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Summary 
Information on field boundaries has always been important. This information can serve as legal 

protection of ownership, as well as provide valuable input for applications related to crop 

monitoring or yield forecasting. Attributes of interest are specifically the precise location of the 

boundary and the size of the area within the boundary. This information is available in many western 

parts of the world, where land is expensive. In less developed parts of the world this information is 

as valuable to the owners of fields too, but is often lacking or incomplete. Cadastral systems there 

are often underdeveloped. Providing this information is a laborious job, requiring high skilled 

surveyors, equipped with expensive instruments. Regarding this problem this research investigates 

the possibility of using very high resolution imagery form the WorldView-2 satellite sensor to be 

processed towards the end of making this field boundary information available in a more efficient 

way. The results are verified by other data sources and methods. These include; walking the 

boundaries in the study area with a handheld GPS, imaging the area using a fixed wing Unmanned 

Aerial Vehicle (UAV) platform equipped with a CanonS110NIR camera, and manual on-screen 

digitizing. The specific study area in Sougoumba, Mali, provided large challenges in the process, due 

to the heterogeneity of the landscape. The final results show that the methodology of image 

segmentation is not accurate enough for direct extraction of the exact location of the boundaries 

and the area involved. On the other hand many boundaries are well delineated, providing a useful 

aim in already existing practises of manual on-screen digitizing.  As a side result the use of UAV’s 

equipped with lightweight cameras and (preferably) RTK positioning systems seem very promising to 

have a valuable contribution. 
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Relevance 
The relevance of this research is in the first place directly derived from the need of the “Spurring a 

Transformation for Agriculture through Remote Sensing” (STARS) project, to do research on the 

possibility to use Very High Resolution (VHR) satellite imagery for extracting field boundary 

information. However other parties, like the scientific community in general, could be interested in 

the applied methodology and found results as well. In the end, hopefully, the local farmers in the 

study area will benefit, since information about their fields is related to their agricultural 

management practises. The following two paragraphs are literally derived from the STARS project 

proposals, and give a good explanation on the relevance of this research topic, being: semi-

automatic detection of field boundaries from high-resolution satellite imagery, using a case study in 

the area just North of Sougoumba, in Mali. 

Remote-sensing and spatial information systems are revolutionizing agriculture but there are 

significant barriers to adoption in poor countries and this is adversely affecting smallholder farmers. 

The Spurring a Transformation for Agriculture through Remote Sensing (STARS) project aims to 

overcome these barriers. STARS is a coordinated set of activities, designed to learn, identify 

opportunities and challenges, and test hypotheses around the potential exploitation of remote 

sensing technology in improving the productivity of crop-based smallholder production systems and 

livelihoods of smallholder farmers in sub-Saharan Africa and South Asia. Monitoring smallholder 

production systems through existing remote sensing techniques is highly challenged by: the 

substantial heterogeneity in crops, soils, farm practices, and climatic conditions; the often small and 

ill-defined farm plots, holding multiple crops and undergoing variable types of crop management; 

and also by data accessibility and availability issues, especially for high-resolution data. STARS thus 

aims to establish an evidence-base to set investment priorities and scale the use of remote sensing 

in support of smallholder productivity growth and economic development. 

The lack of transparent land tenure information systems seem to be a key deterrent to sustainable 

investment in land resources by smallholders, communities and the local private sector, and 

disempowers them both in their current internal transactions and in transactions with urban and 

international investors. Therefore, the STARS project targets the provision of a sustainable, 

subscription-based rural land tenure information service supported by very high-resolution satellite 

imagery. This service will allow local governments and their constituencies to accelerate the rural 

cadastre production process, eventually leading to the ability to raise levies in exchange for land 

tenure securement tools and use. Smallholders will capitalize on increased tenure security to invest 

in more sustainable land management practices, eventually leading to higher, and more sustainable 

agricultural productivity. Agro-dealers will rapidly benefit from information about the distribution of 

land assets and farm typologies at the community scale, and will valuate that information base to 

connect smallholders to input/output and financial markets (e.g. fertilizer retail, micro-finance). This 

improved market integration will progressively capacitate smallholders to satisfy commercial 

demand for food products, particularly from growing urban areas, and to derive new sources of 

income for enhanced livelihoods. 

Using data obtained by state of art technology like the Very High Resolution (VHR) satellite sensors 

and Unmanned Aerial Vehicles (UAVs), hopefully a significant step forward can be made to meet the 

aim of the STARS project. At the same time the methods applied, as well as the results, of this 

research could benefit other parties having a similar interest in the aims of the project and research 

or in the methods and technology used. 
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1 Introduction 
Food security is of high importance on the global agenda, taken into account the increasing demand 

for food for the increasing world population. Land administration is directly related to food security 

(Bennett et al., 2012, Deininger, 2003, Dekker, 2006, Dekker, 2003, Dekker, 2001, Enemark et al., 

2010, Rockson et al., 2013). However land administration faces many challenges depending on 

development stage of the economy and historical land tenure arrangements (Bogaerts and 

Zevenbergen, 2001, Rajabifard et al., 2007, Williamson and Ting, 2001). Ideally, a parcel based and 

up-to-date land information system would be containing a record of interests in land (e.g. rights, 

restrictions and responsibilities). It usually includes a geometric description of land parcels linked to 

other records describing the nature of the interests, and ownership or control of those interests, and 

often the economic value of the parcel and its improvements in this respect. Land administration 

systems may be established for fiscal purposes (e.g. valuation and equitable taxation), legal purposes 

(conveyancing), to assist in the management of land and land use (e.g. for planning and other 

administrative purposes), and enables sustainable development and environmental protection 

((Williamson and Ting, 2001). Many initiatives have been carried out by the International Federation 

of Surveyors (FIG) and the UN Economic Commission for Europe on development of well-functioning 

cadastral systems (Steudler et al., 2003). These studies cover a large range of different land 

administration issues, even though they all have their own specific objectives. As demonstrated by 

Burns et al. (2003), there is little systematic discussion of the key elements of such a system and of 

what constitutes effectiveness within particular socio-economic, cultural and temporal contexts 

despite the significant resources being invested by donor communities for modernising land 

administration infrastructure. Though this problem is faced by both developed- and less-developed 

countries, through all times and by different cultures, some fundamental issues remain the same. 

Whether it is in deeds for land registration, or on cadastral maps, the unit of land that makes up a 

certain property (parcel) has to be defined and identified. A parcel is defined by indicating the 

‘boundaries’. In some countries, notaries want to do this with a full written description of these 

boundaries within every deed. Such descriptions are cumbersome and make it hard to compare if 

two deeds apply to unrelated parcels, to adjoining parcels, or even to the same parcel. Land 

surveyors on the other hand, measure the ‘boundaries’ and put them on a (cadastral) map. When 

both ways are used in regard to the same parcels, often, they do not match (Dale and McLaughlin, 

1988). As an example Maynard (www.boundary-problems.co.uk) explains on his extensive and 

informative website on this topic: “Land Registry compiles and maintains a register of titles to land. 

That register is, to put it at its simplest, a selection of some of the information submitted to Land 

Registry by applicants who are obliged to register their titles to land.” Land Registry has traditionally 

exercised little or no control over the accuracy of the information submitted to them, insofar as it 

affects the positions of boundaries. But exactly this accuracy on the position is of interest for owners 

of parcels, to prevent disputes and establish security in land ownership, increasing investments and 

production. At the same time accurate information on boundaries could provide input for 

information systems regarding crop monitoring and yield forecasting. 

The basic aim of Land administration systems is to improve security of tenure and access to land 

(Lengoiboni et al., 2011). Tenure security has a marked effect on expectations of a return on an 

investment of both labour and capital. Many development thinkers have attributed the weakened 

incentives to invest in smallholder agriculture to the absence of security of tenure to land ownership 

(Bruce and Migot-Adholla, 1994, Feder and Noronha, 1987, Rukuni et al., 2000). Rukuni et al. (2000) 

argue that the inability of smallholder farmers to use “their” land as collateral to borrow the much 

needed short and long term credit for investment in agriculture denies most of them access to 

technology (hybrid seed, fertilizer, equipment etc). This in turn can lead to low productivity and 
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unsustainable practices. Tenure security is also considered an important precondition for increasing 

land- based economic development and environmentally sustainable natural resource use (Bruce 

and Migot-Adholla, 1994). The core of land administration and tenure security is cadastral 

information and agreements on location of property boundaries. 

Land surveying has a long history in registration of data on property boundaries. Earliest examples 

from the Egyptians date back to 2700 BC (landsurveyors.com). Although the fundamentals of land 

surveying haven’t changed, and the purpose is still the same, the techniques and methods have 

evolved drastically since the beginning of the history of land surveying. Generalising the current 

methods can be split in three parts; ground based surveys, aerial surveys and satellite based 

surveying.  

Field surveys are undertaken by ground teams using surveying techniques and instruments. 

Common techniques for field surveys include the use of plane tabling, sight rule, optical square, 

chain or steel measuring tapes. Nowadays Tachometers or total stations are being used. Recently, 

GPS is frequently used to determine the position of points on the ground. The principles and 

procedures of these methods differ significantly. The method chosen depend upon the accuracy 

required and the time and financial constrains that exist within an organisation (Lemmens, 2011). 

The field survey method is quite accurate where most of the calculations are carried out in the field. 

But it involves tremendous amount of time and resources including a large number of well-trained 

surveyors for a countrywide implementation. Therefore, it is needed to find more simple and low 

cost technologies to reduce the time and cost to complete cadastral survey and mapping for a 

country. 

Aerial surveys from large-scale aerial photography offers a rapid and cost effective means of 

extracting topographic and cadastral information for mapping (Barnes et al., 1994). Harvey and Hill 

(2001) estimated that aerial photographs make a very useful data source due to their textural 

features and superior spatial resolution. Although aerial survey is a best alternative to field survey, 

sometimes it is impossible in many countries when there are restrictions for taking aerial 

photography due to military security reasons in the area to be surveyed. Aerial photography is also 

highly dependent on weather and climatic conditions. Juppenlatz (1991) identified that the 

conventional aerial photogrammetric method, the production of air-photos, and the resulting maps 

are so costly that certain budgets can neither raise money nor justify such expenditures. Because of 

the cost of acquiring data and the time involved in processing many aerial photographs, the use of 

satellite imagery appears to be the most feasible technology to adopt for cadastral surveying. 

Problem definition 
Satellite images constitute one of the vital elements in providing many of the much-needed spatial 

inputs to digital cadastral maps. The fact that Remote Sensing (RS) imagery is in digital form so that it 

could be zoomed at any required scale making it a fundamental tool, quicker, and cheaper as 

compared to aerial photographs (Kalande and Ondulo, 2006). RS images covering wide areas can be 

achieved more repeatedly and economically compared to aerial photos (Ali et al., 2012). The use of 

RS images also plays an important role for extracting and updating land related information. One 

advantage of using RS images is that they provide a historical record that can be revisited in the 

future to see what changes have taken place. Historical images can provide valuable evidence where 

conflicts occur in parcel boundaries (Steudler et al., 2004). In this way, RS imagery can be used as an 

alternative to traditional land surveying approach for spatial data acquisition where most 

measurements can be done from the office (Tuladhar, 2005). 
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Nowadays drones or unmanned aerial vehicles (UAV’s), also play a role in surveying. Colomina and 

Molina (2014) provide an extensive overview on the use of UAV for photogrammetry and remote 

sensing. Their overview contains at least nine references to examples of cadastral purposes and 

surveying of which some of the listed authors argue that it is an advantageous alternative to 

traditional surveying, and even better suits the needs of the user. In a short article on their website 

GIM International state that: “the emergence of small, affordable unmanned aerial system (UAS) 

technology and recent advances in highly automated mapping techniques offer a new tool and 

methodology for producing faster and cheaper spatial data that can benefit land administration 

agencies and help to secure property rights for millions around the world.” They relate these 

advantages to four key-principals defined by a collaboration between the World Bank and the 

International Federation of Surveyors (FIG): general boundaries rather than fixed boundaries, aerial 

imageries rather than field surveys, accuracy relates to the purpose rather than technical standards, 

opportunities for updating, upgrading and improvement. The principals are defined by both parties 

to come to land administration designed to meet the needs of people and their relationship to land, 

to support security of tenure for all and to sustainably manage land use and natural resources. 

Though the technical possibilities are in place, still large areas of the world (and specifically less 

developed parts) lack cadastral information, containing records of parcels’ location, size, and 

ownership. It is widely accepted that this information would be beneficial for development in 

economic and social terms. Therefore it is of interest to investigate efficient methods to obtain this 

lacking information. Making use of very high resolution (VHR) satellite images large areas can be 

taken under investigation, but do these images contain the right information to be useful in 

cadastral context? UAV’s have already proven to be useful in this field, but they have limitations and 

disadvantages too. In this thesis these problems will be addressed, focussing on how remote sensing 

can aid in parcel boundary delineation and extraction. 

Objective and Research Questions 
The aim of this thesis is to develop a semi-automatic method for field boundary detection to support 

land information systems in areas with smallholder farming systems. The objective is to evaluate 

accuracy of field delineation based on remotely sensed imagery in a challenging example case 

located near Sougoumba, Mali within a heterogeneous savannah landscape.  To this end the 

following research questions will be answered in this research. 

1. In what ways is remote sensing information related to parcels and boundaries? 

2. Which methods could be used in extracting parcel and boundary information from remote 

sensing images? 

3. What is the accuracy of the new method compared to the existing methods? 

4. What are the possibilities to apply this method on a larger scale? 
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2 Literature review 
This chapter contains a brief overview on findings in scientific literature related to the current state 

of using VHR satellite imagery for boundary delineation, defining the term field boundary, the use of 

UAV’s for cadastral mapping, edge detection methods in remote sensing imagery, background 

information on different vegetation indices, and as last topic, the use of segmentation techniques in 

Object Based Image Analyses (OBIA). 

Field Boundaries 
Information on these field boundaries play a very important role in a variety of agricultural 

applications like crop classification, yield-forecasting and precision farming (Jain et al., 2013, Seelan 

et al., 2003). However the interpretation of “field boundaries” can differ according to the reference 

of the interpreter. In this thesis, initially the interpretation was related to ownership boundaries. 

Being able to process satellite imagery towards the end of extracting ownership field boundaries, 

would be extremely useful for many cadastral purposes. However after a field visit to the study area 

in Mali, it became clear that these boundaries in this area are virtual and not sensed by any satellite 

or other sensors. The definitions on the words ‘field’ and ‘boundary’ according to the Oxford 

Dictionary make this problem clear: Field, “the field an area of open land, especially one planted with 

crops or pasture, typically bounded by hedges or fences”. Boundary, “line which marks the limits of 

an area; a dividing line.” In the study area in Mali the typical hedges and fences do not apply. In this 

case ‘fields’ would be more related to land-use and crop type, while ‘boundaries’ would represent 

the edges features where change in these types occur. Some similar conclusion is drawn by Ji (1996): 

a field can be seen as a basic unit that is used to represent land surface features in various thematic 

mapping practises. And field boundaries can be seen as linear edge features appearing on an image 

that are characterized as where grey values undergo abrupt changes along a particular direction. 

VHR Satellite imagery 
Zahir (2012) in his study introduces the use of VHR satellite panchromatic/colour imagery and a 

handheld GPS navigation receiver to develop a method for cadastral surveying through onscreen 

digitization techniques. His study shows that the cost and time can be reduced to its half if the 

cadastral maps are generated using his newly developed technique. Rydberg and Borgefors (2001) 

present a multispectral segmentation method for automated delineation of agricultural field 

boundaries in digital imagery. Edge information from a gradient edge detector is integrated with 

region growing, where the multispectral information from all selected image bands is utilized in both 

procedures. In this way, information from several spectral bands (and/or different dates) can be 

used for delineating field boundaries with different characteristics. This is particularly important for 

agricultural applications, where multi-date information is necessary to differentiate between, crops, 

bush, trees and roads. Rydbergs’ results show that the lower resolution Landsat TM images are 

easier to delineate than the higher resolution SPOT images due to lower spectral variance between 

adjacent pixels. As Evans et al. (2002) proved in their work, that Landsat imagery could be used to 

delineate field units, the sensors used in this research provide even better spatial and spectral 

resolution to make for example distinction between reflectance values in crops and bare soils. And 

with the use of the difference in temporal resolution, even changes in land cover throughout the 

growing season can be detected. Research done by Begue et al. (2014) shows that specifically in 

Mali, the Start of Season delay between croplands and rangelands varies. This phenomena could be 

used in extracting field boundaries from the satellite imagery. 
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UAV for mapping purposes 
The use of unmanned aerial vehicles equipped with remote sensing devices is increasing the last 

years. Colomina provides a good overview of the developments in this direction and the different 

purposes, to use these platforms. (Colomina and Molina, 2014). Examples include cadastral- and 

agricultural purposes as well (Manyoky et al., 2012, Huang et al., 2013, Cramer et al., 2013b, Bendig 

et al., 2012). High resolution images which are generated into ortho-photos made by a UAV System 

are at least as good as conventional terrestrial surveying methods. Experiment showed geometrical 

accuracies above living areas with a maximum of 3 cm. It makes ortho-photos useful for using them 

in the cadastral verification of ownership(Cramer et al., 2013a). Though the spatial, spectral and 

temporal resolution of the carried sensors are often high (Matese et al., 2015), the maximum area of 

operation is rather limited to a few square kilometres (sensefly.com, quantum-systems.com). 

According to Mesas-Carrascosa et al. (2014) land plots and their characteristics (i.e. size, shape, and 

land use or border conditions) could be well derived from UAV ortho-photos with good accuracy. 

Diaz-Varela et al. (2014) proved in their case study that UAV imagery can provide accurate elevation 

models. This elevation data could be well used to adjust for the terrain induced offset in VHR 

satellite images. Manyoky et al. (2012) in their paper on the use of UAV for cadastral applications, 

present good accuracies in cadastral surveying use UAV imagery. They list the advantages of the 

extra information the UAV images contain, the flexibility in temporal resolution, and the possibility 

to generate 3d. However, they also state in their conclusion: “In order to decrease the complexity of 

data processing the development of an efficient workflow for data analysis of the images is needed. 

This includes appropriate software packages as well as reliable automation of image orientation and 

geometry measurement. This way time effort and business profitability can be improved”. 

Edge Detection methods 
For many years already filtering techniques are studied with the purpose to find and evaluate the 

performance of edge detection methods for digital imagery. Well known edge detection filters are 

Sobel, Prewitt, Roberts, Laplacian and Canny edge detectors (Canny, 1986, Maini and Aggarwal, 

2009, Maini and Sohal, 2006, Roushdy, 2006, Senthilkumaran and Rajesh, 2009, Zhao et al., 2006). 

From these studies it becomes very clear that under most circumstances the Canny Edge filter 

performs well. However the use of simpler filter like a Prewitt one, allows faster computations and 

this filter type can easily be adapted in size. 

Vegetation indices 
One of the most common vegetation indices is called the Normalized Difference Vegetation Index 

(NDVI). Calculations of NDVI for a given pixel always result in a number that ranges from minus one 

(-1) to plus one (+1); however, no green leaves gives a value close to zero. A zero means no 

vegetation and close to +1 (0.8 - 0.9) indicates the highest possible density of green leaves. Very low 

values of NDVI (0.1 and below) correspond to barren areas of rock, sand, or snow. Moderate values 

represent shrub and grassland (0.2 to 0.3), while high values indicate temperate and tropical 

rainforests (0.6 to 0.8) (Barati et al., 2011). However, in sparse vegetated areas, the reflection of soil 

and sand are much higher than reflection of vegetation and so detection of vegetation cover 

reflection is difficult. Therefore, soil reflectance adjusted indices such as the Soil Adjusted Vegetation 

Indices (SAVI), had been developed in the past (Huete, 1988). 

OBIA and Segmentation 
In the scientific research community, there are many pro’s for Object Based Image Analyses 

compared to the more traditional pixel based analyses. Laliberte and Rango (2009), as well as, 

Turker and Kok (2013) successfully applied OBIA and segmentation techniques to delineate fields in 

dryland areas. This advocates the use of segmentation techniques for the purpose of this research. 
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Traditional pixel-based image classification approaches are poorly suited to VHR satellite imagery 

because within-class spectral variation increases with increased spatial resolution (Schiewe et al. 

2001, Aplin 2006). Object-based image analysis (OBIA) arose through the realization that image-

objects hold more real-world value than pixels alone (Fisher 1997, Blaschke and Strobl 2001, Smith 

et al. 2007). And representation of the world in terms of discrete objects better satisfies human 

understanding (Goodchild et al. 2007). The most critical step in OBIA is the creation of image-objects 

through the aggregation of pixels by image segmentation. Segmentation is the process of dividing 

remotely sensed images into discrete regions or objects that are homogeneous with regard to 

spatial or spectral characteristics (Ryherd and Woodcock 1996). The segmentation process reduces 

the within-class spectral variation of VHR imagery, and can increase the classification and statistical 

accuracy if conducted at an appropriate scale (Blaschke 2003, Addink et al. 2007, Dragut 2010). 

Especially in the presented heterogeneous landscape setting, the mean spectral response of a 

heterogeneous field could successfully characterize the land cover of a number of semi-natural 

fields. For example, a per-pixel classification of a field can produce very heterogeneous results, 

because of high frequency variation in the spectral response. Where a per-field classification can 

produce a more confident result, because spectral heterogeneity was averaged by the mean spectral 

response. This advantage of segmentation and OBIA over per pixel based analyses is well explained 

in the work of Dean and Smith (2003). The process of image segmentation involves the delineation 

of an image into spectrally and spatially related partitions. These partitions can subsequently be 

labelled as to basic cover-types, e.g. shrub, hardwood, conifer, agriculture, urban, water, and 

species-level vegetation types. Essentially, the process of segmentation computes differential 

boundaries around spectrally homogenous landscape units, which can, in turn, be labelled (Riley et 

al., 2002). Image segmentation relies on spectral pattern and spatial arrangement of the image data 

to define patches of homogenous and continuous land-cover condition. The image analyst controls 

the spectral variance, shape and size of the resulting image segments or ‘regions’ through the 

definition of spectral and spatial threshold parameters. The desired segmentation output is a 

continuous set of regions that meet or exceed the required minimum map unit, delineate unique 

land cover conditions and separate homogenous from highly variant conditions within similar land 

cover types (Riley et al., 2002). 
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3 Methodology 

Study area 
The study area is located in Mali, in Western Africa (figure 1). It covers an area of approximately 30 

square kilometres (12°13.003’N 5°13.676’W to 12°10.411’N 5°9.871’W). The landscape is very 

heterogeneous with respect to soils, highly variable plant growth, small field sizes, mixed cropping 

systems, variable stand densities, variable planting dates, and trees present in nearly all fields. 

Elevation differences found in the area are within a range of 30 meters. The area is divided into two 

parts, a plateau and a floodplain area. The average elevation on top parts of the plateau is around 

430 meters. In the south-western and lowest part of the area the average elevation is close to 400 

meters. The mineral soils contain low organic matter content, and a large part of the area is covered 

with rock. The main crop types in the area are Sorghum, Millet, Maize, Cotton and Peanuts. The area 

is covered with an abundance of individual trees. Precipitation is around 900 mm per year, with a 

dry period from November till March. 

 

Figure 1: WV-2 image delineating the study area in Mali 

Field Work 
The study area was visited from half September to half November 2014 to acquire information on 

field boundaries in the area by talking to farmers, taking pictures, and operating an UAV to take 

pictures over the study area. During this visit a lot of information was gathered on the actual 

situation on the ground related to the landscape, field boundaries, farm systems and agricultural 

practises. Several farmers where interviewed and from three farmers, their property boundaries 

were visited and measured by walking together with the farmer, following the border on the 

directions of the farmer. During the walk a Garmin Summit HC handheld GPS recorded the track in 

waypoints. It became soon apparent, while visiting the area, that property boundaries in this area 

are ‘virtual’ and cannot be sensed by any satellite or other sensors. In the study area in Mali typical 
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hedges and fences do not apply. There is a division of areas, but the dividing line is not visible and 

only known to local farmers.  

Overview methodology 
Taken into account this issue and in order to answer the research objectives it was decided to focus 

on determining the individual parcels. This would provide valuable information for land 

administration and crop monitoring purposes. The method used to derive parcel information relies 

on change in spectral and textural behaviour of the different landscape elements like trees, rock, 

soil, bush and cropland through time. A key-role in this process was the use of the NDVI and SAVI 

derived from WorldView-2 images. The flowchart in figure 2 present an overview of the followed 

process which is further explained in the continuing part of this chapter. 
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Figure 2: Flowchart of the methodology 
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Input Data 
A total of 8 VHR satellite images were available of 2014 over the study area, from the sensors Geo-

Eye 1, QuickBird and WorldView-2 (table 1). However a selection had to be made since some images 

contained clouds over the study area, making it impossible to use them for analyses and extracting 

field boundaries. One image lacked the necessary metadata to convert digital numbers to radiance 

and reflectance values. While another images had an incomplete panchromatic image, making pan 

sharpening impossible.   

Acquisition date Acquisition start time Satellite ID Band id Level problem 

01/05/2014 11:09:23 GeoEye-1 Multi LV3D no metadata 

22/05/2014 11:10:53 WorldView-2 MS1 LV3D   

26/06/2014 11:19:45 WorldView-2 MS1 LV3D   

29/07/2014 11:02:55 WorldView-2 MS1 LV3D cloud cover 

26/08/2014 10:24:54 QuickBird Multi LV2A cloud cover 

04/10/2014 10:29:07 QuickBird Multi LV2A   

18/10/2014 11:14:38 WorldView-2 MS1 LV2A   

14/11/2014 11:15:58 WorldView-2 MS1 LV2A no panchromatic band 
Table 1: overview of the available VHR satellite imagery 

Although the use of data from different sensors can help to fill gaps in spatial and temporal 

coverage, it also has disadvantages (Tarnavsky et al., 2008, Duveiller and Defourny, 2010). Examples 

mentioned are differences in spatial variability between multiscale Normalised Difference 

Vegetation Index (NDVI) products that are due to spatial- (nominal pixel size, point spread function, 

and view angle) and non-spatial components, (sensor calibration, cloud clearing, atmospheric 

corrections, and length of multi-day compositing period). To avoid these problems influencing the 

end result, finally only three WorldView-2 scenes over the study area were used as provided by 

Digital Globe. The images where acquired over the study area on 22nd May, 26th June and 18th of 

October 2014, respectively representing the start, midst and end of the growing season in local 

agriculture. The WorldView-2 spatial resolution for the Pan-chromatic band is: 0.46 meter at nadir, 

and 0.52 meter at 20° off-nadir. And for the Multispectral bands: 1.85 meter at nadir, 2.07 meter at 

20° off-nadir. The geo-positional accuracy is claimed to be demonstrated less than 3.5 meter CE90 

without ground control usage. The spectral range for the Pan-chromatic band is: 450 - 800 nm. While 

for the multispectral part the range for the Red band is 630 -690 nm and for the NIR-1 band: 770 - 

895 nm (table 2). The metadata of the images used can be found in appendix 1-3. 

WorldView-2 Satellite Specifications   

Imaging Mode Panchromatic Multispectral 

Spatial Resolution 0.46 meter GSD at Nadir 1.85 meters GSD at Nadir 

  0.52 meter GSD at 20 
degrees off-Nadir 

2.07 meters GSD at 20 degrees 
off-nadir 

Spectral Range 450-800 nm 400-450 nm (coastal) 

    450-510 nm (blue)* 

    510-580 nm (green)* 

    585-625 nm (yellow) 

    630-690 nm (red)* 

    705–745 nm (red edge) 

    770–895 nm (near IR-1)* 

    860-900 nm (near IR-2) 

* indicate the actual bands used   
Table 2: WorldView-2 sensor specifications (source: Digital Globe) 



17 

 

Pre-processing 
The WorldView images where Pan-sharpened using the Gramm Schmidt technique. In general this 

technique is used to integrate the geometric detail of a high-resolution panchromatic (Pan) image 

and the colour information of a low-resolution multispectral (MS) image to produce a high-

resolution MS image. This technique is particularly important for large-scale applications (Zhang, 

2004). Different methods are available to perform pan-sharpening, each method with specific 

advantages for the purpose at hand, and the specific satellite sensor used. Specific research with 

images from Quick Bird and WorldView-2 sensors (Alimuddin et al., 2012, Sarp, 2014) show that the 

Gramm Schmidt method has a very high user accuracy for WorldView-2 imagery. Details on the 

algorithms used can be found in the work of Laben and Brower (2000). 

Next, the three images were geo-registered to each other. Though all images were from the same 

sensor and provided by the same company, the images showed differences is the geo-position of 

objects, when comparing for example the same asphalt road or other build-up features in the three 

images (figure 3).  The registration was done using the adjust transformation in ArcMap. For well-

defined orbital geometry parameters this registration can be achieved using predefined 

transformations which model the aspect, skew and rotational distortions of a sensor. However, not 

all possible causes of geometric distortion can be modelled using these predefined transformations, 

therefore a more general approach was required by register the images to each other. The image of 

22nd of May was used as reference, since this image was a level 3 processed product, being already 

ortho-rectified based on a “fine DEM” by Digital Globe. Counting the amount of pixels, from markers 

on distinct features in the reference images, to the position in the target images, indicated 

improvement, with an estimates result of 4 to 6 pixels. This corresponds with 2 to 3 meters. This was 

confirmed by a visual check on marked silo’s in the images (figure 3).  

 

Figure 3: result of registering the VHR images. Top left: reference image. Top right: scene before referencing. Bottom: same 
scene after registration. 
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Processing 
As a first step, in order to derive vegetation indices, the Digital Numbers (DN) of the images had to 

be converted to reflectance values. This was done in ArcMap using the apparent reflectance raster 

function, which takes into account the sun-elevation and the gain- and bias value per band, to 

calculate the reflectance at the surface. The input parameters are automatically derived from the 

IMD metadata files of the images. 

From the reflectance images the NDVI’s could be derived. This is perhaps the most wide known 

vegetation index. This index is using the big difference in reflectance of green vegetation between 

the Red and the NIR part of the spectrum. The NDVI is calculated according equation 1: 

𝑁𝐷𝑉𝐼 =
( 𝑟𝑒𝑓𝑙. NIR −  𝑟𝑒𝑓𝑙. Red)

( 𝑟𝑒𝑓𝑙. NIR +  𝑟𝑒𝑓𝑙. Red)
 

Equation 1 

This index is commonly used to indicate the amount and vigour of vegetation in an image and to 

differentiate vegetated and non-vegetated areas. 

However due to the low plant density in many fields within the study area, the contribution of the 

underlying soil to the reflectance signal has to be considered. For this reason, the Soil Adjusted 

Vegetation Index (SAVI) images were derived based upon the same input reflectance images. The 

SAVI is an extension or addition to the NDVI. The SAVI is calculated according equation 2: 

𝑆𝐴𝑉𝐼 =
(𝑟𝑒𝑓𝑙. 𝑁𝐼𝑅 − 𝑟𝑒𝑓𝑙. 𝑅𝑒𝑑)

(𝑟𝑒𝑓𝑙. 𝑁𝐼𝑅 + 𝑟𝑒𝑓𝑙. 𝑅𝑒𝑑 + 𝐿)
∗ (1 + 𝐿) 

Equation 2 

It is known for minimizing the effects of soil background on the vegetation signal by incorporating a 

constant soil adjustment factor L in the denominator of the NDVI equation. The L parameter value 

ranges from 0 for very high vegetation cover to 1 for very low vegetation cover. 

Principal Components Analysis (PCA) was applied on the 3 stacked NDVI images as well as on the 

SAVI stacked images. PCA is often used as a method of data compression. It allows redundant data 

to be compacted because the data is reduced. The resulting components of PCA data are non-

correlated and independent, and are often more interpretable than the source data. It is proven to 

be especially useful in the analyses of time series (Celik, 2009, Li and Yeh, 1998) since it has the 

power to reduce error resulting from overlaying different time stamped images and removes 

redundancies. This could hopefully create separate classes for non-, low-, medium and high dynamic 

features with respect to change in NDVI and SAVI through time. Which than could be for instance 

related to manmade, bare soil, trees and cropland preferably. In appendixes 4 to 7, the text file 

produced by the principal components analyses can be found. 

To mask out the trees, which can be found in nearly every field within the study area and stay green 

almost all year, an extra processing step was applied to create a mask from the NDVI-PCA result. This 

was done by performing an automatic unsupervised iso clustering method in ArcMap. The PCA 

image was clustered in 40 classes with a minimum class size of 100 pixels, and based on 10 iterations 

as sample interval per class. The thematic result (appendix 8) was reclassified (based upon visual 

interpretation) by grouping the 40 classes into two groups: either agricultural field or other class. 

The “other” class was assigned NoData value, in this way the result could be used as a mask. 
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The mask was applied to extract cells from the NDVI- and SAVI stack. On the results PCA was applied 

again, but now most of the trees and rock formations were not taken into account by this analyses. 

Which hopefully would in the end yield a better result in distinguish differences between fields, as 

the level of disturbing data in this process was reduced. 

With the purpose to find and evaluate the performance of edge detection methods for digital 

imagery, Prewitt filtering techniques were applied on the NDVI stack, the NDVI-PCA result and on 

the masked NDVI-PCA result. The use of simpler filter like a Prewitt one, allow fast computations and 

this filter type can easily be adapted in size. Two kernels were created with the size of 3 x 5 pixels, 

one in the horizontal- and the other in the vertical direction. These filters were applied on the 

images, resulting in two filtered images per input image. The horizontal and vertical image were 

combined per set by taken the root mean square of their summation. This provides images 

containing boundaries highlighted with values close to one, and homogenous areas (often) fields 

with values close to zero. 

Image segmentation was applied on the results of different processing steps in order to see the 

effect of the processing steps on the segmentation result. Following this method the difference 

between single- versus multiple scenes as input could be evaluated. As well as the differences using 

the NDVI and SAVI indices. Also the effect of applying the PCA step and the masked PCA result could 

be separately evaluated regarding the effect on the segmentation result.  The segmentation process 

was used because it is known to reduce the within-class spectral variation of high resolution 

imagery, and can increase the classification and statistical accuracy if conducted at an appropriate 

scale. (Blaschke, 2010, Addink et al., 2007, Drǎguţ et al., 2010). In general this method considers 

spectral content as well as the segment's texture, size, and shape for merging decisions, and 

provides direct control over the pixel/segment ratio, and allows both minimum and maximum 

segment size constraints. Lambda Schedule (FLS) Segmentation was used for this research as 

provided in Erdas Imagine 2014, as this program allows the user to relatively easily control the 

parameters of the segmentation process. The segment ratio of the pixel determines the average 

output size of the segments and was set to 3000 pixels, which approximates the size of a common 

small field in the study area. The spectral content was considered important as well as size. 

Therefore these parameters got a weight of 0.9 on the scale from 0 to 1. The parameter for texture 

got a value 0.9 too, in order to take full advantages of all information from the images. The shape 

parameter value was kept low being 0.1, putting the emphasis on colour differences, because the 

different features in the landscape could have virtually any shape, ranging from highly symmetric- till 

non symmetric shapes. The resulting images were converted to polygon shape files, using Erdas 

Imagines 2014 standard procedure to convert raster to shape file. 
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Assessing accuracy 
To assess the accuracy of the methodology used, the resulting polygons were compared with 

reference data. The STARS project provided a data set of over 40 field boundary polygons in the 

study area of 2014 (figure 4). These boundaries were created based on GPS track information, from 

people walking these boundaries holding a GPS device and recording the tracks. This set contains 

also information on the crop type on these fields as well as the name of the owners in 2014. This 

sets polygons’ spatial information was used to identify the same locations within the ‘to be’ 

evaluated results.  

 

Figure 4: STARS data set of 48 fields in the study area. Created in spring 2014 by handheld GPS measurements. 

The accuracy of the reference set based upon handheld GPS data is expected to have an accuracy of 

3 meters in geospatial position at best, due to the limitation of the devices used. Also other 

problems like tree avoiding result in less accuracy of this data set. Some striking examples can be 

seen in figures 5-8. 

Figure 6: low crop density causing vague 
boundaries 

Figure 5: random subset of a field? 
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To come to a more accurate dataset remote sensing imagery was acquired over the study area by 

means of a SenseFly eBee (fixed wing UAV), equipped with GPS and carrying a Canon S110 NIR 

camera. This UAV (figure 13) is been flown in the study area from August 2014 onwards, covering 

the same fields at an approximate two weeks interval. The altitude of the flights is 286 meters above 

the surface, which result in a ground resolution of about 10 cm per pixel in the acquired images. 

However the GPS system has an accuracy around the 3 meter at best, similar as the handheld GPS 

used by the STARS crew walking and recording the boundaries. But because of the higher resolution 

of the imagery, ground control points (GPC’s) could be well recognized. For this reason around fifty 

GCP’s were created in the field and measured on position using a total station differential GPS 

(figure 13). The GCP’s were made of bricks and concrete in cross-hair shapes, and painted white. 

After mosaicking of the eBee imagery, the mosaics were referenced to these GCP’s, to improve the 

geo positional accuracy from (around 3) meter level to sub-meter level. To obtain quality in the 

mosaics, an overlap between the acquired images of 70% sideward, and 75% in flight direction, was 

used. The mosaics were made, using the software as provided with the eBee; eMotion and Postflight 

Terra 3d. An example of the quality report of the mosaicking process in Postflight Terra 3d can be 

found in appendix 9. Using the mosaics a new reference set of field boundaries was drawn/digitized 

using ArcMap software. The on-screen digitizing of the boundaries was easier as the images are 

more detailed, sowing or planting patterns are clearly visible. However digitizing is challenging and 

laborious and mistakes are easily made, as is shown in the examples in figures 9-12. Here field 

boundaries were digitized by experts, based on a WV-2 scene from October 2012. But clearly some 

polygons overlap, leaving the exact location of the boundary unclear. Trees cause another problem, 

making it difficult to follow exact boundaries. Some boundaries seem to be forgotten while others 

seem to be drawn very inaccurate. 

Figure 8: within field boundaries? and/or 
misplaced? 

Figure 7: obstruction by trees Figure 8: within field boundaries? and/or 
misplaced? 

Figure 9: overlapping boundary polygon Figure 10: missing boundary 
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Problems with vague boundaries are encountered, due to low plant densities at the borders of some 

fields. Another problem is the exact borders of crops like peanuts. Peanut fields are covered with 

weeds and can hardly be detected between other vegetation. The result was used to compare the 

size (area in hectares) and perimeter (in meters) of the field polygons with: the STARS GPS reference 

set and with the result of the segmentation based results. 

 

 

Figure 13: Top left, the total station used. Top right, the rover on a GCP. Bottom, the eBee UAV. 

Figure 11: accuracy problem Figure 12: trees causing shape difficulties 
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4 Results 

Interviews 
The following information is directly derived from questioning local farmers in (un)official interviews: 

Land is owned by extended families. A family consists of many men, women and children. Land is 

rarely sold or bought, rented, or used as leverage. Most owners cannot read or write. Official land 

registration is a too difficult procedure. If more land is needed it is unofficial claimed from the bush, 

which will be cleared from most trees. 

Average total farmland seems around 15-18 hectares per family. Main crops are cotton, maize, 

millet, and sorghum. Besides some beans, peanuts, soybeans, rice, melon and others. Intercropping 

is not a common practise. In general the season starts with preparing the land by cutting the weed in 

April and applying organic fertilizer. Sowing would be around end of April or start of May. Harvest 

starts around late October and can last until November. Some melon is grown directly after the 

maize on the same plots. Cotton is harvested two or up to three times on the same field, before 

plants are totally removed. 

Many families own land that is not fertile enough to use for agriculture, because it is rock. Some 

families don’t have enough labour to work their land properly and to their satisfaction. And some 

families indicated they lack the equipment to farm all the land. 

Ownership boundaries are hard to detect. Trees, stones, plants, ditches, roads and paths are used to 

mark the boundaries. But often there is no physical delineation or landmark at all. And different 

neighbouring owners can have the same crop planted on their fields, planted on the same day 

following the same pattern, like it was one field of a single owner. Many other ownership borders 

are found in the bush. Most land of single owners is aggregated. 

Field Work 
From three farmers, the property boundaries were measured by walking together with the farmer, 

following the border on the directions of the farmer. During the walk a Garmin Summit HC handheld 

GPS recorded the track in waypoints. The result is shown in figure 14: 

 

Figure 14: GPS tracks from walking the farmland boundaries of three different owners. 
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During the walks, a lot of properties of ownership boundaries were recorded on photo to be 

reviewed later. From this material the impossibility to detect property boundaries in remote sensed 

images becomes very clear. Some striking examples are provided in figures 15 to18. 

 

 

  

Figure 15: clear vegetative and thus 
seasonal boundary feature. Location 1 in 
figure 14 

Figure 16: no visible boundary. Location 2 
in figure 14 

Figure 17: empty field edges. Location 3 in 
figure 14 

Figure 18: permanent boundary feature 
hidden by vegetation 
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Satellite image processing results 
The results presented in this part are the colour composites of the NDVI stack and of the SAVI stack. 

Followed by the colour composites of the PCA multilayers for the NVDI- and SAVI stacks. The next 

result is a more intermediate one: the thematic image of the study area, resulted from performing 

the iso-clustering. The mask derived by classifying this iso-clustering image is presented as the next 

result. Next the performance of the Prewitt filtering is presented in three images, corresponding to 

the results based on respectively the NDVI stack, the NDVI-PCA result and on the masked NDVI-PCA 

result. Also the results of the segmentation process is shown in different images based on 

respectively the result of applying segmentation to: a single pan sharpened WV-2 scene from 

October 2014, the unmasked PCA result for the NDVI and the SAVI, and finally, the masked PCA 

result for NDVI and SAVI stack. 

NDVI- and SAVI stacks 
Figures 19 and 20 present the colour composites of respectively the NDVI- and SAVI stacked 

multilayer images. Both stacks are based on three input vegetation index images from the dates: 

22nd May, 26th June and 18th of October 2014. These three dates are shown in the stacks as 

respectively the colours red, green and blue. Therefore the different colours in the result represent 

the change in values of the vegetation indices. Because in general crops per field develop at different 

pace compared to crops in neighbouring fields, the agricultural fields seem to be represented in 

unique colours in the stacks. Looking at the images presented next to each other, it becomes clear 

that the difference in NDVI and SAVI is not visible. 

Figure 19: Colour composite NDVI stack Figure 20: colour composite SAVI stack 
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PCA NDVI- and SAVI stacks 
The images in figures 21 and 22, present the result of applying PCA on the stacked images of the 

NDVI and SAVI in a colour composite. The three individual components per stack are not correlated. 

Therefore these colour composites represent components in individual colours. In this case red 

represent component 2, which seem to be related to crops, with high dynamic vegetation index 

values between the three moments in May, June and October. The green coloured component 1, 

seem to represent constant high vegetation index values through time. Therefore this component 

seems to be related to (almost) year round, green trees in the area. The blue colour representing the 

third component is only responsible for a minor percentage of the information in the stack. This 

colour seems to be correlated with the presence of low vegetation index values through time, 

representing for example shadows or water features. 

 

 

 

 

 

Figure 21: colour composite PCA NDVI stack Figure 22: colour composite PCA SAVI stack 
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Iso-clustered PCA NDVI stack and Mask 
The following result shown in figure 23, is the results of iso-clustering the PCA NDVI stack image. 

Because the large amount of forty classes used as output the image shows much within-field 

variation. Or in other words; a heterogeneous picture. This was done on purpose to arrive at a 

precise as possible mask by grouping these classes in a step wise manner. Meaning that this result 

was used to be reclassified into a mask (figure 24) to filter out potential cropland, without trees and 

rocks. Every class of the iso-clustered image was assigned a NoData value for trees and rocks, or the 

value 1 for cropland. The decision was made by visual interpretation of by underlying the iso-cluster 

image with a WV-2 scene of October 2014. 

Figure 23: PCA-NDVI stack iso-clustering result 
with 40 classes 

Figure 24: tree and rock mask 
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Prewitt edge detection 
The following three figures 25, 26 and 27 show the result of applying Prewitt filtering on: the NDVI 

stack, the NDVI-PCA result and on the masked NDVI-PCA result. As can be seen the results are very 

poor in detecting edges which are not very ‘strong’. In other words, edges which are not 

characterized by abrupt and large changes in spectral values are not detected. Among the three 

images, the one based upon the NDVI-PCA result (figure 26), shows the most boundaries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Prewitt filtering the 
NDVI stack 

Figure 26: Prewitt filtering the 
PCA-NDVI stack 

Figure 27: Prewitt filtering the 
masked PCA-NDVI stack 
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Segmentation results 
Here the results of the FLS segmentation in Erdas Imagine 2014 are presented projected on the WV-

2 scene of 18 October 2014, shown in a true colour composite. The first image (figure 28) shows the 

result of segmentation applied on this same single WV-2 scene. Figures 29 and 30, show the results 

based on segmenting the PCA-NDVI and PCA-SAVI stacks. Whereas figures 31 and 32, present the 

results for same stacks but then the masked versions. Visually assessing the differences the results 

show that more boundaries are found on the single WV-2 scene input. And that in the NDVI based 

results more boundaries are detected compared to the SAVI based results. However the difference is 

small. Applying the mask seem to result in larger features and less within field boundaries.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Segmentation result based- and displayed on one 
WV-2 image of October 2014 



30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 31: segmentation result of 
masked PCA-NDVI stack projected on 
WV-2 image 

Figure 32: segmentation result of 
masked PCA-SAVI stack projected on 
WV-2 image 

Figure 29: segmentation result of PCA-
NDVI stack projected on WV-2 image 

Figure 30: segmentation result of PCA-
SAVI stack projected on WV-2 image 
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eBee image processing 
Here the results are presented of processing the UAV imagery over the study area into high 

resolution mosaics which are referenced to the GCP’s. Followed by result of the on-screen digitized 

boundaries of the STARS fields from the Octobers’ eBee mosaic. Figure 33 shows the spatial 

distribution of the GCP’s over the study area. 

 

Figure 33: spatial distribution of the GCP's in the study area 

Figure 34 presents the result of mosaicking and referencing the images taken during a single eBee 

flight over part of the study area in October 2014. Followed by table 3 which show the remaining 

error in meters after geo-referencing to the GCP’s which could be recognised in the mosaic. This 

same mosaic was used to digitize field boundaries (figure 35) from for fields used by the STARS 

project.   
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Figure 34: geo-referenced ortho-mosaic based on photos of a single eBee flight. 

 

 

Table 3: accuracy measurement data of geo-referencing the ortho-mosaic to the GCP's 
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Figure 35: field boundaries as digitized from the orthomosaic 
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Comparing results 
In this part the results obtained from processing the satellite data and the STARS GPS data is 

compared to the results from the created reference data set by processing the UAV imagery. 

Differences in field area (in hectares) and field boundary lengths (in meters) are compared. 

 

In figure 36 and table 4 the field labelling can be found. The 

table shows the information for the field boundaries as 

derived by manual on-screen digitizing from the earlier 

presented eBee mosaic. This data set was further used as 

reference to compare other results with. In the following 

figures these reference fields are shown in red, overlain by the 

results which are being compared. 

 

 

In figure 37 the STARS GPS based result is shown, 

compared to the reference set. Table 5 presents the 

properties of the STARS GPS based result. The extreme 

difference in field 7 was explained by farmers decision 

making to aggregate fields in the between time of 

producing both data sets. 

Field ID crop area in ha. perimeter in m.

1 Maize 1.39 530

2 Millet 1.28 460

3 Sorghum 3.57 760

4 Millet 0.93 430

5 Sorghum 2.55 680

6 Millet 3.1 820

7 Cotton 1.45 480

8 Cotton 1.37 480

Field ID crop area in ha. perimeter in m.

1 Maize 0.88 430

2 Millet 0.79 360

3 Sorghum 2.27 620

4 Millet 0.58 350

5 Sorghum 1.60 550

6 Millet 1.98 680

7 Cotton 2.97 750

8 Cotton 1.39 500

Figure 36 

Table 4: area and perimeter reference set (UAV) 

Figure 37 

Table 5: area and perimeter STARS GPS set 
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In figure 38 the reference field are selected from the 

result of applying segmentation to the single WV-2 

scene of October. The properties of the selected 

polygons are shown in table 6. 

 

 

 

 

 

 

 

In figure 39 the reference fields were selected from the 

result of segmenting the PCA-NDVI stack. The 

properties of the selected polygons are shown in table 

7. 

 

 

 

 

Field ID crop area in ha. perimeter in m.

1 Maize 1.17 970

2 Millet 1.46 1400

3 Sorghum 3.44 2000

4 Millet 0.73 650

5 Sorghum 2 1100

6 Millet 1.19 950

7 Cotton 2.63 1000

8 Cotton 3.5 1500

Field ID crop area in ha. perimeter in m.

1 Maize 0.82 860

2 Millet 1.13 1100

3 Sorghum 2.14 1800

4 Millet 0.51 550

5 Sorghum 2.49 1300

6 Millet 3.15 1800

7 Cotton 3.75 1300

8 Cotton 1.88 1100

Table 6: area and perimeter single WV-2 image set 

Figure 38 

Table 7: area and perimeter PCA-NDVI set 

Figure 39 
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In figure 40 the reference fields were selected from the 

result of segmenting the PCA-SAVI stack. The properties 

of the selected polygons are shown in table 8. 

 

 

 

 

 

 

In figure 41 the reference fields were selected from the 

result of segmenting the masked PCA-NDVI stack. The 

properties of the selected polygons are shown in table 

9. 

 

 

 

Field ID crop area in ha. perimeter in m.

1 Maize 3.11 2000

2 Millet 2.18 1900

3 Sorghum 2.93 1600

4 Millet 1.2 1000

5 Sorghum 3.79 2000

6 Millet 1.38 1100

7 Cotton 2.03 1100

8 Cotton 2.11 1100

Field ID crop area in ha. perimeter in m.

1 Maize 3.06 5000

2 Millet 3.77 6000

3 Sorghum 3.21 2000

4 Millet 0.98 1000

5 Sorghum 3.09 2000

6 Millet 2.96 3000

7 Cotton 2.45 1000

8 Cotton 2.22 1000

Figure 40 

Table 8: area and perimeter PCA-SAVI set 

Table 9: area and perimeter masked PCA-NDVI set 

Figure 41 
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In figure 42 the reference fields were selected from the 

result of segmenting the masked PCA-SAVI stack. The 

properties of the selected polygons are shown in table 

10. 

 

 

 

 

An overview of the differences in area between the results is presented in one graph in figure 42. 

 

Figure 43: overview of differences in area (ha) compared to the reference data. 

The green line in this graph represents the reference data. High deviations between all the results 

are seen, except for field four, where all lines come relatively close together in the graph. 

Furthermore, the black line presenting the PCA-SAVI result shows the highest deviation in area, 

compared to the reference set. 

Field ID crop area in ha. perimeter in m.

1 Maize 2.69 3700

2 Millet 2.77 4700

3 Sorghum 3.36 2700

4 Millet 2.32 1600

5 Sorghum 2.97 1700

6 Millet 2.93 2800

7 Cotton 2.92 1200

8 Cotton 2.11 1200

Table 10: area and perimeter masked PCA-SAVI set 

Figure 42 
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5 Discussion 
The semi-automatic method for field boundary detection to support land information systems in 

areas with smallholder farming systems was not as effective as expected. 

The best accuracy compared to the reference set of the eBee mosaics digitized field boundaries was, 

measured in hectares of area, found in directly applying segmentation on a single data WV-2 scene 

over the study area in October (figure 38 and table 6). The mean difference was found to be 0.5 

hectare per field. This result is very poor in when realizing that the average field size is less than 2 

hectares. The second best results comparing the area size, was found with the PCA result applied to 

the NDVI stack. With respectively 0.74 mean difference compared to the eBee based reference set. 

Therefore it needs to be considered whether the use of more images really contributes to a better 

result. 

With the first result it became apparent through visiting the study area that boundaries representing 

an ownership border cannot be detected in the study area. These boundaries are rarely marked and 

do not match with agricultural field boundaries (figures 14 to 18). This result is valuable as became 

clear that remote sensing can assist in locating property boundaries, but not directly sense these 

boundaries. However, the cultivated fields which could be delineated, can be labelled with 

ownership information to supplement a land ownership information system. 

The registration of the three selected images to each other was difficult. Though the input images 

were pre-processed by the same company to geo-registered level 3 products. Pixel to pixel match 

could not be achieved, resulting in fuzzy boundaries in the stacked results. Apparently, the image 

providing company, Digital Globe, used different digital elevation models for geo-correction of the 

input images. However, the final matching of the images resulted in a visual assessed accuracy of 

around 3 meters (figure 3). While the input images had an original spatial resolution close to 2 

meters in the multispectral bands (table 1).  

Deriving land cover information from VHR data has been primarily performed using a manual 

approach where boundaries are first hand digitized around individual land cover features and then 

assigned a class label (Jensen, 2009). However, hand digitizing is very labour intensive, time-

consuming and impractical for studies spanning large geographical regions. And this process comes 

with human errors.  This was conform the findings during the research when the result of manual 

digitizing field boundaries was examined (figures 9 to 12). At the same time, creating the eBee based 

reference set confirmed the labour intensity and the lot of time consumed. 

High resolution imagery might be successfully used to extract boundaries from, but using 

segmentation methods, it comes with the risk of over segmentation. Higher resolution images will 

generate a higher number of over segmented fields and a lower number of under segmented fields. 

This is due to the fact that the within-field variation is higher for better imagery and therefore, this 

increases the number of segments to be generated (Turker and Kok, 2013). This point was proven by 

looking at the different results of the segmentation process, where in all fields boundaries where 

derived, which could not represent actual field boundaries. 

The latest phase of OBIA research (since 2005) is directed more towards the automation of image 

processing. As a consequence of the rapidly increasing proliferation of high-resolution imagery and 

improved access to this imagery, more and more articles are discussing automatic object 

delineation. Automated object recognition is certainly an end goal, but realistically it is at present 

mainly achieved in a stepwise manner, either with strongly interlinked procedures building 

workflows or with clear breaks in these workflows (Blaschke, 2010). The method as proposed I this 
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research can never by fully automated as parameters for the segmentation will have to be set 

manually, while these can for the type of input data. 

The shift in use of UAV acquisition technologies, from platforms to sensors, which are ‘‘lighter, 

smaller and simpler’’ does not necessarily translate into simpler processing software systems. In fact, 

in general, more sophisticated processing is required to compensate for the necessarily limited 

performance of small, lightweight platforms and acquisition systems (Colomina and Molina, 2014). 

The current challenge is the processing of very large number of images at a reasonable time (Abdel-

Wahab et al., 2012). Processing the single UAV photo’s into ortho-mosaics did require good 

processing capacity of the computers. To obtain quality mosaics many images were required since 

the overlap between them had to be minimal around 75%.   

Research done on photogrammetric measurements in fixed wing UAV imagery stress the importance 

of using good Ground Control Points. It is clearly proven, that no project should be flown without 

proper GCPs introduced into the aerial triangulation. This clearly requests a usage of GCPs for all 

projects, independent on the application (Gülch, 2012). The availability of GCPs in the study area 

could be improved as well as the spatial distribution of them. Based upon 9 GCP’s, the mosaic as 

shown in the results, had a georeferenced RMS error of 1.85 Decimal Degrees (table 3), which 

corresponds with the size of just over two pixels in the mosaic, or 25 centimetres. However this does 

not mean that the image is perfectly georeferenced, since this error is computed by taking the RMS 

sum of all the residuals to compute the RMS error and only describes how consistent the 

transformation is between the different control points. 

Using modern UAV based remote sensing imagery to support farm management decision making 

seems promising. But using information derived from these sources will not automatically bring the 

end user benefit. Value is derived only if the information enables a decision that results in higher 

profitability. Remote sensing supplements, but does not replace, all other sources of information. 

Time series data are important for detecting changes and from this valuable information for 

production can be derived. However this information must be provided in near real-time, and do 

require the proper resolutions in spatial, temporal, and spectral, terms. Cost-benefit analyses must 

show whether the delivered information has value, as well as whether field practices can be 

implemented at a scale matching the spatial detail (Seelan et al., 2003). 

  



40 

 

6 Conclusion 
Based upon this research there seems to be no direct relationship between the information derived 

from the used remote sensing imagery and the field boundaries in the study area. Different 

approaches (PCA, Segmentation, Edge Detection filters, using NDVI or SAVI, masking trees or not) in 

detecting and deriving these boundaries do not yield good results. The accuracy (defined in terms of 

area, position, and boundary length) of the methods applied in this research is limited by the 

difficulty of the heterogeneous landscape. However many boundaries were derived giving hope that, 

seen the complexity of the case in this study area, the applied method will work better in less 

complex landscapes. 

It has become clear that the remote sensing images do not contain clear boundary pixels which 

could be used to delineate parcels. This was proven to be confirm the reality by a 2 month field visit 

and ‘walking’ the boundaries. As the examples in the results show, often there are no distinct 

features representing the boundaries. And if present, these features were subject to seasonal 

change, either because it was a vegetative border, or a boundary covered by vegetation. While in 

many occasions the boundaries were found on bare soil as well is in the middle of bush-land.  

It can be said that whatever method is used, good pre-processing is of the utmost importance, 

directly influencing the end result. Cloud free imagery is required. A carefully chosen temporal 

resolution is essential. Precisely registering of different images to each other is important. Masking 

of trees and bush when possible, was expected to help the segmentation to perform better. 

However in contrary, based upon the findings in this research, this appeared to be not true. As for 

the actual processing it was found that segmentation is a powerful method. Segmentation 

algorithms can simultaneously take spectral, shape, texture, and size of the ‘to be’ grouped pixels in 

the remote sensing imagery into account. This methodology has been proven successful in 

delineating many boundaries, but not effective in separating different individual agricultural fields.  

Another conclusion related to the methods which could be used, is that every method requires 

knowledge of the area. For example knowledge on the agricultural practise or the climate in an area 

could influence a decision on the use of a particular vegetation index. Whereas knowledge on 

average field sizes could be well used to set the segmentation parameters. Thus the involvement of 

human capacity is required and will influence the result. 

On-screen digitizing of field boundaries comes with many errors from different types. Boundaries 

were: misplaced (geo-position), overlapping, missing and unrealistic in shape. Human interaction 

with the remote sensing information on the screen is error prone. The same could be concluded for 

GPS measurement of boundaries in the field. Here different factors play a direct role. The accuracy 

of the GPS in the study area is at best 3 meters. Barriers for people walking are influencing the 

measurements. And besides it was found in exceptional cases that the measured boundaries can 

change within one season due to farmers’ decision making. The best result seem to be obtained by 

deriving field boundaries from UAV based images over the study area. These images contain detail 

(at a spatial resolution of almost 10 cm), which helps the human interpretation becoming easier. 

However this is still very labour intensive, as it requires the activities of image acquisition, pre-

processing and processing. 

The result of this research show that the applied method of processing WorldView-2 images in a 

short time-series of NDVI or SAVI products has a good potential in providing assistance in locating 

field boundaries. This is the case in a very heterogeneous landscape, and based on only three base 
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images. It can therefore safely be concluded that more homogeneous landscapes, (especially with 

densely populated crops and larger fields) would give better results applying the same methodology. 
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7 Recommendation 
This research has shown the potential of using VHR satellite imagery for extracting field boundaries 

in a very heterogeneous landscape in sub-Sahara Africa.  It also has been shown that the use of UAV 

imagery equipped with a Canon S110NIR camera provides a lot of useful extra information, due to 

the higher spatial resolution. The laborious efforts of manual digitizing boundaries from the screen 

could be significant made easier by using the results as a priori information. However taken into 

consideration the importance of the actual location of boundaries with respect to ownership or crop 

management, the result needs to better validated and tested on accuracy. 

First of all it seems worthwhile to invest in input data of VHR satellite imagery of the same sensor, 

preferably with a temporal resolution of around 1 months, covering the pre- till post growing 

season. Secondly it would improve the accuracy if more and better spread, good reference points for 

image registering could be found in the study area. Also the availability of a fine resolution Digital 

Elevation Model (DEM) could aid in this respect. Further the use of different vegetation indices could 

be explored to see whether this could improve the results, since much pixels represent soil 

reflectance rather than vegetation. 

One important recommendation concerns the use of UAV images as references/validation source. 

To improve the results of the UAV imagery derived boundaries, height information could be added. 

Since this is collected within the UAV photos during acquisition. Based on the height per location, 

Digital Elevation Models were derived per mosaicked cluster. However only information from the 

end of the growing season was available. But if the start of the season will be available in the future 

as well, height differences could be derived. Providing a solution for the vague boundaries caused by 

low plant densities. Appendix 10, as a preview, show the DEM image and 3d extruded model, 

zoomed in around field 7. This information was derived from the same photos (October 2014) of 

which the mosaic of figure 34 is composed. When DEM data is available from different dates, field 

boundaries could be extracted by height-image differencing. The elevation influence of the terrain 

itself will also be avoided when differencing could be used. 

It might be worthwhile to invest in a cost-benefit analyses to see whether a large part of the 

processing can be skipped by using the same UAV platform, but equipped with a Real Time Kinetic 

(RTK) GPS device. 
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Appendixes 

Appendix 1: Metadata extract WorldView-2 image 22 May 2014 
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Appendix 2: Metadata extract WorldView-2 image 26 June 2014 
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Appendix 3: Metadata extract WorldView-2 image 18 October 2014 
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Appendix 4: Principal Component Analyses Report NDVI STACK 

# Data file produced by Principal Components 

# Input raster(s): 

#  F:\Thesis 2\Cluster 1\b2NDVI26JUN.tif\Band_1 

#  F:\Thesis 2\Cluster 1\b2NDVI22MAY.tif\Band_1 

#  F:\Thesis 2\Cluster 1\b2NDVI18OCT.tif\Band_1 

# The number of components = 3 

# Output raster(s): 

#  F:\Thesis 2\Cluster 1\b3pcandvi.tif 

 

 

#                    COVARIANCE MATRIX 

 

#    Layer             1             2             3 

#  -------------------------------------------------------------------------- 

        1            0.00470       0.00234       0.00113 

        2            0.00234       0.00162       0.00079 

        3            0.00113       0.00079       0.00325 

#  

==================================================================

======== 

 

 

#                    CORRELATION MATRIX 

 

#    Layer             1             2             3 

#  -------------------------------------------------------------------------- 

        1            1.00000       0.84878       0.28849 

        2            0.84878       1.00000       0.34387 

        3            0.28849       0.34387       1.00000 

#  

==================================================================

======== 

 

 

#                 EIGENVALUES AND EIGENVECTORS 
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# Number of Input Layers     Number of Principal Component Layers 

            3                              3 

# PC Layer             1             2             3 

#  -------------------------------------------------------------------------- 

# Eigenvalues 

                     0.00654       0.00269       0.00035 

# Eigenvectors 

# Input Layer 

        1            0.80775      -0.36777      -0.46074 

        2            0.44722      -0.12695       0.88537 

        3            0.38410       0.92121      -0.06193 

#  

==================================================================

======== 

 

#                 PERCENT AND ACCUMULATIVE EIGENVALUES 

 

# PC Layer   EigenValue   Percent of EigenValues   Accumulative of EigenValues 

        1       0.00654          68.2863               68.2863 

        2       0.00269          28.0817               96.3680 

        3       0.00035           3.6320              100.0000 

#  

==================================================================

======== 
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Appendix 5: Principal Component Analyses Report SAVI STACK 

# Data file produced by Principal Components 

# Input raster(s): 

#  F:\Thesis 2\Cluster 1\b2SAVI26JUN.tif\Band_1 

#  F:\Thesis 2\Cluster 1\b2SAVI22MAY.tif\Band_1 

#  F:\Thesis 2\Cluster 1\b2SAVI18OCT.tif\Band_1 

# The number of components = 3 

# Output raster(s): 

#  F:\Thesis 2\Cluster 1\b3pcaSAVI.tif 

 

 

#                    COVARIANCE MATRIX 

 

#    Layer             1             2             3 

#  -------------------------------------------------------------------------- 

        1            0.01055       0.00526       0.00251 

        2            0.00526       0.00365       0.00177 

        3            0.00251       0.00177       0.00730 

#  

==================================================================

======== 

 

 

#                    CORRELATION MATRIX 

 

#    Layer             1             2             3 

#  -------------------------------------------------------------------------- 

        1            1.00000       0.84846       0.28629 

        2            0.84846       1.00000       0.34303 

        3            0.28629       0.34303       1.00000 

#  

==================================================================

======== 

 

 

#                 EIGENVALUES AND EIGENVECTORS 
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# Number of Input Layers     Number of Principal Component Layers 

            3                              3 

# PC Layer             1             2             3 

#  -------------------------------------------------------------------------- 

# Eigenvalues 

                     0.01466       0.00606       0.00078 

# Eigenvectors 

# Input Layer 

        1            0.80783      -0.36767      -0.46068 

        2            0.44753      -0.12602       0.88534 

        3            0.38357       0.92138      -0.06274 

#  

==================================================================

======== 

 

#                 PERCENT AND ACCUMULATIVE EIGENVALUES 

 

# PC Layer   EigenValue   Percent of EigenValues   Accumulative of EigenValues 

        1       0.01466          68.1888               68.1888 

        2       0.00606          28.1757               96.3645 

        3       0.00078           3.6355              100.0000 

#  

==================================================================

======== 
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Appendix 6: Principal Component Analyses Report masked NDVI STACK 

# Data file produced by Principal Components 

# Input raster(s): 

#  F:\Thesis 2\Cluster 1\b5extractNDVISTACK.tif 

# The number of components = 3 

# Output raster(s): 

#  F:\Thesis 2\Cluster 1\b6ndvi.tif 

 

 

#                    COVARIANCE MATRIX 

 

#    Layer             1             2             3 

#  -------------------------------------------------------------------------- 

        1      2.163513e-004 1.997406e-004 -1.427748e-005 

        2      1.997406e-004 7.616781e-004 -5.464797e-005 

        3      -1.427748e-005 -5.464797e-005 1.436532e-003 

#  

==================================================================

======== 

 

 

#                    CORRELATION MATRIX 

 

#    Layer             1             2             3 

#  -------------------------------------------------------------------------- 

        1            1.00000       0.49204      -0.02561 

        2            0.49204       1.00000      -0.05224 

        3           -0.02561      -0.05224       1.00000 

#  

==================================================================

======== 

 

 

#                 EIGENVALUES AND EIGENVECTORS 

 

# Number of Input Layers     Number of Principal Component Layers 
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            3                              3 

# PC Layer             1             2             3 

#  -------------------------------------------------------------------------- 

# Eigenvalues 

                     0.00144       0.00082       0.00015 

# Eigenvectors 

# Input Layer 

        1           -0.02589       0.31003       0.95038 

        2           -0.08763       0.94633      -0.31109 

        3            0.99582       0.09133      -0.00267 

#  

==================================================================

======== 

 

#                 PERCENT AND ACCUMULATIVE EIGENVALUES 

 

# PC Layer   EigenValue   Percent of EigenValues   Accumulative of EigenValues 

        1       0.00144          59.7091               59.7091 

        2       0.00082          34.0368               93.7459 

        3       0.00015           6.2541              100.0000 

#  

==================================================================

======== 
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Appendix 7: Principal Component Analyses Report masked SAVI STACK 

# Data file produced by Principal Components 

# Input raster(s): 

#  F:\Thesis 2\Cluster 1\b5extractSAVISTACK.tif 

# The number of components = 3 

# Output raster(s): 

#  F:\Thesis 2\Cluster 1\b6savi.tif 

 

 

#                    COVARIANCE MATRIX 

 

#    Layer             1             2             3 

#  -------------------------------------------------------------------------- 

        1      1.693156e-003 4.474501e-004 -1.279328e-004 

        2      4.474501e-004 4.912674e-004 -3.342862e-005 

        3      -1.279328e-004 -3.342862e-005 3.228409e-003 

#  

==================================================================

======== 

 

 

#                    CORRELATION MATRIX 

 

#    Layer             1             2             3 

#  -------------------------------------------------------------------------- 

        1            1.00000       0.49061      -0.05472 

        2            0.49061       1.00000      -0.02654 

        3           -0.05472      -0.02654       1.00000 

#  

==================================================================

======== 

 

 

#                 EIGENVALUES AND EIGENVECTORS 

 

# Number of Input Layers     Number of Principal Component Layers 
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            3                              3 

# PC Layer             1             2             3 

#  -------------------------------------------------------------------------- 

# Eigenvalues 

                     0.00324       0.00183       0.00034 

# Eigenvectors 

# Input Layer 

        1           -0.09003       0.94487      -0.31482 

        2           -0.02675       0.31370       0.94915 

        3            0.99558       0.09387      -0.00296 

#  

==================================================================

======== 

 

#                 PERCENT AND ACCUMULATIVE EIGENVALUES 

 

# PC Layer   EigenValue   Percent of EigenValues   Accumulative of EigenValues 

        1       0.00324          59.8739               59.8739 

        2       0.00183          33.7901               93.6640 

        3       0.00034           6.3360              100.0000 

#  

==================================================================

======== 
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Appendix 8: Mask trees and Non-vegetation classes 
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Appendix 9: Quality report from UAV image mosaicking in Postflight Terra 3d 

 

 

 

 

 

 

 



60 

 

 



61 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 

 

 

 

 

 

 

 

 



63 

 

Appendix 10: Example UAV height information of October 2014 

 

Example part of the same scene (see yellow cross markers) with extruded height in ArcScene:  


