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Introduction

The motion of groundwater plays an important role in many civil engineering
projects. Low-situated polders receive groundwater from the surroundings, while
from water reservoirs there may be a groundwater flow towards the surroundings if
the water table in the reservoir is higher than the groundwater head in the surround-
ings. In cases of groundwater recovery for public water supply or at a trench, it is
important to know the consequences of the abstraction of groundwater: a sharp fall
of the groundwater head may cause damage to structures and to the vegetation. If it
is desired to confine the adverse effects of groundwater recovery, it is important to be
able to predict the consequences of various actions. Knowledge of the groundwater
motion plays a role in problems of groundwater pollution and groundwater manage-
ment too; the stability of dikes and shore constructions also depends on the motion
of groundwater (e.g., the behaviour at a seepage surface and overpressures under an
impermeable dike revetment). It is thus seen that it is important to have a good
knowledge of the motion of groundwater.

Although in many cases it is possible to find mathematical solutions for groundwater
flow problems, it is often difficult to define exactly the relevant parameters in a
flow problem. Generally the average coefficient of permeability can be determined
rather well in situ, but it is much more complicated to determine the anisotropy,
especially when the direction of the anisotropy is not known previously. It is almost
impossible to determine in situ the exact location and permeability of thin layers of
clay or silt: in addition, these layers may have sharply differing properties. The same
problems are encountered in determining the properties of resistance layers on the
talus and bottom of a canal. Generally in a calculation these lines are not equipotential
lines; in other words, the effect of the resistance layers (clay or silt) may not be neg-
lected in the calculation. An extra complication in these problems is the alteration of
the resistance properties of the layer when it bursts off as a result of overpressures.
All this shows how unsure a description of groundwater flow may be. This does
not mean, however, that there is no need for reliable calculation techniques. The
availability of effective mathematical tools can give a good insight into the effects of
any alteration of parameters of the problem. In many cases, therefore, geohydrologic
calculations consist of some calculations of the same problem with varying para-
meters. In that way an insight is obtained into the consequences of the lack of know-
ledge of parameters of the problem. That experience can be useful for the decision
whether additional information has to be compiled, for example, by field measure-
ments.

The performance of reliable geohydrologic calculations may result in a lower safety




coefficient for the relevant work because more knowledge has been obtained about
the phenomenon.

This treatise on calculation methods has been restricted to two-dimensional ground-
water flow. Although in reality groundwater flow is always three-dimensional, in
many cases the flow can be assumed to be two-dimensional.

Such cases are, for example, a horizontal flow region without replenishment of water
from above or below: in vertical flow regicns the flow can be assumed to be two-
dimensional if the relevant section is present over a great length (dikes, canals, rivers
and long structures).
Some basic assumptions have been made:

— The porous medium is incompressible.

— The coefficient of permeability is sectionally constant: in other words, the coeffe-
cient of permeability may vary if the variation is not continuous but step-wise. There
may be resistance layers between different sand layers. The soil may be anisotropic.
— The fluids are incompressible and there is an abrupt alteration of density going
from one fluid to another.

— There is only groundwater in a saturated zone.

— Anywhere and at any moment the flow is laminar. This means that Darcy’s
relationship between groundwater head-gradient and specific discharge always holds.



I Basic Theory



1 Basic Laws

The groundwater head ¢ is defined by

b=L+y (L)
Py

where

p- pressure with respect to a reference pressure (atmospheric pressure)
p — density

g - acceleration of gravity

y — elevation with respect to a reference level.

The specific discharge v, in a direction s is given by Darcy’s Law:

d¢
b= ks

where k is the coefficient of permeability.

The condition of continuity for an element dxdy is given by the following expression
(see figure L.1): d(v,dy + v,dx) + P(x, y, t)dxdy = 0.

positive d(wdy) is outflow

dy =l ¥ positive d(vydx) is outflow

positive P(x,y,t)is outflow

44
dx

Figure .1 Flow through an element
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In this expression P(x, y, ) is the amount of water abstraction per unit of time and
per unit of area.

From the previous expression the continuity equation is derived:

ov, Ov, o

= apls M e Pl oy L2
S+ S = Pl (1)

If Darcy’s Law is combined with the continuity equation (L.2) a differential equation
is obtained that defines the flow problem together with the boundary conditions. For
a homogeneous isotropic porous medium the differential equation becomes:

— = P(x, y,1) (L3)
y

In the case that P(x, y,t) = 0, for each x, y, ¢ (L.3) reduces to the well-known differential
equation of Laplace:

¢ %
A 0 (L4)

In that case the function ¢(x, y) is apparently a harmonic function (see Appendix 1).
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2 Definitions

Potential
The relationship between specific discharge and groundwater head is given by Darcy’s
Law ; for a homogeneous isotropic porous medium the following expressions hold:

0 0
V= — F and v, = %2

0x dy

The potential @ is defined as the product of the groundwater head and the coefficient
of permeability: @ = k¢. With this variable, Darcy’s Law can be written in a form
where the specific discharges are derived from the potential:

0P 0P
v,=—— and vy = —— (L5)
0x dy

Because the potential @ is equal to k¢ with constant k, also @ satisfies the differential
equation of Laplace (in the case that P(x, y,t) = 0). So the potential is a harmonic
function (see appendix 1).

0*d i 0’ -0
ox? 02

Stream function

Another important function is the stream function ¥. This function has the property
that the amount of water that per unit of time passes a line between two points is
equal to the stream function difference between those points.

This follows from the definition of the stream function:

oy oy
vy = ——— and v, = — (L6)

ay T ox

(For example: the amount of water that passes a vertical line between two points at a
mutal distance Ay is equal to v, 4y. According to (1.6), this is equal to — A4YP).

If the expressions (1.6) are substituted in the continuity equation (1.2) with P(x, y, ) = 0,
it is seen that the stream function also satisfies the Laplace differential equation; so ¥
is a harmonic function too:

12




o’y X it'4 0
a5yt

The relationship between the potential and the stream function is found by combining
the expressions (1.5) and (1.6). This yields:

0P _6'1’ d 0P i oY
0x

— an =
dy 0y 0x

These are just the Cauchy-Riemann relationships (see Appendix 1), which means that
the functions @ and ¥ are conjugate harmonic functions. So in a homogeneous
isotropic porous medium, equipotential lines (¥ = constant) and stream lines
(¥ = constant) are perpendicular.

Complex potential

Using the potential ¢ and the stream function ¥, another important function can be
defined:
The complex potential Q is defined by:

Q=0 +i¥

Because @ and ¥ are conjugate harmonic functions of x and y, the complex potential
Q is an analytical function of the complex variable z = x + iy.




3 Anisotropy

If the coefficient of permeability has not the same magnitude in any direction, the
porous medium is anisotropic. By a simple geometric transformation the anisotropic
region (coordinates x and y; z = x + iy) can be transformed into another region
(coordinates x and y; z = x + iy) that can be considered as an isotropic region:

Therefore a region with coordinates x and y is considered in which the maximum and
the minimum coefficients of permeability are k., and k_;,. The maximum coefficient
of permeability occurs in a direction x* that has an angle o with the x-axis, as
shown in figure 1.2:

(Kmin

x* (Kmax)

Figure 1.2 Main directions of permeability.

The relationship between z = x + iy and z*¥ = x* + iy* is given by:
z* = z exp(—in)

In other notation:
x* +iy* =(x + iy)(cos o — isin )

From this it follows:
x* = xcosa + ysina

y¥ = ycoso — xsina




According to Darcy’s Law the following expressions hold:

0 0
b O o i e (L7)
ox* oy*
The stream function ¥ is defined by
oY oY
= ‘—51‘; an U_‘,* % (I 8)
By eliminating of v, and v, from (1.7) and (L.8) it follows:
oY 0 oY 0
b 7 min_‘*l hieiss mxi’ (19)
ox* oy* oy* ax*

Now the coordinates z* = x* + iy* are transformed into z = x + iy according to:

X* = 'E\/kmux y* = l\/a (IIO)

Substitution of (I.10) in (1.9) yields:

e o 0
o i T = i
-

min’*ma X(‘} 0 ‘

(L11)

min mdxq

| D
1= | =

A fictive coefficient of permeability for the z — plane is defined by k = \/l\m,n -
Then (L.11) can be written in the following form:

¥ op oY op
wm . d — = -
ﬁx dy an Oy Ox

If the potential @ is defined as @ = k¢ for the z — plane there come the following
expressions:

oy _ @ o0
EATEE s RS, n g e PSSy
0x ay ° dy 0x
or:
oD o\ P oY
e and —=——— (L12)
0x " :.ay dy 0x

The relationships (1.12) between the stream function ¥ and the potential @ in the

15




z — plane are just the Cauchy-Riemann relationships. So @ and ¥ are conjugate
harmonic functions in the z — plane. So the functions @ and ¥ satisfy the Laplace
differential equation and Q = @ + i¥ is an analytical function of z = x + iy.
So the flow in an anisotropic region can be calculated in the same way as for an iso-
tropic region if the following transformations are applied (where the direction of the
maximum coefficient of permeability has an angle o with the positive x-axis):

z*¥ = z exp (—ia)

¢

= X*//Komax
= y*/ Kanin

In other notation, where z is expressed directly in z, this is:

=

i

1
z=———Re{zexp(—ia)} + - Im{z exp(—io)}

\/kmax kmin

The fictive coefficient of permeability for the z-plane is:

k= \/Koman Kenin

16




4 Boundary Conditions

A groundwater flow problem is defined by:

— continuity condition,

— darcy’s Law, and

— boundary conditions (of space and time).

In addition, factors as anisotropy and inhomogeneities have to be taken into account
and also the variation of the density of the fluids. In this Chapter a schematic survey
of the most important boundary conditions is given, as they are relevant for the
treatise of the existing solution methods in Part II. A more comprehensive formu-
lation is given in Chapter 14 in a form that is convenient for the Analytical Function
Method of Part III.

Equipotential line
An equipotential line is a line of constant potential @. For a homogeneous porous
medium, also the groundwater head ¢ is constant along such a line.

Stream line

A stream line is a line along which a fictive water particle moves (where the physical
porestructure is neglected). No water passes a stream line. From the definition of ¥
(see (1.6)) it follows that the stream function is constant along a stream line.

Seepage line

A seepage line is a line along which the water leaves the soil and freely streams off.
The thickness of the seepage layer is generally very small. Therefore at the seepage
line the pressure may be assumed to be equal to the atmospheric pressure (which is
the reference pressure that is set to zero). From the definition of the groundwater
head ¢ (see (L.1)), it follows:

p = glpd — py)

Substitution of p = 0 in this expression gives the boundary condition at the seepage
line:

¢ =y.

17
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So a seepage line is a line along which the groundwater head is equal to the known
height y.

Phreatic line

In a steady state a phreatic line without precipitation or evaporation is a stream line.
Then the stream function is constant. If there is precipitation, the stream function ¥
increases per unit of length with an amount that is equal to the precipitation on that
unit of length. In any case (steady or non-steady), the condition holds that the
pressure along the phreatic line is equal to the atmospheric pressure. Then the same
condition is arrived at as for the seepage line:

¢ =y

So a phreatic line is also a line for which the groundwater head is equal to the height y
(although generally y is not previously known).

Interface

An interface is a separation line between two fluids with different densities. In a steady
state an interface is a stream line; then the stream function ¥ is constant. In any
case (steady or non-steady), the condition holds that the pressure on both sides of
the interface is equal.

From the definition of the groundwater head ¢ (see (L.1)), it follows:

p = glpd — py).

If this expression is used to define the pressure on one side of the interface and the
pressure on the other side is defined by:

D= q(pc¢c - pcy)’

it follows from p = p, that

pQS — Py = pc¢c — P,
from which:

o= P Pe, PP (L13)
p p

So an interface is a line along which the groundwater head ¢ varies in a prescribed
way with y (although y generally is not previously known).

18
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If p. = 0 is substituted in (I.13) or, in other words, on one side of the interface the
density is zero, the expression reduces to:

¢ =y,
which is just the condition for the phreatic line.

So a phreatic line may be considered as the special case of an interface when one of the
fluids has no density.




II Existing Solution Methods




In this Part a general survey is given of the most important solution methods. The
principles of each method are discussed briefly and without a complete derivation,
and the methods are illustrated with examples. The following sub-division is used:
— Analytical methods. In these methods a solution in a closed form is obtained.
— Approximative methods. In some of these methods an approximative closed
form is obtained (e.g., in the method of fragments, see Chapter 8), while in other
approximative methods a solution is found where the relationship between the
parameters that define the problem is not directly visible (e.g., the finite element
method, see Chapter 11).




Analytical Methods




5 Direct Methods

Direct methods are methods where the solution is obtained by direct operations of
the differential equation that defines the flow.

5.1 Direct Integration
Generally direct integration of a differential equation is only possible for one-dimen-

sional flow. A very simple example with one-dimensional flow in a confined aquifer is
given in figure IL1:

$o

boundary conditions :
x=0 =gy

X =x1 (’):(1)1

X%

Figure I1.1  Confined aquifer.
The differential equation for this flow is (see (1.4)):

d*¢

e
From direct integration it follows:

¢ =cix + ¢
Substitution of the boundary conditions yields the solution:

(¢1 = bo)

X1

¢ = X + ¢o




5.2 Separation of Variables

This method has been comprehensively treated in literature (see, for example, Wylie,
1966, Arfken, 1970).
The solution of the differential equation:

S (IL1)

oxz | 0y?

is assumed to be the sum or the product of two functions of respectively x and y
¢ = F(x) + G(y), (IL.2)
or: ¢ = F(x) G(y). (TL.3)

If the form (I1.2) is used, then from substitution in the differential equation (IL.1) it
follows:

0*F(x) 626(2y) ~0 (I1.4)

ox> dy

Because F(x) and G(y) are functions of respectively x and y, (I1.4) can only be satisfied
if F''(x) as well as G''(y) are constant. Then it follows from direct integration:

F(x) = a;x*> + b;x + ¢,
(ILS)
G(_\') = (12}'2 2 bz_\' “+ Cy
By substitution of (IL5) in (IL4) it follows:
a, = —a,
If a, = aand ¢, + ¢, = ¢, then the solution has the following form:
¢ = a(x? — y?) + byx + by + ¢

The four degrees of freedom in this expression depend on the boundary conditions of
the problem.

If the product of the two functions F(x) and G(y) is used, see (I1.3), the following
expression is found by substitution of (IL3) in (IL1):

25
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Examples of functions that satisfy these equations are sin(x), cos(x), sinh(x), cosh(x),
exp(x), etc.
For example, consider the following functions:

F(x) = ¢, exp(ax) and
G(y) = cos(ay)

The flow problem is defined by:
¢ = ¢, exp(ax) cos(ay)

This function generates the groundwater flow through a dam of variable width (see
figure I1.2). The width of the dam is seen from ¢, = ¢, exp(ax) cos(ay) or

1
y = — arccos(exp(—ax)). Then the width of the dam is:
a

1
i — arccos(exp(— ax))
2a a

Figure I1.2  Horizontal flow through a dam of variable width

26




5.3 Integral Transforms

An integral transform is an operation of the differential equation that generally
results in an equation or differential equation that is easier to solve. By an inverse
transformation of the solution of that equation, the solution of the flow problem is
found. For the transformations useful tables are available (see, e.g., Erdélyi, 1954). In
the literature the theory of integral transforms has been given (Churchill, 1958,
Sneddon, 1972, Ditkin and Prudnikov, 1965). Applications are given by Bruggeman,
1972.

In this section some important integral transforms are mentioned and some applica-
tions are shown. The integral transforms that will be discussed are those of Laplace
and Fourier.

Generally the Laplace transform is used to transform the time variable and the Fourier
transform is used for one of the space variables x, y.

Generally a linear integral transform has the following form:

T{F(t)} = (% K(t,s) F(t) dt

The various integral transforms differ in the type of K(z, s) and the integration bounda-
ries a and b.

LAPLACE TRANSFORM
The Laplace transform of a function F(t) results in a function f(s) and is defined by:

L{F(t)} = [§ exp(—st)F(t)dt = f(s)
A more convenient form is:
L{h(x,t)} = [§ exp(—st)h(x, t)dt = h(x, s)

Some properties are:

116
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As an example, the problem of Edelman is chosen (see Bruggeman, 1972): horizontal
groundwater flow towards a canal in which the water table is lowered suddenly:

T T TR — A

=
o

o \5&& S .

Figure [1.3 The problem of Edelman

The differential equation that defines two-dimensional groundwater flow is (see (1.3)):

o’¢ ¢
k— + k— = P(x, y,t

R Skl
As the flow is assumed to be horizontal, the variation of ¢ in y-direction may be neg-
lected. Then the differential equation becomes:

('32
k— ¢ =
ox?

P(x, 1)
Along the phreatic line ¢ = y (see Chapter 4). The differential equation will be written
in a form where the original water table is the reference level and h denotes the
lowering of the phreatic line (then ¢ = —h at the phreatic line).
The term P(x, t) was defined as the abstraction of water in an element at location x at
time t (see figure 1.1): here it is the storage increase that is caused by the increase of
the elevation of the phreatic line.
The term P(x, t) is a quantity per unit of area and per unit of time (see Chapter 1).
) ch . !
Here the storage increase | —u — | occurs along the phreatic line (where u is the
ot
. i ' . ch
storage coefficient). To obtain the storage increase per unit of area, | —u | has to
ot

be divided by the height of the water column. It is assumed that h < D, and so D may
be used for the height of the water column.

28




According to this assumption, the term P(x, t) may be written as:

(negative 0h/0t means outflow from a vertical element h dx: so negative dh/dt conforms
to positive P(x, t)).

The differential equation now becomes (where ¢ = —h):

0*h  u oh

ox: D ot

OF:

0*h u oh

e St e 1.7
ox2~ kD ot (1L7)

The boundary conditions are:

h(x,0) "= 0
h(0,t) = h,
h(o0, )= 0.

Application of (I.6) to the differential equation (I1.7) yields the transformed equation:

o*h u

b (sh — h(x,0)) (IL8)

In this equation the first boundary condition (h(x, 0) = 0) can be substituted: and the
two other boundary conditions can be written in transformed form if (IL.6) is used:

1_1(0, s) = hy/s and (IL9)
h(c0,5) = 0

If h(x, 0) = 0 is substituted in (IL.8), the following form is found:

?h

e il oy e ol I1.10
0x?2 sz ( )

A general solution for this differential equation is:

h = Aexp(ax) + Bexp(—oax) (IL.11)

29




By substitution of this solution in the differential equation (I1.10) and inserting the
boundary conditions (I1.9) in (IL.11), the following expression is found:

)
=—exp| —x [—
s ¥ kD

This is a well-known form. The inverse transformation can be found in tables. The
solution of the problem is then found to be:

h = h, erfc(f\/i>
2\ kDt

The function erfc(x) is defined by 1-erf(x) and:

erf(x) = 4 |5 exp(—u?)du

Jr

FOURIER TRANSFORM

Depending on the type of problem, some kinds of Fourier transforms can be applied.
In the following example the infinite Fourier-sine transform is used:

The infinite Fourier-sine transform of a function F(x) results in a function f(r); it is
defined by:

S{F(x)} = [§ F(x) sin (rx)dx = f(r)
Written in a more convenient form:
S{h(x,t)} = [ h(x,t) sin (rx)dx = h(r, )

Some properties are:

S{ﬁzh(X, 1)} = —12h(r, t) + rh(0, 1)

ox?

(mmL0=£an=m




The inverse transformation is given by:
,IO r, t) sin (rx)dr (IL13)

The same example as for the Laplace transform is shown here to illustrate this Fourier
transform (see Bruggeman, 1972). The differential equation that generates the flow is
(see (IL7)):

0*h  u Oh

S e 11.14
ox* kD ot ( )

The boundary conditions are:

h(x,0) =0
h(0,t) = h,
h(co,t) =0

The boundary condition h(co, t) = 0 has already to be satisfied for application of
the Fourier-sine transform (it is a condition in II1.12; our problem satisfies it).

Application of (IL.12) to the differential equation (IL14) yields the transformed
equation:

_ u oOh
TR o L B e e
Eal bl

The boundary condition h(0, t) = h, can be substituted in this equation.
The remaining condition h(x, 0) = 0 is given in transformed form by:

h(x,0) = 0 (I1.15)

By inserting the boundary condition for (0, t) in the transformed differential equation,
the following expression is found:

oh , kD - kD
— —h=rh IL.16
o 7 " s p ( )

A general solution for this equation is:

h = Aexp(at) + Bexp(—at) + C (IL.17)

By substitution of (I1.17) in (IL 16) and inserting the boundary condition (IL.15) in the
general solution (II.17), the following expression for A is found:
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1
h= ho[— — exp(—kDtr?/p) /r]
»
Using (I1.13) the inverse transform / can be found:

1
B = %jg‘ ho [ - eXP(—kDIrZ/,u)/r]sin(rx)dr
I r
or:

2 in(rx 2 —kDtr?
L 5 ! (r\)dr . 3 i —r—/ﬂ—) sin(rx)dr
T r T r

The first integral is equal to /2, and the second can be reduced to a well-known
function. Then the solution of the problem is found:

rmn -3 55

X _‘ll
h = hO erfc 5 m

or:
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6 Indirect Methods

6.1 Superposition
The superposition principle holds for the Laplace differential equation:
If ¢, and ¢, are solutions of V2¢ = 0, then ¢ = agp, + b¢, is also a solution.
This can be shown simply:
V2py = V2 (ad, + bo,) = aV?¢, + bV,
VZp, = 0; V3¢, = 0 then V¢ = 0

Examples of application of the superposition method are flow in an infinite plane
with sources and sinks, and the method of images.

Example 1: The flow pattern due to a sink and a source in a linear flow field in an
infinite plane is found by a superposition of three separate flow patterns (see figure
11.4).

Linear flow field ¢, =ax +b

Source in (x5, y,) with discharge Q: ¢, = % In[\/(x — x5)* + (v — y2)*]

+0

In[/(x — x3)2 + (v — ¥3)’]
2nk

Sink in (x5, y5) with discharge Q : ¢5 =

Example 2: The method of images is used for problems with sources and sinks where
some special boundary conditions can be satisfied if extra fictive sinks or sources
are located outside the region of interest.

In the case of a straight boundary, the property is used that in the middle between a
sink and a source the straight line perpendicular to the connecting line is an equipoten-
tial line. In the case of two sinks or two sources, that line is a stream line, (see figure
1L5).
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—— source
in (x2y2)

—~—sink
in(x3y3)

1

1

|
1
2

i
|
[ 1

Figure I1.4  Superposition of solutions

Another application of the method of images is the flow field of an excentrically
located sink in a circular island, see figure I1.6. Here the property is used that in the
case of a source and a sink in an infinite plane, the equipotential lines are circles. This
can be shown by a simple derivation:

Consider a sink and a source, both with discharge Q, in respectively (x,, v,) and
(x5, ¥5). The groundwater head in the plane is given by:

Q | [Tl = x4 (v - mﬂi}

i [ — T

(IL18)




a)

~<stream line
b) _<«-equipotential line

sink and source

Figure IL5 a. Flow according to two sinks
b. Flow according to a sink and a source

For an equipotential line ¢ = ¢, is constant. From (I1.18) it then follows directly:

[ = x)? + (y - AR _ exp(znk¢l
[(x — x2)* + (v — »2)*]?

Oor.
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Figure I1.6  Excentrically located sink in a circular island

where: a = exp(4nk ¢,/Q)

The expression (IL.19) is the equation of a circle with its centre at:

X; — ax, Vi — ay,

1 —a ’ 1l —a

and with radius R according to:

(I1.20)

). 2 2
Yim —ay;

R (-"1‘ "-‘2>2 (YT 92 P(xC - "x22> _
Il —a 1 —a 1l —a

(I1.20) the location of the fictive source can be calculated, yielding:

X, = (x; — xo(l — a))/a and y, = (y; — yo(l — a))/a
island can be calculated using (I1.18).

6.2 Green’s Function

illustrated here with a simple example.
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Generally only (x,, y,) is known and the location of the centre of the island. From

With these known values of (x,,y,), the groundwater head distribution over the

The solution method that uses Green’s function has been described in literature (see.
for example, Bear, Zaslavski, Irmay, 1968 and De Wiest, 1969). The method will be




The flow is considered in a region D that has a smooth boundary C (see Bear,
Zaslavski, Irmay, 1968). The values of the head in the points A(x, y) in D are ¢(A);
¢ satisfies V2¢ = 0: so ¢ is a harmonic function. Suppose that the values of ¢ are
known in all points of C as a function of the location s on the boundary according to
a function f(s). Then it is possible to express ¢(A4) in another harmonic function
G(A, A') that is called a Green’s function. The function G(4, A’) is a function of the
coordinates of two points (4(x, y) and A'(x’,y')) such that for each point A(x, y) the
value ¢(A4) can be expressed as a function of the values of f(s) at the points A" on C
and the partial derivate of G with respect to n (n is the inner normal on C):

A) = fcf(.s‘) g%:{éi—/;) ds(A) A onC (11.21)

In literature (see, e.g. Bear, Zaslavski, Irmay, 1968) for several rather simply shaped
regions the Green’s functions can be found. For example, for the right half plane
Green’s function is given by:

BepE.sl= —hn E: B :; i :y - ; ; ] (11.22)

As an illustration, this method is used to describe the flow in a half plane with the
following conditions:

DX V)yco =012 OX.Y)ys0= —6,/2

Figure I1.7 gives a sketch of the flow pattern:

Figure IL7 Vortex flow

The solution is the flow according to a vortex in the origin:

g = O arctg(j—') (I1.23)
T X




This solution can also be found by means of the Green’s function method, using
(I1.21) and (I1.22).

The combination of (I1.21) and (I1.22) yields an expression for the groundwater head
in the right half plane:

1 & — @1 8 1
¢=-_33(f7¢7>31( ) oy’ +f Jo” -2 (:;—1 (F)dy (11.24)
(x=x)P+@-y)

(x +x)* +(y —y)

where F =

After differentiation and substitution of x" = 0, (I1.24) becomes:

TN SR O
+ =y} 22 7%+ (y-y)
9)
P T et N TS S
27‘[ (' =y xz + (y; o y)z 27_[ Y =)= —p .\,2 o (y o V/)Z

¢ = d [arctg(J—' — )>] ' _¢ l:arctg (X - y)]
2n X =y 2n % (¥ ===
P = —(ﬁl—arctg<y>
n X

With this expression the result (I11.23) is obtained.
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7 Methods based on Complex Function Theory

7.1 Method of Pavlovskii

This method is well-known in literature (Bear, Zaslavski, Irmay, 1968, Verruyt 1970).
A region in the z—plane can be conformally mapped upon a region in another plane,
e.g., by elementary functions such as sin(z), In(z), z", etc. A region with a polygon
boundary can be mapped on the upper half plane Im {{} >, 0 by the well-known
Schwarz-Christoffel integral :

z=aff(A - &) M@A-¢&) 2. (A-¢&)dA+ B (I1.25)
In this expression &; are the images of the edge points of the polygon on the real axis ¢.

The factors k; correspond to the alteration of direction in each edge point according
to k; = o/, see figure 11.8: o en ff are complex constants.

i+1

Z=X+iy §=§+ir,

Figure I1.8  Conformal mapping by the Schwarz-Christoffel integral.

A large number of examples of conformal representations is given by Kober (1957).
In literature (see, for example, Verruyt 1970) a more comprehensive treatise of the
Schwarz-Christoffel integral can be found.

In the method of Pavlovskii some problems are solved by conformal mapping of Q
on z, while other problems are solved by mapping the z-plane on another plane and
solving the problem in that plane. For both kinds of problems, an example is given:
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Example 1: Flow in a confined aquifer to a low-situated polder, see figure I11.9.

!(D=0
L L

e
odetetelele e

Figure [1.9  Polder aquifer

The problem is symmetrical; therefore it is sufficient to consider half the flow region.
Figure I1.10 gives the z-plane and the Q-plane:

B _x A B

Figure I1.10  z-plane and Q-plane.

The application of the sine transform (see Appendix 2) for both the Q- and z-regions
yields the mappings as represented in the upper half planes { and (*, see figure I1.11:

D A T M
-1 +1
Figure IL11  Upper half planes 7* and {
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For this mapping the z-plane and the Q-plane are first rotated over n/2. Then they
are linearly transformed, and translated over n/2. So they are first mapped upon a
half infinite strip with width = (figure I1.12).

(SIE

Figure 11.12

The mapping functions are:

= sin(

; <'Qn 3
= SINn| 18—
Q

U

This can be reduced to:

(15 = o
cos| iz— | = cosh
D D
z)

e

]

- izZ, 2

7
D 2

(L0
Q

Ny

+
N

NS

Mapping upon a half infinite strip

)

for the Z-plane:

for the (2-plane:

(11.26)

(11.27)

The relationship between the (*- and the {-plane is found by a transformation, so
that the points D and B of the (*-plane are mapped upon the points —1 and +1;
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From figure IL.10 it follows: z, = L + iD

Then according to (I1.26):

Then ( is given by:

2(1 = ¢¥%)
L7r>
D

A combination of the expressions (I126), (11.27) and (I1.28) yields the relationship

between Q and z:
[1 — cosh<i n)jl
D

9arccosh 1 -2 ——= (I1.29)
T L
1 + cosh| —=
D

This expression is the solution of the flow problem. Because only half the flow region
is considered, Q represents half the seepage discharge per m'. ¢ can be calculated if at
some distance from the polder the groundwater head with respect to the polder level

|1 o )]]

From (I1.29) it follows using @ = k¢:

[1 + cosh| -

(=1--

1 + cosh

(11.28)

Q=

Dill

¢ = Re garccosh [1 -2
kn

bm“




or:

nk¢
|:1 - cosh(% n)]
Re {arccosh Il -2 — ]
[1 + cosh(é n)J

With this formula Q can be calculated: ¢ is the difference between the groundwater
head at the point z and the polder level.

Example 2: A number of sinks in the vicinity of a contraction of a canal, see figure
I1.13:

number of sinks: n
sink discharge : O]-
location of sink: Zj

canal (D=0

—

Figure I1.13  Sinks near a canal

The boundary ABCA is assumed to be an equipotential line.

The z-plane is mapped on the upper half plane using the Schwarz-Christoffel integral
(IL.25), see figure 11.14:

Figure I1.14  Upper half plane £
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The point 4 is mapped onto infinity and does not appear in the integral (see Verruyt,
1970).
The alterations of direction in the points B and C of the polygon are — /2 and 7/2.

Then: kg = —%  ke= +

o=

The points B and C are chosen to be mapped on { = O and { = 1. Then the Schwarz-
Christoffel integral gets the following form for this problem:

After integration the constants « and f are determined in such a way that the points B
and C correspond with the points z =i and z = 0 in the z-plane, see figure I1.13.
That leads to:

Ly e k= TIETS
T ; {\’/s(g - 1) + ln[\’/E + \//(5 - 1)]} (”'30)

In the (-plane the problem can be solved simply by use of the method of images:

Q=" EQJ In [* — ”] (11.31)
T

-
5 5j

The expressions (11.30) and (I1.31) form together the solution of the flow problem.
Therefore { is eliminated from (I1.30) with known z. Then from (II.31) the complex
potential € can be evaluated.

7.2 Method of Vedernikov-Pavlovskii

This method can be found in literature (Bear, Zaslavski, Irmay, 1968: Verruyt, 1970).
The function Z is defined by:

Z=0Q+ ikz

From this definition it follows by separating real and imaginary parts (using
Z=Z +iZ,):

Z,=® — ky
Zzqu+l\\

Using the function Z (Zhukovski’s function) problems can be solved with boundaries
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that consist solely of horizontal equipotential lines, vertical stream lines and a
phreatic line.
For a horizontal equipotential line Z, is constant:
Z, = &, — ky, = constant
For a vertical stream line Z, is constant:

Z, = ¥, + kx, = constant

For a phreatic line without precipitation Z; = 0. This can be shown by substituting
the boundary condition ¢ = y and thus @ = ky in the expression for Z, :

Z,=®—ky=ky—ky=0
The properties just mentioned, can be used in the problem of Nelson-Skornakov (see

Verruyt, 1970). The problem deals with a flow under a dike that separates a low-lying
polder from higher surroundings, see figure I11.15:

Figure IL.15 Problem of Nelson-Skornakov

In figure I1.16 the Z-plane and the Q-plane are given for this problem. The position
of the origin is shown in the figure. The potential in the polder and that in the surround-
ings just correspond with the elevation of the relevant ground level. The image of the
flow region correspond with the right half plane of Z. In the Q-plane, the image of the
flow region is a half infinite strip.




A A
[Q]
o i
Z
: (z]
kL Zy
B 21
D
lll
c O B
A kH

Figure IL.16 Z-plane and Q-plane

The relationship between Z and Q can be found by application of a sine transform
(see Appendix 2):
First the half infinite strip in the Q-plane is mapped on a half infinite strip with width

T
7 in the Q*-plane. The Z-plane is rotated over 5 and transformed linearly so that the

points C and B are mapped in the (-plane on the points { = —1 and { = +1, see
figure 11.17.

Figure I1.17  Z-plane and Q*-plane

Therefore it is considered that for point C Z, is given by:
Z,=Y% + kx=kL

By application of a sine transform to the Q*-plane, the relationship between Z and Q
is found (using the relationship between Q and Q*, see figure 11.17):
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or:

ikL Qn
Z =—|2cos? | —
2 2kH

Substitution of Z = Q + ik z leads to:

149 iQ
z= Lcos? | — |+ — I1.32
(ZkH > k ( )

In this expression L is unknown (the position where the phreatic surface meets the
drain is not known). The parameter L can be calculated by using the condition that
for point D the x-coordinate is the smallest on the traject CDA.

From expression (I1.32) it follows:

Q V'
x = LRe c052< n—) .
2kH k

Along CDA @ = 0: then:

2( nQ2 > 2<i7r‘1’ of BH
cos — | = cos*| — | = cosh*| —
2kH 2kH 2kH
Then at CDA the following condition holds:

AR
X = Lcosh2<f‘> - (11:33)
wH) K

The condition that x has its minimum at point D for all points on the traject CDA can
be formulated in the following way:

5 0 5L h ¥\ . h i s 1 0
— = or: 2Lcosh|—]s |
oY 2kH) "\ 2kH) 2kl T K
For point D then follows:
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‘h<n‘I’D> 2H
SENRE 4 al

kH . (2H
¥, = — arcsinh 5

T T

and th us:

The relationship between ¥, and L* is found from (I1.33):

¥ = Lcosh2<nwn> — o
2kH k

By elementary operations one term in (I1.35) can be rewritten:

¥ ¥ e 1 4
coshZ(ZkI;)) = {;[1 + cosh( = ):l — %l:l + <1 + smh'( kHD»

Substitution of this expression and (I11.34) in (IL.35) yields:

; 2H\%\! H ) 2H
=511+ |14+ |— — —arcsinh{ —
nL T nL

or in dimensionless form:

L*_1L1+<1+<2H21 1 ,th
H_2H nl —;Tarcsm H

From this expression the parameter Lcan be calculated if [* and H are given, and
from (I1.32) the complex potential can then be evaluated for any point.

7.3 Hodograph Method

This method can be found in literature (see e.g. Verruyt 1970). The complex function Q
is a function of the complex variable z = x + iy. The partial derivative with respect
to x can be written as follows:

0Q dQ oz dQ

ox  dz ox  dz

The function w is defined by:
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dz 0x

w= = =

0x 0x

RS [:«p _aqf}

According to the Cauchy-Riemann relationships (see Chapter 2), the following
condition holds:

oY 0P
Bio e Ay
Then:
0P 0D
w=— —+i—
0x dy

After substitution of Darcy’s Law, expressed in derivatives of the potential, it follows:

w=uv —iv, (IL.36)

z=—[w'dQ (11.37)

From the linear appearance of v, and v in (I1.36), it is seen that straight equipotential
lines and straight stream lines in the flow region are represented by straight lines in
the w-plane. Because for those lines v,/v, = constant they are going through the
origin. A phreatic stream line is represented in the hodograph-plane (the plane of
specific discharges), and thus in the w-plane too, by a circle which can easily be
derived in the following way:

phreatic line

hodograph-plane w- plane

Figure IL.18 Representation of phreatic surface in the hodograph plane and
in the w-plane.
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0P cy . v,
— = —k—- = —ksina=—k*—

s 0s vy

k 2 k 2
02 +kv,=0->02+0v>+kn, =002+ <L‘.‘. + ;) = (;)

The latter expression is the equation of a circle with radius k/2, and the centre located
at (—ik/2), see figure I1.18.

In the w™ '-plane the phreatic line is represented by a straight line parallel to the real
axis at a distance — 1/k. That can easily be shown (using v,> = — kv,, from the pre-
vious derivation):

1 b tw, v .+, v+, v, I

e — v, v +0)? v, — kv, kv, k
So the imaginary part is constant and equal to —1/k.
The function w is a function of Q. The solution of a problem is found by expressing
w™ !in Q. Therefore the conformal mapping technique is used and (11.37) is integrated.

This procedure is illustrated by an example given in figure I1.19. It is the problem of
Vreedenburgh (see De Vos, 1929, Kozeny, 1931 and Verruyt, 1970).

A D X

C

Figure I1.19  Problem of Vreedenburgh.

In figure I1.20 the hodograph plane: the w-plane, the w™ '-plane and the Q-plane are
given:
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Figure I1.20  Conformal mappings for the problem of Vreedenburgh.

The relationship between w™! and Q is found directly from figure I1.20:
w = —~Q/kQ

Substitution of this expression in (I1.37) yields the solution of the problem:

[ Q?
z=—|QdQ=— +c¢
kQ 2kQ
The integration constant ¢ is determined by the condition that for point D : z = 0, and

@ = 0. From that it follows that ¢ = 0. Then the solution is:

Q- F e
e gt Q0 9k07
%0 or 0

(8]
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Approximative Methods




8 Method of Fragments

In the method of fragments the flow region is sub-divided into a number of sub-
regions. This sub-division is made in such a way that for each sub-region a more
simple solution can be found. For example, such a sub-division can be made if one or
several known straight lines may be assumed to be an equipotential line.

The method is illustrated with an example:

In the problem of figure I1.21 the discharge is calculated:

Figure I1.21  Seepage towards a basin.

The solution of the problem can be given in closed form using conformal mapping
of the region AEFCD upon the upper half plane Im{{} > 0 (method Pavlovskii).
However, the numerical evaluation of this solution may give numerical problems
for some values of the quotients h/D, and D,/D,.

A more simple and approximative solution is obtained if the line segment BC is
assumed to be an equipotential line (with unknown potential @,). The flow problem
is solved for the sub-regions on both sides of the line segment BC, with the unknown
potential @, being eliminated for both. Then the approximative solution of the flow
is found. In figure I1.22 the conformal mapping process is given schematically.
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sub-region 1:

A

sub-region 2:
F

ny E]

B

Figure I1.22  Conformal mappings for the basin problem

Sub-region 1 (ABDA) :
Conformal mapping of the z-plane on the {-plane and of the {-plane on the Q-plane

yields:

A combination of these expressions leads to:

{2(1 ~eosfie )

=58 1} (11.38)

i
Q=o, + 9 arccos
T

iy
l —cos|{—=——m
D,

Sub-region 2 (EFBE) :
The relationship between (* and z is found by means of a sine transform:

(11.39)

S
*
Il
B
o
O
w
e
- ks
mb‘ ]
P =
+
N~




The relationship between Q and (* is given for subregion 2 by the following Schwarz-
Christoffel integral:

Q=0af5ii—o)tA—1)"tdi+p

The constants o and f§ are determined with the conditions that the points F and C are
represented correctly in the z-plane.
The solution is an elliptic integral of the first kind (see Abramowitz, Stegun, 1968).

Q-9 _ F(wlc) _—
2, K(c) '

W = arccos {\/(T(l—_g i;} (IL41)

. — sin? <7r(D2 — h)>
2D,

F(wle) = 5 (1 — ¢sin?0)"* do

K()=F (72[ Ic>

The discharge quantity Q is found by calculation of Im{Q} in the point B (see figure
[1.22), using (I1.39), (I1.40) and (I1.41).
This yields:

where:

Q _Kl-9 (1L42)
() K(c)

By eliminating @, from (I1.38) and (I1.42), the relationship between Q, Q and z in
subregion 1 is found:

) 2(1 — COS (i: -H>>
_ [K“) .y s{___ 5 Fuy —1” 11.43)
=Q K(l_c)+ndrcco, (h > (I
1 — cos =%

If the potential is supposed to be known at a point z,, the discharge Q can be calculated
from (I1.43). Then the following expression is found:
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(DO
Q=— s e st

Eh 3 2<l — cos | iz, < >>
K(—( )f + Re{l arccos { <D' — l}}
) T

K(l —c

where @, is the potential at the point z,.




9 Graphical Flow Net Method

The flow net method is a graphical method based on the property that stream lines
and equipotential lines are perpendicular if the flow region is homogeneous and
isotropic. Generally 4® = AY is chosen: then a figure is found where the stream
lines and the equipotential lines form elementary squares.

Starting from a first sketch in which the expected flow pattern is drawn, a process of
improving the drawn pattern leads after some iterations to a convenient flow pattern.
Then the quantity A4 @ is the same over each square: also 4 ¥ is the same over each
square. With that knowledge the discharge quantity Q and the potential at any point
in the flow region can be found from the drawn flow pattern.

As an example, a flow net is roughly sketched for the groundwater flow in a confined
aquifer, see figure I11.23. (The analytical solution for this problem can be found using
the method of Pavlovskii and has a form with an elliptic integral of the first kind).

Figure I1.23  Flow net under a dike

The number of squares between two stream lines going from @, = 2.0 m?/day to
@, = 0 is 10. So each square represents a decrease of the potential of 0.20 m?/day.
To calculate the discharge Q. the discharge per square (A% = A® = 0.20 m?/day) is
multiplied by the number of squares between two equipotential lines:

0 =5 x 0.20 = 1 m?/day
Generally the discharge is expressed in the coefficient of permeability. Then @, may

be given by. for example, @, = 2k (using the definition @ = k¢). Then in the same
way Q = 1 km?/day is found.
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10 Finite Difference Method

In the finite difference method the flow region is sub-divided into a number of rec-
tangular or square elements. According to a basic assumption about the variation of
the groundwater head in the elements, the solution can be calculated. Generally the
function ¢(x, y, t) is calculated for a moment t = t,. If the flow is non-steady, a dis-
cretisation in time is used and the position of the boundary (e.g., a phreatic line)
after a step in time is calculated from the flow pattern. Then the function ¢)(x, y, 1) is
calculated for the moment t = t, + At, etc.

The variation of the groundwater head is assumed to be linear within each element.
In figure 11.24 square elements are considered:

L
([)2
Ty
¢3 $o b4 ‘» \
\ ‘ | x
| Pa
| |

Figure I1.24  Square elements.

The function ¢(x, y, t) is continuous everywhere but not differentiable everywhere
because at the sides of each element it is generally nodded.

The partial second derivatives of ¢ with respect to x, and y can be expressed as
follows:

i 1[¢, — -] 1
ff/?:, q_b,_jp k(ﬂ(’, ,g o [6, + &5 — 20,]

i hea ara i)

and
o [y~ g do—¢s| 1
e e G by — 2
oy a a a a
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Substitution of these expressions in the differential equation (I.3) that generates
two-dimensional groundwater flow, yields:

!
(1 + 62+ 63 + by —4do] = Plx.11)

or:
bo =3l + ¢, + ¢35 + by — a® P(x,y,1,)] (1L44)
This expression can also be derived from L(i—) and 'ffj from a Taylor series:
0x* oy*

The Taylor series is defined by:

) = f(a) + @) (x )y S = gD
1) = £1@) + (@) (x = @) + £ (@) 5, + 17 @) +

When this formula is applied to a grid with sides Ax and Ay (see figure 11.25)

N AX . Ax -
b2
y
Ay
$s bo o,
i
lay L e
(A
Figure I1.25 Rectangular elements
it yields:
b= «)/J\ +ii (A\)j +£‘_(E (A.\')_‘ <"_</3 (f1\)~L
: © T ax ox? 2 ox® 3! ix* 4!
P 2 (Ax)* 3¢ (4x)® ¢ (Ax)*
b= o — 3 Ax + o5 ot — LT L
X 2 éx® 3! ox* 4!
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Addition of these expressions leads to:

2 64 Ax 4
b +¢x—2¢0+‘¢( Ax)? +2—¥?(—)+... (1L.45)
ox* 4!
A4
If all terms from 2 5—(2 (7?'7 are neglected, then (IL.45) can be written in the following
%
form:
g -2
LG Sl (11.46)
ox> (4x)
2
In an analogous way an expression for —— is obtained:
dy?
0° 2
ey Tl T (11.47)

dy? (4y)?
Substitution of (IL.46) and (I1.47) in the differential equation (L.3) leads to:

b+ P3 —2¢0 by + Py — 20,

(4x)® (4y)?

= P(x, y, t,)

From this expression it follows that:

:_(A_X)ZLA;V_)Z_,{% +és P2t by o }
o (497 + (1L (Ax? T (4 Pyt (11.48)

If the sides 4x and Ay are chosen of the same magnitude Ax = Ay = qa, then (I1.48)
reduces to the previously-found formula (I1.44):

bo =il + b2 + b3 + by — a® P(x, 3, 1})]

4 4

( a
The error made by this approximation is of the order 2 o : a
b !

Expression (I1.44) is the basic expression that is used for this finite difference method.
All terms appear linearly in that expression. A set of linear equations will result
when the groundwater heads in the nodal points are related to each other and
to the boundary conditions. That set of equations can be solved by well-known
techniques, resulting in known heads in the nodal points. For points within the ele-
ments, the head is calculated by linear interpolation according to the basic assump-
tion.




11 Finite Element Method

In the finite element method generally the flow region is sub-divided into a number of
triangular elements. Using an assumption about the variation of the groundwater
head in the elements, the solution can be calculated. Generally the function ¢(x, y, t)
1s calculated for a moment ¢t = ¢,. If the flow is non-steady, a discretisation in time
is used and the position of the boundary (e.g., a phreatic line) after a step in time is
calculated using the specific discharges at the moment ¢ = t,. Then the function
o(x, y, t) is calculated for t = t, + 4t, etc.

The finite element method is based on a variational principle. The basic formulas can
be derived using a mathematical variational analysis. Here it is shown that a somewhat
alternative derivation using an energy concept leads to the same result.

For groundwater flow an energy flux function can be defined by e = m*g¢. The
dimension of e for two-dimensional flow is energy per unit of length and per unit of
time. The parameter m* is given by m* = puv. Thus:

e = pgve (11.49)

The dimension of m* is mass per unit of length and per unit of time. Note that the
density p has the dimension of mass per unit of area in our two-dimensional case.
From the appearance of the specific discharge v in the definition of e it is seen that e
is a vector function. The energy flux per unit of time in a direction n (through a unit
of length with direction [ perpendicular to n) is given by e, where ¢, is the component
of e in the direction n. Consequently the energy transport per unit of time, dE, through
a line segment dl is given by:

dE = e, dl = pgv,pdl

de
e+ 28y d
y+ dy y

e, ey + 2€x dx
U\ bx

Figure 11.26 Energy flux through an elementary rectangle.




The concept used in this Chapter says that in a flow region there will be such a ground-
water head distribution that the total loss of energy transport per unit of time due to
the flow is a minimum. (Of course this is also a variational principle).

In figure 11.26 the energy flux e per unit of time through an elementary rectangle is
considered: e is composed of the following components:

in x-direction: e, = pv, g¢
in y-direction: e, = pv,g¢

The loss of energy transport dE, in the rectangle is given by (see figure 11.26):

A 3
oe oe,

— 9—dxdy + 2 dydx
0x ay

or, after substitution of (IL49) and Darcy’s Law and considering the case with constant
density p, constant coefficient of permeability k and P(x, y, t) = 0 (see Chapter 1):

& 2 Kl "2
pgk[(i(b) + < d)) ]d\ dy + pgok [ﬁi) + ——qq dx dy
0x dy 0x 0y?

The second term of this expression is zero (see (I.4)). Thus the expression becomes:

i (5e) + (&) Joco
ox dy

For the whole flow region R the loss of energy transport per unit of time E is then

given by:
A* = pgk([g Ii(%?) + (i?) Jdv dy (I1.50)

If a quantity A is defined according to

A*
A=—
2pg

then (I1.50) becomes:

A=k [(ﬁ) z (@ﬂ i (IL51)
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This expression is well-known in literature (see, for example, Verruyt, 1970).
Expression (I1.51) is used to solve groundwater flow problems. According to the
mentioned energy concept, there will be such a groundwater head distribution that
the total loss of E is a minimum which occurs if in each point ¢ has such a value that

0A

=— = (IL52)
o

Approximative solutions are obtained by sub-dividing the flow region in a number
of elements. An assumption is made about the variation of the groundwater head in
an element and the unknown heads in the nodal points are calculated by application
of (I1.52). It will be shown that this leads to a set of linear equations.

The solution of this set of equations gives an approximative solution of the problem.
Generally triangular elements are used (see figure 11.27) and the variation of the
groundwater head in an element is assumed to be linear in x and y, see figure 11.28.

(P3 (X3’Y3)

(’)1 (X11y~|)

Figure I1.27 Triangular element.

The groundwater head within an element is given by:
¢ =ax+ a,y+a; (IL.53)

The constants ay, a,, ay are chosen in such a way that in (x,, y;), (X, v,) and (x3, y3)
the heads just are respectively ¢,. ¢, and ¢;.
The constants a are given by:

a; = (byod, + by, + bs395)/4
a, = (c1¢, + c2, + c3¢3)/4
ay = (d,¢, + dy¢, + ds¢3)/4




b, =y; ~ y;
by =y ~y,
€3 = X3 — X,
s Bt Ty (IL55)

C3 = X3 — X

dy = X393 — X3,

dy = X3), — X,);

d3 = X1y, — X2y,

4 =x(y; = y3) + x3(v3 — 1) + x3(y; — y,)

¢V (x4yq)
X

Figure I1.28 Linear variation of groundwater head in an element.

To determine the contribution to the quantity A (see (IL.51)) of an element, the partial
derivatives of ¢ with respect to x and y are obtained from (I1.53):

60 d¢p
e n —

1 a (IT.56)
0x dy

After substitution of (I1.53) and (IL.56) in (IL.51), the following expression is obtained
for the contribution of the element with number j:

A= %k”Rj[af + a3)dxdy (I1.57)

where R; denotes the area of this element.
As ay, a,, ay are constant within an element, (I1.57) becomes:

A; = tk(a? + a%)ﬁRidxdy

65




The integral [[x dxdy is equal to the area of the triangular element:
J
|4l1/2.

Where 4 is given in (IL.55).
Then the mentioned contribution of the element j is given by:

klAl
A = Y (a,? + ay?) (I1.58)

i

According to the energy concept, the correct head distribution is such that for each
head ¢, (in nodal point with number i) the condition holds that A has its minimum.
According to (11.52):

0A

op;
where ) denotes summation over all elements of which ¢, is an angular point.
Considering that a,, a,, ay are functions of the nodal heads (see (I1.54)) this expression
can be written in the following form, using (I1.58):

n kAl oa da
Y| —| 24, == + 24, ﬁv2:|:| =1
4 o, 0¢;
or, considering that k is a constant:

Z|:|A| |:al ‘;%‘» +a, ;‘;}ﬂ -0 (I1.59)

The derivatives that appear in this expression are obtained from (I1.54). For the
nodal point i = 1 that is used in the following as an example they are:

da; b, fa, ¢

P, 4 ¢,

Then (I1.59) becomes:

i[m ["J‘u, + iJ‘ uzﬂ - (11.60)

Substitution of (I1.54) in (I1.60) leads to:
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ni

ZI:(b12¢1 +biby ¢, + biby s+ c* ¢y +

+ ey +cics ¢>3)ﬁ] =0 (IL61)
In other form (IL61) is given by:

i[w. + Py, + P3p3] =0 (1L62)
where:

1
P, = |"A| (b12 =2 "12)

1
P, = Dﬂ(bxbz + ¢,¢,)

1

P ——r
204l

(bibs + cyc3)

and by, b,, by, ¢y, ¢,, c3 being given by (I1.55).
The expression (I1.62) is a linear equation in the head of the nodal point 1 and the
heads of the surrounding nodal points, as shown in figure 11.29.

Figure I1.29  Elements arond a nodal point.

The condition (I1.62) for all nodal points leads to a set of linear equations where the
unknowns are the nodal groundwater heads. The boundary conditions have to be
taken into account. The set of equations leads to an approximative solution of
the problem. For points within the elements, the head is calculated by linear inter-
polation according to the basic assumption (I1.53).
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III Analytical Function Method




12 General Description

In part III a calculation method is described for two-dimensional groundwater flow
problems, using complex functions. Anisotropy is taken into account according to
the theory that is mentioned in Chapter 3 (simple geometric transformation and
defining a fictive coefficient of permeability). Inhomogeneities with respect to the
coefficient of permeability or the density of the fluid are accounted by sub-division
of the flow region in corresponding sub-regions that all have a constant coefficient
of permeability and density.

The sub-regions are coupled in the calculation (see Chapters 14 and 16) by means of
special connecting conditions at the separation lines.

In the following text the flow is considered in regions or sub-regions that already
have been transformed for their anisotropy, and are then further considered as if they
were isotropic. So in Part III anisotropy is not mentioned further in formulas. In the
computer program at the end of Part III it is accounted according the theory of
Chapter 3.

Only pure two-dimensional flow is considered here. Multi-layer systems, where in
each aquifer the flow is assumed to be two-dimensional and between the aquifers
there are semi-pervious layers, are semi-three-dimensional. They are not dealt with
here.

According to the theory mentioned in Chapter 1, two-dimensional groundwater
flow in an isotropic region is given by: ’

0% ?iqz _ P(x,y,1)

A2 + A
ox?  oy? k

The analytical function method (A.F.M.) is based on the calculation of flow patterns,
which means that non-steady flow is calculated as the non-steady behaviour for a
sequence of steps in time. So there is a discretisation in time. At a particular moment
the flow pattern is calculated, and then from the specific discharge distribution a new
position of the boundary is calculated after a step in time (for example, the changed
position of an interface). Then the flow pattern is calculated at the following moment:
and so on (see Chapter 16). The non-steady character of the flow is accounted in the
boundary conditions. The differential equation for the flow pattern is:

¢ ¢ _ Py

(‘,:XZ (ﬂ,\.z k
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The term P(x, y) represents the abstraction of water per unit of time and per unit of
area in the interior of the region at the considered moment. If such an abstraction
area reduces to zero where the product of P(x, y) and the area remains constant, then
there is a sink in the region.

In two-dimensional flow problems supply or abstraction is generally concentrated in
sinks or sources. For cases with a line abstraction (drain) a better generation of the
flow pattern is usually made by assuming that line as an equipotential line rather
than as a line where the specific discharge per unit of length is constant (although
that can be accounted by the formula of a distribution of sinks).

It is shown in Chapter 14 (dealing with the boundary conditions) and in Chapter 16
(concerning the procedure used in solving groundwater flow problems) that the storage
alteration along the boundaries need not be accounted in a supply or abstraction term
in the differential equation when flow patterns are calculated. The storage alteration
is accounted when the position of the boundary after a step in time is calculated.
If only abstraction or supply at sinks and sources is present, then for the whole
region (except these singular points) the flow is described by the Laplace differential
equation:

a2 A2
i PR (IL1)
ox?  0y?

Complex functions are very suitable for the solution of flow problems that satisfy the
Laplace equation (IIL.1). The real and imaginary parts of any analytical function
satisfy the Laplace equation (see Appendix 1). This means that an analytical function
that satisfies the boundary conditions at all points of the boundary is the exact
solution of the flow probiem. A calculation method that uses the complex potential
Q = @ + ¥ (see Chapter 2) has the advantage that the solution also contains the
stream function.

For the analytical function method (A.F.M.) analytical functions with degrees of
freedom are used so that a flow pattern is generated that satisfies the boundary
conditions at a number of points of the boundary. Because generally such a solution
does not satisfy the boundary conditions at all points of the boundary, the solution
is not exact. However, because the complex functions are analytical, the solution
satisfies the Laplace equation everywhere except at singular points. Therefore the
solution is exact within an approximative boundary. The solutions obtained in this
way are different from those of the numerical methods like the finite difference method
and the finite element method (see respectively Chapters 10 and 11). In those methods
a solution is found that is approximative over the whole region.
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13 Composition of the Solution

For each sub-region there is an analytical function that generates the flow in it, and
is defined in the sub-region and on its boundary.

The presence of sinks and sources can be accounted by addition of the well-known
logarithmic expressions for sinks and sources (according to the principle of super-
position (see Chapter 6)).

The general solution for the flow in a-sub-region has the following form:

Qz) = Qy(2) + 2(2) + Qo (I11.2)

where:

Q,(z): approximative part,
Q,(z): exact part for sinks and sources, and
Q, :reference constant.

The expression Q(z) = Q,(z) + Q,(z) is the basic solution of the flow problem. The
complex constant Q is a reference constant that produces a translation of the values
of the potential and the stream function. The use of a reference constant is allowed
because the flow pattern does not depend on absolute values of the potential and the
stream function but on potential and stream function gradients. The complex reference
constant can be used to define the potential and the stream function at a point, which
then becomes a reference point and the complex potential is defined with respect to
that point.

It is not neccessary that there is one and the same reference point for the stream
function and the potential. There may be two different points. The reference con-
ditions with respect to @ and ¥ in two points then yield the values of the complex
reference constant if the flow problem is otherwise defined.

The complex function Q,(z) generates the flow due to sinks and sources in the flow
region.

By the principle of superposition the complex potential due to sinks and sources is
given by:

Qi(2) = i “ln(z - z,) (111.3)

j:12n

where:
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m : number of sources and sinks
Q,;: discharge of sink (Q > 0) or source (Q < 0)
z; 1 z; = X; + iy;: position of sink or source

The complex function Q,(z) is an approximative function that is superimposed on the
flow according to sinks and sources.

The function @,(z) is defined in such a way that at a number of points of the boundary
the boundary conditions are satisfied (or the connecting conditions with other sub-
regions). To achieve this, the function Q,(z) contains a number of degrees of freedom
that are so defined that the boundary conditions are satisfied by the solution
Q=Q,+Q, + Q, For the choice of an appropriate function Q, there are many
possibilities.

It is essential that the function @, is an analytical function because only then does it
satisfy the Laplace equation. In addition, the appearance of the degrees of freedom
in the formula has to be such that the process of calculation is as simple as possible.
The most simple suitable form is used when the degrees of freedom appear linearly
in the solution:

Q,(2) = Z v; FA2) (I11.4)

where:
n : number of terms of 2,
y; : constant
F;: analytical function of z

The degrees of freedom y; in Q,(z) may be real, imaginary or complex. The use of
complex y; has the advantage that there are two degrees of freedom per term ;F(z)
This reduces the amount of calculation work because a maximum number of degrees
of freedom is used with a minimum number of complex functions Fj(z). Therefore

here the choice is made using degrees of freedom of complex type.
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14 Boundary Conditions

14.1 General

In this Chapter the boundary conditions are drawn up in a form that is convenient
for use in the analytical function method (A.F.M.). Expressions are derived from
formulas for a ‘general boundary’ by varying some of the parameters.

The ‘general boundary’ is shown in figure II1.1. There is a thin silt layer between two
sub-regions, and the density of the fluids in both sub-regions may be different. Para-
meters for one of the two sub-regions are denoted by the subscript ¢. The resistance
of the silt layer is ¢,, and its thickness is set to zero.

Cs

Figure IIL.1 “General boundary’

The position of a point of the silt layer is denoted by the real variable [ and by [, for
the other sub-region. The positive directions for I and [, are opposite, having been
chosen in such a way that an anti-clockwise rotation is carried out when the whole
boundary of a sub-region is followed.

In the situation shown in figure I11.1 there will be a flow through the silt layer.
Application of Darcy’s Law to an element of the silt layer yields:

(8]

=0 (IILS5)
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The fictive groundwater head ¢ * is a groundwater head that is derived from the
actual ¢,.. The relationship between ¢ * and ¢, is the following well-known ex-
pression (which expresses the relationship between two groundwater heads that
hold the same pressure at a point with height y):

Pec Pe—:P
¢c* T d)t‘ ¥ _y
p p
Then (IIL5) becomes:
oY -
s SRR el O £ O (I11.6)
p al p

In addition, the continuity condition has to be satisfied:

o + <N =0 (111.7)
al gl ‘

Expression (II1.7) is only relevant at the separation line between two sub-regions.
The conditions (IIL6) and (ITL.7), if relevant, are sufficient to arrive at an exact solution
if they are posed at all points of the boundaries. Here, however, they are posed at
selected points of the boundary (‘boundary points’). The accuracy of the solution can
be improved by increasing the number of these boundary points, as well as by using
the condition that the expressions (I11.6) and (I11.7) remain valid in the close neigh-
bourhood of the boundary points (then the variation of parameters in the direction [
and resp. [, are considered). Here the choice is made to use also these ‘derivative
conditions’ for the boundary points. The expressions with respect to the variations
in the direction [ are given by (where it is mentioned that the positive directions for
land [, are opposite):

aq& Pe (’}(bc EZlIJ % P-7= P 6}’

S F LA L ol R e ooy~ p e S o
R TR T o
Ol 7 ('} 72!{] -
g (ﬁ) o S e s (I11.8)
ol ip.\.al), o2 p ol
and:
REl' L2 <aw> b
. gi\al ),
6] i

it 4 o’y
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14.2 Specific Expressions to be used

Equipotential line with silt layer

In Chapter 4 it was mentioned that along an equipotential line the groundwater head
is constant. Here the situation is considered where there is a thin resistance layer
between the equipotential line and the flow region, as shown in figure II1.2:

Figure II1.2  Equipotential line with silt layer

This situation corresponds to many practical situations where thin silt or clay layers
are present at the bottom and talus of canals, lakes, etc.

The expressions to be derived here are found from (I11.6) and (IIL8) by putting p = p,
and ¢, = ¢, (which is a known constant). Then the result is:

PP Ly (I1L.10)

* ol

o¢p il 4

and: e
al * oI

-0 (IL.11)

aQ
In calculations Q and —— are used instead of @, ¥ and their derivatives with respect

to [ Therefore (I11.10) and (II1.11) are written in complex form:

{Q dQ ¢
Re<{— —
k

.

}= b, (111.12)

-~ N
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Stream line boundary
In Chapter 4 it is mentioned that a stream line boundary is impervious, see figure I11.3:

Figure IT1.3  Stream line boundary.

The expressions are found from (II1.6) and (I11.8) by substitution of the condition that
the resistance of the silt layer is infinitely large:

¢y — 00

Division by ¢, in (ITL6) and (ITL.8) yields:

d) Pe (rbc oY S P =5 ¥

R S e e

10 6 PY p—p. 1 0y
and = ,(é o ‘_7 :]5) iz — = ,l,,-;v‘_f T

gEglEsspea\idly ol paistel iol

For ¢, —» oo these expressions become:
oY
Bl

e

and =0
o1?
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In complex denotation they are given by:

Im {d—g a_} = 1) (I11.14)
z 0l
dQ 9%z d*Q (‘:)2
d Im<{—— e e =0 IIL.15
- m{d: o2 T a2 (N } Ly

Seepage line with silt layer

In Chapter 4 it is mentioned that at a seepage line the groundwater can freely leave
the soil and run off. Generally the thickness of a seepage layer is very small, and then
the pressure at the seepage line is equal to the atmospheric pressure, which is a
reference pressure, set to zero. Using the definition of groundwater head, the condition
for a seepage line is:

¢=y

Figure I11.4  Seepage line with silt layer

So at a seepage line the groundwater head varies in a prescribed way. In this study
the general case of a seepage line with a silt layer was considered, see figure I11.4.

If the resistance of the silt layer is set to zero in the expressions that will be given, the
conditions are obtained for a common seepage line.

The seepage line expressions can be found from (II1.6) and (II1.8) by the substitution
of p, = 0.

This yields:

oY
¢+ci—=y
al
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and

op 07 -0
e + ('\ i e
al ool

These expressions are given in complex denotation by:

Q  do: o
Re ‘l\_ TRl :1? ?\i = Im'l:J (11116)

R dQl:l Az (“Zz:l Q. <F‘: % i 0z o
ed— Tt Ry e P 5 fia = o :
Bz Lk -0l tol| . a2t \pl ™ P

It should be noted here that generally the position of a seepage line is known, as it
follows from the geometry of the flow region.

However, generally the upper point of the seepage is not known: this point is also a
point of a phreatic line, the position of which is usually not known previously. So the
problem of the unknown upper point of a seepage line has to be considered as a
phreatic line problem.

and:

Phreatic line

In Chapter 4 it has been mentioned that at a phreatic line the pressure is equal to the
atmospheric pressure (that was set to zero). Using the definition of groundwater head,
the following condition was derived:

¢=y

So a phreatic line can be considered as a line at which the head varies in a prescribed
way.

If the position of the phreatic line in steady flow is known and there is no precipitation,
the stream line conditions (IT1.14) and (IIL.15) may be used. If there is precipitation,
the condition should be used that at the phreatic line ¥ varies so that its variation per
unit of length in horizontal direction corresponds to the precipitation. In A.F.M.

calculations the condition ¢ = y and the derivative condition %? = (ﬁ.‘l are used be-
cause those conditions may be used for steady flow as well as for non-steady flow and
are independent of the presence of precipitation.

Generally the position of the phreatic line is not known previously. The steady
position of the phreatic line is calculated from the non-steady behaviour where
other boundary conditions are invariable. After a number of steps in time it is seen
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that there is practically no further movement of the phreatic line. In the solution
it is seen then that the specific discharge components normal to the phreatic line have
become very small and the stream function variation along the phreatic line is very
small too, if there is no precipitation. In the presence of precipitation the stream
function varies so that this variation just corresponds to the precipitation.

The precipitation is taken into account in the following way:

At the moment ¢ = 0, the flow pattern is calculated, using a known or assumed
position of the phreatic line. Displacement of the phreatic line in a step in time is
calculated using the specific discharges along the phreatic line. The rise according
to the precipitation has to be superimposed. The rise (or fall) of the phreatic line
also depends on the storage coefficient p of the soil. The effect of the precipitation N
in a step in time At is:

NAt
Ay P
I

A combination of the effects of the precipitation and specific discharges leads to the
position of the phreatic line after one step in time (see Chapter 16).

The new position of the phreatic line is then used to calculate the problem again, and
SO on.

Figure IIL.5  Phreatic line.

The phreatic line expressions to be used in flow pattern calculations can be found
from (I11.6) and (I11.8) by the substitution of p, = 0 and ¢, = 0, which yields:

o=y
and

1300) B ay

ol al
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In complex form these expressions are given by:

Re{%} = Im{z} (111.18)

g R dQ 1 oz _1 0z
€ F BT m E (ITL.19)

Interface

It is mentioned in Chapter 4 that an interface is a separation line between two fluids
with different densities. In steady state an interface is a stream line. If the steady
position of the interface is known, the expressions (III.14) and (II1.15) can be used.
In any case (steady or non-steady), the condition holds that the pressure is equal on
both sides of the interface: it has already been shown that this can be expressed by the
following condition:

i D yg D (I11.20)

So an interface can be considered as a line along which the groundwater head varies
in a prescribed way with the height y. Here (I11.20) is chosen to be used because it
holds for steady as well as for non-steady flow. Generally the position of the interface
is not known previously. The steady position of the interface is calculated from the
non-steady behaviour where other boundary conditions are invariable. After a
number of steps in time, the interface will be practically at rest. Then it is seen in the
solution that the normal components of the specific discharges at the interface have
become very small. The calculation procedure starts from a known or assumed posi-
tion of the interface, and then the flow pattern is calculated. The specific discharges
at the interface are used to calculate the interface position after one step in time. Then
the problem is calculated again; and so on.

Figure I11.6 Interface.
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Two interface expresions are found from (II1.6) and (I11.8) using the condition that

¢, = 0, yielding:

2o P — P X
— 2P, =—)
¢ ) ¢ )

0 ), (@ ) — p, Oy
i +Lc(‘jé) Mt 3.
a  p\dl/, P ol
In addition, the continuity condition (IT1.7) and its derivative expression (I11.9) hold:

I d

.

ol

In complex form, these expressions are given (after multiplication by p) by:

it - ()

{p dQ c:z ( {
Re4- — — + —

lk dz ol k dz
I {dQ 0z N dQ c:z
m — — ——

dz 0l dz dl),

[ {dQ 0%z <d§2 (A2:> N dZQ<“'
Mz o " \az a2). T a2 \ai

In the special case that there is a stationary fluid on one side of the interface, then

A

o .

¢. = ¢, = constant and ”71( = 0, the conditions (I11.23) and (I11.24) are not relevant
(

as these formulas are continuity conditions for the case with flow on both sides of

a separation line between sub-regions. In that special case, the interface is not a

separation line between sub-regions.
The expressions (I11.21) and (IT1.23) then become:
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Re {p %} = (p — p) Im{z} + p.¢,

p dQ oz 0z
e fs ol G SRR
e{k z az} (b = pd m{az}

Inhomogeneity line with silt layer

An inhomogeneity line separates two sub-regions with different coefficients of
permeability or anisotropy (direction or magnitude). The general case discussed
here is that in which there is a silt layer at the inhomogeneity line. This agrees with
many natural situations.

and:

Figure ITL.7 Inhomogeneity line with silt layer

Two boundary condition expressions are found from (II1.6) and (IIL.8) using the
condition that p = p_. This yields:

ik 4

= — =0
¢ ¢C+C301

and:
o6 (04 >y
i i 8 Ml S0
G (m)c T

In addition, the continuity condition (IIL.7) and its derivative expression (IIL9) hold:
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These four expressions are given in complex form by:
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SUMMARY OF BOUNDARY CONDITION EXPRESSIONS

Equipotential line with silt layer

dQ
dz

o

Stream line boundary

.m{g@

dz
lm{

dQ ¢
dz

(

(111.25)
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(111.23)
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Seepage line with silt layer
(IT1.16)
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Phreatic line
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Re -t = Im{z} (IIL18)
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15 The Approximative Function Q , (z)

15.1 General

It is mentioned in Chapter 13 that the following form was chosen for the approxi-
mative part of the solution:

Qy(2) = ; 7 Fi(2) (I11.4)

where:

n : number of terms in Q,(z)
7; : complex constant
F(z): analytic function of z

There are many possibilities for the choice of the function F(z). Analogous to a
sub-division for functions of a real variable (see Rektorys, 1969), a difference is made
between algebraic functions and transcendental functions. Algebraic functions are
polynomials (rational functions) or quotients of polynomials (fractional rational
functions). Functions that are not algebraic are transcendental functions in which
distinction is made between elementary and higher transcendental functions. Exam-
ples of elementary transcendental functions are z“, trigonometric, hyperbolic and
exponential functions and the related inverse functions. Higher transcendental func-
tions are defined by differential equations (for example. Bessel functions) or integrals
(e.g., elliptic integrals).

15.2 Algebraic Functions

It was mentioned in Section 15.1 that algebraic functions are polynomials or quotients
of polynomials. A polynomial contains its degrees of freedom in the form of con-
stants. If the quotient of two polynomials were used, the degrees of freedom would
not appear linearly in the expressions for the boundary conditions, thus making the
calculation more complicated. For example, the function:

e agz aZ:Z
s b,z + b,z?
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has the first derivative:

(b2 4;b2:2)(al + 2a,2) — (a,z + 4‘12:2)(b1 + 2b,2)
(byz + byz?)?

Q,(z) =

As constants a,, a,, by, b, do not all appear linearly in these expressions, the use of
this kind of function, therefore, would result in complicated non-linear boundary
condition expressions. So the polynomial is a better choice:

Q,(2) = ayz + a,2* + a3z + ... + a," (I1L.27)

In this case there is not a constant in the polynomial because in the solution there is
already a constant (Q,).
Expression (II1.27) agrees with the previously chosen form (I11.4):

Q,(z) = Z }'ij(Z)
j=1
This is seen by writing (II1.27) in another form:
Qi(2) = ). a;7 (I11.28)
i=1

Generally, (I11.28) may be suitable: the function F,(z) = 2/ is analytic.

When (I11.28) is combined with the general solution (II1.2) and the boundary condi-
tions (see Chapter 14). a set of linear equations is obtained in the unknowns a; and
Q,. After solving this set of equations, the solution is known.

In general it may be a disadvantage of polynomials that there may arisc numerical
problems when there are many terms (then |z’ becomes very large).

A special kind of polynomial is the well-known Lagrange interpolation polynomial,
which in complex form is given by the following expression:

This Lagrange polynomial has the special property that the complex constants y; are
just the values of the function in the points z = z

z;:
92(31) = ¥i

In principle, the interpolation polynomial of Lagrange may be used for the solution
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of flow problems. There is, however, an important practical disadvantage: Kosten
(see Kuipers en Timman, 1969 chapter XII) notes that the Lagrange polynomial is
not convenient for practical calculations because of the considerable amount of
calculation work necessary for evaluating values of the function.

15.3 Transcendental Functions

It is mentioned in Section 15.1 that there are elementary and higher transcendental
functions, the latter being defined by integrals or differential equations. Because the
amount of calculation work required for evaluating values of functions is generally
much greater for higher transcendental functions than for elementary transcendental
functions, only the latter functions are discussed.

In principle, there are many possibilities that may be used for F(z) in (I11.4):

2,(2) = ¥, 7, Ff@)

Some examples of the use of elementary transcendental functions in the function
Q,(z)are:

=Y y,In(z — z,) (111.29)
ji=1

where z; are the boundary points (points where the boundary conditions are posed,
see Chapter 14). It is not neccessary that the positions of the boundary points (z;)
appear in the expression for ©,(z). The form (II1.29) with (z — z,) was chosen for its
analogy with the appearance of (z — z;) in the interpolation polynomial of Lagrange.
Although in principle the expressions mentioned for Q,(z) and many others might be
useful, a further selection is made between elementary transcendental functions:
When the computer time needed for the evaluation of values of some elementary
transcendental functions are compared, it is seen that the time needed for complex
logarithms is about 25% less than for complex sines and complex cosines (see IBM
Systems Reference Library 360S-LM-501). This is shown in the following table,
where the time needed for a complex sine evaluation is set to 100%:
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Function Name Time (%)

sin(z) CSIN(Z) 100
cos(z) CCOS(2) 100
exp(z) CEXP(Z) 87
In(z) CLOG(2) 75

On account of this fact, the use of complex logarithms is preferable. For example,
there could be used (I11.29):

n

Q,(2) = Y 7;In(z — z)) (111.29)

J=1

For the case that ;; is complex, this expression represents a flow due to sources and
sinks with strength o; and vortices with strength §; (where y; = a; + i) in the
points z;. In principle, (I11.29) can be used to approximate flow patterns, but this
has the disadvantage that the logarithmic function is singular at the boundary
points z;. That difficulty can be avoided by choosing the points z; outside the flow
region and posing the boundary conditions at other points on the boundary. Although
this can be done, it is not efficient because points have to be defined at the boundary as
well as points outside the region. In addition, when the points z; of (I11.29) are chosen
close to the boundary, many terms would be needed to prevent inaccuracy caused by
the singular behaviour of the complex logarithms. Then the calculation would require
a considerable amount of work.

The situation with many sinks, sources and vortices can be replaced by a system of
continuous distributions of sinks, sources and vortices over the boundaries. The use
of those distributions has the advantage that the expression for Q,(z) is not singular
in the boundary points and a flow pattern is generated that is more smooth in the
surroundings of a boundary point.

The boundary points are chosen at the middles of the boundary segments over which
there is a distribution of sinks, sources and vortices.

To ensure the smoothness of the flow pattern at the boundary and for efficiency the
boundary segments are chosen in sequence without gaps. Then only the end points
and the properties of these boundary segments form the boundary input for a
calculation program.

In the following the distribution strength has been chosen to be constant for each
boundary segment.

The expression for the complex potential due to a distribution of complex strength
is derived first. The potential due to a sink (or source) and a vortex in the point =, is
given by:
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Qz) = g In(z — z,)

" 2n

where Q is the complex strength.
When the quantity Q is distributed over a line segment x, x, on the x-axis according to:

dQ
¥ Tdx

where g = r + is, then the complex potential is given by:

q [x2 n
Q(z) - 133 In(z — A)dA

After integration, and neglecting the integration constant, it can be written as:

afz) = _Eg ((z — x,)In(z — x,) — (z — x,)In(z — x,)] (I11.30)

When the end points of the segment are chosen at arbitrary positions in the complex
plane, the complex potential can be simply derived from (II1.30) by a translation b
and a rotation 0 of the coordinates as shown in figure I11.8.

*=z¢"+b
where b is complex.
The points z; = x, and z, = x, have become the following positions in the trans-

formed plane:

x,€” + b and
o P b b

|

(S [

where:

0 = arg(z,* — z,%)

A constant ¢* per line segment z¥z% is defined by ¢* = exp(—i0) or:
c* = exp(—iarg(z,* — z,*))
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Figure I11.8 Rotation and translation.

Otherwise written, using (z,* — z,*) = lz,* — z,*l exp(i arg(z,* — z,*)) (I1L31)
s |z,* — z,*]
c*=— —
(22* — z,%)

When the inverse expressions (for z, z; = x; and z, = x,):

z c*(z* = b)
X = ¢¥(2;* — b)

x5 = c*(z,* — b)

are substituted in (I11.30), there comes:

Qz*) = — — {(c*z* — c*z,¥)In[c*z* — c*z,*] +

_ ((.*:* . ('*:1*)1n[c*:* . (,*:1*]}

So the complex potential due to a distribution of complex strength ¢ over a line
segment z,z, is given by:

Q) = — 34z — zainfelz = z)] = (= — = )infe(z — z,)]} (1IL32)
where ¢ is defined by ¢ = —
The use of (I11.32) in the formula for the approximative part Q,(z) of the solution
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yields (where each distribution is denoted by the subscript j):

n

0,(2) = ¥ - 2 {(z - z,)lnfefz — 22)] — (z ~ 2y ez — ;)]

j=1 2n
(IT1.33)
5 1 S |z,; — zy4]
ere: c; = (—_’——_—) (IT1.34)
Z2j ~ Z1j

The constant —1/27 is not relevant in (II1.33) because it can be accounted in the
constants ¢;. Because of the visibility that g; represents a distribution strength, the
form (IT1.33) with —g;/2x is chosen to be used in the general solution (II1.2).

In the literature the use of singularities and distributions of singularities is well-
known. Lamb (1932) showed that a flow that satisfies the Laplace differential equation
can be generated by an appropriate distribution of sinks and sources or vortices over
the boundaries.

In aerodynamics, applications are given by Von Karman (1927) and Mc. Nown and
Hsu (1949). Von Karman calculated the pressure distribution on the surface of air
ships. Therefore he located distributions of sinks and sources over a number of line
segments at the axis of symmetry. At a corresponding number of points on the air
ship surface, he posed the condition that the normal velocity is zero, which resulted
in linear equations with the unknown distribution strengths. The solution was used
to calculate the pressure distribution on the air ship surface.

Mc. Nown and Hsu generated an inlet flow between two walls, using separate vortices
outside the flow region. The way of solving the problem was analogous to that of
Von Karman.

De Josselin de Jong (1960, 1969) used singularity distributions for generating flow
through a porous medium with varying properties of fluid or porous medium. He
located singularity distributions at interfaces. These distributions were chosen in
such a way that the problem reduced to a homogeneous problem that could be solved
by usual methods. The solution of a flow problem then consists of two parts: one part
that is the flow due to the singularity distributions and a second part that makes the
solution (including the first part) satisfy the boundary conditions.
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16 The Calculation of Flow Problems

It was mentioned in Chapter 13 that the general solution, generating the flow pattern
in a sub-region, is given by:

Qz) = Q,(z) + Q4(z) + Qo (IT1.2)
where Q, is a reference constant, ,(z) is the exact part that generates the flow due
to the sinks and sources, and Q,(z) is the approximative part that contains para-

meters that are used to meet the boundary conditions at a number of points.
Substitution of (I11.33) and (IIL.3) in (IT1.2) yields:

z ~ 454z = zp)inlefz — 2] — (& — 2 inefz — 21} +

Z Q— ) + 2 (I11.35)
i=12m
where ¢; is given by (I11.34):
lz3; — 2yl
¢ = it e (111.34)
(32‘,' - 31,‘)

The constant g; = r; + is; is the complex distribution strength over the line segment
from z,; = x;; + iy;; t0 z,; = Xy; + iy,;.

The first and the second derivatives of Q(z) with respect to z also appear in the bound-
ary condition expressions mentioned in Chapter 14.
These are found by differentiation of (IIL.35):

dQ(z 2 <

’ (11’1.36)
d? (z) - . q;c; I I - _Q’
Iz = {(z ) G —:I,>} thae oy )

The complex reference constant Q in (I11.35) permits a translation of the values of
the potential and the stream function.
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The value of Q, can be defined by two equations. The equation with respect to Im{Q,}
may be given by the condition that at a point z,, the stream function is set to zero:

Im{Q(zo,)j = 0

The equation with respect to Re{Q,} is a similar equation for the potential in a point
Zo2: however, it is not permitted to choose an arbitrary value of the potential at the
point z,, because values of the potential are involved in the boundary conditions.
Therefore it is convenient to choose the point z,, at the boundary. Then for the equa-
tion with respect to Re{Q,} the potential at the point z, is related to the potential
at the boundary or just outside the boundary (e.g., if there is an equipotential line
with a silt layer). This equation has the same form as that of the previously discussed
boundary condition equations (e.g., for an equipotential line with a silt layer). Because
boundary conditions are posed at the middles of the boundary segments, the point
Zo, May not be chosen at the middle of a boundary segment (then the equation with
respect to Re{Q,} would be the same as a boundary condition equation : consequent-
ly, the set of equations would be undetermined).

The calculation procedure for solving flow problems will now be outlined. The general
solution is given by (II1.35) and a combination of (IT1.35), (II1.36) and (I11.37) with the
boundary condition expressions (see Chapter 14) leads to a set of linear equations.
The unknowns are the complex distribution strengths ¢,(q; = r; + is;) and the com-
plex reference constant Q. So when there are n boundary segments the result of posing
boundary conditions and reference conditions is a set of (2n + 2) linear equations for
each sub-region. After solving this set, the complex potential can be evaluated at any
point by substitution of g; and Q, in (ITL35).

The specific discharges are given by:

. {m} re J02 22 o fdo
e Bl _ _petiRBzy o G
Ux 3 i &= B 2

0P dQ dQ oz idQ dQ
v, = — ——=—Re{ - —Re{— —p=—Re{—p =Im<{—
‘ Oy Oy dz dy dz dz

(I11.38)
If the flow problem is non-steady where one or more parts of the boundary are
moving (phreatic line or interface), then that behaviour is calculated in the following
way. (The expressions hold for a phreatic line. Similar expressions hold for an inter-
face but then the storage coefficient u has to be replaced by the effective porosity 5).
Starting from a known or assumed position of the boundary, the flow pattern is cal-
culated in the way described, followed by the calculation of the specific discharges at
the moving boundaries. These specific discharges are used to calculate the position
of the boundary after one step in time. The alteration of the position of a point in

93




a step in time is given by (using (I11.38)):

y % {dﬂ} At
x=—Req—7> —
dz) n

y I dQ| At
b T e e
! dz) nu

where p is the storage coefficient of the soil and At is the time step size. If the moving
boundary is a phreatic line with precipitation, the rise due to the precipitation has
also to be accounted. In Chapter 14 it was mentioned that the rise according to
precipitation N is given by:

(I11.39)

At
dy = N- (IT1.40)
I

where N is the precipitation per unit of length and time. Then the position alteration
of a point of the boundary (phreatic line) in a step in time is given by the sum of
(IT1.40) and (I11.39):

y o {d()} At
x= —Re{—p —
N dz) u

dQ At
Ay = l:lm{ } + N:‘
dz u

After correction of the boundary position, the flow pattern after a step in time is
calculated and then the procedure is repeated.

Generally the position of a phreatic line is not known previously, but it is pointed
out in Chapter 14 that the steady position of that line can be found by calculation of
the non-steady behaviour of the flow: After some steps in time the boundary will
reach a position that is practically at rest. In the calculation the normal component
of the specific discharge at the phreatic line will then tend to zero.

If the normal direction is denoted by n’ (see figure I11.9), the specific discharge in
n'-direction is given by:

(I11.41)

co Y

L‘n = = - = (11142)
con’ ol
ors
v, = Im {dg - (I11.43)
dz ¢l
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Figure II1.9 Tangential and normal direction at the boundary.

When large steps in time are chosen, the specific discharges at the end of the step in
time may differ considerably from those at the beginning of the step in time. In such
cases the average velocity of the specific discharge over the step in time should have
been used; then some iterations might be necessary. In most cases, however, it will
be more convenient to choose the time step size so that these effects are small.

The time step size that is convenient depends on the kind of problem.

The equations that are used for generating flow patterns and the expressions for
correcting the position of a moving boundary will now be detailed, with the ex-
pressions (I11.35), (I11.36) and (I11.37) being written in a more convenient form:

The following notations are used:

g
<
=

&y
~

|

|

|

!&
~

FI(&) = = 32 {infez = )] - Infefz — 2,)]}

J=1 2n
Gl(z) = ,g} 27-[(_—Qi z)
= :il znz_—Qj{)z

(z = z3)Infe)(z = 25)] = (z = 2, )In[e,(

- :1j)]}

(I11.44)
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Then the expressions (I11.35), (IIL1.36) and (IT1.37) may be given by:

Qz) = Z q; FOfz) + GO(z) + 2, (I11.45)
ggf;) =_i q; F11z) + G1(2) (I11.46)
dzdfgz) - Z q; F2(2) + G2(z) (I11.47)

The specific discharges can be expressed by the following formulas (using (I11.38) and
(IT1.46)):

v, = — Re{i q;F1,(2) + Gl(:)}

i=1

(I11.48)
v, = Im Z": q;F1(z) + GI(:)}

The expressions (I11.41) for the alteration of the position of a point of a phreatic
line can be expressed using (I11.46).

n At
Ax = —Re{' qulj(z)+G1(z)}
Y 8 (IT1.49)
Ay = [Im{z q;F1(z) + Gl(z)} + N:| /::

The reference equation Im Q(z,,) = 0 for the stream function can be written in the
following form, using (I11.45):

Im { Y q; FO[z) + GO(z,) + QO} = 0, or otherwise arranged (using
j=1
q; = r; + is):
Y [r»llm:FO_l(:(,)} + 3 RefFO,(:O)}} + ¥, = Im{—-GO(z,)| (IT1.50)
=1
This is a linear equation in r;. s; and ¥,

It has already been mentioned in this Chapter that the equation for Re{Q,} has the

98




same form as a boundary condition equation.

The boundary condition equations are based on the boundary condition expressions
. 0z 0%z
of Chapter 14 in which the terms‘a and 32 2ppear, representing the form of the

boundary. For a straight line, the following conditions hold:

0z ot 0%z 8

— = constant —— =

al =~ o
0%z
o
This is permitted when the boundary is not sharply curved. A sharply-curved bound-
ary can be approximated by a number of straight line segments.
The following boundary condition equations refer to boundary conditions for the
middle of a boundary segment with number j*, the end points of which are z, » and

In this text only straight line segments of the boundary are used, thus

0z : e
z, The term 3l can be discretisized for that segment by:

0z (255 — 245)

-
ol \zzj* zlj*\ Cjr
or:
|z, p — 24 ]
¢ = B M (ITL51)
221* lew)

é
Im some of the following expressions Im {—3} appears.
o

In a similar way this can be discretised by:

E ‘sz* e le*'
Further, this is denoted by e
Im{z,» — z, »
gt ,,ﬁi (I11.52)
g LI
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Equipotential line with silt layer
The first boundary condition expression is (I11.12):

Q . dQ ¢z
Re E — ICSE :7 = ¢]
Multiplying by k and combining it with (IT1.45), (ITL.46) and (IIL.51) yields:

Re{i q; FO(z) + GO(z) + Q, — Iﬁ[i q; F1z) + Gl(z)}} = ko,.

j=1 Cj" j=1

After some rearranging, it can be written in the following form:

n

[rjRe{Hlj(z)} + 3 Im{—Hlj(:)}} + @, =

=1

= Re{ko, — GO(z) + i~ GI(2))

Cj*

H1(z) = FOz) — % gy 2)

(4 i

The second boundary expression is (I11.13):

R {dQI:l 0z . 62::| a2l (F:)Z .
edi—|- = —ie,— | — —5 | ic,| = =
izlka | az|"\a

32

By substitution of 3]7“ = 0 and multiplication by k, and after combining with (I11.46),
O

(IT1.47) and (IT1.51), there is obtained:

Rc{‘[i q;F1z) + Gl(:)}

('jx j=

Some rearranging yields:

n

| ke
Y |:rjRe{H2j(:)} + sIm{— Hz,(:);] = Re{— —Gl(z) + i-—f% GZ(:)}
ji=1 ' Cj‘ ('/*"
(IIL.55)




H2(8) ~ - F1z) - i ke, F2,z) (I11.56)

Cj* Cj*

Stream line boundary
The first boundary condition expression is (I11.14):

I {dQ 0z
msy— — ==
z 0l

Substitution of (I11.46) and (I11.51) yields:

i {Cl[" 4,F 1) + Gl(:)]} -l

Rearranged, this becomes:

Y [rjlm {Cl Flj(z)} + sJRe{Cl F1,.(:)H " Im{— ;17 Gl(:)} (I11.57)

The second boundary condition expression is (ITL15):

: dQ 0%z + d’Q <6:>2 "
Mz 32 Taz\a) |~

AD o

4

Substitution of

— = 0 yields:
0

’ {d29<62>2}~0
=1y 7

Substitution of (IIL.47) and (ITL.51) gives:

Im {C;ﬁ[é q;F2(z) + G2(2)}} ~0

In rearranged form, this is:

[1-}. Im {c% F2j(z)} + s;Re {C_lz F%—(z)}] =Im { - C_lz GZ(Z)}

(I11.58)

M=

J
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Seepage line with silt layer
The first boundary condition expression is (II1.16):

Q  do - .
Re I | ;’? ?] = lm,:,

This expression is almost identical with the expression for an equipotential line with
silt layer (IT1.12). The term ¢, here is replaced by Im{z}. By such a replacement in
(ITL.53). the first equation for a seepage line with silt layer is obtained, where it is
noted that Im{z} = Re{—iz}:

Z": [ Re{H1( }+sjlm{—H1j(:)}:| + @, =
_ Re{—iz — GO(z) + % Gi(2)) (I1159)

Cjr

where H1(z) is given by (II1.54).

The second boundary condition expression is (I11.17):

R Q1 éz 0% el (("‘:)2 I 0z
e S N i Y | — — — o —_— - —
iz|kal S| T a2 | "\a M

&%z

By substituting 51—; = 0 and multiplying by k, there results:

B {dQ oz " d*Q (8:)2 " 0z
(] el e e g
dz ol "2 \al ™M

The left-hand part of this equation is the same as the expression for an equipotential
‘!2

line with silt layer (I11.13) with - i
F

= 0 and multiplied by k. By putting k Im {("l_:}
(
. . . . 0z| . .
in the right-hand side of the equation and noting that Im {(621} is given by ¢+ (see
(IT1.52)), the result is:

n

2 [rj Re{H2(z)} + s; Im{ —H2j(z)}-:| =

)

_ Re{k - él Gi(z) + & > G2z )} (I1L60)
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where H2/(z) is given by (111.56).

Phreatic line
The first boundary condition expression is (II1.18):

Re{%} = Im{z}

Multiplying by k and combining with (II1.45) yields:

Re{” q;F0,(z) + GO(z) + QO} = k Im{z}

J

After some rearranging and noting that k Im{z} = Re{—ikz} there is obtained:

n

2 [rjRe{FOJ(z)} +5; Im{—FO,-(z)}:| + &, = Re{ —ikz — GO(z)}

(ITL.61)

The second boundary condition expression is (II1.19):

& {dQ 1 62} tm {Ez}
e{—— — ——p = —
z k ol cl

After multiplying by k and combining with (II1.46) and (IIL.51) and noting that
Im{ :;} is given by e+ according to (IIL.52), there comes:
C

RC{—I—[i qulj(:) s GI(Z):’} = kej*

(j ey

In rearranged form, this becomes:

i |:rjRe {cl Flj(z)} + sjlm{— Cl_Flj(z)}] = Re {k e — Cl_Gl(z)}

o
(111.62)

Interface
The first boundary condition expression is (IIL21):

pQ pQ
ST R




Substitution of (111.45), and using:
(0 — p)Im{z} = Re{—i(p — p,)z}
yields:

. {"[ Z q;F0,(z) + GO(z) + Qo} +

pl & ;
- (—[ _Zl q;FO0,(z) + GO(z) + Qo:|> }: Re{—i(p — p.)z}
J= c
In rearranged form, this becomes:

" | r Red? FO(: _Proab] 4 ?
Z; ["RC{Z FO,(-)} + s,.lm{ : FO,(_)}] +3 D, +

j=

(et e -

= Re{ —i(p — pJz — :GO(Z) + <% GO(:)) } (I1L.63)

If one of the fluids is stationary, the term

{(F)}
Re T 1S constant:

In that case this term is known, and can be placed in the right-hand side of the

equation:

Ji] |:)~jRC{Z FO,(:)} + S_,Im{_ ;\)FOI(:)}:\ i gd)o N

" Re{pccﬁ‘, —ilp — p)z — 'ZGO(:)} (I1L.64)

The second boundary condition expression is (I11.22):
p dQ oz (';) dQ (’:)} F:}
Re{~ — — - =(p —p)Im{—
e{k iz o " \k gz o) (=P pIIMAG

104




Substitution of (IT1.46), (I11.51) and (IIL.52) yields:

{p 1[
Res— —
k(’j* j

+ (*’ 1[2 q;F1z) + Gl(:)])} = (v = poey

k ¢

= Re {(p — pep — g ;1— G1(z) + (f (—1~ Gl(:))} (IT1.65)

If one of the fluids is stationary, one term in (I11.22) vanishes:
dQ oz
Re (” - (> } =0
k dz dl).

In that case the second equation becomes:

A e T |

J

j=1

= Re {(p — p)ep — :: k. Gl(:)} (I1L.66)

Cj*

The third boundary condition expression is (II1.23):

{dQ 0z (dQ 5:)}
Im{— — +|— — =0
z 0l z dl/,

The first term of the left-hand side of (II1.23) is the same as the left-hand part of the
first stream line condition. The second term has the same form, here for the adjoining
sub-region. Using the first stream line equation (I11.57) one finds:

Zl [r, Im { ;;m j(z)} + 5,Re {c‘T Fl j(z)}] +
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" 1 1
+ ( Yy l:rj Im{*Fli(:)} + sze{—- F12)
j=1 ¢ =
1 1
= Im{ -~ —Gilfz) — < Gl(:))}
Cjw Cj" &
The fourth boundary condition expression is (II1.25):

0%z (dQ ("'2:> N a’Q (5:)2 (dZQ <F:>2> B
o \dz o), dz2\al 2 \al) J.f —

Substitution of *17 = 0 yields:
p

da’Q (E:)Z <1129 ((’:>2>
Tirid | ] il e[ =0 I11.68
m{d:l al a2 \a1) ). W
The first term of the left-hand side of (II1.68) is the same as the left-hand part of the

second stream line condition (I11.58). The second term has the same form, here for
the adjoining sub-region. Using the second stream line equation gives:

Clz F2j(z)} + sze{clz F%(:)}} +

J

1 |
" FZj(:)} + sze{— —

J J

- Im{_ )12 G2(z) + (C.lz GZ(:))} (111.69)

J

Inhomogeneity line with silt layer
The first boundary condition expression is (II1.25):

R Q (Q) ..dQ
Ve " \k). "4

Substitution of (I11.45), (IT1.46) and (IT1.51) yields:

Re {i( i q;F0(z) + GO(z) + QO>— <%<i q;F0(z) + GO(:)+QO>> -

=1

— G —(:17» (}i q;F1,z) + Gl(:))} =0

j* \j=1




In rearranged form, this is:

,-:il [rjRe {11\ Hlf(:)} ¥ Sjlm{— %Hl,-(z)}] - %13 +
: (jéx l:rjRe { - % FOJ(Z)} + 5im {{ Foj(z)}] = %)C =

= Re{— i(fﬁ + <G(I)<(Z—)>C + ic, 1-* Gl(z)} (ITL.70)

J

where H1 (z) is given by (I11.54).

The second boundary condition expression is (IT11.26):

# {dQ [1 oz | 52::| % (1 dQ 0:) d*Q| . <('?z>2 "
(o QN BRIEIENEY, ;. PRy P | o= =
dz kol "o |T\k @z a), T a2 | \ai

2.
Substitution of i(;l; = 0 yields:

R {dQ 1 0z 3 <l dQ ﬂz> ) dZQ<(7:>2 0
e— — — — P — — —|
dz k ol " \k dz a1).” ““azZ\a

By substitution of (IT11.46), (I11.47) and (I11.51) there comes:

Re{kl (Z q;F1z) + Gl(r)) + (k(l < Z, q4;F1(2) + Gl(z))) -

J

—i;’z ( i q;F2(z) + G2(:)>} =0

(j* i=1

Rearranged, this becomes:

jil l:rjRe {;{ H2j(:)} + s;Im {— { sz(:)}] +
" 1
+ (jzl[rjRe {1\(\, Flj(:)} + s;Im { - I‘(17 Flﬂ:)}])c =

1 1 i,
= Re {— Z(T Gl(z) — <k('r Gl(:))c + i (.j*sz(:)} (ITL.71)

where H2(z) is given by (IT1.56).

107




The third and the fourth boundary condition expressions are (I11.23) and (II1.24).
They are the same as for the interface, and so the corresponding equations are (I111.67)
and (I11.69).

SUMMARY OF EXPRESSIONS AND EQUATIONS

Complex potential and derivatives:

Qz) = i q;F0,(z) + GO(z) + Q,

=1

dQ(z u
dil = ; q;F1,(z) + G1(2)

";i(f) _ Z q,;F2(2) + G2(z2)

Definitions:

;;t{(: = z)In[cfz - z

i(;'c {ln[cj(: — gl | — ln[cj(: — :U)]}

1 B 1 }
fz — 221) {a ~ le)




Specific discharges:

_ Re{ y q;F1,(z) + GI(Z)}

=1

J=1

Im{ Y qiF1(z) + Gl(z)}
Components of alteration of the position of a point of a phreatic line in a step in time:

i At
Ax = — Re{ Y q;F1z) + Gl(:)} —
j=1 H

Ay = [lm{ i q;F1,(z) + Gl(:)} + N} g

u

J=1

Equations with respect to €2,

Potential :
One of the expressions (IT11.53), (IT1.59), (ITL.61), (ITL.63) or (IT1.70).

Stream function:

2. |;rjlm{F0j(:0)} - ~5',,-R€{F0j(30)}‘:| + ¥,
j=1

Boundary condition equations:

Equipotential line with silt layer:

n

2 l:rjRe{Hlj(:)} + s;Im{ —Hlj(:)}] + @, =

g




- Re {w, — Go(z) + Xés Gl(:)} (I11.53)
(.j*
i I: Re{H2(z)} + sjlm{—H2j(:),':| = Re{—— ! Gl(z) + '—1‘% G?_(:)}
& Cin ¥
(111.55)

J

Stream line boundary :

i |i)-jlm {;1— Flj(:)} + sze{ .I. z } (I11.57)

i [rjlm {IZFZJ(:)} + s;Re {1 ; - (_Lz G.’Z(:)} (IT1.58)

J

Seepage line with silt layer:
[r'jRe-{Hl_,(:)}- + stm{—Hlj(:)}] + @, =

=1

— Re{~i: - GO(z) + l—f& GI(:)}

n

Z [;'jRe{sz(:)} + stm{-—Hz_,-(:)}:| -

Jj=1

1 ike
s Rc{k ep — — Gl(z) + (;2(.—)}
Cj Cp~

Phreatic line

J

f [;'JRe{l F1j(:)1 - sjlm{——1 Fl,(:)ﬂ =
i=1 (‘J" } (,1' -
= Re{/\u,,— 7117 (,‘1(_—)}

J

I:rjRe{FO,(:)] + s5;Im{—FO0,(z)} J + @, = Re{—ikz — GO(z)} (I1L.61)
1




Interface:

0+

,-‘; [,.jRe{ gFO_,(:)} - Sjlm{— « Fofe )H f
+ (,-:il [;-J.Re{ - :Foj(:)} +s lm{ H )

- Re{—i(p —p)z 4 — f’qf( ) (”('f(:)>} (T11.63)

i li",-Re {;\) —.1 Fl).(:)} + s;Im {— ;\) r_l Fl(i(:)}] +
+ <_§l[i Re{:\) %Fl (z )} - sjlm{w % C—I.*Flj(:)}}) =

= Re {(/'*‘ﬂ)e —;—’ I—GI() (:’ (LG](:))} (I11.65)

>‘\'Q

K (

i |:;~j[m {Cl Flj(:)} + s;Re {(l Flj(:)}:l +
n l 1
+ (J—gl |:I’jln'] {;; FIJ(:)} + SjRe {Cj* Fl,(:)}:’)( ==
| 1
= Im { — — Gl{z) — ( Gl(:)) } (IIL.67)
Cp Cy /.

J

=Im { = 7—15 G2z) + <i2 G2(:)> } (111.69)

If one of the fluids is stationary (p, and ¢, constant) then (I11.63) becomes:

ji [V"Re {: FOJ‘(Z)} % S;Im{— 4 Foj(z)ﬂ "0,

= Re {mc —ip — p)z — : G()(:)} (111.64)
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and (IIL.65) becomes:

.é] ["jRe {;\) 21; Flj(:)} " sflm{_ f (_‘17 Flj(:)}] -

j*
p 1
= Re {(p — )y — o Gl(:)}

J

Inhomogeneity line with silt layer:

N R
(8wl
O (0 e )
. k /. cjo

+ (i |irjIm {(1 Flj(:)} + s;Re {Cl F]j(:] }jD =

1 1
= lm{—~G1(:)—< Gl(:))}
Cpr Cj .
n 1 1
Z |:rl.lm {(_2 F2(:)} + s}Re {C\Z F.’(:)}} +
‘o 1 1

(111.67)




17 Special Cases of Flow in a Half Plane

In the foregoing Chapter distributions of sources, sinks and vortices were used to
generate flow patterns in regions that do not extend to infinity. In this Chapter it is
shown that those distributions are also useful for two classes of half-plane flow,
having the advantage that then it is not necessary to confine the region by an assumed
fictive boundary. When the flow is generated in the whole half-plane, the influence of
the local boundary conditions can be seen from the calculation results (generally this
property is only found in analytical methods (see Chapters 5, 6, 7)). Using numerical
methods, such as the finite element method and the finite difference method, always
a schematised fictive boundary has to be taken into account to cut off a region of
interest from the rest of the half plane.

Both classes discussed here deal with half-plane flow with each class being defined by
special boundary conditions at the real axis. Of course, in principle also problems
can be calculated that can be reduced to these classes by a conformal mapping
technique. Regions that have a closed boundary in the form of a polygon can also
be mapped upon a half plane; however, that is not relevant here as flow problems
in that kind of regions can be solved by the method of the foregoing Chapters.

Two classes of half plane flow will now be defined. The half plane is assumed to be
homogeneous and isotropic. The flow in the lower half-plane y < 0 is considered
because this has a good connection with many problems in reality.

The two classes of half-plane flow are defined by:

Class I:  On the real axis the following conditions hold (where x, > x,):

5

WV

Xp

&, (constant)
@, (constant) } (.7

Class II:  On the real axis the following conditions hold (where x, > x,):

@
X< X ()

Il

a

X . (constant)

¥
X i

a

} (I11.73)

, (constant)

For many practical problems one of the conditions (II1.72) and (II1.73) can be sup-
posed to hold. Between the points x, and x, several boundary conditions may be met.
(In practice there only the boundary types of stream line and equipotential line
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(with silt layer) can be used (in arbitrary number and combinations) because the
boundary (the x-axis) is a straight line). For both classes the lower half-plane may
include an arbitrary number of sources and sinks in its interior. Using the method of
images (see Chapter 6), fictive sinks and sources are accounted in such a way that
the relevant condition (I11.72) or (IT1.73) remains satisfied.

First, some properties of the complex potential due to a distribution of sinks, sources
or vortices over the real axis are shown:

A distribution of constant strength over the line segment x,x, is given by (II1.30):
(z = x)In(z — x;) — (z — xy)In(z — x,)}
On the real axis Q is given by:

Qx) = =5 {(x = x)in(x = x) = (x = x,)in(x = x,)

let: f(x) = (x — x,)In(x — x,) — (x — x)In(x — x,)}

then (IT1.74) is: Q(x) = — - f(x)

2n

or: Q) = — L {Re{/(9} + im{f(x)}

The function Im{f(x)} has a special property at the x-axis:
Using the definition In(z) = Inlzl + i arg(z), Im{ f(x)} is given by:

Im{f(x)} = (x — x,)arg(x — x;) — (x — x,)arg(x — x;)

Forx = x5 : arg(x —x;)=0
arg(x — x,) =0
then for x > x, : Im{f(x)} =0
For x < x, :oarg(x —x;) = —n
arg(x — x,) = —n
then for x < x, o Im{f(x)] n(x, — x,)
Forx; < x < x; :oarg(x —x,)=0
arg(x — x,) = —n
then for x;, < x < x,: Im{f(z)}] = —n(x — x,)

In figure I11.10 the variation of Im{f(x)} at the x-axis is shown:

1i4




lm{f( x)} Xy
X

Figure IIL.10  Imaginary part of f(x).

The real part of f(x) does not have this special property. The function Re{f(x)} is
given by:

Re{f(x)} = (x — x,)Inlx — x,| — (x — x,)Inlx — x,|.

The special behaviour of Im{f(x)} is used for problems where the stream function ¥
of the potential @ only varies between two points of the x-axis and has constant values
outside these points, according to the defined Classes I and I1. This will be shown
now. When there is a distribution of sinks and sources only, g is real: ¢ = r + is = r.
Then from (IIL75):

¥(x) = - Im{/(x)}

So for distributions of sinks and sources over a part of the real axis, the stream
function only varies over that part. (This satisfies Class IT). When there is a distribution
of vortices only: ¢ = r + is = is and it is seen from (II1.75) that:

0(x) = 5 Im{/ ()}

So for distributions of vortices over a part of the real axis, the potential only varies
over that part. (Thus it satisfies Class I).

By a combination of a number of these distributions (of only real or only imaginary
strength) a flow pattern can be generated that satisfies (I11.72) or (I11.73), whereas be-
tween the points X, and x, an arbitrary variation of @ or ¥ is approximated by a
sequence of straight line segments. (Generally that arbitrary variation of @ or ¥
is not known previously as it is the result of meeting the boundary conditions between
X, and x,). Figure I11.11 is a schematic representation. The figure shows (according
to (I11.72) or (I11.73)) constant values of @ or ¥ for x < X, and x > X, and at 5 line
segments between x, and x, a linear variation of ¢ or V.
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Figure IIL.11  Combination of distributions at the x-axis

The complex potential due to a number of distributions of sinks and sources or

vortices is found from (IT1.30):

n l{
— L {(z = x3)In(z = x;)) — (z — x4 )In(z — x1;)} + Qos

j=1 2n

where g is real or imaginary.

Sources and sinks can be accounted by also using extra fictive sources and sinks
in the upper half-plane so that the condition (II1.72) or (III.73) remains valid. For
Class I, where for x < x, and x > x, the potential is constant, fictive sources in
the upper half-plane are accounted if there are sinks in the lower half-plane. For
Class II, where for x < x, and x > x, the stream function is constant, fictive sinks
in the upper half-plane are accounted when there are sinks in the lower half-plane.
The expressions for the complex potential and its derivatives are given for both
Classes by the following expressions:

arious boundary conditions

Figure [11.12  Class I of half plane flow
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Class I: see figure I11.12

) = 3. = 2 {(e—xp)inle —xp) ~ = x, ine = x, )} +
+ '212%1112; :;’) + 4,

i pe e ]
+j§1 27[|:(Z—Zj) (:—:_])
sz(:) . n i ’S;{ ). > 1 }
dz? _12‘1 2n ((z — \2]) (z \11) ¥
E —~th 1 e 71
+j; 2n [(: -z} (z- 3,)2j|

Class II: see figure I11.13
various boundary conditions

V=", R

Figure IT1.13  Class II of half plane flow

o)z 2

¥
5, {z = x3))In(z — x;;) — (z — %y )In(z — x;)} +
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A combination of the general solution with the boundary conditions between the
points x, and x, at the x-axis leads to a set of linear equations, in which the unknowns
are the distribution strengths. It is noted that here there is one degree of freedom per
boundary segment. In the middle of each boundary segment the first of each pair of
boundary conditions (see Chapter 14) is posed. It has already been mentioned that
relevant boundary conditions at the boundary segments may be a stream line and
an equipotential line with silt layer (in arbitrary number and combinations). The
resulting equations can be derived directly from those of Chapter 16 by puttingr; = 0
for Class I problems and s; = 0 for Class II problems:

The following survey gives the boundary condition equations and relevant expres-

sions:

Definitions:

5= {In(z — x,;) — In(z — x, )}

(111.76)



gOTI(z) = :il %‘ Inf(z — 2 (z — 2]
e = & U e
g20) = 3 Qé{‘ = i

h2{(z) = f1)(z) — ike,f2z)

Complex potential and derivatives:

Class I: .
Qz) = Y is;f0,z) + g0I(z) + Q,
j=1
dQ(z) "
= j; is; f1,(z) + g11(z)
d*Q(z n
fd—v(gf) = Y is;f2z) + ¢2I(z)
Z j=1
Class II:

=

Qz)= )Y r;f0(z) + gOII(z) + Q,

J=1

i P rif14(z) + g111(2)

dz =1

d*Q(z) - Z r;f2,(z) + g211(z)

(12'2 o

Specific discharges:

Class I:

v, = — Re{— i is; f1z) + gll(z)}

=1

v, = Im{ i is; f1,(z) + glI(z)}

j:

b (IT1.76)

(I11.77)

(111.78)

(I11.79)

(I11.80)

(I11.81)

(I11.82)

(I11.83)




Class II:

J=1

v, = — Re{ z": rif1z) + glll(:)}

(IT1.84)
v, = Im { > riflfz) + glll(:)}
Jj=1
Equations with respect to 2,
Potential :
Class I:
Y s Im{—f0,z,)} + @, = Re{kd; — gOI(z,)} (IT1.85)
j=1
Class II:
Y. rRe{—f0z)} + ®, = Re{ked, — gOII(z,)} (IT1.86)
j=1
Stream function:
Class I:
Y sRe{f0(z,)} + ¥, = Im{—gO0I(z,)} (I11.87)
j=1
Class II:
Y riIm{f0(zo)} + ¥, = Im{—gOII(z,)] (ITI.88)
j=1
Boundary condition equations:
Equipotential line with silt layer
Class I:
Y s;Im{ —hl1(z)} + @, = Re{kp; — g01(z) + ikc,g11(z)] (IT1.89)




Class II:

Stream line

Class I:

Class II:

n

Y rRe{hl(z)]

=1

n

Y sRelf1/)

=1

n

Y, riim{f1z)}

,',

B

@, = Relkd, — gOII(z) + ike,g111(z)}

Im{ —g1l(z)]

Im{ —g11I(z)}

(111.90)

(111.91)

(111.92)




18 Multi-Valued Character and Singularity of the used Functions

Multi-valued character
The general solution (I1.35) and its derivative (II1.36) contain logarithms of a complex
variable. Such logarithms are defined by:

In(z) = Inlzl + iarg(z)

This function is multi-valued. In calculations generally a single-valued function is
used that is defined by:

In(z) = Inlzl + iarg(z)

B (I11.93)

This is the definition of the logarithm of a complex variable that is currently available
in computers. From (I11.93) it is seen that the imaginary part of In(z) has a discon-
tinuity 27 at (x < 0, y = 0). This discontinuity is encountered in the stream function
due to the flow of a sink at the point z,:

Q
Q=—"In(z -z
2n ( )
or:
. 0 Q
&+ iP="Inlz—z|+iZargz -z
2n . 2n &l 2
The argument discontinuity causes a stream function discontinuity at Re{z — z,} < 0,
Im{z — z,} = 0, as shown in figure I1L.14:




The complex potential due to distributions of complex strength also involves loga-
rithms, and therefore it has discontinuities. The expression for the complex potential
due to a distribution of complex strength between the points z; and z, is (ITL.32):

qc

Q= — 5 {(z — zy)In[e(z — z,)] — (z — zy)ln[e(z — z,)]}

The argument discontinuity causes a discontinuity in the real and imaginary parts
of Q, and appears when the imaginary part of the complex logarithm is zero and
the real part is negative.
For the first logarithm in (I11.32) if:
—z)} =0
111.94
—z,)} <0 ( )

Refclz — 2. ’ (I11.95)

This means that generally the complex potential according to (II1.32) has discontin-
uities in the real and imaginary part, at the line through the points z; and z, over the
part that is shown in figure I11.15:

discontinuity in one term

/ ((m.94) holds)

z
1
%
y 3 /dlsconhnuny in two terms
X e ((m.94) and (1195)hold)
\

N\
\
\

Figure II1.15 Location of discontinuities.

Because the argument step is 27, the discontinuity between z, and z, (see (II1.32) and
figure I11.15)) is given by:




qc . ;
4,Q = (z = z,)i27 = ige(z — z,)
2n

At the extended part of z,z, it is given by (see (I11.32) and figure (II1.15)):

qc
=gt

(z — z,)i27 — (2 — zy)i2m} = iqc(z, — z,) (IT1.97)

It is easily seen from (I11.96), which is a linear expression, that the complex potential
step 4,Q (between z; and z, has a linear variation going from z = z, (at z = z, it is
zero)to z = z, (thereitisig ¢ (z, — z,)). In the extended part of z,z, the step remains
constant at this value, which is seen from (I11.97).

Using the mentioned single-valued definition of the logarithm in some cases where the
extended parts of the boundary segments are located in the flow region, the solution
would have inadmissible discontinuities (see figure I111.16). Therefore in the computer
program mentioned in Chapter 20 the values of the complex logarithms are corrected
so that the discontinuities are shifted to lines outside the flow region, see figure
I11.16.

Figure I11.16 ~ Shift of discontinuities from line a to | line b

It is noted that for multiply connected regions the discontinuities cannot be avoided
in this way. In such cases the flow region is cut into two or more sub-regions in such
a way that each sub-region is simply connected and the discontinuity of the mentioned
function within the region can be avoided. see figure IT11.17.

Then at the cuts there is an inhomogeneity line where the properties of soil and fluid
are the same at both sides.
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subregion 1

S

Figure I11.17 Subdivision of multiply-connected regions.

Singularity
The general expression for the complex potential in the analytical function method is
(IIL.35):

Qz) = g . [*12% i~ :Zj)ln[cj(: e :Zj)] =4 e 311')1”[(1'(: - :l;i)]} I

m

+Z7’ln )+ Q

j=1 4T

The function Q(z) is singular at the sinks and the sources, but not at the end points of
the boundary segments (z,; and z, ;). This follows from the fact that the limit:

_lim {(z = zp)In[c(z — z,)]}

2

is equal to zero. This can be shown simply by application of L’Hopitals’ rule:

Wfelze £}

lim {(z — z,)In[c(z — z,)] = lim 1 %

2323 z—+z, (: o _2)

1 4
= lim —— (B e L lim {z — z,} =0
(z—2z,) gt 2
e (2= 32)2
Of course, this holds for the point z = z; too. So the complex potential only has

singularities at sinks and sources.

The derivatives of Q(z) with respect to z, given by (II1.36) and (I11.37):




1_’ = Z = q.,i(‘j :ln["‘,‘(: N :2_,')] i ]n[‘“,'(: :1,‘)]: +
d:z i 2n
m Qf
M jgl 27'((: = :)
20 o qe[ 1 1 "
A e = T

are singular at the points z,, z,;, and z;.
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19 General Comparison with Other Methods

The following general comparison with other methods deals with aspects of pure
two-dimensional flow because the analytical function method is restricted to two-
dimensional flow.

The analytical function method has the properties that it is an approximative numer-
ical method and it is rather general for two-dimensional flow.

In part IT a review has been given of the most important existing solution methods.
Only the finite difference method and the finite element method have these proper-
ties too, and in each of them, just like in the analytical function method, the solution
is found by generating and solving a set of linear equations. However, there are some
essential differences :

— There is a difference in theoretical background. In the finite difference method the
solution is found using a discretisation of the differential equation, whereas in the
finite element method it is found by using a variational principle. The analytical
function method uses analytic complex functions.

— In the finite element method as well as the finite difference method the flow region is
sub-divided into a large number of elements. Corresponding to this number of ele-
ments, the number of equations that is generated increases. In many cases where
there are sharp alterations of the potential, such as may occur in the presence of sinks
and sources, it may be necessary to increase the number of elements greatly to
ensure accuracy. Then the number of equations becomes very large and, consequently,
the required computer storage too. For the analytical function method this does not
apply, because the number of equations is relatively small as the number of equations
is defined by the number of boundary segments and, in addition, sinks and sources
are simply accounted by extra terms in de general solution. The number of equations
is proportional to the number of boundary segments. For the finite element method
and the finite difference method the number of equations is proportional to the
number of elements.

— For the finite element method and the finite difference method the array of coeffi-
cients is a diagonal band matrix. The array of coefficients for the analytical function
method is complete in the case of one region and consists of blocs when there are
more sub-regions; however, these arrays are generally smaller than the arrays of
the finite element method and the finite difference method, because generally the
number of boundary segments is relatively small.

— In the finite element method and the finite difference method the unknowns are
the groundwater heads in a large number of points within the flow region from which
discharges can be calculated. For the analytical function method the unknowns are
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the complex distribution strengths. So for the calculation of groundwater heads in
points of the region, values of an analytical function have to be evaluated. Then
discharges are also known (because the analytical function contains the potential as
well as the stream function).

— In the case of non-steady flow in the finite element method, the problem may be
encountered that due to a sharp rise of a phreatic line the upper elements become very
oblong. That may be disadvantageous for accuracy, because the basic assumptions
about the variation of the groundwater head within an element might become a bad
approximation for these upper elements. For such cases there has to be generated a
new element grid or a part of it. Analogous problems may be encountered when there
is a sharp fall in time of a phreatic line. These kinds of problems are not encountered
in the analytical function method because it does not use an element discretisation of
the region.

— When the coefficient of permeability varies considerably a sub-division in many
sub-regions must be applied in the analytical function method. In such cases, the
method becomes disadvantageous with respect to the finite element method and the
finite difference method because then the number of sub-regions might become the
same as the number of elements in the finite element method or the finite difference
method. Then the computer time needed for calculations will be larger for the ana-
lytical function method because the unknowns in the set of equations are not ground-
water heads as in the two other methods.

— The amount of input data for computer calculations is generally less for the
analytical function method because a computer program based on that method needs
only general information (number of sub-regions, coefficients of permeability, etc)
and boundary information (position and properties). Consequently the amount of
work for checking data is less. However, it is noted that when, e.g., a finite element
program is used, for many problems a mesh generator can be used to reduce the
amount of input work.

— For some classes of half-plane flow the analytical function method provides a
solution for the whole half plane. For those classes it is not necessary to cut off
the part of interest from the rest of the half plane. In the finite element method and
the finite difference method such a cut always has to be made for half-plane flow
problems.

- For the finite element method as well as the finite difference method the solution is
approximative over the whole region. The analytical function method provides a
solution that is exact within an approximative boundary. So the analytical function
method has another character than the finite element method and the finite difference
method. Because its solutions are exact within an approximative boundary, the
method is semi-analytic.
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20 Examples

To illustrate the analytical function method a computer program was made that is
rather general for two-dimensional groundwater flow: It can be used for the calcu-
lation of steady and non-steady flow patterns in arbitrary shaped regions that may
contain several fluids and inhomogeneities. The anisotropy may have arbitrary direc-
tions and magnitudes and there may be sources and sinks. The input of the program
consists only of general information (number of sub-regions, coefficients of permea-
bility, etc) and boundary information (position and properties). The computer pro-
gram comprises a main programme, two subroutines and three small function sub-
programs. The main program has an overall controlling task and it provides the
input and output. The subroutine OPS T generates the equations, using the boundary
condition formulation of the foregoing Chapters. The set of equations is solved by the
subroutine SIM Q. That subroutine, or a corresponding one, is usually available on
computers in a scientific subroutine package. The function sub-program CAF
calculates some complex expressions that appear in many equations: the function
sub-program CPF calculates the part Q,(z) of the complex potential that is due to
the presence of sources and sinks: and the function sub-program COF evaluates the
complex potential using the distribution strengths that are known from the solution
of the set equations.

The output of the program consists of coordinates, groundwater heads, stream func-
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Figure II1.18  Output grid.

129



MAIN OPST

Y

READ
input dala

-

[ nextregion |
Y

call ¢PST
call SIMQ

region information

| next boundary point |
A Y Y
[ next region [ next region |

Y
region-information - - - Y
ste| x-direction .
print information [stepin ion | right member of
two equations

Y

coéfficiénts for :
point

within wo and q’o
yes roq)»on

boundary information

[step in y-direction |

| next region

. icient
calculation of | next coefficient number|
Qv TR

=X it coéfficiénts
| next boundary point | print resu in two equations

-

calculation of
Q,vy Wy 2
print results

RETURN

Figure [11.19  Essential parts of computer program




tion values, and x- and y-components of the specific discharge. These values are
printed for the boundary points and one or more output grids, that are specified in
the input data. These output grids are each defined by four complex parameters:
starting point ZU1, end points ZU2 and ZU3, and the complex step parameter
(DX + iDY). as shown in figure I11.18.

In addition, for points of the boundary the position is printed after one step in time.
Before calculating the complex potential at a point of an output grid, it is first checked
whether the point is within the region or not. If not, no calculation of the complex
potential is carried out and the program passes to the next point of the output grid.
This procedure has the advantage that output grids may be defined very roughly, so
that all required information can be given to the program by a minimum of input
data. Figure III1.19 gives schematically the two relevant parts of the computer pro-
gram: The MAIN program and the subroutine OPST. A listing of the computer
program is given in Appendix 5. It is noted that for the computer program the terms
0%z
o
In the following some examples are discussed that illustrate the power of the calcula-
tion method outlined. The figures are roughly sketched by hand from numerical
output data that were obtained using an early version of the computer program. In
practise a plot program will be used together with the calculation program of Appen-
dix 5 (The listed program conforms figure I11.19). Then accurate plots can be pro-
duced automatically and the development using these programs is very easily done.
If not defined otherwise, for all examples the following dimensions are used. Length:
meters, time : days, mass : tons (1000 kg).

have been set to zero (see Chapter 16).

EXAMPLE |

Steady flow in a dike; homogeneous isotropic soil

Figure I11.20 shows the flow region. There is an impermeable revetment on the talus.
The open part of the talus is clean: there is no silt layer, so it is an equipotential line.
At some distance from the canal the flow is nearly horizontal; there a vertical equi-
potential line is used as boundary of the region. For this homogeneous isotropic soil
the coefficient of permeability is 1 m/day and the groundwater head difference between
the canal and the vertical equipotential line is 1 m. Figure II11.20 shows the flow
pattern. At the boundary the sub-division in boundary segments that was used is
indicated.

From the groundwater heads at the talus it is seen that the outflow of groundwater is
concentrated mainly at the upper zone of the open part of the talus.
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stream line

______ line of constant head
. end point of boundary segment

—> X (m)

Figure I11.20 Flow pattern in a dike.

EXAMPLE 2

Steady flow in a dike; homogeneous isotropic soil with a drain

In figure I11.21 the same dike is shown as in the first example, but here there is a drain
in the vicinity of the lower end of the revetment, possibly having been left behind
from the building phase of the dike. It can now be used to reduce the overpressures
at the revetment, for example, to make it possible for some repairs to be carried out
on it. In another situation, it would be possible that the water flowing from the vertical
line of constant head is polluted and the drain could be used to intercept the water
in order to prevent it reaching the canal.

stream line
_____ line of constant head

. end point of boundary segment

QLA

-

§ | |

i | | |0-1,

4156 ,7 ,.8,9|
0. 1

(m)|

Figure I11.21 Flow pattern in a dike with a sink.

The same boundary conditions are used as in the first example. The discharge of the
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drain is 1.0 m*/m’day (for a length of 500 m that is about 21 m?/hr).
From figure I11.21 it is seen that the polluted water is almost completely intercepted
by the drain.

EXAMPLE 3

Steady flow in a dike; homogeneous anisotropic soil

Figure I111.22 shows the same dike as in the first example, but in this case the soil is
anisotropic. The direction of the maximum coefficient of permeability has an
angle of 15° with the positive x-axis (that is, about parallel to the 1: 4 talus). The ratio
of the maximum to the minimum coefficient of permeability (the anisotropy factor) is
10.0.

stream line

______ line of constant head

. end point of boundary segment

Figure I11.22  Flow pattern in anisotropic soil.

EXAMPLE 4

Moment of non-steady flow with a phreatic line; homogeneous anisotropic soil

This example deals with the groundwater flow in a region that was rectangular in its
initial state (see figure IT1.23). At the left, right and lower parts of the region the bound-
ary is impermeable. The upper boundary is a phreatic line. In the region there is a
sink and a source.

Figure I11.23 shows the flow region and the flow pattern. The soil is anisotropic, the
maximum coefficient of permeability is 1.4 m/day, the anisotropy factor is 2.0, and
the direction of the maximum coefficient of permeability has an angle of 15" with
the positive x-axis. The storage coefficient is 0.2.

This discharge of the sink is 2.5 m*/m’day. The same discharge is infiltrated at the
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phreatic line at t =0.1day

phreatic line at t=0

—> X(m)

Figure I11.23  Flow pattern in anisotropic soil with sink and source.

source. From the specific discharge distribution along the phreatic line the alteration
of the position of the phreatic line in a step in time is found. After a period of
0.1 day, the phreatic line is raised about 6 cm above the source and the fall above
the sink is also about 6 cm.

EXAMPLE 5

Moment of non-steady flow with an interface ; homogeneous anisotropic soil with a sink
and a source in the heavy fluid and a sink in the lighter fluid

Figure I11.24 shows the flow region. There are two fluids. Left, right and lower bounda-
ries are impermeable. The groundwater head at the upper boundary is constant.

The flow pattern is given in figure III.25. The soil is anisotropic, the maximum coeffi-
cient of permeability is 1.4 m/day, the anisotropy factor is 2.0, and the direction of the
maximum coefficient of permeability has an angle of — 157 with the positive x-axis.
The density of the lower fluid is 1,025 kg/m*: that fluid contains a sink and a source,
both with the same discharge (2.5 m®/m’day). The density of the upper fluid is 1,000
kg/m?: in this fluid there is a sink with a discharge of 3.5 m?/m’day.

The upper boundary of the region is an equipotential line without silt layer.

It is seen from figure 11125 that there are groundwater head discontinuities at the
interface, caused by the density difference between both fluids. The displacement of
the interface in a step in time was calculated from the specific discharges at the inter-
face. At the end of the step in time (2 days) the rise of the interface above the source is
about 40 cm and the fall of the interface between the two sinks is also about 40 cm
(7 = 0.2). It is seen in figure I11.25 that the upper sink mainly receives water origi-
nating from the upper equipotential line boundary.
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EXAMPLE 6

Moment of non-steady flow with an interface, a seepage line and a phreatic line; inhomo-
geneous anisotropic soil with a sink and a source in the heavy fluid and a sink in the lighter

fluid

A fictive non-steady flow problem that involves together all boundary conditions
that have been discussed in Chapter 14 is given in figure I11.26. The flow region
consists of two sand layers that are both anisotropic. The soil properties are different
for both sand layers.
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Figure I11.27 Flow pattern for the problem of Figure I11.26

At the separation line between the sand layers there is a thin layer of clay. In the second
sand layer there are two fluids with different densities. In the heavy fluid there are a
sink and a source of equal discharge. In the lighter fluid there is a sink in the second
sand layer. The upper boundary of the region involves a phreatic line with precipita-
tion that ends at the talus of a canal. Perfect unimpeded streaming out of the soil
solid is not possible because there is a silt layer on the talus.

This silt layer is present at the bottom of the canal too, but there it has a greater
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resistance then at the talus. In the canal there is a fictive structure by which the water
table in the canal is higher than the lowest point of the seepage line.

The flow pattern is given in figure II1.27. It is clear from the figure that there are
groundwater head discontinuities at the interface and at the clay and silt layers. From
the specific discharges at the moving boundaries the displacements in a time interval
were evaluated, and the positions after one step in time are given in figure I11.26 by
the dotted lines (1 = n = 0.2). From the figure it is clear that there is only a small
movement of the interface. On the other hand, there is a sharp drop of the phreatic
line. This is caused by the abstraction of water at the upper sink in the second sand
layer.

EXAMPLE 7

Moment of non-steady flow with two interfaces, a seepage line and a phreatic line;
inhomogeneous anisotropic soil with a sink and a source in the salt water and a sink in
the fresh water

The regional geometry here is almost the same as in the previous example, except for
one essential difference. Instead of an impermeable lowest boundary here there is an
interface with a third fluid. That fluid is assumed to have a constant groundwater
head. The problem definition is given in figure I11.28, and the flow pattern is given in
figure I11.29. The displacements of the moving boundaries in a time interval are indi-
cated in figure I11.28 by the dotted lines.

It is remarkable that now there is a sharp rise of a part of the lower interface and the
whole upper interface.

These rises are the consequence of the abstraction of water at the upper sink in the
second sand layer. Because there is a thin layer of clay between the sand layers, and
now there is a possibility of water supply from underneath, this sink now receives
considerably less water from above. Consequently the fall of the phreatic line is less
than in Example 6.

As an illustration a part of the computer output is given in Appendix 3. The complex
distribution strengths (RCQ + i ICQ) are given in the first pages, followed in later
pages by the groundwater head (PHI), the stream function (PSI) and the components
of the specific discharge (VX and VY). The parameters KO, FI and WR are not rele-
vant in this context. This calculation was made using the sub-division of the boundary
in the segments that are indicated in figure I11.29. To illustrate the influence of the
number of boundary segments, the calculation was repeated where the number of
boundary segments was doubled. The corresponding part of the computer output
is given in the next part of Appendix 3. It is seen that for this extreme case (high
groundwater head gradients that are caused by sink and source), the differences
between the results of the two calculations are comparatively small. Apparently the
first choice of the number of boundary segments was reasonable.

138




R R AR RN
precipitation 0.05

0 phreatic line at t=0

Ce7, PR S e,
~ “phreatic line at t=1day

=18.50

= ,20
silt layer &%

Cg=40

LRI

00000000000

0

.:.0.0 X

2RLL

P=10 st

1 sand
kmax=0.67 |ayer
dir. anisotropy : + 12°

FRESH WATER

......
-------
-------------
-

P =10
Kmax =141 1

FRESH WATER dir. anisotropy : =15

t=0

interface
SALT WATER
P=1.025 T Q=-25 Q=25

I 2ndsand

a e -
Ln}?‘}’ interface at t=g

.

_____________ P=1.050

THIRD FLUID ¢=1 740

o 2 4 6 8 10 12 14 16
—>X(m) '

Figure 1128 Three fluids in inhomogeneous anisotropic aquifer

139



140

- ir;terfacel.
—_stream line
s ?ine of constant head
e end point of boundary segment

mm Silt layer
—.— phreatic line

17.0

Figure 11129 Flow pattern for the problem of Figure I11.28




EXAMPLE 8

The behaviour in time of an interface; homogeneous isotropic soil

In figure II1.30 the starting position of an interface between fresh and salt ground-
water is given by the horizontal line indicated by t < 0. This example deals with
groundwater flow in a polder aquifer. The upper boundary of the flow region consists
of semi-pervious layers which locally have a smaller resistance (¢, = 20 days instead of
¢, = 100 days). The sub-soil consists of sand, with a coefficient of permeability
of 10 m/day. To a depth of 400 m the soil is homogeneous and isotropic: at that depth
there is a very course layer (gravel or shells). As the supply of salt groundwater through
that layer is quite possible, the horizontal line at 400 m depth is assumed to be an
equipotential line. At the beginning (¢t = 0) the interface is horizontal at a depth of
200 m. This is a steady position if the groundwater head at the entire upper boundary
is +4.0 m higher than the head in the salt groundwater (0.m).
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Figure I11.30 Interface in polder aquifer.

At t = 0 a sudden fall of the groundwater head is brought about above the part
of the upper boundary where ¢, = 20 days (see figure II1.30), (reclamation: the
groundwater head is lowered from +4 to —1 m). The consequence of the reclamation
is a flow of the fresh water as well as the salt water. Figure II1.31 shows the position of
the interface between fresh and salt groundwater as a function of time.

In the calculation only half the profile was used because the problem is symmetrical.
From the figure it is clear that after some years there is salt water seepage into the
new polder, but after about 3% years the steady state has practically been reached.
The relatively high speed of the phenomenon was caused by the great groundwater
head differences (5 m between the polder and its surroundings and 1 m between the
polder and the groundwater head in the salt water at 400 m depth). To indicate the
influence of the size of the step in time, the problem was calculated twice, where the
time step size was respectively 0.4 and 0.2 year. Figure 111.32 gives a comparison for
the top of the interface and a point at 100 m from the top that does not reach the polder
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level. From the figure it is seen that there are differences, although these are relatively
small. So the choice of a time step size of 0.4 year led to a reasonable result (for that
time step size the polder received salt water seepage after 2.7 years instead of 2.9 years
for the calculation with a time step size of 0.2 years).

200 200

Figure IIL31 Position of interface in time.

—~tlyear) 10 20 _30

at=04year
—— at=0.2year
200

Figure I11.32  Influence of time step size

EXAMPLE 9

Simple half-plane flow

A simple example of half-plane flow is given in figure I11.33: end points of
boundary
-10 +10 segments

Ly in numerical

calculation:

[y=0, x==100
x=-099
X=-097
X=-093
X=-085
X=-069
X=-037
X= +037
X= +069
Xx= +085
X=+093

13 boundary segments in numerical calculation X=+097
X= +099
Figure I11.33  Simple half plane flow X= +100




The problem deals with the groundwater flow from the surroundings towards a low-
situated polder. The analytic solution of the flow problem can simply be obtained by
means of the method of Pavlovskii (conformal mapping, see Chapter 7). Figure 111.34
shows the Q-plane:

¢ Ul

Figure 111.34 Q-plane.

Using the sine transform (see Appendix 2), the relationship between z = x + iy
and Q = @ + iV can easily be found. The result is:

i
Q= 0 arccos(—z)
n

The flow was also calculated using the calculation method outlined in Chapter 17.
A comparison of the results of both calculations is given in Appendix 4. From the
tables of that Appendix it is seen that the sub-division in 13 boundary segments of
the ‘polder boundary in the numerical calculation yields very accurate results.
Including the reference equations, there were only 15 linear equations to be solved.

EXAMPLE 10

Half-plane flow

A somewhat more complicated problem is the groundwater flow from the surround-
ings towards three low-situated canals of which the water tables mutually differ. One
of the canals has a bottom on which a silt layer is present. In the half plane there are
two sinks of equal discharge, see figure 111.35. The flow pattern is given in figure I11.36.
It is seen from the figure that the water abstracted from the right sink originates merely
from the right canal and infinity. The left sink receives water from the middle canal
and infinity. From the middle and the right canals water is abstracted, while the left
canal receives water, which comes from the middle canal and infinity.
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Figure 111.36  Flow pattern for the problem of Figure 111.35
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SAMENVATTING

Dit proefschrift over berekeningsmethoden voor tweedimensionale grondwaterstroming bestaat uit drie
delen. In het eerste deel wordt de basistheorie vermeld. In het tweede deel wordt een overzicht gegeven van
de belangrijkste bestaande oplossingsmethoden. In het derde deel wordt een numerieke rekentechniek
beschreven die is gebaseerd op het gebruik van analytische functies voor het benaderen van tweedimensio-
nale stromingsbeelden (analytische functie methode).

Een formulering van randvoorwaarden wordt gegeven waarin in de praktijk voorkomende randen zoals
‘equipotentiaallijn met sliblaag’. etc. voorkomen. Bij de berekening wordt het stromingsgebied onder-
verdeeld in deelgebieden die elk constante vloeistof- en grondeigenschappen hebben. De deelgebieden
worden verbonden met behulp van aansluitvoorwaarden voor punten op de scheidingslijnen tussen de
deelgebieden.

Twee klassen van stroming in een halfvlak kunnen ook worden berekend met deze methode met als voordeel
dat het niet nodig is om op zekere afstand een schematische begrenzing aan te brengen.

Een computerprogramma werd geschreven dat gebaseerd is op de analytische functie methode. Dit
programma kan worden gebruikt voor de berekening van beelden van stationaire en niet-stationaire
stroming in gebieden van willekeurige vorm die putten en bronnen. meerdere vloeistoffen en anisotrope
inhomogene grond mogen bevatten. De invoer van het computerprogramma bestaat louter uit algemene
informatie (gegevens met betrekking tot doorlatendheid. anisotropie. dichtheid. etc) en randinformatie
(plaats en eigenschappen van de rand). De oplossingen die worden verkregen met behulp van de analytische
functie methode zijn binnen een benaderde rand exact.

SUMMARY

This thesis on calculation methods for two-dimensional groundwater flow is subdivided into three Parts.
In the first Part the basic theory is outlined. In the second Part a review is given of the most important
existing solution methods. In the third Part a numerical calculation technique is developed that is based
on the use of analytic functions for approximating two-dimensional flow patterns (analytical function
method).

A boundary condition formulation has been given that involves practical boundaries like ‘equipotential
line with resistance’, etc.

In the calculation a flow region is divided into sub-regions that all have constant properties of fluid and
soil. The sub-regions are coupled by connecting conditions for points of the separation lines between the
sub-regions.

Two classes of half-plane flow can also be calculated by this method. giving the advantage that for those
problems no schematic boundary at some distance is necessary.

A computer program was written, based on the analytical function method. This program can be used for
the calculation of steady and non-steady flow patterns in regions of arbitrary shape that may include sinks
and sources, several fluids and soil that may be inhomogeneous and anisotropic. The input of the computer
program consists only of general information (data with respect to permeability. anisotropy. density. etc.)
and boundary information (position and properties of the boundary).

Solutions that have been found by the analytical function method are exact within an approximative
boundary.
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Appendix 1: Definitions with respect to Complex Denotations

Complex numbers
The complex number z is defined by:

=x+1iy

where x and y are real numbers and i is the so-called imaginary unit that has the
following property:

iZ=—1

The real numbers x and y are respectively the real and imaginary part of the complex
number z. This is denoted by:

x = Re{z}

5 Terpl )
y = Im{z}

Complex functions
The complex function f(z) = u(x,y) + iv(x,y) is analytic when u and v satisfy the
so-called Cauchy-Riemann relationships:

= 3 q B
au ov cu ov

ox Oy dy 0x

In the mathematical literature (e.g., Wylie, 1960) this can be found more compre-
hensively. From the Cauchy-Riemann expressions by differentiation one finds:

A2 22 A2 A2

cfu %o 0%u v

5 A h T T T AL

0x*  0x0y oy Cyox
Additions yields:

~2 A

Au tu

T T —

ox*  oy*
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In a similar way one finds:

v 0% 0
Lo + e
x> oy*

So the functions u and v that satisfy the Cauchy-Riemann relationships satisfy the
Laplace differential equation. Functions that satisfy the Laplace differential equa-
tion are called harmonic functions, and when these satisfy the Cauchy-Riemann
relationships they are called conjugate harmonic functions. So an analytic function
f(z) = u(x, y) + iv(x, y) consists of two conjugate harmonic functions. Conjugate
harmonic functions (v and v) have the property that u(x, y) = C, (constant) and
t(x, y) = C, (constant) are perpendicular lines.
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Appendix 2: The Sine Transform

The sine transform has the property that a half-infinite strip is conformally mapped
upon the upper half plane (see figure A.1) according to:

w = sin(z)

Nl | @
NI IO
>
@

(¢]

Figure A.1 Sine transform

This is seen simply by:
w = sin(x + iy) = sin(x) cos(iy) + cos(x) sin(iy)
Using:

cos(iy) = cosh(y)
sin(iy) = i sinh(y)

it follows: w = sin(x) cosh(y) + i cos(x) sinh(y),

for x = + —:w = 4 cosh(y)

N x

so:Imj{w! =0
fory =0 :w = sin(x)

so : Im{w} = 0.
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For a point within the half-infinite strip:

——<x< and so : cos(x) > 0

SR

y>0 and so : sinh(y) > 0.

Then : Im{w} = cos(x) sinh(y) > 0.

S

n . .
SRS > 0) is mapped upon a point

So a point of the half-infinite strip (— .

N |

of the upper half plane.
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Appendix 3: Part of Computer Output of Example 7

Region [ is the lower region: region 2 is the middle region and region 3 is the upper
region (see figure 111.28).

Region 1

X Y

A
©)

FI RCQ

000 -.100
3.000 —.300
7.000 —.100
9.000 200

13.000 400
16.000 000
16.000 3.000
16.000 5.800
13.000 5.600
9.000 5.800
7.000 6.000
3.000 6.300
000 6.100
000 3.000

[9%)

.000 ! 482
.000 4 483
.000 J 448
.000 | 338
000 g 393
.000 A 523
.000 ! 509
.000 i 472
000 ] 931
000 : 538
.000 g 492
.000 4 508
.000 4 412
000 425

_—— 0 0 W W

(98]

W L) Wl

2
2
2
2
2
2
2
23
2
2
2
2
2
2

Initial complex potential 6.933




Region 2

X Y KO FI WR RCQ ICQ
000 6.100 23 000 000 389 289
3.000 6.300 23 000 000 377 —.003
7.000 6.000 23 000 000 465 —.146
9.000 5.800 23 .000 .000 .524 —.128
13.000 5.600 23 000 .000 485 —.185
16.000 5.800 21 000 000 587 006
16.000 9.000 21 000 000 .600 —.033
16.000 13.000 31 000 5.000 550 192
13.000 12.900 31 000 5.000 509 —.007
9.000 12.200 31 000 5.000 465 101
7.000 11.700 31 000 5.000 384 —.034
3.000 11.200 31 000 5.000 376 —.209
000 11.000 21 000 000 .585 090
000 9.000 21 000 000 352 —045
Initial complex potential 3.981 —6.148

Region 3

X Y KO FI WR RCQ ICQ
000 11.000 31 000 5.000 281 026
3.000 11.200 31 000 5.000 282 069
7.000 11.700 3 000 5.000 336 -.058
9.000 12.200 31 000 5.000 .368 —.031
13.000 12.900 31 000 5.000 324 -.150
16.000 13.000 21 000 000 347 105
16.000 16.000 21 000 000 343 —.038
16.000 19.000 22 000 000 365 064
12.000 19.000 27 .000 .000 388 —.206
8.000 18.500 12 .000 2.000 .586 —.470
6.000 17.500 11 18.500 2.000 075 272
3.000 16.000 11 18.500 4.000 —.066 =255
000 16.000 21 000 000 225 -.092
000 14.000 21 000 000 213 139
Initial complex potential 1.296 —.451
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Region 1

X } 4 PHI PSI VX VY
1.000 1.000 17.991 —.852 .008 —.063
3.000 1.000 18.020 —1.045 .001 —.077
5.000 1.000 18.036 —1.309 .041 —.106
7.000 1.000 17.918 —1:553 095 —.048
9.000 1.000 17.742 —1.536 061 065
11.000 1.000 17.612 —-1.192 —.010 A72
13.000 1.000 17.617 —.643 —.049 192
15.000 1.000 17.615 —.197 —.031 138
1.000 3.000 18.185 =.873 011 —.021
3.000 3.000 18.277 -.916 —.105 —.009
5.000 3.000 22.064 —2.027 3838.164 —1028.405
7.000 3.000 17.925 —2124 279 .028
9.000 3.000 17.368 —2.008 .268 .054
11.000 3.000 13.249 —.714 —3838.036 1028.489
13.000 3.000 17.064 —.333 —.143 .087
15.000 3.000 17:199 —.089 —.045 083
1.000 5.000 18.142 —3.382 016 .024
3.000 5.000 18.092 —3.251 015 .071
5.000 5.000 17.934 —.487 .102 .102
7.000 5.000 17.589 —-2.57 169 056
9.000 5.000 17.204 —.162 .162 .012
11.000 5.000 16.957 -.17 .056 —.005
13.000 5.000 16.934 -.124 =023 037
15.000 5.000 16974 007 -.032 046




Example 7:
The number of boundary segments is now doubled.

Region 1

X NY KO FI WR RCQ 1ICQ
000 100 23 000 000 747 593
1.500 -.200 23 000 000 792 401
3.000 --.300 23 .000 000 733 353
5.000 200 23 000 000 52 307
7.000 -—.100 23 000 000 730 349
$.000 050 23 .000 .000 720 315
9.000 200 23 000 000 681 163
11.000 300 23 000 000 655 —.009
13.000 400 23 000 .000 650 —.439
14.500 200 23 000 000 608 -.635
16.000 000 21 000 000 826 083
16.000 1.500 21 .000 000 .852 —-.074
16.000 3.000 21 .000 .000 850 -.196
16.000 4.400 21 000 .000 825 -.381
16.000 5.800 23 .000 000 727 593
14.500 5.700 23 .000 000 758 457
13.000 5.600 23 000 .000 S14 271
11.000 5.700 23 000 .000 815 234
9.000 5.800 23 .000 .000 843 138
8.000 5.900 23 .000 .000 842 088
7.000 6.000 23 .000 000 809 039
5.000 6.150 23 .000 000 801 - 089
3.000 6.300 23 .000 .000 832 -—.099
1.500 6.200 23 000 .000 825 262
000 6.100 21 000 000 743 323
000 4.550 21 000 000 748 105
000 3.000 21 000 000 752 101
000 1.450 21 .000 000 741 - 308
Initial complex potential —.602 11.851




Region 2

X Y KO FI WR RCK ICQ
000 6.100 23 000 000 520 479
1.500 6.200 23 000 000 538 329
3.000 6.300 23 000 000 560 101
5.000 6.150 23 000 000 565 -.053
7.000 6.000 23 000 000 601 -.151
8.000 5.900 23 000 000 .608 -.194
9.000 5.800 23 000 000 630 173
11.000 5.700 23 000 000 617 171
13.000 5.600 23 000 000 632 —.173
14.500 5.700 23 000 000 624 -.312
16.000 5.800 21 000 000 751 131
16.000 7.400 21 000 000 776 002
16.000 9.000 21 000 000 177 058
16.000 11.000 21 000 000 38 193
16.000 13.000 31 000 5.000 668 409
14.500 12.950 31 000 5.000 683 209
13.000 12.900 31 000 5.000 610 142
11.000 12.550 31 .000 5.000 648 105
9.000 12.200 31 000 5.000 636 163
8.000 11.950 31 000 5.000 630 138
7.000 11.700 31 000 5.000 573 -.001
5.000 11.450 31 000 5.000 573 —.099
3.000 11.200 31 000 5.000 561 -.244
1.500 11.100 31 000 5.000 .549 =373
000 11.000 21 000 000 A75 186
000 10.000 21 000 000 783 078
.000 9.000 21 000 000 761 —.027
.000 7.550 21 000 000 139 -.188
Initial complex potential -.196 -8.373
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Region 3

X Y KO Bl WR RCQ 1CQ

000 11.000 31 .000 5.000 325 071
1.500 11.100 31 .000 5.000 333 -.008
3.000 11.200 31 000 5.000 328 - 052
5.000 11.450 31 000 5.000 337 —-.109
7.000 11.700 31 .000 5.000 .367 —-.082
8.000 11.950 31 .000 5.000 378 -.079
9.000 12.200 31 000 5.000 388 -.090

11.000 12.550 31 000 5.000 373 —.080
13.000 12.900 31 .000 5.000 338 —.170
14.500 12.950 31 .000 5.000 327 —.226
16.000 13.000 21 .000 .000 392 153
16.000 14.500 21 000 000 398 065
16.000 16.000 21 .000 000 396 -016
16.000 17.500 21 000 000 385 120
16.000 19.000 22 000 .000 412 133
14.000 19.000 22 000 000 431 --.020
12.000 19.000 22 000 000 449 —.186
10.000 18.750 22 000 .000 445 —.320
8.000 18.500 12 .000 2.000 688 --.445
7.000 18.000 12 .000 2.000 696 —.628
6.000 17.500 11 18.500 2.000 030 -433
4.500 16.750 11 18.500 2.000 .004 —.318
3.000 16.000 11 18.500 4.000 —.128 —.283
1.500 16.000 11 18.500 4.000 —-.125 260

000 16.000 21 000 000 2317 112

000 15.000 21 .000 000 237 —-.131

000 14.000 21 000 000 231 - 154

000 12.500 21 000 000 225 —.193

Initial complex potential 199 061




Ru/mn 1

X Y PHI PSI VX VY
1.000 1.000 17.968 —1.041 011 —.056
3.000 1.000 17.993 —1.207 —.003 067
5.000 1.000 18.013 1.443 037 —.096
7.000 1.000 17.898 1.659 092 —.039
9.000 1.000 17.721 —-1.616 059 072

11.000 1.000 17.596 —1.244 —.010 186

13.000 1.000 17.589 —.678 -.053 194

15.000 1.000 17.591 211 —.028 142
1.000 3.000 18.110 1.048 -.005 —.011
3.000 3.000 18.215 1.064 —.110 000
5.000 3.000 22.006 -2.150 3838.159 —1028.396
7.000 3.000 17.871 -2.221 275 037
9.000 3.000 17.317 —2.082 265 063

11.000 3.000 13.198 765 —3838.037 1028.497

13.000 3.000 17.012 -.363 —.143 095

15.000 3.000 17.143 —-.096 -.043 092
1.000 5.000 18.044 -3.549 014 038
3.000 5.000 17.996 -3.387 011 082
5.000 5.000 17.846 —.596 097 110
7.000 5.000 17.504 —.343 165 065
9.000 5.000 17.126 225 158 018

11.000 5.000 16.880 -.218 055 001

13.000 5.000 16.853 —152 —-.023 .045

15.000 5.000 16.889 .003 —.030 .059
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Appendix 4: Comparison of Exact and Approximative Solution of

Example 9
¢
—X
approximated exact

0. 0.0000 0.
0.05 0.0001
0.10 0.0002
0.15 0.0004
0.20 0.0006
0.25 0.0003
0.30 0.0003
035 0.0003
0.40 —0.0014
0.45 —0.0014
0.50 —0.0006
0.55 0.0005
0.60 0.0015
0.65 0.0021
0.70 —0.0005
0.75 0.0006
0.80 0.0010
0.85 0.0003
0.90 0.0006
0.95 —0.0000
1.00 0.0174 0.
1.05 0.1023 0.1002
1.10 0.1428 0.1412
215 0.1736 0.1722
1.20 0.1994 0.1981
1:25 0.2218 0.2206
1.30 0.2419 0.2408
135 0.2602 0.2591
1.40 0.2770 0.2760
1.45 0.2927 0.2917
1.50 0.3074 0.3063
1.55 0.3212 0.3202
1.60 0.3342 0.3333
1.65 0.3467 0.3457
1.70 0.3585 0.3575
67 0.3698 0.3689

¢
—X
approximated exact

1.80 0.3806 0.3797
1.85 0.3911 0.3901
1.90 0.4011 0.4002
195 0.4108 0.4099
2.00 0.4201 0.4192
2.05 0.4291 0.4282
2.10 0.4379 0.4370
215 0.4464 0.4455
220 0.4546 0.4537
225 0.4626 0.4617
2.30 0.4704 0.4695
2.35 0.4780 0.4771
2.40 0.4854 0.4845
2.45 0.4926 0.4917
2.50 0.4996 0.4987
255 0.5065 0.5056
2.60 0.5132 0.5123
2.65 0.5197 0.5189
2.70 0.5261 0.5253
278 0.5324 0.5316
2.80 0.5386 0.5377
2385 0.5446 0.5437
2.90 0.5505 0.5496
295 0.5563 0.5554
3.00 0.5620 0.5611
3.05 0.5667 0.5667
3.10 0.5730 0.5721
3.15 0.5784 0.5775
3.20 0.5837 0.5828
325 0.5888 0.5830
3.30 0.5939 0.5931
3.35 0.5990 0.5981
3.40 0.6039 0.6031
3.45 0.6088 0.6079
3.50 0.6135 0.6127
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¢

approximated

exact

0.6182
0.6229
0.6275
0.6320
0.6364

0.6408
0.6451
0.6493
0.6535
0.6576

0.6617
0.6658
0.6697
0.6737
0.6775

0.6314
0.6851
0.6889
0.6926
0.6962

0.6998
0.7034
0.7069
0.7104
0.7139

0.6174
0.6220
0.6266
0.6311
0.6355

0.6399
0.6442
0.6485
0.6527
0.6568

0.6609
0.6649
0.6689
0.6728
0.6767

0.6805
0.6843
0.6881
0.6917
0.6954

0.6990
0.7026
0.7061
0.7096
0.7130

¢

approximated

exact

0.7173
0.7206
0.7240
0.7273
0.7305

0.7338
0.7370
0.7401
0.7433
0.7464

0.7494
0.7525
0.7555
0.7585
0.7614

0.7644
0.7673
0.7701
0.7730
0.7758

0.7786
0.7814
0.7841
0.7869
0.7896

0.7164
0.7198
0.7231
0.7264
0.7297

0.7329
0.7361
0.7393
0.7424
0.7455

0.7486
0.7517
0.7547
0.7577
0.7606

0.7635
0.7664
0.7693
0.7722
0.7750

0.7778
0.7806
0.7833
0.7860
0.7887




' 4

approximated exact
0. 0.5000 0.5000
0.05 0.4839 0.4841
0.10 0.4678 0.4681
0.15 0.4517 0.4521
0.20 0.4356 0.4359
0.25 0.4195 0.4196
0.30 0.4034 0.4030
0.35 0.3873 0.3862
0.40 0.3695 0.3690
0.45 0.3505 0.3514
0.50 0.3316 0.3333
0.55 0.3126 0.3146
0.60 0.2936 0.2952
0.65 0.2747 0.2748
0.70 0.2544 0.2532
0.75 0.2288 0.2301

W

—X

approximated  exact
0.80 0.2033 0.2048
0.85 0.1777 0.1766
0.90 0.1417 0.1436
0.95 0.0988 0.1011
1.00 0.0000 0.
1.05 0.0000 0.
1.10 0.0000
L5 0.0000
1.20 0.0000
1.25 0.0000
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Appendix 5: Listing of Computer Program

O DN WNE WN -

4y
4s

37
48
49
5N

-
S

52
532
o4
56

57
58

160

C*

105

14y

IMPLICIT COMPLEX (C,2)

DIMENSION TEXT(54),AA(1)

INTEGER NS3(5),NSU4(S)

COMMON /CN1/ZPA(5,10),2UAt5,5,4),20A(5),2RA(5,100,1),0T,ROZ,FIZ,
EFIA(6)GA(5,7),QPA(5,10),WRA(5,100,1),NG,POR(S),

ENA(5,3,1) yNGA(5,5,1),IFA(5,130,1),KRA(5,100,1),IRA(5,100,1),NFI
COMMON /CN2/BP(5U0) 4NV

EQUIVALENCE (IND,AA(1))
CANIF(CV,AN,AH)ZCEXP((0sDy1.0)*AH)*CMPLX((REAL(CV)*SQRT(AN)),
EATIMAGICV))

READ

EPS=iN,O%%(-4)

CIZ(Ledel.D)

PI=3.,1415926535

READ(5,145)TEXT

wRITc(o,146)TEXT

WRITE(b6,142)
READ(S,101)NG,NFALNFI,DT,R0Z2,FI2

NS1=NC

NG=TARS(NG)

NS2=NFA

NFAZIA3S(NFA)
IF(NFINE3IREAD(S,1U2)(FIA(I)ZIZ1,NFI)

00 1.5 IG=1,NG

READ(S54176) INA(IGyJyl)yd=1,3)4(NGA(TIGyJy1)yJ=1,4NG)
NS3(1G)=NA(IG,1,1)
NACIGy1,1)=TARSINA(IG,1,y1))
READ(S5,137)(GA(IGyJ)yJ=1,4),POR(IG),ZIALIG)
NS4 (Ir) =1

IF(GA(IG,y1)ebLToaNeINSU(IG)Z-1
GA(IC,y1)=ABS(GA(IG,1))

NPINA(IG,2,1)

IF(NPeGTe MIREAD(S5y118) (ZPA(TIG,J)4CGPA(IG,yJ) yJZ14NP)
NUSZNA(IGy3,1)

IF(NUFCLT)GOTO 175

READ(S5,104) ((ZUA(IG,J,y1),I=21,4),J=1,NU)
CONTINUE

NFAMZMFA-]

DO 1.9 IG=1,NG

NRZNA(IG,1,1)

READ ECUNDARY AND INSERT EXTRA BOUNDARY SEGMENTS

00 117 TRI1,AR

P 5 =

ISURSTLFA®(IR=-1)+1
REAN(5,117)ZRA(IG,ISURS,1) yKRA(IG,ISUBS,1),IFA(IG,ISUBS,1),
WRA(IG,ISUBS,1),IRA(IG,ISUBS,1)
IF(IKk.FCs1)GOTO 113
IF(IRGT41)ISHBMZISUBS-NFA
IF(NFALEQ.1)GCTO 113
CDZ=(ZPA(TG,ISUBS,1)-ZRA(TG,ISUBM,1))/NFA
U0 116 J=1,NFAM

ISUSMJZTISUBM+J
iRA(IG,ISUEMJ,1)=ZRA(IGC,ISUBM,1)+J%CDZ
KRA (IC,ISUBMJ,1)=KRA(IG,ISURM,1)

B




59 IFA(IG,ISUBMU,1)=TIFA(IG,ISUBM,1)

o0 WPA(LGyISUBMU,1)=WRA(IG,ISUBM,1)

6l IPA(IG,ISUBMJU,1)=IRA(IG,ISURM,1)

62 119 CONTIMUE

63 IF(eNOTo(IREQO«NReAND+JT.EQsu))IGOTO 113

o4 ISUBMINFA®(NR-1)+1

65 ISuBs=l

66 JT=1

67 GO0TO 141

6R 113 CONTLNUE

69 NA(CIGy141)=NFAXRNR

n IF(NFALEQ.1)GOTO 149

[ IGA=IG+103

72 IGA=MOC (IGA,2)

T3 DO 141 IGB=1,NG

T4 IHZNGA(IG,IC8B,1)

75 IF(IH«ECaN)GOTO 141

76 IHC=NFA%(IH=-1)+1

&g IF(IGALNELO)IHC=TIHC+NFA-1

78 NGA (1G,IGB,1)=IHC

79 141 CONTIMUE

&1 199 CONTINUE

81 C

82 (o wRITE ~FESULT OF INPUT DATA (INCL. GENERATED EXTRA SEGMENTS)
32 . 4

84 IF(NS1.CT.u)GCTO 138

85 WRITL(Oy1D1ING,NFAZNFIZNT,ROZ,FIZ

86 IF(NFTIONE. JIWRITE(6,172)(FIA(I),ZIZ14NFI)

87 L0 13f IGZ1,N6

38 WRITL(641796)(MA(CTIG,Jy1)yJ=143)3(NCACIGyJy1),4JZ1,NG)
89 WRITE(E )1 'T)I(CACLGyJ) yJ=1,y4),POP(IG),Z0A(IG)
9n NPZNA(IG,2,1)

71 IF(NPCTeMIWRITE(6,108) (ZPA(IG,yJ)yQPA(IG,yJ)yJ=1,NP)
92 NUZNA(IG,3,1)

93 IF(NULECL/)GOTO 138

Su WRITL(54174) ((ZUA(CIGyJyI)yI=Z1,4),J21,NU)

9% 132 CONTINUE

96 NVZ

9T DO 1.9 IG=1,yNF

98 GA(IG,4)=GA(IG,4)%xPI/18".0

99 NRZNA(IG,1,1)
1u0 NVINV+ ¥NR+2
101 IFINS1eLTeC)WRITE(6,)110)(ZRA(IGyIR,1),KRA(IG,IRy1),
1.2 EIFACLIE, TRy 1)y WRA(IGyIP,1),IRA(IG,IRy1),IRZ1,NR)
iR 139 CONTINUE
luy WRITL(6,142)
155 Cc*
106 NV2INVENV
107 CALL RTODA(AAC(L)4NV2,IER)
1J8 IF(IcPeNZ«J)WRITE(6,971)IER
1.9 IF(IEPNELD)STOP
1 CALL OPSTU(AA(IND))
111 (2
112 CALL SIMQ(AA(IND),BB,yNV,4KS)
113 (e
114 c
315 & WRITE REGION AND BOUNDARY DATA AND SOLUTION OF EQUATIONS
116 (5
i 1 4 IF(NS2.6T.0)G0TO 121
118 D0 121 IG=1,NG
19 NTZN
120 NR=NA(IG,1,1)
121 NPZNA(IG,2,1)
122 AH=GA(IG,4)*17J.J/P1
123 IM1Z1
124 IF(IG.ZC.1)GOTO 127

161




125
126
127
128
129
130
131
132
3133
134
135
136
137
138
139
147
141
142
143
144
145
146
147
148
149
152
151
152

153
154
158
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
33
174
175
176
177
178
179
180
181
182
183
184

185
186
187
188
189
150
191

162

C

€

128
127

122

124

121

JZIG-1

DO 128 I=1,J

IMIZIV142%NA(I,1,1)42

CONTINUE
WRITL(6,120)16,6A(16,1),GA(16,2),GA(IG,3),AH,NP
NT=NT+b

IF(NF.EC.T)GOTO 122
WRITE(64123)(ZPA(IG,J)4QPA(IG,J)yJ=14NP)
WRITE(E,131)

NT=NT+o

KRITE(6,125)

NT=NT+3

00 124 IRZ1,NR

IMNZIM1+»IR-]

IFO-IFA(IG,IR,1)

IF(IFO.EG.J)FI=N.TO
IF(IFO.MEO)FI=FIA(IFO)

ISUBSZIM+NR
WRITC(E£4126)ZPA(IGyIR,1),KRA(IG,IP,1),FI,WRA(IG,IR,1),BB(IM),BBI(
EISUBS)

NT=NT+1

IF(NT.CO0.5J)WRITE(6,130)16
IFI(NT.cCaSUINT=Z]

CONTINUE

ISUBSTIML +2%NR
WRITC(6,129)2P(ISUBS),,BRIISUBS+1)
CONTINUE

BOUNDAKY OUTPUT

DO 1il1 TIG=1,NG

NT=9

NR=NA(IG,1,1)
ANZGA(IG,3)
AK=GALIG,2)/SQRT(AN)
AH=GA(IG,4)

JAZ]
IF(NS4(IG).LT.UIGOTO 132
DO 132 IR=1,NR
IF(NS3(IG).LT.2)IGOTO 144
KOZKRA(IG,IR,1
IF(eNOTo(KO,ENDs22.0R.K0.EQ.23))G0OTO 132

144 IF(JALEC.IMRITE(6,133)16

132

JAZ]

ZO0=ZRA(IG,IP,1)
IF(IR«LT«NR)ZPZZRA(IG,IR+1,1)
IF(IREQaNR)IZP=ZRA(IG;1,1)
2=0.5%(20+2P)

CO=CUF(IG,Z,u)
CO=CMPLX((REAL(CO)/AK),AIMAG(CO))
CV=COF({16,Z,1)
CV=CANIF(CV,AN,AH)
CV=-CONJG(CV)
IN=Z+CV*DT/PORI(IG)
WRITE(6,134)2,C0,CV,42ZN
NT=NT+]
IF(NT.GE«25)WRITE(6,133)1I6
IF(NT.GE.25)INT=T

CONTINUE

GRID OUTPUT

NU=NA(16,3,1)
IF(NU.EC.0)GOTO 111
DO 116 J=1,NU

NT=9
WRITE(6,112)16




192 ZUL1=ZUA(IG,J,y1)

193 2U2=2UA(IG,J,2)

194 ZU3=ZUA(IGyJ,3)

195 ZUBZZUA(IG,Jdy4)

196 IF(CARS(ZU2-ZU1).GT.EPS)CR=(ZU2-2U1)/CABS(ZU2-2U1)
197 IF(CARS(ZU2-ZU1).LT.EPS)ICR=(ZU3-ZU2)/CARS(ZU3-ZU2)
198 RECR=REAL (CR)

199 AICRZAIMAG (CR)

200 DX=REAL (ZU4)

20 DY=AIMAG(ZUY)

202 IF(AGS(RECR).LT.EPSICST=CI*DY

203 IF (ABS(RECR).GE.EPS)CST=CMPLX (DX, (DX*AICR/RECR))
234 IF(ABS(DX).LT.EPSINX=1

205 IF(AES(DY).LT.EPSINY=Z1

246 IF(AES(DX)oGT.EPS.AND.CABS (ZU2-ZU1) +GELEPS)
207 ENX= ((REAL (ZU2-ZU1)+EPS) /DX)+1

2u8 IF(ABS(DX)eGT.EPS.AND.CABS (ZU2-2U1) 4L T.EPS)
209 ENXZ ( (REAL (ZU3-ZU2)+EPS) /DX)+1

210 IF(ABS(DY)GT.EPS.AND.CABS(ZU3-2U2).GT.EPS)
211 ENYZ ((AIMAG(ZU3=-ZU2)+EPS) /DY) +1

212 IF(ABS(DY).GT.EPS.AND.CABS(ZU3-2U2).LT.EPS)
213 ENYZ ((AIMAG(ZU2-ZUL1)+EPS)/DY)+1

214 ZU=ZU1-CST-CI*DY

215 DO 117 IY=Z1,NY

216 ZU=ZU+CI*DY

217 DO 118 IX=1,NX

218 ZUzZU+CST

219 H=0eu

220 DO 135 IRZ1,NR

221 Z0=ZRA(IG,IR,1)

222 IF(IRNELNR)ZP=ZRA(IG,IR+1,1)

223 IF(IR.EG.NR)IZP=ZRA(IG,1,1)

224 JAZO

225 IF(CAPS(ZU-20) LE.EPS)JAZ]

226 IF(JAGEC.1)ZUZZU+(ZP=-20)/CABS(ZP-20)%2,0%EPS
227 IF(CABS(ZU-ZP)  LELEPS)JAZ2

228 IF(JALEQ.2)ZUSZU+(Z0~-2P)/CABS(Z0-2ZP) %2, 0%EPS
229 IF(AES(AIMAG(CARS(ZP-Z20)/(2P=-20)%(ZU-20))) .LT.EPS
230 €.ANDJCARS (ZU-ZP) .LT.CABS(ZP-20)

231 E+ANDJCABS (ZU-Z0)«LT.CABS(ZP=-Z0))GOTO 143

232 HZH+AIMAG (CLOG (CABS(20-2U)/(20-2U)%(ZP=-2U)))
233 135 CONTINGE

234 IF(AbS(H=-2.N%PI).GT.0.01)GOTO 118

235 143 CO=COF (IG,2U,1)

236 CO=CMPLX((REALI(CO)/AK) ,AIMAG(CO))

237 CVZCUF(IG,2ZUy1)

238 CVZCANIF(CV4AN,AH)

230 CVZ-CONJG (CV)

240 NT=NT+1

241 WRITE(64114)2U,C0,CV

242 IF(JALEQ.1)ZUSZU-(2ZP-20)/CABS(ZP-20)%2,1%FPS
243 IF(JALEC.2)ZUZZU~-(20~2P)/CABS(Z0=-ZP)*2,N*EPS
244 IF(NT.EC«25)WRITE(6,112)1IC

245 IF(NT.ECe25)INT=D

246 118 CONTINUF

247 2UzZU-hX*CST

248 117  CONTINUF

249 116 CONTINUE

250 111  CONTINUF

251 C**

252 sToP

2583 101 FORMAT(I5,2I9,F13.3,2F9.3)

258 102 FORMAT(8F9.3)

258 104 FORMAT(8F9.3)

256 106 FORMAT(IS5,7I9)

257 107 FORMAT(S5F9.3/2F9.3)

258 108 FORMAT(3F9.3)

259 110 FORMAT(2F9.3,15,19,F13.3,15)

260 112 FORMAT(®1°,5X, "REGION®,T4///6Xy X" 18Xy "Y" y 11X, "PHI" 46X, 'PSI",9X,
261 EPUXT 3 IX,*VY*//)

163




262
263
264
265
266
267
268
269
270
271
272
2713
274
275
276
2717
278
279
280
281
282
283
284
285
286
287
288

289
290
291
292
293
254
295
296
297
298
259
3.0
341
332
303

345
3.6
Z37
3.8
349
310
313
312
313
314
1S
316

114
120

123
131
125
126
130

129
133

134
142
145
146

FORMAT(® *,2F943,3Xy2F9.3,3X,2F9.3/)
FORMAT(*1°,5X,"REGION®,T4,7X, RO =*,FB843/23X,"AK =*,F8.3/23X, AN =
E°yFB843/23Xy3"AH ="yFB43/23X4°*NP =",14/777)

FORMAT(SX 4 *XP* 47Xy YP* 47X, *QP*//(3F9.3))

FORMATL// /)

FORMAT(SX 4 *X*,8X, 'Y y7X, "KO",8X,*FI*,7X, "WR"*,10X, *RCQ*,6X,"ICC*//)
FORMAT(2F943,3X,13,3X,2F9.3,3X,2F%.3)

FORMAT(*1"°',5X, "REGION®yI4,4X, "CONTINUED"*//5Xs"X"48X,*'Y"*,7X,"K0"*,8X
Ey'"FI®y7X, "WR"*,9X,"RCQ*,6X,'ICQ"//)

FORMAT(/21X,*INITIAL COMPLEX POTENTIAL *,2F9.3)

FORMAT(*1 ', "REGION",I4///6Xy X" 98Xy Y "y11X, PHI"y6X,"PSI"*,12X,
EVUXT 5K 3 VY Vg 13X 5 XN s T Xy YENL L)

FORMATIY *,2F943,3Xy2F9e3,3Xy3Xy2F943,3%,43X%X,2F9.37)

FORMAT('1")

FORMAT(18A4)

FORMATU("1°//7/72(S5XyTU(LH®)/) 33(5X, " %", T2X,*%*/),
ES5X,***,5X,*"MOTGRO : MODEL FOR TwO-DIMENSIONAL GROUNDWATER®,
&% FLOW 9%y t%%Y
E5X,y"%*, 17X, "BASED ON ANALYTICAL FUNCTION METHOD®,17X,°'%"'/
E3USX "% 3 T2Xy "%/ ) 3 2(5XTUCLIH®) /) g 2(5X, "%, 72X, " **/),
E3(SX,) "% ) 1BAY,"*°/),2(5X, "%, T2X,"*"/),5%, 74 (1Hx]})

901 FORMAT(® TER=",I3,7X,'FOUT BIJ HET DYNAMISCH DECLAREREN"®

(el

104
Cx

€/15X,*21t DOCUMENTATIE VAN REQDA'//)
END

SUBRCQUTINE OPST(AA)

IMPLICIT COMPLEX (C,2)

LOGICAL LJO

OIMENSION AAC(1)

COMMON /CJ1/ZPA(5410)4,ZUA(5,5,4),20A(5),ZRA(5,100,1),0T,R0Z,FIZ,
EFTA(6),GA(S5,7),0PA(5,1U),WRA(5,107,1),NG,POR(S),
ENA(S5,3,1),NGA(S5,5,1),IFA(5,100,1),KRA(5,100,1),IRA(5,100,1),NFI

COMMUN /CN2/BR(500) 4NV

CANF (Zy AN, AH) ZCMPLX(REAL(Z*CEXP(=(0.051.0)%AH) ), (SQRT(AN)*AIMAG(
LZ*CEAP(-(Ne0,1.7)%AH))))

CANIF(CV, AN AH)ZCEXP((0e0y1e0)%AH)*CMPLX((REAL(CV)*SQRT(AN)),
LAIMAG(CV))

CI=(ueuyle)

00 10l I=1,4NV

BR(I)=7.0

DO 1u2 J=1,NV

ISUBS=(J=-1)%NV+I

AA(TISUES)ZU.J

CONTINUE

CONTINUE

00 103 IG=1,NG
REGTIuUN

Jiz1

IGB=IG

NRZNA(TC,1,1)

NRBIZNR

NPZNA(IGy2,1)
ROZGA(IG, 1)
AK=GA(IGy2)/SCRT(GA(IG,3))
AN=GA(IG,3)

AHZGA (TG, 4)

M1z

IF(IG.EQC.1)GOTO 118
J=I16-1

00 1ub I=Z1,J
IMIZIN]#2%NA(TI,1,1)+2
CONTINUE




33n
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

357
358
359
300
361
302
363
304
365
366
367
368
369
370
3%l
312
b .
374
375
376
S TT
378
379
380
3e1
362
333
Jey
385
386
387
358
389
39N
391
392
393
394
398
396
3917,
398

136

121

DO 1uE IRZ]1,NR
BOUNUARY-SECTTON

IMZIM1¢2% (IR-1)
IGCZIRA(IG,IR,1)
IF(IGC.EC.UIGOTO 1U6
ROC=GA(IGC, 1)
AKC=GALIGC,2)/SO0RTIGALIRC,3))
ANC=GA(IGC,3)
AHC=GA(IGC,4)
NPC=NA(TIGC,2,1)
WRZWrRA(IG,IR,1)
IFOSIFA(IG,IR,1)
IF(IFONE.JIFIO=FIA(IFOQ)
KOZKrA(IG,IRy1)
Z0=ZRA(IG,IR,1)
IF(IReLT«NR)IZPZZRA(IG,IR*1,1)
IF(Ix«FQuNR)IZPZZRA(IG,1,1)
22 1e5%(2042ZP)

CDZ=.P-20

DX=PEALICD2)

DY=AIMAC(CD2)

DL=CABS(CD2)

OP=2,N=DX*DY
DVZDX*%2-DY**2

EQUATIONS
J=ol
RIGHT-HAND AND OMEGA-ZERQ

LJUZ(KC.NE.21.AND.JD.EQ.D)

IF(LJYIZFI=2040.75%(2P=20)

FIlZues

FTo=qls

IF(KUefCol11)FIL=RO%FIO

IF(KUeECa1240ReK04EQe22+0P KOWECL23.ANDJ*(IGB-IGC)GT.NIFI1=JU*RO%
EAIMAG(Z)

IF(KO«EQa23.ANDIGC.EQ.O)FILI=FI1+R0OZ*(FIZ-AIMAG(2))
IF(KUeECa12.0ReKO0WEQa22.0RKOWECL23.ANDJ*(IGB-IGC)GT.NIFI2=J%*RO*
FAIMAG(ZP=-20)/CABS(ZP=-20)
IF(KOet0e23.ANDIGCLEO.")FI2=FI2-ROZ*AIMAG(ZP-20)/CABS(ZP-20)
ALL=Jef

Je

IF(eNOTea(KOWENe2140RaJX(IGB-IGC) oL T.0)IALLIZJ*RO/AK
IF(KGe70e11a0PaK0aEQe1240ReK0eEQe31eANDJ*(IGB-IGC)eGTo0OIAL2=((U+]
£)/2)%RG%*uwR

IF(KUEQ.21)AL2=1. )

IF(J*(IGB-ICC)eLTel)AL2=URJ

AL3=uxAL1

AL4=aAlLc

IF(J*(IGB-IGC)LTaNALYZY

CPI=CPF(IGB,y2,U)

CP1=CPF{IGB,Z,1)

CP2=CPF (1IGByZ,y2)

CP1=CANIF(CP1,AN,AH)

CP2=CANIF(CP2,ANyAH)

IF(«NOTLLJN)IGOTO 121

CPJJ=CPF(IGP,ZFT,M)

CP11=CPFUIGP 4ZF3y1)

CP17=CANIF (CP1 1,AN,AH)
BR(TM)ZRB(IM)+FTI1-AL1*RFAL(CP i) -AL2/DL*(DY*REAL(CP1)+DX*AIMAG(CP1)
£)

BB(IM+1)=B(IM+1)+FI2-AL3/DL*(DX*REAL(CP1)~-
EOY*AIMAG(CPL))-ALU/Z(DL**2)%(DP*REAL(CP2)+DV*AIMAG(CP2))
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399

4.1
4.2
443
44
4 5
406
4.7
4 !8
4.9
417
411
412

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
4ye
449
450
451

(-]
Le

456
457
458

459
461
461
462
463
464
465

166

119
Cx*x

122

123

117

112

114

115

IF(LJU"eANDsJEQe1)IMNTIM1+2%NRB

IF(LJ )BB(IM 1=BB(IM))+FI1-AL1*REAL(CPI0)-AL2/0L*({DY*REAL(CP1D)+
LOX%AIMAG(CP 1))
IF(LJUN)ISUBS=(IM1+2%xNRB-1)%NV+IMY
IF(LJN)AA(ISURS)I=ALL
TSURLS(IM142%NRB-1)*NV+IM
AA(ISUrS)=ALL
IF(eNCTelJeEQelsAND+sIPFCNR))IGOTO 110
20=Z.A(1G)
BB(IM+5)=-AIMAG(CPF(IG,Z23,U))
ISUBSS=(IM1+42%NR)*NV+IM+3

AA(ISUSS)IZ1.T]

CONTINUE

DO 112 IRB=1,NRB
ZOV=ZRA(IGB,IRB,1)
IF(IRB.LT.NRB)ZPV=ZRA(IGB,IRB+1,1)
IF(IRB.EQ.NRB)ZPV=ZRA(IGB,1,1)

LEFT-HAND

CAO=CAF(Z,20V,ZPV,AN,AH,D)
CA1=CAF(Z,Z0V,ZPV4ANyAH,1)

CA2=CAF (Z,2Z0V,2PV,AN,AH,2)

CALR=CANIF(CAL1,AN,AH)

CA1S=CANIF((CI%®CALl),AN,AH)

CA2R=CANIF(CAZ2,AN,AH)

CA2S=CANIF((CI*CA2),AN,AH)

IF(.NOT.LJO)GOTO 122
CAQN=CAF(ZF0,Z0V,ZPV,AN,AH,N)
CA19=CAF(ZFQ,Z0V,ZPVyAN,AH,1)
CA1PR=CANIF(CAL1N,AN,AH)

CALAS=CANIF ((CI*CA10),AN,AH)
ISUBSZ(IM1+IRR=2)%NV+IM
AA(ISUES)ZAL1*REAL(CAG)+AL2/DL*(DY*REAL(CALIR)+
EDX*AIMAG(CALIR))

ISUBSZ(IM1+IRBR~2+NRB)*NV+IM
AA(ISUES)ZAL1I*REAL(CI®CAD)+AL2/DL*(DY*REAL(CAL1S)+
EOX*AIMAG(CALS))

ISURSZ(IM1+4IRP~2)%NV+IM+]
AA(TISUES)=ZAL3/0L*(DX*PEAL(CALIR)-DY*AIMAG(CALR))+ALY/
E(DL*%2)*(DP*RFAL(CA2R)+DV*AIMAGI(CA2R))
ISUBS=(IM1+IRE~2+NRB)*NV+IM+1
AA(ISURS)ZAL3/DL*(DX*REAL(CA1S)-DY*AIMAGI(CAL1S))+
EALY/ (DL*%2) % (DP%REAL(CA2S)+DV*AIMAGI(CA2S))
IF(«hNOT.LJUIGOTO 123

ISUBS=(IM1+IRB~2)%NV+IM"
AA(CTSUXS)ZALI*REAL(CATNQ)+AL2/DL*(DY*REAL(CAL1O0R)+
EOX*AIMAGC(CALUR))

ISUBSZ(TM1+IRB~2+4NRE)%NV+IMT
AA(ISUGS)TALLI*RFAL(CI*CAID)+AL2/DL*(DY*REAL(CAL10S)+
LUX*AIMAG(CAL JS))
IF(eNCTo(JeECeLsANDIRLEQ.NR)IGOTO 113
CALZCAF(Z277,Z0V 7PV 4AN,AH,N)
ISUBSZ(IML1+IREB~2)%NV+IM+3

AACISULS)ZAIMAG(CA))
ISURSZ(IM1+IRL~24NR)&NV+IM+3
AA(ISUSS)ZAIMAG(CI®*CAN)

CONTINUE

CONTINUE

IF(J.ECL1)GOTO 114

J=1

60TO 115
IF(enOTo(KOsEQa3140R.K0OsEQe23.AND.IGC.NE.D))GOTO 116
J=-1




466 I6GB=IGC
467 IGC=IH
468 RH=RO
469 RO=ROC
470 ROC=KH
471 RH=AR
472 AK=AKC
473 AKC=rH
474 RHZAN
47s ANZANC
476 ANC=kH
417 RHZAH
478 AHZAHC
479 AHC=rH
4N IH=NP
481 NPZNPC
452 NPC=IH
453 NRB=NA(IGR,1,1)
Yok COZa~tZP-20)
435 DX=RCAL(CDZ)
456 DY=AIMAG(CDZ)
487 DL=CAES(CN2)
448 CP=2.N%DX%*DY
489 DVIDX*%2-DY*%2
490 IM1=1
491 IF(IGR.EC.1)GOTO 12N
492 JH=IGR=-1
493 DO 117 I=1,JH
494 IMIZIM1+2%NA(I,1,1)42
495 117 CONTINUE
496 120 IF(J.NE.1IGOTO 1u7?
497 116 IF(LJM)IJD=]
498 Coax
499 105 CONTINLE
S.u0 1J3 CONTINUE
5 11 RETURN
Su2 END
533 e
S 4 €
545 c
Sub COMPLEX FUNCTION CAF(Z,Z20V,ZPV,ANyAH,J)
ST IMPLICIT COMPLEX (C4yZ)
SR CANF (ZyAN JAH)ZCMPLX(REAL(Z*CEXP(=(0eDy1e0)*AH) ), (SQRTUAN)*ATIMAGI
5.9 FZHCEXP(=(DeDy1eM)%AH))))
519 EPS=1TeMx (=)
511 PI22L2.'%3,.1415926535
$12 CIZ(uetigledd)
513 N1ZT
S149 N2z
515 ZOWZCANF(ZOV,AN,AH)
516 ZPw=CANF(ZPV,AN,AY)
517 ZWZCANF (Z 4y AN AH)
S18 IF(JeNZ el eAND« (CABS(ZW=Z0W) «LECEPS<ORCABS(ZW=ZPW)LEEPS))IZN=ZW*
519 EEPS
2R C=CAoS(7PW-20W}/ (ZPW-Z0W)
521 CZ1=L*(ZW-20W)
H22 CZ2=C*(2ZW-2ZPW)
523 USCALSIZPW-2Z0W)*U.5
S24 IF(AIMAG(CZ1)«LT.EPS.AND«(ABS(REAL(CZ1))=D)LTLEPS)ICZ1=CZ1+CI*EPS
5eS IF(AIMAC(CZ2) LT EPS.ANDS(ABS(REAL(CZ2))-N) LTLEPS)ICZ2=CZ2+CI*EPS
526 IF(AIMAG(CZ1)eLT4DeTANDREALI(CZ1) LT .DIN1=1
S&7 IF(ALIMAGICZ2)«LTa1aNeANDGREAL(CZ2).LT.(-D))IN2Z1
5c8 IF(JeNTD)IGOTO 141
529 IF(CAPSIZW=-Z0W) «LE.EPS)CAF==-CZ22*CLOGICZ2)-N2*%P12%C1%*C22
530 IF(CAFS(ZW=ZPW) «LELEPS)CAF=CZ1%CLOG(CZ1)+N1*PI2%CI*CZ1
531 IF(CAES(ZW=-Z0W)eGToEPS.AND,CABS(ZW-ZPW)GT EPS)CAF=-CZ2%CLOG(C22)+
532 ECZ1#CLNG(CZ1)+PI2*CI*(N1%CZ21-N2%CZ2)
L 60To 1.2
534 101 IF(JeECe1)CAF=-C*(CLOG(CZ2)-CLOG(CZ1))+PI2*%CI%Cx(N1-N2)
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535

S35
538
539
sun
541

542
542
544
S45
546
547
Sye
540
555
$51
552
953
554
556
556
557

So1

S66
Se7
Sof
569
517

571
5912
513
574
578
576
5717
578
519
580
5381
532
583
S84
585
586
Ss7
588
5809
591
591
592
$93
594
595
556
Ss7
558
599
60

168

IF(JaF0 o2)CAF=-C%(1.1/(ZW=2PW)=1.0/(ZW=-2Z0W))
CAFZCAF/PT2

RETURM

END

COMOLFX FUNCTION CPFUTG4Z,J)

IMPLICIT COMPLEX (C,2)

COMMUN /C 11/ZPA(5417) ,ZUA(S5,5,4),23A(5),2RA(5,100,1),NPT,R0Z,F1Z,
FFTACL) yGA(5,7) yQPA(S,1U) WRA(S,1JT,1),NC4POR(S),

ENA(S,351) yNGA(5,5,1) 9y IFA(S,109,1),KRA(5,190,1),IRA(5,100,1),NFI
CANF (24 AN yAH) ZCMPLX(REAL (Z#CEXP (=(Ma0y140)%AH) ), (SQRT(AN)*AIMAG (
EZ%CEXP(=(1afiyle 1) %AH))))

PI2Tce.*3,1815926535

EPSZin.Oux(=-4)

CPF=(fig0yM4T)

NPINA(IR,2,1)

IF(NF ECeT)GOTO 171

ANSGA(iG, 3)

AHZGA(IG,4)

ZWIZCANF (Z AN JAH)

L0 1.2 T=1,NP

WPZQPA(IG,I)

ZPSZPA(I6,1)

ZP=CANF (ZP AN AH)

IF(CAPS(ZW=-ZP)oLELEPS)ZW=ZW+EPS

IF(JeFC 4 2)CPF=CPF+GP/PI2%CLOG(ZW=2P)
IF(J.EC.1)CPF=CPF+3P/(FI2%(ZW-2ZP))
IF(JoFCe2)CPF=CPF-QP/(PT2%(ZW-2F ) %%2)

CONT.LMUF

RETURN

END

COMPLEX FUNCTION COF(IG,Z,J1)

IMPLICIT COMPLEX (C,2)

COMMON /C11/ZPA(5,10)4,ZUA(5,5,44),Z0A(5),ZRA(5,100,1),0T,R0Z,FIZ,
EFIA(6),GA(5,7),0PA(5,10),WRA(5,100,1),NG,PORI(S),
FNACS5,3,11 yNGA(5,5,1),IFA(5,130,1),KRA(5,100,11,IRA(5,100+11,NFI
COMMON /CN2/BR(5J0) 4NV

CI=(ue'iyleC)

AN=GA(IG,3)

AH=GA(IG,4)

NRZNA(IG,1,1)

IM1=1

IF(IG.EQ.1)GOTO 103

JzIG-1

DO 1ul I=1,J

IMIZIM142%NA(I,1,1)42

CONTINUF

COF= (e 063D

U0 1 :2 IRZ1,NR

ZOVZ(FA(IG,IR,1)

IF(IRGLT.NR)IZPVZZRA(IG,IR+1,41)

IF(IRFO.NRIZPVZZRA(IG,1,1)

ISUBS1=IMI+IR~-1

ISUBS2-IM1+IR+NR-1

CO=CMPLX(RE(ISURS1),4RR(ISUBS2))

COF=COF+CQ*CAF(Z4Z0V,7PV,4AN,AH,J1)

CONTINUE

ISURSZIM] +2%NP

COFZCAF+(1-J1)%CMPLX(RB(ISURS),EB(ISUBS+1))+CPF(IG,2Z,J1)

RETURN

END




Principal Notations

Q=0+ i¥
D = k¢

P

¢

z=Xx++ iy
iz =ix =2y
X,y

U, U,

At

k

u

"

P

P

0
qg;=r1;+ i.s'j
ne;

l

0z 0%z

al o

c,

Ax, Ay

N

-

m

n

Vj

Fz)

Rel |
Im{ }

ke R o R T AT,

complex potential ([7¢ ")

potential ([t~ 1)

stream function (I*t ')

groundwater head (L)

complex variable (L)

complex variable (L)

cartesian coordinates (L)

components of specific discharge (Lt 1)
step in time (f)

coefficient of permeability (Lt ')
storage coefficient (dimensionless)
effective porosity (dimensionless)
density (ML ?)

pressure (ML 't ?)

discharge of source or sink (It ')
complex variable (Lt ')

distribution strength of sources (or sinks), resp. vortices (Lt~ ')
boundary variable (L)

complex variable for boundary segment (dimensionless)

boundary resistance (t)

components of displacement of a point of moving boundary in a
step in time ( L)

precipitation (Lt 1)

subscript that refers to an adjoining sub-region
number of sources and sinks

number of boundary segments

complex constant

analytic function

real part

imaginary part
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Stellingen

De door Verruyt in 1968 gepubliceerde exacte oplossing van het probleem van Badon
Ghijben kan worden uitgebreid tot een oplossing waarin de aanwezigheid van nuttige
neerslag op de freatische lijn is verwerkt.

Verruijt, A.. 1968. A note on the Ghijben-Herzberg formula. (Bull. Int. Ass. Sci Hydrol..
XIII: 4-12.)

Van der Veer. P.. 1977. Analytical solution for steady interface flow in a coastal aquifer
involving a phreatic surface with precipitation (J. Hydrol., 34: 1-11).

I

Bij een geschikte keuze van twee constanten in de op een ééndimensionale beschou-
wing gebaseerde formule voor de ligging van de grenslijn tussen zoet en zout grond-
water in het probleem van Badon Ghijben, is deze formule gelijk aan die welke volgt
uit de exacte oplossing van het tweedimensionale probleem.

Van Dam, J. C.. 1976. Fresh Water - Salt Water Relationships (college geohydrologie
TH-Delft, afd. Civiele Techniek).

Van der Veer., P.. 1977. Analytical solution for steady interface flow in a coastal aquifer
involving a phreatic surface with precipitation (J. Hydrol., 34: 1-11)

I11

De sinds 1929 bekende, door Vreedenburgh gevonden, exacte oplossing voor de
grondwaterstroming naar een drainage, waarvan in 1959 door Glover een gewijzigde
vorm werd gepubliceerd die de stroming van zoet grondwater boven stilstaand zout
grondwater beschrijft, kan worden uitgebreid tot een vorm die een gelijktijdige stro-
ming van zoet en zout grondwater beschrijft.

De Vos. H. C. P., 1929. Enige beschouwingen omtrent de verweekingslijn in aarden
dammen. (De Waterstaatsingenieur, 17, 335-354).

Glover, R. E., 1959. The pattern of fresh water flow in a coastal aquifer. (J. Geophys. Res.,
69. no. 8, 457-459.)

Van der Veer, P.. 1977. The pattern of fresh and salt groundwater flow in a coastal aquifer
(Delft Progr. Rep.. 2, 137-142).

18Y

De oplossing voor een gelijktijdige stroming van zoet en zout grondwater kan niet
met behulp van de hodograafmethode worden gevonden: de exacte oplossing voor
het geval waarbij behalve het grensvlak ook een freatische lijn aanwezig is, dus het




probleem van Badon Ghijben uitgebreid met de stroming van zout grondwater, kan
echter toch worden gegeven.

Van der Veer, P., 1978. Analytical solution for a two-fluid flow in a coastal aquifer
involving a phreatic surface with precipitation (J. Hydrol., 34: 271-278).

\%

In een bijzonder geval van grondwaterstroming met een freatische lijn en een grens-
lijn tussen zoet en (al dan niet stromend) zout grondwater is zowel de freatische lijn
als de grenslijn een rechte lijn: de grenslijn is ook een rechte als er in plaats van de
freatische lijn een rechte kwellijn aanwezig is.
Van der Veer, P., 1977. Analytical solution for steady interface flow in a coastal aquifer
involving a phreatic surface with precipitation (I. Hydrol.. 34: 1-11)

Van der Veer, P., 1978. Analytical solution for a two-fluid flow in a coastal aquifer
involving a phreatic surface with precipitation (J. Hydrol., 34: 271-278).

VI

Door de definiering van een geschikte variabele kunnen-analytische oplossingen wor-
den gevonden voor problemen van tweedimensionale grondwaterstroming in gebie-
den waarvan de rand bestaat uit een horizontale semi-doorlatende lijn en (eventueel)
verticale stroom- en/of potentiaallijnen. In deze gebieden mogen putten en bronnen
voorkomen.

Van der Veer, P.. 1978. Exact solutions for two-dimensional groundwater flow problems
involving a semi-pervious boundary (J. Hydrol., 37: 159-168).

VII

De in de vorige stelling bedoelde variabele is niet geschikt voor het berekenen van de
grondwaterstroming tussen twee horizontale semi-doorlatende lagen, ook al zijn de
weerstandseigenschappen van die lagen gelijk.

VIII

Naast het verschil tussen de hoogteligging van de freatische lijn tegen een gesloten
taludbekleding en de buitenwaterstand tegen het talud kan het karakter van de
grondwaterstroming, (stationair of niet-stationair), een grote invloed hebben op
de overdrukken onder die taludbekleding.

Van der Veer, P., 1976. Overdrukken onder gesloten dijkbekledingen. Geohydrologische
aspecten van de waterbouwkunde 1 (Pt-b, 31, nr. 9, 547-550)




IX

Het zoeken naar de analytische oplossing van een stromingsprobleem geeft veelal
meer inzicht dan het vinden van een oplossing met behulp van een numeriek model.

X
Het verdient aanbeveling om de actieve muziekbeoefening op scholen sterk te bevor-
deren.

X1
De Nederlandse Spoorwegen verdienen een compliment van de minister van Weten-
schappen omdat het sinds de invoering van zgn. werkcoupé’s in treinen voor foren-
zen mogelijk is om wetenschappelijk onderzoek te doen tijdens treinreizen in het
woon-werkverkeer.

XII

Het vervangen van auto’s door trapauto’s kan een gunstige invloed hebben op de
verkeersveiligheid, het energieverbruik en de volksgezondheid.

Stellingen behorende bij het proefschrift Calculation Methods for Two-dimensional Groundwater Flow
van P. van der Veer, Delft, 1978.




