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Foreword 
 
For my master GIS and Remote Sensing I was seeking a subject that would cover my interests for 
ecology. There were open options to work on deforestation topics, but I rather wanted to do 
something with animals, if possible insects. It was not easy to find something, since the combination 
of insects and GIS and/or remote sensing appeared to be a small academic niche. Nevertheless, the 
quest for a suitable topic found its end in Naturalis. It was suggested here that I could investigate the 
relationship between cuckoo bees and their hosts by means of geo-tagged wild bee records. Though 
this appealed to me, I liked to go broader, focusing for example on the diversity of wild bees. Possible 
topics about wild bees and LiDAR had been mentioned before, but studies with this combination had 
barely been done for insects and only at a small scale. However, after many thoughts and 
conversations with bee experts I took on the challenge to proof that LiDAR data can help to determine 
wild bee richness, which resulted in this thesis report.  
     
This thesis combines knowledge from ecology, remote sensing and GIS and I highly enjoyed to work 
on this integration. It is my hope that these scientific disciplines will find each other more and more in 
the future.  

 
 
  



 

 

VI 

  



 

 

VII 

 
 

Abstract 
 
Throughout human history, people have been dependent on nature for the pollination of their 
cultivated crops. Today, the global economic value of this ecosystem service is estimated at 153 billion 
euro. Wild bees are major contributors to the world’s crop pollination. Not only do they act as a buffer 
for possible declining honey bee populations, they increase the pollination quality as well, resulting in 
higher fruit or crop yields. Knowing what environmental conditions are important drivers for species 
richness is vital for conservation biologists and decision makers. Species Distribution Models (SDMs) 
can provide this information by correlating species’ presence with their associated environmental 
conditions. From the predictions of multiple models species richness maps can be created. The 
performance and the output of the SDMs depend on the (quality of the) variables describing these 
environmental conditions. It is common to quantify environmental conditions with (remote-sensing 
based) land cover variables. In this study, vegetation structure has been quantified from the AHN2 
point cloud with a voxel-based classification method for the Southern half of the Netherlands. The 
predictive performance of SDMs from land variables is compared with SDMs based on vegetation 
structure variables, using observations of 60 different wild bee species. Area Under the ROC Curve 
(AUC) evaluation values provide indications that vegetation structure based landscape variables are 
explaining single wild bee distribution better than land use based variables. Furthermore, wild bee 
richness is predicted more precisely by landscape variables derived from vegetation structure than 
from land use variables. In general, the province of Zeeland and the ‘Green Heart’ area of The 
Netherlands are predicted to be species poor, while the Veluwe, Utrechtse Heuvelrug and the East of 
The Netherlands are predicted to encompass more wild bee species. Results indicate that the certainty 
of the prediction is related to the spatial distribution of wild bee observation records. Simple 
methodological implementations, like the use of different SDM algorithms and inclusion of 
topographical, climatic or other variables might improve SDM performance considerably. 
Nevertheless, without these adjustments it is shown that point cloud data acquired by airborne LiDAR 
can contribute significantly to the predictive power of the SDMs as well. Further research is needed to 
refine and validate the vegetation structure classification and to assess the applicability of this 
vegetation structure for other (invertebrate) species. 
 
 
Keywords: 
Wild bee richness, LiDAR, SDM, ENM, Voxel, AHN2, Vegetation Structure 
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1 Introduction 
This research is integrating methods and principles derived from GIS, ecology and remote sensing. 

The basic theoretical concepts will be introduced in three paragraphs. 

 

1.1 Wild bees & Landscape Heterogeneity 
   

Wild bees are contributing to the pollination of most plant species worldwide (Winfree 2010; 

Winfree et al. 2007). Not only do they pollinate wild plants, they also play an important role in the 

pollination of agricultural crops (Kleijn et al. 2015; Bretagnolle and Gaba, 2015; Park et al. 2015). 

Together with butterflies, hoverflies and other pollinating species, wild bees provide an ecosystem 

service that has an approximate economic value of 153 billion euro (Gallai et al. 2009) worldwide and 

around 22 billion euro at a European scale (Potts et al. 2011). Despite their economic potential, 

relative little attention is going out to wild insect communities compared to honey bee species (Apis 

mellifera or sometimes Apis cerana). 

 

Several studies emphasize that an unilateral focus on honey bees could be controversial (e.g. Winfree 

2010; Kremen et al. 2002), also given the unstable population dynamics of the species in recent years 

(Park et al. 2015; van Engelsdorp et al. 2009; Kremen et al. 2002). Natural occurring wild bee 

communities could act as a pollination buffer at situations where sufficient artificial pollination 

seems to become unattainable. Therefore, it is stressed that the colonization of, especially agricul-

tural areas, should be catalysed by creating habitats that are believed to be suitable for wild pollina-

tors (Kremen et al. 2002). A proven way to do this is by creating patches of native flowers close to 

agricultural fields (Carvalheiro et al. 2012). The main preconditions for a good habitat of a bee 

species are the availability of sufficient food resources and suitable nesting locations (Gilgert and 

Vaughan 2011; Westrich 1996). Every bee species has its own preferences for both criterions. Some 

wild bees make use of various food resources and are tolerant for various nesting locations (e.g. 

Bombus terrestris). Such species are called generalists and are the counterpart of other wild bee 

species that are dependent on the presence of e.g. a certain soil type and / or plant species. These 

species are considered specialists and often only occur at certain, geographical areas that meet these 

requirements. For example, Colletes herderae is for its food completely dependent on the presence 

of the flowering of many ivy (Hedera sp.) plants, while it prefers to nest in loess or sandy soils 

(Peeters et al. 2012). Another example is Andrena florea that is completely dependent on the presen-

ce of Bryonia dioica for its food delivery. A location that fits such requirements is called the ecological 

niche of the species. Hirzel and Le Lay (2008) describe the concept of ecological niche theory as the 

“function that links the fitness of individuals to their environment”.  It can be assumed that a diverse 

landscape increases the chance of more locations with a suitable habitat (or ecological niche that 

provides high species fitness) than a homogeneous landscape. It is therefore believed that a hetero-

geneous landscape is positively correlated with wild bee diversity (Hopfenmuller et al. 2014). One 

could wonder what relevant habitat heterogeneity for wild bees means. Gilgert and Vaughan (2011) 

mention that “a diversity and abundance of plants that produce nectar and pollen used by insects, 

combined with a variety of standing or downed dead wood, bare ground, and overgrown vegetation, 

are the hallmarks of rich heterogeneous pollinator habitat”. For bumblebee queens, it has been 
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suggested that they are depending on complex vegetation structures for their nesting sites (Lye et al. 

2009).  

  

It has been mentioned that wild bees could act as a ‘pollination buffer’ when the size of honey bee 

populations is low. This might suggest that the contribution of wild bee species to current crop polli-

nation is currently limited, which is unjustified. Research has been done to the relative influence of 

wild bees compared to honey bees for crop pollination worldwide (Garibaldi et al. 2013). They found 

in crop systems which are pollinated by both wild insects and honey bees that honey bees account 

for only 40% till 62% (95%-Confidence Interval) of the crop flower visitation. Pollination quality (like 

cross-pollination) appears to increase as well when flowers are pollinated by wild insects compared 

to pollination by wild bees. Furthermore, fruit set increases significantly at flowers visited by wild 

bees, even if those flowers were regularly visited by honey bees as well (Garibaldi et al. 2013). 

Recent findings (de Groot et al. 2015) support that both the quality and the quantity of blueberries 

and apples are positively correlated with the pollination by insects. That wild bees are important 

contributors to pollination services is emphasized by Kleijn et al. (2015). However, they also 

emphasize that many wild bee species do not play an important role in crop pollination. Moral 

arguments should therefore play a pivotal role as well for the conservation of biodiversity. 

   

1.2 Species Distribution Modelling 
 

Mapping species distribution at a national, subnational or regional scale is a commonly applied 

practice which enables researchers or decision makers to estimate where certain species are belie-

ved to occur. To overcome the problem of incomplete species record data, one often uses a wide-

spread technique called species distribution modelling, which is also known as Ecological Niche 

Modelling (ENM). Elith and Leathwick (2009) define a species distribution model (SDM) as “a 

numerical tool that combines observations of species occurrence or abundance with environmental 

estimates”. These environmental estimates usually cover the whole area of interest, enabling the 

possibility to make predictions about the chance of occurrence for the species from the determined 

relationship. This chance of occurrence is also often called “habitat suitability”, which terminology 

might be more appropriate. After all, geographical barriers (possibly caused by habitat fragmen-

tation) might prevent a species from living somewhere, even though the habitat fulfils the species’ 

requirements. A common evaluation metric is the Area Under the ROC (Receiver Operational 

Characteristic) Curve (AUC), which provides insight in the SDM performance. Section 2.6.2 will 

elaborate upon this evaluation metric. 

   

SDMs are widely used to map all kinds of species, like invasive plant species  (Chunyuan Diao 2014), 

bats (Lundy et al. 2012), frogs (Puschendorf et al. 2013) or dragonflies (Jaeschke et al. 2013). Most of 

the SDMs focus on (larger) vertebrate species. Often remote sensing based land use variables are 

used as environmental descriptors. For these models, the landscape is often described with variables 

based on (derived) information inside a particular cell only, like percentage coverage of a certain land 

use class (Ficetola et al. 2014). Less, though not very few, studies have been dedicated to the map-

ping invertebrates. For these animals, variables that summarize spatial arrangements of intrinsic 

landscape elements could be very suitable for invertebrate species (Kumar et al. 2009). Many studies 
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have been dedicated to the use of these kinds of landscape indices. Relevant variables can be ‘distan-

ce to certain landscape elements’ (e.g. Zulka et al. 2014; Wagner and Fortin 2012), patch size (e.g. 

Baeza and Estades 2010; Fagan et al. 2009) or edges in the landscape (e.g. Marshall et al. 2006; 

Aguirre-Gutierrez et al. 2015).  

 

A few studies have been dedicated to the mapping of Apidae sp. using SDMs. (e.g. Giannini et al. 

2013; Polce et al. 2013). The last study has assessed, by means of SDMs, the potential service 

provision for field beans of wild and managed pollinators in Great Britain. This was believed to be 

one of the first studies with SDMs focused on pollinators on such large scale. Here they have used 

topographical, land cover, climate and pesticides data. For bumblebees, the mean patch area has 

shown to be an important explanatory variable, while for butterflies this seems to be the edge den-

sity (Aguirre-Gutierrez et al. 2015). For wild bees in general, it has been found that woody edges 

(Kleijn et al. 2004) are positively correlated with wild bee diversity.  

 

The mapping of species richness or diversity is a common practice (Ferrier and Guisan 2006). In a 

SDM context, there are mainly two methods to express how rich a location is. The first one adds all 

habitat suitability predictions of the species, while the second method is the summation of the binary 

species prediction transformations (Dubuis et al. 2011). In the end every location has a value that 

should indicate how well it facilitates species richness.  

 

1.3 LiDAR & SDM 
  

LiDAR (Light Detection And Ranging) is a laser technique that uses the reflection of light in order to 

detect the location physical features. There are three main acquisition techniques. For the first one 

the environment is scanned by a LiDAR device that is attached to e.g. drones or airplanes, called 

Airborne LiDAR Scanning (ALS). During the flight data is collected. The second technique is similar, 

but for terrestrial LiDAR Scanning (TLS) the device is situated on the ground. The third technique is 

spaceborne LiDAR. Airborne laser scanners are known to have lower spatial resolution than 

terrestrial LiDAR (but higher than spaceborne), but it can cover a bigger area (Jaboyedoff et al. 2012). 

The LiDAR device can be a waveform recording device or a discrete-return device. The difference is 

shown in figure 1 (from Lefsky et al. 2002) that shows a LiDAR beam that assumes an airborne LiDAR 

system. 

 

One of the research applications of LiDAR technology is in the quantification of vegetation parame-

ters. Examples of these are tree/shrub density, foliage height, mean or maximum vegetation height, 

variation of plant height, number of vegetation contacts or coarse wood debris (Simonson et al. 

2014). Evaluations of the ability of LiDAR to describe these metrics were often positive. These 

findings underscore why it is believed that this ability of LiDAR to quantify the 3D structure of the 

natural environment can be used as a tool to map habitat structure (Simonson et al. 2014; Vierling et 

al. 2008). An interesting vegetation metric is vegetation structure. This vegetation parameter is 

mentioned in many studies, but it appears to have various meanings. Simonson et al. (2014) make a 

distinction between horizontal and vertical vegetation structure. Examples of vertical vegetation 

structure metrics are tree/shrub cover, mean/maximum vegetation height, coarse or fine woody 

debris or variation in plant height. Horizontal vegetation structure can be diversity of land covers, 
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percentage vegetation cover, patch size/density and edge length / density. An example of a quan-

tification of vegetation structure can be found in a study of Schut et al. (2014). Here they quantified 

vegetation structure with a voxel based method. A voxel is 3D pixel or volumetric pixel.  Airborne 

derived point cloud data has been used for the creation of point densities in voxels. These point 

densities have been used as an input for an unsupervised classification of vegetation structure. 

 

Several studies already indicate that LiDAR derived metrics can be used in SDMs. For example, it has 

been shown that LiDAR based vegetation can be correlated to northern spotted owls (Ackers et al. 

2015) with good model performance (AUC ≈ 0.8). Also, the golden-cheeked warbler and the black-

capped vireo have been modelled before (AUC = 0.864 and 0.746 respectively) using LiDAR derived 

vegetation metrics (Farrell et al. 2013). The results are emphasized by a third study that uses LiDAR 

to predict the distribution of nine bird species (Ficetola et al. 2014). LiDAR based SDMs showed for all 

species an AUC higher than 0.72. They also show that SDMs with only LiDAR variables are in general 

explaining the diversity of birds better than SDMs based on land use variables or combined SDMs.  

All three studies have in common that they are matching local vegetation characteristic (in a pixel of 

e.g. 30m) to the presence of birds. There area (a limited number of) other local studies which focus 

on the relationship between point clouds and invertebrates. Small-scale studies have been 

performed that suggest that LiDAR derived metrics can predict distribution of beetles (Müller and 

Brandl 2009) or spiders (Vierling et al. 2011). These studies are exceptional in the sense that they 

correlate LiDAR to the occurrence of invertebrate species. However, for both studies this was the 

direct result of a clear experimental set-up. Upscaling this to a (sub-)national area would be 

unfeasible.  

 

Figure 1: Difference between discrete-return LiDAR vs waveform recording LiDAR. In the left box hypothetical 
vegetation is drawn. The box connected at the right of it shows the data stored in waveform recording LiDAR system, 
while the horizontal lines show indicate the returns of a  discrete-return LiDAR system. The latter can return multiple 
(mostly up to five) points per laser beam. Figure copied from Lefsky et al. (2002) 
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1.4 Research Motive 
 

The following list summarizes what has been done before and what is lacking in current research 

papers: 

 

 LiDAR data have been used in SDMs, but those are aimed at birds (e.g. Ackers et al. 2015; 

Farrell et al. 2013; Ficetola et al. 2014), not invertebrate species and only at a regional scale. 

  

 LiDAR data have been correlated with invertebrates (Müller and Brandl 2009; Vierling et al. 

2011), but not in a SDM context and only at a regional scale. 

 

 Wild bee SDMs have been applied at national levels (Aguirre-Gutierrez et al. 2013; Polce et 

al. 2013), but never in combination with LiDAR. 

 

In this study it will be investigated if vegetation structure information derived from the AHN2 point 

cloud data can improve SDMs for wild bees in The Netherlands. With that, this research is an effort 

to fill the research gaps mentioned above. The EIS (European Invertebrate Survey) has maintained a 

dataset of wild bees in The Netherlands. Next to this, an airborne LiDAR derived point cloud dataset 

(XYZ only, spatial resolution approximately 11 points/m2) is available for area of The Netherlands. In 

this study it is hypothesized that (the addition of) LiDAR derived landscape variables can explain wild 

bee richness better than land use only landscape variables. These two datasets will be used in order 

to investigate this.  

 

If the results are promising, the wild bee richness map 

might be useful for decision makers or conservation 

biologists. It will also mean that it could be possible 

that LiDAR derived variables could help to depict 

which landscape elements are enhancing wild bee 

richness.  

 

One might wonder why the AHN2 point cloud would 

be more valuable than LGN (“Landgebruik Nederland”) 

data. As (Ficetola et al. 2014) already suggested, it 

could be that LiDAR can explain species occurrence 

better than land use. Inspecting the LGN6 also sup-

ports this (figure 2). The aerial photograph shows that 

field edges are often characterized by higher vege-

tation. This higher vegetation is barely visible in the 

LGN6 dataset (dark green pixels). Next to this, the land 

use classes do not provide information about the 

vertical structure of the vegetation. It is hypothesized 

that LiDAR derived vegetation structure can 

significantly improve this. 

 

Figure 2: Comparison of aerial photograph (upper) 
and a land use map based on LGN6 (under) of the 
area east of Doetinchem. Darker green pixels are 
classified as ‘forest’. 
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1.5 Research Aims 
 

With this study I have tried to attain the general objective by answering the research questions 

described below. 

 

 

 

 

 

General objective 

 
The main objective of this study is to investigate if airborne discrete-return LiDAR technology can be 

used to predict wild bee richness at a large scale with the aid of SDM techniques and to compare the 

results with, more classical, land cover approach. 

 

 

 

 

 

Research questions 
 

 

Question 1 

How accurate do the following species distribution models predict, on average, wild bee distribution: 

1) LiDAR-only, 2) Land Use-only or 3) a combination of both LiDAR and Land Use data? 

 

Question 2 

According to the models, which Dutch areas are (not) facilitating wild bee richness? 

 

Question 3 

Which explanatory variables are important for wild bee distribution according to the constructed 

models? 
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2 Materials and Methods 

2.1 Data & Study Area 
 

Study Area  

This study will focus on the Southern part of The Netherlands. In this part of The Netherlands more 

bee observations have been recorded and the landscapes are differing, ensuring varying environmen-

tal conditions. The reason to leave out the Northern part of The Netherlands was to reduce the total 

processing time of the enormous amount of data. The upper bound (maximum Y coordinate) of the 

area is 475000m (‘Rijksdriehoeksstelsel’). It is assumed that this part of The Netherlands will cover 

enough variation in order to construct reliable SDMs. 

 

AHN2 point cloud 

The AHN2 point cloud is a free dataset that can be downloaded from the national spatial data portal 

www.PDOK.nl in .laz format (compressed .las). Because of the size, the point cloud is split in tiles of 

5000*6250m (width*height). Per tile two datasets are available: one containing the points indicating 

the surface (NL: ‘gefilterde puntenwolk’) and one containing all points above (NL: ‘uitgefilterde 

puntenwolk’). Though the points are separated in two different files, the identity of the points is not 

classified within the laz files.  

 

During the point cloud acquisition, all point records contained regular LiDAR information regarding 

RGB, intensity, number of return etc.. Nevertheless, only XYZ coordinates are publically available 

without any other attribute information. Reading the data with various software programmes gives 

the impression that only first returns are stored in the file. However, this is the program’s 

interpretation of data that lacks the attribute information ‘number of return’. This means that 

essentially all points are available for download. 

 

The initial split in ground and non-ground points is not straightforward and performed by different 

suppliers. Niels van der Zon, project leader of the AHN2, describes the following regarding this 

matter: 

 

“The filtering (or classification) is a complex process, where both automated classification algorithms 

are used, as well as many manual corrections. For the AHN2 there were 4 or 5 suppliers. The method 

to split the data is different for every supplier. Though the end product should fulfil the criteria of the 

AHN2, suppliers can design their own route to that. Possibly, a supplier has improved the process 

during the time of AHN2 acquisition, which means that data could have been treated at e.g. 10 

different ways. It is important to emphasize that the classification is not purely a product based on 

algorithms and laser data. Many additional sources like aerial images, BAG, topographical maps and 

panorama pictures are used in this process”.  

 

The systematic height error is 5 cm and the standard deviation of the height is 5 cm as well. On 

average, the point resolution is about 11 points/m2, but it varies and can reach up to more than 20 

points/m2 or only a few points/m2. 

http://www.pdok.nl/
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The main goal of the acquisition is to construct a DEM or DSM of The Netherlands. For this goal, 

vegetation is mostly considered noise. To reduce the effect of vegetation the acquisition has mainly 

been performed in winter time, ideally between December 1st and March 31st.  

 

The resolution of points located in MIVD (‘Militaire Inlichtingen- en Veiligheidsdienst’) areas is 

reduced and height information of non-ground objects is removed in these areas.  

 

For more information one should read the (Dutch) quality assurance document of the AHN2 (Van der 

Zon 2013). 

 

Bee dataset 

The dataset indicating bee presence locations origins from the EIS. Point locations are stored in an 

excel file, together with the spatial resolution, year of discovery, the record’s data source and the 

species names. Spatial resolution is varying, mostly because the data records have different origins, 

which are listed below: 

 Literature 

 Collection 

 Field observations from www.waarneming.nl 

 Field observations submitted by observer and directly submitted to EIS 

 Field observation derived from a city name list 

  

Only validated species records from www.waarneming.nl are stored in the dataset. If a photo of a 

species has unambiguously proved the identity of the species, the observation was included.  

 

Some records are the result of complete field inventories by professionals, while others are coming 

from single amateur observations. This is an important aspect of the dataset and should be taken 

into account in order to interpret the data well. 

 

Records between the beginning of 2003 and the end of 2014 are used. Data of presence records in 

the North of The Netherlands, outside the study area, have been excluded. Around 50% of the data 

has a spatial resolution of 1 km2.  The remaining coordinates are rounded down to a spatial 

resolution of 1 km2. This way, all records have similar character and double records can easily be 

detected. A coordinate (e.g. 75000:376000) refers to the South-West corner of a km2. After removal 

of ‘double records’ of the same species on the same location but at a different time (this study will 

not focus on temporal aspects), the species with more than 100 records have been selected for the 

study. In total there are 60 species belonging to 17 different genera. In table 1 all species that are 

selected are listed. 

 
Table 1:  Wild bee species used for the study. ‘Counts’ refers to the number of unique locations in which the species is 
found.

Species Counts 

Andrena barbilabris 188 

Andrena bicolor 162 

Andrena carantonica 208 

Andrena chrysosceles 181 

Andrena cineraria 126 

Andrena clarkella 108 

Andrena dorsata 213 

http://www.waarneming.nl/
http://www.waarneming.nl/
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Andrena flavipes 491 

Andrena fulva 233 

Andrena haemorrhoa 466 

Andrena minutula 144 

Andrena nitida 181 

Andrena subopaca 181 

Andrena vaga 247 

Andrena ventralis 116 

Anthidium manicatum 111 

Anthophora plumipes 127 

Apis mellifera 429 

Bombus campestris 133 

Bombus hortorum 184 

Bombus hypnorum 270 

Bombus lapidarius 561 

Bombus lucorum 233 

Bombus pascuorum 914 

Bombus pratorum 474 

Bombus terrestris 594 

Colletes cunicularius 140 

Colletes daviesanus 133 

Colletes fodiens 105 

Dasypoda hirtipes 220 

Halictus rubicundus 129 

Halictus tumulorum 237 

Heriades truncorum 133 

Hylaeus communis 223 

Hylaeus confusus 134 

Hylaeus hyalinatus 118 

Lasioglossum calceatum 388 

Lasioglossum leucozonium 237 

Lasioglossum morio 231 

Lasioglossum pauxillum 123 

Lasioglossum exstrigatum 198 

Lasioglossum villosulum 129 

Macropis europaea 143 

Megachile centuncularis 124 

Megachile willughbiella 151 

Nomada alboguttata 141 

Nomada fabriciana 145 

Nomada flava 228 

Nomada flavoguttata 167 

Nomada fucata 216 

Nomada goodeniana 109 

Nomada lathburiana 153 

Nomada marshamella 112 

Nomada ruficornis 212 

Nomada succincta 113 

Osmia rufa 254 

Panurgus calcaratus 107 

Sphecodes albilabris 131 

Sphecodes monilicornis 169 

Sphecodes pellucidus 116 

 

In figure 3 the spatial distribution of the observation is visualized. 

 

BAG - Buildings 

The dataset “Basisadmistratie Adressen en Gebouwen” (BAG) is a vector dataset with all buildings of 

The Netherlands. It contains several features but only the buildings are used for this study. The 

version released in March 2015 was used.  

  

LGN6 

The LGN6 (Land Gebruik Nederland 6) is a raster dataset, constructed in 2007 and 2008 and it con-

tains 39 land use classes. The spatial resolution is 25m. These classes have been reclassified by Jesús 

Aguirre Gutíerrez into classes which are more relevant for bees with the R tool ClassStat [SDMTools]. 

The new classes for this dataset are ‘Grassland’, ‘Cultivated / Bare ground’, ‘Moors / Peat’, ‘Forest 

Mixed’, ‘Forest Deciduous’, ‘Forest Coniferous’, ‘Buildup / Roads’, ‘Water’, ‘Swamps’ and ‘Sandy 

Soils’. 

 

Overlay datasets  
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For the vegetation structure raster that has been created several overlays have been used to correct 

for non-vegetation features or locations where LiDAR point data has been manually manipulated. 

This has been done for water areas, highways and military areas. The water and the highway dataset 

are vector datasets from the TOP10NL, which is maintained by the Dutch cadastre. The vector 

dataset indicating the location of military areas has been provided by the MIVD (‘Militaire 

Inlichtingen en Veiligheidsdienst). 

 

Soil type 

A soil type dataset with a resolution of 1km is used as well. It has 10 classes: Peat soils, Marine Clay 

soils, Riverine Clay soils, Dune and Marine Sandy soils, Sandy soils, Other Clay and Loam soils, 

Abroad, Anthropogenic soils and Water. The classes have been derived from tables BODEMGT and 

CEL in the LKN database for the period 1985-1995. 

 

Food resources availability 

A dataset describing the availability of food resources relevant for bees has been constructed by 

Jolien Morren, in cooperation with Naturalis Biodiversity Centre. It is a result of a combination of CBS 

data and the BRP (Basis Registratie Percelen). Spatial resolution of this dataset is 1 km and it covers 

the years 2005-2014. This dataset describes food resource availability by human land use. Next to 

this dataset, she also constructed a dataset which contains information about possible food resour-

ces from wild plants. This information has been derived from the FLORON dataset. A selection has 

Figure 3: Sample locations of the bee data. Points are coloured after the number of bee species that have been observed 
from 2003 till 2014.  
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been made of 100 plants that have been proven to be relevant for honey bees. It was assumed that 

these flowers are relevant for wild bees as well.  

 

2.2 Analysis overview  
 

The goal of the research is to get insight in the potential of LiDAR technology for large-scale SDMs. 

Several analyses steps have been undertaken to come to a conclusion. It is a major task to convert 

point cloud data to relevant landscape variables.  This chapter will explain what has been done and 

what choices have been made. The methodology can be split up into four parts, which are visualized 

in figure 4.1 

 

 

The first processing step has been the transformation of the point cloud into point density rasters. 

These rasters have subsequently been used for classification to obtain a vegetation structure raster. 

The third step is to derive landscape variables from this data and the fourth step focuses on the 

modelling of the species’ distribution. All steps are elaborated upon in the following paragraphs in 

this chapter. The next paragraph will introduce the input data and the area of interest first. 

                                                           
1 Bumblebee picture copied from http://www.bioquicknews.com/node/2599 

Figure 4: Schematic overview of the methodology in 4 parts. 1- Conversion from point cloud to point density rasters; 2- 
Classification of point densities to vegetation structure; 3- From vegetation structure to landscape variables; 4- Species 
Distribution Modelling. 
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2.3 Step 1: AHN2 point cloud to point density  
 

Theory behind methodology 

In order to derive relevant information from the massive LiDAR point cloud, data need to be 

converted. It is chosen to convert the point cloud data into raster pixels with a 25m spatial 

resolution. This spatial resolution has been chosen since it has the same resolution as the land use 

dataset and it will contain enough points needed for further calculations later in the process 

(assuming 8 points/m2, there will be around 25*25*8 = 5000 points inside this area). The volume in 

which these points are situated will be referred to as a voxel (volumetric pixel). Every point in a voxel 

is reflecting the presence of an object (e.g. a dog, trees or a traffic light) situated in the XYZ space. 

This means that, since Z values are available, these points can be indicative of the height of those 

objects. If a voxel contains many points in the first meter above ground, but no points situated 

higher, it can be deduced that only objects smaller than 1 meter high are present. In contrast, if the 

voxel contains only some points in the first meter above ground but relatively much more between 9 

and 10 meters high, it can be assumed that big objects are present here, like high trees. This simple 

reasoning forms the starting point of the methodology. If the number of points inside a certain 

height layer (e.g. between 2 and 3 meter) of a voxel can be converted into one value, it will 

summarize to which extent objects are present in this 3D layer. Every voxel will be split into several 

height layers. This way, every pixel will contain as much values as the number of height layers 

chosen. The height layers will be used for the development of the vegetation structure raster. 

 

Implementation  

It is assumed that low height layers are the most relevant for bees. The length of the intervals bet-

ween height break points will therefore increase when going higher. Table 2 shows which height 

layers are chosen initially. 

 
Table 2: Initial proposition for height breakpoints of the voxels 

Layer Height Breakpoints (m) 

1 0.05 – 0.20 

2 0.20 – 0.50 

3 0.50 – 1.00 

4 1.00 – 2.00 

5 2.00 – 5.00 

6 5.00 – 10.0 

7 10.0 – 20.0 

8 20.0 – 80.0 

 

Ideally, the values obtained are only representing vegetation. However, points can be reflected by 

many other objects, especially in urban areas. It is not or barely possible to remove all non-vegeta-

tion reflection sources, but for buildings it is. Points reflected on houses can be clipped out using the 

BAG. Other, smaller objects will be included in the analysis. Another complicating matter for the 
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analyses is the Z-value of the points, which are stored in height above NAP (‘Normaal Amsterdams 

Peil’), while heights above ground would be needed. Lastly, the size of the data and the maximum PC 

memory space should be taken into account in the methodology. The methodology scheme is 

visualized in figure 5.  

  

Figure 5: Methodology scheme of the LiDAR processing.  
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All steps handling point cloud data are performed with the, licensed, LiDAR software ‘Rapidlasso - 

LAStools’,2 developed by Martin Isenburg. Firstly, all *.laz files, both ground points and non-ground 

points data are downloaded. These are downloaded and unzipped with an R script. For all ground 

point datasets a polygon bigger than The Netherlands was overlaid and every point inside this poly-

gon would be classified as a ground point. For PC memory reasons, every 5000*6250m tile (both 

ground and non-ground) were retiled into 250*250m tiles before proceeding to the next step. Every 

tile created that contained less than 2 Kb of data was deleted in order to prevent lastools from 

crashing later on. These were empty files that were only touching the edge of the original 

5000*6250m tile. Then the height of the points was transformed from ‘height above NAP’ to ‘height 

above ground’ for every tile. A triangular network (TIN) was made out of the ground points, and Z-

values were changed into height of point above this TIN. The Z-values of the ground points itself 

were set to zero. For some areas in The Netherlands the height conversion failed, mostly because of 

‘point gaps’ in the data, which are areas without sufficient amount of points to be able to create a 

TIN. Typically, these were (250*250m) areas covered entirely by water or locations with military 

activity. Points reflecting on buildings in the latter were removed here earlier and point density was 

reduced by the organisation of the AHN2 (Van der Zon 2013).When large buildings were removed, 

height conversion sometimes failed. All failed tiles were not included for further processing.  

 

Points of buildings were removed using the ‘buildings’ polygon shapefile of the BAG. Because this is a 

large dataset, all polygons were first split by municipality. Inspection of the data showed that often 

some points clearly reflecting on a building were falling a few centimetres outside the BAG polygons. 

                                                           
2 http://www.cs.unc.edu/~isenburg/lastools/  

Figure 6: Visualization of the area around building points that have been clipped. The black line delineates the original 
BAG buildings, blue line the simplified 250cm buffer. Points are coloured after their height. Note that some building 
points are falling outside de BAG polygons. Buildings are located in Kockengen, The Netherlands. Grid lines are according 
to ‘rijksdriehoeksstelsel’. 



 

19 
 

For high buildings it was seen that, in rare cases, points were dislocated about 150 cm from the BAG 

polygons. For this research it is important to be certain that points with a high Z-value can be inter-

preted as a point reflecting on a tree and not a house. Therefore, it has been chosen to use a wide 

buffer for every polygon with 250 cm. Simplifying the buffered polygons reduced the amount of data 

with an acceptable reduction of precision (tolerance was set to 50 cm) and speeded up the clipping 

process significantly. 

 

In figure 6 it is visible which points are deleted. In this image it is visible that the size of the building 

buffer is very large, thereby also deleting some vegetation. However, it is assumed that the loss of 

some vegetation around buildings weighs less than the inclusion of building points. The latter might 

cause a vegetation structure misclassification in a later stage of the analysis, due to the (potentially 

high) building points.  

 

Lastly, the point cloud was converted to point count rasters, using the proposed height breakpoints. 

This step also merged the 250*250m tiles into the original AHN2 tile size of 5000*6250m.  

 

Using R the rasters were normalized for 1) volume of the height layers and 2) total number of points.  

 

Normalization by height or volume 

The first normalization is performed because in a later phase of the analysis it is important to be able 

to visualize and identify homogeneous areas with a typical vegetation structure. A disadvantage of 

using the raw point density output is that the number of points relative to the total amount of points 

is highly dependent on the vertical length of the height intervals. This means that the height point 

density in e.g. the 0.20-0.50m layer will almost always be lower than the 10.0-20.0m layer, just 

because the latter counts the points in a volume which is (20-10)/(0.5-0.2) = 33.3 times greater than 

the first layer. In a later stage of the analysis homogeneous areas should be identified with a unique 

vegetation structure type and this difference in ‘layer weighting by height’ is making the visualization 

for identification of these areas hard. Furthermore, all layers should have equal weights for a correct 

and unweighted calculation of the point densities. Therefore, the layers were normalized for their 

corresponding heights as well by using the next formula for every pixel: 

 

𝑃𝑀𝑥 =  
𝐶𝑜𝑢𝑛𝑡𝑠𝑥

𝐻𝐵𝑦+1 − 𝐻𝐵𝑦
 

 

Where PMx is the number of points per 625m3 (25m*25m*1m), Countsx the number of points in layer 

x. HBy and HBy+1 are the lower height breakpoint and the higher height breakpoint respectively.  

 

All rasters together will represent an imaginary voxel of 25*25m and 6m high, equally divided into 

voxels of 1m high.  

 

Normalization by total number of points 

Overlapping flight lines during point cloud acquisition have caused some areas to have more points 

than others, irrespective of (the character of) the objects present in these areas. To correct for this 

the point density was calculated, using the next formula for every pixel: 
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𝑃𝐷𝑥 =  
𝑃𝑀𝑥

∑ 𝑃𝑀𝑖
𝑛
𝑖=1

 

 

Where PDx refers to the point density in layer x relative to the total points found in the entire, newly 

created, voxel. The units of the PDx are point point-1 m-1 = % m-1. The denominator refers to the sum 

of all, normalized, point counts in the voxel and n is the number of layers. 

 

A visualization of both corrections is shown in figure 7. 

 

Thresholding 

For grasslands or other - typically very flat – areas, the total point counts hardly ever exceeded 100. 

To prevent that only a few points in the lowest layer would be translated into a value of 100% in the 

lowest layer (Counts1), thereby suggesting the presence of low vegetation, a threshold has been 

implemented; if there are less than 100 points between 0.05 and 10 meters the pixel value will be set 

to NA. If points above 10 meters would be taken into account, the presence of power lines would 

often cause the total point counts to exceed the threshold of 100 points. In grassland areas that 

results in the inclusion of pixels which only indicate power line objects. Since these objects are consi-

dered non-relevant for this study, only the number of points lower than 10 meters is taken into 

account for the NA threshold.  

 

Changing the height breakpoints 

After inspection of the point density rasters it has been chosen to change the height breakpoints. It 

appeared that the 1.00-2.00m layer was almost always very similar to the 2.00-5.00m layer. 

Therefore, it has been chosen to merge these two layers. Because the accuracy of the ground point 

classification is containing a certain level of noise, the lower height breakpoint is changed to 0.1 m. 

Because a 0.10-0.20 would be very small, the second breakpoint was set to 0.25. The 0.25-0.50m 

layer is merged with the 0.50-1.00 m as well, because they also appeared to give very similar point 

Figure 7: Left figure shows a raster image before the height and density corrections in the 0,1-0,25m layer. The right 
figures shows the raster after. Note the left area of the picture that changed from relative low (dark) to relative high 
values (light) and the disappearance of the peculiar stripes caused by overlapping flight lines. Note that the 0.10-0.25 
layer is created after the revision of the height breakpoints. 

After Before 
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density values. Lastly, to cover more information it has been chosen to include a 20-30 m layer as 

well. All these mutations resulted in the new, final point density height layers, listed in table 3. 

  
Table 3: Height breakpoints of the voxels used for the classification of the vegetation structure. Note that the last layer 
(30-80m) has not been used for the classification. 

Layer Height Breakpoints (m) 

1 0.10 – 0.25 

2 0.25 – 1.00 

3 1.00 – 5.00 

4 5.00 – 10.0 

5 10.0 – 20.0 

6 20.0 – 30.0 

7 30.0 – 80.0 

 

Summing the first six layer values of a single 25*25m pixel should mostly result in 100 (%). However, 

for some areas with high vegetation some points will be higher than 30 meter. In these cases, the 

sum of the first 6 layers will be less than 100%.  
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2.4 Step 2: Create vegetation structure   

  

Classification 

Since the 30-80m layer is not used as an input for the classification point density rasters into vegeta-

tion structure, there are six point density layers in total. A supervised classification is performed, by 

performing a Maximum Likelihood Estimation. This method has been chosen because it is a parame-

tric classification algorithm, which makes it fast (instead of Random Forest) and not sensitive to out-

liers (instead of the k-Nearest Neighbour algorithm). For the input of this algorithm zones needed to 

be identified which were used as a raw input for the classification.  

 

The next criteria were used for the identification of the classes: 

 The classes should differ in: 

 - Most prevalent height layer 

 - Maximum height  

 - The equality of point density spread amongst the height density layers  

 A class should not be too similar to another class  

  

It should be noted that the choice which classes to define and the delineation of the zones are not 

completely objective. Alternatively, one can do an unsupervised classification. However, one could 

wonder if the resulting differences between the vegetation structure classes are relevant for bees. 

While performing supervised classification, the classes meet at least the criteria mentioned above 

(which are believed to be relevant for bees). 

 

 

  

Figure 8: Delineation example of vegetation classes. Bands are the normalized point density values. Band_1 = 10-
25cm, Band_3 = 25-100cm, Band_4 = 5-10m. Areas inside the delineation zones are expected to be geospatially 
homogeneous. Grid lines are according to ‘rijksdriehoeksstelsel’ 
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For the delineation of the zones the next criteria were used:  

 Pixels inside the polygon should have similar values per layer 

 Delineation of pixels should match homogeneous areas visible from aerial images 

 Multiple polygons can be used to describe one vegetation structure class 

  

In the end different vegetation classes have been defined. An example of a zonal delineation is 

shown in figure 8. 

 

Vegetation Profiles 

Eventually, nine vegetation profiles were constructed. However, by mistake the second layer has 

become 0.10-1.00 instead of 0.25-1.00. This means that this layer consists of the layer 0.10-0.25 

meter and 0.25-1.00 meter. Therefore, it could occur that the classes exceed the 100%. The classes 

are shown in figure 9. In table 4 the point density values are listed. Cells are coloured according to it, 

giving a more intuitive representation of the vegetation structure. Based on the values of the point 

densities, the classes have been given a name, listed in table 5. 

 

 
Table 4: Vertical representation of the point density values for the different vegetation classes. The darker the cell, the 
higher the point density. 

Height 
Layer (m) 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 

20 - 30 0.0 0.1 0.0 0.3 0.0 61.3 0.1 0.0 0.1 

10 -20 0.0 23.2 0.2 64.4 13.2 16.2 5.3 16.6 4.1 

5.0 - 10 0.0 17.9 2.7 9.8 53.5 2.9 13.4 9.2 3.3 

1.0 - 5.0 0.6 35.0 78.0 9.1 20.5 5.0 35.4 20.7 17.2 

0.1 - 1.0 99.4 23.8 19.1 16.4 12.8 13.6 45.9 53.5 75.3 

0.1 - 0.25 92.6 17.3 8.4 9.7 7.6 10.0 28.5 47.9 39.9 

Figure 9: Vegetation profiles of the vegetation classes. Error bars indicate standard deviation of the pixel values in the 
training area delineation zone. 
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Table 5: Description of the vegetation structure classes. Note that voxels containing less than 100 points between 0,1 and 
10 meter have been assigned the class 600. 

 

 

 

 

 

 

 

 

 

 

  

 

Vegetation Structure - Ground Truth 

It is hard to validate the vegetation structure classes. However, two field trips have been executed in 

order to get more insight how the vegetation classes relate to the ground truth. The procedure and 

results are described in a report (appendix). Pictures of the classes are shown there. Here a summary 

of the report will be given. It should be emphasized that conclusions are indicative, giving the limited 

reference photos been made.  

 

Summary report  

Compared to the other classes, class 1, 6 and 9 can be hosted under the low vegetation classes. Class 

6 is referring to none or only very low vegetation, class 1 is low vegetation only and class 9 is again a 

few decimetre higher than class 1.  

 

The other classes seem to be more similar to each other. It seems that pixels with trees with a relati-

vely large contribution for the lowest height class (0.1-0.25m) are assigned the vegetation class 8. In 

contrary, trees which barely seem to have understory will be classified as class 5. In both class 5 and 

8 not much intermediate (several meters high) vegetation is present. Class 4 is very comparable to 

class 5, but the height of the trees seems to make the difference here. In both classes coniferous 

trees seem to dominate, where the green biomass seems to be situated exclusively in the top layer of 

the trees, thereby increasing the relative importance of the high point density layers. 

 

Class 2 and 7 seem to be very similar. Looking at the vegetation profiles this can be understood. In 

both cases there is information in all point density layers (except the 20-30m layer), but class 2 seems 

to have in general higher (intermediate) trees. It is hard to determine the difference between the 

classes from the photos. It is clear though that both class 2 and 7 have a very mixed vegetation type.  

 

Class 3 is very distinct of all other classes. Big trees were absent here and here vegetation is in bet-

ween forest-like and bushy. However, only one location with this vegetation type has been visited. 

This place characterized itself by the high openness of the location, but more locations should be 

visited in able to define this as characteristic to this class.  

  

Vegetation Structures Description 

Class 1 Low vegetation 

Class 2 Mixed vegetation, high and low 

Class 3 Small trees, with some vegetation 

Class 4 High trees with some understory 

Class 5 Middle trees with some understory 

Class 6 Very high trees 

Class 7 Bushy, mid 

Class 8 Bushy, low and high 

Class 9 Bush, much low 

Class 600 No or very low vegetation 
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Overlays 

During the LiDAR processing, ‘building points’ have already been removed. Nonetheless, the remain-

ing point cloud still contains many other non-vegetation features. Some of them are known and can 

be corrected for by overlaying other datasets representing the locations of 1) highways, 2) water 

areas and 3) military areas. Together with NoData areas (caused by unprocessed LiDAR data) these 

raster layers were placed on top of the vegetation structure raster. The methodology scheme of how 

these layers are created is visualized in figure 10.  

 

 

 

 

Figure 10:: Methodology scheme of pre-processing of the vegetation structure overlays. Rounded boxes are vector 
datasets, parallelograms are raster datasets. Blue box = raw input data; yellow box = processed data. Green boxes 
describe data analyses. 
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The scheme is the product of several choices that have been made. Water has been chosen to mask 

the ‘NoData areas’. These areas were mainly caused by the failed point height conversion because 

point density was too low (or points were absent). Therefore, these 250*250m areas were left out 

the process, resulting in NoData areas, which should be masked.  

 

Highways were also masked since it is assumed that the ‘vegetation structure’ pixel that touches a 

road will be more influenced by objects (cars, guardrails, road signs etc..) than by true vegetation. 

The pixel resolution is 25*25m. If a part of this area overlaps with the highway, the entire pixel value 

is influenced and unreliable. To compensate for this effect, a buffer of 10 meter has been made 

around the highways in order to assign more pixels as ‘road’ instead of having more pixels with 

wrong vegetation classes. 

 

For many areas with military activity the point density was reduced. Because of the thresholding (100 

points) many pixels were even assigned NoData in these areas. Therefore, pixels inside a polygon 

were inspected on atypical (very low or NA) values. If this was case, the point density was not redu-

ced in this area. Since the polygons are used later to overlay edited areas, polygons were removed 

when point density values seemed to be unedited. An example of an area with unexpected NoData 

values is shown in figure 11.  

 

 
Figure 11: Military flying base Volkel, close to Uden. Point density information is missing in this area, due to removal or 
reduction of points by the AHN2 organisation. Colours are after the normalized point density values: Band_1 = 10-25cm, 
Band_2 = 25-100cm, Band_3 = 1-5m. Grid lines are according to ‘rijksdriehoeksstelsel’. 
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Lastly, all areas that clearly contained no information as a result of failed LiDAR point processing 

were masked as well. 

 

The overlay order was (top-down):  

- NoData 

- Military Areas 

- Water Areas 

- Highways 

- Vegetation structure raster 

 

In the end a vegetation structure raster was created including water areas or highways. Figure 12 

shows an example of how the final vegetation structure raster with overlays looks like. By means of 

visual inspection of the vegetation structure raster it appeared that, especially in urban areas, some 

vegetation classes were spatially co-occurring. This was very much the case for vegetation class 7 and 

9. Looking to their vegetation profile it indeed seems that these classes are similar. Since such scat-

tering highly influences the mean patch area and edge density later in the process (paragraph 2.5), it 

has been chosen to merge these two classes. The same was observed for the classes 4 and 6. Since 

these classes both describe high vegetation, it was chosen to merge these classes as well.  

  

 

 
Figure 12: Visualization of the vegetation structure dataset in the surroundings of Wageningen. Grid lines are according to the 
‘rijksdriehoeksstelsel’. 
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2.5 Step 3: Creating landscape variables 

  

The spatial resolution of the land use and vegetation classes is 25m, while the bee dataset has mainly 

a spatial resolution of 1 km. Therefore, landscape variables need to be constructed which typify the 

landscape in a way which is ecologically relevant for bees. In this chapter it is explained how the 

landscape variables have been created. All these variables are the input variables for the SDMs. 

 

2.5.1 Variables SDM1 - Land use only 
In a study of Aguirre-Gutierrez et al. (2015) LGN landscape variables were reclassified into classes 

that are similar to land use classes found in historical land use datasets of The Netherlands. The 

variables are believed to be relevant for wild bees. This land use dataset contains 10 classes, inclu-

ding 3 forest classes. For the present study these forest classes were merged into one class. Two fur-

ther binary transformations have been performed with this dataset. Firstly, a ‘bee habitat suitability 

raster’ has been derived by dividing the classes into suitable and non-suitable. Secondly, a ‘Managed-

Natural’ raster has been created by dividing the classes into ‘Managed’ and ‘Natural’. Table 6 shows 

how the land use classes have been reclassified.  

 
Table 6: Reclassification scheme of the land use classes. Left column is the same dataset used in Aguirre-Gutierrez et al. 
(2015). Other columns are new, reclassified, datasets derived from the first. 

Reclassified LGN classes LGN classes with 1 forest type Suitable Managed - Natural 

Grassland Grassland Yes Managed 

Cultivated / Bare ground Cultivated / Bare ground No Managed 

Moors / Peat Moors / Peat Yes Natural 

Forest Mixed 

Forest 

Yes Natural 

Forest Deciduous Yes Natural 

Forest Coniferous No Natural 

Buildup / Roads Buildup / Roads No Natural 

Water Water No NA 

Swamps Swamps No Natural 

Sandy Soils Sandy Soils Yes Natural 

  

After the reclassifications of the land use dataset five final landscape variables are created with one 

value for every km2. Several steps have been performed for this. First, I used the software ‘Geospatial 

Modelling Environment3 which split the raster datasets into 1*1 km tiff files (consisting out of max. 

40*40=1600 pixels). From these files the variables were calculated with help of the R tool ‘ClassStat’ 

[SDMTools]. The variables are listed here with a short description of the meaning and origin. 

 

 

1 - Percentage unsuitable habitat (PUH) 

                                                           
3 http://www.spatialecology.com/gme/ 
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This data has been derived from the suitability raster. It is the area of unsuitable habitat divided by 

the total area in a km2.  By accident it is not describing suitability, but unsuitability. 

 

2 - Mean patch area of suitable habitat (MPA_SH) 

This variable is a derivative of the suitability raster as well. It calculates how big all individual patches 

are in a km2 and consequently calculates the mean.  

 

3 - Mean edge density all classes (ED_LU) 

Here the ‘LGN classes with 1 forest type’ dataset is used. The help of ClassStat [SDMTools] states that 

edged density is the “edge length on a per unit area basis that facilitates comparison among land-

scapes of varying size” 4. It further refers to the ‘Fragstats’ help5 which contains more theoretical 

background. First the total length of the borders of a pixel belonging to a certain class that touches 

another class is calculated. Then this number is divided by the length of the potential total edge (= 

the maximum edge length possible) in the km2. This division is performed to account for possible 

differences in area size in order to make values comparable (e.g. a km2 positioned across the coast 

line will contain fewer pixels). For every km2 tile the edge density was calculated for every class. Then 

the mean edge density of all classes is stored as the value for that area in this variable. 

 

4 - Edge Density of Managed-Natural (ED_MN) 

This variable makes use of the managed / natural dataset. The mean patch area of suitable habitat 

and the mean edge density of all classes are measures for the general configuration of the landscape. 

The variable described here has been included as well because these edges between managed and 

natural systems are believed to be a measure for the connectivity of the (agricultural) landscape 

(Aguirre-Gutierrez et al. 2015). For this variable the edge density between the managed and natural 

pixels will be calculated (see table 6).  

 

5 - Number of classes (NumClass) 

This variable uses the ‘LGN classes with 1 forest type’ dataset as well. It counts the number of unique 

classes that are present in the km2. 

 

It has been considered to include the Simpson’s index of diversity as well (with varying focal lengths) 

as a measure of landscape heterogeneity at various spatial levels, but after visual inspection of the 

datasets it appeared that high and low values were highly similar to high and low values of edge 

density. Therefore, it has been chosen to not include this variable in the SDM part.  

 

For an elaborate description of the calculation of landscape variables one should read the help of 

FragStats. 

 

  

                                                           
4 https://cran.r-project.org/web/packages/SDMTools/SDMTools.pdf 
5 http://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf 
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2.5.2 Variables SDM2 - Vegetation structure only 
The approach followed for the construction of vegetation variables was similar as for the land use 

variables. For some of them a reclassification of vegetation classes has first been performed. In table 

7 the reclassification scheme is showed. 

 
Table 7: Reclassification scheme of the vegetation structure raster. It should be noted that the overlays (NoData, Water 
and Roads) are not listed here. 

Original Vegetation class Merged Vegetation Classes 4 Vegetation Classes 

600 – No or very low vegetation 6 – No or very low vegetation 1 – No or very low Veg 

1 – Low veg 1 – Low Veg 

2 – Low Veg 
3 – Small trees + understory 3 – Small trees + understory 

7 – Bushy: mid 
7 – Bushy: lower 

9 – Bushy: much low 

2 – Mixed Veg 2 – Mixed Veg 
3 – Mid Veg 

8 – Bushy: low/high  8 – Bushy: higher 

4 – Higher trees 
4 – Higher trees 

4 – High Veg 6 – Very high trees 

5 – Middle trees 5 – Middle trees 

 

The first column of table 7 shows the 10 original vegetation classes constructed. The second column 

shows the new vegetation classes after the merging of the original classes 7 & 9 and 4 & 6, as 

explained earlier. This column has been used for the calculation of the vegetation structure based 

landscape variables (except for the edge density). The third column shows which conglomeration of 

vegetation classes are used to reclassify the vegetation into four height classes. It should be noted 

that the classes from the overlays (highways and water) are not included here. 

 

Ten vegetation variables have been constructed, which are listed and explained below. 

   

1 - Edge density of 4 vegetation classes (ED_VEG) 

This is the mean edge density of the 4 vegetation classes. It has been chosen to merge some classes 

for similarity reasons. Though they are differing in structure, it does not mean that a border between 

every vegetation structure class combination should be considered an edge relevant for bees (e.g. 

class 4 and 5 or class 1, 3 and 7). Assuming vegetation height is an important aspect of vegetation 

edges a distinction has been made for height, resulting in the four defined vegetation height classes. 

In this dataset the overlays (military areas, water, highways, NoData) were present as well, but not 

included in the edge analysis.  

 

2 - Mean patch Area (MPA_VEG) 

This is the mean of the average patch areas of every vegetation class in a km2. 
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3-10 - Vegetation abundance (VEG_1, VEG_2, … ,VEG_7,  VEG_8) 

For every class, the percentage coverage over all non-NA pixels inside every km2 was calculated. This 

value has been used as vegetation abundance indicator of the vegetation classes. 

 

It has been decided to exclude another variable described in Aguirre-Gutierrez et al. (2015), which is 

the ‘number of unique classes in a km2’, because this was almost always 10 and would therefore 

barely add information to the prospective SDMs. 

 

2.5.3 Variables SDM3 - Land use and Vegetation structure  
For this SDM some variables earlier constructed are used, but others are made as well. From the land 

use dataset ED_MN and PUH are used again here. The other variables are derivations of a new 

overlay. This overlay is a combination of the vegetation structure raster and some land use classes. In 

table 8 the overlay order is listed. 

  
Table 8: Overlay scheme of land use and vegetation structure variables. Classes listed higher in the table are on top of 
lower classes. ‘VEG’ = Merged vegetation structure raster, ‘LU’ = Land Use classes with 1 forest type, ‘LUVEG’ = Raster 
dataset consisting of land use and vegetation classes.  

Original 
Class name 

Origin 
Original 

Class Value 
New 

Class Value 
LUVEG 

Class Name 

NoData VEG 0 0 NoData 

Highways VEG 9 60 
Roads/Build-up 

Build-up LU 60 60 

Water  VEG  10 30 
Water 

Water LU 30 30 

Mixed Vegetation VEG 2 2 Mixed Vegetation 

Higher trees VEG 4 4 Higher trees 

Middle trees VEG 5 5 Middle trees 

Bushy, low/high VEG 8 8 Bushy, low/high 

Cultivated/Bare ground LU 20 20 Cultivated/Bare ground 

Small trees with some 
understory 

VEG 3 3 
Small trees with some 
understory 

Bushy, low/mid VEG 7 7 Bushy, low/mid 

Grassland LU 10 6 
Grassland 

Grassland VEG 6 6 

Low Vegetation VEG 1 1 Low Vegetation 

  

For this order several choices and assumptions have been made: 

- Land use class 10 (Grassland) will overrule vegetation class 1 (Low Vegetation). It is assumed that 

LGN6 has in general classified grassland correctly. The pixel area assigned as vegetation class 1 will 

therefore probably be dominated by high grass. ‘Grassland’ will then be more accurate than ‘Low 

Vegetation’, because the latter can also mean other types of vegetation like moors. 

- Vegetation class 3 and 7 are below land use class 20. This is done to be able to distinguish naturally 

occurring vegetation from vegetation of agriculture. Agriculture is assumed to be a better way to 

describe these areas, since the diversity and arrangement of the vegetation differs significantly from 

natural vegetation. Therefore, it has been chosen to let agriculture overrule low vegetation structure 

classes. Vegetation structure classes with higher vegetation are assumed to be more important than 

agricultural soils. 
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- Water from the land use dataset and water from the overlay of the vegetation structure dataset 

have been merged into one water class. 

- Highways (vegetation structure raster) and the Roads/Buildup (land use raster) have been merged 

into one Roads/Buildup class. When roads are present it is assumed that vegetation classes will be 

more erroneous, because it can be influenced by many road objects, which is actually no vegetation. 

 

From this new dataset several variables have been derived. 

 

1 – Mean patch Area (MPA_LUVEG) 

From the new overlay the average patch area is calculated. This is the mean of the average patch 

area of every vegetation class in a km2. 

 

2 -  Edge Density Managed-Natural (ED_MN) 

This is the same variable used before in the land use only SDM.  

 

3 - Percentage unsuitable habitat (PUH) 

This is the same variable used before in the land use only SDM. 

 

4 – Edge density of 6 classes (ED_LUVEG) 

From the new overlay a reclassification to 6 classes has been made, which is shown in table 9. For the 

same reasons as described earlier it has been chosen to merge vegetation structure classes. Note 

that water and roads/build-up are included for edges here. 
  

Table 9: Reclassification scheme. Class values are listed before a qualitative description of the class. Note that these 
descriptions are indicative. 

LUVEG 
Class Name 

New Name 
for ED_LUVEG 

0 - NoData 0 - NoData 

1 - Low Vegetation 
1 - Lower Vegetation 

7 - Bushy, low/mid 

3 - Small trees with some understory 

2 - Higher Vegetation 4 - Higher trees 

5 - Middle trees 

2 - Mixed Vegetation 
3 - Mid Vegetation 

8 - Bushy, low/high 

6 - Grassland 
4 - Managed areas 

20 - Cultivated/Bare ground 

30 - Water 5 - Water 

60 - Roads/Buildup 6 - Roads/Buildup 

 

From those 6 classes the mean edge density is calculated at the same way as describe before. It is 

assumed that edges between those classes are beneficial for wild bees. NoData pixels have not been 

taken into account. 
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5-15 – Class abundance (LUVEG_1, LUVEG_2, … , LUVEG_30, LUVEG_60) 

For every class (except NoData pixels), the percentage coverage over all non-NA pixels inside every 

km2 was calculated. This value has been used as vegetation abundance indicator of the vegetation 

structure classes. Note that the LUVEG_1 until LUVEG_8 are describing the same vegetation structure 

classes as the vegetation structure variables. However, because of the overlays values do not have to 

be similar. LUVEG_20, LUVEG_30 and LUVEG_60 are land use classes. 

 

Also for this SDM, ‘number of unique classes’ inside a km2 has not been included, because all km2 

showed similar results.  
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2.6 Step 4: Modelling Species Distribution 
 

2.6.1 Single Species Modelling 
Once the landscape predictor variables are constructed the SDM procedure can start. The modelling 

is a complex process in which many choices need to be made. This paragraph will explain what the 

single species SDMs do and elaborate on the used parameter settings.  

  

For every individual wild bee species a habitat suitability map and a binary absence-presence map 

will be made (projected). The performance of the model is, amongst others, dependent on 1) the 

chosen model algorithm, 2) the allocation of the pseudo-absence data and 3) the selection of the 

testing data. Therefore, an ensemble modelling approach is chosen, which will be explained later in 

this chapter.  

 

The SDM approach will be repeated three times, with different variables. The previous paragraph 

explained how variables have been created using a land use dataset and the new vegetation 

structure raster. Next to these constructed variables, two external predictor variables have been 

added to the models in order to increase their predictive value. This is food availability (FA) and 

presence of sandy soils (SAND). The latter is a reclassification of the soil type dataset and has been 

performed by personal judgment. Peat soils and clay soils are reclassified as ‘non-sandy’, while sandy 

soil and loamy soils are classified as ‘sandy’. Anthropogenic soils have been classified as ‘sandy’ as 

well, because most of the build-up areas contain some degree of sand (e.g. between pavement tiles, 

at which some bees could nestle as well, like Dasypoda hirtipes (Peeters et al. 2012). However, it 

should be noted that the classification is subjective to a certain extent. In total 3 different SDMs will 

be performed (figure 13). It should be noted that, by mistake, the sandy soils dataset has not been in 

included in SDM2. This could have an influence on the final outcome of the predictions. 

 

  

Figure 13: Three Species Distribution Models based on different variables. All models have ‘Food availability’ as 
input variable. Not that the ‘Sandy Soils’ variable is, by accident, excluded from SDM 2.  
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The whole procedure can be summarized in four steps: 

 Run of multiple SDMs per species 

 Ensemble modelling 

 Project ensemble model 

 Stack maps 

 

These steps will be explained one by one in the following paragraphs. 

 

2.6.2 Multispecies Modelling 
  

Create pseudo-absences 

In order to be able to run SDMs, there need to be absence data. Since the wild bee species dataset 

does not have absence data included, pseudo-absences (PAs) will be created. These PAs will be 

randomly allocated across locations (km2) where the target species is not found but one or more 

other species were. This is called the target group approach (Polce et al. 2013). Though this is not as 

ideal as true absence data, it is believed that PAs can be used for this in order to create suitable 

species input for the SDMs (Barbet-Massin et al. 2012). The maximum number of records of a species 

in the study area is 914 (Bombus Pascuorom) and the minimum is 105 (Colletes fodiens). In total 

there are 2643 locations where at least 1 species is found. Barbet-Massin et al. (2012) evaluate how 

much PAs should be selected and that the answer depends on the algorithm used. Only GLM 

(General Linear Model) algorithms will be performed in this study (see next section). For this 

algorithm, it has been found that assigning as many PAs (though not covering the entire study area) 

as possible is best (Barbet-Massin et al. 2012). A possibility is to use 10 times more PAs as the 

number of presences for a species. However, for Bombus pascuorum this would mean that every 

non-presence cell will become a PA, leaving no room for randomization.  Therefore, I have chosen to 

use 1250 PAs for all species. This ensures that three important criteria are met: 

 For the vast majority of the species there are about 5-10 times more PAs than presences; 

 In the case of Bombus Pascuorum there are still 2643 - 913 = 1730 locations available for the 

random allocation of 1250 PAs. Ideally this would be more, but a reasonable variation of PA 

allocation is still possible; 

 In the cases of all other species there are sufficient PA allocation possibilities. 

  

The random allocation of PAs could - by chance - favouring higher or lower values of certain 

environmental variables. To reduce the possible effect of this, the PA allocation process is repeated 

three times, resulting in three different absence-presence datasets for a species of interest. 

  

Run GLMs 

In this step the presence-absence data is compared to the predictor / landscape variables. In this 

study the following settings are used: 

 

 Data split: This is the percentage of presence data that will be used for model construction. 

The other part is used for model evaluation. Value is set to 75%. 
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 Model evaluation runs: 10 times. This means that (for every absence-presence dataset!) the 

data will 10 times split up into different data selections using the 75% data split. This again 

means that – per species - in total 3*10 = 30 models will be constructed. 

 Model algorithms: Only GLMs have been used. This has mainly been chosen for practical 

reasons. It has been chosen to perform a quadratic model without interaction. This means 

that the algorithm remains linear, but variables will be quadrated in order to correct for a 

possible non-linear response. No interaction is chosen because no hypothesis about 

interactions is made and results would become unnecessary difficult to interpret. 

 Model evaluation method: Based on the model, habitat suitability (or chance of occurrence) 

is calculated for the 25% of the presence data which was set aside in the beginning. There 

are several methods that can be used to determine the model performance. For this 

research, the Area Under the Curve (AUC) has been chosen. The AUC is a model evaluation 

method that is threshold independent. How this method works exactly can be read in e.g. 

the study of Jiménez-Valverde (2012). Here the metric has also been criticized, but it is still 

widely used for SDM purposes. Besides, this study focuses on the difference in performance 

between vegetation structure based SDMs and land use based SDMs, rather than the 

creation of SDMs with high predictive power. Advantages of the AUC method are that it is 

threshold independent and it seems not to be affected by prevalence: the proportion of the 

data representing presence (Raes and Ter Steege 2007). An AUC value of 0.5 indicates that 

the model has no predictive value and a value of 1 is the highest score possible. 

 Projecting the model: In the research the outcome of the model projection will be referred to 

as the ‘model prediction’. When the relationship between species occurrence and predictor 

variables is established, the models need to be projected for the whole study area. This is 

done using the equation generated from the quadratic GLM. The primary output of the SDMs 

consists of values between 0 and 1 (or 0 and 1000, dependent on the preference of the user). 

If preferred, these data can be transformed - with the aid of an evaluation metric - into 

binary predictions of species occurrence. For this study the threshold of the suitability values 

for the binary transformation is chosen by the AUC method. This method optimizes the 

sensitivity and specificity (Jiménez-Valverde 2012). 

 

Ensemble modelling  

At this stage, the models constructed in the previous step need to be ‘summarized’ in order to come 

to one species distribution map of the wild bee of interest. This is done using an ensemble method, 

which uses the 30 suitability score maps. To derive the final suitability map, the median value of eve-

ry cell (km2) is chosen which results in the final habitat suitability value map. It is possible to choose 

the mean value as well, but to reduce the effect of possible outliers this method has not been cho-

sen. AUC scores are stored of this final habitat suitability map. Lastly, the map will be transformed 

into a presence-absence map based on the AUC method again.  

 

Variable Importance  

AUC values indicate how well the model performs. However, this gives no insight yet in how and 

which variables influence the prediction of the suitability score. Therefore, the variable importance is 

calculated.     
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The calculation of the variable importance goes in several steps. The steps describe the situation of a 

variable importance calculation procedure for a single species with only 1 (pseudo-)absence - 

presence dataset. 

1 - The values of a variable of interest (e.g. edge density) are shuffled. This means that the values of 

the cells are randomly reassigned over the study area; 

2 - A GLM is performed taking all variables, including the shuffled one, into account; 

3 - Based on the constructed GLM, suitability values are projected over the entire study area; 

4 - A Pearson’s correlation coefficient is calculated between the newly calculated suitability values 

and the suitability values originating from the prediction of the non-shuffled variables; 

5 - The variable importance is calculated by subtracting the correlation coefficient from 1; 

6 - Step 1-5 are repeated X times, depending on the user settings; 

7 - Step 1-6 are repeated for every explanatory variable. 

 

This procedure gives X number of variable importance values for every variable. However, for this 

study an ensemble approach has been chosen, which makes the entire procedure more complex. The 

variable importances calculated are the result of the next processing steps: 

 

1 - For all 30 (because of the following parameter settings: 3 different PA selection and 10 data splits) 

GLM-based SDMs values of an explanatory variable (e.g. mean patch area) are shuffled, before the 

model is established. 

2 - For every model the values are projected over the entire study area. 

3 - A median ensemble model is created. 

4 - The Pearson’s correlation coefficient is calculated between the values of the predictions of this 

new median ensemble model (with a shuffled variable) and the original median ensemble prediction 

values.  

5 - Step 1-4 are repeated 4 times for the same explanatory variable, resulting in 4 variable 

importance values of the ensemble model. 

6 - Step 1-5 are repeated for every explanatory variable, resulting in 4 variable importance values for 

every variable used in the model. 
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3 Results 
The outcomes of the SDMs are summarized in this chapter. The constructed richness maps will be 

shown, as well as the AUC and variable importance values. The last paragraph will zoom in on habitat 

suitability predictions of three species. The first paragraph will show how the land use data compare 

with the vegetation structure data.  

 

3.1 Land Use vs Vegetation Classes 
  

It can be hypothesized that the vegetation structure is representing similar information as the land 

use data. In order to investigate this, the datasets have been compared. For every pixel (resolution 

25m) it has been checked which vegetation structure class and what land use class was assigned. The 

number of pixels for every unique combination of vegetation structure and land use has been coun-

ted and listed in the tables 10 and 11. This should give an impression how the vegetation classes 

relate themselves to the land use classes. In total there are 61290006 cells. 

 

Inspecting the tables, one can make several interesting observations. Next to the expected results 

(‘Grassland’ relates to vegetation class 6, Vegetation class 9 to ‘Build-up / Roads’, ‘water’ is corre-

lated with water), the tables provide interesting additional information. One can see that many 

vegetation classes are more or less equally spread over different land use classes. Vegetation class 2 

seems to be related to grasslands, cultivated soils / bare ground and forest. A similar pattern can be 

found for vegetation classes 3, 4 and 5. Vegetation class 1 is, next to its relation with grasslands, 

cultivated soils and moors / peat, also the most prominent vegetation type in swamps. Vegetation 

class 7 seems to be highly correlated to grasslands and build-up regions, which makes sense conside-

ring the many low objects in cities. Vegetation class 8 is more spread over different classes (grass-

land, cultivated soils, moors / peat, forest and build-up / roads).  

It’s noteworthy that the land use class ‘forest’ seems to be an aggregation of many vegetation types. 

Vegetation class 2 and 4 are most prominent in this land use class, but all other classes (except for 

vegetation class 1, 3, 6, 9 and 10) make a considerable contribution as well.  

  

Summarizing these results it is clear that land use dataset describing the landscape at a different 

manner than the vegetation structure dataset. 
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Table 10 and 11: The upper table (10) shows what the distribution is of vegetation structure classes over the land use 
classes (in percentage). The upper left cell value indicates that 35,3 % from all pixels belonging to the vegetation 
structure class ‘Low Vegetation’ (total 1245144) is overlapping with the land use class ‘Grassland’. The bottom table (11) 
is showing the same, but uses the land use classes as starting point. Darker cell colours indicate higher values. 
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Spatial Comparison   

The tables in previous paragraph give a general idea how the land use classes are relating to the 

vegetation structure classes and vice versa, but not how this is expressed spatially. This is shown in 

figure 14. Here it is clearly shown what differences exist between the land use and vegetation 

structure raster. It’s clear that the land use raster differentiates better in agricultural practices (light 

green, brown, pink, purple, yellow), but the field edges are hardly visible. The opposite is true for the 

vegetation structure raster: there is no differentiation in agricultural practice, but field edges with 

trees (darker green or brown) are clearly visible. This is a clear difference between both datasets. 

  

  Figure 14: Three maps (aerial photograph, LGN6 and Vegetation Structure) showing the area east of Doetinchem, The 
Netherlands.  
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3.2 Model Performance 
 

To be able to interpret the wild bee richness maps in a proper manner, the model performance 

should be analysed first. This will be done according to the average AUC values (figure 15). Here it 

can be seen that the LUVEG SDM performs best, followed by the VEG SDM and the LU SDM seems to 

perform worst. The standard deviations seem to indicate that the variation is too high to let the 

differences be significant. However, the three possible pairwise (per species) t-tests all show signifi-

cant differences (p-value < 0.001 in all cases). This means that the LUVEG SDM performs systemically 

better than the other models. This effect can also be seen in figure 16. Green dots (LUVEG SDMs) are 

in almost all cases the highest, followed by VEG and LU respectively. Another typical effect is visible 

here, which is that the AUC values decrease with the number of observations, as known from, 

amongst others, Aguirre-Gutierrez et al. (2013) 

 

Figure 16: Average AUC values over the 60 SDMs of Land Use (LU), Vegetation Structure (VEG) and both variable (LUVEG). 
Error bars represent standard deviation. 

Figure 16: Scatter plots of AUC values against the number of records. Blue dots represent the land use (LU) SDM, red dots 
are the vegetation structure (VEG) SDM, green dots the combined (LU + VEG) SDM. 
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3.3 Species Richness Maps 
 
This paragraph summarizes the predictions of the SDMs by creating wild bee richness maps. As men-

tioned in the introduction there are mainly two methods to create a map of species richness. One 

can add the binary predictions or the habitat suitability values of all species. In this research the first 

method has been chosen. A disadvantage of the second method is that the final value is multi-

interpretable: a moderate value could indicate high suitability of some species and low suitability for 

others, while at the same time it could mean that it is in general moderately suitable for all species. 

This problem is also recognized by Dubuis et al. (2011). The transformation of habitat suitability 

values to binary presence-absence predictions is a threshold-based method. Different methods are 

possible. As explained earlier, the threshold is chosen that optimizes the sensitivity (proportion of 

observed presences predicted correctly) and the specificity (proportion of - randomly allocated - PAs 

correctly predicted). The exact method can be read in Jiménez-Valverde (2012). 

 

All binary predictions of species occurrences (based on the ensemble modelling approach) are 

stacked (summed). This results in the creation of a species richness map, which indicates the number 

of unique species at a location. For every SDM type (land use, vegetation structure or both), a 

richness map has been made. 

 

The richness maps are very useful for getting insight in the spatial patterns of the wild bee richness. 

However, it would be interesting as well to add information about the model consistency or variation 

in prediction. After all, the procedure of the randomization of PA allocations and differing model 

testing areas allowed the SDM to predict 30 different habitat suitability values per location. If the 30 

habitat suitability values are in general close to each other, model predictions can be considered 

consistent. To get more insight in the model prediction consistency ‘90% certainty maps’ are shown 

as well. For these maps, only the cells where a presence is predicted 27 or more out of 30 are consi-

dered a presence for every species. This does not directly visualize model prediction consistency (or 

variation), but combined with the original map it does. For example, if an area that is in general 

predicted to be species rich in the original richness map but species poor in the 90% certainty map 

(relative to the entire study area), it can be concluded that the predictions were not consistently high 

there. Secondly, the map gives an impression of areas that are believed to be species rich with higher 

certainty, which would not have been visible in a regular map that indicates the variation of the 

predictions of the species. 

 

All maps are visualized in figure 17. 
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Figure 17: The Left column shows the expected wild bee richness according to the binary predictions of the individual SDMs. 
The right column shows the prediction of the richness with 90% certainty. 
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The maps show some striking similarities and differences. In this section there will be first a 

comparison between the ensemble model predictions and subsequently an elaboration upon the 

significance of the 90% maps. 

  

Comparing ensemble model predictions 

The first clear similarity is that the Zeeland province does not seem to support many bee species for 

all of the models. Secondly, the ‘Green Heart’ of The Netherlands (more or less the area between 

Rotterdam, Amsterdam and Utrecht) seems to be species poor, though this is most clear in the VEG 

SDM prediction.  

 

The land use model prediction seems to be very scattered in the rest of The Netherlands, no very 

clear patterns arise. In contrast, the VEG map shows several patterns. According to this map it seems 

that the eastern border of The Netherlands is in general species rich. Also the ‘Veluwe’ and 

‘Utrechtse Heuvelrug’ seem to be species rich. In the LUVEG map patterns are similar, though in 

general less obvious than the VEG map. This map shows high species richness in the South of 

Limburg, more than the other maps. The differences between the predictions are visualized in figure 

18. Differences are high in the Green Heart and the Veluwe / Utrechtse Heuvelrug. Also, the Eastern 

part of Limburg the land use map seems to predict less species compared to the vegetation structure 

map. 

 

90% maps 

In general the 90% certainty maps show clearer patterns than the ensemble models. The general 

species richness is lower than the ensemble maps, but this is due to the preselection of locations of 

at least 27 presence records. In all these maps it is clear that Zeeland and the ‘Green Heart’ are 

species poor. Furthermore, the ‘Randstad’ area (West of the Netherlands, dominated by urban areas) 

seems to be more species rich than other areas, which is more visible in the 90% maps than the 

Figure 18: Prediction differences between the LU model and the VEG SDM. Vegetation structure prediction values have 
been subtracted from the land use values. Red locations indicate higher species richness predictions for the vegetation 
structure raster. 
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ensemble maps. The model predictions of both vegetation structure and land use show something 

interesting. Zeeland has on average relatively higher wild bee richness than the Green Heart on the 

90% map, while this is vice versa according to the ensemble modelling map.  

 

For all models, the Utrechtse Heuvelrug and the Veluwe are, here as well, predicted to be species 

rich. In general, the east of The Netherlands and Limburg seem to be species richer than other areas. 

 

3.4 Variable Importance 
 

This paragraph zooms in on the importance of the variables that determine the predictions of the 

species occurrence, and with that, species richness. The first section will elaborate on which variables 

seem (not) to be important for the prediction of a single bee species, whereas the second section will 

relate the variables of the different models to the species richness found. 

 

3.4.1 Landscape variables & Individual Species 
 

Land use 

It appears that the average importance of the variables differs are very differing (figure 19). It seems 

that food availability and edge densities play on average an important role for species suitability 

scores. Also the sandy soils scores generally high. Striking is the low importance of the ‘number of 

unique classes’ and the ‘mean patch area’.  
 

  

Figure 19: Boxplot showing the distribution of variable importance values for the predictors of the 60 wild bee species 
of the Land Use SDM 
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Vegetation Structure 

There is one striking observation in figure 20. The food availability seems to be relatively the most 

important variable. It further seems that vegetation class 2 (mixed vegetation) and class 6 (no or very 

low vegetation) are in general important. Also here, edge density and mean patch area seem to exert 

little influence on the SDMs. 

 

 

 

 

  

Figure 20: Boxplot showing the distribution of variable importance values for the predictors of the 60 wild bee species 
of the Vegetation Structure SDM. 
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Land use and Vegetation Structure 

For the LUVEG model there are many variables, which differ a lot in importance (figure 21). First of 

all, it is visible that LUVEG_20 (cultivated / bare ground) seems to be the most determining variable, 

followed by LUVEG_60 (roads / build-up). Furthermore, PUH, sandy soils and food availability are 

important here as well. On average, the vegetation classes seem to have less influence on the model, 

though LUVEG_2 (Mixed vegetation), LUVEG_4 (higher trees) and LUVEG_6 (No or very low 

vegetation) are more important than others. The edge densities used here seem to have not much 

influence as well. 

  

 

 

 

  

Overall boxplot observations 

The importance of edge density seems to be in general low, whereas food availability seems to be 

one of the most important variables. The importance of the % abundance of the vegetation structure 

classes is in general relatively low, though with exceptions. Grasslands, Roads and mixed vegetation 

score relatively high importance. 

 

  

  

Figure 21: Boxplot showing the distribution of variable importance values for the predictors of the 60 wild bee species of the 
Combined SDM. 
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3.4.2 Landscape variables & Species Richness 
 

GLM for Richness 

In section 3.4.1 it is discussed how important a variable seems to be for the prediction of single bee 

species. Here the correlation between the landscape variables and the final species richness map will 

be shown. Three new (non-quadratic, no interaction) GLMs have been constructed that use the same 

landscape variables, but the dependent variable is now the species richness. The slope coefficients of 

the variables and the r2 (coefficient of determination) of the three models are presented in this 

section. This r2 should be an indication about how well the variables are explaining wild bee richness, 

rather than indicating what the predictive power is for individual species (like the AUC earlier). Next 

to this, the variable importances will be calculated again as well. These have been calculated the 

same way as for the individual species SDMs, but now it indicates how important variables are for 

explaining the richness of the species, rather than their average importance for the prediction of 

single wild bee species. The calculation has been performed at the same way as in the SDMs earlier. 

First the values of one of the landscape variable are shuffled . All explanatory variables (of e.g. the 

land use SDM, including the shuffled one) are used as independent variable in the GLM. The slope 

coefficients of this new model are then used to make a new species richness prediction. The new 

species richness values are plotted against the original species richness values, resulting in a r2. This r2 

is subtracted from 1 to obtain the importance of the (shuffled) variable. This whole procedure is 

repeated 5 times for every variable of all three SDMs. Again, higher values indicate higher impor-

tance. Coefficients and variable importances are listed in table 13. This procedure has been done for 

all three SDM types (LU, VEG and LUVEG). 

 

Collinearity  

The slope coefficients of the landscape variables can only make sense once it is certain that they 

have no collinearity with each other. Therefore, pairwise correlations between the independent 

(landscape) variables have been performed in order to conclude, based on their r2, collinear or not. 

When to exclude a variable can be trivial. For this study, it has been chosen to leave out variables 

that have a r2 of 0.75 or higher with another variable. However, sometimes a variable was collinear 

with another one with a r2 between 0.7 and 0.75. In these cases, it has also been investigated how 

collinear the variable was with others. If it showed collinearity to a certain extent (> 0.5) with other 

variables, it had been chosen to still exclude this variable. Following this procedure, the reliability of 

the slope coefficients of the variables is enhanced.  

 

SDM1 - Land use (LU SDM) 

Variables were in general not very collinear. However, ED_LU appeared to be collinear with ED_MN 

(r2 = 0.70) and also, to a less extent, with the mean patch area of all classes (r2 = 0.57). Therefore, 

ED_LU has been excluded.   

  

SDM2 - Vegetation structure (VEG SDM) 

For the vegetation structure no variable has been removed. The highest correlation found was 

between VEG_3 and VEG_7 (abundance of ‘Small trees with some understory’ and ‘Bushy, low/mid’ 

respectively), which had an r2 of 0.66. 
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SDM3 - Land use and Vegetation structure (LUVEG SDM) 

There were several variables that were correlated to other variables (overview table 12). The ED_MN 

showed high correlation with build-up areas. This can be explained, because build-up areas often 

show a very fragmented pattern (for the LGN6 raster and the vegetation structure raster as well), 

resulting in higher edge densities. Grasslands are classified suitable for bees and it can be assumed 

that this is causing the high correlation between PUH and grasslands. ED_LUVEG shows high corre-

lation with the mean patch area and LUVEG_7. The latter can probably be due to the many scattered 

LUVEG_7 pixels in urban areas, which automatically increases the edge densities. Lastly, mixed 

vegetation (LUVEG_2) was correlated with FA.  

 
Table 12: Collinear predictor variables of the LUVEG SDM 

  

It has been chosen to exclude ED_LUVEG, because it was also, to a lesser extent, correlated with 

other variables (r2 around 0.40-0.50). The variables FA and PUH are also removed together with 

ED_MN to include mostly vegetation structure variables. This leaves one landscape heterogeneity 

variable (MPA_LUVEG), which is also completely based on vegetation structure (thus point cloud 

information).  

 

The importances of the variables are visualized in bar graphs in figure 22. 

  

Variable 1 (included) Variable 2 (excluded) R2 

LUVEG_60 (Build-up / Roads) ED_MN 0.79 

LUVEG_6 (No or very low vegetation; Grassland) PUH 0.76 

MPA_LUVEG  ED_LUVEG 0.72 

LUVEG_7 (Bushy, low/mid) ED_LUVEG 0.67 

LUVEG_2 (Mixed Veg., high/low) FA 0.67 
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Table 13: Overview of the importance of the variables, together with their corresponding slope coefficient, of the species 
richness prediction for the three SDMs. In the first column the r2 is derived from the correlation of the original richness 
predictions with the predictions based on the linear model. ‘LU’ means ‘land use model’, ‘VEG’ means ‘ vegetation 
structure model’ and ‘LUVEG’ means ‘combined model’. 

Model Variable 
Variable 

Importance (1-r2) 
Coefficients 

LU 
r2 = 0.4598 

MPA_SH 0.4093 -6.8067 

PUH 0.2285 -0.0531 

FA 0.0204 0.0153 

NumClass 0.0048 0.2103 

SAND 0.0013 0.1748 

ED_MN 0.0010 -3.5726 

VEG 
r2 = 0.4834 

ED_VEG 0.1143 121.6583 

MPA_VEG 0.1088 -11.2294 

VEG_5 0.0290 -0.1743 

VEG_3 0.0209 0.1581 

VEG_4 0.0087 0.1006 

FA 0.0053 0.0195 

VEG_2 0.0047 0.0714 

VEG_1 0.0015 0.0407 

VEG_6 0.0001 0.0109 

VEG_7 0.0000 0.0019 

VEG_8 0.0000 NA 

LUVEG 
r2 = 0.4287 

MPA_LUVEG 0.1901 -7.4727 

SAND 0.0963 2.4934 

LUVEG_3 0.0845 0.4676 

LUVEG_60 0.0584 -0.1054 

LUVEG_1 0.0573 -0.1692 

LUVEG_20 0.0222 -0.0547 

LUVEG_5 0.0215 -0.1374 

LUVEG_4 0.0120 0.0547 

LUVEG_8 0.0099 -0.0037 

LUVEG_2 0.0072 -0.0495 

LUVEG_7 0.0048 -0.0508 

LUVEG_6 0.0016 -0.0147 

LUVEG_30 0.0006 -0.0089 
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Figure 22: Variable importances for every model type. Note that some variables of the total are excluded because of 
collinearity. Note that the bars are averages of 5 shuffle repetitions. The standard deviation has not been shown, 
because the values were only differing a bit (coefficients of variation were in general < 0.01) 
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Variable Importance 

Table 13 provides a clear overview on how the landscape variables exert influence on the prediction 

of wild bee richness for the different SDMs. For the LU, VEG and LUVEG model it seems that mean 

patch area is (one of) the most important variable, as well as edge density. In the vegetation 

structure model it is the most important variable, while in the other two models the total edge 

density was collinear with the mean patch area.  

There are other interesting results. Higher unsuitability decreases the expected bee richness in the 

land use model, which can be expected. Sandy soils seem to be important for the combined model, 

while it has much less influence on the land use model, though it has a positive influence for both. 

Vegetation class 3 (positive), 4 (positive) and 5 (negative) seem to be important as well for both the 

LUVEG model and the LU model. It is interesting to note that all other vegetation classes are negativ-

ely correlated with species richness in the combined model, while positively in the VEG model. 

 

Coefficient of determination 

It can be seen that the vegetation structure variables can explain species richness best (r2 = 0.48), 

while the land use (r2 = 0.46) and the combined model (r2 = 0.43) seem to be less precise. It should be 

noted that these coefficients indicate how well the models can explain the species richness. This is a 

key difference between the AUC values, which have given an impression on how the SDMs perform 

for the prediction of single species. Therefore, the results found here are not one-to-one comparable 

with the results found earlier. In line with this, it should be noted that the AUC values give an indica-

tion about the accuracy of the model predictions, while this is not the case for the three coefficients 

of determination found here. The accuracy describes how much your actual predictions are deviating 

from the truth, which was tested by the data set aside for testing the model performance (resulting 

in AUC values). The coefficients of determination are derived from the correlation between the origi-

nal richness maps with the predicted richness maps. Since the predicted species richness is a product 

from the correlation with the original species richness map (stack of binary values), the accuracy is 

playing no role here. After all, no comparison has been made with species richness data that is 

considered to be (higher likely to be) true. The original richness map is a prediction itself (made by 

the SDMs). Therefore, the r2 is indicating the precision, which indicates how much the prediction 

deviates from the original richness map.  

 

3.4.3 Linear Model predictions 
The landscape variables (raster format) have been multiplied with their corresponding (derived) 

slope coefficient. The summation of this new data, together with the and the model intercepts 

resulted in three new species richness maps. Here, spatial patterns can be analysed and compared to 

the original richness maps (figure 23). It indeed seems that the maps are showing the same pattern 

(high species richness in Veluwe / Utrechtse Heuvelrug and low species richness in Zeeland). Further-

more, it can be seen that the vegetation structure map shows the highest contrast between species 

rich and species poor regions. The land use seems still rather noisy and with limited spatial 

differences. Also, the combined model seems to be more species poor, while the vegetation struc-

ture map seems to be the most species rich.  
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Figure 23: Species richness predictions according to the derived slope coefficients of the variables. The maps are named 
according to the type of input variables of the SDMs. Note that the last map seems to be very different, but this is mainly 
caused by a general prediction of about 3 till 4 species less per location (see legend) compared to the other two maps. 

Predicted Species Richness Maps 
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3.5 Single Species Predictions 
  

It is hard to validate the richness maps, since independent data is barely available. However, it is 

possible to inspect the habitat suitability maps of some single species for peculiarities in order to see 

if model predictions make sense. Figure 24 shows three examples of single species’ suitability 

predictions. 
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These three species have been chosen in consultation with Menno Reemer (EIS), because he had a 

good understanding of the biology and the rough distribution of the species. Both the personal 

conversation with Menno and the book “De Nederlandse Bijen” (Peeters et al. 2012) have provided 

information about the ecology of the species. Wild bees will be discussed per species.6 

 

Andrena vaga (NL: ‘grijze zandbij’)  

This species is believed to occur in sandy areas and open till half-

open habitats. It likes open till half-open habitats, parcel edges, 

moors and dikes. The species has only rarely been spotted across 

the coast line though. The maps show that this species is mostly 

found in the Veluwe area and (mostly according to the vegeta-

tion structure map) in the South-East region of The Netherlands. 

As visible from figure 24 the model types are not differing lot in 

their prediction. These areas are indeed known to be dominated by sandy soils. Corresponding with 

the biology, habitat suitability is not increased across the coast line. Also, parcel boundaries are more 

often segregated by vegetation than in the West of The Netherlands (there agricultural parcels are 

mostly separated from each other with ditches).  

 

Lasioglossum morio (NL: ‘langkopsmaragdgroefbij’) 

This species is believed to be very common in The Netherlands. It 

is often found in villages, cities and warm areas. It likes to nestle 

in decaying walls and in rock gardens. There it can dig tunnels 

sometimes longer than 20 cm. It can be found in various loamy or 

sandy soil types. From the maps it indeed seems that the species 

is very general and only few areas show to be less suitable 

(Utrechtse Heuvelrug and Veluwe). This prediction seems to make sense as well. 

 

Dasypoda hirtipes (NL: ‘pluimvoetbij’) 
 

This species likes to nestle in dry and sandy biotopes, like sandy 

paths, road edges or dikes. In The Netherlands it is known to 

occur at the coast line and the higher sandy soils. This is in line 

with the predictions, with the exception that the land use map 

does not show the higher suitability at the coast line, while the 

vegetation structure and combined map do. 

 

Though the accuracy of the maps are not extremely high (AUC between 0.598 and 0.734), the spatial 

patterns seem to match the expected pattern to a certain extent according to the biology of the spe-

cies. This indicates that the maps are far from random. It should be noted that only 5% of all habitat 

suitability maps are shown here, which is a small subset. No extrapolations should be made for the 

quality of all SDMs, but after inspection of these maps it is less likely to assume that (many) other 

maps show unexpected or random habitat suitability patterns. 

 

                                                           
6 All pictures are copied from www.wildebijen.nl 
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4 Discussion 
The discussion consists of three parts. The first three paragraphs will try to answer the research 

questions with the results found in the study. The fourth paragraph the flaws in the methodology will 

be discussed. The last two paragraphs elaborate on what the results mean in the context of this 

study on the overall scientific value. 

 

4.1 Model Performance - AUC 
   

A widely chosen model evaluation method is the AUC (Area Under the Receiver Operational Charac-

teristic curve). Ackers et al. (2015) refer to a AUC of 0.717 a score “within acceptable limits, whereas 

a score of 0.809 is considered as a good predictive power. In this perspective, it seems that the 

average AUC values found for the three SDMs are not very high (AUC = 0.64, 0.66 and 0.69 for LU, 

VEG and LUVEG SDM respectively). It should be remembered however, that it is not the main goal of 

the study to provide the highest accurate maps. The main goal is to investigate how LiDAR derived 

landscape variables perform in comparison with land use landscape variables. Therefore, given the 

context of the study, low AUC values should not be considered unfortunate. To increase the 

prediction accuracy, one could implement three actions: 1) take more algorithms, 2) Include rarer 

wild bee species, and 3) use more environmental variables.  

 

1 - Include more algorithms 

It is very likely that the choice to use an ensemble approach 

with only GLM algorithms has reduced the average AUC 

values as well. In a paper of Aguirre-Gutierrez et al. (2013) 

it is shown that other algorithms (e.g. Maximum Entropy) 

result in, on average, an increase of the AUC values. That 

Maximum Entropy (MaxEnt) generally predicts presences 

more accurate can be seen in figure 25. This figure shows 

that algorithms respond differently to the number of 

species presence records. It can be expected that 

implementing multiple algorithms and species with fewer 

records will result in higher AUC values. Another possibility 

is to implement an ensemble approach with multiple 

algorithms. Using AUC as evaluation metric it can be 

assumed that the consensus approach provides best results 

according to Aguirre-Gutierrez et al. (2013).  

 

2 - Include rarer wild bee species 

Figure 16 already shows that the AUC value tends to decrease with an increase of the number of 

records for a species of interest. Figure 25 (Aguirre-Gutierrez et al. 2013) underlines this. This 

observation can also be explained by the species’ biology. It is likely that wild bee species with many 

records are more widespread than species that has only a few observations. The dispersal of a more 

widespread species will be less constricting by the environmental conditions than a specialized 

Figure 25: Figure showing the response of 
various algorithms to the increase of the 
number of species presence records. Figure 
edited from Aguirre-Gutierrez et al. (2013). 



 

59 
 

species (e.g. species dependent on very specific nesting locations or food sources), since they have a 

higher likelihood to fulfil their resource requirements in a greater number of habitat patches 

(Tscheulin et al. 2011). Vice versa, this means that bee species with more records will be present in a 

wider range of landscape types, with higher variation in environmental conditions, than rare species. 

As a result, it can only be that the model prediction accuracy will tend to decrease for general or 

widespread species. After all, it is hard to define exactly which areas are typical for a species that 

does not have a clear landscape preference. The choice to only include species that have more than 

100 observations at a unique location therefore automatically decreases the average AUC values. 

 

3 - Include more environmental variables 

Together with sandy soil and food availability, only vegetation structure and/or land use variables are 

used. Since it is assumed that many other factors are determining the presence of the species, other 

variables are often included in SDMs as well, like relief, climate data as temperature, precipitation or 

the occurrence of certain plant species (Peeters et al. 2012; Polce et al. 2013). Although the variables 

used in this studied are assumed to be important, other variables could significantly improve the 

prediction as well.  

 

A technique that helps to evaluate how well the SDMs are performing is to create null-model (Raes 

and Ter Steege 2007). This approach has been applied before in another wild bee SDM study (Polce 

et al. 2013); it shows to which extent the SDMs are performing better than purely by chance. Though 

the SDM types can be compared within this study, this technique ensures that they actually are 

explaining some of the variation found as well. 

 

Paired t-tests have shown that all models differ significantly from each other, where the LUVEG SDM 

seems to perform best, followed by the VEG and LU SDM. This is indicating that the vegetation 

structure variables are a better input for the SDMs than land use variables. A side-note to this is that 

less land use variables are used than vegetation structure variables. This means that it is possible that 

the vegetation structure variables have more ability to cover the variation in the landscape of the 

species, just by having more variables. However, this is not necessarily the case and increasing the 

number of variables also increases the chance of overfitting the data (though to a limited extent 

given the number of variables and wild bee observations), so it does not mean that more variables 

will result in better predictions per definition. Therefore, it is concluded here that SDMs based on 

vegetation structure variables provide comparable and, if not, better prediction results than land use 

variables. 

 

Single Species prediction maps  

Next to the AUC values, a visual inspection of the wild bee richness maps also confirms that in 

general predictions seem to be logical. In general, patterns seem to be non-random and to a certain 

extent follow the biology of the species. These results are only indicative. For a good validation of the 

maps one should visit random, yet unexplored field locations in order to investigate how habitat 

suitability values relate to the presence (or number of) species.   
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Linear Richness Models 

Lastly, the linear models that correlate the found species richness (sum of binary values) with the 

original variables again show different results. The coefficients of determination now indicate that 

the combined model predicts the worse (r2 = 0.429) than the vegetation structure model (r2 = 0.483), 

even though the ‘sandy soils’ parameter was not included in the latter. This suggests that the variab-

les derived indirectly from point cloud data is better able to (or at least comparable) predict the 

variation in species richness than the variables derived from land use.  

 

4.2 Wild bees in The Netherlands 
 

The constructed maps can be discussed at various ways. In this paragraph there will be an 

elaboration of the analysis of 1) the spatial patterns in the models, 2) the certainty of prediction. 

4.2.1 Spatial patterns & Tenability 
 

Zeeland and the Green Heart 

All predictions of the three SDMs show that the species richness in Zeeland is low. This is in line with 

the expectation for both land use and vegetation structure variables. The area is characterized by 

intensive agriculture and visual analysis of aerial photographs indeed shows a monotonous land-

scape, dominated by agricultural parcels. Tree patches are very rare and vegetation rows between 

parcels are only at a limited number of parcels borders. These patterns are also translated into the 

LGN6 and the vegetation structure raster. For the LGN6, Zeeland is clearly dominated by agricultural 

fields of potatoes, grains, maize, beets and other crops. The vegetation structure shows mostly “no 

or very low vegetation” in this area, sometimes interrupted by rare long strokes of different kinds of 

higher vegetation. However, these strokes are rare. It can be assumed that this broad-scale cultiva-

tion system and the scarcity of natural field edges decrease the species richness at such landscapes 

(Benjamin et al. 2014). Another species-low area is the Green Heart of The Netherlands. This can very 

well be observed in the map of the VEG SDM prediction. Here it is shown clearly that species richness 

is low. This effect is less pronounced in the land use and combined model predictions. An important 

cause for this can be found by 1) the distribution of the species’ observations and 2) the suitability 

classification of the LGN6 according to Vogiatzakis et al. (2014). 

 

Many land use classes in Zeeland are classified as unsuitable. In this dataset this province is therefore 

one of the most unsuitable areas in The Netherlands. This can also explain the negative coefficient of 

the PUH landscape variable in the land use SDM, since only few species have been found there 

(which is consequently correlated with high PUH). However, though the species richness is expected 

to be low, there are many species records in Zeeland. This can be due to the execution of a former 

project of the EIS to enrich the data in this province, which resulted in high observation densities of 

wild bees for this area. Since the target group approach is used for the allocation of PAs, this sam-

pling bias is causing the models to assign relatively many PAs here, while other areas can contain 

fewer PAs. This explains the prediction difference in the Green Heart region between the SDMs. For 

the land use SDMs, grassland is classified as suitable, and because of the negative slope coefficient 

for the PUH variable (which is included in the combined SDM and the land use SDM), the models are 

more prone to predict species to be present in the Green Heart. Since the Green Heart does not 
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contain many observations, PAs are only rarely allocated here, so even though the Green Heart might 

be species poor, the PUH variable makes it species richer. The vegetation structure SDM does not 

have this problem, since the PUH variable is not included here and both the Green Heart and Zeeland 

are dominated by high values of the same variable: “No or very low vegetation”. It can therefore be 

expected that predictions in the Green Heart will show similar results as predictions in Zeeland. The 

validity of the suitability classification of Dutch grasslands (according to Vogiatzakis et al. 2014) can 

also be argued, given that many grasslands are managed and therefore often homogeneous with few 

food resources and limited nesting locations for many species. Classifying this area as unsuitable 

might provide results that are more similar to the vegetation structure SDM. 

 

Utrechtse Heuvelrug and the Veluwe 

A big similarity between the models can be found in the region of the Utrechtse Heuvelrug and the 

Veluwe. It appears that in for all SDM types species richness is predicted to be high in these areas. 

The landscapes are here dominated by (different types of) forest, moors and other natural areas. 

Aerial imagery shows that, especially in the Veluwe, there are many open spots. Though the LGN6 

shows mainly the presence of pine forest and deciduous forest, the vegetation structure raster 

shows a more heterogeneous pattern of vegetation structure types. The implying monotony of these 

landscapes in the LGN6 raster might clarify why the Veluwe and the Utrechtse Heuvelrug do not 

distinctly show higher bee richness than elsewhere in the land use map, while this is clearly the case 

for the other maps. Because of the diversity of the landscape, it can also be expected that it can 

encompass suitable conditions for many bee species.  

 

Other areas 

There are several other areas where wild bee richness appears to be high; in the mid-South of The 

Netherlands, Limburg and across the Eastern border of The Netherlands. All these are having sandy 

soils, which positively affects wild bee richness for the combined model (variable coefficient = 2.49, 

indicating that there are on average 2.5 wild bees more in sandy soils). In general, these are also the 

areas which are characterized by smaller scale agricultural compared to the West of The 

Netherlands. Further, aerial imagery and the vegetation structure raster (but not the LGN6) show 

that parcel borders are very often characterized by higher vegetation, thereby creating beneficial 

edges for wild bees in that landscapes. In the mid-East of the area (West-Brabant, Noord-Limburg), 

relative species richness decreases in general a bit compared to the mid-South (mid-Brabant), which 

is probably due to the increase of cultivation of crop types that grow in Zeeland. Except for the big 

difference in the Green Heart of The Netherlands, the three models are more or less in line with 

respect to the spatial patterns. In general it seems that the habitat suitability prediction of the land 

use SDM gives a noisier impression than the other two SDMs. This might be a sign that the vegeta-

tion structure and combined SDM are better able to capture the environmental variation than the 

land use SDM.  

 

The South of Limburg is known for its high biodiversity for several reasons. There are relief differen-

ces with fast warming sandy soils, which provide suitable nesting locations for many bees. Further-

more, agriculture mostly consists of small-scale practices and field edges are often characterized by 

higher vegetation strokes suitable for wild bees (Peeters et al. 2012). However, this higher spot of 

wild bee richness is not visible on the maps, while one would expect this (pers. conv. with Menno 

Reemer and Peeters et al. 2012). The reason for this is that many species that are prevailing in South-
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Limburg are mostly more rare and exclusively occurring in this area. Therefore, they have not 

reached the threshold of 100 observations. Including these species as well, might provide a map that 

is more representative for the total wild bee richness of The Netherlands. 

4.2.2 Prediction Certainty 
Here the 90% map will be compared with the stacked binary predictions map for the three SDMs. For 

all SDMs it is visible that the expected number of unique species per location is, obviously, less than 

the original map. However, there are more differences that can be pointed out. Comparisons will be 

made per SDM. 

 

Land use SDM 

There are several differences between the 90% map and the original species richness map. It appears 

that the predictions of single wild bee species in the Veluwe and Utrechtse Heuvelrug are more 

certain than in other areas. This is pointed out by the more pronounced high wild bee richness of 

these areas in the certainty map compared to the spatial patterns in the original species richness 

map. In contrast, the Green Heart of The Netherlands shows less species richness compared to the 

entire study area than the original map, indicating predictions were less certain here. This could be 

explained by the distribution of the wild bee observations again. Because the number of species 

observations is low in the Green Heart, the environmental conditions of the Green Heart are less well 

covered than the environmental conditions in Zeeland (because the high sampling density there). A 

similar effect is visible for the Randstad area. Here the species richness is predicted to be high and 

even comparable to the species richness predictions in the Utrechtse Heuvelrug and Veluwe in the 

certainty map. In the original map this is not the case. Here, in the Randstad mediocre species 

richness is predicted compared to e.g. areas as the Veluwe. This indicates that the certainty of the 

prediction is higher in the Randstad compared to other areas, which can be due to the high sampling 

density again.  

 

Vegetation structure SDM 

In general, the two maps of the VEG SDM are more similar to each other than the maps of the LU 

SDM. As expected from the observation in the land use SDM, the difference in the relative species 

richness prediction of the Randstad is clearly visible here as well. However, the difference between 

the Green Heart and Zeeland seems to be non-existent here. This can probably be due to the 

different variables used for the models. As explained earlier, for the LU SDM the Green Heart has a 

different landscape composition as Zeeland, while for the VEG SDM these areas appear to be similar. 

Therefore, it is not surprising that the difference in prediction certainty for the VEG SDM is not as 

pronounced as in the LU SDM, since environmental conditions are similar. Because of this similarity, 

the higher sampling density in Zeeland compared to the Green Heart can assert only little influence 

on the prediction certainty of the two areas.  

 

Combined SDM 

Since these maps are constructed from both vegetation structure and land use variables, it is not 

surprising that similar patterns as described earlier in this paragraph are coming forward. Again there 

is a difference in Zeeland and the Green Heart between the certainty and the original map, as well as 

for the Randstad. From all the maps it seems that the distribution of the wild bee observations plays 

a pivotal role in the certainty of the prediction of certain regions in the study area. 
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4.3 Variable importance 
 

There are two types of results concerning the importance of the variables: 1) the average importance 

of a variable for the prediction for all single wild bee species and 2) the importance of the variable for 

the prediction of wild bee richness. It appears that these are not necessarily similar. The two types 

will both be discussed in this paragraph. 

  

4.3.1 Single Species SDMs 
From the boxplots, describing the distribution of the importance of the variables for 60 species, it 

appears that several variables are believed to be important. First of all, the food availability is the 

most important variable for the land use only and the vegetation structure only model, and it seems 

to be the third important variable for the combined model. That this variable appears to be impor-

tant can be reasonable, since the presence of wild bees is believed to be dependent on 1) suitable 

nesting locations and 2) the availability of sufficient food resources (Westrich 1996). This variable is 

the only one describing where the availability of wild bee food is high or low, whereas the others can 

be considered to be more related to nesting locations. Section 4.3.2 will elaborate upon why food 

availability seems to be important for the distribution of single species and how this relates to the 

findings of the species richness. 

In general, it seems that (for the vegetation structure and combined model) the landscape variables 

describing the % abundance of a vegetation class exert little influence on the model, while the edge 

density values and the mean patch area seem to be even less important. This observation is not the 

case for the land use model, because the ED_MN seems to be the second most important variable.  

   

4.3.2 Species Richness 
That the mean patch area and edge density appear to play a minor role for the species distribution 

should be placed into context. Section 4.3.1 seems to contradict literature, while this is not neces-

sarily the case. It could very well be the case that the predictions of many bees are more dependent 

upon certain vegetation or land use types than landscape diversity variables (edge density and mean 

patch area). This way, it could still be that these variables are important, but less compared to the 

presence of certain beneficial vegetation structure types. However, for species richness it can be 

assumed that this effect will occur less. After all, a landscape that supports and/or predicts many wild 

bee species to be present will probably have a high diversity of vegetation / land use types, which 

subsequently increases the chance of suitable ecological niches for wild bees. Therefore, if the 

landscape is heterogeneous, the mean patch area and edge density would decrease and increase 

respectively. This theory could explain why the mean patch area and edge density are the most 

important variables for the prediction of wild bee richness. It is known that some wild bee species 

are very sensitive for the presence of suitable edges or the mean patch area and habitat fragmen-

tation can significantly reduce the population size of species requiring a minimum suitable area 

(Tscharntke et al. 2012). However, it is also noted here that this does not have to be the case for 

every species. This paper also exemplifies that the relationships between biodiversity patterns and 

the landscape are often not straightforward. These results are also not in line with Aguirre-Gutierrez 

et al. (2015), where edge density and mean patch area seem not to have much influence on the 
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presence of the species (except for bumblebees, they were positively affected by the edge density 

between managed and natural areas).  

 

There are other variables, though to a less extent, that seem to be important for the prediction of 

wild bee richness. Vegetation class 3 (small trees with some understory) and 5 (middle trees with 

little understory) are relatively important as well. A visual interpretation of the photographs shows 

why these results are reasonable. Vegetation class 3 seems to contain very mixed vegetation with 

only smaller trees and much understory. This landscape is varied in itself and with understory 

present it is arguable that food resources are available. This vegetation class is also, in contrast to 

vegetation class 5, positively correlated with species richness. That species richness is lower in 

landscapes that are more dominated by vegetation class 5 can be understood by the photographs 

(shown in the appendix: figure 35) as well. Almost no understory is present under the pine trees and 

this vegetation class seems to be very monotonous. It can be expected that this class offers limited 

food availability and only few different kinds of nesting locations, hence the ecological niche diversity 

is low. 

  

It is also interesting that food 

availability seems to be, on average, 

very important for the prediction of a 

single wild bee species, while it only 

seems to play a marginal role for 

species richness. It is hard to explain 

what is causing this discrepancy. A 

hypothesis is suggested here. The food 

availability is in general very high in 

the Utrechtse Heuvelrug and - to a less 

extent - in the Veluwe, while it is very 

low in the West of The Netherlands 

and South-Limburg (figure 26). 

However, there are many records in all 

of these regions. Assuming a spatial 

correlation of observations, it can be deducted that some species are occurring more in areas of high 

food availability, while others are more present in areas of low food availability. In both cases, it will 

be an important explanatory variable for the presence prediction of the species. However, for the 

total richness of the species it might be less correlated, because species with both a negative and a 

positive slope coefficient are included in the model. 

 

4.4 Flaws 
  

There are several analysis steps that have not been executed perfectly, which may have influenced 

the final findings. Here I discuss what aspects of the methodology could have been done better and 

how these aspects might have affected the final results per category. 

 

  

Figure 26: Food availability raster in relation with the wild bee 
observation locations. 
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Point density rasters 

The height breakpoints of the point density rasters were changed later, but the values of the height 

weight correction were not changed correctly. The original height breakpoints (later these have 

changed by the addition of the second and third layer) in the lastools script were [0.1, 0.25, 0.5, 1, 5, 

10, 20, 30, 80] and the corresponding weight correction should have been [6.67, 4, 2, 1/4, 1/5, 1/10, 

50]. However, the following weight correction has been used: [6.67, 3.33, 2, 1, 1/3, 1/5, 1/10, 1/60]. 

This means that the second layer got a bit lower weight, the fourth layer 4 times too much, the fifth 

layer 5/3 times too much, the sixth layer 2 times too much and the highest a bit too little. In general, 

it can be said that the middle layers have received more weight than they should have had. Using the 

right correction values gives the lower layers more relative weight for the classification later. 

Following the assumption that wild bees are most dependent on the situation on ground level it can 

be assumed that applying the right weights will improve the models, since the lower layers will 

relatively gain more weight.  

 

The highest layer (30-80m) has been used for the calculation of the total points in a voxel. This means 

that, in case there are trees higher than 30 m in an area, the total point density values of the layers 

will not add up to 100%. Therefore, it might be better to exclude the highest layer for the summation 

of the points in a voxel since it contains hardly information and point density values are easier to 

interpret. Implementing this will only have a marginal effect on the classification and further 

outcomes. 

  

Pixels with less than 100 points between 0.15m and 10m were automatically classified as the 

vegetation structure class ‘no or very low vegetation’. However, for some (probably accuracy) reason 

there was an area at the north edge of the study area that clearly should have been classified as 

grassland (based on aerial images), but here the points systematically exceeded the threshold. This 

has influenced the quality of the vegetation structure raster, but since the area is relative small (ca. 1 

km2) it can be assumed that the effect on the outcome of the quality parameters of the SDMs is 

negligible.  

 

There were two tiles where the ground point classification failed (black areas in West of The 

Netherlands). This might be solved by using different tools from the lastools package. For time 

reasons this has not been done yet. Adding still missing data will mainly change the visual 

appearance of the map, rather than create big changes in final outcomes.  

 

Species Distribution Modelling 

An important analysis step has been forgotten before the species distribution models were started: 

no collinearity check between the landscape variables has been performed. This probably did not 

influence the species’ presence-absence prediction, since collinear variables correct for each other in 

GLMs. However, without this check it becomes difficult to interpret the variable importance values, 

since it is hard to establish if a variable is not important because it has no relation with the bee spe-

cies or because another variable is already accounting for the, related, variation in the landscape. For 

example, food availability seems to have some degree of correlation between vegetation class 2 (r2 = 

0.65), class 4 (r2 = 0.59) and class 6 (r2 = 0.51). Now though these three classes seem still to be rela-

tively important for the outcome of the suitability values, they will probably be more important if 

food availability were excluded from the model. 
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Lastly, because of a mistake, the PUH variable should have been the inverse, which is ‘% suitability 

habitat’ (PSH). Changing this variable will not change the final outcome, but rather enhance the 

interpretability and intuitiveness of its values and slope coefficient. 

 

4.5 Further Research 
  

Already in 2002 it has been hypothesized that LiDAR technology would become an important tool in 

ecology, because of its ability to quantify the 3D vegetation structure (Lefsky et al. 2002). The 

authors state that it is hard to predict how widely applied the technology is in ecology in 5 years.  

The findings are suggesting that point cloud data derived from LiDAR technology improves the 

prediction of wild bee richness for the Southern part of The Netherlands compared to a land use-only 

approach. However, measures could be taken to increase the model quality parameters (r2, AUC). 

Suggestions will be made in the following sections. In any case, further research should include 

proper validation of 1) the vegetation structure and 2) the species richness map.  

 

Validation 

Going to the field is essential for a proper validation of the vegetation classes and to understand their 

true 3D structure. Here a possible validation procedure will be described. Random locations should 

be selected for a field visitation. The vegetation class should be unknown before the visit. Expert 

opinion (e.g. the classifier of the point densities) should decide what class it is. Every vegetation class 

should be visited multiple times (the more visits, the better). This way, a confusion matrix can be 

constructed that indicates the accuracy of the class estimation and the outcome of the maximum 

likelihood classification. It would be good if the field expert makes quantitative estimations of some 

aspects of the vegetation as well, like the estimated vegetation height or vegetation density close to 

the ground and at higher levels. This would also provide useful information about the character of 

the vegetation class for a more thorough description and understanding of the vegetation class. It is 

hypothesized that if this ‘ground-truthing’ is performed at least 10 times for a vegetation class, at 

randomized locations, one could have general insight in the in-between variation of the vegetation 

class as well.  

 

Species presence predictions should be validated with independent sample data as well. Some spe-

cies poor and rich km2 cells should be selected where sampling has not been carried out before. Then 

different accuracy measures for the different species can be derived as well (from false positive, true 

positive, etc..). This will give a general overview of the prediction accuracy of the species richness 

map. 

 

Wild bees & SDMs 

At the start of the research bee species that had more than 100 records in the time span of 2003-

2014 were selected. This way, one can be sure that the species distribution models (with no more 

than 13 variables) were not tending towards overpredicting bee suitability and presence-absence. 

However, assuming a correlation between the number of observations and the generality of a wild 

bee species, the sum of binary predictions of the selection of wild bee species (the species richness 

map) might not be a representative map for the total richness found. For example, the richness of 
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wild bees in The Netherlands is assumed to be the highest in South-Limburg, because many bee 

species are only observed and believed to occur there (Peeters et al. 2012) and personal 

conversation with Menno Reemer). However, this is not very clear in the species richness map, 

simply because most of the species were too rare to be included in the primary selection of bees. 

Together with this, one could say that the selection of more generic species is causing a 

‘smoothening’ of the species richness map. 

  

Another point of improvement is related to the selection of the km2 that are used to construct the 

species models. In this study a PA could be allocated to a location where one or more other bees of 

the 60 pre-selected bees were found. However, it might be fairer to include km2 cells where at least 

one other bee is found, regardless of the selection. For example, at a location 7 bee species are 

found, but none of those 7 bees were common enough to be included in the SDMs. However, these 

cells are very suitable for the allocation of PAs in the first phase of the modelling. Inclusion of these 

areas might broaden the range of landscape variation at which PAs could be allocated, thereby 

enabling the model to better distinguish the ‘typical landscape’ of the wild bee of interest. Although 

it is hard to state to which extent, it can be expected that this will translate into improved model 

prediction, hence higher AUC values. 

 

The PA allocation method used in general and for this study in particular is fair (but not necessarily 

the best) given the nature of the wild bee dataset. Records come from random amateur inputs as 

well as from professional field inventories for certain locations. When more species are found at a 

certain location, it can be hypothesized that there is a higher possibility that this location was better 

searched for wild bee species than a location where only one or a few wild bee species are found. 

This assumption advocates making the chance of PA allocation dependent on the number of other 

bee species found. Though this assumption is not true per definition, it can be justified that imple-

menting such a method would be fairer than continue with the present method, which assumes 

equal possibility of an absence for every location. For example, a place where only once Bombus 

terrestris is found has the same probability to get a PA as a location where 30 other bee species have 

been recorded. This way, many single-species observations (mostly of a common species) are mainly 

adding noise to the models. Some research has already been performed to different PA allocation 

methodologies (Senay et al. 2013), but as far of my knowledge a chance-based PA allocation method 

has not yet been investigated yet. Further research could be dedicated to the possible SDM improve-

ments that can be made by such a method.  

Irrespective of the method used, the presence records could have a bias towards certain geographic 

regions. Also in this study, the density of wild bee observations seems to be higher in ecologically 

attractive areas (with the province of Zeeland as exception). This should be taken into consideration 

as well in the interpretation of habitat suitability predictions of the species. After all, there is a 

chance that higher habitat suitability is predicted in ecologically attractive areas, partly because the 

visitation rate was higher there compared to the visitation rate in less attracting areas. More coor-

dinated field visits to unattractive areas (like Zeeland) could reduce this problem, which might 

improve the predictive power of the SDMs. 

 

Vegetation Structure Classification 

The validation of the vegetation structure has already been discussed. Here other points for improve-

ment of the vegetation structure raster will be discussed. First of all, the final vegetation class of a 
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25m*25m pixel does not provide information about vegetation density. This means that the data are 

able to provide information about the relative vegetation presence ratios in different heights, but not 

the difference between e.g. 2 and 12 trees. Two possible improvement methods are suggested here. 

The first one is straightforward: increase the spatial resolution of the data. It is suggested to use a 

pixel size of 5 meter. This should be fine enough to cutback the lack of vegetation density problem, 

since such an area can vary much less in vegetation quantity than the area that is 25 times as large 

(25m resolution). At the same time it is assumed to be coarse enough to have enough points (ca. 

200-300) that can be used to create the different point density rasters. 

The second method to overcome the vegetation density problem is more complicated, but could be 

worth investigating. Once the spatial resolution of the raster is increased, a degree of vegetation 

openness could be introduced. Rubene et al. (2015) have also found that wild bee and wasp diversity 

can be supported by the openness of the landscape, because more flowers can grow at open spots. 

Openness should be calculated over a 25*25m area again, based on the percentage of pixels that 

have a maximum vegetation height of e.g. 50 cm. Including this variable in the vegetation structure 

classification process might significantly improve the informativeness of the classes for wild bees. 

For both methods it can be argued as well that information about the average NDVI (Normalized 

Difference Vegetation Index) over the spring and summer (most important time of insect activities 

would improve the classification as well). This way, it is easier to distinguish between e.g. grasslands 

and bare ground or urban zones and lower / mixed vegetation.  

  

The point counts of the lowest layer (0.1 - 0.25 m) are a result of a combination of point height 

precision (possible noise) and the real presence of vegetation. These can even be assumed to be 

correlated: the presence of vegetation might cause higher imprecision, because it makes the 

determination of the true ground level more difficult. Still, it could be that some geographic areas are 

less precisely measured than others. Also, the different algorithms used for the split between ground 

and non-ground data by the different data suppliers of the AHN2 might cause spatial differences in 

the precision or accuracy of points in the lowest height layer. Therefore, it is suggested to shift the 

lowest layer up a bit. A new proposition for the height breakpoints (in meter) would be [0.15 - 0.4 - 

1.0 - 5.0 - 10 - 20 - 30]. For a successful classification of vegetation structure of the landscape it is 

pivotal that the existing variation in vegetation structure is sufficiently covered in the defined classes. 

The importance of this can be illustrated by an example where only 2 classes are defined: high 

vegetation without understory and low vegetation. If the area of a - still unclassified - pixel would be 

characterized by high vegetation with understory, both classes seem to be unsuitable for this pixel. 

Therefore, more classes can be defined to prevent such ‘misclassifications’. The height layer 20-30m 

is therefore valuable, since it helps to define high forests. It can be argued that high forests with 

canopies in the 20-30m layer have a significant different meaning for bees than high forests with the 

canopy in the 10-20m layer. However, having these two layers for the classification helps to prevent 

the earlier described ‘misclassification’. Besides, these classes can be merged later (like in this study 

the original vegetation class 4 and 6). However, class difference should not be too small in order to 

prevent overcomplicating the (interpretation of) the vegetation structure classes. Expert opinion 

about relevant differences in vegetation structure for wild bees, in combination with a clear under-

standing of classification algorithms should provide more insight in what vegetation classes to define 

and, if needed, merged for a successful vegetation structure classification.  
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Landscape Indices 

This research is combining horizontal and vertical vegetation metrics as presented in Simonson et al. 

(2014). The primary vegetation classes have been created based on the vertical structure of the 

vegetation. Horizontal vegetation structure metrics (referred to as the landscape variables) have 

subsequently been calculated (edge density, mean patch area) from these vertical vegetation struc-

ture classes, creating variables that tell something about the 3D structure of the green landscape. For 

the classification of the vegetation structure a voxel-based method has been chosen similar to the 

one described in the paper of Schut et al. (2014). However, other metrics can be chosen as well. Here 

the LiDAR data has been transformed to nominal data, similar to land use classes, before it was 

transformed to a quantitative landscape variable again. Perhaps other metrics are suitable as well. 

‘Variation in plant height’ or the ‘mean / maximum vegetation height, has been proposed as well 

(Simonson et al. 2014). With LiDAR derived point clouds perhaps new metrics can be developed. An 

example could perhaps be ‘degree of edginess’. In this study, calculation of the edge density is a 

direct derivation of a binary (either suitable or not suitable) determination between adjacent pixels. 

However, with LiDAR derived metrics, this might also be approached quantitatively. Using the maxi-

mum or mean vegetation height of a 25*25m (or 5*5m) pixel, it can be assumed that certain height 

differences are describing a different degree of suitability. If suitability of single edges can be 

defined, an overall edge suitability score could be derived for an entire km2. As far as I know this has 

not yet been suggested before. 

Probably more vegetation metrics can be thought of, but the core message is that LiDAR point clouds 

may be suitable for the creation of such variables describing the landscapes. Creating a relevant and 

correct representation of the 3D architecture of the landscape is challenging. However, since many 

invertebrate data are often not available at high spatial resolution, making steps here might be 

pivotal to derive high quality environmental SDM predictors. 

 

Overlays 

The highways and the water areas used as an overlay of the vegetation structure raster have been 

derived from the TOP10NL. For a better comparison between the vegetation structure raster and the 

land use model one should just extract water bodies and roads from the LGN6. With this, other main 

roads would be included as well. 

 

And beyond 

The research motive was to integrate current knowledge in 1) LiDAR for ecology, 2) SDM for pollina-

tors and 3) LiDAR for SDMs, here for the first applied at subnational scale. AUC values show that 

LiDAR data can improve SDMs. However, the effect size between the different SDM types could be 

stronger. Now only XYZ LiDAR data have been used, while other more advanced vegetation 

parameters, like leaf area index (Forzieri et al. 2011) or canopy profile (Zhao et al. 2015) could be 

derived as well with the use of the intensity values, number of return or RGB data. More 

sophisticated vegetation structure classification algorithms might be developed this way. Therefore, 

points with more attributes, acquired in summer time could significantly improve the 

characterization of vegetation structure. Perhaps the follow-up dataset (point cloud of the AHN3) can 

improve the quality of the classification. 

With or without additional point data, it can be assumed that the vegetation structure can be used 

for other animal species as well. Future studies should be conducted to examine this hypothesis.    
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4.6 Scientific Relevance 
  

This study for the first time provides evidence that high-resolution point clouds can be used for the 

prediction of richness of invertebrates at a large, subnational scale. In this report, a new method-

ology that creates variables which describe (indirectly) the 3D structure of the landscape is applied. 

This has been done by combining existing methodologies to characterize vertical vegetation structure 

first and subsequently horizontal vegetation structure (Simonson et al. 2014). The vegetation 

structure at a small scale (25*25m patches) was defined by the vertical distribution of the points. A 

similar methodology for vegetation structure classification was used by Schut et al. (2014). Because 

of the coarse resolution (1 km2) of the bee dataset it was necessary to create landscape variables, 

which take the horizontal distribution of vertical based vegetation structure classes into account. This 

way, large scale XYZ data have for the first time quantified the landscape in such manner that it could 

be used for wild bee SDMs.  

     

The results of the research indicate that the distribution of the wild bee records influences the 

species richness prediction pattern. This is strongly linked to the PA allocation method used. A new 

method of PA allocation is suggested in this study, which will let the allocation probability of a PA 

depend on the number of other wild bee species found at a certain location. It is hypothesized that 

such a method may improve multi-species SDMs based on presence-only datasets.  
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5 Conclusion 
The aim of the study was to investigate if point cloud data can be used in species distribution models 

at subnational scale. The findings presented in this study support this hypothesis. Vegetation 

structure has been derived from basic XYZ point information from the AHN2 dataset. From this 

vegetation structure, landscape variables have subsequently been created and used as SDM input 

variables. 

 For the prediction of single wild bee species it is shown that the model performance of 

vegetation structure SDMs is systematically higher than land use SDMs. Combining land use and 

vegetation structure data provides even more accurate predictions. The habitat suitability 

predictions of three single species maps seem to be in line with the biology of the species, which 

supports the assumption that the SDMs provide maps with at least reasonable quality. Depicting 

which variables are most important is hard because of collinearity. However, for all SDMs it seems 

that the availability of food resources is playing an important role for the prediction of single species. 

 Wild bee richness is predicted more precisely by landscape variables derived from vegetation 

structure than from land use or combined landscape variables. For all SDMs the mean patch area and 

edge density are important landscape variables, which is in line with literature. That this is also true 

for the landscape variable derived from point clouds underlines the ecological relevance of LiDAR 

data.  

 In general, Zeeland and the ‘Green Heart’ area of The Netherlands are predicted to be 

species poor, while the Veluwe, Utrechtse Heuvelrug and the East of The Netherlands are predicted 

to be richer in wild bee species. One should be aware that the spatial distribution of the predicted 

wild bee richness depends partly on the combination of the spatial distribution of the wild bee 

observations and the configuration of the different landscape types. Prediction certainty also appears 

to be higher in regions with many wild bee records.  

 Simple methodological implementations might improve the results considerably. 

Nevertheless, even without these adjustments this study shows that point clouds acquired by 

airborne LiDAR can contribute significantly to (an improvement of) species distribution models. 

Further research should be dedicated to the validation and refinement of the vegetation structure 

classification and to the applicability of this vegetation structure for other (invertebrate) species.  
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Appendix: Photos Vegetation 
Structure  

 

In order to get more insight in the true 3D configuration of the different vegetation structure classes, 

two field trips have been organized. The first field trip was North of Rozendaal in the National park 

‘the Veluwezoom’. The second field trip was located East of Wageningen. The locations where the 

photos have been made for both validation routes are indicated in figure 27. As a preparation, points 

have been selected which were located inside a patch (consisting of at least four agglomerated 

pixels) of the same vegetation class. These points of interest (POIs) were loaded into a handheld GPS. 

Geotagged photos were made at the locations of the points. The fact that the patch was bigger than 

one pixel ensures that GPS imprecision would cause no confusion about the identity of the vegeta-

tion structure class could arise. For this reason, no random sampling technique has been chosen. 

Later, the photos were analysed to come to a qualitative description of every vegetation class. It 

should be noted that the photos made have not captured every possible variation inside the vegeta-

tion structure classes and should therefore not be used as absolute reference. Also, the photos could 

be shot several years after the point cloud acquisition, which might cause differences between the 

expected and observed vegetation. However, it is assumed that these photos give a proper indication 

about the general structure of the vegetation classes.  

 

In this section I will try to identify the characteristics of the vegetation structure type by photo inter-

pretations. For some photos a fish eye lens was used in order to catch the understory and the canopy 

as well in one photo. Sometimes multiple photos were stitched together into one photo using ICE 

(Image Composite Editor)7. The name of the vegetation class mentioned are the ones given before 

the field visitation and described in paragraph 2.4. However, one should always be aware that the 

names are indicative.  

                                                           
7 http://research.microsoft.com/en-us/um/redmond/projects/ice/ 

http://research.microsoft.com/en-us/um/redmond/projects/ice/
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  Figure 27: Validation areas: Veluwezoom (upper) and Wageningen area (lower). Point labels are the names of the 
photos.  Grid lines are according to ‘rijksdriehoeksstelsel’ 
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Class 1 - ‘Low vegetation’ 

This vegetation type is characterized by the presence of only very low vegetation. On 

figure 28 and 29 it is shown that this can be grass landscapes or moors.  

   

Figure 28: Point W15 

 

Figure 29: Point VZ5 
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Class 2 - ‘Mixed vegetation, high and low’ 

This vegetation class is showing much variation in vegetation structure. Several 

photos are made of this class and all show much variation in vegetation heights. All 

locations though have to a certain extent vegetation in the lower layers. At figure 30 

there are many blue berries and other low bushes, while figure 31 is showing much 

grass.  

 

Figure 30: Point V3 

 

Figure 31: Point V7 
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Class 3 - ‘Small trees with some understory’ 

This class is rare and patches of this class are in general small. This class is also unique 

in its appearance compared to the other classes. The vegetation height seems to, in 

general, not exceed the 6 meter, and at this particular spot there is a lot of bramble 

(figures 32 and 33). This would result in relative high point density values in some 

lower layers. According to the vegetation profile, this would be the 1-5 meter layer, 

which seems to fit. At this particular spot the vegetation had a very open structure and 

many insects and flowers could be found as well. It should be noted though that the 

openness at this spot cannot be extrapolated to all areas with this vegetation class, 

since the method used is openness insensitive. 

 
Figure 32: Point W13 

 
Figure 33: Point W12 
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Class 4 - ‘High trees with little understory’ 

Figure 34 shows high pine trees with mainly leaves in the top of the high canopy, 

which explains the relative high contribution of the 10-20 point density layer 

compared to the other layers. At other locations this class gave similar photographs. 

 

 
Figure 34: Point W14 
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Class 5 - ‘Middle trees with little understory’ 

All photos of this class were consisting of small pine trees (generally not much higher 

than 10 m). Understory was almost not present at this location (figure 35). 

 

 

Class 600 - ‘No or very low vegetation’ 

The character of this class can easily be defined by looking at aerial pictures. Figure 36 shows that 

grasslands and agricultural soils are in general defines as ‘no or very low vegetation’. If no object or 

vegetation is present, a pixel will have become this vegetation class. 

Figure 36: Two maps showing the same area. The left map origins from the ArcGIS base map. The right map is the 
vegetation structure raster. Grid lines are according to the ‘rijksdriehoeksstelsel’. The area is west of Giessenburg, 
The Netherlands 

Figure 35: Point V8 
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Class 6 - ‘Very high trees’ (merged with class 4 later) 

This class has high trees which contains sometimes some smaller vegetation. It seems 

to be coniferous in all cases. Low vegetation was generally barely present (figure 37), 

but in figure 38 low ferns are present. 

 

 

Figure 37: Point V9 

 

 
Figure 38: Point V10 
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Class 7 - ‘Bushy, mid’  

High trees were present in this class, but the lower vegetation / understory was much 
more dominant. Seedlings, low trees and a lot of ferns sometimes were present as well 
(figures 39 and 40). This is also in line with the vegetation profile of this class. 
 

 
Figure 39: Point V1 

 

 
Figure 40: Point V2 
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Class 8 - ‘Bushy, low and high’ 

This class had always much understory (figures 41 and 42). At the locations of the 

photos there were always blue berries bushes present which probably explain the high 

point density in the first, and perhaps the second, layer. Furthermore, there seemed to 

be more leafs/vegetation in the height layer between 1 and 8m, compared to class 4 

or 5. A better name of this class would probably be ‘trees with much understory’. 

 

 
Figure 41: Point V6 

 

 
Figure 42: Point V4 
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Class 9 - ‘Bushy, low’ (merged with class 7 later) 

Only the photo at figure 43 was made of this class. It appeared to be a vine yard. Unfor-

tunately no other picture of this class is available. It can probably be said though that 

this class will mostly contain low vegetation, though in general higher than class 1. 

 

 

 
Figure 43: Point W11 

 

 

 

For a summary of the vegetation class validation, one should read paragraph 2.4. 

 

 


