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Introduction 

The motion of groundwater plays an important role in many civil engineering 
projects. Low-situated polders receive groundwater from the surroundings, while 
from water reservoirs there may be a groundwater flow towards the surroundings if 
the water table in the reservoir is higher than the groundwater head in the surround
ings. In cases of groundwater recovery for public water supply or at a trench, it is 
important to know the consequences of the abstraction of groundwater; a sharp fall 
of the groundwater head may cause damage to structures and to the vegetation. If it 
is desired to confine the adverse effects of groundwater recovery, it is important to be 
able to predict the consequences of various actions. Knowledge of the groundwater 
motion plays a role in problems of groundwater pollution and groundwater manage
ment too; the stability of dikes and shore constructions also depends on the motion 
of groundwater (e.g., the behaviour at a seepage surface and overpressures under an 
impermeable dike revetment). It is thus seen that it is important to have a good 
knowledge of the motion of groundwater. 

Although in many cases it is possible to find mathematical solutions for groundwater 
flow problems, it is often difficult to define exactly the relevant parameters in a 
flow problem. Generally the average coefficient of permeability can be determined 
rather well in situ, but it is much more complicated to determine the anisotropy, 
especially when the direction of the anisotropy is not known previously. It is almost 
impossible to determine in situ the exact location and permeability of thin layers of 
clay or silt; in addition, these layers may have sharply differing properties. The same 
problems are encountered in determining the properties of resistance layers on the 
talus and bottom of a canal. Generally in a calculation these lines are not equipotential 
lines; in other words, the effect of the resistance layers (clay or silt) may not be neg
lected in the calculation. An extra complication in these problems is the alteration of 
the resistance properties of the layer when it bursts off as a result of overpressures. 
All this shows how unsure a description of groundwater flow may be. This does 
not mean, however, that there is no need for reliable calculation techniques. The 
availability of elTective mathematical tools can give a good insight into the effects of 
any alteration of parameters of the problem. In many cases, therefore, geohydrologic 
calculations consist of some calculations of the same problem with varying para
meters. In that way an insight is obtained into the consequences of the lack of know
ledge of parameters of the problem. That experience can be useful for the decision 
whether additional information has to be compiled, for example, by field measure
ments. 
The performance of reliable geohydrologic calculations may result in a lower safety 
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coefficient for the relevant work because more knowledge has been obtained about 
the phenomenon 

This treatise on calculation methods has been restricted to two-dimensional ground
water flow Although in reality groundwater flow is always three-dimensional, in 
many cases the flow can be assumed to be two-dimensional 
Such cases are, for example, a horizontal flow region without replenishment of water 
from above or below in vertical flow regions the flow can be assumed to be two-
dimensional if the relevant section is present over a great length (dikes, canals, rivers 
and long structures) 
Some basic assumptions have been made 
— The porous medium is incompressible 
— The coefficient of permeability is sectionally constant, in other words, the coeffe-
cient of permeability may vary if the variation is not continuous but step-wise There 
may be resistance layers between different sand layers The soil may be anisotropic 
— The fluids are incompressible and there is an abrupt alteration of density going 
from one fluid to another 
— There is only groundwater in a saturated zone 
— Anywhere and at any moment the flow is laminar This means that Darcy's 
relationship between groundwater head-gradient and specific discharge always holds 
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I Basic Theory 



1 Basic Laws 

The groundwater head cj) is defined by 

pg 
(1.1) 

where 

p- pressure with respect to a reference pressure (atmospheric pressure) 
p - density 
g - acceleration of gravity 
y - elevation with respect to a reference level. 

The specific discharge i\ in a direction s is given by Darcy's Law; 

where k is the coefficient of permeability. 

The condition of continuity for an element dxdy is given by the following expression 
(see figure I.l): d{v^dy + v^dx) + P(x,y,t)dxdy = 0. 

dy 

positive d(v,dy) is outflow 

positive d(vydx) IS outflow 

positive p(x,y,t)is outflow 

Figure I 1 Flow through an element 
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In this expression P(x, y, f) is the amount of water abstraction per unit of time and 
per unit of area. 
From the previous expression the continuity equation is derived; 

dv^ dv.. 
^ + ^ = - P ( x , y , r ) (1.2) 

If Darcy's Law is combined with the continuity equation (1.2) a differential equation 
is obtained that defines the flow problem together with the boundary conditions. For 
a homogeneous isotropic porous medium the differential equation becomes; 

'dx^^ dy^ 
k ^ + k—} = P{x,y,t) (L3) 

In the case that P{x, y, t) = 0, for each x, y, t (1.3) reduces to the well-known differential 
equation of Laplace; 

dx^ dy 2 + ^ = 0 (1-4) 

In that case the function < (̂x, y) is apparently a harmonic function (see Appendix 1). 
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2 Deflnitions 

(^(p 

dx 
and V. = 

d0 

dy 

Potential 
The relationship between specific discharge and groundwater head is given by Darcy's 
Law, for a homogeneous isotropic porous medium the following expressions hold 

d(l> d(j) 
Vy. = —k — and v, = —k — 

dx ' dy 

The potential <P is defined as the product of the groundwater head and the coefficient 
of permeability <P = kcj) With this variable Darcy's Law can be written in a form 
where the specific discharges are derived from the potential 

(15) 

Because the potential 4> is equal to kcp with constant k, also (? satisfies the differential 
equation of Laplace (in the case that P(x, y, t) = 0) So the potential is a harmonic 
function (see appendix 1) 

d^<p d^<P _ 

'd^^'d/^^ 

Stieam function 
Another important function is the stream function f This function has the property 
that the amount of water that per unit of time passes a line between two points is 
equal to the stream function difference between those points 
This follows from the definition of the stream function 

^ f 

tiy 
and 1-, 

flV 

dx 
(16) 

(For example the amount of water that passes a vertical line between two points at a 
mutal distance A\ is equal to i^Ay According to (I 6) this is equal to —AW) 
If the expressions (I 6) are substituted in the continuity equation (I 2) with P(\ , ) , f) — 0 
It IS seen that the stream function also satisfies the Laplace differential equation, so "f 
IS a harmonic function too 
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~d^^W^^ 

The relationship between the potential and the stream function is found by combining 
the expressions (1.5) and (L6). This yields; 

d0 df d(P d'P 

dx dy dy dx 

These are just the Cauchy-Riemann relationships (see Appendix 1), which means that 
the functions ^ and f are conjugate harmonic functions. So in a homogeneous 
isotropic porous medium, equipotential lines (<P = constant) and stream lines 
( f = constant) are perpendicular. 

Complex potential 
Using the potential <P and the stream function f, another important function can be 
defined: 
The complex potential Q is defined by; 

Q = (p + iW 

Because <P and f are conjugate harmonic functions of x and y, the complex potential 
Q is an analytical function of the complex variable z = x -I- iy. 
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3 Anisotropy 

If the coefficient of permeability has not the same magnitude in any direction, the 
porous medium is anisotropic By a simple geometric transformation the anisotropic 
region (coordinates x and >. z = x -I- ly) can be transformed into another region 
(coordinates x and y^^ = x + iy) that can be considered as an isotropic region 

Therefore a region with coordinates x and y is considered in which the maximum and 
the minimum coefficients of permeability are k^„ and A.̂ ,„ The maximum coefficient 
of permeability occurs in a direction x* that has an angle a with the x-axis, as 
shown in figure I 2 

Figure I 2 Main directions of permeabihty 

The relationship between z = x + i\ and z* = \* -I- ; ) * is given by 

z* = : exp(-ia) 

In other notation 

X* -I- (V * = (\ -I- (v) (cos a - i sin a) 

From this it follows 

X* = V cos Oi + \ sin a 

}* = \ cos a — \ sin a 
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According to Darcy's Law the following expressions hold: 

del) d<t> 
V.' = - ^ m a x ^ and V = - ' ^ • n i n ^ (1-7) 

The stream function f is defined by; 

d'P dW 
V = - ^ a n d v = ^ (1.8) 

By eliminating of i\* and t-y from (L7) and (1.8) it follows: 

3«F 

ax* 
d4> 

mm ^ ^ ^ 

8^ d<p 
— k dy* "̂ ^ dx* 

(1.9) 

Now the coordinates z* = x* -I- iy* are transformed into z = x + iy according to: 

x*=xJkZ. y* = lJk~ (LIO) 

Substitution of (1.10) in (L9) yields; 

dW I d^ dW r d^ , ^ 
- ^ = - V ' ^ m i n ' f m a x ^ a n d — = V' f„ i„ /c„ ,ax^ ( I I 0 

A Active coefficient of permeability for the z - plane is defined by A: = yjk^;„k^^^. 
Then (1.11) can be written in the following form; 

S'V _ d^ d'f _ d(f> 

dx dy dy dx 

If the potential 4> is defined as <P = kcp for the z - plane there come the following 
expressions: 

or: 

d^P d<P 

dx dy 

d<P d^P 

dx dy 

d'P 

dy-

d0 

Ty~ 

d<P 

+ â  

dv 

~ 5x 
(L12) 

The relationships (1.12) between the stream function *? and the potential fp in the 
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z - plane are just the Cauchy-Riemann relationships. So <P and P are conjugate 
harmonic functions in the z - plane. So the functions <P and P satisfy the Laplace 
differential equation and Q = <P + i'P is an analytical function of z = x + iy. 
So the flow in an anisotropic region can be calculated in the same way as for an iso
tropic region if the following, transformations are applied (where the direction of the 
maximum coefficient of permeability has an angle a with the positive x-axis); 

z* = z exp( —la) 

X =' X 1^ f̂ max 

mm I = y*ljK 

In other notation, where z is expressed directly in z, this is: 

z = —j=^ Re{zexp(-(a)} H— Im{zexp(-ia)} 

The fictive coefficient of permeability for the z-plane is: 

"•max "min 
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4 Boundary Conditions 

A groundwater flow problem is defined by: 
— continuity condition, 
— darcy's Law, and 
— boundary conditions (of space and time). 
In addition, factors as anisotropy and inhomogeneities have to be taken into account 
and also the variation of the density of the fluids. In this Chapter a schematic survey 
of the most important boundary conditions is given, as they are relevant for the 
treatise of the existing solution methods in Part II. A more comprehensive formu
lation is given in Chapter 14 in a form that is convenient for the Analytical Function 
Method of Part III. 

Equipotential line 
An equipotential line is a line of constant potential <P. For a homogeneous porous 
medium, also the groundwater head <j) is constant along such a line. 

Stream line 
A stream line is a line along which a fictive water particle moves (where the physical 
porestructure is neglected). No water passes a stream line. From the definition of P 
(see (1.6)) it follows that the stream function is constant along a stream line. 

Seepage line 
A seepage line is a line along which the water leaves the soil and freely streams off 
The thickness of the seepage layer is generally very small. Therefore at the seepage 
line the pressure may be assumed to be equal to the atmospheric pressure (which is 
the reference pressure that is set to zero). From the definition of the groundwater 
head cj) (see (LI)), it follows; 

p = 9ip<P - py)-

Substitution of p = 0 in this expression gives the boundary condition at the seepage 
line: 

(j) = y . 
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So a seepage line is a line along which the groundwater head is equal to the known 
height y. 

Phreatic line 
In a steady state a phreatic line without precipitation or evaporation is a stream line 
Then the stream function is constant If there is precipitation, the stream function "/' 
increases per unit of length with an amount that is equal to the precipitation on that 
unit of length In any case (steady or non-steady), the condition holds that the 
pressure along the phreatic line is equal to the atmospheric pressure Then the same 
condition is arrived at as for the seepage line; 

<t> = y-

So a phreatic line is also a line for which the groundwater head is equal to the height y 
(although generally y is not previously known). 

Interface 
An interface is a separation line between two fluids with different densities In a steady 
state an interface is a stream line, then the stream function P is constant In any 
case (steady or non-steady), the condition holds that the pressure on both sides of 
the interface is equal 
From the definition of the groundwater head </> (see (I 1)), it follows 

p = 9ip<t> - py)-

If this expression is used to define the pressure on one side of the interface and the 
pressure on the other side is defined by 

Pc = d(Pc(t>c - Pcyl 

it follows from p = p^ that 

ptf, - py = p^(t)^ - pj, 

from which. 

, P - Pc ^ PA ,r . ,x 
(t> = y + (113) 

P P 

So an interface is a line along which the groundwater head 0 varies in a prescribed 
way with y (although > generally is not previously known). 

li 



If p^ = 0 is substituted in (1.13) or, in other words, on one side of the interface the 
density is zero, the expression reduces to; 

<t> = y, 

which is just the condition for the phreatic line. 

So a phreatic line may be considered as the special case of an interface when one of the 
fluids has no density. 
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II Existing Solution Methods 



In this Part a general survey is given of the most important solution methods. The 
principles of each method are discussed briefly and without a complete derivation, 
and the methods are illustrated with examples. The following sub-division is used: 
— Analytical methods. In these methods a solution in a closed form is obtained. 
- Approximative methods. In some of these methods an approximative closed 
form is obtained (e.g., in the method of fragments, see Chapter 8), while in other 
approximative methods a solution is found where the relationship between the 
parameters that define the problem is not directly visible (e.g., the finite element 
method, see Chapter 11). 
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5 Direct Methods 

Direct methods are methods where the solution is obtained by direct operations of 
the differential equation that defines the flow. 

5.1 Direct Integration 

Generally direct integration of a differential equation is only possible for one-dimen
sional flow. A very simple example with one-dimensional flow in a confined aquifer is 
given in figure II. 1: 

Figure 11 1 Confined aquifer 

The differential equation for this flow is (see (1.4)); 

d^<t) 
dx' 

= 0 

x = x, </)=(/)i 

From direct integration it follows: 

^ = C'lX -I- Co 

Substitution of the boundary conditions yields the solution: 

, ('^i - 0o) ^ , 
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5.2 Separation of Variables 

This method has been comprehensively treated in literature (see, for example, Wylie, 
1966, Arflcen, 1970). 
The solution of the differential equation; 

dx' dy 2 + ^ = 0 (III) 

is assumed to be the sum or the product of two functions of respectively x and y 

<P = F(x) + G{y), (II.2) 

or: 0 = f(x) G{y). (II.3) 

If the form (II.2) is used, then from substitution in the differential equation (II. 1) it 
follows: 

Because F(.x) and G{y) are functions of respectively x and y, (II-4) can only be satisfied 
if f "(.v) as well as G"{y) are constant. Then it follows from direct integration; 

F(x) = a^x' + b^x + c'l 
(n.5) 

G(y) = a^y' + b^y + Cj 

By substitution of (n.5) in (11.4) it follows; 

«1 = - « 2 

If «, = a and c, -I- f2 = '̂ ^ then the solution has the following form: 

(j) = a{x' - y') + hix + /)2>' + c 

The four degrees of freedom in this expression depend on the boundary conditions of 
the problem. 

If the product of the two functions F(x) and G(y) is used, see (11.3), the following 
expression is found by substitution of (IL3) in (ILl): 
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m ^ Gjy) 
F"(x) G"(y) 

This expression can only be satisfied if both members of the equation are constant: 

nx) . G(y) 
= c and — - - = — c F"(x) G"(y) 

Examples of functions that satisfy these equations are sin(x), cos(x), sinh(x), cosh(x), 
exp(x), etc. 
For example, consider the following functions; 

F(x) = (̂ 1 exp(ax) and 
G{y) = cos(fly) 

The flow problem is defined by; 

(̂  = </), exp(flx) cos(ay) 

This function generates the groundwater flow through a dam of variable width (see 
figure II.2). The width of the dam is seen from 0i = (/)j exp(ax) cos(ay) or 

y = - arccos(exp( —fl.x)). Then the width of the dam is: 
a 

n 1 
h = arccos(exp( — ax)) 

la a 

(/) = 0 

2a 

Figure II 2 Horizontal flow through a dam of variable width 
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5.3 Integral Transforms 

An integral transform is an operation of the differential equation that generally 
results in an equation or differential equation that is easier to solve. By an inverse 
transformation of the solution of that equation, the solution of the flow problem is 
found. For the transformations useful tables are available (see, e.g., Erdeiyi, 1954). In 
the literature the theory of integral transforms has been given (Churchill, 1958, 
Sneddon, 1972, Ditkin and Prudnikov, 1965). Applications are given by Bruggeman, 
1972. 

In this section some important integral transforms are mentioned and some applica
tions are shown. The integral transforms that will be discussed are those of Laplace 
and Fourier. 
Generally the Laplace transform is used to transform the time variable and the Fourier 
transform is used for one of the space variables x, y. 
Generally a linear integral transform has the following form; 

T{F{t)}=i'^K(t,s)F(t)dt 

The various integral transforms differ in the type of K(f, .s) and the integration bounda
ries a and b. 

LAPLACE TRANSFORM 

The Laplace transform of a function F(t) results in a function f{s) and is defined by: 

L{f(f)}=jg^exp(-6t)F(t)rft=/(s) 

A more convenient form is; 

L{h(x,t)} = jg- exp{-st)h(x,t)dt = h{x,s) 

Some properties are; 

4^f^' - j = ^ (̂̂ '̂ )-M-̂ '0) 
jd'hix,t)\_d'h(x,s) 

^V^^\~^x^ "-̂  
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As an example, the problem of Edelman is chosen (see Bruggeman, 1972) horizontal 
groundwater flow towards a canal in which the water table is lowered suddenly 

1 j^-"^'^ 

X 

M 

^ ^ ^ ^ ^ ^ 

D 

Figure II 3 The problem of Edelman 

The differential equation that defines two-dimensional groundwater flow is (see (I 3)) 

kj^ + k-^ = P(x,y,t) 
dx dyl 

As the flow IS assumed to be horizontal, the variation of <̂  in v-direction may be neg
lected Then the differential equation becomes 

d'(h 

Along the phreatic line (̂  = \ (see Chapter 4) The differential equation will be written 
in a form where the original water table is the reference level and h denotes the 
lowering of the phreatic line (then (p = -h at the phreatic line) 
The term P(x, t) was defined as the abstraction of water in an element at location x at 
time t (see figure I 1) here it is the storage increase that is caused by the increase of 
the elevation of the phreatic line 
The term P(x, t) is a quantity per unit of area and per unit of time (see Chapter 1) 

Here the storage increase 
dh\ 

-u— occurs along the phreatic line (where p is the 

( ^h\ , storage coefficient) To obtain the storage increase per unit of area, \—l^~^] has to 

be divided by the height of the water column It is assumed that h <^ D, and so D may 
be used for the height of the water column 
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According to this assumption, the term F(x, t) may be written as; 

/' Sh 
p X, t)= 

^ ' D dt 

(negative dh/dt means outflow from a vertical element hdx: so negative dh/dt conforms 
to positive P(x, t)). 

The differential equation now becomes (where cj) = —h): 

d'h _ p dh 

'dx'~l) dt 

or: 
^2 d^h p dh 

a? = To Vt ("-̂ ^ 

The boundary conditions are; 

h{x, 0) •= 0 
/i(0,0 =/io 
/i(oo,t)= 0. 

Application of (II.6) to the differential equation (II.7) yields the transformed equation; 

g = A„5 _,(,„), ,,,.8) 

In this equation the first boundary condition {h{x, 0) = 0) can be substituted; and the 
two other boundary conditions can be written in transformed form if (II.6) is used: 

(11.9) 
^(0, .s) = hjs and 

/j(oo, s) = 0 

If ^(x, 0) = 0 is substituted in (II.8), the following form is found: 

d'h p -
^^-i~sh = 0 (ILIO) 
dx' kD ^ ' 

A general solution for this differential equation is; 

h = A exp(ax) -I- B exp( - ax) (II. 11) 

29 



By substitution of this solution in the differential equation (11.10) and inserting the 
boundary conditions (II.9) in (II. 11), the following expression is found; 

r K ( PS 

This is a well-known form. The inverse transformation can be found in tables. The 
solution of the problem is then found to be; 

h = h^ erfc 
X / p \ 

^2V kDtJ 

The function erfc(x) is defined by l-erf](x) and: 

erf(x) = —= |5 exp( — u')du 

Jn 

FOURIER TRANSFORM 

Depending on the type of problem, some kinds of Fourier transforms can be applied. 
In the following example the infinite Fourier-sine transform is used: 
The infinite Fourier-sine transform of a function F(x) results in a function/(r); it is 
defined by; 

S{F(x)] = \^ F{x)sm[rx)dx = f{r) 

Written in a more convenient form: 

S{h(x, r)} = jo Kx, t) sin (rx)dx = h(r, t) 

Some properties are; 

\d'h(x, t) 

dx' 
= -r'h(r,t) + rh(0,t) 

(if;/!(x, t) = —/!(x , r ) = 0) 
dx 

S{0} = 0 

(11-12) 
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The inverse transformation is given by; 

;,(x, f) = ^ j J ;i(r, t) sin {rx)dr (IL13) 
n 

The same example as for the Laplace transform is shown here to illustrate this Fourier 
transform (see Bruggeman, 1972). The differential equation that generates the flow is 
(see(n.7)): 

d'h p dh , ^ 

The boundary conditions are: 

^(x,0) = 0 
h{0,t) =/lo 
^(oo, t) = 0 

The boundary condition ^(oo, f) = 0 has already to be satisfied for application of 
the Fourier-sine transform (it is a condition in 11.12; our problem satisfies it). 
Application of (11.12) to the differential equation (11.14) yields the transformed 
equation: _ 

, > p dh 
-r'h -hr/iO,t = — — 

^ ' kD dt 

The boundary condition /i(0, t) = /lo can be substituted in this equation. 
The remaining condition ^(x, 0) = 0 is given in transformed form by; 

/!(x,0) = 0 (ILl 5) 

By inserting the boundary condition for h{0, t) in the transformed differential equation, 
the following expression is found; 

dh ,kD- kD , ^ 
+ r' — h = rho— n.l6) 

of p p 

A general solution for this equation is; 

h = A exp(af) + B exp(-at) + C (IL 17) 

By substitution of (1117) in (IL 16) and inserting the boundary condition (IL15) in the 
general solution (11.17), the following expression for h is found; 
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h=ho 
1 

- exp( - kDtr'/p) /r 

Using (11.13) the inverse transform h can be found: 

h=-\tK exp( - kDtr'/p)/r sm{rx)dr 

or; 

^ ^ 2/10 ^ . sirHrx) ^^ _ 2/.0 ^^ exp( -/cZ>r.V,) ^̂ ^̂ ^̂ ^̂ ^ 
n r n r 

The first integral is equal to n/2, and the second can be reduced to a well-known 
function. Then the solution of the problem is found: 

h = h, ^'^[l^jkDt)^ 

or; 

h = /in erfc I - / 
2\/ kDt 
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6 Indirect Methods 

6.1 Superposition 

The superposition principle holds for the Laplace differential equation 
If (pi and (f)2 are solutions of V t̂/) = 0, then 03 = fl<^i -I- b4>2 is also a solution 
This can be shown simply 

V'(j)3 = W'(a(pi + b(j>2) = aV'4)i + bS/'cjy^ 

V^^i = 0 V'<i)2 = 0 then ^'(i)^ = 0 

Examples of application of the superposition method are flow in an infinite plane 
with sources and sinks, and the method of images 

Example 1 The flow pattern due to a sink and a source in a lineai flow field in an 
infinite plane is found by a superposition of three separate flow patterns (see figure 
114) 

Linear flow field (/), = ax + b 

Source in (xj^yi) with discharge Q 4>2 = — r \ri[^J{x - Xj)^ + (\ - \2f'\ 
Ink 

+ Q Sink in (\3 >3) with discharge Q ^3 = ln[v'^(x - X3)' + (y - Vi)^] 
Ink 

Example 2 The method of images is used for problems with sources and sinks where 
some special boundary conditions can be satisfied if extra fictive sinks or sources 
are located outside the region of interest 
In the case of a straight boundary, the property is used that in the middle between a 
sink and a source the straight line perpendicular to the connecting line is an equipoten
tial line In the case of two sinks or two sources, that line is a stream line, (see figure 
115) 
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Figure II 4 Superposition of solutions 

Another application of the method of images is the flow field of an excentncally 
located sink in a circular island, see figure II 6 Here the property is used that in the 
case of a source and a sink in an infinite plane, the equipotential lines are circles This 
can be shown by a simple deiivation 
Consider a sink and a source both with discharge Q. in respectively (\i, i J and 
(\2, \2) The groundwater head in the plane is given by 

0 = — In 
2nk 

l(x-x,)' + {i-^,)'Y 
(II IS) 
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a) 

b) 

two sinks 

sink and source 

Figure II 5 a Flow according to two sinks 
b Flow according to a sink and a source 

For an equipotential line </> = (/>! is constant. From (11.18) it then follows directly: 

[(x - xi)'+ (y - y,)'^' /2nkcf>, 
-^ \ = exp ~ ] = constant 

[{x - X2)'+ [y - y2)'f ^ Q 
or: 

(x - Xi)^ + (y - y^)' = exp 

This can be written as; 

/AnkcPi 
(x - x^)^ + (y - y2 

1 -a 

I -a 

^_^^ZL^2y^l,_y^-ay2 
1 -a 

yy^ - ay2^ 

X, - ax-
+ 

>'i - ay 2 

1 -a 
(11-19) 
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Figure II 6 Excentncally located sink m a circular island 

where a = e\p(4nk (j>i/Q) 

The expression (II 19) is the equation of a circle with its centre at 

>i - a\2 
Xn = 

1 
and \o 

I - a 
(II 20) 

and with radius R according to 

, 2 

R' = 
Xi — ax; 

1 -a + 
31 - ayi 

I -a 
ax-, 

1 -a 
>l^ - a)2^ 

1 - a 

Generally only (xj, \ J is known and the location of the centre of the island From 
(II 20) the location of the fictive source can be calculated yielding 

^2 = (^1 - ^o(l - a))/a and 2̂ = (>i - >o(l - "))/« 

With these known values of (xj, Va)- ^he groundwater head distribution over the 
island can be calculated using (II 18) 

6.2 Green's Function 

The solution method that uses Green's function has been described in literature (see 
for example. Bear Zaslavski, Irmay, 1968 and De Wiest, 1969) The method will be 
illustrated here with a simple example 
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The flow IS considered in a region D that has a smooth boundary C (see Bear, 
Zaslavski, Irmay, 1968) The values of the head in the points A(x, \) in D are (f){A). 
(j) satisfies V'(f> = 0. so <̂  is a harmonic function Suppose that the values of (j) are 
known in all points of C as a function of the location s on the boundary according to 
a function y(s) Then it is possible to express (f)(A) in another harmonic function 
G(/4, A') that IS called a Green's function The function G(A, A') is a function of the 
coordinates of two points (A{x, v) and A'{x\ v')) such that for each point A{x,y) the 
value (t)(A) can be expressed as a function of the values of/"(s) at the points A' on C 
and the partial denvate of G with respect to n (n is the inner normal on C) 

<t>{A) = \J[s) 
dG{A, A') 

dn{A')" 
ds(A') A' on C (11.21) 

In literature (see, eg Bear, Zaslavski, Irmay, 1968) for several rather simply shaped 
regions the Green's functions can be found For example, for the right half plane 
Green's function is given by 

G{x,y, x',y') = 
1 

An' 
In 

"(x - x')' + (y - y'f 

{x + x')' + (y - y f 
(II22) 

As an illustration, this method is used to describe the flow in a half plane with the 
following conditions 

<ti{x\yX <o = (^1/2 4>{x\y\ >o = -<^i/2 

Figure 11 7 gives a sketch of the flow pattern 

Figure II 7 Vortex flow 

The solution is the flow according to a vortex in the origin 

4> - ' a rc tgl -
n \x 

(II 23) 
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This solution can also be found by means of the Green's function method, using 
(II 21) and (II 22) 
The combination of (II 21) and (II 22) yields an expression for the groundwater head 
in the right half plane 

where 
[x - xf + (v - I )' 

(II 24) 

F = (x + x')' +(y- yf 

After differentiation and substitution of x =0 , (11.24) becomes 

'̂ 1 . f o dy' </>! dy' 
^ In""^' -''x'^ (y - y'f In "" ^̂ ' = <' x' + [y - V)' 

or 

6 = ^x{-y J^JlA__ti 
^ ^_ ny -y)-<x. „2 , /„- „\2 2n 

2n 
arctgl 

X' + (y - y)' In 

y - y' 

(y - ) . ) - .» 

0. 
2n 

arctg 

dy' 
''^~' x' + (y-v')' 

y - y\ 

(> - > ) - -y 

0 
(\>i , y 

arctg -
n \x 

With this expression the result (II23) is obtained 
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7 Methods based on Complex Function Theory 

7.1 Method of Pavlovskii 

This method is well-known in literature (Bear, Zaslavski, Irmay, 1968, Verruyt 1970). 
A region in the z-plane can be conformally mapped upon a region in another plane, 
e.g., by elementary functions such as sin(z), ln(z), z", etc. A region with a polygon 
boundary can be mapped on the upper half plane Im {C] > , 0 by the well-known 
Schwarz-Christoffel integral: 

z = afo(^ - Ci)" ' ' (̂  - G'" ••• (̂ - - Q-'-d^- + P (11-25) 

In this expression ^j are the images of the edge points of the polygon on the real axis c. 
The factors k^ correspond to the alteration of direction in each edge point according 
to k = a/n, see figure II 8; a en ^ are complex constants. 

Figure II 8 Conformal mapping by the Schwarz-ChristotTel integral 

A large number of examples of conformal representations is given by Kober (1957). 
In literature (see, for example, Verruyt 1970) a more comprehensive treatise of the 
Schwarz-Christoffel integral can be found. 
In the method of Pavlovskii some problems are solved by conformal mapping of Q 
on z, while other problems are solved by mapping the z-plane on another plane and 
solving the problem in that plane. For both kinds of problems, an example is given: 

39 



Example 1 Flow in a confined aquifer to a low-situated polder, see figure II 9. 

0 = 0 

Figure II y Polder aquifer 

The problem is symmetrical, therefore it is sufficient to consider half the flow region 
Figure II 10 gives the z-plane and the fl-plane 

A 

y 

B 

L 

X 

D 

Z 

( 

cj 
\ t Q 

Figure II 10 z plane and ff-plane 

The application of the sine transform (see Appendix 2) for both the Q- and z-regions 
yields the mappings as represented in the upper half planes C and C*. see figure II 11 

-1 +1 
Figure II 11 Upper half planes "* and 
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For this mapping the z-plane and the 0-plane are first rotated over n/2. Then they 
are linearly transformed, and translated over n/2. So they are first mapped upon a 
half infinite strip with width n (figure 11.12). 

Figure II 12 Mapping upon a half infinite strip. 

The mapping functions are; 

[ n n\ 
C* = sin !z — h -

\ D 2) 

n n 
L = sin iQ—I— 

' e 2 
This can be reduced to: 

cos ( D 
cosh 

fiQn 
= cos — 

(Qn 
cosh — 

(IL26) 

(11.27) 

The relationship between the C*- and the C-plane is found by a transformation, so 
that the points D and B of the C*-plane are mapped upon the points — I and +1; 
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C = i 
2(\_-^ 

1 - cs 

From figure 11.10 it follows; ZD = L + ID 

Then according to (11.26): 

CB = cos ( (• — (L -f iD)) = cos 
L 

-n + i—n 
D 

cos 71 - (L— = 
D 

(iLn 
— cos — 

Ln 
cosh — 

Then ( is given by; 

C = 1 -
2(1 

1 -f cosh (f) 
(11.28) 

A combination of the expressions (0.26), (0.27) and (0.28) yields the relationship 
between Q and z; 

fi = — arccosh 
n 

1 - coshi 

1 4- coshI — 71 

\D J! 

(11.29) 

This expression is the solution of the flow problem. Because only half the flow region 
is considered, Q represents half the seepage discharge per m'. Q can be calculated if at 
some distance from the polder the groundwater head with respect to the polder level 
is known: 
From (11.29) it follows using <P = kcp: 

0 = Re — arccosh 
kn 

1 - cosh — n 

1 -I- coshi — n 
D 
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or 

e = 
nk(j) 

Re arccosh 1 - 2 

1 — cosh — n 

1 -I- cosh - n 
\D 

With this formula Q can be calculated, cj) is the difference between the groundwater 
head at the point z and the polder level 

Example 2 A number of sinks in the vicinity of a contraction of a canal, see figure 
n 13: 

number of sinks n 
sink discharge Qj 

location of sink Z. 

canal (/)=0 

Figure II n Sinks near a canal 

The boundary ABC A is assumed to be an equipotential line 
The z-plane is mapped on the upper half plane using the Schwarz-Christoffel integral 
(II 25), see figure II 14 

Figure II 14 Upper half plane ; 
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The point A is mapped onto infinity and does not appear in the integral (see Verruyt 
1970) 
The alterations of direction in the points B and C of the polygon are — 7r/2 and 7r/2 

Then kg = - i kc = + i 

The points B and C are chosen to be mapped on C = 0 and C = 1 Then the Schwarz-
Christoffel integral gets the following form for this problem 

z "f'L-^ii'"*' 
After integration the constants a and /? are determined in such a way that the points B 
and C correspond with the points z = ; and z = 0 in the z-plane, see figure II13 
That leads to 

z = i { 7 a r ^ + in[Vc + 7(c-i)]} (II 30) 

In the C-plane the problem can be solved simply by use of the method of images 

^ ^ - ' 2 7 r C - L , 
(ini) 

The expressions (II 30) and (II 31) form together the solution of the flow problem 
Therefore c is eliminated from (II 30) with known z Then from (II 31) the complex 
potential Q can be evaluated 

7.2 Method of Vedernikov-Pavlovskii 

This method can be found in literature (Bear, Zaslavski, Irmay, 1968. Verruyt, 1970) 
The function Z is defined by 

Z ^ Q + ikz 

From this definition it follows by separating real and imaginary parts (using 
Z = Zi + 1Z2) 

Zi = 0 - ky 

Z2 = P + kx 

Using the function Z (Zhukovski s function) problems can be solved with boundaries 
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that consist solely of horizontal equipotential lines, vertical stream lines and a 
phreatic line. 

For a horizontal equipotential fine Z^ is constant: 

Z[ = <Pi — ky^ = constant 

For a vertical stream line Z2 is constant; 

Z2 = 'Pi + kxi = constant 

For a phreatic line without precipitation Zi = 0. This can be shown by substituting 
the boundary condition (j) = y and thus <P = ky in the expression for Z , ; 

Zi = 0 - ky = ky - ky = 0 

The properties just mentioned, can be used in the problem of Nelson-Skornakov (see 
Verruyt. 1970). The problem deals with a flow under a dike that separates a low-lying 
polder from higher surroundings, see figure 11.15; 

Fiaure II 15 Problem of Nelson-Skornakov 

In figure 11.16 the Z-plane and the fi-plane are given for this problem. The position 
of the origin is shown in the figure. The potential in the polder and that in the surround
ings just correspond with the elevation of the relevant ground level. The image of the 
flow region correspond with the right half plane of Z. In the fi-plane, the image of the 
flow region is a half infinite strip. 
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m 

c ^0 

Fiaure 11 16 7 plane and Q plane 

The relationship between Z and Q can be found by application of a sine transform 
(see Appendix 2) 
First the half infinite strip in the i3-plane is mapped on a half infinite strip with width 

n 
n in the f3*-plane The Z-plane is rotated over and transformed linearly so that the 

points C and B are mapped in the C-plane on the points C = 
figure II17 

and -I-1, see 

^ kL 

n 

1^ 

kH 2 

Figure 1117 plane and Q* plane 

Therefore it is considered that for point C Z2 is given by 

Z2=^ P + kx = kL 

By application of a sine transform to the i3*-plane, the relationship between Z and Q 
IS found (using the relationship between Q and Q* see figure II 17) 
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or 

2iZ (Qn 
-—-h 1 = sin ( -
kL \kH 

2iZ 

JL cos 
Qn 

kH 

Z = 
ikL 

2cos^ 
Qn 

2kH 

Substitution o{ Z - Q + ik z leads to 

, , nQ\ iQ 
z = LCOS — H 

2kH J k 
(II 32) 

In this expression L is unknown (the position where the phreatic surface meets the 
drain is not known) The parameter L can be calculated by using the condition that 
for point D the v-coordinate is the smallest on the traject CDA 
From expression (II 32) it follows 

X = LRe<!cos^( ^—][ 
\2kHj\ k 

Along CDA <P = 0 then 

nQ\ 
cos^( _y^ 1 = cos^l — 1 = cosh^ 

akHj "' \2kH 

Then at CDA the following condition holds 

\2kHJ 

X = Lcosh' 
nP\ P 

2kH 
(II 33) 

The condition that x has its minimum at point D for all points on the traject CDA can 
be formulated in the following way 

dx ^ / 7 t ' ^ \ /7r"^\ TT 1 
-— = 0 or 2L cosh — sinh — — = 0 
d'P \2kHj \2kHj2kH k 

For point D then follows 
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sinh 
kH J nL 

and thus 

kH (2H\ 
Po = —arcsinh — (1134) 

n \T^LJ 

The relationship between f ^ and L* is found from (II 33) 

L* = L cosh- - " - ^ (1135) 
\2kH / k ^ ' 

By elementary operations one term in (II 35) can be rewritten 

1 -I- I 1 -I- sinh 
\2kHj 

1 -I- cosh I 
\kH 

_ 1 
— T 

21 '^'^DW 

kH 

Substitution of this expression and (II 34) in (II 35) yields 

or in dimensionless form 

|-2s{'-('*Cr)TM»-"''(i 
From this expression the parameter Lean be calculated if L* and H are given, and 
from (II 32) the complex potential can then be evaluated for an> point 

7.3 Hodograph Method 

This method can be found in literature (see e g Verruyt 1970) The complex function Q 
IS a function of the complex variable z = \ 4- n The partial derivative with respect 
to X can be written as follows 

dQ _dQ dz _ dQ 

dx dz dx dz 

The function w is defined by 
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dQ 

1^ 
dQ d<P 

dx + 
d'Fl 

I — 

dx] 

According to the Cauchy-Riemann relationships (see Chapter 2), the following 
condition holds: 

dW d4> 

5^ 

Then: 

d<P d<P 
W = h i 

dx dy 

After substitution of Darcy's Law, expressed in derivatives of the potential, it follows: 

w = v^ — iv„ (0.36) 

The inverse form of w 
dQ 

dz 
is given by: 

- J v . dQ (11.37) 

From the linear appearance of i-̂  and r, in (11.36), it is seen that straight equipotential 
lines and straight stream lines in the flow region are represented by straight lines in 
the u-plane. Because for those lines i\./i\ = constant they are going through the 
origin. A phreatic stream line is represented in the hodograph-plane (the plane of 
specific discharges), and thus in the M-plane too, by a circle which can easily be 
derived in the following way; 

hodograph-plane w-plane 

Figure 1118 Representation of phreatic surface in the hodograph plane and 
in the w-plane 
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dip dy v., 
^ ^ = — k — = - ksmoi = —Ze
es ds i\ 

v' + ki\. = 0 -» v' + i' + ki\, = 0^vj + { L\, 4-

The latter expression is the equation of a circle with radius k/2. and the centre located 
a t ( - ( V 2 ) , seefigure0.18. 
In the vv" '-plane the phreatic line is represented by a straight line parallel to the real 
axis at a distance — \/k. That can easily be shown (using v' = - kVy. from the pre
vious derivation); 

1 V:C + iVy _ V^ + iVy _ V^ + iVy 

Vx - iVy v/ + Vy' -kv.. kvy k 

So the imaginary part is constant and equal to — \/k. 

The function w is a function of fi. The solution of a problem is found by expressing 
w~' inQ. Therefore the conformal mapping technique is used and (11.37) is integrated. 
This procedure is illustrated by an example given in figure 11.19. It is the problem of 
Vreedenburgh (see De Vos, 1929, Kozeny, 1931 and Verruyt, 1970). 

^^^^^ 
'•••-' —- ' ' ' 

J 

/A 
" • ' • ' ' ' - - - • - * i 

^ ^ - ^ ^ ^ ^ ^ ^ 

Z 
J^ . \ 

D X C 
««S55̂ >>W>>>̂ >565565̂  <->(y %*565655d««»«*56 

Figure II49 Problem of Vreedenburgh. 

In figure 11.20 the hodograph plane; the w-plane, the w '-plane and the fl-plane are 
given: 
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V̂ 
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cf 

Figure II 20 Conformal mappings for the problem of Vreedenburgh 

The relationship between w"' and Q is found directly from figure IL20: 

w " ' = -Q/kQ 

Substi tution of this expression in (0.37) yields the solution of the problem: 

1 r , ^ ' 
z = — \QdQ = h c 

kQ •" 2kQ 
The integration constant c is determined by the condition that for point D : z = 0, and 
Q — 0. From that it follows that c = 0. Then the solution is: 

Q^ 
z = ov: Q = ^/2/cQz 

2kQ ^ ^ 
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Approximative Methods 



8 Method of Fragments 

In the method of fragments the flow region is sub-divided into a number of sub-
regions This sub-division is made in such a way that for each sub-region a more 
simple solution can be found For example, such a sub-division can be made if one or 
several known straight lines may be assumed to be an equipotential line 
The method is illustrated with an example 
In the problem of figure II 21 the discharge is calculated. 

Figure 1121 Seepage towards a basin 

The solution of the problem can be given m closed form using conformal mapping 
of the region AEFCD upon the upper half plane Im{C} > 0 (method Pavlovskii) 
However, the numerical evaluation of this solution may give numerical problems 
for some values of the quotients h/Dj and Dj D2 
A more simple and approximative solution is obtained if the line segment BC is 
assumed to be an equipotential line (with unknown potential 0,) The flow problem 
IS solved for the sub-regions on both sides of the line segment BC. with the unknown 
potential 0^ being eliminated for both Then the approximative solution of the flow 
IS found In figure II 22 the conformal mapping process is given schematically 
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sub-region1: 

I 
D1 B 

B 

0 

c 

sub-region 2: 

C 

R 
y S 
' x 

i i 

I fl> 
Q̂ n 

-1 +1 ;2wc 

n̂*̂  
0 +1 3 v 

Figure II 22 Conformal mappings for the basin problem 

Sub-region 1 (ABDA) : 
Conformal mapping of the z-plane on the C-plane and of the C-plane on the fi-plane 
yields; 

C = 

2 1 — cos I 
ZTT 

f^ \ 1 - COS — n 
\Di J 

COS 
l(Q-0i) 1 

A combination of these expressions leads to: 

Q 
'2 [ 

= 0 , 4 — arccoss 

2 1 — cos iz — 

( / h 
1 — cos - - 7 1 

(11.38) 

.Sub-region 2 (EFBE): 
The relationship between C* and z is found by means of a sine transform; 

*̂=^n/̂ J + ̂  (0.39) 
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The relationship between Q and Z* is given for subregion 2 by the following Schwarz-
Christoffel integral. 

Q = afo*^-*(;. - c ) - i ( / - \)-'d}. + j? 

The constants a and ji are determined with the conditions that the points F and C are 
represented correctly in the z-plane. 
The solution is an elliptic integral of the first kind (see Abramowitz, Stegun, 1968) 

Q - (p, F{w\c) 
(II 40) ^1 He) 

where; 

w = a r ccos^_ / j ^ "^ -^ i ' ("41) 

Jn{D2 -h) 
c = sin^ 

V 2 D , 

f(wlc) = jS(l - csm'9)~'-dQ 

K(c) = Fhc 

The discharge quantity Q is found by calculation of Im[f2J in the point B (see figure 
II 22), using (0.39), (11.40) and (11.41). 
This yields; 

Q ^ ( 1 - <•) ^ = -^ ^ II 42 
0, K(c) 

By eliminating <f>i from (1138) and (II 42), the relationship between Q. Q and z in 
subregion 1 is found. 

Q = Q 

,2( 1 - cos I iz — m ^i \ \ D,^ 
, - 4 - arccos< ; ; I 

LK(1 - C ) 71 [ / / , 
— COS — n 

D, 

(II 43) 

If the potential is supposed to be known at a point ZQ, the discharge Q can be calculated 
from (0.43). Then the following expression is found-

' ' \ 



* 0 

Q = -J 7 
r ^2 1 - COS iZo — 

- 4- Re < - arccos K{\ - c) \n I ( h 
1 — cos --n 

where 0^ is the potential at the point ZQ. 
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9 Graphical Flow Net Method 

The flow net method is a graphical method based on the property that stream lines 
and equipotential lines are perpendicular if the flow region is homogeneous and 
isotropic Generally A0 = AP is chosen then a figure is found where the stream 
lines and the equipotential lines form elementary squares 
Starting from a first sketch in which the expected flow pattern is drawn, a process of 
improving the drawn pattern leads after some iterations to a convenient flow pattern 
Then the quantity z l^ is the same over each square also AP is the same over each 
square With that knowledge the discharge quantity Q and the potential at any point 
in the flow region can be found from the drawn flow pattern 
As an example, a flow net is roughly sketched for the groundwater flow in a confined 
aquifer, see figure II 23 (The analytical solution for this problem can be found using 
the method of Pavlovskii and has a form with an elliptic integral of the first kind) 

a).|=2.0m^day .^ 40 m ^ ^ ^ = 0 

Fiaure II 23 Flow net under a dike 

The number of squares between two stream lines going from $ , = 20 m^/day to 
02 = 0 IS 10 So each square represents a decrease of the potential of 0 20 m^/day 
To calculate the discharge Q the discharge per square (AP = A0 = 0 20 m^/day) is 
multiplied by the number of squares between two equipotential lines 

e = 5 X 020 = 1 m^/day 

Generally the discharge is expressed in the coefticient of permeability Then 0 , may 
be given by for example, 0^ =2k (using the definition 0 = k(j)) Then in the same 
way Q = \ k m' day is found 
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10 Finite Difference Method 

In the finite difference method the flow region is sub-divided into a number of rec
tangular or square elements. According to a basic assumption about the variation of 
the groundwater head in the elements, the solution can be calculated. Generally the 
function 4>(x, y, f) is calculated for a moment f = f,. If the flow is non-steady, a dis
cretisation in time is used and the-position of the boundary (e.g., a phreatic line) 
after a step in time is calculated from the flow pattern. Then the function f/;(x, y, t) is 
calculated for the moment f = f, 4- At, etc. 
The variation of the groundwater head is assumed to be linear within each element. 
In figure 0.24 square elements are considered; 

03 

02 

00 

04 

01 

Figure II 24 Square elements. 

The function 4>(x, y, t) is continuous everywhere but not dilferentiable everywhere 
because at the sides of each element it is generally nodded. 
The partial second derivatives of 0 with respect to x, and y can be expressed as 
follows: 

= -2 [01 + 0 , . - 2 0 o ] 

and 

d\(P_ I 
Ty'~a 

a 

a X 

d'(t> 1 

dx' a 
01 - 00 

a 
00 - 03 

a 

02 - 00 00 - 04 
[02 + 04 - 20o] 
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Substitution of these expressions in the differential equation (I 3) that generates 
two-dimensional groundwater flow, yields 

1 
[01 + 02 4- 03 -h 04 - 40o] = P(\, \, r,) 

or 

00 = i[01 + 02 + 03 + 04 - "' •P(̂ . \, fl)] 

^^0 f̂ 0̂ 
This expression can also be derived from —=- and - ^ from a Taylor series 

dx' dy 

(II 44) 

The Taylor series is defined by 

J(x) = f(a) + f'(a)(x -a) + f"(a)''—^^~ + / » ^ - ^ - ^ + 

When this formula is applied to a grid with sides Ax and A\ (see figure II 25) 

Ax 

00 01 

Ay 

A y 

It yields 

Figure IT 2S Rectangular elements 

01 = 00 + :; ^^ + 
0 d'cj) (A\)' f > (Ax)"" d-'cf) (Ax)^ 

dx' 2 ' dx^ 3 ' "*" dx'^ 4' 
4-

(> c'(l) (A\)' r^0 (Ax)^ d^cj) (Ax)^ 

rx dx 2 dx^ 3 ' ax* 4 ' 
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Addition of these expressions leads to; 

d'd) , c'*0 (Ax)"^ 
0, + 03 = 200 4- ~{Ax)' + 2 - 4 4 f + ... 0.45) 

ox dx 4! 

a*0 (Ax)" 
If all terms from 2 — are neglected, then (11.45) can be written in the following 

form; 

d'(p 01 -h 03 - 200 

dx' (Ax)' 

d'4> 

dp 

(0.46) 

In an analogous way an expression for ^-y is obtained: 

g 0 _ 02 + 04 - 200 

dy' ~ ' (Ay)' 

Substitution of (0.46) and (0.47) in the differential equation (L3) leads to: 

01 + 03 - 200 , 02 + 04 - 200 

(0.47) 

(Ax)' (Ay)' 

From this expression it follows that: 

= ^(-^,.v,f,) 

i^x)' (Ay)' | 0 i + 03 02 + 04 
2l(Ax)' + (Ay)']l (A.x)' '(Ay) 00 = ^.;...;2 ;;7V2i - I T T ^ + h : ! -nx,y.t,)\ (ii.48) 

If the sides Ax and ziy are chosen of the same magnitude zlx = zly = a, then (0.48) 
reduces to the previously-found formula (11.44): 

00 = i [ 0 i + 02 + 03 + 04 - a'P(x,y,t^)^ 

a*0 a* 
The error made by this approximation is of the order 2 --^ • - -

dx 4! 

Expression (0.44) is the basic expression that is used for this finite difference method. 
All terms appear linearly in that expression. A set of linear equations will result 
when the groundwater heads in the nodal points are related to each other and 
to the boundary conditions. That set of equations can be solved by well-known 
techniques, resulting in known heads in the nodal points. For points within the ele
ments, the head is calculated by linear interpolation according to the basic assump
tion. 
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11 Finite Element Method 

In the finite element method generally the flow region is sub-divided into a number of 
triangular elements Using an assumption about the variation of the groundwater 
head in the elements, the solution can be calculated Generally the function 0(\, i, f) 
IS calculated for a moment f = f i If the flow is non-steady, a discretisation in time 
IS used and the position of the boundary (e g . a phreatic line) after a step in time is 
calculated using the specific discharges at the moment f = f. Then the function 
0(Y, J , f) IS calculated for f = ri 4- At, etc 
The finite element method is based on a variational principle The basic formulas can 
be derived using a mathematical variational analysis Here it is shown that a somewhat 
alternative derivation using an energy concept leads to the same result 
For groundwater flow an energy flux function can be defined by e = in*q(f> The 
dimension of e for two-dimensional flow is energy per unit of length and per unit of 
time The parameter m* is given by m* = pi Thus 

e = pqicj) (1149) 

The dimension of m* is mass per unit of length and per unit of time Note that the 
density p has the dimension of mass per unit of area in our two-dimensional case 
From the appearance of the specific discharge v in the definition of e it is seen that e 
IS a vector function The energy flux per unit of time in a direction n (through a unit 
of length with direction / perpendicular to n) is given by e„ where e„ is the component 
of e in the direction n Consequently the energy transport per unit of time, dE, through 
a line segment dl is given by 

dE = e„dl = pgi„(t>dl 

,ev+ ^ y dy 

Figure II 26 Energj flux through an elementar\ rett ingle 
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The concept used in this Chapter says that in a flow region there will be such a ground
water head distribution that the total loss of energy transport per unit of time due to 
the flow is a minimum. (Of course this is also a variational principle). 

In figure 0.26 the energy flux e per unit of time through an elementary rectangle is 
considered; e is composed of the following components: 

in x-direction: ê  = pi\g(j) 
in y-direction: Cy = pVy.gcj) 

The loss of energy transport dE, in the rectangle is given by (see figure 0.26): 

~ dx dv 4 dydx 
dx ' dy 

or, after substitution of (11.49) and Darcy's Law and considering the case with constant 
density p, constant coefficient of permeability k and P(x, y, f) = 0 (see Chapter 1): 

py^ dx) \dy) J 
dx dy 4- pg<l>k 

'd'4> d'cj) 
dx dy 

The second term of this expression is zero (see (1.4)). Thus the expression becomes: 

pgk 
(10 Y /a0^2" 

dx dy 

For the whole flow region R the loss of energy transport per unit of time E is then 
given by: 

-4* = pgkj\R 
50 V fdcj)^'' 

(LX dy 
dx dv (11.50) 

If a quantity A is defined according to 

A* 
A= 

2pg 

then (11.50) becomes: 

dx dy (0.51) 
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This expression is well-known in literature (see, for example, Verruyt, 1970) 
Expression (0 51) is used to solve groundwater flow problems According to the 
mentioned energy concept, there will be such a groundwater head distribution that 
the total loss of £ is a minimum which occurs if in each point 0 has such a value that 

dA 
= 0 (II 52) 

Approximative solutions are obtained by sub-dividing the flow region in a number 
of elements An assumption is made about the variation of the groundwater head in 
an element and the unknown heads in the nodal points are calculated by application 
of (II 52) It will be shown that this leads to a set of linear equations 
The solution of this set of equations gives an approximative solution of the problem 
Generally triangular elements are used (see figure II 27) and the variation of the 
groundwater head in an element is assumed to be linear in \ and \, see figure II 28 

hj^'r^s^ 

^ 1 (xi-y^) 

Figure II 27 Triangular clement 

2 iy 
X 

The groundwater head within an element is given by 

0 = «! V 4- «2V + ^3 (II 53) 

The constants Oj, 02, «3 are chosen in sucha way that in( \ , , ii), (xj, i2)and(x3, v-,) 
the heads just are respectively 0, . 02 and 03 
The constants a are given by 

«1 = (^101 + ''202 + ''303)/^ 
ai = (Cl01 + ^202 + C303)//l 
a, = (^101 4- d2(t>2 + di^i)/A 

(II 54) 

where 
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^1 = >'2 - ^3 

' '2 = ^3 - .Vi 

^3 = yi - yi 

Ci = .X3 — X2 

C2 = X, - X3 

C3 = X2 — .Xi 

dl = X jy j - X3y2 

^2 = ^3>'i - x^y^ 

ds = ^1^2 - ^2^1 

^ = ^i(>'2 - >'3) + ^2(^3 - yi) + X3(yi - y2) 

(0.55) 

0 
y ("ivi) 

ixgyz) 

Figure 11.28 Linear variation of groundwater head m an element 

To determine the contribution to the quantity A (see (11.51)) of an element, the partial 
derivatives of 0 with respect to x and y are obtained from (0.53): 

50 
ox 

c50 
(0.56) 

After substitution of (0.53) and (0.56) in (0.51), the following expression is obtained 
for the contribution of the element with number /: 

Aj = \ki\R[ai + a^dxdy 

where R^ denotes the area of this element. 
As ai, f/j, c/3 are constant within an element, (11.57) becomes; 

(0.57) 

Aj = lKa\ + aDW^dxdy 
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The integral ^^^dxdy is equal to the area of the triangular element; 

lzll/2. 

Where A is given in (11.55). 
Then the mentioned contribution of the element y is given by: 

k\A\ 
(a,' + a2') (0.58) 

According to the energy concept, the correct head distribution is such that for each 
head 0, (in nodal point with number i) the condition holds that A has its minimum. 
According to (0.52): 

50,. ^^50, 

where ^ denotes summation over all elements of which 0,. is an angular point. 
Considering that o,, 02- "3 are functions of the nodal heads (see (11.54)) this expression 
can be written in the following form, using (0.58): 

4 
da I da2 

= 0 

or, considering that /c is a constant: 

ca. 4- a. 
ca-i 

dcj^, ^ 50J 
(0.59) 

The derivatives that appear in this expression are obtained from (0.54). For the 
nodal point /' = 1 that is used in the following as an example they are: 

5ai bi 5^2 ft 

501 A 501 A 

Then (0.59) becomes: 

I 
foi f, 

A A 
(11.60) 

Substitution of (0.54) in (O.60) leads to; 
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(b^'cpi + b,b24>2 + ''1^303 + ' • i ' 0 i + 

I 
+ CiC2 02 4- CiC3 03)i = 0 

In other form (0.6I) is given by; 

f ; [Fi0i + F202 + ^303] = 0 

(11.61) 

(11.62) 

where; 

P , = p ^ | ( V + C i ^ 

Pi = r , | ( ^ i ' ' 2 + '̂ 'I'̂ z) 

P 3 = ^ - | ( ' ' l ^ 3 + qC3) 

and b^, b2, b^, c,, C2, Cj, being given by (11.55). 
The expression (0.62) is a linear equation in the head of the nodal point 1 and the 
heads of the surrounding nodal points, as shown in figure 0.29. 

Figure II 29 Elements arond a nodal point * 

The condition (0.62) for all nodal points leads to a set of linear equations where the 
unknowns are the nodal groundwater heads. The boundary conditions have to be 
taken into account. The set of equations leads to an approximative solution of 
the problem. For points within the elements, the head is calculated by linear inter
polation according to the basic assumption (0.53). 
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Ill Analytical Function Method 



12 General Description 

In part III a calculation method is described for two-dimensional groundwater flow 
problems, using complex functions Anisotropy is taken into account according to 
the theory that is mentioned in Chapter 3 (simple geometric transformation and 
defining a fictive coefficient of permeability) Inhomogeneities with respect to the 
coefficient of permeability or the density of the fluid are accounted by sub-division 
of the flow region in corresponding sub-regions that all have a constant coefficient 
of permeability and density 
The sub-regions are coupled in the calculation (see Chapters 14 and 16) by means of 
special connecting conditions at the separation lines 

In the following text the flow is considered in regions or sub-regions that already 
have been transformed for their anisotropy, and are then further considered as if they 
were isotropic So in Part III anisotropy is not mentioned further in formulas In the 
computer program at the end of Part III it is accounted according the theory of 
Chapter 3 
Only pure two-dimensional flow is considered here Multi-layer systems where in 
each aquifer the flow is assumed to be two-dimensional and between the aquifers 
there are semi-pervious layers, are semi-three-dimensional They are not dealt with 
here 
According to the theory mentioned in Chapter 1 two-dimensional groundwater 
flow in an isotropic region is given by 

d'(t) d'cp P(x, y, r) 

^'^Jy'^ k 

The analytical function method (A F M ) is based on the calculation of flow patterns, 
which means that non-steady flow is calculated as the non-steady behaviour for a 
sequence of steps in time So there is a discretisation in time At a particular moment 
the flow pattern is calculated and then from the specific discharge distribution a new 
position of the boundary is calculated after a step in time (for example the changed 
position of an interface) Then the flow pattern is calculated at the following moment 
and so on (see Chapter 16) The non-steady character of the flow is accounted in the 
boundary conditions The differential equation for the flow pattern is 

5^0 5^0 _ P(x, v) 
'd^^'dj'~ k 

70 



The term P(x. v) represents the abstraction of water per unit of time and per unit of 
area in the interior of the region at the considered moment If such an abstraction 
area reduces to zero where the product of P(\, y) and the area remains constant, then 
there is a sink in the region 
In two-dimensional flow problems supply or abstraction is generally concentrated in 
sinks or sources For cases with a line abstraction (drain) a better generation of the 
flow pattern is usually made by assuming that line as an equipotential line rather 
than as a line where the specific discharge per unit of length is constant (although 
that can be accounted by the formula of a distribution of sinks) 
It is shown in Chapter 14 (dealing with the boundary conditions) and in Chapter 16 
(concerning the procedure used in solving groundwater flow problems) that the storage 
alteration along the boundaries need not be accounted in a supply or abstraction term 
in the differential equation when flow patterns are calculated The storage alteration 
is accounted when the position of the boundary after a step in time is calculated 
If only abstraction or supply at sinks and sources is present, then for the whole 
region (except these singular points) the flow is described by the Laplace differential 
equation 

5x'' dy 

Complex functions are very suitable for the solution of flow problems that satisfy the 
Laplace equation (III 1) The real and imaginary parts of any analytical function 
satisfy the Laplace equation (see Appendix 1) This means that an analytical function 
that satisfies the boundary conditions at all points of the boundary is the exact 
solution of the flow problem A calculation method that uses the complex potential 
Q = 0 + iP (see Chapter 2) has the advantage that the solution also contains the 
stream function. 
For the analytical function method (A F M) analytical functions with degrees of 
freedom are used so that a flow pattern is generated that satisfies the boundary 
conditions at a number of points of the boundary Because generally such a solution 
does not satisfy the boundary conditions at all points of the boundary, the solution 
IS not exact However, because the complex functions are analytical, the solution 
satisfies the Laplace equation everywhere except at singular points Therefore the 
solution IS exact within an approximative boundary The solutions obtained in this 
way are different from those of the numerical methods like the finite difference method 
and the finite element method (see respectively Chapters 10 and 11). In those methods 
a solution is found that is approximative over the whole region 
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13 Composition of the Solution 

For each sub-region there is an analytical function that generates the flow in it, and 
IS defined in the sub-region and on its boundary 
The presence of sinks and sources can be accounted by addition of the well-known 
logarithmic expressions for sinks and sources (according to the principle of super
position (see Chapter 6)) 

The general solution for the flow in a sub-region has the following form 

Q(z) = Q2(=) -H Qi(z) + Qo (III 2) 

where 

Q2(z) approximative part, 
i3,(z) exact part for sinks and sources, and 
QQ reference constant 

The expression Q(z) = Q2(:) + ^i(-) is the basic solution of the flow problem The 
complex constant QQ IS a reference constant that produces a translation of the values 
of the potential and the stream function The use of a reference constant is allowed 
because the flow pattern does not depend on absolute values of the potential and the 
stream function but on potential and stream function gradients The complex reference 
constant can be used to define the potential and the stream function at a point, which 
then becomes a reference point and the complex potential is defined with respect to 
that point 
It IS not neccessary that there is one and the same reference point for the stream 
function and the potential There may be two different points The reference con
ditions with respect to 0 and P in two points then yield the values of the complex 
reference constant if the flow problem is otherwise defined 
The complex function Qi(z) generates the flow due to sinks and sources in the flow 
region 
By the principle of superposition the complex potential due to sinks and sources is 
given by 

Q,(z) = l^Un(z-z) (10 3) 
j - i 2n 

where 
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m : number of sources and sinks 
Qj-. discharge of sink (Q > 0) or source (Q < 0) 
Zj ; Zj = Xj 4- iyj'. position of sink or source 

The complex function Q2(-) is an approximative function that is superimposed on the 
flow according to sinks and sources. 
The function Q2(:) is defined in such a way that at a number of points of the boundary 
the boundary conditions are satisfied (or the connecting conditions with other sub-
regions). To achieve this, the function Q2(-) contains a number of degrees of freedom 
that are so defined that the boundary conditions are satisfied by the solution 
Q = Q2 + Qi + QQ. For the choice of an appropriate function Q2 there are many 
possibilities. 
It is essential that the function Q2 is an analytical function because only then does it 
satisfy the Laplace equation. In addition, the appearance of the degrees of freedom 
in the formula has to be such that the process of calculation is as simple as possible. 
The most simple suitable form is used when the degrees of freedom appear linearly 
in the solution; 

^2(r) = i y, F,(z) (01.4) 
j = l 

where: 

n : number of terms of iJj 
jj : constant 
Fj-. analytical function of z 

The degrees of freedom 7̂- in fi2(-) "^^y be real, imaginary or complex. The use of 
complex yj has the advantage that there are two degrees of freedom per term yjFj(z) 
This reduces the amount of calculation work because a maximum number of degrees 
of freedom is used with a minimum number of complex functions Fj(z). Therefore 
here the choice is made using degrees of freedom of complex type. 
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14 Boundary Conditions 

14.1 General 

In this Chapter the boundary conditions are drawn up in a form that is convenient 
for use in the analytical function method (A F M ) Expressions are derived from 
formulas for a 'general boundary' by varying some of the parameters 
The 'general boundary' is shown in figure III I There is a thin sflt layer between two 
sub-regions, and the density of the fluids in both sub-regions may be different Para
meters for one of the two sub-regions are denoted by the subscript c The resistance 
of the silt layer is ĉ , and its thickness is set to zero 

Figure III I General boundary 

The position of a point of the silt layer is denoted by the real variable / and by l^ for 
the other sub-region The positive directions for / and /̂  are opposite, having been 
chosen in such a way that an anti-clockwise rotation is carried out when the whole 
boundary of a sub-region is followed 
In the situation shown in figure III I there will be a flow through the silt layer 
Application of Darcy's Law to an element of the silt layer yields 

dP -4> + 4>* 

or 

0 - 0 , * + . / , ^ = O (10 5) 
cl 
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The fictive groundwater head 0̂ .* is a groundwater head that is derived from the 
actual 0^. The relationship between (p* and 0̂ , is the following well-known ex
pression (which expresses the relationship between two groundwater heads that 
hold the same pressure at a point with height y); 

, * Pc, Pc - P 
4>c = - 0 . y 

p p 

Then (111.5) becomes; 

, Pc , ^ S'P P - Pc , , „ . . 
0 0c + Cs ^ 7 = y I0.6 

P dl p 

In addition, the continuity condition has to be satisfied; 

dP /dP\ 

Expression (10.7) is only relevant at the separation line between two sub-regions. 
The conditions (01.6) and (III.7), if relevant, arc sufficient to arrive at an exact solution 
if they are posed at all points of the boundaries. Here, however, they are posed at 
selected points of the boundary ('boundary points'). The accuracy of the solution can 
be improved by increasing the number of these boundary points, as well as by using 
the condition that the expressions (10.6) and (I0.7) remain valid in the close neigh
bourhood of the boundary points (then the variation of parameters in the direction / 
and resp. /̂  are considered). Here the choice is made to use also these 'derivative 
conditions' for the boundary points. The expressions with respect to the variations 
in the direction / are given by (where it is mentioned that the positive directions for 
/and I,, are opposite): 

d^_p^d^ d'W _p - p, dy 

dl p dl "̂  ^' dl' ~ p dl 

or: 

and: 

or: 

^A + ^' fit] + ^ = fLU^ ^ 
dl p[di). ^' dl' p ~ dl + 'H-^] ^c:-^ = ''^--^ ("1-8) 

d'P 5 /dP 
'W^TiydT 

d'P /d'P 

WVdi 2 t .,2 , = 0 (I"-9) 
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14.2 Specific Expressions to be used 

Equipotential line with silt layer 
In Chapter 4 it was mentioned that along an equipotential line the groundwater head 
is constant. Here the situation is considered where there is a thin resistance layer 
between the equipotential line and the flow region, as shown in figure I0.2; 

Figure III 2 Equipotential line with silt layer 

This situation corresponds to many practical situations where thin silt or clay layers 
are present at the bottom and talus of canals, lakes, etc. 
The expressions to be derived here are found from (III.6) and (10.8) by putting /) = p^ 
and 0^ = 01 (which is a known constant). Then the result is: 

0 + c, 
dP 

5r 0. (OLIO) 

and: 
50 d'P 

(10.11) 

dQ 
In calculations Q and — are used instead of 0. P and their derivatives with respect 

dz 

to /. Therefore (III. 10) and (III. 11) are written in complex form: 

{Q Re 
dQ dz\ 

(10.12) 
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idQ 
Re< — 

[dz 

1 dz 

k Tl ic, 
dl' 

d'Q 

Iz' iC = 0 (0LI3) 

Stream line boundary 
In Chapter 4 it is mentioned that a stream line boundary is impervious, see figure IIL3: 

OO 

Figure III.3 Stream line boundary. 

The expressions are found from (III.6) and (III.8) by substitution of the condition that 
the resistance of the silt layer is infinitely large: 

00 

Division by c^ in (I0.6) and (I0.8) yields: 

0 Pc 0c , f""̂  P - Pc y 

P c, dl P Cs 

1 50 p, (dcjA d'f p-p, \ dy 
and 1 — 4 , = 

Cj dl pc,\dlj^ dr p c^ dl 

For Cj -> 00 these expressions become: 

dT 

and 

dl 

d"p 

'df' 

0 

= 0 
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In complex denotation they are given by: 

idQ dz] 
Im < ^ = 0 

^dz dl 

dQ d'z d'QfdzV] 
and Im<^-- - y + - - , - .,,1 > = 0 

[d: dl' dz' \dL 

(10.14) 

(III. 15) 

Seepage line with silt layer 
In Chapter 4 it is mentioned that at a seepage line the groundwater can freely leave 
the soil and run ofT. Generally the thickness of a seepage layer is very small, and then 
the pressure at the seepage line is equal to the atmospheric pressure, which is a 
reference pressure, set to zero. Using the definition of groundwater head, the condition 
for a seepage line is: 

0 = y 

Figure 111.4 Seepage line with silt layer 

So at a seepage line the groundwater head varies in a prescribed way. In this study 
the general case of a seepage line with a silt layer was considered, see figure 01.4. 
If the resistance of the silt layer is set to zero in the expressions that will be given, the 
conditions are obtained for a common seepage line. 
The seepage line expressions can be found from (III.6) and (III.8) by the substitution 
oSp, = 0. 
This yields; 

0 + c, 
dP 

~dl 
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and 

50 d"F dy 

Ti^^'~di' ^Ji 

These expressions are given in complex denotation by 

ff2 dQ dz} 

H'k-''^i:.-dl\ = ''^^'^ ("̂ 1̂ ^ 
and 

} = lm{|} (01,7) 

It should be noted here that generally the position of a seepage line is known, as it 
follows from the geometry of the flow region 
However generally the upper point of the seepage is not known this point is also a 
point of a phreatic line, the position of which is usually not known previously So the 
problem of the unknown upper point of a seepage line has to be considered as a 
phreatic line problem 

Phreatic line 
In Chapter 4 it has been mentioned that at a phreatic line the pressure is equal to the 
atmospheric pressure (that was set to zero) Using the definition of groundwater head, 
the following condition was derived 

0 = v 

So a phreatic line can be considered as a line at which the head varies in a prescribed 
way 
If the position of the phreatic line in steady flow is known and there is no precipitation, 
the stream line conditions (III 14) and (III 15) may be used If there is precipitation 
the condition should be used that at the phreatic line P varies so that its variation per 
unit of length in horizontal direction corresponds to the precipitation In A F M 

50 d\ 
calculations the condition 0 = \ and the derivative condition— = are used be-

5/ dl 
cause those conditions may be used for steady flow as well as for non-steady flow and 
are independent of the presence of precipitation 
Generally the position of the phreatic line is not known previously The steady 
position of the phreatic line is calculated from the non-steady behaviour where 
other boundary conditions are invariable After a number of steps in time it is seen 

Re 
dQ 1 dz 

k dl 

d'z d'Q 
dz' J, 

79 



that there is practically no further movement of the phreatic line In the solution 
It IS seen then that the specific discharge components normal to the phreatic line have 
become very small and the stream function variation along the phreatic line is very 
small too, if there is no precipitation In the presence of precipitation the stream 
function vanes so that this variation just corresponds to the precipitation 
The precipitation is taken into account in the following way 
At the moment f = 0, the flow pattern is calculated, using a known or assumed 
position of the phreatic line Displacement of the phreatic line in a step in time is 
calculated using the specific di-^charges along the phreatic line The rise according 
to the precipitation has to be superimposed The rise (or fall) of the phreatic line 
also depends on the storage coefficient p of the soil The effect of the precipitation N 
in a step in time At is 

NAt 
Ay = 

P 

A combination of the effects of the precipitation and specific discharges leads to the 
position of the phreatic line after one step in time (see Chapter 16) 
The new position of the phreatic line is then used to calculate the problem again, and 
so on 

Figuie HIS Phreatic line 

The phreatic line expre-^sions to be used in flow pattern calculations can be found 
from (III 6) and (III 8) by the substitution of p^ = 0 and c^ = 0, which yields 

0 = 3 

and 

50 dy 
~di^~di 
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In complex form these expressions are given by. 

and 

Re<;|j. = Im{z} 

Re 
dz k dl 

= Im 

(III 18) 

(III 19) 

Interface 
It IS mentioned in Chapter 4 that an interface is a separation line between two fluids 
with dilTerent densities In steady state an interface is a stream line If the steady 
position of the interface is known, the expressions (III 14) and (III 15) can be used 
In any case (steady or non-steady), the condition holds that the pressure is equal on 
both sides of the interface, it has already been shown that this can be expressed by the 
following condition 

P ^ P C ^ . ^ P A (III 20) 

P P 

So an interface can be considered as a line along which the groundwater head varies 
in a prescribed way with the height y Here (III 20) is chosen to be used because it 
holds for steady as well as for non-steady flow Generally the position of the interface 
IS not known previously The steady position of the interface is calculated from the 
non-steady behaviour where other boundary conditions are invariable After a 
number of steps in time, the interface will be practically at rest Then it is seen in the 
solution that the normal components of the specific discharges at the interface have 
become very small The calculation procedure starts from a known or assumed posi
tion of the interface, and then the flow pattern is calculated The specific discharges 
at the interface are used to calculate the interface position after one step in time Then 
the problem is calculated again, and so on 

Figure III 6 Interface 
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Two interface expresions are found from (III 6) and (III 8) using the condition that 
c, = 0, yielding 

A. Pc A P - Pc 

0 - - 0c = y 
p p 

and 

^ Pc^ / ^ 0 \ _ P - Pc SV 
dl p \ dl J, p dl 

In addition, the continuity condition (III 7) and its derivative expression (III 9) hold 

cP (cP\ 

and 

d'^V (d'P\ 

-^' - b" j< ̂ ' 

In complex form, these expressions are given (after multiplication by p) by 

\dQ dz (dQ cz\ 1 

\dQ d'z (dQ r'z\ d'Q(dzy (d'Q(dzy\] 
In the special case that iheic i> a stationai> fltiid on one side of the inleiface, then 

50 
01 = 01 = constant and -^ = 0. the conditions (III 23) and (111 24) are not relevant 

dl 
as these formulas are continuity conditions for the case with flow on both sides of 
a sepaiation line between sub-regions In that special case the interface is not a 
separation line between sub-regions 
The expressions (III 21) and (111 23) then become 
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(III 23) 

(III 24) 



Re jp-^> = (/; - / y J Im{z} 4-p,0i 

and: 

(p dQ dz] , ^ \dz] 

''H*57 4^<''-''<""'y 
Inhomogeneity line with silt layer 
An inhomogeneity line separates two sub-regions with dilTerent coefficients of 
permeability or anisotropy (direction or magnitude). The general case discussed 
here is that in which there is a silt layer at the inhomogeneity line. This agrees with 
many natural situations. 

Figure III 7 Inhomogeneity line with silt layer 

Two boundary condition expressions are found from (III.6) and (III.8) using the 
condition that p = p^.. This yields: 

d'P 
0 - 0, -h c, — = 0 

and: 

50 / 5 0 \ d'W 

In addition, the continuity condition (III.7) and its derivative expression (III.9) hold; 
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and: 

dT (dP 

d"P /d'P 

dl' dl' 
= 0 

These four expressions are given in complex form by: 

Re 

Re 

Q /Q 

k \k 

dQ 

dQ dz] 

1 dz . d'z 

k^~"'W 
1 dQ dz 

k~d^ ~dl 

(dQ dz (dQ dz\ , 

^"te57n^Wci=' 
(dQ d'z (dQ d'z\ d'Q(dz\' (. 

'""{i^w-y-d^wj/i^Ksij -[ 

d'Q 

dz' V--- 0(111.26) 

(IIL23) 

'1(|riH« im.n 

SUMMARY OF BOUNDARY CONDITION EXPRESSIONS 

Equipotential line with silt layer 

Q 

„ f'>^ "'h 

dQ dz] 

• ' • ' • ' ^ 5 / 1 = '̂  

[1 dz d'zl 
[k dl '''di'j 

' i 

d'Q 

dz' 
r f^A'i 
hUJJ 

(10.12) 

(10.13) 

Stream line boundary 

Im dQ dz 
dz dl 

(dQ d'z d'Q(dz\' 
Im< :r H -\ 

[dz dl' dz' \dl 

= 0 

(10.14) 

(01.15) 
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Seepage line with silt layer 

\Q dQ dz] 

Re 

Phreatic line 

Re 

Re 

\dQ 

\dz 

"1 5z . d'z~ 

[k dl "^ dl'] 

{^-« 
(dQ 

1̂ 7 
1 dz\ (dz 

d'Q 

"d? ic, Im 
dl 

(0L16) 

(10.17) 

(I0.18) 

(nL19) 

Interjace 

Reif-fUH*--»-,)•".!-') 

(p dQ dz (p dQ 5z\ 1 , ^ f5z 

"' i ;i7 aJ n ^ ^ 7 i ,h ' " - " • "" ' Ti 

(dQ dz /dQ dz 

^"^(d7 57"̂  Vd7 5/ = 0 

Im 
dQ d'z dQ d'z\ d'Q 

dz dl' \dz dl'J, dz' \dlj 
m d'Q /dzY 

'd^Vdi 

(IIL21) 

(IIL22) 

(I0.23) 

= 0 (III.24) 

Inhomogeneity line with silt layer 

Re 
Q 

ic. 
dQ dz 

J7 57 = 0 

Re 
(dQ '1 5z . d'z 

k Ji'^-'^W 
I dQ dz 

^^Jlh di 
d'Q 

1^' 

(I0.25) 

= 0(nL26) 
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(dQ dz (dQ dz\ ] 

, (dQ d'z (dQ d'z\ d'Q(dz\' (d'Q(dz\'\] 



15 The Approximative Function Q i (z) 

15.1 General 

It IS mentioned m Chapter 13 that the following form was chosen for the approxi
mative pait of the solution 

fl2(^-)=Z).^» ( I " 4) 
j = i 

where 

n number of terms in Q2(:) 
,1 complex constant 
Fj(z) analytic function of z 

Theie aic many possibilities for the choice of the function Fj(z) Analogous to a 
sub-division for functions of a real variable (see Rektorys, 1969), a difference is made 
between algebraic functions and transcendental functions Algebraic functions are 
polynomials (rational functions) or quotients of polynomials (fractional rational 
functions) Functions that are not algebraic are transcendental functions in which 
distinction is made between elementary and higher transcendental functions Exam
ples of elementary tianscendental functions are z°, tugononietric h^peibolic and 
exponential functions and the related inveise functions Highci tianscendental func
tions are defined by dillcrential equations (foi example Bessel functions) oi integials 
(e g , elliptic integrals) 

15.2 Algebraic Functions 

It was mentioned in Section 15 1 that algebraic functions are polynomials or quotients 
of polynomials A polynomial contains its degrees of freedom in the form of con
stants If the quotient of two polynomials were used, the degiees of freedom would 
not appear linearly in the expressions for the boundary conditions thus making the 
calculation more complicated For example the function 

fo,z 4- O2-
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has the first derivative 

(fc.z + b2:')(ai + 2^2^) - (aiz + a2z')(b, + 2b2z) 

^ ^ ' ' " (biz + b2z')' 

As constants Oi, a2, b^ 62 do not all appear linearly in these expressions, the use of 
this kind of function therefore, would result in complicated non-linear boundary 
condition expressions So the polynomial is a better choice 

Q2(:) = a,z 4- a2z' + a^z' + + a„z'' (HI 27) 

In this case there is not a constant in the polynomial because in the solution there is 
already a constant (Q^) 
Expression (III 27) agrees with the previously chosen form (III 4) 

Q2(z) = t ,/,(z) 
J 1 

This IS seen by writing (III 27) in another form 

^2(=)=ia,z^ (0128) 

Generally, (III 28) may be suitable the function Fj(z) = ẑ  is analytic 
When (III 28) is combined with the general solution (III 2) and the boundary condi
tions (see Chapter 14) a set of linear equations is obtained in the unknowns aj and 
QQ After solving this set of equations, the solution is known 
In general it may be a disadvantage of polynomials that there may arise numerical 
problems when there are many terms (then Izl̂  becomes very large) 

A special kind of polynomial is the well-known Lagrange interpolation polynomial, 
which in complex form is given by the following expression 

" " (~ - z) 

02(z) = I y. n ^r-^. 
j - l , - l ( Z j - Z , ) 

This Lagrange polynomial has the special property that the complex constants ,j are 
just the values of the function in the points z = Zj 

^2{=j) = 1, 

In principle the interpolation polynomial of Lagrange may be used for the solution 
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of flow problems. There is, however, an important practical disadvantage; Kosten 
(see Kuipers en Timman, 1969 chapter XII) notes that the Lagrange polynomial is 
not convenient for practical calculations because of the considerable amount of 
calculation work necessary for evaluating values of the function. 

15.3 Transcendental Functions 

It is mentioned in Section 15.1 that there are elementary and higher transcendental 
functions, the latter being defined by integrals or differential equations. Because the 
amount of calculation work required for evaluating values of functions is generally 
much greater for higher transcendental functions than for elementary transcendental 
functions, only the latter functions are discussed. 
In principle, there are many possibilities that may be used for Fj(z) in (III.4); 

Q2(=)-tyjFj(z) 
.i=i 

Some examples of the use of elementary transcendental functions in the function 
^2(2) are; 

Q2(z) = t yj sin (z - z) 
j = i 

^2(2) = I yj[sin(z - Zj) + cos(z - ẑ .)] 
j = i 

Q2(:) = t yjH= - Zj) (10.29) 

where Zj are the boundary points (points where the boundary conditions are posed, 
see Chapter 14). It is not neccessary that the positions of the boundary points (z )̂ 
appear in the expression for Q2(z). The form (III.29) with (z — Zj) was chosen for its 
analogy with the appearance of (z — z/) in the interpolation polynomial of Lagrange. 
Although in principle the expressions mentioned for Q2(z) and many others might be 
useful, a further selection is made between elementary transcendental functions: 
When the computer time needed for the evaluation of values of some elementary 
transcendental functions are compared, it is seen that the time needed for complex 
logarithms is about 25",, less than for complex sines and complex cosines (see IBM 
Systems Reference Library 360S-LM-501). This is shown in the following table, 
where the time needed for a complex sine evaluation is set to 100%; 
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Function Name Time ('%) 

sin(z) CSIN(Z) 100 
cos(z) CCOS(Z) 100 
exp(z) CEXP(Z) 87 
ln(z) CLOG(Z) 75 

On account of this fact the use of complex logarithms is preferable For example, 
there could be used (III 29) 

Q2(z) = i,^\n(z-z) (10 29) 
j = i 

For the case that ,, is complex, this expression represents a flow due to sources and 
sinks with strength Xj and vortices with strength fij (where ij = oij + ifi^ in the 
points z, In principle, (III 29) can be used to approximate flow patterns, but this 
has the disadvantage that the logarithmic function is singular at the boundary 
points Zj That difficulty can be avoided by choosing the points ẑ  outside the flow 
region and posing the boundary conditions at other points on the boundary Although 
this can be done it is not efficient because points have to be defined at the boundary as 
well as points outside the region In addition, when the points ẑ  of (III 29) are chosen 
close to the boundary, many terms would be needed to prevent inaccuracy caused by 
the singular behaviour of the complex logarithms Then the calculation would require 
a considerable amount of work 
The situation with many sinks sources and vortices can be replaced by a system of 
continuous distributions of sinks sources and vortices over the boundaries The use 
of those distributions has the advantage that the expression for Q2(z) is not singular 
in the boundary points and a flow pattern is generated that is more smooth in the 
surroundings of a boundary point 
The boundary points are chosen at the middles of the boundary segments over which 
there is a distribution of sinks sources and vortices 
To ensure the smoothness of the flow pattern at the boundar> and for efficiency the 
boundary segments are chosen in sequence without gaps Then only the end points 
and the properties of these boundary segments form the boundaiv input for a 
calculation program 
In the following the distribution strength has been chosen to be constant for each 
boundary segment 
The expression for the complex potential due to a distribution of complex strength 
IS derived first The potential due to a sink (or source) and a vortex in the point z^ is 
given by 
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Q(z) =2^- ln(z - zJ 

where Q is the complex strength. 
When the quantity Q is distributed over a line segment v, \-2 on the .v-axis according to; 

dQ 
" =dx 

where q = r -\- is, then the complex potential is given by: 

After integration, and neglecting the integration constant, it can be written as: 

Q(z) = - ^ [(z - X2)Hz - X2) - (z - .vi)ln(z - .v,)) (III.30) 
Zn 

When the end points of the segment are chosen at arbitrary positions in the complex 
plane, the complex potential can be simply derived from (III.30) by a translation b 
and a rotation 0 of the coordinates as shown in figure 10.8. 

z* = ze'" + b 

where h is complex. 
The points z^ = .v, and Zj = .Xj have become the following positions in the trans
formed plane: 

Zi* = x^e"' 4- b and 
Z2* = X2e'" + b 

where; 

0 = arg(z2* - z,*) 

A constant c* per line segment z*z2 is defined by c* = exp( — (0) or: 

c* = exp(- i arg(z2* - Zi*)) 
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Im b 

Re b 

• ^ - x 

Figure III.8 Rotation and translation. 

Otherwise written, using (z2* - z,*) = Izj* - z,*l exp(iarg(z2* - Zi*)) (10.31) 

| . * _ *| 
* 1-2 - 1 ' 

( - 2 * - - . * ) 

When the inverse expressions (for z, Zi = .Vi and Z2 = .Vj) 

z = c*(z* - b) 

x,=c*(z,*-b) 

X2 = r*(z2* — b) 

are substituted in (III.30), there comes: 

Q(:*) = - ^- {(c*z* - c*z,*)ln[c*z* - c*Z2*] + 
2n 

- (c*z* - c*zi*)ln[c*z* - c*Zi*]} 

So the complex potential due to a distribution of complex strength q over a line 
segment ZiZj is given by; 

Q(z) = -^{(z- Z2)\n[c(z - Z2)] - (z - zi)ln[c(z - zJ ] ] (10.32) 
271 

where c is defined by c = - ^ 
(-2 ~ '^i) 

The use of (10.32) in the formula for the approximative part Q2(z) of the solution 
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yields (where each distribution is denoted by the subscript j) 

^2{z) = i - ^ ^ {(z - Z2,)ln[c/z - Z2,)] - (z - z i > [ c , ( z - Zi,)]} 

(III 33) 

, Iz2, - Z iJ 
where ''J = 7"^ \ (III 34) 

(Z2j - - i j ) 

The constant — l/27r is not relevant in (III 33) because it can be accounted in the 
constants qj Because of the visibility that qj represents a distribution strength, the 
form (III 33) with —qJ2n is chosen to be used in the general solution (III 2) 

In the literature the use of singularities and distributions of singularities is well-
known Lamb (1932) showed that a flow that satisfies the Laplace differential equation 
can be generated by an appropriate distribution of sinks and sources or vortices over 
the boundaries 
In aerodynamics, applications are given by Von Karman (1927) and Mc Nown and 
Hsu (1949) Von Karman calculated the pressure distribution on the surface of air 
ships Therefore he located distributions of sinks and sources over a number of line 
segments at the axis of symmetry At a corresponding number of points on the air 
ship surface, he posed the condition that the normal velocity is zero, which resulted 
in linear equations with the unknown distribution strengths The solution was used 
to calculate the pressure distribution on the air ship surface 
Mc Nown and Hsu generated an inlet flow between two walls, using separate vortices 
outside the flow region The way of solving the problem was analogous to that of 
Von Karman 
De Josselin de Jong (I960, 1969) used singularity distributions for generating flow 
through a porous medium with varying properties of fluid or porous medium He 
located singularity distributions at interfaces These distributions were chosen in 
such a way that the problem reduced to a homogeneous problem that could be solved 
by usual methods The solution of a flow problem then consists of two parts one part 
that IS the flow due to the singularity distributions and a second part that makes the 
solution (including the first part) satisfy the boundary conditions 
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16 The Calculation of Flow Problems 

It \Vas mentioned in Chapter 13 that the general solution, generating the flow pattern 
in a sub-region, is given by: 

Q(z) = Q2(z) + Q,(z) + Qo (111.2) 

where QQ is a reference constant, fii(z) is the exact part that generates the flow due 
to the sinks and sources, and Q2(z) is the approximative part that contains para
meters that are used to meet the boundary conditions at a number of points. 
Substitution of (I0.33) and (III.3) in (I0.2) yields: 

«(--) = 1-^4' «-• - =^Mcj(= - Z2j)] - (-- - M,)ln[o(z - Zi,)]} + 
j = i 

m Q 

+ ^ f i | n ( z - z , ) + f2o (III-35) 
j=i 2n 

where c^ is given by (III.34): 

I22,- — z, .-I 
- - " " (III.34) 

The constant q^ = r^ 4- is^ is the complex distribution strength over the fine segment 
from z,, = .Vij + (Vij to Z2, = X2, + (}'2r 

The first and the second derivatives of 0(z) with respect to z also appear in the bound
ary condition expressions mentioned in Chapter 14. 
These are found by differentiation of (10.35); 

dQ(z) _" q,c . n, , V 2 , 
dz - , ^ 1 

d'Q(z) " 

dz' - > , 

2^i. .L.,v- -2,, ..^LS^- - ^ ' J ' - ^4^ ,2 ; r ( z - z , ) 

(10.36) 

'^'"'^ ^ 1 I , y -2^ mM\ 
2 . | ( z - z 2 . ) ( z - z i j j ' . ? . 2 . ( z - z / <"•-'') 

The complex reference constant QQ in (10.35) permits a translation of the values of 
the potential and the stream function. 
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The value ofQo can be defined by two equations The equation with respect to Im{i2o} 
may be given by the condition that at a point z^ the stream function is set to zero 

Im{Q(zo,)}=0 

The equation with respect to Re{i2o) 's a similar equation for the potential in a point 
Zo2 however, it is not permitted to choose an arbitrary value of the potential at the 
point Zo2 because values of the potential are involved in the boundary conditions 
Therefore it is convenient to choose the point Zo2 Jt the boundary Then for the equa
tion with respect to Re{fio) th^ potential at the point ZQ2 is related to the potential 
at the boundary or just outside the boundary (eg, if there is an equipotential line 
with a silt layer) This equation has the same form as that of the previously discussed 
boundary condition equations (e g, for an equipotential line with a silt layer) Because 
boundary conditions are posed at the middles of the boundary segments, the point 
Zo2 may not be chosen at the middle of a boundary segment (then the equation with 
respect to Re[(2oj would be the same as a boundary condition equation consequent
ly, the set of equations would be undetermined) 

The calculation procedure for solving flow problems will now be outlined The general 
solution IS given by (III 35) and a combination of (III 35) (III 36) and (III 37) with the 
boundary condition expressions (see Chapter 14) leads to a set of linear equations 
The unknowns are the complex distribution strengths i/,(c/j = ' j + '^j) and the com
plex reference constant QQ SO when there are n boundary segments the result of posing 
boundary conditions and reference conditions is a set of (2n 4- 2) linear equations for 
each sub-region After solving this set, the complex potential can be evaluated at any 
point by substitution of ^̂  and QQ in (III 35) 
The specific discharges are given by 

d0 (dQ] (dQ dz] (dQ] 

d0 (dQ] (dQ dz] (idQ] \dQ] 

(III 38) 

If the flow problem is non-steady where one or more parts of the boundary are 
moving (phreatic line or interface), then that behaviour is calculated in the following 
way (The expressions hold for a phieatic line Similai expressions hold for an inter
face but then the storage coefficient p has to be replaced by the effective porosity )/) 
Starting from a known or assumed position of the boundary, the flow pattern is cal
culated in the way described, followed by the calculation of the specific discharges at 
the moving boundaries These specific discharges are used to calculate the position 
of the boundary after one step in time The alteration of the position of a point in 
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a step in time is given by (using (III 38)) 

Ax = 
(dQ] At 

Re<-
l dz \ p 

(dQ] At 
(III 39) 

where p is the storage coefficient of the soil and At is the time step size If the moving 
boundary is a phreatic line with precipitation, the rise due to the piecipitation has 
also to be accounted In Chapter 14 it was mentioned that the rise according to 
precipitation Â  is given by 

Ay = N 
At 

P 
(III 40) 

where N is the precipitation per unit of length and time Then the position alteration 
of a point of the boundary (phreatic line) in a step in time is given by the sum of 
(III 40) and (III 39) 

Ax = 

^} 

(dQ] At 

^^\d7] 7 

(dQ] 
Im-^ -} + N 

At 

P 

(0141) 

After correction of the boundary position the flow pattern after a step in time is 
calculated and then the procedure is repeated 
Generallv the position of a phreatic line is not known previously, but it is pointed 
out in Chapter 14 that the steady position of that line can be found by calculation of 
the non-steady behaviour of the flow After some steps in time the boundary will 
reach a position that is practically at rest In the calculation the normal component 
of the specific discharge at the phreatic line will then tend to zero 
If the normal direction is denoted by n (see figure III 9), the specific discharge in 
rt'-direction is given by 

d0 dP 

dn^ 'df 
(III 42) 

or 

Im 
dQ 

(III 43) 
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. y 

Figure III 9 Tangential and normal direction at the boundary 

When large steps in time are chosen, the specific discharges at the end of the step in 
time may differ considerably from those at the beginning of the step in time. In such 
cases the average velocity of the specific discharge over the step in time should have 
been used; then some iterations might be necessary. In most cases, however, it will 
be more convenient to choose the time step size so that these effects are small. 
The time step size that is convenient depends on the kind of problem. 

The equations that are used for generating flow patterns and the expressions for 
correcting the position of a moving boundary will now be detailed, with the ex
pressions (10.35), (01.36) and (III.37) being written in a more convenient form: 
The following notations are used: 

FO,(z) = - -^ {(z - Z2;in[c/z - Z2;] - (z - z.^lnCc-(z 

Fl,(z) = - | i {ln[c,(z - Z2,)] ~ In[c,(z - Zi,)]} 

1 

h)T> 

F2,(z) = 
c, 1 1 

^^ ((Z - Z2,) {Z - Z,) 

GO(z) = X ^ l n ( z - z ; 
j = i ^ ' ' ^ 

Gl(z) = I Q. 
j=i 2n(z - z) 

G2(z) = I QJ 

,t^i 2rr(z - z / 

(10.44) 
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Then the expressions (III.35), (10.36) and (IIL37) may be given by. 

Q(z) = t q,FOiz) + GO(z) + QQ 
j=i 

dQ(z 

dz , 
X q,Fliz) + Gl(z) 

d'Q(z) 
= X 9 , F 2 » + G2(z) 

(10.45) 

(10.46) 

(I0.47) 
j = i 

The specific discharges can be expressed by the following formulas (using (10.38) and 
(10.46)): 

(10.48) 

t x = - R e I . / / l , (z) + Gl(z) 
j = i 

Vy = i<^]l qjF\(z) + G\(z) 

The expressions (10.41) for the alteration of the position of a point of a phreatic 
line can be expressed using (10.46). 

Ax= - R e | X <?,fl» + Gl(z)J^ 

Ay I m i l q,F\,(z) + G\(z)\ + N 
j = i 

At 

P 

(III 49) 

The reference equation Im Q(ZQI) = 0 for the stream function can be written in the 
following form, using (10.45); 

Im < X qjFOj(zQ) + GO(ZQ) + QQ> = 0. or otherwise arranged (using 

gj = ''j + >\) 

I 
j = i 

r^lmlFO^Q)] +s,Re|fO,(zo)l Vo = Im;-GO(zj ; (IO.50) 

This is a linear equation in r̂ . ŝ  and PQ. 
It has already been mentioned in this Chapter that the equation for Re [fig] has the 

98 



same form as a boundary condition equation. 
The boundary condition equations are based on the boundary condition expressions 

dz d'z 
of Chapter 14 in which the terms'— and --^ appear, representing the form of the 

dl dl 
boundary. For a straight line, the following conditions hold: 

dz d'z 
— = constant —^ = 0 
dl dl' 

d'z 
In this text only straight line segments of the boundary are used, thus -^ = 0-

This is permitted when the boundary is not sharply curved. A sharply-curved bound
ary can be approximated by a number of straight line segments. 
The following boundary condition equations refer to boundary conditions for the 
middle of a boundary segment with number;*, the end points of which are Zî . and 

dz 
z,,.. The term — can be discretisized for that segment by: 
" dl 

^ ~ (^2 / - Z l / ) 

dl - \Z2, - zj\ 

Analogous to (IIL34), this can be written with ĉ ., thus; 

^ ~ (^2 / - Z l / ) ^ _1_ 

dl 
or: 

1^2/ - Z i / 
Cf = j ^ ^ T (01.51) 

(Z2/ - Zi,*) 

Im some of the following expressions Im <--> appears U' 
In a similar way this can be discretised by: 

Im-
5 z | ^ lm{z2f - Zî .} 

dl 

Further, this is denoted by e .̂: 

Im{z2/ - zi . 

Iz2/ - Zi,J 
(111.52) 
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Equipotential line with silt layer 
The first boundary condition expression is (III. 12)-

(Q dQ dz, 

Muhiplying by k and combining it with (III.45), (III.46) and (01.51) yields; 

'''' lq,F^z) + G\(z) Re\Y.qjFOj(z) + GO(z) + QQ-,^ 

After some rearranging, it can be written in the following form: 

I 
j = i 

r^Re{/fl»} + . . , Im{-Hl/z)} + 0Q = 

kc. 
= Re{/c(/)i - GO(z) + 1 —Gl(z)} 

c,. 

where; 

= k<P,. 

(10.53) 

HI^-) = F O ^ i - / — ' F I j z ) (I0.54) 

The second boundary expression is (10.13); 

Re 
dQ 

7/7 
1 dz 

I Ji~ 
d'zA 

-'''-dl'\ 
d'Q 

dz' 
r /^z\n L'HWJ = 0 

By substitution of —^ = 0 and multiplication by k, and after combining with (01.46), 

(I0.47) and (10.51), there is obtained: 

Re X g / l j z ) + Gl(z) X ^ / 2 ; z ) + G2(z) 
/ U = i 

= 0 

Some rearranging yields; 

t r ,Re{H2,(z)}+s;m{-/ /2/z)] 
j = i L 

= Re^ Gl(z)-H i -^G2(z) 

(10.55) 

where; 

100 



/ / 2 » = - ^ F l » - , ' ^ F 2 » 
Cj. Cj. 

(IIL56) 

Stream line boundary 
The first boundary condition expression is (01.14); 

(dQ dz] 
Im< } = 0 

^.dz dl 

Substitution of (I0.46) and (10.51) yields; 

Im I q/ip) + Gl(z) 
. j = i 

= 0 

Rearranged, this becomes: 

I 
j = i 

r ; m < ; i F I , ( z ) l + s^Re l ' Fl,(z) = Im<| G\(z)\ (10.57) 

The second boundary condition expression is (III. 15): 

(dQ d'z d'Q(dz\'] 

.d^z 

dl' 
Substitution of—z- = 0 yields: 

-{S©'1-
Substitution of (I0.47) and (01.51) gives: 

1 
Im X ^/2,(z) + G2(z) 

In rearranged form, this is 

n 

1 r , I m ^ - ^ F 2 , ( z ) i + 5,Re|-^F2,(z) = Im G2(z) 

(10.58) 
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Seepaqe hue with silt la\ei 
The first boundar> condition expression is (III 16) 

\Q dQ dz 
Rsi k, 

k \lz (I 
\m\z\ 

This expression is almost identical with the expression for an equipotential line with 
silt layer (III 12) The term (/>! here is replaced by Im{z} By such a replacement in 
(III 53). the first equation for a seepage line with silt layer is obtained, where it is 
noted that lm[z} = Re{-iz} 

I 
j = i 

,,Re{Hl^-)} + s ; m { - H l ^ ' ) } 

ikc, 

•Pn = 

= Re{-;z - GO(z) + -—Gl(z)} (III 59) 

where Wlj(z) is given by (III 54) 

The second boundary condition expression is (III 17) 

(dQ 

" ^ 7 7 
ri dz 

~k Ti~ 
d'zl 

''UY\ 
d'Q 

dz' 
r (d-Y^ H-^)\ 1 , 1̂' r'-^u 

d'-

di' 
By substituting ^ ^ = 0 and multiplying by k, there results 

^ \dQ dz , d'Q dz\'] , , f5z 
R e i - , - ^, - ikc,-rT\ — ] \- = klm< — 

dz dl ' dz' \d J I ]dl 

The left-hand part of this equation is the same as the expression for an equipotential 
d'z 

line with sih layer (III 13) with j = 0 and muhiplied by k By putting k Im 
dl 

in the right-hand side of the equation and noting that Im -̂  > is given by ĉ . (see 

(III 52)), the resuU is 

dz 

j=i 

r,Rc{H2,(z)} + sJm{-H2p)} 

= Re^kej.- ^ G\(z) + -%G2(z) (III 60) 
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where H2j(z) is given by (10 56) 

Phreatic Ime 
The first boundary condition expression is (III 18) 

R e ^ ^ ^ = Im{2} 

Muhiplying by k and combining with (III 45) yields 

Re-̂  Z g / 0 » + GO(z) + QQ\ = k Im{z} 

After some rearranging and noting that k Im{z} = Rs{-ikz} there is obtained 

j = i 

r,Re{FO/z)} + s,Im{-fO,(z)} + 00 = Re{ - ikz - GO(z)} 
(III 61) 

The second boundary condition expression is (III 19) 

IdQ 1 dz] \dz 

^'h-z-kTi\-H-di 
After muhiplying by k and combining with (III 46) and (0151) and noting that 

(• z 

Im < , > IS given by e^* according to (III 52), there comes 

Re X g/l,(z) + Gl(z) 
- ; = i 

= ke, 

In rearranged form, this becomes 

z 
J = I 

r^Re<j-Fl»| + s;mj--Fl» = Rt\ke^. Gl(z) 

(III 62) 

Interface 
The first boundary condition expression is (III 21). 

Re 
pQ (pQ 

(p - p,)Im{z} 
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Substitution of (01.45), and using: 

(p-p,)lm{z] =Re{-i(p-p^)z} 

yields; 

Re Z q/O^z) + GO(z) + QQ 
. j = i 

4-

X q/0,(z) + G0(z) + QQ 
-j=i 

= Re{-i(p-p^)z} 

In rearranged form, this becomes 

z 
J = l 

r,Re<j^FO,(z) + i , l m - ^ F O / z ; + -%o + 

^ j = i 

r,Re<;-|FO,(z)[-f .,Im^FO,(z) - ^ ^ o ) = 

Re<j - i (p - / ; , ) z - ^GO(z ) + f^GO(z) (III.63) 

If one of the fluids is stationary, the term 

Re •( I — I > is constant 

R^<(f]} = Pc<^. 

In that case this term is known, and can be placed in the right-hand side of the 
equation; 

z 
J = l 

r,Re^J^V0,(z) +s , Im -^FO,(z) ^ 0 

Rc{p,4>c-i(p-P.)=-lG0(z) (III.64) 

The second boundary condition expression is (10.22): 

JpdQdj^ /pdQdAl Jd^ 
[k dz dl \k dz dljA ^^ ^'' [dl 
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Substitution of (OL46), (OL5I) and (10.52) yields; 

Z q/l,(z) 4- Gl(z) Re^^ - -
\kCf j = i 

+ 
P i 
k CJ* 

r 
X q/l,(z) + Gl(z) 

L j = l 
(P - Pc)ef 

In rearranged form this is; 

z 
J=l 

'•.Re<;^f fMz)[ + ^ I m ] - ^ - i F l » 
k c,. 

4-

z 
J = l 

,,Re^^FMz)}4-Mm{--^FMz) 

= R^\(p- p,)e,. - ^ ^Gl(z) + (^ -i-Gl(z) 

If one of the fluids is stationary, one term in (111.22) vanishes: 

Re^/'^^^r^^O 
\k dz dl 

(IIL65) 

In that case the second equation becomes: 

z 
J = l 

.,Re^^AFl,(z)j + . , I m | - ; ; l F l » 

P 1 
= Re{( / ; - / ; , ) e , . -^ - -GI(z ) 

The third boundary condition expression is (01.23): 

(dQ dz (dQ dz'^ 
^[dz dl'^Kdz dl),] 

(IIL66) 

The first term of the left-hand side of (10.23) is the same as the left-hand part of the 
first stream line condition. The second term has the same form, here for the adjoining 
sub-region. Using the first stream line equation (111.57) one finds; 

z 
J = l 

Im<̂  ^F\j,z)\ + s^Rt\-F\lz^ 4-
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+ (Z 
v j = l 

r,Im<!-Fl,(z)j + s ,Re j - -F l l ' ) 

= I m ^ - - ^ G l ( z ) - ( - i G l ( z ; (10.67) 

The fourth boundary condition expression is (10.25): 

jdQ d'z /dQ d'z\ d'Q/dzV /d'Q/d^ 
^"^{dz 'W'Kdz W),^l?\di) ~ Uz'Xdi = 0 

W' Substitution of—^ = 0 yields: 

-^$(f-(S(r-o (01.68) 

The first term of the left-hand side of (01.68) is the same as the left-hand part of the 
second stream line condition (III.58). The second term has the same form, here for 
the adjoining sub-region. Using the second stream line equation gives: 

z 
J=i L 

' •^ImiAf2/z) l + s^.Rej-i^F2,.(z 

\J=i 
rjlm 

J 

~ F 2 / z ) l + .s-̂ .Re - - ^ F 2 , ( z ; 
J 

= Ini^_ J^G2(z) + (-^G2(z) (10.69) 

Inhomogeneity line with silt layer 
The first boundary condition expression is (III.25): 

(Q (Q\ dQ dz\ 

•"^7-7)-'• '•• 77 71̂  = " 

Substitution of (10.45), (I0.46) and (01.51) yields: 

Rej! ( I ^//O/z) + GO(z) -f floV Q ( Z gjFOj(z) + GO(z) + QQ]] + 
k\M 

1 

j = i 

' • ^ s - ^ Z ^/l,(z) + Gl(z))|^ = 0 

106 



In rearranged form, this is: 

z 
J = l 

r ,Re< j iHl» | + 5 , I m | - i w i » 
^ ^ ^ 

+ 1 1 
•.j=i 

r , R e < j - ^ F O » j + . v , I m | i F O » 
k 

where H\j(z) is given by (10.54). 

The second boundary condition expression is (10.26); 

(dQ 

Uz 
"1 dz 

_k dl 

d'zl 

''^dl'j 
/I dQ dz\ 

^ [k "dl Jl)^ ' 
d'Q 

dz' 
r f^^y] 
hU/JJ 

(111.70) 

Substitution of—. = 0 yields: 
dl' 

(dQ 1 dz (\ dQ dz\ d'Q(dz\'] 

^'\Tz k Ji + U 7/7 5/1 - '"^-dAji) I = ' 

By substitution of (01.46), (10.47) and (III.51) there comes: 

Rearranged, this becomes 

n 

z 
1=1 

./e^jHy.-) +»,lm ~1H2,(--) 

H,?,b''n77;^'''--r'''"'{-fc7;'"''-'' 
(10.71) 

where H2j^z) is given by (10.56). 
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The third and the fourth boundary condition expressions are (III.23) and (10.24). 
They are the same as for the interface, and so the corresponding equations are (01.67) 
and (10.69). 

SUMMARY OF EXPRESSIONS AND EQUATIONS 

Complex potential and derivatives: 

m = i g/H') + GO(z) + QQ 
j=i 

dQ(z) 

"dT 
Z ^//l,(z) + Gl(z) 

j = i 

cl'Qi-) 
-rf = S '//2,(z) + G2(z) 

dz j= 1 

(01.45) 

(10.46) 

(10.47) 

Definitions: 

FO,(z) = - -U^(z - Z2,)ln[c> - Z2,)] - (z - zi;in[cjz - z,)-\ 

F l / z ) = - - ^ ^ l n [ c / z - z j ] - l n [ c l - - z i ; ] 

F2,(z) = --'- ^ 
2n [(z - Z2j) (z - Zi j 

GO(z)= X f - ^ l n ( z - z ; 
j = i 2n 

Gl(z) = Z e. 
j = i 2 ; r ( z - z) 

G2(z) = Z -% 
j = i 2n(z - z) 

(10.44) 

ike, 
H l » = FO,(z)--^Fl> 

1 ike 

H 2 » = - F l » - - ^ / 2 » 

(10.54) 

(01.56) 
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C; 

CJ. 

^ 1* 

_ 1^2; - Zljl 

i^2, - Zu) 

\z2f - Zi/I 

(^2/ - Z,;.) 

Im{z2/ - Zij.} 

IZ2/ - Zi,.l 

(III 34) 

(10 51) 

(III 52) 

Specific discharges: 

' 'x= -Re<! Z ^//1,(--) + Gl(z 
j - i 

i;, = Im<^X ^/Mz) + Gl(z; 
U = l 

(10 48) 

Components of alteration of the position of a point of a phreatic line in a step in time: 

At 
Ax= - Re<j Z ^ / l , (z ) + Gl(z) 

;̂ = 1 ) P 

Av = \m\ j:^q/\p) + Gl(z)\ + N 
At 

Equations with respect to QQ 

Potential 
One of the expressions (III 53), (III 59), (III 61), (III 63) or (III 70) 

(III 49) 

Stream function 

j = i 

r;m{FO/zo)} + s,Re{FO^'o)} + f'o = Im[-GO(zo)) (0150) 

Boundary condition equations: 

Equipotential line u/f/j silt la\er 

t <,Re{Hl»} + s ; m { - H l » } + <Pa 
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R e U 0 , - G0(z)4- - ^ G l ( z ) (0153) 

Z 
j - i 

,,Rc{H2j(z)\ + s ; m [ - / / 2 ^ - ) ] 
ikc 

Rei--G\(z) + -^G2(z) 
c ,. c ,. 

(11155) 

Stream line boundai \ 

z 
J=i 

z 
J = l 

';"ij--:^iA-)j + ^.R^|--:fM 

'•;"'i:V2.(4 + .̂Rej-̂ F2,(z) 

Im<!--~Gl(z)^ (III 57) 

Im _ G2(z) (I0 58) 

Seepage line with silt la\er 

r^Rs{H\j(z)} +Sjlm{-H\j(z) z 
J - l 

+ 0Q = 

ikc, 
Re - i z - G O ( z ) + - ^ G l ( z ) 

^f 

z 
J = l 

,jRc{H2j(z)}+Sjlm{-H2^(z)\ 

= R e | / c e , . - - G l ( z ) + -'^-^G2(z) 

(III 59) 

(III 60) 

Phreatic line 

z 
J = l 

z 
J = l 

^,Re{FO^-)) + 5 ; m { - F 0 ^ - ) } + 0Q = Re{-ikz- GO(z)] (10 61) 

;,Re<;- F\Y.)\ + Sjlm]-^^F\j(z) 

ReUt ' Gl (0162) 
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Interface 

z 
J = l 

r^Re<|jFO,(z)[ + . y m | - ^ F O » n^« + 

+ (Z '•M-i''n=)\ + -\^^\j.FOiz: - - < ? . ) = 

R e i - , ( . - . J z . - ^ ^ * ^ . ( ' ' ^ (10.63) 

z 
J = l '•̂ '̂ '̂ ^7;̂ '̂ *4 '̂̂ '"'{"L-7^^^ -̂'̂  -h 

+ (Z 
V j = l 

,Rel?ln,w| + ,i™{-^ln,H 

- Re-j(„ ~ p j iy - t' J- Cl(z) + ft' J_ Gl(;) (10.65) 

z 
J = l c, 

r,Im<|--Flj(z)[ + 5 j R e | l F l / z 
J 

MZ 
^ j = i 

•;m^--Flj(z);> + SjRe<'--Fl,(z) 

Im - Gl(z)-(--Gl(z: (I0.67) 

'-; '"1; '-^^2;z)j + SjRej-LF2j(z) + 

+ z 
V j = l 

r,Im :-2^2/z)j + .SjRe|--VF2j(z) 

= I m ^ - - ~ G 2 ( z ) + I ^ G 2 ( z ) (10.69) 

If one of the fluids is stationary (p^ and cj)^ constant) then (10.63) becomes; 

z 
J = l 

r,Re^[Vo,(z)[ + , s ; m | - ^ ' F O » . ^ . = 

= Re^p ,0 , - , (p -p , )z -^GO(z ; (III 64) 
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and (10.65) becomes; 

z 
J = l L 

'•jReif-J:f!.(--)}+ ^ ; ' " { - ^ - ; fiAi 

= Rc][p-p,)e,,-^^^^G\(z) (0166) 

Inhomogeneity line with silt laver 

j = l L 
rjRe^^Hlj(z) +5jlm - ^ H l j ( z ) 

\j=i 

r jRe^--FOj(z)f + SjImj^FO,(z; 

^h 
0, 

-̂ -'̂ •̂̂ m-:;-'-) (10 70) 

z 
J=l L 

rjRe^iH2j(z)j + 5 j I m | - l / / 2 j ( z ) 

V j = l 

r,ReiJ-n,(.-)} + y,.{--Lf,j.-: 

= Re^--Ul(,)-(-^U,y)^,,_f^C2H (11171) 

I /-;m<'-^Flj(z)j + SjRe|--Flj(z; 4-

+ (Z 
w = i 

; m - - F I » +5jRe - - F l / z 
1 

Im<̂  Gl(z) (III 67) 

z 
1=1 

r , lm<;-^F2(z) | + S j R e i ^ F2(z) + 

V j = i 

r Im , 
' c / 

F2j(z)^+s,Re<j-^--,F2j(z; 

Im^-J^G2(z) + (-^G2(z) (III 69) 
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17 Special Cases of Flow in a Half Plane 

In the foregoing Chapter distributions of sources, sinks and vortices were used to 
generate flow patterns in regions that do not extend to infinity. In this Chapter it is 
shown that those distributions are also useful for two classes of half-plane flow, 
having the advantage that then it is not necessary to confine the region by an assumed 
fictive boundary. When the flow is generated in the whole half-plane, the influence of 
the local boundary conditions can be seen from the calculation results (generally this 
property is only found in analytical methods (see Chapters 5, 6, 7)). Using numerical 
methods, such as the finite element method and the finite difference method, always 
a schematised fictive boundary has to be taken into account to cut off a region of 
interest from the rest of the half plane. 
Both classes discussed here deal with half-plane flow with each class being defined by 
special boundary conditions at the real axis. Of course, in principle also problems 
can be calculated that can be reduced to these classes by a conformal mapping 
technique. Regions that have a closed boundary in the form of a polygon can also 
be mapped upon a half plane; however, that is not relevant here as flow problems 
in that kind of regions can be solved by the method of the foregoing Chapters. 

Two classes of half plane flow will now be defined. The half plane is assumed to be 
homogeneous and isotropic. The flow in the lower half-plane y ^ 0 is considered 
because this has a good connection with many problems in reality. 
The two classes of half-plane flow are defined by; 

Class I: On the real axis the following conditions hold (where x^, > x„): 

-x ^ .Xf, 0 = 0^ (constant) 

x ^ x^ 0 = 02 (constant) 

Class II: On the real axis the following conditions hold (where .x̂  > x^: 

x^ Xf, f = f 1 (constant) 

X ̂  .x„ f = f 2 (constant) 

For many practical problems one of the conditions (III.72) and (10.73) can be sup
posed to hold. Between the points .x^ and x^ several boundary conditions may be met. 
(In practice there only the boundary types of stream line and equipotential line 

(10.72) 

(10.73) 
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(with silt layer) can be used (in arbitrary number and combinations) because the 
boundary (the x-axis) is a straight line) For both classes the lower half-plane may 
include an arbitrary number of sources and sinks in its interior Using the method of 
images (see Chapter 6), fictive sinks and sources are accounted in such a way that 
the relevant condition (III 72) or (III 73) remains satisfied 

First, some properties of the complex potential due to a distribution of sinks, sources 
or vortices over the real axis are shown 

A distribution of constant strength over the line segment XjXj is given by (III 30) 

«(z) = - ^ {{z - X2)\n(z - X2) - (z - xi)ln(z - x,)} 

On the real axis Q is given by 

^{x) = - ^Jix - X2)ln(x - X2) - (x - Xi)ln(x - Xi)} (III 74) 

let /(x) = (x - X2)ln(x - Xj) - (x - Xi)ln(x - xJ} 

then (III 74) is Q(x) = - — f(x) 
2n 

or Q(x) = - ^ {Re{y(x)} + ,Im{y(x)} (III 75) 
Zn 

The function Im{y(x)] has a special property at the x-axis 
Using the definition ln(z) = InLI 4- ( arg(z), Im{/(x)} is given by 

Im{/(x)] = 

For X > V2 

then for x > V2 

For \ < Xi 

then for \ < \ 1 

For \ i < \ < \2 

then for Xi < \ < X2 

= (x - X2)arg(x - X2) - (x - x,)arg(x - x,) 

arg(x - Xi) = 0 

arg(x - X2) = 0 

Im(/(x)) = 0 

arg(x - X,) = -n 

arg(x - X2) = -n 

lm{f(x)] = n(x2 - xi) 
arg(x - Xi) = 0 

arg(x - \ 2 ) = -TT 

Im{/(z)j = ^7r(x - X2) 

In figure III 10 the variation of Im{/'(x)j at the x-axis is shown 
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. Im {f (x)t 7r(X2-Xi)| 

X2 

Figure HI 10 Imaginary part of/(v) 

The real part of/(x) does not have this special property The function Re{f(x)} is 
given by 

Re{/(x)} = (x — X2)lnlx — Xjl - (x — xjinix — xJ 

The special behaviour of Im{/"(x)} is used for problems where the stream function P 
of the potential 0 only varies between two points of the x-axis and has constant values 
outside these points, according to the defined Classes I and II This will be shown 
now When there is a distribution of sinks and sources only, q is real q = r + is = r 
Then from (III 75) 

'P(x) = 
2n 

lm{f(x)} 

So for distributions of sinks and sources over a part of the real axis, the stream 
function only varies over that part (This satisfies Class II) When there is a distribution 
of vortices only q = r + is = is and it is seen from (III 75) that 

^(x) = -~ Im{/(x)} 
271 

So for distributions of vortices over a part of the real axis, the potential only varies 
over that part (Thus it satisfies Class I) 

By a combination of a number of these distributions (of only real or only imaginary 
strength) a flow pattern can be generated that satisfies (III 72) or (III 73), whereas be
tween the points x„ and x̂  an arbitrary variation of ^ or f is approximated by a 
sequence of straight line segments (Generally that arbitrary variation of 0 or f 
is not known previously as it is the result of meeting the boundary conditions between 
x„ and Xfc) Figure III 11 is a schematic representation The figure shows (according 
to (III 72) or (III 73)) constant values of 0 or f for x ^ x„ and x ^ x ,̂ and at 5 line 
segments between x̂  and x̂  a linear variation of 0 or P 
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02or % 

(PorV' 1 ; ' 1 - - ^ 

L-J i !__-IX-?L^ 
_ v \ 1 ! 2 ^ 3 ' 4 I s : 

xa 

Figure III 11 Combination of distributions at the v-axis 

Xb 

The complex potential due to a number of distributions of sinks and sources or 
vortices is found from (III.30): 

Q(z 
g Z - i- {(2 - ^2,)ln(z - X2; - (z - xijln(z - Xi,)} + QQ. 

1=1 In 
where qj is real or imaginary. 

Sources and sinks can be accounted by also using extra fictive sources and sinks 
in the upper half-plane so that the condition (10.72) or (01.73) remains valid. For 
Class I, where for x ^ .x„ and x > x̂  the potential is constant, fictive sources in 
the upper half-plane are accounted if there are sinks in the lower half-plane For 
Class II, where for v ^ x„ and x ^ x,, the stream function is constant, fictive sinks 
in the upper half-plane are accounted when there are sinks in the lower half-plane. 
The expressions for the complex potential and its derivatives are given for both 
Classes by the following expressions: 

various boundary conditions 

Figure III 12 C'lass I of half plane flow 
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Class 1: see figure 111.12 

f2(z)= Z - -M(z-X2 , ) ln (z -X2 , ) - (z -xJ ln (z -xJ} + 
j = i ^ ' ^ 

,= i 2 7 r (z - Zj) 

^ = Z - ? {ln(z - X2,) - ln(z - X,)} + 
dz j=i 2n 

" 0 
+ Z --

j=i2n 
iz-z) (z--zy 

d^m ^ f _ L̂ j ( 1 
,= 1 2n[(z-X2) ( z - x , ) 

+ z -Qi 

\ 2n _(z-z)' (z--zf 

Class II: see figure 10.13 

various boundary conditions 

, f'^, 

Figure III n Class II of half plane flow 

^(2) = 1 - ^ { ^ - ^2j)'n(z - X2) - (z - Xijln(z - x,)} + 
i=i 2n 

m Q 

+ Z ~ H ( z - z J ( z - z , ) ] + f 2 o 
j=i2n 
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dQ(z) " r 

az j=i 2;r 

m Q 

j=i zn iz-^j) ( z - z . ) 

d'i2(z) ^ ^ _ 0 ( 1 
,2 Z. -,. dz^ J = l 2;r [(z - X2j) (z - x,^) 

4-

m Q 

+ z - ^ 
1=1 2n 

1 1 
4-

i^-^f (^^-'^) 
A combination of the general solution with the boundary conditions between the 

points x^ and x^ at the x-axis leads to a set of linear equations, in which the unknowns 

are the distribution strengths. It is noted that here there is one degree of freedom per 

boundary segment. In the middle of each boundary segment the first of each pair of 

boundary conditions (see Chapter 14) is posed. It has already been mentioned that 

relevant boundary conditions at the boundary segments may be a stream line and 

an equipotential line with silt layer (in arbitrary number and combinations). The 

resulting equations can be derived directly from those of Chapter 16 by putting r̂  = 0 

for Class I problems and .ŝ  = 0 for Class II problems; 

The following survey gives the boundary condition equations and relevant expres

sions; 

Definitions: 

/Oj(z) = - ^ { i ^ - ^2j)Mz - X2j) - (z - x , ; in(z - x,j)} 

/ l ; ( z ) = - ^ {Mz - X2j) - ln(z - Xi j } 

/2.(z) = 
1 i 1 1 

gOl(z) = Z ? ^ l n 

2n [(z - X2) (z - X i ; 

z — z 

gn(z) = I 

j=i 2n \_z - Zj_ 

Qi^ 1 

i=i2nl(z-Zj) (z - Zj] 

.2i(z) = z ? ^ ] - - L ^ . ^ 
'r',2nl (z-z)' (z-'zjf 

(III 76) 
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" 0 
gO\\(z)= Z f H ( z - z , ) ( z - I . ) ] 

j= 1 zn 

tflll(z) = X ej 1 
j=i27r[(z - Zj.) (z - z^ 

e, f 1 1 
'̂"(^) = ,?i2.l ( z - z / (z-z,) 

/il/z) = / 0 / z ) - / / c c J I , ( z ) 

/i2,(z) =f\.(z)-ikcJ2j(z) 

Complex potential and derivatives: 
Class I; 

Q(z) = t iSjfOjiz) + gOl(z) + QQ 
j = i 

dQ(z) " 
- - = Z ' V i / ^ ) + 9n(z) dz 

d'Q(z) 

j = i 

Class II; 

"7ẑ  = J, ''^''^^^'^ + ^^^^'^ 

Q(z) = X r / 0 » + gOII(z) + QQ 
J=i 

dQ(z 

dz j = = Z ' • ; / l » + 0lII(^) 

d'Q(z) 

"dz'' 
= Z '•jf2j(z) + g2ll(z) 

i=i 

(111.76) 

(01.77) 

(10.78) 

(10.79) 

(III.80) 

(10.81) 

(10.82) 

Specific discharges: 

Class I; 

t>, = - R e - X isjflj(z) + gn(z 
7=1 

,^ = Im^ X /i-,/l,(z) + 0ll(z: 
U = l 

(OL83) 
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Class II; 

v,= - R e | z ^ r ^ / l , ( z ) + .ylII(z)| 

tV = I m | f ^ r ^ / i ; . - ) + .ylII(z)| 

Equations with respect to QQ 

Pcnential: 
Class I; 

Z s,lm{-/0^-o)) +0Q = Re{/c0, - 30I(zo)) 
j = i 

Class 0 ; 

Z /-.Rel-ZO/zo)! +0Q = Re[^0, - 301I(ro)} 
j = i 

Stream junction: 
Class I: 

t 5/eJ/O^-o)) + ' f o = Im[-yOI(zo)} 
1=1 

Class 11; 

Z r;m(/-0,(zo)} + PQ = Im[-tyOII(zo)) 
1=1 

Boundary condition equations: 

Equipotenticd line with silt layer 
Class I-

Z i ,Im(-/7l/z)! +0Q = Rc\kcP, - gOl(z) + ikc 
1=1 
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(10 84) 

(10.85) 

(III.86) 

(10 87) 

(IIL88) 

(111.89) 



Class II; 

Z 0Re{/il,(z)l +0Q = Re;/c0i - yOII(z) + ikc^qm(z)] (III.90) 
j = i 

Stream Ime 
Class I: 

Z .v,Re{/Mz)) = Im( -^ l I ( z )} (10.91) 
j = i 

Class II: 

Z rjlm{l \j(z)] = Im{ -glll(z)} (10.92) 
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18 Multi-Valued Character and Singularity of the used Functions 

Multi-valued character 
The general solution (0.35) and its derivative (01.36) contain logarithms of a complex 
variable. Such logarithms are defined by; 

ln(z) = lnlzl -f /arg(z) 

This function is multi-valued. In calculations generally a single-valued function is 
used that is defined by; 

ln(z) = Inlzl 4- larg(z) 

-n < arg(z) ^ n 
(10.93) 

This is the definition of the logarithm of a complex variable that is currently available 
in computers. From (01.93) it is seen that the imaginary part of In(z) has a discon
tinuity 2n at (x < 0, v = 0). This discontinuity is encountered in the stream function 
due to the flow of a sink at the point ẑ ,: 

Q = ^\n(z-zJ 
2n 

or; 
Q 
2n 

Q 
0 + IT = -- Iniz - zJ + i— arg(z - z„) 

2n 

The argument discontinuity causes a stream function discontinuity at Re'z — z ĵ < 0, 
Im{z — Zp} = 0, as shown in figure 01.14: 

Figure III.14 Flow to a sink in ; = r 
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The complex potential due to distributions of complex strength also involves loga
rithms, and therefore it has discontinuities. The expression for the complex potential 
due to a distribution of complex strength between the points z, and Z2 is (III.32): 

Q = 
IjC^ 

2n 
{(z - Z2)ln[c(z - Z2)] - (z - zi)ln[c(z - z,)]} 

The argument discontinuity causes a discontinuity in the real and imaginary parts 
of Q, and appears when the imaginary part of the complex logarithm is zero and 
the real part is negative. 
For the first logarithm in (10.32) if; 

Im{c(z 

Re{c(z 

Z2) 0 

^2)} < 0 

For the second logarithm in (III.32) if; 

(10.94) 

Im{c(z - zi)} = 0 

Re{c(z - zi)} < 0 
(10.95) 

This means that generally the complex potential according to (01.32) has discontin
uities in the real and imaginary part, at the line through the points z^ and Z2 over the 
part that is shown in figure 10.15: 

discontinuity in one term 
((III 94) holds) 

discontinuity in two terms 

((II I 94) and (11195)hold) 

Figure III 15 Location of discontinuities 

Because the argument step is 2?!, the discontinuity between z, and Z2 (see (01.32) and 
figure 10.15)) is given by: 

123 



A,Q = f (z - Z2)/27r = uic(z - Z2) (III 96) 
2n 

At the extended part of ZjZi it is given by (see (III 32) and figure (III 15)) 

A2Q = f ((z - Z2)i27r - (z - Zi)i2;r) = iqc(z, - z.} (Ill 97) 
271 

It IS easily seen from (III 96), which is a linear expression that the complex potential 
step A^Q (between z, and Z2 has a linear variation going from z = Zj (at z = Zj it is 
zero) to z = Zi (there it is ; ̂  c (zi - Zj)) In the extended part of Z2Zi, the step remains 
constant at this value which is seen from (III 97) 

Using the mentioned single-valued definition of the logarithm in some cases where the 
extended parts of the boundary segments are located in the flow region the solution 
would have inadmissible discontinuities (see figure III 16) Therefore in the computer 
program mentioned in Chapter 20 the values of the complex logarithms are corrected 
so that the discontinuities are shifted to lines outside the flow region, see figure 
III 16 

Figure III 16 Shift of discontinuities from line a to I line b 

It is noted that for multiply connected regions the discontinuities cannot be avoided 
in this way In such cases the flow region is cut into two or more sub-regions m such 
a way that each sub-region is simply connected and the discontinuity of the mentioned 
function within the region can be avoided see figure III 17 
Then at the cuts there is an inhomogeneity line where the properties of soil and fluid 
are the same at both sides 
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Figure III.17 Subdivision of multiply-connected regions. 

Singularity 
The general expression for the complex potential in the analytical function method is 
(I0.35): 

m = Z - ^ ' {{= - Z2,)ln[c,(z - Z2,)] - (z - zi,)ln[c,(z - z,,)]} + 
j= 1 2n 

"• 0 
-f Z -,-•<" -z, ) + «o 

j=\ Zn 

The function Q(z) is singular at the sinks and the sources, but not at the end points of 
the boundary segments (z,, and Z2j). This follows from the fact that the limit: 

hm {(z - Z2)ln[c(z - z^)]} 
• "2 

is equal to zero. This can be shown simply by application of L'Hopitals' rule: 

ln[c(z - Z2)] 

lim ((z - Z2)ln[c(z - Z2)] = lim 1 

(z - =2) 

lim {z - Z2} = 0 

(Z-Z2) 
(=^=2)' 

Of course, this holds for the point z = Zi too. So the complex potential only has 
singularities at sinks and sources. 

The derivatives of i3(z) with respect to z, given by (III.36) and (10.37); 
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^ ^ = Z - ' ^ ' { I n ^ z - Z2,)] - ln[c,(z - z,,)]} + 
dz j=i In 

Qj 
j=l 27t(z -

d'o{z)^ y _gj^ 

dz' jh 2n .{=-=2j) (z 
+ Z -Qj 

. f i 27r(z - Zj) - 1 2 

are singular at the points Zij, Z2j, and Zj. 
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19 General Comparison with Other Methods 

The following general comparison with other methods deals with aspects of pure 
two-dimensional flow because the analytical function method is restricted to two-
dimensional flow 
The analytical function method has the properties that it is an approximative numer
ical method and it is rather general for two-dimensional flow 
In part II a review has been given of the most important existing solution methods 
Only the finite difference method and the finite element method have these proper
ties too, and in each of them just like in the analytical function method, the solution 
IS found by generating and solving a set of linear equations However, there are some 
essential diflerences 
- There is a difference in theoretical background In the finite difference method the 
solution IS found using a discretisation of the differential equation whereas in the 
finite element method it is found by using a variational principle The analytical 
function method uses analytic complex functions 

In the finite element method as well as the finite difference method the flow region is 
sub-divided into a large number of elements Corresponding to this number of ele
ments the number of equations that is generated increases In many cases where 
there are sharp alterations of the potential, such as may occur in the presence of sinks 
and sources it may be necessary to increase the number of elements greatly to 
ensure accuracy Then the number of equations becomes very large and consequently, 
the required computer storage too For the analytical function method this does not 
apply because the number of equations is relatively small as the number of equations 
IS defined by the number of boundary segments and in addition, sinks and sources 
aic simply accounted by extra terms in de general solution The number of equations 
is proportional to the number of boundar> segments For the finite element method 
and the finite difTerence method the number of equations is proportional to the 
number of elements 

- For the finite element method and the finite difference method the array of coeffi
cients IS a diagonal band matrix The array of coefficients for the analytical function 
method is complete in the case of one region and consists of blocs when there are 
more sub-regions, however, these arrays are generally smaller than the arrays of 
the finite element method and the finite difTerence method, because generally the 
number of boundary segments is relatively small 

- In the hnite element method and the finite difference method the unknowns are 
the groundwater heads in a large number of points within the flow region from which 
discharges can be calculated For the analytical function method the unknowns are 
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the complex distribution strengths So for the calculation of groundwater heads in 
points of the region, values of an analytical function have to be evaluated Then 
discharges are also known (because the analytical function contains the potential as 
well as the stream function) 

In the case of non-steady flow in the finite element method the problem may be 
encountered that due to a sharp rise of a phreatic line the upper elements become very 
oblong That may be disadvantageous for accuracy because the basic assumptions 
about the variation of the groundwater head within an element might become a bad 
approximation for these upper elements For such cases there has to be generated a 
new element grid or a part of it Analogous problems may be encountered when there 
IS a sharp fall in time of a phreatic line These kinds of problems are not encountered 
in the analytical function method because it does not use an element discretisation of 
the region 
- When the coefficient of permeability varies considerably a sub-division in many 
sub-regions must be applied in the analytical function method In such cases the 
method becomes disadvantageous with respect to the finite element method and the 
finite difference method because then the number of sub-regions might become the 
same as the number of elements in the finite element method oi the finite difference 
method Then the computer time needed for calculations will be larger for the ana
lytical function method because the unknowns in the set of equations are not ground
water heads as in the two other methods 
- The amount of input data for computer calculations is generally less for the 
analytical function method because a computer program based on that method needs 
only general information (number of sub-regions, coefficients of permeability etc) 
and boundary information (position and properties) Consequently the amount of 
work for checking data is less Howevci, it u noted that when e g , a finite element 
program is used, for many problems a mesh generator can be used to reduce the 
amount of input work 

For some classes of half-plane flow the analytical function method provides a 
solution for the whole half plane For those classes it is not necessary to cut off 
the part of interest from the rest of the half plane In the finite element method and 
the finite difference method such a cut always has to be made for half-plane flow 
problems 

For the finite element method as well as the finite difference method the solution is 
approximative over the whole region The analytical function method provides a 
solution that is exact within an approximative boundary So the analytical function 
method has another character than the finite element method and the finite diflerence 
method Because its solutions are exact within an approximative boundary the 
method is semi-analvtic 

128 



20 Examples 

To illustrate the analytical function method a computer program was made that is 
rather general for two-dimensional groundwater flow It can be used for the calcu
lation of steady and non-steady flow patterns in arbitrary shaped regions that may 
contain several fluids and inhomogeneities The anisotropy may have arbitrary direc
tions and magnitudes and there may be sources and sinks The input of the program 
consists only of general information (number of sub-regions, coefficients of permea
bility, etc) and boundary information (position and properties) The computer pro
gram comprises a main programme, two subroutines and three small function sub
programs The main program has an overall controlling task and it provides the 
input and output The subroutine OPS Tgenerates the equations, using the boundary 
condition formulation of the foregoing Chapters The set of equations is solved by the 
subroutine SIMQ That subroutine, or a corresponding one, is usually available on 
computers in a scientific subroutine package The function sub-program CAF 
calculates some complex expressions that appear in many equations the function 
sub-program CPF calculates the part Qi(z) of the complex potential that is due to 
the presence of sources and sinks and the function sub-program COF evaluates the 
complex potential using the distribution strengths that are known from the solution 
of the set equations 
The output of the program consists of coordinates groundwater heads, stream func-

ZU3 

DY 

ZU2 

ZU1 

Figure I I I IS Output end 
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MAIN (l)PST 

READ 
input data 

I 
call (|)PST 

call SIMQ 

next region | 

X 
region-information 
print information 

calculation of 
" . V x , V y , Z n 

print results 

no 

no 

^ . 
I next region 

[step in x-directlon 

I step in y-dlrection~ 

no 

calculation of 
fl,v^,Vy 

print result 

STOP 

next region 

X 
region information 

next boundary point | 

t 
boundary information 

z 
right memljerof 
two equations 

X 
coefficients for: 

(Poand Wo 

next coefficient numtjen 

X 
coefficients 

in two equations 

RETURN 

Figure III 19 Fssential parts of computer program 
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tion values, and x- and \-components of the specific discharge These values are 
printed for the boundary points and one or more output grids, that are specified in 
the input data These output grids are each defined by four complex parameters 
starting point ZLl, end points ZU2 and ZL/3, and the complex step parameter 
(DX + iDY) as shown m figure III 18 

In addition, for points of the boundary the position is printed after one step in time 
Before calculating the complex potential at a point of an output grid, it is first checked 
whether the point is within the region or not If not, no calculation of the complex 
potential is carried out and the program passes to the next point of the output grid 
This procedure has the advantage that output grids may be defined very roughly, so 
that all required information can be given to the program by a minimum of input 
data Figure III 19 gives schematically the two relevant parts of the computer pro
gram The MAIN program and the subroutine OPST A listing of the computer 
program is given in Appendix 5 It is noted that for the computer program the terms 

d'z 
—J have been set to zero (see Chapter 16) 

In the following some examples are discussed that illustrate the power of the calcula
tion method outlined The figures are roughly sketched by hand from numerical 
output data that were obtained using an early version of the computer program In 
practise a plot program will be used toaether with the calculation program of Appen
dix 5 (The listed program conforms figure III 19) Then accurate plots can be pro
duced automatically and the development using these programs is very easily done 
If not defined otherwise, for all examples the following dimensions are used Length 
meters time days mass tons (1000 kg) 

EXAMPLE 1 

Stead] flow in a dike homogeneous isottopic soil 
Figure III 20 shows the flow region There is an impermeable revetment on the talus 
The open part of the talus is clean there is no silt layer, so it is an equipotential line 
At some distance from the canal the flow is nearly horizontal, there a vertical equi
potential line IS used as boundary of the region For this homogeneous isotropic soil 
the coefficient of permeability is 1 m/day and the groundwater head difference between 
the canal and the vertical equipotential line is 1 m Figure III 20 shows the flow 
pattern At the boundary the sub-division in boundary segments that was used is 
indicated 
From the groundwater heads at the talus it is seen that the outflow of groundwater is 
concentrated mainly at the upper zone of the open part of the talus 
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stream line 

line of constant head 

end point of boundary segment 

Figure HI 20 Flow pattern in a dike 

EXAMPLE 2 

Steady flow in a dike, homogeneous isotropic sod with a dtain 
In figure III 21 the same dike is shown as in the first example, but here there is a drain 
in the vicinity of the lower end of the revetment, possibly having been left behind 
from the building phase of the dike It can now be used to reduce the overpressures 
at the revetment, for example, to make it possible for some repairs to be carried out 
on It In another situation, it would be possible that the water flowing from the vertical 
line of constant head is polluted and the dram could be used to intercept the water 
in order to prevent it reaching the canal 

stream line 

line of constant head 

end point of boundary segment 

Figure III 21 Flow pattern in a dike with a sink 

The same boundary conditions are used as in the first example The discharge of the 
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drain is 1.0 m^/m'day (for a length of 500 m that is about 21 m'/hr) 
From figure III 21 it is seen that the polluted water is almost completely intercepted 
by the drain 

EXAMPLE 3 

Steadv fhw m a dike, homogeneous anisotropic soil 
Figure III 22 shows the same dike as in the first example, but in this case the soil is 
anisotropic The direction of the maximum coefficient of permeability has an 
angle of 15*" with the positive x-axis (that is, about parallel to the 1 4 talus) The ratio 
of the maximum to the minimum coefficient of permeability (the anisotropy factor) is 
10 0. 

stream line 

Ime of constant head 

end point of boundary segment 

Figure III 22 Flow pattern in anisotropic soil 

EXAMPLE 4 

Moment oj non-stead\ flow with a phreatic Ime, homogeneous anisotropic soil 
This example deals with the groundwater flow in a region that was rectangular in its 
initial state (see figure III 23) At the left, right and lower parts of the region the bound
ary IS impermeable The upper boundary is a phreatic line In the region there is a 
sink and a source 
Figure III 23 shows the flow region and the flow pattern The soil is anisotropic, the 
maximum coefficient of permeability is 1 4 m/day, the anisotropy factor is 2 0, and 
the direction of the maximum coefficient of permeability has an angle of 15 with 
the positive x-axis. The storage coefficient is 0 2 
This discharge of the sink is 2 5 m^/m'day. The same discharge is infiltrated at the 
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stream line 

line of constant head 

end point of boundary segment 

phreatic line at t =0.1 day 

phreatic line at t = 0 

x(m) 

Figure III 23 Flow pattern in anisotropic soil with sink and source 

source From the specific discharge distribution along the phreatic line the alteration 
of the position of the phreatic line in a step in time is found After a period of 
0 I day, the phreatic line is raised about 6 cm above the source and the fall above 
the sink is also about 6 cm 

EXAMPLE 5 

Moment oJnon-stead] flow with an inteijace homogeneous anisotropic sod w ith a sink 
and a source m the heai \ fluid and a sink m the lighter fluid 
Figure III 24 shows the flow region There are two fluids Left, right and lower bounda
ries are impermeable The groundwater head at the upper boundary is constant 
The flow pattern is given in figure III 25 The soil is anisotropic, the maximum coeffi
cient of permeability is 1 4 m/day, the anisotropy factor is 2 0, and the direction of the 
maximum coefficient of permeability has an angle of - 15° with the positive x-axis 
The density of the lower fluid is 1,025 kg/m^. that fluid contains a sink and a source, 
both with the same discharge (2 5 m^/m'day) The density of the upper fluid is 1,000 
kg/m^. in this fluid there is a sink with a discharge of 3 5 m^/m day 
The upper boundary of the region is an equipotential line without silt layer 
It IS seen from figure III 25 that there are groundwater head discontinuities at the 
interface, caused by the density difference between both fluids The displacement of 
the interface in a step in time was calculated from the specific discharges at the inter
face At the end of the step in time (2 days) the rise of the interface above the source is 
about 40 cm and the fall of the interface between the two sinks is also about 40 cm 
(»; = 0 2) It IS seen in figure III 25 that the upper sink mainly receives water origi
nating from the upper equipotential line boundary 
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Figure III.24 Two fluids in anisotropic aquifer. 

interface 
stream line 

14t 

12 

line of constant head 
• end point of boundary segment 

x(m) 
Figure III.25 Flow pattern for the problem of Figure 111.24. 135 



EXAMPLE 6 

Moment of non-steady flow with cm interface, a seepage line and a phreatic line, inhoi7w-
geneous anisotropic soil with a sink and a source in the heavy fluid and a sink in the lighter 
fluid 
A fictive non-steady flow problem that involves together all boundary conditions 
that have been discussed in Chapter 14 is given in figure 01.26. The flow region 
consists of two sand layers that are both anisotropic. The soil properties are different 
for both sand layers. 

m i i i i i i t t i i i i i n n t i u u 
precipitation 0.05 

Figure III 26 Two fluids in inhomogcncous anisotropic aquifer 
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Figure III 27 How pattern for the problem of Figure III 26 

At the separation line between the sand layers there is a thin layer of clay In the second 
sand layer there are two fluids with different densities In the heavy fluid there are a 
sink and a source of equal discharge In the lighter fluid there is a sink m the second 
sand layer The upper boundary of the region involves a phreatic line with precipita
tion that ends at the talus of a canal Perfect unimpeded streaming out of the soil 
solid IS not possible because there is a silt layer on the talus 
This silt layer is present at the bottom of the canal too, but there it has a greater 
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resistance then at the talus In the canal there is a fictive structure by which the water 
table in the canal is higher than the lowest point of the seepage line 
The flow pattern is given in figure III 27 It is clear from the figure that there are 
groundwater head discontinuities at the interface and at the clay and silt layers From 
the specific discharges at the moving boundaries the displacements in a time interval 
were evaluated, and the positions after one step in time are given in figure III 26 by 
the dotted lines (p = /; = 0 2) From the figure it is clear that there is only a small 
movement of the interface On the other hand, there is a sharp drop of the phreatic 
line This is caused by the abstraction of water at the upper sink m the second sand 
layer 

EXAMPLE 7 

Moment of non-steadv flow with two interfaces, a seepage line and a phreatic line 
inhomoqeneous anisotropic soil with a sink and a source in the salt water and a sink in 
the fresh watei 
The regional geometry here is almost the same as in the previous example, except for 
one essential difference Instead of an impermeable lowest boundary here there is an 
interface with a third fluid That fluid is assumed to have a constant groundwater 
head The problem definition is given in figure III 28, and the flow pattern is given in 
figure III 29 The displacements of the moving boundaries in a time interval are indi
cated in figure 01 28 by the dotted lines 
It IS remarkable that now there is a sharp rise of a part of the lower interface and the 
whole upper interface 
These rises are the consequence of the abstraction of water at the upper sink in the 
second sand layer Because there is a thin layer of clay between the sand layers, and 
now there is a possibility of water supply from underneath, this sink now receives 
considerably less water from above Consequently the fall of the phreatic line is less 
than in Example 6 
As an illustration a part of the computer output is guen in Appendix 3 The complex 
distribution strengths (RCQ + i ICQ) are given in the first pages, followed in later 
pages by the groundwater head (PHI), the stream function (PSI) and the components 
of the specific discharge (VX and VY) The parameters KO, FI and WR are not rele
vant in this context This calculation was made using the sub-division of the boundary 
in the segments that are indicated in figure III 29 To illustrate the influence of the 
number of boundary segments, the calculation was repeated where the number of 
boundary segments was doubled The corresponding part of the computer output 
IS given in the next part of Appendix 3 It is seen that for this extreme case (high 
groundwater head gradients that are caused by sink and source), the diff"erences 
between the results of the two calculations are comparatively small Apparently the 
first choice of the number of boundary segments was reasonable 
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H i n u i i i n i i i u n t i i i i i u 
precipitation 0i05 

y(m) 

-x(m) 

Figure III 28 Three fluids in inhomogeneous anisotropic aquifer 
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Figure III 29 Flow pattern for the problem of Figure III 28 
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EXAMPLE 8 

The behaviour in time oj an interface homogeneous isotropic sod 
In figure 111 30 the starting position of an interface between fresh and salt ground
water IS given by the horizontal line indicated by f ^ 0 This example deals with 
groundwater flow in a polder aquifer The upper boundary of the flow region consists 
of semi-pervious layers which locally have a smaller resistance (ĉ  = 20 days instead of 
Cj = 100 days) The sub-soil consists of sand, with a coefficient of permeability 
of 10 m/day To a depth of 400 m the soil is homogeneous and isotropic at that depth 
there is a very course layer (gravel or shells) As the supply of sah groundwater through 
that layer is quite possible, the horizontal line at 400 m depth is assumed to be an 
equipotential line At the beginning (t = 0) the interface is horizontal at a depth of 
200 m This is a steady position if the groundwater head at the entire upper boundary 
IS -1-40 m higher than the head in the salt groundwater (0m) 

_ 800 400 800 

(/)=4,Cs=100 Cs=20|t$8 |:-i(Poider) Cs = 100,(/)=4 

FRESH /y = 100 
interface at t < 0 

SALT /̂ g =102 

gravel or shells,(p = 0 

Figure III •̂O Interface in polder -tquifci 

At f = 0 a sudden fall of the groundwater head is brought about above the part 
of the upper boundary where c, = 20 days (see figure III 30), (reclamation the 
groundwater head is lowered from -I- 4 to — 1 m) The consequence of the reclamation 
IS a flow of the fresh water as well as the sah water Figure III 31 shows the position of 
the interface between fresh and sah groundwater as a function of time 
In the calculation only half the profile was used because the problem is symmetrical 
From the figure it is clear that after some years there is sah water seepage into the 
new polder but after about 3^ years the steady state has practically been reached 
The relatively high speed of the phenomenon was caused by the great groundwater 
head differences (5 m between the polder and its surroundings and 1 m between the 
polder and the groundwater head in the salt water at 400 m depth) To indicate the 
influence of the size of the step m time, the problem was calculated twice, where the 
time step size was respectively 04 and 0 2 year Figure III 32 gives a comparison for 
the top of the interface and a point at 100 m from the top that does not reach the polder 
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level. From the figure it is seen that there are differences, although these are relatively 
small. So the choice of a time step size of 0.4 year led to a reasonable result (for that 
time step size the polder received salt water seepage after 2.7 years instead of 2.9 years 
for the calculation with a time step size of 0.2 years). 

800 400 
-*+<-

800 
-*i 

£^=J09'fei Cŝ 20̂ a)=-1, Cs = 100.(f)=4 

gravel or sne1ls,(p=0 
Figure III 31 Position of interface m time 

^t(year) 10 2 0 3 0 

I 
y(m) 

-100 

•200 

,->>^' 

^ ; ^ ^ ^ ^ ^ 0 0 m FROM TOP 

J^ 
//^ j t = 04year 

^ —— j t = 0 2year 

Figure III 32 influence of time step size 

EXAMPLE 9 

Simple half-plane flow 
A simple example of half-plane flow is given in figure I0.33: 

13 boundary segments in numerical calculation 

Figure I I I 33 Simple half plane flow 

end points of 
boundary 
segments 
in numerical 
calculation .-
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The problem deals with the groundwater flow from the surroundings towards a low-
situated polder The analytic solution of the flow problem can simply be obtained by 
means of the method of Pavlovskii (conformal mapping, see Chapter 7) Figure III 34 
shows the i2-plane 

i c l >^ I 

Figure III 34 Q plane 

Using the sine transform (see Appendix 2), the relationship between z = \ + ly 
and Q — 0 + iP can easily be found The result is 

Q = — arccos( — z) 
n 

The flow was also calculated using the calculation method outlined in Chapter 17 
A comparison of the results of both calculations is given in Appendix 4 From the 
tables of that Appendix it is seen that the sub-division in 13 boundaiy segments of 
the 'polder boundary' in the numerical calculation yields very accurate results 
Including the reference equations, there were only 15 linear equations to be solved 

EXAMPLE 10 

Half-plane flow 
A somewhat more complicated problem is the groundwater flow from the surround
ings towards three low-situated canals of which the water tables mutually differ One 
of the canals has a bottom on which a silt layer is present In the half plane there are 
two sinks of equal discharge, see figure III 35 The flow pattern is given in figure III 36 
It is seen from the figure that the water abstracted from the right sink originates merely 
from the right canal and infinity The left sink receives water from the middle canal 
and infinity From the middle and the right canals water is abstracted while the left 
canal receives water, which comes from the middle canal and infinity 
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Figure III.35 Half plane flow. 

- 6 . - 5 . - 4 . - 3 . - 2 . - • 
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(m) 
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- 5 . 
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-7 . 

Figure III 36 Flow pattern for the problem of Figure III ^5 
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SAMENVATTING 

Dit proefschnft over berekeningsmethoden voor tweedimensionale grondwaterstrommg bestaat uit dne 
dclcn In het eerste deel wordt de basistheone vermeld In het tweede deel wordt een overzicht gegeven van 
de belangrijkste bestaande oplossingsmethoden In het derde deel wordt een numerieke rekentechniek 
beschreven die is gebaseerd op het gebruik van analytischc functies \oor het benaderen van tweedimcnsio-
nalc stromingsbeelden (anal>tische functie methode) 

Een formulering van randvoorwaarden wordt gegeven waarin in de praktijk voorkomende randen zoals 
equipotentiaalliin met sliblaag etc voorkomen Bij de berekening wordt het stromingsgebied onder-
verdeeld in deelgebieden die elk constante vloeistof- en grondeigenschappen hebben De deelgebieden 
worden verbonden met behulp van aansluitvoorwaarden voor punten op de scheidmgslijnen tussen de 
deelgebieden 
Twee klassen van stroming in een halfvlak kunnen ook worden berekend metde/e melhodemet als voordecl 
dat het met nodig is om op zekere afstand een schematische begrenzmg aan te brengen 
Fen computcrprogramma werd geschreven dat gebaseerd is op dc analytischc functie methode Dit 
programma kan worden gebruikt voor de berekening van beelden van stationaire en niet-stationaire 
stroming in gebieden van willekeurige vorm die putlcn en bronncn mcerdcie vloeistoffen en anisotrope 
inhomogene grond mogen bevatten De invoer van het computerprogramma bestaat loutcr uit algcmcnc 
inlormatic (gegevens met betrekking tot doorlatendheid anisotropic dichtheid etc) en randmformatie 
(plaats en eigcnschappen van de rand) De oplossingen die worden verkrcgen met behulp van de analvtische 
functie methode zijn binnen een benaderde rand exact 

SUMMARY 

This thesis on calculation methods for two-dimensional groundwater flow is subdivided into three Parts 
In the first Part the basic theory is outlined In the second Part a review is given of the most important 
existing solution methods In the third Part a numerical calculation technique is developed that is based 
on the use of analytic functions for approximating two-dimensional flow pitterns (analytical function 
method) 
A boundary condition formulation has been given that involves piactital boundaries like 'equipotential 
line with resistance', etc 
In the calculation a flow region is divided into sub-regions that all have constant properties of fluid and 

soil The sub-regions are coupled by connecting conditions for points of the separation lines between the 
sub regions 
Two classes of half-plane flow can also be calculated by this method giving the advantage that for those 
problems no schematic boundary at some distance is necessary 
A computer program was written, based on the analytical function method This program can be used for 
the calculation of steady and non-steady flow patterns in icgions of arbitrary shape that may include sinks 
and sources several fluids and soil that nia\ be inhomogeneous and anisotropic The input of the computer 
program consists onlv of general information (data with respect to permeabilitv anisotropv density etc ) 
and boundary information (position and properties of the boundary) 
Solutions that have been found by the analytical function method are exact withm an approximative 
boundary 
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Appendix 1: Definitions with respect to Complex Denotations 

Complex numbers 
The complex number z is defined by: 

r = .X- -I- i y 

where .x and i' are real numbers and / is the so-called imaginary unit that has the 
following property: 

î  = - 1 

The real numbers .x and r are respectively the real and imaginary part of the complex 
number z. This is denoted by: 

.X = Re!.-} 
y = lm{.-} 

Complex functions 
The complex function /(r) = u(x.y) + /r(.v,3) is analytic when u and v satisfy the 
so-called Cauchy-Riemann relationships: 

du dv du dv 

dx dy dy dx 

In the mathematical literature (e.g., Wylie, I960) this can be found more compre
hensively. From the Cauchy-Riemann expressions by dilTerentiation one finds: 

d'u _ d'v d'u _ d'v 

dx' dxdy dy' dydx 

Additions yields: 

d'u d'u 
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In a similar way one finds: 

d'v d'v _ 

^'^~dy'~^ 

So the functions u and i that satisfy the Cauchy-Riemann relationships satisfy the 
Laplace differential equation. Functions that satisfy the Laplace differential equa
tion are called harmonic functions, and when these satisfy the Cauchy-Riemann 
relationships they are called conjugate harmonic functions. So an analytic function 
j(z) = M(.Y, r) -I- iv(x, y) consists of two conjugate harmonic functions. Conjugate 
harmonic functions (u and v) have the property that i/(.\-, y) = Cj (constant) and 
(•(.V, v) = CJ (constant) are perpendicular lines. 
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Appendix 2: The Sine Transform 

The sine transform has the property that a half-infinite strip is conformally mapped 
upon the upper half plane (see figure A 1) accoiding to 

H = sin(r) 

Figure A 1 Sine transform 

This IS seen simply by 

w = sin(x -I- M) = sin(x) cos(/\) + cos(x) sm(iy) 

Using 

cos(n) = cosh(() 
sin(n) = (sinh(i) 

It follows w = sin(\) cosh(i) -I- / cos(\) sinh(i), 

for \ = + - u = ± cosh(t) 

so lm(n j = 0 

for I = 0 w = sin(\) 

so Imju j = 0 
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For a point within the half-infinite strip: 

n n 
< .X < - and so : cos(.x) > 0 

2 2 ^ ' 

>• > 0 and so : sinh(y) > 0. 

Then : lm[u') = cos(.x) sinh(y) > 0. 

( n n \ 

So a point of the half-infinite strip I < .x ^ - , y > 0 I is mapped upon a point 
of the upper half plane. 
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Appendix 3: Part of Computer Output of Example 7 

Region I is the lower region; region 2 is the middle region and region 3 is the upper 
region (see figure 10.28). 
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Reilion 2 
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Reijuin 1 

X Y PHI PSI VX VY 
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Example 7: 
The number of boundary segments is now doubled. 
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Appendix 4: Comparison of Exact and Approximative Solution of 

Example 9 

- X _ x 

approximated exact approximated exact 

0 

0 05 

0 10 

0 15 

0 20 

0 25 

0 30 

0 ̂ 5 

0 40 

0 45 

0 50 

0 55 

0 60 

0 65 

0 70 

0 75 

0 80 

0 85 

0 90 

0 95 

100 

105 

1 10 

1 15 

1 20 

1 25 

1 30 

1 35 

1 40 

145 
1 50 

1 55 

1 60 

165 

1 70 

1 75 

0 0000 

00001 

0 0002 

0 0004 

0 0006 

0 0003 

0 0003 

0 0003 

-00014 

-00014 

-0 0006 

0 0005 

0 0015 

0 0021 

-0 0005 

0 0006 

0 0010 

0 0003 

0 0006 

-0 0000 

0 0174 

0 1023 

0 1428 

0 1736 

0 1994 

02218 

02419 

0 2602 

0 2770 

0 2927 

0 3074 

03212 

0 3342 

0 3467 

0 3585 

0 3698 

0 

0 

0 1002 

0 1412 

0 1722 

0 1981 

0 2206 

0 2408 

0 2591 

0 2760 

02917 

0 3063 

0 3202 

0 3333 

0 3457 

0 3575 

0 3689 

1 80 

1 85 

190 

195 
200 

2 05 

2 10 

2 15 

2 20 

2 25 

2 30 

2 35 

2 40 

2 45 

2 50 

2 55 

2 60 

2 65 

2 70 

2 75 

2 80 

2 85 

2 90 

2 95 

3 00 

3 05 

3 10 

3 15 

3 20 

3 25 

3 30 

3 35 

3 40 

3 45 

3 50 

0 3806 

0 3911 

0 4011 

04108 

0 4201 

0 4291 

0 4379 

0 4464 

0 4546 

0 4626 

0 4704 

0 4780 

0 4854 

0 4926 

0 4996 

0 5065 

05132 

0 5197 

0 5261 

0 5324 

0 5386 

0 5446 

0 5505 

0 5563 

0 5620 

0 5667 

0 5730 

0 5784 

0 5837 

0 5888 

0 5939 

0 5990 

0 6039 

0 6088 

06135 

0 3797 

0 3901 

0 4002 

0 4099 

04192 

0 4282 

04370 

0 4455 

0 4537 

04617 

0 4695 

04771 

0 4845 

04917 

0 4987 

0 5056 

05123 

05189 

0 5253 

05316 

0 5377 

0 5437 

0 5496 

0 5554 

0 5611 

0 5667 

0 5721 

0 5775 

0 5828 

0 5830 

0 5931 

0 5981 

0 6031 

0 6079 

06127 

157 



3 55 

3 60 

3 65 

3 70 

3 75 

3 80 

3 85 

3 90 

3 95 

4 00 

4 05 

410 

415 

4 20 

4 25 

4 30 

4 35 

4 40 

4 45 

4 50 

4 55 

4 60 

4 65 

4 70 

4 75 

approximated 

06182 

0 6229 

0 6275 

0 6320 

0 6364 

0 6408 

0 6451 

0 6493 

0 6535 

0 6576 

06617 

0 6658 

0 6697 

0 6737 

0 6775 

06814 

0 6851 

0 6889 

0 6926 

0 6962 

0 6998 

0 7034 

0 7069 

0 7104 

07139 

exact 

06174 

0 6220 

0 6266 

06311 

0 6355 

0 6399 

0 6442 

0 6485 

0 6527 

0 6568 

0 6609 

0 6649 

0 6689 

0 6728 

0 6767 

0 6805 

0 6843 

0 6881 

06917 

0 6954 

0 6990 

0 7026 

0 7061 

0 7096 

0 7130 

— x 

4 80 

4 85 

4 90 

4 95 

5 00 

5 05 

5 10 

5 15 

5 20 

5 25 

5 30 

5 35 

5 40 

5 45 

5 50 

5 55 

5 60 

5 65 

5 70 

5 75 

5 80 

5 85 

5 90 

5 95 

6 00 

approximated 

07173 

0 7206 

0 7240 

0 7273 

0 7305 

0 7338 

0 7370 

0 7401 

0 7433 

0 7464 

0 7494 

0 7525 

0 7555 

0 7585 

0 7614 

0 7644 

0 7673 

0 7701 

0 7730 

0 7758 

0 7786 

07814 

0 7841 

0 7869 

0 7896 

exact 

07164 

0 7198 

0 7231 

0 7264 

0 7297 

0 7329 

0 7361 

0 7393 

0 7424 

0 7455 

0 7486 

07517 

0 7547 

0 7577 

0 7606 

0 7635 

0 7664 

0 7693 

0 7722 

0 7750 

0 7778 

0 7806 

0 7833 

0 7860 

0 7887 
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— x 

approximated exact 

0 
0 05 
010 
015 
0 20 

0 25 

0 30 

0 35 

0 40 

0 45 

0 50 

0 55 

0 60 

0 65 
0 70 

0 75 

0 5000 

0 4839 

04678 

04517 

0 4356 

04195 

0 4034 

0 3873 

0 3695 
0 3505 

03316 

03126 

0 2936 
0 2747 

0 2544 

0 2288 

0 5000 

0 4841 
0 4681 

0 4521 

0 4359 

04196 

0 4030 

0 3862 

0 3690 

03514 
03333 

0 3146 

0 2952 

0 2748 

0 2532 
0 2301 

— X 

approximated exact 

0 80 

0 85 

0 90 

0 95 

100 

105 
1 10 

1 15 

120 
125 

0 2033 
0 1777 

0I4I7 

0 0988 

0 0000 

0 0000 

0 0000 

0 0000 

0 0000 

00000 
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Appendix 5: Listing of Computer Program 

1 
2 
3 
« 
S 

6 
7 

a 
9 

in 
11 
12 
13 

1« 
IS 
16 
IT 
1» 
19 
20 
21 
22 
23 
21 
25 
26 
27 
28 
29 

il 
?2 
SJ 
31 
SS 
36 
37 
38 
39 

m 
12 
13 

c 
c» 
c 

IMPLICIT COMPLEX (C,Z) 
DIMENSION T E X T I S D ,AA( 1) 

INTEGER NS3(5I ,NS1(5I 

COMMON /Cni/ZPA(5,10),ZUA(5,5,1),ZQA(5),ZRA(5,10O,ll,DT,ROZ,FIZ, 
CFI«(b).GAIS|7l,CPAIS,in).WRAIS,laO,ll,NG,PORI5l, 
CNA(5,3,l),NGAt5,5,l),IFA(5,iaO,ll,KRA(5,100,l),IRA(5,10a,ll,NFI 
COMMON /CnZ/BP(5J0I,NV 
EQUIVALENCE (INO.AAdll 
CANIFICV,AN,AH|:CEXPI I tl. 0, I . 0 ) • AH ) tCMPL X ( (REAL(CV)*SORTtAN)), 

CAIMAGICVI( 

EPS 
CI = 
PI: 
WEA 

aRI 
URI 
REA 

NSl 
NG = 
NS2 
NFA 
IF( 
DO 
REA 

>.S3 
MA ( 
RFA 

•JSM 
IF I 
GA( 

N P : 
IF( 

\u: 
IF( 
RLA 

CON 
-JFA 

UO 

(o. J 
3.11 
01?, 
TL (O 

Tt (b 
D(5, 
:Nr 
I APS 
:hFA 

:IA-3 
Nf I. 

1..S 
0(5, 
( i&) 
Ic,l 
0(5, 
( IT) 
GA( I 

Ic,I 
NA(I 
NH.G 
NO (I 

Nb.F 
n (5, 
Tl^•u 

1 ,9 
NA(1 

Cl*«(-'t I 

.1 .01 
15926535 
115 ) T E X T 

,116 )TrXT 

,112 1 
10 1IVG,NFA,NFI,DT,')0Z,FIZ 

(NG) 

5 t N F A ) 
N E . J I R F A n ( 5 , l J 2 ) ( F I A ( I ) , I = l , N F I ) 

I G : 1 , N G 
l - 1 5 l ( N A ( I G , J , l ) , J : l , 3 ) , ( N G A ( I G , J , l ) , j : l , N G » 
= NH ( It , 1 , 1 I 
,1):IA='S(NA(IG,1,1)1 
1 1 7 ) ( G « ( I & , J 1 , J : 1 , 1 ) , P 0 R ( I G ) , Z J A ( I G ) 

= 1 
G,1 ) . L T . n . I N S I t 1 6 l r - 1 
) : A B S ( e A ( I G , l l ) 

G,3,ll 
T . M R E A C I ( 5 , 1 1 8 ) ( ? P A ( I & , J ) , 0 P A ( I G , J ) , J : l , N P I 
S , 3 , 1 1 

r . T ) G O T O 1-15 
l J 1 ) ( ( 7 U « ( I 3 , J , l l , I : l , M l , j r l , N U ) 
F 

A-1 
IGrl.'IG 
r-, 1 , 1 ) 

11 
15 
16 
17 
IR 
19 
51 
51 
52 
5J 
31 
iS 
56 
57 
58 

READ FOUNOARY AND INSERT EXTRA BOUNDARY SEGMENTS 

IR^l ,N'; 

R A ( I G , I S U B S , 1 ) , I F A ( I 6 , I S U B S , 1 ) > 

11U 

o r l i 
j T = n 
I S u n ^ ^ l - F A t t l R - l 1*1 
' ' E A n ( 5 , 1 1 1 ) Z R A ( I & , I S U P S , l ) , K r , « . 

r , i ( P A ( l C , I S l l 8 S , l ) , I R A ( I G , I 5 U B S , n 
I F ( I K . F C . 1 ) E O T O 113 
I F l I R . K T . l l I S I I B M z I S I I B S - N F A 
IFCJFA.EO . 1 )GCTO 113 
C n Z : ( Z ' ^ A ( I & , I S U B S , l > - Z R A ( I G , I S U B M , l ) l / N F A 
JO 119 J : l , N F A M 
ISU3nJrISUB''«J 

< . R A ( I G , I S l J g M J , l ) : Z R A ( I G , I S U B M , l ) « J * C D Z 
K R A ( l r , I S ' J B ' ' J , l ) = K R A l I G , I S U B M , l ) 
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59 
bC 
Ll 

62 
b3 
Dl 
65 
66 
o7 
6" 
69 
7" 
71 
72 

71 
75 
76 
77 
78 
79 
tT 
61 

IFA(iE,ISUPI'J,ll:lFA(IG,ISUBM,ll 
l,PA(lG,ISUet'J,lt:WRA(IG,ISUBM,ll 
IPA(IO,ISIJB»'J,ll:Ir!A(IG,ISURM,l) 

119 CONTINUE 
IF(.NOT.(IR,El.NR.ANO.JT.EQ.ul)GOTO 

ISJBHrNFA*(NR-1)•! 

ISU8S:l 
JT:l 
bOTO 11" 

113 CONTlNc'F 

N A ( I G , 1 , 1 ) ; N F A » N R 
IFtNFA.FU.1)GOT0 1J9 
IGA:IC» 1,1 J 
IGA^t.Or (IGA,2) 
DO 111 IGB=1,NG 

IH=NuA(IG,IFB,1) 
IF(IH.rC.n)GOTO 111 
IHC=NFA*(IH-1)•! 
IF(IoA.fE.U>IHC=IHC*NFA-l 

NGA(1G,IGB,1l=IHC 
111 CONTINUE 
199 CONTINUE 

113 

82 

6f 
31 
85 
66 
87 
88 
69 

9n 
91 
92 
93 
91 
9": 

96 
97 
98 
99 
luO 
lul 
loZ 
1 .3 
lul 

1 5 
1 J 6 
1U7 
1J8 
1-9 

11" 

111 
112 
113 

111 

.RITt rcFSULT OF INPUT DATA (INCL. GENERATED EXTRA SEGMENTS) 

IF(Nil.FT. J IGCTC 138 
WRITLta,li:)-jn,NFA,NFI,riT,ROZ,FIZ 
IF(NfI.NE.I)HRITE(6,l''2)(FIA(I),Irl,NFI) 
1̂ 0 IZf IC = l,Nr, 
yRITL(6,ll6)(NA(IG,J,!),j:l,3l,(NCAtIG,J,ll,j:l,NG) 
«RITL(fc,li7)(CA(IG,JI,J=l,1),P0P(IGI,ZaA(IG) 
NP:NA(ir,2,1) 
IFlNP.CT.i)WRITE(5,ir)8)(ZPA(IG,J),0PA(IG,JI,J=l,NP) 

NU^NA(IC, 3 , 1 ) 
IFI Nu.EC. I.IGOTO 13P 
yPITLtO ,1'11)((ZIJA(IG,J,I),I-1,1),J:1,NU) 
CONTIIUE 

DO l.,9 IG:1,N'-
uA(IG,'J)rGA(IR,«)«PI/18".ri 
tj R = N A ( I f;, 1 , 1 ) 
N V = N V « , • N R « 2 
I F ( N J 1 . L T . O ) » » I T E ( 6 , 1 1 C I ( Z R A ( I G , I R , 1 ) , K P A ( I G , I R , 1 I , 

t I F A ( l C , : R , l l , w R A ( I G , I P , l ) , I R A ( I 6 , I R , l ) , I R : l , N R ) 
J C O N T I N U E 

U R I T L ( 6 , 1 1 2 ) 

r»V2=tvV»''iV 

CALL RLODA (AA ( 1 ) ,NV2,IE'') 

IF(lLP.KE.a)«RITE(6,9r!l)IEP 
IF(lEP.NF.T)STQP 

CALL OPST I AA(IND) ) 

CALL SIMO lAA (IND ) ,8B,NV,KS) 

115 
116 
117 
118 
119 
120 
121 
122 
123 
121 

WRITE REGION AND BOUNDARY DATA AND SOLUTION OF EQUATIONS 

IF(NS?.GT.O)GOTO 121 
00 1<;1 I G : 1 , N G 
NTrn 

N R : N A ( I G , 1 , I ) 
N P : N A ( I G , 2 , 1 ) 
A H : G A ( I C , 1 ) * 1 0 J . J / P I 

l«l:l 
I F d G . C C . 1 )G0T0 127 
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125 
126 
127 
128 
129 
ijn 
131 
132 
133 
131 
135 
136 
137 
138 
139 
11" 
111 
112 
113 
111 
115 
116 
117 
118 
119 
15 I 
151 
152 

153 
151 
155 
156 
157 
158 
159 
160 
161 
162 
163 
161 
165 
166 
167 
168 
169 
170 
171 
172 
173 
171 
175 
176 
177 
178 
179 
180 
181 
182 
183 
181 

J : I G - 1 

128 
127 

121 

1 2 1 

DO 128 I : l , J 
IM1= I> '1»2*NA t l , 1 , 1 ) »2 
CONTINUE 
y R I T L ( b , l ? U ) I 6 , G A ( I G , l ) , G A ( I G , Z ) , G A ( I G , 3 ) , A H , N P 
N T : N T » 1 J 
I F ( N P . E C . T I G O T O 122 
W R I T E ( 6 , 1 2 3 l t 7 P A ( I G , J ) , 0 P A ( I G , J ) , J : l , N P ) 
I .RITL (6 , 1 31 ) 
N T : N T » 6 

122 l i R I T L ( 6 , 1 2 5 ) 
NT=NT»3 
0 0 121 I R : 1 , N R 
I M : I K 1 - > I R - 1 
I F O : I F A ( I G , I R , 1 ) 
I F ( I F O . F l j . 3 ) F I r n , 3 
I F ( I F P . M E . J ) F I : F I A ( I F O ) 
isues = lf->NR 
kRITL(f,126)ZPA(IG,IR,l),KRA(IG,IP,l),FI,URA(IG,IR,l),BB(IH),BB( 
ri su^.,) 
N T : N T « 1 
T r / h i T r n c i i u D T T c i f c . i T n i T C IF(NT.C0.5J)URITEI6,130)IG 
IFtNI.'_C.5U)NT = 3 
CONTIKUF 
ISUPS:IMi»2tNR 
b R I T C ( b , l ? 9 ) B B ( I S U B S ) , 8 " ( I S U S S * 1 ) 
C O N T I M / E 

T P U r BOUNDARY OU 

DO 1 1 1 T G r l . N G 
NT = "J 
N R = N A ( I G , 1 , 1 ) 
a w r f ; a r T n . 3 i 
n j K - N A I l t > , 1 , 1 1 
A N = G A ( I G , 3 ) 
A K : G A ( I G , 2 ) / S 0 R T ( A N ) 
A M z G A i r n . u i 
fln-'jAiii.-,^;/iyKi l A N i 
AH=GA(IG,1) 
JA:3 
IF(Ni1(IG).LT.U)GOTO 132 
DO 132 IRrl.NP 
IF(Ni3( IG ) .LT. DGOTO 111 
K0:KKA ( IG , IR, 1 I 
I F ( . N O T . ( K 0 . E O . ? 2 . O R . K 0 . E 0 . 2 3 ) ) G O T O 

111 IF ( JA.EC,'1)WRITE(6, 133) IG 
JAr 1 
ZO:ZKA(IG,IP,1) 
IFtIR.LT.NR)ZP:ZRA(IG,IR«l,l) 
IF(IR.fO.NR)ZP:ZRA(IG,l,l) 
Z:0.5*(ZO»ZP) 
COZCUFIIG.Z.Jl 

132 

185 
186 
187 
188 
189 
190 
191 

6 R I 0 OUTPUT 

NU = N A ( I G , 3 , 1) 
I F ( N U . F C . O I G O T 0 111 
0 0 116 j : l , N U 
N T ; 0 
W R I T E ( 6 , 1 1 2 I I G 
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192 
193 
191 
195 
196 
197 
198 
199 
2U0 
2J1 
2J2 
203 
231 
205 
2 J6 
207 
208 
209 
210 
211 
212 
213 
211 
215 
216 
217 
218 
219 
220 
221 
222 
223 
221 
225 
226 
227 
228 
229 
230 
231 
232 
233 
231 
235 
236 
237 
238 
23° 
21" 
211 
212 
213 
211 
215 
216 
217 
218 
219 
25n 
251 
252 

2S3 
251 
2S« 
256 
257 
258 
259 
260 
261 

135 

113 

118 

117 
116 
111 

C** 

101 
102 
101 
106 
107 
108 

no 
112 

T.EPS)CR:(ZU2-2U1)/CABS(ZU2-ZU1) 
T.EPS)CR=(2U3-ZU2)/CARS(ZU3-ZU2) 

S)CS 
S)CS 
NX:l 

NY=1 
AND 

• EPS 
AND. 
•EPS 

AND. 
)*EP 
AND. 

)^EP 

T=CT»0Y 
TrCMPLX(DX,<DX»AICR/RECR)) 

CABS(ZUZ-ZUl).GE.EPSl 
)/0X)^1 

CARS(ZU7-ZU1I.LT.EPSI 
)/DX)^ 1 
CABS(ZU3-ZU2) .GT.''PS ) 
S ) / D Y ) • 1 

CA8StZU3-ZU2).LT.EPS I 

S)/0Y)^1 

ZUl:ZUA(IG,J,l) 
ZU2:ZUA(IG,J,2) 
ZU3=ZUA(IG,J,3) 
ZU1=<.UA (IG, J,1) 
IFtCAPS tZU2-ZUl) .G 
IF(CAPS(ZUZ-ZUl).L 
RECR^REAL(CR) 
AICRZAIMAG(CR) 
DXZREAL(ZU1) 
0 Y : A I H A G ( Z U 1 ) 

IF(AaS(RECR).LT.EP 
IF(ABS(PECR).GE.EP 
IF(AbS(DX).LT.EPS) 
IF (AbS(0Y).LT.EPS) 
IF(ABS(DX).GT.EPS. 

tNX= ( (REAL(ZUZ-ZUl) 
IF(AbS(DX).GT.EPS. 

tUXz((REAL(ZU3-ZU2) 
IF(AbStPY).GT.EPS. 

tNY: ( (AIMAG(ZU3-ZUZ 
IFtABStDY).CT.EPS. 

CNY=( (AIMAG(ZU2-ZU1 
ZU:ZU1-CST-CI»DY 
DO 117 IY=1,NY 
ZU=ZU^CI«OY 
DO IIP IX:l,NX 
ZU^ZU^CST 
Hro. J 

DO 135 IR=1,NR 
ZO:ZftA(IG,IR,I) 
IFI Ih.NE.NR)ZP = ZRA 
IFtIK.EC.NR)ZP:ZRA 
JA = n 

IF (CAPS(2U-Z0).LE. 
IF(JA.LC. 1 )ZU:ZU*( 
IF(CABS(ZU-ZP).LE. 
IF(JA.EO.2)ZU=ZU*( 
IF(AtS(AIMAG(CABS( 

t.AND.CAPS(ZU-ZP) .L 

C. AND.CABS(ZU-ZO) .L 
HrH^nIHAG(CLOG(CAB 
CCNTINUF 
I F ( A D S ( H - - ' . I 1 4 P I ) .G 

C O i C U F ( I G , Z U , M ) 
CO:C)'PLX( (REAL (CO) 
C V : C U F ( I G , Z U , 1 ) 
CW=CAMF(CV , AN, AH) 
C V = - C 0 \ J 6 ( C V ) 
NTzNT^l 
WRITE(6,111)ZU,C0, 
IFtJA.EO.1)ZUrZU-( 
IFtJA.CC.2)ZU:ZU-( 
IF(NT.EC.?5)WRITE ( 
IF(NT.LC.?5)NTn 
CONTi^UF 
ZU:21J-NX*CST 
CONTIMLF 
CONTINUE 
CONTINUE 

STOP 

F 0 R M A T ( I 5 , 2 I 9 , F 1 3 . 3 , 2 F 9 . 3 ) 
F O R M A T ( e F 9 . 3 ) 
F O R M A T ( 8 F 9 . 3 ) 
FORMATdS , 7 1 9 ) 
F O R M A T ( 5 F 9 . 3 / 2 F 9 . 3 ) 
F O R M A T ! 3 F 9 . 3 ) 
F 0 R M A T ( 2 F 9 . 3 , I 5 , I 9 , F 1 3 . 3 , I 5 ) 
F 0 R M A T ( ' 1 ' , 5 X , ' R E G I O N ' , I 1 / / / 6 K , ' X ' , 8 X , ' Y ' , 1 1 X , " P H I " , 6 X , ' P S I ' , 9 X , 

t ' V X ' , 7 X , ' V Y ' / / ) 

I I G , I R * 1 , 1 ) 
( I G , 1 , 1 ) 

EPS) J A r l 
Z P - Z 0 ) / C A B S ( Z P - Z 0 ) * 2 . I 1 » E P S 
EPS ) J A : 2 
Z O - ? P ) / C A B S ( Z 0 - Z P ) » 2 . 3 * E P S 
Z P - Z 0 ) / ( Z P - Z 0 ) » ( Z U - Z 0 ) ) ) . L T . E P S 
T .CABS(ZP-ZO) 
T .CABS(ZP-ZO) ) 6 0 T 0 113 
S ( Z O - Z U ) / ( Z 0 - Z U ) » ( Z P - Z U ) ) ) 

T . ' l . U D G O T O 118 

/AK ) , A I 1 A G ( C 0 ) ) 

CV 
Z P - Z 0 ) / C A n S ( Z P - Z 0 ) » 2 . ' l * F P S 
Z 0 - Z P ) / C A B S ( Z 0 - Z P ) » 2 . n » E P S 
6 , 1 1 2 ) I G 
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262 
263 
261 
265 
266 
267 
268 
269 
270 
271 
272 
273 
271 
275 
276 
277 
278 
279 
280 
281 
282 
283 
281 
285 
286 
287 
288 

U I 
120 

123 
131 
125 
126 
130 

129 
133 

131 
H Z 
115 
116 

90 

C 
C 
C 

F O R M A T C ', 
F O R M A K '1', 

f,F8.3/23X, 
F0RMAT(5X,' 
FORMAT(///) 

FORMAT(5X,' 
F0RMAT(2F9. 
F O R M A K '1 • , 

t, 'FI ' ,7X, 'w 
F0RMAT(/2IX 
FORMATI 'I', 

t'VX' ,7X,'VY 
FORMAT(• ', 
FORMAT( '1' ) 
FORMAT(18A1 
F O R M A K '1'/ 

t5X, • f , 5 X , • 
t' FL0h',9X 
[5X,•»',17X, 
t3(5X,'«',72 
C3 (5X , •»',18 
F O R M A K ' IE 

C/15X,'2IL D 
END 

//2(5X,71(1H*)/),3(5X,'»',72X,•*•/), 

M0T6R0 : MODEL FOR TWO-DIMENSIONAL GROUNDWATER' 
,'*•/ 
'BASED ON ANALYTICAL FUNCTION METHOD ' , 1 7X,'» ' / 
X,'••/),2(5X,71(1H»)/),2(5X,'«',72X,'••/), 
AI,•*•/),2I5X,'»',72X,'»'/),5X,71(1H»)) 
R=',I3,7X,'FOUT eiJ HET DYNAMISCH DECLAREREN' 
O C U M E N T A T I E VAN R E O D A ' / / ) 

280 
290 
291 
292 
293 
291 
295 
296 
297 
298 
299 
3.3 
3J1 
3J2 
3 J3 
3 J1 
3,5 
3 J 6 

3 ,7 
3.,8 
3..9 
310 
311 
712 
313 
311 
315 
316 
317 
31S 
319 
32" 
3^1 
322 
323 
321 
325 
326 
3^7 
3ZP 
3;>o 

laz 
1 11 

SUBROUTINE OPST(AA) 
IMPLICIT COMPLEX (C,Z) 

LOGICAL LJO 
DIM'ENSION AA(1) 
COMMON /CJl/ZPA(5,in),ZUA(5,5,1),Z0A(5),2RA(5,100,11,OT,R02,FIZ, 

f.FIA(o),GA(5,7),CPA(5,lU),WRA(5,109,l),NG,P0R(5l, 
CNA(5,3,l),NGA(S,5,l),IFA(5,19Q,l),KRA(5,laO,ll.IRA(5,100,l),NFI 
COMMON /C32/BP(5 JO),NV 
CANF(Z,AN,AH)rCMPLX(REAL{Z*CEXP(-(0.0,1.0l*AH)),(S0RT(AN)»AIHA6« 

f.Z*CF*P(-( '1.i),l.3)«AH) ) ) ) 

CANIF(CV,AN,AH)=CEXP((n.3,1.0)»AH)»CMPLX(I REAL(CV)*SORT(AN))> 
CAIMAG(CV) ) 
CIZ (<..>,!. J) 
00 1 J 1 I ; I , N V 

6B( I ) : 1.0 
DO lo2 J:l,NV 
ISUBS-(J-l)*NV*I 
AA( ISUFS)=U.J 
CONTINUE 
CONTINUE 

00 lo3 IG=1,NG 

REGIuN 

ICJI 

J i; 
IHB 
N P z 
NRB 
N P : 
ROr 
AK = 
AH-

A H -
IMl 

IF ( 
J = I 
DO 
IMl 

CON 

1 
:iG 
NA ( 
rNR 
NA ( 
5A( 
GA( 
CA( 
GA( 

i r , i , l ) 

I G , ' , 1 ) 
I G, 1) 
I G , 2 ) / S C R T ( G A ( I G , 3 ) ) 
in, 3) 
I G , 1 ) 

I&.E.C.1)G0T0 11 
G-1 
lol 
:ll' 
TIN 

I;l,J 
(•2»NA(I,1,1)*2 
UE 
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330 
331 
332 
333 
331 
335 
336 
3 J 7 

33e 
339 
31" 
311 
312 
313 
311 
315 
316 
317 
318 
319 
3i,n 
351 
352 
353 
351 
355 
356 

1 1 8 

C 

C * 

r 

o n 1^5 I R r l , N P 

B O U N u A f ^ Y - S E C T I O N 

I > " = I M 1 ' 2 * I I P - 1 ) 

I G C = i R A ( I G , I R , 1 ) 

I F ( I G C E C . u ) G O T O 1 0 6 

R O C = o A ( I G C , 1 ) 

A K C ; b A ( I G C , 2 ) / S Q R T ( G A ( l r , c , 3 ) ) 

A N C = & A ( I G C , 3 ) 

A H C = u A ( I G C , 1 ) 

N P C ^ N A ( I G C , 2 , 1 ) 

W R : W . . A ( I G , I R , 1 ) 

I F O ^ I F A ( I G , I R , 1 ) 

I F ( I t O . N E . j ) F I O : F I A ( I F O ) 

K O r K K A ( I G , I R , 1 ) 

Z O ; Z K A ( I G , I R , 1 ) 

I F ( I r ( . L T . N R ) Z P : Z R A ( I G , I R » l , l ) 

I F ( I n . F O . N R ) Z P = Z R A ( I G , l , l ) 

Z = J . 5 * ( Z 0 ^ Z P ) 

C D Z = i P - Z 0 

D X ; P L A L ( c n z ) 

O Y = A I M A C ( C D Z ) 

D L ^ C A B S ( C D Z ) 

U P Z P . O ' D X ' O Y 

D V = D X * * 2 - D Y * « 2 

3 5 7 

3 5 8 

3 5 9 

la? 

3 3 1 

3t>2 

3 6 3 

3 6 1 

3 b 5 

3 c 6 

3 6 7 

3 6 8 

3 6 9 

3 7 3 

3 7 1 

3 7 2 

3 7 3 

3 7 1 

3 !5 

3 7 6 

3 7 7 

3 7 P 

3 7 ° 

3bO 

3 8 1 

3 o 2 

3 d 3 

3 i ; 1 

3 6 5 

3 u 6 

3 b 7 

3t>8 

3 8 9 

3 9 0 

3 9 1 

3 9 2 

3 9 3 

3 9 1 

3 9 5 

3 9 6 

3 9 7 

3 9 8 

C » * 

C 

r 
C * 

C 

1 0 7 

E O U A T I O N S 

R I G H T - H A N D SNO O M E G A - Z E R O 

L J i j r (KC 

I F ( L J ' ) 

F I l - J . . 

F I 2 : : > | . 

I F ( K u . f 

I F ( K o . E 

CAIMAC(Z 
ir(KO.: 
IF IHU.L 

r A IM A c ( Z 
I F ( K 0 . f 
A L 1 - .J.' 
AL2=.. 
AL3= J.' 
ALI;,. J 
IF t .NOT 
IF(KO.' 

£)/2I'RO 
IF{Ku.L 
IF(J»(I 
AL3:o«« 
AL1=AL^ 
IF(J«(I 

CP ) = cpr 
C P I = C P F 
C P 2 = C P F 
C P 1 = C A ^ 
C P 2 r C A ^ 
I F ( . N O T 
C P IdzCP 

CPl1:CP 
CPl0-CA 
r5 P ( I h ) r 

f ) 

3 B ( I t • ! 

f J Y • A 11- A 

. N E . 2 1 . A N D . J O . E Q . O ) 
7F 1 = 7 0 * U . 7 5 * ( Z P - Z 0 ) 

C . 1 1 ) E I l r R O « F I O 

C . 1 2 . 0 R . K O . E 0 . 2 2 . 0 P . K O . E C . 2 3 . A N D . J * ( I G B - I G C > . G T , n ) F I l r j * R O * 

) 
C . 2 3 . A N D . I G C . E 0 . 0 ) F 1 1 - F I 1 • R O Z * ( F I Z - A I M A G ( 7 ) ) 

C . 1 2 . 0 R . K 0 . E 0 . 2 2 . 0 R . K 0 . E C . 2 3 . A N D . J » ( I G B - I G C ) . G T . D ) F I 2 = J « R O « 

P - 7 0 ) / C A B S ( 2 P - Z 0 ) 

C . 2 3 . A N D . I G C . E 0 . " ) F I 2 : F I 2 - R 0 2 * A I M A G ( Z P - Z 0 ) / C A B S ( Z P - Z 0 ) 

( K U . E 0 . ? l . O R . J * ( I G B - I G C ) . L T . n ) ) A L 1 - J * R 0 / A X 

0 . 1 1 . 0 r . K O . E Q . 1 2 . O R . K O . E 0 . 3 1 . A N D . J » ( I G B - I G C ) . G T . O I A L 2 : ( l J » l 

»wR 

0 . 2 1 ) A L 2 - 1 . I 

G B - I C C ) . L T . 1 ) A L 2 = J * J 

L l 

G B - I G C ) . L T . 1 ) 4 L 1 : J 
( I G 8 , 2 , J I 

( I G B , Z , 1 ) 

( I R B , Z , 2 ) 

I F ( C P l , A N , A H ) 

I F ( C P 2 , A N , A H ) 
. L J O t b O r n 1 2 1 

F ( I G P , 7 F 1 , 3 ) 

F ( I G ° , Z F J , 1 ) 

f l " ^ ( C P l 1 , A N , AH ) 

B B I 1 M ) * F I 1 - A L 1 « R F A L ( C P I ) - A L 2 / D L « ( D Y » R E A L ( C P 1 ) * 0 X * A I M A G ( C P 1 ) 

) z o e ( I ^ . • l | ^ p I 2 - / ^ | _ 3 / o L * ( O X * R E A L ( C P l ) -

G ( C P 1 ) ) - S L 1 / ( D L * * 2 ) » ( D P * R E A L ( C P 2 ) ^ D V * A I M A G ( C P 2 ) ) 
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3 9 9 

1 in 

1 l l 

1 o 2 

1 J 3 

1 J I 

1 J 5 

1 . ' 6 

1 7 

1 iR 

1 ..9 

1 1 " 

1 1 1 

1 1 2 
11 1 

C * 

I F ( L J ' > . A N n . J . E 0 . 1 ) I M - n i M l * 2 * N O B 

I F ( L J ' ) P B ( I M l ) = B B ( I M ) ) * F I l - A L 1«RE AL ( C P 3 0 ) - A L 2 / D L » ( D Y * R E AL ( C P U ) ' 

f . D X J A i ' - A G I C P l i ) ) 

I F ( L j O | ! S U S S : ( I M l * 2 . N P e - l ) * N V * I M J 

I F ( L J " ) A A ( I S U ^ S ) = A L 1 

I S U = > - : ( l M l ^ 2 * N R B - l ) « N V » I M 

AA ( I S t i r S ) = A L 1 

I F ( . N C T . 1 J . E Q . 1 . A - . | D . I P . F C . N R ) ) G O T O 1 1 0 

2 3 = Z ,A ( I G ) 

D B ( U * J ) - - A I M A G ( C P F ( I R , Z - ; , J ) ) 

I S U B S : | I M M : » N R ) * N V * I M * 3 

A A ( I S U ' 5 ) ^ 1 . I 

C O N T I ' - U F 

1 1 3 

1 1 1 

1 1 5 

1 1 6 

1 1 7 

1 1 8 

1 1 9 

1 2 0 

1 2 1 

1 2 2 

1 2 3 

1 2 1 

1 2 5 

1 2 6 

1 2 7 

1 2 8 

1 2 9 

1 3 0 

1 3 1 

1 3 2 

1 3 3 

1 3 1 

1 3 5 

1 3 6 

1 3 7 

1 JS 

1 3 9 

1 1 0 

1 1 1 

1 1 2 

1 1 3 

1 1 1 

1 1 5 

1 1 6 

1 1 7 

I I P 

1 1 9 

I S O 

l 2 l 

1 [ . 2 

1 5 3 

1 5 1 

l t . 5 

1 5 6 

1 5 7 

1 5 8 

0 0 1 1 2 I R B = 1 , N R B 

ZOVr^ZRA I I S B , I R 6 , 1 ) 

I F ( I R B . L T . N R B ) Z P V = Z R A ( I 6 B , I R B « l , l l 

I F ( I R B . E 0 . N R B ) Z P V = Z R A ( I G B , 1 , 1 I 

C 

c» 
c 

L E F T - H A N D 

122 

CA 

I 

I 

A 

f 0 

I 

A 

CU 

1 2 3 I 

C 

I 

A 

I 

A 

1 1 ' L 

A a - C A F ( Z 

A l ^ C A F ( 2 

A 2 T C A F ( Z 

A I R ^ C A N I 

A I S - C A N I 

A 2 R = C A N I 

A 2 S = C A N I 

F ( . N O T . L 

AOr) = C A F ( 

A n = C A F ( 

A l O R r C A N 

A l O S r C A N 

S U B S = ( I M 

A( I S U E S ) 

X » A I M A G ( 

S U B S = ( I M 

A ( I S U f - S ) 

X * A I > ' A G ( 

S U R i : : ( I M 

A ( I S U E S ) 

D L * » 2 ) * ( 

S U B S = ( I M 

A ( I S t l P S ) 

L l / ( P L » » 

F ( . K O I . L 

S U B S = ( I M 

A( T S I J ^ S ) 

X * A I " ' A C ( 

S U K ^ r t I M 

A( I S U . >;) 

X * A i H A R t 

F ( . N O T . ( 

A., = CAF ( 2 

S b E i - ( I M 

A ( I S I I l < ) 

S U P s : ( I M 

A ( l o U - 5 ) 

ONT I M J F 

, Z 0 
, 2 0 

,zo 
F ( C 

F ( ( 

F ( C 

F ( ( 

J Q ) 

Z F O 

Z F O 

I F I 

I F ( 

1 ^ 1 

= AL 

C A l 

M I 

= AL 

C A l 

1 ^ 1 

- A L 

D P * 

1 ^ 1 

= AL 

2 ) • 

J j ) 

1 ^ 1 

= AL 

C A l 

1^1 

= AL 

C A l 

J . E 

" ' , Z 

l + I 

- A I 

1 « I 

: A I 

V,ZP 

v,zp 
V,ZP 
Al,A 
CI*C 
A2,A 
CI*C 
GOTO 
,70V 
,ZOV 
CAIT 
(CI* 
RP-2 
1*RF 
R) ) 

Re-2 
1*RE 
S) ) 

RP-2 
3/UL 
REAL 
RP-2 
3/OL 
(DP* 
GOTO 
RB-2 
1*RE 
JP ) ) 
RP-2 
1*RF 
J S ) ) 
C. 1. 
0V,7 
RP-2 
MAG( 
WL-2 

M « i : ( 

V, AN,AH,0) 
V,AN,AH,I) 
V,AN,AH,2) 
N,AH) 
AI ) ,AN,AH) 
N, AH) 
A2) ,AN,AH) 
122 

,ZPV,AN,AH,ni 
,ZPV,AN,AH,1> 
,AN,AH) 
CAID),AN,AH) 
)*NV^IM 
AL(CAn)^AL2/0L»(DY»REAL(CAlR)^ 

«NR8)*NV^IM 
ALtCI*CAn)^AL2/DL*(DY«REAL(CAlS)^ 

)*NV^IM^1 
»(DX*PEAL(CA1R)-DY*AIMAG(CA1R))^AL1/ 
(CA2R)^DV*AIMAG(CA2R)) 
NRB)*NV^IM+1 

»(DX»REAL(CA1S)-DY*AIMAG(CA1S))^ 
REAL(CA2S)^DV*AIMAG(CA2S)) 
123 

)*NV^IM" 
AL(CA'll.l)*AL2/DL*(DY*REAL(CA10R)^ 

•NRF)*NV^IMO 

AL(CI*CA10)»AL2/DL*tDY*REAL(CA10S)^ 

AND.IR.'^O.NR ) )G0T0 113 
PV,AN,AH,0) 

)*NV*IM^3 
CA 1) 
• NRl«NV^IM» 3 
CI'CAO) 

159 
160 
161 
162 
163 
161 
165 

112 CONTINUE 
IF(J.Et.1)60T0 111 
J = l 
GOTO 1 1 5 

1 1 1 I F ( . t « O T . ( K O . E a . 3 1 . O R . K O . E C . 2 3 . A N 0 . I 6 C . N E . ' 3 l > 6 0 T O 1 1 6 

J = - l 

1 1 5 I H ^ I b P 
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1 6 6 
1 6 7 

1 6 8 
1 b 9 

1 7 0 

1 7 1 

1 7 2 
1 7 3 
1 7 1 

1 7 5 
1 7 6 

1 77 
1 7 8 
1 7 9 

1 6 " 
1 8 1 

1 o 2 
1 6 3 

1 o 1 

1 8 5 
1 b 6 
1 8 7 

1 o 8 
1 6 9 
1 9 r 

1 9 1 

1 9 2 

1 9 3 
1 9 1 

1 9 5 
1 9 6 

1 9 7 
1 9 8 
1 9 9 

5..n 
5 .1 
5 J 2 

5 i3 

5 l l 
5 J5 

1 1 7 

1 2 0 
1 1 6 

C * * 

1 0 5 

1 J3 

C 

C 
C 

I G B - I G C 
I G C = i H 

R H = R C 
R O - R O C 
R O C - H H 

H H ; A h 

A K r A K C 
A K C ^ K H 

R H r A K 

A N ^ A N C 
A N C ^ k H 

R H z A H 

A H r A H C 
A H C - K H 

I H = NP 
N P r N P r 

N P C - I H 

N R 6 = i » A ( I G P , l , l ) 
C D Z = - ( Z P - Z O ) 

U X = R L A L ( C O Z ) 
D Y r A I M ( i C ( C D Z ) 
D L = C A P S ( C D Z ) 

C P T 2 . o t r X » 0 Y 

ov:;nx**?-nY**2 
I M l : l 
I F d t E . E C . D G O T O 120 
J H : I C P - 1 
DO 117 I : l , J H 
I M i : I M 1 ^ 2 * N A ( I , 1 , 1 ) ^ 2 
CONTiNUE 
I F ( J . N E . 1 )GOTO 1U7 
I F ( L J O ) J a : : l 

C O N T I N L E 

CONTINUE 
RETUKN 
END 

5„6 
5 ,7 
5 .8 
5 9 
510 
511 
512 
513 
511 
515 
516 
517 
518 
510 
52" 
•̂ Jl 
5 22 
523 
5 21 
5 25 
526 
52 7 
5^8 
529 
5io 
551 
532 
5J3 
531 

COMPLF 
IMPLIC 
C A N F ( Z 

r Z t C E x P 
; P S : i " 
P T 2 : 2 . 
C I = ( J . 
N1 = 0 
N 2 = J 
ZOw;CA 
ZPW;CA 
ZWzCit 
I F t J . ^ 

T L P S 
C=CAi.? 
C Z l : c * 
c z 2 ; c « 

IFt AIM 
IF(AIK 
IF( AI 
I F ( A 11-
IF( J.N 
IF(CAP 
IF( CAf-
IFtCAP 

CC21*CL 
GOTO 1 
IF(J.r 

X F U N C T T U N C A F ( Z , Z O V , Z P V , A N , A H , J ) 
IT C O M P L E X ( C Z ) 
, A N , A H ) = C " P L X ( R E A L ( Z * C E X P ( - ( 0 . 0 , 1 . 0 ) ' A H ) ) , ( S O R T ( A N ) * A I M A 6 I 
( - ( i) . 0 , 1 . 0 ) * A H ) ) ) ) 
, rl»«^-^ I 

1*3.1115926535 
, 1 . .')) 

' . F ( 7 U V , A N , A H ) 
t F ( Z P V , A N , A H ) 
F ( Z , A N , A H ) 
: . J . A N D . ( C A B S ( Z W - 7 0 W ) . L E . E P S . O R . C A B S ( Z W - Z P H ) . L E . E P S l ) Z W = Z t f + 

(ZP 
(ZW 
(7M 
( 7P 
AG( 
AC( 

G( 
AG( 
c . -I 
S (2 
S (Z 
S IZ 
or,( 

w - z o w : / 
- z o w ) 
-ZPW) 
w-zoi.) * 
CZl ) . L T 
C Z 2 ) . L T 
C Z D . L T 
C Z 2 ) . L T 
)GOT0 1 
W-ZOW). 
W - Z P W ) . 
W-zow) . 
C Z l ) ^ P I 

(ZPW-ZOW) 

0 . 5 
.EP 
.EP 
. 3 
. 1 
J l 
LE 
LF 
GT 
2*C 

S . A N D . ( A B S ( R E A L ( C Z l ) ) - D ) . L T . E P S ) C Z l : C Z l ^ C I * E P S 
S . A N n . ( A B S ( R E A L ( C Z 2 ) ) - n ) . L T . E P S ) C Z 2 : : C Z 2 ^ C I » E P S 
0 . A N D . P E A L ( C Z l ) . L T . D ) N l : l 
o . A N D . R E A L ( C Z 2 ) . L T . ( - 0 ) ) N Z r l 

E P S ) C A F = - C Z 2 * C L 0 G ( C Z 2 ) - N 2 * P I 2 * C I * C 7 2 
E P S ) C A F = C Z 1 * C L 0 G ( C Z 1 ) ^ N 1 * P I 2 * C I * C Z 1 
F P S . A N n . C A B S ( Z W - Z P W ) . G T . E P S ) C A F - - C Z 2 * C L 0 G ( C Z 2 ) » 
I * ( N 1 * C Z 1 - N 2 * C Z 2 ) 

. 1 ) C A F : - C * ( C L 0 D ( C Z 2 ) - C L 0 G ( C Z 1 ) ) » P I 2 * C I » C » ( N 1 - N 2 ) 
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535 
5 36 
5 37 
538 
539 
5 i r 
511 

I F ( J . F T . 2 )CAF = - C » ( 1 . 
1.J2 C A F Z C A F / P I 2 

RETUK^-
END 

l/(ZW-ZPW1-1.0/(2W-Z0W)) 

512 
517 
511 
515 
516 
5l7 
518 
5lo 
5 6' 
5 D 1 

557 
553 
551 
555 
5 56 
557 
556 
559 
53" 
Sol 
5o? 
5o3 
5o1 
565 
566 
5b7 
5oP 
569 
5 7-" 

1U2 
lOl 

0 M O L F > 

"'PLiCI 
O M M U N 

lA(t), 
A(5,3, 
ANF(Z, 

*crxp( 
1 2 - ^ . ., 
P S ^ i O . 
P F = ( ' . . 
P r N A ( I 
F ( N1 ,t 
N r P i ( i 
H=GA( I 
WrCAMF-
0 K 2 
P ; 0 K A ( 
P:?,"i ( 
P-C A»'f 
F ( C A " ^ 
F ( J . r i 
F( J . E l . 
F ( J . F ^ 
O N T . t U 
FTU.iN 
NO 

NCTI 
OMPL 
1/ZP 
5,7) 
f.GA ( 

A H ) r 

.•"1,1 

1 1 1 5 

(-1) 

.":) 
, 1 > 

ir.oT 
) 

ON C P F ( T G , Z , J ) 

LX (C,Z ) 

A ( 5 , n ) , Z U A ( 5 , 5 , 1 ) , Z 3 A ( 5 ) , Z R A ( 5 , l D d , l ) , D T , R 0 Z , F I Z , 

, e P A ( 5 , l J ) , W H A ( 5 , l J 0 , l ) , N G , P 0 R ( 5 ) , 

5 , 5 , l ) , I F A ( 5 , l J ' l , l ) , K P A ( 5 , n O , l ) , I R A ( 5 , 1 0 3 , l ) , N F I 

C M P L X ( R E A L ( 7 * C t X P ( - ( 0 . 0 , l . Q ) * A H ) ) , ( S O R T ( A N ) * A I M A G ( 

. I)*AH ) ) ) ) 

9 2 6 5 3 5 

0 101 

A N , A H ) 

,NP 

11 

I ) 

, A N , A H ) 

- Z P ) . L E . E P S ) Z U = Z W ^ E P S 

C P F r C P F + 0 P / P I 7 * C L 0 G ( 2 W - Z P ) 

C P F r C P F ^ 3 P / ( F I 2 * ( Z W - Z P ) ) 

C P F = C ' ' F - 0 P / ( P I 2 * ( Z w - Z F ) * * 2 ) 

571 
572 
573 
571 
575 
576 
577 
578 
579 

5 SCI 
561 
5o2 
5B3 
5t)1 
565 
566 
Sb7 
588 
580 
590 
591 
592 
5V3 
591 
595 
596 
59-' 
598 
599 

6 "\ 

1 Jl 

1"3 

COMPLEX FUNCTION C0F(I6,Z,Jl) 
IMPLICIT COMPLEX (C,Z) 
COMMON /C n/ZPA(5,10),ZUA(5,5,1),ZOA(5),ZRAt5,100,11,DT,R0Z,FIZ, 

f.FIA(b),GA(5,7),0PA(5,10),WRA(5,10O,l),NG,P0P(5), 
fNA(5,3,l),NGA(5,5,l),IFA(5,10n,l),KRA(5,100,l),IRA(5,100,ll,NFI 

COMMON / C O Z / B " ( 5 J 0 ) , N V 
C I = ( u . 1 , 1 . C ) 
A N ; G A ( I G , 3) 

A H = G A ( I G , 1 ) 
N R ^ N A d G , 1 , 1 ) 
I M i r l 
I F ( I G . E O . 1 ) G O T O 103 
J - I G - 1 
DO 1 J l 1 = 1 , J 
I M l r I M l 4 2 * N A l I , 1 , 1 ) • 2 
CONTIMiF 
COF = ( I . 1, " . , ; ) 
JO 1 .2 I R ^ l ,NB 
Z O V ^ i P A ( I G , I R , 1 ) 
I F ( l H . L T . N R ) Z P V = Z R A ( i r , , I R 4 l , l ) 
I F ( I K . f C . N R ) 2 P V - Z R A ( I G , l , l ) 
I S U B S l ^ I M l + I R - l 

I S U B b 2 = I M l * I R « N R - l 

CC = C M P L X ( B B d S U B S l ) , P P ( I S U B S 2 ) ) 

C 0 F : c n F 4 C 0 * C A F ( Z , Z 0 V , Z P V , A N , A H , J l ) 

C O N T i N U E 

I S U R i = I M l i 2 * \ P 
C O F = l , r F . ( l - J l ) » C « ' ' L X ( F b ( I S U ° S ) , E B d S U B S ^ l ) ) » C P F ( I G , Z , J l ) 

Ri^TU.(N 

E N D 
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Principal Notations 

complex potential (i?(~') 
potential (L't~^) 
stream function (L̂ f ') 
groundwater head (L) 
complex variable (L) 
complex variable (L) 
cartesian coordinates (L) 
components of specific discharge (Lf ~') 
step in time (f) 
coefficient of permeability (Lf ~') 
storage coefficient (dimensionless) 
effective porosity (dimensionless) 
density (ML" )̂ 
pressure (ML~f~') 
discharge of source or sink (I?f~') 
complex variable (Lf"') 
distribution strength of sources (or sinks), resp. vortices (Lt~ ') 
boundary variable (L) 

-^^ complex variable for boundary segment (dimensionless) 

boundary resistance (f) 
components of displacement of a point of moving boundary in a 
step in time ( L) 
precipitation (Lt~') 
subscript that refers to an adjoining sub-region 
number of sources and sinks 
number of boundary segments 
complex constant 
analytic function 
real part 
imaginary part 

Q = 0 + 
0 = kcj) 
P 

<i> 
Z = X + 

Z = X -

x,y 

t'x' I', 

At 
k 

/' 
'/ 
/' 
P 
Q 

iP 

iy 
iy 

'll = '•j + '-l 

/ 
dz d'z 

d( dl' 

Cs 
Ax, Ay 

N 
c 
m 
n 

Re{ } 
Im{ j 

169 



References 

ABRAMOwtTZ M AND I A SiE'.bN 1968 Handbook of mathematical functions Dover Publications 
New York 

ARFKEN, G , 1970 Mathematical methods for physisists 2nd ed Academic Press, New York 
BEAR, J , D ZASLAVSKI AND S IRMAY, 1968 Physical principles of water percolation and seepage, 

UNESCO, Pans 
BRUI EMAN G A 1972 Wiskunde in de geohydrologie R 1 D Den Haag 

CHURCHILL, R V 158 Operational mathematics 2nd ed Mc Graw-Hill New York 
DE JOSSELIN DE JONG, G , 1960 Singularity distributions for the analysis of multiple-fluid flow through 

porous media. Journal of Geophysical Research, Vol 65 No 11 
DE JOSSELIN DE JONO, G , 1969 Generating functions in the theory of flow through porous media 

De Wiest (editor). Flow through porous media. Academic Press, New York 
DITKIN, P A AND A P PRUDNIKOV, 1965 Integral trdnsforms and operational calculus Pergamon 

Press Oxford 
DE WIEST R J M , 1969 Green's functions m the flow through porous media, 

De Wiest (editor), Flow through porous media Academic Press, New York 
ERDELYI, A , W MAI.NUS, F OBFRHETTINGER, F TRICOMI, 1954 Tables of integral transforms, Mc Graw-

Hill, New York 
K.OBER, H , 1957 Dictionary of conformal representations Dover Publications New York 
KOZENY, J , 1931 Grundwasserbewegung bei freiem Spiegel, Fluss und Kanalversickerung Wasserkraft 

und Wasserwirtschaft 3 
KUIPERS, L AND R TIMMAN, 1969 Handbook of mathematics, Pergamon Press, Oxford 
LAMB, H , 1932 Hydrodynamics 6nd ed , Cambridge University Press London 
Mc NOWN, J S AND E Y Hsu 1949 Pressure distributions from theoretical approximations of the flow 

pattern. Heat transfer and Fluid Mechanics Institute (Paper reprints by ASME pp 65 76) 
SNEDDON, I H , 1972 The use of integral transforms, Mc Graw-Hill, New York 
VERRUIJT A , 1970 Theory of groundwater flow, Mac Millan, London 
VON KARMAN T , 1927 Berechnung der druckverteilung an LuftschifTkorpern Abh Aero Inst Aachen 

No 6, pp 3-17 
Vos, H C P DE, 1929 Enige beschouwmgen omtrent de verweekingslijn in aarden damnien De Water-

staatsingenieur 17(1929)335 354 
WYLIE C R 1960 Complex variables and applications Mc Graw-HiU, New York 

170 



In the series of Rijkswaterstaat Communications the following numbers have been published before 

No 1 * Tidal Computations in Shallon Watei 
Dr J J Dronkerst and prof dr ir J C Schonfeld 
Report on Hxdrostatic Leiellinq accros the Westerschelde 
Ir A Waalewqn 1959 

No 2 * Computation of the Deaa Pattern for the Netherlands Delta Works 
Ir H Ph van der Schaaft and P Vetterli, Ing Dipl E T H , 1960 

No 3 * The Aqinq of Asphaltic Bitumen 
Ir A J P van der Burgh J P Bouwman and G M A Steffelaar 1962 

No 4 Mud Disliihution and Land Reclamation in the Fastern Wadden Shallows 
Dr L F Kampst, 1962 

No 5 Modem Constiuction of Wing-Gates 
Ir J C le Nobel 1964 

No 6 A Structure Plan for the Southern IJsselmeerpolders 

Board of the Zuyder Zee Works 1964 

No 7 The Use of Explosiies foi Cleaiinq Ice 
Ir J vander Kley, 1965 

No 8 Vu Design and Constimlion of the Van Bnenenoord Budge actoss tin Riiei Nieuwe Maas 
Ir W J vander Ebt 1968 

No 9 Electronu Computation of Water Lei els in Rneis duiinq Hiqh Discharqes 
Section River Studies Directie Bovenrivieren of Rijkswaterstaat 1969 

No 10* The Canalization of the Lowei Rhine 
Ir A C de Gaa> and ir P Bloklandt 1970 

No 11 * The Haiinqiliet Sluices 
Ir H A Ferguson ir P Bloklandt and ir drs H Kuiper 1970 

No 12 The Application of Piecewise Pohnomuils to Piohlems of Cune and Suiface Appioximation 
Dr Kurt Kubik 1971 

No 13 Si stems foi Automatic Computation and Plottinq of Position Fixinq Patterns 
Ir H Ph van der Schaaft 1972 

No 14 The Realization and Function of the Notliern Basin of the Delta Project 
Deltadienst of Rijkswaterstaat 1973 

No 15 /•) sical-Enqineeiinq Model of Reinforced Conciete Frames in Coinpiession 
Ir J Blaauwendraad 1973 

No 16 Naiiqation Locks foi Push Tons 
Ir C Kooman 1973 

No 17 Pneumatic Ban leis to reduce Salt Intrusion through Lacks 

Dr ir G Abraham, ir P van der Burg and ir P de Vos 1973 

* out of print 



In the series of Rijkswaterstaat Communications the follovMng numbers have been published before 
(continuation) 

No 18 E\peiiences with Mathematical Models used foi Water Qualit\ and Haiei Piohlems 
Ir J Voogtanddr ir C B Vreugdenhil 1974 

No 19* Sand Stahilizalion and Dune Buildinq 
Dr M J Adnanianddr J H J Terwindl 1974 

No 20 The Road-Picture as a Touchstone for the thiee dimensional Desiqn of Roads 
Ir J F Springer and ir K E Hjizinga (also in German) 1975 

No 21 Push ToHs m Canals 
Ir J Koster 1975 

No 22 Lock Capacit] and Traffic Resistance of Locks 
Ir C Kooman and P A de Bruqn 1975 

No 23 Computei Calculations of a Complex Steel Biidqe lenfied h\ Model Inusliqalions 

Ir Th H Kayser and ir J Binkhorst 1975 

No 24 The Kreekrak Locks on the Scheldt-Rhine Connection 
Ir P A Kolkman and ir J C Slagter 1976 

No 25 Motornni Tunnels built h\ the Imnicised Tube Method 
Ir A Glerum ir B P Rigter ir W D Evsink and W F Hcins 1976 

No 26 Sah Distribution in Estuaiies 
Ri|kswaterstaat Delft Universitv of Technology Delft Hydraulics Laboratorv 1976 

No 27 Asphalt Reietment of D\ke Slopes 
C ommittee on the Compaction of Asphalt Revetments of Dyke Slopes 1977 

* out of print 

172 



Stellingen 

I 

De door Verruyt in 1968 gepubliceerde exacte oplossing van het probleem van Badon 
Ghijben kan worden uitgebreid tot een oplossing waarin de aanwezigheid van nuttige 
neersiag op de freatische lijn is verwerkt 

Verruijt A 1968 A note on the Ghijben Herzberg formula (Bull Int Ass Sci Hydrol 
XIII 4-12 ) 
Van der Veer P 1977 Analytical solution for steady interface flow in a coastal aquifer 
involving a phreatic surface with precipitation (J Hydrol 34 1-11) 

II 

Bij een geschikte keuze van twee constanten in de op een eendimensionale beschou-
wing gebaseerde formule voor de hgging van de grenshjn tussen zoet en zout grond-
water in het probleem van Badon Ghijben is deze formule gelijk aan die welke volgt 
uit de exacte oplossing van het tweedimensionale probleem 

Van Dam J t. 1976 Fresh Water Salt Water Relationships (college geohydrologic 
TH Delft afd Civielc Techniek) 
Van der Veer P 1977 Analytical solution for steady interface flow m a coastal aquiter 
involving a phreatic surface with precipitation (J Hydrol 34 1 11) 

III 

De sinds 1929 bekende, door Vreedenburgh gevonden, exacte oplossing voor de 
grondwaterstrommg naar een drainage, waarvan m 1959 door Glover een gewijzigde 
vorm werd gepubliceerd die de strommg van zoet grondwater boven stilstaand zout 
grondwater beschrijft kan worden uitgebreid tot een vorm die een gehjktijdige stro
mmg van zoet en zout grondwater beschrijft 

De Vos H C P 1929 Enigc beschouwmgen omtrent de verweekingslijn in aarden 
dammen (De Waterstaatsingenieur 17 335 354) 
Glover R E 1959 The pattern of fresh watei flow in a coastal aquifci (J Gcophys Res 
69 no 8 457-459 | 
Van der Veer P 1977 The pattern ol fresh and salt groundwater flow in a coastal aquiler 
(Deltl Progr Rep 2 137 142) 

IV 

De oplossing voor een gehjktijdige stroming van zoet en zout grondwater kan met 
met behulp van de hodograafmethode worden gevonden de exacte oplossing voor 
het geval waarbij behalve het grensvlak ook een freatische hjn aanwezig is, dus het 



probleem van Badon Ghijben uitgebreid met de stroming van zout grondwater, kan 
echter toch worden gegeven. 

Van der Veer. P . 1978 Analytical solution for a two-fluid flow in a coastal aquifer 
involving a phreatic surface with precipitation (J Hydrol . 34 271-278) 

V 

In een bijzonder geval van grondwaterstroming met een freatische lijn en een grens
lijn tussen zoet en (al dan niet stromend) zout grondwater is zowel de freatische lijn 
als de grenslijn een rechte lijn; de grenshjn is ook een rechte als er in plaats van de 
freatische hjn een rechte kwellijn aanwezig is 

Van der Veer. P . 1977 Analytical solution for steady interface flow in a coastal aquifer 
involving a phreatic surface with precipitation (J, Hydrol 34 1 11) 
Van der Veer. P . 1978 Analytical solution for a two-fluid flow in a coastal aquifer 
involving a phreatic surface with precipitation (J Hydrol . 34 271-278) 

VI 

Door de definiering van een geschikte variabele kunnen analytischc oplossingen wor
den gevonden voor problemen van tweedimensionale grondwaterstroming in gebie
den waarvan de rand bestaat uit een honzontale semi-doorlatende hjn en (eventucel) 
verticale stroom- en/of potentiaallijnen. In deze gebieden mogen putten en bronnen 
voorkomen. 

Van der Veer. P . 1978 Exact solutions for two-dimensional groundwater flow problems 
involving a semi-pervious boundary (J Hydrol . 37- 159-168) 

VII 

De in de vorige stelling bedoelde variabele is niet geschikt voor het berekenen van de 
grondwaterstroming tussen twee honzontale semi-doorlatende lagen. ook al zijn de 
weerstandseigenschappen van die lagen gelijk. 

VIII 

Naast het verschil tussen de hoogtehgging van de freatische lijn legen een gesloten 
taludbekleding en de buitenwaterstand tegen het talud kan het karakter van de 
grondwaterstroming. (stationair of niet-stationair), een grote invloed hebben op 
de overdrukken onder die taludbekleding. 

Van der Veer. P . 1976 Overdrukken onder gesloten dijkbeklcdingen Geohydrologischc 
aspecten van de waterbouwkunde 1 (Pt-b. 31. nr 9. 547 550) 



IX 

Het zoeken naar de analytischc oplossing van een stromingsprobleem geeft veelal 
meer inzicht dan het vinden van een oplossing met behulp van een numeriek model. 

X 

Het verdient aanbeveling om de actieve muziekbeoefening op scholen sterk te bevor-
deren. 

XI 

De Nederlandse Spoorwegen verdienen een compliment van de minister van Weten-
schappen omdat het sinds dc invoering van zgn. werkcoupe's in treinen voor foren-
zen mogelijk is om wctenschappelijk onderzoek te doen tijdens treinreizen in het 
woon-werkverkeer. 

XII 

Het vervangen van auto's door trapauto's kan een gunstige invloed hebben op de 
verkeersveiligheid, het energieverbruik en de volksgezondheid. 

Stellingen behorende bij het proefschrift Calculation Methods for Two-dimensional Groundwater Flow 
van P. van der Veer, Delft, 1978. 


