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1.1 Conventional wastewater treatment 

Conventional activated sludge (CAS) systems are widely applied to treat municipal wastewater. 

The key processes here are aerobic oxidation of organic pollutants, biological nitrogen (N) 

removal and chemical or biological phosphorus (P) removal. The main advantages of CAS 

systems are that they are robust and generally produce an effluent quality that meets the 

discharge guidelines. However, CAS systems cannot be considered sustainable because they 

consume large amounts of energy (mainly for aeration), have a high CO2 emission and do no 

recover valuable resources such as N and P. In addition, CAS systems produce and have to 

dispose of large amounts of primary sludge (PS) and excess activated sludge (AS). 

More recently, municipal wastewater has started to be considered for its potential resources. 

For example, the organic pollutants in municipal wastewater represent a potential chemical 

energy of 1.5–1.9 kWh per m3 of wastewater, which is more than twice the energy consumption 

of CAS systems (McCarty et al., 2011). Unfortunately, in CAS systems the largest portion of the 

energy stored in organics is destroyed by aerobic mineralization to CO2, and only less than 20% 

of the municipal wastewater organic matter is recovered as energy-rich methane gas by digesting 

the PS and AS (Cao, 2011). In CAS systems treating municipal wastewater, large amounts of the 

valuable nutrients are not recovered since N is emitted as N2 and P is wasted with the excess 

sludge. Thus, new ways of wastewater treatment need to be considered to recover more energy 

and nutrients, and when sufficiently treated the relatively clean water can be reused, for example 

as irrigation water or industrial process water (Akanyeti et al., 2010; DOW, 2013). 

 

1.2 New developments in municipal wastewater treatment 

The activated sludge process was first developed in the early 1900s and today is the most popular 

treatment process for municipal wastewater (Orhon, 2014). Recovery of energy and nutrients 

from municipal wastewater is gaining a lot of attention worldwide, and this asks for new 

combined treatment and recovery concepts (Boelee et al., 2012; Desmidt et al., 2015; Remy et 

al., 2014; Roeleveld et al., 2010; Sheik et al., 2014; Verstraete et al., 2009). However, the 

feasibility of such concepts is strongly influenced by wastewater composition and location. 
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Municipal wastewater is diluted with respect to the concentration of valuable compounds and 

generally has a low temperature, in particular in temperate and cold climate regions (Metcalf and 

Eddy, 2004). Both of these aspects make implementation of recovery concepts more difficult. 

Still, such concepts need to be developed and implemented because apart from the recovery of 

valuable resources they also would save considerable amounts of energy and chemicals used 

today by CAS systems.  

 
1.2.1 Organic matter 

Anaerobic digestion of organic matter to methane is commonly used for efficient energy 

recovery from municipal wastewater (Metcalf and Eddy, 2004), although only from the more 

concentrated PS and AS streams, and at relatively high temperatures (typically 35°C). Low 

temperature anaerobic digestion of all municipal wastewater organics has been investigated by 

several studies (Mahmoud et al., 2004; Zhang et al., 2013; Zhang et al., 2012). They combined a 

low temperature (15°C) upflow anaerobic sludge blanket (UASB) reactor, to convert soluble 

biodegradable COD (chemical oxygen demand) into methane, with a mesophilic anaerobic 

digester (35°C) to produce methane from wastewater suspended organic solids. They showed 

that this combined process is technologically feasible, but still needs further optimization. 

More efficient recovery of organic matter, either as energy or as chemicals such as volatile 

fatty acids (VFA) (see Section 1.3) (Lee et al., 2014), requires a pre-concentration step. 

Examples of pre-concentration methods are direct membrane filtration, dissolved air flotation 

and flocculation with inorganic metal salts or synthetic polymer (Verstraete et al., 2009). 

However, all of these methods require a large input of energy and/or chemicals. The main 

technological challenge therefore is to develop a pre-concentration method that combines a high 

recovery efficiency with a low energy consumption.  

 
Bioflocculation with HL-MBR to concentrate organic matter 

An integrated aerobic bioflocculation process and direct membrane filtration is a promising pre-

concentration method for municipal wastewater organic matter (Akanyeti et al., 2010; Faust et 

al., 2014a; Faust et al., 2014b). Bioflocculation is an aerobic biological process in which 

colloidal and suspended COD are flocculated with the aid of extracellular polymeric substances 
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(EPS) produced by microorganisms (Faust, 2014). Bioflocculation has been successfully 

conducted in a high-loaded membrane bioreactor (HL-MBR), which operates under extremely 

short hydraulic retention time (HRT) of 0.7–1.2 hours and sludge retention time (SRT) of 0.5–1 

days (Akanyeti et al., 2010; Faust et al., 2014b). The short SRT guarantees that mineralization of 

COD to CO2 is largely avoided. The short HRT results in a high concentration of organic matter. 

Akanyeti et al. (2010) reported a methane yield of 35% of sewage COD by bioflocculation in an 

HL-MBR, which is almost two times the recovery when anaerobic digestion is applied on PS and 

AS generated by CAS systems (Cao, 2011). An additional advantage is that the HL-MBR 

permeate can be used for irrigation because it contains high amounts of N and P, and is free of 

solids and pathogens.  

 
1.2.2 Nitrogen 

CAS systems remove N by subsequent biological nitrification and denitrification. Nitrification is 

the process by which ammonium is sequentially oxidized to nitrite (NO2¯) and then to nitrate 

(NO3¯) by two groups of autotrophic nitrifying bacteria, i.e. ammonia-oxidizing bacteria (AOB) 

and nitrite-oxidizing bacteria (NOB). During denitrification nitrate is reduced to dinitrogen (N2) 

gas. This is a heterotrophic process, i.e. it requires organic carbon. Recovery of N is less urgent 

than recovery of P, which is a finite resource and expected to become a scarce resource in the 

near future (Cordell et al., 2011). Still, recovery of N from municipal wastewater could save a lot 

of energy otherwise needed to produce N fertilizers with the Haber-Bosch process (Maurer et al., 

2003). Although several physical-chemical N recovery technologies are available, for example 

stripping and thermal evaporation, these would not be economical feasible at typical municipal 

wastewater concentrations of 20–70 mg N/L (Metcalf and Eddy, 2004; Mulder, 2003; Wilsenach 

et al., 2003). Thus, the focus should be on new biological N removal technologies, such as partial 

nitritation combined with Anammox (anaerobic ammonium oxidation) that are more energy 

efficient than a conventional nitrification/denitrification and do not consume valuable organic 

carbon sources (Fux and Siegrist, 2004).  
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Partial nitritation and Anammox  

Combined partial nitritation and Anammox is already applied on full-scale to treat digester 

effluent, which have high temperatures (>30°C) and contain high concentrations of ammonium 

(>700 mg N/L) (van der Star et al., 2007). There are several advantages of this concept over the 

conventional nitrification/denitrification: (1) less energy consumption for aeration, (2) reduced 

CO2 emission and (3) a lower sludge production (Fux and Siegrist, 2004). The application of 

combined partial nitritation and Anammox process down to very low temperatures (10°C) and at 

low ammonium concentrations has been explored by several studies (Gilbert et al., 2015; 

Hendrickx et al., 2014; Hendrickx et al., 2012). The study of Hendrickx et al. (2014) showed that 

the Anammox process is feasible at a temperature of 10°C and a diluted stream of approximately 

60 mg N/L. However, the main bottleneck may be the partial nitritation operated at low 

temperatures (Hao et al., 2002; Kim et al., 2008). 

 
1.2.3 Phosphorus 

As was mentioned earlier, phosphorus is a non-renewable resource and becomes progressively 

limited. Using Dutch municipal wastewater as an example, if all the P available in municipal 

wastewater would be recovered, this is equivalent to more than 50% of the Dutch artificial P 

fertilizer consumption (de Graaff, 2010). This is the motivation to develop novel P recovery 

technologies. Examples of phosphate recovery technologies from wastewater streams and 

wastewater sludge are presented in Table 1.1. 

Unfortunately, most of the technologies presented in Table 1.1 have a high energy and/or 

chemical demand. In addition, most of them only work effectively if the concentration of P is 

relatively high, such as in digester liquors or in urine. Therefore, the main challenge is to develop 

cost effective technologies that can also recover P from more diluted wastewater streams, such as 

municipal wastewater with typical concentrations of 5–15 mg P/L (Metcalf and Eddy, 2004). It is 

expected that such a technology will become available in the near future (Desmidt et al., 2015). 

Therefore, in the present study cost-effective P recovery technology was not further substantiated 

but was assumed to be already available. 
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Table 1.1: Examples of phosphate recovery processes for wastewater streams and wastewater sludge 

Recovery technology/process Recovery product Reference 

1. Chemical phosphorus precipitation with 

iron, calcium, aluminum and magnesium   

Iron phosphate 

Calcium phosphate 

Aluminum phosphate 

Struvite 

de-Bashan and Bashan 

(2004) 

2. Electrochemical phosphate recovery Calcium phosphate Kappel et al. (2013) 

3. Reversible adsorption on iron oxides Concentrated phosphorus Martin et al. (2009) 

4. Thermochemical of sewage sludge ashes Phosphate-fertilizer Adam et al. (2009) 

5. Phospaq® struvite reactor Struvite Driessen et al. (2009) 

6. Calcium phosphate Crystalactor® Calcium phosphate Wilsenach and 

Loosdrecht (2002) 

7. Chemical phosphorus precipitation after 

anaerobic digestion of EBPRa sludge 

Calcium phosphate and 

struvite 

Yuan et al. (2012) 

8. Novel membrane separation Concentrated phosphorus Hong et al. (2009) 
a EBPR = Enhanced biological phosphorus removal 

 

1.2.4 New technologies 

Several technologies have been recently developed for municipal wastewater treatment, such as 

microalgae treatment, which is already applied in practice but not to recover N and P, Nereda® 

technology and several bioelectrochemical technologies, and discussed below. 

 
Microalgae treatment 

Microalgae for treating municipal wastewater can be applied in different configurations as 

described by Boelee et al. (2012). Microalgae systems for municipal wastewater treatment are a 

promising candidate because of a valuable biomass production, and a reduction of aeration 

energy otherwise needed to remove N by conventional nitrification/denitrification or partial 

nitritation/Anammox. However, irradiance and temperature conditions have a significant effect 

on the microalgal biomass productivity (Boelee et al., 2014; Slegers et al., 2011) and therefore 

the specific location determines the applicability.  
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Nereda® technology 

A new wastewater treatment technology based on aerobic granular sludge was introduced in 

2003 and is also known as the Nereda process (van der Roest et al., 2011). Nereda has 

advantages over traditional CAS systems, i.e. a reduction in energy consumption and a smaller 

footprint (Giesen et al., 2013). However, similar to CAS systems with Nereda most of the 

organic matter is aerobically mineralized and neither N nor P are recovered. 

Bioelectrochemical systems 

Bioelectrochemical cells have been developed to produce electricity from wastewater and even 

to recover N from concentrated streams such as urine (Arredondo et al., 2015; Heijne et al., 

2010; Kuntke et al., 2012). Although these bioelectrochemical systems look promising, their 

application so far has been limited to artificial wastewaters and/or small scales. 

 

1.3 Volatile fatty acids (VFA) production 

In CAS systems energy recovery from wastewater is accomplished by anaerobic digestion of the 

(organic) solids in PS and AS into methane. As mentioned earlier, VFA may be preferred over 

methane. Figure 1.1 gives an overview of the four steps during anaerobic digestion. It also shows 

potential applications of VFA, which are intermediate digestion products. 

 

Figure 1.1: Anaerobic digestion process and potential applications of volatile fatty acids with examples 

of possible productions from VFA 
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These VFA mainly consist of short-chain fatty acids with two to five carbon atoms: acetate 

(C2), propionate (C3), butyrate (C4), and valerate (C5). Production of VFA can be used as the 

starting compounds for a wide range of valuable products, for example medium-chain fatty 

acids, electricity, bioplastics (polyhydroxyalkanoate or PHA), and biodiesel (Lee et al., 2014).   

However, VFA production is only possible if the last step, i.e. methanogenesis, can be prevented. 

This can be accomplished by applying a short SRT to actively wash-out the slow growing 

methanogens and/or by applying extreme pH values that inhibit growth of methanogens (Chen et 

al., 2007). Many studies have demonstrated that anaerobic fermentation of PS and AS at high pH 

values can significantly enhance solids degradation and promote wash-out of methanogens, and 

in this manner gives a higher VFA yield compared to acidic or neutral pH conditions (Chen et 

al., 2007; Jie et al., 2014; Liu et al., 2012; Maspolim et al., 2015; Zhang et al., 2009). However, 

to achieve a maximum organic matter recovery and make high pH VFA fermentation an 

economically feasible technology for municipal wastewater treatment, first a pre-concentration 

step, i.e. bioflocculation in an HL-MBR, needs to be applied. 

 

1.4 Modelling process networks for design and control wastewater   

treatment 

Mathematical models are useful tools to evaluate the responses to changes in system operations 

or influent loads. Availability of input and output data determines the type of mathematical 

model, which is often divided into white-box (mechanistic), black-box (phenomenological) 

models, or a combination of these, which are known as grey-box (semi-physical) model 

(Carstensen et al., 1997). A white-box model solely follows from prior physical knowledge of 

the system. Although white-box model leads to more accurate evaluation results than black-box 

model under changing conditions, it is usually more complex and requires more computational 

effort. A black-box model is relatively simple, but the results are only valid under the 

experimental conditions. Therefore, a semi-physical model can take advantage of both 

approaches: all insight about the process or system is reflected in the white-box part, but the 

missing information is represented by empirical (black-box) relationships using the available 

experimental data (Romijn et al., 2008). 
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In addition to the information availability, mathematical models can be developed using 

either a static or dynamic approach. A static or steady-state approach gives time-independent 

results, whereas dynamic results are able to show predictions as a function of time. Dynamic 

models describe the wastewater treatment process can be found in the literature, for example the 

benchmark simulation model (BSM) and anaerobic digestion model (ADM) (Alex et al., 2008; 

Jeppsson et al., 2007; Rosen et al., 2006).  

In the current study, a steady-state semi-physical modelling approach, using an Excel-based 

model, is used to simulate and combine individual process units into a plant-wide simulation. A 

number of studies have investigated on modelling of the individual process, but not much 

research has been conducted towards integrated or plant-wide modelling. Examples of plant-

wide modelling for wastewater treatment are found in the studies of Nopens et al. (2009) and 

Rosen et al. (2006). In this thesis quantitative scenario-based calculations are based on mass and 

energy balances with simple conversion relationships and on existing experimental data, while 

neglecting the storage term in each process unit. Similar approach has also been applied in other 

studies for wastewater treatment (Boelee et al., 2012; Garrido et al., 2013; Tervahauta et al., 

2013; Tsuzuki et al., 2013). 

 

1.5 Outline of this thesis 

The objective of this thesis was to explore the feasibility of new municipal wastewater treatment 

concepts that help to improve energy saving and resource recovery by modelling and 

experiments. Special focus of the experiments was set on the recovery of organic matter in the 

form of VFA production. Figure 1.2 provides an overview of the research that was carried out to 

accomplish this. 
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Figure 1.2: Overview of the research that was carried out to investigate new municipal wastewater 

treatment concepts. Green box indicates modelling work and orange box indicates experimental work. 

 

Chapter 2 of this thesis describes a procedure to design and integrate new process units into 

wastewater treatment plant configurations with promising perspectives for resource recovery. A 

numerical simulation tool using an Excel-based model was developed based on literature data 

and on information from laboratory scale experiments. Two configurations were selected from 

11 initial configurations and were further explored using the Netherlands as a case study. Their 

performance was evaluated by several key performance indicators (KPIs). Also, a “one-at-a-

time” sensitivity and global sensitivity analyses were conducted to investigate the effect of 

temperature and wastewater composition on energy consumption, energy production and net 

energy yield.  

In Chapter 3 the feasibility of the two configurations suggested in Chapter 2 was further 

evaluated under different locations around the globe, as we name here a glocal assessment 

analysis. Quantitative numerical results based on the KPIs and area requirements for microalgae 

cultivation, in terms of light intensity and temperature, were compared. A sensitivity analysis on 

the microalgal biomass yield, microalgal maintenance coefficient and wastewater composition 

was investigated for a microalgae treatment with respect to area requirement and effluent quality. 
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In Chapter 4 the technological feasibility of combined bioflocculation to concentrate sewage 

organic matter, using an HL-MBR, and anaerobic fermentation to produce VFA was 

experimentally investigated. The sewage COD, N, and P mass balances in bioflocculation and 

anaerobic fermentation were discussed and compared with CAS systems.  

In Chapter 5 a novel approach to enhance VFA production from sewage by combined 

aerobic bioflocculation and alkaline sequencing batch fermentation was investigated. Solids 

degradation, VFA production and VFA composition were compared to a fermentation process 

without pH control. In addition, a constant high pH control was compared to a short-term high 

pH shock in an attempt to even further increase VFA production from sewage. 

In Chapter 6 three novel municipal wastewater treatment plant configurations, based on 

bioflocculation, anaerobic fermentation, partial nitritation/Anammox and microalgae treatment 

that allow recovery of valuable resources and improve energy saving, are proposed. Based on the 

main findings from experimental work the overall sustainability in terms of energy saving and 

potential for sewage organic matter recovery from bioflocculation and alkaline anaerobic 

fermentation are further discussed and compared with CAS systems. This chapter also presents 

an outlook and recommendations for further research, in particular to make VFA production 

economically more attractive. 
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Abstract 

Activated sludge systems are commonly used for robust and efficient treatment of municipal 

wastewater. However, these systems cannot achieve their maximum potential to recover valuable 

resources from wastewater. This study demonstrates a procedure to design a feasible novel 

configuration for maximizing energy and nutrient recovery. A simulation model was developed 

based on literature data and recent experimental research using steady-state energy and mass 

balances with conversions. The analysis showed that in the Netherlands, proposed configuration 

consists of four technologies: bioflocculation, cold partial nitritation/Anammox, P recovery, and 

anaerobic digestion. Results indicate the possibility to increase net energy yield up to 0.24 

kWh/m3 of wastewater, while reducing carbon emission by 35%. Moreover, sensitivity analysis 

points out the dominant influence of wastewater organic matter on energy production and 

consumption. This study provides a good starting point for the design of promising layouts that 

will improve sustainability of municipal wastewater management in the future. 

 

 

 

 

 

 

 

 

This chapter has been published as: 

Khiewwijit, R., Temmink, H., Rijnaarts, H., Keesman, K. J., 2015. Energy and nutrient recovery 

for municipal wastewater treatment: How to design a feasible plant layout? Environmental 

Modelling & Software, 68, 156-165. 
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2.1 Introduction 

Biological treatment of municipal wastewaters is mostly accomplished in conventional activated 

sludge (CAS) systems. This also holds for municipal wastewater treatment in the Netherlands 

(Stowa, 2010). A CAS system is designed to produce an effluent that meets the discharge 

guidelines by removing organic pollutants and the nutrients, nitrogen (N) and phosphorus (P). 

Although CAS systems are very robust, they cannot be considered sustainable. A major 

drawback is the high energy consumption, mainly for aeration which accounts for about half of 

the total energy consumption of 0.6 kWh per m3 of wastewater (McCarty et al., 2011). Municipal 

wastewaters with typical organic matter concentrations (expressed in chemical oxygen demand 

or COD) of 400–500 mg COD/L (Owen, 1982) contain a potential chemical energy of 1.5–1.9 

kWh per m3 of wastewater, which is more than twice the energy demand of a typical CAS 

system. In CAS systems this energy is largely destroyed by aerobic mineralization of the sewage 

organic matter to CO2. Another drawback is that no N and P, and only a limited amount of 

energy contained in the organic pollutants, are recovered. The commonly used processes for 

nutrient removal are biological nitrification/denitrification for N-removal and chemical or 

biological P-removal. These processes result in a loss of N and P. In particular P that comes from 

mines and can become scarce in the future, whereas N2 is abundantly available in the atmosphere 

(de Ridder et al., 2012; Schröder et al., 2010). Therefore, P in municipal wastewater is 

considered a valuable source for possible reuse as a fertilizer. For example, de Graaff (2010) 

reported that the total amount of P that can be found in Dutch municipal wastewater corresponds 

to more than 50% of the artificial P fertilizer used in the country.  

Several novel sustainable wastewater treatment and resources recovery technologies are 

available; however, little is known about how to integrate such technologies in municipal 

wastewater treatment plants (WWTPs). Therefore, a simulation approach could be an appropriate 

tool to develop new configurations for future municipal WWTPs and to predict the feasibility of 

these configurations. Such an approach has already been used for different applications, for 

example, for separation at source configurations in which urine and black water are separately 

treated (Tervahauta et al., 2013; Wilsenach and van Loosdrecht, 2006), for wastewater treatment 

configurations based on microalgae biofilms (Boelee et al., 2012), for optimizing the urban water 

infrastructure systems (Agudelo-Vera et al., 2012; Hiessl et al., 2001), for development of a 
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benchmarking methodology for advanced control in oxidation ditch municipal WWTPs 

(Abusam, 2001), and for identifying the future potential energy contribution from wastewater 

(Heubeck et al., 2011). However, limited information can be found in the literature on integration 

of both treatment and resource recovery perspectives on the future of municipal WWTPs, 

whereas municipal wastewater can be considered as a valuable source of water and nutrients in 

agriculture (Verstraete et al., 2009). Also, knowledge-based decision support systems (DSSs) 

and life cycle assessment (LCA) methods are used to facilitate an appropriate or optimal WWTP 

design with different objectives and requirements. However, so far these are limited to 

conventional wastewater treatment systems and the results are largely dependent on the data 

quality and their specifications (Aulinas et al., 2011; Garrido-Baserba et al., 2014; Rivas et al., 

2008; Wang et al., 2012). 

The objective of this study is to introduce and demonstrate a quantitative procedure to 

analyze future municipal WWTPs that minimize energy input and CO2 emission, maximize 

energy production and recovery of valuable nutrients, and meet the effluent discharge guidelines. 

The Excel-based simulation tool presented in this study allows investigation of the feasibility of 

novel configurations for municipal wastewater treatment. For this purpose these configurations 

are compared to a reference CAS system based on several performance indicators related to 

conditions in the Netherlands/Western Europe. Additionally, a sensitivity analysis is performed 

for temperature and wastewater characteristics to extrapolate the results to other countries and 

climate regions. 

 

2.2 Materials and Methods 

An Excel-based model was developed, based on literature data and on information from 

laboratory scale experiments with selected wastewater treatment and recovery processes. In this 

study, to compare new configurations with the reference CAS system, the model was constructed 

from available removal, and recovery efficiencies under steady-state conditions. As our focus is 

on design, and not monitoring and control, kinetics and time variations were not yet part of this 

study.  
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2.2.1 Potential integrated treatment processes  

Potential sustainable wastewater treatment and recover processes considered in this study were: 

i) the subsequent bioflocculation, anaerobic digestion, and combined heat and power (CHP), ii) 

cold partial nitritation/Anammox, iii) P recovery technology, and iv) microalgae systems with 

the removal of COD. In this study P recovery is expressed in terms of an assumed recovery 

efficiency. For an overview of P recovery technologies, we refer to de-Bashan and Bashan 

(2004). 

 
2.2.1.1 Bioflocculation, anaerobic sludge digestion and CHP 
Bioflocculation is a possible technique to concentrate sewage organic matter, similar to the A-

stage in an AB process design (Boehnke et al., 1997). Aerobic microorganisms produce 

extracellular polymer substances (EPS) that facilitate the flocculation between the 

microorganisms and sewage organic matter (Salehizadeh and Shojaosadati, 2001). 

Bioflocculation of municipal wastewater results in a concentrated stream of sewage organic 

matter, from which methane can be produced by anaerobic sludge digestion (Akanyeti et al., 

2010). To separate the organic sludge from the effluent, a settler or a membrane can be used. In 

this study, a settler is chosen due to its simplicity with low operational and maintenance cost. In 

addition, the underflow of the settler is further dewatered using a thickener to achieve the desired 

concentration of bioflocculation concentrate before digestion. Subsequently, a CHP unit is used 

to produce energy and heat from the methane formed in the anaerobic digestion. The removal 

and conversion efficiencies and design specifications of the integrated bioflocculation, anaerobic 

digestion and CHP process are presented in Table 2.1. 
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Table 2.1: Efficiency, conversion and design parameter values for bioflocculation, anaerobic sludge 

digestion, and CHP process  

Process Unit Value used Reference 

Bioflocculation  
• Total COD removal efficiencye 
• COD substrate need for biomass 

growth 
• O2 need  
• CO2 production  
• Biomass yield 
• COD in biomass 
• N in biomass 
• P in biomass 
• Thickener capacity 

 
%CODtotal 
% CODbsd 

 
g O2/g CODbsremoved 

g CO2/g CODbsremoved 

g VSS/g CODbsremoved 
g COD/g VSSd 

g N/g VSS 
g P/g VSS 
g COD/L 

 
80 
40 

 
0.51a 
0.70a 
0.40 
1.42 

0.124 
0.027 

50 

 
Akanyeti et al. (2010)  

Design parameter 
 

– 
– 

Metcalf and Eddy (2004) 
Metcalf and Eddy (2004) 
Metcalf and Eddy (2004) 
Metcalf and Eddy (2004) 

Design parameter 

Anaerobic sludge digestion 
• Total COD removal efficiency 
• Methane production  
• CO2 production 
• Biomass yield 
• COD, N, P in biomass        

(see bioflocculation) 

 
% CODbd 

g CH4/g CODremoved 
g CO2/g CODremoved  
g VSS/g CODremoved 

 

 
70 

0.23b 
0.64b 
0.058b 

 

 
Cakir and Stenstrom (2007) 

– 
– 

Metcalf and Eddy (2004) 
 

CHP 
• Electricity recovery 
• Heat recovery 
• Energy loss 
• CO2 production 
• Enthalpy of combustion 

 
% 
% 
% 

g CO2/g CH4
d

 

kWh/kg CH4 

 
38 
40 
22 

2.75c 
13.9 

 
Verstraete and Vlaeminck (2011) 
Verstraete and Vlaeminck (2011) 

– 
– 

H2moves.eu (2006) 

a Assuming acetate as organic matter (1.07 g COD/g acetate), the following stoichiometric equation is 
used for aerobic, heterotrophic oxidation of organic matter (Metcalf and Eddy, 2004):  

 5CH3COO¯ + NH4
+ + 5O2 → C5H7O2N + 4H2O + 5CO2 + 4OH¯. 

b Assuming acetate as COD the following stoichiometric equation is used for anaerobic digestion (Gavala 
et al., 2003): CH3COO¯+ 0.032NH4

+ + 0.968H+ → 0.92CH4 + 0.92CO2 + 0.032C5H7O2N + 0.096H2O. 
c The following stoichiometric reaction is used for converting methane to heat and power (Wett et al., 

2007): 0.5CH4 + O2 → 0.5CO2 + H2O + heat + energy. 
d Chemical oxygen demand (COD), biodegradable COD (CODb), biodegradable soluble COD (CODbs), 

methane (CH4), and biomass expressed in volatile suspended solids (VSS). 
e Data from lab-scale high-loaded membrane bioreactor conducted at temperature 20°C (Akanyeti et al., 

2010).  
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2.2.1.2 Cold partial nitritation/Anammox 
Partial nitritation/Anammox process is a more sustainable process than subsequent nitrification 

and denitrification processes applied in CAS systems. In the partial nitritation stage, ammonium 

is partly nitrified to nitrite (Giusti et al., 2011). In the Anammox stage, the produced nitrite is 

subsequently denitrified in combination with the residual ammonium to form dinitrogen (N2) gas 

and nitrate (Cui, 2012). It is important to note that about half of the ammonium should convert 

into nitrite during the partial nitritation, so that the nitrite-to-ammonium ratio in the effluent will 

be about 1.3:1 as required for Anammox process. This optimal ratio can be obtained by control 

of the sludge retention time (SRT), alkalinity, and/or oxygen concentration. Some research 

models have used an alkalinity/ammonium ratio around 1 with the SRT between 1 and 2.5 days 

as favorable conditions for the partial nitritation/Anammox process and a dissolved oxygen 

concentration around 1 mg O2/L considered as suitable value for the partial nitritation step 

(Zhang et al., 2008). 

One main advantage of the partial nitritation/Anammox process is a lower aeration need 

compared to the nitrification/denitrification process, as only part of the ammonium is nitrified. 

Since ammonium is not completely converted into nitrate but only to nitrite, a 50–60% savings 

on oxygen consumption can be achieved in comparison to full nitrification usually applied in 

CAS systems. Because Anammox is an autotrophic denitrification process, valuable carbon 

sources in the sewage can be retained for methane production or other end-products and the 

addition of external carbon sources are no longer required. The overall  estimated cost for a full-

scale plant (2.5 €/kg Nremoved) is lower than that for a plant using nitrification/denitrification      

(3–4 €/kg Nremoved) (Fux and Siegrist, 2004). This cost reduction is due to decreases in biomass 

production yield, aeration energy, and additional chemical inputs. Although not yet applied in 

practice, it was assumed that partial nitritation/Anammox can be operated even at sufficiently 

low sewage temperature (10–20°C) and dilute N sewage concentrations (<100 mg N/L) 

(Hendrickx et al., 2012).  

Table 2.2 shows the removal efficiency with Anammox at 20°C (Hendrickx et al., 2012) and 

conversion values related to the partial nitritation/Anammox process.   
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Table 2.2: Efficiency and conversion values for partial nitritation/Anammox process  

Process Unit Value used Reference 

Cold partial nitritation and 
Anammox 

• Overall N removal efficiency 
• O2 consumption 
• CO2 need  
• N2 production  
• Nitrate production 
• Biomass yield (N-removal) 
• COD in biomass 
• N in biomass 
• P in biomass 
• COD removal efficiency     

(partial nitritation) 
• COD removal efficiency 

(Anammox) 
• Conversions for COD-removal, 

O2 need, CO2 production, and 
COD, N, P in biomass          
(see bioflocculation) 

 
 

% NH4
+-N 

g O2/g NH4
+-Nremoved 

g CO2/g NH4
+-Nremoved 

g N2/g NH4
+-Nremoved 

g NO3¯/g NH4
+-Nremoved 

g VSS/g NH4
+-Nremoved 

g COD/g VSS 
g N/g VSS 
g P/g VSS 

% of total COD 
 

% of total COD 

 
 

90 
1.95a 
0.09a 
0.885a 
0.11a 
0.05a 
1.42 
0.09 
0.02 
35b 

 
5b 

 
 

Hendrickx et al. (2012) 
– 
– 
– 
– 
– 

Metcalf and Eddy (2004) 
Metcalf and Eddy (2004) 
Metcalf and Eddy (2004) 

– 
 

– 
 

a The following stoichiometric reactions are used for partial nitritation and Anammox (Cui, 2012): 
 Partial nitritation: NH4

+ + 0.75O2 + HCO3¯ → 0.5NH4
+ + 0.5NO2¯ + CO2 + 1.5H2O. 

   Anammox: NH4
+ + 1.32NO2¯ + 0.0664HCO3¯ + 0.13H+ → 1.02N2 + 0.26NO3¯ + 0.066CH2O0.5N0.15 + 

2.03H2O. 
b Data from partial nitritation/Anammox N-removal from black water (de Graaff et al., 2011; de Graaff et 

al., 2010). 

 

2.2.1.3 P recovery process 
Conventional sewage treatment systems remove phosphorus either by chemical precipitation 

with iron or aluminum salts or by biological phosphorus removal via bacteria that take up 

phosphate and store it as poly-phosphate. In both cases the phosphorus ends up in the waste 

sludge and is no longer available for recovery. Phosphate recovery from wastewater is possible, 

for example by struvite precipitation or in a crystallactor (Piekema and Giesen, 2001) in which 

calcium phosphate granules are formed on sand particles. However, at low sewage temperatures 
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(10–20°C) and low phosphate concentrations (<10 mg PO4
3¯-P/L) these processes may not be 

economical and is the motivation for continued research efforts to develop novel cost-effective 

P-recovery technologies. Examples are electrochemical phosphate recovery (Kappel et al., 2013) 

and reversible adsorption of phosphate on iron oxides, e.g. Martin et al. (2009). Because it is 

expected that such technologies can achieve at least 90% phosphate removal efficiency, this 

efficiency was adopted for the present study (Table 2.3). 

 
Table 2.3: Recovery efficiency for P recovery process  

Process Unit Value used Reference 

P recovery  
• Overall P recovery (removal) 

efficiency 

 
% PO4

3¯-P 
 

90a 
 

Design parameter 

a Data from a review study done by de-Bashan and Bashan (2004). 

 

2.2.1.4 Microalgae systems 
Recovery of N and P using microalgae seems to be a suitable and efficient method for municipal 

wastewater (Boelee et al., 2012; Shi et al., 2007; Zamalloa et al., 2013). Microalgae are 

autotrophic organisms that use light as their source of energy for the production of microalgal 

biomass. Mixed microalgae and heterotrophic organisms for nutrients immobilization also allow 

COD to be removed. This is known as a combined treatment or symbiotic microalgae system 

(Boelee et al., 2012; Shi et al., 2007; Zamalloa et al., 2013). In this study, microalgae biofilms 

instead of a suspended algae pond were considered because of a lower mixing energy, harvesting 

cost, and surface area footprint. Although Boelee (2013) reported that the microalgal biofilms 

post-treatment of municipal wastewater effluent was not feasible for year-round application 

under Dutch climate conditions, still the concept of microalgae biofilms for COD and nutrients 

removal is interesting due to its feasibility to other regions, like Southeast Asian countries. 

Therefore, no final evaluation of this system will be presented in this case study with its focus on 

moderate climate conditions as found in the Netherlands. Under appropriate light and 

temperature conditions, the microalgae treatment/recovery provides lower aeration energy as 

compared to CAS systems because phototrophs can provide the heterotrophic bacteria with the 
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oxygen to remove COD. Consequently, no extra aeration would be needed. Table 2.4 shows the 

removal and conversion efficiencies, and parameters that were used in the design of the 

microalgae systems. 

 
Table 2.4: Efficiency, conversion and design parameter values for symbiotic microalgae process 

Process Unit Value used Reference 

Symbiotic microalgae 
• N-target in effluent  
• CO2 need 
• O2 emission 
• Biomass yield 
• COD in microalgal biomass 
• N in microalgal biomass 
• P in microalgal biomass 
• COD removal efficiency by 

heterotrophs 
• Conversions for COD-removal, 

O2 need, CO2 production, and 
concentration of COD, N, P in 
biomass (see bioflocculation) 

 
mg NH4

+-N/L 
g CO2/ g NH4

+-Nremoved 
g O2/g NH4

+-Nremoved 
g VSS/g NH4

+-Nremoved 
g COD/g VSS 

g N/g VSS 
g P/g VSS 
% CODbs 

 

 
2.2 

26.19b 
22.67b 
12.82b 
1.43 

0.078b 
0.014b 

100 

 
WFD, 2000/60/ECa 

– 
– 
– 

Collet et al. (2011) 
– 
– 

Design parameter 

a Requirements for discharges from the European water framework directive (WFD) 2000/60/EC. 
b Assuming ammonium as N source, the following stoichiometric equation is used for microalgae (Boelee 

et al., 2012): CO2 + 0.7H2O + 0.12NH4
+ + 0.01H2PO4¯ → CH1.78O0.36N0.12P0.01 + 1.19O2 + 0.11H+. 

      
 

2.2.1.5 Reference CAS system 
In this study, a reference CAS system is defined for biological COD, N, and P removal. In 

addition, sludge is anaerobically digested to produce methane. Subsequently, CHP is used to 

convert methane into electricity and heat energy. The removal efficiency of organic matter 

during anaerobic digestion is assumed to be the same for both bioflocculation concentrate and 

CAS sludge waste; even though the bioflocculation concentrate sludge is estimated to give a 

higher yield in methane production than activated sludge. The removal and conversion 

efficiencies, and design specifications for the reference CAS system is shown in Table 2.5.  
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Table 2.5: Efficiency, conversion and design parameter values for the reference CAS system 

Process Unit Value used Reference 

Conventional activated sludge 
• Total COD removal efficiency 
• Total N removal efficiency 
• Total P removal efficiency 
• O2 need (heterotrophs) 
• O2 need (nitrification) 
• O2 need (biological P-removal) 
• CO2 need (nitrification) 
• COD need (denitrification) 
• COD need (biological P) 
• Biomass yield (COD-removal) 
• Biomass yield (nitrification) 
• Biomass yield (denitrification) 
• Biomass yield (biological P) 
• COD, N, P in biomass (see 

bioflocculation) 
• N2 emission (denitrification) 
• CO2 emission (heterotrophs) 
• CO2 emission (biological P) 

 
%  

% NH4
+-N 

% PO4
3¯-P 

g O2/g CODbremoved 
g O2/g NH4

+-Nremoved 
g O2/g CODbremoved 

g CO2/g NH4
+-Nremoved 

g COD/g NO3¯-N 
g COD/g PO4

3¯-Premoved 

g VSS/g CODbremoved 
g VSS/g NH4

+-Nremoved 
g VSS/g CODused 

g VSS/g CODused 
 
 

g N2/g NO3¯-N 
g CO2/g CODbremoved 

g CO2/g CODbused 

 
85c 
90c 
90c 

0.51a 
4.32b 
0.49b 
0.25b 
3.92b 
9.06b 
0.40a 
0.16 
0.30 
0.37b 

 
 

0.92b 
0.70a 
0.70b 

 
Design parameter 
Design parameter 
Design parameter 

– 
– 
– 
– 
– 

– 

Metcalf and Eddy (2004) 
Metcalf and Eddy (2004) 
Metcalf and Eddy (2004) 

– 
 
 

– 
– 
– 

Anaerobic sludge digestiond 
CHPd 

   

a Assuming acetate as organic matter, the following stoichiometric equation is used for aerobic, 
heterotrophic oxidation of organic matter (Metcalf and Eddy, 2004):  

   5CH3COO¯ + NH4
+ + 5O2 → C5H7O2N + 4H2O + 5CO2 + 4OH¯. 

b The following stoichiometric reactions are used for conventional nitrification/denitrification and 
biological P-removal in activated sludge systems, assuming acetate as COD (Metcalf and Eddy, 2004): 

 Nitrification: NH4
+ + 1.89O2 + 0.08CO2 → 0.016C5H7O2N + 0.95H2O + 0.98NO3¯ + 1.98H+, 

 Denitrification: 12.5CH3COO¯ + 14.38NO3¯ + 14.38H+ → 1.22C5H7O2N + 6.58N2 + 12.5OH¯ + 
18.9CO2 + 15.42H2O, 

 Biological P: 5CH3COO¯ + NH4
+ + 0.1H2PO4¯ + 4.875O2 → C5H7O2NP0.1 + 5CO2 + 4.05H2O + 

4.1OH¯. 
c With these removal efficiencies, a target effluent guideline of 125 mg COD/L, 10 mg N/L, and 1 mg P/L 

is possible.  
d See Table 2.1. 
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2.2.2 Procedure for novel WWTP configurations 

Figure 2.1 shows the five-step procedure to evaluate and select plant layouts for future municipal 

WWTPs. The first step is to identify the key performance indicators (KPIs) of future municipal 

WWTPs. New configurations should: 1) treat municipal wastewater such that the discharge 

guidelines are achieved; 2) be able to do so throughout the entire year; 3) maximize net energy 

yield and P recovery; and 4) minimize CO2 emission. Only P recovery was considered in this 

study, as N recovery is less important than P recovery. At the low N concentrations used  in this 

case study recovery would be too expensive and have too high an energy demand (Maurer et al., 

2003).  

 

Figure 2.1: Procedure to investigate plant layouts of future municipal WWTPs 

  = process step,  = input,   = output  
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In the second step, wastewater treatment and recovery technologies were selected with 

respect to these KPIs. Four wastewater treatment and recovery processes, together with the 

reference aerobic COD, N, and P removal, are considered in this study, as mentioned above in 

Section 2.2.1. 

In the third step, the four technologies were integrated into two new configurations, as shown 

in Figure 2.2. It is important to note that these two configurations were selected from 11 initial 

configurations (data not shown) with different positions of the process units and different recent 

technologies, for example microalgae as main treatment (Boelee et al., 2012), and low 

temperature upflow anaerobic sludge blanket and anaerobic digestion (Hendrickx et al., 2012). A 

preliminary selection from the 11 layouts showed that nutrient limitation and insufficient 

recovery efficiency were the main drawbacks of the 9 rejected configurations. Thus, only two 

configurations were further evaluated in this study. In Configuration 1 (Figure 2.2A), municipal 

wastewater, after pretreatment (screening and/or grit removal), is concentrated by 

bioflocculation. This pretreatment step removes heavy inert particles like sand and no significant 

changes in total COD, NH4-N, and PO4-P took place in this step. A large part of the particulate 

COD, is concentrated at a short hydraulic retention time (HRT) and SRT (Akanyeti et al., 2010), 

such that only a small part of biodegradable soluble COD (CODbs) is removed by aerobic 

mineralization. Likewise, a small fraction of available N and P will be incorporated in the 

heterotrophic biomass, and most of these nutrients will end up in the bioflocculation effluent. 

The next step consists of cold partial nitritation/Anammox to reduce N to levels that meet 

discharge guidelines; this is followed by phosphorus recovery. The bioflocculation concentrate is 

converted to methane in an anaerobic digester under mesophilic conditions (35°C). The methane 

production is converted to electricity and heat energy using a CHP unit. Even though the 

evaluation of the symbiotic microalgae system will not be presented in the case study, the 

scheme of this configuration could be found in Configuration 2 (Figure 2.2B). In Configuration 

2, pretreatment, bioflocculation, anaerobic sludge digestion and CHP are similar to those in 

Configuration 1 except that a symbiotic microalgae system is used to assimilate N and P and 

includes a buffer tank to collect wastewater during the night when there is no microalgae activity 

(Richmond, 2004). 
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Figure 2.2A: Novel Configuration 1 with bioflocculation, partial nitritation and Anammox, P recovery 

process, anaerobic sludge digestion, and CHP 

 

 

Figure 2.2B: Novel Configuration 2 with bioflocculation, symbiotic microalgae with heterotrophs, 

anaerobic sludge digestion, and CHP 

 

In steps four and five of the procedure, the numerical calculations were performed (see 

Figure 2.1). Numerical simulation under steady-state conditions and quantification of the 

selected KPIs were performed based on the data shown in Tables 2.1–2.5. A sensitivity analysis 

was conducted in the last step. The consequences of changing a given input factor allow us to 

explore the feasibility of new configurations in other countries and regions. In this study, two 

input factors, i.e. temperature and wastewater compositions, were varied ±20% of the nominal 
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values. As the ambient temperature would affect the required heating energy for anaerobic 

digestion, this becomes an interesting factor in our sensitivity analysis. Similarly, differences in 

wastewater composition affect both the recovery efficiencies as well as the total amount of 

resources that can be recovered.  

 

2.2.3 Configuration assessment 

Energy and mass balances, resource recovery, and effluent quality were calculated based on 

literature data and design specifications. 

  
2.2.3.1 Mass balance   
Stoichiometric equations were used to calculate the mass fluxes of COD, N and P in kg/day. 

Simple input‒output models were built to relate the inflow and outflow through the use of mass 

balances for each selected process. The general form of the mass balance is given by:   

 inx,inx,
x CF
dt

VdC
=   −   xoutx, CF   +   ∑

=

q
P

k
kx,

1
 (2.1) 

where VdCX/dt is the accumulation of compound X (kg/day), Fx is the flow rate of compound X 

(m3/day), Cx is the concentration of component X (kg/m3). ΣPx,k is the consumption in k=1,…,q 

processes of component X (kg/m3). In our case, component X refers to COD, N and P, 

respectively. In this study no accumulation of mass was assumed, consequently, the left hand 

side of Eq. 2.1 is set to zero, with dCX/dt = 0 and dV/dt = Fin – Fout = 0, leading to F = Fin = Fout. 

All technology steps are assumed to scale linearly and no dynamics are included. 

To calculate emissions, a global warming potential was based on both renewable CO2, 

produced by biological processes, and non-renewable CO2, produced by external electricity input 

with the assumption of 0.59 kg-CO2/kWh (Frijns et al., 2008). No other significant greenhouse 

gas emissions, such as CH4, CO, or N2O that may be produced from the treatment processes, 

were considered for the environmental impact. 
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The energy balance, shown below, accounts for three terms: energy consumption, energy 

production, and net energy yield. 

2.2.3.2 Energy consumption 
To calculate energy consumption only aeration and heating were considered; pumping energy 

was not taken into account. Aeration energy for aerobic biological process and heating energy 

for anaerobic digester are the dominant energy needs to treat municipal wastewater (Pakenas, 

1995). Energy required for aeration is calculated from the amount of oxygen consumed with an 

aeration efficiency rate of 1.5 kgO2/kWh (Frijns et al., 2008; Metcalf and Eddy, 2004). Heating 

energy was calculated using the following equation:  

 )(***
inSETPOINTpT
TTcFH −= ρ    (2.2) 

where H̅T is the heating energy consumption (kWh/day), F is the volumetric influent flow rate 

(m3/day), ρ is density of water (1 kg/L or 103 kg/m3), cp is a specific heat capacity of water 

(0.001167 kWh/kg/°C), TSETPOINT is the operational temperature of the anaerobic digester, which 

was set at 35°C, and Tin is wastewater temperature. In this study, the flow rate of thickener to 

anaerobic digestion for both Configuration 1 and the reference CAS is assumed to be the same. 

Thus, under this assumption heating energy consumption in anaerobic digestion requires the 

same amount for both configurations. 

  
2.2.3.3 Energy production 
The CHP unit efficiencies were assumed to be 38% for electricity production and 40% for heat 

recovery (Verstraete and Vlaeminck, 2011). The energy density of methane is 50–55.5 MJ/kg 

CH4; therefore approximately 13.9 kWh/kg CH4 was used (H2moves.eu, 2006). 

 
2.2.3.4 Net energy yield 
Net energy yield was calculated in kWh per m3 of wastewater by subtracting the energy 

consumption from the total amount of heat (HAD) and electricity (EAD) production, and is given 

by the equation: 

)()(
airTADADnet

HHEHE +−+=      (2.3) 
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where Enet is the net energy yield (kWh/m3), HAD is the amount heat production (kWh/m3), EAD is 

the amount of electricity production (kWh/m3), HT is the heating energy (kWh/m3), and Hair is 

the aeration energy (kWh/m3). 

 
2.2.3.5 Sensitivity analysis 
There are many different methods to conduct sensitivity analyses, such as differential sensitivity, 

subjective sensitivity, sensitivity index, and one-at-a-time sensitivity (Hamby, 1994; Saltelli et 

al., 2008). For a first indication of the sensitivities in this study, a one-at-a-time sensitivity 

analysis was conducted for Configuration 1 with respect to two factors: temperature and 

wastewater characteristics. Due to limited data of removal efficiencies at low temperatures 

(<20°C) for both bioflocculation and cold partial nitritation/Anammox, calculations with low 

temperatures may result in a relatively large uncertainty in simulation results. The energy 

consumption, energy production, and net energy yield were first calculated for the nominal 

values of the factors and then at values ±20% of nominal. The absolute value of the normalized 

sensitivity coefficient (|Sij|) indicates the most and least sensitive factors and it provides a 

direction for future research. The normalized Sij was calculated from:    

 
)(

*

)()(
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x

j
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x
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x
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f

ij
S

−

−

=     (2.4) 

where fj (x̄i) is the j th output value related to the maximum deviation point of the i th factor,        

fj (xi) is the j th output value related to the minimum deviation point of the i th factor, fj (xi) is 

output value related to nominal value, x̄i is maximum deviation point, xi is minimum deviation 

point, and xi is nominal value of the i th factor. 

To further investigate the robustness of Configuration 1, a global sensitivity analysis (GSA), 

see for example Saltelli and Annoni (2010), was conducted with respect to temperature and 

wastewater characteristics. In this global sensitivity analysis, temperatures ranged from 15 to 

25°C, total COD concentrations ranged from 289 to 647 mg/L, NH4-N concentrations ranged 

from 19.1 to 54.6 mg/L, and PO4-P concentrations ranged from 4.6 to 10.1 mg/L, where the 

intervals were obtained from Beheer Waterzuivering (2011). In the first step of the GSA, we 

standardized the four factors, such that each factor belongs to the interval [-1, +1]. In the second 
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step, we sampled the resulting hyper box of step 1 for 1000 times, using a Latin hypercube 

sampling scheme, and conducted a simulation for each sampled combination of factors. In the 

last step, we carried out a second-order regression-based analysis, assuming for each output 

(heating energy, aeration energy, energy production, and net energy yield) the following 

relationship; 

 exxaxxaxaxaxaxaxaxayy +++++++++++=
43342112

2

444

2

111443322110
......     (2.5) 

with y̅ is the simulated model output, y0 is the reference output, x1,…, x4 are the factors, e is the 

error term, and a1,…,a34 are the regression parameters. 

In compact matrix-vector form, suitable for further analysis, Eq. 2.5 can be written as; 

eyy TT +++=
0

     (2.6) 
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, see Abusam et al. (2001). 

For the estimation of
341

,...,aa , Eq. 2.5 can also be written as a linear regression model in 

matrix-vector form; 

+=       (2.7) 

with Tyy ],...,[
10001

= , is the regression matrix, 
Taay ],...,,[

3410
= , and Tee ],...,[

10001
= . 

It should be noted that each of the regression parameters is a sensitivity coefficient, which 

can be found from ordinary least-squares estimation, given the values of the sampled factors and 

corresponding simulated outputs, that is; 
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( )−=      (2.8) 

with  is a vector with 15 parameter estimates. 

It should, however, be realized that sensitivities obtained from a global sensitivity analysis 

can be influenced by the parameter interval selected (Keesman, 1989; Shin et al., 2013). 

 

2.2.4 Case study in the Netherlands 

The novel configurations were simulated under Dutch conditions, and for 100,000 inhabitants 

treating 13,000 m3 of wastewater per day. Average wastewater characteristics from 29 Dutch 

municipal WWTPs in 2010 were used (Beheer Waterzuivering, 2011). The concentrations of 

COD, N, and P are shown in Table 2.6. In the calculation of the heating energy, we assumed a 

wastewater temperature of 20°C.  

 
Table 2.6: The average of 29 Dutch municipal wastewater in 2001–2010 and maximum potential energy 

Constituent Concentrationsa 
(mg/L) 

Maximum potential energy from 
organic oxidationb (kWh/m3) 

Organics (COD)   
Total (TCOD) 449.0  
biodegradable soluble (CODbs)c 78.6 0.30 
biodegradable particulate (CODbp)d 260.0 1.00 
non-biodegradable soluble (CODnbs)e 33.6 0.13 
non-biodegradable particulate (CODnbp)f 76.8 0.30 
ammonium (NH4-N) 29.7  
phosphorus (PO4-P) 6.7  
Total  1.73 

a  Based upon on determination of COD fractions of 17.5% for CODbs, 57.9% for CODpb, 17.1% for 
CODnbp, and 7.5% for CODnbs (Pasztor et al., 2009). 

b  Based upon a theoretical 3.86 kWh energy production/kg COD oxidized to CO2 and H2O (Owen, 1982).  
c CODbs is soluble readily biodegradable organic material, which will be quickly assimilated into 

biomass and aerobic mineralized to CO2. 
d  CODbp is slowly biodegradable organic material, it must first be dissolved by extracellular enzymes and 

therefore be assimilated and aerobic mineralized at slower rate compared to CODbs. 
e  CODnbs is non-biodegradable organic material, which will be found in the treated wastewater.  
f  CODnbp is non-biodegradable organic material, it will contribute to the total sludge production during 

wastewater has been treated (Metcalf and Eddy, 2004). 
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2.3 Results and Discussion 

2.3.1 Novel configurations 

Using the configuration assessment as introduced in Section 2.2.3, two novel configurations 

were developed to treat municipal wastewater with respect to energy, phosphorus recovery, and 

carbon footprint. 

 The calculations of Configuration 2 showed that in the summer months, with an average 

irradiance of 385 µmol photons/m2/s over the day, with symbiotic microalgae treatment good N 

and P recoveries from sewage of 87% and 73%, respectively could be achieved. For COD and N 

also an effluent quality could be achieved that met their discharge guidelines. For P however, 

this was not possible because N became the limiting nutrient for microalgae growth. The N and P 

concentrations in the effluent in this study are in agreement with a study of Boelee et al. (2012), 

which also found N to be the limiting nutrient during symbiotic microalgae treatment. During the 

winter period microalgae treatment is not feasible for a temperate climate country like the 

Netherlands. The much lower temperature and an average irradiance in the winter period of 70 

µmol photons/m2/s (IET, 2014) prevent significant microalgae growth (Beardall and Raven, 

2013; Boelee, 2013; Richmond, 2004). However, the positive results obtained during the summer 

months provide a strong indication that wastewater treatment systems based on symbiotic 

microalgae treatment may be feasible for tropical regions. However, this study was limited to 

Dutch conditions and therefore in the following this configuration will not be taken into 

consideration. The mass fluxes for COD, N, and P of Configuration 1 are shown in Figure 2.3. 

The results from the primary treatment stream of Configuration 1 are comparable with the so-

called Energy Factor configuration suggested by Stowa (2010); however, the side-stream 

processes differ. Still, further investigation of each process is required. For example, at present, a 

proven technology for optimal nitrite formation in partial nitritation at temperature below 20°C is 

not yet developed; therefore, remains a challenge. Recently, Hendrickx et al. (2012) suggested 

the use of limiting oxygen in the partial nitritation to keep it running at low temperatures. Further 

development of a P-recovery technology with minimal energy input and maximal recovery of 

high quality product is necessary. 
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Figure 2.3: Mass balances (in kg/day) for nitrogen (N), phosphorus (P), and chemical oxygen demand 

(COD) in Configuration 1. COD in methane is 4 g CH4-COD/g CH4. The flows of biomass production in 

anaerobic digestion and cold partial nitritation/Anammox were not taken into account in the calculation. 

The corresponding calculation of mass fluxes of COD, N, and P can be found in Appendix A. 

 

2.3.2 Numerical configuration assessment  

The configuration assessment uses the KPIs as presented in Section 2.2.2. 

  
2.3.2.1 Effluent quality  
As demonstrated by the data in Table 2.7A, Configuration 1 can produce an effluent quality that 

meets the European urban wastewater treatment 91/271/EEC directive, i.e. maximum allowable 

concentrations for COD, N, and P of 125 mg-COD/L, 10 mg-Ntotal/L, and 1 mg-Ptotal/L, 

respectively (Council Directive, 1991). Ranges of effluent COD, the sum of nitrogen in 

ammonium and nitrate and phosphorus in phosphate concentrations from 29 Dutch municipal 

WWTPs in 2010 were reported with ranges of 29–72 mg COD/L, 2.2–9.2 mg NH4-NO3/L, and 

0.3–3.0 mg PO4-P/L (Beheer Waterzuivering, 2011). The effluent concentrations found in the 

reference CAS system and Configuration 1 are within these ranges. This indicates that the 

numerical model gives realistic results. 
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Table 2.7: Numerical results based on the selected key performance indicators (KPIs) for the novel 

configuration in comparison with the reference CAS system; (A) Effluent quality, operation applicable, 

and CO2 emission, (B) Model performance on energy consumption, production and net energy yield  

A 

Configuration 
Effluent quality (mg/L) Whole year 

operation 

CO2 emission  

(kg-CO2/m3) COD N-(NH4+NO3) PO4-P 

Configuration 1 54.6 4.0 0.6 Yes 0.28 

CAS 67.3 3.0 0.7 Yes 0.43 

 

B 

Configuration 

Energy consumption/production/yield (kWh/m3) 

Energy  

consumption 
Aeration Heating 

Energy 

production 

Net energy 

yield 

Configuration 1 0.23 0.11 0.12 0.47 0.24 

CAS 0.37 0.25 0.12 0.29 -0.08a 
a Negative value indicates that energy consumption is higher than energy production. 

 

 

2.3.2.2 Whole year application  
As with the CAS system, Configuration 1 is applicable the whole year through. Although the 

development of partial nitritation/Anammox at winter temperature (≤10°C) requires continued 

research effort, we believe a promising design for this treatment will be successfully achieved in 

the near future.  

 
2.3.2.3 Maximization of net energy yield and P-recovery  
Our implementation predicts an aeration energy consumption of 0.25 kWh per m3 of wastewater 

for the reference CAS system (Table 2.7B), which is close to the value reported by McCarty et 

al. (2011) of 0.3 kWh per m3. This again indicates the validity of our configuration assessment. 

Table 2.7B also shows that the total energy consumption of Configuration 1 was much lower 

than that of the CAS system, i.e. 0.23 and 0.37 kWh per m3 of wastewater respectively. The 



                                                              Plant design for energy and nutrient recovery

39 

volume of sludge fed to the digester was equal in both the CAS system and Configuration 1; 

therefore, the same amount of heating energy was needed to be able to operate anaerobic digester 

at 35°C. The lower energy consumption is attributable to the reduced aeration needs in 

Configuration 1 as most of the wastewater organic matter was diverted to the digester. This also 

explains why the energy production in Configuration 1 of 0.47 kWh per m3 of wastewater is 

much higher than in the reference CAS system (0.29 kWh per m3 of wastewater). The organic 

recovery (methane yield) increases from 24% in CAS system to 39% in Configuration 1 based 

on the total organic matter in the influent. Akanyeti et al. (2010) reported that at least 35% of the 

wastewater COD could be recovered as methane using the bioflocculation-digester concept the 

organic recovery difference between the studies can be explained by differences in the 

wastewater composition and operational parameters used. The net energy yield in Configuration 

1 is 0.24 kWh per m3 of wastewater, whereas in the CAS system no net energy is produced (net 

energy yield of -0.08 kWh per m3 of wastewater). 

In Configuration 1, 80% of the phosphorus in the influent is recovered, while in the CAS 

system all the phosphorus is wasted with the excess sludge. However, economically feasible P 

recovery from dilute wastewater streams still presents a technological challenge. Also, the 

quality of the P product remains an important issue as it may be polluted with heavy metals and 

organic micro-pollutants and may be of a lower quality compared to commercial products 

(Booker et al., 1999; de-Bashan and Bashan, 2004). 

 
2.3.2.4 Minimization of CO2 emission 
As expected, the data assembled in Table 2.7A show that Configuration 1 will reduce CO2 

emission from 0.43 to 0.28 kg-CO2 per m3 of wastewater compared to the CAS system. This is 

because a larger fraction of COD is converted to methane rather than aerobically mineralized to 

CO2.  

 

2.3.3 Sensitivity analysis 

Table 2.8 presents the values of the sensitivity coefficients of Configuration 1 in terms of energy. 

These coefficients were obtained after variations from the nominal value. Temperature and the 

wastewater composition were selected as input factors for this sensitivity study.  
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Table 2.8: Normalized sensitivity coefficient values of heating energy, aeration energy, energy 

production, and net energy yield calculated from ±20% variation in temperature, and fractions of 

wastewater composition. (Significant values are highlighted in bold.) 

Absolute sensitivity coefficient 
Heating 

energy 

Aeration 

energy 

Energy 

production 

Net energy 

yield 

Temperature  -0.5589 0.0000 0.0000 0.2798 

Total COD in wastewater 0.9999 0.3705 1.0001 1.2869 

NH4-N in wastewater 0.0000 0.6295 0.0000 -0.2869 

PO4-P in wastewater 0.0000 0.0000 0.0000 0.0000 

Fraction of CODbs in CODtotal  -0.0393 0.1598 -0.0237 -0.0995 

Fraction of CODp in CODtotal  0.1179 -0.4794 0.0710 0.2984 

 

 

As shown in Table 2.8, a ±20% variation in temperature, concentrations of NH4-N and PO4-P 

in wastewater, fraction biodegradable soluble COD in total COD (CODbs/COD ratio), and 

fraction particulate COD in total COD (CODp/COD ratio) did not give a significant difference 

for the energy terms. However, a 20% variation of total wastewater COD had a major impact on 

energy production and consumption.  

For Configuration 1 this is further illustrated in Figure 2.4. The energy yield of Configuration 

1 increased by 26% when the total COD increased by 20%–539 mg COD/L. This can be 

explained by higher methane production and lower amount of energy required for aeration and 

heating. For anaerobic digestion a constant settler capacity was assumed at 50 g-COD/L. Hence, 

the bioflocculated sludge is more concentrated and requires less heating input as the total volume 

is reduced. When total COD was increased by 20%, the methane production also increased by 

20% while the heating energy decreased by 20%. In contrast, the aeration energy only decreased 

by 7% as a small amount of aeration is still required for the bioflocculation process.  
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Figure 2.4: Normalized sensitivity coefficient values of heating energy (+), aeration energy (*), energy 

production (x), and net energy yield (o) calculated from ±20% and ±10% variation in total COD in 

influent (mg COD/L). The first, second, third, fourth and fifth points were calculated from -20%, -10%, 

nominal, +10%, and +20% variation, respectively. Negative values indicate that energy input is needed. 

 

The sensitivities (estimates of 1, 2, ..., 34) in Eq. 2.5 obtained from the global sensitivity 

analysis for Configuration 1 are presented in Table 2.9. The estimates in boldface clearly show 

that, under steady-state conditions, linear effects dominate; and that only the interaction between 

temperature and COD concentration effects heating and subsequently the net energy yield. 

Given the estimates for each output (heating energy, aeration energy, energy production, and 

net energy yield) the second-order matrix B from Eq. 2.6 can be constructed. An eigenvalue 

decomposition of B may reveal ridges or valleys in the response surface and thus indicates which 

combination of parameters is sensitive. In our example, B contains many zeros and once again 

indicates that only the combination of temperature and COD concentration determines the 

heating energy and the net energy yield. 
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Table 2.9: Estimated values of heating energy, aeration energy, energy production, and net energy yield 

obtained from the global sensitivity analysis. The standard deviations are between brackets. (Significant 

values are highlighted in bold.) 

Sensitivity 

coefficient 
Heating energy Aeration energy Energy production Net energy yield 

Temperature 4.07e-02 (1.56e-06) 2.59e-06 (1.50e-06) 1.56e-06 (1.56e-06) 4.07e-02 (1.54e-06) 

COD -5.23e-02 (1.56e-06) -1.76e-02 (1.50e-06) 2.04e-01 (1.56e-06) 1.34e-01 (1.54e-06) 

NH4-N -2.16e-06 (1.62e-06) -4.14e-02 (1.56e-06) -4.59e-07 (1.62e-06) -4.14e-02 (1.59e-06) 

PO4-P -1.67e-07 (1.57e-06) -1.41e-06 (1.51e-06) 3.03e-07 (1.57e-06) 8.44e-07 (1.55e-06) 

T * COD 1.74e-02 (2.70e-06) 1.09e-06 (2.60e-06) -1.87e-06 (2.70e-06) 1.74e-02 (2.66e-06) 

T * NH4-N -2.31e-07 (2.84e-06) -3.75e-06 (2.74e-06) 2.03e-07 (2.84e-06) -1.73e-06 (2.80e-06) 

T * PO4-P -2.90e-08 (2.64e-06) -4.32e-06 (2.54e-06) -3.88e-06 (2.64e-06) 1.06e-06 (2.60e-06) 

COD * NH4-N 4.66e-07 (2.75e-06) 4.09e-07 (2.65e-06) -1.06e-06 (2.75e-06) -4.72e-07 (2.71e-06) 

COD * PO4-P 4.49e-07 (2.62e-06) 4.24e-06 (2.52e-06) -7.19e-07 (2.62e-06) -6.45e-07 (2.58e-06) 

NH4-N * PO4-P 2.54e-06 (2.79e-06) -4.60e-07 (2.69e-06) -1.83e-07 (2.79e-06) -9.37e-08 (2.75e-06) 

T2 -1.09e-06 (3.11e-06) -9.03e-06 (3.00e-06) 8.52e-07 (3.11e-06) -3.15e-07 (3.07e-06) 

COD2 -7.23e-06 (3.10e-06) -4.05e-07 (2.98e-06) -1.64e-06 (3.10e-06) -1.53e-07 (3.05e-06) 

(NH4-N)2 4.32e-06 (3.13e-06) -7.97e-06 (3.01e-06) 4.76e-07 (3.12e-06) 3.14e-06 (3.08e-06) 

(PO4-P)2 4.06e-06 (3.05e-06) 3.59e-06 (2.94e-06) -1.89e-06 (3.05e-06) -1.04e-06 (3.00e-06) 

 

2.4 Conclusions 

This study has shown that it is possible to use a simple numerical simulation procedure to 

investigate future municipal WWTPs based on preconfigured key performance indicators for a 

selected country with specific wastewater characteristics and climate conditions. Using the 

Netherlands as an example for Western Europe and a moderate climate regime, it was found that: 

• A promising configuration of future municipal WWTPs consists of (i) bioflocculation to 

concentrate organic matter, (ii) cold partial nitritation/Anammox to remove N, (iii) P 

recovery, and (iv) anaerobic digestion and CHP to produce methane and generate 

electricity and heat. However, the technologies of bioflocculation with anaerobic 
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digestion, cold partial nitritation/Anammox, and P recovery should be further optimized 

and more fundamental knowledge about the integration of these process on municipal 

wastewater treatment is needed;  

• The proposed configuration can produce effluent at a quality that meets the discharge 

guidelines and it is applicable to treat wastewater year-round; 

• The net energy yield of the proposed configuration reached up to 0.24 kWh per m3 of 

wastewater because both methane production increased and aeration energy decreased, 

whereas a net energy deficit was found in the reference CAS system; 

• 80% of the phosphorus was expected to be recovered from the proposed configuration; 

• CO2 emission from the proposed configuration reduced by 35% as compared to the 

reference CAS system; 

• A change in total COD concentration in the municipal wastewater resulted in a 

significant change in energy consumption and production; and  

• With respect to second-order effects in a global sensitivity analysis, only the interaction 

between temperature and COD concentration determines the heating and thus also the net 

yield energy.  

On the basis of the presented procedure, other feasible integrated configurations could be 

designed and analyzed to select the most promising configuration for specific wastewater 

characteristics and climate conditions. Subsequently, each process in such a promising 

configuration needs to be evaluated using dynamic modeling and to assess the system 

performance under time-varying conditions and to identify optimal operation conditions.  
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Abstract 

This study aims at exploring the feasibility of two novel wastewater treatment configurations, 

including combined bioflocculation and anaerobic digestion but with different nutrient removal 

technologies, i.e. partial nitritation/Anammox or microalgae treatment. The feasibility of such 

configurations was investigated for 16 locations around the globe with respect to their net energy 

yield, nutrient recovery, CO2 emission, and area requirements. The results quantitatively support 

the applicability of (cold) partial nitritation/Anammox in tropical regions and some locations in 

temperate regions. The configuration with microalgae treatment is only applicable the whole 

year round in tropical regions that are close to the equator line. Microalgae treatment has an 

advantage over the configuration with partial nitritation/Anammox with respect to consumption 

of aeration energy and recovery of nutrients, but not with respect to area requirements. The 

analysis showed that in Thailand, the net energy yield of both configurations is at least a factor 

10 higher than conventional activated sludge systems, while CO2 emission is at least 22% lower. 

A sensitivity analysis of the configuration employing microalgae treatment shows that 

microalgal biomass yield and nutrient concentrations in the sewage have a critical impact on the 

area requirement and effluent concentrations. This study quantitatively provides initial selection 

criteria for the feasibility of such configurations for different locations around the globe. 

 

 

 

 

 

 

A modified version of this chapter is submitted for publication as: 

Khiewwijit, R., Rijnaarts, H. , Temmink, H., Keesman, K. J., 2015. Glocal assessment of 

integrated resource recovery in municipal wastewater treatment. 
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3.1 Introduction 

Sewage is commonly treated by conventional activated sludge (CAS) systems. However, these 

CAS systems cannot be considered sustainable because most of the organic matter is aerobically 

mineralized, the valuable nutrients nitrogen (N) and phosphorus (P) are not recovered and the 

treated water is not reused. Therefore, in recent years new municipal wastewater treatment plants 

(WWTPs) were proposed, which combine treatment with recovery of these resources 

(Khiewwijit et al., 2015b; Khiewwijit et al., 2015c; McCarty et al., 2011; Menger-Krug et al., 

2012; Remy et al., 2014). Numerical simulation, based on literature information and 

experimental data, can be used to predict the feasibility of such novel treatment and recovery 

concepts. Khiewwijit et al. (2015c) used this approach to evaluate two novel WWTP 

configurations (Figure 3.1A) that have the potential to maximize energy recovery and recover 

phosphorus under Dutch conditions. They also compared these configurations to the CAS system 

(Figure 3.1B). 

In Configuration 1, the diluted organic matter in municipal wastewater, after screening and 

grit removal, is concentrated by a bioflocculation process (Akanyeti et al., 2010; Faust et al., 

2014). In experiments reported by Khiewwijit et al. (2015a), it was found that bioflocculation in 

a high-loaded membrane bioreactor (HL-MBR) could concentrate 75.5% of the sewage COD 

(chemical oxygen demand), whereas only 7.5% was mineralized into CO2. They also found that 

only a small fraction of the sewage NH4-N and PO4-P ended up in the concentrate, and 90% of 

these compounds was conserved in the HL-MBR permeate. The bioflocculated sewage organic 

matter is subsequently converted to methane in a mesophilic anaerobic digester, followed by a 

combined heat and power (CHP) unit to convert the methane to electricity and heat. The effluent 

of the bioflocculation process is subsequently treated by (cold) partial nitritation/Anammox 

process for N removal. The P can be recovered, for example by struvite precipitation or by 

another low-cost technology (Cordell et al., 2011; Desmidt et al., 2015). In the study of 

Khiewwijit et al. (2015c) it was assumed that in the near future technologies which can recover P 

from diluted wastewater streams will become available. It was also assumed that such 

technologies can remove P down to levels that meet the discharge guidelines.  
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Figure 3.1: (A) Two novel configurations for municipal wastewater treatment, suggested by the study of 

Khiewwijit et al. (2015c), and (B) the CAS system. The solid lines indicate the processes of the 

mainstream treatment and dashed lines indicate processes of downstream solids treatment.                      

 is a decision block. 
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In Configuration 2, a similar approach with combined bioflocculation and anaerobic 

digestion of the bioflocculated organic matter is used. However, in this configuration the 

nutrients N and P in the effluent of the bioflocculation process are assimilated by microalgae. A 

buffer tank is required to store the bioflocculation effluent during the night when there is no 

microalgae activity. Microalgae treatment of municipal wastewater has been extensively studied 

because it reduces CO2 emission and aeration energy otherwise needed for nitrification. The 

microalgal biomass can be used as a fertilizer (Uysal et al., 2015) or as a source for bioethanol, 

methane, biodiesel, and biohydrogen (Milledge and Heaven, 2014; Mu et al., 2014). Mahdy et al. 

(2015) showed the high potential of co-anaerobic digestion of sludge and microalgal biomass. 

Khiewwijit et al. (2015c) evaluated the configurations of Figure 3.1A with respect to a 

number of key performance indicators (KPIs). It was found that Configuration 1 is the most 

promising configuration for the Netherlands, because it can: 

1) treat wastewater year round; 

2) produce an effluent at a quality that meets the discharge guidelines; 

3) reduce CO2 emission by 35% compared to the CAS system; 

4) achieve a net energy yield up to 0.24 kWh per m3 of wastewater, whereas the CAS system has 

a negative net energy yield of -0.08 kWh per m3 of wastewater; and 

5) recover 80% of the sewage P. 

It was also demonstrated that Configuration 2 with microalgae treatment is not applicable in the 

Netherlands, because of a limited light availability, low temperature and low irradiance in the 

winter period. However, microalgae treatment still may be applicable in regions with a tropical 

climate (Olguín et al., 2003). 

The objective of this study was to explore the feasibility of the above-mentioned municipal 

wastewater treatment configurations, including combined bioflocculation and anaerobic 

digestion with partial nitritation/Anammox or microalgae treatment for different locations around 

the globe, as we name here a glocal assessment analysis. Combined bioflocculation and 

anaerobic digestion were already analyzed in detail by Khiewwijit et al. (2015c) and therefore 

the present analysis mainly focused on the nitrogen removal technologies, i.e. (cold) partial 

nitritation/Anammox in Configuration 1 and microalgae treatment in Configuration 2. 
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3.2 Materials and Methods 

3.2.1 Scenario-based analysis 

The Excel-based model described by Khiewwijit et al. (2015c) with conversion efficiencies and 

design specifications for each of the processes in Configurations 1–2 and for the reference CAS 

system, was used for the calculations of the mass and energy balances under steady-state 

conditions. 

Initially, under average annual temperature and light intensity conditions in Thailand the two 

configurations of Figure 3.1A were compared to the CAS system (Figure 3.1B) with respect to 

the KPIs. Thailand was selected as an example of a region with tropical climates, thus having a 

high potential for microalgae treatment. In Thailand winter and summer conditions with respect 

to temperature and light intensity are similar (Table 3.1). Therefore, to calculate the heating 

energy for anaerobic digestion at 35°C the average annual temperature was used. For calculation 

of the area requirement for microalgae treatment the average annual temperature and annual light 

intensity were used. The target N concentration in the effluent was 2.2 mg Ntotal/L, which obeys 

the maximum tolerable risk (MTR) guidelines used by the Dutch water boards. The P 

concentration in the effluent should always be below 1 mg Ptotal/L (Council Directive, 1991).  

In a second step, for 16 selected locations worldwide the area requirements for a microalgae 

reactor were estimated in relation to seasonal changes of light intensity and temperature. The 

most promising wastewater treatment configurations for each of these locations were identified. 

Wastewater characteristics and required effluent quality were the same as used in the first step.  

Finally, the effects of N and P sewage concentrations, microalgal biomass yield and biomass 

maintenance coefficient on the area requirement of a microalgae reactor and on effluent quality 

were examined in more detail for those locations where microalgae treatment could possibly be 

applied with respect to temperature, light availability and light intensity. A sensitivity analysis 

with respect to temperature and wastewater characteristics on cold partial nitritation/Anammox 

process was already conducted by Khiewwijit et al. (2015c) and thus it was excluded in this 

study. Minimum and maximum values for sewage NH4-N of 20 and 35 mg N/L were used, 

respectively. For PO4-P these values were 3 and 9 mg P/L, respectively (von Sperling, 2007). 
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3.2.2 Characteristics of municipal wastewater  

The treatment configurations and the CAS system were evaluated for 100,000 inhabitants, 

treating a daily load of 13,000 m3 of wastewater. Typical concentrations of organic matter, N and 

P in municipal wastewater were used: 600 mg COD/L, 25 mg NH4-N/L and 5 mg PO4-P/L (von 

Sperling, 2007).  

 

3.2.3 Case study for different locations worldwide 

Figure 3.2 shows 16 locations that were initially selected for the glocal assessment analysis.  

 

Figure 3.2: Map of the 16 selected locations used in this study; (1) USA, Washington, Seattle, (2) USA, 

Missouri, Kansas city, (3) Spain, Almeria, (4) Poland, Warsaw, (5) China, Xi’an, (6) Japan, Akita, (7) 

Venezuela, Caracas, (8) Senegal, Dakar, (9) Ethiopia, Addis Ababa, (10) India, New Delhi, (11) Thailand, 

Bangkok, (12) Peru, Huancayo, (13) South Africa, Pretoria, (14) Australia, Alice Springs, (15) Argentina, 

Buenos Aries, and (16) Australia, Melbourne 

 

To select these locations, the globe was first divided into 36 regional groups with respect to 

degrees of longitude and latitude, where the globe was longitude-wise divided into 6 sub-regions 

of 60 degrees each, and latitude-wise divided into 6 sub-regions of 30 degrees each. The final 16 

regional groups were obtained after subtraction of 12 regions (polar zones), located above 60 
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degrees latitude North and South with an average yearly temperature below 0°C, and 8 regions of 

which the surface is mainly covered by ocean from the 36 regions. A representative location, i.e. 

a well-known city in each of the 16 regions, was then selected based on available datasets given 

by PV Education (2015) and IET (2015). 

 
Table 3.1: Average annual, summer and winter values of photon flux density (PFD) and temperature for 

the selected locations 

Country/City PFDa,b, mol/m2/h (µmol/m2/s)  Temperaturec, °C  

Annual Summer Winter Annual Summer Winter 

Northern Hemisphere       

1. USA, Washington, Seattle 0.99 (275) 1.71 (475) 0.33 (91) 11.4 17.9 5.6 

2. USA, Missouri, Kansas city 1.28 (354) 1.87 (520) 0.69 (192) 12.5 24.6 -0.4 

3. Spain, Almeria 1.45 (402) 2.10 (583) 0.86 (240) 18.7 24.9 13.1 

4. Poland, Warsaw 0.79 (220) 1.49 (414) 0.19 (52) 7.8 16.7 -0.7 

5. China, Xi’an 1.15 (320) 1.50 (417) 0.80 (222) 13.4 25.7 1.0 

6. Japan, Akita  0.95 (264) 1.29 (358) 0.43 (119) 11.1 22.3 0.7 

Nearby Equator line       

7. Venezuela, Caracas 1.31 (363) 1.40 (389) 1.22 (339) 22.8 23.0 21.7 

8. Senegal, Dakar 1.73 (481) 1.71 (476) 1.58 (438) 24.0 26.3 21.7 

9. Ethiopia, Addis Ababa 1.56 (432) 1.68 (465) 1.23 (342) 16.3 17.3 15.7 

10. India, New Delhi 1.32 (368) 1.59 (443) 0.98 (272) 25.0 32.6 15.2 

11. Thailand Bangkok 1.56 (434) 1.78 (494) 1.77 (491) 28.2 29.0 26.3 

12. Peru, Huancayo 2.04 (567) 2.22 (618) 1.93 (535) 10.1 10.9 8.9 

Southern Hemisphere       

13. South Africa, Pretoria 1.62 (450) 1.93 (537) 1.30 (361) 18.6 22.7 13.0 

14. Australia, Alice Springs 1.86 (518) 2.26 (628) 1.40 (388) 20.3 27.3 12.3 

15. Argentina, Buenos Aries 1.37 (381) 2.00 (556) 0.74 (207) 17.7 24.0 11.6 

16. Australia, Melbourne 1.18 (329) 1.87 (520) 0.57 (158) 14.3 19.3 9.3 
a Solar radiation on the horizontal surface in kWh/m2/day taken from PV Education (2015), excluding 

China, Xi’an. 
b China, Xi’an, solar irradiation on the horizontal surface in Wh/m2/day taken from IET (2015). 
c Temperatures taken from Weatherbase (2015). 
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3.2.4 Photon flux density and temperature 

Table 3.1 shows average annual, summer and winter values of photon flux density (PFD) and 

temperature for each selected location. All 16 locations were grouped into 3 different areas: (1) 

Northern hemisphere, i.e. locations above 30 degrees Northern latitude; (2) nearby the equator 

line; and (3) Southern hemisphere, which are locations close to and above 30 degrees Southern 

latitude. A regional dataset of surface solar radiation was taken from PV Education (2015) and 

IET (2015). The PFDs were then calculated following the steps in the study of Boelee et al. 

(2012), where it was assumed that 43% of the average photosynthetically active radiation (PAR), 

that is around 550 nm (400–700 nm), is utilized by microalgae. The temperatures were taken 

from Weatherbase (2015). 

 

3.2.5 Area requirement for microalgae 

The biomass productivity (Parea in g-dry weight/m2/h) and area requirement (A in m2/person) for 

a microalgae treatment reactor were calculated using the model and model parameters given in 

the studies of Tuantet (2015) and Zijffers et al. (2010), as shown in Eq. 3.1–Eq. 3.5:  
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with CX,N the biomass density assuming that the amount of N rather than P determines the 

biomass production (g-dw/m3), Nin and Neff  the concentrations of N in the influent and effluent, 

respectively (g N/m3), FN the fraction of N in microalgal biomass of 0.078 g-N/g microalgal 

biomass, rE,X the specific light intensity (mol photons/g-dw/h), PFDin the supplied photon flux 

density (mol photons/m2/h), L the light-path of photobioreactor (PBR) (m), µT the specific 

growth rate of microalgae (h-1) with an effect of temperature expressed by a function of fT, mE,X 

the biomass maintenance coefficient (mol photons/g-dw/h), YX,E the biomass yield on light 

energy (g-dw/mol photons), Parea the biomass productivity (g-dw/m2/h), A the area requirement 

(m2/person), and FW the flow rate (m3/h/person).  

Tuantet (2015) developed this model for (1) a high microalgal biomass concentration 

cultivated on human urine, (2) a short light path PBR to minimize the dark zone and (3) 

Chlorella sorokiniana as the main microalgae species. In the current study the same model was 

used because it is expected that similar microalgae species and reactor design can be used for 

municipal wastewater treatment. Chlorella sorokiniana is the most common microalgae species 

cultivated on municipal wastewater and has consistently high rates for nutrient removal and 

biomass productivity, as reviewed by Abinandan and Shanthakumar (2015) and Chen et al. 

(2011). Whereas Tuantet (2015) showed that P was the major factor limiting microalgae growth 

on human urine, in this study N is the limiting nutrient, as will be shown later.  

Not only irradiance but also temperature affects microalgae growth (Eq. 3.3). Figure 3.3 

shows the effect of temperature on growth rate of Chlorella sorokiniana. The effect of 

temperature on growth rate was calculated using the temperature function from the study of 

Slegers et al. (2013): 
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with fT the effect of temperature on growth rate (dimensionless), Tlet the lethal temperature of 

specific microalgae species use (°C), Topt the optimal growth temperature of specific microalgae 

species (°C), and β the curve modulating constant related to temperature coefficient Q10, which is 

the proportional change in growth rate with a 10°C rise in temperature (dimensionless). 
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Figure 3.3: Effect of temperature on growth rate of Chlorella sorokiniana 

If the temperature function fT = 0, no growth is possible. If fT = 1, growth is only influenced by sunlight 

intensity, independent of temperature. 

 

3.2.6 Assumptions and parameter values  

The following assumptions were made: (1) wastewater temperature is equal to the air 

temperature; (2) temperature does not affect the process of bioflocculation; (3) the anaerobic 

digester is controlled at a mesophilic temperature of 35°C; (4) photo-inhibition of the microalgae 

does not take place; and (5) cold partial nitritation/Anammox can be applied if the temperature is 

above 10°C. Lotti et al. (2014) showed that Anammox bacteria can be enriched at a temperature 

of 15°C. However, based on the work of Hendrickx et al. (2014), it is expected that in the near 

future it will be possible to apply partial nitritation/Anammox process at temperatures as low as 

10°C. The system’s and microalgae dependent parameters are given in Table 3.2. 
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Table 3.2: Parameters used in the calculations of area requirement for cultivation of microalgae 

Parameter Unit Type of parameters Reference 

  System 

parameter 

Chlorella 

sorokiniana 

 

Neff g N/m3 2.2 – Boelee et al. (2012) 

YX,E g-dw/mol photons – 0.933 Tuantet (2015) 

mE,X mol photons/g-dw/h – 0.0068 Tuantet (2015) and 

Zijffers et al. (2010) 

L m 0.01 – Tuantet (2015) 

Topt °C – 38.1 Morita et al. (2000) 

Tlet °C – 49.7 Morita et al. (2000) 

β (-) – 1.6 Vona et al. (2004) 

 

3.2.7 Sensitivity analysis  

Differential sensitivity analysis was conducted for the area requirement of microalgae reactor in 

Configuration 2 with respect to two uncertain factors: the microalgal biomass yield on light 

energy (YX,E) and the microalgal biomass maintenance coefficient (mE,X). The normalized 

sensitivity coefficients (dimensionless) indicate which of the two factors is most sensitive and 

provide directions for future research. The normalized sensitivity coefficient for a particular 

independent factor was obtained by taking the partial derivatives of the dependent variable with 

respect to the independent factor and scaled by the nominal values of the dependent variable and 

independent factor. Analytical expressions for the normalized sensitivity coefficients of area (A) 

with respect to YX,E and mE,X are given by (see Appendix B for details): 
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with SA,YX,E
 the nominalized sensitivity coefficient of area requirement on YX,E, SA,mE,X

 the 

nominalized sensitivity coefficient of area requirement on mE,X, the nominal value of YX,E, 

the nominal value of mE,X, and the area requirement related to the nominal values of each 

factor. 

A one-at-a-time sensitivity analysis was used to quantify the changes in effluent quality and 

area requirement by varying sewage N and P concentrations. As mentioned before, NH4-N 

concentrations varied from 20 mg N/L (Nmin), 25 mg N/L (Ntypical) to 35 mg N/L (Nmax). PO4-P 

concentrations varied from 3 mg P/L (Pmin), 5 mg P/L (Ptypical) to 9 mg P/L (Pmax). Calculations of 

area requirement were performed based on average annual light intensity and temperature 

conditions. 

 

3.3 Results and Discussion 

3.3.1 Scenario-based analysis 

The study of Khiewwijit et al. (2015c) showed that year round wastewater treatment with 

microalgae is not feasible in the Netherlands. Therefore, an initial quantitative scenario-based 

analysis of the two new WWTP configurations and the CAS system was conducted for Thailand, 

because it is expected that in Thailand both partial nitritation/Anammox and microalgae 

treatment can be applied throughout the entire year. Table 3.3 shows the KPIs for the three 

WWTP systems when operated in Thailand. 
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Table 3.3: Numerical results based on the key performance indicators (KPIs) for Configurations 1 and 2 

in comparison to the CAS system, using Thailand as a case study; (A) Energy consumption, energy 

production and net energy yield, (B) Nutrient recovery and CO2 emission 

A 

Configuration Energy consumption/production/yield (kWh/m3 of wastewater) 

 Energy 

consumption 

Aeration Heating Energy 

productiona 

Net energy yieldb 

Configuration 1 0.18 0.11 0.07  0.63 0.45 

Configuration 2 0.10 0.03 0.07 0.63 0.53 

CAS 0.36 0.29 0.07 0.40 0.04 
a This energy production includes both electricity and heat energy. 
b This net energy yield is calculated based on energy consumption only aeration and heating, other energy 

needs of such as pumping, lighting and dewatering are not taken into account. 
 
 

B  

Configuration Nutrient recovery  

(as 100% of initial amount) 

CO2  emission/consumption 

(kg-CO2/m3 of wastewater) 

 N P CO2 emission CO2 consumption 

Configuration 1 0 72 0.38 0 

Configuration 2 70 65 0.35 -0.63c 

CAS 0 0 0.49  0 
c Negative values indicates that CO2 consumption is mainly for a microalgae reactor. 

 

3.3.1.1 Energy and nutrient recovery  
While in the CAS system the major fraction of sewage organic matter is aerobically mineralized, 

in Configurations 1 and 2 most of this organic matter is distributed to the anaerobic digester. 

This explains why in Configurations 1 and 2 significantly more methane is produced, and thus 

more electricity and heat energy are generated than in the CAS: 0.63 kWh per m3 of wastewater 

compared to 0.40 kWh per m3 for the CAS system (Table 3.3A). Table 3.3A also shows that for 

all configurations the same amount of energy was needed to heat up the anaerobic digester, 

because the amount of water going to the anaerobic digester was assumed to be the same for all 
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configurations. Because during bioflocculation oxidation of organic matter is minimized, the 

total aeration energy of Configuration 1 (0.11 kWh/m3 of wastewater) and of Configuration 2 

(0.03 kWh/m3 of wastewater) was much lower than the aeration energy needed for the CAS 

system (0.29 kWh/m3 of wastewater). Remark that in theory, the oxygen that is produced by the 

microalgae in Configuration 2 could be used in the bioflocculation unit, further reducing the 

aeration energy that is needed in this configuration. However, this is not currently 

technologically feasible. The higher aeration energy in Configuration 1 compared to 

Configuration 2 can be explained by the oxygen that is needed for partial nitritation (Fux and 

Siegrist, 2004).  

When applied under Thai conditions, the net energy yield of Configuration 2 (0.53 kWh/m3 

of wastewater) is slightly higher than for Configuration 1 (0.45 kWh/m3 of wastewater) and at 

least a factor 10 higher than for the CAS system. It should be noted that in these results energy 

consumption for pumping, thickening and dewatering was not taken into account and that to 

harvest microalgal biomass also a considerable amount of energy is required (Chen et al., 2011; 

Collet et al., 2011). 

Table 3.3B shows that with Configuration 1 72% of the sewage P was recovered, while in the 

CAS system all the P and N were wasted with the excess sludge or by N2 emission, respectively. 

In Configuration 2, 70% of the sewage N and 65% of the sewage P was assimilated by 

microalgae. This implies that Configuration 2 employing a microalgae reactor presents as a 

promising option for municipal wastewater treatment with respect to amounts of nutrient 

recovery.  

 
3.3.1.2 CO2 emission  
Table 3.3B shows that in Thailand CO2 emission for the CAS system was 0.49 kg CO2/m3 of 

wastewater. In Configuration 1, CO2 emission was 22% lower (0.38 kg CO2/m3). In 

Configuration 2, the CO2 emission was 0.35 kg CO2/m3 of wastewater. Also, in this 

configuration the microalgae need 0.63 kg CO2/m3 to be able to grow. Theoretically, this CO2 

consumption could be supplied by the bioflocculation and anaerobic digester. However, similar 

to the oxygen transfer from microalgae reactor to the bioflocculation unit this currently is 

technologically not feasible. 
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3.3.1.3 Area requirement 
Based on the results presented in Table 3.3, Configuration 2 with microalgae treatment seems to 

be the most promising design for future municipal WWTPs in Thailand and in other tropical 

regions. However, the model calculations show that a microalgae reactor requires an area of 2.2 

m2/person. This is similar to the 2.1 m2/person found by Boelee et al. (2012) for a microalgae 

biofilms reactor that was applied for nutrient removal after a high-rate activated sludge process 

to remove organic pollutants. A typical CAS system only requires 0.2–0.4 m2/person (Boelee et 

al., 2012). Thus, microalgae treatment may only be a viable option in rural areas. On larger 

scales, i.e. located in or nearby cities, land availability and costs are limiting factors. This implies 

that microalgae treatment only would be attractive if high value products, such as carotenoids, 

aquaculture feed and dietary supplement can be produced by the microalgae (Enzing et al., 

2014). It is recognized however that in this case contamination of the microalgal biomass with 

wastewater pollutants, for example pathogens, heavy metals and organic micropollutants could 

present a serious problem.  

 

3.3.2 Area requirement for different locations worldwide 

The productivity of microalgae is location specific, because it is largely determined by light 

intensity and availability and by temperature (Slegers et al., 2013). To investigate this in more 

detail, microalgal biomass productivity and area requirement were calculated for 16 locations 

around the globe, with their different seasonal conditions (Table 3.1). Figure 3.4 shows biomass 

productivity and area requirement for each of these locations as a function of average annual, 

summer and winter temperature and light intensity. 

 



                                                    Glocal assessment of integrated treatment and recovery concepts 

63 

 
Figure 3.4: Comparison of calculated (A, B, C) biomass productivity and (D, E, F) area requirements for 

all 16 locations under different seasonal conditions; (black) annual, (grey) summer, (light grey) winter. 

Locations are grouped into; (A, D) Northern hemisphere, (B, E) nearby the equator line and (C, F) 

Southern hemisphere. (Numbers represent area requirements for values higher than presented in Y-axis.) 



Chapter 3

64 

In the Northern hemisphere (Figure 3.4A) biomass productivities were very different (0.2–

25.5 g-dw/m2/d) between summer and winter. The area requirement ranged between 2 and 6 

m2/person for the summer period and between 14 and 273 m2/person for the winter period 

(Figure 3.4D). The model in this study allowed microalgae growth at temperatures below 5°C, 

but it is very unlikely that microalgae can really grow at such temperatures. Therefore, area 

calculations at very low temperatures may result in a relatively large uncertainty in the 

simulation results. Nevertheless, because of the large area requirements in the winter periods it 

can be concluded that Configuration 2 employing a microalgae reactor is not feasible for 

locations in the Northern hemisphere. 

In contrast, microalgae treatment seems to be applicable for locations nearby the equator line. 

For the winter period, the lowest area requirement was found for Thailand - Bangkok with 2.2 

m2/person, followed by Senegal - Dakar (3.5 m2/person), Venezuela - Caracas (4.5 m2/person), 

Ethiopia - Addis Ababa (7.5 m2/person), Peru - Huancayo (9.1 m2/person), and India - New 

Delhi (9.9 m2/person). Thus, the area requirements for configuration based on microalgae 

treatment always are much higher than for CAS systems (0.2–0.4 m2/person), but are comparable 

to the area for other low-cost wastewater treatment systems such as constructed wetlands of 3.5–

7 m2/person (Rousseau et al., 2004). Interestingly, Figure 3.4E shows that in India the area 

requirement in the winter period was almost 5 times higher than in the summer period (1.7 

m2/person). Thus, when winter conditions are very different from summer conditions, for 

instance more than a 10°C difference in temperature, microalgae treatment could be a promising 

option for municipal wastewater only for the summer period, while the CAS system or 

Configuration 1 is still needed for the winter period. However, this may not be economically 

feasible and thus Configuration 1 with (cold) partial nitritation/Anammox would be an attractive 

option to treat wastewater throughout the entire year. 

With respect to the Southern hemisphere, a microalgae treatment is only applicable for 

tropical regions. The area requirements for the winter period for South Africa - Pretoria and 

Australia - Alice Springs were 9.1 and 9.0 m2/person, respectively. Similar to India, on these 

locations microalgae treatment only seems to be possible in the summer period. In Argentina - 

Buenos Aries and Australia - Melbourne a microalgae treatment is not realistic, because the high 

area requirements are as high as 18 and 30 m2/person in the winter, respectively (Figure 3.4F). 
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Based on the results above, it was concluded that Configuration 2 with microalgae treatment 

is only feasible for tropical locations, for example Venezuela - Caracas, Senegal - Dakar, 

Ethiopia - Addis Ababa, Thailand - Bangkok and Peru - Huancayo, where light intensity at the 

winter period is above 340 µmol photons/m2/s and differences in water temperature between 

summer and winter are less than 5°C. Configuration 1 with (cold) partial nitritation/Anammox 

for N removal is only feasible at locations where the winter water temperature is above 10°C 

(Hendrickx et al., 2014). This concerns tropical regions and some locations in temperate regions, 

such as Spain - Almeria, India - New Delhi, South Africa - Pretoria, Australia - Alice Springs, 

and Argentina - Buenos Aries. However, a technological bottleneck may be partial nitritation at 

low temperatures (Hao et al., 2002).  

Figure 3.5 summarizes the feasibility of applying Configuration 1 or 2 for different locations. 

In case Configurations 1 and 2 are not feasible, for example for Washington - Seattle, Missouri - 

Kansas city, Poland - Warsaw, China - Xi’an, Japan - Akita, and Australia - Melbourne, CAS 

systems should be applied because they works throughout the entire year. It should, however, be 

realized that at very low water temperatures also CAS systems may not work during the winter 

period because of a reduced nitrification efficiency (Kim et al., 2008). 

 

Figure 3.5: Map of the 16 selected locations used in this study with the most promising candidate for 

municipal wastewater treatment; (blue) Configuration 1 with (cold) partial nitritation/Anammox, (green) 

Configuration 2 with microalgae, and (grey) the CAS system
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3.3.3 Sensitivity analysis 

A sensitivity analysis was performed for Configuration 2 with respect to wastewater 

composition, microalgal biomass yield and microalgal biomass maintenance. This sensitivity 

analysis was conducted only for Venezuela - Caracas, Senegal - Dakar, Ethiopia - Addis Ababa, 

Thailand - Bangkok, and Peru - Huancayo, where microalgae treatment is a promising concept. 

 
3.3.3.1 Microalgal biomass yield and maintenance coefficient  
The microalgal biomass yield has a major impact, while microalgal biomass maintenance only 

had a minor effect on the area requirements (Figures B.1–B.2 of the Appendix B). Figure 3.6 

shows the effect of microalgal biomass yield on the area requirements for different (average) 

annual temperatures and light intensities.  

 

Figure 3.6: Area requirements in relation to different microalgal biomass yield values for the five 

potential locations, that are applicable for Configuration 2 with microalgae treatment; (+) Venezuela - 

Caracas, (*) Senegal - Dakar, (x) Ethiopia - Addis Ababa, (○) Thailand - Bangkok, and (●) Peru - 

Huancayo. (Results represent the area requirement with respect to annual temperature, annual light 

intensity, and typical wastewater composition: 600 mg COD/L, 25 mg NH4-N/L and 5 mg PO4-P/L.) 
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Clearly, when more biomass can be grown per mole of photons, less area is needed. Kliphuis 

et al. (2010) reported a theoretical maximum biomass yield on nitrate of 1.57 g-dw/mol photons. 

A similar value can be anticipated on ammonium as nitrogen source. In this study, a typical 

biomass yield of 0.933 g-dw/mol photons was used. However, this yield depends on the 

microalgae species and/or reactor type (Boelee et al., 2014) and can cause huge differences in 

area requirements. For example, in Peru the area requirement would increase from 7.7 m2/person 

at a biomass yield of 0.933 g-dw/mol photons to almost 16 m2/person at 0.450 g-dw/mol 

photons. This demonstrates that interpretation of the model results should be done with great 

care, and more experimental data about the biomass yield is required before conclusions can be 

drawn about the applicability of microalgae treatment. 

Unlike the effect of biomass yield, the microalgal maintenance coefficient did not give 

significant difference in the area requirement (Figure B.2). This can be explained by the low N 

concentrations in municipal wastewater compared to other wastewater sources. This results in a 

low biomass concentrations (Eq. 3.1) with a high specific light intensities, i.e. a large fraction of 

the light is available for the microalgae (Eq. 3.2) and therefore a maintenance requirement, 

which is insignificant compared to the growth rate of the microalgae (Eq. 3.3). For example, 

after bioflocculation process a concentration of 21 mg N/L would be assimilated by microalgal 

biomass and this would lead to a low biomass density of approximately 0.3 g-dw/L. Other N 

sources such as urine have much higher N concentrations and the biomass density could be as 

high as 14.2 g-dw/L (Tuantet, 2015). 

 
3.3.3.2 NH4-N and PO4-P concentrations 
Table 3.4 gives effluent quality and area requirements for a range of different concentrations of 

N and P (von Sperling, 2007). The numbers in boldface clearly show that N and P concentrations 

have a major impact on the effluent quality. If the concentration of PO4-P in wastewater would 

increase from 5 to 9 mg P/L, N rather than P would become the limiting nutrient for microalgae 

growth. This implies that P in the effluent can no longer meet the effluent guideline of 1 mg 

Ptotal/L and additional post-treatment would be needed. In contrast, if the concentration of NH4-N 

in wastewater would increase from 25 to 35 mg N/L, while the concentration of PO4-P would 
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decrease from 5 to 3 mg P/L, P rather than N becomes the limiting nutrient. In this case 

additional N removal is required (van der Steen et al., 2015). 

 

 
Table 3.4: Comparison of numerical results based on effluent quality (mg/L) and area requirement 

(m2/person) for microalgae cultivation with given annual PFD and annual temperature, as mentioned in 

Table 3.1, and based on a range of sewage concentrations of NH4-N and PO4-P. NH4-N concentrations 

varied from 20 mg N/L (Nmin), 25 mg N/L (Ntypical) and 35 mg N/L (Nmax). PO4-P concentrations varied 

from 3 mg P/L (Pmin), 5 mg P/L (Ptypical) and 9 mg P/L (Pmax). Significant values are highlighted in bold. 

Wastewater characteristic Nmin, Pmin Nmax, Pmin Nmin, Pmax Nmax, Pmax Ntypical, Ptypical 

Effluent quality      

NH4-N (mg N/L) 5.64 20.78 2.20 2.20 2.20 

PO4-P (mg P/L) 0.15a 0.15a 5.57 2.78 0.60 

Area requirement (m2/person)     

1. Venezuela, Caracas 2.3 2.3 2.9 5.8 3.9 

2. Senegal, Dakar 1.6 1.6 2.0 3.9 2.6 

3. Ethiopia, Addis Ababa 3.3 3.3 4.3 8.4 5.6 

4. Thailand, Bangkok 1.3 1.3 1.7 3.3 2.2 

5. Peru, Huancayo 4.5 4.5 5.8 11.4 7.7 
a P becomes the limiting nutrient; therefore, the biomass density was calculated based on a fraction of P in 

microalgal biomass of 0.0145 g-P/g algal biomass (Tuantet, 2015) and P-target in effluent was 0.15 mg 
P/L (Boelee et al., 2012). 

 

Table 3.4 also shows that the composition of NH4-N and PO4-P in the sewage has a strong 

impact on the area requirement. The area requirement becomes about 40% lower when the 

concentrations of both NH4-N and PO4-P changed from typical to minimum values and 

approximately 50% higher when concentrations change from typical values to maximum values. 

At a minimum PO4-P concentration of 3 mg P/L, a higher NH4-N does not necessarily result in a 

higher area requirement, because P becomes the limiting nutrient. Nevertheless, at a maximum 

PO4-P concentration of 9 mg P/L and a maximum NH4-N of 35 mg N/L, the cultivation area was 

about 2 times the area needed at a maximum PO4-P concentration and a minimum NH4-N 

concentration of 20 mg N/L. These results indicate that, in addition to light intensity and 
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temperature conditions, the potential of microalgae treatment is strongly determined by the 

concentrations of NH4-N and PO4-P in the sewage. 

 

3.4 Conclusions 

The feasibility of two novel municipal wastewater treatment configurations was investigated for 

16 locations around the globe with respect to their net energy yield, N and P recovery, CO2 

emission and area requirements. The results were compared with the CAS system. Both 

configurations are based on combined bioflocculation and anaerobic digestion but with different 

nutrient removal technologies, i.e. partial nitritation/Anammox or microalgae treatment. The 

results quantitatively support the pre-assumption that the applicability of the two configurations 

are strongly location dependent. The configuration with (cold) partial nitritation/Anammox is 

applicable in tropical regions and some locations in temperate regions, such as Southern Europe 

and Southern part of South America. The configuration with microalgae treatment is only 

applicable the whole year round in tropical regions that are close to the equator line, such as 

Southeastern Asia and Northern part of South America. On the locations with very low sewage 

temperatures, e.g. temperatures below 10°C, for example in Northern America and Eastern 

Europe, CAS systems are the only option. A sensitivity analysis of the configuration employing 

microalgae treatment shows that microalgal biomass yield and nutrient concentrations in the 

sewage have a critical impact on the area requirement and effluent concentrations.  
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Abstract 

This work aims at exploring the feasibility of a combined process bioflocculation to concentrate 

sewage organic matter and anaerobic fermentation to produce volatile fatty acids (VFA). 

Bioflocculation, using a high-loaded aerobic membrane bioreactor (HL-MBR), was operated at 

an HRT of 1 hour and an SRT of 1 day. The HL-MBR process removed on average 83% of 

sewage COD, while only 10% of nitrogen and phosphorus was removed. During anaerobic 

fermentation of HL-MBR concentrate at an SRT of 5 days and 35°C, specific VFA production 

rate of 282 mg VFA-COD/g VSS could be reached and consisted of 50% acetate, 40% 

propionate and 10% butyrate. More than 75% of sewage COD was diverted to the concentrate, 

but only 15% sewage COD was recovered as VFA, due to incomplete VSS degradation at the 

short treatment time applied. This shows that combined process for the VFA production is 

technologically feasible and needs further optimization. 
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4.1 Introduction  

Conventional (aerobic) municipal wastewater treatment plants are designed to remove organic 

matter and nutrients such that an effluent quality is produced that meets the discharge guidelines. 

Instead of a waste, municipal wastewater recently has started to be considered a valuable 

resource in terms of reusable water, energy and nutrients (Stowa, 2010; Wang et al., 2012). 

Unfortunately, generally the concentration of organic matter in sewage is low and sewage has a 

relatively low temperature of e.g. 10‒20°C (Metcalf and Eddy, 2004). These characteristics 

prevent the direct production of valuable resources from organic matter, such as methane or 

volatile fatty acids (VFA), and makes pre-treatment to concentrate the organic matter necessary. 

Aerobic bioflocculation of raw sewage in a high-loaded membrane bioreactor (HL-MBR) is a 

promising technique to accomplish such a concentration step, while at the same time it can 

produce a water quality that is fit for reuse (Akanyeti et al., 2010; Faust et al., 2014). 

Often anaerobic digestion is applied to reduce the amount of primary sludge (PS) and 

secondary activated sludge (AS) and to produce methane from these solids (Lettinga, 1995). This 

process consists of four subsequent steps: hydrolysis, acidogenesis, acetogenesis and 

methanogenesis. Complete digestion results in the production of methane, whereas the first three 

steps have VFA as the main end product. Production of VFA is useful, as they are the starting 

compounds for subsequent production of a wide range of higher value products, such as 

hydrogen gas, medium-chain fatty acids and bioplastics. The VFA can also be used to enhance 

biological nutrient removal (Lee et al., 2014). However, to produce VFA, methanogenesis should 

be avoided. This can be accomplished by applying a short solids (sludge) retention time (SRT) to 

wash-out the methanogenic microorganisms and/or by operating the anaerobic reactors at 

extreme pH values. For example, no detectable methane production was found in anaerobic 

fermenters operated at extremely low pH (pH 4) or extremely high pH (pH 10–11) (Chen et al., 

2007; Yu et al., 2013; Yuan et al., 2006).  

Previous studies on solids hydrolysis and VFA production from sewage organic matter were 

conducted with PS, AS, or a mixture of these. The higher fraction of biodegradable organic 

matter in PS gives a higher VFA yield per gram of solids compared to AS or a mixture of PS and 

AS (Ucisik and Henze, 2008; Yuan et al., 2009). Ucisik and Henze (2008) reported a specific 
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VFA production of 270 mg chemical oxygen demand (COD) per gram of volatile suspended 

solids (VSS) from PS and this VFA was composed of 50% acetate, 35% propionate, 10% 

butyrate, and 5% other VFA. This result is in line with the study by Ferreiro and Soto (2003), 

who found a specific VFA production of 170–370 mg COD/g VSS of PS and a VFA 

composition of 37–60% acetate, 30–55% propionate and 8–20% butyrate. 

Akanyeti et al. (2010) reported that with a combination of aerobic bioflocculation and 

subsequent anaerobic digestion at least 35% of sewage COD can be converted to methane. This 

yield is much higher than a methane recovery of 18% when PS and/or a mixture of PS and AS 

are digested (Cao, 2011). This is because the bioflocculation process not only concentrates the 

COD that is contained in the settleable solids, but also all of the suspended COD, colloidal COD 

and even part of the soluble COD. Besides, with bioflocculation aerobic mineralization of 

organic matter, taking place in conventional activated sludge (CAS) systems, is largely avoided. 

For example, Faust et al. (2014) showed that, given proper operational conditions, excellent 

bioflocculation is possible, as only 10–15% of the COD load is lost by mineralization. Model 

calculations by Khiewwijit et al. (2015) also showed a high potential COD recovery. However, 

the model calculations focussed on methane production rather than on the production of more 

valuable VFA.  

 

 

Figure 4.1: Combined bioflocculation using a high-loaded MBR (HL-MBR) to concentrate sewage 

organic matter, and anaerobic fermentation using sequencing batch reactor (SBR) to produce VFA 
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In the literature no information is available about the COD recovery that can be achieved by 

combined bioflocculation and VFA production. Therefore, in this study the performance of this 

combination was further investigated (Figure 4.1), focusing on solids degradation, VFA 

production, VFA composition, and nitrogen (N) and phosphorus (P) release. For this purpose an 

HL-MBR was used for the bioflocculation process and an anaerobic sequencing batch reactor 

(SBR) for subsequent VFA production from the concentrate that was produced by the HL-MBR. 

 

4.2 Materials and Methods 

4.2.1 Municipal wastewater characteristics 

Municipal wastewater was collected from a school and a few households nearby this school (Van 

Hall School Leeuwarden, The Netherlands). The wastewater first passed a sedimentation column 

to remove heavy inert particles like sand and was stored in a stirred buffer tank.  

Table 4.1 gives a summary of the most important characteristics of the wastewater that was 

collected in the buffer tank. Occasional comparison of these characteristics with those of the raw 

wastewater confirmed that no significant changes in total COD, NH4-N and PO4-P took place in 

the sedimentation column. In the column less than 3% of the suspended COD was removed. 
 

Table 4.1: Average characteristics of municipal wastewater fed to HL-MBR process (Concentrations are 

average values calculated from 56 grab samples taken over a period of 195 days. Standard deviations are 

shown between brackets.) 

Analysis Unit Average value 

Total COD  mg COD/L 310 (113) 

Suspended COD  mg COD/L 162 (88) 

Colloidal COD mg COD/L 64 (49) 

Soluble COD, SCOD mg COD/L 84 (40) 

NH4-N  mg N/L 34 (13) 

PO4-P  mg P/L 5 (2) 
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4.2.2 HL-MBR bioflocculation 

The HL-MBR was operated at a hydraulic retention time (HRT) of 1.0 ± 0.1 hours and an SRT 

of 1.0 ± 0.1 days to optimize flocculation and at the same time to minimize (aerobic) organic 

matter mineralization. The reactor design was the same as used by Faust et al. (2014) and by 

Akanyeti et al. (2010). The working volume of the reactor was 2.6 L and the reactor was 

equipped with two submerged flat sheet membranes (Kubota Corporation, UK). The chlorinated 

polyethylene membrane sheets had a surface area of 0.124 m2 and an average nominal pore-size 

of 0.2 µm. Aeration and mixing were accomplished by pressurized air to maintain the minimum 

dissolved oxygen (DO) concentration of 2 mg O2/L. This was checked with an online oxygen 

sensor (Oxymax COS22D, Endress+Hauser). Peristaltic pumps (Masterflex L/S, Cole-Parmer) 

were used to feed the wastewater and for permeate and concentrate production. To reduce 

membrane fouling the permeate pump was operated in cycles of 15 minutes permeation followed 

by 5 minutes relaxation. The concentrate pump was operated in cycles of 1 minute concentrate 

production, followed by 59 minutes relaxation. A PVC pipe of 3.5 cm diameter and 30 cm height 

was used to control the liquid level in the reactor. The membranes were cleaned mechanically by 

milli-Q water spraying at least once a day in order to remove a gel layer that was formed on the 

membrane surface during filtration. 

  

4.2.3 Fermentation of HL-MBR concentrate 

Approximately 400 mL sludge (19 g VSS/L) from an anaerobic digester treating a mixture of PS 

and AS (wastewater treatment plant of Ede, The Netherlands) was used to inoculate the 

fermenter. Every morning and evening HL-MBR concentrate was collected and stored at 4°C for 

a maximum of 7 days. The anaerobic fermenter was fed with this concentrate at a concentration 

of approximately 10 g total COD/L. This was accomplished by letting the HL-MBR concentrate 

settle and decanting part of the supernatant. 

The SBR reactors were constructed of plexiglass, had a working volume of 4.0 L, and were 

equipped with a glass stirrer for mixing at a speed of 150–200 rpm. The pH was monitored with 

an online pH electrode (Orbisint CPS11D, Endress+Hauser). Strict anaerobic conditions were 

maintained by flushing with N2 gas. The reactors were controlled at a temperature of 35 ± 1°C 
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with a water bath. During a preliminary run and during the first two SBR cycles the SRT was set 

at 10 days. However, a relatively high methane production was observed and therefore the next 

four cycles a shorter SRT of 5 days was applied to accomplish wash-out of methanogenic 

biomass. In each cycle the HL-MBR concentrate was replaced and mixed with the mixed liquid 

solids at the end of a previous cycle. Table 4.2 summarizes the operational parameters. 

 
Table 4.2: Operational SBR parameters for VFA production from the HL-MBR concentrate 

Cycle SRT (days) 
Solids replacement 

after a cycle end (%) 
Cycle time (days) 

Preliminary run 

1–2 

3–6 

10 

10 

5 

90a 

90 

95 

9 

9 

5 
a Inocolum seed sludge was taken from an anaerobic digester in wastewater treatment plant of Ede,       

The Netherlands. 

 

4.2.4 Analytical methods 

Mixed liquor samples were taken at least twice a week from the wastewater influent of the HL-

MBR process, from the HL-MBR permeate, and from the concentrate. Total COD, paper filtered 

COD (Whatman, 589/1) and 0.45 μm membrane filtered COD were analyzed with a Dr. Hach 

Lange cuvette. Suspended COD was calculated as the difference between total COD and paper 

filtered COD, colloidal COD was considered as the difference between paper filtered and 0.45 

μm membrane filtered COD, and 0.45 μm membrane filtered COD was the soluble COD 

(SCOD). From the 0.45 μm membrane filtered samples, NH4-N was analyzed with a Dr. Hach 

Lange cuvette and anions concentrations (PO4
3¯, NO2¯, and NO3¯) were determined using an Ion 

chromatography device (Metrohm Compact IC 761, Switzerland), equipped with a conductivity 

detector, column Metrohm Metrosep A Supp 5, 150/4.0 mm, pre-column Metrohm Metrosep A 

Supp 4/5 Guard, and auto sampler (Spark Triathlon). Mixed liquor suspended solids (MLSS) as 

total suspended solids (TSS) and mixed liquor volatile suspended solids (MLVSS) as VSS were 

measured according to standard methods (APHA, 1998). 
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In the anaerobic fermenters the gas was collected through a rubber septum using a pressure-

lock glass syringe 1 mL (VICI Precision Sampling, Pressure-Lok® Precision Analytical Syringe, 

USA) and analyzed for H2, O2, N2, CH4, CO2, and H2S by a  micro gas chromatography (µGC, 

Varian CP 4900, USA), equipped with a thermal conductivity detector and two columns: a Mol 

Sieve 5A PLOT 10m x 0.53 mm column at 80°C (column 1) using argon as carrier gas and 

PoraPlot U-10m column at 65°C (column 2) using helium as carrier gas. The gas injection 

volume was 1 mL with a flow gas of 1.47 mL/min and a running time of 90 seconds.  

Mixed liquor samples from the fermenters were first centrifuged at 14,000 rpm for 10 

minutes under room temperature and then filtered with a 0.45 μm membrane filter. Total COD 

concentration was analyzed using the mixed liquid sample with a Dr. Hach Lange cuvette. 

Soluble COD, NH4-N and PO4-P concentrations of samples were analyzed as described 

previously. 

To measure the VFA concentrations of acetate (C2), propionate (C3), and butyrate (C4), the 

filtrated sample was analyzed by an Ion Chromatography device (IC) (Metrohm Compact IC 

761, Switzerland), equipped with a conductivity detector, column Phenomenex Synergi 4u 

hydro-RP 80A, pre-column Metrosep Organic Acids Guard. IC methods can be used to separate 

VFA with linear carbon chains of up to four carbon atoms in length. During the separation step, 

each acid interacts differently with respect to the chosen stationary phase. In our case, the 

stationary phase consists of silicagel as a carrier material with chemically bonded alkyl groups 

containing 18 carbon atoms. Sulphuric acid (0.5 mM) is used as the mobile phase, which causes 

the acids to become non-dissociated. After separation, a chemical suppressor (Metrohm 

Suppressor, Switzerland) with an eluent of 50 mM lithium carbonate is used to dissociate VFA 

and form CO2. Acid anions travel through the chemical suppressor along with the mobile phase. 

The suppressors are equipped with conductivity detectors to suppress the conductivity of mobile 

phase, while increasing the peak response of each acid anion. The VFA concentration was 

converted to COD concentration by using the following conversion factors: 1.07 g COD/g 

acetate, 1.51 g COD/g propionate, and 1.82 g COD/g butyrate. Total VFA was calculated as the 

sum of all the individual VFA. A specific VFA production was calculated by subtracting the 

VFA concentration in the feed HL-MBR concentrate from the VFA production at the end of each 

cycle and expressed as the mass of VFA-COD per unit mass of VSS in the feed concentrate   
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(mg VFA-COD/g VSSfeed). Solubilization was expressed as the percentage mass ratio of soluble 

COD to the total COD in the feed concentrate. The NH4-N and PO4-P releases were expressed 

per unit mass of VSS degraded (mg NH4-N/g VSSdegraded and mg PO4-P/g VSSdegraded). 

 

4.3 Results and Discussion 

4.3.1 Performance of bioflocculation in HL-MBR 

4.3.1.1 COD mass balance of HL-MBR 
Figure 4.2 shows the average COD mass balance for the HL-MBR bioflocculation process 

during its 195 days of operation. Removal of total COD was 83%, giving an average permeate 

concentration of 49 ± 14 mg COD/L. This shows that in spite of the extremely short HRT (1 

hour) and SRT (1 day) that were applied, the HL-MBR process can achieve an effluent COD 

concentration that easily meets the EU discharge guideline of 125 mg COD/L (Council 

Directive, 1991). This result is in agreement with Akanyeti et al. (2010), who reported a COD 

removal efficiency of 77–87% at SRTs of 0.25–1 day and a permeate COD concentration of 64–

76 mg COD/L.  

 

Figure 4.2: Average COD mass balance for the HL-MBR bioflocculation process during 195 days of 

operation 
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In this study, more than 75% of the sewage COD ended up in the concentrate. This recovery 

is very high compared to CAS systems, where approximately 40–60% of the sewage COD ends 

up as PS and AS. Aerobic mineralization was calculated as the closure of the COD mass balance 

and was only 7.5%. 

 
4.3.1.2 Composition of HL-MBR concentrate  
Table 4.3 shows the average composition of the HL-MBR concentrate. These results indicate an 

effective bioflocculation process: in the sewage approximately 50% of the total COD consisted 

of suspended matter (Table 4.1), whereas in the concentrate of the HL-MBR this was more than 

90%. 

 
Table 4.3: Characteristics of the HL-MBR waste concentrate fed to the anaerobic SBR reactors (pH and 

concentrations are average values, and standard deviations are shown between brackets.) 

Analysis 1st and 2ndcycles 3rd and 4th cycles 5th and 6th cycles 

pH 

VSS (g/L) 

7.0 (0.1) 

6.7 (0.4) 

7.0 (0.1) 

7.0 (0.3) 

7.1 (0.1) 

6.6 (0.2) 

TSS (g/L) 7.9 (0.4) 8.0 (0.1) 7.9 (0.3) 

Total COD (mg/L) 10559 (561) 10427 (200) 10282 (166) 

Suspended COD (mg/L) 10004 (212) 9393 (199) 9475 (205) 

Colloidal COD (mg/L) 186 (11) 300 (25) 190 (18) 

Soluble COD (mg/L) 370 (153) 735 (26) 617 (57) 

NH4-N (mg/L) 55 (19) 55 (5) 36 (7) 

PO4-P (mg/L) 

VFA (mg VFA-COD/L) 

22 (5) 

124 (65) 

26 (1) 

496 (31) 

20 (1) 

449 (29) 

 

 Higher concentrations of NH4-N, PO4-P, and VFA were observed after storage at 4°C than 

in fresh concentrate. Apparently hydrolysis and acidification continued even at 4°C. However, 

storage only had a minor effect on the overall process performance compared to hydrolysis and 

acidification taking place in the anaerobic fermenters as will be further explained below. 
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4.3.2 Performance of anaerobic fermenters 

4.3.2.1 VSS degradation and nitrogen and phosphorus release 
Figure 4.3 shows the VSS concentration during the SBR cycles. During the first two cycles, i.e. 

at an SRT of 10 days, 51% of the VSS was degraded. This is somewhat higher than what was 

found for PS fermentation. Ferreiro and Soto (2003) reported a VSS degradation of 36–46% for 

PS. However, it is unclear at the moment whether this 51% VSS degraded would be a maximum 

value for the HL-MBR concentrate fermentation. In the literature, information about the solids 

degradation of PS and the HL-MBR concentrate through fermentation is still limited and needs 

to be further investigated. Moreover, because a considerable amount of COD was converted to 

methane (0.11 g CH4-COD/g total CODfeed), it was decided to shorten the SRT to 5 days to 

accomplish wash-out of the methanogens. This indeed resulted in a much lower average methane 

production of 0.03 g CH4-COD/g total CODfeed. The methane production rate at an SRT of 10 

days was 69 mL CH4/L HL-MBR concentrate/day, while it was only 24 mL CH4/L HL-MBR 

concentrate/day at an SRT of 5 days. However, as a result of the shorter treatment time the 

average efficiency of VSS degradation decreased from 51% to 35% with an SRT of 5 days. 

 
Figure 4.3: VSS concentration during fermentation of HL-MBR concentrate 
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Degradation of VSS was accompanied by a release of NH4-N and PO4-P of 64 mg NH4-N/g 

VSSdegraded and 23 mg PO4-P/g VSSdegraded, respectively. Both PO4-P and NH4-N release seem to 

be reasonable considering typical nitrogen and phosphorus content of municipal wastewater 

solids (Henze et al., 2008) and also comparable with the measured values of total nitrogen and 

total phosphorus in the mixed liquid solids of the HL-MBR concentrate (data not shown). 

 
4.3.2.2 COD solubilization and VFA production 
Figure 4.4 shows the solubilization of COD and concomitant VFA production. Mainly due to the 

occurrence of methanogenesis in the first two cycles, the average concentrations of soluble COD 

and VFA both were relatively low. At an SRT of 10 days, soluble COD levels reached an 

average value of only 15% of the 10 g COD/L HL-MBR concentrate. The VFA production was 

limited to an average of 645 mg VFA-COD/L and methane formed was 11% of the concentrate 

COD input.  

 
Figure 4.4: (○) Soluble COD concentrations and (●) VFA production during the fermentation of the HL-

MBR concentrate 
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Upon changing an SRT to 5 days in cycles 3–6, soluble COD levels increased to an average 

of 27% and the production of VFA increased to an average of 2407 mg VFA-COD/L, whereas 

methane production reduced to 3% of the concentrate COD input. These results demonstrate that 

the reduction in the SRT leads to higher soluble COD levels, reduced loss to methane and 

increased the recovery of VFA. The results obtained at an SRT of 5 days correspond to an 

average specific VFA production of 282 ± 51 mg VFA-COD/g VSSfeed or 0.9 g VFA-COD/g 

VSSdegraded. A similar result of 270 mg VFA-COD/g VSS was reported for PS fermentation by 

Ucisik and Henze (2008). Ferreiro and Soto (2003) showed a VFA formation of 0.35–1.31 g 

VFA-COD/g VSSdegraded for PS fermentation, which increased when the temperature increased 

and initial VSS concentration decreased. Thus, the result of 0.9 g VFA-COD/g VSSdegraded in this 

study is relatively high compared to the PS fermentation under similar conditions, i.e. nearly 0.5 

g VFA-COD/g VSSdegraded at a temperature of 35°C and 5.7 g VSS of PS/L. This higher yield 

may be caused by a larger biodegradable organic fraction in the HL-MBR concentrate compared 

to PS, where the COD is mainly associated with the settleable solids. 

 
4.3.2.3 VFA composition 
The VFA were composed of 50% acetate, 40% propionate and 10% butyrate. However, it is 

important to note that this VFA composition is related to the range in municipal wastewater 

characteristics, as presented in Table 4.1. For example, total COD, NH4-N and PO4-P 

concentrations were in the range between 197 and 423 mg COD/L, 21 and 47 mg N/L and 3 and 

7 mg P/L, respectively. This is in line with results obtained by Ferreiro and Soto (2003), who 

reported that the production of VFA from PS at a temperature of 35°C mainly consisted of 

acetate (60%), while propionate and butyrate accounted for about 30% and 10%, respectively. 

Similarly, Ucisik and Henze (2008) reported that PS fermentation gave 50% acetate, 35% 

propionate, 10% butyrate, and 5% other VFA. The consequence of this finding for H2 or 

bioplastic production from these VFA is still largely unknown, because the quality of bioplastics, 

for example, is dependent on the VFA composition and the presence of organic compounds other 

than VFA (Dias et al., 2006). 
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4.3.3 Overall COD, N, and P mass balances 

Figure 4.5 shows the average COD, N and P mass balances of the overall process. An average of 

15% of the sewage COD was converted to VFA (C2–C4). This is comparable to a COD recovery 

as methane when anaerobic digestion is applied for the PS and AS produced by CAS systems 

(Cao, 2011). However, it is far below the expected recovery of 35–40% based on a previous 

study by Akanyeti et al. (2010). Comparing VSS degradation at SRTs of 5 days and 10 days of 

35% and 51%, respectively, show that VFA production at an SRT of 5 days was limited by the 

extent of VSS reduction (Figure 4.3 and Figure 4.4). Thus, longer treatment times are required to 

improve VFA production. More VSS degradation would also considerably reduce the amount of 

waste solids from anaerobic digester to about 20% of the sewage COD (Khiewwijit et al., 2015; 

Cao, 2011), which with 58.5% (Figure 4.5) was still very high. However, it was also 

demonstrated that at an SRT of 10 days methanogenesis cannot be avoided. 

 

 

Figure 4.5: Average COD, NH4-N and PO4-P mass balances of the combined process of HL-MBR 

bioflocculation and anaerobic VFA production 

 

To be able to prolong the SRT while still avoiding methanogenesis, extreme pH levels could 

be applied. Assuming that at least 51% VSS degradation is possible, the application of extreme 

pH levels may further increase the VFA recovery to at least 24% of the sewage COD. However, 
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it is unclear whether at an SRT longer than 5 days this will still result in the similar VSS 

reduction. In particular, a high pH could be interesting. Previous studies reported that COD 

solubilization increased at acidic (pH 5) and alkaline (pH 9, 10, 11) conditions for AS and a 

mixture of AS and PS fermentation (Chen et al., 2007; Maspolim et al., 2015). However, higher 

VFA recovery was observed at pH of 8–10 for a mixture of AS and PS fermentation (Maspolim 

et al., 2015) and at pH of 9–11 for AS fermentation (Chen et al., 2007; Jie et al., 2014) as 

compare to acidic and neutral conditions. For example, Jie et al. (2014) found a specific VFA 

production of 300 mg VFA-COD/g VSS during AS fermentation at pH 10, whereas at a pH of 5 

the specific production only was 80 mg VFA-COD/g VSS. Similarly, Yuan et al. (2006) showed 

that VFA production at pH 10 was more than three times higher than at pH 5.  

Microbial production of VFA is subject to production inhibition and therefore the formed 

VFA products should preferably be extracted from the fermenter during production (Siegert and 

Banks, 2005). Several VFA extraction technologies have been investigated such as ion-

exchange, adsorption, precipitation, nanofiltration, reverse osmosis, and electrodialysis (ED) 

(López-Garzón and Straathof, 2014). Especially, ED in combination with high pH offers an 

interesting potential. VFA that are generated under an alkaline pH are in the anionic form and 

can be directly extracted from the fermentation broth using ED (Huang et al., 2007; Vertova et 

al., 2009). Meanwhile, it should also be noted that alkaline pH may affect the VFA composition 

of the end product and may cause toxicity to the fermenting microorganisms by free ammonia. 

However, even in case all VSS available in the HL-MBR concentrate would be degraded and 

therefore ammonia would be released at maximum levels of about 500 mg NH3-N/L, this value 

will still be far below the toxicity levels of NH3-N for hydrolysis as found by Fernandes et al. 

(2012). Therefore, ammonia inhibition is not expected to become a limiting factor in VFA 

recovery at high pH. 

Another option to improve VSS degradation while avoiding methanogenesis would be to 

apply well known pre-treatment technologies, such as thermal, alkaline and microwave treatment 

(Lee et al., 2014). In particular, an alkaline pre-treatment method is interesting because of its 

high efficiency, simplicity and convenient operation. Feng et al. (2013) showed that the methane 

production after pre-treatment at a pH of 10 during 4 hours was more than 1.5 times than 

methane production from untreated AS.  



Chapter 4

88 

Figure 4.5 also shows that approximately 90% of N (NH4-N) and P (PO4-P) in the sewage 

were conserved in the permeate of the HL-MBR bioflocculation reactor. This makes the 

permeate ideal for irrigation, because the HL-MBR permeate is free from solids and pathogens. 

If an application as irrigation water is not anticipated, phosphate may be recovered from the HL-

MBR permeate, for instance by struvite precipitation. The remaining N can then be removed by a 

cold Anammox process, which is currently being developed (e.g. Hendrickx et al., 2012). 

 

4.4 Conclusions 

A combined bioflocculation and fermentation process was investigated with the aim to achieve a 

more efficient COD recovery as VFA compared to methane-COD recovery produced from a 

conventional anaerobic digestion for PS and AS. Bioflocculation in HL-MBR shows efficient 

COD recovery from sewage, as approximately 75% was diverted to the concentrate. A specific 

VFA production of 282 mg VFA-COD/g VSSfeed composed of 50% acetate, 40% propionate and 

10% butyrate was obtained. This combined process for the VFA production is technologically 

feasible. Methane production was inhibited at an SRT of 5 days, but incomplete VSS degradation 

mainly limited the VFA production. 
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Abstract 

This study explored the potential of volatile fatty acids (VFA) production from sewage by a 

combined high-loaded membrane bioreactor and sequencing batch fermenter. VFA production 

was optimized with respect to SRT and alkaline pH (pH 8–10). Application of pH shock to a 

value of 9 at the start of a sequencing batch cycle, followed by a pH uncontrolled phase for 7 

days, gave the highest VFA yield of 440 mg VFA-COD/g VSS. This yield was much higher than 

at fermentation without pH control or at a constant pH between 8 and 10. The high yield in the 

pH 9 shocked system could be explained by (1) a reduction of methanogenic activity, or (2) a 

high degree of solids degradation or (3) an enhanced protein hydrolysis and fermentation. VFA 

production can be further optimized by fine-tuning pH level and longer operation, possibly 

allowing enrichment of alkaliphilic and alkali-tolerant fermenting microorganisms. 
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5.1 Introduction 

Anaerobic fermentation of sewage organic matter to volatile fatty acids (VFA) presents a 

promising alternative for methane production from primary sludge (PS) and/or excess 

(secondary) activated sludge (AS) generated by conventional activated sludge (CAS) systems 

(Lee et al., 2014). VFA are preferred over methane as an end product, because these can be the 

starting compounds for the production of a wide range of higher value products, such as 

bioplastics (polyhydroxyalkanoates) (Morgan-Sagastume et al., 2014), lipids for biodiesel (Fei et 

al., 2011) and medium-chain fatty acids (Grootscholten et al., 2014). Unfortunately, CAS 

systems employ intensive and energy consuming aerobic mineralization, which largely destroys 

sewage organic matter by biodegradation leading to mineralization. To keep wastewater organics 

available for producing high value products, a new concept was developed to consolidate sewage 

COD (chemical oxygen demand) (Akanyeti et al., 2010; Faust et al., 2014a; Faust et al., 2014b; 

Khiewwijit et al., 2015b) and to optimize the subsequent VFA production from this concentrated 

COD (Khiewwijit et al., 2015a). 

 In this concept, sewage COD is first concentrated by bioflocculation in a high-loaded 

membrane bioreactor (HL-MBR). A much higher VFA yield can be expected from the 

bioflocculated concentrate compared to PS and AS, because the concentrate contains more than 

75% of the sewage COD, including all settleable solids, suspended COD, colloidal COD and 

consolidates even part of the soluble COD (Faust et al., 2014a; Faust et al., 2014b; Khiewwijit et 

al., 2015a). Besides, in this manner aerobic mineralization of biodegradable COD is largely 

avoided. When all of the concentrated COD would be converted into methane, a recovery of 35–

40% of the sewage COD is feasible, which is at least two times the methane yield obtained in 

CAS systems (Akanyeti et al., 2010; Cao, 2011; Khiewwijit et al., 2015b). Therefore, a similar 

VFA recovery ratio on COD basis can be anticipated using the combination of bioflocculation 

and VFA fermentation. Khiewwijit et al. (2015a) studied VFA production from 10 g COD/L 

bioflocculated concentrate in anaerobic sequencing batch reactor (SBR). In these experiments the 

pH during fermentation was not controlled, and during fermentation decreased from 7.1 to 

typically 4.9–5.5 at a solids (sludge) retention time (SRT) of 5 days. The technological feasibility 

of the HL-MBR and anaerobic fermentation combination was demonstrated, but the VFA 

production yield was only 15% of the sewage COD. The main reasons for this low production 
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were different in the two different SRT systems used. Methanogenesis could not be avoided at an 

SRT of 10 days, and a large fraction of the VFA was subsequently converted into methane. At a 

short SRT of 5 days, methane production could be prevented, but solubilization of the 

bioflocculated sewage solids was relatively low: 35% compared to 51% at an SRT of 10 days. 

To improve the VFA yield, alkaline pH fermentation was considered to overcome these two 

problems. The impact of a high pH on fermentation of sewage solids has recently been explored 

with PS and AS. For example, Chen et al. (2007) and Yu et al. (2008) showed that at pH 10–11 

methanogenesis was inhibited. This inhibition contributed to a significantly higher VFA 

production than at lower pH values. Chen et al. (2007) also showed that VFA production from 

AS at a pH of 10 was more than 6 times higher than at a pH of 4. Similar results were found by 

Liu et al. (2012), who reported inhibition of methanogens at pH 3, 11 and 12, with a VFA yield 

at pH of 9 that was almost 10 times higher than at a pH of 3. Another advantage of a high pH 

may be the promotion of homoacetogenesis, i.e. the formation of acetate from inorganic carbon 

and H2, as observed by Modestra et al. (2015). The promotion of homoacetogenesis would also 

certainly contribute to a higher VFA yield. Finally, with alkaline conditions during fermentation 

the VFA are present as anions. This can facilitate extraction of a high quality VFA product by 

electrochemical techniques, and creates the possibility to combine this type of extraction with 

electrochemical alkalinity production necessary to maintain a high pH level (Huang et al., 2007). 

In addition to the occurrence of methanogenesis, a limited solubilization of sewage solids can 

also be a bottleneck for VFA production (Eastman and Ferguson, 1981; Khiewwijit et al., 

2015a). To enhance the solubilization process, typically pre-treatment is applied, including 

thermal and mechanical methods, microwave, ultrasound exposure, acid/base addition, or 

combinations of these, such as the thermo-pressure hydrolysis (TDH) (Carlsson et al., 2012; Lee 

et al., 2014). Of these methods, TDH probably is the most widely applied (Phothilangka et al., 

2008). However, it also is a relatively expensive technique with a high energy demand required 

to generate the high pressure (19–21 bars) and temperature (typically 180°C). Alkaline pre-

treatment enhances solids degradation. It disrupts the floc structure and microbial cell walls, and 

in this manner more biopolymers such as proteins, carbohydrates and lipids become available for 

subsequent hydrolysis, acid fermentation and methanogenesis. For example, Feng et al. (2013) 

showed that methane production from AS after alkaline pre-treatment of 4 hours at a pH of 10 
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was almost two times of that without pre-treatment. Similarly, Kim et al. (2010) showed that 

solids degradation in a mixture of AS and PS increased by a factor of 2.7 after alkaline pre-

treatment of 1 hour at a pH of 13. 

All of the studies mentioned above used PS and AS from CAS systems. VFA production 

from bioflocculated sewage organic matter under alkaline conditions has not yet been studied. 

Therefore, in this study, a combined bioflocculation and alkaline VFA production process was 

investigated at several pH values (8–10). The results were compared to a fermentation process 

without pH control with respect to solids degradation, VFA production and VFA composition. In 

addition, fermenter operation at a constant pH was compared with the application of short pH 

shocks to limit methanogenic activity and to enhance biosolids hydrolysis, in order to further 

optimize VFA production. 

 

5.2 Materials and Methods 

5.2.1 Fermentation conditions of HL-MBR concentrate 

Two 4.0 L plexiglass reactors were equipped with a glass stirrer for mixing at 150–200 rpm. The 

pH was monitored with an online pH electrode (Orbisint CPS11D, Endress+Hauser). Strict 

anaerobic conditions were maintained by flushing with N2 gas. The reactors were controlled at a 

temperature of 35 ± 1°C with a water bath. The pH was automatically controlled by a liquid 

dosing pump (SIMDOS 10, KNF Benelux Netherlands) at pH values of 8, 9 or 10 using 2 M 

hydroxide solution (1 M sodium hydroxide and 1 M potassium hydroxide). 

Using the same reactors preliminary sequencing batch runs were carried out for 38 days and 

with HL-MBR concentrate as their feed at pH 10 (data not shown) and without pH control 

(Khiewwijit et al., 2015a). For this purpose both reactors were inoculated with 400 mL sludge 

(19 g VSS/L) from an anaerobic digester treating a mixture of PS and AS (wastewater treatment 

plant of Ede, The Netherlands). In subsequent reactor runs, which will be described in this paper, 

a mixture of 200 mL of the solids from the reactor that was operated at pH 10 and 200 mL of the 

solids from the reactor without pH control was taken as the inoculum. 
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SBR operation was carried out in three sequential stages. Table 5.1 summarizes the 

operational conditions of the sequencing batch fermenter that were applied. During these stages, 

after each sequencing batch cycle a fixed volume of the (mixed) reactor contents was replaced by 

the same volume of HL-MBR concentrate.  

 
Table 5.1: Sequencing batch fermenter operation to produce VFA from HL-MBR concentrate  

Stages/Cycles pH  

Reactor 1 

pH  

Reactor 2 

SRT 

(days) 

Solids 

replacement after 

a cycle end (%) 

Cycle 

time 

(days) 

pH maintained  

Preliminary run 

Stage I/1–2 

Stage II/3–4 

Stage III/5–6 

9 

9 

9 

9 

10 

10 

8 

10 

10 

10 

5 

5 

90a 

90 

95b 

95c 

9 

9 

5 

5 

Full cycle 

Full cycle 

Full cycle 

Shock of 3.5 h 
a Inocolum seed sludge, taken from a mixture of mixed solids of a sequencing batch fermentation 

experiment at pH 10 and uncontrolled pH, operating for 38 days. 
b In cycle 3 the mixed  liquid solids were taken at the end of cycle 2 with pH 9. 
c In cycle 5 the mixed  liquid solids were taken at the end of cycle 2 with the same pH condition. 

 

Six sequencing batch cycles were performed. Stage-I, consisting of two cycles, was carried 

out to test the hypothesis that high pH combined with a long SRT can improve the VFA yield. 

Both reactors were operated at an SRT of 10 days and the pH was controlled at 9 or 10. Because 

a relatively low VFA production was observed in stage-I, which will be explained later on, 

during the two cycles of stage-II the pH level in reactor 2 was reduced to 8. In addition, the SRT 

of both reactors was decreased from 10 to 5 days to promote wash-out of methanogens. In stage-

III, the effect of a temporary shock increase in pH to a value of 9 or 10 of 3.5 hours was studied. 

After this shock, at the start of a sequencing batch cycle, the pH was not further controlled.  
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5.2.2 HL-MBR concentrate  

The production of HL-MBR concentrate from sewage was described in detail by Khiewwijit et 

al. (2015a). The concentrate was stored at 4°C for a maximum period of 7 days. Table 5.2 gives 

the average composition of the HL-MBR concentrate that was used in this study. Compared to 

fresh HL-MBR concentrate, hydrolysis and acidification continued during storage at 4°C, which 

resulted in higher concentrations of VFA, ammonium (NH4-N) and phosphate (PO4-P). 

However, VFA production was negligible compared to hydrolysis and acidification during 

fermenter operation. 

 
Table 5.2: Characteristics of HL-MBR concentrate fed to the anaerobic sequencing batch reactors  

Analysis 1st and 2ndcycles 3rd and 4th cycles 5th and 6th cycles 

pH 

VSS (g/L) 

7.0 ± 0.1 

6.2 ± 0.5 

7.1± 0.1 

6.4 ± 0.8 

7.1 ± 0.2 

6.1 ± 0.3 

TSS (g/L) 7.2 ± 0.6 7.6 ± 1.3 7.3 ± 0.9 

Total COD (mg/L) 10819 ± 810 10508 ± 220 10305 ± 273 

Suspended COD (mg/L) 10041 ± 718 9766 ± 72 9387 ± 143 

Colloidal COD (mg/L) 182 ± 77 149 ± 48 204 ± 24 

Soluble COD, SCOD (mg/L) 596 ± 15 593 ± 243 714 ± 392 

NH4-N (mg/L) 55 ± 1 42 ± 8 66 ± 27 

PO4-P (mg/L) 

VFA (mg VFA-COD/L) 

25 ± 2 

326 ± 34 

21 ± 10 

424 ± 235 

24 ± 18 

481 ± 263 

pH and concentrations are mean values. 

 

5.2.3 Biological methane potential (BMP) 

To determine the biological methane potential (BMP) of the soluble compounds, supernatant at 

the end of cycles 1–2 from the reactor operated at pH 10 was obtained by centrifugation. With 

this supernatant the BMP was determined using sludge from an anaerobic digester treating a 

mixture of PS and AS (wastewater treatment plant of Ede, The Netherlands). The test was 

carried out according to a method described in detail by Angelidaki et al. (2007). 
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5.2.4 Analytical methods  

Mixed liquor solids samples from the anaerobic sequencing batch fermentation were first 

centrifuged at 14,000 rpm for 10 minutes and then filtered with a 0.45 µm membrane filter. Total 

COD concentration was analyzed using the mixed solids samples with a Dr. Hach Lange cuvette. 

The membrane filter samples were used to analyze the soluble COD, NH4-N, PO4-P, and VFA 

concentrations. Soluble COD, NH4-N were analyzed using a Dr. Hach Lange cuvette. Gas 

compositions were analyzed using a micro gas chromatography (µGC, Varian CP 4900, USA). 

The measurements of PO4-P and VFA (acetate, propionate and butyrate) were done with an ion 

chromatography device (Metrohm Compact IC 761, Switzerland), the same as described 

previously in the study of Khiewwijit et al. (2015a). Mixed liquor suspended solids (MLSS) as 

total suspended solids (TSS) and mixed liquor volatile suspended solids (MLVSS) as volatile 

suspended solids (VSS) were measured according to standard methods (APHA, 1998). The 

measurement of soluble proteins was determined using a bicinchoninic acid assay kit (PierceTM 

BCA, Proteins Assay kit) and soluble polysaccharides was measured using the phenol-sulfuric 

acid method (Dubois et al., 1956). 

The COD conversion factors for VFA are 1.07 g COD/g acetate, 1.51 g COD/g propionate 

and 1.82 g COD/g butyrate. The COD conversion factor for polysaccharides (carbohydrate) is 

1.07 g COD/g glucose and for proteins (bovine serum albumin, BSA) it is 1.5 g COD/g BSA 

(Maspolim et al., 2015). Total VFA-COD concentration was calculated as the sum of the 

individual VFA. Specific VFA production or VFA yield was calculated by subtracting the VFA 

concentration in the feed HL-MBR concentrate from the VFA production at the end of each 

cycle and expressed in terms of VFA-COD per unit mass of VSS in the feed concentrate (mg 

VFA-COD/g VSS). 

 

 

 

 
 



                                                                                     Production of VFA by alkaline fermentation

99 

5.3 Results and Discussion 

Table 5.3 summarizes the effects of SRT and pH control on VSS reduction, COD solubilization 

and VFA production during fermentation of HL-MBR concentrate, and the comparison of these 

results to those obtained by Khiewwijit et al. (2015a) for fermentation without pH control. SRT, 

constant pH control and the application of pH shocks all had a strong effect on solids degradation 

and VFA production, as will be described in more detail below. 

 

5.3.1 Operation at controlled pH 

5.3.1.1 VSS degradation 
Figure 5.1 shows VSS concentrations during cycles 1–2 at pH 9 and 10, both at an SRT of 10 

days and during cycles 3–4 at pH 9 and 8 at an SRT of 5 days. At an SRT of 10 days VSS 

degradation was higher at pH 10 (76 ± 4%) than at pH 9 (68 ± 5%), see Table 5.3. In both 

reactors methane production was insignificant, i.e. less than 0.7% of the 10 g/L of total COD that 

was fed to the reactors with the HL-MBR concentrate. This is in agreement with other studies, 

showing that methanogenic activity can be avoided if the pH is sufficiently high (Chen et al., 

2007). 

 

Figure 5.1: VSS concentration during fermentation of HL-MBR concentrate for sequencing batch cycles 

1–4, (A) Reactor 1 and (B) Reactor 2 (Numbers in the box indicate the cycle.) 
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In cycles 3–4 the SRT of reactor 1 (Figure 5.1), operated at pH 9, was reduced from 10 to 5 days. 

This gave a reduction of VSS degradation from 68 ± 5% at an SRT of 10 days to 52 ± 4% at an 

SRT of 5 days. In reactor 2, which during cycles 3–4 was operated at pH 8 and an SRT of 5 days, 

VSS degradation was even lower (44 ± 4%). However, in all cases VSS degradation at these high 

pH levels was higher than the 35% obtained in earlier experiments without pH control (Table 

5.3). At pH 8 methane production was 9% of the total COD of the HL-MBR concentrate, 

indicating that this pH was not high enough to avoid the occurrence of methanogenesis. 

 
5.3.1.2 COD solubilization and VFA production 
At an SRT of 10 days 44–48% of the total COD at the end of cycles 1–2 was present as soluble 

COD (Figure 5.2 and Table 5.3). As expected, at an SRT of 5 days and pH values of 9 and 8 this 

was considerably lower (37 ± 3% and 30 ± 0.3%, respectively), which matches with the lower 

VSS degradation under these conditions. 

 

 

Figure 5.2: (○) Soluble COD concentrations and (●) VFA production during sequencing batch cycles 1–4 

fermentation of HL-MBR concentrate, (A) Reactor 1 and (B) Reactor 2 (Numbers in the box indicate the 

cycle.) 
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Strikingly, even though large differences were observed in VSS degradation and COD 

solubilization, the specific VFA production yields were not that different: 287 ± 11 mg VFA-

COD/g VSS at an SRT of 10 days and pH 9, 235 ± 2 mg VFA-COD/g VSS at an SRT of 10 days 

and pH 10, 290 ± 1 VFA-COD/g VSS at an SRT of 5 days and pH 9, and 259 ± 33 mg VFA-

COD/g VSS at the same SRT but at pH 8. These production yields also are similar to the yield 

during HL-MBR concentrate fermentation without pH control of 282 mg VFA-COD/g VSS 

(Table 5.3). Also Maspolim et al. (2015) indicated that more VSS degradation or more COD 

solubilization at a high pH does not necessarily result in a higher VFA yield. 

 
5.3.1.3 Gap between COD solubilization and VFA production 
Interestingly, Figure 5.2 shows that the gap between soluble COD and VFA-COD at pH 8 was 

smaller than at pH 9 and 10, and in the reactor that was operated without pH control this gap was 

as small as 4% (Table 5.3). To investigate this in more detail, the concentration of soluble 

proteins and polysaccharides was measured in 0.45 µm membrane filtered samples at the end of 

cycles 1–2. This revealed that the gap between soluble COD and VFA at pH 9 consisted of       

62 ± 7% proteins, 11 ± 0.8% polysaccharides and 27 ± 6% other unknown soluble compounds. 

Similarly, at pH 10 this gap consisted of 54 ± 5% proteins, 12 ± 0.2% polysaccharides and        

34 ± 5% other soluble compounds. From this, it was concluded that at a high pH a considerable 

amount of (soluble) proteins was not converted to VFA. Apparently this counteracts the 

improved COD solubilization taking place at higher pH. A likely explanation is a suppressed 

proteolytic activity at pH 9–10 (Maspolim et al., 2015).  

A BMP test was performed with supernatant that was collected at the end of cycles 1–2 from 

the pH 10 reactor, i.e. supernatant containing remaining soluble proteinaceous compounds. The 

supernatant was added to seed sludge sampled from a full-scale digester treating a mixture of AS 

and PS, because it can be assumed that this sludge contained a high proteolytic activity. The pH 

during the test was controlled at 7.5. Already after 10 days 92% of the (soluble) COD had been 

converted into methane. This supports the previous observation that the proteins that were not 

degraded at high pH can be degraded at lower pH. 
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5.3.2 Shock increase to pH 9 and 10 

Based on the observations above, it was hypothesized that a short shock treatment at elevated pH 

at the start of a sequencing batch cycle could take advantage of the best of both perspectives: an 

improved VSS degradation at high pH at the start of a cycle, and a high conversion efficiency of 

the solubilized COD to VFA at a lower pH later during the cycle. This was tested with pH shock 

of 9 and 10 during 3.5 hours at an SRT of 5 days. An SRT of 10 days was considered too long 

because of the risk of introducing methanogenesis. 

 

Figure 5.3: (○) Soluble COD concentrations and (●) VFA production during sequencing batch cycles 5–6 

fermentation of HL-MBR concentrate, (A) Reactor 1 and (B) Reactor 2 (Numbers in the box indicate the 

cycle. Dashed line in (A) indicates the end of cycle 6 with an SRT of 5 days.) 

 

Figure 5.3 shows COD solubilization and concomitant VFA production during the cycles    

5–6. After a shock of pH 9 had been applied to reactor 1, the pH gradually dropped from 9.0 to 

6.8 toward the end of cycles 5–6. The average VFA production was 321 ± 46 mg VFA-COD/g 

VSS (Table 5.3), which already is a considerable improvement compared to earlier 

productivities. When a shock to pH 10 was applied to reactor 2 the pH dropped to 8.5 toward the 

end of cycles 5–6. The average VFA production in this case was somewhat lower (287 ± 30 mg 

VFA-COD/g VSS), which most likely can be explained by a reduced protein hydrolysis that 

could not fully recover between pH 10 and 8.5. The difference between these pH shock 

experiments and sequencing batch cycles operated at a constantly high pH is also reflected in the 
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smaller gap between soluble COD and VFA. At pH 9 and 10 this gaps was 11 ± 3% and            

14 ± 5%, respectively (Table 5.3).  

In the reactor with a shock of pH 9, VFA production was still increasing at the end of cycles 

5–6 (Figure 5.3). It was, therefore, decided to prolong the treatment time in the pH 9 reactor, 

cycle 6. During an extension of 2 days, the pH gradually dropped from 6.8 to 6.5 and it increased 

to above 7.0 after 3 days of extension, indicating that methanogenesis could not be avoided any 

longer. After 2 days of extension, the VFA production increased to 440 mg VFA-COD/g VSS, 

the highest yield observed in the experiments.  

 

5.3.3 VFA production potential 

Using average HL-MBR performance data in terms of COD recovery (75%), this yield of 440 

mg VFA-COD/g VSS would translate to a VFA yield of 0.26 g VFA per gram of total sewage 

COD. Because approximately 50% of the sewage COD that was used is biodegradable, this is 

equivalent to 0.52 g VFA per gram of biodegradable sewage COD. Obviously, this is a much 

higher yield than what can be achieved with VFA production from PS and AS generated by CAS 

systems, because with the HL-MBR and alkaline fermentation combination most of the sewage 

COD is directed toward VFA and aerobic mineralization of sewage organics is largely avoided. 

An even higher VFA yield might be feasible at pH 9 by applying a longer pH shock in 

combination with a longer SRT, allowing more VSS degradation without the risk of introducing 

methanogenesis. With the pH shock of 9, a VSS degradation of 54 ± 2% was achieved. However, 

Table 5.3 shows that for a constant pH of 9 a VSS reduction of at least 68% is feasible. 

Assuming this additional VSS reduction generates biodegradable soluble COD, this would 

further increase the yield to 0.33 g VFA per gram of total sewage COD. This also approaches a 

VFA yield of 35–40%, estimated based on measurements of the biological methane potential of 

bioflocculated concentrate produced from the same sewage as was used in this study (Akanyeti 

et al., 2010). 
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Obviously, the reactors were only operated for a period of 47 days, including a preliminary 

run and 6 sequencing batch cycles. Probably development and adaptation of the microbial 

population at pH of 9 or even 10 was limited. Enrichment of alkaliphilic or alkali-tolerant 

fermenting microorganisms can further enhance the VFA production yield and rate (Ishikawa et 

al., 2009; Jie et al., 2014a; Zhilina et al., 2004). This therefore presents an interesting topic for 

future studies. 

 
5.3.4 VFA composition 

The VFA composition can be important if the VFA are used as platform chemicals. At pH 9 and 

10 the VFA composition was dominated by acetate (58–63% of the total VFA), irrespective of 

pH control for the full cycle or for a 3.5 hours pH shocked. This was followed by propionate 

(25–30%) and butyrate (10–15%). These VFA distributions are not very different from those 

obtained in other studies (Jie et al., 2014b; Liu et al., 2012). At pH 8 propionate was the most 

prevalent VFA (54 ± 5%), followed by acetate (37 ± 5%) and butyrate (9 ± 0.2%). During 

fermentation at pH 8, part of acetate was converted into methane. Methanogens can directly use 

acetate to produce methane, whereas the intermediates propionate and butyrate first need to be 

converted into acetate. 

 

5.4 Conclusions  

A HL-MBR bioflocculation process and alkaline fermentation of the concentrate of this unit 

were investigated for its potential to produce VFA from sewage organic matter. The highest 

yield of 440 mg VFA-COD/g VSS was obtained when the sequencing batch fermenter was 

operated for 7 days and a shock pH of 9 was applied for 3.5 hours. In contrast to a constantly 

high pH, such a shock enables additional VFA production from proteinaceous COD. Fine-tuning 

of pH control and possibly longer reactor operation to allow the enrichment of alkaliphilic and 

alkali-tolerant fermenting microorganisms, may further increase the VFA yield. 
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6.1 Introduction 

A growing world population results in a high demand for fresh water and increases the 

generation of all types of waste, in particular wastewater. Conventional wastewater treatment 

mainly focuses on producing an effluent quality that meets the discharge guidelines. However, 

municipal wastewater contains valuable resources including the nutrients nitrogen (N) and 

phosphorus (P), organic matter, and large amounts of water that can be reused as for example 

irrigation water. As an alternative to conventional activated sludge (CAS) systems, in this thesis 

new concepts were investigated that combine wastewater treatment with recovery of these 

resources. 

A preliminary selection from 11 configurations, in which different process units and recently 

developed technologies were considered, showed that 9 configurations gave low treatment and 

recovery efficiencies. Therefore, only two novel wastewater treatment configurations were 

further evaluated in this thesis. In Configuration 1, first bioflocculation was applied to pre-

concentrate diluted sewage COD (chemical oxygen demand) for a maximum organic matter 

recovery. The permeate of the bioflocculation process was subsequently treated by a (cold) 

partial nitritation/Anammox process to remove N down to levels that meet the discharge 

guidelines and by a novel cost-effective P recovery technology. Such a P recovery technology 

could consist of struvite precipitation, which currently is also used to recover P from more 

concentrated streams such as human urine (Desmidt et al., 2015; Etter et al., 2011). More P 

recovery technologies are described by Desmidt et al. (2015) and we expect that in the near 

future a low-cost and high-efficiency P recovery technology from a diluted wastewater will also 

become available. The bioflocculated sewage organic matter in Configuration 1 was converted to 

methane in an anaerobic digester, followed by a combined heat and power (CHP) unit to convert 

the methane to electricity and heat. Configuration 2 used a similar approach with bioflocculation 

and anaerobic digestion, but N and P in the permeate of the bioflocculation process were 

assimilated by microalgae. The applicability of both configurations will strongly depend on 

location, in particular with respect to irradiance and temperature. Both of these conditions have a 

significant effect on the microalgal biomass productivity, while temperature has a major impact 

on partial nitritation/Anammox. Thus, both implementations need to be further explored for 

different locations and wastewater composition. 
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In this thesis work the two new wastewater treatment configurations were evaluated using 

two different research methods. The first method was based on numerical simulation to explore 

their feasibility. This evaluation was done with respect to several key performance indicators 

(KPIs) and effluent quality as a boundary condition. The novel treatment configurations should: 

(1) be able to do so throughout the entire year; (2) produce lower CO2 emission than the CAS 

system and (3) achieve a higher net energy yield and higher amounts of nutrient recovery 

compared to the CAS system. Model-based scenario analyses of these wastewater treatment 

configurations covered the following topics: developing a procedure to design and integrate the 

individual process units into the most promising configuration using the Netherlands as a case 

study (Chapter 2), and exploring the two most feasible wastewater treatment configurations for 

different locations around the globe (Chapter 3). 

Complete anaerobic digestion consists of four subsequent steps resulting in the production of 

methane. During this process volatile fatty acids (VFA) are produced as intermediate 

compounds. VFA may be preferred over methane as an end product, because VFA are the 

starting compounds for subsequent production of a wide range of higher value products such as 

medium-chain fatty acids, bioplastic polyhydroxyalkanoates (PHA) and lipids for biodiesel. 

Therefore, in this thesis and in addition to numerical simulation, experimental research focused 

on anaerobic fermentation of bioflocculated sewage organics to VFA (Chapter 4). For this 

purpose a sequencing batch reactor was used. In addition, alkaline VFA fermentation was 

investigated to increase the VFA yield (Chapter 5).  

 

6.2 Proposed new wastewater treatment concepts  

The potential contribution of Dutch municipal wastewater for energy, N, P, and chemical 

recovery is illustrated in Table 6.1. Figure 6.1 shows three novel municipal wastewater treatment 

plant configurations that allow the recovery of these potential resources and at the same time can 

save considerable amounts of energy. 
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Table 6.1: The annual potential resources in Dutch municipal wastewater, base data for calculations were 

taken from CBS (2013) 

Resource Annual potential production Potential products/advantages 

1. Water 1,873 million m3 For irrigation water or industrial process watera  

2. Phosphorus 13,356 tons of P recovery 

products in e.g. struvite 

Equivalent to about 55% of the Dutch artificial 

phosphorus fertilizer consumptionb 

3. Nitrogen 877,333 tons of N Saves 3.25 million GJ of energy otherwise 

needed for ammonia production with the Haber-

Bosch processc, which is equivalent to the yearly 

electricity consumption of 300,000 Dutch 

househouldsd 

4. Energye 3,372 million kWh, recovered 

as electricity via methane 

Equivalent to electricity use of 1 million Dutch 

househouldsd 

5. Chemicalsf 377,366 tons of VFA VFA can be used as a platform chemical for 

products, e.g. medium-fatty acids and bioplastics 
a Based on DOW (2013). 
b Based on de Graaff (2010). 
c Assuming an energy consumption of 37 kJ/g N requires for Haber-Bosch process (Maurer et al., 2003). 
d Assuming an annual electricity consumption of 3,000 kWh per household (Lilien, 2006). 
e Assuming chemical energy contained in (biodegradable) organic matter of 1.8 kWh/m3 of wastewater. 
f Assuming a ratio of BOD/COD of approximately 0.40 (Henze and Comeau, 2008). 

 

6.3 Up-concentration of sewage organic matter using bioflocculation 

and membrane filtration 

The main technological challenge in recovery of valuable resources from municipal wastewater 

is the development of cost-effective treatment and recovery technologies that can overcome the 

problems of low sewage temperatures and diluted valuable compounds (Chapter 1). Therefore, a 

pre-concentration step is essential for making recovery processes economically feasible. It was 

hypothesized that bioflocculation in a high-loaded membrane bioreactor (HL-MBR) will 

concentrate most of the sewage COD, including all settleable solids, suspended COD, colloidal 

COD and even part of soluble COD, whereas aerobic mineralization of biodegradable COD to 
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CO2 can be largely avoided. In this way a maximum organic matter recovery can be obtained. In 

Chapters 4 and 5 the up-concentration of sewage COD in an HL-MBR was experimentally 

conducted with an extremely short hydraulic retention time (HRT) of 1 hour and a sludge 

retention time (SRT) of only 1 day. This MBR system combines two processes: (1) aerobic 

bioflocculation, in which flocculation is mediated by the presence of microorganisms, to up-

concentrate sewage COD, and (2) direct membrane filtration for solids-liquid separation 

(Akanyeti et al., 2010; Faust et al., 2014a; Faust et al., 2014b). Previous studies towards 

bioflocculation in HL-MBR’s mainly focused on optimization of the flocculation process, i.e. on 

the effects of operational parameters such as the SRT, HRT and the dissolved oxygen 

concentration (Faust et al., 2015; Faust et al., 2014a; Sözen et al., 2014). 

The bioflocculation in an HL-MBR resulted in very good performance with a COD recovery 

as high as 75.5% of the sewage COD, a good permeate quality with an average of 49 ± 14 mg 

COD/L, and only 7.5% of the sewage COD was mineralized (Chapter 4). However, still the 

underlying mechanisms of the flocculation process are largely unclear and should be further 

investigated, also because biologically induced flocculation plays an important role in other 

environmental processes. For instance, the flocculation process has also a strong relation with 

fouling of the membranes, which remains an important hurdle for a practical implementation 

(Judd, 2008; Melin et al., 2006). The work of Faust et al. (2014b) studied the membrane 

resistance in an HL-MBR operated at an SRT between 0.125 and 1 days and an HRT of 0.7 

hours with the same sewage as used in the current study. Although the results indicated that 

fouling in an HL-MBR was largely reversible, in particular at SRTs of 0.5 and 1 days, more 

research should be dedicated to membrane modules that can remove this fouling continuously at 

a low energy consumption, in particular because HL-MBR’s are operated at high solids 

concentrations (typically higher than 10 g TSS/L of bioflocculated concentrate). 

No mathematical model is available to accurately describe the process of bioflocculation.  

Information on the mechanisms involved, for example, in the production and degradation of 

extracellular polymeric substances (EPS) and the distribution of EPS are still limited. Therefore, 

more experimental work is needed and based on these results a more detailed model of 

bioflocculation process may be made. In this thesis the assumption was made in Chapters 2 and 3 

that there is no temperature effect on the bioflocculation process. However, van den Brink et al. 
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(2011) showed that temperature should be taken into account when designing a MBR because 

poor flocculation may occur under extremely low wastewater temperatures, e.g. temperatures 

below 10°C. Because literature is scarce on this temperature effect, more experimental work is 

required to elucidate this effect. 

 

6.4 VFA recovery from HL-MBR concentrate  

6.4.1 Recovery of VFA produced by alkaline fermentation 

It was hypothesized that high pH fermentation combined with a long SRT, allowing for 

sufficient solubilization of solids and colloidal COD, can improve the VFA yield. The results of 

Chapter 5 showed that application of a pH shock of 9 in the first 3.5 hours of a sequencing batch 

cycle followed by a pH uncontrolled phase for 7 days gave a VFA yield of 26% of the sewage 

COD, the highest yield observed in the experiments. This was much higher than a VFA yield of 

15% at an SRT of 5 days without pH control. The main reasons for the higher VFA yield were a 

reduction of methanogenic activity induced by the high pH levels (Chen et al., 2007; Liu et al., 

2012; Yuan et al., 2006) and an improved solids solubilization. At pH 9–10 fermentation sharp 

increase of soluble COD concentrations in the first 6 hours was observed, which most likely 

could be explained by a chemical reaction as this cannot be explained by a biological reaction. 

Feng et al. (2013) hypothesized that at high pH levels hydroxyl anions chemically react with floc 

structures and cell walls of microorganisms, resulting in proteins dehydration, hydrolysis of 

carbohydrate and saponification of lipids. Because a more detailed investigation of such 

chemical reactions was not performed in the scope of this thesis, the underlying mechanisms of 

alkaline hydrolysis of the HL-MBR concentrate remain unclear and should be further explored. 

The results of Chapter 5 also showed that at constant pH of 9–10 a considerable amount of 

(soluble) proteins were not converted into VFA. Two hypothesizes were made: (1) proteins can 

lose their primary-quaternary structure at elevated pH levels and are no longer amenable to 

enzymatic hydrolysis (Rami and Udgaonkar, 2001) and (2) at pH 9–10 is suppressed production 

of proteases or activity of these proteases. Liu et al. (2012) showed that alkaline pH levels of 9–

12 were beneficial for the solubilization and biodegradation of proteins, but Maspolim et al. 

(2015) reported a reduction in hydrolytic enzymatic activity of protease at pH 9–11. The reason 
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for these different observations remains unclear and asks for future studies. To continue work in 

line with this thesis, a more detailed chemical characterization of the remaining effluent 

produced from high pH fermenter of the HL-MBR concentrate is required. If indeed proteins are 

the main compounds in the remaining fermenter effluent, future research needs to be focused on 

how to improve on the degradability of these proteins at high pH levels. For instance, the 

proteolytic activity at high pH could be measured, which will help to understand the mechanism 

for VFA production at high pH and may provide information to further increase the VFA yield. 

 

6.4.2 Maximize VFA yield and production 

In Chapter 5 it was found that a VFA yield of 33% of the sewage COD can be expected from 

high pH anaerobic fermentation of the HL-MBR concentrate. Two different operational systems 

can be considered. The first system uses a high pH shock at the start of a sequencing batch cycle, 

followed by a pH uncontrolled phase. This has two important advantages: (1) solids degradation 

is improved during the first phase compared to without pH control and (2) proteins that were not 

degraded at pH 9–10 can be subsequently converted into VFA at the lower pH in the second 

phase. More application research is required to (1) fine-tune these pH levels, (2) determine the 

time period of the pH shock and (3) find out the optimal SRT allowing for a maximum VFA 

yield. Knowing the optimal conditions will allow a maximum solids degradation and high 

proteolytic activity without the risk of introducing methanogenic activity. The second system 

would be operated at constantly high pH throughout the batch cycle with fermentative 

microorganisms adapted to such a high pH, as are commonly found in nature. It is hypothesized 

that such inocula from alkaline natural environments also contain a high proteolytic activity at 

high pH levels. At the moment, a conclusion about the most promising mixed cultures cannot be 

made. Table 6.2 at least shows that there are different species of VFA-producing alkaliphilic 

microorganisms in various environments. Because information about degradation of proteins at 

high pH levels in those species remains unclear and thus this should be first experimentally 

investigated. Although a constant high pH fermentation can be advantageous over a high pH 

shock with respect to high solids degradation and inhibition of methanogens, the implementation 

of a high pH shock fermentation seems to be a more promising method in terms of consumption 

of chemicals (caustic), or in terms of energy consumption in case electrochemical methods are 

applied for extraction of the anionic VFA’s at high pH. 
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In our experiments the bioflocculated sewage organic matter had a concentration of 10 g 

COD/L, from which about 3.5 g VFA-COD/L could be produced (Chapter 5). However, a more 

concentrated substrate should be considered to make recovery processes economically feasible, 

possibly with a COD concentration of 12–20 g/L or higher (Gurieff and Lant, 2007). In an HL-

MBR, this can be accomplished by reducing the HRT. The VFA production from a 20 g COD/L 

of bioflocculated concentrate becomes a promising candidate as this will increase VFA 

production up to 7 g VFA-COD/L. This indicates that in an HL-MBR the HRT needs to be 

decreased from 1 to 0.5 hours, which can be reasonably performed (Faust et al., 2014b). 

However, the feasibility of an HL-MBR with such a low HRT needs to be further investigated 

with respect to membrane fouling, oxygen limitation and the extent of membrane area. In 

addition, at HRT’s below 0.5 hours new membrane modules need to be developed because 

current modules would be too big to fit into the bioflocculation reactor (Faust, 2014). It should 

also be noted that a more concentrated substrate would lead to a higher free ammonia in an 

anaerobic fermenter, in particular at high pH may cause toxicity to the fermenting 

microorganisms (Sousa et al., 2015), and this should be further investigated. 

Apart from optimizing the VFA yield, to achieve higher VFA productivities, water boards 

may consider the use of other feed substrates, such as food waste addition as a co-substrate for 

high pH anaerobic fermentation. However, the effect of the composition of co-substrate addition 

on recovery efficiency and VFA composition needs to be further investigated to be able to 

predict which co-substrates are suitable candidates for this. 

 

6.4.3 Alkaline homoacetogenesis 

Stimulation of homoacetogenesis, which is the formation of acetate from inorganic carbon and 

H2, could be another advantage of high pH fermentation because it would enhance the VFA 

yield. Modestra et al. (2015) studied VFA production from an enriched homoacetogenic culture 

at different pH levels of 5, 6.5, 8.5 and 10. They found that at pH 10 the production of VFA was 

approximately two times of that at pH 5. This was explained by a higher inorganic carbon 

availability. However, in the present study the contribution of homoacetogenesis at high pH 

compared to low pH was not determined and thus presents an interesting topic for future studies. 
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6.4.4 VFA extraction 

The VFA that is produced causes product inhibition and thus negatively affects VFA 

productivity (Siegert and Banks, 2005; Wang et al., 2009). Therefore, continuous extraction of 

VFA from the fermenter is needed to obtain adequate VFA yields. This implies that continuous 

solids separation should be combined with continuous VFA extraction from the remaining bulk 

liquid. Several techniques can be used for this VFA extraction such as adsorption, solvent 

extraction, chemical precipitation, and electrodialysis (ED) (Huang et al., 2007; López-Garzón 

and Straathof, 2014). Of these techniques, ED extraction is a promising technology as the VFA 

produced at high pH are in ionized form. Bipolar-membrane electrodialysis (BMED) and electro-

electrodialysis (EED) are a kind of ED technique, which have been extensively studied for the 

recovery of organic acids, because these two technologies do not require addition of chemicals 

(Bailly, 2002; Vertova et al., 2009; Wang et al., 2010). BMED and EED also give an opportunity 

to simultaneously produce a caustic solution, which can be used to keep high pH levels in the 

anaerobic fermenter. However, further investigation on these two methods is still needed, in 

particular the selectivity for individual VFA, operational costs and energy consumption. It should 

also be noted that lower pH levels in a “pH shock” configuration may lead to a higher unionized 

VFA than in a “constant high pH” configuration. In our experiments, with a “pH shock” 

configuration the pH dropped to about 7. Based on the pKa values of acetate, propionate and 

butyrate, ED extraction can still be applied because more than 90% of the generated VFA will 

exist in ionized form (López-Garzón and Straathof, 2014). 

To continue work in line with this thesis, three possible alternatives for VFA application 

should be considered for future studies. According to the first alternative, the VFA rich liquid 

can be used to directly produce higher value products, for example medium-chain fatty acids 

(Grootscholten et al., 2014) and PHA (Morgan-Sagastume et al., 2014). In the second alternative, 

a pre-concentration of the VFA rich liquid can be used to increase the amount of end products or 

make VFA recovery processes economically feasible (Wang et al., 2010). In both alternatives the 

VFA composition becomes important with respect to yield and quality of the end products, such 

as PHA (Albuquerque et al., 2011; Dias et al., 2006) and electricity generated in a microbial fuel 

cell (Lee et al., 2014). For example, a mixture of acetate and propionate (50:50%) led to the 

production of PHA copolymers with a storage yield of 0.37 g PHA/g substrate, while a 
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homopolymer of polyhydroxybutyrate (PHB) was obtained from only acetate as a substrate but 

the storage yields varied from 0.22‒0.56 g/g substrate (Dias et al., 2006; Lemos et al., 2006). The 

last alternative would be to separate a mixture of VFA to single acids, as this would enhance the 

value of recovery product. A life cycle assessment and financial analysis of a mixed VFA 

production and a single acid production needs to be performed. 

 

6.4.5 Fermenter effluent 

For a treatment plant of 100,000 population equivalents, treating 13,000 m3 of wastewater per 

day, a HL-MBR would produce 520 m3/day of concentrate that in line with this study will be 

treated in a high pH anaerobic fermenter. At a VFA yield of 33% of the sewage COD (Chapter 

5), after extraction of the valuable VFA, 5.5% of the sewage COD would remain in the fermenter 

effluent as non-biodegradable soluble COD (from Figure 4.5 in Chapter 4 and Table 5.3 in 

Chapter 5) and 37% as particulate COD. The solids concentration of 4.3 g TSS/L (Chapter 5) in 

the fermenter effluent is much lower than obtained from an anaerobic digestion treating a 

mixture of PS and AS, i.e. approximately 15‒40 g TSS/L of the digester effluent (Metcalf and 

Eddy, 2004). The settleability and dewaterability of the solids were not investigated in the 

present study and therefore more experimental data for these parameters are required before a 

selection of a proper separation technique can be made. 

For a treatment plant of 100,000 population equivalents, treating 13,000 m3 of wastewater 

per day, the load of waste solids produced by the fermenter is 2.2 tons TSS/day (4.3 kg TSS/m3 * 

520 m3/day), which is at least three times smaller than for CAS systems. It is hypothesized that a 

lower solids production may be caused by the high degree of solids degradation at high pH levels 

in the fermenter. The dewatered cake may be reused as organic fertilizer. However, further 

research is required towards the distribution of heavy metals, pathogens and micropollutants in 

the HL-MBR and high pH fermentation processes as well as in the end products, and this should 

be compared with waste streams from CAS systems. Although this should be further quantified, 

it is hypothesized that the high pH in the fermenter can help to reduce the levels of pathogens in 

the fermenter effluent (Magri et al., 2015; Petruzzelli et al., 2015). 
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The concentration of non-biodegradable COD of the water remaining after solids dewatering 

can be as high as 690 mg COD/L. Recirculation of this water to the HL-MBR is not an option 

because it will only accumulate in the treatment system and result in more fouling. The load of 

this COD is very small compared to the COD load in the permeate of the HL-MBR. We 

therefore expect that mixing this waste stream with the HL-MBR permeate is possible without 

causing problems for subsequent treatment by partial nitritation/Anammox or by microalgae.  

 

6.5 Nutrient recovery from HL-MBR permeate 

HL-MBR permeate is obviously free from solids, including pathogens. In Chapter 4 it was found 

that it still contains 90% of the sewage NH4-N and PO4-P. Figure 6.1 shows three options to 

remove or recover these nutrients. 

 

6.5.1 Irrigation water 

In the first option, because of high concentrations of NH4-N and PO4-P in the HL-MBR permeate 

and because it is free of pathogens, the HL-MBR permeate can be used as irrigation water. In 

this way the nitrogen and phosphorus cycles can be closed between households and agriculture. 

However, micropollutants such as pharmaceuticals and personal care products are only partially 

or not at all removed and may limit reuse as irrigation water. In fact, because of the shorter SRT 

of the HL-MBR compared to CAS systems the removal efficiency of these compounds may be 

lower and advanced post-treatment will be required. 

 

6.5.2 (Cold) partial nitritation/Anammox followed by P-recovery 

A bio-based treatment and recovery approach is suggested as the second option in Figure 6.1 that 

can save considerable amounts of energy and recover phosphorus. In particular P recovery is 

very important because it is expected to become a scarce resource in the near future (Cordell et 

al., 2011). The recovery of N is less urgent than that of P, and therefore novel N recovery 

technologies may not be sustainable and cost-effective at low sewage N concentrations. 

Therefore, the main technological challenge in sewage N removal is the development of less 

energy consumption technology than in CAS systems. Partial nitritation/Anammox technology 
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can save at least 50% aeration energy compared to a conventional nitrification/denitrification 

process (Fux and Siegrist, 2004). Based on the study by Hendrickx et al. (2014), who showed 

that the Anammox process is feasible at a temperature of 10°C, in this thesis it was assumed that 

cold partial nitritation/Anammox can be applied if the temperature of wastewater is above 10°C. 

However, this concept still needs further optimization. In particular the partial nitritation process 

at temperatures down to 10°C is challenging and oxygen control becomes crucial to avoid nitrate 

production (Hao et al., 2002). This implies that partial nitritation/Anammox cannot be applied in 

the winter period, for example, in Northern America, Eastern Europe and Northeastern Asia. 

In the current study novel P recovery technologies from the HL-MBR permeate were not 

further substantiated. The main challenge for this is development of a cost-effective technology 

that can work at low sewage temperatures and low phosphorus concentrations. 
  

6.5.3 Microalgae treatment  

The potential to produce concentrated organic N and P using microalgae cultivation as a third 

option is determined by the production location (Chapters 2 and 3). In the Netherlands, a 

microalgae system for municipal wastewater treatment is not applicable because of a limited 

light availability, and the low temperatures and irradiance in the winter period. Nevertheless, in 

tropical regions, for example Southeastern Asia, Southern America, Western and Eastern Africa, 

microalgae treatment seems to be applicable. With Thai temperature and photon flux density 

(PFD) conditions as an example, a microalgae reactor requires the area of 2.2 m2/person in the 

winter period, the lowest area requirement observed in the current study. However, this area 

requirement is still much higher than for a conventional municipal wastewater treatment plant 

(WWTP), i.e. 0.2‒0.4 m2/person (Boelee et al., 2012). This implies that a microalgae treatment 

may be feasible in rural areas, but this would not be economical feasible because of a limited 

volume of wastewater production. On larger scales WWTP, i.e. located in or nearby cities, land 

availability and costs are limiting factors. In this case a microalgae treatment would be 

economical feasible, if the applications of microalgal biomass will be able to produce a very high 

value product, such as carotenoids, biocement, aquaculture feed, dietary supplement, or 

cosmetics (Dessy et al., 2011; Enzing et al., 2014). However, contamination of the end products 

by municipal wastewater compounds should be eliminated, which will increase the complexity 
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and costs of the process, because in this case only the nutrients should be allowed to come into 

contact with the microalgae. 

Area requirement is also directly related to seasonal conditions. Differences in temperature 

and PFD between summer and winter periods become important when designing a microalgae 

treatment because of economic feasibility, in particular area requirement in the winter period. In 

this thesis a quantitative glocal assessment of a microalgae treatment showed that with Indian 

temperature and PFD conditions as an example, the area requirement in the winter period was 

almost 5 times higher than in the summer period. This implies that two different wastewater 

treatment plant configurations need to be implemented, for example a microalgae treatment can 

be used for the summer period, while CAS systems or a combination of bioflocculation and 

(cold) partial nitritation/Anammox is needed for the winter period. In practice municipal WWTP 

with two different configurations may not be realistic due to the high investment costs and 

complexity, and thus CAS systems are more preferable with respect to year round feasibility.  

Although light is an essential growth factor for microalgae, photo-inhibition commonly 

occurs under extreme light intensities, typically above a PFD of 650 µmol photons/m2/s 

(Beardall and Raven, 2013). In addition, a high light intensity may heat up the water in 

microalgae reactors to levels which are too high to allow microalgae growth. In this case the 

reactor even needs to be cooled. For example, a maximum photosynthetic productivity of green 

microalga Chlorella sorokiniana can be achieved at a temperature of 38.1°C, whereas it will not 

survive at temperatures above 49.7°C (Morita et al., 2000).  

Another practical challenge to implement microalgae system for municipal wastewater 

treatment is nutrient composition. When typical municipal wastewater characteristics were used 

in a quantitative scenario-based analysis, the N target effluent of 2.2 mg N/L was taken because 

the sewage N and not the sewage P concentration determines the biomass productivity per liter 

of wastewater. However, wastewater characteristics may vary from location to location caused 

by differences in precipitation, water scarcity and separation of storm water. Clearly, the nutrient 

composition of the sewage may dictate the optimum treatment configuration, including the 

feasibility of microalgae systems. 
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6.6 Conclusions 

This thesis focused on exploring new municipal wastewater treatment concepts that help to 

improve energy saving and allow recovery of valuable resources. Modelling results show that 

configurations with bioflocculation and (cold) partial nitritation/Anammox can be operated if the 

wastewater temperature is above 10°C and microalgae treatment can be applied year round only 

in tropical regions that are close to the equator line. The results obtained by experiment work 

show that a combined process of bioflocculation HL-MBR and subsequent alkaline anaerobic 

fermentation for VFA production is technologically feasible. However, future research should be 

conducted, in particular on the cost analysis, market opportunity for VFA, extraction technology, 

and quality of the end products. 
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Appendix A 
 

Calculations of mass fluxes of COD, N and P in Configuration 1 

with bioflocculation, partial nitritation/Anammox, anaerobic 

digestion and CHP unit (Figure 2.3) 
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Appendix B 
 

Analytical evaluation of normalized sensitivity coefficients 
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Analytical evaluations of the normalized sensitivity coefficients of area requirement (A) with 

respect to biomass yield on light energy (YX,E) and biomass maintenance coefficient (mE,X) were 

obtained from the partial derivatives of A with respect to YX,E and mE,X, respectively. 

That is, 

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂

∂
=

A
EX,Y

EX,Y
A

EX,YA,
S  

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∂

∂

∂

∂
=

A
EX,Y

EX,Y
Tμ

Tμ
A  

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−

∂

∂

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂

∂
=

A

Y
EX,

EX,
Y*

T
f*

XE,
m

XE,
r

EX,
Y

T
μ*L
W
F

T
μ

 

     
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−=

A
EX,Y

TXE,XE,2
Tμ*L

WF f*mr    (B.1). 

Substitute 
T
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The absolute values of the normalized sensitivity coefficient of area requirement with respect to 

the microalgal biomass yield using Eq. B.3 are shown in Figure B.1 and to the microalgal 

biomass maintenance using Eq. B.6 are shown in Figure B.2. 

 

Figure B.1: Absolute normalized sensitivity coefficient of area requirement with respect to biomass yield 

on light energy based on annual light intensity and annual temperature of Peru, Huancayo 

 

Figure B.2: Absolute normalized sensitivity coefficient of area requirement with respect to biomass 

maintenance based on annual light intensity and annual temperature of Peru, Huancayo
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Summary 
 

Recently, municipal wastewater has started to be considered as a potential resource of water, 

energy and nutrients nitrogen (N) and phosphorus (P). For example, the organic pollutants in 

municipal wastewater represent a potential chemical energy of 1.5–1.9 kWh per m3 of 

wastewater. At present, conventional activated sludge (CAS) systems are widely applied to treat 

municipal wastewater. The main advantages of CAS systems are that they are robust and 

generally produce an effluent quality that meets the discharge guidelines. However, CAS 

systems cannot be considered sustainable, because these require large amounts of energy (mainly 

for aeration and sludge treatment), have a high CO2 emission and do not recover valuable 

resources.  

Chapter 1 describes new developments in municipal wastewater treatment and recovery 

technologies that can overcome the limitations of low temperatures and diluted valuable 

compounds from municipal wastewater. In this thesis new municipal wastewater treatment 

concepts that combine wastewater treatment with recovery of valuable resources and can save 

considerable amounts of energy were investigated by modelling and experiments.  

Chapter 2 describes a procedure to design and integrate new process units into promising 

wastewater treatment plant configurations. A numerical Excel-based simulation tool was 

developed combining literature data and information from recent experimental research, and 

steady-state energy and mass balances with first-order conversions. Quantitative numerical 

results showed that a novel configuration with bioflocculation, cold partial nitritation/Anammox, 

novel P recovery, and anaerobic digestion is the most promising wastewater treatment concept 

for the Netherlands, because it can: 1) treat wastewater year round; 2) produce an effluent at a 

quality that meets the discharge guidelines; 3) reduce CO2 emission by 35% compared to the 

CAS system; 4) achieve a net energy yield up to 0.24 kWh per m3 of wastewater, whereas the 

CAS system have a negative net energy yield of -0.08 kWh per m3 of wastewater; and 5) recover 

80% of the sewage P. A sensitivity analysis of the proposed configuration points out the
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dominant influence of wastewater organic matter on energy production and energy consumption. 

Additionally, it was also demonstrated that another configuration, which uses a similar approach 

with bioflocculation and anaerobic digestion but where N and P in the permeate of the 

bioflocculation are assimilated by microalgae, is not applicable in the Netherlands, because of a 

limited light availability, low temperature and low irradiance in the winter period.  

In Chapter 3 the feasibility of the two above-mentioned configurations that are based on 

combined bioflocculation and anaerobic digestion but with different nutrient removal 

technologies, i.e. partial nitritation/Anammox or microalgae treatment, was further evaluated for 

16 locations around the globe with respect to their net energy yield, N and P recovery 

efficiencies, CO2 emission and area requirements. The results quantitatively support the pre-

assumption that the applicability of the two configurations are strongly location dependent. The 

configuration with (cold) partial nitritation/Anammox is applicable in tropical regions and some 

locations in temperate regions, such as Southern Europe and Southern part of South America. 

The configuration with microalgae treatment is only applicable the whole year round in tropical 

regions that are close to the equator line, such as Southeastern Asia and Northern part of South 

America. On the locations with very low sewage temperatures, e.g. temperatures below 10°C, for 

example in Northern America and Eastern Europe, CAS systems are recommended. A sensitivity 

analysis of the configuration employing microalgae treatment showed that microalgal biomass 

yield and nutrient concentrations in the municipal wastewater have a critical impact on the area 

requirement and effluent concentrations.  

In CAS systems energy recovery from wastewater is accomplished by anaerobic digestion of 

the organic solids in primary and secondary sludge into methane. However, volatile fatty acids 

(VFA), which are intermediate digestion products, may be preferred over methane, because VFA 

can be used as starting compounds for a wide range of higher value products, for example 

bioplastics (polyhydroxyalkanoate or PHA) and medium-chain fatty acids. Production of VFA is 

only possible if the last step of anaerobic digestion, i.e. methanogenesis, can be prevented. This 

can be accomplished by applying a short sludge retention time (SRT) to actively wash-out the 

slow growing methanogens and/or by applying extreme pH values that inhibit growth of 

methanogens. In Chapter 4 the feasibility of a combined process with bioflocculation, using a 

high-loaded membrane bioreactor (HL-MBR) to concentrate sewage organic matter, and 
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anaerobic fermentation, using a sequencing batch reactor to produce VFA, was experimentally 

investigated. The results showed that an HL-MBR operated at a hydraulic retention time (HRT) 

of 1 hour and an SRT of 1 day resulted in very good performance, because as high as 75.5% of 

the sewage COD was diverted to the concentrate and only 7.5% was mineralized. It was also 

found that 90% of the sewage NH4-N and PO4-P were conserved in the HL-MBR permeate, 

which can be reused as irrigation water because it is free from solids and pathogens. During 

anaerobic fermentation of the HL-MBR concentrate at an SRT of 5 days and 35°C, a VFA yield 

of 282 mg VFA-COD/g VSS was reached and this was equivalent to only 15% of the sewage 

COD. Methane production was inhibited at an SRT of 5 days, but incomplete solids degradation 

mainly limited the VFA production. 

Hence, the VFA yield from anaerobic fermentation needed to be increased. In Chapter 5 it 

was hypothesized that high pH (pH 8–10) fermentation combined with a long SRT, allowing for 

sufficient solubilization of solids and colloidal COD, can improve the VFA yield. The results 

showed that application of a pH shock of 9 in the first 3.5 hours of a sequencing batch cycle 

followed by a pH uncontrolled phase for 7 days gave the highest VFA yield of 440 mg VFA-

COD/g VSS and this was equivalent to 26% of the sewage COD. This yield was much higher 

than at fermentation without pH control or at a constant pH between 8 and 10. The high yield in 

the pH 9 shock fermentation could be explained by (1) a reduction of methanogenic activity, or 

(2) a high degree of solids degradation or (3) an enhanced protein hydrolysis and fermentation. 

This study also demonstrated that the VFA yield can still be further optimized by fine-tuning pH 

levels and longer operation, possibly with fermentative microorganisms adapted to a high pH 

that are commonly found in nature. This would further increase VFA yield to 33% of the sewage 

COD. 

 In Chapter 6 three novel municipal wastewater treatment plant configurations based on 

combined bioflocculation in HL-MBR and high pH anaerobic fermentation but with different 

nutrient removal technologies, i.e. partial nitritation/Anammox or microalgae treatment, or 

without nutrient removal are further discussed. In the last configuration mentioned, HL-MBR 

permeate could be directly used as irrigation water but the amounts of micropollutants should be 

measured. In fact, because of the shorter SRT of the HL-MBR compared to CAS systems the 

removal efficiency of micropollutants may be lower and advanced post-treatment may be 
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required. In the second configuration, the permeate of HL-MBR is treated by (cold) partial 

nitritation/Anammox to remove N and by a novel P recovery technology. In the current study it 

was assumed that cold partial nitritation/Anammox can be applied if the temperature of 

wastewater is above 10°C. However, this concept still needs further optimization. In particular 

the partial nitritation process at temperatures down to 10°C is challenging and oxygen control 

becomes crucial to avoid nitrate production. Moreover, the main challenge for P recovery is 

development of a cost-effective technology that can work at low wastewater temperatures and 

low phosphorus concentrations. In the third configuration, N and P in the HL-MBR permeate are 

assimilated by microalgae. The applicability of microalgae is determined by the production 

location. Because the area requirements for microalgae cultivation are still much higher than for 

CAS systems, a microalgae treatment would only be economically feasible if the applications of 

microalgal biomass will be able to produce a very high value product, such as carotenoids and 

dietary supplement. However, in this case only the nutrients should be allowed to come into 

contact with the microalgae. 

In our experiments, the bioflocculated sewage organic matter had a concentration of 10 g 

COD/L, from which about 3.5 g VFA-COD/L could be produced. In order to make VFA 

recovery processes more attractive, the VFA production from a 20 g COD/L of bioflocculated 

concentrate becomes a promising candidate. This also indicates that in an HL-MBR the HRT 

needs to be decreased from 1 to 0.5 hours. However, the feasibility of an HL-MBR with such a 

low HRT needs to be further investigated with respect to membrane fouling, oxygen limitation 

and the extent of membrane area. Our experiments also show that at constant pH 9‒10 a 

considerable amount of (soluble) proteins were not converted into VFA. To continue work in 

line with this thesis, further research should be conducted on (1) a more detailed chemical 

characterization of the remaining effluent produced from high pH fermenter of the HL-MBR 

concentrate, (2) the development of cost-effective VFA extraction technologies, (3) a life cycle

assessment and financial analysis of a mixed VFA production and a single acid production, and 

(4) the distribution of heavy metals, pathogens and micropollutants in the HL-MBR and high pH 

fermenter as well as in the end products from these processes. 
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