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Abstract

Esfandyari, H. (2016). Genomic selection for crossbred performance

Joint PhD thesis, Aarhus University, Denmark and Wageningen University, the
Netherlands

Crossbreeding programs are used intensively in livestock production systems. The
aim of selective-breeding programs in many of these systems is to maximize
crossbred performance (CP), where selection is carried out within pure-lines using
data from purebred animals. However, selection based on performance of
purebred parents may not maximize performance of their crossbred descendants
due to the genetic and environmental differences between purebred and crossbred
animals. Genomic selection (GS) can be used to select purebreds for CP and has
some advantages, such as it does not require pedigree information on crossbreds
and can make accommodating non-additive gene action easier. The overall
objective of this PhD project was to assess the possibilities of using dominance in
genomic crossbreeding programs. Dominance is important in crossbreeding
programs as it is the likely genetic basis of heterosis. It is also expected to be one of
the factors causing the genetic correlations between crossbred and purebred
performance to be smaller than one. Using stochastic simulations, response to
selection in a two-way crossbreeding system was investigated. Under the
hypothesis that performance of crossbred animals differs from that of purebred
animals due to dominance, it was found that a dominance model can be used for
GS of purebred individuals for CP, without using crossbred data. Furthermore,
results showed that, if the correlation of linkage disequilibrium phase between
pure lines is high, accuracy of selection can be increased by combining the two
pure lines into a single reference population to estimate marker effects. In
addition, response to selection of crossbreds with either a purebred or crossbred
training population under a dominance model was compared. It was found that
response to selection in crossbreeding programs can be increased by training on
crossbred genotypes and phenotypes. Moreover, if the reference population is
sufficiently large and both pure lines are not very closely related, tracing the line
origin of alleles in crossbreds improved the accuracy of genomic prediction. Finally,
real data of purebred Landrace and Yorkshire pigs were analysed to compare the
predictive ability of genomic prediction models with either additive, or both
additive and dominance effects, when the validation criterion was CP. The results
showed some gains in prediction accuracy for CP by including dominance and
combining both pure lines into a single reference population for training. In
conclusion, GS can be used for efficient selection of purebreds for CP by addressing



the factors that cause the genetic correlations between crossbreds and purebreds
to be lower than one.
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General introduction






1 General introduction

1.1 Crossbreeding

Animal genetic improvement programs involve two main methodologies for
increasing the productivity of farm animals; selection of best animals within a
breed or population and using the best breeds or breed combination through
crossbreeding systems. Crossbreeding is widely used in livestock to produce
individuals with superior performance for characters of economic importance.
Most of the superiority of crossbred over purebred animals is attributable to
heterosis, known as hybrid vigor, which has been generally found to occur in swine
(Johnson, 1980; Toelle and Robison, 1983; Mclaren et al., 1987), poultry (Bell et al.,
1950; Kosba, 1978), sheep (Fahmy, 1970; Fogarty, 1981; Farid, 1989), beef (Gregory
et al., 1965; Gregory et al., 1992), and dairy cattle (Ahlbornbreier and Hohenboken,
1991; Lopez-Villalobos et al., 2000; Penasa et al., 2010). Even more than heterosis,
crossbreeding is sought for breed complementarity, which is to combine different
desirable characteristics from pure lines or breeds (Cundiff et al., 1986). In addition
to the genetic advantages of heterosis and breed complementarity, another
commercial benefit of crossbreeding is that the hybrids that are sold for production
are not suitable for breeding because the heterosis would not be retained in the
descendants of commercial crossbreds.

1.2 Non-additive genetic effects and heterosis
Despite the rediscovery of heterosis about a century ago and the suggestion of
various genetic models to explain this phenomenon, little consensus has yet been
reached about the genetic basis of heterosis (Xiao et al., 1995; Birchler et al., 2006;
Lippman and Zamir, 2007). The most prominent genetic hypotheses to explain
heterosis are the ‘dominance’ and ‘overdominance’ hypotheses. The dominance
hypothesis attributes heterosis to canceling of deleterious or inferior recessive
alleles contributed by one parent, by beneficial or superior dominant alleles
contributed by the other parent in the heterozygous genotypes at different loci
(Bruce, 1910; Jones, 1917). Suppose one parent with haplotype AAbb, where
capital letter represents beneficial dominant allele, is crossed to another parent
with haplotype aaBB. Hybridization would then result in a complementation of
detrimental effects by dominant alleles at both loci. As a result, the crossbred
phenotype would exceed the mean of the parents (Falconer and Mackay, 1996).
The overdominance hypothesis attributes heterosis to the superior fitness of
heterozygous genotypes over homozygous genotypes at a single locus (East, 1908;
Shull, 1908). The existence of overdominance has been observed in many traits (Li
et al.,, 2001; Luo et al., 2001; Estelle et al., 2008; Ishikawa, 2009; Boysen et al.,
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1 General introduction

2010). A possible mechanism for overdominance is pleiotropy, where the gene has
two alleles affecting different components of the trait in opposite directions. Thus,
the phenotype of a heterozygote, which carries both variants (alleles) of the gene,
would surpass either homozygote (Falconer and Mackay, 1996).

Apart from the two main theories which have been proposed to explain the
genetic basis of heterosis, epistasis is also considered to be associated with
heterosis (Schnell and Cockerham, 1992; Li et al., 2001). Epistasis refers to
interaction between alleles of two or more different loci. In summary, all genetic
hypotheses suggest that the contribution of many genes is responsible for the
more vigorous phenotypes of hybrids over parental lines. This also implies that
positive and negative effects of various loci might compensate each other, which
makes it difficult to support one hypothesis over the other (Melchinger, 1999).

Besides the genetic models, the generation of heterosis also depends on the
relationship between the parental populations. East (1936) reviewed relevant
studies and concluded that heterosis is positively associated with the genetic
disparity of the parental populations. Evidence can be found from the fact that
plant crosses that typically use highly inbred lines often manifest higher level of
heterosis than animal crosses, which are made by different mildly inbred lines or
different breeds to avoid a severe loss in fertility (Falconer and Mackay, 1996).
Yield advantages in hybrid crops can range from 15% to 50% (Stuber, 1994), while
heterosis in animal crosses is about 0—-10% for growth traits and 5-25% for fertility
traits (Kosba, 1978; Johnson, 1980; Koch et al., 1985; Gregory et al., 1992).

Falconer and Mackay (1996) comprehensively formulated how the dominance
and the difference in allele frequency between parental populations jointly affect
the level of heterosis in a cross. In summary, for a single bi-allelic locus that has
effect d at the heterozygous genotype, given Hardy-Weinberg equilibrium holds in
parental populations and the sires are randomly mated to the dams, the amount of
heterosis at this locus, expressed as the difference between the crossbred and the
average parental means, is H = dAq? where Aq is difference in allele frequency
between sires and dams. In the absence of epistatic interaction between loci, total
heterosis is the additive combination of the heterosis effects of the loci that jointly
affect the trait, H = ). dAq?.

It can be concluded from the above equation that the difference in allele
frequency between parental populations increases the amount of heterosis in
crossbreds. Further, fixing one allele in the sires and the alternate in the dams at
each locus would maximize the heterosis. Given the difference in allele frequency
between parental populations is constant, the amount of heterosis linearly
increases with the degree of positive dominance at each locus. If epistasis is also
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1 General introduction

present, the linearity would be affected, however, the presence of epistasis alone
cannot cause any heterosis (Crow and Kimura, 1970; Falconer and Mackay, 1996).
Further, most of the studies placed the epistatic interactions to a secondary or
minor role in heterosis (Li et al., 2001; Luo et al., 2001; Estelle et al., 2008; Li et al.,
2008), though it may be important to some traits (Meffert et al., 2002; Abasht and
Lamont, 2007).

1.3 Importance of non-additive effects in animal breeding
Genetic evaluations in livestock breeding programs are generally based on additive
genetic models, e.g. sire or animal models. Total genetic values of animals may also
contain non-additive components (Falconer and Mackay, 1996). Although non-
additive genetic effects are not directly transmitted from parents to offspring,
knowledge about these effects can be beneficial. In particular, dominance as a non-
additive effect, is of theoretical and practical importance, because it is heavily used
in crosses of animal breeds. In addition, inclusion of dominance effects in models to
predict genomic breeding values could increase prediction accuracy and decrease
the bias of estimated breeding values (Toro and Varona, 2010; Su et al., 2012).
Furthermore, a model that includes additive and non-additive genetic effects could
be beneficial for exploiting specific combining ability. Breeders should continue to
select for additive merit but can also improve non-additive merit by considering
interactions in mating programs (Van Raden, 2006). Sun et al. (2013) showed that
mating programs that include dominance effects can increase expected progeny
value for milk yield compared with mating programs that only include additive
genetic effects. Dominance effects could also be included in mating programs to
estimate inbreeding losses more precisely (Toro and Varona, 2010).

Several studies have estimated non-additive variances in livestock using
traditional pedigree information (Hoeschele, 1991; Fuerst and Solkner, 1994;
Misztal et al., 1997; Culbertson et al., 1998; Palucci et al., 2007) and reported a
small but significant non-additive variance. However, it is difficult to estimate non-
additive variance because it is often, at least partially, confounded with other
effects such as common environment or maternal effects. Also, there is a lack of
informative pedigrees, typically with large full-sib families, which are needed for
accurate estimates of dominance effects (Misztal et al., 1998). In view of this, it is
not surprising that most genetic evaluation systems use an additive model and
ignore non-additive effects, especially considering that their aim is to estimate
breeding values or additive genetic values. In addition, Hill et al. (2008) argued that
even if gene effects are not additive, most of the genetic variance is still expected
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1 General introduction

to be additive variance. However, the recent advent of dense SNP panels, has
ignited interest in the prediction of non-additive genetic effects (Su et al., 2012; Ertl
et al., 2014; Lopes et al., 2014; Moghaddar et al., 2014; Sun et al., 2014). In fact, the
availability of SNP genotypes represent a new opportunity to estimate non-additive
effects at individual loci and to estimate non-additive variances.

1.4 Conventional methods for selection of purebreds for
crossbred performance

The aim of selective-breeding programs in many of livestock production systems is
to maximize crossbred performance (CP), where selection is carried out within
pure-lines using data from purebred animals (Wei and Steen, 1991). However,
traits that are evaluated in purebred populations may be genetically different from
traits at the commercial production level because the genetic correlations between
crossbred and purebred performance (r,c) are usually less than one (Wei and
Vanderwerf, 1994; Dekkers, 2007). Evidence for ry,. values less than one has been
observed in livestock species (Lutaaya et al.,, 2001; Zumbach et al., 2007).
Deviations of ry. from 1 are often caused by genotype by environment (GxE)
interactions and non-additive (particularly dominance) genetic effects (Wei et al.,
1991). Thus, when rp is substantially lower than 1, the conventional strategy that
relies on selection of purebreds or pure lines on their own performance (PLS) is not
effective to improve the CP. Several methods have been proposed as alternatives
to pure line selection to obtain greater response in crossbred populations. These
methods can be classified into three groups: reciprocal recurrent selection (RRS),
combined crossbred and purebred selection (CCPS) and genomic selection (GS).

Reciprocal recurrent selection (RRS), originally proposed by Comstock et al.
(1949) is a cyclical breeding procedure designed for the genetic improvement of
guantitative traits and has been applied to a variety of animal and plant species
(i.e., poultry, swine, maize, etc.). In this procedure, nucleus individuals are selected
based on the hybrid performance of their sibs or descendants. Even though, RRS
can more efficiently exploit non-additive genetic variance than PLS (Comstock et
al.,, 1949; Bell et al., 1950), the practical value of RRS, however, was not as
encouraging as expected in most of the experiments (Calhoon and Bohren, 1974;
Wei and van der Steen, 1991).

CCPS aims to maximize the genetic response by using information on both
purebred and crossbred performance (Wei and Steen, 1991; Lo et al., 1993)). CCPS,
which can be viewed as a combined method of PLS and RRS, simultaneously
exploits additive and non-additive genetic variability (Wei and van der Steen, 1991).
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Different methods have been developed to implement CCPS. One approach is to
treat purebred and CP as genetically different traits and use selection index theory
to estimate the purebred breeding values for CP (Wei and Vanderwerf, 1994; Bijma
and van Arendonk, 1998). Alternatively, genetic evaluations of purebreds for CP
can be obtained by best linear unbiased prediction (BLUP) via Henderson's mixed
model equations (Lo et al., 1993, 1997). Although CCPS has been shown to give
greater short-term crossbred response (Bijma and Arendonk, 1998), the long-term
response in crossbreds will be impaired by the consequent increase of inbreeding
rate because CCPS increases the probability of co-selection of family members
(Bijma et al., 2001; Dekkers, 2007). In addition, to implement CCPS requires routine
collections of crossbred phenotypes and pedigree that can link crossbred
descendants to their purebred parents, which would increase the investment in the
program (Dekkers, 2007). Moreover, it is very difficult to explicitly accommodate
dominance in the model for CCPS. Lo et al. (1995) has shown that 25 parameters
are needed to model the genotypic variances and covariances between purebreds
and crossbreds under dominance, and the model complexity increases as more
breeds are involved in the crossbreeding system. These drawbacks have limited the
widespread application of CCPS in livestock.

1.5 Genomic selection in crossbreeding schemes

Genomic selection proposed by Meuwissen et al. (2001) is an extension of marker-
assisted selection (MAS) using genome-wide SNP as markers whose effects are
treated as random in a mixed linear model. Once the effects of SNP have been
estimated from a training population, they can be applied to predict the breeding
values of genotyped animals at an early stage without own phenotypic records. As
SNP saturate the genome with high-density, effects of quantitative trait loci (QTL)
that underlie the trait are expected to be captured by SNP associated with QTL
through population-wide linkage disequilibrium (LD), which is consistent across
families. Further, given SNP are linked to QTL, SNP reflect more accurately the
genetic relationship among genotyped individuals than pedigree by accounting for
recombination event of loci and random sampling of gametes (Habier et al., 2007).
Thus, pedigree might not be needed for GS. Moreover, it is not necessary to
measure the phenotypes every generation of GS, because in theory predicted SNP
effects can be used over a few generations with limited loss in prediction accuracy
(Habier et al., 2007; Sonesson and Meuwissen, 2009). With such advantages,
recent studies have shown encouraging results of GS in the selection of purebreds
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(Meuwissen et al.,, 2001; Muir, 2007; Hayes et al., 2009; VanRaden et al., 2009;
Habier et al., 2011).

Recent studies have shown that GS is also an appealing method to select
purebreds for CP, particularly when the crossbreds are used for training (Dekkers,
2007; Piyasatian et al., 2007; Ibanez-Escriche et al., 2009; Kinghorn et al., 2010;
Toosi et al., 2010; Zeng et al., 2013). As compared to alternative methods that use
covariance theory, such as combined crossbred and purebred selection proposed
by (Wei and Steen, 1991) and (Lo et al., 1993), GS can give substantially greater
response to selection (Dekkers, 2007; Piyasatian et al., 2007), lower the rate of
inbreeding (Daetwyler et al., 2007; Dekkers, 2007), and it does not require a
systematic collection of pedigree that connects crossbreds to purebreds. Dekkers
(2007) demonstrated that MAS or GS with marker effects derived from the
commercial crossbred population led to substantially higher crossbred response
and a lower rate of inbreeding compared to CCPS and PLS when the estimation of
marker effects was accurate.

For the implementation of GS in crossbreeding programs, several studies have
focused on crossbred data for the prediction of marker effects and also an additive
model has been used (Dekkers, 2007; Ibanez-Escriche et al., 2009; Toosi et al.,
2010). Given that the SNP effects in a crossbred population originate from parental
populations from different breeds, the usual additive model for GS that only fits a
common substitution effect for each SNP, however, may not be appropriate. For
this reason, Dekkers (2007) and Kinghorn et al. (2010) suggested to use statistical
models that accommodate breed-specific effects of SNP alleles to fit crossbred
phenotypes (BSAM), and then to apply the estimates in the predictions of genomic
breeding values of purebreds for CP. This method has been called marker-assisted
selection for commercial crossbred performance (CC-MAS) in Dekkers (2007) or
reciprocal recurrent genomic selection (RRGS) in Kinghorn et al. (2010). The
performance of BSAM has been studied by stochastic simulations (lbanez-Escriche
et al.,, 2009; Kinghorn et al., 2010). Under additive gene action, fitting BSAM is
beneficial only when the parental breeds are distantly related and the number of
SNP is small relative to the size of the training population (Ibanez-Escriche et al.,
2009). Under dominance, Kinghorn et al. (2010) demonstrated a clear advantage of
BSAM over the additive model in crossbred response, assuming the estimation of
SNP effects was perfect.

It has been argued that dominance is the likely genetic basis of heterosis
(Falconer and Mackay, 1996; Charlesworth and Willis, 2009). Therefore explicitly
including dominance in the GS model may be beneficial for selection of purebreds
for CP. A model that explicitly includes dominance effects (the dominance model)
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1 General introduction

provides estimates of both additive and dominance effects and therefore enables
the computation of allele substitution effects using appropriate allele frequencies.
Once estimates of SNP effects are obtained from training, they can be successively
applied over generations with updated allele frequencies to develop prediction
equations specific to that generation. Compared to the BSAM model that breed
origin of SNP alleles must be known or inferred, such knowledge is not needed for
the dominance model. Zeng et al. (2013) compared additive and dominance
models for GS of purebred animals for CP and came to the conclusion that, when
dominance is the sole driver of heterosis, using a dominance model for GS results
in greater cumulative response to selection of purebred animals for CP than either
BSAM or the additive model. However, based on their simulation study, the extent
of this additional response to selection depended on the size of dominance effects
at the QTL and the power of detection of dominance effects through SNP
genotypes.

1.6 Aim and outline of this thesis
The aim of this PhD project was to assess the possibilities of using non-additive
genetic effects in the selection of animals to use in cross breeding programs.

If improvement is to be continued in a breeding programme, or if there is to be
the opportunity to redirect the programme to improve different traits or respond
to environmental or production constraints, genetic variability and in particular
additive genetic variance (V,) has to be present. Genetic variation is lost as a result
of sampling or genetic drift, due to finite population size, and as a result of
selection. Chapter 2 of this thesis explores the effect of presence of non-additive
effects in genetic models and assess their importance in medium to long term
selection experiments. It was investigated how the genetic variance and genetic
gain are affected by the presence of non-additive genetic effects, using BLUP-EBV
and phenotypes as selection criteria.

The next two chapters of this thesis deal with GS of purebreds for CP. In both
chapters, conclusions were based on simulated data. In the previous studies on the
selection of purebred animals for CP (lbanez-Escriche et al., 2009; Zeng et al., 2013)
crossbred data have been used to estimate marker effects, which requires
collecting genotypes and phenotypes on crossbred animals. This can substantially
increase the required financial investment of the breeding program, since
crossbred animals are usually not individually identified and individual performance
is not recorded. It is interesting to evaluate the potential benefit of GS within
purebred lines when the objective is to improve performance of crossbred animals,
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by using marker effects that are estimated from pure line data. In other words,
additive and dominance effects of alleles can be estimated from pure line data, and
subsequently breeding values for CP can be estimated by using the appropriate
allele frequencies. Thus, in chapter 3, the aim was to investigate the benefits of GS
of purebred animals for CP based on purebred information, compared to
traditional selection for purebred performance. The effect of the correlation of LD
phase between the two pure breeds on the consequences of combining two pure
lines to a single reference population to estimate marker effects was also
investigated.

Previous studies on the implementation of GS in crossbreeding programs
focused either on crossbred (Ibanez-Escriche et al., 2009; Zeng et al., 2013) or
purebred (Esfandyari et al., 2015) data for prediction of marker effects, without
explicitly comparing responses to selection obtained with both methods.
Therefore, in chapter 4 the aim was to compare response to selection in crossbreds
by simulating a two-way crossbreeding program with either a purebred or
crossbred training population under a dominance model. In addition, the benefit of
GS of purebreds for CP using a crossbred training population was compared when
breed origin of alleles was either accounted for or not in the calculation of breeding
values.

In chapter 5, to confirm the findings of the simulation study in chapter 3, the
aim was to compare the predictive ability of genomic prediction models with either
additive, or both additive and dominance effects, when the validation criterion was
CP. For this purpose the real genomic data of purebred Landrace and Yorkshire pigs
were analysed. Finally, in chapter 6, | discuss the relevance of my findings and place
them in a broader context. | reflect on the advantages and shortcomings of GS in
crossbreeding schemes and discuss future perspectives.
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2 Medium to long-term effects of selection

Abstract

Background: Under the finite-locus model in the absence of mutation, the additive
genetic variation is expected to decrease when directional selection is acting on a
population, according to quantitative-genetic theory. However, some theoretical
studies of selection suggest that the level of additive variance can be sustained or
even increased when non-additive genetic effects are present. We tested the
hypothesis that finite-locus models with both additive and non-additive genetic
effects maintain more additive genetic variance (V,) and realize larger medium-to-
long term genetic gains than models with only additive effects when the trait under
selection is subject to truncation selection.

Methods: Four genetic models that included additive, dominance, and additive-by-
additive epistatic effects were simulated. The simulated genome for individuals
consisted of 25 chromosomes, each with a length of 1M. One hundred bi-allelic
QTL, four on each chromosome, were considered. In each generation, 100 sires and
100 dams were mated, producing five progeny per mating. The population was
selected for a single trait (h2=0.1) for 100 discrete generations with selection on
phenotype or BLUP-EBV.

Results: V, decreased with directional truncation selection even in presence of
non-additive genetic effects. Non-additive effects influenced long-term response to
selection and among genetic models additive gene action had highest response to
selection. In addition, in all genetic models, BLUP-EBV resulted in a greater fixation
of favourable and unfavourable alleles and higher response than phenotypic
selection.

Conclusions: In the schemes we simulated, the presence of non-additive genetic

effects had little effect in changes of additive variance and V, decreased by
directional selection.
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2 Medium to long-term effects of selection

2.1 Introduction

Dominance and epistatic effects have been detected in many experimental
populations (Carlborg and Haley, 2004) and these allelic interactions can influence
the amount of additive genetic variance (V,) in populations (Goodnight, 1987,
Cheverud and Routman, 1995, Hansen and Wagner, 2001, Caballero and Toro,
2002, Barton and Turelli, 2004). It has been argued that epistatic variance may be
“converted” into additive variance by genetic drift when a population passes
through a population bottleneck (Goodnight, 1995, Cheverud and Routman, 1996,
Cheverud et al., 1999, Lopez-Fanjul et al., 2002, Barton and Turelli, 2004). However,
this argument is not restricted to genetic drift. Changes in V, occur with variations
in the genetic background, and any process that changes allele frequencies,
including selection, can change V, (Hansen and Wagner, 2001). Gene interactions
may also affect response to selection through a build-up of linkage disequilibrium
associated with favourable gene combinations, since parents transmit not only half
of the additive effects to offspring, but also a quarter of the pairwise epistatic
effects (AxA) and smaller fractions of higher-order interactions (Lynch and Walsh,
1998). This suggests that some of the linkage disequilibrium built by epistatic
selection can be converted into response to selection (Griffing, 1960).

The model most commonly used for genetic evaluation is the infinitesimal
model. It assumes large numbers of genes affecting traits with each gene having a
small additive effect (Fisher, 1918). In this model, selection does not change the
allele frequency significantly at any individual locus, nor does it change the genetic
variance except for non-permanent changes caused by gametic phase
disequilibrium (the Bulmer effect; Bulmer (1971)). The assumptions of the
infinitesimal model are incorrect. In practice, there are individual genes, sometimes
with large effects, and many genes showing dominance and epistasis (Mackay,
2001b, a). An alternative to the infinitesimal model is a finite-locus model, which
can accommodate non-additive inheritance. Under the finite-locus model, the
additive genetic variation is expected to decrease when directional selection is
acting on a population, according to quantitative-genetic theory (Crow and Kimura,
1970, Falconer and Mackay, 1996). However, some theoretical studies of selection
suggest that the level of additive variance can be sustained or even increased when
non-additive genetic effects are present, in a manner similar to the action of
genetic drift (Fuerst et al., 1997, Carter et al., 2005). Experimental evidence for this
phenomenon was found by Martinez et al. (2000), when they selected mice for
body fat, and by Sorensen and Hill (1982), who selected D. melanogaster for
abdominal bristle number. Furthermore, Carlborg et al. (2006) showed that
epistatic interactions between four loci mediated a considerably higher response to
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2 Medium to long-term effects of selection

selection for growth in chicken than predicted by a single-locus model. In a
simulation study, Hallander and Waldmann (2007) investigated changes in V, in the
presence of non-additive effects in a trait subjected to directional selection. They
showed that by including dominance and epistatic effects, V4 was increased during
the initial generations of selection. Fuerst et al. (1997) showed similar results by
using a two-locus genetic model to simulate a trait with different levels of additive
and non-additive genetic effects. In these simulation studies V, increased by
including non-additive effects, but it seems considering 2 to 4 loci with equal
additive and dominance effects across all loci with initial frequency of 0.5 is not a
realistic model of the underlying genes. In fact, finite-locus models used in these
studies to test quantitative theory are too restrictive. Indeed, it is possible to fit less
restrictive models with many genes each having a unique effect, thus allowing a
range from genes of large to zero effect. These genes could display non-additive
effects such as dominance or epistasis. In theory, such a model seems to agree
more closely with what we know about the genetics of quantitative traits than the
simple models (Goddard, 2001).

Previous studies for investigating effect of selection on additive genetic variance
in presence of non-additive effects have focused on phenotypic selection (Fuerst et
al.,, 1997, Carter et al., 2005, Hallander and Waldmann, 2007). An alternative to
selection based only on the phenotypic record of the individual is selection based
on best linear unbiased predictor (BLUP) of breeding value (Henderson, 1975),
which uses records on all relatives, in addition to the individual's own record, in
genetic evaluation. However, for a trait under selection, there is no theory to
quantify the differences between phenotypic selection or BLUP-EBV selection when
the trait is controlled both by additive and non-additive genetic effects. This work
explores the effect of presence of non-additive effects in genetic models and to
assess their importance in medium to long term selection experiments. For this
objective we examine how the genetic variance and genetic gain are affected by
the presence of non-additive genetic effects, using BLUP-EBV and phenotypes as
selection criteria.

2.2 Methods

2.2.1 Procedure

We used stochastic simulation to estimate genetic gain and monitor changes in
genetic-variance components generated by four genetic models, with two different
selection criteria and two distributions of QTL effects. The models were applied to
a population undergoing directional truncation selection for a single trait over 100
discrete generations. During each generation, the genetic gain and changes in
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2 Medium to long-term effects of selection

additive, dominance and epistasis variances were calculated. The simulations were
carried out using a modified version of ADAM (Pedersen et al., 2009). For each
scenario, 100 replicates were performed.

2.2.2 Genetic models

The four genetic models, two selection criteria, and two distributions of QTL effects
are presented in Table 2.1. The first genetic model (A) assumed that the trait is
controlled by additive-gene actions. In the second model (A/D), the trait was
controlled by additive and dominance effects. In the third model (A/AA), additive
and additive x additive epistatic effects were included. In the final model, a full-
genetic model (A/D/AA) consisted of additive, dominance, and additive x additive
epistatic effects.

Table 2.1 Values of initial ratio of non-additive variances on additive variance,
QTL effects distribution and selection criteria in simulated scenarios. P stands
for phenotypic selection.

Tested Parameters Values
Distribution of QTL effects Mixture, Gamma
Selection criteria P, BLUP

Genetic Model Vo/Va Vaa/Va
A 0 0
A/D 1/2 0
A/AA 0 1/4
A/D/AA 1/2 1/4

2.2.3 Selection criteria

Truncation selection was applied in each generation and the criterion for
truncation selection was either the phenotypic observation of the individual or
EBVs obtained from standard BLUP evaluations of phenotypic records and pedigree
information.

2.2.4 Simulated genome and distributions of QTL effects

The simulated genome consisted of 25 chromosomes. One hundred QTL, 4 on each
chromosome, were considered. All chromosomes had a length of 1M and the QTL
were assumed to be positioned randomly on each chromosome following a
uniform distribution. All QTL were bi-allelic and initial frequencies of the alleles
followed a U-shaped distribution as suggested by Crow and Kimura (Crow and
Kimura, 1970). The U-shaped distribution of gene frequencies explains why
selection response does not decline in the first few generations, because selection
increases the frequency of rare favorable alleles and, hence, increases the genetic
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2 Medium to long-term effects of selection

variance due to these loci, which compensates for the loss of variance caused by
selection for common favorable alleles (Goddard, 2001).

Two distributions were fitted for QTL effects (a;); either a gamma distribution
(0.4, 1.66) or a mixture of a double exponential distribution and a normal
distribution, i.e. a; ~ 0.95 .L(0,u?) + 0.05.N(0, (5u)?)

a) Gamma b) Mixture
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Figure 2.1 Distribution of QTL effects. (a) Gamma distribution, (b) Mixture of a double
exponential distribution and a normal distribution.

(Figure 2.1). With appropriate u > 0. These distributions resulted in many QTL with
small effects and few QTL with large effect (Bennewitz and Meuwissen, 2010).
Dominance effects (d;) were generated between alleles at the same locus and
interactions between loci (aaj;) only occurred for each pair of neighboring loci, and
a locus had only interaction with one other locus. Dominance degrees (h;) were
normally distributed with mean p, = 0.5, variance V,=1, and they were
independent of the additive effects. Dominance effects were then calculated as
d; = |h;.a;|, so they became dependent to the additive effects (Wellmann and
Bennewitz, 2011). First-order (additive-by-additive) epistatic degrees (kij) also
followed a normal distribution (0,1), and the epistatic effects were calculated as
aa;; = |k;i|. aj. aj, where aaj; is the epistatic effect of the two adjacent loci, k; is the
epistatic degree, a; and a; are the additive effects at the first and second locus.

The total genotypic value of an individual was obtained by summing the
genotypic contribution of each locus pair (Table 2.2). The genetic variance
components depend on gene frequencies and values of different genetic effects.
Following Fuerst et al. (1997), they were computed as:
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np
Va = Z{2p1 qila; + (q; — py)dy + (p — QZ)aan]Z
1

+2p;qzla; + (42 — p)dz + (p1 — qq)aa1*h (1)

np
Vo = ) (4piaidi + 4p3addd), (2)
1np
Vaa = 2{4 P1d1P2dzaath  (3)
1

Where V, is the additive variance (variance of breeding values), np is the total
number of pairs of loci, V is the dominance variance (variance of dominance
deviations), V4 is the additive-by-additive variance, a; and a, are the additive
effect at loci 1 and 2, d; and d, are the dominance effects, and aa;, is the additive-
by-additive effect at the pair (1 and 2). The gene frequencies of alleles A, B, aand b

are py, P, 9 and q.

Table 2.2 Genetic effects of genotypes for a pair of loci based on Fuerst et al

(1997)
Genotype at locus 1 Genotype at locus 2
BB Bb bb
AA a,+a,+aaq; a;+d, a;-0,-00;,
Aa d;+a, d;+d, ds-a,
aa -a;+0,-0d1; -a,+d, -01-0a,+00;;

2.2.5 Population structure

One hundred sires and 100 dams were in the base population (generation 0) of
each scenario and were mated randomly to produce the first generation of
offspring. Offspring produced by the base population were selected in generation 1
and the first generation of offspring from selected parents was produced in
generation 2. Offspring produced in generation 100 were the result of 99
generations of selection. One hundred sires and 100 dams were selected in each
generation, each sire was mated with one dam, and 5 full-sib offspring were
produced per mating, resulting in 500 offspring in each generation.

2.2.6 Trait

The trait under selection had a narrow-sense heritability of 0.10 in the base
population. The environmental values were sampled from a normal distribution for
each individual with mean zero and variance Vg = Vp — (V4 + Vp 4+ Vy,).
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2.3 Results

2.3.1 Additive variance

In order to compare trends of V across scenarios, additive genetic variance in each
scenario was scaled by dividing all values to initial additive variance of each
scenario. Figure 2.2 shows changes of V, over generations in four genetic models.
There was a systematic pattern in the loss of V4 when comparing the four genetic
models, and differences between genetic models were relatively small. In the A/AA
model, the loss of V, was faster than in the other genetic models. Initially, the
decline in V, was smallest in the A-model. In the long term, however, the amount
of retained V, was highest in full genetic model (A/D/AA). There were no
differences in changes of V4 over generations between the two distributions fitted
for QTL effects. However, two distinct selection criteria showed differences in
reduction of V, over time, as the BLUP-EBV selection criteria accelerated the
reduction in V,.
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Figure 2.2 Changes in additive genetic variance (V,) in four genetic models separated by
selection criteria and QTL effect distribution. The plotted additive variance for each scenario
are means from 100 replicates, standardized by the initial additive variance of each scenario.
(a) Selection method: Phenotypic and QTL effect distribution: Gamma, (b) Selection method:
Phenotypic and QTL effect distribution: Mixture, (c) Selection method: BLUP-EBV and QTL
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effect distribution: Gamma, (d) Selection method: BLUP-EBV and QTL effect distribution:
Mixture.

P stands for phenotypic selection and Mixture stands for a mixture of normal and double
exponential distribution.

2.3.2 Dominance variance

In the two genetic models, A/D/AA and A/D, where dominance effects were
included, Vp increased or was constant in the initial generations. Afterwards Vp
decreased in the A/D model. Similar to V,, changes in V followed the same trend
for both distributions of QTL effects. Changes in V over time differed for the two
selection criteria. When selection was based on BLUP-EBV, the reduction of Vp, over
time was faster than with phenotypic selection (Figure 2.3c and 2.3d). A striking
result was that phenotypic selection hardly affected Vp in the A/D/AA model over
the entire period of 100 generations.

a) Selection: P, Qtl effect Dis.: Gamma b) Selection: P, Qtl effect Dis.: Mixture

1.0
1
¢
/
1.0
1
)

0.8
1
0.8
1
-

0.4

Dominance Variance
0.6
1
Dominance Variance
04 06
1
/

---- AD T
4  — wpmea

=" AD
- — AI/DIAA

0.2
0.2

T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100

Generation Generation

c) Selection: BLUP-EBV , Qtl effect Dis.: Gamma d) Selection: BLUP-EBV , Qtl effect Dis.: Mixture

12
12

1.0
10

0.8
0.8

0.4
1

Dominance Variance
0.6
1
0.4
1
/

Dominance Variance
0.6
1

---- AD N --- AD See el
o —— ADIAA - o —— ADIAA )
S e S
o | o |
S =
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Generation Generation

Figure 2.3 Changes in dominance genetic variance (Vp) in two genetic models (A/D/AA and
A/D) separated by selection method and QTL effect distribution. The plotted dominance
variance for each scenario are means from 100 replicates, standardized by the initial
dominance variance of each scenario. (a) Selection method: Phenotypic and QTL effect
distribution: Gamma, (b) Selection method: Phenotypic and QTL effect distribution: Mixture,

35



2 Medium to long-term effects of selection

(c) Selection method: BLUP-EBV and QTL effect distribution: Gamma, (d) Selection method:
BLUP-EBV and QTL effect distribution: Mixture.

P stands for phenotypic selection and Mixture stands for a mixture of normal and double
exponential distribution.

2.3.3 Additive-by-additive genetic variance

The epistatic variance decreased in a similar way over the 100 generations of
selection in both genetic models, both selection criteria, and both distributions of
QTL-effects (Figure 2.4). The decrease was fastest for selection on BLUP-EBV,
where V,, approached its lowest level (~0) at generation 60. For phenotypic
selection, longer time was needed for V4 to vanish completely (Figure 2.4a and
2.4b).
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Figure 2.4 Changes in additive-by-additive genetic variance (Vj,) in two genetic models
(A/D/AA and A/AA) separated by selection method and QTL effect distribution. The plotted
additive by additive variance for each scenario are means from 100 replicates, standardized
by the initial additive by additive variance of each scenario. (a) Selection method: Phenotypic
and QTL effect distribution: Gamma, (b) Selection method: Phenotypic and QTL effect
distribution: Mixture, (c) Selection method: BLUP-EBV and QTL effect distribution: Gamma,
(d) Selection method: BLUP-EBV and QTL effect distribution: Mixture. P stands for
phenotypic selection and Mixture stands for a mixture of normal and double exponential
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distribution.

2.3.4 Response to selection

The mean observed genotypic value of individuals in each generation, expressed in
initial additive genetic standard deviations and as a deviation from the initial mean,
is plotted in Figure 2.5. As selection proceeds, the difference between genetic
models became larger. In generation 100, the additive model had the highest
cumulative response to selection, and the full genetic model (A/D/AA) had the
lowest cumulative response in long term. Similar to results for the genetic variance
components, there were no major differences in genetic gain between both
distributions of QTL effects. When selection was based on BLUP-EBV, for all genetic
models response plateaued earlier than for phenotypic selection.
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Figure 2.5 Response to selection over 100 generations of selection separated by selection
method and QTL effect distribution. The plotted mean genotypic value for each scenario are
means from 100 replicates, standardized by initial additive genetic standard deviations of
each scenario. (a) Genetic gain in selection method: Phenotypic and QTL effect distribution:
Gamma, (b) Genetic gain in selection method: Phenotypic and QTL effect distribution:
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Mixture, (c) Genetic gain in selection method: BLUP-EBV and QTL effect distribution:
Gamma, (d) Genetic gain in selection method: BLUP-EBV and QTL effect distribution:
Mixture.

P stands for phenotypic selection and Mixture stands for a mixture of normal and double
exponential distribution.

2.3.5 Fixation and loss of favorable QTL

The additive genetic model (A) had the highest percentage of fixation of favorable
alleles at generation 100 when QTL-effects were gamma distributed (Figure 2.6;
results for the mixture distribution were similar and are not shown). This result
agrees with the highest response found for the additive model in Figure 2.5. The
percentage of fixed favorable alleles decreased when more non-additive effects
were added to the model. In all genetic models, the percentage of favorable alleles
that became fixed was higher than percentage of favorable alleles that were lost.
Of the total fraction of fixed alleles, however, the additive model had a greater
proportion of loci fixed for the favorable allele. BLUP-EBV generated higher levels
of fixation and loss of favorable alleles than phenotypic selection, which agrees
with the earlier plateau of response seen with BLUP selection in Figure 2.5. In
addition, the ratio of favorable fixed over total allele fixation was higher in BLUP-
EBV than phenotypic selection.

M Fav. Fixed = Fav. Lost I I
A A/

u
o O

Allele Fix-Lost (%)
= N W D
O O O o

o

D A/AA A/D/AA| A A/D  A/AA A/D/AA

Phenotype BLUP-EBV

Figure 2.6 Percentage of allele fixation and lost at generation 100 in four genetic models
separated by selection method when QTL effect distribution was gamma.

Fav. Fix: Percentage of QTL in which frequency of favorable allele is 1 in generation 100,

Fav. Lost: Percentage of QTL in which frequency of favorable allele is 0 in generation 100.
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2.4 Discussion

Our findings did not support the hypothesis that finite-locus models with both
additive and non-additive genetic effects maintain more V, and realize larger
medium-to-long term genetic gains than models with only additive effects when
the trait under selection is subject to truncation selection. We used four genetic
models to simulate a population undergoing directional truncation selection. In all
four models, V, decreased by directional selection, also in the presence of non-
additive effects, but the rate at which variation decreased varied among genetic
models and selection criteria.

2.4.1 Changes in variance

In our finite locus model, V, decreased by selection, which is in agreement with
results from other studies (Villanueva and Kennedy, 1990, Fuerst et al., 1997).
Directional selection changes the mean of a trait and it can also change the
variance. First, directional selection decreases V, due to the generation of negative
gametic phase disequilibrium (Bulmer, 1971). In the intermediate term, regardless
of selection criteria and QTL distribution, genetic models with epistatic terms (A/AA
and A/D/AA), showed faster reduction in V4 compared to the purely additive model
(Figure 2.2). One explanation for this could be that the double homozygote
genotype is more favoured by selection and that reduces V, by inducing negative
linkage disequilibrium among selected genes. If the selected genes are linked, the
decay of linkage disequilibrium is delayed, and the reduction of V, is enhanced
(Nomura, 2005). However, it has been shown in several studies as well as
experimental results that epistatic variance and to some extent dominance
variance might convert to additive genetic variance (Fuerst et al., 1997, Hallander
and Waldmann, 2007). In addition, any changes in V, might depend on the ratio of
VAA to Vy. If VAA is smaller than V,, as in our case, then epistatic values for a pair
of loci might be small and this will cause more decrease in V5 by selection in
comparison of purely additive gene action (Mueller and James, 1983).

Second, a more important cause for changes in V, is due to changes in allele
frequency. If all alleles are at intermediate frequencies, it can be expected that
variance will decline monotonically with time (assuming additivity), whereas if
some are at low frequency, an initial increase in variance might be observed. If the
distribution of frequencies is U shaped, as in this study, then the increase in
variance due to alleles at low frequency might be expected to outweigh the
decrease from those at high frequency (Hill and Bilinger, 2010). However, analyses
undertaken by Hill and Rasbash (1986) for finite populations indicate that the
pattern of response and change in V, is somewhat robust to the gene frequency
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distribution and V, decreases eventually as favourable alleles are moved to
fixation.

Third, in finite populations, V, also declines due to drift and, in the absence of
selection, this decline can be predicted as Va; = Vao(1 — 1/2Ne)* when assuming
additive-gene action (Robertson, 1960), where V,.is additive variance at
generation t, Vy, is intial additive variance and Ne is effective population size. We
plotted V, predicted by this formula versus observed V, for the additive model (A)
to see how they would differ (Figure 2.7). The large difference between predicted
and observed V, in Figure 2.7 is due to the fixation of favourable alleles by
selection, as the formula based on effective population size (or inbreeding)
assumes changes the allele frequency due to drift only. The lines for predicted V, in
Figure 2.7 show that, as expected, selection based on BLUP-EBV generates more
fixation due to drift than phenotypic selection and as pointed out earlier fraction of
favorable fixed over total fixation was higher in BLUP-EBV.

a) Selection: P, QTL effect dis.: Gamma b) Selection: P, QTL effect dis.: Mixture
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Figure 2.7 Comparison of changes in observed V, in pure additive genetic model with V4
based on inbreeding calculated as V,; = Vo (1 — F).
(a) Selection method: Phenotypic and QTL effect distribution: Gamma, (b) Selection method:
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Phenotypic and QTL effect distribution: Mixture, (c) Selection method: BLUP-EBV and QTL
effect distribution: Mixture, (d) Selection method: BLUP-EBV and QTL effect distribution:
Mixture.

P stands for phenotypic selection and Mixture stands for a mixture of normal and double
exponential distribution.

In contrast to V,, which decreased by selection, V was preserved especially by
phenotypic selection over generations. This maintenance of dominance variation
can be explained by the occurrence of overdominance at some loci. In the A/D/AA
genetic model, around 75 and 50% of loci showed overdominance for the mixture
and gamma distribution, respectively. It has been shown that overdominance
results in stabilizing selection, maintaining heterozygosity in the population rather
than driving one allele to fixation.

2.4.2 Response to selection

Our results demonstrate that non-additive effects may affect response to selection
in long term. Comparing genetic models, A and A/AA models had higher response
in long term than the models having a dominance component (Figure 2.5). The
reason for the greater response is probably due to the constellation of the
genotypic values, where one double homozygote pair of loci has higher value.
Hansen and Wagner (2001) [6]argued that non-additive effect such as directional
epistasis will affect the response to selection due to systematic changes in the
effects of alleles as their genetic background changes. On the other hand, if the
epistatic interactions are random and non-directional as in this simulation, these
effects will tend to cancel out or add random noise. However, over many
generations, the dynamics of gene effect reinforcement and competition can
become very complex, and may lead to substantial departures from simple additive
response to selection (Carter et al., 2005). One deduction of these results could be
that estimates of classical epistatic variance components are of little value in
predicting response in short term, as these estimation do not distinguish between
directional and non-directional forms of functional epistasis. Griffing (1960)
showed when directional epistasis is present, gametic-phase disequilibrium
increases the response to directional selection, with the response augmented by
SU%A

o2 where S is intensity of selection 64, is additive by additive variance and Gf, is
p

phenotypic variance. This increase in rate of response has been termed the

“Griffing effect”. Thus, in the presence of directional epistasis, disequilibrium is on
the one hand expected to increase the rate of response, while it is also expected to
decrease the rate of response by decreasing additive genetic variance (the Bulmer
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effect). Based on a small simulation study, Mueller and James (1983) concluded
that if epistatic variance is small relative to additive variance and the proportion of
pairs showing epistasis is also small, the Bulmer effect dominates the Griffing
effect, and disequilibrium reduces the response to selection (Walsh and Lynch,
2010).

We did not observe difference between two distributions fitted for QTL effects.
Assuming that effects of mutant genes follow a gamma distribution but their
frequencies are independent of their effects (i.e., a neutral model), Hill and
Rasbash (1986) examined the influence of number and effects of mutant genes on
response to selection and variance in response among replicates and found that
the shape of the distribution of effects of mutant genes on the quantitative trait is
not usually important, which is in agreement with our findings.

In the short term, selection response depends on additive effects and
heritability. In long term, models including dominance (A/D and A/D/AA) had lower
amount of response. This can be due to the rather frequent overdominance in this
simulation, so loci with positive overdominance get stuck at intermediate
frequencies. In fact, the presence of dominance might have some effect on the
cumulated response to selection. Gill (1965b) in a simulation study showed that
dominance (i.e. positive dominance effect) reduces selection advance. In fact, in
gaining selection response, negative dominance effects are better than positive
effects, and positive additive-by-additive effects are better than negative effects.
(Fuerst et al., 1997).

To compare our results with the findings of Hallander and Waldmann (2007),
we simulated their genetic model. When the initial allele frequency and additive
effects were same across all loci, as in their analysis, we obtained similar results
and including non-additive effects increased Vy, in the initial generations. In our
study, we found a different trend for V, when including non-additive effects, as we
had more loci, a U shaped initial frequency, and a different distribution of additive
and non-additive effects.

In conclusion, in the schemes we simulated, additive genetic variance decreased
by directional truncation selection, also in presence of non-additive genetic effects.
The distribution of QTL effects underlying the trait and the presence of non-
additive genetic effects had relatively small effects on the changes in additive
variance. Response was relatively robust to non-additive genetic effects in short
term, but dominance decreased long-term response to selection.
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2.5 Conclusion

In conclusion, in the schemes we simulated, additive genetic variance decreased by
directional truncation selection, also in presence of non-additive genetic effects.
The distribution of QTL effects underlying the trait and the presence of non-
additive genetic effects had relatively small effects on the changes in additive
variance. Response was relatively robust to non-additive genetic effects in short
term, but dominance decreased long-term response to selection.

References

Barton, N. H. and M. Turelli. 2004. Effects of genetic drift on variance components
under a general model of epistasis. Evolution 58(10):2111-2132.

Bennewitz, J. and T. H. E. Meuwissen. 2010. The distribution of QTL additive and
dominance effects in porcine F2 crosses. J Anim Breed Genet 127(3):171-179.

Bulmer, M. G. 1971. The effect of selection of genetic variability. The American
Naturalist 105(943):201-211.

Caballero, A. and M. A. Toro. 2002. Analysis of genetic diversity for the
management of conserved subdivided populations. Conserv Genet 3(3):289-
299.

Carlborg, O. and C. S. Haley. 2004. Epistasis: too often neglected in complex trait
studies? Nat Rev Genet 5(8):618-U614.

Carlborg, O., L. Jacobsson, P. Ahgren, P. Siegel, and L. Andersson. 2006. Epistasis
and the release of genetic variation during long-term selection. Nat Genet
38(4):418-420.

Carter, A. J. R,, J. Hermisson, and T. F. Hansen. 2005. The role of epistatic gene
interactions in the response to selection and the evolution of evolvability.
Theor Popul Biol 68(3):179-196.

Cheverud, J. M. and E. J. Routman. 1995. Epistasis and its contribution to genetic
variance-components. Genetics 139(3):1455-1461.

Cheverud, J. M. and E. J. Routman. 1996. Epistasis as a source of increased additive
genetic variance at population bottlenecks. Evolution 50(3):1042-1051.

Cheverud, J. M., T. T. Vaughn, L. S. Pletscher, K. King-Ellison, J. Bailiff, E. Adams, C.
Erickson, and A. Bonislawski. 1999. Epistasis and the evolution of additive
genetic variance in populations that pass through a bottleneck. Evolution
53(4):1009-1018.

Crow, J. F. and M. Kimura. 1970. An Introduction to Population Genetics Theory.

Falconer, D. S. and T. F. C. Mackay. 1996. Introduction To Quantitative Genetics. 4
ed. Longman.

Fisher, R. A. 1918. The correlation between relatives on the supposition of
Mendelian inheritance. Transactions of the Royal Society of Edinburgh 52:399-
433

Fuerst, C., J. W. James, J. Solkner, and A. Essl. 1997. Impact of dominance and
epistasis on the genetic make-up of simulated populations under selection: A

43



2 Medium to long-term effects of selection

model development. Journal of Animal Breeding and Genetics-Zeitschrift Fur
Tierzuchtung Und Zuchtungsbiologie 114(3):163-175.

Gill, J. L. 1965a. Effects of finite size on selection advance in simulated genetic
populations. Aust J Biol Sci 18(3):599-617.

Gill, J. L. 1965b. Selection and linkage in simulated genetic populations. Aust J Biol
Sci 18(6):1171-1187.

Goddard, M. E. 2001. The validity of genetic models underlying quantitative traits.
Livest Prod Sci 72(1-2):117-127.

Goodnight, C. J. 1987. On the effect of founder events on epistatic genetic variance.
Evolution 41(1):80-91.

Goodnight, C. J. 1995. Epistasis and the increase in additive genetic variance -
implications for phase-1 of Wrights Shifting-Balance process. Evolution
49(3):502-511.

Griffing, B. 1960. Theoretical consequences of truncation selection based on the
individual phenotype. Aust J Biol Sci 13:307—-343.

Hallander, J. and P. Waldmann. 2007. The effect of non-additive genetic
interactions on selection in multi-locus genetic models. Heredity 98(6):349-
359.

Hansen, T. F. and G. P. Wagner. 2001. Modeling genetic architecture: A multilinear
theory of gene interaction. Theor Popul Biol 59(1):61-86.

Henderson, C. R. 1975. Best linear unbiased estimation and prediction under a
selection model. Biometrics 31(2):423-447.

Hill, W. G. and L. Biinger. 2010. Inferences on the genetics of quantitative traits
from long-term selection in laboratory and domestic animals. Pages 169-210
in Plant Breeding Reviews. John Wiley & Sons, Inc.

Hill, W. G. and J. Rasbash. 1986. Models of long-term artificial selection in finite
population with recurrent mutation. Genetical Research 48(2):125-131.

Lopez-Fanjul, C., A. Fernandez, and M. A. Toro. 2002. The effect of epistasis on the
excess of the additive and nonadditive variances after population bottlenecks.
Evolution 56(5):865-876.

Lynch, M. and B. Walsh. 1998. Genetics and Analysis of Quantitative Traits.

Mackay, T. F. C. 2001a. The genetic architecture of quantitative traits. Annu Rev
Genet 35:303-339.

Mackay, T. F. C. 2001b. Quantitative trait loci in Drosophila. Nat Rev Genet 2(1):11-
20.

Martinez, V., L. Bunger, and W. G. Hill. 2000. Analysis of response to 20 generations
of selection for body composition in mice: fit to infinitesimal model
assumptions. Genet Sel Evol 32(1):3-21.

Mueller, J. P. and J. W. James. 1983. Effect on linkage disequilibrium of selection for
a quantitative character with epistasis. Theor Appl Genet 65(1):25-30.

Nomura, T. 2005. Joint effect of selection, linkage and partial inbreeding on
additive genetic variance in an infinite population. Biometrical J 47(4):527-
540.

44



2 Medium to long-term effects of selection

Pedersen, L. D., A. C. Sorensen, M. Henryon, S. Ansari-Mahyari, and P. Berg. 2009.
ADAM: A computer program to simulate selective breeding schemes for
animals. Livest Sci 121(2-3):343-344.

Sorensen, D. A. and W. G. Hill. 1982. Effect of short-term directional selection on
genetic-variability - experiments with Drosophila-Melanogaster. Heredity
48(Feb):27-33.

Villanueva, B. and B. W. Kennedy. 1990. Effect of Selection on genetic-parameters
of correlated traits. Theor Appl Genet 80(6):746-752.

Walsh, B. and M. Lynch. 2010. Short-term Changes in the variance. in evolution and
selection of quantitative traits: I. Foundations. Vol. 2.

Wellmann, R. and J. Bennewitz. 2011. The contribution of dominance to the
understanding of quantitative genetic variation. Genet Res 93(2):139-154.

45






3

Maximizing crossbred performance through
purebred genomic selection

Hadi Esfandyaril’z, Anders Christian S¢rensen1, Piter Bijma2

!Center for Quantitative Genetics and Genomics, Department of Molecular Biology
and Genetics, Aarhus University, Denmark
’Animal Breeding and Genomics Centre, Wageningen University, Wageningen, the
Netherlands

GSE (2015) 47:16



3 Maximizing crossbred performance through purebred genomic selection

Abstract

Background: In livestock production, many animals are crossbred, with two distinct
advantages: heterosis and breed complementarity. Genomic selection (GS) can be
used to select purebred parental lines for crossbred performance (CP). Dominance
being the likely genetic basis of heterosis, explicitly including dominance in the GS
model may be an advantage to select purebreds for CP. Estimated breeding values
for CP can be calculated from additive and dominance effects of alleles that are
estimated using pure line data. The objective of this simulation study was to
investigate the benefits of applying GS to select purebred animals for CP, based on
purebred phenotypic and genotypic information. A second objective was to
compare the use of two separate pure line reference populations to that of a single
reference population that combines both pure lines. These objectives were
investigated under two conditions, i.e. either a low or a high correlation of linkage
disequilibrium (LD) phase between the pure lines.

Results: The results demonstrate that the gain in CP was higher when parental lines
were selected for CP, rather than purebred performance, both with a low and a
high correlation of LD phase. For a low correlation of LD phase between the pure
lines, the use of two separate reference populations yielded a higher gain in CP
than use of a single reference population that combines both pure lines. However,
for a high correlation of LD phase, marker effects that were estimated using a
single combined reference population increased the gain in CP.

Conclusions: Under the hypothesis that performance of crossbred animals differs
from that of purebred animals due to dominance, a dominance model can be used
for GS of purebred individuals for CP, without using crossbred data. Furthermore, if
the correlation of LD phase between pure lines is high, accuracy of selection can be
increased by combining the two pure lines into a single reference population to
estimate marker effects.
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3.1 Introduction

One of the main limitations of many livestock breeding programs is that selection is
carried out in purebred nucleus lines or breeds that are housed in high-health
environments, whereas the goal of selection is to improve crossbred performance
(CP) under field conditions. Due to genetic differences between purebred and
crossbred animals and to environmental differences between nucleus and field
conditions, performance of purebred parents can be a poor predictor of the
performance of their crossbred descendants (Dekkers, 2007). Several methods
have been proposed as alternatives to pure line selection to obtain greater
response in crossbred populations. These methods can be classified into three
groups: reciprocal recurrent selection, combined crossbred and purebred selection
(CCPS) and genomic selection (GS).

Numerous studies have provided encouraging results regarding the application
of GS in purebred populations (Meuwissen et al., 2001, Hayes et al., 2009).
However, in livestock production systems, many animals are crossbred, with two
distinct advantages i.e. heterosis and breed complementarity. Different GS models
have been proposed and used to select purebred animals for CP (Dekkers, 2007,
Ibanez-Escriche et al., 2009). Dekkers (2007) demonstrated that marker-assisted
selection or GS with marker effects derived at the commercial crossbred level can
lead to substantially higher gain in CP and a lower rate of inbreeding compared to
CCPS when marker effects were estimated accurately.

If one accepts that GS is an appropriate tool to select animals for CP, then
another issue to solve is: should marker effects be estimated from purebred or
crossbred animals? Using simulated data on training populations that consisted of
crossed or mixed breeds, Toosi et al. (2010) reported that the accuracy of GS was
lower than when using purebred data for training, but not substantially lower.
However, the GS model used in Toosi et al. (2010) assumed that single nucleotide
polymorphism (SNP) allele effects were the same in all breeds. In crossbred
populations, effects of SNPs may be breed-specific because the extent of linkage
disequilibrium (LD) between SNPs and quantitative trait loci (QTL) can differ
between breeds. SNP effects may also differ due to dominance and epistasis.
Moreover, the LD may not be restricted to markers that are tightly linked to the
QTL. Both these problems have been addressed by using a model with breed-
specific effects of SNP alleles (BSAM) (Dekkers, 2007) and the performance of
BSAM has been studied by stochastic simulations (Ibanez-Escriche et al., 2009,
Kinghorn et al., 2010). Under additive gene action, fitting BSAM was beneficial only
when the parental breeds were distantly related and the number of SNPs was small
relative to the size of the training population (lbanez-Escriche et al., 2009).
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In most studies, additive gene action or perfect knowledge of allele substitution
effects or both are assumed (lbanez-Escriche et al., 2009, Toosi et al., 2010). It has
been argued that dominance is the likely genetic basis of heterosis (Falconer and
Mackay, 1996), therefore explicitly including dominance in the GS model may be an
advantage to select purebred animals for CP. With dominance, allele substitution
effects and individual breeding values depend on allele frequency and, thus,
change over time, which alters the ranking of individuals. This problem can be
overcome by applying a dominance model, which provides estimates of both
additive and dominance effects and, therefore, enables the computation of allele
substitution effects using appropriate allele frequencies. Once SNP effects are
estimated for the training population, they can be successively applied over
generations with updated allele frequencies to develop prediction equations
specific to a given generation (Zeng et al., 2013). Zeng et al. (2013) compared
additive and dominance models for GS of purebred animals for CP and came to the
conclusion that, when dominance is the sole driver of heterosis, using a dominance
model for GS is expected to result in greater cumulative response to selection of
purebred animals for CP than either BSAM or the additive model. The extent of this
additional response to selection depended on the size of dominance effects at the
QTL and the power of detection of dominance effects through SNP genotypes. The
results of Zeng et al. (2013) suggested that in the presence of dominant gene
action, compared with BSAM and additive models, GS with a dominance model is
better at maximizing CP through purebred selection, especially when no retraining
is carried out at each generation.

Previous studies on the selection of purebred animals for CP (Ibanez-Escriche et
al.,, 2009, Toosi et al.,, 2010, Zeng et al.,, 2013) focused on crossbred data to
estimate marker effects, which requires collecting genotypes and phenotypes on
crossbred animals. This can substantially increase the required financial investment
of the breeding program, since crossbred animals are usually not individually
identified and individual performance is not recorded. It is interesting to evaluate
the potential benefit of GS within purebred lines when the objective is to improve
performance of crossbred animals, by using marker effects that are estimated from
pure line data. In other words, additive and dominance effects of alleles can be
estimated from pure line data, and subsequently breeding values for CP can be
estimated by using the appropriate allele frequencies. Thus, our objective was to
investigate the benefits of GS of purebred animals for CP based on purebred
information, compared to traditional selection for purebred performance. A second
objective was to compare the use of two separate pure line reference populations
with that of a single reference population that combined the pure lines. These
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objectives were investigated under two conditions, i.e. either a low or a high
correlation of LD between the pure lines.

3.2 Methods

3.2.1 Population structure

Using the QMSim software (Sargolzaei and Schenkel, 2009), a historical population
was simulated forward in time. Subsequent generations, GS, and evaluation were
simulated using a script developed in R version 2.15.2 (R Development Core Team,
2014) (Table 3.1 and Figure 3.1). In the first simulation step, 1000 discrete
generations with a constant population size of 2000 were simulated, followed by
1000 generations with a gradual decrease in population size from 2000 to 100 in
order to create initial LD. The number of individuals of each sex remained the same
in this step and the mating system was based on random union of gametes that
were randomly sampled from the male and female gamete pools. Therefore, only
two evolutionary forces were considered in this step: mutation and drift. To
simulate the two recent purebred populations (referred to as breeds A and B,
hereafter), two random samples of 50 animals were drawn from the last
generation of the historical population and each animal was randomly mated for
another 100 generations (step 2).

In the next simulation step (step 3), in order to enlarge population size for
breeds A and B, eight generations were simulated with ten offspring per dam. The
mating within each breed was again based on random union of gametes and no
selection was considered in this step. Within each breed, all animals in generation 8
of this step were considered as training population for the estimation of marker
effects.

In the next step (step 4), for each breed, 100 males and 200 females were
sampled randomly from the last generation of step 3 and mated randomly to
produce 1000 purebred animals (A0 and BO). In the subsequent generations (step
5), a two-way crossbreeding program with five generations of selection was
simulated, as illustrated in Figure 3.1. The goal was to improve CP through selection
in the two parental breeds (breeds A and B acted as sire and dam breeds,
respectively). The selection criterion in the purebred population was either the
rank of the individual’s genomic estimated breeding value (GEBV) for purebred
performance (GEBVP), or its GEBV for crossbred performance (GEBVC). SNP effects
for the prediction of GEBV for each breed were estimated only once, using the
purebred reference population of generation 8 of step 3 (these are the parents of
generations A0 and BO). These estimates of SNP effects were then repeatedly
applied to predict either GEBVP or GEBVC in the following five generations of
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Table 3.1 Parameters of the simulation process

Population structure

Step 1: Historical generations (HG)
Number of generations(size) - phase 1
Number of generations(size) - phase 2
Selection and mating

Step 2: Breed formation (BF)
Number of founder males from HG
Number of founder females from HG
Number of generations

Number of offspring per dam
Selection and mating

Step 3*: Expanded generations (EG)
Number of founder males from BF
Number of founder females from BF
Number of generations

Number of offspring per dam
Selection and mating

Step 4: Purebred AO and BO

Number of founder males/females from EG breed A
Number of founder males/females from EG breed B
Number of offspring per dam

Mating system

Selection and mating

Step 5: Purebred A and B

Number of males/females from AO
Number of males/females from BO
Number of offspring per dam
Selection

Mating system

Heritability of the trait

Phenotypic variance

Genome

Number of chromosomes

Number of SNPs

SNP distribution

Number of QTL

QTL distribution

MAF of SNPs

MAF of QTL

Additive allelic effects for SNPs
Additive allelic effects for QTL
Rate of recurrent mutation

1000 (2000)
1000 (gradual decrease)
Random

50

50

100

5
Random

100

100

8

10
Random

100/200
100/200
5

Random
Random

100/200
100/200
5

GEBV
Random
0.3

1

1

1000
Random
100
Random
0.05

0.05
Neutral
Gamma
25x107"

*All of the individuals from the last generation of step 3 (Generation 8) was
the training set.
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selection of the pure breeds. In generation 1 through 5, 300 animals (the top 100
males and top 200 females) were selected from the 1000 available candidates in
each parental breed, based on their GEBV. Thus, the selected proportions were
20% (100 out of 500) in males and 40% in females (200 out of 500). The selected
animals were randomly mated within each breed to produce 1000 purebred
replacement animals for the next generation. Meanwhile, the 100 selected males
of breed A were randomly mated to the 200 selected females of breed B to
produce 1000 crossbred progeny (step 5). The phenotypic mean of crossbred
animals was computed for each generation of selection (AB; to ABs) to evaluate the
cumulative response to selection.

3.2.2 Genome and trait phenotypes

A genome consisting of one chromosome of 1 Morgan with 100 segregating QTL
and 1000 markers was simulated (Table 3.1). Both QTL and markers were randomly
distributed over the chromosome. To reach the required number of segregating
loci after 2000 generations, about two to three times as many bi-allelic loci were
simulated with starting allele frequencies sampled from a uniform distribution and
a recurrent mutation rate of 2.5 x 10-4. To build the SNP panel, 1000 SNPs were
randomly drawn from segregating SNPs that had a minor allele frequency (MAF) of
at least 0.05, in the last historical generation. The additive effect (a) of a QTL was
defined as half the difference in genotypic value between alternate homozygotes
and the dominance effect (d) as the deviation of the value of the heterozygote
from the mean of the two homozygotes (Falconer and Mackay, 1996). A gamma
distribution with shape and scale parameters of 0.4 and 1.66, respectively, was
used to generate the unsigned value of the additive effect for each QTL. This
provided an L-shaped distribution of QTL effects. With equal probability, one of the
two alleles was chosen to be positive or negative. Previous studies have not shown
a consistent relationship between additive and dominance effects of QTL
(Bennewitz and Meuwissen, 2010). Similar to Wellmann and Bennewitz (Wellmann
and Bennewitz, 2011, 2012), we simulated relative dominance degrees h; that were
normally distributed, N(0.5,0.1), and independent of the additive effects. Next,
absolute dominance effects were d; = h;. |a;| where |a;| is the absolute value of
the additive effect. Thus, additive and dominance effects were dependent. Additive
and dominance effects were scaled in each replicate of each scenario such that
additive and dominance variances were equal to 0.3 and 0.1, respectively, in the
last historical generation. This was done to ensure that each scenario had the same
genetic variance, such that this could not contribute to differences among
scenarios. After scaling, 10 to 15% of QTL showed overdominance. Trait
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phenotypes were simulated by adding a standard normal residual effect to the
genotypic value of each animal. The variance of the residual effects was chosen
such that broad-sense heritability H? of the trait was equal to 0.4. As a result,
phenotypic variance (612,) was 1, narrow-sense heritability h? was equal to 0.3 and

dominance variance was O.1cf,.

3.2.3 Estimation of marker effects
The Bayesian LASSO proposed by Park and Casella (2008) and developed by de los
Campos et al. (2009) was used to estimate marker effects. The difference between
Bayesian LASSO and the Bayesian approaches developed by Meuwissen et al.
(2001) (BayesA and BayesB) stems from the specification of the a priori variance of
the marker-specific regression coefficient. We used the BLR “Bayesian linear
regression” R package developed by Perez et al. (2010). The following model was
used to estimate the genetic effect associated with each marker:
vi = u+ X X35 + X Zjd; + e,
where y; is the phenotypic value of individual i in the training data, W is the overall
mean, Xj; is the copy number of a given allele of marker j, coded 0, 1 and 2 for aa,
aA and AA, respectively, aj is the random unknown additive effect for marker j, Zi]-
is the indicator variable for heterozygosity of individual i at marker j, with Z; =0
when individual i is homozygous at marker j (aa or AA) and Z;; = 1 if individual i is
heterozygous at marker j (aA), d; is the random unknown dominance effect for SNP
j, and ey is the residual effect for animal i and X denotes summation over all marker
loci j.

The prior distribution of the residual variance was a scaled inverse x? such that
02~x"2% (df,,S,). The degrees of freedom (df,) and the scale parameter (S,) for
residual variance were set at 3.5 and 3, respectively. The conditional prior

distribution of the marker effects was a Gaussian distribution with prior variance

2
j

exponential prior distribution defined by r]-2~exp (}\2). The regularisation

parameter A? followed a Gamma distribution, as suggested in Park and Casella

specific to each marker: a;~N (0,0%et?) for j=1,.., m, with ©* following an

(2008). In addition, an inverted Chi-square distribution was used for the variance of
dominance effects: 64~x"2 (dfy,Sq) with dfy= 3 and S4q=0.0005. The
parameters of the prior distributions were computed according to the guidelines of
the BLR package (de los Campos et al., 2009, Perez et al., 2010). The BLR method
used an MCMC algorithm to generate 10 000 samples, with the first 1500 samples
discarded as burn-in.
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Figure 3.1 Schematic representation of the simulation steps. The crossbreeding program
started in step 5 and consisted of five generations of purebred selection for crossbred
performance; a random sample of individuals from the last generation of step 3
(Generation 2108) constitutes the training population; Ay, and B,, represent the males
selected from breeds A and B, respectively; Ar and Br represent the females selected
breeds A and B, respectively; lines with arrows denote reproduction, while lines without
arrows denote selection.

3.2.4 True and genomic estimated breeding values

Two types of true breeding values (TBV) were calculated, i.e. TBV for purebred
performance (TBVP) and TBV for crossbred performance (TBVC). The TBV were
calculated as the expected genotypic value of the offspring of a parent carrying a
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certain QTL-genotype, when this parent is mated at random to its own line (TBVP)
or to the other pure line (TBVC). Thus, for animal i from breed r, the TBV for

purebred performance was calculated as:
100

TBVP;, = Z[(Xi]‘)(pjraj + qjrd;)]
=1

+[(zi) (—qjra; + pjed;)], (1)

where xj;, y;; and z;; are indicator functions of the genotype of the it QTL of the it
individual, with x;; = 1 when the genotype is AA and otherwise 0, y;; = 1 when the
genotype is Aa or aA and otherwise 0, and z;; = 1 when the genotype is aa and
otherwise 0. Moreover, p;. and ;. are the allelic frequencies (A and a) for the it
QTL in breed r, and a; and d; are true additive and dominance effects of the it QL.
For example, for an AA parent at locus j, a fraction pj. of its offspring will have
genotype AA, while a fraction qj, of its offspring will have genotype Aa. Hence, for
locus j, the breeding value of this parent equals (pjaj + qj-d;), which is the first
term in Equation 1.

For crossbred offspring, the expected genotype frequencies of the offspring of a
parent depend on the allele frequency in the other pure line (denoted r’ here).
Thus, for animal i from breed r, the TBV for CP was calculated using Equation 1,
however p;. and g were replaced by pjr and gz, where pj; and qj; are the allele
frequencies (A and a) for the jth QTL in breed r’. We also calculated the correlation
(Ttbvp,tbve) between TBVP and TBVC, which is known as the purebred-crossbred
genetic correlation, denoted as rp,c by Wei and Vanderwerf (1994).

Genomic estimated breeding values were calculated in the same way, but using
SNP genotypes rather than QTL genotypes, and estimated effects rather than true
effects. Thus, from the estimates of additive () and dominance effects (d), the

GEBVP (for purebred performance) for animal i from breed r was calculated as:
1000

GEBVP, = Z (i) (Pyrd; + qjrd)]
j=1
+[(v3;)(0.5p;-4;+0.5q;,d; + 0.5p;d;—0.5q;,))]

+[(zi)(—q;rq; + pjraj)]- (2)

For the calculation of GEBVC (for crossbred performance), SNP frequencies in
the other breed were used i.e. p;; and qj, in Equation 2 were replaced by p;; and
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qgj+ where p;x and qj; are the allele frequencies (A and a) for the jt" marker in breed
r'. SNP frequencies in the other breed were calculated based on marker genotypes
of all selection candidates in that breed.

3.2.5 Accuracies of additive and dominance effects

In order to evaluate the accuracy of estimated additive and dominance effects
separately, both true and estimated breeding values of an individual were
partitioned into components of additive and dominance effects. For example,
according to Equation 1, the TBV of an individual i is a function of additive effects,
dominance effects and allele frequencies, and can be written as TBV; =
Y. TBVaqq + X TBVpom, Where Y TBV, 44 is the component of the TBV of animal i
that is due to additive effects, and ), TBVp,p, is the component of the TBV of
animal i that is due to dominance effects. Equations 3 and 4 show the calculation of

the TBV due to additive and dominance effects for animal i respectively:
100

TBVpqq = Z [(x35) (Pjraj)]

=1

+[(y;;) (0.5p;raj—0.5q;.a;)] + [(zi;) (—qjra;)] (3)
and
100
TBVoom = ) [Cty)(ajedy)]
=1
+[(vi)(0.5q;,d; + 0.5p;.d;)] + [(z) (pjrd;)] (4)

Symbols used in Equations 3 and 4 are the same as in Equation 1. Similarly, the
GEBV of an individual i was calculated as GEBV; = ), GEBV44 + X GEBVpgm,
where Y, GEBV,q44 and Y GEBVp,,, are the components of the estimated breeding
value of animal i due to estimated additive and dominance effects, respectively.
GEBYV due to additive and dominance effects were calculated in the same way as in
Equations 3 and 4, but using SNP genotypes rather than QTL genotypes, and
estimated effects rather than true effects. After partitioning the breeding value of
each individual, the accuracy of estimated additive effects was calculated as the
correlation between the TBV due to additive effects (TBV,4q ) and the GEBV due to
additive effects (GEBV,qq4 )- Similarly, the accuracy of estimated dominance effects
was calculated as the correlation between the TBV due to dominance effects
(TBVpom ) and the GEBV due to dominance effects (GEBVpop, ).
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3.2.6 Scenarios
Response to selection in CP was examined in five scenarios (Table 3.2). Simulated
scenarios differed in structure of the training population and also in the criterion of
selection. In all scenarios, breed A acted as the sire breed and breed B acted as the
dam breed. In the reference scenario, both pure lines were selected for purebred
performance, and both pure lines had their own reference population. In all other
scenarios, breed A was selected for CP. Selection in breed B was for purebred
performance in scenarios 1 and 3, and for CP in scenarios 2 and 4. In scenarios 1
and 3, both populations had their own reference population, while the reference
population was combined in scenarios 2 and 4. In order to increase resolution
between scenarios, we used the same population simulated from step 1 to step 3
(Figure 3.1) for a given replicate of each scenario. Each scenario was replicated 30
times.

We compared our scenarios under two conditions, i.e. low and high correlation
of LD phase between the two breeds. In order to increase the correlation of LD
phase between the two breeds, we increased LD in the common ancestral
population by decreasing effective population size. Sved et al. (2008) showed that,
if two populations diverge from a common ancestral population, their correlation
of LD phase is approximately equal to rZ(1 — c)27, where rZ is LD in the common
ancestral population, c is the recombination rate between markers, and T is the
time since breed divergence in generations.

Table 3.2 Simulated scenarios

Scenarios Selection criterion Training population structure
Breed A Breed B

Reference scenario GEBVP GEBVP Separate

Scenario 1 GEBVC GEBVP Separate

Scenario 2 GEBVC GEBVC Separate

Scenario 3 GEBVC GEBVP Common

Scenario 4 GEBVC GEBVC Common

GEBVP: selection in purebred breeds A and B is based on genomic estimated breeding value
for purebred performance; GEBVC: selection in purebred breeds A and B is based on
genomic estimated breeding value for crossbred performance; separate training means that
each breed had its own training set; common stands for the combination of animals from
breeds A and B to estimate marker effects.
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3.2.7 LD and correlation of LD phase

To evaluate the extent and magnitude of LD in the training populations and its
impact on accuracy, LD was measured by r? (Hill, 1973). Only markers with a MAF
greater than 0.1 were considered in this analysis, because the power of detection
of LD between two loci is minimal when at least one of the loci has an extreme
allele frequency (Goddard et al., 2000). To determine the decay of LD with
increasing distance between SNPs, the average r? within each breed was expressed
as a function of distance between SNPs. SNP pairs were grouped by their pairwise
distance into intervals of 1 cM, starting from 0 up to 100 cM. The average r? for
SNP pairs in each interval was estimated as the mean of all r? within that interval.
To estimate persistence of LD phase, only segregating SNPs (MAF > 0) in both
breeds were included in the analysis. Persistence of LD phase was estimated

following Badke et al. (2012) as:
R =Z(i,j)ep(rij(A)—fA)(Fij(B)—FB)
AB sd(A)sd(B) ’
where Ry g is the correlation between rj;(4) in breed A and rjj, in breed B, sd(A)

and sd(B) are the standard deviations of rj(a)and rj(g), respectively, and T and T'g
are the average ry; across all SNPs i and j within interval p for breeds A and B,
respectively. Correlation of LD between the two lines was estimated for intervals of
1 cM (from 0 to 50 cM). SNPs with a pairwise distance greater than 50 cM were
excluded since estimates of average r? at greater distances are close to 0, which
would result in the correlation of LD phase to be close to 0 as well.

3.3 Results

3.3.1 Distribution of marker allele frequencies

Figure 3.2 shows the distribution of marker allele frequencies for the last
generation of the historical population. Since the initial allele frequencies were
sampled from a uniform distribution, a kind of uniform distribution was expected
with some fluctuations after 2000 generations of random mating, under a balance
between mutation and random genetic drift due to finite population size. Although,
a U-shaped distribution is typically observed with sequence data (Daetwyler et al.,
2014), allele frequencies on SNP chips tend to be uniform (Ramos et al., 2009).

3.3.2 Linkage disequilibrium

To estimate LD, we used SNP genotypes of animals in the training set of both
breeds. An average r? of 0.43 and 0.42 for adjacent SNPs was found for breeds A
and B, respectively. These average r? between adjacent SNPs are similar to those
reported by Badke et al. (2012) for four US pig breeds that ranged from 0.36 to
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0.46 for animals genotyped using the Illumina PorcineSNP60 (number of markers M
= 62 163). Another study by Du et al. (2007) that investigated the range and extent
of LD in six commercial pig lines (two terminal sire lines and four maternal lines) for
4500 autosomal SNPs , reported an average r2 of 0.2 and 0.07 for all pairs of SNPs
that were approximately 1 and 5 cM apart, respectively, whereas we found average
r2 of 0.29 and 0.08 at those distances. Figure 3.3 displays an overview of the
decline of r2 over distance in both breeds. As expected, in both breeds the most
tightly linked SNP pairs had the highest average r?, and the observed average r2
decreased rapidly as the map distance increased.

a) Low phase b) High phase

N
7] — o~ —

— - ]
(= —_—
— o J— ]

[ I - 7 —
o | —
o 7 «© |
o
z . z
o o
< | <
o O -
N ~N
o o 7
(=] (=]
S o
T T T T T 1 T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Allele frequency Allele frequency

Figure 3.2 Distribution of allele frequencies in the last generation of the historical population
for a low (a) and a high correlation of LD phase (b). The bounds are 0.01 and 0.99. The plots
are the result of one replicate.

3.3.3 Persistence of LD phase

Persistence of LD phase among breeds can be used to infer on the history of a
species and relatedness of breeds within that species, as well as on the reliability of
across-population prediction of genome-wide association studies (GWAS) and
GEVB (de Roos et al., 2008). Figure 3.4 shows the persistence of LD phase between
adjacent SNPs, measured by the correlation of r between the two breeds. A greater
correlation implies that the SNP-SNP (and most probably the SNP-QTL) LD is more
consistent between the two breeds. As distance in time between subpopulations
increases, there is a greater chance for recombination to break down the LD that
was present in the ancestral population and for drift to create new LD within each
subpopulation. Both mechanisms decrease the correlation of LD phase between
the two breeds (Hill and Robertson, 1968, Goddard et al., 2006). For SNPs with a
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pairwise distance of 1 cM, persistence of LD phase between breeds A and B was
estimated at 0.2 and 0.7 for cases with a low and high correlation of LD phase,
respectively. Persistence of LD phase has been reported for Duroc, Landrace,
Yorkshire pig breeds. For SNPs with a pairwise distance less than 50 kb, Badke et al.
(2012) reported a correlation of LD of 0.85 between Landrace and Yorkshire breeds
and of 0.82 between Duroc and Landrace and between Duroc and Yorkshire
breeds. Assuming 1 cM is approximately 1 Mb, we found correlations of LD equal to
0.38 and 0.87 for SNPs with a pairwise distance less than 50 kb for cases with low
and high correlations of LD phase between two breeds, respectively. The
correlation of LD phase between pig breeds in different studies ranged from 0.80 to
0.92 for SNPs with a pairwise distance less than 10 kb. In a study on the extent and
persistence of LD phase in Holstein-Friesian, Jersey, and Angus cattle, de Roos et al.
(2008) reported a correlation of LD phase that ranged from 0.7 to 0.97 between
two breeds for SNPs with a pairwise distance less than 10 kb and a decline of this
correlation as the distance between SNPs or divergence between breeds increased.
In our study, as distance between SNPs increased, the correlation of LD phase
between the two breeds decreased (0.5 at an average pairwise SNP distance of 1
cM). It has been reported that, while correlation of LD phase is similar for pig
breeds and dairy cattle at short distance ranges (< 10 kb), pig breeds generally
show greater correlations of LD phase than dairy cattle at larger SNP distances
(Badke et al., 2012).
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Figure 3.3 Decay of average r* over distance for a low (a) and a high correlation of LD phase
(b). Average r* between SNPs in breed A and breed B at various distances in base pairs
ranging from 1 to 100 cM. The plots are the result of one replicate.
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Figure 3.4 Correlation of gametic phase compared across two breeds over distance for a low
(a) and a high correlation of LD phase (b). Correlation of LD phase between the two breeds
for SNP pairs grouped by distance in intervals of 1 cM and covering 0 to 50 cM across the
genome. The plots are the result of one replicate.

3.3.4 Response to selection in crossbred animals

The purebred-crossbred genetic correlation, i.e. the correlation between TBVP and
TBVC (pvp,tbve), Was equal to 0.66 and 0.70 on average for low and high
correlations of LD phase, respectively. Figure 3.5 shows the mean values of
phenotypes for crossbred animals in five generations under the five simulated
scenarios with either a low (r = 0.2 in 1cM) or a high correlation of LD phase (r = 0.7
in 1 cM) between the two breeds. When the correlation of LD phase was low
between the two breeds, the ranking of scenarios in terms of mean phenotype of
crossbred animals shows that breeding for CP led to higher gains in crossbred
animals. By generation 5, scenario 2, in which both breeds were selected for CP,
had a higher mean phenotype in the crossbred offspring than other scenarios.
Scenario 1 also resulted in higher gain than the reference scenario since, in this
scenario, one of the breeds was selected for CP. In the reference scenario, in which
both breeds were selected for purebred performance, response to selection was
lower than for the other scenarios. Graph a in Figure 3.5 shows that, when each
breed had a separate training set to estimate marker effects (scenarios 1 and 2 ),
the performance of their crossbred offspring improved compared to that with the
alternative scenarios for which a common reference was used to estimate marker
effects (scenarios 3 and 4). For example, although in scenarios 1 and 3 one of the
breeds (breed A) was selected for CP and because in scenario 1 each breed had its
own training set, the response for scenario 1 was greater than for scenario 3.
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In addition, when the correlation of LD phase was high between the two breeds,
selection for CP improved the response in crossbred animals and the use of a
combined reference population of the two breeds improved response even more.
For scenarios 3 and 4, response in crossbred animals was greater than for the other
scenarios, since these scenarios used a common training set to estimate marker

effects.
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Figure 3.5 Mean phenotype of crossbred individuals. (a) Results for a low correlation of LD
phase between breeds A and B (r = 0.2 for markers 1 cM apart) (b) Results for a high
correlation of LD phase between breeds A and B (r = 0.7 for markers 1 cM apart). The plotted
responses are means from 30 replicates. Sc. Ref: Selection criteria in both breed A and B was
for purebred performance (P) and both breeds had Separate training sets. Sc.1: Selection
criteria in breed A was for crossbred performance (C) and selection criteria in breed B was
for purebred performance and both breeds had separate training sets. Sc.2: Selection
criteria in both breed A and B was for crossbred performance and both breeds had separate
training sets. Sc.3: Selection criteria in breed A was for crossbred performance and selection
criteria in breed B was for purebred performance and both breeds had a Common training
sets. Sc.4: Selection criteria in both breed A and B was for crossbred performance and both
breeds had a common training set. Standard error of phenotypic means for simulated
scenarios in generation 5 ranged from 0.03 to 0.04.

3.3.5 Heterosis in crossbred animals

Based on the definition of heterosis, expected CP can be written as CP = BA + H,
where BA denotes the breed average of pure lines and H the heterosis present in
the crossbred animals. Thus, the observed advantage of selection for CP in some
scenarios may be due to greater response in BA or in H, or in both. Heterosis was
calculated at each generation of the crossbred population (Figure 3.6) and Table
3.3 shows BA values for each scenario. Since heterosis was simulated due to
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dominance, total heterosis was simply the sum of heterosis at each locus,

H = Y. di(pa; — pg1)?, Where d is the dominance effect at QTL 1, p,, is the allele

frequency at QTL 1 in breed A, and pg) is the allele frequency at QTL | in breed B
(Falconer and Mackay, 1996). For both low and high correlations of LD phase, the
amount of heterosis in the reference scenario was constant over generations but in

other scenarios in which at least one breed was selected for CP, the amount of

heterosis increased in each generation, which indicates that selection for CP

resulted in greater heterosis and finally in improved performance of crossbred

animals. Since heterosis depends on the difference in allele frequencies between

the two breeds, these results suggest that selection for CP moves allele frequencies

Heterosis

in the two breeds in opposite directions and causes divergence in allele frequencies

between both breeds.
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Figure 3.6 Heterosis in crossbred individuals. (a) Results for a low correlation of LD phase
between breeds A and B (r = 0.2 for markers 1 cM apart) (b) Results for a high correlation
of LD phase between breeds A and B (r = 0.7 for markers 1 cM apart).The plotted
heterosis values are means from 30 replicates. Sc. Ref: Selection criteria in both breed A
and B was for purebred performance (P) and both breeds had Separate training sets.
Sc.1: Selection criteria in breed A was for crossbred performance (C) and selection
criteria in breed B was for purebred performance and both breeds had separate training
sets. Sc.2: Selection criteria in both breed A and B was for crossbred performance and
both breeds had separate training sets. Sc.3: Selection criteria in breed A was for
crossbred performance and selection criteria in breed B was for purebred performance
and both breeds had a Common training set. Sc.4: Selection criteria in both breed A and
B was for crossbred performance and both breeds had a common training set.
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Table 3.3 Mean phenotypic average of breeds A and B in simulated scenarios

Low correlation of LD phase High correlation of LD phase
G Sc.Ref Sc.l  Sc.2 Sc3  Sc4 Sc.Ref Sc.l  Sc.2 Sc.3  Scé
1 1.33 1.25 133 121 1.37 1.12 1.19 1.04 1.04 0.93
2 1.97 1.88 194 179 1.96 1.81 1.84 168 171 1.60
3 2.02 204 211 196 212 2.04 203 186 190 1.80
4 2.32 214 221 2.07 220 2.18 217 197 212 195
5 240 221 228 215 226 2.29 224 203 223 2.05

G = generation; Sc. Ref = reference scenario; Sc. 1 = scenario 1; Sc. 2 = scenario 2; Sc. 3 =
scenario 3; Sc. 4 = scenario 4

3.3.6 Accuracy of selection

Prediction accuracy, i.e. correlation between the breeding values predicted by GS
and the TBV obtained from simulation, ranged from 0.69 to 0.86 in the validation
population (generation 1) across the different scenarios analysed (Figure 3.7). It
should be noted that accuracies in Figure 3.7 always refer to the selection criterion.
In other words, when selection is for purebred performance, accuracy is the
correlation between TBVP and GEBVP, i.e. (I'tyyp gebvp)- CONversely, when selection
is for CP, accuracy is the correlation between TBVC and GEBVC, i.e. (Igyycgebve)-
Hence, this comparison shows that selection for crossbred performance would be
more difficult than selection for purebred performance.

For a low correlation of LD phase, Figures 3.7a and 3.7b show that accuracy of
selection for breed A was greater in the reference scenario (in which breed A was
selected for purebred performance) than in the other scenarios (in which breed A
was selected for CP. Accuracy of selection in breed B (Figure 3.7b) was also greater
when selection in this breed was for purebred performance (reference scenario
and scenarios 1 and 3) than when selection was for CP (scenarios 2 and 4). Thus,
predicting GEBVC based on purebred data is more difficult than predicting GEBVP
on such data.

For a high correlation of LD phase (Figure 3.7c and 3.7d), accuracies ranged
from 0.78 to 0.88 in the first generation, which suggests that when the correlation
of LD phase between breeds is high, there is a smaller difference in accuracy
between purebred and crossbred selection (ry,ypgebvp ~ tbvegebve)- Finally, for
both low and high correlations of LD phase, prediction accuracy declined over
generations in all scenarios.

3.3.7 Accuracies of additive and dominance effects

The accuracies reported above are correlations between TBV and GEBV and include
both additive and dominance components of the breeding values per se. In order
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to compare the accuracy of estimates of additive and dominance effects
separately, both true and estimated breeding values of an individual were
partitioned into components due to additive and dominance effects to its
comprising components. Table 3.4 includes accuracies of estimated breeding
values, as well as accuracies of the additive and dominance components of
estimated breeding values for low and high correlations of LD phase between the
two breeds. It should be noted that accuracies of estimated breeding values in
Table 3.4 always refer to the selection criterion. In other words, when selection in a
breed is for purebred performance, accuracy is the correlation between TBVP and
GEBVP. Conversely, when selection in a breed is for CP, accuracy is the correlation

between
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Figure 3.7 Accuracy of selection in breeds A and B in five scenarios. (a) and (b) Results for
a low correlation of LD phase between breeds A and B (r = 0.2 for markers 1 cM apart)
(c) and (d) Results for a high correlation of LD phase between breeds A and B (r = 0.7 for
markers 1 cM apart). The plotted accuracies are means from 30 replicates. Sc. Ref:
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Selection criteria in both breed A and B was for purebred performance (P) and both
breeds had Separate training sets. Sc.1: Selection criteria in breed A was for crossbred
performance (C) and selection criteria in breed B was for purebred performance and
both breeds had separate training sets. Sc.2: Selection criteria in both breed A and B was
for crossbred performance and both breeds had separate training sets. Sc.3: Selection
criteria in breed A was for crossbred performance and selection criteria in breed B was
for purebred performance and both breeds had a Common training set. Sc.4: Selection
criteria in both breed A and B was for crossbred performance and both breeds had a
common training set. It should be noted that accuracies in this Figure are correlations
between the selection criterion and the EBV of interest. Thus, when selection is for
purebred performance, accuracy is the correlation between GEBVP and TBVP, while
when selection is for crossbred performance, accuracy is the correlation between GEBVC
and TBVC.

TBVC and GEBVC. Generally, in all scenarios, accuracies of estimated breeding
values due to additive effects were greater than accuracies of estimated breeding
values due to dominance effects. These differences in accuracies were clearer for
scenarios in which selection within a breed was for CP (e.g. breed B in scenarios 2
and 4 in Table 3.4). However, when selection in a breed was for purebred
performance, accuracies of estimated breeding values due to additive and
dominance effects were not very different (e.g. breed B in the reference scenario
and scenarios 1 and 3). In summary, for both selection criteria, accuracies of
estimated breeding values were as high as accuracies due to additive effects.
However, when selection within a breed was for CP, accuracies due to dominance
effects were higher than accuracies due to dominance effects for selection on
purebred performance. The same trend was observed with a high correlation of LD
phase between the two breeds [See Additional file 1].

3.3.8 Response to selection in purebred animals

Figure 3.8 shows the response to selection in both purebred populations of breeds
A and B over five generations. For a low correlation of LD phase between breeds A
and B (Figures 3.8a and 3.8b), response to selection in both breeds in the reference
scenario was higher than the other scenarios, since selection in this scenario was
for purebred performance. In the other scenarios, response to selection was lower
for breed A than in the reference scenario, since in these scenarios the selection
criterion was CP (Figure 3.8a). Figure 3.8b shows that response to selection for
breed B in scenarios 3 and 4, which used a common reference population, was
lower than in the other scenarios.
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Table 3.4 Partitioning accuracies of breeding values due to additive and dominance effects for a low correlation of LD phase

Ref scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4
BreedA G BV A Dom BV Add Dom BV Add Dom BV Add Dom BV Add Dom
1 0.86 0.81 0.53 0.73 0.80 0.22 0.69 0.80 0.15 0.70 0.78 0.26 0.72 0.76 0.31
2 0.64 0.69 0.56 0.57 0.65 0.20 0.46 0.69 0.19 0.59 0.69 0.27 0.54 0.65 0.22
3 048 0.63 0.57 0.48 0.50 0.23 0.39 0.63 0.20 0.47 0.61 0.21 0.47 0.61 0.22
4 037 0.59 0.60 0.42 0.52 0.24 0.33 0.57 0.21 0.34 0.54 0.18 0.40 0.58 0.24
5 031 0.56 0.61 0.36 0.47 0.23 0.25 0.52 0.20 0.28 0.48 0.20 0.32 0.52 0.26
Ref scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4
BreedB G BV Add Dom BV Add Dom BV Add Dom BV Add Dom BV Add Dom
1 0385 0.77 0.47 0.87 0.81 0.56 0.74 0.81 0.13 0.88 0.85 0.60 0.72 0.82 0.19
2 0.64 0.65 0.43 0.60 0.64 0.55 0.55 0.68 0.16 0.71 0.76 0.59 0.54 0.69 0.18
3 0.50 0.58 0.49 0.42 0.59 0.55 0.45 0.59 0.18 0.59 0.70 0.63 0.40 0.62 0.16
4 0.38 0.58 0.53 0.37 0.56 0.54 0.37 0.54 0.19 0.49 0.65 0.68 0.36 0.56 0.15
5 0.30 0.55 0.56 0.24 0.54 0.58 0.32 0.49 0.18 0.35 0.60 0.68 0.28 0.48 0.14
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Reference scenario = selection criteria in both breeds A and B were for purebred performance (P) and both breeds had each a separate
training set; scenario 1 = selection criteria in breed A were for crossbred performance (C) and selection criteria in breed B were for purebred
performance and both breeds had each a separate training set; scenario 2 = selection criteria in both breeds A and B were for crossbred
performance and both breeds had each a separate training set; scenario 3 = selection criteria in breed A were for crossbred performance and
selection criteria in breed B were for purebred performance and both breeds had a common training set; scenario 4 = selection criteria in both

breeds A and B were for crossbred performance and both breeds had a common training set.
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For a high correlation of LD phase between breeds A and B, response to
selection for breed A was lower in scenario 2 than in the other scenarios (Figure
3.8c). Figure 3.8c also shows that for a high correlation of LD phase between
breeds, the use of a common reference population to estimate marker effects
improved the performance of purebred animals, i.e. scenario 3 performed better
than scenario 1, and scenario 4 performed better than scenario 2.

In conclusion, for both low and high correlations of LD phase, selection for CP
generated a loss in response to selection in purebred animals.

3.4 Discussion

The purpose of this study was to evaluate the potential benefit of GS within
purebred lines, when the objective is to improve performance of crossbred
populations at the commercial level and phenotypic information is collected only
on purebred animals. We compared response to selection in crossbred animals in
five scenarios, where individuals were selected either on GEBVP or GEBVC, and
marker effects were estimated either from two separate purebred reference
populations or a combined purebred reference population. In a two-way
crossbreeding system, we found that selection for GEBVC increased response in
crossbred animals compared to selection for GEBVP. We also investigated the
effect of the correlation of LD phase between the two pure breeds on the
consequences of combining both reference populations. The results revealed that,
for a high correlation of LD phase, combining both populations into a single
reference population increased response to selection in crossbred animals.

3.4.1 Persistence of LD phase

The value of SNPs effect estimated for populations other than the reference
population depends on the persistence of LD phase between the reference
population and the other population (Dekkers and Hospital, 2002). For example, a
SNP that was identified as being in LD with the QTL in one breed may not be in LD
with the QTL in another breed. The level of LD is more likely to be different
between two populations when these populations have diverged for many
generations and the effective population size becomes small, and when distance
between the SNP and the QTL is large, since these factors will either break down LD
in the ancestral population or create new LD within the subpopulation (Hill and
Robertson, 1968, Hayes et al., 2009).
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Figure 3.8 Mean phenotype of purebred individuals. (a) and (b) Results for a low correlation
of LD phase between breeds A and B (r = 0.2 for markers 1 cM apart) (c) and (d) Results for a
high correlation of LD phase between breeds A and B (r = 0.7 for markers 1 cM apart). The
plotted responses are means from 30 replicates. Sc. Ref: Selection criteria in both breed A
and B was for purebred performance (P) and both breeds had Separate training sets. Sc.1:
Selection criteria in breed A was for crossbred performance (C) and selection criteria in
breed B was for purebred performance and both breeds had separate training sets. Sc.2:
Selection criteria in both breed A and B was for crossbred performance and both breeds had
separate training sets. Sc.3: Selection criteria in breed A was for crossbred performance and
selection criteria in breed B was for purebred performance and both breeds had a Common
training set. Sc.4: Selection criteria in both breed A and B was for crossbred performance
and both breeds had a common training set.

For a low correlation of LD phase, combining data from both breeds to estimate
marker effects (scenarios 3 and 4) had no effect on the accuracy of GS. It has been
reported that using multiple breeds to predict GEBV can be effective to increase
the size of the reference population and in turn increase accuracy of selection
(Pryce et al.,, 2011). However, the benefit of combining reference populations
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depends on the size of the reference population, since there is a diminishing return
relationship between size and accuracy of reference populations. Hence, if the
reference population is small, combining populations may help when the
correlation of LD phase is sufficiently high but will have a limited benefit or may
even be detrimental when the reference population is large.

For a high correlation of LD phase, combining animals from the two breeds in
the training set improved the accuracy of selection in scenarios 3 and 4. These
results are consistent with those of Ibanez-Escriche et al. (2009) and de Roos et al.
(2009), who concluded that across-population evaluations were preferred to
within-population evaluations when the populations were closely related, marker
density was high, or the number of animals with phenotypic records was small.

3.4.2 Non-additive effects and response to selection

It has been argued that dominance is the likely genetic basis of heterosis (Falconer
and Mackay, 1996), therefore explicitly including dominance in the GS model may
be an advantage when selecting purebred animals for CP, i.e. it may increase
heterosis. In this study, we assumed dominance variance to be one third of the
additive genetic variance. This ratio resulted in 10 to 15% of loci showing
overdominance. When overdominance is present, crossbred performance is
maximized if alternate alleles are fixed in the two purebred populations. In fact
with overdominance, allele substitution effects may have opposite signs in the
parental breeds, depending on allele frequencies in the two breeds. In this case,
the two parental breeds are expected to be fixed for alternate alleles of
overdominant QTL, which increases the frequency of favourable heterozygotes in
crossbred progeny and can explain the benefit of selection based on GEBVC.
However, it should be noted that existence of overdominance is not the only driver
of divergence in allele frequencies in parental breeds. It has been shown that
partial dominance can play a role in influencing changes in allele frequencies and
have favourable effects on heterosis, especially when the number of QTL that
affect the trait is large (Kinghorn et al., 2011).

3.4.3 Genotype-by-environment and genotype-by-genetic
interactions

In our simulation, we assumed that the additive and dominance effects of the QTL
alleles were similar in both breeds. For some QTL, which have been traced to
known mutations, the alleles do act reasonably similarly in different breeds and
populations (Spelman et al., 2002). However, this assumption is violated when
there are QTL-by-environment interactions or QTL-by-genetic background
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interactions (epistasis). With substantial QTL-by-environment interactions or
epistasis, it will be less advantageous to combine populations in a training set,
because marker effects will differ between populations (de Roos et al., 2009). In
addition, with genotype-by-environment (GxE) interaction and epistasis, the main
complication is that the dominance model does not fully explain the incomplete
genetic correlation between crossbred and purebred individuals (rpc). In fact, an
incomplete genetic correlation between purebred and crossbred performance can
be due to both non-additive effects (dominance and epistasis), and GxE interaction.
In our simulation, the correlation between TBVP and TBVC (ryp, thvc) Was 0.66 and
0.7 on average for low and high correlations of LD phase between two breeds,
respectively, which was purely due to dominance and differences in allele
frequencies between the two purebred lines.

In this study, we focused on using purebred data to improve CP. In fact,
selection at the purebred level reduces the need for the crossbred testing that is
required for CCPS, thereby saving important test resources and enabling the short
generation intervals of purebred selection. However, Dekkers and Chakraborty
(2004) discussed the benefit of GS for improving CP and suggested that it may be
limited if marker effects are estimated from purebred nucleus data since the
resulting EBV are strictly relevant to the studied population and environment only
and may not help much to improve selection for CP if substantial GxE and
genotype-by-genetic (GxG) background interactions are present. In this study, we
considered the GxG due to dominance and not that due to differences in the
physical environment. In principle, one could use a dominance model and multi-
trait analysis to partition the purebred-crossbred genetic correlation into a
component due to dominance and a remaining component due to GxE and
epistasis. However, accurate partitioning would require a small standard error of
the estimated purebred-crossbred genetic correlation, and thus very large datasets
(Bijma and Bastiaansen, 2014).

In this study, directional dominance was simulated since dominance coefficients
(h;) were normally distributed with a positive mean, N(0.5,0.1). Consequently,
dominance effects (d;) were on average greater than 0 (d > 0). However, in the
statistical model used to estimate the genetic effects associated with each marker,
dominance effects were considered as random unknown effects with a mean of 0.
The simulation of dominance effects that are on average greater than 0 has two
consequences. First, the overall average trait value may increase. This will be
accounted for by the fixed effects component of the model (Xb). Second,
directional dominance leads to inbreeding depression. Thus, animals with different
inbreeding levels will have systematically different trait phenotypes. This probably
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means that our model could be improved by including a regression on inbreeding
coefficients. However, we think this effect is probably limited since we simulated
only five discrete generations of data with random mating among selected animals.
Thus, the range of inbreeding coefficients may not have been sufficiently large to
affect the results.

3.5 Conclusion

Under the hypothesis that crossbred animals differ from purebred animals because
of dominance, GS can be applied to select purebred individuals for CP without
collecting crossbred phenotypic or genotypic data, by using a dominance model.
We found that in a two-way crossbreeding system, response to selection in
crossbred individuals was higher when selection was for GEBV for CP, although
data were collected on purebred individuals. Furthermore, if the correlation of LD
phase between two breeds is high, there can be an added benefit in terms of
accuracy of GEBV if animals from both breeds are combined into a single reference
population to estimate marker effects.
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3.8 Appendix
Partitioning accuracies of breeding values due to additive and dominance effects
for a high correlation of LD phase.
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Partitioning accuracies of breeding values due to additive and dominance effects for a high correlation of LD phase.

Ref scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4
BreedA G BV Add Dom BV Add Dom BV Add Dom BV Add Dom BV Add Dom
1 0.88 0.82 0.50 0.73 0.80 0.22 0.78 0.83 0.45 0.78 0.84 0.17 0.84 0.85 0.45
2 067 0.71 0.53 0.57 0.65 0.20 0.68 0.75 0.46 0.68 0.75 0.35 0.66 0.72 0.49
3 0.52 0.66 0.61 0.48 0.50 0.23 0.53 0.67 0.45 0.59 0.70 0.36 0.60 0.70 0.51
4 044 0.63 0.65 0.42 0.52 0.24 0.41 0.62 0.44 0.52 0.66 0.39 0.51 0.65 0.52
5 0.36 0.62 0.66 0.36 0.47 0.23 0.31 0.57 0.48 0.44 0.64 0.36 0.43 0.60 0.51
Ref scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4
BreedB G BV Add Dom BV Add Dom BV Add Dom BV Add Dom BV Add Dom
1 0.88 0.84 0.51 0.87 0.82 0.47 0.80 0.83 0.37 0.88 0.85 0.60 0.82 0.83 0.49
2 067 0.71 0.55 0.68 0.70 0.51 0.62 0.73 0.42 0.71 0.76 0.59 0.65 0.75 0.41
3 0.51 0.68 0.59 0.55 0.66 0.58 0.54 0.70 0.44 0.59 0.70 0.63 0.58 0.70 0.41
4 041 0.64 0.63 0.41 0.60 0.64 0.48 0.64 0.41 0.49 0.65 0.68 0.50 0.65 0.39
5 033 0.63 0.65 0.31 0.54 0.63 0.41 0.59 0.38 0.35 0.60 0.68 0.44 0.62 0.38
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BV: Accuracy of breeding values that is correlation between the selection criterion and the EBV of interest. Thus, when selection is for
purebred performance, accuracy is the correlation between GEBVP and TBVP, while when selection is for crossbred performance, accuracy is
the correlation between GEBVC and TBVC. Add: Accuracy of breeding values due to additive effects. Dom: Accuracy of breeding values due to

dominance effects. G: generation.

Reference scenario = selection criteria in both breeds A and B were for purebred performance (P) and both breeds had each a separate
training set; scenario 1 = selection criteria in breed A were for crossbred performance (C) and selection criteria in breed B were for purebred
performance and both breeds had each a separate training set; scenario 2 = selection criteria in both breeds A and B were for crossbred
performance and both breeds had each a separate training set; scenario 3 = selection criteria in breed A were for crossbred performance and
selection criteria in breed B were for purebred performance and both breeds had a common training set; scenario 4 = selection criteria in both

breeds A and B were for crossbred performance and both breeds had a common training set.



3 Maximizing crossbred performance through purebred genomic selection

References

Badke, Y. M., R. O. Bates, C. W. Ernst, C. Schwab, and J. P. Steibel. 2012. Estimation
of linkage disequilibrium in four US pig breeds. Bmc Genomics 13.

Bennewitz, J. and T. H. E. Meuwissen. 2010. The distribution of QTL additive and
dominance effects in porcine F2 crosses. J Anim Breed Genet 127(3):171-179.

Bijma, P. and W. M. Bastiaansen. 2014. Standard error of the genetic correlation:
how much data do we need to estimate a purebred-crossbred genetic
correlation? Genetics Selection Evolution 46:79.

Daetwyler, H. D., A. Capitan, H. Pausch, P. Stothard, R. Van Binsbergen, R. F.
Brondum, X. P. Liao, A. Djari, S. C. Rodriguez, C. Grohs, D. Esquerre, O.
Bouchez, M. N. Rossignol, C. Klopp, D. Rocha, S. Fritz, A. Eggen, P. J. Bowman,
D. Coote, A. J. Chamberlain, C. Anderson, C. P. VanTassell, I. Hulsegge, M. E.
Goddard, B. Guldbrandtsen, M. S. Lund, R. F. Veerkamp, D. A. Boichard, R.
Fries, and B. J. Hayes. 2014. Whole-genome sequencing of 234 bulls facilitates
mapping of monogenic and complex traits in cattle. Nat Genet 46(8):858-865.

de los Campos, G., H. Naya, D. Gianola, J. Crossa, A. Legarra, E. Manfredi, K. Weigel,
and J. M. Cotes. 2009. Predicting quantitative traits with regression models for
dense molecular markers and pedigree. Genetics 182(1):375-385.

de Roos, A. P. W., B. J. Hayes, and M. E. Goddard. 2009. Reliability of genomic
predictions across multiple populations. Genetics 183:1545-1553.

de Roos, A. P. W.,, B. J. Hayes, R. J. Spelman, and M. E. Goddard. 2008. Linkage
disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus
cattle. Genetics 179(3):1503-1512.

Dekkers, J. C. M. 2007. Marker-assisted selection for commercial crossbred
performance. J Anim Sci 85(9):2104-2114.

Dekkers, J. C. M. and R. Chakraborty. 2004. Optimizing purebred selection for
crossbred performance using QTL with different degrees of dominance.
Genetics Selection Evolution 36(3):297-324.

Dekkers, J. C. M. and F. Hospital. 2002. The use of molecular genetics in the
improvement of agricultural populations. Nat Rev Genet 3(1):22-32.

Du, F. X.,, A. C. Clutter, and M. M. Lohuis. 2007. Characterizing linkage
disequilibrium in pig populations. Int J Biol Sci 3(3):166-178.

Falconer, D. S. and T. F. C. Mackay. 1996. Introduction to Quantitative Genetics.
Vol. 4. 4 ed. Pearson

Goddard, K. A. B., P. J. Hopkins, J. M. Hall, and J. S. Witte. 2000. Linkage
disequilibrium and allele-frequency distributions for 114 single-nucleotide
polymorphisms in five populations. Am J Hum Genet 66(1):216-234.

Goddard, M. E., B. Hayes, H. McPartlan, and A. J. Chamberlain. 2006. Can the same
genetic markers be used in multiple breeds? Pages 22-16. Instituto Prociéncia,
Minas Gerais.

Hayes, B. J., P. J. Bowman, A. J. Chamberlain, and M. E. Goddard. 2009. Invited
review: Genomic selection in dairy cattle: progress and challenges (vol 92, pg
433, 2009). J Dairy Sci 92(3):1313-1313.

75



3 Maximizing crossbred performance through purebred genomic selection

Hill, W. G. 1973. Linkage Disequilibrium among Neutral Genes in Finite Populations.
Genetics 74(Jun):S115-5115.

Hill, W. G. and A. Robertson. 1968. Linkage disequilibrium in finite populations.
Theoretical and Applied Genetics 38(6):226-231.

Ibanez-Escriche, N., R. L. Fernando, A. Toosi, and J. C. M. Dekkers. 2009. Genomic
selection of purebreds for crossbred performance. Genetics Selection
Evolution 41.

Kinghorn, B. P., J. M. Hickey, and J. H. J. van der Werf. 2010. Reciprocal Recurrent
Genomic Selection for Total Genetic Merit in Crossbred Individuals. in Proc.
Proceedings of the 9th World Congress on Genetics Applied to Livestock
Production: 1-6 August 2010; Leipzig. Paper 36; 2010.

Kinghorn, B. P., J. M. Hickey., and J. H. J. v. d. Werf. 2011. Long-range phasing and
use of crosbred data in genomic selection. in Proc. 7th European Symposium
on Poultry Genetics, Edinburgh, Scotland.

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total
genetic value using genome-wide dense marker maps. Genetics 157(4):1819-
1829.

Park, T. and G. Casella. 2008. The Bayesian Lasso. J Am Stat Assoc 103(482):681-
686.

Perez, P., G. de los Campos, J. Crossa, and D. Gianola. 2010. Genomic-Enabled
Prediction Based on Molecular Markers and Pedigree Using the Bayesian
Linear Regression Package in R. Plant Genome-Us 3(2):106-116.

Pryce, J. E., B. Gredler, S. Bolormaa, P. J. Bowman, C. Egger-Danner, C. Fuerst, R.
Emmerling, J. Solkner, M. E. Goddard, and B. J. Hayes. 2011. Short
communication: Genomic selection using a multi-breed, across-country
reference population. J Dairy Sci 94(5):2625-2630.

R Development Core Team. 2014. R: A language and environment for statistical
computing. Vienna, Austria.

Ramos, A. M., R. P. M. A. Crooijmans, N. A. Affara, A. J. Amaral, A. L. Archibald, J. E.
Beever, C. Bendixen, C. Churcher, R. Clark, P. Dehais, M. S. Hansen, J.
Hedegaard, Z. L. Hu, H. H. Kerstens, A. S. Law, H. J. Megens, D. Milan, D. J.
Nonneman, G. A. Rohrer, M. F. Rothschild, T. P. L. Smith, R. D. Schnabel, C. P.
Van Tassell, J. F. Taylor, R. T. Wiedmann, L. B. Schook, and M. A. M. Groenen.
2009. Design of a high density snp genotyping assay in the pig using snps
identified and characterized by next generation sequencing technology. PloS
one 4(8).

Sargolzaei, M. and F. S. Schenkel. 2009. QMSim: a large-scale genome simulator for
livestock. Bioinformatics 25(5):680-681.

Spelman, R. J., C. A. Ford, P. McElhinney, G. C. Gregory, and R. G. Snell. 2002.
Characterization of the DGAT1 gene in the New Zealand dairy population. J
Dairy Sci 85(12):3514-3517.

76



3 Maximizing crossbred performance through purebred genomic selection

Sved, J. A., A. F. McRae, and P. M. Visscher. 2008. Divergence between human
populations estimated from linkage disequilibrium. Am J Hum Genet
83(6):737-743.

Toosi, A, R. L. Fernando, and J. C. M. Dekkers. 2010. Genomic selection in admixed
and crossbred populations. J Anim Sci 88(1):32-46.

Wei, M. and J. H. J. Vanderwerf. 1994. Maximizing Genetic Response in Crossbreds
Using Both Purebred and Crossbred Information. Anim Prod 59:401-413.
Wellmann, R. and J. Bennewitz. 2011. The contribution of dominance to the
understanding of quantitative genetic variation. Genet Res 93(2):139-154.
Wellmann, R. and J. Bennewitz. 2012. Bayesian models with dominance effects for

genomic evaluation of quantitative traits. Genet Res 94(1):21-37.

Zeng, J., A. Toosi, R. L. Fernando, J. C. Dekkers, and D. J. Garrick. 2013. Genomic
selection of purebred animals for crossbred performance in the presence of
dominant gene action. Genetics, selection, evolution : GSE 45(1):11.

77






4

A crossbred reference population can improve
the response to genomic selection for
crossbred performance

Hadi Esfandyaril’z, Anders Christian Sgrensen’, Piter Bijma2

!Center for Quantitative Genetics and Genomics, Department of Molecular Biology
and Genetics, Aarhus University, Denmark
’Animal Breeding and Genomics Centre, Wageningen University, Wageningen, the
Netherlands

GSE (2015) 47:76



4 Crossbred reference training for crossbred performance

Abstract

Background: Breeding goals in a crossbreeding system should be defined at the
commercial crossbred level. However, selection is often performed to improve
purebred performance. A genomic selection (GS) model that includes dominance
effects can be used to select purebreds for crossbred performance. Optimization of
the GS model raises the question of whether marker effects should be estimated
from data on the pure lines or crossbreds. Therefore, the first objective of this
study was to compare response to selection of crossbreds by simulating a two-way
crossbreeding program with either a purebred or a crossbred training population.
We assumed a trait of interest that was controlled by loci with additive and
dominance effects. Animals were selected on estimated breeding values for
crossbred performance. There was no genotype by environment interaction.
Linkage phase and strength of linkage disequilibrium between quantitative trait loci
(QTL) and single nucleotide polymorphisms (SNPs) can differ between breeds,
which causes apparent effects of SNPs to be line-dependent. Thus, our second
objective was to compare response to GS based on crossbred phenotypes when the
line origin of alleles was taken into account or not in the estimation of breeding
values.

Results: Training on crossbred animals yielded a larger response to selection in
crossbred offspring compared to training on both pure lines separately or on both
pure lines combined into a single reference population. Response to selection in
crossbreds was larger if both phenotypes and genotypes were collected on
crossbreds than if phenotypes were only recorded on crossbreds and genotypes on
their parents. If both parental lines were distantly related, tracing the line origin of
alleles improved genomic prediction, whereas if both parental lines were closely
related and the reference population was small, it was better to ignore the line
origin of alleles.

Conclusions: Response to selection in crossbreeding programs can be increased by
training on crossbred genotypes and phenotypes. Moreover, if the reference
population is sufficiently large and both pure lines are not very closely related,
tracing the line origin of alleles in crossbreds improves genomic prediction.
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4.1 Introduction

Breeding goals in a crossbreeding system should be defined at the commercial
crossbred level. However, selection is often optimized to improve animals within
pure lines or breeds (Hartmann, 1992). Performance of purebred parents can be a
poor predictor of the performance of their crossbred descendants in the presence
of non-additive gene action or genotype by environment (GxE) interaction. A
number of methods have been proposed as alternatives to pure line selection to
obtain greater response to selection in crossbreds. These methods can be classified
into three groups: reciprocal recurrent selection (Comstock et al., 1949), combined
crossbred and purebred selection (CCPS) (Wei and Steen, 1991, Lo et al., 1993,
Bijma and van Arendonk, 1998) and genomic selection (GS) (Dekkers and
Chakraborty, 2004, Dekkers, 2007).

Recent studies have shown that GS can be applied to select purebreds for
crossbred performance (CP), (Dekkers, 2007, Ibanez-Escriche et al., 2009, Kinghorn
et al., 2010, Zeng et al., 2013). Compared to alternative methods such as CCPS, GS
can lead to substantially greater response to selection (Dekkers, 2007, Piyasatian et
al., 2007), lower the rate of inbreeding (Daetwyler et al., 2007, Dekkers, 2007), and
does not require systematic collection of pedigree information between crossbreds
and purebreds. Moreover, measuring the phenotypes of crossbred animals at each
generation of GS may not be necessary, because in theory, predicted SNP effects
can be used over a few generations with limited loss in prediction accuracy (Habier
et al., 2007, Sonesson and Meuwissen, 2009).

For traits with significant non-additive variance, explicitly including dominance
in the GS model may increase response to selection of purebreds for CP. Esfandyari
et al. (2015) investigated the benefits of GS of purebreds for CP, based on purebred
information under two conditions, i.e. a low or high correlation of linkage
disequilibrium (LD) phase between the two pure lines. They concluded that a
dominance model can be used to increase CP, without using crossbred data.
Furthermore, they showed that, if the correlation of LD phase between both pure
lines is high, accuracy of selection can be increased by combining both pure lines
into a single reference population to predict marker effects.

Accepting that GS is an appropriate tool to select animals for CP raises another
question i.e. should marker effects be predicted from pure line or crossbred data.
On the one hand, if training is carried out on pure lines for traits with significant
non-additive variance and therefore potential heterosis, the purebred performance
is not a good predictor of crossbred performance. On the other hand, if training is
done on crossbreds, it is necessary to record genotype and phenotype data on
crossbreds, which can substantially increase the required investment in the
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breeding program, since crossbred animals are usually not individually identified
and individual performances are not recorded. Furthermore, SNP effects in
crossbred animals may be specific to the parental line origin, because the extent of
LD between SNPs and QTL can differ between the pure lines. Moreover, LD may not
be restricted to markers that are tightly linked to the QTL (Dekkers, 2007).
Nevertheless, training on crossbred data for GS accounts for genetic differences
between purebred and crossbred animals and potential genotype by environment
effects, and we expect that it can be beneficial to improve crossbred performance.

Previous studies on the implementation of GS in crossbreeding programs
focused either on crossbred (Ibanez-Escriche et al., 2009, Zeng et al., 2013) or
purebred (Esfandyari et al., 2015) data for prediction of marker effects, without
explicitly comparing responses to selection obtained with both methods. For
example, Zeng et al. (2013) compared additive and dominance models for GS of
purebred animals for CP by training only on crossbred animals. Therefore, the first
objective of our study was to compare response to selection of crossbreds by
simulating a two-way crossbreeding program with either a purebred or crossbred
training population under a dominance model. In addition, in the dominance model
previously proposed by Zeng et al. (2013) for the application of GS in crossbreeding
programs, alternate heterozygotes (based on breed origin) were assumed to have
the same effect. Thus, the second objective of our study was to compare the
benefits of GS of purebreds for CP using a crossbred training population when
breed origin of alleles was either accounted for or not in the calculation of breeding
values. In other words, this study includes models in which alternate heterozygotes
can have different effects.

4.2 Methods

4.2.1 Scenarios

Response to selection in crossbreds was examined in six different scenarios (Table
4.1). For all scenarios, breed A acted as sire breed and breed B acted as dam breed.
Scenarios differed in the structure of the training population. In Scenario 1, both
lines A and B had their own purebred training population (separate). In Scenario 2,
animals from both breeds A and B were combined into a single purebred training
population (combined). In Scenario 3 and 4, crossbred animals had phenotypes but
no genotypes, thus the phenotypes of crossbred animals were linked to the
genotypes of the purebred animals to predict marker effects, assuming that
pedigree information for both purebred and crossbred animals was available. The
difference between Scenarios 3 and 4 was that, for Scenario 3, alleles of
heterozygous individuals were not traced back to the purebred line of origin, and
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thus alternate heterozygotes (i.e. genotype Aa or aA) were considered as identical,
whereas for Scenario 4, they could be distinguished. For Scenarios 5 and 6, the
training population consisted of crossbred animals with both phenotypes and
genotypes and, as for Scenarios 3 and 4, alternate heterozygotes were considered
as identical in Scenario 5 but could be distinguished in Scenario 6. In the six
scenarios presented in Table 4.1, breeds A and B shared a common ancestor 300
generations back, which means that each breed had 300 generations of
independent breeding.

Table 4.1 Simulated scenarios.

Scenarios Training population structure
Scenario 1 PB Separate (A and B)
Scenario 2 PB Combined (A+B)
Scenario 3 Crossbred (P1)
Scenario 4 Crossbred (P2)
Scenario 5 Crossbred (PG1)
Scenario 6 Crossbred (PG2)

“Separate” means that training was done separately for each pure line; “Combined” means
that training was done on a combination of purebred lines A and B; “Crossbred (P1)” means
that training was done on crossbred animals with phenotypes and genotype probabilities
and it was assumed that the alternate heterozygotes were identical in crossbred animals.
“Crossbred (P2)” means that training was done on crossbred animals with phenotypes and
genotype probabilities and it was assumed that the alternate heterozygotes could be
distinguished in crossbred animals. “Crossbred (PG1)” means that training was done on
crossbred animals with phenotypes and genotypes and it was assumed that the alternate
heterozygotes were identical in crossbred animals. “Crossbred (PG2)” means that training
was done on crossbred animals with phenotypes and genotypes and it was assumed that the
alternate heterozygotes could be distinguished in crossbred animals.

In order to evaluate the impact of relatedness between both pure lines
(measured as the number of generations since they separated) and of the size of
crossbred training population on response to selection, additional scenarios were
simulated for Scenarios 5 and 6 only in which: (1) the number of generations to the
most recent common ancestor between breeds A and B varied as follows 1, 50,
100, 200 or 400 generations and (2) the size of the training population varied with
500, 2000 or 8000 randomly selected individuals. All simulated scenarios were
replicated 50 times.

4.2.2 Population structure

The QMSim software (Sargolzaei and Schenkel, 2009) was used to simulate a
historical population of 2000 generations with a constant size of 2000 individuals
for 1000 generations, followed by a gradual decrease in population size from 2000
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to 1000 to create initial LD (Figure 4.1). The number of individuals of each sex was

equal and mating was performed by randomly drawing the parents of an animal
from the animals of the previous generation (step 1). To simulate the two purebred
recent populations (referred to as breeds A and B, hereafter), two random samples

of 100 animals were drawn from the last generation of the historical population

and, within each sample, animals were randomly mated for another 300
generations (step 2); 300 generations of random mating for breed formation may
seem unrealistic but this was done to simulate two distantly related breeds. In step
3, in order to expand breeds A and B, eight generations were simulated with five
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selection for crossbred performance; the random sample of individuals from the last
generation of step 3 (Generation 2308) composed the purebred training set, and crossbred
animals (AB*) in generation 2307 composed the crossbred training set; AM and BM
represent the selected males of breeds A and B, AF and BF the selected females of breeds A
and B; lines with arrows denote reproduction, while lines without arrows denote selection;
the size of the reference population for scenarios with purebred training was 1000 within
each pure breed, and 2000 for the scenarios with crossbred training; thus all scenarios had a
total reference population size of 2000.

offspring per dam. Random mating within each breed was also assumed and no
selection was considered in this step.

Since we considered two types of training populations; crossbred and purebred,
400 males and 400 females were selected randomly from generation 7 of step 3
and were randomly mated to produce crossbred offspring, of which 2000 randomly
selected animals served as the crossbred training population. Within each pure
breed, 1000 randomly selected animals from generation 8 of step 3 were used as
the purebred training population for prediction of additive and dominance effects.
In subsequent generations (step 4), a two-way crossbreeding program with five
generations of selection was simulated. There was no updating of predicted marker
effects. The goal was to improve CP through selection in both parental breeds and
the selection criterion in both purebred lines was based on genomic estimated
breeding values for crossbred performance (GEBVC). The phenotypic mean of
crossbreds was computed for each generation of selection (AB1 to AB5) to evaluate
the realized cumulative response to selection.

4.2.3 Genome and trait phenotypes

A genome consisting of one chromosome of 100 cM with 100 segregating QTL and
1000 SNPs was simulated (Table 4.2). This small genome size was chosen to limit
computing time. In addition, since our objective was to compare CP between
simulated scenarios, the absolute level of response to selection and accuracy were
not of primary interest. Both QTL and SNPs were randomly distributed over the
chromosome. To obtain the required number of segregating loci after 2000
generations, about two to three times as many bi-allelic loci were simulated by
sampling initial allele frequencies from a uniform distribution and applying a
recurrent mutation rate of 2.5 x 10-5. Mutation rates of loci were determined on
the basis of the number of polymorphic loci in generation 2000 of the preliminary
analysis that were necessary to obtain 1000 polymorphic SNPs and 100 QTL. SNPs
and QTL were distinct loci and were randomly drawn from segregating loci, with a
minor allele frequency (MAF) higher than 0.05, in generation 2000. It should be
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noted that this MAF criterion refers to the common ancestral population 300
generations back and thus, lower MAF can occur in the reference population.

The additive effect (a) of a QTL, defined as half the difference in genotypic value
between alternate homozygotes, was sampled from a gamma distribution (0.4,
1.66). Dominance effects (d) were defined as the deviation of the genotypic value
of the heterozygote from the mean of the genotypic values of the two
homozygotes. Similar to Wellmann and Bennewitz (Wellmann and Bennewitz,
2011, 2012), first, dominance degrees at the it QTL (h;) were sampled from a
normal distribution, N(0.5,0.1), and then dominance effects were calculated as
d; = h;.|a;|, where |a;] is the absolute value of the additive effect for each QTL.
Thus, the absolute magnitudes of additive and dominance effects were not
independent, i.e. loci with large additive effects were also more likely to have large
dominance effects. Moreover, since the average h was greater than zero, the
average dominance effect was greater than zero, indicating directional dominance.
The additive and dominance effects were scaled for each replicate of each scenario
to reach additive and dominance variances of 0.3 and 0.1, respectively. After
scaling, about 12% of the loci showed overdominance. Furthermore, additive and
dominance effects of QTL alleles were assumed to be the same in both breeds. In
other words, GxE interactions and epistasis were not simulated. The phenotypes of
the trait were simulated by adding a standard normal residual effect to the
genotypic value of each animal. The variance of the residual effects was chosen
such that broad sense heritability H? of the trait was equal to 0.4. As a result,
phenotypic variance (cf,), narrow sense heritability h? and dominance variance

were equal to 1, 0.3 and 0.1, respectively.

Table 4.2 Parameters of the simulated genome

Number of chromosomes 1
Number of markers 1000
Marker distribution Random

Number of QTL 100
QTL distribution Random
Initial MAF for markers 0.05
Initial MAF for QTL 0.05
Additive allelic effects for markers Neutral
Additive allelic effects for QTL Gamma (0.4,1.66)
Dominance degree for QTL (h;) N(0.5,0.1)
Dominance allelic effects for QTL d; = h;. |a4]
Rate of recurrent mutation 2.5x10-5
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4.2.4 Prediction of marker effects
The Bayesian ridge regression was used to predict marker effects. We used the
BGLR “Bayesian general linear regression” R package developed by Perez and de los
Campos (2014) and its built-in default rules to set values of hyper-parameters. The
following two models were used to predict the genetic effects associated with each
marker:

(a) The first model was used for Scenarios 1, 2, 3 and 5, for which alternate
heterozygotes (Aa and aA) could not be distinguished. The model used to predict
genotypic values was as follows:

Vi = Z XAAi]'glj + Z XAai]'ng + Z Xaaijg3j + €,

where y; is the phenotypic value of individual i in the training data. For Scenarios 1,
2 and 5, X__i]. is an indicator variable of the genotype of individual i at SNP j, with

XAAij =1 when individual i is AA and XAAi]' = 0 otherwise. Similarly, XAai]. =1
when individual i is Aa and XAaij = 0 otherwise, and with Xaaij = 1 when individual
iis aa and Xaaij = 0 otherwise. g;j, g,; and gs; are the random unknown genotype

effects for marker j, and e; is the residual effect for animal i. The X denotes
summation over all SNPs j.

For Scenario 3, animals in the training population had phenotypes but no
genotypes. Therefore, in this scenario, X__i]. were genotype probabilities based on

the genotypes of parents, rather than indicator variables. To calculate the three
genotype probabilities P(AA), P(Aa), and P(aa) for a bi-allelic SNP with two alleles, A
and a, for animal i, we considered the genotyped sire and dam of the animal. For
any genotyped parent, the probability to transmit allele A is P(A) = 1 for the
homozygous state (AA), P(A) = 0.5 for the heterozygous state (Aa and aA), and P(A)
= 0 for the alternative homozygous state (aa). The probability to transmit allele a is
P(a) = 1-P(A). Thus, based on the genotypes of the parents, the values of X were
equal to 0, 0.25, 0.5 or 1. For example, if both the sire and dam of animal i were
heterozygous (Aa or aA), then the probabilities of observing genotypes AA, Aa and
aa in the offspring were equal to 0.25, 0.5 and 0.25, respectively.

(b) The second model was used for Scenarios 4 and 6, for which alternate
heterozygotes Aa and aA could be distinguished, and was as follows:
Vi = X Xaa;81j + X Xaa;82) + X Xan;;83) + X Xaa; 84j + €.

For Scenario 6, X-elements are the same as for Scenarios 1, 2 and 5. However,
since, in this model, alternate heterozygotes Aa and aA could be distinguished in
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crossbreds, XAai]. =1 when individual i is Aa and XAaij = 0 otherwise, while
XaAi,- = 1 when individual i is aA and XaAi,- = 0 otherwise.

For Scenario 4, animals used for training had phenotypes but no genotypes and
thus, X;; were genotype probabilities based on the genotypes of parents, rather
than indicator variables. Since in this model, alternate heterozygotes Aa and aA
could be distinguished in crossbreds, four genotype probabilities P(AA), P(Aa),
P(aA), and P(aa) were considered. For example, if the sire and dam of animal i were
both heterozygous (Aa) at marker j, the probabilities of observing any of the
genotypes AA, Aa, aA and aa in a crossbred offspring were all equal to 0.25.

4.2.5 True and genomic estimated breeding values

The true breeding value for crossbred performance (TBVC) for each animal was
calculated as the expected genotypic value in the offspring of a parent carrying a
certain QTL-genotype, when this parent was randomly mated to an individual of
the other pure line. For crossbred offspring, the expected genotype frequencies of
the offspring of a parent depend on the allele frequencies in the other pure line
(denoted f here). Thus, for animal i from breed r, the true breeding value for CP

was calculated as:
100

TBVC;, = Z[(XAAij)(pjfaj +qj¢d;)]
=1

+[Xaay) (—ajea; + pjed;)], (1)

where Xaa;, Xaagaa;; and Xa,;; are indicator variables of the genotype at the jt
QTL of the i" purebred individual. Thus, XAAi]. = 1 when the genotype is AA and
zero otherwise, XAa&aAij = 1 when the genotype is Aa or aA and 0 otherwise and
Xaai]. = 1 when the genotype is aa and 0 otherwise. Moreover, Dj¢ and qjs are the
allelic frequencies (A and a) for the j™ QTL in breed  and aj and d; are true additive
and dominance effects at the j™" QTL. For example, for a parent with genotype AA
at locus j, a fraction pj;. of its offspring will have genotype AA, while a fraction qj; of
its offspring will have genotype Aa. Hence, for locus j, the breeding value of this
parent equals (pj:a; + gjrd;), which is the first term of Equation 1. Equations 1 and
2 are simply the expected crossbred progeny averages for an animal with a certain
genotype. These could also have been calculated from Fisher’s average effect
(Falconer and Mackay, 1996) for CP, which would yield identical results.
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Genomic estimated breeding values were calculated in the same way except
that SNP genotypes rather than QTL genotypes, and predicted genotypic effects
were used. Thus, for Scenarios 1, 2, 3 and 5, genomic predicted breeding values for

crossbred performance (GEBVC) for animal i from breed r was calculated as:
1000

GEBVCir = " [(Xan,) (Pyelys + )]

=1
+[(Xaagaa;;) (0-5p;¢81j+0.59;:82j + 0.5p;¢825+0.5;:83;)]
+[(Xaa;)(Qj83) + Pje82)], (2)

where, 845, 8,; and gs; are predicted genotypic effects for SNP genotypes AA, Aa
and aA, and aa, respectively.

In Scenarios 4 and 6, for which alternate heterozygotes Aa and aA could be
distinguished, GEBVC for animal i from breed r was calculated as:

1000
GEBVCyr = ) [(Xan,)(pye8y) + e8]

=1
+[(Xaagaa;;) (0-5p;¢81j+0.59;:82j + 0.5p;¢83j+0.5q;:84;)]
+[(Xaa;;) (845 + Pje83)], (3)

where 8,5, 85j, 835 and g4 are predicted genotypic values of AA, Aa, aA and aa

genotypes at the j*" marker, respectively.

4.2.6 Correlation of LD phase between breeds A and B

Correlation of LD phase between breeds A and B was estimated to evaluate the
degree of relatedness between the two simulated breeds. To estimate persistence
of LD phase between two lines, only the segregating SNPs with a MAF greater than
0 in both breeds were included in the analysis. Persistence of LD phase was
estimated following Badke et al. (2012) as follows:

R _ X(rija)~TA)TijB)~TB)
AB sd(A)sd(B) '

where Ry g is the correlation of phase between rj;4) in breed A and rj;(g) in breed
B, ryj is the correlation coefficient as a measure of LD for each pair of SNPs, sd(A)
and sd(B) are the standard deviations of rjj(ay and ryj(g), respectively, and T and T'g
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are the average ry; across all SNPs i and j within interval p for breeds A and B,
respectively.

4.3 Results
4.3.1 Purebred-crossbred genetic correlation
The genetic correlation between TBVP and TBVC, which is known as the purebred-

crossbred genetic correlation ([r,., Wei and Vanderwerf (1994)) was on average

pc
equal to 0.78£0.02. Since GxE interaction was not included in the simulations, the
deviation of ry. from 1 was purely due to dominance effects and differences in

allele frequencies between the two purebred lines.

4.3.2 Response to selection in crossbreds

The increase in phenotypic mean of crossbred animals was measured over four
generations of selection in the six simulated scenarios for which breeds A and B
had diverged 300 generations back (Figure 4.2). Ranking of scenarios in terms of
phenotypic mean of crossbreds showed that training on crossbreds (Scenarios 3, 4,
5 and 6) resulted in greater response to selection than training on the pure lines
separately (Scenario 1) or on the pure lines combined (Scenario 2), although
selection was based on GEBVC in all cases and no GxE interaction was included.
Response to selection was greater when training was on crossbred animals for

15
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—X- Sc.2 Combined
B Sc.3Cross_P1

7& Sc.4 Cross_P2
Sc.5 Cross_PG1
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Figure 4.2 Phenotypic mean of crossbred animals.
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Scenario 1: separate training in both breeds A and B. Scenario 2: training on a combined set
of animals from both breeds A and B. Scenario 3: training on crossbred animals with
phenotypes and genotype probabilities and it was assumed that the alternate heterozygotes
Aa and aA were identical in crossbred animals. Scenario 4: training on crossbred animals
with phenotypes and genotype probabilities and it was assumed that the alternate
heterozygotes could be distinguished in crossbred animals. Scenario 5: training on crossbred
animals with phenotypes and genotypes and it was assumed that the alternate
heterozygotes were identical in crossbred animals. Scenario 6: training on crossbred animals
with phenotypes and genotypes and it was assumed that the alternate heterozygotes could
be distinguished in crossbred animals; standard errors of phenotypic means ranged from
0.02 to 0.03.

which both phenotypes and genotypes were available (Scenarios 5 and 6) than
when training was on crossbreds for which only phenotypes were available and
genotype probabilities based on their parents’ genotypes were used (Scenarios 3
and 4). In addition, when alternate heterozygotes Aa and aA could be distinguished
in crossbred animals (Scenario 6), response to selection was greater than when
they could not be distinguished (Scenario 5). Similarly, response to selection was
greater when training was on genotype probabilities of crossbred animals for which
alternate heterozygotes Aa and aA could be distinguished (Scenario 4) than when
they were pooled together (Scenario 3). The phenotypic mean of crossbreds
increased when breeds A and B had separate training populations (Scenario 1)
compared to when a common training population consisting of animals from both
breeds A and B was used (Scenario 2).

Finally, the difference in the amount of response to selection in the first
generation compared to that in the subsequent generations is due to marker
effects being estimated in the base generation only and to using these estimates to
calculate the GEBVC in all subsequent generations. Thus, there was no retraining in
each generation and GEBVC accuracy decreased over generations of selection,
which caused a decline in genetic gain.

4.3.3 Response to selection in purebreds

CP can be written as CP = BA + H, where BA denotes the breed average of pure
lines and H the heterosis present in crossbreds (Falconer and Mackay, 1996). Thus,
the observed superiority of some scenarios may be due to a greater response in BA
or in H, or in both. The cumulative response to selection averaged over breeds A
and B for four generations of selection is in Table 4.3. Contrary to what was
observed for response to selection for CP, response to selection within pure lines
was greater when training was on pure lines although selection was based on
GEBVC in all scenarios. Response to selection was greatest for Scenario 1 and
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smallest for Scenarios 3 and 4 with training on crossbred animals and using their
genotype probabilities. However, when training was on phenotypes and genotypes
of crossbreds (Scenarios 5 and 6), response to selection within pure lines was
almost comparable to that for scenarios with training on pure lines. Similar to
response for CP, response to selection within pure lines was greater when the
alternate heterozygotes Aa and aA could be distinguished, i.e. Scenario 4
performed better than Scenario 3 and Scenario 6 performed better than Scenario
5.

Table 4.3 Mean phenotypic average of pure lines.

G1 G2 G3 G4 G5
Scenario 1 0.00 0.55 0.72 0.85 0.93
Scenario 2 0.00 0.50 0.67 0.78 0.86
Scenario 3 0.00 0.35 0.48 0.57 0.62
Scenario 4 0.00 0.42 0.54 0.63 0.70
Scenario 5 0.00 0.49 0.64 0.75 0.83
Scenario 6 0.00 0.49 0.66 0.77 0.87

Scenario 1: separate training in both breeds A and B; Scenario 2: training on a combined set
of animals from both breeds A and B; Scenario 3: training on crossbred animals with
phenotypes and genotype probabilities and it was assumed that the alternate heterozygotes
Aa and aA were identical in crossbred animals; Scenario 4: training on crossbred animals
with phenotypes and genotype probabilities and it was assumed that the alternate
heterozygotes could be distinguished in crossbred animals. Scenario 5: training on crossbred
animals with phenotypes and genotypes and it was assumed that the alternate
heterozygotes were identical in crossbred animals. Scenario 6: training on crossbred animals
with phenotypes and genotypes and it was assumed that the alternate heterozygotes could
be distinguished in crossbred animals; standard errors of phenotypic means for simulated
scenarios in generation 5 ranged from 0.03-0.04.

4.3.4 Heterosis in crossbreds

Heterosis refers to the superior performance of crossbred animals compared to the
average performance of its purebred parents. Figure 4.3 shows the amount of
heterosis over generations for the simulated scenarios. Total heterosis was
calculated as the sum of heterosis at each locus based on H = Y. di(pa; — pg1)?,
where d; is the dominance effect at QTL |, p,) is the allele frequency at QTL | in
breed A, and pg) is the allele frequency at QTL 1 in breed B (Falconer and Mackay,
1996). In all scenarios, the amount of heterosis increased over generations,
however, the rate of increase differed among scenarios. The amount of heterosis in
Scenarios 1 and 2 increased a little from generation 1 to 5, whereas it increased
much more sharply in the other scenarios in which training was on crossbreds.
Since heterosis depends on the differences in allele frequencies between two
breeds, this increase suggests that training on crossbreds together with selection
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for CP result in diverging allele frequencies between the two breeds. This could be
caused by allele frequencies moving in different directions in both breeds or by
selection acting on different loci in the two breeds.
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Figure 4.3 Heterosis in crossbreds.

Scenario 1: separate training in both breeds A and B; Scenario 2: training on a combined set
of animals from both breeds A and B; Scenario 3: training on crossbred animals with
phenotypes and genotype probabilities and it was assumed that the alternate heterozygotes
Aa and aA were identical in crossbred animals; Scenario 4: training on crossbred animals
with phenotypes and genotype probabilities and it was assumed that the alternate
heterozygotes could be distinguished in crossbred animals. Scenario 5: training on crossbred
animals with phenotypes and genotypes and it was assumed that the alternate
heterozygotes were identical in crossbred animals. Scenario 6: training on crossbred animals
with phenotypes and genotypes and it was assumed that the alternate heterozygotes could
be distinguished in crossbred animals.

4.3.5 Correlation of LD phase between breeds A and B

We estimated the correlation of LD phase between breeds A and B for the
scenarios in which time of breed divergence (1, 50, 100, 200, 300 and 400
generations back) varied. In these scenarios, the correlation of LD phase for SNPs
with a pairwise distance of 1 cM decreased as the number of generations since
separation increased, i.e. correlations of 0.39, 0.22, 0.11, 0.05, 0.0 and -0.04 were
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obtained for scenarios including 1, 50, 100, 200, 300 and 400 generations since
divergence, respectively.

4.3.6 Effect of being able to distinguish between alternate
heterozygotes

Table 4.4 shows the effect of being able to distinguish between alternate
heterozygotes Aa and aA by comparing Scenarios 5 and 6, for different times since
breeds A and B diverged. Time since divergence affected the relative ranking of
Scenarios 5 and 6: when the two breeds were closely related (i.e. 1, 50 and 100
generations of separation), response to selection for CP was greater for Scenario 5
than for Scenario 6, when time since divergence increased to 200 generations,
response to selection was almost the same for both scenarios and when time since
divergence increased to 300 and 400 generations, response to selection was
greater for Scenario 6 than for Scenario 5. Thus, these results showed that being
able to distinguish between alternate heterozygotes Aa and aA (Scenario 6)
increases response to selection when breeds have diverged a long time ago.

Table 4.4 Mean phenotype of crossbreds in generation five without or with distinguishing
between both heterozygotes (Scenario 6 vs Scenario 5), for different times since divergence
of the pure lines

Scenarios Time since divergence

1 50 100 200 400
Scenario 5 1.21 1.32 1.33 1.20 0.94
Scenario 6 1.15 1.28 1.30 1.19 0.99

Scenario 5: training on crossbred animals with phenotypes and genotypes and it was
assumed that the alternate heterozygotes were identical in crossbred animals. Scenario 6:
training on crossbred animals with phenotypes and genotypes and it was assumed that the
alternate heterozygotes could be distinguished in crossbred animals; standard errors of
phenotypic means ranged from 0.02 to 0.03; note that the mean phenotype of crossbreds
cannot be compared for different times since divergence, as they are results of distinct
simulations.

4.3.7 Effect of the training population size on the response to
selection

Figure 4.4 shows the cumulative response to selection in Scenarios 5 and 6 for
varying sizes of the training population. To evaluate the impact of training
population size on the relative ranking of Scenarios 5 and 6, 200 generations of
divergence between breeds A and B were considered, since response to selection
for these two scenarios was almost the same for this time since divergence and a
training population size of 2000. As expected, response to selection with both
scenarios increased as the size of the training population increased. However, the
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relative ranking of Scenarios 5 and 6 changed as the size of training population
increased. If the size of the training population was 500, response to selection was
greater for Scenario 5 than for Scenario 6, but with a 4- and 16-fold increase,
response to selection was greater for Scenario 6 than for Scenario 5. Thus, these
results showed that being able to distinguish between alternate heterozygotes Aa
and aA was beneficial when the training population was large.
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Figure 4.4 Cumulative response to selection for varying sizes of training populations.

Training on crossbred animals with phenotypes and genotypes. Scenario 5: Alternate
heterozygotes Aa and aA were assumed identical in crossbred animals; Scenario 6: Alternate
heterozygotes could be distinguished in crossbred animals; TS stands for training population
size of 500, 2000 and 8000; standard errors of phenotypic means ranged from 0.02 to 0.03.

4.4 Discussion

We investigated response to selection in crossbred performance in a two-way
crossbreeding system of two related breeds for five generations. To estimate SNP
effects, training was either on pure lines or crossbred animals, animals were
selected on GEBVC, and there was no GxE interaction. Thus, the deviation of the
purebred-crossbred genetic correlation (rp.) from 1 originated purely from
dominance effects and differences in allele frequencies between the two purebred
lines. We also investigated the effect of being able to distinguish between alternate
heterozygotes Aa and aA in crossbred animals.
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4.4.1 Training on crossbred animals vs pure lines

A general finding of our study was that training on crossbred animals led to greater
phenotypic response in crossbred animals compared to training on purebred lines.
To identify the potential reasons for the superiority of training on crossbred
animals, we partitioned the EBV of animals in the pure lines into components due
to additive and dominance effects (see Esfandyari et al. (2015) for partitioning of
breeding values). We found that, by training on crossbred animals, we could
predict dominance effects and consequently breeding values of the animals in pure
lines more accurately. Accuracy of EBV due to dominance effects when training was
on crossbred animals was on average equal to 0.24, whereas when training was on
pure lines, it was equal to 0.16 [see Additional file 1]. This indicates that a higher
prediction accuracy of dominance effects by training on crossbred animals is
associated with a higher level of heterozygosity in the crossbred animals. Observed
heterozygosity in the crossbred training population was 0.49 on average, which
was higher than that found for the pure lines, i.e. 0.33 and 0.34 on average for
breeds A and B, respectively. Logically, dominance effects can be predicted more
accurately when the level of heterozygosity is higher.

In this study, we did not simulate environmental differences for purebred and
crossbred animals. However, in practice, environments in which purebreds and
crossbreds are kept are often different. Thus, selection of purebreds to improve
crossbred performance in a commercial environment involves not only the Ipe
caused by non-additive genetic effects, but also a possible GxE interaction (Dekkers
and Chakraborty, 2004). For instance, for a Ipe of 0.8 due to dominance effects, it
might be possible to reach the maximum accuracy (i.e. 1) by using an infinite
amount of information on purebred animals under a dominance model. However,
for a r,. of 0.8 only due to GxE interactions, the maximum achievable accuracy by
using purebred information is 0.8. Thus, the mechanism that results in rp less than
1 has an impact on response to selection under a dominance model. Nonetheless,
by using crossbred data, it might be possible to reach maximum accuracy as well.
Thus, a loss in genetic gain should be expected in the presence of GxE interactions
compared to no GxE interactions. In other words, if a rp. less than 1 was partly due
to GxE interactions, training on crossbred animals would be even more beneficial
than the results show in this study.

Although training on crossbred animals led to greater response to selection in
crossbreds, it requires the collection of data at the crossbred level. Since
commercial crossbred animals are usually not individually identified and individual
performances are not recorded, it might be difficult and expensive to collect
phenotype and genotype data on crossbred individuals, whereas most breeding
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programs have routine phenotyping and genotyping of nucleus animals in the pure
lines. If genotyping but not phenotyping of crossbred animals is a limiting factor,
one could do training on crossbred animals with phenotypes and use genotype
probabilities based on the genotypes of their purebred parents (Scenarios 3 and 4
in our simulation). With this strategy, it is possible to gain some of the benefits of
crossbred training without genotyping crossbred animals (see Figure 4.2). However,
this strategy does require pedigree identification of crossbreds.

4.4.2 Distinguishing between heterozygotes in crossbred animals
Our results showed that being able to distinguish between alternate heterozygotes
Aa and aA in crossbred animals and to predict two distinct genetic values for these
genotypes will lead to greater response to selection in crossbreds when the two
purebred lines are distantly related. The reasons for this superiority are both
differences in SNP and QTL frequencies between the two lines as well as
differences in the amount and extent of LD between SNPs and QTL between the
lines. Any difference in QTL and SNP frequencies and in LD between the pure lines
can result in the two alternate heterozygotes at a SNP having different probabilities
for a heterozygous QTL in the crossbreds. These differences suggest that one
should distinguish between the two alternate heterozygotes in the crossbred when
a dominance model is used for crossbred training.

Due to the genetic differences among the pure lines, we expected that being
able to distinguish between alternate heterozygotes when training on crossbreds
would always perform better. However, we found that this superiority was
associated with two other factors; time since divergence of the two lines and
number of records used in the training. The results showed that being able to
distinguish between alternate heterozygotes was favourable only for distantly
related lines (Table 4.4). In fact, in distantly related lines, the chance that
recombination breaks down the shared ancestral haplotypes (and even reverse the
LD phase) across the populations is greater. Hence, reverse LD phase between SNPs
and QTL between the two lines for distantly related breeds can cause the two
alternate heterozygotes at a SNP to have different QTL alleles in the crossbreds.
Apparently, by predicting two genetic effects for alternate heterozygote genotypes,
this difference in LD phase was captured and resulted in greater response to
selection when pure lines were distantly related.

In our simulations, the number of records used in the training population also
contributed to the observed differences in response for Scenarios 5 and 6. We
found that with a small number of records used in the training data, response to
selection was greater in Scenario 5 than in Scenario 6 (Figure 4.4). This is probably
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due to the difference in number of effects that need to be predicted in the two
scenarios. For Scenario 6, where alternate heterozygotes could be distinguished,
four genotypic effects had to be predicted, whereas for Scenario 5 only three
genotypic effects had to be predicted. Hence, because the number of effects to be
predicted in Scenario 6 was greater, it was at a disadvantage over Scenario 5 with a
small number of records. However, this disadvantage disappears as the training
population size increases. In other words, as the number of records used for
training increases, more information becomes available to predict the effects of
SNPs and, given the sufficient number of records for training, differences in SNP
effects between lines render Scenario 6 more advantageous. This result agrees with
those of lIbanez-Escriche et al. (2009), who showed that breed-specific allele
substitution effects (BSAM) will have an advantage over across-breed allele
substition effects, provided sufficient information is available for estimating the
additional breed-specific effects.

Finally, it should be mentioned that a prerequisite for distinguishing between
alternate heterozygotes in our study and for the implementation of BSAM in
Ibanez-Escriche et al. (2009) is that the purebred origin of SNP alleles in crossbreds
is known, which may not be easily obtained for real data. Nevertheless, given the
very high SNP density, it may be possible to trace alleles to ancestors accurately
(Meuwissen and Goddard, 2007). In a recent study, Bastiaansen et al. (2014)
suggested a method to determine breed origin of alleles in crossbreds using long-
range phasing without the need for tracking pedigree relationships of crossbreds.
Based on this method, it is not even necessary to have close relationship between
the crossbred and genotyped purebred animals since long-range phasing will work
even with distant purebred relatives of the crossbreds (Bastiaansen et al., 2014).
Hence, tools are available to distinguish between alternate heterozygotes, and also
to take advantage of the associated benefits in practical situations.

4.4.3 Simulation model

For reasons of computation time, simulation studies usually use a genome size
which is smaller than that of most livestock species (Meuwissen et al., 2001). In our
simulations, we used a genome with one chromosome 100 cM long. By assuming a
phenotypic variance of 1, QTL on this chromosome result in an additive variance of
0.3. However, in real livestock genomes (e.g., a genome of 30 M for cattle), QTL on
a chromosome of this length would cause an additive variance of only ~0.01. One
consequence is that the sizes of the QTL effects in our simulation are substantially
larger than those of real QTL, which means that the effects of simulated QTL were
predicted more accurately than what may be possible with a real dataset.
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Daetwyler et al. (2008) and Goddard (2009) predicted that the accuracy of genomic

. Th? . T
selection depends on the parameter p? = L where h? is the heritability of the

trait, T is the number of records in the training data, M is the effective number of
loci per Morgan (2Ne), and L is the genome size in Morgan. This relationship
predicts that accuracy will be the same for all cases where p? is the same. So, under
optimal conditions, a genome of 30 chromosomes of 1 M each requires 30 times as
many training records to achieve the same accuracy as a genome with 1
chromosome 1 M long.

We did not check whether the number and effect of QTL or the density of SNPs
affected the relative ranking of Scenarios 5 and 6. However, most probably by
increasing the genome size and keeping all other parameters constant (i.e., SNP
density, training population size and values of variance components), Scenario 6
would be at a disadvantage over Scenario 5 due to the greater number of effects
that need to be predicted. This suggests that the benefit of being able to
distinguish between alternate heterozygotes is expected to decrease as the genetic
architecture becomes more polygenic. In addition, SNP density may affect the
difference between Scenarios 5 and 6 as well. As SNP density increases, the model
will include SNPs that are closer to the QTL. In a finite population, SNP alleles that
are closer to the QTL will more accurately reflect the state of the QTL alleles
(Ibanez-Escriche et al., 2009). Thus, as the SNP density increases, the need for
distinguishing between alternate heterozygotes may be reduced.

Besides the small genome size that may cause overestimation of the accuracy of
GEBYV in our simulation, additive effects were sampled from a gamma distribution,
which results in some QTL with a large effect that may account for a substantial
part of the additive variance. Hence, genomic breeding values may be predicted
more accurately than for a purely polygenic trait. In addition, in real populations,
QTL effects may be line-dependent due to epistatic interactions, which may be
negligible if selection is performed within a population but not if effects are
estimated simultaneously for several populations. In fact, presence of epistatic
interactions among genes may cause the lack of consistency across breeds. In this
case, the effect of a particular QTL depends on the allelic frequency of genes it
interacts with (Carlborg et al., 2003). Since these frequencies can differ among
breeds it results in breed-specific effects. Thus, combining animals from two breeds
into a single training population may not be advantageous in the presence of
substantial epistasis.

In this study, generation interval was the same for all scenarios with purebred
or crossbred training. In other words, randomly selected sires of breed A in
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generation 2307 were mated to the dams of this breed to produce purebred
offspring and also to the dams of breed B to produce crossbred offspring. Training
was on randomly selected individuals from these offspring. Thus, scenarios with
crossbred training did not require an additional generation compared to purebred
training to create the training population.

Finally, the difference in the amount of response to selection in the first
generation compared to that in the subsequent generations is due to marker
effects being estimated in the base generation only and to using these estimates to
calculate the GEBVC in all subsequent generations. Thus, there was no retraining in
each generation and GEBVC accuracy decreased over generations of selection,
which caused a decline in genetic gain.

In our simulations, regardless of whether training was on pure lines or
crossbreds, a dominance model based on own performance of the animals was
used to estimate the GEBVC for the selection candidates. However, an alternative
approach would be to carry out training on pure lines based on the yield deviations
of their crossbred progeny and to use an additive model to estimate breeding
values. In other words, training can be done on purebred animals with genotypes
and the mean phenotypes of their crossbred progeny can be used as response
variable. We compared performance of Scenario 1 to such a scenario (referred to
as additive scenario, hereafter) where training was on purebred animals, mean
performance of crossbred progeny was used as response variable and an additive
model was used to estimate GEBV. The size of the reference population for the
additive scenario was 1000 within each pure line and each of the animals in the
training set had 10 crossbred progeny. Result showed that using crossbred progeny
information yielded a greater response to selection than using the animals’ own
records although in both cases, training was on pure lines. [See Additional file 2].
Scenario 1 with a dominance model resulted in a smaller breed average response
compared to the additive scenario which resulted in a smaller overall crossbred
response. The superiority of the additive scenario is due to the increased accuracy
of selection in pure lines by using crossbred progeny information. In fact, for
Scenario 1, own performance of the animals in the training set was used as
response variable, whereas for the additive scenario more information was
available by using the mean performance of 10 crossbred progeny. Zeng et al.
(2013) compared additive and dominance models for GS in purebreds for CP and
came to the conclusion that, when dominance is the sole driver of heterosis, using
a dominance model for GS is expected to result in greater cumulative response to
selection of purebred animals for CP than an additive model.
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4.5 Conclusion

Genomic selection can be very valuable in crossbreeding programs since it allows
efficient selection for crossbred performance. To reach greater response to
selection when crossing two distantly related lines, it is better to do training on
crossbred animals rather than on pure lines to predict genetic effects. In addition,
being able to distinguish between alternate heterozygotes in the crossbred training
set by taking into account the breed origin of alleles increases response to
selection, except when breeds are closely related and the reference population is
small. Finally, our results showed that response to selection in crossbreds was
greater when both phenotypes and genotypes were collected on crossbreds,
compared to having only phenotypes on the crossbreds and genotypes on their
parents.
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4.8 Appendix A
Partitioning accuracies of breeding values due to additive and dominance effects
for Scenario 1 and Scenario 5.

Partitioning accuracies of breeding values due to additive and dominance effects

Scenario 1 Scenario 5
Breed A G BV Add Dom BV Add Dom
1 0.65 0.69 0.19 0.80 0.57 0.36
2 0.49 0.56 0.18 0.61 0.40 0.22
3 0.38 0.50 0.20 0.50 0.37 0.19
4 0.30 0.47 0.19 0.43 0.34 0.19
5 0.26 0.44 0.19 0.39 0.32 0.24
Mean 0.42 0.53 0.19 0.54 0.40 0.24
Scenario 1 Scenario 5
Breed B G BV Add Dom BV Add Dom
1 0.64 0.71 0.15 0.79 0.61 0.36
2 0.45 0.58 0.13 0.60 0.44 0.22
3 0.35 0.50 0.11 0.49 0.38 0.19
4 0.28 0.45 0.12 0.40 0.34 0.22
5 0.26 0.43 0.15 0.32 0.30 0.22
Mean 0.40 0.53 0.13 0.52 0.41 0.24

G: generation

BV: Accuracy of breeding values that is correlation between TBVC and GEBVC Add:
Accuracy of breeding values due to additive effects. Dom: Accuracy of breeding values due
to dominance effects.

Scenario 1: Separate training in both breed A and B.

Scenario 5: Training on crossbred animals with phenotypes and genotypes. Two types of
heterozygotes were assumed the same in crossbred animals.

4.9 Appendix B

Comparison of Scenario 1 with an additive scenario.

We compared the performance of Scenario 1 to an additive scenario (Scenario
Additive) where training was on purebred animals, mean performance of crossbred
progeny was used as response variable and an additive model was used to estimate
genomic estimated breeding values. The size of the reference population for the
additive scenario was 1000 within each pure line and each of the animals in the
training set had 10 crossbred progeny.
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5 Genomic prediction of crossbred performance

Abstract

Background: In pig breeding, selection is usually carried out in purebred
populations, although the final goal is to improve crossbred performance. Genomic
selection can be used to select purebred parental lines for crossbred performance.
Dominance is the likely genetic basis of heterosis and explicitly including
dominance in the genomic selection model may be an advantage to select
purebreds for crossbred performance. Thus, the first objective of this study was to
compare the predictive ability of genomic prediction models with either additive,
or both additive and dominance effects, when the validation criterion is crossbred
performance. The second objective was to compare the use of two separate pure
line reference populations to that of a single reference population that combines
both pure lines.

Methods: The data used concerned pigs from two pure lines (Landrace and
Yorkshire) and their reciprocal crosses, and the trait of interest was litter size in the
first parity. Training was carried out on (i) the separate pure-bred sows of Landrace
(2085) and Yorkshire (2145) and (ii) combined pure lines (4230) that were
genotyped for 38k SNPs. Prediction accuracy was measured as the correlation
between genomic-estimated breeding values of boars in pure lines and mean
corrected crossbred-progeny performance, divided by the average accuracy of
mean-progeny performance. Next to a model with additive effects only (MA), we
evaluated a model with both additive and dominance effects (MAD). Two types of
genomic estimated breeding values were computed; GEBV for purebred
performance (GEBV) based on either MA or the MAD, and GEBV for crossbred
performance (GEBV-C) based on MAD. GEBV-C was calculated based on SNP allele
frequencies of genotyped animals in the opposite breed.

Results: Compared to MA, MAD improved prediction accuracy in both breeds.
Within MAD, GEBV-C improved prediction accuracy compared to GEBV. Prediction
accuracy for Landrace boars was 0.11 based on MA and 0.13 and 0.14 for GEBV and
GEBVC based on MAD, respectively. The corresponding values for Yorkshire boars
were 0.32, 0.34 and 0.36. Combining animals from both breeds into a single
reference population yielded 12 to 46% higher accuracies than training separately
in both pure lines. In conclusion, the use of a dominance model increased the
accuracy of genomic predictions of crossbred performance that were based on
purebred data.
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5.1 Introduction

The effect of dominance, a non-additive genetic effect, has traditionally been
ignored in genetic evaluation of livestock populations. There are three reasons for
this. First, there is a lack of informative pedigrees, typically with large full-sib
families, which are needed for accurate estimates of dominance effects (Misztal et
al., 1998). Second, litter effects are often confounded with family effects,
particularly in prolific species, such as chicken and pigs. Third, prediction of
dominant effects involves complex computations that are often cumbersome
(Misztal et al., 1998, Mrode and Thompson, 2005). The recent advent of dense SNP
panels, however has ignited interest in the prediction of non-additive genetic
effects (Su et al., 2012, Lopes et al., 2014, Moghaddar et al., 2014, Sun et al., 2014,
Wittenburg et al., 2015). The availability of SNP genotypes increases the potential
to estimate dominance effects, because it enables us to determine which animals
are heterozygotes for each SNP locus and to predict the genotypic value of future
matings (Toro and Varona, 2010). So, dense SNP panels provide the technology
required to exploit dominance effects in genetic evaluations.

In some livestock production systems, including pigs, crossbreds are used in
commercial production to utilize heterosis and complementary effects. The aim of
selective-breeding programs in many of these systems is to maximize crossbred
performance, where selection is carried out within pure-lines using data from
purebred animals (Wei and Steen, 1991). However, traits that are evaluated in
purebred populations may be genetically different from traits at the commercial
production level, because the genetic correlations between crossbred and
purebred performance (rp.) are usually less than one (Wei and Vanderwerf, 1994,
Dekkers, 2007). Evidence for rp. values less than one has been observed in
livestock species (Lutaaya et al., 2001, Zumbach et al., 2007). They are often caused
by genotype by environment (GxE) interactions and non-additive (particularly
dominance) genetic effects (Wei et al., 1991).

One of the problems in the implementation of genomic selection schemes in
crossbreeding programs is whether to predict marker effects from pure line or
crossbred data. When non-additive gene action or GxE exists, the performance of
purebred parents is likely to be a poor predictor of the performance of their
crossbred descendants. As a result, training on crossbred data has been suggested
(Dekkers, 2007, Zeng et al., 2013, Esfandyari et al., 2015a). It is expected that
training on crossbred data accounts for genetic differences between purebred and
crossbred animals and for GxE. However, in practice, crossbred information is often
not available, since both performance records and genotypes can be difficult or
expensive to obtain on crossbred animals. An alternative would be training on pure
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lines using a dominance model, and this would offer a solution if some part of
deviation of ry,. from one is due to dominance (Esfandyari et al., 2015b).
Improvement in prediction accuracies by including dominance in the genomic
evaluation models has been reported, but most studies were using purebred
genomic selection models (Su et al., 2012, Ertl et al., 2014, Sun et al.,, 2014). It is
expected that including dominance in genomic selection models for crossbred
performance would provide further improvement in prediction accuracies, as
dominance is a genetic basis for heterosis. Furthermore, dominance is expected to
be one of the factors contributing to the deviation of rp. from unity. So, we
hypothesized that including dominance effects in genomic prediction models
increases the prediction accuracy of purebred animals that are selected for
crossbred performance. We tested this hypothesis in two ways. First, we compared
the predictive ability of genomic prediction models with either additive, or both
additive and dominance effects, when the validation criterion was crossbred
performance. Second, we compared the use of two separate pure-line reference
populations to a single reference population that combines both pure lines.

5.2 Methods

The data used concerned pigs from two pure lines (Landrace and Yorkshire) and
their reciprocal crosses, and the trait of interest was litter size in the first parity
(Figure 5.1). The data were supplied by the Danish Pig Research Centre
(Copenhagen, Denmark).

Landrace (<) Yorkshire () Yorkshire () Landrace (%)
ta ™ ™ 5
Validation l Training Validation l Training
(655) (2145) (180) (2085)
LY YL

Figure 5.1 Schematic representation of the mating design. Boars from Landrace were mated
to the sows of Yorkshire (and other way around) to produce crossbred progeny.
Training in both breeds was on sows and validation was on boars.
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5.2.1 Purebred data

Litter sizes of 489,523 Landrace and 316,127 Yorkshire sows were used to calculate
corrected phenotypic values of litter size for each breed separately (see details
below). Corrected phenotypic values of litter size at birth (LSc), instead of original
observations, were used as response variables for genomic prediction and to
estimate additive and dominance genetic variances. The reason for using LSc as
response variable was to reduce noise by removing non-genetic effects, which
could be estimated much more accurately using a large dataset including all
contemporaries and relatives, rather than using only genotyped animals. The
contemporary group effects were estimated using a traditional pedigree-based
linear model including herd—year—season, month at farrowing and regressions on
hybrid indicator (0 = pure litter and 1 = hybrid litter), age at first farrowing, Al (0 =
natural mating and 1 = Al), service sire and animal additive genetic effects as well
as random residuals. The LSc was defined as original observations of litter size
adjusted for all non-genetic effects.

A total of 2740 Landrace pigs (2085 sows and 655 boars) and 2325 Yorkshire
pigs (2145 sows and 180 boars) were genotyped using the Illlumina PorcineSNP60
BeadChip (lllumina, San Diego, CA). Edits on the genotype data comprised
removing SNPs with a call rate below 90%, a minor allele frequency (MAF) below
1% and SNPs that deviated strongly from Hardy Weinberg equilibrium (P < 10-7).
SNPs with more than 2% missing genotypes were filtered out. For the SNPs with
less than 2% missing genotypes, the most common genotype of each SNP was
defined and missing genotypes were allocated the population common genotype.
Animals with more than 10% of missing SNP genotypes were also removed. Missing
genotypes of the remaining animals were allocated the common genotype of the
population. After editing, there were 34216 and 35135 SNP markers available for
2085 Landrace and 2145 Yorkshire sows, respectively. More details about the data
can be found in (Guo et al., 2015).

5.2.2 Crossbred data

There were 8303 sows in the crossbred dataset. The crossbred animals were the
first generation of reciprocal crosses of Landrace and Yorkshire. The crossbred
animals were 5575 LandracexYorkshire (sire - dam) and 2030 YorkshirexLandrace
(sire - dam) and were born between 2009 and 2012. The pedigrees for both
purebreds and crossbreds were available and all the crossbreds could be traced
back to their purebred parents. Similar to purebreds of Landrace and Yorkshire, the
corrected phenotypic values for crossbred animals were calculated by using a
traditional animal model with a pedigree-based relationship matrix. The model
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included herd-year-group, month at farrowing and regressions on age at first
farrowing and as well as animal additive effects and random residuals (Nielsen et
al., 2014).

5.2.3 Training and validation dataset

The purebred genotyped animals were split into training and validation datasets to
evaluate the accuracy of genomic prediction for crossbred performance (Figure
5.1). The training dataset for Landrace consisted of 2085 sows with genotypes and
phenotypes pre-corrected for fixed effects. The Validation dataset for this breed
was 655 boars, which had 5575 Landrace-Yorkshire (LY) crossbred offspring. The
response variable for the Landrace boars in the validation data set was the mean
LSc of their LY crossbred progeny. Out of 655 boars in the validation dataset, 32
boars also had daughters (No.=320) in the training data set of Landrace. For
Yorkshire, training was on 2145 genotyped sows. Similar to Landrace, validation in
this breed was on the 180 genotyped boars that had 1928 daughters in the
Yorkshire-Landrace (YL) crossbred dataset, and there was no direct relationship
between sows of training population and YL crossbred animals. The relationship
between sows in the training set and boars in the validation set was minimal as
only 3 boars out of 180 had daughters (No.=30) in the training dataset of Yorkshire.
For across breed genomic predictions, genotyped sows from both breeds were
combined together to make a single training population with the size of 4230.

5.2.4 Linear models for genomic prediction

Estimation of marker effects

Two models for genomic prediction were evaluated. The first model included only
additive effects (MA). The model for estimation of the additive effect associated
with each marker was

vi = b+ X Xja5 + e, (MA)

where y; is the phenotypic value of individual i in the training data, W is the overall
mean, Xi]- is the copy number of a given allele of marker j, coded 0, 1 and 2 for aa,
aA and AA, respectively, a; is the random unknown additive effect for marker j and
e; is the residual effect for animal i and £ denotes summation over all marker loci j.
The second model (MAD) included both additive and dominance effects and the
following model was used to estimate the genetic effects associated with each
marker:

vi = L+ X Xya; + X Zid; + e, (MAD)
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The definitions of the elements are analogous to model MA. In addition, Zj; is
the indicator variable for heterozygosity of individual i at marker j, with Z;; =0
when individual i is homozygous at marker j (aa or AA) and Z;; = 1 if individual i is
heterozygous at marker j (aA) and d; is the random unknown dominance effect for
SNPj.

The BayesC method proposed by Habier et al. (2011) was used to estimate
marker effects. We used the BGLR “Bayesian general linear regression” R package
developed by Perez and de los Campos (2014) and its built-in default rules to set
values of hyper-parameters. A total of 100 000 iterations of the sampler were run,
with the first 10 000 iterations discarded as burn-in samples. The number of total
iterations and the number of ‘burn in’ iterations of the chain was calculated using
the raftery.diag function of the R package Coda (Plummer et al.,, 2006).
Convergence of the resulting posterior distributions was assessed by the Geweke
diagnostic using the Coda package (Plummer et al., 2006).

Genomic estimated breeding values

The GEBV were calculated as the expected genotypic value of the offspring of a
boar. From the estimates of additive effects (3), the genomic estimated breeding
value based on model MA, (GEBVy,) for purebred boar ifrom breed r was

calculated as (Falconer and Mackay, 1996)
S

GEBVia = ) [(S)(Pyrdp)] + [(S3)(0.5;3—0.503)]

j=1

+[(S) (—a;:8)]

where Sill-, Sizj and Sf} are indicator variables of the genotype of the j™ SNP of the it

2
ij
genotype is Aa or aA and 0 otherwise, and Si3]- = 1 when the genotype is aa and 0

individual, with Silj = 1 when the genotype is AA and 0 otherwise, S{; = 1 when the
otherwise. Moreover, p;. and g, are the allele frequencies (A and a) for the jth SNP

in breed r, §; is estimated additive effect of the j™ SNP and s is the total number of
S

SNPs. The formula (1) can be reduced to the usual formula GEBVy, = Z Xj; 8j,
j=1

but the reason for presenting it in this way is for similarity with the formula given
below for GEBV when including dominance. It should be noted that the reduced
formula and formula (1) are the same up to a constant i.e., correlation of GEBV
based on two formulas is one while a simple linear regression between them would
result in coefficient of 0.5.
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With the MAD, two types of GEBV were calculated; genomic estimated
breeding value for purebred performance (GEBV) and genomic estimated breeding
value for crossbred performance (GEBV-C). The GEBVs were calculated as the
expected genotypic values of the offspring of a boar carrying a certain SNP-
genotype, when this parent is mated at random to its own line (GEBV) or to the
other pure line (GEBV-C). Thus, from the estimates of both additive (3) and
dominance effects (d), the GEBV from model MAD was calculated as:

S
j=1

+ 0.5p;;d;—0.50;:8)]+[(S) (—a;e8; + pjrd))]

The definition of the elements are analogous to GEBVy,.In addition, aj is the
estimated dominance effect of the j™ SNP.
For crossbred offspring, the expected genotype frequencies of the offspring of a
parent depend on the allele frequency in the other pure line (denoted 1 here).
Thus, for animal i from breed r, the GEBV-C was calculated using Equation 2, where
pjr and q;; were replaced by pj and qj¢, where pj; and gjzare the allele frequencies
(A and a) for the j™ SNP in breed r’. SNP allele frequencies in the other breed were
calculated based on marker genotypes of genotyped sows in that breed. As an
example, to predict GEBV-C for a Landrace boar, we used Equation 2 with SNP
allele frequencies calculated from the all genotyped sows in Yorkshire. We also
calculated the correlation between GEBV and GEBV-C from MAD, which is an
indication of the purebred-crossbred genetic correlation when there is no GxE
interaction, denoted as rp, by Wei and Vanderwerf (1994).

5.2.5 Variance components

In addition to the additive variance computed from a pedigree based animal model,
we estimated genomic additive and dominance variances for the animals in the
training set. A mixed linear model for the individuals breeding values (u) and
dominance deviations (v) is as follows: y = p + Z,u + Z,v + ¢,

where y is a vector of phenotypic values, p is the overall mean, Z,and Z, are design
matrices relating animals to their breeding values and dominance deviations, u is a
vector of breeding values, v is a vector of dominance deviations of animals, and e is

a vector of residuals. V(u) = Go%, G is the genomic relationship matrix which was
WaW,'
231 PrAk
matrix W has dimensions of the number of individuals (n) by the number of loci

calculated based on the approach of VanRaden (2008): G = , Where
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(m), with elements that are equal to 2 — 2py and —2py for opposite homozygous
and 1 — 2p for heterozygous genotypes, py is the minor allele frequency of locus
k, and gy =1 —py. The covariance matrix of dominance effects is V(v) =
Do? where D is the genomic dominance relationship matrix and o3 is the

WaWq'
—4-4d _  where Wy has
4 ¥k=1 Pidk

dimensions of the number of individuals (n) by the number of loci (m), with

dominance variance. Matrix D was calculated as D =

elements that are equal to —2q]2< for genotype AA, 2py qxfor genotype Aa, and
—2p12{ for genotype aa.The estimation of additive and dominance variances using
these parameterizations that matches with classical quantitative genetics theory
(Falconer and Mackay, 1996) were carried out applying the average information
restricted maximum likelihood algorithm (Gilmour et al., 1995) implemented in the
GVCBLUP package (Wang et al., 2014).

5.2.6 Model validation

Goodness of fit for each model was evaluated by deviance information criterion
(DIC) value based on the training dataset. The superiority of MAD over MA was
tested by a likelihood ratio test.

The predictive ability of the model (with respect to accuracy and unbiasedness)
was evaluated by comparing GEBV of the boars in the validation dataset and mean
corrected phenotype of their crossbred offspring. Unbiasedness of genomic
predictions was assessed by regressing mean corrected phenotypes of crossbreds
on the predicted breeding values of the boars in both breeds. A necessary
condition for unbiased predictions is that the regression coefficient does not
deviate significantly from one.

Predictions based on MA and MAD were both evaluated. Prediction accuracy
was measured as the correlation between genomic-estimated breeding values of
boars in pure lines and mean corrected crossbred-progeny performance. This
correlation was divided by the average accuracy of mean-progeny performance i.e.,

the mean of ’ﬁ where n is number of daughters for each boar and k = (4 —

h?)/h? (Mrode and Thompson, 2005). Here, the heritability h? was the narrow-
sense heritability estimated from the pedigree based linear model.
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5.3 Results

5.3.1 Prediction of breeding values

MAD had better predictive ability than MA in both breeds (Table 5.1). Including
dominance in genomic prediction improved prediction accuracy of GEBV by 18 and
22% in Landrace and Yorkshire, respectively. Within MAD, prediction of crossbred
performance based on GEBV-C was more accurate than based on GEBV in both
breeds.

Enlarging the training dataset by combining animals from both breeds into a
single training population improved prediction accuracy for both models in both
breeds (Table 5.1). This improvement in prediction accuracy was more evident for
Landrace as this breed had lower prediction accuracy by separate training. For
instance, in MA, combined training caused an improvement of 46% for Landrace,
while this improvement in prediction accuracy was 21% in Yorkshire. Regardless of
training on pure lines separately or jointly, the results indicated that including
dominance effects in a prediction model improved accuracy of genomic
predictions.

5.3.2 Model goodness of fit

Measures of goodness of fit are given in Table 5.2. In both breeds, MAD fitted the
data better than MA with additive effects only. MAD had lower DIC than MA in
both breeds. Measures of goodness of fit based on likelihood ratio test also showed
superiority of MAD over MA in fitting the data. However, this superiority was not
statistically significant.

5.3.3 Bias of genomic prediction

The coefficients of regressing corrected phenotypes of crossbreds on the predicted
breeding values of the boars in both breeds show that, for Landrace, the variance
of the predicted values was overestimated, i.e. most of regression coefficients were
smaller than 1.0 (Table 5.3). When training was on the combined dataset,
regression coefficients were closer to one, suggesting that joining two breeds to a
single reference population improved the unbiasedness of genomic predictions
especially for the MA model.
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Table 5.1 Prediction accuracy for boars of Landrace and Yorkshire under two genomic model

Purebred Combined
MA MAD MA MAD
GEBV GEBV GEBV-C GEBV GEBV GEBV-C
Landrace 0.114(0.03) 0.135(0.03) 0.144(0.03) 0.167(0.03) 0.179(0.03) 0.207(0.03)
Yorkshire 0.320(0.06) 0.339(0.06) 0.358(0.06) 0.391(0.06) 0.402(0.06) 0.426(0.06)

Purebred: training in both pure lines was separately. Combined: genotyped sows from both pure lines were combined
together to make a single training population. GEBV: genomic estimated breeding value for purebred performance. GEBV-C:
genomic estimated breeding value for crossbred performance. For both models validation criterion was crossbred
performance.

Table 5.2 DIC, 2 value and the corresponding P-value of likelihood ratio.

MA MAD X2 values P-value
DIC DIC
Landrace 11230.35 11227.60 2.17 0.14
Yorkshire 11131.54 11121.42 2.18 0.13
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5.3.4 Estimation of variance components

Estimates of additive genetic variance and heritability obtained with the pedigree
model differed from those obtained with the genomic models (Table 5.4). Pedigree
based heritability in Landrace was higher than in Yorkshire. Genomic additive
heritability was similar in Landrace and Yorkshire. Dominance genetic variance
computed from genomic information accounted for 15% and 18% of additive
genetic variance in Landrace and Yorkshire, respectively.

5.4 Discussion

We tested whether the predictive ability of genomic prediction models that
included dominance effects is increased when the validation criterion is crossbred
performance. We supported this premise by showing some gains in prediction
accuracy for both Landrace and Yorkshire breeds. We also found that combining
animals into a single reference population improved prediction accuracy for both
breeds. Therefore, a dominance model can be used to increase accuracy of
genomic predictions for crossbred performance.

5.4.1 Comparison of models

We found that by including dominance in our genomic models we could predict
crossbred performance more accurately than with a purely additive model. In fact,
accuracies of genomic predicted breeding value using MAD were higher than that
using the additive genetic model. In addition, the models including dominance
effects slightly improved unbiasedness of genomic prediction.

The improvement in genomic prediction by including dominance effects in the
genetic evaluation models has been reported widely in different livestock species
for purebred performance. Su et al. (2012) analyzed daily gain in Danish Duroc pigs
using models with or without non-additive genetic effects. Their results showed
that non-additive genetic effects are important sources of genetic variation for
daily gain in pigs and genomic prediction models including non-additive genetic
effects improved accuracy of genomic predicted breeding value. Sun et al. (2014)
investigated the role of dominance in the Holstein and Jersey breeds for yield and
non-yield traits and found that for yield traits, including additive and dominance
effects fitted the data better than including only additive effects; average
correlations between estimated genetic effects and phenotypes showed that
prediction accuracy increased when both effects rather than just additive effects
were included in the model. Moghaddar et al. (2014) used data on purebred
Merino sheep to predict breeding values of purebred rams and found that fitting
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Table 5.3 Regression coefficients (+ standard errors) of corrected litter size of crossbreds on genomic estimated breeding
value for the boars in the validation dataset

Purebred Combined
MA MAD MA MAD
GEBV GEBV GEBV-C GEBV GEBV GEBV-C
Landrace 0.4410.11 0.60 £0.14 0.731£0.17 0.714£0.13 0.8710.16 1.26+0.21
Yorkshire 0.69+0.09 1.14 £0.20 1.360.28 0.9410.18 1.24+0.24 1.60+0.27

Purebred: training in both pure lines was separately. Combined: genotyped sows from both pure lines were combined
together to make a single training population. GEBV: genomic estimated breeding value for purebred performance.
GEBV-C: genomic estimated breeding value for crossbred performance. For both models validation criterion was
crossbred performance.

Table 5.4 Estimates of additive genetic variance (62), dominance variance (oé), and the
proportions of these variances (h? and h(zj) to phenotypic variance

Landrace Yorkshire
Parameters Pedigree Genomic Pedigree Genomic
o2 1.29 (0.03) 0.78 (0.13) 1.00 (0.03) 0.66 (0.12)
F - 0.12(0.07) - 0.12 (0.06)
h2 0.10 (0.002) 0.05 (0.02) 0.08 (0.003) 0.05 (0.02)
h - 0.007 (0.01) - 0.01 (0.01)
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both additive and dominance effects of marker genotypes provide either similar or
higher genomic breeding value accuracy depending on the degree of dominance
variance. To our knowledge, no study on real data has compared additive and
dominance models for crossbred performance. However, in a simulation study,
Zeng et al. (2013) compared additive and dominance models for genomic selection
in purebreds for crossbred performance and came to the conclusion that, in the
presence of dominant gene action, relative to the additive model, genomic
selection with the dominance model is superior to maximize crossbred
performance through purebred selection.

The additive model is the most simple and practical model for the estimation of
breeding values in pure lines for crossbred performance both computationally and
theoretically. However, in crossbreeding schemes this model may not be very
efficient if the trait of interest is affected by non-additive effects or when the
genetic correlation between the purebred and the crossbred performance is lower
than 1 (rpc < 1). In addition, it has been shown (Dekkers, 1999) that for a two-way
cross, the allele substitution effects for QTL or markers in one parental breed
depend on the allele frequencies in the other parental breed. Thus, in the
computation of substitution effects, failure to use the appropriate allele
frequencies may result in a loss of response to selection. This is one of the
drawbacks of the additive model that in case of training on pure lines, the genomic
estimated breeding value of an animal would be the same for purebred and
crossbred performance and cannot maximize the genetic improvement in
crossbreds. With presence of dominance, allele substitution effects and individual
breeding values depend on allele frequencies. A dominance model provides
estimates of both additive and dominance effects and therefore, enables the
computation of allele substitution effects using appropriate allele frequencies.

Within the MAD, GEBV-C showed higher prediction accuracy for crossbred
performance than GEBV in both breeds. GEBV is an estimated breeding value for
purebred performance while GEBV-C is an estimated breeding value for crossbred
performance. GEBV can be used as a selection criterion for genetic improvement
within a pure line, while GEBV-C is a selection criterion to improve crossbred
performance. We ranked the top 50 boars of Landrace based on both GEBV and
GEBV-C, and found that 42 boars were common in the two rankings. The
corresponding value was 43 for Yorkshire boars. These re-rankings indicate that
ranking of boars would be different for purebred and crossbred performance and
different selection criteria should be used depending on the breeding goal.
Superiority of prediction accuracy based on GEBV-C over GEBV in our results is in
agreement with findings of Esfandyari et al. (2015b) who showed with simulation
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data that under a dominance model the response to selection in crossbred
individuals was higher when selection was based on GEBV for crossbred
performance, although data were collected on purebred individuals.

For the calculation of GEBV-C for the boars of purebreds we used SNP allele
frequencies calculated from the genotyped sows in the opposite breed. However,
the more accurate approach would be using the SNP allele frequencies calculated
from the selection candidates in the opposite breed. For instance, in calculating
GEBV-C for boars of Landrace, SNP allele frequencies could be calculated from 2450
Yorkshire sows that were mated to the boars of Landrace to produce crossbred
progeny. However, as these sows were not genotyped, we used SNP allele
frequencies calculated from the sows of the relevant generation that is an
estimation of SNP allele frequencies for the selection candidates.

Prediction accuracy for crossbred performance in Yorkshire boars was higher
than Landrace boars across two models, even though both breeds had almost the
same size of training population and heritability. The pedigree based prediction
accuracy was also higher for the Yorkshire boars compared to the Landrace boars
(results not shown). We did not find a clear reason for these differences. However
it seems the difference in environmental variance and also difference in the genetic
level between two breeds might be an explanation for the observed differences in
prediction accuracies [personal communication to B. Nielsen, Danish Pig Research
Centre].

5.4.2 Gain of combined reference population for genomic prediction
Combining animals from pure lines into a single training set improved prediction
accuracy for both Landrace and Yorkshire across all models. In fact, joining two or
more populations from the same or different breeds into a common reference
population is often argued to be an obvious way to increase the accuracies of GEBV
(de Roos et al., 2009, Lund et al., 2014). However, the increase in accuracy of GEBV,
when combining populations into a single reference, will depend on how closely
related the populations are and how aligned the Linkage disequilibrium (LD)
information used for genomic predictions is. According to Daetwyler et al. (2012),
across breed accuracy depends on the LD between markers and QTL or persistence
of LD phase. In a simulation study Esfandyari et al. (2015b) showed that in a two-
way crossbreeding scheme if the correlation of LD phase between two breeds is
high, there can be an added benefit in terms of accuracy of GEBV if animals from
both breeds are combined into a single reference population to estimate marker
effects. Persistance of LD phase has been reported in some pig breeds and
knowledge about the persistence of LD phase between breeds would allow to find
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out whether joining populations may help or not. Badke et al. (2012), evaluated
correlation of phase among four US pig breeds and reported correlation of phase of
0.87 for Duroc-Yorkshire and 0.92 for Landrace-Yorkshire, for markers with a
pairwise distance <10kb. For the same distance, Wang et al. (2013) found a
persistence of phase of 0.61 for Duroc-Landrace, 0.57 for Duroc-Yorkshire and 0.66
for Landrace-Yorkshire. Wang et al. (2013) results concerning genome-wide LD
confirmed the mixture history of Landrace and Yorkshire, which is also implied by
the higher level of persistence of phase between Landrace and Yorkshire. This may
explain the improvement in prediction accuracy by combining animals from
Landrace and Yorkshire breeds to a single training population in our study.

In addition, the benefit of joining reference populations depends on the size of
the reference population, as there is a diminishing return relationship between
reference population size and accuracy. Hence, when the reference population is
small, joining may help when the correlation of LD phase is sufficiently high,
whereas, joining will have limited benefit or may even be detrimental when
reference populations are large enough or correlation of LD phase is low.
Moghaddar et al. (2014) compared the accuracy of genomic prediction in
Australian sheep breeds by using data from purebreds, crossbreds or a
combination of those in a reference population. The results of their study showed
zero to small negative effects on genomic prediction accuracy when data from
distant breeds were included in the reference population.. A number of studies
have compared the predictive ability of genomic models trained in a joint reference
population by combining populations of the same breed or populations of different
breeds (for review see Lund et al. (2014))

5.4.3 Additive and dominance genetic variances of litter size
In our study to estimate additive and dominance variances, following Vitezica et al.
(2013), we used breeding (or classical) model rather than the genotypic model. The
breeding model partitions a genotypic value into breeding value and dominance
deviation. Therefore, estimated variances are variances due to the individual
additive value (breeding values) and dominance deviations and are comparable
with pedigree based estimates. However, the genotypic model, partitions genetic
variance into additive and dominance in such a way that estimated variances are
not directly comparable to pedigree based estimates i.e., the additive variance is
the variance of additive effects. The difference between two models has been
discussed in (Vitezica et al., 2013).

Estimates of additive variance obtained from pedigree were different than
those from genomic information in both breeds. The differences observed were
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most likely because animals used for estimates of genomic variances were a small
fraction of all animals. Based on the present data, the estimated dominance
variance in proportion to additive variance was 15% and 18% for Landrace and
Yorkshire, respectively. In pigs, significant contributions of dominance genetic
variance have been reported. Lopes et al. (2014) by using genotypic model
reported this ratio to be 13% and 21% for number of teats and back fat in Landrace.
They, however, mentioned that by using breeding model these values decreased to
0.08% and 0.16% for number of teats and back fat, respectively. Vitezica et al.
(2013) have argued that the genotypic model overestimates the dominance genetic
variance and, consequently, underestimates additive genetic variance. In the study
of Su et al. (2012) dominance variance accounted for 26% of the additive variance
for daily gain in Danish Duroc pigs. However, as they have used the genotypic
model, reported variance for dominance is overestimated. Based on pedigree
estimates, Culbertson et al. (1998) reported that the ratio of dominance to additive
variances for different traits in pigs ranged from 11 to 78%. These results indicate
dominance genetic variation is important for complex traits.

5.4.4 Purebred-crossbred genetic correlation

In this study, the correlation between GEBV and GEBV-C from MAD model was 0.90
and 0.93 for Landrace and Yorkshire, respectively. The deviation of these
correlations from one in both breeds is due to dominance effects only, and in the
situation where there is no G x E interaction these correlations are an indicator of
the purebred-crossbred genetic correlations (rpc). Theoretically, assuming that the
dominance model is true, i.e. there is no GxE interaction, having an infinite amount
of information on purebred animals, then using the dominance model on purebred
data would provide the maximum accuracy (i.e. unity) of prediction for crossbred
performance. On the other hand, when rp.is smaller than one solely due to GxE
interaction, the maximum achievable accuracy by using purebred information will
be rpc. So, due to deviation of ry. from unity it has been suggested that when aim
of selection within a pure line is to improve crossbred performance, crossbred
animals should be used for training (Dekkers and Chakraborty, 2004, Zeng et al.,
2013, Esfandyari et al., 2015a). In fact, training on crossbred data for genomic
selection accounts for genetic differences between purebred and crossbred
animals and for genotype by environment effects. Esfandyari et al. (2015a)
compared crossbred response in a two-way crossbreeding program by training
either on purebred or on crossbred animals under dominance model in the absence
of G x E interaction. According to their results, using data of crossbreds yielded a
substantial improvement in crossbred performance and the explanation was that
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by training on crossbred animals, they could predict dominance effects and
consequently breeding values of the animals in pure lines more accurately. van
Grevenhof and van der Werf (2015) investigated the benefit of including crossbred
information in the reference population of a crossbreeding program using genomic
selection. Based on a deterministic simulation they concluded that using crossbred
rather than purebred individuals in a reference population for genomic selection
can provide substantial advantages, but only when correlations between purebred
and crossbred performances are not high. However, in their study the reason for
rpc < 1 was not clear. In fact, knowing the mechanism for the deviation of ry,. from
one would be helpful to determine whether crossbred info should be used in
genomic selection schemes when the aim of selection within pure lines is to
improve crossbred performance. In principle, one could use a dominance model
and multi-trait analysis to partition the r,. into a component due to dominance
and a remaining component due to G x E and epistasis. However, accurate
partitioning would require a small standard error of the estimated purebred-
crossbred genetic correlation, and thus very large datasets (Bijma and Bastiaansen,
2014).

5.5. Conclusions

Compared to additive model, the use of a dominance model increased the
prediction accuracy of purebred animals for crossbred performance. This is
probably due to the fact that using dominance model on purebred data can
accounts for some part of r,. < 1in crossbreeding programs. Furthermore, we
found that combining animals from both breeds into a single reference population
improved prediction accuracy in both breeds.
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6.1 Introduction

One of the main limitations of many cross breeding programs is that selection is in
purebred nucleus lines or breeds that are housed in high-health environments but
the goal of selection is to improve crossbred performance (CP) under field
conditions. Due to genetic differences between purebreds and crossbreds and
environmental differences between nucleus and field conditions, performance of
purebred parents can be a poor predictor of performance of their crossbred
descendants (Dekkers, 2007). Furthermore, some important traits such as disease
resistance cannot be measured in nucleus lines. In order to deal with these
problems, it has been proposed to select purebred relatives based on CP using
combined crossbred and purebred selection or CCPS (Wei and Steen, 1991, Lo et
al., 1993, Lo et al., 1995, Lo et al., 1997). This approach can increase response to
selection for CP relative to the classical method of selection on purebred
performance (Bijma and van Arendonk, 1998). It has, however, not been
extensively implemented in livestock due mainly to the difficulty and cost of
routine collection of phenotypic and pedigree data from crossbreds in the field
(Dekkers, 2007). In addition, using CCPS increases the rate of inbreeding (Bijma et
al., 2001) and makes it difficult to accommodate non-additive gene action (Lo et al.,
1997). As an alternative to CCPS, Dekkers (2007) proposed to select purebreds for
commercial CP using genomic selection (GS). GS of purebreds for CP involves
estimating effects of SNPs on CP, using phenotypes and SNP genotypes evaluated
on crossbreds, and applying the resulting estimates to SNP genotypes obtained on
purebreds (Dekkers, 2007). GS for CP has advantages over CCPS such as it does not
require pedigree information on crossbreds, it reduces the rate of inbreeding
(Daetwyler et al.,, 2007), and makes accommodating non-additive gene action
easier (Dekkers, 2007).

This thesis primarily focused on implementation of dominance as a non-additive
genetic effect in genomic crossbreeding programs. In chapter 3, the potential
benefit of GS within purebred lines, when the objective is to improve performance
of crossbred populations at the commercial level was evaluated. Both phenotypic
and genotypic information was collected on purebred animals only. EBV for CP
were obtained based on estimated dominance effects and the allele frequency in
the other line. In a two-way crossbreeding system, it was found that selection for
genomic estimated breeding value for crossbred performance (GEBVC) increased
response in crossbred animals compared to selection for genomic estimated
breeding value for purebred performance (GEBVP). The effect of the correlation of
linkage disequilibrium (LD) phase between the two pure breeds on the
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consequences of combining both reference populations was also investigated. The
results revealed that, for a high correlation of LD phase, combining both
populations into a single reference population increased response to selection in
crossbred animals. In chapter 4, response to selection of crossbreds by simulating a
two-way crossbreeding program with either a purebred or crossbred training
population under a dominance model was compared. It was confirmed that, to
reach greater response to selection when crossing two distantly related lines, it is
better to do training on crossbred animals rather than on pure lines to predict
genetic effects. In addition, being able to distinguish between alternate
heterozygotes in the crossbred training set by taking into account the breed origin
of alleles increased response to selection, except when breeds were closely related
and the reference population was small. Finally in chapter 5, to confirm the findings
of the simulation study in chapter 3, real genomic data of purebred Landrace and
Yorkshire pigs were analyzed. It was tested whether the predictive ability of
genomic prediction models for CP could be improved by including dominance.
Training was on pure lines and we also compared the use of two separate pure-line
reference populations to a single reference population that combines both pure
lines. The results showed some gains in prediction accuracy for CP by including
dominance and combining both pure lines into a single reference population for
training.

Some topics have already been addressed in the discussion sections of the
relevant chapters and will not be repeated here. Thus, this general discussion will
concentrate on three main topics, i) Genomic models in crossbreeding, ii) Design of
a reference population for GS in crossbreeding schemes and iii) Genomic selection
and pig breeding. Finally some other relevant topics will be discussed briefly.

6.2 Genomic prediction models in crossbreeding schemes
Several genomic models have been suggested for the prediction of breeding values
of the individuals in the purebred lines for CP in genomic crossbreeding programs.
These models are namely the standard additive model, across-breed effects of SNP
genotypes model (ASGM), breed-specific effects of SNP alleles model (BSAM) and
the dominance model. Additive and dominance models can be used by training
either on crossbreds or purebreds, however, ASGM and BSAM can be used for
crossbred training only.

The additive model is the most simple and practical model for the estimation of
breeding values in pure lines for CP both computationally and theoretically.
However, in crossbreeding schemes this model may not be very efficient if the trait
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of interest is affected by non-additive effects or when the genetic correlation
between the purebred and the crossbred performance (r,.) is lower than 1
(rpc < 1). For example, accuracy of EBV of an animal in a pure line for a trait with
heritability of 0.3 based on own phenotype for purebred performance would be
0.54, while for under an Ipe = 0.5, the accuracy of EBV for CP would be only 0.27

(i.e. v/0.3 X 0.5). In addition, it has been shown (Dekkers, 1999) that for a two-way
cross, the allele substitution effects for QTL or markers in one parental breed
depend on the allele frequencies in the other parental breed when non-additive
effects are present. Thus, in the computation of substitution effects, failure to use
the appropriate allele frequencies may result in a loss of response to selection. This
is one of the drawbacks of the additive model that in case of training on pure lines,
the genomic estimated breeding value of an animal would be the same for
purebred and CP and cannot maximize the genetic improvement in crossbreds.

Furthermore, using the additive model with crossbred training, a single
substitution effect is estimated for each SNP, assuming it is the same for both
parental breeds. Selection based on GEBV derived using such allele substitution
effects is expected to fix the favourable allele in both breeds and thus reduce
heterozygosity in crossbreds. Exceptions to this could occur due to genetic drift or
the marker and QTL being in LD with opposite phases in the two parental breeds.
When the two breeds have opposite LD phases, and a common nonzero
substitution effect is estimated for a SNP in the additive model, the allele
frequencies of associated QTL will move in opposite directions in the two breeds.

In some studies, additive gene action or perfect knowledge of allele substitution
effects or both are assumed (lbanez-Escriche et al., 2009, Toosi et al., 2010).
However, it has been argued that dominance is the likely genetic basis of heterosis
(Falconer and Mackay, 1996). Therefore explicitly including dominance in the GS
model may be an advantage to select purebred animals for CP. With dominance,
allele substitution effects and individual breeding values depend on allele
frequency and, thus, change over time, which alters the ranking of individuals. This
problem can be overcome by applying a dominance model, which provides
estimates of both additive and dominance effects and, therefore, enables the
computation of allele substitution effects using appropriate allele frequencies. In
chapter 3 we used such a model for estimation of GEBV of animals in pure lines for
CP while training was on pure lines. Under a dominance model we calculated allele
substitution effects based on allele frequency of the other breed and could
improve the response to selection compared to a model where allele frequencies
were used from the line itself. However, in our dominance model, we used SNP
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allele frequencies among selection candidates of the opposite breed for the
calculation of GEBV. The more appropriate approach would be using the SNP allele
frequencies of selected mates. However, allele frequencies of selected mates
cannot be observed prior to computation of the substitution effects that are
needed for selection. Nonetheless, one can argue that differences in allele
frequencies between selected mates and selection candidates should be relatively
small in most cases. In fact, for highly polygenic traits, the change due to selection
will be small, and the main change in allele frequency may result from sampling
(i.e., drift). Following Falconer and Mackay (1996), the change of allele frequency
resulting from sampling is random in the sense that its direction is unpredictable
but its magnitude can be predicted. The change of allele frequency, (Aq), resulting
from sampling can be stated in terms of its variance as ciq = % where p and q are

allele frequencies and N is the number of sampled individuals (selected as mates).
Figure 1 shows variance and standard deviation of Aq at different values of allele
frequency (p) due to sampling of 100 individuals. If we consider a locus win an
equal allele frequencies, (p=q=0.5), variance of change in allele frequency in that
locus due to sampling of e.g., 100 (number of selected females in our simulations)
would be 0.0012 with standard deviation of ~ 0.03 that is negligible.

Variance
Sd

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

0.0 0.2 0.4 0.6 0.8 10

allele frequency (p) allele frequency (p)

Figure 6.1 Variance and standard deviation of change in allele frequency, (Aq), due
to sampling of 100 individuals.

Presence of overdominance in the genetic architecture of the trait of interest
would further clarify the advantage of a dominance model over an additive model.
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In our simulations in chapter 3 and 4, we assumed dominance variance to be one
third of the additive genetic variance. This ratio resulted in 10 to 15% of loci
showing overdominance. When overdominance is present, the allele substitution
effect (i.e., a = a + (1 — 2p)d) may have opposite signs in the parental breeds,
depending on allele frequencies p in the two breeds (Falconer and Mackay, 1996).
In this case, the two parental breeds are expected to be fixed for alternate alleles
of over-dominant QTL, which increases the frequency of favourable heterozygotes
in crossbred progeny. Note that under the additive model, fixation of the
favourable allele in both breeds would result in lower heterozygosity in the
crossbreds. So, it is expected that the dominance model results in substantially
greater heterosis than the additive model. However, the purebred gain may be
lower with the dominance model than with the additive model, because the
unfavourable allele will be moved towards fixation in one parental breed at some
loci.

Under the additive model, SNP allele effects are assumed the same in all
breeds. However, in crossbred populations, effects of SNPs may be breed specific
because the extent of LD between SNPs and QTL can differ between breeds.
Moreover, the LD may not be restricted to markers that are tightly linked to the
QTL. Both these problems were addressed by using a model with breed-specific
effects of SNP alleles (BSAM) by Ibanez-Escriche et al. (2009). In this model breed-
specific substitution effects for each allele in a SNP are estimated based on the
breed origin of the allele, and it is assumed that breed origin of alleles are known
without error. The estimated effects and the SNP genotypes of purebred
candidates for selection, then are used to predict their breeding values for CP
(Ibanez-Escriche et al., 2009).

In our simulations in chapter 4, it was assumed that the additive and dominance
effects of QTL are the same for both breeds, which may not be the case with real
populations. However, even when additive and dominance effects are consistent
between breeds, allele substitution effects will be breed-specific if allele
frequencies differ between breeds. In such a case, the estimates of breed-specific
allele substitution effects in the dominance model are expected to be more
accurate than those in BSAM. The first reason is that the estimates of additive and
dominance effects from the dominance model are combined with the observed
allele frequencies in the opposite parental breed to calculate the breed-specific
allele substitution effects. In BSAM, however, breed-specific allele substitution
effects are estimated directly. Thus, the allele frequencies used implicitly in BSAM
are based on the frequencies in the training population of the alleles inherited from
the opposite parental breed. Note that the alleles inherited by the training
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population are a random sample of those from the parental population, and
therefore their frequencies may deviate from those of the parental population.
Thus, the use of observed allele frequencies from the parental population to
compute breed-specific allele substitution effects favours the dominance model
over BSAM. Second, in the dominance model, as selection progresses and allele
frequencies change due to selection and drift, the observed allele frequencies in
each generation are combined with the estimates of additive and dominance
effects obtained in training to compute the current values of the breed-specific
allele substitution effects. However, with the additive model and with BSAM, the
allele substitution effects estimated in training are repeatedly used to compute
GEBV of selection candidates, ignoring changes in allele frequencies. Therefore, the
use of the dominance model is expected to require less frequent retraining than
use of BSAM or the additive model. This is appealing for traits that are difficult or
expensive to measure (Zeng et al., 2013).

In chapter 4, we used a dominance model that is a modified version of
dominance and BSAM, and would be called breed-specific dominance model
(BSDM). This model has some advantages over BSAM and the dominance model.
Compared to the dominance model, in which alternate heterozygotes (based on
breed origin) are assumed to have the same effect, in the BSDM model alternate
heterozygotes can have different effects. This is relevant because for two breeds
involved in crossbreeding it is very possible that SNP and QTL frequencies might be
different between the two lines especially if two lines involved in crossbreeding are
distantly related. In addition, there might be differences in the amount and extent
of LD between SNPs and QTL between the lines. Any difference in QTL and SNP
frequencies and in LD between the pure lines can result in the two alternate
heterozygotes at a SNP having different probabilities for a heterozygous QTL in the
crossbreds. These differences suggest that one should distinguish between the two
alternate heterozygotes in the crossbred when a dominance model is used for
crossbred training. Our results in chapter 4 showed that being able to distinguish
between alternate heterozygotes, Aa and aA, while training on crossbreds and
predicting two distinct genetic values for these genotypes can lead to greater
response to selection in crossbreds compared to a standard dominance model.
However, similar to BSAM, implementation of BSDM requires knowing the breed
origins of SNP alleles which is not required for the dominance model. However, if
this phasing can be done then BSDM can also account for imprinting, which may
contribute to heterosis and is expected to contribute to the genetic architecture
and evolution of complex traits (Cheng et al., 2013, Lawson et al., 2013).

136



6 General discussion

To determine the breed origin of alleles in crossbreds, pedigree-based phasing
methods may not be suitable, because usually in real breeding programs the
pedigree of crossbred animals are not known and several generations may separate
the genotyped purebred and crossbred animals (Bastiaansen et al., 2014). LD based
phasing methods also may not be suitable because haplotypes within a LD block
are often common between several breeds. However, long range phasing (Kong et
al., 2008) overcomes both the issues of lacking pedigree and common haplotypes
between breeds. In a recent study, Bastiaansen et al. (2014) suggested a method to
determine the breed origin of alleles in crossbreds using long-range phasing
without the need for tracking pedigree relationships of crossbreds. Based on this
method, it is not even necessary to have close relationships between the crossbred
and genotyped purebred animals since long-range phasing will work even with
distant purebred relatives of the crossbreds (Bastiaansen et al., 2014).

In summary, all proposed models for GS of purebreds for CP have their own
pros and cons and the decision to use a model mainly depends on the availability of
required information (purebreds or crossbreds) and also on the factors that cause
rpc < 1. Table 6.1 summarizes the benefits of the crossbred and purebred training
and also suggested genomic models for GS of purebreds for CP. For the models
presented in the table, it is assumed that estimated additive (3) and dominance (d)
effects rather than allele substitution effects are used for calculation of GEBVC (see
footnote of Table 6.1). In general, training on crossbreds animals and using BSDM
can be more beneficial in crossbreeding programs as this approach can account for
almost all factors that cause r,. < 1. However, in practice implementation of such
a model may not be trivial as it requires large number of crossbred animals with
both phenotype and genotype for accurate prediction of GEBVC. In addition,
phasing of the genotypes may not be easy, particularly in the absence of
informative pedigree.

6.3 Design of a reference population for genomic selection
in crossbreeding schemes

In crossbreeding schemes, the ultimate goal is to improve the performance of the
crossbred offspring of the pure breeding lines. GS uses marker genotypes and
phenotypes in a reference population to predict breeding values of selection
candidates that have been genotyped (Meuwissen et al., 2001). Similar to pure
breeding, GS could benefit crossbreeding programs since it allows using
information at an early age. Accepting that GS is an appropriate tool to select
animals for CP raises a question i.e., should marker effects be predicted from pure

137



6 General discussion

line or crossbred data. This question is relevant as the effectiveness of GS in
crossbreeding schemes will depend among others on the composition of the
reference population used for genomic predictions.

Table 6.1 Potential benefits of training on purebred or crossbreds and genomic
models depending on nature of ¢

Training Prediction model
Factors PB cB Additive BSAM Dominance BSDM
contributing model model
tor,. <1
Dominance X xt xt x x
Epistasis X xt xt
Imprinting X
GxE x x* x x *

* Additive and dominance model would account for GxE if training is on crossbreds.
" If allele substitution effects are calculated, additive and BSAM models may account
for dominance and epistasis as allele substitution effects capture a part of dominant
and higher-order interactions across genes and alleles.

Estimation of marker effects for genomic prediction based on purebred data is
appealing since large amounts of phenotypic as well as genotypic information on
PB animals are usually already available. However, purebred training and
estimation of SNP effects based on purebred individuals might be relevant for the
genetic improvement within purebred lines but might not be efficient when the
aim of selection within pure lines is to improve CP. One of the reasons would be
that estimated SNP effects might be different in purebreds and crossbreds. In
addition, for traits with significant non-additive variance and therefore potential
heterosis and in situations where ry,. is lower than one, purebred performance is
not a good predictor of CP. Furthermore, training on purebreds cannot maximize
the performance of crossbred animals especially in presence of GxE. Nonetheless,
in chapter 3, under the hypothesis that crossbred and purebred animals differ from
each other due to dominance, we used GS to select purebred individuals for CP
without collecting crossbred phenotypic or genotypic data. In a two-way
crossbreeding system, we found that selection for GEBVC increased response in
crossbred animals compared to selection for GEBVP.

While the use of crossbred phenotypes has been limited in applied breeding
programs because tracing pedigree relationships in a crossbred production
environment is not trivial, it has recently regained attention because genomic
relations are a solution for the cumbersome pedigree tracing process. Dekkers
(2007) proposed to use marker information that was estimated based on the
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performance of commercial CB animals. He found a significant increase in the rates
of genetic gain compared to using only PB phenotypic information, or combined PB
and CB information, whereas the rate of inbreeding decreased. Despite of these
advantages, for training on crossbreds, it is necessary to collect genotypic and
phenotypic data at crossbred level, which can substantially increase the required
investment in the breeding program, since crossbred animals are usually not
individually identified and individual performances are not recorded. Nevertheless,
as mentioned earlier training on crossbred data for GS accounts for genetic
differences between purebred and crossbred animals and potential genotype by
environment effects. In chapter 4, we investigated response to selection in CP in a
two-way crossbreeding system of two distantly related breeds. To estimate SNP
effects, training was either on pure lines or crossbreds and animals were selected
on GEBVC. Our results showed that to reach greater response to selection when
crossing two distantly related lines, it is better to do training on crossbred animals
rather than on pure lines. However, in that simulation, the deviation of pc from
one was due to dominance and differences in allele frequencies between the two
lines. It can be expected that training on crossbreds is much more efficient if
rpc < lis due to GxE on top of the non-additive effects.

An alternative approach in designing a reference population in crossbreeding
scheme would be to carry out training on pure lines based on the yield deviations
of their crossbred progeny. In other words, training can be done on purebred
animals with genotypes and the mean phenotypes of their crossbred progeny can
be used as response variable. This strategy is appealing as large number of
purebred genotypes may be available in pure lines. However, in case of a limited
number of phenotyped progeny for each reference animal, progeny-based
phenotypic records will be less accurate than own performance records. In fact, the
accuracy of breeding values depends on the sources of information included in
each phenotypic record. If this phenotypic record is based on progeny phenotypes,

its accuracy is approximately equals to \/0.25Nh2/(1 + 0.25(N — 1)h? where N is
the number of phenotyped progeny and h? is the trait heritability. The more

phenotyped progeny, the higher value of the progeny-based accuracy. The
accuracy of a single phenotypic measurement of an animal itself is equal to the
square root of the heritability (\/ﬁ). Hence, particularly for traits of high h? an own
performance would be superior.

As mentioned earlier it might be difficult and expensive to collect phenotype
and genotype data on crossbred individuals, whereas most breeding programs
have routine phenotyping and genotyping of the nucleus animals in the pure lines.
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In such circumstances, if genotyping but not phenotyping of crossbred animals is a
limiting factor, one could do training on crossbred animals with phenotypes and
use genotype probabilities based on the genotypes of their purebred parents
(Scenarios 3 and 4 in chapter 4). With this strategy, it is possible to gain some of the
benefits of crossbred training without genotyping crossbred animals. However, this
strategy does require pedigree identification of crossbreds.

Beyond the training on crossbred or purebreds, proper optimization of a
reference population in crossbreeding programs should also be considered. As
mentioned before, the greatest advantage of GS is the potential to predict GEBVs
with high accuracy over several generations without repeated phenotyping, which
results in lower costs and shorter generation intervals. This approach requires LD
between marker loci and QTL, otherwise the accuracy is expected to decline fast in
the generations following the estimation of marker effects. In addition to LD
between markers and QTL, Habier et al. (2007) showed that the accuracy of GEBV
for selection candidates depends also on the additive genetic relationship between
individuals. In other words, accuracy of GS depends on distance between reference
population and selection candidates and the accuracy decreases as the distance
between selection candidates and reference population increases (Habier et al.,
2007). Many other studies also have shown that accuracy of GEBV depends heavily
on family relationships between the reference and test populations (Habier et al.,
2010, Daetwyler et al., 2012, Wientjes et al., 2013). So, in crossbreeding programs,
optimization of reference population should be considered because due to the
pyramidal structure of crossbreeding programs, e.g. in chicken and poultry, there is
generation lags from pedigree pure line animals to end-product crossbred animals,
which in case of training on crossbreds can make a considerable distance between
selection candidates and reference population.

One possibility for optimizing the reference population for GS is to consider
relationships within the reference population and between the reference
population and selection candidates. Closely related animals partly explain the
same part of the genetic variation and therefore, they may also partly have similar
phenotypes. When constructing a reference population, the goal is to capture in it
as much of the usable genetic variation present in the whole population as
possible. To do so, the animals in reference population should be distantly related
to each other, but at the same time at least somehow be related to the potential
selection candidates (Pszczola, 2013).

Training on a combination of crossbred and purebred animals may offer a
solution for minimizing relationship among animals within reference population,
while decreasing the distance between reference population and selection

140



6 General discussion

candidates. However, in combining the CB and PB to a single reference population
the correlation of phase between crossbreds (bottom of the pyramid) and
purebreds (top of the pyramid) should be assessed. Veroneze et al. (2014),
evaluated the persistence of LD and LD decay of pure and crossbred pig lines which
were representing the crossbreeding structure of pig production using 60K SNP
panel. They found a high correlation of phase between crossbred and their parental
lines, suggesting that the available porcine single nucleotide polymorphism (SNP)
chip should be dense enough to include markers that have the same LD phase with
QTL across crossbred and parental pure lines. In chicken, Fu et al. (2015)
characterized the consistency of LD and differences in LD between crossbred and
their purebred populations using 60K SNP panel. They also found that correlations
of phase were high (0.83 to 0.94) between these populations for closely spaced
SNPs (0 to 10 kb). Both in pigs and chicken the 60K SNP panel seems to be sufficient
to provide consistent LD between causative variants and markers across purebreds
and crossbreds. So, increasing marker density which has been suggested to
increase the accuracy of GS of multiple populations may not be relevant here. In
dairy cattle, increasing marker density (700K) in two different breeds, Holstein and
Jersey, (which have less genetic relatedness than purebreds and crossbreds) did
not improve prediction accuracy (Erbe et al., 2012). The lack of improvement in
prediction accuracy implies that other factors such as epistasis rather than LD
phase may contribute to the accuracy of multiple populations predictions.

6.4 Purebred-crossbred genetic correlation

Although GS may have solved the problem of tracing pedigree by using crossbred
information, still collecting CB information might be difficult, expensive and time
consuming. The genetic correlation between the purebred and the crossbred trait
(rpc) is the key parameter that determines the need for crossbred information. van
Grevenhof and van der Werf (2015) found that the effect of replacing PB with CB
animals in the reference population was highly positive, but only when the
correlation between PB and CB performance was low (rp. < 0.7) and the breeding
objective emphasis was mainly focused on improving CB performance. For
example, with an rp,. of 0.7 and a breeding objective of CP performance, they found
that accuracy increased from 0.52 to 0.55 by using a CB instead of a PB reference
population. However, with an rp. of 0.9, the accuracy decreased slightly from 0.64
to 0.62 for a CB compared to a PB reference population. So, apparently knowledge
about rp is critical in assessing the composition of the reference population in
crossbreeding programs.

141



6 General discussion

The rp,¢ has been studied in some livestock species for some traits. In general it
has been shown that production traits tend to have high values of r,. (0.66 —0.96),
whereas reproduction traits tend to have low to moderate genetic correlations
(0.21 — 0.52) (Lutaaya et al., 2001, Zumbach et al., 2007, Nielsen et al., 2014).
Therefore, if the aim of crossbreeding program is to improve production traits of
crossbreds, GS based on purebred training and selection based on purebred
records seems to be an appropriate method for these types of trait. However, for
reproduction traits, purebred training might be less relevant for use to improve
crossbred reproduction traits because of low genetic correlations between
purebreds and crossbreds. Therefore, the estimated ry,. can be used as an indicator
for crossbred or purebred training in GS schemes in crossbreeding programs.

It has been shown that the deviation of r,. from one can be both due to non-
additive effects and GxE interaction (Wei et al., 1991). Even though the estimated
Ipc can be used as an indicator for crossbred or purebred training in GS schemes,
for an efficient design of a reference population the components of this correlation
may be taken into account. In other words, knowledge about the mechanism
underlying the deviation of r,. from one and the possibility of partitioning this
correlation into its components can further help in designing a reference
population. For instance, if I'pc lower than one is due to dominance effects, then
training on purebreds animals under a dominance model would be efficient to
reach the maximum accuracy (i.e. 1) conditional on using an infinite amount of

information on purebred animals. However, for an r,. < 1 only due to GxE

P
interaction, the maximum achievable accuracy by using purebred information is
I'pe- Thus, a loss in genetic gain should be expected by training on purebreds in the
presence of GxE interactions. Nonetheless, by using crossbred data, it might be
possible to reach the maximum accuracy. Therefore, the mechanism that results in
Iy less than 1 has an impact on the optimal design of the reference population and
on response to selection.

The experimental way to partition r,. to its potential components such as
dominance and GxE interaction is to have an appropriate design. In such a design,
two different environments shall be considered (Nucleus and Commercial). In the
nucleus environment sires are mated to the dams of their own line producing
purebred offspring, and also to the dams of the other line, producing crossbred
offspring. As progenies in both case are in the nucleus environment, the genetic
correlation between purebreds and crossbreds offspring in this environment is an
indicator of rp,. due to dominance effects (ignoring epistasis) (rpcpy). Similarly, if
sires have purebred offspring both in the nucleus environment and in the
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commercial environment, the genetic correlation between offspring in two distinct
environments will be an indicator of r,. due to GXE (rpcxg))- Theoretically,
Ipe = I'ped) X Ipe(axE) SO, based on the assumption that 1. is known, estimation
of either rpcp) Or rpcgxE) following designs mentioned above can give knowledge
of the components of rp.

Even though theoretically such partitioning is possible, in practice there will be
some relevant issues. Assuming that rp. is known, if one gets an estimate of rpcpy™
0.9 with an small standard error (+0.05), the confidence interval for such an
estimate would be 0.8 - 1. For this confidence interval, the equation, r,c = rp¢p) X
I'peaxE), indicates that rpc is fully due to GxE (i.e., rpc = 1 X rpgxr))- Hence,
despite having an accurate estimate of rycp), partitioning of r,.is not very
informative. Furthermore, getting such an standard error (0.05) requires very large
datasets. Bijma and Bastiaansen (2014b) presented an equation to predict the
standard error (SE) of additive genetic correlation between traits recorded on
distinct individuals for nested full-half sib schemes with common-litter effects. They
showed that the SE of the estimate of the purebred-crossbred genetic correlation is

determined by the true value of r,. the number of sire families, and the

pc
reliabilities of sire EBV. In the following, the equation of Bijma and Bastiaansen
(2014a) is used to get an indication of the sample size required to get an SE of 0.05.
Consider a trait that has true purebred crossbred genetic correlation of 0.9, and its
heritability is 0.3 for both purebreds and crossbreds. Each sire is mated to 10 dams
of its own line and also to the same number of dams of the other line and the
number of offspring per dam is 8 (e.g., in pigs) for both purebreds and crossbreds.
In such a design more than 100 half-sib families are needed to get an SE of 0.05. In
addition, it was assumed that there are no common litter effects for both
purebreds and crossbred trait. If such effects exists then the required number of
families will increase. In conclusion, accurate partitioning would require a small
standard error of the estimated purebred-crossbred genetic correlation, and thus
very large datasets.

In summary, breeders have to choose whether to do training on pure lines or on
crossbreds. To answer this question, it seems necessary to know how the genetic
and environmental components affect the genetic correlation. On general, if rp.
lower than one is due to non-additive effects, training on pure lines by using a
model that accounts for non-additive effects such as dominance model in our
studies should be an appropriate approach. On the other hand, for ry,. lower than
one due to GxE, training on crossbreds will be more efficient. However, as Ipe

lower than one can be due to both mechanisms, it seems the CCPS model
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presented by Wei and Vanderwerf (1994) for genetic evaluation using information
from both purebred and crossbred animals should be reconsidered in GS schemes.
However, in practice it is rare (yet) that all relevant animals for GS of purebreds for
CP to be genotyped. Thus, the so-called single-step methods (Legarra et al., 2009,
Aguilar et al.,, 2010, Christensen and Lund, 2010) would provide a coherent
approach for genomic crossbreeding programs. These methods incorporate marker
genotypes into a traditional animal model by using a combined relationship matrix
that extends the marker-based relationship matrix of VanRaden (2008) to non-
genotyped animals, and they have been shown to perform well for genomic
evaluation of dairy cattle, pigs and chickens. Recently, Christensen et al. (2014)
developed a single-step method for genomic evaluation of both purebred and CPs
for a two-breed crossbreeding system. In summary, the method incorporates
marker genotypes into the Wei and van der Werf model for genetic evaluation
using both purebred and crossbred information. Extending the model to
incorporate genomic information requires the construction of two combined breed
specific partial relationship matrices. In fact, partial relationship matrices based on
pedigree in CCPS are replaced by combined partial relationship matrices. The
assumption of the model is that the marker genotypes of crossbreds can be phased
such that the breed of origin of alleles is known. The model can be implemented
using a software package for multivariate mixed models (e.g., DMU, WOMBAT,
ASReml). In a study on real dataset, Xiang et al. (2015b) applied this single-step
method to analyse data for total number of piglets born in Danish Landrace,
Yorkshire and two-way crossbred pigs. The results confirmed that including
genomic information, especially crossbred genomic information, improved
reliabilities of purebred boars for their CP, and also improved the predictive ability
for crossbred animals and reduced the bias of prediction (Xiang et al., 2015b). So,
apparently the new single-step BLUP method is an applicable tool in the genetic
evaluation for CP in purebred animals.

6.5 Three-Way crossbreeding

Throughout this thesis the aim was to improve CP under a two way crossbreeding
system using GS methodology. GS may be applied also for a three-way or four-way
crossbreeding systems. However, there are some difficulties involved in 3-way or 4-
way crossbreeding systems. The main problem would be defining a proper training
population to predict breeding values for CP within pure lines. For example, in a 3-
way crossbreeding, by training on A(CD) crossbreds efficiency of selection will
largely reduce because of a small coefficient of genetic relationship between pure
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line animals and their A(CD) progeny. In other words, by training on A(CD)
crossbreds, 50% of the alleles in the training population are from breed A but only
25% are from either breed C or D. Thus, accuracies will be lower for breed C and D
than for breed A. This is more problematic with breed specific models such as
BSAM or BSDM compared to across breed additive or dominance models. These
models require that alleles are traced according to breed of origin, which is feasible
in 2-way crossbreeding but may be difficult with sufficient accuracy in others. In
particular, when crossbred A(CD) animals are genotyped a reasonable requirement
is that breed A fathers are also genotyped, which would make the tracing of the
breed A paternal allele feasible. But the tracing of the breed of origin (C or D) of the
maternal allele may be more uncertain and depending on whether CD mothers are
genotyped (may not be due to logistical issues), maternal grandfathers are
genotyped and maternal grandmothers are genotyped (may be difficult to obtain
for example in pigs if these are from multiplier herds). In addition, phenotypes and
genotypes at A(CD) crossbreds have to be collected, but these information are not
usually available because breeding companies do not test A(CD) crossbreds
routinely. Furthermore, including A(CD) information into selection procedure will
make selection candidates to be distantly related to the reference population. The
barriers mentioned above would be more severe in 4-way crossbreeding systems
that are common in poultry breeding.

Following the two-way implementation of single-step method for GS of pure
lines for CP, Christensen et al. (2015) presented models for genetic evaluation in
the three-way crossbreeding system. These models provide estimated breeding
values for both purebred and CP, and can use pedigree-based or marker-based
relationships, or combined relationships based on both pedigree and marker
information. This provides a framework that allows information from three-way
crossbred animals to be incorporated into a genetic evaluation system.

6.6 Long-term response to selection under crossbreeding

Response to GS can continue for many generations or decline rapidly, depending
on the number of QTLs, their frequencies and linkage with markers. As GS
proceeds, allele frequencies may shift significantly, making long term response
difficult to predict because future genetic variance depends on future rather than
current QTL allele frequencies. Genetic variance increases as frequencies of
favourable alleles move from near 0 toward 0.5, but decreases as their frequencies
move from 0.5 to 1. Based on simulations (Muir, 2007) or deterministic predictions
(Goddard, 2009), long-term gains from GS can be less than from phenotypic

145



6 General discussion

selection or from selection on pedigree and phenotypes. Hayes et al. (2009b) has
summarized solutions to enhance the long-term genetic gain using GS. One method
to maximize the long-term gain was using optimal index where favourable alleles at
low frequency receive additional weight. This method was tested based on
simulation studies and proven effective to maintain genetic variation and
subsequently lead to higher selection limit (Sun and VanRaden, 2014, Liu et al.,
2015).

Increasing long term response to GS in crossbreeding systems not only involves
strategies such as weighting favourable minor alleles, which has been suggested to
be used in pure breeding, but also it should consider non-additive effects, in
particular dominance, as well as rp. which determines the efficiency of selection
within purebred lines for CP. In fact, r,. is the most important parameter to
optimize crossbred response, and the question is how the value changes in a long-
term selection under a crossbreeding program. If GxE interaction is not present,
the change of rp after a long-term selection will depend on non-additive effects
and changes in allele frequencies due to the selection method (Wei et al., 1991).
Some studies have reported a decrease of ry,. after long-term pure line selection.
Comstock and Robinson (1957)reported rp for body weight of broilers to decrease
from 0.67 to 0.25 after several generations of selection. In a report on poultry
(Pirchner and Mergl, 1977) r,. also declined over 12 generations of RRS.
Considering allelic effects on changes of r,. Wei et al. (1991) showed that in the
presence of partial dominance, the value of Iy will increase after either purebred
or crossbred selection, however, with overdominance . will decrease after a long
term crossbred selection. Under CCPS, rp. may decrease because alleles with
opposite effects are neutral with respect to the index. Compared to conventional
methods, GS may change the r,c much faster as changes in allele frequency with
GS are larger than with BLUP (Heidaritabar et al., 2014). Thus, the knowledge of the
changes of 1. in long term shall be considered for shifting between purebred and
crossbred training.

Maintenance of genetic variation and biodiversity is an important element of
sustainable animal breeding and reproduction as response to selection in the long
term depends upon the amount of available genetic variation. The loss of genetic
diversity within a breed is related to the rate of inbreeding (AF). Compared to BLUP
selection with sib information, GS is expected to result in lower AF (Daetwyler et
al., 2007). The main reason for this reduced AF is that GS results in an increased
estimation accuracy of the Mendelian sampling term. This allows for better
differentiation within families and leads to lower co-selection of sibs, which
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reduces AF. The between-family portion of the additive genetic variance in GS is
reduced quickly due to the high EBV accuracy and the Bulmer effect (Bulmer, 1971)
and shifts the emphasis of selection in favour of the Mendelian sampling term
which has no effect on inbreeding as it is regenerated in each generation
(Daetwyler et al., 2007).

In the past, pedigree relationships were used to control and monitor
inbreeding. Currently, by the availability of genomic information, genomic
relationships among selection candidates can be used to control inbreeding and
maximise long-term genetic gains using optimum contribution selection (OCS). OCS
(Meuwissen, 1997) is a selection method that maximises genetic gain while
restricting the rates of inbreeding of the progeny by restricting the relationship of
the parents. OCS with genomic data is more appropriate for effective control of
inbreeding. Liu et al. (2014) investigated strategies to increase long term response
to selection by combining OCS and weighting rare favourable alleles. The main
finding was that the combination of weighted GEBVs and OCS was very promising,
as it provided higher gain and lower true inbreeding than using each of them alone
in genomic breeding programs. Sonesson et al. (2012) investigated the
consequences for genetic variability across the genome when genomic information
is used to estimate breeding values. They suggest that to control inbreeding, it is
necessary to account for it on the same basis as what is used to estimate breeding
values, i.e. pedigree-based inbreeding control with traditional pedigree-based BLUP
estimated breeding values and genome-based inbreeding control with genome-
based estimated breeding values.

Long term genetic gain depends also on the genomic prediction model used.
Methods for genome-wide evaluation differ in the weights given to SNPs. Genomic
BLUP puts equal a priori weight on all loci, whereas variable selection methods and
Bayesian implementations put greater emphasis on loci of larger effect. There has
been considerable effort in comparing accuracies of genome-wide evaluation
methods. The main focus has been on accuracy and this means that methods are
compared for their potential to generate short-term response (Bijma, 2012). When
methods yield similar accuracies, one expects that methods putting more weight
on small and rare effects are superior in the longer term. Liu et al. (2015) studied
the long-term impact of different genomic prediction models and found that,
Bayesian Lasso is superior to ridge regression in maintaining genetic variance and
controlling inbreeding, and therefore can result in higher long-term genetic gain.
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6.7 Genomic Selection and pig breeding

In recent years, GS has been implemented with success in dairy cattle (Hayes et al.,
2009b), which has made it possible to reduce time-consuming and costly progeny
testing in this species. Current pig breeding schemes are, however, already
characterized by high selection intensities and short generation intervals. The
impact of GS on these two parameters is therefore expected to be small, in
contrast to the situation in dairy cattle. The accuracy of EBV is, nevertheless,
generally limited in pigs, especially for late-recorded sex-limited traits and traits
that cannot be measured on candidates (e.g. meat quality) or that are too
expensive to measure on a large number of animals (e.g. feed efficiency). In this
context, genomic evaluations can produce more accurate EBV than the current
pedigree-based BLUP model evaluations and increase the efficiency of breeding
schemes.

Pig breeding is usually based on specialized maternal and paternal breeds or
lines (Visscher et al., 2000). For maternal breeds, considerable weight in the
breeding goal is put on maternal traits, such as litter size, litter weight, and female
reproduction. These traits are, however, hard to improve because of low
heritability and because no information of the traits is available on either sex at the
time of selection and no information on maternal traits is available on the male
selection candidates until their daughters start producing litters. Lillehammer et al.
(2011) showed that use of GS could considerably increase accuracy of the breeding
values in dam lines for traits that are only recorded on females. However, in that
study it was assumed that selection was on maternal traits only. Production traits
may also have considerable weight in the breeding goal in maternal pig breeding
lines, particularly in the so-called C lines. Production traits usually have greater
heritability than maternal traits as well as more information of the traits on male
selection candidates available at the time of selection. Selection for production
traits is therefore much more effective than selection for maternal traits under a
conventional breeding program. Nonetheless, Lillehammer et al. (2013), compared
different implementations of GS to a conventional maternal pig breeding scheme,
when selection was based partly on production traits and partly on maternal traits.
The results showed that GS schemes increased total genetic gain and reduced rate
of inbreeding compared to conventional breeding. For sire lines, Tribout et al.
(2012) estimated that replacing BLUP evaluations by genomic evaluations in a
breeding scheme based on the combined phenotyping of candidates and a limited
number of sibs of the candidates could increase the annual genetic trend for the
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population breeding goal by approximately 30% through greater accuracy, while
substantially reducing the rate of inbreeding.

With such advantages some breeding organisations have started to implement
GS in their breeding programs. The single step method (Aguilar et al., 2010,
Christensen and Lund, 2010) has been the most used strategy because it is simpler
to compute. Improvements in accuracy of selection with the single step method
were reported by Forni et al. (2011) and Christensen et al. (2012). Overall return on
investments to implement GS is positive, especially in maternal lines that are
strongly selected based on reproductive performance traits that have low
heritability.

Crossbreeding schemes in pigs can also show additional benefits from GS. In
addition to the advantages of GS within pure lines such as increasing genetic gain
and reducing the rate of inbreeding, in crossbreeding schemes GS could be applied
to breed for traits at the field level which cannot be evaluated in nucleus herds,
such as survival or diseases that are commonplace in the field but eliminated by
bio-security in nucleus herds. Moreover, GS models can easily accommodate non-
additive effects, which are valuable in crossbreeding performance, particularly in
low heritability traits such as litter size (Ibanez-Escriche et al., 2014). However,
practical implementation of GS in crossbreeding schemes in pigs is not
straightforward. The required data (both phenotypes and genotypes) are not
usually collected at the crossbred level. This requires that the recording system
must be well designed and implemented, otherwise the reliability of the field
records would be low. Furthermore, there is a generation lag between
crossbreeding and selection candidates that is difficult to reduce. Both factors, the
reliability of field records and the generation lag, would directly hamper GS
accuracy (Ibanez-Escriche et al.,, 2014). In most companies, genomic predictions
have merely replaced conventional predictions for CP so far. That is, companies are
still selecting within breeds for CP using purebred information. Recently the GUDP
IV project in Denmark has focused on using information from both purebred and
crossbred animals to improve CP using single-step methodology which incorporates
information from purebred and crossbred animals. The preliminary results are
promising. However, it may take some time before the model is used in practice
[personal communication to M. Henryon, Danish Pig Research Centre].

Economic motivations are relevant for a successful implementation of GS in pig
breeding, and from an economical point of view, most critical are the high cost of
genotyping. The number of candidates to selection for genotyping can be large and
their economic value is considerable lower than that of dairy cattle young bulls.
Generation interval in pig herds is also smaller and forces a constant increase of
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genotypes and phenotypes from the reference population. Favourably, the LD in
commercial pig lines is much larger than in the cattle herds (Veroneze et al., 2013)
and relatively smaller reference populations than dairy cattle can be used.

Joining two or more populations from the similar or different breeds into a
common reference population is an obvious strategy to reduce the cost of
genotyping (Brondum et al., 2011, Lund et al., 2011). In chapter 5, we analysed pig
data from two pure lines (Landrace and Yorkshire) and did training on combined
pure lines. We found that combining animals from both breeds into a single
reference population improved prediction accuracy for CP in both breeds. For the
purebred performance, Hidalgo et al. (2015) evaluated multi-population prediction
in pig dam lines and found that multi-population prediction was no better than
within population prediction for the purebred validation set. Veroneze et al. (2015),
also found similar accuracies for within and multi-population predictions in three
purebred pig populations. In general, regardless of the results obtained for multi-
population predictions in pigs and other species, combining populations across
breeds is not straightforward due to differences in LD structure and weak
relationships between breeds. Some published results in dairy and beef cattle
indicate that the accuracy of multi-breed genomic evaluations depends on the
genetic distance among populations and the marker density (Hayes et al., 20093,
Kizilkaya et al., 2010).

An alternative strategy to reduce the cost of genotyping is imputation.
Genotype imputation is commonly used as an initial step in GS, since the accuracy
of GS does not decline if accurately imputed genotypes are used instead of actual
genotypes. Imputation tests performed on pigs (Cleveland and Hickey, 2013) show
that the cost of genotyping could be greatly reduced when genotyping selection
candidates for a small panel and sires and grandsires for the full PorcineSNP60 with
a small reduction in accuracy of GEBV. Performance of imputation has rarely been
investigated in crossbred animals in pigs, even though difference in the extent and
pattern of LD between crossbred and purebred animals may impact the accuracy of
imputation. Recently, Xiang et al. (2015a) compared different strategies of
imputation from low-density (5K) to 8K SNPs in genotyped Danish Landrace and
Yorkshire and crossbred Landrace-Yorkshire datasets. They also evaluated the
performance of imputation from 8K to medium-density (60K) SNPs using simulated
crossbreds but genotyped purebred parents. Their results show that genotype
imputation performs as well in crossbred animals as in purebred animals. However,
in crossbred pigs, including the parental purebred animals in the reference
population is necessary to obtain high imputation accuracy.
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6.8 Other topics

Both in our simulation studies and real data analysis, when training for each breed
was separately, the assumption was that the correlation among SNPs in both
breeds is zero. Alternately, for combined training (i.e., animals from both breeds
were combined into a single reference population), the assumption was that the
correlation among SNPs is one. An alternative strategy would be using a multi-trait
model in which SNP effects in different breeds can be treated as correlated effects.
This method is similar to the multi-trait across-country evaluation of genotypes
described by VanRaden and Sullivan (2010) except breeds replace countries as the
traits. Olson et al. (2012) studied the effect on reliabilities when combining Brown
Swiss, Jersey, and Holstein and using a single trait GBLUP model, assuming that all
data are from one uniform population or a multi-trait GBLUP, in which SNP effects
in different breeds were correlated. Using single trait GBLUP, the GEBV reliabilities
on average increased slightly for Brown Swiss but decreased for Jersey and Holstein
when the reference populations were combined. When multi-trait GBLUP was used
for prediction of protein yield, the negative effects of combining reference
populations were not observed and a small positive effect was observed for Brown
Swiss and Holstein.

Statistical models used in multi-breed genomic evaluation may have an impact
on the accuracy of genomic prediction. The most straightforward approach for
multi-breed pre- diction is to apply regular single-trait GBLUP (VanRaden, 2008).
However, this approach is very sensible to relationships among populations. When
these relationships are small (e.g., distantly related breeds) the correlation
between genomic relationships at causal loci and genomic relationships calculated
from genome wide markers becomes very low (de los Campos et al.,, 2013).
Consequently, they essentially become “noise” and can cause estimation problems.
Multi-trait GBLUP models also have been used when the phenotypes measured in
different breeds are considered different traits (Olson et al., 2012, Zhou et al.,
2013). This approach can accommodate phenotypes not being measured in exactly
the same way, for possible SNP by population (genetic background) interactions
and SNP by environment interactions. Compared to GBLUP models, for distantly
related breeds Bayesian variable selection models can be more efficient to improve
multi-breed evaluations due to the following reasons. These models put more focus
on genomic markers in strong LD with causative variants and they may be able to
better separate the linkage and LD contributions in genomic predictions.
Consequently predictors are more based on LD, which is expected to improve the
sharing of information across populations or breeds. In addition, Bayesian
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approaches can alleviate the strong assumptions in GBLUP approaches that SNP
variances and covariances are uniform across the genome. This will be a great
advantage when the LD phase between markers and causative variants are
different in the combined breeds or a causative variant is only segregating in one of
the breeds (Lund et al., 2014).

In chapter 3 and 4, we simulated a trait of moderate heritability that is
observed in both sexes prior to selection. It is well known that the benefit of GS is
greater for traits for which response to phenotypic selection is limited by low
heritability and by the unavailability of data on one sex, on selections candidates,
or prior to the time of selection. All these limitations apply to the case of selection
for CP using purebred data, in particular in the presence of strong GxE, which
reduces the accuracy and, thereby, the effective heritability of EBV for CP. Thus,
the benefit of GS will be substantial in the presence of G x E and when marker
effects are estimated at the crossbred commercial level.

Chapter 2 presents a set of simulations that consider different models of
guantitative variation (additive, dominance and epistatic variance in different
combinations) to address the issue of whether dominance/epistasis increase the
additive variance and the response to selection. In the schemes we simulated,
additive genetic variance decreased by directional truncation selection, also in
presence of non-additive genetic effects. The results we observed was due to finite
population size and directional selection. In real life, populations typically have a
great deal of additive variance, and do not seem to run out of genetic variability
even after many generations of directional selection. Long-term selection
experiments often show that populations continue to retain seemingly
undiminished additive variance despite large changes in the mean value. There are
several reasons for this. (i) The environment is continually changing so that what
was formerly most fit no longer is, which both changes the direction of selection
and allows previously neutral variations to become relevant for selection. (ii) There
is an input of genetic variance from mutation, and sometimes migration. (iii) As
intermediate-frequency alleles increase in frequency towards one, producing less
variance, others that were originally near zero become more common and increase
the variance. (iv) The number of genes determining most quantitative traits seems
to be very large (Crow, 2008). For these reasons a selected population retains its
ability to evolve.
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6.9 Conclusions

GS can be very valuable in crossbreeding programs since it allows efficient selection
for CP. The main advantage is addressing the problem of rpe<1 in selection for CP.
GS can also be used to select for difficult traits (traits that cannot be observed in
purebred high health environments, like diseases or mortality). The required
models for genetic evaluation of purebred animals for CP have been developed.
These models range from simple additive models to models that consider the
breed origin of the alleles and non-additive effects. In addition, multi-trait models
that combine CB and PB performance have been developed. Thus, at the moment
the main challenge for the use of GS in crossbreeding programs is routine
phenotyping and genotyping of crossbreds in the field. Future research about using
GS in crossbreeding systems may focus on factors that contribute to Ipe<1
(dominance, epistasis, imprinting, LD and GxE) to more efficiently use these
methods in breeding programs.
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Summary

Summary

In many livestock production systems, crossbreds are used in commercial
production to utilize heterosis and complementary effects. The aim of selective-
breeding programs in many of these systems is to maximize crossbred
performance, where selection is carried out within pure-lines using data from
purebred animals. However, traits that are evaluated in purebred populations may
be genetically different from traits at the commercial production level, because the
genetic correlations between crossbred and purebred performance (rp.) are
usually less than one. Evidence for ry. values less than one has been observed in
livestock species. Deviations of rp. from one are caused by genotype by
environment interactions and non-additive (particularly dominance) genetic
effects. Genomic selection can be used to select purebreds for crossbred
performance. In addition to the advantages of genomic selection within pure lines,
such as increased genetic gain and reduced inbreeding, in crossbreeding schemes
genomic selection could be applied to breed for traits at the field level which
cannot be evaluated in nucleus herds. Examples are survival or diseases that are
commonplace in the field, but are eliminated by bio-security in nucleus herds.
Moreover, genomic selection models can more easily accommodate non-additive
effects, which affect crossbred performance, particularly in low heritability traits
such as litter size. Furthermore, genomic selection can address the problem of
genotype by environment interactions in crossbreeding schemes.

This thesis primarily focused on dominance models to account for non-additive
genetic effect in genomic crossbreeding programs. Dominance is important in
crossbreeding programs for the following reasons Firstly, dominance is the likely
genetic basis of heterosis, and explicitly including dominance in the genomic
models may be an advantage to select purebreds for crossbred performance.
Secondly, dominance is expected to be one of the factors contributing to the
deviation of ry,. from unity.

If improvement is to be continued in a breeding program, or if there is to be the
opportunity to redirect the program to improve different traits or respond to
environmental or production constraints, genetic variability and in particular
additive genetic variance has to be present. Genetic variation is lost as a result of
sampling or genetic drift, due to finite population size, and as a result of selection.
Chapter 2 presents a set of simulations that consider different models of
guantitative variation (additive, dominance and epistatic variance in different
combinations) to address the issue of whether dominance/epistasis increase the
additive variance and the response to long-term selection. In the schemes we
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simulated, additive genetic variance decreased by directional truncation selection,
also in presence of non-additive genetic effects.

In chapter 3, the potential benefit of genomic selection within purebred lines,
when the objective is to improve performance of crossbred populations at the
commercial level was evaluated. Both phenotypic and genotypic information was
collected on purebred animals only. EBV for crossbred performance were obtained
based on estimated additive and dominance effects and the allele frequency in the
other line. In a two-way crossbreeding system, it was found that selection for
genomic estimated breeding value for crossbred performance (GEBVC) increased
response in crossbred animals compared to selection for genomic estimated
breeding value for purebred performance (GEBVP). The effect of the correlation of
linkage disequilibrium (LD) phase between the two pure breeds on the
consequences of combining both reference populations was also investigated. The
results revealed that, for a high correlation of LD phase, combining both
populations into a single reference population increased response to selection in
crossbred animals.

In chapter 4, response to selection of crossbreds in a two-way crossbreeding
program with either a purebred or a crossbred training population under a
dominance model was compared, using simulation. It was confirmed that, to reach
greater response to selection when crossing two distantly related lines, it is better
to do training on crossbred animals rather than on pure lines to predict genetic
effects. In addition, being able to distinguish between alternate heterozygotes in
the crossbred training set by taking into account the breed origin of alleles
increased response to selection, except when breeds were closely related and the
reference population was small.

To validate the findings of the simulation study in chapter 3, real data of
purebred Landrace and Yorkshire pigs were analysed in chapter 5. Trait of interest
was litter size in the first parity. First, we compared the predictive ability of
genomic prediction models with either additive, or both additive and dominance
effects, when the validation criterion was crossbred performance. Second, we
compared the use of two separate pure-line reference populations to a single
reference population that combined both pure lines. The results showed some
gains (12 to 27 %) in prediction accuracy for crossbred performance by including
dominance and combining both pure lines into a single reference population for
training.

Finally, the general discussion addressed some relevant topics in genomic
selection and crossbreeding. These topic were: models of genomic selection for
crossbred performance, design of a reference population for genomic
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crossbreeding schemes, and implementation of genomic selection in pig breeding
practise. Also some other topics were discussed briefly.
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Sammendrag

Krydsningsprogrammer er vidt udbredt i husdyrproduktionssystemer. Formalet
med avissystemerne bag mange af disse krydsningsprogrammer er at maksimere
praestationen hos krydsningerne (KP), hvorimod udvaelgelsen foregar i de rene
racer og baseret pa informationer fra renracede dyr. Det er dog ikke garanteret, at
udvalgelse pa basis af praestationerne hos de renracede foraeldre vil maksimere
praestationen hos deres krydsningsafkom pa grund af genetiske og miljgmaessige
forskelle mellem renracede dyr og krydsningsdyr. Genomisk selektion (GS) kan
anvendes til at udvaelge renracede dyr med henblik pa KP og har nogle fordele,
f.eks. at der ikke kraeves afstamningsinformation pa krydsningsdyrene og at ikke-
additiv nedarvning kan inkluderes.

Det overordnede formal med dette ph.d. projekt var at evaluere mulighederne
for at anvende dominanseffekter i et genomisk krydsningsprogram. Dominant
nedarvning er vigtig i krydsningsprogrammer, da det er den mest sandsynlige
mekanisme for krydsningsfrodighed. Dominant nedarvning forventes ogsa at veere
en af grundene til, at den genetiske sammenhang mellem praestationerne hos de
renracede foreaeldre og preestationen hos deres krydsningsafkom ikke er én.
Stokastisk simulering blev anvendt for at undersgge avlsfremgangen som en
konsekvens af selektion i et to-race krydsningsprogram. Under antagelsen, at
forskellen mellem KP og renracede dyrs praestation skyldes dominant nedarvning,
viste en dominansmodel sig anvendelig til GS af renracede dyr for KP, uden tilgang
til  information fra krydsningsdyr. Endvidere viste resultater, at hvis
sammenhangen mellem faserne i koblingsuligevaegt mellem de to rene racer er
hgj, sa kan sikkerheden pa udvzlgelsen gges ved at kombinere de to rene racer til
en enkelt referencepopulation med henblik pd at preediktere markgreffekter. |
tilleg blev avisfremgangen ved at bruge en renracet referencepopulation eller en
referencepopulation af krydsningsdyr sammenlignet ved at bruge en
dominansmodel. Det blev vist, at avlsfremgangen kan gges ved at bruge genotyper
og feaenotyper fra krydsningsdyr. Desuden blev det vist, at hvis
referencepopulationen er tilstraekkelig stor og de rene racer ikke er nzert
beslaegtede, sé kan sikkerheden pa udvaelgelsen gges ved at spore raceoprindelsen
pa generne i krydsningsdyrene. Endelig blev data fra danske Landrace- og
Yorkshiregrise analyseret med hensyn til pradiktiv formden i genomiske
praediktionsmodeller med eller uden dominanseffekter i modellen, hvor KP var
valideringskriteriet. Resultaterne viste nogle forbedringer i praediktionssikkerhed
for KP ved at inkludere dominanseffekter i modellen og ved at kombinere de to
rene racer til en enkelt referencepopulation.
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Genomisk selektion kan konkluderes at vaere effektivt til udvaelgelse af renracede
dyr med hensyn til KP ved at adressere de faktorer, der foranlediger, at den
genetiske sammenhang mellem KP og praestationen i renracede dyr er mindre end
én.
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