protects the barley kernel 

from microorganisms and environmental conditions. It has several layers with 

diff erent composition and functions. The outer layers are the husks, which consist 

mainly of cellulose in which components like polyphenols and bitter substances 

are localised (Kunze, 2010). Most arabinoxylans that are present in the barley are 

located in the bran. The germ is the part of the kernel that initiates the growth of 

the acrospires, and is rich in lipids. The endosperm is the main energy storage of 

the kernel. It consists for 77% of starch (van Donkelaar, Noordman, Boom, & van der 

Goot, 2015), which is surrounded by a matrix of storage proteins (Kunze, 2010). This 

matrix with starch network is surrounded by cell walls, which consist for 75% of 

β-glucans and 20 % of arabinoxylans (Jadhav, Lutz, Ghorpade, & Salunkhe, 1998). 

In the brewing process, starch is broken down into fermentable sugars, which are 

needed by the yeast to produce alcohol. Around the endosperm, the aleurone 

layer is located. This layer is about 3 cells thick. The cell walls consist for 26% of 

beta glucans and 71% of arabinoxylans. These cells are rich in protein, and many 

enzymes are produced and activated in these cells during germination. These 

enzymes are essential in the brewing process to hydrolyse, amongst others, cell 

wall material, proteins and starch. 
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Figure 1. Schematic representation of the barley kernel and its structure (by MR Illustrations).

1.2 Beer production

Barley is produced in ± 140 million tons a year (International-Grains-Council, 

2014), and the main food application is brewing (M. Edney, Wrigley, & Batey, 2010). 

Barley is malted before it is brewed into beer. During malting the barley is wetted 

and germinated to induce enzyme synthesis, after which it is dried by kilning. 

The malted barley is milled and mashed with water. After mashing, the mash is 

filtered, boiled with hop and fermented into beer. Figure 2 outlines a schematic 

representation of the malting and brewing process.
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Figure 2. Schematic representation of the brewing process

1.2.1 Malting

Native barley hardly contains active enzymes except β-amylase. Therefore, barley is 

malted to produce and activate enzymes that are needed in the brewing process. 

The malting process has three steps; steeping, germinating and kilning. During 

steeping, the barley is hydrated for about 40 hours, leading to a water content 

increase from 11% to about 46% (F. G. Priest & Stewart, 2006). (T. O’Rourke, 1999a). 

The water in the barley activates the barley kernel, after which the embryo starts 

to produce the hormone gibberellic acid. This hormone stimulates the enzyme 

synthesis, e.g. of α-amylase in the scutellum and aleurone layer (Higgins, Jacobsen, 

& Zwar, 1982; R. L. a. A. Jones, J.E., 1971). Besides gibberellic acid, also auxins (Indole-

3-acetic acid) stimulate enzyme production, e.g. β-glucanase to break down cell 

walls (Stuart, Loi, & Fincher, 1986).

The enzymes synthesized during germination are necessary for the barley kernel to 

break down the endosperm structure, for the hydrolysis of starch into sugars that 

are metabolised during fermentation. Cytolytic enzymes cause cell-wall disruption 

through hydrolysis of fi bre components like β-glucan and hemicellulose. As a 

result, the starch and proteins inside the endosperm cells become more accessible 

to the other enzymes, such as the α- and β-amylases and proteases. The purpose 

of proteolytic enzymes in brewing is the production of free amino nitrogen for 

the yeast to grow during fermentation. The main starch degrading enzymes are 

α-amylase and β-amylase (Steiner et al., 2012). 
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Kilning is a drying step performed after germination to stop the germination, 

to induce Maillard reactions to give flavour and colour, to preserve the enzyme 

activity and to preserve the barley itself. Drying is performed by hot air and starts at 

a lower temperature (50°C) to minimize the thermal inactivation of enzymes. Once 

the water activity is lowered and the thermostability of the enzymes has increased, 

the temperature of the air is increased (T. O’Rourke, 1999a). It is important to 

start kilning at the right moment to have an optimal balance between enzyme 

synthesis and low material losses due to respiration and plant growth. After kilning, 

the rootlets are removed and the malt is stored prior to further processing.

1.2.2 Beer production

The brewing process consists of several unit operations as depicted in figure 2. 

After malting, the malt is milled before brewing to increase the surface area of the 

substrates, allowing for a more efficient hydrolysis. Generally, a hammer mill or 

roller mill is used, depending on the filter that is used later on in the process. The 

milled malt is mixed with water in the mashing vessel to form the mash. Enzymes 

dissolve from the malted barley kernels into the water and start hydrolysing their 

substrates. The mashing starts at a temperature of about 54 °C (± 30 minutes) to 

allow glucanases and proteases to work. Glucanases break down the cell walls and 

proteases degrade the protein matrix, so that the starch becomes more accessible. 

The mash is subsequently heated to 64°C (± 60 minutes) to gelatinise starch and 

induce its hydrolysis by β-amylase and α-amylase. Beta-amylase is an exoenzyme 

with an optimum temperature of 60-65 °C. It catalyses the hydrolysis of the 1-4 

linkages to the non-reducing chain ends of amylopectin, producing maltose and 

dextrins. Αlpha-amylase is an endoenzyme with an optimum temperature of 72-

75 °C which hydrolyses 1-4-α-glucosidic linkages in amylose and amylopectin, 

producing glucose, maltose, maltotriose and oligosaccharides (Briggs, Brookes, 

Stevens, & Boulton, 2004; Stewart, 2013). The final step of the mashing is at 78°C (± 

10 minutes) to inactivate the enzymes and microorganisms. 

The mash is transferred to a filtration unit after mashing. Traditionally, a lautertun 

is used in which the mash is filtered over the husk particles originating from the 

barley kernels. Therefore it is important that the husk is kept intact as much as 

possible during the milling process. A roller mill is most suitable for this purpose 

(T. O’Rourke, 1999b). However, polyphenols, bitter components and arabinoxylans 

will solubilize into the wort when the husk is included in the mash, leading to a 
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risk of off -fl avour- and/or physical instability and process ineffi  ciency. The other 

option for fi ltration is a mash fi lter. Here the mash is put onto a mesh over which a 

pressure diff erence is generated. This fi ltering process allows a much fi ner milling, 

which can be achieved by using a hammer mill (T. O’Rourke, 1999b). The fi ltration 

separates the suspension into the fi ltered mash called wort and the solid residue, 

called the (brewer’s) spent grains, which is mostly used as animal feed.

From the fi ltration unit, the fi ltered mash is transferred into the wort boiler. Here, 

the wort is boiled with hops that give the beer its characteristic bitter fl avour. 

Furthermore, boiling leads to sterilisation of the wort, strips off  undesirable 

volatiles and causes excess proteins and tannis to form a precipitate that can 

be removed by use of a whirlpool (Eaton, 2006; Stewart, 2013). The wort is then 

cooled and fermented by yeast (Saccharomyces cerevisiae). The yeast needs 

suffi  cient levels of fermentable sugars, amino acids and lipids to grow. During 

fermentation, fermentable sugars are converted into alcohol and carbon dioxide. 

Also other fl avour and volatile components are produced that contribute to the 

beer fl avour. Subsequently, the beer is fi ltered to remove some of the polyphenols 

and proteins that interact to form complexes. These complexes cause a haze, 

which is considered a quality defect in beer. After fi ltration, the beer is ready to be 

bottled, pasteurized and distributed.

1.3 Waste and Trade-off s in the brewing process

Half of the waste in cereal agriculture is generated before the product is transported 

to the consumer (Gustavsson, Cederberg, Sonesson, Van Otterdijk, & Meybeck, 

2011). This is due to ineffi  cient harvesting, storage or processing. Material losses 

in processing can be reduced by minimizing the amount of waste streams and 

creating valuable by-products from those waste-streams. Besides raw material, 

energy and water can be saved by more effi  cient processing. This is also the case 

for the brewing process. 

During malting, for example, submersion of the grain in water is alternated with 

air-resting periods. Each submersion can require up to 900 litres of water per ton of 

barley, resulting in large quantities of water with a high biological oxygen demand 

that needs to be discarded (F. G. Priest & Stewart, 2006; Willaert, 2006). In fi gure 3 
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the mass streams of the malting process are visualized. It shows the large amounts 

of water that are used, and that the water which is taken up by the barley has to 

be evaporated again. The latent heat for this process is about 1638 kJ/kg barley. 

Furthermore there are significant raw material losses due to respiration and plant 

growth. Circumventing the malting process would save raw material, water and 

energy. The use of unmalted barley, however, is challenging since it only contains 

very low levels of endogenous enzymes and since its chemical composition is 

different from that of malt. 

Figure 3. Mass streams during the malting of barley. The diagram excludes air for germination and kilning.  

In malting as well as brewing, trade-offs are made. The main trade-off in malting 

is between sufficient enzyme development (longer germination time) and 

minimized raw material losses (shorter germination time). In case of brewing, 

especially mashing, limited protein hydrolysis, but maximal hydrolysis of starch 

and β-glucan is required. Because the hydrolysis of these components occurs at 

the same temperature, keeping the temperature of the mash for a longer time at 

54 °C will increase the breakdown of β-glucan but also that of protein (T. O’Rourke, 

1999b). Other issues, like fat oxidation, protein-polyphenol complex formation and 

increased viscosity may occur due to the components naturally present in malt. 

The breakdown of these components and the amount of breakdown products 

can be influenced by adapting the mashing program. 

Besides these trade-offs, also the generated waste streams are related to process 

efficiency and product quality. The largest waste stream in the process is the 

spent grains. Figure 4A shows how the mass of this stream is proportional to 

the main product stream (e.g. the wort). The spent grains contain many valuable 
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components like dietary fi bres, proteins and polyphenols (Aliyu & Bala, 2013). A 

main problem, though, is that the spent grains consist for about 80% of water 

that contains dissolved extract, which will be lost. Furthermore the stream requires 

drying to avoid spoilage and to allow further processing. One could think of 

recovering components from the spent grains, or to reduce the amount of spent 

grains. One way to do the latter would be to take away part of the husk before 

brewing. This removal can be done by pearling, an abrasive milling technique. The 

removed husk remains dry this way, which makes it easier to transport and handle. 

Also, there will be less spent grains that take up less water leading to decreased 

losses. However, taking away too much husk would impair the fi ltration, especially 

when a lauter tun is used. Also some components from the husk dissolve into the 

mash during brewing. Taking away the husk aff ects the beer composition, which 

could infl uence the taste and appearance of the fi nal product. 

1.4 Fractionation as a pre-treatment for brewing

Fractionation of the raw material can help solving ineffi  ciencies in the brewing 

process. In the current brewing process, about 25% of the malt dry matter ends up 

in the spent grains, which means that a signifi cant part of the original barley kernels 

is not used in the fi nal product. In addition, separation of the kernels into fractions 

to subject each to its most optimal treatment may enhance the overall yield of the 

brewing process. Separation of the barley in a starch-rich faction and a protein-rich 

fraction, allows adding the two fractions to the mash at diff erent temperatures or 

at diff erent times, which would allow for more complete starch hydrolysis, while 

limiting protein hydrolysis. Furthermore, fractionation can be used to reduce 

the amount of undesirable components. Arabinoxylans and anthocyanogens 

are examples of components that can have undesired eff ects in beer. These 

components are mainly located in the husk of the barley, and removal of this part 

before the brewing process will lead to lower levels of these components in the 

mash. An additional advantage could be that the unprocessed husk fraction might 

more easily be used for other applications, such as functional foods. Figure 4 shows 

the fi rst steps of the brewing process for brewing with unmalted barley (fi gure 4a) 

and pearled unmalted barley (fi gure 4b). The addition of exogenous enzymes is 

necessary in this process because the malting step was omitted, and native barley 

does not contain suffi  cient enzyme activity to hydrolyse its components. In this 
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diagram the wet spent grains steam is reduced by 58% and the total water use 

would be reduced by 8% compared to the traditional process. 

Figure 4. Mass streams during the first two steps of brewing in the conventional process (A) and a process 
with an added pearling step (B).

1.5 Traditional processing and sustainability

The beer production process has been largely optimized; malting is optimised to 

have high enzyme activity with minimal material losses (Cook, 2013) and mashing 

is designed for optimal conversion of components given the enzymes present in 

the malt. Yeast strains are cultivated to have optimal conversion of carbohydrates 

to ethanol, to give the right flavour pattern or to be temperature resistant (F. Priest 

& Campbell, 2011). Only minor improvements can be achieved by optimizing these 

processing steps further without adapting the types of operations. Nevertheless, 

inherent in the traditional process are the production of large waste streams, such 

as the spent grains and waste water during malting. Kilning, furthermore, is an 

inherently energy intensive operation. Therefore, the environmental sustainability 

(resource efficiency) of this process can only be improved by fundamentally 

changing these steps. 
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There are many possible options to improve this process, and before implementing 

any of them, one should assess if these options would contribute to a better overall 

effi  ciency. The effi  ciency of the use of resources and emission of wastes, two 

aspects of the sustainability of an operation, can be measured in various ways. Life 

cycle analysis is widely applied: it assesses the environmental impact of a product 

over its life or production cycle, in this case from raw material to end product. 

It may consider amongst others raw material input, waste production, energy 

requirements and emissions of greenhouse gases (Roy et al., 2009). It is, however, 

diffi  cult to compare energy and mass streams in this analysis, and therefore 

diffi  cult to compare processing options that have diff erent balances of energy 

and mass streams. Exergy analysis, having an objective thermodynamic basis, is an 

analysis which can be used to objectively compare mass and energy streams with 

each other. This analysis is becoming more common to assess the environmental 

sustainability of processes (Apaiah, Linnemann, & van der Kooi, 2006; Dincer & 

Ratlamwala, 2013), even though it does not directly take into account for example 

toxicity of waste streams or their eff ect on global warming. The outcome of both 

analyses depend on the system boundaries and allocation of environmental load.

1.6  Aim and outline of this thesis

We hypothesize that fractionation of the unprocessed barley may result in 

signifi cant improvements in the brewing process. Figure 4b shows that removal 

of the bran from the barley will reduce the amount of water needed in the process. 

It will reduce the volume of spent grains, hence further reducing wastes and 

energy required for drying the spent grains. A further step would be to omit the 

malting process, thereby even further reducing the use of water en energy (since 

no kilning would be required). Of course, a major question here is what the impact 

is of these changes to the process, and whether one can still brew high-quality 

beer. The overall aim of this thesis was therefore to investigate how barley can be 

fractionated to optimize the beer brewing process in terms of its use of resources, 

while maintaining the quality of the resulting beer. Figure 5 shows a schematic 

outline of the content of this thesis.

The thermo-mechanical properties of the barley constituents starch and protein 

were investigated, to see if we could create optimal conditions for separating them 
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from each other by milling. Chapter 2 describes the glass-to-rubber transition 

of protein and starch isolated from barley. The hypothesis of this chapter is that 

dry fractionation by milling is facilitated by milling under conditions in which the 

protein is in a rubbery state and the starch in a glassy state. Two measurement 

methods were used to measure the glass transition temperature (Stuart et al.); 

differential scanning calorimetry (DSC) and thermo-mechanical compression tests 

(TMCT). The methods gave different results due to the differences in moisture 

content range, heating rates and possibly conformational changes of the protein. 

The importance of correcting the Tg
 lines for the moisture distribution inside the 

endosperm over the various components was made clear. After this correction, the 

glass transition lines of starch and protein were closer together. Because the two 

glass transitions are found to be very close in the native material, the expectation 

is that achieving good separation between the components based on having one 

glassy component and one rubbery component is challenging.

For this reason, another dry fractionation technique, pearling, is considered. 

Pearling is an abrasive method that removes the outer layer of a particulate 

material. In case of barley, removal of the husk before brewing by pearling seems 

advantageous, because the husk contains undesirable components when it 

comes to beer. Besides, pearling would facilitate the use of those husks in other 

applications, and will reduce the energy required for drying them. The effect of 

using pearled barley in the brewing process is investigated. 

Chapter 3 describes the chemical composition of the barley and of fractions that 

were pearled off. Pearling was shown to selectively remove insoluble fibre, ash, 

protein and polyphenols, while the β-amylase activity and starch content of the 

remaining kernel was hardly affected. The water holding capacity of the barley 

fractions was related to the fibre content. This indicates that when the fibre content 

is reduced in the spent grains, the spent grains will take up less wort, leading to 

less wort and sugar losses in this waste stream. 

Chapter 4 describes a comparison between a traditional brewing process and an 

enzyme-assisted brewing process with respect to their use of resources. The use 

of exogenous enzymes is found to be more efficient than producing enzymes 

through the malting process. In the analysis, we proposed to use the cumulative 

exergetic content of the enzyme production rather than just the chemical exergy 
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of the enzymes. This cumulative exergetic content of the enzymes was ± 30 

times higher than their standard chemical exergy. This conclusion shows that the 

cumulative exergetic costs of minor components should be taken into account if 

a process uses signifi cant quantities of these components. This can be achieved 

by extending the system boundaries to include the production process of the 

purifi ed components. 

Chapter 5 describes brewing tests using malted, unmalted and pearled unmalted 

barley kernels. Brewing with unmalted barley saves material, energy and water 

in the malting stage but may result in complications during processing. Pearling 

mitigates these problems. Exogenous enzymes were used to compensate for the 

low enzyme activity in unmalted barley. Lautertun fi ltration and mash fi ltration 

were considered as fi ltration methods. Principle component analysis was 

performed on the chemical composition of the wort and the various spent grains, 

to investigate the eff ect of the malt-to-barley ratio, the degree of pearling and 

the fi lter method. A window of operation for working with pearled barley was 

determined for brewing with a mash fi lter as a fi ltration method. 

Chapter 6 concludes with a general discussion of all fi ndings presented in this 

thesis. It furthermore discusses the possibility to use pearling as a pre-treatment 

before malting. Finally, an outlook on future work in this area is given.

 

Figure 5. Schematic outline of the content of this thesis.
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2.
Glass transitions of barley starch 

and protein in the endosperm and 
isolated from 

Highlights

• State diagrams should be corrected for moisture distribution in a material

•  The combination of DCS and TMTC gives a better view on glass transition in 

biopolymers 

• Glass transition lines of protein and starch in barley are close together

• Fraction behaviour of barley is infl uenced by the state of its constituents

This chapter has been published as: Laura H.G. van Donkelaar, José Torres Martinez, 

Hans Frijters, Tom R. Noordman, Remko M. Boom, Atze-Jan van der Goot (2015), Glass 

transitions of barley starch and protein in the endosperm and isolated from, Food 

Research International 71, 241-246
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2.1 Abstract

When studying the glass-to-rubber transition inside natural materials, it is 

important to take into account the moisture content but also the moisture 

distribution over the components in the material. We measured the T
g
 

of protein and starch isolated from barley at diff erent moisture contents 

using diff erential scanning calorimetry (DSC) (heating rate 10ºC/min) 

and by thermo mechanical compression tests (TMCT) (Heating rate 2ºC/

min). The measurement of the T
g
 of partially crystalline materials, such as 

barley starch, is more diffi  cult using TMCT because the mechanical eff ect 

of expansion of these materials is smaller. For both measurement sets the 

glass transition lines were modelled using the Gordon-Taylor equation. 

The lines were adapted for the diff erences in moisture content over the 

endosperm by using the sorption isotherms of isolated barley starch and 

protein and whole barley endosperm. The glass transition lines measured 

by TMCT were closer together than the ones measured by DSC. 

Keywords: Dry fractionation; Glass transition temperature; 

Thermomechanical compression test; Diff erential scanning calorimetry; 

Gordon-Taylor equation; Barley
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2.2 Introduction

In many food processes, the raw materials contain components that influence 

the production process and product quality both positively and negatively. The 

negative effects can be reduced by removing or lowering the content of the 

components that cause them. The latter can be achieved  by processing the 

raw materials into fractions with just the right composition to convey the right 

functional properties for their use in the final product.

Dry fractionation is a relatively simple approach to obtain various fractions from 

a raw material. It offers the opportunity to enrich materials while retaining the 

components’ native functionality (Schutyser & van der Goot, 2011). Milling is the 

first step in dry fractionation to separate materials into the constituent components. 

Separation of the components is crucial to obtain high yields. Milling is followed by 

separation techniques such as sieving or air classification. (Andersson, Andersson, 

& Aman, 2000; Knuckles & Chiu, 1995; Knuckles, Chiu, & Betschart, 1992; Liu, 2009; 

Sundberg, Tilly, & Aman, P., 1995; ). The efficiency of sieving and air classification 

depends on many factors but detachment of the components is still a prerequisite.  

Barley is one of the cereals for which dry fractionation has been investigated, with 

the aim to enrich in starch and β-glucans (Knuckles & Chiu, 1995; Knuckles et al, 

1992; Létang, Samson, Lasserre, Chaurand, & Abécassis, 2002; Sundberg et al., 1995; 

Vasanthan, 1995, Yu, Stringfellow, & Inglett, 1994). 

The physical state of the components is one of the factors that influences 

detachment. Components can be in a glassy state, in which they are brittle, or 

in a rubbery state, in which they are ductile (Sperling, 2005). The glassy state is 

a  nonequilibrium solid state, in which the molecules have no ordered structure, 

leading to a larger volume to be occupied than when in crystalline state (Roos, 

2007; Slade et al., 1995). The glass transition is a second-order reaction and the 

glass transition temperature (Stuart et al.) is influenced by the water content and 

the temperature (Abiad, Carvajal, & Campanella, 2009). It can be reasoned that 

when one material, for example the protein matrix of barley, is in the rubbery state 

and one material, for example barley starch, is in the glassy state, milling could 

be more effective in separating these two components. The rationale is that, 

in this case, breakage would occur between the protein matrix and the starch, 

resulting in detached components. This hypothesis was successfully applied to 
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peas; increased detachment was found when the protein was in the rubbery state 

(Pelgrom, Schutyser, & Boom, 2012).

Diff erent methods for measuring glass transitions are described in the literature but 

diff erential scanning calorimetry (DSC) is the most widely used method (Abiad et 

al., 2009). DSC measures the heat fl ow and heat capacity in heating and cooling to 

identify the temperature of the transitions. The change in heat capacity measured 

by DSC for starch dispersions is small, which makes the detection of the Tg more 

diffi  cult than that of protein (Biliaderis, 1991). Tg’s measured by DSC of starch with 

a moisture content of 7% and higher have been reported in literature (Chung, Woo 

& Lim, 2004; Sun et al., 2002). . A relatively new method to measure glass transitions 

of food and pharmaceutical powders is the thermomechanical compression test 

(TMCT), established by Boonyai et al. in 2007 (Boonyai, Howes, & Bhandari, 2007). 

This test uses a probe that applies a constant force on the sample while the sample 

is being heated. The glass transition is then characterized by displacement of the 

probe, caused by the increased mobility of materials entering the rubbery state 

(Boonyai, Howes, & Bhandari, 2007; Pelgrom et al., 2012).

The Tg
 of an isolated component at a certain moisture content, however, cannot 

be taken directly as the T
g
 of that component in a barley kernel at that same overall 

moisture content. This is because the components have the same water activity but 

therefore a diff erent moisture content, which makes that the moisture distribution 

inside the barley kernel is not homogeneous between its components. Therefore, 

isotherms of the material and the components should be used to estimate local 

moisture content in the barley, which will infl uence the glass transition lines of the 

components. Microscopic imaging or compression tests can be used to test the 

eff ect of the temperature and the moisture content on the breaking behaviour of 

the material.

The aim of this study is thus to understand whether diff erences in the state of 

components can be used to detach components in barley more eff ectively during 

milling, focusing on the two main components of the barley endosperm of the 

variety Sebastien: starch (77 w/w% dm) and protein (8.2 w/w% dm) (van Donkelaar, 

Noordman, Boom, & Van der Goot, 2015). The glass transition curves of isolated 

starch and protein are presented and discussed. The results obtained by DSC 

are compared with the results obtained by the TMCT method. The curves were 
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adapted using the isotherms of barley endosperm, isolated starch and protein. 

Compression tests were done and visualized using scanning electron microscopy 

(Jane, Kasemsuwan, Leas, Zobel, & Robyt).

2.3 Materials and methods

2.3.1 Materials

Barley (Hordeum vulgare) of the variety Sebastian was used (harvested in France in 

August 2012, stored at 4°C).

2.3.2 Isolation of starch and protein

Starch was obtained by extraction from the barley. A dough was prepared using 

barley flour (water/flour ratio 1:2.5). The dough was washed (flour/water ratio 1:20) 

and the wash water was sieved through a 53-µm sieve. The suspension was then 

centrifuged (1400×g, 20 min). The supernatant and the grey top layer of the residue 

were removed. The residue was freeze dried and its starch content, measured using 

a total starch assay (Megazyme, Total Starch [AA/AMG], Ireland), was 94±2.7%. The 

moisture content of the samples was adjusted by mixing water and dry starch, and 

equilibrated for at least 72 h to ensure a homogeneous moisture distribution. Per 

measurement, 5 gram of sample was prepared. 

Protein was recovered using the method described by Wang et al. (2010) with 

some modifications. Pearled barley flour was defatted using hexane in a ratio of 

1:10 w/w%. The defatted flour was mixed with alkaline solution (pH 11.5, ratio 1:10 

w/w%) and stirred at 20°C for 30 min. After centrifugation (8500×g, 15 min at 23°C), 

the pH of the supernatant was adjusted to pH 5 using 0.5 M HCl to precipitate 

proteins. The supernatant was centrifuged (8500×g, 15 min, 23°C) and the residue 

was freeze dried, ground and stored at 4°C. The Dumas method (Nitrogen analyser, 

FlashEA 1112 series, Thermo Scientific, Interscience), conversion factor 5.83, was 

used to determine the purity of the protein (96.6±1.2%). The yield was ~50%. The 

moisture content of the samples was adjusted at least 72 h before analysis by 

placing them in a climate chamber at a fixed temperature and moisture content.
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2.3.3 Glass transition measurements

DSC analysis (Diamond DSC, PerkinElmer, Waltham, Massachusetts, USA) was used 

to measure the glass transition temperatures. About 15 mg of sample was placed 

in a stainless steel pressure cup. The DSC analyser was calibrated using gallium 

and indium; an empty stainless steel pan served as a reference and nitrogen was 

used as a carrier gas. The samples were cooled to −60°C at a rate of 10°C/min and 

heated to 160°C at a rate of 10°C/min. This was repeated once and measurements 

were analysed for the glass transition midpoint using Start Pyris Software (version 

11.0)  using the second heating curve.

TMCT was performed using the setup as described by Pelgrom et al. (2012), with 

some modifi cations. Two grams of sample was placed on the bottom of the 

concentric cylinder (diameter 20 mm, height 40 mm). A water chamber in the 

sidewalls and a solid bottom was used to control the temperature. A ramp of 

5–80°C was created by connecting the water chamber to a water bath (Julabo 

FP50-HE, Julabo, Seelbach, Germany). A heating rate of 2°C/min was used. The 

temperature in the bottom of the cylinder was recorded continuously (Testo 175 

T3, Testo GmbH & Co., Lenzkirch, Germany). A 15-mm cylindrical probe attached to 

a texture analyser (Instron-5564Series-Table-Model- Systems-Twin-column-design, 

Canton USA) equipped with a 2000 N load cell, exerted a constant force of 30 N 

on 2 g of sample. The force–displacement curve was measured with the Bluehill 2 

Texture Profi le Analysis software. For each sample, the force–displacement curve 

was corrected for thermal expansion of the equipment by subtracting the force–

displacement curve of maltodextrin (Aldrich Chemical Co.; dextrose equivalent, 

13–17). Maltodextrin was chosen as reference because it has a high Tg
 value (T

g
 

>180°C), and it is physically and chemically stable. 

Modelling the glass transition lines for both the DSC and TMCT methods was done 

using the Gordon-Taylor equation:

1 g1 2 g2
g

1 2

 
   

  
w T k w T

T
w k w

+
=

+

where w
1
 and w

2
 are the weight fractions of water and barley isolate, respectively; 

T
g1

 and T
g2

 are the glass transition temperatures of water and barley isolate (Gordon 

& Taylor, 1952). T
g1

 is taken to be 136 K although this value has been disputed (Yue 

& Angell, 2003).
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The k parameter relates to the strength of interactions in the sample components 

and is either fi tted or defi ned by

1 g1

2 g2

T
k

T
r

r
=

where ρ
1
 and ρ

2
 are the density of water and barley isolate, respectively, and T

g1
 

and T
g2

 are the glass transition temperatures of water and barley isolate (Ford & 

Timmins, 1989). The density of the components was defi ned by Singh & Heldman 

(2008):

water g1916.89 0.13071 Tr = −

starch g starch1599.1 0.11046 Tr = −

protein g protein132.99 0.51840 Tr = −

The models with and without k as a fi tting parameter were compared by comparing 

the Akaike information criterion (AIC) corrected for a fi nite data set (Akaike, 1973):

( )2 2 ( 1)AIC ln 2
1

p pn s p
n p

+= + +

2 RSSs
n

=

where n is the number of experiments, p is the number of parameters, s is the 

standard deviation and RSS is the residual sum of squares. A model with a lower 

AIC value describes the data with less data  loss compared to a model with a 

higher AIC value.  

2.3.4 Sorption isotherms

Dynamic vapour sorption (DVS) was used to measure the sorption and desorption 

isotherms of isolated barley starch, isolated barley protein, and barley endosperm. 

The samples were put in a stainless steel mesh basket which was placed in a DVS 

Advantage apparatus (Surface Measurement Systems NA, Allentown, PA). The 

temperature of the DVS was set at 25°C. The material was subjected to a range 

of relative humidities (RH); the RH was increased stepwise to approximately 90%, 

decreased in steps of 10% to 0% RH, and increased again to the starting RH. When 
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the mass of the isolates did not change by more than 0.002 mg/min for 10 min or 

when the material was subjected to a certain RH for a maximum of 360 min, it was 

assumed that the sample was at equilibrium. The sample was on an RH of 0 for 600 

min. All the components in the endosperm were assumed to have the same water 

activity. The isotherms were used to read the moisture content of the components 

at a certain endosperm moisture content. The Tg lines were adapted by plotting 

the glass transition temperature of the components at this determined moisture 

content was plotted versus the moisture content of the endosperm.   

The relationship between the moisture content (M) on dry weight and the water 

activity (aw
) was described with the Guggenheim, Anderson and De Boer (Bottega 

et al.) equation (Anderson, 1946; de Boer, 1953; Guggenheim, 1966):

0 w

w w w(1 k )(1 )
CkM aM

a ka Ca
=

− − +

where M
0
, k, and C are the parameters. The parameters were obtained by least 

square minimization of the diff erence between the measured moisture content 

and the predicted  moisture content. The non-linear regression routine was 

implemented in Matlab.

2.3.5 Compression tests

Compression tests were done by compressing one whole barley grain (n=20) at 20 

mm/min using a texture analyser (Instron, described earlier)). The moisture content 

of the samples was adapted at least 120 h before the analysis by placing them in 

a climate chamber at a fi xed temperature and moisture content. The compressive 

load (N) during compression was plotted versus the compressive extension (mm). 

The experiment was performed at moisture contents of 9.2% and 20.3% and at 

20°C and 50°C.

Microscopic images of the compressed barley were obtained using table-top 

SEM equipment (PHENOM Pure; Phenom-World BV, Eindhoven, The Netherlands). 

Samples were placed on a holder for non-conductive materials and analysed at a 

magnifi cation of 900×.
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2.4  Results and discussion

The Tg values of protein and starch isolated from barley were measured by DSC 

and TMTC. Interpretation of the data is an important step in both DSC and TMTC 

analysis. With DSC data, one can look at the onset, peak and the end temperature 

of the transition. The glass transition temperature range may be small or very broad 

depending on the composition of the material. For starches, especially at low 

moisture contents, the Tg is hard to interpret (Zeleznak & Hoseney, 1987; Biliaderis, 

1991), because changes in heat capacity when passing the glass transition are 

small for starch in comparison with other components, such as proteins (Figure 1) 

(Liu et al., 2010). The horizontal lines indicate the glass transition range.  Also TMCT 

data can be difficult to interpret. 
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Figure 1. Differential scanning calorimetry curves of starch (9.5% dry matter) and protein (8.8% dry matter). 

Figure 2 shows extension versus the temperature of barley starch isolate, barley 

protein isolate, and barley endosperm. The temperature range between the 

displacement curve being horizontal and the temperature where the curve 

goes up determined the range of the glass transition (Boonyai et al., 2007). The 

figure shows that the barley protein isolate expands more and has a smaller glass 

transition temperature range compared with the starch isolate. This means that the 

glass transition temperature is easier to identify. The line for the barley endosperm 

has the least steep slope and no meaningful glass transition temperature could be 

determined from this figure. This is probably because barley endosperm contains 

too many components with different glass transition temperatures, leading to a 

very broad glass transition range.
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 Figure 2. Extension versus temperature when compressing isolated barley starch (A), isolated barley protein 
(B) and milled barley endosperm (C) measured at moisture contents of 13.4% 13.3% and 12.4% weight/dry 
weight respectively.

Besides having a broader range for the T
g
, starch expands less than protein. The 

reason for this might be related to the crystallinity of the starch (relative crystallinity 

20-36%) (BeMiller & Whistler, 2009). The glassy part of the granule material will 

expand above Tg, but the total starch expansion is reduced by the presence of the 

crystalline parts that will hardly expand upon temperature increase (Roos, 2007). 

Besides, the rigid structure of the crystalline part reduces the mechanical eff ect of 

the glass transition. 

The data measured by DSC and TMTC were interpreted using the Gordon-Taylor 

equation (Figure 3). The use of Tg2
 and k as fi t parameters resulted in lower AIC 

values than the use of only one fi t parameter (table 1). This indicates that the 

model using 2 fi t parameters describes the data more accurately. The DSC data 

are more accurately described by the Gordon-Taylor equation than the TMCT 

data. The k values that were obtained for starch by DSC measurements and TMCT 

measurements were similar with the model using one fi t parameter, but were 

higher when two parameters were fi tted. The k values for protein were higher 

than that of starch. For all models, the glass transition temperature of proteins is 

lower than that of starch, which was expected given the data in the literature (Cuq, 

Abecassis, & Guilbert, 2003; Pelgrom et al., 2012).The Tg
 lines of barley starch and 

barley protein as measured by the DSC were similar to the T
g
 lines for wheat starch 

and wheat protein as published by Cuq et al. (2003) (Cuq, Abecassis, & Guilbert, 

2003). 
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Figure 3. Glass transition lines of starch and protein isolated from barley as measured by differential scanning 
calorimetry (A) and thermo mechanical compression tests (B).

Table 1. The k (parameter), Tg0 (glass transition temperature of dry starch/protein) and Akaike information 
criterion values ± standard deviation for the glass transition temperature lines as modelled from differential 
scanning calorimetry and thermo mechanical compression tests data according to the Gordon-Taylor 
equation.

Model k T
g0

 (°C) AIC

DSC

Starch p=1 0.16±0.00 284±7.03 65.1

Starch p=2 0.21±0.00 240±3.01 56.5

Protein p=1 0.27±0.00 147±2.67 90.6

Protein p=2 0.22±0.01 161±2.26 86.2

TMCT

Starch p=1 0.17±0.01 258±23.81 113.2

Starch p=2 0.35±0.01 148±3.45 49.2

Protein p=1 0.27±0.00 154±3.20 100.7

Protein p=2 0.44±0.01 112±1.51 82.5

p=1 means that only the glass transition temperature of the starch or protein was a fit parameter; p=2 means 
that k was also a fit parameter.

The glass transition line of isolated barley starch as measured by DSC is higher than 

that measured by TMCT. The reason for this might be the difference in the heating 

rate; it is known that the glass transition depends on the rate of heating or cooling. 

A lower heating rate would result in a lower measured glass transition temperature 

(Abiad, Carvajal, & Campanella, 2009).

39044 Donkelaar.indd   32 18-05-16   10:20



Glass transitions in barley endosperm

33

2

Another factor that causes diff erences between the T
g
 obtained by DSC and TMCT 

is the range of moisture content at which they were measured. The samples that 

gave the data used to construct the T
g
 curve for barley starch isolate had a moisture 

content between 7% and 19% for DSC, and between 11% and 21% for TMCT. With 

TMCT, it was not possible to measure the protein glass transition temperature at 

moisture contents lower than 11%. This results in a fl atter glass transition line for 

samples measured by TMCT.

Another possible explanation for the diff erence between results for DSC and TMCT 

could be related to conformational changes in the molecules due to heating during 

DSC (Bengoechea, Arrachid, Guerrero, Hill, & Mitchell, 2007; Furukawa, 1995; Mizuno, 

Mitsuiki, Motoki, Ebisawa, & Suzuki, 2000). In general, conformational changes 

increase with temperature increase. The fi rst heating step in the DSC measurement 

could thus result in changes, which is usually associated with reduced mobility 

and therefore a higher Tg
 value. However, Bengoechea et al. (2007) found a higher 

T
g
 for soy, casein and gluten proteinwhen using a phase transition analyser (Gupta, 

Abu-Ghannam, & Gallaghar) compared with DSC. Similar to TMCT, the PTA method 

makes use of a piston to apply a constant force to a sample while increasing the 

temperature. They hypothesized that conformational changes related to cross-

linking (which can occur during the fi rst heating cycle of the DSC measurement) 

can result in a lower measured T
g
 due to increased molecule mobility. Also earlier 

studies showed that cross-linking does not necessarily increase the T
g
 and that the 

T
g
 of biopolymers might be determined by the state of the non-covalent bonds 

(Furukawa, 1995; Mizuno et al., 2000).
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Figure 4. Measured (de)sorption data (symbols) and Modelled GAB (de)sorption isotherms (lines) of barley 
starch isolate (A), barley protein isolate (B) and barley endosperm (C). Closed circles: sorption. Open squares: 
desorption.
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Protein and starch within the barley grain will have the same water activity but not 

necessarily the same moisture content. Therefore we measured the isotherms of 

isolated barley starch, isolated barley protein and barley endosperm, and modelled 

them using the GAB equation as shown in figure 4. The values for the parameters 

from the GAB equation are shown in Table 2. We used the isotherms to adapt the 

state diagram; this extends the methodology (Abiad et al., 2009). The isotherms 

showed that proteins take up less water than the starch granules, which causes the 

protein to be dryer than expected from the moisture content of the endosperm. 

For example, when the moisture content of the endosperm is 11.7%, the moisture 

content of the starch is 12.2%, while that of the protein is 9.3%. This means the 

glass transition of the protein inside the endosperm is higher than expected when 

considering the overall moisture content only.

Table 2 The values for the parameters from the Guggenheim, Anderson and De Boer equation for the 
isotherms of isolated barley starch, isolated barley protein and barley endosperm at 25°C. C and k are 
dimensionless constants, M

0
 stands for water content in weight/dry weigh.

M
0

C k

Sorption isotherm

Starch 9.76±0.60 12.02±2.04 0.64±0.03

Protein 6.96±0.77 7.35±2.46 0.77±0.03

Endosperm 9.00±0.78 12.48±3.38 0.68±0.04

Desorption isotherm

Starch 13.24±1.15 13.34±2.08 0.50±0.04

Protein 9.57±1.77 12.07±6.04 0.64±0.08

Endosperm 11.67±0.43 14.02±1.20 0.56±0.02

Figure 5 shows the state diagram that is adapted by calculating the moisture 

content of the separate components at different endosperm moisture content, 

and plotting the glass transition temperature of the calculated moisture content 

versus the moisture content of the endosperm. The glass transition lines of protein 

and starch are now closer together. For example, the T
g
 of starch shifts from 90°C to 

87°C, and the T
g
 of protein shifts from 48°C to 63°C in the state diagram constructed 

by DSC and at a moisture content of 0.12. The window of operation for milling in 

which the protein is already rubbery, but the starch is still glassy, is smaller. It might 

be that the small differences between the glass transition temperature of barley 

protein and starch, at the water content of which they are present in the barley 

endosperm, makes it difficult to use this phenomenon in dry fractionation.
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Figure 5. Adapted state diagram of starch and protein isolated from barley measured by diff erential 
scanning calorimetry (A) and thermos mechanical compression tests (B), adapted using the isotherms.

We have now suffi  cient information to assess the hypothesis stated in the 

introduction, that the fracture behaviour is signifi cantly changed by the glass 

transition and that hence the separation of components can be infl uenced 

by choosing the overall state in between the glass transitions of the two main 

components (starch and protein). To assess these phenomena in the native 

material, we compressed single barley kernels and looked at the surface of the 

fraction with SEM (fi gure 6). We compressed the kernels in three areas of the state 

diagram: when both starch and protein were rubbery, when both were glassy, and 

when the protein was rubbery and the starch was glassy. Structures of the husk, 

aleurone layer, cell walls, starch and protein were indicated in the fi gure. 

Figure 6. Scanning electron microscopy pictures of the fracture surface of compressed barley (900x). A: MC 
9.2% at 20C, B: MC 20.3% at 20C. C: 20.3% at 50C. Husk (h), aleurone layer (a), cell walls (M. Edney et al.), starch 
(s) and protein matrix (p) can be distinguished.  
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Differences in fracture behaviour were observed when the barley kernel was 

fractured at different temperatures and moisture contents. When the protein and 

starch were both in the glassy phase (figure 6A), the surface of the fracture was 

straight and clearly brittle. This is especially well visible in the husk and aleurone 

layer. Also it is visible that the fracture went through the cells in the endosperm. 

When both components were in the rubbery state (figure 6B), the surface was 

ruptured and no clean fracture  was visible. The starch and protein matrix are 

indicated in the figure, but no clear cell wall structure can be distinguished. In 

figure 6C, the fracturing conditions were chosen such that the protein was in the 

rubbery state and the starch was in the glassy state according to the state diagram 

constructed with data obtained by DSC. For the diagram constructed with the 

data obtained with TMCT, the conditions were such that both components were 

in their glass transition. The breaking surface is now in between a brittle fracture 

and a ruptured, deformed surface. The picture shows that a cell was ruptured and 

its content is leaking out. 

2.5  Conclusions

DSC and TMTC gave different glass transition lines for isolated barley starch 

and isolated barley proteins, as modelled by the Gordon-Taylor equation. These 

differences may be attributed to the different heating rate, the different range of 

moisture content, or in the case of protein, conformational changes. The sorption 

isotherms of both components were measured and used to correct for the unequal 

sorption behaviour. After this correction, the glass transition lines were closer 

together. Fracturing of single, whole barley kernels showed that below the glass 

transitions, the fracture surface showed a brittle fracture, and above it, a deformed 

fracture surface indicating ductile behaviour. Since the two glass transitions are 

found to be very close in the native material, we expect that achieving good 

separation between the components based on having one glassy component 

and one rubbery component will be difficult.
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3.
Pearling barley to alter raw 

material composition before 
brewing

Highlights 

•  Pearling is an eff ective method to remove undesired components, like 

arabinoxylans and polyphenols, before brewing

•  The use of pearled barley has potential to decrease water and energy 

consumption in the brewing process

•  The amount of insoluble fi bres in a barley fraction is linearly related to the water 

binding capacity of that fraction

• The potential of using pearled barley in the brewing process is described

This chapter has been published as: Laura H.G. van Donkelaar, Tom R. Noordman, 

Remko M. Boom, Atze-Jan van der Goot (2015), Pearling barley to alter raw material 

composition before brewing, Journal of Food Engineering, 150, 44-49
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3.1 Abstract

Partly replacing malt with unmalted barley is a trend in. The use of unmalted 

barley, however, leads to issues due to its higher content of undesired 

components. Pearling, an abrasive method to remove the outer layers of 

the barley kernels was shown to reduce insoluble fi bre, ash, protein and 

polyphenols content, while the β-amylase activity and starch content of the 

remaining kernel were hardly aff ected. Removing de outer 5% of the kernel, 

for example, results in a reduction of 15% of the insoluble arabinoxylans, 

23% of the insoluble fi bre content and a reduction of 25% of the water 

binding capacity of the non-starch components. It also reduces the ash 

content by 19% and the polyphenol content by 11%, while only 0.20% 

of the starch is pearled off . Reducing the arabinoxylan content lowers 

the mash viscosity, which will facilitate the fi ltration step after mashing. 

Lower polyphenol content reduces the haze formation potential. Lower 

fi bre content reduces the volume and water holding capacity of the spent 

grains, which implies that less wort and sugar are lost during fi ltration. That 

the bran fraction remains dry, moreover, implies a reduction in energy 

required to dry the spent grains.
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3.2  Introduction

Traditionally, beer is brewed with malted barley. In recent years, the partial 

replacement of the malted barley by unmalted barley was investigated (Doode, 

Wijngaard, & Arendt, 2005; Lowe, Ulmer, Van Sinderen, & Arendt, 2004; Steiner et 

al., 2012). The use of barley instead of malt in the brewing process has potential 

advantages, such as energy and water savings in the malting stage and a reduced 

raw material use due to the fact that no starch is used for germination. (D.L.  Goode, 

Wiltschko, Ulmer, & Arendt, 2005; Steiner et al., 2012). The main disadvantage of 

using barley instead of malt is the lower enzymatic activity in barley. Consequently, 

fewer components will be hydrolysed during malting, leading to a reduced mashing 

or hydrolysis rate. Besides, less hydrolysis at the stages of the mashing process 

will lead to more residual cell wall materials like β-glucans and arabinoxylans 

(Choct, 1997). This might lead to more water absorption in the filter bed when 

filtering the mash, due to the high water holding capacity (WHC) of β-glucans and 

arabinoxylans. In addition, these components increase the mash viscosity, which 

also leads to longer filtration times. Finally, more water uptake by the spent grains 

leads to higher extract loss (D.L.  Goode et al., 2005; Lowe et al., 2004). A solution 

for the disadvantages described above could be the (partly) removal of those 

undesired components before the wet processing takes place. 

The native barley kernel contains several tissues that are highly structured. The 

kernel consists of an embryo and endosperm surrounded by several tissue layers, 

being aleurone, testa, pericarp and husk. The embryo contains most of the lipids. 

Starch granules are located in the endosperm and are embedded in a protein 

matrix. The cell wall that surrounds the protein matrix is rich in β-glucans (75%) 

and also contains arabinoxylans (20%) (Jadhav et al., 1998). The endosperm 

contains the enzyme β-amylase, which facilitates the breakdown of starch during 

mashing (Buttimer & Briggs, 2000). The bran consists of the pericarp layer and 

the aleurone layer. The aleurone layer, which is rich in protein, surrounds the 

endosperm and has thick cell walls, which are rich in arabinoxylan (71%) and also 

contain some β-glucan (26%). The husk layer, the outer layer of the barley, has 

a different composition as it is rich in polyphenols and cellulose. Polyphenols 

are important flavour components in beer, but they can also form complexes 

with proteins causing haze in the final product (Langstaff & Lewis, 1993; Siebert, 

Carrasco, & Lynn, 1996). Most arabinoxylans present in the kernel are located in 
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the husk and bran. Ash, most of which is also present in the husk of the barley, has 

been reported to be mostly silicate, which incidentally contributes to beer haze. 

However, it should be taken into account that some of the minerals, like zinc salts, 

provide trace elements in beer (Kunze, 2010). 

When looking at the composition and the structure of the barley kernel, it seems 

that removal of the outer part of the barley kernel before mashing could improve 

its mashing and fi ltering performances. This can be achieved through pearling, 

which is an abrasive milling method. Pearling fi rst removes the husk, followed by 

the pericarp, testa, aleurone layer and the embryo. The remaining material is then 

enriched in endosperm components like starch and β-amylase. A reduction of the 

outer layers implies a reduction in spent grain, because the husk makes up a large 

part of the spent grain dry matter. Spent grain contains about 80% of water and 

is therefore less compact and heavier than the original husk and bran. Besides 

this, less water and therefore less water soluble components are lost in the waste 

stream. Another advantage of pearling can be that it reduces the range and total 

amount of micro-organisms on the barley kernel (Flannigan & Dickie, 1972; Ríos, 

Pinson-Gadais, Abecassis, Zakhia-Rozis, & Lullien-Pellerin, 2009). When removing 

(some of ) the husk before mashing, the mash cannot be fi ltered over the husk 

as is done in the traditional process. If insuffi  cient material is left to use as a fi lter 

bed an alternative fi ltering process, like using more modern mash fi lters, would be 

necessary (T O’Rourke, 1999).

Pearling is mostly used to characterize barley (A Iwami, Kajiwara, & Omori, 2003; 

A. Iwami, Kajiwara, Takashita, & Omori, 2005; Klamczynski, Baik, & Czuchajowska, 

1998; Lampi, Moreau, Piironen, & Hicks, 2004; K Liu, Barrows, & Obert, 2009; KS 

Liu & Moreau, 2008; Madhujith, Izydorczyk, & Shahidi, 2006; Marconi, Graziano, & 

Cubadda, 2000; Quinde, Ullrich, & Baik, 2004; Sumner, Grebre-Egziabher, Tyler, & 

Rossnagel, 1985; Wang, Sosulski, Sosulski, & Ingledew, 1997; Yeung & Vasanthan, 

2001). Two of these studies (Marconi et al., 2000; Yeung & Vasanthan, 2001) 

describe the pearling of diff erent barley varieties, and analysed the composition of 

the pearled kernels and the material pearled off . Liu et al found that pearling had 

a signifi cant eff ect on the enrichment of functional lipids in the kernels (KS Liu & 

Moreau, 2008). Madhujith et al found that most antioxidant activity was present 

the outer 25 % w/w of the kernel related to the presence of polyphenols in this 

outer layer (Madhujith et al., 2006). Wang et al reported that ethanol production 
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from cereal grains increased in efficiency upon pearling, calculated as the ratio 

between theoretical ethanol yield and actual ethanol yield, when the outer part 

of the kernel was removed by pearling. In relation to brewing, pearling was used 

to correlate the hardness of the barley kernel to the kernel yield after pearling on 

the one hand and to conversion (as a measure for fermentation performance) on 

the other hand (A Iwami et al., 2003). Furthermore they found that the degree of 

pearling could be used to influence the taste of the Japanese distilled beverage 

shochu (A. Iwami et al., 2005). A patented process includes a device for dehusking 

cereal grains with the claim that pearling before malting and/or brewing could 

be beneficial for the beer quality. Besides, it was claimed that dehusking resulted 

in lower milling energy and decreased pollutants on the grain surface (Gehrig, 

Menger, & Keller, 2012). 

Based on the information given above, it can be hypothesized that pearling might 

be beneficial in brewing, though it is not clear which degree of pearling (i.e. the 

w/w percentage of material removed by pearling) is optimal. Furthermore, it has 

not yet been investigated how pearling affects the amount of spent grain waste 

and losses in the process. In this paper, pearling is considered as a method for 

altering the composition of barley used as a raw material for brewing. Barley of 

the variety Sebastian was pearled to remove 5%, 10%, 15% and 25% of the weight 

of the kernels, leaving an endosperm fraction of about 75% of the original kernel 

weight eventually. In addition to the chemical composition, the WHC off all 

fractions was determined. The appearance of the fractions was visualized using 

scanning electron microscopy (Jane et al.). Furthermore, the potential advantages 

and implications of using pearling to modify the raw material for the brewing 

process are discussed. 
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3.3  Materials and Methods

3.3.1 Materials 

Barley (Hordeum vulgare) of the variety Sebastian was used (France, harvested May 

2013) in all experiments.

3.3.2 Sample preparation

Barley kernels with a moisture content of 13.1% were pearled in a Satake TM05 

pearling machine. The samples were made according to the following procedure; 

First, about 5 % w/w was removed from the barley kernel. This was repeated 10 times 

(n=10; identical pearling runs) to obtain suffi  cient material for further processing. 

The pearled bran was called fraction 1. The 10 batches of pearled kernels were 

combined and thoroughly mixed after which the kernels were pearled to remove 

another 5% (n=8, fraction 2), 5% (n=7, fraction 3) and 10% (n=7, fraction 4) of 

the original weight respectively. The endosperm fraction obtained after the 4th 

pearling step consisted of kernels with approximately 75% of the weight of the 

original kernels. This fraction was called fraction 5. For further analysis (except for 

dry matter, water activity and some water holding capacity analysis) fractions 1 and 

2 were milled in a laboratory mill (Fritsch, type pulverisette 14 equipped with a 500 

µm screen). Fraction 5 and whole barley were milled in the same equipment for 

all analyses except for the dry matter determination. Fraction 3 and 4 were already 

suffi  ciently fi ne. The yield of the fractions was defi ned as the weight percentage (as 

is) of the kernel that was pearled off  as per pearling session.

3.3.3 Methods

The dry matter content was determined by oven drying at 105°C overnight, and 

expressed in % of the total weight. The concentration of all other components was 

expressed in % w/w per gram dry matter, unless stated otherwise. The ash content 

was measured by burning the samples at 525ºC overnight. The water activity was 

measured in a dew point water activity meter (AquaLab Dew Point water activity 

meter 4TE). 

The starch and mixed β-glucan content and β-amylase activity were measured 

using assay kits purchased from Megazyme Intl. Ireland Ltd. (Wicklow, Ireland). For 

the starch measurement, method B (AOAC offi  cial method 996.11) was used, for 

β-glucan EBC method 3.11.1 was used and for β-amylase the betamyl-3 method 
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was used. The absorbance was measured using a spectrophotometer (Beckman 

Coulter DU®720). β-amylase activity was expressed in U/g dm. 

The protein content was measured by DUMAS. Conversion factors as reported by 

Merrill and Watt, 6.31 for the bran fractions (1-4), 5.70 for the endosperm fraction 

(5) and 5.83 for whole barley were used to calculate the protein content (Merrill & 

Watt, 1973). Different conversion factors were used to account for the difference in 

protein composition in the husk and endosperm.

The fat content was measured by means of a soxhlet extraction (Buchi-extractor) 

with petroleum ether as a solvent. The fat content was calculated by expressing 

the mass of dry extract as a percentage of the mass of defatted barley flour. 

Polyphenols were extracted by combining the supernatants of two subsequent 

extractions of 0.4 g of sample in 4 ml of water at 80°C for 1 hour. The polyphenol 

content was approximated by using the Folin-Ciocalteu method; 100µl of aqueous 

extract was mixed with 2900µl of water, 200µl of Folin–Ciocalteu-reagents and 

800µl of 20% sodium carbonate solution. After incubation in the dark at 40°C for 

30 minutes, the absorbance was measured in a spectrophotometer at 765 nm 

(Varian, Cary 50 Bio UV/visible spectrophotometer). Gallic acid was used for the 

calibration curve and polyphenol content was expressed in mg/g gallic acid 

equivalent (Ragaee, Abdel-Aal, & Noaman). 

The arabinoxylan content was determined by measuring the neutral sugar 

content in triplicate according to Englyst and Cummings (Englyst & Cummings, 

1984). The samples were treated for 30 min with aqueous 72% H2
SO

4
 at 30ºC as 

a pre-hydrolysis step followed by hydrolysis with H
2
SO

4
 (1.0M, 3 hr, 100°C). The 

monosaccharaides were derivatized to their alditol acetates and analysed by gas 

chromatography (Focus-GC, Thermo Scientific, Waltham, MA, USA). Inositol served 

as an internal standard. Arabinoxylan content was calculated as the sum of the 

amount of arabinose and xylose, and expressed in mg/g dm.

The insoluble fibre content was assumed to be the rest fraction calculated by 

subtracting the amount (% w/w per dm) of starch, β-glucan, protein, fat and ash 

content from the total amount of dry matter (100%). It was assumed that this 

fraction consisted only of fibres.
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The water holding capacity (WHC) of the non-starch material was determined 

by weighing ±1 gram of sample into 14 ml test tubes. To focus the non-starch 

materials, starch was removed through heating the samples in 10 ml of an alpha 

amylase solution, SIGMA A-3403 from Bacillus licheniformis, at 80ºC for 30 minutes. 

Then the samples were centrifuged at 2000g at 20°C and the supernatant was 

decanted. WHC was expressed in gram of water per gram of dry starting material. 

Microscopic images were obtained by using table top SEM equipment (PHENOM 

Pure). The material of fraction 1-4 was used as such. Fractions 5 and whole barley 

were milled before analysis.

Mass fl ow (Sankey) diagrams were constructed using the program e!Sankey. 

3.4  Results 

3.4.1 Pearled fractions composition 

Barley kernels were pearled to remove 5.3 % w/w, 4.4 % w/w, 5.1 % w/w and 10.1 % 

w/w of the original weight (fractions 1 to 4 respectively). The 5th fraction consisted 

of the remaining kernels having about 75% of the original kernel weight. Figure 1 

shows SEM images obtained from whole barley and fractions 1 to 5. Barley starch 

has a binominal distribution and can be identifi ed by SEM as large disc-shaped 

granules of 15-32 µm and small granules of 2-3 µm (Jane et al., 1994). The images 

suggests that the outer fractions contained less starch granules and more fi brous 

material, while most starch granules are present in fraction 5, which represented 

the middle of the kernel. Besides, some fi brous fragments are still present in this 

fraction. 

Table 1 shows the yield and composition of the barley and the pearled fractions. 

The dry matter content was higher in the husk fractions than in the endosperm 

fraction. Some water may have been evaporated during pearling. The starch 

concentration increased from the outer fractions to the inner fraction. The low 

starch content in fraction 1 indicates that hardly any endosperm is removed at this 

degree of pearling. The protein content was high in fractions 3 and 4 suggesting 

that the aleurone layer, which has high protein content, is mostly present in these 

fractions. It is in accordance with the β-glucan values, which are higher in these 
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fractions. Aleurone cells are known to have a thick cell wall consisting of β-glucan 

and arabinoxylans. The endosperm contained 4.47 % w/w β-glucan. Since cell wall 

material is one of the three main structures in barley endosperm besides protein 

matrix and starch granules, the relatively high β-glucan level in this fraction was 

expected.

Fat levels are especially high in fraction 3, which indicates that the most germs are 

pearled off when removing this fraction. The deviation of the mass balance of fat is 

high. This might be caused by an increased extractability of fat in pearled fractions 

3 and 4 compared to the whole barley, which was milled. Pearling damages the 

cells and less lumps of material remain in the pearled fractions, which probably 

facilitates the extraction of fat. Ash content was highest in the husk fractions, 

as was the content of insoluble fibres. The insoluble fibres are mainly cellulose, 

lignin and pentosan (including arabinoxylan) compounds that are predominantly 

present in the husk. The values obtained for the  insoluble fibre content of barley 

bran (as a sum of the former mentioned three components) are in line with 

values previously reported e.g. (A. Andersson, Andersson, & Aman, 2000; Olkku, 

Salmenkallio-Marttila, Sweins, & Home, 2005). 

Table 1. Yield and component content of the mayor components in barley fractions and whole barley. 
Fraction 1 stands for the outer layer of barley (5 % w/w), fraction 2 (5 % w/w), 3 (5% w/w), and 4 (10% w/w) 
are the fractions that were subsequently pearled off and fraction 5 the inner 75% w/w of the barley.  

Fraction Yield (%) DM Starch Protein β-glucan Fat Ash Ins. Fibre 

Fraction 1 5.3 ± 0.1 91.0 ± 0.1 2.5 ± 0.1 5.7 ± 0.6 0.3 ± 0.3 1.2 ± 0.2 7.0  ± 0.1 82.9 ± 0.7

Fraction 2 4.4 ± 0.2 91.1 ± 0.2 7.8 ± 0.5 10.8 ± 0.5 1.3 ± 0.5 3.7 ± 0.1 6.59 ± 0.2 68.8 ± 0.9

Fraction 3 5.1 ± 0.2 90.1 ± 0.2 24.3 ± 2.1 18.3 ± 0.4 3.1 ± 0.3 7.2 ± 0.3 5.78 ± 0.2 39.5 ± 2.2

Fraction 4 10.1 ± 0.2 90.0 ± 0.3 44.6 ± 2.1 17.0 ± 0.3 4.9  ± 0.3 4.2 ± 0.0 3.79 ± 0.0 23.9 ± 2.2

Fraction 5 75.2 ± 0.2 87.2 ± 0.1 77.2 ± 7.3 8.2 ± 0.2 4.5 ± 0.4 0.9 ± 0.1 0.85 ± 0.1 6.3 ± 7.3

Whole 
barley

100 86.9 ± 0.0 62.7 ± 2.8 9.8 ± 0.4 3.6 ± 0.4 1.3 ± 0.1 2.2 ± 0.2 18.2 ± 2.9

Dev. from mass 
balance 

-1.1 -1.6 0.2 -0.5 -0.4 0.2 1.7

Table 2 shows the measured contents of polyphenols, β-amylase activity, 

arabinoxylan content and the values for water activity of the barley and the barley 

fractions. Polyphenols are mostly present in the inner part of the husk layer. This 

39044 Donkelaar.indd   48 18-05-16   10:20



Composition of pearled barley fractions and their use in brewing

49

3

fraction might contain the testa, which contains a lot of proanthocyanidins. Also 

the arabinoxylans are mostly present in the outer fractions, which is in line with 

previous studies (Dervilly et al., 2002; Oscarsson, Andersson, Salomonsson, & Åman, 

1996). The β-amylase activity was mostly present in the endosperm, and its activity 

was very low in the outer 10% of the husk. This complies with literature in which it 

is stated that β-amylase is present in the endosperm already before germination 

(in contrast to for example α-amylase, which is synthesized in the aleurone layer 

during germination) (Chrispeels & Varner, 1967). The water activity follows the dry 

matter content of the fractions. Fractions with a higher dry matter content showed 

a lower water activity.

Table 2. Component composition minor components in barley and barley fractions ± standard deviation. 
Fraction 1 stands for the outer layer of barley (5 % w/w), fraction 2 (5 % w/w), 3 (5% w/w), and 4 (10% w/w) 
are the fractions that were subsequently pearled off  and fraction 5 the inner 75% w/w of the barley.  

Fraction Polyphenols 
GAE (mg/g)

β-amylase 
activity (U/g)

Insoluble Arabinoxylans (mg/g dm) Water 
Activity (%)

Arabinose Xylose Total

Fraction 1  6165 ± 28 -1.0 ± 1.7  51 ± 4 98 ± 17 148 ± 16  0.46 ± 6E-3

Fraction 2  9319 ± 371 1.6 ± 0.2  76 ± 2  138 ± 23 213 ± 25  0.42 ± 2E-3

Fraction 3  7045 ± 213 9.4 ± 0.2 76 ± 4  94 ± 6 170 ± 9  0.51 ± 6E-3

Fraction 4  4034 ± 494 16.2 ± 0.2  38 ±  3  53 ± 4 91 ± 7  0.52 ± 2E-3

Fraction 5  1906 ± 203 25.7 ± 4.0  10 ± 1  13 ± 2 23 ± 3  0.55 ± 6E-4

Whole barley  2461 ± 186 23.9± 0.2  21 ± 1  43 ± 5 64 ± 5  0.62 ± 8E-4

Deviation 
from mass 
balance

 -469 -0.96  0 12 12  0.08

3.4.2 Pearled fractions water holding capacity

Table 3 shows the WHC of the barley and barley fractions. When looking at the 

WHC of the fractions per gram of dry starting material, the WHC in the outer 

fractions was higher than in the endosperm. This can be explained by the lower 

amount of non-starch material in the endosperm; when the starch was hydrolysed, 

less material was left to hold the water. The WHC of the unmilled fractions 1 and 2 

were higher than when milled. This indicates that the destruction of the structure 

by milling reduces the WHC of the husk. In traditional brewing, the husk is kept 

mostly intact, so the WHC of the unmilled fractions 1 and 2 is probably more 

representative for the WHC of the husk of grist/spent grains. 
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Table 3. WHC of pearled barley fractions and whole barley. Fraction 1 stands for the outer layer of barley (5 
% w/w), fraction 2 (5 % w/w), 3 (5% w/w), and 4 (10% w/w) are the fractions that were subsequently pearled 
off and fraction 5 the inner 75% w/w of the barley.  

Fraction WHC (g/g dm flour)
 

milled Unmilled

Fraction 1 3.5 ± 0.1 5.4 ± 0.4

Fraction 2 2.7 ± 0.1 3.1 ± 0.1

Fraction 3 1.8 ± 0.0  

Fraction 4 0.8 ± 0.0  

Fraction 5 0.7 ± 0.0  

Whole barley 0.9 ± 0.2  

3.5 Discussion

Currently, brewers tend to replace part of the malt by barley. This replacement, 

however, might give rise to difficulties due the fact that some components present 

in barley might cause processing problems. Therefore, it is beneficial to alter the 

starting composition of the barley through removing the undesired components 

while keeping the desired components, such as starch and enzymes. Starch is 

the most important component in barley for beer brewing, and losses of starch 

should be minimized. Also the β-amylase activity should not be compromised. The 

diagram in figure 2 summarizes the compositions of the pearled fractions, pearled 

kernels and whole barley.
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Figure 3 depicts the percentage of components removed from the raw material 

versus the percentage of starch removed. The fi gure shows that over 40% of 

fi bre, about 30% of ash and arabinoxylans and about 25% of polyphenols will be 

removed, when abasing about 10% of the kernel. Remarkably, less than 1% of the 

starch will get lost under those conditions. In addition, almost no β-amylase activity 

was measured in the outer two layers, while the activity of the whole barley was 

almost equal to that of the endosperm.
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Figure 3. The removal of several components versus starch removal when pearling barley. Percentages in 
the top stand for the degree of pearling. 

3.5.1 Water holding capacity (WHC)

Removing fi bres, like arabinoxylans, can reduce the waste via the spent grains by 

reducing the water holding capacity of these spent grains. In fi gure 4A the WHC 

of the barley fractions (g/g dm) is plotted versus the amount of insoluble fi bres 

present it becomes clear that fractions with higher fi bre content had a higher 

WHC. The graph showed a linear correlation (R2 of 0.977) confi rming that the 

fi bres are a major water holding component in the spent grains. Extrapolating this 

graph to 100% insoluble fi bre suggests that the water binding capacity of the pure 

insoluble fi bre would be around 5.6 g/g dm. This corresponds to a water content 

of water saturated fi bres of 85%.  Brewers spent grains indeed usually have a water 

content of around 80% (Mussatto & Roberto, 2006), likely caused by its high fi bre 

content. Reducing the amount of insoluble fi bres in the system will directly reduce 

the WHC of the spent grains, which could result in a reduced extract lost. Though 

arabinoxylans are part of the insoluble fi bres, they did not show a linear relation 
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with the WHC. This might be because the differences in arabinose/xylose ratio 

between the fractions yields a difference in the WHC of the arabinoxylans in the 

fractions (Sternemalm, Höije, & Gatenholm, 2008). 
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Figure 4. WHC versus fibre content (A) and reduction in WCH versus the amount of starch removed by 
pearling (B). Open circles: pearled fractions. Closed circle: whole barley.

3.5.2 Implications of pearling for brewing

The previous section indicates that removing the outer part of the kernel may 

have beneficial effects for the beer brewing process. Pearling can be used to partly 

remove polyphenols, fibres, arabinoxylans and ash, while hardly influencing the 

starch content and β-amylase activity. A lower amount of fibres will reduce the 

WHC of the spent grains and as a result less wort will remain in the spent grains. 

This will reduce the spent grain waste and water requirements, and less wort will 

get lost. Figure 4B illustrates the reduction in WHC versus the amount of starch 

removed. 

When removing about 0.20% of the starch, which corresponds to a degree of 

pearling of 5%, the WHC of the flour as determined in this study was reduced by 

about 25%. It is assumed that this leads to a similar reduction in spent grains and 

wort losses. The reduction of polyphenol content after pearling would potentially 

facilitate the filtration of polyphenols at the end of the process and can reduce 

haze formation because of less complex formation with proteins. When pearling 

to a degree of 10%, the WHC of the flour will be reduced by about 40%. In this 

case 0.73% of all starch will be lost in the bran fraction, so in this case it might be 

worthwhile to try to recuperate the starch from this fraction.  
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Pearling might aff ect some of the characteristics of the fi nal product. The 

characteristic which is expected to be most aff ected is colour, because of the 

reduction in polyphenols. Polyphenols also infl uence fl avour stability, because of 

their antioxidative properties. At a degree of pearling of 5%, however, the reduction 

in polyphenols is only 11%. Therefore the changes in colour are not expected to 

be large at this degree of pearling. Another important characteristic is the body 

of the beer, and β-glucan is an important component that provides this body. At 

a degree of pearling of 5%, only 0.32% of beta glucan is removed from the raw 

material, so the body of the beer is not expected to change.

 

Figure 5. Mass fl ow diagram of the conventional brewing process and a process that includes pearling away 
10% of the barley kernels. 

Figure 5 illustrated that an additional side stream of bran is generated with pearling. 

However, this side stream is still dry, which might give it a better applicability in 

for example bread to improve its structural or nutritional properties (Izydorczyk, 

Chornick, Paulley, Edwards, & Dexter, 2008). Barley contains 33 to 66 µg/100 g folate, 

most of which is found in the bran (Schoenlechner, Wendner, Siebenhandl-Ehn, & 

Berghofer, 2010). Other possibilities would be to use the dietary fi bre, polyphenols 

or arabinoxylans from the bran as functional ingredients in healthy foods or even 

animal feed. 
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The dry mass losses of the spent grains and the bran are approximately equal to 

the amount spent grains losses without pearling, but the bran remains dry. This will 

lead to energy savings due to reduced or even no drying or reduced transportation 

costs.  The removal (some of ) the husk before mashing might negatively influence 

the filtering of the mash over the husk, as is done in the traditional lautering process. 

If insufficient material is left to use as a filter bed, an alternative filtering process, like 

using more modern mash filters, would be necessary (T O’Rourke, 1999).

3.6  Conclusions

Pearling was shown to selectively remove insoluble fibre, ash, protein and 

polyphenols, while the β-amylase activity and starch content of the remaining 

kernel was hardly affected. Removing the outer 5 % w/w of barley takes away 

15% of the arabinoxylans and reduces the water holding capacity of the non-

starch components by 25%. Reducing the arabinoxylan content reduces the 

mash viscosity, which might facilitate the filtration step after mashing. Pearling the 

outer part of the barley kernel also reduces the polyphenol content of the starting 

material. This might reduce haze formation in the end product. 

The water holding capacity of the barley fractions is related to the fibre content. 

This indicates that when the fibre content is reduced in the spent grains, the spent 

grains will take up approximately 25% less wort, leading to less wort and sugar 

losses in this waste stream. In addition, the fact that the bran fraction remains dry 

would mean a significant reduction in energy required to dry the spent grains. 

Going up to a degree of pearling of 10% would enhance all these advantages but 

would also increase the starch lost in the bran fraction from 0.20% to 0.73%. 
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4.
The use of enzymes for beer 

brewing: thermodynamic 
comparison on resource use 

Highlights

•  The exergetic production costs of enzymes are ±30 times their standard 

chemical exergy

• These costs of enzymes should be taken into account in exergy analysis 

•  Enzyme-assisted brewing is more exergy effi  cient than brewing with malted 

barley

• Enzyme-assisted brewing saves raw material, water and energy

This chapter has been submitted as: Laura H.G. van Donkelaar, Joost Mostert, 

Filippos K. Zisopoulos, Remko M. Boom, Atze-Jan van der Goot, 

The use of enzymes for beer brewing: thermodynamic comparison on resource use. 
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4.1 Abstract

The exergetic performance of beer produced by the conventional malting 

and brewing process is compared with that of beer produced using an 

enzyme-assisted process. The aim is to estimate whether the use of an 

exogenous enzyme formulation reduces the environmental impact of 

the overall brewing process. The exergy effi  ciency of malting was 77%. 

The main exergy losses stem from the use of natural gas for kilning and 

from starch loss during germination. The exergy effi  ciency of the enzyme 

production process ranges between 20% and 42% depending on if the 

by-product was considered useful. The main exergy loss was due to the 

high power requirement for fermentation. The total exergy input in the 

enzyme production process was 30 times the standard chemical exergy 

of the enzyme, which makes it exergetically expensive. Nevertheless, the 

total exergy input for the production of 100 kg beer was larger for the 

conventional process (441 MJ) than for the enzyme-assisted process (354 

MJ). Moreover, beer produced using enzymes reduced the use of water, raw 

materials and natural gas by 7%, 14% and 78% respectively. Consequently, 

the exergy loss in the enzyme production process is compensated by the 

prevention of exergy loss in the total beer brewing process. 

Keywords: Exergy, Enzymes, Brewing, Unmalted barley, Biotechnology
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4.2  Nomenclature / list of symbols

m mass [kg]

x mass fraction of component [-]

h Enthalpy [kJ/mol]

Q heat [kJ]

W work performed by the system

Ex exergy [kJ]

c
p 

specific heat capacity [kJ/kg K]

T
0 

reference temperature [K]

T temperature [K]

R ideal gas constant [kJ/mol K]

m
x 

average molar mass of the stream [kg/mol]

P
0 

reference pressure [Pa]

P pressure [Pa]

b
0  

standard chemical exergy [kJ/kg] for which the values can be found in 

appendix I

x
i 

mass fraction of component i [-]
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4.3 Introduction

Brewing is a traditional process, which can still be further optimized with respect 

to environmental impact (Olajire). Several sustainability analyses have been 

performed on the process (Cimini & Moresi; Cordella, Tugnoli, Spadoni, Santarelli, 

& Zangrando, 2008; Hospido, Moreira, & Feijoo, 2005) and studies have been aimed 

at the re-use or prevention of by-product streams to minimize water and raw 

material losses and energy use (Aliyu & Bala, 2013; Köroğlu, Özkaya, Denktaş, & 

Çakmakci, 2014; Pérez-Bibbins, Torrado-Agrasar, Salgado, Oliveira, & Domínguez, 

2015; Simate & Hill, 2015; van Donkelaar et al., 2015). Even though it does not take 

into account every aspect of sustainability, exergy analysis is based on the second 

law of thermodynamics and, therefore, is considered as an objective method to 

compare material and energy losses occurring in a system both quantitatively 

and qualitatively (Dincer & Ratlamwala, 2013). As formulated by Szargut, exergy 

is the amount of work obtainable when some matter is brought to a state of 

thermodynamic equilibrium with the common components of its surrounding 

nature by means of reversible processes, involving interaction only with the 

components of nature (Szargut, 1980). Exergy analysis has been used to analyse, 

optimize, and compare various food processes and food production chains in 

terms of their resource use effi  ciency (Apaiah et al., 2006). An improvement of 

the exergetic or thermodynamic effi  ciency of a process refl ects a reduction on 

its overall use of resources and hence its environmental impact (Rosen, Dincer, & 

Kanoglu, 2008). Exergy analysis can be applied to many diff erent food production 

chains to identify improvements, and to compare the thermodynamic performance 

of existing processes to potential alternatives. This was done for example in 

vegetable oil (/and protein) production (Berghout, Pelgrom, Schutyser, Boom, & 

van der Goot, 2015; Özilgen & Sorgüven, 2011), in a fi sh-oil microencapsulation 

process (Aghbashlo, Mobli, Rafi ee, & Madadlou, 2012), dairy processing (Quijera 

& Labidi, 2013), an isofl avone extraction process (Jankowiak, Jonkman, Rossier-

Miranda, Goot, & Boom, 2014), and the use of plant based ingredients for fi sh 

feed (Draganovic et al., 2013) amongst others. The analysis shows if the use of an 

alternative process is in fact more effi  cient. 

The outcome of an exergy analysis can be infl uenced by the system boundaries, 

which are chosen by the analyst, i.e. wider system boundaries imply a more 

complex but also a more complete analysis (Zisopoulos, Rossier-Miranda, Van Der 
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Goot, & Boom, 2015). Besides, the allocation of the exergetic content of the streams 

will also influence the outcome of the analysis. In this paper, these aspects will 

be demonstrated when describing the exergetic production costs, or cumulative 

exergy consumption (CExC), of enzymes. 

The conventional brewing process has 3 main process stages. The first stage is 

malting, during which enzymes are synthesized in the barley kernel. In this stage 

the endosperm is modified: cell walls are broken down to render the protein and 

starch inside the cells more accessible. The second stage is mashing, during this 

stage the enzymes hydrolyse starch into fermentable sugars and proteins into 

amino acids. The third stage is fermentation, during which yeast ferment the sugars 

into alcohol. Brewing with unmalted barley grains more attention because of the 

economic advantages and its potential for water and energy savings. Additionally, 

material losses due to respiration are prevented (Steiner et al., 2012). In this paper, 

we analyse the both beer brewing processes with exergy analysis.

A disadvantage of brewing with unmalted barley is the low amount of available 

endogenous enzymes present in the native kernel. Therefore the addition 

of enzyme formulations is necessary. These formulations usually contain a 

combination of α-amylase, pullulanase, proteases, lipase, β-glucanase, and 

xylanase. The effectiveness of these formulations has been investigated and 

documented in various reports. No negative effect on beer quality was found 

when 50% or up to 100% of the malt was replaced by unmalted barley (Evans et 

al., 2014; D.L. Goode, Wijngaard, & Arendt, 2005; Kunz, Müller, Mato-Gonzales, & 

Methner, 2012; Steiner et al., 2012). 

One should take into account that the production of an enzyme formulation 

also requires resources and produces waste. This raises the question if the use 

of enzymes requires less resources compared to the malting process. In many 

studies the standard chemical exergy of purified ingredients like enzymes, protein 

isolates or other isolated or purified ingredients is used in exergetic assessments, 

neglecting the CExC of these components. The aim of this paper therefore is 

two-fold. It assesses the exergetic performance of traditional beer brewing by 

the conventional malting and brewing process, and compares it to an enzyme-

assisted brewing process. It also estimates the CExC of the enzyme formulation 

used in the enzyme-assisted brewing process.
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4.4 General description of the brewing production chain

4.4.1 System boundaries

In the brewing process, the malting process was taken into account when malt was 

used, while enzyme production was considered in the enzyme-assisted brewing 

process. The compositions of the various streams in both processes are listed in 

appendix II. The process confi gurations of the analysed processes are shown in 

Figure 1. The production of the growth medium used in the enzyme production 

process is not considered in the analysis, which means that only the chemical 

exergy for the ingredients present in the medium was taken into account. The 

same counts for glycerol, as this product is currently produced as a by-product of 

biodiesel. All exergy input for this process was attributed to the biodiesel and not 

to the glycerol used in the enzyme formulation.

A. Process fl owchart of the conventional malting process
 
A. Process flowchart of the conventional malting process 

 
 
B. Process flowchart of the enzyme production process  

 
 
C. Process flowchart of industrial brewing 
 

    
 

B. Process fl owchart of the enzyme production process 

 
A. Process flowchart of the conventional malting process 

 
 
B. Process flowchart of the enzyme production process  

 
 
C. Process flowchart of industrial brewing 
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C. Process flowchart of industrial brewing

 
A. Process flowchart of the conventional malting process 

 
 
B. Process flowchart of the enzyme production process  

 
 
C. Process flowchart of industrial brewing 
 

    
 

Figure 1. Process flowchart of: A) the conventional malting process, B) the enzyme production process, C) 
the overall industrial brewing process

The data and assumptions made for the enzyme production process, malting 

process and brewing process and the associated references are listed in Appendix 

III.

4.4.2 Exergy analysis

Mass and energy balances were calculated with Eq. (1) and Eq. (2), 

          (1)

     (2)

The exergy was categorised into the chemical exergy (Eq. 6), and the physical 

exergy (Eq. 3) composed of the thermal and pressure exergy (Eq. 4 and Eq. 5). 

The exergy loss was defined as the difference between the total exergy input 

and the total exergy output (Eq. 7), and consisted of both the wasted exergy (i.e. 

theoretically usable but lost to the environment) and destroyed exergy (irreversibly 

lost) (Eq. 8). The chemical exergy efficiency of a process chain was defined as the 

total output chemical exergy over the total input exergy (Eq. 9). The rational exergy 

efficiency was defined as the useful chemical exergy output over the total exergy 

input (Eq. 10). Dry enzyme, malt and beer were considered useful exergy output. It 
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was debatable whether the fertilizer and enzyme formulation are to be considered 

as useful; we will discuss this in the results section.

    (3)

   (4)

           (5)

         (6) 

            (7)

             (8) 

Total chemical exergy effi  ciency =        (9)

Useful chemical exergy effi  ciency =     (10)

Mass and energy fl ows were visualized by Sankey diagrams and exergy fl ows 

were visualized by Grassmann diagrams, using e!Sankey 3.1 (ifu Hamburg GmbH, 

Hamburg, Germany).
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4.4 Results and Discussion

Figure 2 shows the mass flows in the conventional malting process. The malting 

process consists of a steeping step in which water is added. This water is partially 

taken up by the grains. After germination the malt is dried with hot air to evaporate 

this water again. At the end of the process rootlets are removed. 

 

Figure 2. Sankey diagram showing the mass of the streams of the conventional malting process for the 
production of 100 kg malt. The diagram excludes air (germination uses 3111 kg dry air, kilning uses 9535 kg 
dry air and cooling the kilned barley uses 288 kg dry air).

During germination, a small part of the starch is lost due to respiration. Nevertheless, 

this raw material loss is one of the main disadvantages of the conventional malting 

process. Less starch left in the malt means less starch is hydrolysed during brewing 

and therefore less beer is produced from the same amount of raw material. 

Another disadvantage is the required addition of water during steeping. About 

456.5 kg of water is required during steeping and germination of 100 kg of malt. 

The water that is taken up has to be evaporated during kilning to ensure shelf life 

and facilitate transportation, requiring 537MJ for kilning 100 kg malt. This value is 

in line with a study by Kribs et al. which reported an energy consumption of  500 

MJ/100 kg malt for a conventional kilning process (Kribs & Spolek, 1997). 

The Grassmann diagram in Figure 3 shows the exergy flows of the conventional 

malting process. The process can be considered as exergy efficient (77%) since 

the destroyed exergy is relatively small compared to the (chemical) exergy of the 

main product stream. The total exergy loss for processing is 518 MJ/100 kg malt, 

of which 380 MJ is destroyed and 138 MJ is wasted. The main losses are due to the 

high quality energy (natural gas) used for removing water in the kilning process. 
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In addition, about 7% dry matter is lost during malting due to respiration and the 

removal of rootlets. 

 

Figure 3. Grassmann (exergy fl ow) diagram of the conventional malting process for the production of 100 kg malt

A potential alternative to malting is the use of unmalted barley in combination 

with exogenous enzymes (Steiner et al., 2012). The losses in the malting processes 

would be prevented, but materials and energy are needed to produce the enzyme 

mixture. Enzymes are produced in an industrial fermentation process in which 

yeast convert part of the protein present in a fermentation broth into enzymes. 

After fermentation, the enzymes are separated from the other biomass by a 

rotary vacuum drum fi lter. The biomass is sterilized, dried, and sold as a fertilizer. 

The enzyme liquor coming out of the drum fi lter is subsequently purifi ed by 

ultrafi ltration and concentrated by reverse osmosis. The enzyme liquor (7% protein, 

93% water) is then mixed with glycerol to stabilize the enzyme solution that is the 

fi nal product with a glycerol concentration of 30%.

 

Figure 4. Sankey diagram showing the mass of the streams of the enzyme production process for the 
production of 1 kg of enzyme. Diagram is excluding cooling water (3974 kg and 133kg of cooling water in 
the fermentation and in the waste treatment, respectively).
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Figure 4 shows the main steps in the enzyme production process, which are: 

fermentation (including sterilisation of the medium and fermenter), recovery 

(including the concentration in the drum fi lter and the purifi cation by ultrafi lter 

and reverse osmosis), formulation (mixing the purifi ed enzyme solution with 

glycerol), and waste treatment (including sterilisation and concentration). It was 

shown that aeration and cooling require most natural resources (air and water). 

The side stream can be considered either as a waste or as a useful by-product 

(e.g. fertilizer) (Nielsen, Oxenbøll, & Wenzel, 2007). Figure 5 illustrates the exergy 

fl ows of the enzyme production process. The total exergy used in the production 

process of the enzyme is about 30 times the chemical exergy of the enzyme itself 

(676 MJ per kg dry enzyme). Clearly, the exergy input of enzymes used in a process 

is considerably higher than their standard chemical exergy only. The CExC of these 

ingredients should be taken into account when assessing the thermodynamic 

performance of the overall system. The system boundaries aff ect the outcome of 

the exergy analysis and have to be extended to include the production of at least 

the purifi ed ingredients (if not all raw materials).  

 

Figure 5. Grassmann diagram of the enzyme production process for the production of 1 kg of enzyme. The 
standard chemical exergy of all heating and cooling agents are not illustrated. 

The largest exergy destruction in the enzyme production process occurs during 

fermentation, due to the high power consumption of 2500 W m3. When calculating 

the exergy effi  ciency of the process one has to decide how to attribute the loss 

of exergy to the produced products. The exergy effi  ciency of the total enzyme 

production process when the fertilizer stream is considered as a useful stream 

is 42%. However, when all exergy loss is allocated to the enzyme product, the 
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effi  ciency of the process becomes 20% and even 3.4% when only the dry matter of 

the enzyme is considered. Here, we consider the enzymes as the main product of 

the process, making the fertilizer a side stream of this process. The selection of this 

side stream as a by-product or waste generated during the enzyme production 

process is arbitrary and, thus, debatable. Fertilizers are usually meant to enrich 

the soil in certain elements, for example nitrogen. However, in this particular side 

stream the amount nitrogen is reduced compared to the medium, and, though 

the amount is still suffi  cient to be used as a fertilizer, one could argue that this 

process is an ineffi  cient way to produce fertilizer. In fact, the starting material 

would be a more effi  cient fertilizer. Second, fertilizer in general can be produced in 

much more effi  cient ways than in this process. Therefore, we decided to attribute 

all exergy losses to the production of the enzyme formulation itself and not to the 

fertilizer side stream. 

Figure 6 shows the amount of wasted and destroyed exergy per process step 

for both the conventional malting and the enzyme-assisted process. The exergy 

losses in the enzyme-assisted process are smaller than those in the malting 

process when the amount of enzymes or malt necessary for the production of 100 

kg of beer are compared. The main reason is related to the small required dosing 

of only 33 gram enzyme mix, which contains only 1.6 gram of dry enzyme, per 

100 kg of beer. Even if we assign all resources that used to the enzymes, which 

accumulates to 676 MJ per kg enzyme, the small dosage of enzyme mix leads to 

a lower cumulative exergy consumption. The exergy losses for mashing, brewing 

and fermentation are similar in both processes. 
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Figure 6. Wasted and destroyed exergy in the diff erent process stages of the industrial brewing process for 
producing 100 kg beer when: (A) conventional malting process is used, and (B) when enzymes are used. 
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Figure 7 depicts the percentage of wasted, destroyed and used exergy per process. 

Circumventing the malting step does not only reduce the total exergy input of 

the process but also prevents about 60 MJ/100 kg beer of exergy destruction. 

The reduced exergy input is partly due to the reduced water and energy use, and 

partly due to the lower amount of raw material needed. The latter is related to the 

fact that some starch is used during malting, and, therefore, more barley is needed 

to produce the same amount of beer. 

 

 

22% 

32% 

46% 

A: Total exergy input 441 MJ  

wasted

destroyed

used
21% 

23% 56% 

B. Total exergy input 354 MJ 

Wasted

Destroyed

Used

Figure 7. Total exergy used, destroyed and wasted for the production of 100 kg of beer by using the: (A) 
conventional malting process, or the (B) enzyme-assisted process. 

The exergy efficiencies of the complete processes are 45.7% for the conventional 

brewing process and 55.6% for the enzyme assisted process. Besides this, the total 

exergy input of the enzyme assisted process is also lower, implying that the use 

of enzymes instead of malting means a considerable improvement in exergetic 

sustainability of the process. If the fertilizer would be taken into account as useful 

output of the process, the exergetic efficiency would increase from 55.6% to 

55.7%, which is a negligible increase, and this decision therefore does not affect 

the outcome of the analysis when the whole process is taken into account. 

Figure 8 shows the raw material use, water use, natural gas and electricity 

consumption, and exergy input for the production of 100 kg beer. The raw material 

use, water use and natural gas consumption were reduced by 14%, 7% and 78%, 

respectively. The air use was reduced by almost 2000 kg. The electricity input is the 

only parameter that increased, but only by 2.6%. These factors together resulted in 

a total decrease of 24% in total exergy input. Consequently, the use of raw barley 

brewed with the addition of exogenous enzymes is exergetically more efficient 

compared to the conventional brewing process.
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Figure 8. Amount of raw materials, water, dry air, natural gas and electricity used in the production of 100 Kg 
beer when using the: (A) conventional malting process, or the (B) enzyme-assisted process. 

In the enzyme assisted process, only 1 MJ of the total 354 MJ of exergy necessary 

to produce 100 kg of beer is due to the enzyme production process. This is only 

0.31% of the total exergy input of the process, and therefore the CExC of enzymes 

does not signifi cantly contribute to the total CExC of beer. The amount of enzyme 

needed to make the enzyme assisted process equally effi  cient as the malting 

process would be more than 80 times as much as what is used at the moment. 

This would be a very unrealistic value. As these amounts of enzymes will never be 

used in enzyme assisted processes, it can be concluded that enzymes are useful to 

make processes more resource effi  cient.

4.6  Conclusions

We compared two processes for making beer at industrial scale. One process is the 

conventional process, while the other process is an enzyme-assisted brewing in 

which the malting step is omitted. The analysis showed that the enzyme-assistant 

process has a reduced impact on the environment. Circumventing the malting step 

reduces the use of water by 7%, of raw materials by 14%, and of natural gas by 78%. 

The CExC of specifi c additives (for example enzymes), can be considerably higher 

than just their standard chemical exergy. In case of enzymes, we found that the 
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CExC of enzymes is about 676 MJ/kg dry enzyme, which is 30 times the standard 

chemical exergy value. Whether the CExC considerably affects the outcome of the 

analysis depends amongst others on the amount of the ingredient required. In the 

case of brewing though, only a little amount enzyme is needed, which makes that 

their use in the brewing process is still about 1.24 times more effective in terms of 

exergy input than the conventional malting process. 
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Appendix
Appendix I. Standard Molecular mass, chemical exergy and heat capacity of the used components 

Material Molecular Mass [kg/
mol]

Standard Chemical 
Exergy [J/Kg]a

Heat Capacities [J/kgK]

Water 0.01802 4.994E+04 4190

Steam 0.01802 5.272E+05 1840

Air 0.02896 -1.290E+03 1010

Carbohydrates (other) 227000 (of starch) 1.764E+07 1420

Carbohydrates (glucose) 0.1802 1.626E+07 1420

Proteins 3000 (of gluten) 2.261E+07 1550

Fat 0.2564 (of palmic acid) 4.309E+07 1680

Ashes 0.06005 (of K2
CO

3
) 3.164E+04 837

Ethanol 0.04607 2.952E+07 2390

CO2 0.04401 4.516E+05 780

Glycerol 0.09202 1.850E+07 1629

O2 0.03200 1.241E+05 919

N2 0.02801 2.463E+04 1040

ammonia 0.01703 1.980E+07 4520

a Calculated from (Szargut, 1989)
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Appendix III. Assumptions per process and process unit

General assumptions 

- Reference environment: T
o
=283.25 K, P

o
=101.325 kPa, RH=82% (0.0064 kg moisture/ kg dry air)

- All processes are adiabatic (no heat losses to the environment) 
- Steam of 403.15 K and 2.7 bar was used for heating duties and produced from environmental 

water heated by natural gas (the embedded exergy in this water is 0)
- Steam leaving the system was at 383.15 K and 1.4 bar
- Environmental water was used for cooling 
- Cooling below 283.25 K was done by ammonia of 253.15 K (ammonia was reused so its standard 

chemical exergy was not taken into account)

Assumptions malting process

Process unit Assumptions References

Steeping - Dry matter loss during steeping is 1% (no 
compositional change)

- The water used is 3.5 times the amount of barley 

(Kunze, 2010)

(Kunze, 2010)

Germination
Kilning

Cooling

- 5.8% of the dry matter is lost due to respiration
- Kilning is done with hot air in 3 stages; drying to 

23% moisture using air of  328.15 K (air out = 
303.15 K), then to 12% moisture using air of 
343.15 K (air out is increasing from 303.15 to 
333.15 K) and finally to 5% moisture using air of 
363.15 K (air out increasing to 353.15 K).

- Germination happens at 290.15 K and 100% RH 
- The final moisture content of the malt is 5% w/w
- Cooling is done by outside air (RH =18.2%) that 

heats up till 308.15 K 

(Kunze, 2010)

(Lewis & Young, 1995)

(Kunze, 2010)

(Kunze, 2010)

(Kunze, 2010)

Assumptions enzyme production process

Process unit Assumptions References

General

Fermentation

Recovery

Formulation
Biomass treatment

- All enzymes in the exogenous enzyme mixture 
for brewing are produced in a similar way

- Sterilisation of the medium is at 394.15K
- Fermentation takes 6 days in a fed-batch stirred 

tank reactor at 303.15K 
- The extracellular enzymes are produced by 

Bacillus subtilis (54kg dm/m3)
- Agitation takes 2500 W/m3 
- Enzyme yield is 0.1 kg enzyme/ kg substrate
- Cooling water of the sterilized medium leaves at 

368.15 K
- Downstream processing losses are 16.5%
- Electricity use of the rotary vacuum filter is 0.03 

MJ, for the ultrafilter is 1.6 MJ, and for the 
reversed osmosis is 6 MJ

- All pump efficiencies are 80%
- 30% (w/w) is needed to stabilize the enzymes
- Biomass and waste water receive a heat treatment 

at 394.15 K. Afterwards they are cooled, cooling 
water leaves at 368.15 K

- Waste biomass and waste water are separated by 
a centrifuge till a 30% dry matter substance is 
obtained. The centrifuge uses 0.5 MJ/m3

(Alber et al., 2002; 
Kløverpris, Elvig, 
Nielsen, & Nielsen, 
2009; Nielsen et al., 
2007) (Gill, Appleton, 
Baganz, & Lye, 2008; 
Nielsen et al., 2007)
(Albaek, Gernaey, 
Hansen, & Stocks, 2011)

(Bradbury & Jakoby, 
1972)
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Assumptions brewing process

Process unit Assumptions References

Milling

Mashing

Lautering

Wort boiling
Coarse break & 
whirlpool

Fermentation & 
maturation

Filtration
Pasteurisation

- Milling malt and barley consumes 6.5kWh/ton and 
10.45 kWh/ton respectively

- Enzymes from malt and the exogenous enzymes are 
able to break down all starch in the brew (2 g/kg 
barley) 

- Conventional brewing uses 2.5 m3 water/ton grist 
and barley brewing uses   2.2 m3 water/ton grist.

- All starch is hydrolysed into fermentable sugars 
- 0.64 m3 sparging water/ton mash is used (345.15K)
- 14% of the wet weight ends up in the spent grains
- 4% water is evaporated during wort boiling
- 7g/L is removed (80% water, 74% (dry matter) 

carbohydrates, 12% (dry matter) proteins and 13% 
(dry matter) fats

- Cooling water heats up to 366.15 K. Additional 
cooling to 280.15 K by ammonia.

- Temperature during fermentation is 280.15 K, cooled 
by ammonia

- Only ethanol is formed, no higher alcohols
- 2% of the fermentable sugars are used for yeast 

anabolism.
- 2.25% w/w (wet weight) is removed as yeast after 

fermentation
- All yeast is removed
- Water is added to bring the beer to a 5%w/w alcohol 
- No evaporation of water or alcohol occurs

(Kløverpris et al., 2009)
(Steiner et al., 2012)

(Kløverpris et al., 2009)

(Kløverpris et al., 2009)

(Kløverpris et al., 2009)

(Kunze, 2010)
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5.
Combining unmalted barley 

and pearling gives good quality 
brewing

Highlights

• Brewing with pearled unmalted barley can result in beer of good quality

•  The malt-to-barley ratio is more important for beer quality than the degree of 

pearling

• The mash fi lter is more suitable for brewing with pearled barley than the lauter tun

This article is in press as: Laura H.G. van Donkelaar, Jos A. Hageman, Serhat Oguz, 

Tom R. Noordman, Remko M. Boom, Atze-Jan van der Goot (2016), 

Combining unmalted barley and pearling gives good quality brewing,  

Journal of the Institute of Brewing, 122:2 
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5.1  Abstract 

Brewing with unmalted barley can reduce the use of raw materials, thereby 

increasing the effi  ciency of the brewing process. However, unmalted 

barley contains several undesired components for brewing and has a 

low enzymatic activity. Pearling, an abrasive milling method, has been 

proposed as a pre-treatment for barley to remove some of its undesired 

components, while maintaining its β-amylase activity. The potential of 

combining pearling with using barley/malt mixtures for brewing was 

studied. Filtration was done either in a mash fi lter or a lauter tun. The eff ects 

of the diff erent barley/malt ratios, degree of pearling and two diff erent 

fi lter types on compositional and quality parameters were assessed. It 

was concluded that a mash fi lter is optimal for this type of process, and a 

window of operation could be identifi ed in which optimal use is made of 

the raw materials while maintaining the end product quality, judged on 

basis of 4 quality parameters.
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5.2  Introduction

Brewing with unmalted barley is receiving increased attention because it has 

economic advantages and has potential for water and energy savings (Steiner 

et al., 2012). The main point of attention for brewing with unmalted barley is the 

lower enzymatic activity when preparing the wort. A lower enzyme activity means 

slower or less starch conversion. This results in a lower amount of fermentable 

sugars and thus a lower process yield. Furthermore, using barley instead of malt, 

increases the presence of β-glucans and arabinoxylans in the mash. This can lead 

to higher mash viscosities and thus longer filtration times (D.L. Goode et al., 2005). 

The different raw material composition might also affect the quality of the end 

product. Polyphenols can, for example, form complexes with certain proteins 

leading to haze (Asano, Shinagawa, & Hashimoto, 1982).

The potential of raw barley for brewing has been investigated since the 1960’s, 

and recent advances in brewing enzyme development have again raised interest 

for the topic (Evans et al., 2014; D.L. Goode et al., 2005; Steiner et al., 2012). Goode 

et al (2005) reported that increasing the malt-to-barley ratio increases the extract 

recovery levels, the wort α-amino nitrogen levels and the fermentability, while 

it decreases the viscosity and β-glucan levels. The endogenous malt enzymes 

were reported to have very poor raw barley protein and starch hydrolysing ability. 

Steiner et al (1) brewed with 100% barley using the commercial enzyme mixture 

Ondea Pro and obtained beer of a satisfactory quality in an efficient way regarding 

lautering and filtration, though the free amino nitrogen (FAN) content (Zhao et 

al., 2006) and total nitrogen content were lower compared to beers brewed from 

malt. Evans (2014) confirmed this, and concluded that even if the FAN content 

of barley brewed beer is lower, the quality of the FAN is higher due to its amino 

acid composition. This results in an increased amino acid utilization, and the 

yeast growth becomes nitrogen dependent at lower FAN content. Wort prepared 

from barley had a higher fatty acid content than wort brewed with 100% malt, 

which might affect the flavour and foam stability of the beer. These lipids were 

probably extracted from the embryo and aleurone layer (Evans et al., 2014). Kunz et 

al (5) used an enzyme cocktail containing the same enzymes as the commercial 

enzyme mixture Ondea Pro. Though they found some minor differences in the 

wort composition they concluded that the use of barley up to 50% had no 

negative effect on the beer quality and flavour. Also the original extract and final 
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attenuation in worts produced with between 0%-90% barley and an enzyme 

cocktail were comparable (Kunz et al., 2012). In other words, partial replacement 

of malt by barley is possible, provided suffi  cient enzymes are present in the mash.

Pearling, an abrasive milling method, has been proposed as a treatment for barley 

to remove some of its undesired components (Palmer, Barrett, & Kirsop, 1970; van 

Donkelaar et al., 2015). Donkelaar et al. (7) showed that pearling to a degree of 5% 

reduced the insoluble arabinoxylan content by 15%, the insoluble fi bre content by 

23% and the water holding capacity of the non-starch components by 25%. It also 

reduced the ash content by 19% and the polyphenol content by 11%, while only 

0.20% of the starch was removed. The reduced arabinoxylan content resulted in 

a lower mash viscosity, which facilitates the fi ltration step after mashing, yielding 

a reduced loss of wort and sugars after fi ltration. The fraction removed during 

pearling, being the bran fraction, remained dry, which makes it better applicable 

for other purposes (e.g. for extraction of functional ingredients). 

Brewing with pearled barley has been suggested (Palmer et al., 1970). Palmer et al. 

malted pearled barley in the presence of gibberellic acid, and obtained a greater 

action of hydrolytic enzymes during malting compared to malt form unpearled 

barley. They speculated that such malts will allow the use of larger quantities of 

unmalted adjunct in brewing. Alternatively, suitable adjustment of the malting 

or mashing procedure would allow malts from abraded barley to yield worts of 

lower fermentability and nitrogen content. Brewing with pearled barley is already 

applied in the production of Shochu, a beverage produced from pearled barley, 

fermented by mould and yeast. Iwami et al showed that the degree of pearling 

aff ects the quality of the product, and that the colour and fl avour of Shochu can be 

changed by the degree of pearling of the barley (A. Iwami et al., 2005).

The eff ect of pearling barley would have on beer brewing with malt/barley 

combinations has not yet been demonstrated. In this paper worts produced using 

diff erent ratios of malted and unmalted barley and diff erent degrees of pearling of 

this unmalted barley are compared. A lauter tun and a mash fi lter are compared 

for suitability as fi ltration methods. Using Principal Component Analysis (PCA) and 

linear models, infl uences of these three variables on composition, extract, quality 

and processing parameters were compared. Also the spent grain fraction of these 

brews was compared. The consequences for the processing were discussed.
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5.3  Materials and methods

5.3.1 Material

Barley (Hordeum vulgare) (86.7% m/m dry matter) and malted barley (95.6% m/m 

dry matter) of the variety Sebastian was used (France, harvested in the summer of 

2013, stored at 4ºC).

Brewing water was prepared by dissolving 2.68 mM CaCl2 in demineralized water. 

The enzyme mixture Ondea Pro (Novozymes) was used in allexperiments. This 

product is a mixture of α-amylase, pullulanase , β-glucanase, xylanase, endo-

protease and lipase (Steiner et al., 2012).

5.3.2 Methods

Pearling: Barley kernels were pearled in a Satake TM05 pearling machine until 

the desired degree of pearling (i.e. the w/w percentage of material removed by 

pearling) was reached.

Brewing: the brewing tests were performed in a laboratory scale equipment which 

consisted of a 5 L mashing vessel equipped with a heating mantle and a mixer, 

a filter (lauter tun or mash filter) and a wort boiling vessel which was equipped 

with a heating spiral of stainless steel and placed on a balance. The mash was 

transferred from the mashing vessel to the filers using a transfer vessel. The lauter 

tun was equipped with a heating mantle and raking knives of which the rotation 

and height were continuously recorded. After transfer of the mash into the lauter 

tun the mixture was allowed to rest (10 min) and was then circulated (10 min). 

and the wort was filtered and after the first wort the sparging water was added. 

The raking knives were placed to loosen the top layer of the filter bed. The filtered 

mash was pumped to the wort boiler. After boiling the wort was cooled to < 10°C 

and samples were taken. The temperature during mashing, the pressure difference 

of the filter, the density (brix) of the filtered mash, the temperature of the wort and 

the weight of the wort were continuously recorded. 
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Table 1. Barley to malt ratios and degree of pearling of the barley used in the lauter tun and mash fi lter 
brewing experiments

Barley/Malt ratio degree of pearling barley (%) Filter type

100/0 0 Lauter tun

100/0 5 Lauter tun

80/20 0 Lauter tun

80/20 5 Lauter tun

80/20 10 Lauter tun

65/35 10 Lauter tun

50/50 0 Lauter tun

50/50 5 Lauter tun

50/50 10 Lauter tun

100/0 0 Mash fi lter

80/20 0 Mash fi lter

80/20 5 Mash fi lter

80/20 10 Mash fi lter

50/50 0 Mash fi lter

50/50 5 Mash fi lter

50/50 10 Mash fi lter

Table 1 shows the raw material composition for mashes fi ltered by lauter tun or 

mash fi lter. The barley and malt were milled before mashing using a roller mill 

(distance between rolls 2 mm) in case of lauter tun fi ltration. If a mash fi lter was 

used, a hammer mill with a sieve of 1.5 mm was used. A total of 950 g of raw 

material (barley plus malt) was used and the mashing-in ratio was 1:3.2. When 

malt was substituted with pearled barley, the weight of the barley was reduced 

with the pearling percentage. The enzyme mixture Ondea Pro (Novozymes) was 

used in a concentration of 2g/kg barley. Ondea Pro was added to the mashing 

water before addition of the barley and malt. The mashing process followed the 

scheme shown in fi gure 1. The mashing starts with a 30 minute period at 54 ºC to 

allow proteases and β-glucanase to work. Then the temperature is increased to 64 

ºC to allow α-amylase and β-amylase to work. After 60 minutes the temperature is 

increased to 80 ºC to inactivate the enzymes.
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Figure 1. Mashing scheme used in all brewing experiments

Filtration: a lauter tun (diameter = 140 mm) or a mash filter (Meura 2001, Meura 

technologies, 0.0254 m2 filtration surface) was used in a filtration step. When using 

a lauter tun a total amount of water for brewing of about 3225 ml was used and 

for the mash filter about 5440 ml was used.

Wort boiling: after mashing, the mash was transferred to the wort boiler and 

boiled with 6 grams of hop extract (Joh. Barth & Sohn GmbH & Co. KG) and 7.2 ml 

HCl (1M) to a final weight of 4213g ± 42g in case of the lauter tun. For the worts 

filtered by the mash filter, the end volume of the wort was 5070g ±78g. The wort 

was cooled to <10ºC and samples were taken. The spent grains were collected, 

weighed, and mixed for homogenisation before analysis. 

Analysis methods wort: Free arabinose (%), free xylose (%), total arabinose (%), total 

xylose (%), arabinoxylan (%) were measured by Eurofins (Eurofins laboratories). 

Total polyphenols (AU/10ml) and anthocyanogens (AU/10ml) were measured 

using the molybdate method and McFarlane method respectively (Baier et al., 

1992; McFarlane, 1961; McFarlane, Sword, & Blinoff, 1963). S-methylmethionine (µg/L) 

and free dimethyl sulphate (µg/L) were analysed according MEBAK. All other wort 

parameters (bitterness (BU), colour (visual method), colour after boiling (visual 

method), high molecular protein (HMP) (mg/L), free amino nitrogen (Zhao et al., 

2006) (mg/L), total nitrogen (total UV digestion, mg/L), glucose (%m/V), fructose 

(%m/V), maltose (%m/V), maltotriose (%m/V), total fermentable sugars (%m/V), 

pH of the wort, viscosity (mPa.s), extract (%m/m), apparent final attenuation 

limit (AFAL) (%), apparent extract after final attenuation (AEAFA) (%(m/m), high 
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molecular weight β-glucan (fl uorimetric method, mg/L), ( 4-vinylguaiacol (mg/L), 

chloride (mg/L), nitrate (mg/L), sulphate (mg/L), phosphate (mg/L), calcium 

(mg/L), magnesium (mg/L), potassium (mg/L), sodium (mg/L) and zinc (mg/L) ) 

were analysed according Analytica EBC, ed.1998, sec.4, malt. 

All data were standardized to a wort extract of 11.5 ºP.  

Analysis methods spent grains: Total weight (g), total moisture (%m/m), washable 

extract on dry matter (%m/m) and total extract on dry matter (%m/m) were 

measured according to Analytica EBC, ed. 1998. From this data the dry weights of 

the spent grains was calculated.

5.3.3 Statistical analysis 

A low-dimensional summary of the data was obtained by applying Principal 

Component Analysis (PCA). PCA converts a set of correlating variables into a 

smaller number of orthogonal variables called the principal components. Usually 

a small number of principal components suffi  ces to capture a large part of the 

variance present in a data set. In a two-dimensional plot, this small set of principal 

components is plotted with the original variables related to these components. 

This provides a visual summary of the important sources of variation in the data 

set. Data were standardised (mean of zero and standard deviation of 1) prior to 

PCA.

To fi nd signifi cant diff erences that can be attributed to the experimental design, 

linear models and signifi cance testing were used. All responding (dependent) 

variables, such as the compositional and quality variables, were fi t to a multiple 

linear regression model using Matlab (R2012A) using barley/malt ratio, degree of 

pearling and fi lter type as explanatory (independent) variables. This model also 

takes interaction between these three variables into account:

  y = β0
 + β

1
x

1
 + β

2
x 

2
 + β

3
x

3
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1
x

2
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3
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7
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3
 +ε

    
(1)

Here, β
0 
is the general intercept, x

1
 is a dummy (integer) variable indicating the fi lter 

type, x
2
 is the barley/malt ratio, x

3
 is the degree of pearling, while all other terms 

accommodate the diff erent interactions between the 3 explanatory variables.
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Significance tests were used to determine if any of the 3-way, 2-way or main 

effects were significant (p<0.05). If significant effects were found, a graphical 

representation of Fischer’s LSD method for pairwise comparisons was used to gain 

insight into the nature of the differences. For this graphical overview, all treatments 

(see table 1) are plotted stacked on to each other together with their confidence 

intervals. For any pair of treatments having non overlapping confidence intervals, 

indicate a significant difference (p<0.05). 

5.4  Results and discussion

The worts and spent grains produced with different ratios of malt and barley, 

different degree of pearling and filtered with a mash filter or a lauter tun, were 

analysed on their chemical composition and filtration time. A graphical overview 

of the pair-wise comparisons is presented in appendix 1. All differences induced 

by filter type are related to the filter as well as the milling process used before 

mashing and the amount of water used. Roller milling before the lauter tun gives 

a coarser particle size distribution compared to milling with a hammer mill before 

the mash filter. Differences could also be related to the increased agitation by the 

knives in the lauter tun, which could facilitate extraction.

5.4.1 Wort analysis

Starch hydrolysis products and attenuation

The detailed results for this section are summarized in the graphs in appendix I-a. 

The extract was not affected by the malt-to-barley ratio when a mash filter was 

used, but increased with increasing malt-to-barley ratio when using a lauter tun. At 

the same time, the amount of extract was larger with a lauter tun than with a mash 

filter. This was because of the lower water usage when a lauter tun (end volume 

4200g) is used compared to when a mash filter is used(end volume 5070g), which 

made these brews more concentrated. 

All values of the other chemical component analyses of the wort values were 

standardized to extract values of 11.5 ºP. The fraction of total fermentable sugars 

were not influenced by filter type but decreased with an increasing amount of 
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barley and with the degree of pearling. This was not expected, as only a minimal 

amount of starch was pearled off  (van Donkelaar et al., 2015). The lower fermentable 

sugars might however be caused by the milling procedure, as milling pearled 

material gives diff erent particle sizes and particle composition. This in turn could 

have impaired the breakdown of starch resulting in less breakdown component. 

That the extract increased while the total fermentable sugars did not increase 

when using a lauter tun instead of a mash fi lter, may imply that a larger amount 

of non-sugar components or unfermentable sugars was extracted into the mash 

when a lauter tun was used. 

Both the glucose and fructose levels decreased with an increasing amount of 

barley, just like the total fermentable sugars. The glucose levels were increased 

with a mash fi lter relative to a lauter tun. Maltose and maltotriose levels were not 

infl uenced by the amount of barley added, but decreased with an increasing 

degree of pearling. 

Apparent fi nal attenuation limit (AFAL) was higher in wort fi ltered with a mash 

fi lter, which may be related to the higher glucose levels. AFAL increased with the 

barley concentration for the lauter tun, while the wort produced with a mash fi lter 

was not aff ected by the amount of barley. Pearling increased the AFAL, which 

seems contradictory to the amount of total fermentable sugars. 

Apparent extract after fi nal attenuation (AEAFA) was only infl uenced by fi lter type 

and higher for worts fi ltered with a mash fi lter.

Proteins

The results for this section are depicted in the graphs in appendix I-b. 

FAN concentrations decreased with increasing barley concentrations, which is in 

line with literature (Evans et al., 2014; Steiner et al., 2012). No eff ect of the degree of 

pearling was observed, which means that the protein present in the outer 10% of 

barley, which is about 8% of the total protein present in barley (van Donkelaar et al., 

2015), did not signifi cantly contribute to the FAN content in wort. Fan is necessary 

for the yeast for fermentation, wort of 12 ºP should contain 140-150 mg/l FAN 

(O’Connor-Cox, Paik, & Ingledew, 1991). Beers produced in this experiment had a 
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lower FAN content, so the increase of FAN due to a higher barley content was not 

expected to have a negative effect on the beer quality.

High molecular Protein (HMP) increased with increasing barley concentrations, 

because more protein breakdown occurred in malted barley during germination. 

No effect of the degree of pearling was observed in either HMP or the total nitrogen 

content. HMP are important for the foam stability of the beer, and therefore adding 

barley is expected to increase the foam stability of the beer. Steiner et al. found a 

higher foam stability in beers brewed with unmalted barley. They attributed it to a 

higher β-glucan content (Steiner et al., 2012). The total nitrogen content was lower 

in the brews with a lower malt-to-barley ratio. This suggests that more protein was 

lost in the spent grains if more barley was used. In malted barley, proteins are already 

partly broken down during germination, increasing their solubility and extraction. 

Polyphenols

The results for this section are depicted in the graphs in appendix I-c. 

The total polyphenol content was only influenced by the amount of barley added 

to the brew. It decreased with more barley, which is logical because malt generally 

has a higher polyphenol content than barley as polyphenols are synthesized/

released during the malting process (Maillard, Soum, Boivin, & Berset, 1996). Pearling 

removes the polyphenols in the outer layer of the husk and therefore a decrease 

was expected with an increased degree of pearling, but this effect was not 

observed for the total polyphenols. 

The anthocyanogens also decreased with increasing barley content, although 

their content in barley is believed not to be affected by malting unless it gets in 

contact with oxygen (Pollock, Pool, & Reynolds, 1960). The anthocyanogen content 

did decrease with the degree of pearling. Anthocyanogens are mostly present in 

the aleurone layer, and after pearling off more than 10% this layer is damaged and 

partially removed (van Donkelaar et al., 2015). The anthocyanogens might also have 

been oxidized because of the damaged outer layer of the barley. Anthocyanogens 

are one of the groups of polyphenols which are involved in the haze formation 

in beer, so a decrease of these components indicates a decrease in risk of haze 

formation.
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When regarding complex formation between HMP and anthocyanogens, they 

seem to show an opposite concentration eff ect for pearling and malt to barley 

ratio. Depending on the variety and batch of barley a brewer might want to reduce 

the amount of either one. If the brewer wants to decrease anthocyanogens in 

wort, pearling to a degree of 5% to 10% is a way to remove about 20% w/w to 33% 

w/w of them respectively in the case of the variety Sebastian. 

Arabinoxylans, β-glucan and viscosity

The results discussed below are depicted in the graphs in appendix I-d. 

The free arabinose levels increased with increasing malt addition and decreasing 

degree of pearling. The free xylose was only infl uenced by the degree of pearling, 

and increased with an increasing degree of pearling. This was expected because 

arabinoxylans are located mostly in the outer layers of the barley kernel. That 

arabinose and xylose behave diff erently with respect to pearling can be explained 

by the lower arabinose-to-xylose ratio in the husk compared to the endosperm 

(Ullrich, 2010). However, the total arabinose, total xylose and arabinoxylan contents 

of the mashes were not infl uenced by any of the process variations, even though 

when the outer 5% of barley are removed, about 15% of the arabinoxylans are 

removed. Pearling away the outer 10% takes away about 33% of total arabinoxylans 

(van Donkelaar et al., 2015). This decrease is not observed in the wort because only 

a small part of the arabinoxylans is water-soluble (A. A. Andersson et al., 2008).

The concentration of ß-glucans increased with more barley, in worts produced 

with a mash fi lter, because the β-glucan concentration of barley is higher than that 

of malt. However, the concentration of β-glucan was not aff ected when using the 

lauter tun. Possibly the diff erent milling and subsequent coarser particle size for 

the mash fi ltered with the lauter tun allowed for less extraction of β-glucan.

The viscosity was higher in the mash fi lter compared with the lauter tun, and 

increased with the barley concentration. The changes in viscosity are not directly 

related to the arabinoxylan levels. They do, however, show a similar trend as do 

the glucans when using a mash fi lter. Pearling did not aff ect the viscosity though 

there was a 3-way interaction between fi lter type, barley percentage and degree 

of pearling.
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Flavour components

Results for this section are depicted in the graphs in appendix I-e. 

The bitterness was not affected by the filtration method, the amount of barley 

added or the degree of pearling. Hop components are the main cause for bitterness, 

which are added after filtration, and therefore not influenced by the variations 

in the process.. S-Methylmethionine (SMM) is a precursor of dimethyl sulphide 

(DMS), which can cause an off flavour in beer. Both components were present 

in low concentrations. The SMM concentration was lower with more barley and 

more pearling. This was expected because the SMM content of barley increases 

during germination (João Pimenta, Kaneta, Larondelle, Dohmae, & Kamiya, 1998). 

Insufficient data were available for DMS for any conclusions on this component.

4-vinylguaiacol is a component in beer which can cause an off flavour if its taste is 

not desired in a certain beer type. The primary source of 4-vinylguaiacol in beer is 

ferulic acid, which is converted by yeast (McMurrough et al., 1996). The content of 

free ferulic acid is low in barley but highest in the aleurone layer, and this content 

generally increases with malting (Szwajgier, Pielecki, & Targonski, 2005). Our results 

are contradictory to this, because the amount of 4-vinylguaiacol increased with 

more barley. More pearling increases this effect with a mash filter but not with a 

lauter tun. 

Summarizing, the amount of barley and pearling seem to have an opposite effect 

on SMM compared to 4-vinylguaiacol. The filtration method does not affect the 

measured flavour parameters.

Minerals and pH

The results for this section are depicted in the graphs in appendix I-g and I-h. 

The chloride and nitrite concentrations increased while the sulphate, potassium, 

and magnesium concentrations decreased with the barley concentration. In 

general a decrease in minerals was expected because rootlets, which are removed 

at the end of malt production, have a relatively high mineral content compared 

to the grain (D. Liu, Pomeranz, & Robbins, 1975). The phosphate concentration was 
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higher in wort fi ltered by a mash fi lter while the zinc concentration was higher in 

those fi ltered by lauter tun. 

The calcium and magnesium concentrations increased with pearling. This is 

in line with earlier work that showed that magnesium is more abundant in the 

endosperm than in the outer layers (KeShun Liu, Peterson, & Raboy, 2007). The 

sodium concentration was not aff ected by the process variations. 

The pH of the mash was not aff ected by any of the variables. The pH of the wort 

often decreases with the calcium concentration, but in this case there was no 

connection.

Appearance 

Results for this section are depicted in the graphs in appendix I-f. 

The colour of the wort before boiling was not infl uenced by the fi ltration method 

but decreased in intensity with more barley and more pearling, because malting 

(and kilning) leads to Maillard reaction products that give darker colour, and 

pearling reduces the polyphenol content. The colour after boiling was only 

aff ected by the addition of barley. Pearling was expected to have an eff ect, but 

this was not observed. 

5.4.2 Processing parameters

Results for this section are depicted in the graphs in appendix I-i. 

The fi ltration time increased with more pearling and with the addition of more 

barley. This was attributed to a denser fi lter bed due to less husk material because 

of the pearling, and less breakdown of the barley components compared to 

malt. The diff erent particle size distribution of barley compared to the malt also 

aff ects the density of the bed. Pearling leads to coarser particles, and therefore a 

shorter fi lter time would be expected with an increased degree of pearling. This 

was not the case, probably because of a lower amount of spent grains leading to 

a fi lter bed that was less deep. The viscosity increased with an increasing barley 

concentration, which may also explain the longer fi ltration times. 
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5.4.3 Spent grains analysis

Results for this section are depicted in the graphs in appendix I-j. 

The dry weights of the spent grains are only affected by pearling and decreases 

with more pearling, because the fibres that normally make up for most of the dry 

matter of the spent grains were pearled off. 

The total moisture content of the spent grain was only affected by the filter type 

and not by pearling, indicating a similar water holding capacity (WHC) for filter 

beds resulting from pearled and unpearled barley. The moisture content of the 

spent grains was higher in the lauter tun, so the WHC of the spent grains produced 

with a lauter tun was higher. This is also be seen in the total and washable extract 

values, which were higher for the lauter tun. 

In the lauter tun, the extract values were increased by more pearling and more 

barley, while in the mash filter these increases were not observed. In general there 

were more water and extract losses when a lauter tun was used, which is in line 

with the literature (Kunze, 2010). The lower losses with a mash filter are related 

to the larger amount of water used for sparging and a lower extract in the last 

runnings of brews filtered in a mash filter. Furthermore it was visually observed 

that the sticky gray layer on top of the lauter tun filter bed was thicker when more 

barley was used. Possibly, some of the extracted components in the lauter tun 

accumulated in this layer, forming a gel-like substance with a high water binding 

capacity. The different milling methods used for the lauter tun and mash filter also 

had an influence on the density and thus on the performance of the filterbed. 

However, a lower extraction in the mash filter would have been expected based on 

the milling method, because hammer milling leads to finer particles and therefore 

a more dense filterbed. Apparently the use of more water to wash the filter bed of 

the mash filter had more effect than the density of the bed.

5.4.4 PCA Analysis

A PCA analysis was done on the data, leading to 4 important principle components 

(PC). Those 4 PC’s explained 65.9% of the variance in the data. Figure 2 shows a 

biplot of the first and second PC of the principle component analysis. In this figure, 

three clusters can be distinguished, grouped by the malt-to-barley ratio that was 

used. The lower the PC1 value and the higher the PC2 values, the higher is the 

malt-to barley-ratio.

39044 Donkelaar.indd   92 18-05-16   10:20



The use of unmalted pearled barley in the brewing process

93

5

PC1 explains 27.9% of the variation. A high PC1 corresponds with high amount of 

minerals, SMM and losses in the spent grains. PC2 explains 17.2% of the variation. A 

high PC2 value indicates degradation of high molecular weight components (e.g. 

high amounts of FAN, glucose, fructose, total fermentable sugars, free arabinose). 

The higher the PC2 value, the higher is the component conversion and extraction 

effi  ciency of components into the wort. For a good quality wort, it would be 

desirable to have a low PC1 value and a high PC2 value. PC1 increased and PC2 

decreased with decreasing malt-to-barley ratios, which means that more losses 

occur and less fermentable sugars end up in the wort when less malt is used. This 

is because malt components are already partially converted and are thus better 

accessible for enzymatic hydrolysis. The PC1-PC2 biplot shows no diff erences, with 

respect to the fi ltration method or the degree of pearling. 
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Figure 2. Biplot of principle component 1 and 2. Dark blue: 50% barley. Light blue: 65% barley. Green: 80% 
barley. Red: 100% barley. l: 0% pearling. n: 5% pearling. q: 10% pearling.

Figure 3 shows the biplot of PC3 and PC4. PC3 explains 11.7% of the total variance 

between the variables. Brews with a high PC3 value have higher values for the 

extract and colour, and have more mass lost in the spent grains. Low PC3 values 

are related to high levels of most minerals and a higher viscosity, while high PC3 

values relate to high extract and colour. PC4 explains 9.1% of the variance between 
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the variables. High PC4 values are related to high arabinoxylan and FAN levels, 

while low PC4 levels correspond with higher levels of total fermentable sugars. 

High PC3 values and low PC4 values seem to be favourable for a good quality wort, 

although it should be kept in mind that together these parameters only explain 

20.8% of the variance in the data. 

This biplot shows a clear distinction between the brews prepared with a lauter tun 

(positive PC3 values) and brews prepared with a mash fi lter (negative PC3 values). 

Values for PC4 were on average higher for mash fi lter brews compared to lauter 

tun brews. 

In general, brews prepared with a lauter tun have a higher extract and colour 

while brews with a mash fi lter have higher arabinoxylan content and viscosity. The 

higher extract of worts prepared with a lauter tun is attributed to a lower water 

usage in this system, which makes the wort more concentrated. The agitation in 

the lauter tun during lautering may also have eff ect, by enhancing the extraction 

of components into the mash.
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Figure 3. Biplot of principle component 3 and 4. Red: Lauter tun. Blue: Mash fi lter.
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In general, by using these biplots, it is possible to estimate the characteristics of 

a brew when using a certain fi lter or malt-to-barley ratio. No diff erent clusters for 

the degree of pearling were visible in the biplots. This complies with the preceding 

general analysis which showed that the malt-to barley-ratio was the variable with 

the highest impact. Several parameters were aff ected by the fi lter type, or were 

only aff ected by pearling or the malt to barley ratio in one of the fi lters. Pearling 

aff ected the least parameters, which may indicate that pearling indeed may be 

practically applicable. 

5.4.4 Process design

To determine which process parameters and which fi ltration system should be 

used, the focus was on 4 variables. (1) The total amount of dry matter which is 

extracted into the wort was calculated as a measure of the extraction effi  ciency. 

(2) The conversion potential of the wort for the yeast was calculated, by calculating 

the percentage of dry matter which ends up in the wort in the form of fermentable 

sugars. Furthermore two values were considered to be minimized, which are 

(3) viscosity and (4) anthocyanogens. Minimizing viscosity increases the fi lter 

effi  ciency. The eff ect of pearling and the malt-to-barley ratio on these 4 variables 

is shown in the contour plots in fi gure 4. The uniform white in the upper right 

corners indicate that no data were available for the 100% pearled barley samples 

and no estimations were made for these areas of the graph. 

The colour patterns are diff erent for the lauter tun and for the mash fi lter. This 

indicates that pearling and the malt-to-barley ratio aff ect the variables in a diff erent 

way for the two fi ltering methods. The reasons are the diff erences in particles size 

distribution of the barley and malt before mashing, the agitation in the fi lter bed 

and the diff erent densities of the fi lter beds. 

With the mash fi lter more material is extracted into the wort and the percentage 

of the dry starting material that ends up in the wort as sugars is higher. This seems 

contradictory to the statistical data and PCA analysis which show that the extract 

values for the lauter tun are higher, but this can be explained by the smaller 

amount of water that is used in the lauter tun, resulting in less but also in a more 

concentrated wort. 
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This also explains the higher losses in the spent grains for mashes produced in the 

lauter tun. The higher anthocyanogen content in mash fi lter worts is most probably 

explained by the fi ner milling that enhances the extraction of this component. 

Because of the diff erences between the fi lter methods diff erent values for the 

processing variables should be considered, or if possible the fi lter method has to 

be adapted to the processing variables. 
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Figure 4. Contour plots showing the eff ect of pearling degree and barley percentage on the 4 selected 
parameters
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To determine the optimal brewing parameters minimal or maximal values 

were set for a good quality wort for the 4 variables (total dry matter extraction, 

conversion potential, viscosity and anthocyanins). For the total amount of dry 

matter which was extracted into the wort the minimum value was 75%(m/m) and 

for the percentage of dry matter which ends up in the wort as fermentable sugars 

the minimum value was 50%%(m/). For the viscosity the maximum value was 

1.75 mPa.s while the maximum value for the anthocyanogens was 0.2 AU/10mL. 

Figure 5 shows the areas where the values were above or below the minimal or 

maximal values for the 4 variables respectively. The common overlap of all 4 areas 

overlap yields the window of operation for brewing.

Figure 5. Contour plots showing the optimal combinations of degree of pearling and malt-to-barley ratio 
for the lauter tun and the mash fi lter. Fig 5a. Light green: dry matter which is extracted into the wort >75% 
(m/m). Pink: dry matter which ends up as sugars in the wort >50% (m/m). Fig 5b. Light green: anthocyanogen 
content <0.2 AU/10ml. Pink: Viscosity  < 1.75mPa.s Dark green means overlap of the pink and light green 
areas. Fig 5c. When both dark green areas of fi g 5a and fi g 5b overlap, this area represents the allowed 
window of operation for the fi lter.
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In figure 5a as well as figure 5b there is overlap for the parameters using both filter 

methods. For the lauter tun, however, there is no area in which both the overlap 

areas of figure 5a and figure 5b match. This means that the window of operation 

in which the extraction is optimized is not the same one as the one in which the 

viscosity and anthocyanogen content are minimized, see figure 5c. Thus  there is 

no window of operation that would allow the use of a lauter tun. 

In the case of the mash filter there is an area in which these overlap, see figure 

5c: from 74%-80% barley with a degree of pearling of 10% up to using 95-99% of 

barley with a degree of pearling of 0%. This means that for the mash filter there 

is a window of operation for brewing in which all four selected parameters are 

within an acceptable range. Thus, for using unmalted barley in combination with 

pearling, it may be concluded that a mash filter is more suited than a lauter tun.

It should be noted that, at the moment, the milling, mashing and filtering systems 

are optimized for brewing with unpearled malt. This means that they are not 

optimal for these new processing conditions. Therefore, optimized processes are 

not optimal for implementing improvements. The systems should be optimized 

for the new situation, and this may well lead to a wider window of operation.

5.5  Conclusions

A brewing study was done on the use of mixtures of barley and malt in combination 

with pearling of the barley to reduce the amount of spent grains and optimise the 

use of the raw materials, while maintaining the quality of the wort.

The malt-to-barley ratio is the most important process parameter. Increasing the 

amount of barley decreases the yield and the efficiency of the process; thus its 

benefits should be weighed against these losses. Pearling was the least important 

parameter. However, pearling decreases the free arabinose, S-methylmetionine 

and anthocyanogen content, and increases the apparent final attenuation limit 

(AFAL) of the wort. As a negative effect, it decreases the total fermentable sugars 

and increases the free xylose and filter time. 
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Brews fi ltered with a lauter tun had similar levels of fermentable sugars but a lower 

AFAL compared to brews fi ltered with a mash fi lter. When using a lauter tun, the 

losses in the spent grains are larger with more barley. These losses are not observed 

in the mash fi lter. The use of a mash fi lter yields a window of operation in which 

acceptable extraction values are reached while anthocyanogens and viscosity 

stay below the upper level that was set for them. The current process, however, 

is optimized for brewing with unpearled malt, and the process is not optimal for 

brewing under the new processing conditions. It is expected that optimisation of 

the complete process will enlarge the window of operation, and may even open 

up new ones. 
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5.7  Appendix

Each plot shows the estimated treatment mean together with a 95% confi dence 

interval. In these plots, treatments are coded as follows: MF indicates brews were 

fi ltered over a mash fi lter, LT indicates fi ltration by a lauter tun. In the second part of 

the coding scheme, the symbol B is followed by a number. This number indicates 

the percentage of barley. So in a brew with B80, 80% of the raw material was barley 

and 20% was malt. The number following the P in the code stands for the degree 

of pearling. 
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Appendix I-a: Extract (%m/m), glucose (%m/V), fructose (%m/V), maltose (%m/V), maltotriose (%m/V), total 
fermentable sugars (%m/V), apparent final attenuation limit (%), apparent extract after final attenuation 
(%m/m)
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Appendix I-b: High molecular protein (HMP) (mg/L), free amino nitrogen (mg/L), total nitrogen (total UV 
digestion, mg/L)
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Appendix I-c: Total polyphenols (AU/10ml), anthocyanogens (AU/10ml) 
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Appendix I-d: Free arabinose (%), free xylose (%), total arabinose (%), total xylose (%), arabinoxylan (%), high 
molecular weight β-glucan (mg/L), viscosity (mPa.s)
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Appendix I-e: Bitterness (BU), s-methylmethionine (µg/L) free dimethyl sulphide (µg/L), 4-vinylguaiacol 
(mg/L)
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Appendix I-f: Colour of wort, colour of wort after boiling
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Appendix I-g: Chloride (mg/L), nitrate (mg/L), sulphate (mg/L), phosphate (mg/L), calcium (mg/L), 
magnesium (mg/L), potassium (mg/L), sodium (mg/L) and zinc (mg/L)
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Appendix I-j: dry weight (g), total moisture (%m/m), total extract (g), total extract on dry matter (%m/m), 
washable extract on dry matter (%m/m) 

 

120 140 160 180 200 220 240

LT B50 P0
LT B50 P5

LT B50 P10
LT B65 P10
LT B80 P0
LT B80 P5

LT B80 P10
LT B100 P0
LT B100 P5
MF B50 P0
MF B50 P5

MF B50 P10
MF B80 P0
MF B80 P5

MF B80 P10
MF B100 P0

Dry weight

5 10 15 20 25 30

LT B50 P0
LT B50 P5

LT B50 P10
LT B65 P10
LT B80 P0
LT B80 P5

LT B80 P10
LT B100 P0
LT B100 P5
MF B50 P0
MF B50 P5

MF B50 P10
MF B80 P0
MF B80 P5

MF B80 P10
MF B100 P0

Total extract on dry matter

70 72 74 76 78 80 82 84

LT B50 P0
LT B50 P5

LT B50 P10
LT B65 P10
LT B80 P0
LT B80 P5

LT B80 P10
LT B100 P0
LT B100 P5
MF B50 P0
MF B50 P5

MF B50 P10
MF B80 P0
MF B80 P5

MF B80 P10
MF B100 P0

Total moisture

0 5 10 15 20 25 30

LT B50 P0
LT B50 P5

LT B50 P10
LT B65 P10
LT B80 P0
LT B80 P5

LT B80 P10
LT B100 P0
LT B100 P5
MF B50 P0
MF B50 P5

MF B50 P10
MF B80 P0
MF B80 P5

MF B80 P10
MF B100 P0

Washable extract on dry matter
Washable extract on dry matter Total extract on dry matter 

Dry weight Total Moisture 

39044 Donkelaar.indd   106 18-05-16   10:20



39044 Donkelaar.indd   107 18-05-16   10:20



39044 Donkelaar.indd   108 18-05-16   10:20



6.
General discussion

39044 Donkelaar.indd   109 18-05-16   10:20



39044 Donkelaar.indd   110 18-05-16   10:20



General discussion

111

6

Many traditional food production processes aim to convert one or more raw 

materials to one fi nal ingredient or product. This focus often results in degraded 

side streams which might be utilised as by products or discarded as waste. Barley 

for food use, as an example, is mainly brewed for making beer. The part of the 

barley which is not used in the end product is called spent grains, and is discarded 

as waste or used as animal feed. These spent grains still contain components like 

polyphenols, dietary fi bres and proteins. Barley thus contains potentially valuable 

components which do not end up in the beer. It also contains components which 

complicate the production process or degrade the end product quality. 

The overall aim of this thesis was to investigate how barley can be fractionated 

to optimize the beer brewing process in terms of its use of resources, while 

maintaining the quality of the brewed beer. The work was based on the hypothesis 

that by pre-fractionation of the raw materials before use, it is possible to make 

better use of the raw materials, while at the same time allowing the brewing of 

beer of the same quality. This chapter gives an overview of the main fi ndings of this 

thesis, after which it refl ects on the selectivity of the pre-fractionation. The chapter 

concludes with an overview of how the outcome of this thesis can be utilised. 

In addition, it identifi es other methods that can potentially further improve the 

fractionation or the brewing process. 

6.1  Main fi ndings and conclusions

The underlying hypothesis of this thesis is that the brewing process and the use 

of the raw material can be optimized by fractionating the barley components 

from each other. To this aim, one can make use of the properties of the barley 

components themselves, or of the natural distribution of components inside 

the barley kernel. The fi rst option can be to make use of the thermomechanical 

properties of these components. Diff erences in the glass transition temperature 

(Stuart, Loi, & Fincher) have an impact on the breaking behaviour of the kernel. 

Knowledge of the Tg
 of the components in the barley kernels might thus allow for 

optimization of the milling process by pre-treating the barley to the right moisture 

content and then milling at the right temperature. Chapter 2 describes the 

diff erences in T
g
 between starch and protein isolated from the barley endosperm, 

and indicates the importance of taking the distribution of the moisture content 
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inside the kernel into account. It shows how the fracture behaviour of the barley 

is different when compressing the kernel in different regions of the state diagram. 

The use of the T
g
 in practice was found to be challenging because of the high 

transition temperatures and because the T
g
 lines of barley starch and protein are 

very close in the state diagram.

In chapter 3 we made use of the internal structure of the barley kernel to 

separate the components. Abrasive milling, or pearling, was used to fractionate 

the kernel in 5 different fractions. The first fraction is the outer layer of the barley, 

while the fifth fraction is the endosperm. Subsequently, 3 fractions constituting 

5% w/w, 1 fraction constituting 10% w/w and 1 fraction constituting and 75% 

w/w of the total kernel respectively were obtained. The components were clearly 

distributed heterogeneously over the fractions, with the outer layer rich in fibres 

and polyphenols and the endosperm richer in starch. The fraction in which the 

aleurone layer was pearled off was especially rich in proteins. A linear relation was 

observed between the insoluble fibre content and the water holding capacity of 

the fractions. 

Chapter 4 gives a resource efficiency analysis of the brewing process, and compares 

conventional brewing to a process in which exogenous enzymes and barley are 

used instead of malt. The total exergy input (cumulative exergy consumption) of the 

enzyme production process is 30 times as high as the standard chemical exergy of 

the enzyme. Therefore the cumulative exergy costs of enzymes and other purified 

ingredients should be taken into account when assessing the thermodynamic 

performance of the overall system. The use of exogenous enzymes, however, 

reduced the total exergy input for the production of 100 kg of beer from 441 MJ 

to 354 MJ. Moreover, beer produced with exogenous enzymes reduced the use 

of water by 7%, of raw materials by 14%, and of natural gas by 78%. The overall 

process efficiency increased from 45.7% to 55.7%. 

In Chapter 5 the effect of using pearled and unpearled barley during brewing 

is investigated using a microbrewery system. The malt-to-barley ratio, degree of 

pearling of the barley and the filter type were varied. The malt-to-barley ratio has 

the biggest impact, followed by the filter type. The influence of the filter type was 

partly because of the chosen filtering system, and partly because of the use of 

the different milling methods used to grind the barley. Pearling causes a decrease 
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in the free arabinose, S-methylmetionine and anthocyanogen content, and an 

increase in the apparent fi nal attenuation limit of the wort. As a negative eff ect, 

it decreases the total fermentable sugars and increases the free xylose and fi lter 

time. When a mash fi lter was used, a window of operation (e.g. a range of malt/

barley ratios and degrees of pearling) could be identifi ed within which a good 

quality beer could be produced as evaluated on four quality parameters. 

6.2  Comparing dry fractionation processes

Pearling and milling followed by a separation technique like sieving or air 

classifi cation have been considered in in chapter 2 and 3 of this thesis. Pearling 

makes use of the natural distribution of components inside the barley kernel, 

while separating the components by milling the whole kernels makes use of the 

mechanical properties of the individual components, disregarding their spatial 

distribution in the kernels. The effi  ciency of the methods can be compared 

using several criteria. One such criterion is the purity or the concentration of a 

target component that is attained. The separation effi  ciency can also be used to 

compare fractionation methods and is defi ned as the mass percentage of the 

total component contained in the original fl our that was recovered in a fraction 

(Schutyser & van der Goot, 2011). The separation effi  ciency ε can be determined 

with equation 1 (Tyler, Youngs, & Sosulski, 1981):

                     (1)

Where  фf is the yield fraction relative to  the total barley fl our, C0the concentration 

of the target component in the original fl our and Cf is concentration of the 

target component in the product fraction. The component shift б is another 

parameter which can be used to compare separation processes and is known as 

the percentage of the total component content in the original fl our which shifted 

into or out of a particular fraction (Rezsoe, 1960; Wu, Stringfellow, & Inglett, 1994). 

A positive shift indicates an enrichment and a negative shift indicates a depletion 

of the component in the fraction. The shift is calculated according to equation 2 

(Schutyser & van der Goot, 2011):
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                   (2)

In table 1 pearling is compared with milling and sieving or air classification. The 

data as found in our lab from milling and separation experiments, are combined 

with some values in literature. Details on the fraction yield and concentrations and 

on milling and separation methods are shown in appendix I.

Table 1 shows that the effectiveness of pearling compared to other milling and 

separation techniques is dependent on the component that is to be separated. 

The numbers in the table correspond to those fractions having the highest 

concentration / separation efficiency / shift and lowest shift. The fraction with the 

highest concentration is not necessarily the fraction with the highest separation 

efficiency or shift. Milling and sieving or air classification yields fractions with 

higher concentrations of starch than pearling, however, the yield of these fractions 

is lower, leading to lower separation efficiencies and shifts. 

The protein concentration obtained by pearling was higher than that reported 

in literature. The yield of this fraction was low, and therefore the shift was not 

very high. It was however possible to obtain a fraction that was more depleted in 

protein than the most depleted fraction obtained by milling in our laboratories. 

Milling and separation yields higher component concentrations of β-glucan and 

higher shifts, than pearling. This is because the localization of β-glucan in the barley 

kernel is mainly in the endosperm cell walls. Pearling did not detach the endosperm 

components from each other, therefore not yielding high β-glucan levels. Pearling 

did yield high levels of fibre in the outer fractions, the highest being in the outer 5% 

of the kernel. Also another fraction with high depletion of β-glucan was obtained; 

this was the endosperm which naturally does not contain many fibres. A high 

separation efficiency was obtained because of the high yield of the fraction. 

Milling experiments in our own laboratories focussed on separating starch and 

protein, and for these 2 components the concentrations and separation were 

similar to that of the highest values found in literature. These experiments were 

not optimized for separating beta glucan, which generally requires more sieving or 

classifications. This is reflected by the lower yields and separation in our processes 

compared to those found in literature. 
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Summarizing, milling is more effective than pearling for creating a concentrated 

β-glucan stream, and separating starch and protein from the endosperm from 

each other. It can yield fractions which are purer than fractions obtained with 

pearling. Pearling is effective to remove fibres into a stream that contains very little 

starch, leaving the majority of the kernel with almost all of the starch. Because of 

the low starch losses and high starch separation efficiency, pearling is the more 

appropriate method for mild separation of barley components for the purpose of 

efficient brewing. 

6.3  Pearling 

6.3.1 Effect of pearling on milling behaviour

In Chapter 5 we reported on milling barley and pearled barley before they were 

used for brewing. The negative effects of the filter, such as higher losses in the 

spent grains and decreased fermentable sugar content, were in fact due to a 

combination of the filter type and type of the milling equipment. A roller mill 

leaves a large fraction of the husk intact, and generally gives coarser particles than 

a hammer mill: in this mill, the flour has to pass a sieve before leaving the mill, and 

the particle sizes will therefore be smaller. 

The particle size distribution is also influenced by the material properties of 

the milled material. In pearling, the husks are removed, and since these have 

different properties from the endosperm (Mabille, 2001), the resulting particle size 

distribution is different. Figure 1 shows the particle size distribution for flour of 

pearled and unpearled barley milled with a roller mill and a mash filter.  

In a roller mill, the pearling does not affect the particle size distribution of barley 

flour. With unpearled barley, however, the fraction of larger particles consists mainly 

of husks, which remain largely intact. These are utilised later to form a filter bed in 

the lauter tun (O’Rourke, 1999). For the pearled barley flour almost all husks are 

removed, and here, the coarse particles consist largely of endosperm. This means 

that more starch is located in larger particles, which reduces the accessibility of 

the starch for enzymatic hydrolysis during mashing. This may well be the reason 

for the reduced efficiency (reduced amount starch conversion into fermentable 

sugars) of the processes which used a lauter tun, that was found in chapter 5. 
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When a hammer mill was used, a larger diff erence in particle size distribution was 

observed. The reference (unpearled) sample had a relatively wide particle size 

distribution. Pearled barley fl our gave a smaller average particle size with a peak 

in the size range of 0.25-0.50 mm (retrieved in the 0.250mm sieve). This may be 

one of the reasons why pearling has less infl uence on the starch conversion when 

a hammer mill and mash fi lter combination is used, compared to the roller mill 

and lauter tun. The particle size distribution also helps to explain why the hammer 

mill is more suitable to milling pearled barley than the roller mill: the particles that 

contain the starch are on average coarser in the roller mill, and therefore the starch 

is less accessible for enzymatic hydrolysis during mashing.
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Figure 1. Particle size distribution of pearled (10%) and unpearled (=reference) barley milled by hammer mill 
(A) and roller mill (B). Hammer mill was equipped with a 1.5 mm sieve, the roller mill settings were 1.3 mm 
for the fi rst roller and 0.5 mm for the second. Flour was sieved with a Retsch AS 400 shaker at 300 rpm (10 
minutes). Lines are to guide the eye.

6.3.2 Sustainability assessment of brewing and pearling

In chapter 4 it was shown that the loss in chemical exergy accounts for the largest 

reduction in exergetic process effi  ciency. The exergetic effi  ciency of the process 

can thus only be increased by pearling if the gain in bran fraction weighs up to the 

loss in starch (and consequently the amount of beer that can be produced from 

this starch). Pearling to a degree of 5% will produce a 5 kg bran fraction per 100 

kg barley, which corresponds to a standard chemical exergy content of 88.2 MJ. 

The loss in starch would be 0.205 kg, which in itself represents about 3.62 MJ of 

chemical exergy. This amount of starch mixed with water, however, would produce 

2.29 kg of beer (useful end product), corresponding to 4.17 MJ exergy. Assuming 

that both bran and beer streams would be used for human consumption, equal 

amounts of exergy input could be allocated to both bran and beer streams per kg 

of these streams. Pearling would thus increase the total useful exergy output by 

about 84 MJ. 
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In this calculation it was assumed that the milling energy for pearling is negligible 

in comparison to the standard chemical exergy of the streams. It was also assumed 

that the efficiency of the brewing process is qualitatively unaffected by pearling, 

while the amount of beer that is produced is linearly related with the amount of 

starch going into the process. When using a degree of pearling of 10%, a theoretical 

increase of useful exergy of about 161 MJ could be achieved. A brewing process 

that uses unmalted barley as a raw material and includes pearling would therefore 

be an exergetically more efficient process than to a process using unpearled barley. 
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Figure 2. The gain in useful exergy output of the brewing/bran production process as a function of the 
degree of pearling of the barley.

Figure 2 shows the overall gain in useful exergy output as a function of the degree 

of pearling. Pearling up to a degree of 10% gives the most environmental gain, and 

pearling up to 24% would still be more beneficial than not pearling at all. Pearling 

up to 5% would only result in a 0.2% starch loss in the raw material. If milling and 

filtration processes would be optimized for processing unmalted pearled barley, 

the use of 5% pearled barley would probably not result in high losses for brewers. 

The 0.2% of starch that is lost in pearling would result in 2.1 kg of beer per 100 kg 

barley. The loss of this beer is the cost of producing 5 kg of bran fraction. Therefore 

if the bran fraction could be sold for half the price of beer, pearling would also have 

economic benefits. Pearling to a degree of 10% would result in a loss of 7.6 kg beer 

per 100 kg barley. The bran fraction would therefore have to sell for about 75% of 

the price of beer. The composition of the bran fraction changes with the degree of 

pearling: the starch content is increased with an increased degree of pearling. This 

change in composition will affect the usability of this fraction in other products.  
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6.3.3 Making use of the pearled bran fraction

For an effi  cient use of resources, it is important that the bran fraction that is 

pearled-off  is used in other products. This fraction has potential to be used as 

functional ingredient because it contains several components like arabinoxylans, 

β-glucans, and polyphenols. These components can be used in products that 

claim benefi cial health eff ects. It has been reported that barley bran enhanced 

diets lower cholesterol values in hypercholerestic rats as well as in people (Behall, 

Scholfi eld, & Hallfrisch, 2004; El Rabey, Al-Seeni, & Amer, 2013; Lupton, Robinson, & 

Morin, 1994). The insoluble fi bres reduce the risk of colon cancer and reduce the 

absorption of glucose in the digestive system (Potty, 1996). Some studies have 

successfully tried to incorporate barley fractions in commercial foods like biscuits, 

pasta or bread (B. Knuckles, Hudson, Chiu, & Sayre, 1997; Marconi, Graziano, & 

Cubadda, 2000; Sudha, Vetrimani, & Leelavathi, 2007). It is therefore reasonable to 

assume that the fraction can be used for human consumption and therefore that 

the exergetic input for the process can indeed be partially allocated to the bran 

fraction. It should be noted that for the bran fraction to have potential on larger 

scales, breweries should make agreements with bakers and other food producers 

about its use. Since the brans fraction remains dry and unprocessed on microscale, 

it can however be easily stored and transported over longer times and distances.

6.3.4 Pearling as a pre-treatment for malting

In chapter 5, pearling was considered as a pre-treatment for brewing. In the 

experiments exogenous enzymes were used. If a brewery does not want to add 

these enzymes to their product, malting is necessary. Pearling can be combined 

with malting: it combines the advantages of creating a dry and valuable side 

stream with creating the endogenous enzymatic activity by malting. Pearling can 

however aff ect the malting process in several ways. For example, water enters the 

kernel mostly via the embryo region of the barley and less through the rest of 

the husk, especially in the beginning of the malting process. Water initiates the 

germination process (e.g. enzyme synthesis) (Kunze, 2010). Because pearling 

damages the husk, it increases the water uptake. The eff ect of pearling on the 

uptake of water is illustrated in fi gure 3. The average uptake was ±17% higher 

when the barley was pearled before starting the malting process. Both pearled 

and unpearled samples reached the moisture content of 37% - 40% which is 

preferred before germination (Kunze, 2010).
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Figure 3. water content in germinating barley for pearled and unpearled (reference) samples from day 1 to 
7 of germination. The sample of day 1 is taken right after steeping. Average water contents of triplicate 
measurements were 41.8% (reference), 49.0% (5% pearled barley) and 48.7% (7% pearled barley). 

Another eff ect of malting relates to the bacteria and mycotoxins that are located on 

the bran of the barley grain, and which are largely removed by pearling. However, 

pearling removes the protective layer of the barley kernel, making the kernels 

more susceptible to any remaining microorganisms. This makes the kernels more 

susceptible to spoilage. Because of the damaged husk, some of the endosperm 

is not protected anymore which can also make the kernels stickier. The most 

important disadvantage of pearling might however be an impaired germination 

process. Both the embryo and the aleurone layer are essential in the enzyme 

synthesis process, and if these are damaged less enzymes will be synthesized. It 

is necessary that suffi  cient enzyme activity remains after malting when pearling is 

used as a pre-treatment. 

Figure 4 shows the α-amylase and β-glucanase activity of germinating barley 

in time. The graph shows that the enzyme synthesis of these enzymes is indeed 

reduced by pearling. After 6 days of germination the α-amylase activity of 5% and 

7% barley was only 54% and 13% of that of the reference barley, respectively. The 

β-glucanase activity of 5% and 7% pearled barley was 64% and 20% of the reference 

barley, respectively. The enzyme activity of 13% pearled barley was almost zero for 

both enzymes. The enzyme activation in the reference barley started after day 2, 

and after day 3 for 5% and 7% pearled barley. It can be concluded that pearling 

slows but does not inhibit enzyme synthesis in germinating barley, and that 

a degree of pearling of 5% already damages the kernel enough to signifi cantly 

decrease the enzyme activity of the kernel. 
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Figure 4. Enzyme activity of A. α-amylase and B. β-glucanase of germinating unpearled and pearled barley 
from day 0-6. The graphs give the average of two independent germination experiments. Lines are to guide 
the eye.

After germination, barley is kilned to add to the taste of the malt and to ensure 

shelf life. Kilning, however, lowers the enzyme activity of the malt due to thermal 

inactivation of the enzymes. The enzyme activity of β-amylase is typically reduced 

by 40% and β-glucanase is reduced by about 60% during kilning (Georg-Kraemer, 

Caierao, Minella, Barbosa-Neto, & Cavalli, 2004; Kunze, 2010). The activity of 

α-amylase, on the other hand, increases by about 15% (Kunze, 2010). Breweries 

could consider brewing with germinated but unkilned malt, also called green malt. 

This would eliminate an energy intensive step and prevent enzyme inactivation 

during kilning. This would be especially benefi cial when pearled barley is 

considered, because of its lower enzyme activity. The use of green malt, however, 

would introduce challenges from a logistics, process fl exibility and safety point 

of view: the green malt has a high water activity, and is thus more susceptible to 

spoilage.

Table 2. The fermentable sugar content (mg/ml), amount of dry matter which ends up in the wort as sugars 
(%), β-glucan content (%) of the wort produced with reference (not pearled) barley, 5% pearled barley and 
7% pearled barley by mashing with a 1.5h sacharfi cation (64 ºC) time. No exogenous enzymes are added. 

Sample Fermentable sugar 
content (mg/ml)

Amount of dry matter 
which ends up in the wort 
as fermentable sugars (%)

β-glucan content (mg/L)

Reference 72.1 27.9 0.8

5% pearled 71.8 25.1 2.5

7% pearled 71.3 23.8 15.1
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Table 2 shows that less breakdown occurs during brewing with pearled barley, 

because less sugars are produced. Even though the concentration of sugars in 

the wort is similar, the filtration of pearled barley was slower and yielded more 

and wetter spent grains compared to the reference. More β-glucan remains in 

the wort when the barley was pearled, indicating less breakdown of cell wall 

material. Therefore we can conclude that the amount of active enzymes in pearled 

germinated barley is reduced leading to less hydrolysis of the barley components. 

The reduction in fermentable sugars in the wort was, however, only 10% for a 

degree of 5% and 15% for a degree of pearling of 10%. This decrease in wort quality 

could be improved by adapting the milling process of the germinated grains or by 

increasing the germination time of the pearled barley. 

6.4  Outline for future research

From the graph in section 6.3.2 of this discussion we can conclude that pearling 

to a degree of 10% is optimal in terms of exergy. From chapter 4 we know that a 

good quality beer can be brewed when 75% to 80% of 10% pearled barley is used 

together with 20%-25% of malt by using a mash filter. Therefore, a malt-to-10%-

pearled-barley ratio of 20/80 is suggested in order to produce a good quality beer 

with a reduced environmental impact. This way only one fifth of the barley will 

have to be malted, while at the same time a valuable side stream is generated. 

The process efficiency could be improved by optimizing the milling of the pearled 

barley, to prevent the formation of a dense filter bed. 

Because beer is a wet product, one could also consider wet fractionation as a 

pre-fractionation. As long as water is used as a medium for separation and the 

amount of water is less than the amount needed for brewing, one could separate 

components from each other directly before brewing. This technique would be 

especially suitable to separate a starch-rich slurry from the rest of the mixture, 

since starch is loosely embedded in the endosperm structure, which will allow the 

starch granules to be suspended in the water. Furthermore the density of the starch 

is higher than that of most other barley components, which allows gravitational 

or centrifugal separation of a starch slurry from the suspension. This fractionation 

would not reduce the amount of spent grains, but would give the opportunity to 

mash different fractions at different times and/or temperatures, that are optimal 
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for the breakdown of the components present in that fraction. A disadvantage of 

this separation method is that separation would have to take place directly before 

brewing, as the wet material has a limited shelf life and a larger volume compared 

to the dry material. This would reduce the fl exibility of the process. 

Instead of pearling hulled barley, one could consider using hull-less barley, a 

relatively new barley variety for the use of brewing. Using hull-less barley would 

allow the omission of the pearling step. In contrast to hulled barley, which has 

traditionally been used and adapted to optimize it for malting, the use of hull-less 

barley has not been optimized yet. Eff orts have been made only recently to malt 

hull-less barley, and malts with good (low) protein and β-glucan levels and high 

extract have already been produced, though the focus was not yet on the enzyme 

activity in these malts (Edney, Rossnagel, & legge, 2011), which was found to be 

somewhat lower than that of hulled barley (Bhatty, 1996). Due to the absence of 

the husk, hull-less barley has a higher amount of starch per weight of malt, giving 

higher extract yields. Furthermore it contains less polyphenols and therefore gives 

less haze in the beer. Filtration times for mashes produced with hull-less barley, 

however, were longer than those of the mashes produced with hulled barley 

(Bhatty, 1999). We also found this to be the case for pearled hulled barley in chapter 

5, where it was attributed to a denser fi lter bed. A disadvantage of using hull-less 

barley is its lower yield per area. Therefore the use of this new raw material has to 

be compared to using hulled barley, combined with pearling, and future studies 

have to elucidate which alternative may have the highest overall yield.

In this research we used pearling as a process to pre-fractionate barley before 

brewing, to increase resource effi  ciency use. Many food production processes 

use a raw material and leave a spent fraction after the extraction of the required 

components. Examples are the production of soy milk, after which the spent 

soybeans are left as okara. Okara has a moisture content of 80%-85%, and its dry 

matter mainly contains fi bres (50%-60%) (Li et al., 2012). Okara is highly susceptible 

to spoilage due to its high water activity. Therefore it has to be dried or immediately 

used into other products, or it has to be discarded. Reduction of the volume of 

okara would therefore reduce the amount of resources needed overall, and allow 

better use of the fi brous fraction for other purposes, food or non-food. Just like in 

brewing, removing the fi bres would reduce the volume of the okara, and reduce 

the losses in this stream. Also outside the direct realm of food production, the 
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concept of pre-processing may have potential. In the production of bioethanol, 

removal of most of the fibre and protein from corn would still allow good 

fermentation of the starchy part, would reduce the energy needed for drying the 

spent grains, and would open other applications for the fibre and protein fractions. 

In these cases, pearling may or may not be the most effective process, and other 

dry pre-processing methods may be more suitable. 

It is clear from this thesis that for dry raw materials such as barley, dry pre-processing 

could lead to less waste, a reduction in the use of energy and water, and to better 

use of the other fractions. It therefore fits in the philosophy of bio-refining, in which 

raw materials should be completely utilised for high-value products. This can be 

done best by retaining the raw materials in their original state as long as possible. 

Pearling is an example of a process in which the internal anatomy of the raw 

material is used as starting point for the design of a separation process. We feel that 

using this principle in addition to using the different physicochemical properties 

of the individual components, has potential for better overall separation while 

leaving the quality of the components intact as long as possible. This concept thus 

fits naturally in any bio-refining concept, for food or non-food production, or for 

combined purposes.
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6.5  Appendix

Data used for table 1 of the discussion are shown in table A1 (pearling data), 

table A2 (milling experiments) and table A3 (literature data) of this appendix. 

Unless mentioned otherwise, barley of the variety Sebastien with a moisture 

content of 13% was used for the experiments. Data used in the discussion are in 

bold underlined. 

Table 1. Composition, separation effi  ciency and shift of fractions obtained by pearling. Compositional data 
and yield from van Donkelaar et al. (van Donkelaar et al., 2015).

Fraction composition (w/w dm %)

Fraction Yield Starch Protein Glucan Ins fi bre

1 5.3 2.5 5.7 0.3 82.9

2 4.4 7.8 10.8 1.3 68.8

3 5.1 24.3 18.3 3.1 39.5

4 10.1 44.6 17 4.9 23.9

5 75.2 77.2 8.2 4.5 6.3

Whole barley 100 62.7 9.8 3.6 18.2

Component separation effi  ciency

Fraction Yield Starch Protein Glucan Ins fi bre

1 5.3 0.2 3.1 0.4 24.1

2 4.4 0.5 4.8 1.6 16.6

3 5.1 2.0 9.5 4.4 11.1

4 10.1 7.2 17.5 13.7 13.3

5 75.2 92.6 62.9 94.0 26.0

Whole barley 100.0 100.0 100.0 100.0

Component shift (δ)

Fraction Yield Starch Protein Glucan Ins fi bre

1 5.3 -5.1 -2.2 -4.9 18.8

2 4.4 -3.9 0.4 -2.8 12.2

3 5.1 -3.1 4.4 -0.7 6.0

4 10.1 -2.9 7.4 3.6 3.2

5 75.2 17.4 -12.3 18.8 -49.2

Whole barley 0 0 0 0
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Table 2. Fraction yield and component content, component separation efficiency and shift  for starch, 
protein and β-glucan. Fractions were obtained by milling (pearled) barley barley with different mills. 

Starch separation of whole barley, pin milla

Fraction (µm) Yield (%) Starch
(w/w dm %)

ε Shift

>710 3.7 63.4 4.0 0.4

710-500 3.4 42.0 2.5 -0.9

500-250 11.8 27.6 5.6 -6.1

250-100 16.6 33.9 9.8 -6.8

100-50 10.9 44.9 8.4 -2.4

50-20 51.4 76.2 67.8 16.4

<20 2.3 69.9 2.8 0.5

Whole Barley 100 57.7 100 0

Protein separation of whole barley, fine cutter millb

Fraction (µm) Yield (%) Protein
(w/w dm %)

ε Shift

>250 8.0 13.3 10.4 2.4

250-100 29.7 10.4 30.2 0.5

100-50 13.6 11.1 14.8 1.2

50-20 47.5 9.7 45.3 -2.2

<20 1.2 14.0 1.6 0.4

Whole Barley 100 10.2 100 0

β-glucan separation of pearled barley, pin millc

Fraction (µm) Yield (%) β-glucan
(w/w dm %)

ε Shift

>250 2.9 12.9 9.6 6.6

250-100 11.4 12.6 37.1 25.3

100-50 8.9 12.4 28.1 19.4

50-20 59.7 0.6 9.9 -50.5

<20 17.1 0.4 1.6 -15.4

Whole Barley 100 3.9 100 0

β-glucan separation of whole barley, pin milld

Fraction (µm) Yield (%) β-glucane 
(w/w dm %)

ε Shift

>250 6.3 8. 3 13.9 7.6

250-100 20.0 8.8 46.5 26.5

100-50 12.1 8.9 28.5 16.5

50-20 60.4 1.1 17.1 -43.3

<20 1.2 1.0 0.3 -0.87

Whole barley 100 3.8 100 0
a Hosokawa Alpine mill equipped with a pin mill, 22000 RPM
b Hosokawa Alpine mill equipped with a fine cutter mill, 18000 RPM
c Hosokawa Alpine mill equipped with a pin mill, 22000 RPM . Pearled barley (±25% of its weight removed) 
was used in this experiment.
d Hosokawa Alpine mill equipped with a pin mill, 22000 RPM. Moisture content of the barley was condi-
tioned to 7.7% before milling.
e Additional information on milling with unpearled barley. Not used in discussion.
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Table 3. Literature data used in discussion table 1.

Component Fraction yield (%) Start concentration 
(w/w%)

Fraction concentration 
(w/w%)

ε shift

Starcha 67.0 66.8 80.0 80.2 13.2

Proteinb 32.2 9.0 14.3 51.1 19.0

β-glucanc 20.7 5.1 17.6 71.4 50.7
a Barley of the variety Hora was milled using a MLU 202 laboratory mill (Laboratoriums Mahlautomat Mod-
ell MLU 202, Gebruder Buhler Maschinenfabrik, Uzwill, Schweiz) equipped with side screens  (Sundberg & 
Åman, 1994).
b Barley of the variety Golf was milled in an OHG mill (Brabender Duisburg) equipped with a 0.7mm screen at 
16000 RPM, and subsequently air classifi ed with a pilot system from Alpine AG (Ausberg, Germany) including 
a Circoplex classifi er mill 50 (ZP) with counter rotating beaters and a Turboplex utra-fi ne classier 50 (ATP) with 
horizontally rinning classifying wheel axis (4000 RPM) (Andersson et al., 2000).
c Barley of the variety Klages was pearled (11 w/w% was removed), milled with an abrasive udy mill (B. E. 
Knuckles, Chiu, M.C.M. and Betschart, A.A., 1992).
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Summary 

Beer is a globally consumed beverage, which is produced from malted barley, 

water, hops and yeast. In recent years, the use of unmalted barley and exogenous 

enzymes have become more popular because they enable simpler processing and 

reduced environmental impact. Raw barley, however, contains less endogenous 

enzymes and more undesired components for the use of beer brewing, compared 

to malted barley.  

The overall aim of this thesis is to investigate how barley can be fractionated to 

optimize the use of resources for the beer brewing process, while maintaining the 

quality of the brewed beer. A resource use effi  ciency analysis was performed to 

verify the presumed benefi ts on the environmental sustainability of the proposed 

process change. The work was based on the hypothesis that fractionation of the 

unprocessed barley will reduce the amount of undesired components, which 

leads to improvements in the brewing process based on partial or no malting. 

Fractionation can be performed by milling and separation, which requires physical 

disentanglement of the components. This fractionation can be infl uenced 

by properties of the components of the material, such as the glass transition 

temperature (Stuart et al.). Fractionation by abrasive milling, also known as pearling, 

is another possibility: here one makes use of the spatial distribution of components 

in the kernels. In case of barley for brewing this technique is especially promising as 

most of the undesired components are in the outer layer of the kernel. In addition, 

the removal of bran from the barley reduces the amount of water needed in the 

process. It will also reduce the volume of spent grains, hence reducing wastes and 

energy required for drying the spent grains. A disadvantage of pearling is however 

that it lowers the ability of the barley kernel to produce enzymes. This leads to the 

need of the addition of exogenous enzymes, as is the case when the malting step 

is omitted.  

Chapter 2 describes the glass-to-rubber transition of protein and starch isolated 

from the barley endosperm, for diff erent moisture levels. The hypothesis for this 

chapter is that dry fractionation by milling is facilitated by milling conditions 

in which the protein is in a rubbery state and the starch in a glassy state. Two 

methods were used to measure the Tg
; diff erential scanning calorimetry (DSC) 

and thermo-mechanical compression tests (TMCT). The methods gave diff erent 
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results due to the differences in moisture content range, and heating rates, which 

may lead to conformational changes of the protein. The value of the T
g
 of partially 

crystalline materials, such as starch in barley, was not unambiguous when using 

TMCT because the mechanical effect of expansion of these materials was smaller. 

For both results, the T
g
 lines were modelled using the Gordon-Taylor equation. 

Based on sorption isotherms, it was concluded that moisture does not distribute 

evenly over the protein and starch in the kernel. Starch absorbs more moisture 

than protein at given water activities. This required a correction of the T
g
 lines. 

After this correction, the glass transition lines of starch and protein were closer 

together. The expectation is therefore that achieving good separation between 

the components based on having one glassy component and one rubbery 

component is challenging.

For this reason, another dry fractionation technique, pearling, was considered. 

Chapter 3 describes the chemical composition of the barley and of fractions 

removed by pearling. Pearling was shown to selectively remove insoluble fibre, 

ash, protein and polyphenols, while the β-amylase activity and starch content of 

the remaining kernel was hardly affected. For example, removing the outer 5% of 

the kernel reduced insoluble arabinoxylans (15%), insoluble fibres (23%), ash (19%), 

polyphenols (11%) and water holding capacity of the non-starch components 

(25%), while only lowering starch content by 0.20%. The water holding capacity 

of the barley fractions was strongly related to the fibre content. This indicates that 

when the fibre content in the mash was reduced by pearling, the spent grains will 

take up less water, leading to less wort and sugar losses in this waste stream, and 

hence better use of the raw materials and less wastes. 

Chapter 4 compares a traditional brewing process to an enzyme-assisted brewing 

process with respect to their resource use efficiency, which is one aspect of the 

sustainability of the processes. The use of exogenous enzymes is found to be more 

efficient than producing enzymes through the malting process. The exergetic 

efficiency of the conventional malting process was 77%. The main losses stem 

from the use of natural gas for removal of moisture from the barley in the kilning 

process, and from the loss of starch in the germination process. In case of the 

use of exogenous enzymes, it was concluded that the chemical exergy content 

of the enzymes was not a good measure for the exergy content of the enzymes. 

Instead, we proposed to use the cumulative exergetic consumption in the enzyme 
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production rather than just the chemical exergy content of the enzymes. This 

cumulative exergetic consumption in the production of the enzymes was ± 30 

times higher than their standard chemical exergy. This shows that the cumulative 

exergetic costs of minor components should be taken into account if a process 

uses them in signifi cant quantities. This can be done by extending the system 

boundaries to include the production process of the purifi ed components. The 

exergy effi  ciency of the enzyme formulation production process ranges between 

20% and 42% depending on whether the by-product of the fermentation broth 

was considered as useful as the enzyme product. Even though the cumulative 

exergy consumption of the process was 30 times the standard chemical exergy 

of the dry enzyme, the total exergy input (i.e. both wasted and destroyed) for the 

production of 100 kg of beer was still larger for the conventional malting process 

(441 MJ) than for the enzyme-assisted process (354 MJ). In addition, beer produced 

using exogenous enzymes reduces the use of water by 7%, of raw materials by 

14%, and of natural gas by 78%. Thus, the exergy loss of the enzyme production 

process is more than compensated by the prevention of exergy loss in the total 

beer brewing process. 

Chapter 5 describes brewing tests using malted, unmalted and pearled, unmalted 

barley kernels. Brewing with unmalted barley saves material, energy and water 

in the malting stage but may result in complications during processing. Pearling 

mitigates these problems. Exogenous enzymes were used to compensate for the 

low enzyme activity in unmalted barley. Lautertun fi ltration and mash fi ltration were 

considered as fi ltration methods. Principle component analysis was performed on 

the chemical composition of the wort and the various spent grains, to investigate 

the eff ect of the malt-to-barley ratio, the degree of pearling and the fi lter method. 

A mash fi lter is optimal for this type of process, and we identifi ed a window of 

operation in which optimal use is made of the raw materials while maintaining the 

end product quality, judged on basis of 4 quality parameters.

The concluding chapter 6 presents a general discussion of all results described in 

this thesis. In addition, the benefi ts of pearling over that of milling and fractionation, 

and the eff ect of pearling on milling properties were discussed. Furthermore, it 

explores the advantages in environmental sustainability that can be achieved by 

pearling. Pearling as a pre-treatment for malting reduces the enzyme activity of 

germinating barley, and therefore the mash quality. 
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This thesis provides insights in how pre-treatment of barley can make beer 

brewing more efficient in the use of resources. It stresses the need to optimally 

use all material streams in a process, to be able to design an environmentally 

sustainable process, and it shows that efficient resource use is key for achieving 

this. Additionally the value of enzymes as processing aids was discussed. A clear 

result is that one needs to include the resource use in the production of enzymes 

or other processing aids, when analysing the environmental sustainability of a 

process, since this can be significant in the overall process.
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Samenvatting

Bier is een wereldwijd geconsumeerde drank, die gemaakt wordt van gerst, water, 

hop, en gist. Recent is er meer aandacht gekomen voor het gebruik van ongemout 

gerst en exogene enzymen, omdat dit voordelen oplevert zoals een versimpeld 

proces en een verminderde milieubelasting. Vergeleken met gemout gerst geeft 

ongemout gerst minder endogene enzymactiviteit, en meer componenten die 

ongewenst zijn tijdens het bier brouw proces. 

Het algemene doel van dit proefschrift was om te onderzoeken hoe gerst 

gefractioneerd kan worden om het gebruik van grondstoff en in het bierbrouwproces 

te optimaliseren, terwijl de kwaliteit van het gebrouwen bier gewaarborgd blijft. 

Om de vermeende vermindering van milieubelasting van het nieuw ontworpen 

proces te verifi ëren is een analyse van het grondstofgebruik uitgevoerd. De 

vermindering in milieubelasting is gebaseerd op de hypothese dat de fractionering 

van de onbewerkte gerst de hoeveelheid ongewenste componenten kan 

verminderen, wat zal leiden tot verbeteringen in een brouwproces waarin gebruik 

gemaakt wordt van niet of gedeeltelijk gemout gerst. De mogelijke toepassing 

van zo’n initieel fractioneringsproces wordt beïnvloed door de eigenschappen 

van de te fractioneren componenten. Eén van de bepalende eigenschappen is de 

glasovergangstemperatuur (Tg). 

Hoofdstuk 2 beschrijft de glas-overgang van de eiwitten en het zetmeel geïsoleerd 

uit de endosperm van de gerst. De hypothese hier is dat droog fractioneren malen 

als eerste stap wordt vergemakkelijkt door maalomstandigheden te kiezen waarin 

de eiwitten zich in een rubbertoestand bevinden en het zetmeel zich al in de 

glasfase bevindt. Twee methoden zijn gebruikt om de Tg te meten; diff erentiële 

scanning calorimetrie (DSC) en thermisch-mechanische compressietesten 

(TMCT). De twee methoden gaven verschillende resultaten, door de verschillen 

in de vochtgehalten van de monsters en verschillen in verhittingssnelheid, die tot 

conformatieveranderingen van de eiwitten zouden kunnen leiden. De waarde van 

de Tg van gedeeltelijk kristallijne materialen, zoals zetmeel in gerst, was moeilijk 

te bepalen via de TMCT methode, omdat de uitzetting van deze materialen 

klein is. Voor beide meetmethoden zijn de Tg lijnen gemodelleerd met behulp 

van de Gordon-Taylor vergelijking. Gebaseerd op de sorptie-isothermen van de 

materialen is de conclusie getrokken dat de vochtverdeling in de gerst korrel niet 
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homogeen is. Zetmeel neemt meer water op dan eiwit, waardoor een correctie 

in de Tg lijnen nodig was. Na deze correctie lagen de glasovergangen dichter 

bij elkaar. De verwachting is daarom dat het bereiken van een goede scheiding 

tussen zetmeel en eiwit in gerst gebaseerd op verschillen in Tg lastig zal zijn.  

Een andere optie is het fractioneren door middel van het afschuren van de 

buitenste lagen, ook wel pearlen genoemd. In dit geval maakt men gebruik van 

de structuur van de gerstekorrel. Voor brouwen met gerst is dit een veelbelovende 

techniek, omdat de ongewenste componenten zich veelal in de buitenkant van 

de gerstekorrel bevinden. Daarbij vermindert de hoeveelheid water die nodig is in 

het proces wanneer de buitenkant van de gerst verwijderd wordt. Ook wordt het 

volume van de bierbostel verminderd, waardoor er minder afval geproduceerd 

wordt en er minder energie nodig is om dit afval te drogen. Een nadeel van pearlen 

is dat het vermogen van de gerstekorrel om enzymen te synthetiseren afneemt. 

Dit leidt tot de noodzaak van het toevoegen van exogene enzymen, wat ook 

nodig is wanneer de mout stap overgeslagen zou worden. In hoofdstuk 3 worden 

de resultaten van pearlen beschreven. In dit hoofdstuk wordt de chemische 

compositie van verschillende fracties, verkregen door pearlen, beschreven. Pearlen 

bleek onoplosbare vezels, eiwitten en polyfenolen van de gerst selectief te kunnen 

verwijderen, terwijl de β-amylase-activiteit en het zetmeelgehalte nauwelijks 

beïnvloed werden. Het verwijderen van 5% van de buitenkant van de gerst gaf een 

vermindering van het onoplosbare arabinoxylangehalte (15%), het onoplosbare 

vezel gehalte (23%), de polyfenolen (11%) en het waterbindend vermogen van 

alle niet-zetmeel componenten van de gerst (25%). Hierbij ging slechts 0.20% 

van het zetmeel verloren. Het waterbindend vermogen van de fracties was recht 

evenredig met de hoeveelheid onoplosbare vezels. Dit geeft aan dat de bostel 

minder water op zal nemen wanneer het vezelgehalte in de bostel verminderd 

wordt. Dit zal leiden tot minder verliezen van wort en de hierin opgeloste suikers, 

en daardoor tot een efficiënter gebruik van de grondstoffen.

Hoofdstuk 4 vergelijkt een traditioneel brouwproces met een brouwproces 

waarin exogene enzymen gebruikt worden. De vergelijking heeft betrekking op de 

efficiëntie van het gebruik van de grondstoffen, één van de duurzaamheidsaspecten 

van een proces. Het gebruik van exogene enzymen (dat wil zeggen: geproduceerd 

via fermentatie in een ander proces) bleek efficiënter dan het gebruik van enzymen 

die doormiddel van het mout proces geproduceerd worden. De exergetische 
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Samenvatting

effi  ciëntie van het conventionele moutproces was 77%. De belangrijkste verliezen 

in dit proces kwamen door het gebruik van aardgas in de stap waarin mout 

gedroogd wordt, en door het verlies van zetmeel in het kiemproces. Verder bleek 

dat de chemische exergie van een enzym geen goede maat is voor de exergy 

gebruikt in de productie van een exogeen enzym. Daarom stellen we voor om 

hiervoor het cumulatieve exergiegebruik in de enzymproductie als maat te nemen. 

Dit cumulatieve exergiegebruik was ongeveer 30 maal hoger dan de standaard 

chemische exergie die aanwezig is in de enzymen. Dit laat zien dat dit cumulatieve 

exergiegebruik de juiste maat is wanneer men kijkt naar additieven die in grotere 

hoeveelheden gebruikt worden. Dit kan men doen door de systeemgrenzen te 

verbreden door het productieproces van deze additieven mee te nemen in de 

analyse. De exegetische effi  ciëntie van het enzymproductieproces varieert tussen 

de 20% en 42%, afhankelijk van de waarde die toegekend wordt aan nevenproduct 

van het fermentatie proces. Ondanks het feit dat het cumulatieve exergiegebruik 

van het enzym ongeveer 30 maal hoger was dan de standard chemische exergie 

bleek de totale exergie input van het conventionele moutproces nog steeds hoger 

(441 MJ) dan die van het enzym-geassisteerde proces (354 MJ). Daarnaast wordt 

het watergebruik met 7% verminderd in het  proces met toegevoegde enzymen, 

wordt  het gebruik van grondstoff en 14% lager en het aardgasgebruik daalt met 

78%. Daarom kan geconcludeerd worden dat het exergieverlies in het enzym 

productie proces gecompenseerd wordt door het verminderde verlies van exergie 

in het totale bier brouwproces. 

Hoofdstuk 5 beschrijft brouwtesten met gemout, ongemout en gepearld 

ongemout gerst. Brouwen met ongemout gerst bespaart water, energie en 

grondstoff en, maar kan tot veranderingen leiden tijdens het brouwproces. Pearlen 

vermindert deze problemen. Om het gebrek aan enzymactiviteit in ongemout 

gerst te compenseren zijn exogene enzymen toegevoegd. Als fi ltratie-methode 

zijn zowel de fi ltreerkuip als een modernere fi lter met gebruik van drukverschil 

over het fi lter overwogen. Om de eff ecten van de mout-gerst ratio, de mate van 

afschuren en de fi ltreermethode te onderzoeken, is een hoofdcomponenten-

analyse (principal component analysis) gebruikt op de gegevens van de chemische 

samenstelling van de verkregen wort en bostel. Het moderne fi lter is geschikter 

voor het nieuwe proces, en laat een werkgebied toe waarin de grondstoff en 

optimaal gebruikt werden terwijl de kwaliteit van het bier gewaarborgd blijft op 

basis van vier kwaliteitsparameters. 
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Het afsluitende hoofdstuk 6 presenteert een algemene discussie van alle resultaten 

die in dit proefschrift beschreven zijn. Verder worden de voordelen van pearlen 

vergeleken met die van malen en scheiden, en wordt het effect van pearlen op 

de maaleigenschappen van gerst bediscussieerd. Ook wordt er besproken hoe 

de milieubelasting van het brouwproces beperkt kan worden door toepassing 

van pearlen Daarnaast wordt aangegeven hoe pearlen als een voorbehandeling 

voor mouten de enzym activiteit in kiemende gerst vermindert, waardoor de wort 

kwaliteit vermindert. 

Dit proefschrift geeft inzicht in hoe het voorbehandelen van gerst het 

bierbrouwproces efficiënter kan maken met betrekking tot het gebruik van 

grondstoffen. Het benadrukt de noodzaak om optimaal gebruik te maken van 

alle materialen in onze processtromen om een duurzaam proces te ontwerpen, 

en dat het optimaal gebruiken van onze grondstoffen een hoofdrol speelt in het 

ontwerpen van een dergelijk proces. Daarnaast is de waarde van het gebruik van 

exogene enzymen als hulpstof onderzocht. Een duidelijk resultaat is dat men 

de kosten van de productie van dergelijke hulpstoffen mee moet nemen in een 

duurzaamheidsanalyse. 
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