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Publiekssamenvatting 

Probabilistische modellen voor de inname via de voeding 

Met zogeheten innamemodellen wordt berekend in welke hoeveelheid 
mensen potentieel schadelijke stoffen kunnen binnenkrijgen via de 
voeding. Voorbeelden zijn resten van bestrijdingsmiddelen, stoffen die 
via het milieu in voedsel terechtkomen (zoals dioxine, cadmium, lood, 
kwik) en stoffen die er door verhitting in komen (zoals acrylamide en 
furanen). Dit rapport beschrijft de kenmerken van twee soorten 
modellen: voor de berekening van de inname op de korte en op de 
langetermijn. Met deze modellen kan de meest realistische schatting van 
de inname via de voeding worden verkregen die op dit moment mogelijk 
is.  

Bij de langetermijnmodellen zijn meerdere typen mogelijk. Daarom 
bevat de beschrijving ook een beslisboom om te kiezen welke van de 
drie optimaal is om de langetermijninname te berekenen. Deze keuze 
moet altijd worden gemotiveerd in de verslaglegging van een 
innameberekening. 

De modellen zijn alleen bruikbaar als er gegevens beschikbaar zijn over 
de hoeveelheid waarin bepaalde voedingsmiddelen worden gegeten en 
in welke concentraties de stoffen in deze voedingsmiddelen aanwezig 
zijn. De voedselconsumptiegegevens die hiervoor gebruikt worden, zijn 
afkomstig van Nederlandse voedselconsumptiepeilingen en zijn veelal 
voldoende om de inname van de meeste stoffen te berekenen. Dit geldt 
niet voor stoffen die in voedingsmiddelen zitten die zelden worden 
gegeten. Voor de concentratiegegevens zal per berekening moeten 
worden vastgesteld of het mogelijk is een inname met deze modellen te 
berekenen. 
 
De beschrijving is gemaakt door het RIVM en Wageningen UR Biometris. 
De modellen zijn beschikbaar in de software Monte Carlo Risk 
Assessment (MCRA). Het model om de kortetermijninname te berekenen 
heet de probabilistische Monte Carlo methode. De drie modellen voor de 
langetermijninname zijn: het Observed Individual Means (OIM) model, 
het LogisticNormal-Normal (LNN) model en het Model-Then-Add (MTA) 
model. 

Kernwoorden: Inname, blootstelling, voedsel, langetermijn, 
kortetermijn, probabilistisch modelleren, onzekerheid  
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Synopsis 

Probabilistic dietary exposure models 

Exposure models are used to calculate the amount of potential harmful 
chemicals ingested by a human population. Examples of harmful 
chemicals are residues of pesticides, chemicals entering food from the 
environment (such as dioxins, cadmium, lead, mercury), and chemicals 
that are generated via heating (such as acrylamide and furans). In this 
report we describe the characteristics of two types of models: the first 
for calculating the short term-intake, and the second for calculating 
long-term intake. These models currently result in the most realistic 
estimation of chemical intake via food. 

There are three types of long-term exposure models, therefore we 
present a decision tree to select the optimal model. This choice always 
has to be motivated when reporting the exposure assessment. 

The models can only be used when data are available on the amount of 
food consumed and the concentrations of chemicals present in this food. 
The food consumption data used are provided by the Dutch food 
consumption surveys; in most cases these data are suitable for 
calculating the intake of most chemicals, however this does not apply to 
chemicals present in rarely consumed foods. For concentration data, an 
assessment per exposure calculation has to be provided as to whether 
the exposure can be calculated using these models. 
 
The report was produced by the RIVM and Wageningen UR Biometris. 
The models are available in the Monte Carlo Risk Assessment (MCRA) 
software. The model used to calculate short-term intake is the 
probabilistic Monte Carlo approach. The three models for the long-term 
intake are: the Observed Individual Means (OIM) model, the 
LogisticNormal-Normal (LNN) model, and the Model-Then-Add (MTA) 
model.  
 
Keywords: Intake, exposure, food, long-term, short-term, probabilistic 
modelling, uncertainty  
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1 Introduction 

Chemicals present in food may have adverse effects on human health. 
To assess whether the intake of these chemicals via food poses a health 
risk to humans, risk assessments are performed of which exposure 
assessments are a key part (Kroes et al., 2002). In risk assessment 
procedures, it is common to use tiered approaches (e.g. (Pastoor et al., 
2014)). In lower tiers, exposure estimates are based on few data (e.g. 
use of PRIMo (Pesticide Residues Intake Model) to assess the exposure 
to pesticide residues via food (EFSA, 2007) or FAIM (Food Additives 
Intake Model) for additives (EFSA, 2014a). If more precision in the 
exposure estimation is needed, higher-tier approaches become 
necessary. The current document focuses on these types of models, also 
referred to as probabilistic models. 
 
In the last decade, different probabilistic models have been developed to 
assess the exposure to adverse chemicals via the consumption of foods. 
Each of these models estimates the exposure in a different manner. In 
this document, the models are described that are available within the 
Monte Carlo Risk Assessment (MCRA) software1 (van der Voet et al., 
2015) and which have been used in the last two years by the National 
Institute for Public Health (RIVM) in scientific papers (e.g. (Boon et al., 
2014b; Boon et al., 2015), (letter) reports (Boon et al., 2014a; Sprong 
et al., 2014; Sprong & Boon, 2015) and in food safety assessments of 
the Front Office Food and Consumer Product Safety. A description of the 
software used within the RIVM within the field of nutrition (SPADE2) is 
not included in this document. 
 
The focus of this document is furthermore on the use of these models to 
obtain exposure estimates that are as close to the true intake as 
possible. We do not address the use of these models as part of risk 
assessment, where these models may only be applied if a lower tier 
assessment cannot rule out a possible health risk related to the 
exposure to a certain chemical via food. 
 
In this report, the terms exposure to and intake of are used 
alternatively, referring both to the ingestion of adverse chemicals via 
food.  

 
1 mcra.rivm.nl 
2 rivm.nl/en/Topics/S/SPADE 
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2 Probabilistic models to assess exposure to adverse 
chemicals via food 

This document deals with the use of probabilistic models to estimate the 
exposure to chemicals via food as close to the true intake as possible. A 
probabilistic model is a model that estimates the exposure by 
addressing, at least, the variation in exposure due to variation in 
consumption patterns between individuals. 
 
Two types of probabilistic exposure models can be distinguished based 
on the toxicity profile of the chemical of interest: acute (or short-term) 
exposure (related to acute toxicity) and chronic (or long-term) exposure 
(related to chronic toxicity)3 . These two types of exposure demand 
different models to assess the exposure via food. Below we will describe 
these models in general terms without going into all statistical details. 
For the in-depth statistical details, we refer to the MCRA reference 
manual (de Boer et al., 2015). Also the most common uncertainties 
related to the models themselves, so-called model uncertainties, will be 
addressed. 
 
To calculate the dietary exposure to an adverse chemical using 
probabilistic models, individual food consumption data from a national 
food consumption survey are needed (for the Netherlands, data from the 
Dutch National Food Consumption Surveys (DNFCS)) combined with 
concentration data analysed in individual foods (e.g. from monitoring 
programmes, experimental studies, or total diet surveys). In the 
description of the models below, these data are assumed to be available 
and suitable for assessing the exposure. Uncertainties in the exposure 
estimates due to the input data used, so-called model input 
uncertainties, will be addressed in section 2.3. 
 

2.1 Acute exposure assessment 
What 
Acute exposures cover a period of up to 24 h (WHO, 2009). To assess 
this exposure using a probabilistic model, the probabilistic Monte Carlo 
approach is used. In this approach, person-days are randomly selected 
from the DNFCS database. The consumption amount of each relevant 
single food item on that particular day is multiplied by a randomly 
selected concentration available for that food item from the 
concentration database. The exposures per food are subsequently added 
to obtain the total intake for that particular person-day and divided by 
the individual’s body weight to obtain the exposure per kg body weight. 
This procedure is repeated many times resulting in a frequency 
distribution that reflects all plausible combinations of daily consumptions 
and concentrations. The procedure is repeated until a stable frequency 
distribution is obtained (Table 1 and Figure 1).  

 
3 Other terms that are often used for chronic or long-term exposure are usual and habitual exposure. In this 
document, we will only use the terms chronic and long-term. 
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Table 1. Assessment of the acute exposure by selecting at random person-days 
(defined by person and day) from a food consumption database and matching of 
the consumed amounts of relevant foods to ad randomly drawn concentrations 
of the chemical of interest in that food, resulting in an overall exposure (in red) 
per person-day. These calculated exposures are input for the frequency 
distribution of acute exposure (Figure 1). 

Person Day Body 
weight  
(kg) 

Food 
consumed 

Amount 
consumed 
(g) 

Concentration 
(µg/kg) 

Exposure 
(µg/kg bw 
per day) 

1,234 1 65 Apple 500 0.5 0.004 
   Lettuce 500 0.3 0.0005 
   Orange 100 0 0             + 
      0.0045 
567 1 10 Mango 100 0.3 0.003 
   Endive 100 0.05 0.0005     + 
      0.0035 
6,250 2 45 - - - 0              + 
      0 
2 1 55 Pear 250 0.35 0.002 
   Carrot 350 1.0 0.006        

+ 
      0.008 
366 2 25 Lettuce 250 1.5 0.015 
   Pear 500 0 0              + 
      0.015 
Etc …       
 
The acute exposure using the approach described above can be 
estimated for levels of a covariable (e.g. age) and a cofactor (sex) using 
the implementation in MCRA. For more details, see MCRA reference 
manual (de Boer et al., 2015). The most common cofactor / covariable 
used in exposure assessments is age, since the exposure to adverse 
chemicals in food is often age-dependent. 

Figure 1. Example of a frequency distribution of positive daily intakes of an 
adverse chemical (acute). The zero exposures are quantified as a fraction and 
not plotted in this distribution. In the above example, 50% of the exposure 
estimates was positive. 
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Data requirements 
For an acute exposure assessment, at least one person-day per 
respondent is needed. Furthermore, concentration data of chemicals in 
individual foods (e.g. one apple, one orange) are needed to reflect the 
concentrations persons may be exposed to during a single eating 
moment. Because of this, concentration data from total diet studies 
cannot be used directly, since these data are based on mixed samples, 
and do therefore not reflect concentrations on single food items. 
 
Assumptions 

In a probabilistic Monte Carlo acute exposure assessment, no 
assumptions are made regarding the model itself (van Ooijen et al., 
2009). The model is a straightforward multiplication of consumption 
amounts of relevant foods as reported in the food consumption survey 
per day and per respondent, and concentrations analysed in these foods 
resulting in a distribution of daily exposure estimates (Table 1 and 
Figure 1). 
 
Uncertainties 
Uncertainty related to the probabilistic acute exposure approach, so-
called model uncertainty, is due to the number of times (i.e. iterations), 
a person-day is combined with concentration data to generate the 
frequency distribution (Table 1). In Monte Carlo methods a finite 
number of iterations (e.g. 100,000) is used to represent the collection of 
all possible combinations of individual consumption patterns and 
concentrations. The number of all possible combinations is typically very 
large, resulting in practice in a negligible model uncertainty. 
 

2.2 Chronic exposure assessment 
Chronic exposure covers average daily exposures over a longer period of 
time. More specific, if the chronic exposure is expected a priori to 
change with another individual-dependent factor, such as age, then the 
long-term exposure should be interpreted as the average exposure over 
a period of time in which this factor (like age) does not change 
substantially. In practice, if exposure is considered to be age-dependent, 
this means that long-term exposure models should not be used to 
estimate the average exposure for periods over which the exposure is 
changing to a substantial degree. If the exposure is however known to 
be stable over a longer period of time (e.g. during adulthood), a long-
term assessment covering this whole period can be performed to 
evaluate the chronic exposure over this period of individual consumers. 
 
To assess the chronic exposure via food, three models are currently 
used by RIVM and available in MCRA. These models are Observed 
Individual Means (OIM), LogisticNormal-Normal (LNN) and Model-Then-
Add (MTA)4. These models are addressed below. For an elaborate 
description, see the MCRA reference manual (de Boer et al., 2015). The 
data requirements for a chronic exposure are the same for all models, 

 
4 In MCRA, two other models are available to assess chronic intake, namely ISUF and BetaBinomial-Normal 
(BBN). These models are however no longer used in exposure assessments performed by RIVM: ISUF is 
outdated, and BBN gives usually results that are very similar to LNN in cases with no correlation between intake 
frequency and intake amount (section 2.2.2). If such a correlation exists, LNN is the better model. 
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and include at least two person-days5 per respondent, preferably non-
consecutive, in the food consumption database, for at least a part of the 
respondents. Furthermore, the concentrations used in a chronic 
assessment are mean levels of chemicals in relevant foods, since it is 
assumed that over a longer period of time any consumer will consume 
foods for which the contamination varies randomly according to the 
availability on the market. Preferably, the individual concentrations are 
available for estimating the mean concentration so that the uncertainty 
in the concentration data can be quantified in the exposure assessment 
(section 2.3). 
 

2.2.1 Observed Individual Means (OIM) 
What 
The Observed Individual Means (OIM) model is a simple, distribution-
free method to estimate long-term exposure, but is known to 
overestimate the upper tail of the exposure distribution (Goedhart et al., 
2012). This approach is currently used by the European Food Safety 
Authority (EFSA) to estimate the long-term exposure to environmental 
contaminants (e.g. (EFSA, 2015b)) and additives (e.g. (EFSA, 2015a)). 
In the OIM approach, the chronic exposure is calculated as follows: 

1. All relevant foods consumed on a person-day present in the food 
consumption database are multiplied with the mean 
concentration of a chemical in that food; 

2. Exposures per food are summed to obtain the overall exposure on 
that person-day and adjusted for individual body weight; 

3. To obtain the mean exposure per person, the exposure per 
person-day is averaged over the person-days of that person (in 
the Dutch food consumption surveys this is typically two days) 
resulting in a distribution of mean daily exposures per person 
(OIMs). The number of mean daily exposure levels equals the 
number of respondents present in the food consumption 
database. 

See Table 2 for an example how this works in practice. 
 
OIM does not allow the inclusion of covariables and –factors in the 
exposure assessment. 
 
Assumptions 

As with the probabilistic acute exposure assessment, no assumptions 
are made regarding the model itself. The model is just a simple 
multiplication of consumption amounts with mean concentrations of 
relevant foods, resulting a distribution of average exposures per person. 
 
Uncertainties 
The largest uncertainty of using OIM is equalling the distribution of 
mean exposures over the person-days per person to the ‘true’ long-term 
exposure distribution of a given population. Given the limited number of 
person-days present in a food consumption database per person and the 
variation in daily food consumption patterns within an individual, the 

 
5 In this context, a person-day is defined as one day of one person. For example, in the DNFCS-Young children 
(Ocké et al., 2008), food consumption data was collected on two days of 1,279 children, resulting in 
2,558 person-days. 
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Table 2. Assessment of the chronic exposure using the Observed Individual Mean (OIM) approach based on food consumption data of two 
person-days per person. For more details see text.  

Person Day Body 
weight  
(kg) 

Food 
consumed 

Amount 
consumed 
(g) 

Mean 
concentration 
(µg/kg) 

Exposure (µg/kg bw)1 

Exposure per 
food 
(Step 1) 

Total exposure 
on one person-
day 
(Step 2) 

Mean exposure 
over two 
person-days 
(OIM)  
(Step 3) 

1 1 65 Apple 500 0.5 0.0038   
   Lettuce 500 0.3 0.0023 0.0061  
1 2 65 Mango 100 0.3 0.0005   
   Endive 100 0.05 0.0001 0.0006 0.0034 
2 1 45 - - - 0 0  
2 2 45 Pear 250 0.35 0.0019   
   Lettuce 350 0.3 0.0023 0.0042 0.0021 
3 1 25 Lettuce 250 0.3 0.003   
   Orange 500 0 0 0.003  
3 2 25 Endive 150 0.05 0.0003   
   Orange 250 0 0   
   Pear 300 0.35 0.0042 0.0045 0.0038 
4 1 14 Mango 500 0.3 0.0107   
   Endive 200 0.05 0.0007   
   Orange 270 0 0 0.0114  
4 2 14 Apple 225 0.5 0.0080   
   Kiwi 950 1.0 0.0679   
   Orange 265 0 0 0.0759 0.0437 
Etc.         

1 For an explanation of the steps, see text.
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Figure 2. The effect of the within-individual variation on long-term (usual) 
exposure distributions. This figure is obtained from the National Cancer 
Institute. 
 
distribution of mean exposures over individuals obtained with OIM will 
often be too wide in comparison to distributions of ‘true’ long term 
exposures (compare the green (‘true’ intake) line with the blue line in 
Figure 2) (Goedhart et al., 2012). For example, the mean exposure 
assessed over just two days is more variable than the mean exposure 
assessed over more (up to hundreds) days that constitute a longer 
period of time. This results in exposures that are about right in the 
middle of the exposure distribution, but are far too high in the upper tail 
of the exposure distribution and too low in the lower tail of the exposure 
distribution). 
 

2.2.2 LogisticNormal-Normal (LNN) model 
What 
Exposure to chemicals via food varies between individuals and between 
days of the same individual (within individuals). Statistical models that 
separate these two sources of variation, and subsequently remove the 
within individual variation from the long-term exposure distribution, 
have proven useful for the estimation of the long term intake (Dodd et 
al., 2006; Hoffmann et al., 2002; Slob, 1993). To assess the long-term 
exposure, variation within individuals is not relevant by definition (the 
long-term exposure distribution is the variation between individuals, not 
within individuals), and removal of this source of variation results 
therefore in a more accurate estimation of the long-term exposure.  
 
LNN is an example of such a statistical model, which is basically very 
similar to a model published by the National Cancer Institute in the US, 
known as the NCI model (Tooze et al., 2006). Using LNN, removal of the 
variation within individuals from the exposure distribution is achieved in 
the following way. LNN models exposure frequencies and exposure 
amounts separately, followed by an integration step. By modelling 
intake frequencies, the model accounts for the fact that for some 
compounds the intake does not take place every day, but only on a 
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fraction of the days6 . For the modelling of the positive exposure 
amounts, LNN first transforms the positive daily exposure distribution 
into a more symmetric distribution7. Then a normal distribution8 is fitted 
to estimate the between-person variation, while removing the within 
person variation. The resulting between-person normal distribution is 
then back-transformed and combined with the exposure frequency 
distribution to obtain the chronic dietary exposure distribution. This is 
achieved by sampling a large number of times from both the exposure 
frequency distribution and the back-transformed positive exposure 
distribution (Monte Carlo integration). 
 
LNN exists in two varieties: with or without assuming and modelling 
correlation between the exposure frequency and exposure amount. 
Normally, the variety without correlation is used (sometimes named 
LNN0), which is the simpler model. MCRA gives the possibility to check 
how large the correlation is by fitting the full LNN model with 
correlation, so that the most optimal variety of the model can be 
selected. Furthermore, LNN provides two types of estimates of the long-
term exposure distribution: model-based or model-assisted (Goedhart et 
al., 2012)9. In practice, RIVM normally uses the model-based estimates 
(see also section 2.2.3). 
 
Using LNN, the long-term exposure can be estimated for specified levels 
of a covariable (e.g. age) and / or cofactor (sex). As with acute 
exposure, also for long-term exposure the most common cofactor / 
covariable is age. An example of this is the long-term exposure 
assessment of dioxins in children aged 2 to 6 years (Boon et al, 2014a) 
or cadmium in persons aged 2 to 69 years (Sprong & Boon, 2015). 
 
Assumptions 
LNN assumes that, after a suitable transformation, exposure amounts 
follow a normal distribution. If this condition is not met at least 
approximately, LNN should not be used to assess long-term exposure. 
As proposed by de Boer et al. (2009), normality can be checked by 
using the normal quantile–quantile (q–q) plot, a graphical display of 
observed vs. theoretical residuals. Figure 3 shows an example of a 
logarithmically transformed positive daily exposure distribution that is 
acceptable (red line follows the dark line; Figure 3A) and one that is not 
(Figure 3B). When the fit is not acceptable, LNN should not be used to 
avoid erroneous long-term exposure estimates. For example, use of LNN 
in case B of Figure 3 would have resulted in an overestimation of the 
exposure in the right tail of the exposure distribution.  

 
6 For example, if an individual reports consumption of beer on all person-days which is contaminated with a 
certain chemical, the model, based on the information on beer consumption in the total food consumption 
database, estimates the probability that this person will consume beer on all days of a longer period or only a 
fraction. If in the whole database the number of person-days on which beer consumption is recorded is low, this 
probability will be estimated to be low. 
7 Transformation can be performed with either a logarithmic or power transformation (Goedhart et al., 2012). 
8 By fitting a variance components model using the residual maximum likelihood (REML) method.  
9 Model-assisted estimates of the long-term exposure distribution are back-transformed values from a shrunken 
version of the transformed OIM distribution, where the shrinkage factor is based on the variance components 
estimated using the linear mixed model for amounts at the transformed scale. For individuals with no observed 
exposure (OIM=0), no model-assisted estimate of long-term exposure can be made and a model-based 
replacement is used 



RIVM Letter report 2015-0191 

 Page 18 of 41 

 

Figure 3. Histogram together with best fitting normal distribution (left panel) and 
corresponding q-q plot (right panel). A: acceptable fit; B: unacceptable fit. The 
lines 1 and 2 correspond with the 97.5th and 99th percentiles of exposure, 
respectively. 
 
Uncertainties 

The main uncertainty of using LNN is that the true long-term distribution 
may deviate from the assumed normal distribution. This may be 
especially true in the tails (both lower and upper) of the distribution. For 
food safety purposes, the upper tail is most crucial. The 97.5th and 99th 
percentiles of exposure correspond with theoretical residues of 2 and 2.3 
in the q-q plot (Figure 3). In the example, the q-q plot with an 
acceptable fit (Figure 3A) shows that these residuals are still reasonably 
approximated by a normal distribution. In cases where the fit is not 
acceptable (such as in Figure 3B), very broad normal distributions may 
be fitted leading to a large overestimation of the upper tail of the 
exposure distribution. The acceptance of normality based on the q-q plot 
may introduce an additional uncertainty, since it is partly based on 
expert judgement. To reduce the probability of subjectivity, the q-q 
plot(s) on which the expert judgement is based should always be 
discussed among colleague risk assessors. Furthermore, the plots should 
always be published, for example as an annex to the publication, to 
allow other experts to judge the appropriateness of the decision. For 
examples of this, see Boon et al. (2014a,b) and Sprong & Boon (2015). 
 

2.2.3 Model-Then-Add (MTA) 
Model-Then-Add (MTA) was developed to address those long-term 
exposure assessments where the daily positive exposure distribution 
after transformation is not normally distributed. Non-normality is often  
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Figure 4. Histogram together with best fitting normal distribution (left panel) and 
corresponding q-q plot (right panel) for the long-term exposure to patulin. 
Figure is obtained from de Boer et al. (2009). 
 
due to the contribution of individual foods or food groups to the total 
exposure that combined result in a multimodal distribution (de Boer et 
al., 2009). An example of such a distribution was the long-term 
exposure to patulin via food due to the consumption of multiple distinct 
foods, including apple juice, apple sauce and other fruit juices (Figure 4) 
(de Boer et al., 2009). The same was shown for the exposure 
distribution to smoke flavours, which was trimodal due to the intake via 
three distinct food groups: 1) ‘sausage, frankfurther’ ‘sausage, smoked 
cooked’ and ‘soup, pea’; 2) ‘bacon’, ‘ham’, ‘herbs’ and ‘sausage, 
luncheon meat’, and 3) all other foods (van der Voet et al., 2014). 
Exposure to patulin and smoke flavours via each of these foods or food 
groups was shown to be approximately normal (except for the ‘all other 
foods’ group for smoke flavours). 
 
What 
In MTA, a statistical model, such as LNN, or OIM is applied to assess the 
long-term exposure via subsets of the diet (single foods or food groups), 
and then the resulting long-term intake distribution per food or food 
group are added to obtain the overall intake distribution. The advantage 
of this approach is that the exposure via separate foods or food groups 
may show a better fit to a normal distribution than the exposure via all 
foods together.In the add step of MTA, the modelled exposures per food 
or food group are added to obtain a total exposure intake distribution. 
There are two approaches for this: distribution-based or individual-
based. With the use of the distribution-based approach, exposures per 
food or food group are independently sampled from the separate 
exposure distributions and subsequently added. This approach ignores 
possible correlations between the foods or food groups consumed, and 
may therefore result in erroneous estimates of the intake if such 
dependencies exist. Using the individual-based approach, some aspects 
of this correlation are included resulting in an improved estimate of the 
exposure (Goedhart et al., 2012). The distribution-based adding 
approach uses the model-based exposure estimates from LNN and the 
individual-based adding approach the model-assisted exposure 
estimates from LNN (Goedhart et al., 2012). 
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The exposure assessment only benefits from MTA when at least one 
subset of the diet can be identified for which the exposure can be 
modelled using a statistical model. If no such food (group) can be 
identified, MTA has no added value to OIM. Inclusion of covariables or 
cofactors is not possible in the current version of MTA in MCRA. 
 
Assumptions 
The major assumption of MTA is that modelling of the exposure via the 
consumption of subsets of the diet and adding these to obtain the 
overall exposure results in a better estimation of the exposure than 
estimating the exposure via all foods together. A first case study into 
the intake of smoke flavours demonstrated that MTA may result in 
lower, more refined estimates of long-term exposure in the right tail of 
the exposure distribution, reflecting high exposure, compared to using 
either OIM or LNN (van der Voet et al., 2014). Also, simulation studies 
showed that MTA performs very well and gives good results for the 
upper percentiles (Goedhart et al., 2012; Slob et al., 2010). 
 
Because MTA uses OIM and LNN to model the exposure per food 
(group), the same assumptions apply as described for these two models 
(section 2.2.1 and 2.2.1, respectively). 
 
Uncertainties 
Because MTA is based on OIM and LLN, the same uncertainties apply as 
described for these two models (section 2.2.1 and 2.2.2, respectively). 
An additional uncertainty is related to the approach chosen in the add 
step: with or without taking correlations in food consumption into 
account. Slob et al. (2010) showed an example where performing the 
addition step without considering possible correlations in food 
consumption performed well, even if correlations in consumptions of 
foods were present. To test this assumption, the add step of MTA should 
be performed using both approaches to check if results differ 
significantly and if so, if this would have a significant impact on the risk 
management decision. In case this is true, the cause of the difference 
should be examined and the best approach should be taken. 
 

2.3 Model input uncertainty 
In the previous two sections, we described several probabilistic models 
to assess the acute and chronic exposure to chemicals via food. The use 
of these models is subjected to uncertainties. Apart from model 
uncertainty, as addressed above per model, the uncertainty is also 
related to the input data used in these assessments. These input data 
include food consumption data and concentrations of the relevant 
chemicals in food. Dependent on the type of chemical additional 
information may be needed about processing or unit variability. 
Processing information is needed to adjust chemical concentrations 
analysed in raw foods (e.g. oranges with peel, lettuce with outer leaves) 
to those in foods as consumed (e.g. oranges without peel, orange juice). 
Unit variability is needed to derive concentrations in individual units 
(e.g. one apple) based on average composite sample (e.g. 15 apples) 
concentrations (FAO/WHO, 2004). Unit variability is relevant for acute 
exposure. These inputs are not exhaustive, but are those most 
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commonly used in exposure assessments. The most common sources of 
uncertainty related to these input data are: 

• Uncertainty due to the size of the food consumption and 
concentration database  

• Biased sampling of food products; 
• Concentrations reported below a certain limit value; 
• Under- or overreporting of the consumption of foods; 
• Combining of foods consumed to those analysed; 
• Processing factors;  
• Unit variability factors, including number of units in a composite 

sample and unit weights; 
 
The first uncertainty listed above can be quantified with the use of the 
bootstrap approach (van Ooijen et al., 2009). With this technique 
multiple input databases are created from the original input databases 
with replacement and used to assess the exposure, resulting in a 95% 
confidence interval10 around the exposure outcomes. See for an example 
of such outputs Tables 3-1 and 3-2 in Boon et al. (2014a). The more 
limited the size of the food consumption and concentration data, the 
broader the confidence interval will be, and subsequently, the larger the 
uncertainty around the estimated exposure percentiles. Obviously, a 
broad uncertainty interval is not so serious if the whole interval is far 
above or far below the relevant health-based guidance value. Estimates 
in the neighbourhood of such guidance value will benefit most from a 
reduced uncertainty. The bootstrap approach can also be used to assess 
the uncertainty due to the size of the food consumption or concentration 
data, separately. For a more elaborate discussion related to uncertainty 
about food consumption and concentration data, see section 3. 
 
Apart from bootstrapping, uncertainty can also be quantified using 
parametric methods. With these methods, the uncertainty in processing 
factors and concentration data can be modelled, resulting also in 
confidence intervals around the exposure estimates. For more details, 
see van der Voet, et al. (2015) and Kennedy et al. (2015b). 
 
All other sources of uncertainty listed above can either be assessed via 
sensitivity analyses or qualitatively based on expert judgement as 
recommended by EFSA (2006). In sensitivity analyses, different values 
of an input variable are used to study how this affects the exposure 
outcome. Sensitivity analyses are often used to address the uncertainty 
related to the concentrations to be assigned to samples reported to 
contain the chemical at a concentration below a certain limit value, such 
as the limit of quantification (LOQ), detection (LOD) or reporting 
(LOR)11. For an example of this, see Appendix E in Boon et al. (2009). 
The larger the difference in exposure due to different values of an input 
variable, the more uncertain the exposure estimate will be. Whether this 

 
10 Means e.g. for the P99 that there is a 95% probability that the real P99 of exposure level lies within this 
interval, and there is therefore a 5% probability that the real P99 is outside this interval: 2.5% probability that 
the real P99 is higher than the upper level of the confidence limit and 2.5% probability that the real P99 is 
lower than the lower limit of the confidence interval. 
11 Note that in MCRA no distinction is made between LOD, LOQ and LOR. In the literature on performance 
characteristics of analytical methods important distinctions are made between these concepts in the context of 
analytical method validation. However, for exposure modelling it is only important that these values have been 
used as a censoring limit for reporting quantitative outcomes by the data providers. 
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is acceptable or not will, again, depend on the relation between the 
exposure estimate and the relevant health-based guidance value, as 
described above. If not acceptable, additional input data are needed to 
improve the exposure estimation or it may be decided that an intake 
assessment is not feasible (see section 3). Examples of a qualitative 
uncertainty analysis can be found in several exposure publications (Boon 
et al., 2014a; Boon et al., 2015; Sprong & Boon, 2015). 
 
For a more detailed description of the sources of uncertainty (and 
others) within exposure assessments, see van Ooijen et al. (2009). 
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3 Which model to use  

In this section, we address which model is most appropriate to use to 
assess the exposure as close to the true intake as possible. Since there 
is only one model available to assess the acute exposure for this 
purpose and moreover this model makes few assumptions, this section 
will primarily deal with the models that are available for long-term 
exposure assessments. 
 
Assessing long-term exposure to chemicals in food is complex, since the 
reality of the true long-term intake is inherently complex. Many factors 
determine this long-term intake. To assess this type of exposure, 
models have been developed to capture this reality in the best way 
possible. In practice, these models approach reality by making 
assumptions about this reality. Therefore, more complex models can be 
expected to give a better approximation of the true intake, if the 
assumptions are valid. But, obviously, complex models have also more 
opportunities that assumptions are not valid, so their results can also be 
as far away from the true intake or even further if assumptions are not 
correct. For a schematic representation of this, without implying 
quantitative exactness, see Figure 5. In this sketch the true intake can 
be found in the upper right corner. Model results can deviate from the 
true intake in two directions: more to the bottom if the complexity of 
the real world is not incorporated in the model, and more to the left if 
model assumptions are not valid. 
 
OIM is a model with few assumptions, and can therefore often be 
assumed valid for the estimation of the mean exposure over the survey  
 

Figure 5. Schematic representation of the long-term models in relation to the 
true intake depending on the validity of the assumptions and their complexity. 
Complexity and validity cannot be quantified in practice, so this graph is just a 
qualitative illustration of the concepts.  

Increasing validity of assumptions

In
cr

ea
si

ng
co

m
pl

ex
it
y

OIM

True intake

LNN

MTA



RIVM Letter report 2015-0191 

 Page 24 of 41 

 

 
Figure 6. Flow diagram of a long-term exposure assessment to adverse 
substances via food with the aim to assess the exposure as close to the real 
intake as possible. LNN = Logisticnormal-normal; MTA = Model-Then-Add; OIM 
= Observed individual means. For more details, see text. 
 
days (section 2.2.1). However, because of this the model is very simple 
and tail estimates of the exposure distribution will inherently be far from 
the true long-term intake tail percentiles (Figure 2). LNN is a more 
complex model, whose output will potentially be closer to the true intake 
than the OIM estimate of exposure. However, how close to the true 
intake will depend on the validity of the assumptions (especially the 
assumption that the exposure amounts follow approximately a normal 
distribution, section 2.2.2). If the assumptions are not valid, the 
exposure estimate can be as far from the true intake as the OIM 
estimate, or maybe even further. MTA is an even more complex model 
than LNN and can potentially result in exposure estimates that are 
closer to the true intake than LNN (Figure 5). However, also the use of 
this model may result in an exposure estimate that is either close or far 
from the true intake, depending on the validity of the assumptions. 
 
Based on the analysis above, LLN is the first model of choice to assess 
the long-term exposure (Figure 6). This model, if assumptions are valid, 
results in exposure estimates that are potentially close to the true 
intake. If however, the assumption of normality is not met 
(section 2.2.2) and the exposure estimates show a non-normal 
distribution, the more complex MTA model could be used to refine the 
exposure estimate. If however, no distinct food or food group can be 
distinguished for which the exposure distribution shows a normal 
distribution resulting in an acceptable estimation of the long-term 
exposure, OIM can be selected as a fall-back option (Figure 6). OIM is 
not based on model assumptions and can therefore always be used to 
assess the long-term exposure, given the input data allow for this (see 
below). However, because of its assumptions, it overestimates the 
intake in the upper tail of the exposure distribution (section 2.2.1), and 
should therefore only be used if the other two models are not suitable. 
The model selection should always be motivated in the reporting so that 
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it is clear why a certain model has been applied and that this choice can 
be checked. 
 
Please note that MTA is not recommended as the first choice of model to 
assess the long-term exposure, although this model potentially results in 
the optimal exposure estimate (Figure 5). MTA is a more labour 
intensive approach and should therefore only be used if the validity of 
the assumptions of LNN is not met. Furthermore, complex models 
should only be used if they result in significantly improved estimates of 
the exposure compared to less complex models. We estimate that this is 
only the case when the assumptions underlying LNN are not met 
(section 2.2.2). 
 
Choice of model in relation to available food consumption and 
concentration data 
In the recommendations of the use of models described above to assess 
the exposure as close to the real intake as possible, it is assumed that 
the input data are of good quality and the use of the models is not 
restricted by this. However, this will often not reflect reality. In practice, 
the input data may be limited and / or of poor quality. Below we will 
address this issue by discussing the use of the models in relation to the 
availability of food consumption and concentration data as the two most 
important input sources for an exposure assessment to a chemical via 
food. 
 
For the food consumption, the Dutch food consumption data from the 
DNFCS are used. These data are based on two days of food recording 
per person, as recommended by EFSA (2014b). Two days, in 
combination with statistical modelling, is the minimum number of days 
that can be used to estimate the long-term intake distribution of a 
population (Dodd et al., 2006). According to Bakker et al. (2009), three 
days would be better. However, it is wiser to use available budgets to 
obtain food consumption data of more persons on two days than less on 
three days (Slob et al., 2006). For acute exposure modelling, one food 
recording day per person would be sufficient to estimate the exposure.  
 
The food consumption data from the DNFCS are in general well suitable 
to model the long-term exposure to chemicals using the different 
models, except when dealing with those that only occur in very rarely 
consumed foods (Bakker et al., 2009)12. A recent example of this was 
the estimation of the long-term intake of nitrite via the consumption of 
salmon sausage: on only 7 out of 7638 person-days consumption of a 
relevant food was recorded (Front Office Food and Consumer Product 
Safety, 2014). In those cases, an estimation of the long-term intake 
within a population with any of the three models (Figure 5) is not 
feasible. In the example of salmon sausage, a deterministic approach 
was therefore used based on a conservative estimate of the daily 
consumption of salmon sausage in the Netherlands. 

 
12 Simulation studies showed that this is true for foods with a consumption frequency (= fraction of days that 
the food is consumed) lower than 0.0065 (=0.65%, which corresponds to about 20 and 50 person-days in 
DNFCS-Young children (Ocké et al., 2008) and DNFCS 2007-2010 (van Rossum et al., 2011), respectively) 
(Slob, 2006). 
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In addition to food consumption data, concentration data for the 
relevant foods need also to be suitable for a reliable exposure 
assessment. Two types of concentration data can be distinguished which 
are commonly used in exposure assessments: monitoring data and 
concentration data of total diet studies (TDS). Monitoring data are 
generated by national authorities and are obtained to ensure compliance 
with maximum limits or indicative values as set in legislation. TDS are 
mainly performed to assess the long-term exposure to chemicals via 
food among the general population. 
 
As discussed in Sprong & Boon (2013), the concentration data of 
chemicals in food should, in the optimal situation, meet at least the 
following criteria for use in probabilistic exposure assessments, both 
acute and chronic: 

1. Concentrations of relevant chemicals are determined in individual 
foods as consumed including all possible processing options; 

2. The sample size is large enough; 
3. Samples are representative for all food products consumed in the 

Netherlands, which may contain the chemical of interest; 
4. True zero concentrations are known for each chemical-food 

combination; 
5. Analyses are performed with analytical methods that analyse at 

low LOQs; 
In practice, the available concentration will very rarely, if ever, meet all 
these criteria (Sprong & Boon, 2013). For example, monitoring data are 
often analysed in raw products (e.g. wheat, raw endive, orange with 
peel) instead of foods consumed and targeted at those most likely to 
contain the chemical at concentrations above a legal limit value. TDS 
concentration data are analysed in mixed samples of comparable foods 
regarding their possible contamination, making their use for acute 
exposure assessments, without (additional) assumptions about the 
distribution of the chemical over the individual foods within the mixed 
sample, not appropriate. For an elaborate description of the 
characteristics and (dis)advantages of these two types of concentration 
data in relation to their use in exposure assessments, see Sprong & 
Boon (2013). 
 
It is difficult to set criteria for the reliable use of concentration data in a 
probabilistic exposure assessment. This will depend on a number of 
factors, of which the most important are the percentile of exposure to be 
estimated, type of foods included in the assessment, LOQ in relation to 
the quantified levels, type of assessment (acute vs. chronic), and 
variability in concentrations within a food: 

• The percentile of exposure will determine the minimal number 
of exposure estimates that are needed to describe the exposure 
distribution within a population. In exposure assessments, this 
number is dependent on a combination of consumption and 
concentration values of many foods. A standard result, based on 
a non-parametric method, is that at least 59 and 298 exposure 
estimates are needed to estimate the P95 and P99 of an 
exposure distribution, respectively (EFSA, 2011). These numbers 
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have been used by EFSA to calculate P95 and P99 food 
consumption statistics from the Comprehensive13. 

• The type of food analysed is relevant in relation to its 
contribution to the overall exposure to the chemical. If limited 
data or poor quality data are available for a food that does not 
contribute significantly to the exposure (e.g. rarely eaten foods, 
foods with very low chemical concentrations), they may still be 
used in the exposure assessment. If it however concerns a major 
contributor, it should be examined if the quality of the data can 
be improved (see below). 

• The LOQ of the analytical method may result in a conclusion that 
the exposure estimate is very uncertain if the number of samples 
with an analysed level below the LOQ is large and / or the 
quantified levels are close to the LOQ. In those cases, the 
exposure estimates may largely depend on the levels assigned to 
the non-quantified samples. An example of this is the use of 
screening methods with high LORs to analyse multiple chemicals 
(Boon et al., 2009). 

• The type of assessment may also be an important factor. In an 
acute exposure assessment, the whole range of possible 
concentrations per food that people may encounter in real life 
needs to be considered, whereas for a chronic exposure 
assessment a mean concentration per food suffices. This 
difference may result in other conclusions about the suitability of 
the concentration data available.  

• When the variability in concentration values within a food is low, 
the sample size needed to obtain representative concentrations 
of that food will be smaller than when the variation is large. 

 
Sample size is an important aspect of concentration data. However, a 
clear indication of an adequate (= minimum) number of concentrations 
needed to obtain a reliable exposure estimate is hard (if not impossible) 
to give. In the literature, no clear guidance regarding sample size is 
available. For example, the EFSA guidance on probabilistic modelling 
only states that a minimum of two samples is needed to model the 
concentration per food parametrically via a lognormal distribution (EFSA, 
2012). This number is however based on the minimal data requirements 
to fit a lognormal distribution and has no relation to data quality. In 
TDS, a sample size of 12 per food (group) is recommended (Ruprich, 
2013). However, this number may not always be sufficient to obtain 
reliable concentrations per food (group) (Sprong et al., 2015).  
 
Sample size should therefore be addressed per chemical and food 
analysed. When the sample size is judged to be too small, there are a 
number of options to increase it. These options are listed here in 
random order: 

1. Obtaining additional data from the literature; 
2. Grouping of foods with comparable characteristics; 
3. Parametric modelling of concentration data. 
4. Additional analytical measurement in foods 

 
13 www.efsa.europa.eu/en/datexfoodcdb/datexfooddb.htm 
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Which of these options (one or more) should be chosen depends on the 
chemical. For example, if concentrations in certain foods for a specific 
chemical are not expected to vary between European countries, 
concentration data as published by EFSA may be used to increase 
sample size or to fill data gaps. This was for example done in a study 
into the exposure to lead in the Netherlands, in which (reliable) Dutch 
data on lead in wheat, rice and eggs were not available and therefore 
obtained from EFSA (Boon et al., 2012). Grouping of foods may be 
relevant when foods can be identified that are expected to contain 
comparable levels of the chemical of interest. This was for example done 
to assess the dietary exposure to lead in five European countries (Boon 
et al., 2014b). Parametric modelling may be useful when the observed 
concentrations per food are not expected to represent the whole range 
of possible concentrations to which a population may be exposed. Using 
parametric models based on the observed data, concentrations above, 
between and below the observed values per food can be modelled (van 
der Voet et al, 2015). This approach is recommended in the acute 
pessimistic model run of the EFSA guidance on probabilistic modelling 
and the refined chronic exposure assessment (EFSA, 2012). As stated 
above, to use this option at least two quantifiable concentrations per 
analysed food are needed and the use of a lognormal distribution is 
recommended (EFSA, 2012). In a recent exposure assessment of 
methylmercury (MeHg) intake in children ages 2 to 15 years in the 
Netherlands this approach was used to describe the concentration data 
of MeHg in different foods (Front Office Food and Consumer Product 
Safety, 2015). Another option is to generate additional concentrations in 
foods for which no (reliable) data are available and which are deemed 
important for the exposure estimate. Examples of this are analyses of 
cadmium in peanut butter (Sprong & Boon, 2015), and flame retardants 
in fruit and vegetables (Boon et al., in prep.). In practice, this last 
option may not be used often because of the costs involved. 
 
Obtaining additional data from the literature or from additional 
measurements in foods can also be used to improve the quality of 
concentration data that do not cover all relevant foods. The use of 
concentration data known to be targeted to foods within a food group 
expected to be highly contaminated (e.g. when visible from the outside 
of the food in case of mycotoxins or obtained from a suspect country in 
the case of pesticide residues) in an exposure assessment should be 
avoided as much as possible. If this results in low sampling sizes or 
missing data for certain foods, the options described above can be used 
to address this. 
 
Based on the analysis above, the minimum requirements of the 
concentration data used in an exposure assessment are: 

• Coverage, possibly via mapping to foods consumed, of all 
relevant foods that may contain the chemical,  

• It is known how the data are obtained (monitoring, targeted 
sampling, TDS, etc.), 

• Analysed with a validated analytical method.  
• Sample size should be adequate 

It is impossible to state these requirements in a general quantitative 
form. Rather, they should be checked case by case, and they must be 
considered in the context of the risk assessment question. For example, 
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the sample size for a certain food may be very low, but this is less 
important if the contributions of other foods are the main risk drivers or 
if exposure estimates are far below toxicologically relevant levels even 
when considering sampling uncertainty. Dependent on the chemical 
addressed, additional minimum requirements may also be needed 
before the concentration data are suitable for use in an exposure 
assessment. 
 
If the quality of the concentration data cannot be improved as indicated 
above or only partly, it has to be discussed whether the exposure 
models (section 2) are nevertheless the best way forward to estimate 
the intake as close to the true intake as possible. This discussion 
requires a comparison with alternative options, such as the use of a 
deterministic approach to obtain an indication of the possible exposure. 
A conclusion may also be that no reliable exposure assessment can be 
performed. Figure 7 shows an overview of the different steps regarding 
the evaluation of the available concentration data for use in exposure 
assessments. 
 
Overall, probabilistic exposure assessments will always be performed in 
situations of limitations regarding concentration data which can either be 
major or minor. These limitations can be reduced, if relevant, using the 
above options, but will never be completely removed. A probabilistic 
exposure assessment should therefore always include an uncertainty 
analysis regarding the concentration data used (as well as other input 
variables), as recommended by EFSA (2006, 2012) (section 2.3). If the 
data are of too poor quality, but a probabilistic exposure assessment is 
performed despite this, it should always be argued why the exposure 
assessment is performed (e.g. obtain insight in possible health risks or 
foods contributing potentially largely to the exposure as input for 
generation of concentration data), and the limitations of the exposure 
output should be addressed. Examples of such assessments are the 
preliminary assessment of the exposure to 3-monochloropropane-1,2-
diol (3-MCPD) via food (EFSA, 2013), and the one to mycotoxins in 
children aged 2 to 6 in the Netherlands (Boon et al., 2009). In those 
cases, conclusions regarding the exposure estimates and possible health 
risks should mirror these uncertainties. For example, in the case of the 
exposure assessment to mycotoxins, it was recognised that the 
concentration data were (partly) targeted (Boon et al., 2009). Exposures 
below the relevant health-based guidance values were therefore judged 
to indicate negligible health risk. However, for exposures above the 
guidance values no conclusion was possible about possible health risks 
due to the very likely overestimation of the exposure. In those cases, it 
was concluded that ‘Determination of health risk is not feasible’ (Boon et 
al., 2009).
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Figure 7. Flow diagram of concentration data to be used in probabilistic exposure assessments. 1Monitoring programs, and total diet studies 
(TDS) using assumptions regarding distribution of concentration data over individual foods within TDS sample;2 Refers to minimum requirements 
met (p 28); 3 See text for details; 4 Monitoring programs and TDS.
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4 Additional model functionalities 

In this document, we have focussed on the most commonly used 
functionalities available within MCRA to assess the acute and chronic 
exposure assessment. 
 
The MCRA software is continuously being updated, including the 
implementation of user wishes to improve its use, but also new 
functionalities, like the implementation of MTA in 2013 (van der Voet et 
al, 2014). Some of the other functionalities / options are described 
shortly below. 
 

4.1 Optimistic and pessimistic exposure assessment 
In 2012, the EFSA guidance on the use of the probabilistic methodology 
for modelling dietary exposure to pesticide residues was released (EFSA, 
2012). In this guidance, two model runs are proposed, an optimistic and 
a pessimistic model run for both acute and chronic exposure 
assessments. In the optimistic model run, the major uncertainties of the 
assessments are treated using assumptions that are expected to result 
in lower estimates of exposure, whereas in the pessimistic model run 
these uncertainties are treated in such a way that it is expected to result 
in overestimates of exposure. This provides the risk manager a range for 
the true exposure and a tool for decision making. When in the optimistic 
model run the exposure estimate exceeds the health-based guidance 
value14, the true exposure will be higher and risk reduction measures 
should be taken. In case the pessimistic model run results is below the 
health-based guidance value, the risk manager can be confident that the 
true exposure will be even lower and no risk reduction measures are 
needed. Any other outcome needs further investigation, e.g. by refining 
the exposure assessment. 
 
In MCRA, the settings needed to assess the optimistic and pessimistic 
exposure to chemicals have been implemented. Via the calculation 
options ‘EFSA Guidance Optimistic’ and ‘EFSA Guidance Pessimistic’ the 
user can very easily select all the correct settings belonging to the two 
calculation scenarios. These options are available for the assessment of 
the exposure to both single and multiple (see section 4.2) chemicals. 
This implementation was performed within the EU project ACROPOLIS 
(Boon et al, 2015; van der Voet et al., 2015). 
 

4.2 Cumulative exposure assessment 
For some chemicals, sharing the same toxicological effects, it may be 
relevant to assess the exposure simultaneously instead of chemical by 
chemical. These types of assessments can be performed with MCRA 
using the relative potency approach as described in EFSA (2012). 
Examples of such assessment are the exposure to groups of pesticides, 
including organophosphates and carbamates (Boon et al., 2008, 2009), 
and pesticides of the triazole group (Boon et al., 2015). The acute and 

 
14 For example, the acceptable or tolerable daily intake (ADI, TDI) for chronic exposure and the acute reference 
dose (ARfD) for acute exposure. 
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chronic models can be used to assess cumulative exposure. This 
implementation was also performed within the EU project ACROPOLIS 
(van der Voet et al., 2015). The H2020 project EuroMix will extend upon 
the model developed in this EU project. 
 

4.3 Aggregate exposure assessment 
Within MCRA there is the possibility to assess the exposure to chemicals 
via dietary and non-dietary routes, such as air or skin, which was also 
implemented as part of the EU project ACROPOLIS (Kennedy et al., 
2015a). In this implementation, the dietary exposure is calculated as 
described in section 2. The exposure via non-dietary routes needs to 
calculated outside MCRA and then uploaded onto the program. MCRA 
will then combine the exposure via food with that of the non-dietary 
sources to arrive at a total exposure. The linking of exposure via both 
sources (dietary and non-dietary) can be performed by matching 
individuals based on their characteristics, such as age and sex, or 
randomly. 
 
This implementation of aggregate exposure in MCRA is a first prototype 
of how such an assessment can be performed using probabilistic 
techniques (van Klaveren et al., 2015). The H2020 project EuroMix will 
add on to these fundaments. 
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5 Conclusion 

This document describes the probabilistic models available to assess the 
acute and chronic exposure to chemicals via food as close to the true 
intake as possible in MCRA and which have been used in the last two 
years by the RIVM in scientific papers, (letter) reports and in 
assessments of the Front Office Food and Consumer Product Safety.  
 
When the aim is to estimate the exposure as close to the true intake as 
possible, probabilistic models should be used. We recommend the use of 
LNN, followed by MTA if needed (Figure 6), for a long-term exposure 
assessment. If the use of MTA is also not feasible due to violation of its 
underlying assumptions, OIM can be used, realising that it 
overestimates the intake in the upper tail of the exposure distribution. 
The model selection should always be motivated in the reporting so that 
it is clear why a certain model has been applied and that this choice can 
be checked. For an acute exposure assessment, only one basic model is 
available to assess the exposure as close to the true intake as possible, 
the probabilistic Monte Carlo approach. 
 
If these models are however used as part of a risk assessment (start 
simple and conservative, and only proceed to more advanced, refined 
approaches if a health risk cannot be ruled out), the choice of models 
may be different than described in this document. In that case, 
deterministic models will often be chosen in the first tier (e.g. PRIMo for 
the acute or chronic exposure to pesticide residues via food (EFSA, 
2007)), and the first probabilistic model of choice to assess long-term 
exposure may be OIM instead of LNN. The reason for this is that these 
options are less labour intensive.  
 
Use of all models addressed in this document is data dependent. It 
should therefore always be examined if the data allow the use of the 
models. For food consumption data, it is assessed that the data of the 
Dutch national food consumption surveys mostly allow their use, except 
for very rarely consumed foods. For concentration data this is less clear, 
and will depend on a case-by-case judgement of the concentration data 
available and foods involved. Furthermore, for both acute and chronic 
models, many decisions regarding submodelling aspects will determine 
the ‘precision’ of the exposure estimate. For example, how to match 
foods-as-eaten to those analysed, and whether or not to model 
processing factors, unit variability, and concentrations below LOQ, LOD 
and / or LOR. 
 
Overall, the models described in the document represent the current 
state of art regarding exposure modelling to adverse chemicals via food, 
and allow in many cases for the most realistic exposure estimates 
currently possible.  
  



RIVM Letter report 2015-0191 

Page 35 of 41 

  



RIVM Letter report 2015-0191 

 Page 36 of 41 

 

Acknowledgements 

The authors would like to thank Corinne Sprong and Jan Dirk te 
Biesebeek of the RIVM, and Jacqueline Castenmiller, Rob Theelen, Dirk 
van Aken and Marca Schrap of the NVWA-BuRO for their valuable 
comments on earlier versions of this document.  



RIVM Letter report 2015-0191 

Page 37 of 41 

  



RIVM Letter report 2015-0191 

 Page 38 of 41 

 

References 

Bakker MI, Fransen HP, Ocké MC, Slob W (2009). Evaluation of the 
Dutch National Food Consumption Survey with respect to dietary 
exposure assessment of chemical substances. RIVM report 320128001. 
National Institute for Public Health and the Environment (RIVM), 
Bilthoven. Available online: www.rivm.nl. 

Boon PE, Bakker MI, van Klaveren JD, van Rossum CTM (2009). Risk 
assessment of the dietary exposure to contaminants and pesticide 
residues in young children in the Netherlands. RIVM report 350070002 
National Institute for Public Health and the Environment (RIVM), 
Bilthoven. Available online: www.rivm.nl. 

Boon PE, te Biesebeek JD, de Wit L, van Donkersgoed G (2014a). 
Dietary exposure to dioxins in the Netherlands. RIVM letter report 2014-
0001. National Institute for Public Health and the Environment (RIVM), 
Bilthoven. Available online: www.rivm.nl. 

Boon PE, te Biesebeek JD, van Donkersgoed G, van Leeuwen S, 
Hoogenboom LAP, Zeilmaker MJ (in prep.). Dietary exposure to 
polybrominated diphenyl ethers in the Netherlands. National Institute for 
Public Health and the Environment (RIVM), Bilthoven. 

Boon PE, te Biesebeek JD, Sioen I, Huybrechts I, Moschandreas J, 
Ruprich J, Turrini A, Azpiri M, Busk L, Christensen T, Kersting M, Lafay L, 
Liukkonen K-H, Papoutsou S, Serra-Majem L, Traczyk I, De Henauw S, 
van Klaveren JD (2012). Long-term dietary exposure to lead in young 
European children: comparing a pan-European approach with a national 
exposure assessment. Food Additives and Contaminants: Part A 29: 
1701-1715. 

Boon PE, van der Voet H., Ruprich J, Turrini A, Sand S, van Klaveren JD 
(2014b). Computational tool for usual intake modelling workable at the 
European level. Food and Chemical Toxicology 74: 279-288. 

Boon PE, van der Voet H, van Raaij MTM, van Klaveren JD (2008). 
Cumulative risk assessment of the exposure to organophosphorus and 
carbamate insecticides in the Dutch diet. Food and Chemical Toxicology 
46: 3090-3098. 

Boon PE, van Donkersgoed G, Christodoulou D, Crépet A, D’Addezio L, 
Desvignes V, Ericsson B-G, Galimberti F, Ioannou-Kakouri E, Jensen BH, 
Rehurkova I, Rety J, Ruprich J, Sand S, Stephenson C, Strömberg A, 
Turrini A, van der Voet H, Ziegler P, Hamey P, van Klaveren JD (2015). 
Cumulative dietary exposure to a selected group of pesticides of the 
triazole group in different European countries according to the EFSA 
guidance on probabilistic modelling. Food and Chemical Toxicology 79: 
13-31. 

de Boer W, Goedhart PW, Hart A, Kennedy MC, Kruisselbrink J, Owen H, 
Roelofs W, van der Voet H (2015). MCRA 8.1 a web-based program for 
Monte Carlo Risk Assessment. Reference Manual. September 1, 2015. 
Biometris, Wageningen UR, National Institute for Public Health and the 
Environment (RIVM) and Food and Environmmental Research Agency 
(Fera), Wageningen, Bilthoven, The Netherlands and York, UK. 

http://www.rivm.nl/


RIVM Letter report 2015-0191 

Page 39 of 41 

de Boer WJ, van der Voet H, Bokkers BGH, Bakker MI, Boon PE (2009). 
Comparison of two models for the estimation of usual intake addressing 
zero consumptions and non-normality. Food Additives and 
Contaminants: Part A 26: 1433-1449. 

Dodd KW, Guenther PM, Freedman LS, Subar AF, Kipnis V, Midthune D, 
Tooze JA, Krebs-Smith SM (2006). Statistical methods for estimating 
usual intake of nutrients and foods: a review of the theory. Journal of 
the American Dietetic Association 106: 1640-1650. 

EFSA (2006). Opinion of the Scientific Committee related to 
uncertainties in dietary exposure assessment. The EFSA Journal 438: 1-
54. Available online: www.efsa.europa.eu. 

EFSA (2007). Pesticide Residues Intake Model for assessment of acute 
and chronic consumer exposure to pesticide residues-rev.2. Available 
online: www.efsa.europa.eu. 

EFSA (2011). Use of the EFSA Comprehensive European Food 
Consumption Database in Exposure Assessment. EFSA Journal 
9(3):2097, 34 pp. Available online: www.efsa.europa.eu. 

EFSA (2012). Guidance on the Use of Probabilistic Methodology for 
Modelling Dietary Exposure to Pesticide Residues. EFSA Journal 
10(10):2839, 95 pp. Available online: www.efsa.europa.eu. 

EFSA (2013). Analysis of occurrence of 3-monochloropropane-1,2-diol 
(3-MCPD) in food in Europe in the years 2009-2011 and preliminary 
exposure assessment. EFSA Journal 11(9):3381, 45 pp. Available 
online: www.efsa.europa.eu. 

EFSA (2014a). Food Additives Intake Model (FAIM): comments received 
from stakeholders and EFSA’s views. EFSA supporting publication 
2014:EN-566. 25 pp. Available online: www.efsa.europa.eu. 
 
EFSA (2014b).Guidance on the EU Menu methodology.EFSA Journal 
12(12):3944, 77 pp. Available online: www.efsa.eu.europa. 
 
EFSA (2015a). Refined exposure assessment for Quinoline Yellow 
(E 104). EFSA Journal 13(3):4070, 33 pp. Available online: 
www.efsa.europa.eu. 

EFSA (2015b). Scientific Opinion on acrylamide in food. EFSA Panel on 
Contaminants in the Food Chain (CONTAM). EFSA Journal 13(6):4104, 
321 pp. Available online: www.efsa.europa.eu. 

FAO/WHO (2004). Pesticide residues in food - 2003. Report of the Joint 
Meeting of the FAO Panel of Experts on Pesticide Residues in Food and 
the Environment and the WHO Core Assessment Group. FAO Plant 
Production and Protection Paper, 176. Geneva. Available online: 
www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides
/JMPR/Reports_1991-2006/Report_2003.pdf. 

Front Office Food and Consumer Product Safety (2014). Assessment of 
nitrite in salmon sausage (in Dutch). National Institute for Public Health 
and the Environment (RIVM), Bilthoven. 

http://www.efsa.europa.eu/
http://www.efsa.europa.eu/
http://www.efsa.europa.eu/
http://www.efsa.europa.eu/
http://www.efsa.europa.eu/
http://www.efsa.europa.eu/
http://www.efsa.europa.eu/
http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Reports_1991-2006/Report_2003.pdf
http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Reports_1991-2006/Report_2003.pdf


RIVM Letter report 2015-0191 

 Page 40 of 41 

 

Front Office Food and Consumer Product Safety (2015). Intake of 
methylmercury in children aged 2 to 15 in the Netherlands. National 
Institute for Public Health and the Environment (RIVM), Bilthoven. 

Goedhart PW, van der Voet H, Knüppel S, Dekkers ALM, Dodd KW, 
Boeing H, van Klaveren JD (2012). A comparison by simulation of 
different methods to estimate the usual intake distribution for 
episodically consumed foods. Supporting Publications 2012:EN-299. 
[65 pp.]. Available online: www.efsa.europa.eu. 

Hoffmann K, Boeing H, Dufour A, Volatier JL, Telman J, Virtanen M, 
Becker W, De Henauw S (2002). Estimating the distribution of usual 
dietary intake by short-term measurements. European Journal of Clinical 
Nutrition 56 Suppl. 2: S53-S62. 

Kennedy MC, Glass CR, Bokkers B, Hart ADM, Hamey PY, Kruisselbrink 
JW, de Boer WJ, van der Voet H, Garthwaite DG, van Klaveren JD 
(2015a). A European model and case studies for aggregate exposure 
assessment of pesticides. Food and Chemical Toxicology 79: 32-44. 

Kennedy MC, van der Voet H, Roelofs VJ, Roelofs W, Glass CR, de Boer 
WJ, Kruisselbrink JW, Hart ADM (2015b). New approaches to uncertainty 
analysis for use in aggregate and cumulative risk assessment of 
pesticides. Food and Chemical Toxicology 79: 54-64. 

Kroes R, Müller D, Lambe J, Löwik MRH, Van Klaveren J, Kleiner J, 
Massey R, Mayer S, Urieta I, Verger P, Visconti A (2002). Assessment of 
intake from the diet. Food and Chemical Toxicology 40: 327-385. 

Ocké MC, van Rossum CTM, Fransen HP, Buurma EJM, de Boer EJ, 
Brants HAM, Niekerk EM, van der Laan JD, Drijvers JJMM, Ghameshlou Z 
(2008). Dutch National Food Consumption Survey - Young children 
2005/2006. RIVM report 350070001. National Institute for Public Health 
and the Environment (RIVM), Bilthoven. Available online: www.rivm.nl. 

Pastoor TP, Bachman AN, Bell DR, Cohen SM, Dellarco M, Dewhurst IC, 
Doe JE, Doerrer NG, Embry MR, Hines RN, Moretto A, Phillips RD, 
Rowlands JC, Tanir JY, Wolf DC, Boobis AR (2014). A 21st century 
roadmap for human health risk assessment. Critical Reviews in 
Toxicology 44: 1-5. 

Ruprich J (2013). Food collection for TDS: sample plan "sample 
collection protocol (shopping list)": working steps. TDS Summer School, 
Lisbon, National Institute of Public Health in Prague, Center for Heath, 
Nutrition and Food in Brno. 

Slob W (1993). Modeling long-term exposure of the whole population to 
chemicals in food. Risk Analysis 13: 525-530. 

Slob W (2006). Probabilistic dietary exposure assessment taking into 
account variability in both amount and frequency of consumption. Food 
and Chemical Toxicology 44: 933-951. 

Slob W, de Boer WJ, van der Voet H (2010). Can current dietary 
exposure models handle aggregated intake from different foods? A 
simulation study for the case of two foods. Food and Chemical 
Toxicology 48: 178–186. 



RIVM Letter report 2015-0191 

Page 41 of 41 

Sprong RC, Boon PE (2013). Gaps and uncertainties in dietary exposure 
assessment of chemical substances. Short note 10A.8.5.3. National 
Institute for Public Health and the Environment (RIVM), Bilthoven. 

Sprong RC, Boon PE (2015). Dietary exposure to cadmium in the 
Netherlands. RIVM letter report 2015-0085. National Insitute for Public 
Health and the Environment (RIVM), Bilthoven. Available online: 
www.rivm.nl. 

Sprong RC, de Wit-Bos L, Zeilmaker MJ, Alewijn M, Castenmiller JJM, 
Mengelers MJB (2015). A mycotoxin-dedicated total diet study in the 
Netherlands in 2013: Part I – Design. World Mycotoxin Journal, 
DOI: 10.3920/WMJ2015.1904. 

Sprong C, Niekerk M, van Donkersgoed G, Etemad Z (2014). Refined 
exposure assessment of E150 food colours with use levels provided by 
the industry. RIVM report 050015001. National Insitute for Public Health 
and the Environment (RIVM), Bilthoven. Available online: www.rivm.nl. 

Tooze JA, Midthune D, Dodd KW, Freedman LS, Krebs-Smith SM, Subar 
AM, Guenther PM, Carroll RJ, Kipnis V (2006). A new statistical method 
for estimating the usual intake of episodically consumed foods with 
application to their distribution. Journal of the American Dietetic 
Association 106: 1575-1587. 

van der Voet H, de Boer WJ, Kruisselbrink JW, Goedhart PW, van der 
Heijden GWAM, Kennedy MC, Boon PE, van Klaveren JD (2015). The 
MCRA model for probabilistic single-compound and cumulative risk 
assessment of pesticides. Food and Chemical Toxicology 79: 5-12. 

van der Voet H, Kruisselbrink J, de Boer WJ, Boon PE (2014). Model-
Then-Add. Usual intake modelling of multimodal intake distributions. 
RIVM letter report 090133001. National Institute for Public Health and 
the Environment (RIVM), Bilthoven. Available online: www.rivm.nl. 

van Klaveren JD, Kennedy MC, Moretto A, Verbeke W, van der Voet H, 
Boon PE (2015). The ACROPOLIS project: Its aims, achievements, and 
way forward. Food and Chemical Toxicology 79: 1-4. 

van Ooijen HJ, van der Voet H, Bakker MI (2009). Identification and 
handling of uncertainties in dietary exposure assessment. RIVM report 
320103004. National Institute for Public Health and the Environment 
(RIVM), Bilthoven. Available online: www.rivm.nl. 

van Rossum CTM, Fransen HP, Verkaik-Kloosterman J, Buurma-Rethans 
EJM, Ocké MC (2011). Dutch National Food Consumption Survey 2007-
2010. Diet of children and adults aged 7 to 69 years. RIVM report 
350050006. National Institute for Public Health and the Environment 
(RIVM), Bilthoven. Available online: www.rivm.nl. 

WHO (2009). Dietary exposure assessment of chemicals in food 
(Chapter 6). In: Principles and methods for the risk assessment of 
chemicals in food. Environmental Health Criteria 240, FAO/WHO, 
International Programme on Chemical Safety (IPCS). World Health 
Organisation. Available online: 
www.who.int/foodsafety/chem/dietary_exposure.pdf 

http://www.rivm.nl/
http://www.rivm.nl/
http://www.rivm.nl/
http://www.who.int/foodsafety/chem/dietary_exposure.pdf


    



RIVM
Committed to health and sustainability 


	Contents
	1 Introduction
	2 Probabilistic models to assess exposure to adverse chemicals via food
	2.1 Acute exposure assessment
	2.2 Chronic exposure assessment
	2.2.1 Observed Individual Means (OIM)
	2.2.2 LogisticNormal-Normal (LNN) model
	2.2.3 Model-Then-Add (MTA)

	2.3 Model input uncertainty

	3 Which model to use
	4 Additional model functionalities
	4.1 Optimistic and pessimistic exposure assessment
	4.2 Cumulative exposure assessment
	4.3 Aggregate exposure assessment

	5 Conclusion
	Acknowledgements
	References

