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Abstract 
 
Current sequencing projects mainly produce draft genomes. Due to assembly errors and 
fragmentation of contigs, these genomes are not well-suited as a reference for genome-
guided transcriptome assembly method. In this study, I present the Glue algorithm which 
assembles genomes by making use of both genomic and transcriptome datasets. Based 
on alignments of transcriptome data to genomic contigs, Glue merges contigs likely to 
contain fragments of the same gene into a single sequence. Tests on A. thaliana datasets 
indicated that limitations of currently available RNA-seq alignment tools prevent Glue 
from performing optimally. Despite these limitations however,  transcripts reconstructed 
by using a genome-guided transcriptome assembly method contained a higher 
percentage of full-length transcripts after using Glue on the draft genomic assembly 
which was used as a reference. This result shows that applying Glue to a draft genome 
makes the assembly more suited as a reference for transcriptome assembly methods.  
 
Introduction 
 
In recent years, gene discovery methodology has been revolutionized by RNA-seq, a 
high-throughput sequencing method which generates a large amount of transcriptome 
data at single-base resolution and over a large range of expression levels1. Applications 
of RNA-seq datasets include annotating a newly sequenced genome2 or measuring gene 
expression between organisms under different conditions3. For these kind of studies, it is 
crucial to obtain a high quality transcriptome. Transcripts can be reconstructed out of 
transcriptome reads via two different approaches. Reference-based assembly methods 
leverage alignments of RNA-seq reads to a reference genome produced by a splice-aware 
read aligner such as Tophat24 to reconstruct full transcripts. De novo methods directly 
assemble transcripts out of RNA-seq reads without using a reference genome.  
 Reconstructing transcripts via the latter approach is very challenging, due to the 
large amount of alternative splicing in higher eukaryotes5. Consider a gene which has 
eight exons and five isoforms (Figure 1a). As short transcriptome reads of 100-150 bp 
usually do not cover more than two exons, a RNA-seq dataset can often only link two 
neighbouring exons to one another (Figure 1b). As some of the exons are shared 
between the isoforms, it is very difficult to reproduce the correct isoforms de novo. 
Therefore, genome-guided transcriptome assembly methods are generally more accurate 
than de novo methods.   
 However, the results of reference-based assembly methods are very dependent 
on the quality of the used reference genome. Nowadays, most sequencing projects 



produce draft assemblies which never reach a finished state6. These assemblies consist 
out of a large number of short contigs. As a result, single genes may be split between 
multiple contigs. To illustrate the magnitude of this problem, 26% of the gene families of 
an annotated genome assembly of chimpanzee had a different number of genes 
compared to the initial draft assembly7. In about 71% of these families, this difference 
was caused by genes being split between different contigs in the draft assembly, which 
led to them being seen as two separate genes. Clearly, draft genomes are not well-suited 
to be used as a reference for genome-guided transcriptome assembly methods and the 
transcriptomes produced from these genomes can skew the results of gene expression 
studies.  
 
A. 
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Figure 1. Alternative splicing makes  de novo transcriptome assembly 
challenging. (A) Five isoforms of a gene having eight different exons, depicted by the 
letters A-I. This example was described in an earlier paper8. (B) The graph depicting the 
isoforms described in A. Edges are drawn between exons which are linked through RNA-
seq reads. Several isoforms can be reconstructed from this graph. However, it is 
unknown which of these isoforms are real by looking at the graph on its own. For 
example, all isoforms including CDE are false. 
 
  Here, I present a novel proof-of-concept algorithm which attempts to produce a 
genomic assembly which is better suited for genome-guided transcriptome assembly 
methods than the draft genomes produced by de novo genomic assemblers. This 
algorithm, named Glue, makes use of RNA-seq reads mapped to a genomic assembly to 
join contigs which contain parts of the same gene into a single sequence. The idea of 
scaffolding genomic contigs by using RNA-seq data is not new9,10. However, previous 



methods joined two contigs based on paired-end RNA-seq reads of which one mate 
mapped to the first contig and the other mate to the second contig. The novelty of Glue 
lies in the fact that it is the only algorithm to my knowledge which scaffolds contigs by 
using RNA-seq reads which map across exon-intron boundaries. If the intronic sequence 
could not be properly assembled, these reads may map partly to two different contigs, 
which can be joined into a single sequence as a result. Furthermore, it does not only 
identify gaps between contigs during the scaffolding process, but also tries to fill them by 
making use of the connections between the contigs.   
 Yet, inaccuracies which are present in the contigs produced by a de novo genomic 
assembler could skew the genomic assemblies produced by Glue. Most genomic 
assemblers make use of a de Bruijn graph structure during the assembly process, 
extracting contigs from the graph by using heuristics. As a result of these heuristics, the 
resulting set of contigs could contain errors. I tested whether using a the de Bruijn graph 
representation of the genomic dataset as input to Glue instead of a set of contigs helps to 
prevent these errors. A de Bruijn graph retains all uncertainties of an assembly without 
taking ambiguous choices. Therefore, a de Bruijn graph should be a more objective 
representation of a genome assembly than a set of contigs. A downside of using a de 
Bruijn graph is that the sequences contained in the graph are more fragmented than a 
set of contigs. However, this problem can be resolved by connecting these sequences 
with Glue. The feasibility of using a de Bruijn graph was proven by the TAG11 algorithm, 
which maps metatranscriptomic reads to a de Bruijn graph representation of a 
metagenome and traverses the graph to reconstruct the transcripts. 
 Glue was evaluated by checking whether the set of transcripts found after 
performing a genome-guided assembly with the contigs produced by Glue as a reference 
contains a higher percentage of complete transcripts compared to the set of transcript 
reconstructed after using a draft assembly produced by a de novo genomic assembler as 
a reference. Application of Glue on A. thaliana datasets revealed that it does not perform 
optimally due to the fact that currently available RNA-seq tools are not optimized for 
mapping RNA-seq reads partly to one genomic contig and partly to another. As a result, 
the use of a de Bruijn graph representation of a genomic dataset as input for Glue is 
limited. Despite these limitations, applying Glue to a set of genomic contigs leads to a 
larger percentage of full-length transcripts being found by genome-guided transcriptome 
assembly methods than before the application. Therefore, it can be concluded that 
joining contigs based on RNA-seq reads mapping across exon-intron boundaries is a 
useful method of making a draft genome assembly which is more suitable as a reference 
for genome-guided assembly methods.  
 

Methods 
 
Extracting genomic sequences from a de Bruijn graph 
  
In a de Bruijn graph representation of a genomic dataset, nodes are subsequences of the 
reads of length k, known as k-mers, which are connected by edges if they share a k - 1 
suffix-prefix overlap (Figure 2a). Simple paths in the graph are paths in which all internal 
nodes have an in- and outdegree of one, the start node has an out-degree of one and the 
end node has an in-degree of one. These simple paths can be collapsed into a single 
node depicting a sequence which is called a unitig. A compacted de Bruijn graph can be 
built from these unitigs in which nodes are no longer k-mers but unitigs, while the edges 
are still based on k - 1 overlaps (Figure 2b).  



 To map RNA-seq reads to a de Bruijn graph, it is required to extract the unitigs of 
the graph as existing RNA-seq mapping tools only work with linear representations of a 
genome, such as contigs. Two algorithms are used to obtain the genomic unitigs. First, 
all of the k-mers of the genomic dataset are counted using KMC2 (version 2.2.012), which 
was chosen due to its high speed and frugal memory use. Next, all k-mers with a 
frequency below a set threshold (default: 4) are removed, as it is assumed that they 
correspond to sequencing errors. Unitigs are produced from the remaining k-mers by 
using BCALM (GitHub commit 59a346c13), a tool which can produce unitigs in low 
memory without explicitly drawing a de Bruijn graph. A custom Python script 
(BCALM_to_FASTA.py) converts the unitigs produced by BCALM into FASTA format, which 
makes them suitable to be used as input for RNA-seq mapping tools. 
 
Aligning RNA-seq reads to genomic contigs 
 
RNA-seq reads are aligned to the genomic contigs by using GSNAP (version 2014-12-
2914) with parameters -m 5 -N 1 -E 0. This particular aligner was chosen, due to the fact 
that it is the only alignment tool available to my knowledge which is able to produce so 
called split alignments of a RNA-seq read to pairs of contigs within reasonable time 
(Figure 3). With these alignments, RNA-seq reads map partly to one contig and partly to 
another contig. Split alignments result from RNA-seq reads mapping across exon-intron 
boundaries of which the intronic region could not be properly assembled, because it 
contained for instance repeats. It is important that these alignments can be performed, 
as they will be used later on by the Glue algorithm to merge contigs into a single 
sequence. STAR15 and Segemehl16 were considered as alternative mappers, but were 
dropped after showing excessive running times when applied to the datasets included in 
this study.  
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Figure 2. Examples of  a De Bruijn graph and a compacted de Bruijn graph (A) A 
de Bruijn graph constructed from short read data using a value of k = 3. Nodes are 
connected by edges if they share a suffix-prefix overlap of k -1 nucleotides. Simple paths 
can be collapsed into unitigs, which are shown in black. (B) The compressed de Bruijn 
graph created from A.  
 
 



Identifying collapsed repeats 
 
Collapsed repeats pose a problem to the Glue algorithm. Consider an example where 
Glue merges three contigs into a single sequence, with the middle contig corresponding 
to a collapsed repeat. Because Glue lacks any information about the copy number of the 
collapsed repeat in the genome, one cannot accurately determine how many copies of 
the collapsed repeat should be included in the sequence. Therefore, Glue excludes 
collapsed repeats from the merging procedure.  
 To identify contigs which correspond to collapsed repeats, the Myers’ A-statistic of 
all contigs is computed. This metric is an approximation of the log-odds ratio between the 
probability of the contig being unique and the probability of the contig corresponding to a 
collapsed repeat17. To calculate the A-statistics, the genomic reads are remapped to the 
contigs using Bowtie2 (version 2.1.018) with parameters -I 0 -X 500. After mapping, a 
module of SGA (version 0.10.1319), named sga-astat.py, is used with default parameters 
to produce a file containing the A-statistic of each contig. 
 
 
 

     
Figure 3. Example of a split alignment of a RNA-seq read to a pair of contigs. 
With a split alignment, one part of a read maps partly to one contig and the other part 
maps to another contig. Blue rectangles correspond to aligned RNA-seq reads. 
 
 
The Glue algorithm 
  
Glue is implemented in Python 3.4 and takes three different files as input: a FASTA file 
containing genomic contigs, a SAM file containing alignments of RNA-seq reads to these 
contigs produced by GSNAP and a file produced by sga-astat.py which contains the 
Myers’ A-statistics of each contig (Figure 4). All input files can be produced as described 
above. Alternatively, the FASTA file containing genome contigs can be generated by 
using a de novo genomic assembly method. The output of Glue is a FASTA file containing 
an updated version of the genomic contigs, in which all contigs containing parts of the 
same transcripts are merged into single sequences as much as possible.  
 First, Glue leverages the split alignments contained in the provided SAM file to 
identify pairs of contigs which potentially contain parts of the same transcript. As an 
example of how such an alignment appears in a SAM file produced by GSNAP, consider a 
read of 100 bp of which 51 bp maps to contig 1 and 49 bp maps to contig 2. This 
alignment will be represented by two records. The first record shows 51 bp of the read 
matching contig 1, while the second record shows 49 bp of the read mapping to contig 2. 
In both records, the part which does not align to the contig is hard-clipped. Therefore, 
finding split alignments in the SAM file is a matter of finding all pairs of alignment lines 
which belong to the same read and contain hard clipping in their cigar string (H). The 
alignments are saved in the form of a Python dictionary containing tuples of two contigs 
as keys and the amount of reads which are split aligned to these contigs as values.  
 Next, Glue uses the Python dictionary produced from the SAM file to build 
scaffolds out of the contigs. While a scaffold usually refers to contigs connected using 
mate-pair genomic reads, split alignments of RNA-seq reads are used for scaffolding in 



this case. Scaffolds are saved in the form of adjacency graphs (Figure 5a). First, Glue 
identifies all unique contigs by using the file containing the A-statistics for each contig 
which was provided as input. These contigs form the nodes of the scaffold graphs. After 
identifying these contigs, the Python dictionary is used to connect all pairs of unique 
contigs which contain a split alignment of a RNA-seq read by an edge. These edges 
represent the gaps which are present between the single-copy contigs. They are 
undirected to account for reverse complements of contigs. The end result is a collection 
of disjoint and bidirected graphs, which will be dubbed transcript graphs from now on.  

 
Figure 4. Overview of the input and output of the Glue algorithm. Blue boxes 
correspond to computational algorithms and red boxes to files.  
 
 After producing the scaffold graphs, Glue attempts to fill all gaps which are 
represented by the edges. Gaps are expected to consist mainly out of intronic sequences, 
but can also contain for example repeated parts of exons which could not be properly 
assembled. In order to determine these gap sequences, all contigs which may be part of 
this gap need to be identified. To this end, an adjacency graph is produced which 
contains both the single-copy and the repeated contigs as nodes (Figure 5b). Similar to 
de Bruijn graphs, directed edges are drawn between nodes based on suffix-prefix 
overlaps. The length of the overlaps depends on the overlap used by the de novo 
genomic assembly method to produce the contigs (e.g. k-1 for assembly methods based 
on a de Bruijn graph structure). The produced graph is formally known as a string graph. 
As the contigs in the scaffold graphs are a subset of the contigs found in the string 
graph, the latter graph can be used to fill the gaps present in the scaffolds graphs.  
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Figure 5. Examples of a scaffold graph and a string graph. (A) A scaffold graph. If 
a RNA-seq read aligns partly to one contig and partly to another one, this pair of contig is 
connected by an undirected edge. In the end, a collection of graphs are produced, each 
graph representing an ordered set of genomic regions containing exons. These graphs 
are dubbed here as scaffold graphs. (B) A string graph. String graphs contain all single-
copy contigs and repeated contigs as nodes. Nodes are connected by directed edges if 
the contigs share a suffix-prefix overlap.    
 
 
 To fill the gaps in the scaffold graphs, Glue first locates the terminal nodes of each 
scaffold graph and searches for all paths connecting them. The longest path, which 
contains all of the contigs, is used in the following gap filling step. Consider a path of 
contigs in a scaffold graph which is represented as C1, C2, C3, C4. Starting from the first 
neighbouring pair of contigs, in this case C1 and C2, Glue determines whether there is a 
single path in the compressed de Bruijn graph which connects the pair. If a single path 
can be found, C1 and C2 are replaced by the string which is spelled out by this path in the 
string graph. If no path can be found, Glue investigates whether C1 and C2 share a suffix-
prefix overlap of a certain minimum length (by default 25). If such an overlap exists, the 
contig sequences are merged based on this overlap. If it does not, the gap between the 
contigs cannot be resolved and the sequence between C1 and C2 will be replaced by 100 
ambiguity (N) symbols which symbolize a gap of unknown length and composition. In the 
case that multiple paths are found between the contigs in the string graph, the sequence 
between C1 and C2 will be replaced by ambiguity symbols as well. In the end, Glue  
produces one genomic sequence per scaffold graph.   
 As a final step, Glue takes all sequences produced from the scaffold graphs and 
removes those which have a length below a certain threshold (default = 500 bp). This 
cut-off is used to prevent short genomic sequences which are likely to contain only 
partial transcripts from appearing in the final output.  
 
Used datasets 
 
To evaluate the performance of Glue and the feasibility of using a de Bruijn graph 
representation of a genomic dataset as input, two publicly available A. thaliana Col-0 



datasets were used. In this study, only the reads associated with chromosome 1 were 
used, to facilitate fast running times of the used computational algorithms. The following 
datasets were used:   

x A. thaliana Col-0 genomic read dataset  (SRX883065). This dataset consists 
out of 100 bp paired-end Illumina genomic reads having an insert size of 200-500 
bp. The total length of the dataset is 3038 Mbp. As the A.thaliana reference 
genome (TAIR10 assembly) has a golden path length of 119.15 Mb, the expected 
coverage of this dataset is 25x. To obtain all reads associated with chromosome 
1, I mapped the full datasets to chromosome 1 of the reference genome by using 
BWA-mem (version 0.7.5a-r40520) with default settings, followed by removing all 
reads which did not show any hit.  

x A. thaliana Col-0 RNA-seq read dataset  (SRX314612). This dataset contains 
101 bp single-end Illumina RNA-seq reads. It has a total length of 2508 Mbp. To 
obtain the reads associated with chromosome 1, I mapped the full dataset to 
chromosome 1 of the reference genome by using GSNAP14 (parameters: -N 1 -m 
2 -w 4000), followed by removing all reads which did not have any hit.  

 
Reference genome and annotation 
 
The reference genome and reference annotation of A. thaliana were both downloaded 
from the ftp server of TAIR using the following links: 

x Reference genome: 
ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes 

x Annotation: 
ftp://ftp.arabidopsis.org/home/tair/home/tair/Genes/TAIR10_genome_release/TA
IR10_gff3/TAIR10_GFF3_genes.gff 

 
Evaluation 
 
To test whether using Glue on a set of genomic contigs leads to a higher quality 
transcriptome, I applied it to the genomic dataset and RNA-seq dataset of chromosome 1 
of A. thaliana described above. First, contigs were produced from the genomic reads by 
using SOAPdenovo2 (version 2.0421) with a k-value of 33 (see Results for the motivation 
behind this choice). The RNA-seq reads were mapped to the produced contigs using 
GSNAP14 after which Glue with default settings was used to merge contigs based on the 
resulting alignments. Transcripts were reconstructed by using Cufflinks (version 2.2.122), 
after remapping the RNA-seq reads to the remaining merged contigs with Tophat2 
(version 2.0.144) with the parameter --max-intron-length set to 4000. The resulting set 
of transcripts was aligned to the A. thaliana reference genome to assess its quality.  
 A similar procedure was used to evaluate whether using unitigs of a de Bruijn 
graph instead of contigs produced by genomic assemblers as input to Glue led to a more 
accurate transcriptome in the end. Unitigs were produced from the genomic dataset of A. 
thaliana using a  k-value of 33, after which transcripts were assembled as described 
above, providing the unitigs as input to Glue instead of the SOAPdenovo2 contigs 
produced earlier. 
 In addition, transcripts were produced and evaluated by using scaffolds produced 
by SOAPdenovo2 as a reference. These scaffolds are generated by making use of paired-
end information. They were used to determine whether it could be more effective to 
scaffold contigs using paired-end data, before merging them using RNA-seq reads.  
 



 Furthermore, to provide a golden standard, a transcriptome was produced by 
using the TAIR10 assembly of A. thaliana as a reference. Lastly, the de novo 
transcriptome assembler Trinity (version 2.0.623) was run with default settings to test the 
assumption that using a reference genome during transcriptome assembly improves the 
quality of the resulting set of transcripts. 
 As the main goal of Glue is to prevent transcripts from being fragmented during 
the transcriptome assembly process, I determined the percentage of complete transcripts 
which was found in the set of transcriptomes produced by each method. A transcript is 
defined as complete if it aligns with 95% identity to the reference genome, 90% of the 
length of the transcript aligns to a region which is annotated as mRNA and if the 
alignment covers 90% of the total length of the annotation. If an alignment fulfills the 
first two requirements but does not cover 90% of the annotation, the corresponding 
transcript is defined as a partial transcript. I distinguish between these two categories to 
reveal which fraction of the transcriptome produced by a certain method corresponds to 
full-length transcripts and which fragment to only parts of transcripts.  
 Moreover, to assess sensitivity, I calculated the fraction of expressed transcripts 
which were found by each method. The total amount of expressed transcripts which were 
contained in the RNA-seq dataset was determined by first aligning the dataset to the 
reference genome with Tophat24. Next, transcripts were reconstructed and quantified by 
using Cufflinks22. Finally, the total amount of expressed transcripts was computed by 
counting all transcripts corresponding to a reference annotation which had a FPKM higher 
than or equal to 1. These transcripts were assumed to have come to expression under 
the condition during which the RNA-seq dataset was extracted. After determining the 
amount of expressed transcripts (4940), the sensitivity of each method was measured in 
terms of recall. Recall is defined as the number of complete transcripts found by a 
method divided by the total number of expressed transcripts.  
 To produce the three metrics described above for each method, reconstructed 
transcripts were aligned to the A. thaliana reference genome by using GMAP24 with 
default settings, producing SAM output. The fillmd command of SAMtools (version 
0.1.1925) was used in combination with a custom Python script (filter_md_bam_file.py) 
to remove alignments which had less than 95% identity. After filtering, the alignment 
files were intersected with the reference annotation of A. thaliana using the intersect 
command of the bedtools2 (version 2.17.026) suite. Specifically, the parameters -wo -F 
0.9 -s were used to produce a bed file containing all partial and complete transcripts and 
the parameters -wo -f 0.9 -r -s to produce a bed file containing only complete 
transcripts. The output bed files were parsed by the grep (parameters: -P "\tmRNA\t" 
and -P "Chr1\t") and wc (parameters: -l) unix command line tools to compute the 
percentage of complete transcripts, the percentage of partial + complete transcripts and 
the recall of a set of transcripts. 
 
Results 
 
Using Glue results into a higher number of reconstructed full-length transcripts 
 
When comparing the transcriptomes resulting from all tested methods (Table 1), it can 
be seen that after applying Glue to the genomic contigs produced by SOAPdenovo2, the 
transcriptome produced by using these contigs as a reference in Cufflinks contained a 
higher percentage of complete transcripts (+6.2%). While slightly less annotated 
transcripts were discovered as a result, this loss is minimal (-0.7% recall). To determine 



whether the higher percentage of complete transcripts was not primarily caused by the 
500 bp length cut-off, Glue was run without using any cut-off at all. While less 
pronounced (+3.9%), the improvement remained. These results show that merging 
contigs based on RNA-seq information leads to a draft genomic assembly which is more 
suitable for reference-guided transcriptome assembly methods, even without using a 
length cut-off. 
 The percentage of complete transcripts resulting from the genomic contigs 
connected by Glue is similar to the percentage achieved by using the scaffolds produced 
by SOAPdenovo2 as a reference. In contrast, the percentage of correctly reconstructed 
partial and complete transcripts together is slightly worse when using the scaffolds (-1.9 
%), showing that scaffolding using paired-end information may lead to incorrectly 
including fragments from different transcripts in the same scaffold. In terms of recall, the 
scaffolds perform better than the contigs connected by Glue (+3.9%). These results 
suggest that it may be worth it to scaffold contigs after using Glue by using paired-end 
information, to maximize sensitivity. Additionally, Trinity performed the worst in all 
produced evaluation metrics, showing the added value of using a genomic reference 
during the transcriptome assembly process. 
 
Limitations of GSNAP hamper the performance of Glue 
 
For both sets of transcripts which were produced after using Glue on either contigs 
produced by SOAPdenovo2 or unitigs, a large difference can be observed between the 
percentage of reproduced partial + complete transcripts and the percentage of 
reconstructed complete transcripts (>35%). This result implicates that significantly more 
contigs containing transcript fragments could be merged into a single sequence by Glue 
than the amount done at the moment. The limited performance of Glue could be due to 
the fact that GSNAP may not be optimal for producing split alignments of RNA-seq reads 
to a fragmented draft genome assembly.  
 To test this hypothesis, I assessed how well GSNAP could map RNA-seq reads to 
the unitigs compared to the set of contigs. As described earlier in this paper, sequences 
stored in a de Bruijn graph are generally more fragmented than a set of contigs produced 
by a de novo genomic assembler, which is clearly illustrated by the difference in NG50 
(Table 2). As both sets have the same level of genome coverage, the set of unitigs can 
essentially be seen as a more fragmented version of the set of contigs. If GSNAP would 
not be optimized for producing split alignments, it should map a lower percentage of 
RNA-seq reads to the unitigs than to the contigs produced by SOAPdenovo2, as a larger 
amount of RNA-seq read require a split alignment in a more fragmented assembly. This 
turned out to be indeed the case (Table 2).  
 The problems GSNAP has with split alignments are caused by its algorithmic 
design. For a split alignment of a RNA-seq read to a pair of genomic sequences, GSNAP 
requires anchors of at least 31 bp or more in each of the sequences. These anchors are 
harder to find in the more fragmented unitig assembly than in the SOAPdenovo2 
assembly. Moreover, GSNAP is unable to map RNA-seq reads which span across more 
than two sequences. These reads are more likely to occur in a more fragmented 
assembly. The design limitations of GSNAP ultimately hamper the performance of Glue, 
as it depends on split alignments to merge contigs.  
 
    
  



Table 1. Comparing the quality of the transcriptomes obtained using different 
methods of transcriptome assembly    
 
Method Number of 

transcripts 
reported 

Partial# + 
complete$ 
transcripts 
(%)* 

Complete 
transcripts 
(%)* 

Recall^ (%) 

SOAPdenovo2 
contigs + 
Cufflinks 

8109 72.8 32.6 53.5 

SOAPdenovo2 
contigs + Glue 
+ Cufflinks 

6711 75.6 38.8 52.7 

SOAPdenovo2 
contigs + Glue 
(no length cut-
off) + Cufflinks 

7114 74.4 36.5 52.5 

SOAPdenovo2 
scaffolds + 
Cufflinks 

7656 73.7 
 

38.7 60.0 

Unitigs + Glue 
+ Cufflinks 

7262 76.5 29.5 44.0 

Reference 
genome + 
Cufflinks 

6091 77.2 
 

64.0 78.9 

Trinity 8612 48.9 19.0 33.2 
#Partial transcript: Alignment to reference has 95% identity and 90% of the transcript 
aligns to a region annotated as mRNA 
$Complete transcript: Alignment to reference has 95% identity, 90% of the transcript 
aligns to an annotated as mRNA, 90% of the length of the annotation is covered 
^Recall: Amount of complete transcripts found / Total amount of expressed transcripts 
*Percentages are calculated by dividing the amount of partial and complete transcripts 
(or the amount of complete transcripts) by the total amount of transcripts reported.  
 
 
Unitigs could potentially improve the performance of Glue  
 
 As a result of the limitations of GSNAP described above, Glue is able to merge less 
pairs of unitigs into a single sequence than pairs of SOAPdenovo2 contigs. While Glue is 
able to join 313 pairs of SOAPdenovo2 contigs based on split alignments of RNA-seq 
reads, only 279 pairs of unitigs could be merged by this method (Table 3). Naturally, the 
percentage of complete transcripts found in the transcriptome produced by using the 
unitigs is significantly worse (-9.3%) than the one produced by using the SOAPdenovo2 
contigs (Table 1).  
 However, the set of transcripts resulting from the unitigs contains a slightly higher 
percentage of partial + complete transcripts compared to the set resulting from the 
contigs produced by SOAPdenovo2, nearly reaching the level achieved by using the A. 
thaliana reference genome. Moreover, a much larger fraction of the gaps in the scaffold 
graphs could be filled unambiguously when using unitigs instead of contigs (Table 3). 
This result shows that using a de Bruijn graph representation of a genomic assembly 
instead of a set of contigs could potentially improve the performance of Glue, if RNA-seq 
reads could be properly split aligned to the unitigs. 



Table 2. Comparing unitigs to SOAPdenovo contigs  
 
 Unitigs (k = 33) SOAPdenovo contigs (k = 33) 
Genome coverage# (%) 99.98 99.98 
NG50$  3499 4876 
RNA-seq reads mapped by 
GSNAP (%) 

77.6 90.6 

#Genome coverage: Percentage of bases in the reference genome which are covered by 
at least one contig or unitig. This metric was produced by mapping all sequences against 
the reference genome of A. thaliana using BWA-mem20 with default settings. The 
produced SAM file was converted into pileup format using the mpileup command of 
SAMtools25, after which the resulting pileup file was parsed by a custom Python script 
(check_genomic_coverage.py) to obtain the genome coverage. 
$Computed by QUAST (version 2.327) 
 
  
Table 3. Performance of Glue regarding SOAPdenovo2 contigs and unitigs    
 
Assembly Merged pairs Gaps filled 

unambiguously#  
Gaps filled by 
inserting 100 N’s 

SOAPdenovo2 
contigs 

313 15 298 

Unitigs 279 100 179 
#Gaps can be filled unambiguously by either using the string graph or by merging 
contigs based on suffix-prefix overlap 
 
 
 
Effect of k size on gap filling step of Glue 
  
To assess the effect of the used value of k on the performance of the gap filling step of 
Glue, I produced unitigs with different values of k and determined the amount of paths 
found between unitigs connected by RNA-seq reads in the compressed de Bruijn graph 
(Figure 6). At lower values of k, the amount of unitigs connected by zero paths decreases 
while the amount of unitigs connected by multiple paths increases. The opposite effect 
can be seen when increasing k. These observations are caused by the  fact that the 
string graph produced be Glue is more tangled at lower k values, while being more 
fragmented at high k-values. To have Glue unambiguously fill gaps, unitigs should be 
connected by a single path as much as possible. By this metric, a k-value of 27 seems to 
be the most appropriate. However, the value of k should not be too small as well, as 
RNA-seq reads map more poorly to shorter unitigs. Therefore, a higher k-value of 33 was 
chosen in the end for the evaluation procedure described above, which still produced a 
reasonable number of unitigs connected by a single path. For a fair comparison, the 
same value of k was used for constructing the contigs by SOAPdenovo2. 
  



 
 
Figure 6. The effect of the chosen value of k for the amount of paths found 
between pairs of unitigs connected by RNA-seq reads. As the k-mer size increases 
from 27 to 35, the number of pairs found which are connected by a single path or by 
multiple paths decreases while the amount of unitigs linked by zero paths increases. This 
trend continues at a larger k-value of 45.      
 
Discussion 
 
In this paper, I presented a proof-of-concept algorithm called Glue which for the first 
time to my knowledge, uses alignments of RNA-seq reads mapping across exon-intron 
boundaries to merge contigs of a draft genome into a single sequence. After applying 
Glue to genomic contigs produced by SOAPdenovo2 from an A. thaliana dataset, the 
transcriptome reconstructed from these contigs by using a genome-guided assembly 
method contained a higher percentage of complete transcripts compared to before the 
merging. However, the percentage was below that of the set of transcripts obtained 
using the TAIR10 reference genome, so there is still plenty of room for improvement. 
Particularly, including mate-pair information of a genomic read dataset could greatly 
improve the performance of Glue. For instance, if genomic contigs in a string graph are 
connected by multiple paths, the information could serve as a constraint for determining 
which of these paths is correct. As a result, Glue would be able to fill more gaps 
unambiguously. Furthermore, mate-pair information could be used to determine the copy 
number of contigs corresponding to collapsed repeats, enabling Glue to include these 
contigs in the merging procedure.  
 While Glue was used here to prevent transcripts from being fragmented between 
different contigs, its applications can extend beyond this purpose. For instance, it could 
be used to scaffold genomic contigs after which a tool such as GapFiller28 can fill the gaps 
captured in the scaffolds. Moreover, Glue could serve as a way of improving the 
contiguity of metagenomes, which are very fragmented by nature. However, one should 



be careful to not misinterpret the N’s inserted inside scaffolds as being a gap of 100 
nucleotides, as it can have any length in truth.  
 In this study, GSNAP was used to produce split alignments of RNA-seq reads to a 
set of genomic sequences, which is a far from ideal method of generating these 
alignments. Due to this limitation, the benefits of using a de Bruijn graph as input instead 
of a set of contigs produced by a genomic assembler for Glue are marginal as of now. 
Yet, the idea of using a de Bruijn graph as a reference should not be discarded yet. 
GSNAP is meant to align short RNA-seq reads to a set of linear contigs and therefore is 
not able to make use of the fact that you know the connections between unitigs in a de 
Bruijn graph. While several other tools exist which do make use of the de Bruijn graph 
structure during read alignment, they are unsuitable for mapping eukaryotic reads which 
map across splice sites.  
 Yet, several of the concepts introduced by these tools could serve as the basis for 
a new alignment algorithm which could accomplish this feat. For instance, reads could be 
aligned to a compressed de Bruijn graph by using unitig overlaps to seed the 
alignment11,29 or by exact matching of read k-mers to the graph30. To map exon-
spanning reads of which only a small part of the read aligns to one of the exons, a similar 
idea as employed in HISAT31 can be used. Namely, the long part of the read can be 
mapped first to the graph, followed by searching for the correct location of the remaining 
small part within nearby regions, instead of probing the whole graph. Finally, one could 
identify the different paths which represent possible alignments of a RNA-seq read to a 
de Bruijn graph by using Bandage32. By exploring the concepts introduced by the 
algorithms mentioned above, the problem of mapping spliced reads to a de Bruijn graph 
representation of a draft genome could potentially be solved in the future. This would 
open up the way for using a de Bruijn graph representation of a genomic assembly as a 
reference to improve transcriptome assembly. 
 Despite the limitations of GSNAP, Glue still managed to make a draft genome 
assembly better suited for genome-guided transcriptome methods. This result shows that 
joining genomic contigs based on RNA-seq reads mapping across exon-intron boundaries 
is a helpful method to improve transcriptome reconstruction. Therefore, I expect that 
Glue is a useful tool for aiding studies which require a high quality transcriptome, such as 
gene expression.   
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