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Abstract 

Hidalgo, A.M. (2015). Exploiting genomic information on purebred and crossbred 

pigs. Joint PhD thesis, between Swedish University of Agricultural Sciences, Sweden 

and Wageningen University, the Netherlands 

 

The use of genomic information has become increasingly important in a breeding 

program. In a pig breeding program, where the final goal is an increased crossbred 

(CB) performance, the use of genomic information needs to be thoroughly evaluated 

as it may require a different strategy of what is applied in purebred (PB) breeding 

programs. In this thesis, I explore the use of genomic information for the genetic 

improvement of PB and CB pigs. I first focus on the identification of genomic regions 

affecting traits that are important to breeders. I identified two quantitative trait loci 

(QTL) regions for gestation length, one for Dutch Landrace on Sus scrofa 

chromosome (SSC) 2 and the other one for Large White on SSC5. I also fine-mapped 

and narrowed down the region of a previously detected QTL for androstenone level 

SSC6 from 3.75 Mbp to 1.94 Mbp. A tag-SNP of this fine-mapped region was further 

investigated and no unfavorable pleiotropic effects were found; indicating that using 

the studied marker for selection would not unfavorably affect the other studied 

traits. After that, the focus was changed to the application of genomic selection in 

pigs. Within-population predictions showed high accuracies, whereas across-

population prediction had accuracies close to zero. Using combinations among Dutch 

Landrace and Large White populations plus their cross showed that multi-population 

prediction was not better than within-population. The exception was when the CB 

pigs were predicted with records from both parental populations added to the CB 

training data. When using PB pigs to train CB ones, the predictive ability found 

indicates that selection in the PB pigs results in response in the CB ones. When 

assessing the source of information used to estimate the breeding values used as 

response variable, I showed that a more accurate prediction of CB genetic merit was 

found when training on PB data with breeding values estimated using CB 

performance than training on PB data with breeding values estimated using PB 

performance. I also studied the accuracy of using CB pigs in the training population 

to select PB for CB performance. Predictive ability when using CB phenotypes for 

training was observed, however, the accuracy was lower than using PB phenotypes 

in the training population. Lastly, I evaluate the inclusion of dominance in the model 

when using a CB training population. Results showed that accounting for dominance 

effects can be slightly beneficial for genomic prediction compared with a model that 

accounts only for additive effects.
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1.1 Introduction 

Animal breeding aims to select the best animals to be the parents of the next 

generation. A large variety of techniques, strategies and methods have been 

developed to achieve this goal. In recent years, genotyping technology has improved 

considerably and high-throughput genomic information became available. Efficient 

use of this information, hence, is crucial for the competitiveness of a breeding 

company. In this work, therefore, I will explore the use of genomic information for 

the genetic improvement of purebred and crossbred pigs. In this general 

introduction, I will first concentrate on the identification of genomic regions that 

affect traits that are important to breeders. After that, I will focus on the application 

of genomic selection, and later on crossbreeding with emphasis on heterosis and 

dominance. These topics are relevant in the application of genomic information in 

the present breeding situation.  

 

1.2 QTL mapping 

Most traits of economic importance in livestock production are quantitative, i.e., are 

affected by many loci to various degrees. The genes affecting a quantitative trait, so-

called “quantitative trait loci” (QTL), are difficult to identify, yet they are relevant for 

breeding purposes. Currently, 13,030 QTL for 663 traits have been described for pig 

(Animal QTLdb, http://www.animalgenome.org/QTLdb). 

 

Genetic markers can be divided in three groups: 1) direct markers: loci that code for 

the causative mutation, 2) LD markers: loci are in population-wide linkage 

disequilibrium with the causative mutation, 3) LE markers: loci are in population-

wide linkage equilibrium with the causative mutation in outbred populations 

(Dekkers 2004). Direct markers are the most difficult to detect because proving 

causality is extremely hard. The LD markers can be detected using candidate genes 

(Rothschild and Soller 1997), fine-mapping (Andersson 2001; Georges 2007) or 

genome-wide association studies (GWAS); LD markers are located close to the 

causative mutation so that linkage disequilibrium between marker and QTL exists. 

The LE markers within linkage distance of a QTL can be identified by using breed 

crosses or analysis of large half-sib families within the breed.  

 

The first study that detected a QTL in pigs, identified a region affecting fat deposition 

on chromosome 4 (Andersson et al. 1994). This study, along with other 

contemporaneous studies, performed linkage mapping in an F2 design using 

microsatellite markers spread across the genome. The F2 were, in general, obtained 
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from crosses between a European-descent commercial breed and either a European 

Wild Boar or Asian breed, such as Meishan (e.g. Knott et al., 1998; De Koning et al., 

1999). Many QTL regions were detected using this methodology (reviewed by 

Rothschild et al. (2007)), however the confidence interval of these QTL were usually 

very large which hampered the use of this information in a breeding program. On 

top of the large confidence intervals, most of these QTL were detected in 

experimental populations using crosses, therefore the identified QTL could hardly be 

used directly for selection within breeds as they differ in frequency across breeds 

(Dekkers 2004). In practice, QTL analysis in crossed populations has been superseded 

by GWAS analyses within purebred populations, which will be described later. 

 

The fine-mapping approach aims to find the causative mutation or at least refine the 

mapping resolution of a previously detected QTL region, which should lead to 

narrowing down this QTL region. The major factors affecting the mapping resolution 

are: 1) marker density, 2) crossover density, 3) accuracy of inferring the QTL 

genotype, and 4) molecular architecture of the QTL (Georges 2007). Provided that 

there are enough markers, then to increase the mapping resolution, there is the 

need to increase the number of recombinations. This increase can be achieved by 

breeding additional generations or increasing the population size (Darvasi and Soller 

1995). The fine-mapping approach has been successful in detecting the causal 

mutation only for a small number of QTL, for example FAT1 (Berg et al. 2006) and 

the insulin-like growth factor 2 gene (IGF2) (Van Laere et al. 2003). 

 

Besides the linkage approach used for QTL mapping, other approaches were 

developed and applied in pig breeding, such as the candidate gene approach. The 

candidate gene approach involves 1) selecting the candidate gene based on its 

known biological function, 2) amplifying the gene, 3) finding polymorphic regions, 4) 

large scale genotyping of the polymorphic region, 5) phenotyping and genotyping a 

target population, 6) performing an association between phenotype and genotype, 

and finally 7) assessing the detected associations (Rothschild and Soller 1997). The 

candidate gene approach was successful in detecting few QTL, for example the 

porcine melanocortin-4 receptor (MC4R) gene (Kim et al. 2000). This approach 

discovered LD markers, which allows selection across animals of the same 

population, therefore is relevant for breeding (Dekkers 2004). 

 

The pig genome sequence was published in 2012 by the Swine Genome Sequencing 

Consortium (Groenen et al. 2012). In the meantime, the identification of high 

numbers of single nucleotide polymorphisms (SNP) and the development of 
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methodologies to simultaneously genotype large numbers of SNP, enabled the 

design of a SNP chip for pigs with approximately 60,000 markers (Ramos et al. 2009). 

The higher marker density across the genome allowed performance of genome-wide 

association mapping, for the identification of QTL. GWAS evaluates whether 

variations in the genome (e.g. SNP) are associated with variation in a given trait. The 

assumption underlying a GWAS is that significant associations occur because the SNP 

is in linkage disequilibrium (LD) with a causative mutation affecting the trait. The first 

study performing a GWAS in pigs identified a cluster of markers associated with 

androstenone level on chromosome 6 (Duijvesteijn et al. 2010).  

 

To make use of markers linked to QTL in breeding, Fernando and Grossman (1989) 

developed a methodology that incorporated markers associated with quantitative 

traits into the conventional mixed models genetic evaluation. This method was 

applied by breeding companies as a complementary tool to the pedigree-based 

genetic evaluation (Ibáñez-Escriche et al. 2014). Before incorporating new markers 

in the genetic evaluation, it is recommended to assess the pleiotropic effects of that 

marker on other production and reproduction traits. This check is important to avoid 

unfavorable effects due to pleiotropy and/or due to genetic hitchhiking. Such 

unfavorable effects are examined by testing the association between the marker and 

the other traits.  

 

So far, only a handful of causative mutations has been discovered and for the 

majority of QTL regions the causal variation has not been identified. The general 

finding from GWAS for quantitative traits, in livestock species, is that the majority of 

the economically important traits are controlled by many genes with small effects. 

Therefore, given the polygenic nature of most traits in livestock and the availability 

of a large number of genetic markers across the genome, genomic selection became 

the method of choice for application in animal breeding.  

 

1.3 Genomic selection 

Genomic selection (GS) entails using markers across the genome to estimate 

breeding values (Meuwissen et al. 2001). The assumption underlying genomic 

selection is that the effects of QTL will be captured by markers due to LD. In GS, 

individuals with both phenotypes and genotypes compose the so-called training 

population. Information on the training population is used to estimate direct 

genomic values (DGV) of selection candidates that are genotyped but do not have 

phenotypes. Selection based on DGV can be performed in these selection 
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candidates. The DGV is an estimate, based on the animal’s genomic information, of 

the value that an animal transfers to its progeny. To calculate the DGV, marker 

effects can be estimated by regressing the phenotypes on the marker genotypes in 

the training population. Afterwards, the genotypes of each selection candidate are 

multiplied by the marker effect and summed, resulting in the DGV. Various methods 

have been developed for the application of GS. These methods are generally based 

on mixed models, simple linear regression or shrinkage-based approaches. A 

detailed overview and evolution of these methods is described by Garrick et al. 

(2014). 

 

In animal breeding, the selection of the best animals to be the parents of the next 

generation is performed typically to achieve a response to selection. The response 

to selection (R) is determined by the intensity of selection (i), the accuracy of 

prediction (r), the genetic standard deviation (σa) and the generation interval (L): 

 

R = 
i * r * σa

L
 

 

Studies on genomic predictions have shown a solid increase in accuracy over 

pedigree-based predictions (BLUP). The degree of increase varies across traits, lines 

and species (e.g. Hayes et al., 2009; Tussel et al., 2013). In addition to the increase in 

accuracy, GS allows selection at a younger age of the selection candidates because 

the genotype that will be used for prediction can be obtained right after birth. 

Therefore, there is no need to spend a long time waiting for the expression and 

recording of the animals own phenotype, e.g. daily gain, or the phenotype of their 

offspring, e.g. milk production. This leads to a reduction in the generation interval, 

which is a larger benefit in some species (e.g. cattle) than in others (e.g. broilers). 

The potential for changing the intensity of selection with GS exists but it depends on 

the number of genotyped individuals; the more genotyped animals the higher the 

intensity and therefore a greater expected response to selection. Genomic selection, 

therefore, can affect response to selection through these three factors, i, r and L. 

 

Genomic selection was first applied in dairy cattle (VanRaden et al. 2009), where the 

aim is to improve the performance of purebred animals. In pigs, two major pig 

breeding companies (PIC, Topigs Norsvin) began GS implementation in purebred 

lines in 2012-13. The delay in implementing GS in pigs, compared to cattle, can be 

attributed to: 1) the later release of the commercial SNP chip (Jan. 2008 for cattle vs 

Aug. 2009 for pigs), 2) the high genotyping cost compared to the value of an animal, 
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3) the different structure of the business (open nucleus vs. closed nucleus), 4) the 

need to distinguish from competitors in the market, 5) the uncertainty whether GS 

of purebreds results in gains in the crossbreds. The latter (crossbred production) 

plays an important role in pig production, and the crossbred breeding goals in pigs is 

probably a main difference between dairy cattle breeding and pig breeding. 

Implementation of GS in pigs for the crossbred breeding goals, hence, may require 

different strategies which are not yet fully developed. Besides the different 

strategies that need to be assessed, the accuracy of methods that are currently 

implemented for cattle may be reduced when the aim is to improve crossbred 

performance. Many factors affect this lower accuracy, such as the low number of 

genotyped crossbred individuals, genetic correlation between purebred and 

crossbred performance being different from 1, and the lower relationship between 

the purebred and crossbred individuals. Assessing accuracy of genomic prediction 

for the performance of purebred and crossbred animals, therefore, is a research field 

in development and of great interest for pig and poultry breeding companies. 

 

1.4 Crossbreeding 

Crossbreeding is the process of mating individuals from different breeds or lines to 

produce a crossbred offspring. It is standard practice in the modern pig production 

set-up, and as indicated in the preceding section, is a relevant difference compared 

to, for instance, dairy cattle breeding. Crossbreeding is applied to capitalize on breed 

complementarity and heterosis, and to protect the genetic progress in the pure lines.  

 

Focusing on the importance of heterosis for crossbreeding, three types can be 

distinguished: individual, maternal and paternal (Clutter 2010). It is the individual 

heterosis that benefits the crossbred progeny and is a result of its own hybrid state 

and the primary aim for improving production traits. The maternal heterosis benefits 

the crossbred progeny and is a result of the hybrid state of its dam. Maternal 

heterosis is highly relevant for reproduction traits, e.g. mothering ability, because it 

benefits the offspring especially in the period that the offspring is dependent on its 

dam. Maternal heterosis is therefore a major reason for the extensive use of two-

generation crossbreeding schemes in pig production (Bidanel 2010). The paternal 

heterosis benefits the crossbred progeny and is a result of the hybrid state of its sire. 

The benefit of paternal heterosis is limited, not having the same relevance as the 

maternal heterosis in crossbreeding. In general, heterosis is found across traits and 

species and varies roughly from 0% to 30%, including negative values as well (Bondoc 

et al. 2001; Bidanel 2010).  
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Dominance is labelled to be one of the main causes of heterosis (Falconer and 

Mackay 1996; Charlesworth and Willis 2009). This is because the hybrid superiority 

is attributed to the advantage of the heterozygotes over the mean of the two 

homozygotes. Studies in pigs and cattle have found that there is dominance variance 

for different traits in purebred populations (Su et al. 2012; Nishio and Satoh 2014; 

Sun et al. 2014). In addition, these studies have also reported that using a model that 

accounts for dominance resulted in either higher or similar accuracy for prediction 

of breeding values than using a model that only fits additive effects. Prediction of 

crossbred performance, accounting for dominance, has not been reported. 

Accounting for dominance in prediction of crossbreds is expected to result in a 

considerable increase of accuracy compared to purebred results because more 

dominance is envisaged in crossbred than purebred populations (Nishio and Satoh 

2014). Therefore, using a model that accounts for dominance when crossbred 

individuals are used in the prediction might be important. 

 

1.5 This thesis 

The objective of my research is to exploit genomic information in purebred and 

crossbred pigs to generate knowledge and results that could be used to improve 

genetic progress. The thesis can be divided in two parts: 1) in this part the aim is to 

discover and investigate genomic regions that affect gestation length and boar taint, 

including an assessment of pleiotropic effects of the identified marker; 2) in this part 

the potential of genomic selection in pig breeding is investigated by determining the 

accuracy of genomic prediction using different training and validation populations, 

selected from multiple purebred lines and their crossbred offspring, and different 

models.  

 

The first part of this thesis comprises Chapters 2-4 and concentrates on finding 

important genomic regions and test for possible application of these results in pig 

breeding. In Chapter 2, a GWAS is described with the aim to detect SNP and also to 

identify candidate genes that are associated with gestation length. Gestation length 

is an important trait in pig breeding due to its relation with maturity of the piglet at 

birth. Detecting significant SNP with effects on gestation length is therefore desired. 

In Chapter 3, the region of a previously detected QTL is fine-mapped, aiming at the 

identification of SNP that affect androstenone levels. This fine-mapped region is 

evaluated in Chapter 4 for possible pleiotropic effects on production and 

reproduction traits in pigs. The combined results of Chapters 3 and 4 allow an 

informed decision on the usage of these markers in a breeding program. 
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The second part comprises Chapters 5-8 and focuses on strategies to implement GS 

in pig breeding when crossbreeding schemes are accounted for. In Chapter 5, the 

accuracy of genomic breeding values from within-, multi- and across-population 

predictions in pigs is evaluated, including the accuracy of using purebred training 

data to predict performance of crossbred pigs. This last analysis will indicate how 

well crossbred performance will respond to the current practice of selecting within 

purebred populations. For this chapter, the response variable used for training was 

the deregressed breeding value (DEBV) from a routine genetic evaluation, which 

contains a mix of purebred and crossbred animals. To separately assess the value of 

phenotypic information from purebred and crossbred pigs I investigated the source 

of information used to estimate the DEBV: should it be based on purebred or 

crossbred performance? Therefore, in Chapter 6, while the training and validation 

populations were the same as in Chapter 5, the training was performed twice with 

different phenotypes as input: first using DEBV based on purebred offspring, and 

second using DEBV based on crossbred offspring. The DEBV from crossbred offspring 

is expected to lead to better predictions of purebred animals for crossbred offspring 

performance. Later, more genotyped crossbred animals became available and a 

training population could be constructed that consisted of genotyped crossbred 

animals. Hence, in Chapter 7 we compare the accuracy of prediction from using 

either only crossbred or only purebred animals as training population when 

predicting purebred animals for crossbred performance. Finally, as indicated above, 

the performance of crossbreds typically shows heterosis, and dominance is expected 

to strongly contribute to this heterosis. Therefore in Chapter 8, the performance of 

the dominance model is empirically compared to the additive model for prediction 

of purebreds for crossbred performance based on a training with data from 

crossbred pigs.  

 

Lastly, Chapter 9 is where the two parts, mapping and prediction, come together. I 

discuss the relevance of my findings, how breeders can benefit from the combination 

of genomic selection with the information of important genomic regions identified 

in GWAS. Also, I discuss the impact that high-density SNP chips and sequence data 

can have in GWAS studies. In addition, I expatiate on strategies for applying genomic 

selection, especially when crossbreeding information is used. To finalize, I give 

concluding remarks by summarizing the new insights from this thesis. 
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Abstract 

Reproduction traits, such as gestation length (GLE), play an important role in dam 

line breeding in pigs. The objective of our study was to identify single nucleotide 

polymorphisms (SNP) that are associated with GLE in two pig populations. Genotypes 

and deregressed breeding values were available for 2,081 Dutch Landrace-based (DL) 

and 2,301 Large White-based (LW) pigs. We identified two QTL regions for GLE, one 

in each line. For DL, three associated SNP were detected in one QTL region spanning 

0.52 Mbp on Sus scrofa chromosome (SSC) 2. For LW, four associated SNP were 

detected in one region of 0.14 Mbp on SSC5. The region on SSC2 contains the 

heparin-binding EGF-like growth factor (HBEGF) gene which promotes embryo 

implantation and has been described to be involved in embryo survival throughout 

gestation.The associated SNP can be used for marker-assisted selection in the 

studied populations, and further studies of HBEGF gene are warranted to investigate 

its role in GLE. 

 

Key words: HBEGF gene, length of pregnancy, quantitative trait loci, reproduction 

trait 
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Reproduction traits, such as gestation length (GLE), play an important role in dam 

line breeding in pigs (Hanenberg et al. 2001; Onteru et al. 2012). GLE is defined as 

the interval (days) between insemination and farrowing. The last days of gestation 

are crucial for the maturation of the piglet at birth, therefore a gestation that is not 

shorter than the average (~114 days) will result in better development of the piglet 

at birth and lower postpartum mortality (Rydhmer et al. 2008). GLE has positive 

genetic and phenotypic correlation with mothering ability (Hanenberg et al. 2001) 

and a longer gestation is also favourably linked with birth weight and piglet growth 

rate (Rydhmer et al. 2008).  

 

Previous studies using microsatellite markers and divergent crosses have identified 

quantitative trait loci (QTL) for GLE (Wilkie et al. 1999; Chen et al. 2010). These QTL, 

however, are based on linkage maps with few genetic markers resulting in large 

confidence intervals. With the development of dense panels of single nucleotide 

polymorphisms (SNP) we have now the opportunity to narrow down the confidence 

interval and to identify novel associated variants via genome-wide association 

studies (GWAS). Apart from Onteru et al. (2012), who reported many associations 

spread across the pig genome, there is a lack of GWAS for GLE. The objective of our 

study was to identify markers that are associated with GLE in two commercial pig 

populations and then identify candidate genes that lie within the associated QTL 

region.  

 

Genotypes were available on animals from two dam lines: 2,081 Dutch Landrace-

based (DL) and 2,301 Large White-based (LW). All animals were genotyped using the 

Illumina PorcineSNP60 BeadChip (Ramos et al. 2009). We excluded SNP with call rate 

<0.95, minor allele frequency <0.01, strong deviation from Hardy-Weinberg 

equilibrium (χ²>600), GenCall<0.15, unmapped SNP and SNP located on sex 

chromosomes, according to the Sscrofa10.2 assembly of the reference genome 

(Groenen et al., 2012). After quality control, the remaining missing genotypes were 

imputed using BEAGLE 3.3.2 (Browning & Browning 2007). This quality control was 

performed for each population separately, leaving 40,776 SNP for DL and 42,244 SNP 

for LW of the initial 64,232 SNP. None of the animals had more than 5% missing 

genotypes. 

 

Phenotypes consisted of repeated observations of GLE for the DL and LW 

populations (Table S2.1). GLE was normally distributed and its mean differed by 0.85 

days between populations. The phenotypes were used to estimate the breeding 

values (EBV) in a single-trait analysis using a repeatability model in ASReml 3.0 
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(Gilmour et al. 2009). The model used to estimate the EBV included the fixed effects 

of genetic line, parity number, total number of piglets born, multiple  inseminations 

performed (yes or no) and herd-year-season. Random effects included were service 

sire, a permanent environmental effect and an additive genetic effect. Deregressed 

EBV (DEBV) of the genotyped animals were used as response variable in this study. 

EBV were deregressed using the methodology proposed by Garrick et al. (2009).  

 

A single-SNP GWAS was performed in ASReml 3.0 (Gilmour et al. 2009) using the 

following model:  

 

1  μ      ,   y b SNP Zg e  

 

where y is the vector of DEBV of the genotyped animals, µ is the overall mean, b1 is 

the vector of regression coefficients of each SNP, SNP is the incidence vector for b1 

with genotypic information (0, 1 and 2), Z is the incidence matrix for g, g is the vector 

of random additive genetic effects, assumed to be ∼N(0, G𝜎𝑎
2), where G is the 

genomic relationship matrix, and e is the residual error, assumed to be ∼N(0, D𝜎𝑒
2), 

where D is a diagonal matrix calculated as I*wi, where I is an identity matrix and wi is 

the weight of the ith DEBV based on its reliability. The G matrix was built as 

iiqp/2 'MMG , where M is a matrix of centered genotypes and ip  and iq  are the 

allelic frequencies of the ith marker based on observed genotypes (VanRaden 2008). 

 

The genomic inflation factor (lambda) for the distribution of p-values from the GWAS 

was estimated using the R package GenABEL (Aulchenko et al. 2007). A genome-wide 

false discovery rate (FDR) was applied to correct for multiple testing using the R 

package qvalue (Dabney & Storey 2015). A FDR threshold (FDR ≤ 0.05) was applied. 

We used the Haploview software (Barrett et al. 2005) to compute the LD (linkage 

disequilibrium) between significant markers.  

 

The QTL variance (σQTL
2 ) was estimated according to Falconer & Mackay (1996). The 

proportion of the DEBV variance explained by the QTL region was estimated by:  

 

(σQTL
2 /σDEBV

2 )*100, 

 

where σDEBV
2  is the total variance of the DEBV estimated based on the GWAS model 

without a SNP effect. 
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We searched for genes that were located nearby the significant markers using 

Ensembl database (www.ensembl.org). All genes within ± 1 Mbp from the QTL region 

(associated SNP peak) were selected for further investigation. 

 

The lambda values of 1.03 for DL and 1.06 (Fig. S2.1) for LW suggest that there is no 

population stratification in our data indicating no increased risk for type I errors. 

Given our stringent false discovery rate threshold the reported associations are likely 

to be true associations.  

 

For DL, three significant SNP were detected in one QTL region spanning 0.52 Mbp 

(Fig. 2.1A and Table 2.1). This QTL region was located on Sus scrofa chromosome 

(SSC) 2 between 147.8 Mbp and 148.4 Mbp. The percentage of DEBV variance 

explained by the QTL region was 1.12%. For LW, four significant SNP were identified 

in one QTL region spanning 0.14 Mbp (Fig. 2.1B and Table 2.1). This QTL region was 

located on SSC5 between 2.9 Mbp and 3.1 Mbp. The percentage of DEBV variance 

explained by this QTL region was 0.77%. The minor allele frequency (MAF) of the 

significant SNP on SSC5 was low, 0.01, which made us cautious about these results. 

Associations may appear by chance due to an extreme observation in the low 

frequency genotype class. However, the distribution of animals per genotype class 

(0 AA, 65 AB, and 2,236 BB) gives us confidence in this association, as the only 

contrast is between AB and BB genotypes that each have a reasonable number of 

observations. There was high LD between markers of the same peak in each 

population (Fig. S2.2), indicating that all markers from each peak belong to one LD 

block and are likely capturing variance from the same QTL. 

 
Table 2.1 Significant SNPs genome-wide associated with gestation length for the two 
populations under study. 

SNP Pop. Chra Posb Location Effectc -log10(p-value) q-valued MAFe 

ASGA0012523 DL 2 147.83 Intergenic 0.30 7.02 0.003 0.14 
DBMA0000166 DL 2 148.26 Intronic 0.27 6.86 0.003 0.15 
DIAS0004579 DL 2 148.35 5’ UTR 0.22 5.46 0.048 0.18 
INRA0018114 LW 5 2.92 Intergenic -0.65 6.57 0.004 0.01 
ALGA0029956 LW 5 2.95 Intergenic -0.65 6.57 0.004 0.01 
MARC0027217 LW 5 2.98 Intergenic -0.63 6.00 0.010 0.01 
H3GA0015235 LW 5 3.06 Intronic -0.65 6.57 0.004 0.01 

a Chromosome 
b Position on the chromosome (Mbp) 
c Allele substitution effect 
d FDR-based q-value 
e Minor allele frequency 
DL: Dutch Landrace, LW: Large White 
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The QTL on SSC2 for DL and on SSC5 for LW were not previously reported. Onteru et 

al. (2012) have reported significant SNP for GLE on SSC2 and on SSC5, however they 

are not located near the region identified in our study. Chen et al. (2010), using 

microsatellite markers, have also detected one QTL region on SSC2, however that 

peak also does not overlap with ours.  

 

 
Figure 1 (A) Manhattan plot for gestation length for the Dutch Landrace population. (B) Manhattan plot 
for gestation length for the Large White population. The significant SNP (q-value ≤ 0.05) are shown as 
large diamonds. 

 

The biology of parturition is not completely understood and differs considerably 

between species (Bezold et al. 2013). Candidate genes known from physiology or 

candidate gene studies in human and model organisms (Bezold et al. 2013) do not 

map to this region. Candidate genes were identified using the synteny tool of the 

Ensembl genome browser at http://www.ensembl.org/Sus_scrofa/Info/Index, build 

10.2 of the pig reference genome sequence. For the region identified on SSC2, 73 

genes with a gene name in the porcine annotation or homologous region in human 

were located within the QTL area ± 1 Mbp. The heparin-binding EGF-like growth 

factor (HBEGF) gene located between 148.04 Mbp and 148.06 Mbp has been 

suggested to promote embryo implantation in humans and mice (Leach et al.1999; 

Xie et al. 2007) and is expected to have an important role as survival factor 
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throughout gestation (Jessmon et al. 2009). Xie et al. (2007) studying mice with a 

deletion of uterine HBEGF showed that it resulted in delayed implantation and 

compromised term pregnancy. For the region identified on SSC5, 25 genes were 

identified within the QTL region ± 1 Mbp. No gene, however, appeared to be a 

relevant candidate gene based on their currently known functions. 

 

In summary, we have detected two QTL regions for GLE. Different populations had 

different QTL regions. SNP located in these QTL regions might be useful for marker-

assisted selection in the studied populations. The HBEGF gene, suggested to promote 

embryo implantation, is the most compelling candidate gene for the QTL region on 

SSC2. 
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Supplementary material 

 
Figure S2.1 Quantile-quantile (Q-Q) plot with lambda values. (A) Q-Q plot for the Dutch 
Landrace population. (B) Q-Q plot for the Large White population. 
 
 

 
Figure S2.2 Linkage disequilibrium (LD) between significant markers. (A) LD plot (r2) of the 
significant SNP in the Dutch Landrace line. (B) LD plot of the significant SNP in the Large White 
line. 
 
 
Table S2.1 Descriptive statistics of gestation length for the two lines under study. 

Line Nr. Observations Nr. Animals Mean (SDa) Minimum Maximum 
Dutch Landrace 236,803 68,070 115.79 (1.53) 105 125 

Large White 134,477 41,522 114.94 (1.53) 105 125 
a Standard deviation 
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Abstract 

Background 

Androstenone is one of the major compounds responsible for boar taint, a 

pronounced urine-like odor produced when cooking boar meat. Several studies have 

identified quantitative trait loci (QTL) for androstenone level on Sus scrofa 

chromosome (SSC) 6. For one of the candidate genes in the region SULT2A1, a 

difference in expression levels in the testis has been shown at the protein and RNA 

level. 

 

Results 

Haplotypes were predicted for the QTL region and their effects were estimated 

showing that haplotype 1 was consistently related with a lower level, and haplotype 

2 with a higher level of androstenone. A recombinant haplotype allowed us to 

narrow down the QTL region from 3.75 Mbp to 1.94 Mbp. An RNA-seq analysis of 

the liver and testis revealed six genes that were differentially expressed between 

homozygotes of haplotypes 1 and 2. Genomic sequences of these differentially 

expressed genes were checked for variations within potential regulatory regions. We 

identified one variant located within a CpG island that could affect expression of 

SULT2A1 gene. An allele-specific expression analysis in the testis did not show 

differential expression between the alleles of SULT2A1 located on the different 

haplotypes in heterozygous animals. However a synonymous mutation C166T (SSC6: 

49,117,861 bp in Sscrofa 10.2; C/T) was identified within the exon 2 of SULT2A1 for 

which the haplotype 2 only had the C allele which was higher expressed than the T 

allele, indicating haplotype-independent allelic-imbalanced expression between the 

two alleles. A phylogenetic analysis for the 1.94 Mbp region revealed that haplotype 

1, associated with low androstenone level, originated from Asia.  

 

Conclusions 

Differential expression could be observed for six genes by RNA-seq analysis. No 

difference in the ratio of C:T expression of SULT2A1 for the haplotypes was found by 

the allele-specific expression analysis, however, a difference in expression between 

the C over T allele was found for a variation within SULT2A1, showing that the 

difference in androstenone levels between the haplotypes is not caused by the SNP 

in exon 2. 

 

Key words: Asian haplotype, boar taint, RNA-seq, SSC6, whole genome sequencing  
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3.1 Background 

Androstenone (5α-androst-16-en-3-one) is a steroid hormone synthesized in the 

Leydig cells of the testis in a stepwise conversion involving 3β-hydroxysteroid 

dehydrogenase (HSD) and 5α‐reductase enzymes (Dufort et al. 2001). In pigs, 

androstenone acts as a sex pheromone which attracts female pigs making them 

more receptive to mating (Dorries et al. 1997). Androstenone is degraded in the liver 

and salivary gland by 3α-HSD enzymes resulting in α-androstenol and by 3β-HSD 

enzymes resulting in β-androstenol (Dorries et al. 1997; Dufort et al. 2001; Sinclair 

et al. 2005). Sulfoconjugated androstenols are eliminated mainly in the urine and 

bile. Androstenone is one of the major compounds responsible for boar taint, a 

pronounced urine-like odor produced when cooking meat from intact male pigs, or 

boar meat (Bonneau 1982). As unconjugated androstenone and androstenol are the 

forms that most easily accumulate in adipose tissue and hereby lead to boar taint 

(Sinclair and Squires 2005), conjugation plays an important role in the prevention of 

boar taint. At high concentrations in the fat, androstenone influences consumer 

acceptability of pork (Bonneau and Chevillon 2012). In current breeding practice, 

castration of male piglets is used to prevent the boar taint. Castration, however, is 

undesirable not only for technical reasons, as castrated male pigs have fatter 

carcasses and reduced feed efficiency (Seideman et al. 1982), but also because of 

animal welfare concerns and future legislation restriction. Therefore, the 

development of an alternative to castration is needed.  

 

The development of a medium-density 60K porcine single nucleotide polymorphism 

(SNP) chip (Ramos et al. 2009), has enabled genome-wide association studies 

(GWAS) to efficiently map regions throughout the genome affecting phenotypic 

traits such as the androstenone level. While GWAS can identify significant marker 

associations, the current SNP density on the Illumina PorcineSNP60 BeadChip often 

leads to clusters of markers covering a region that is still too large to allow accurate 

identification of the responsible genes or variants. Hence, there is still the need to 

reduce the size of these clusters if the aim is to find causative relations between 

gene(s) or variants that affect phenotypic traits like androstenone level in fat.  

 

Several studies (Duijvesteijn et al. 2010; Grindflek et al. 2011a; Grindflek et al. 2011b; 

Gregersen et al. 2012) have identified quantitative trait loci (QTL) for androstenone 

level on Sus scrofa chromosome (SSC) 6. Duijvesteijn et al. (2010) performed a GWAS 

unveiling an 8 Mbp region on SSC6 associated with androstenone level in boars of a 

Duroc-based population. Similarly, Grindflek et al. (2011a) reported a QTL for Duroc 
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animals within a 7.1 Mbp region that overlaps with the region found by Duijvesteijn 

et al. (2010). Within the QTL region on SSC6, Duijvesteijn et al. (2010) showed that 

there are haplotypes related to low and high average levels of androstenone in fat. 

Expression studies that compared boars with low and high androstenone levels (Moe 

et al. 2007; Grindflek et al. 2010; Leung et al. 2010) found differential expression of 

several genes including sulfotransferase family 2A dehydroepiandrosterone-

preferring member 1 (SULT2A1). SULT2A1 is located within the QTL region and is a 

strong candidate gene to have an effect on androstenone level. Since QTL regions 

are large, fine mapping studies need to be carried out to identify causative variants 

and to enable the use of these QTL in breeding programs.  

 

The goal of this study was to narrow down the QTL region on SSC6 previously 

reported by Duijvesteijn et al. (2010), to identify and characterize genes and SNP 

variants that affect androstenone level in pigs, and to determine whether the effects 

of low- and high-androstenone haplotypes are caused by differential expression of 

SULT2A1. 

 

3.2 Results 

Androstenone level was obtained from 2,750 boars that belonged to six purebred 

populations and five crosses. The flowchart (Fig. 3.1) provides an overview of the 

study to clarify the steps that were taken in association mapping, whole genome 

sequencing, and functional analyses.  

 

3.2.1 Region of interest and haplotypes 

Markers associated with Androstenone were identified by Duijvesteijn et al. (2010) 

in the region from position 36,907,969 bp to 44,939,360 bp on SSC6 using the 

Sscrofa9 assembly of the reference genome. A target region of 2.8 Mbp, from 

position 36,907,969 bp to 39,697,649 bp, containing the peak associations, was 

defined by Duijvesteijn et al. (2010) and was used in our study. The present study 

used the Sscrofa10.2 assembly of the reference genome (Groenen et al. 2012), in 

which the 2.8 Mbp region in genome build Sscrofa9 corresponded to a 3.75 Mbp 

region on SSC6, from position 48,585,961 bp to 52,336,598 bp. This region contained 

two linkage disequilibrium (LD) blocks with a total of 46 markers on the Illumina 

PorcineSNP60 BeadChip that were polymorphic in our study (Table S3.1), 29 of which 

are significant for androstenone level, identical to the ones reported by Duijvesteijn 

et al. (2010). Prediction of the haplotypes for the 46 SNP across populations revealed 

ten haplotypes with a frequency above 1%.  
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Figure 3.1 Flowchart of the steps taken in the current study. We started the analysis with a 

region associated with androstenone level previously found on SSC6. The position of the 

markers were adjusted to the Sscrofa10.2 assembly of the reference genome. Afterwards, 

haplotypes for the region were identified and their effects were estimated. The region was 

narrowed down using information from a recombinant haplotype. RNA-seq analysis, within 

the narrowed region, was performed in the liver and testis. For candidate genes that were 

differentially expressed, we used whole genome sequence data to look for variations within 

regulatory regions and also to look for variations within coding regions for all genes within the 

narrowed region. Allele-specific expression analysis in the testis was performed for SULT2A1 

gene because a variation is located within a regulatory region. Finally, we analyzed genomic 

sequence data to assess the origin of the haplotypes. 

 

3.2.2 Effects and association analysis of haplotypes 

Effects on androstenone level were estimated for the ten haplotypes (Table S3.2). 

Haplotypes 1 and 2 were present in all populations; haplotype 1 was consistently 

related with a lower level, and haplotype 2 with a higher level of androstenone (Fig. 

3.2). 

 

A phylogenetic tree was constructed using MEGA 5 (Tamura et al. 2011) based on 

similarities among the 46 SNP of the haplotypes (Fig. 3.3A). Haplotypes were 

arranged in two groups, with haplotypes 1, 3, 7, 8 and 10 forming one group, and 

haplotypes 2, 4, 5, 6 and 9 another group. To determine whether the relation of 

haplotypes 1 and 2 to androstenone level followed the phylogenetic division, we 

analyzed the association between haplotypes and androstenone using Treescan 

(Posada et al. 2005) which "cuts" the phylogenetic tree at different branches and 

tests whether the groups created by the cut are statistically different in their effect 

on the phenotype. Dividing the tree between haplotypes 1, 3, 8, 10, and 7, 5, 9, 6, 2, 
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4; or between haplotypes 1, 3, 8, 10, 7, and 5, 9, 6, 2, 4 resulted in statistically 

significant differences (P<0.0001) and explained the largest proportion of 

phenotypic variation (0.049 and 0.051, respectively).  

 

 
Figure 3.2 Haplotype effects across all populations. Effects estimated for the haplotypes 1 

and 2 (bars) and eight other haplotypes (dots) across 11 populations (number of animals). 

 

Haplotype 7 is a recombinant haplotype: the region from SNP 1 to 13 is similar to 

haplotype 2 (high androstenone level), whereas the region from SNP 14 to 46 is 

similar to haplotype 1 (low androstenone level) (Fig. 3.3B). Therefore, with a 

posterior analysis, the effects of haplotypes 1, 2, and 7 were estimated using only 

populations in which haplotype 7 is segregating (N = 1240). The effect of haplotype 

7 (effect = 0.05) is significantly different from haplotype 1 (effect = -0.16), whereas 

it is not significantly different from haplotype 2 (effect = 0.00). The effect of 

haplotype 7 could therefore be grouped together with haplotype 2, indicating that 

the region from haplotype 7 that is similar to haplotype 2 causes the effect. This 

allowed us to narrow down the associated region from 3.75 Mbp (48,585,961 bp - 

52,336,598 bp) to 1.94 Mbp (48,317,509 bp – 50,259,057 bp). When testing the 

remaining haplotypes 3, 4, 5, 6, 8, 9, and 10 in the same way, their effects were all 

congruent with the expectation, except for the rare haplotypes 8 and 10 which were 

not significantly different from either haplotype 1 or 2 (Table S3.3).  
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Figure 3.3 Phylogeny of the 10 haplotypes. (A) Phylogenetic tree for the 10 most frequent 
haplotypes and (B) the 10 most frequent haplotypes across all populations ordered according 
to the phylogenetic tree and colored according to their effect on androstenone level. The 
underlined region indicates similarity between haplotype 7 and low-androstenone 
haplotypes. 
 

3.2.3 RNA-seq analysis 

To determine whether genes within the narrowed region were differentially 

expressed between haplotypes 1 and 2, an RNA-seq analysis was performed in the 

liver and testis. A “haplotype-1 pool” was made from four animals homozygous for 

haplotype 1, and a “haplotype-2 pool” from four animals homozygous for haplotype 

2. After the rearrangement of the map in the new reference genome assembly 

build10.2 it was found that the haplotype-2 pool contained six copies of haplotype 2 

and two copies that were haplotype-2-like (rare haplotypes that differed from 

haplotype 2 in three positions).  

 

A total of 79 genes were located within the narrowed region. Among these, three 

genes (4%) were found to be differentially expressed in the liver: sperm acrosome 

membrane-associated protein 4 (SPACA4), synaptogyrin 4 (SYNGR4), tubby-like 

protein 2 (TULP2); and three genes (4%) in the testis: ferritin light polypeptide (FTL), 

glioma tumor suppressor candidate region gene 1 (GLTSCR1), and sulfotransferase 

family 2A dehydroepiandrosterone-preferring member 1 (SULT2A1) (Table 3.1).  
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3.2.4 Functional analysis 

Whole-genome sequencing data were used to investigate the complete set of SNP 

variants in the narrowed region. From the 55 animals for which the whole-genome 

sequencing data were available (see M&M for details), 10 animals were homozygous 

for either haplotype 1 or 2 according to the 13 SNP located within the 1.94 Mbp 

interval. An animal was considered to be homozygous when it met two criteria: (1) 

average heterozygosity for the narrowed region was very low (Fig. S3.1); (2) the 

genotypes of the 13 SNP overlapping with the Illumina PorcineSNP60 BeadChip in 

the region were identical to the sequencing data. 

 

Table 3.1 Results for genes differentially expressed in the liver and testis between pools of 

animals homozygous for low- and high-androstenone haplotypes. 

Gene Location Haplo-1 Pool Haplo-2 Pool Log2 FC* P value 

Liver 

SYNGR4 49625413-49627375 0.71 7.81 3.47 3.2 x10-4 

SPACA4 49711175-49719812 2.00 11.76 2.56 2.21 x10-3 

TULP2 50142849-50151782 0.67 6.45 3.27 6.72 x10-6 

Testis 

GLTSCR1 48928610-48946950 4.39 1.88 -1.22 1.34 x10-6 

SULT2A1 49108566-49119941 40.06 104.83 1.39 1.41 x10-7 

FTL 50078375-50097694 782.79 1618.46 1.05 1.95 x10-5 
*Fold changes (FC) are calculated relative to low-androstenone haplotypes, hence indicates the times of 

up-regulation in the high-androstenone group compared to the low-androstenone haplotype.  

 

3.2.4.1 Coding regions 

From the genome sequencing data, 1,897 single nucleotide differences were found 

between haplotypes 1 and 2 in the 1.94 Mbp interval. To detect functional genetic 

variants between the haplotypes, differences were annotated using ANNOVAR 

(Wang et al. 2010). Of the 1,897 SNP, 75 (3.95%) were located in exonic regions, with 

17 of them being non-synonymous and 58 being synonymous variations (Table S3.4). 

Within the five genes previously suggested as candidates for effects on 

androstenone by Duijvesteijn et al. (2010) and Grindflek et al. (2010), we found three 

synonymous and one non-synonymous variation. Gene SULT2A1 contained one 

synonymous variation (C/T) within exon 2 at position 166 (SSC6: 49,117,861 bp in 

Sscfrofa10.2); Hydroxysteroid (17-beta) dehydrogenase 14 (HSDB17B14) contained 

a non-synonymous variation (T/G) within exon 4 at position 217 (SSC6: 49,889,443 

bp in Sscfrofa10.2); Lutropin subunit beta (LHB) contained a synonymous variation 

(C/T) within exon 1 at position 147 (SSC6: 50,064,434 bp in Sscfrofa10.2); FTL 

contained a synonymous variation (C/G) within exon 4 at position 474 (SSC6: 
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50,096,119 bp in Sscrofa10.2); and for sulfotransferase family cytosolic, 2B member 

1 (SULT2B1) no nucleotide variation was found in any of the exons. 

 

The impact of the non-synonymous variations was assessed using PolyPhen2 

(Adzhubei et al. 2010), which showed that the T/G variation in HSDB17B14 was 

unlikely to affect the function of the protein. Regarding other genes within the 1.94 

Mbp interval that have non-synonymous variations but are not considered as a 

candidate gene, a variation within exon 1 of fucosyltransferase 1 (FUT1) is probably 

damaging the functionality of the protein (PSIC score: 2.092). Probably-damaging 

status indicates that the variation is, with high confidence, expected to affect protein 

function.  

 

3.2.4.2 Regulatory regions 

Because SULT2A1 and FTL were differentially expressed between pools of haplotype 

1 and haplotype 2 animals and are functional candidate genes, their up and 

downstream sequences (±2,000 bp) were examined for the presence of potential 

transcription factor binding sites (TFBS) that were conserved across three species 

(Sus scrofa, Bos taurus, and Homo sapiens). None of the fixed differences between 

haplotypes 1 and 2 were located within predicted TFBS. In addition to the absence 

of single nucleotide differences between haplotypes 1 and 2 within the TFBS, we 

checked the overlap of the TFBS with copy number variations (CNVs) identified by 

Paudel et al. (2013). No CNVs were identified that could affect TFBS near SULT2A1 

and FTL genes. 

 

CpG islands were predicted for the SULT2A1 and FTL genes including their up and 

downstream sequence (±2000 bp). Two CpG islands of at least 200 bp, 50% of GC 

content, and 60% of average observed-to-expected ratio of C plus G were detected 

for each of the genes. One of the four CpG islands (49,110,687 bp - 49,110,889 bp) 

which were predicted for SULT2A1 contained a SNP (C/G, 49,110,873 bp). This CpG 

island had 18 CpGs. None of the identified CpG islands contained CNVs.  

 

3.2.5 Validation of differential SULT2A1 expression in the testis 

Of the genes that were differentially expressed between the low- and high-

androstenone pools, SULT2A1, based on its function, is a particularly strong 

positional candidate gene. To validate the difference in expression in the testis found 

between the haplotype-1 and haplotype-2 pools, we made use of a synonymous SNP 

(C/T; SSC6: 49,117,861 bp in Sscfrofa10.2 – see details below on detection of this 

SNP) within exon 2 of the SULT2A1 gene described by Sinclair et al. (2006). The C/T 
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variation was not in complete LD with the low- and high-androstenone haplotypes. 

The T allele had a frequency of 0.34 and was only found on the haplotype 1, the C 

allele was found on both low- and high-androstenone haplotypes (2, 3, and 4). It 

allowed for a comparison of not only the ratio of C:T expression between low- and 

high-androstenone haplotypes but also between the SULT2A1 alleles. The QTL 

effects of the C and T alleles were investigated and both the T and C alleles that were 

located on low-androstenone haplotypes were significantly different from C alleles 

that were located on high-androstenone haplotypes while within the low 

androstenone haplotypes the C and T alleles were not different (Table S3.5). To 

certify that the allele-specific expression analysis was sensitive enough to detect the 

expression differences found in the RNA-seq data, genomic DNA from two animals, 

homozygous for the C or T allele, were mixed in seven ratios and in three 

concentrations. The result of this analysis showed high sensitivity to distinguish 

between the expected difference in expression levels and a strong linear relation 

between the observed and expected ratios (R2 in three concentrations: 2.5ng = 0.93, 

10ng = 0.72, 40ng = 0.97) (Fig. S3.2).  

 

Heterozygous animals (C/T) were one of two different androstenone diplotypes 

(low/low or high/low) but there was no difference in the ratio of C:T expression 

between the low/low and high/low diplotype. A difference in expression was 

however observed between the C and T alleles of SULT2A1 with the C allele always 

being higher expressed than the T allele (ratio C:T = 1.5:1, s.d. = 0.13, Fig. 3.4). The 

mean ratio of 1.5:1 was calculated based on the 67 heterozygous animals studied in 

the allele-specific expression analysis. Genotyping of this SNP on the animals from 

the pools used in the RNA-seq analysis showed that the haplotype-1 pool contained 

4C and 4T alleles whereas the haplotype-2 pool contained only C alleles. Thus, the 

observed difference in expression between haplotype-1 and haplotype-2 pools in 

SULT2A1 expression could be related to differences in expression of the C/T alleles 

in exon 2.  
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Figure 3.4 Allele-specific expression analysis. Ratios of C:T cDNA expression levels in the testis 

from heterozygous animals for exonic variation in SULT2A1. Heterozygous animals’ diplotypes 

are indicated in the titles (low/low, low/high). Standard curve fitted to all control samples 

(blue line) and its regression equation and coefficient of determination are shown. 

 

3.2.6 Origin of the haplotypes 

A phylogenetic analysis was applied to investigate the origin of the haplotypes by 

extracting the 1.94 Mbp region from sequencing data from the 55 sequenced 

animals (Fig. 3.5) (Bosse et al. 2012).  

 

The clustering of animals revealed by the phylogenetic tree computed using 

sequencing data was concordant with the tree based on the haplotypes from this 

region computed from the Illumina PorcineSNP60 BeadChip data. Haplotypes were 

grouped into three clusters: animals homozygous for haplotype 1 or haplotypes 1-

like, animals homozygous for haplotype 2 or haplotypes 2-like, and animals 

heterozygous for haplotypes 1 and 2. Among the Asian animals only haplotype 1 or 

haplotypes 1-like were found, whereas in European wild boars only haplotype 2 or 

haplotypes 2-like were found. On the other hand, commercial European breeds are 

located within all three groups, showing that those animals carry all haplotypes. 
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Figure 3.5 Phylogenetic tree for the haplotypes within the narrowed region in whole 
genome sequenced animals. Asian animals (green) are homozygous for haplotype 1 or 1-like, 
whereas European animals (red) have both haplotypes. European cluster of animals within the 
Asian animals group (yellow) shows that haplotype 1 (low androstenone) originated from 
Asian breeds. 

 

3.3 Discussion 

The SSC6 region associated with androstenone level was reduced from 3.75 Mbp to 

1.94 Mbp and the association of haplotypes in the region with androstenone was 

replicated in independent populations. Haplotype 1 reduces the androstenone level 

across populations and can be potentially implemented in marker-assisted selection 

by pig breeding companies. Selection for haplotype 1 would speed up the genetic 

response for lower androstenone level, which would reduce the incidence of boar 

taint, countering the effects of international policies regarding castration of piglets. 

The association of SULT2A1 expression in the testis with the level of androstenone 

(Moe et al. 2007; Grindflek et al. 2010; Leung et al. 2010) was confirmed by sequence 

analysis of RNA pools. Validation of differential expression showed that a SNP 

located within exon 2 of SULT2A1 presented higher expression of the C over the T 

allele, confirming the result from the RNA-seq analysis and suggesting allelic-

imbalanced expression of the two alleles. This difference in the ratio of C:T is 

however not associated with the haplotypes. A thorough search for functional SNP 
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variation was carried out and resulted in a limited number of non-synonymous 

variants, despite the very high density of genes in the region. 

 

3.3.1 Region of interest and haplotypes 

The number of SNP within the region of interest is higher in our study compared to 

Duijvesteijn et al. (2010), due to the improved assembly of the reference genome 

Sscrofa10.2. Non-associated SNP that were previously located within the associated 

region were moved elsewhere on the genome; simultaneously, additional non-

associated SNP were now included in the associated region.  

 

Predicted haplotypes varied in number and frequency among the 11 populations. A 

larger number of haplotypes were found in those populations that represent crosses 

of purebred populations (populations 7 to 11). This was expected as crosses are 

made between divergent purebred populations that have different frequencies of 

haplotypes. Crosses will therefore combine haplotypes present in the purebred 

populations. 

 

3.3.2 Effects and association analysis of haplotypes 

Across all populations, haplotype 1 was consistently related with lower levels, and 

haplotype 2 with higher levels of androstenone. The haplotype tree showed two very 

distinct groups of haplotypes. When this tree was used to detect associations 

between (groups of) haplotypes and phenotypes, the estimated effects from the 

regression analyses were in good agreement with the evolutionary history of the 

haplotypes. Haplotypes similar in sequence to haplotype 1 also have similar effects, 

decreasing androstenone, and haplotypes similar to haplotype 2 have effects that 

increase androstenone.  

 

After confirming that in general, haplotypes similar to 1 are associated with low and 

haplotypes similar to 2 are associated with high androstenone level, a posterior 

analysis using these two haplotypes together with the recombinant haplotype 7, 

placed haplotype 7 in the high-androstenone group. This placement was important 

because the haplotype 7 sequence is a recombination between haplotypes 1 and 2. 

From this result it was possible to deduce that the region from SNP 1 to 13 harbors 

the genetic variation responsible for the QTL for androstenone level in boars. 

Because it is unknown where the recombination took place the region was defined 

including the flanking intervals, 3’ up to SNP 14, and 5' up to the next SNP outside 

the LD block (SSC6: 48,317,509 bp – 50,259,057 bp, between genes SAE1 and 
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SLC17A7). The assignment of haplotype 7 allowed us to narrow down the associated 

region from 3.75 Mbp to 1.94 Mbp.  

 

This region is very gene-dense and contains several candidate genes for 

androstenone-level QTL (Duijvesteijn et al. 2010; Grindflek et al. 2010): SULT2A1, 

SULT2B1, HSD17B14, LHB, and FTL. The region is only ~0.3 cM long and has a low 

recombination rate (Tortereau et al. 2012) (Table S3.6). This is consistent with the 

low number of haplotypes identified within this region, even when using multiple 

populations. Across all 11 populations the same small set of haplotypes was found 

with consistently replicated effects of the haplotypes on androstenone, making the 

results very robust and useful for breeding programs selecting animals with reduced 

androstenone level. 

 

3.3.3 RNA-seq analysis 

From the six genes that were differentially expressed in the liver and testis, SULT2A1 

is an obvious candidate gene as it is involved in the metabolism of steroids. This gene 

is a sulfotransferase enzyme which sulfoconjugates α-androstenone. Increased 

expression of SULT2A1 in the testis was found in the pool of animals with high-

androstenone haplotype 2 (Table 3.1). 

 

The higher level of SULT2A1 in the testis was associated with higher androstenone 

level in fat tissue. This was unexpected based on the predictions by Sinclair and 

Squires (2005) that animals with low ability to sulfoconjugate 5α-androstenone in 

the testis would have higher accumulation of this hormone in fat tissue. 

Nevertheless, three other studies on different breeds (Duroc, Norwegian Landrace, 

and Yorkshire) (Moe et al. 2007; Grindflek et al. 2010; Leung et al. 2010) are in 

accordance with our results, showing up-regulation of SULT2A1 in the testis of high-

androstenone animals. Androstenone is known to be sulfoconjugated in the testis 

(Sinclair and Squires 2005), presumably to facilitate excretion and subsequent 

transport as androstenonesulfate in the blood. As suggested by Moe et al. (2007), 

high androstenone levels might induce an increase in SULT2A1 expression in the 

testis. Recent results suggest, however, that SULT2A1 might not be involved in the 

sulfoconjugation of androstenone and that another sulfotransferase is involved in 

this step, or that it is involved only in combination with enolase (Desnoyer 2011). 

Moe et al. (2008) also studied gene expression in the liver and found many genes to 

be differentially expressed but not SULT2A1, similar to our observation for the liver.  

Another candidate gene that was differentially expressed in the testis is FTL. The FTL 

gene codes for the ferritin light chain, an iron storage protein involved in numerous 
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essential cellular functions. Although the function of FTL in the synthesis of 

androstenone has not been investigated (Leung et al. 2010), it was suggested by Moe 

et al. (2007) that FTL may influence androstenone level by interaction with CYB5A 

that may affect the CYB5/CYP450 electron transfer. As the role of FTL affecting 

androstenone has not been investigated in more detail and in our study we did not 

find any variants that could explain a difference in expression, it remains unclear 

whether it has a direct effect on androstenone level. It was, therefore, not 

considered to be a strong candidate gene. Our expression data for FTL is consistent 

with the findings of three other studies (Moe et al. 2007; Grindflek et al. 2010; Leung 

et al. 2010), where FTL was up-regulated in Duroc, Norwegian Landrace, and 

Yorkshire boars with high androstenone levels.  

 

3.3.4 Functional analysis using DNA sequence data 

 

3.3.4.1 Coding regions 

The only gene within the 1.94 Mbp region for which a non-synonymous variation was 

identified between haplotypes 1 and 2 that might have an impact on protein function 

was FUT1. FUT1 has been identified as a candidate gene controlling the adhesion of 

enterotoxigenic Escherichia coli (ETEC) F18 to the F18 receptor (Bao et al. 2011). 

However, FUT1 is not known to have an influence on androstenone level, and based 

on the functions of the protein encoded by this gene, it is unlikely that it affects 

androstenone level. 

 

3.3.4.2 Regulatory regions 

We studied the regulatory regions of SULT2A1 and FTL because they were the two 

candidate genes that were differentially expressed according to the RNA-seq 

analysis. We checked potential TFBS and CpG islands, and only one variation (C/G, 

49,110,873 bp) was found within a CpG island (49,110,687 bp - 49,110,889 bp) 

predicted for SULT2A1.  

 

CpG islands are known to play a role in regulating gene expression where, in general, 

higher methylation levels are related to repression of gene expression (Du et al. 

2012). This one variation found within the CpG island could explain the difference in 

expression of SULT2A1 caused by the haplotype, however, this difference in 

expression between haplotypes identified by RNA-seq could not be validated 

subsequently, making it very unlikely that this variation plays a role in gene 

regulation.  
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3.3.5 Validation of differential SULT2A1 expression 

Allele-specific expression analysis was a follow-up step to the RNA-seq experiment 

to test the association of the haplotypes with difference in the ratio of C:T expression 

of SULT2A1 within heterozygous animals. The quantitative difference in the relative 

expression found for RNA-seq (2.5:1) and allele-specific expression analysis (1.5:1) 

may simply be due to random error in the estimate from RNA-seq analysis which was 

based on only two pooled samples. Other reasons include systematic or technical 

differences that affect the amplification in the RNA-seq assay. There may be other 

biological mechanisms that trigger a higher expression of SULT2A1 allele C that 

cannot be captured by allele-specific expression analysis. Unraveling such a 

mechanism can however not be achieved using our data. Surprisingly, in the allele-

specific expression analysis we did not observe differential expression between 

heterozygous animals (C/T) with either low/low or high/low androstenone 

diplotypes (Fig. 3.4). We concluded that the difference in SULT2A1 expression was 

not regulated by the haplotypes surrounding the SULT2A1 gene. Instead, an increase 

in expression of allele C over allele T in SULT2A1 was observed, indicating haplotype 

independent allelic-imbalanced expression between these two alleles. One option 

for the cause of this allelic-imbalanced expression is a potential regulatory SNP-

variant in LD with the SULT2A1 SNP that affects expression. Other options are 

transcriptional regulation of the two alleles, like in an enhancer element, that resides 

outside the investigated region, or differences in RNA decay between the two alleles. 

It is known that the RNA folding structures play a role in the degree of RNA decay. 

Prediction of the fold structure indicated considerable difference in structure around 

the two alleles (Madsen, O., unpublished observation) making RNA decay a possible 

participant in the observed allelic-imbalanced expression.  

 

3.3.6 Origin of the haplotypes 

Since the entire region between 48.3 Mbp and 50.2 Mbp on SSC6 has a very low 

recombination rate (Tortereau et al. 2012), the integrity of the haplotypes found in 

this study has been retained across different populations. Because of this retained 

integrity, a phylogenetic analysis could be applied to construct a phylogenetic tree 

of this region from sequencing data from the 55 sequenced animals (Fig. 3.5) (Bosse 

et al. 2012).  

 

This tree revealed that haplotype 1 of the 1.94 Mbp region, associated with low 

androstenone level, originated from Asia. It is likely, therefore, that haplotype 1 was 

introgressed into European breeds during the 18th and 19th centuries, generating 

hybrid European breeds (Giuffra et al. 2000). Introgression of favorable Asian 
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haplotypes has been observed for other traits as well. A well-known example is an 

IGF2 haplotype conferring increased muscle mass and leaner pigs (Andersson and 

Georges 2004). This haplotype is currently in high frequency in several commercial 

pig populations, but originated from Asian pigs. There is currently only a handful of 

gene variants described from European pigs that originate from the late 18th- early 

19th century introgression of Asian breeding stock (e.g. Wilkinson et al. 2013). 

 

The likely relatively recent (i.e., around 200 years ago or less) introgression of the 

Asian haplotypes into the European pigs, combined with the very low recombination 

rate in the genomic region, further explains the paucity of recombinant haplotypes, 

and difficulty in fine-mapping even across breeds. 

 

Pigs with Asian origin haplotypes were associated with low-androstenone level, 

whereas European-origin haplotypes were associated with high androstenone level. 

This is consistent with Lee et al. (2005) who found that Large White alleles have an 

additive effect on androstenone level for a QTL found on SSC6 at 91 cM, between 

SW782 (49,996,734 bp - 49,996,825 bp) and SW1823 (79,653,393 bp - 79,653,597 

bp), in an F2 Large White x Meishan population. 

 

Taking into account that haplotypes of European breeds originated from Asian 

breeds and that Asian breeds have high genetic diversity (Megens et al. 2008), 

further studies are needed either to identify additional haplotypes that are 

recombinant between European and Asian animals or to fine-map the region further 

in Asian pigs since LD will be much lower than in European pigs. 

 

3.4 Conclusions 

In summary, the androstenone QTL region previously identified on SSC6 (Duijvesteijn 

et al. 2010) was narrowed down from 3.75 Mbp to 1.94 Mbp. Differential expression 

was observed for six genes by RNA-seq analysis. No difference in the ratio of C:T 

expression of SULT2A1 for the haplotypes was found by the allele-specific expression 

analysis, however, a difference in expression between the C over T allele was found 

for a variation within SULT2A1, showing that the difference in androstenone levels 

between the haplotypes is not caused by the SNP in exon 2. Nonetheless, a 

difference in ln-androstenone level across populations in case of fixation of the 

Asian-origin haplotype 1 would yield a change, on average, of -0.19 ln-androstenone 

(ranging from -0.57 to +0.08). Use of tag-SNP from the haplotype-1 group will be 
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valuable in animal breeding programs to select animals with lower androstenone 

levels. 

 

3.5 Methods 

This study was conducted according to regulations of Dutch law on protection of 

animals. 

 

3.5.1 Phenotypes, animals, and genotypes 

Phenotypes for androstenone level were obtained from 2,750 boars slaughtered at 

a mean hot carcass weight of 91.33 kg (SD = 9.21 kg). Androstenone level was 

measured in fat samples; details of measurements and fat extraction are described 

in earlier studies (Duijvesteijn et al. 2010; Ampuero Kragten et al. 2011). 

Androstenone level was log-transformed (ln-androstenone) because it was not 

normally distributed. Boars belonged to six purebred populations (population 1 to 6, 

Duroc-based, Yorkshire-based, Dutch Landrace, Pietrain, Finish Landrace, and Large 

White) and five terminal crosses based on populations 1-6 (population 7 to 11). 

Number of animals per population ranged from 940 for a Duroc-based population to 

69 for one of the crosses (Table 3.2).  

 

Table 3.2 Number of animals and means (standard deviation) for ln-androstenone and 

androstenone (µg/g) per population 

Population Number of animals Ln-androstenone (SD) Androstenone µg/g (SD) 

1 940 0.24 (0.89) 1.84 (1.62) 

2 295 -0.31 (0.83) 1.02 (0.91) 

3 208 -0.04 (0.83) 1.33 (1.21) 

4 207 -1.29 (0.99) 0.45 (0.49) 

5 169 0.25 (0.94) 1.88 (1.64) 

6 107 0.17 (1.15) 2.14 (2.46) 

7 325 -0.61 (0.87) 0.82 (0.96) 

8 275 -0.12 (0.88) 1.31 (1.29) 

9 83 0.03 (0.82) 1.43 (1.25) 

10 72 0.34 (0.94) 2.18 (2.37) 

11 69 0.19 (0.83) 1.67 (1.45) 

 

Genotyping was performed using the Illumina PorcineSNP60 Beadchip (San Diego, 

CA, USA) (Ramos et al. 2009). Quality control involved removing SNP with low quality 

score (GenCall score <0.7), and those with a minor allele frequency lower than 0.01 

(Duijvesteijn et al. 2010). A total of 3,025 SNP located on SSC6 remained and 46 were 

used in the analyses.  
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3.5.2 Linkage Disequilibrium (LD) analysis 

Significant SNP (N=29) previously identified (Duijvesteijn et al. 2010) were 

rearranged according to the Sscrofa10.2 reference genome and LD blocks were 

defined based on the criteria of Gabriel et al. (2002).  

 

3.5.3 Haplotype diversity 

Haplotypes with frequencies greater than 1% across all populations were identified 

using Haploview 4.2 (Barrett et al. 2005). A phylogenetic tree for haplotypes based 

on the similarities among the 46 SNP from the haplotypes was constructed using the 

neighbor-joining method as implemented in MEGA 5 (Tamura et al. 2011).  

 

3.5.4 Association analysis 

Phasing and imputation of sporadic missing data were performed using BEAGLE 

(Browning and Browning 2007).  

 

Linear regression was used to estimate effect of haplotypes for each population 

using ASReml v3.0 (Gilmour et al. 2009). The following model was used 

 

yi = b1haplo + ai + ei 

 

where yi is the ln-androstenone of the ith animal, b1 is the regression coefficient on 

the haplotype, ai is the random additive genetic effect of the ith animal, ei is the 

random residual effect.  

 

For the posterior analysis using three haplotypes, only populations that had the third 

haplotype that was being compared to haplotypes 1 and 2 were included in the 

analysis. In this analysis, the model was corrected for population.  

 

To test whether groups of haplotypes that are on different branches of the 

phylogenetic tree have a statistically significant different effect on the androstenone 

level, we used Treescan which “cuts” the haplotype tree at different branch points 

to identify functional grouping of haplotypes. 

 

3.5.5 DNA sequence data 

The sequencing procedure used for the 55 sequenced individuals in the present 

study was described in Bosse et al. (2012). Briefly, Illumina-formatted (v. 1.3-1.7) 

fastq files, with sequence reads of 100 bp (Illumina HiSeq2000), were subject to 

quality trimming prior to sequence alignment. A minimum average quality score of 
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13 (i.e. average error probability equal to 0.05) in a 3 bp window was used as cut-off, 

with 3-prime sequences being discarded if the criterion was not met. Only sequences 

where both mates were at least 45 bp in length were retained. 

 

Sequences were aligned against the Sscrofa10.2 reference genome using Mosaik 

align v.1.1.0017 (http://bioinformatics.bc.edu/marthlab/Mosaik). Alignment was 

performed using a hash-size of 15, with a maximum of 10 matches retained, and 7% 

maximum mismatch score, for all pig populations and outgroup species. Alignment 

files were then sorted using the “mosaiksort” function, which entails removing 

ambiguously mapped reads that are either orphaned or fall outside a computed 

insert-size distribution.  

 

Variant allele-calling was performed per individual using the “pileup” function in 

SAMtools v.1.12a (Li et al. 2009), and variations were initially filtered to have 

minimum quality of 50 for indels, and 20 for SNP. In addition, all variants showing 

higher than 3x average read-density, estimated from the number of raw sequence 

reads, were also discarded to remove false-positive variant-calling originating from 

off-site mapping as much as possible. This procedure yielded high-quality variants 

for 55 pigs, wild boars and outgroup species (European Nucleotide Archive (ENA) 

under project number ERP001813). 

 

3.5.6 Phylogenetic analysis  

Sequence assemblies for the region on SSC6 between Sscrofa10.2 reference genome 

base 48,317,509 and 50,259,057 were extracted per individual according to their 

genomic coordinates from the BAM files generated from individually-sequenced pigs 

using SAMtools v.1.12a. Phylogenetic analysis was done using RAxML (Stamatakis et 

al. 2005), using 10 iterations and implementing a GTR-Г model of sequence 

evolution, and with an African warthog as outgroup.  

 

3.5.7 Functional analysis using DNA sequence data 

The two haplotypes present across all populations were numbered haplotype 1 and 

2 and re-sequencing data were used to identify putative functional differences 

between them.  

 

To obtain genotype calls for all polymorphic sites identified across the 55 individuals 

for which whole-genome sequence data were available, every individual was 

examined for the genotype call for each of the sites found to be polymorphic in the 

region of interest, including the species-specific differences. Filtering was based on 
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sequence depth (genotype retained if depth ranged between four reads, and twice 

the average genome-wide depth), where for this procedure the average sequence 

depth was based directly on the actual sequence depth measured for each individual 

separately. Further filtering of these sequence-derived genotypes was performed on 

SNP and consensus quality (for homozygotes, either a SNP or consensus quality > 20 

was applied, and for heterozygotes, both SNP and consensus qualities > 20 were 

applied).  

 

With the SNP that contributed different alleles to haplotype 1 and 2, we performed 

an analysis to annotate functional genetic variants detected between the haplotypes 

using ANNOVAR. For SNP that resulted in an amino acid substitution we used 

PolyPhen2 to predict the impact of this substitution on the structure and function of 

the protein. To identify mutations outside the exonic regions that have the potential 

to influence androstenone level, we used MULAN (Ovcharenko et al. 2005) to detect 

potential TFBS that were conserved across three species (Sus scrofa, Bos taurus, and 

Homo sapiens). SNP between haplotypes 1 and 2 were checked for being located 

within a TFBS. CpG islands were predicted using EMBOSS/CpGPlot with default 

settings to identify SNP between haplotypes 1 and 2 that could be located within a 

CpG island. 

 

3.5.8 RNA sequencing data and gene expression analysis  

Forty-eight animals of the Duroc-based population were slaughtered at a mean age 

of 173 days, and liver and testis tissue were collected and stored in RNALater (Qiagen 

Inc., Valencia, CA, USA). These samples were genotyped for the 29 SNP that were 

significant in Duijvesteijn et al. (2010). The liver and testis were collected for this 

analysis because androstenone is synthesized in the testis and metabolized in the 

liver, leading us believe that they are the most interesting tissues to use for the 

analysis of the effect of gene expression on androstenone levels. Four animals 

homozygous for the haplotype associated with high androstenone level were 

selected for RNA isolation in both the liver and testis, as well as four animals 

homozygous for the haplotype associated with a low androstenone level. From these 

samples, total RNA was extracted with the RNeasy mini kit (Qiagen Inc., Valencia, CA, 

USA) following manufacturer's instructions. RNA from low- and high-androstenone 

haplotypes were pooled, respectively, and stored at -80 ºC until being used. The 

Illumina mRNA-seq Sample Preparation Kit was used for sample preparation (~5 µg 

of total RNA) following manufacturer's instructions and used for 100 bp single-end 

cDNA sequencing on the Illumina HighSeq 2000 platform. 
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The sequence data obtained from the two RNA pools were clipped to remove 

adapter sequence and quality trimmed (Phred score > 20) with Trim galore v.0.2.2 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore). After cleaning 

the data, between 58 – 62 million sequence reads were available from each pool. To 

compare gene and transcript expression, we followed the protocol described in 

Trapnell et al. (2012). Reads were aligned against the Sscrofa10.2 reference genome 

with TopHat v.1.4.1 (Trapnell et al. 2011) using the -T option (all other options were 

default) in order to align the reads only against an annotated transcriptome. 

Estimation of differences in expression was done with Cufflinks v.1.3.0 (Trapnell et 

al. 2011) and visualized with the CummeRbund package (Goff and Trapnell 2012). 

Many imperfections exist in the current Sscrofa10.2 reference genome that may 

affect the details of the gene model, however we do not think that these 

imperfections compromise our conclusions. The position of SULT2A1 is not in doubt 

because the BAC-by-BAC sequencing strategy, based on a rather good physical map, 

has been shown to result in overall well-assembled genome sequence at a larger 

scale (e.g. Tortereau et al. 2012). The most important inconsistencies are within BAC, 

because BAC were shotgun sequenced (using classical Sanger sequencing strategies) 

at low average depth of ~4-6x (Groenen et al. 2012). 

 

Allele-specific expression analysis was performed for the exonic mutation within 

SULT2A1 (C/T change within exon 2 at position 166; SSC6: 49,117,861 bp in 

Sscfrofa10.2), on testis tissue from 67 heterozygous animals. We prepared a Taqman 

PCR Reaction using the assaymix 40x for SULT2A1 (AHN1RKQ, Applied Biosystems). 

Taqman PCR was performed on ABI 7500 RT-PCR system. Output values of cycle 40 

(exponential phase) were used for both C and T signals. These values were corrected 

for background noise by subtracting the value for the respective signal of cycle 1. To 

certify that the allele-specific expression analysis was accurate, we quantified the 

two alleles of the SNP in genomic DNA mixes with known ratios: 4:1, 2.33:1, 1.5:1, 

1:1, 1:1.5, 1:2.33, 1:4, and in three concentrations of genomic DNA: 2.5 ng, 10 ng, 40 

ng. Ratios were a mix of genomic DNA from two homozygous animals for different 

alleles. For 10 ng and 40 ng dilutions, 13 heterozygous animals were included in the 

1:1 class (Sun et al. 2010). 
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Supplementary material 

Figure S3.1 Average heterozygosity for the narrowed region. Average heterozygosity in 
10,000 bp bins along the narrowed region for a heterozygous animal (A) and a homozygous 
animal (B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Figure S3.2. Panels with control allele-specific expression. Log-transformed (base 2) data 

relation between observed and expected ratios of mixed genomic DNA from two homozygous 

animals for different alleles in three concentrations: 2.5 ng, 10 ng, and 40 ng. 
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Table S3.1 Position of the 46 SNP in the QTL region on SSC6 of Sscrofa10.2. 

SNP name Position (bp) SNP name Position (bp) 

H3GA0053864 48585961 ASGA0028216 50742441 

ALGA0102689 48717238 ASGA0028211 50803585 

ASGA0104037 48792292 M1GA0008539 50847065 

ASGA0089838 49146524 ASGA0103898 50867656 

ASGA0093393 49168322 MARC0098482 50888554 

MARC0019764 49351202 H3GA0056609 50922233 

MARC0015928 49538608 ALGA0122867 51104922 

DIAS0000492 49802217 ALGA0116613 51139647 

MARC0011519 49817264 ASGA0103416 51352837 

H3GA0056470 50006716 ALGA0035323 51611976 

DIAS0004447 50037571 ALGA0035324 51636474 

DIAS0003231 50065951 ALGA0035318 51678926 

ASGA0084861 50079246 MARC0021351 51692785 

MARC0032442 50259057 ASGA0028223 51757391 

DIAS0000822 50264414 ALGA0035326 51775907 

H3GA0053555 50307537 ASGA0028228 51805308 

DIAS0003830 50339827 ALGA0035330 51843873 

MARC0049189 50364492 MARC0086794 52063034 

MARC0044346 50478565 ALGA0115158 52085979 

M1GA0008536 50495796 ASGA0097167 52127558 

H3GA0017949 50532885 ALGA0112704 52226606 

ASGA0028206 50556192 MARC0005462 52262806 

M1GA0008527 50606084 MARC0049139 52336598 

 

 

Table S3.2 Haplotype effects and total number of animals per pig population 

Hap* Pop. 1 Pop. 2 Pop. 3 Pop. 4 Pop. 5 Pop. 6 Pop. 7 Pop. 8 Pop. 9 Pop. 10 Pop. 11 

1 -0.19 -0.07 0.06 -0.15 -0.03 -0.31 -0.15 -0.05 -0.01 -0.31 -0.18 

2 0.10 0.04 0.18 -0.09 -0.06 0.19 -0.05 0.01 0.04 0.14 0.24 

3 -0.08 NA NA 0.34 NA NA NA -0.18 NA -0.30 0.40 

4 0.10 NA NA NA 0.02 0.05 NA 0.23 -0.07 0.13 0.55 

5 NA 0.23 0.04 -0.14 0.10 NA -0.18 0.25 -0.27 NA NA 

6 NA NA 0.09 NA 0.07 NA 0.02 0.17 0.30 0.62 NA 

7 NA -0.04 NA NA 0.05 0.00 0.28 -0.11 NA NA -0.39 

8 NA 0.08 NA 0.05 NA NA NA NA -0.06 NA -0.21 

9 0.15 NA NA NA NA 0.36 0.47 0.08 -0.02 0.31 NA 

10 NA -0.15 -0.03 0.12 NA NA -0.41 -0.37 -0.53 NA 0.31 

N 940 295 208 207 169 107 325 275 83 72 69 

* Haplotype 
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Table S3.3 Haplotype effects estimated using only populations that have the third haplotype 

that is being compared to haplotypes 1 and 2 

Haplotype Estimate Std. Error 

Haplotype 3 

Haplotype1 -0.22 0.04 

Haplotype2 -0.01 0.04 

Haplotype3 -0.15 0.05 

Haplotype 4 

Haplotype1 -0.14 0.04 

Haplotype2 0.12 0.04 

Haplotype4 0.16 0.05 

Haplotype 5 

Haplotype1 -0.15 0.04 

Haplotype2 -0.03 0.04 

Haplotype5 -0.01 0.05 

Haplotype 6 

Haplotype1 -0.11 0.05 

Haplotype2 -0.01 0.05 

Haplotype6 0.10 0.06 

Haplotype 7 

Haplotype1 -0.16 0.04 

Haplotype2 0.00 0.05 

Haplotype7 0.05 0.07 

Haplotype 8 

Haplotype1 -0.11 0.06 

Haplotype2 0.03 0.07 

Haplotype8 0.07 0.09 

Haplotype 9 

Haplotype1 -0.15 0.04 

Haplotype2 0.07 0.04 

Haplotype9 0.26 0.08 

Haplotype 10 

Haplotype1 -0.15 0.04 

Haplotype2 -0.05 0.04 

Haplotype10 -0.13 0.08 
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Table S3.4 List of genes and the status of the exonic variation 

Gene Exon Status   Gene Exon Status 

GPR77 Exon1 Synonymous  MAMSTR Exon2 Synonymous 

GPR77 Exon1 Synonymous  IZUMO1 Exon1 Non-synonymous 

GPR77 Exon1 Synonymous  FUT1 Exon1 Non-synonymous 

DHX34 Exon2 Synonymous  HSD17B14 Exon9 Synonymous 

DHX34 Exon9 Synonymous  HSD17B14 Exon4 Non-synonymous 

DHX34 Exon15 Synonymous  PLEKHA4 Exon17 Synonymous 

DHX34 Exon16 Synonymous  PLEKHA4 Exon6 Synonymous 

ZNF541 Exon1 Synonymous  PPP1R15A Exon1 Synonymous 

ZNF541 Exon3 Synonymous  PPP1R15A Exon2 Non-synonymous 

ZNF541 Exon3 Synonymous  PPP1R15A Exon2 Synonymous 

ZNF541 Exon5 Synonymous  HRC Exon1 Non-synonymous 

ZNF541 Exon15 Non-synonymous  HRC Exon1 Non-synonymous 

KPTN Exon10 Synonymous  PPFIA3 Exon26 Synonymous 

SLC8A2 Exon1 Synonymous  PPFIA3 Exon25 Non-synonymous 

SLC8A2 Exon1 Synonymous  PPFIA3 Exon21 Synonymous 

MEIS3 Exon1 Synonymous  PPFIA3 Exon15 Non-synonymous 

MEIS3 Exon10 Non-synonymous  PPFIA3 Exon14 Non-synonymous 

GLTSCR1 Exon9 Synonymous  PPFIA3 Exon13 Non-synonymous 

GLTSCR1 Exon12 Synonymous  PPFIA3 Exon13 Non-synonymous 

GLTSCR1 Exon13 Synonymous  PPFIA3 Exon3 Synonymous 

EHD2 Exon2 Synonymous  LIN7B Exon3 Synonymous 

GLTSCR2 Exon1 Synonymous  SNRNP70 Exon5 Synonymous 

GLTSCR2 Exon5 Synonymous  SNRNP70 Exon2 Synonymous 

GLTSCR2 Exon8 Non-synonymous  KCNA7 Exon1 Synonymous 

GLTSCR2 Exon10 Synonymous  KCNA7 Exon2 Synonymous 

CRX Exon3 Synonymous  KCNA7 Exon1 Synonymous 

CRX Exon3 Synonymous  NTF4 Exon1 Synonymous 

SULT2A1 Exon2 Synonymous  LHB Exon1 Synonymous 

LIG1 Exon14 Synonymous  RUVBL2 Exon13 Synonymous 

TMEM143 Exon5 Synonymous  GYS1 Exon5 Synonymous 

LMTK3 Exon5 Synonymous  FTL Exon4 Synonymous 

LMTK3 Exon11 Synonymous  NUCB1 Exon5 Synonymous 

CYTH2 Exon4 Synonymous  TULP2 Exon6 Non-synonymous 

GRWD1 Exon6 Synonymous  TULP2 Exon8 Non-synonymous 

GRIN2D Exon11 Synonymous  TULP2 Exon10 Non-synonymous 

GRIN2D Exon11 Synonymous  SLC17A7 Exon10 Synonymous 

GRIN2D Exon4 Synonymous  SLC17A7 Exon7 Synonymous 

KDELR1 Exon4 Synonymous         
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Table S3.5 The QTL effects for the C and T allele of the high- and low-androstenone 

haplotypes 

Allele (haplotype) Estimate Std. Error 

C allele (high-androstenone haplotype) 0.00 0.00 

T allele (low-androstenone haplotype) -0.44 0.11 

C allele (low-androstenone haplotype) -0.29 0.11 

 

 

Table S3.6 Genetic and physical map of the narrowed region (SSC6: 48,317,509 bp – 

50,259,057 bp), showing its low-recombining nature 

SNP Order cM Position SNP Order cM Position 

H3GA0053864 623 62.263 48585961 ASGA0028211 641 62.441 50803585 

ASGA0104037 624 62.276 48792292 M1GA0008539 642 62.447 50847065 

ALGA0102689 625 62.290 48717238 ASGA0103898 643 62.453 50867656 

ASGA0089838 626 62.303 49146524 H3GA0056609 644 62.460 50922233 

MARC0015928 627 62.317 49538608 ALGA0122867 645 62.466 51104922 

MARC0011519 628 62.330 49817264 ALGA0116613 646 62.476 51139647 

DIAS0000492 629 62.344 49802217 ASGA0103416 647 62.485 51352837 

DIAS0004447 630 62.357 50037571 ALGA0035318 648 62.495 51678926 

ASGA0084861 631 62.371 50079246 MARC0021351 649 62.504 51692785 

DIAS0000822 632 62.378 50264414 ASGA0028223 650 62.511 51757391 

MARC0032442 633 62.386 50259057 ASGA0028228 651 62.517 51805308 

MARC0049189 634 62.393 50364492 ALGA0035330 652 62.524 51843873 

H3GA0053555 635 62.401 50307537 MARC0086794 653 62.530 52063034 

MARC0044346 636 62.408 50478565 ALGA0115158 654 62.537 52085979 

M1GA0008536 637 62.415 50495796 ASGA0097167 655 62.543 52127558 

H3GA0017949 638 62.421 50532885 MARC0049139 656 62.549 52336598 

ASGA0028206 639 62.428 50556192 MARC0005462 657 62.554 52262806 

M1GA0008527 640 62.434 50606084 ALGA0112704 658 62.559 52226606 
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Abstract 

European pigs that carry Asian haplotypes of a 1.94 Mbp region on pig chromosome 

6 have lower levels of androstenone, one of the two main compounds causing boar 

taint. The objective of our study was to examine potential pleiotropic effects of the 

Asian low-androstenone haplotypes. A single-nucleotide polymorphism marker, 

rs81308021, distinguishes the Asian from European haplotypes and was used to 

investigate possible associations of androstenone with production and reproduction 

traits. Eight traits were available from three European commercial breeds. For the 

two sow lines studied, a favorable effect on number of teats was detected for the 

low-androstenone haplotype. In one of these sow lines, a favorable effect on number 

of spermatozoa per ejaculation was detected for the low-androstenone haplotype. 

No unfavorable pleiotropic effects were found, which suggests that selection for low-

androstenone haplotypes within the 1.94 Mbp would not unfavorably affect the 

other eight relevant traits. 

 

Key words: boar taint, genetic correlations, number of spermatozoa, number of 

teats, pleiotropic effects   
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Androstenone is one of the two main compounds causing boar taint, a pronounced 

urine-like odor produced when cooking meat from non-castrated male pigs 

(Bonneau 1982). A 1.94 Mbp (48,317,509 bp – 50,259,057 bp) region on pig 

chromosome 6 (SSC6) was found to affect androstenone levels. Two major haplotype 

groups (low and high androstenone), spanning this entire region, can be 

distinguished (Hidalgo et al. 2014). Other genome scans also reported this 

quantitative trait loci (QTL) region on SSC6 (Lee et al. 2005; Grindflek et al. 2011). 

Analysis of sequence data showed that the low-androstenone haplotypes originated 

from Asian breeds; these haplotypes are found at intermediate frequencies in 

several European commercial breeds. Asian-origin haplotypes were introgressed 

into European breeds during the 18th and 19th centuries when Asian animals were 

used to improve European breeds, generating hybrid European breeds (Giuffra et al. 

2000). Because androstenone levels were not taken into account in typical breeding 

programs in the past, we hypothesize that low-androstenone haplotypes 

accumulated indirectly by selection for another correlated trait.  

 

Androstenone is chiefly synthesized in the testis and is a product of a metabolic 

pathway that also produces other sex hormones such as estrogens and testosterone, 

known to be important factors affecting fertility. Studies have found unfavorable 

correlations between the androstenone level in fat and reproduction traits (Willeke 

et al. 1987; Sellier & Bonneau 1988; Tajet et al. 2006; Mathur et al. 2013), which 

would complicate selection for a reduced androstenone level in a breeding program. 

This finding was confirmed by Grindflek et al. (2011) who studied the genetic 

relationship of androstenone in fat with levels of sex hormones. They detected many 

QTL that affected both androstenone and other sex hormones and concluded that 

“Most of the QTLs for androstenone are affecting both androstenone and estrogens, 

making practical implementation in breeding challenging”. A QTL they discovered on 

SSC6 in a Duroc population overlaps with our QTL region. The QTL from their study 

did not affect other sex hormones. Such QTL for androstenone that are “not affecting 

any of the other sex hormones” were suggested as being “very interesting for 

selection purposes” by Grindflek et al. (2011). Production and reproduction traits 

were however not reported by Grindflek et al. (2011). Hence, the objective of our 

study was to examine potential pleiotropic effects on important pig production and 

reproduction traits from the Asian low-androstenone haplotypes on SSC6. 

 

Phenotypes and genotypes were available from animals of three commercial pig 

lines: 1) Dutch Landrace; 2) Large White; 3) Pietrain (Table 4.1). The Dutch Landrace 

and the Large White are dam lines and the Pietrain is a sire line. The three lines 
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studied were also included in the study of Hidalgo et al. (2014) where the Dutch 

Landrace corresponds to population 3, Large White corresponds to population 6, and 

Pietrain corresponds to population 4. Phenotypes were available for eight traits: 

growth rate (g/day), backfat thickness (mm), litter birth weight (kg), total number of 

piglets born, birth weight (kg), number of teats, sperm motility (% of motile cells) 

and number of spermatozoa per ejaculation (billions). Genotyping was performed 

using the Illumina PorcineSNP60 BeadChip (Ramos et al. 2009). Based on the 

haplotypes of our previous study Hidalgo et al. (2014), we selected single nucleotide 

polymorphism (SNP) marker rs81308021 to test the trait associations. This marker is 

a tag SNP that distinguishes between the low- and high-androstenone haplotype 

groups.  

 

Genetic correlations between androstenone and the production traits, and 

androstenone and the reproduction traits were estimated in a bivariate analysis 

using ASReml v3.0 (Gilmour et al. 2009). The association of the polymorphism, 

representing the haplotypes, with the phenotype was fitted in a linear mixed model 

using ASReml v3.0 (Gilmour et al. 2009) as shown below: 

 

y = Xb + Za + SNP + e 

 

where y is a vector of individual trait observations; X is an incidence matrix for fixed 

effects contained in vector b; Z is an incidence matrix connecting genetic values 

contained in vector a to phenotypes in y; e is a vector of random errors associated 

with y. SNP was coded as 0, 1 or 2, for the number of copies of the low-androstenone 

haplotype. The additive genetic effect of the individual was derived from a polygenic 

evaluation including up to ten generations of pedigree. Analyses were performed 

separately within each line. More details about the models used for each trait are 

described in Table S4.1 of the supplementary material. 

 

In total, we tested 21 associations between phenotypes and the marker. From these 

associations, two were considered to be significant (P≤0.05), which is slightly more 

than what would be expected by chance alone (Table 4.1).  

 

For the dam lines, a tendency for (P = 0.06 for Dutch Landrace) and a significant (P = 

0.01 for Large White) favorable effect for number of teats (NTEAT) were detected 

for the low-androstenone haplotype. For Large White, a significant (P = 0.03) 

favorable effect of the low-androstenone haplotype on number of spermatozoa per 

ejaculation (NSPERM) was detected even though the number of observations was 
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not very large (n = 200). No effects were identified on production and other 

reproduction traits, indicating that this QTL region does not unfavorably affect other 

breeding-goal traits. Because the low-androstenone haplotype shows a favorable 

effect on NTEAT and NSPERM, it suggests that selection for animals with a low-

androstenone haplotype may lead to a greater NTEAT for Dutch Landrace and both 

NTEAT and NSPERM for Large White. 

 

Table 4.1 SNP association and effect for traits under study in three commercial lines. 

Trait N1 Freq. FA2 SNP effect3 SE4 p-value 

♀ Dutch Landrace 

Growth rate (g/day) 1,265 0.19 5.27 3.61 0.15  

Backfat thickness (mm) 1,265 0.19 -0.03 0.12 0.77 

Litter birth weight (kg) 735 0.20 -0.09 0.15 0.56 

Total number of piglets born  736 0.20 -0.08 0.15 0.57 

Birth weight (kg) 1,364 0.19 0.02 0.02 0.27 

Nr. of teats  1,430 0.19 0.11 0.06 0.06 

Sperm motility (% of motile cells) 313 0.18 1.18 0.36 0.89 

NSPERM (billions) 314 0.18 -1.33 1.57 0.40 

♀ Large White 

Growth rate (g/day) 1,279 0.46 2.05 2.97 0.49 

Backfat thickness (mm) 1,277 0.46 0.08 0.08 0.33 

Litter birth weight (kg) 901 0.47 -0.06 0.10 0.52 

Total number of piglets born  922 0.47 -0.09 0.10 0.38 

Birth weight (kg) 1,076 0.44 -0.01 0.01 0.50 

Nr. of teats  1,280 0.46 0.11 0.05 0.01* 

Sperm motility (% of motile cells) 200 0.41 -0.36 0.33 0.29 

NSPERM (billions) 200 0.41 3.58 1.59 0.03* 

♂ Pietrain 

Growth rate (g/day) 864 0.85 0.24 3.02 0.93 

Backfat thickness (mm) 859 0.85 -0.06 0.07 0.38 

Total number of piglets born  194 0.86 0.06 0.22 0.78 

Sperm motility (% of motile cells) 145 0.82 -0.19 0.59 0.75 

NSPERM (billions) 159 0.83 3.00 2.36 0.21 
1 Number of animals genotyped for the SNP 
2 Frequency of the favorable allele (low-androstenone) 
3 Effect of each SNP measured in the same unit as the analyzed trait 
4 Standard error for the SNP effect 
* Significant association at the 5% level between SNP and trait 
NSPERM - number of spermatozoa per ejaculation 

 

The favorable effect of androstenone on NTEAT concurs with a QTL found for NTEAT 

in a Yorkshire x Meishan F2 population (Zhang et al. 2007). The QTL was found on 

SSC6 at 95 cM, corresponding to the 52.7 - 85.8 Mbp region on Sscrofa10.2 (Hu et al. 
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2005), which does not overlap, but is near the androstenone QTL identified by 

Hidalgo et al. (2014) (2.5 Mbp downstream). The Meishan alleles were reported to 

increase the NTEAT, in accordance with the Asian origin of the haplotypes increasing 

NTEAT in the current study. These results indicate that the continued presence of 

the Asian haplotypes in European breeds could be explained by a favorable effect of 

the Asian haplotypes on NTEAT for the dam lines, which are often selected for 

NTEAT. 

 

Uzu & Bonneau (1980) and Strathe et al. (2013) did not find a significant relation 

between androstenone level in fat and NSPERM. The biological explanation for a 

favorable effect of androstenone on NSPERM is still uncertain. We speculate that in 

the course of time since introgression of the Asian haplotype, a low level of 

androstenone may have led to an increase in NSPERM because of a compensatory 

system: animals with lower levels of androstenone would have fewer matings, but 

when there is a pleiotropic effect that results in more NSPERM, a higher proportion 

of these matings would result in a pregnancy. The product of the effect on number 

of matings and on number of successful matings would lead to a similar or even 

higher fitness for low-androstenone animals. On the other hand, this relation can 

also be considered as a trade-off in NSPERM when levels of androstenone are 

increased.  

 

Within the 1.94 Mbp region, we looked for candidate genes that may affect NSPERM. 

The zinc finger protein 541 gene (ZNF541) is expressed in testicular cells in mice and 

is involved in chromatin remodeling during spermatogenesis. ZNF541 encodes a 

nuclear protein that has a potential role in chromatin remodeling and its expression 

is dependent on the developmental stage during spermatogenesis (Choi et al. 2008). 

In dairy cattle, Peñagaricano et al. (2012) performed a genome-wide study on sire 

conception rate and detected a significant SNP located 16 kb upstream of the ZNF541 

gene, corroborating the possible role of ZNF541 in spermatogenesis and, therefore, 

in male fertility. The DEAH (Asp-Glu-Ala-His) box polypeptide 34 gene (DHX34) is a 

candidate tumor suppressor gene for gliomas (Abdelhaleem et al. 2003). It codes for 

a member of the DEAD box proteins, which are putative RNA helicases. Some 

members of this family have been reported to be involved in embryogenesis, 

spermatogenesis, and cellular growth and division. The observed pleiotropic effect 

between low-androstenone and NSPERM could therefore be caused by genetic 

hitchhiking of the low-androstenone mutation with an allele within ZNF541 or 

DHX34 affecting NSPERM. 
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The genetic correlations found between androstenone and production traits, and 

androstenone and reproduction traits (Table 4.2) varied in their direction. For male 

and female reproduction traits, unfavorable correlations were found for NSPERM for 

Large White and NTEAT in both dam lines. These correlations indicate that the 

significant associations found between the marker and these traits may have an 

influence in the overall genetic correlation, as those were the only ones different 

from 0. On the other hand, for production traits, a favorable correlation between 

androstenone and backfat thickness was found in all lines (also found by Duijvesteijn 

et al. (2012)) and an unfavorable correlation was found for average growth in the 

sire line. The lack of association between the marker and production traits is a 

positive point in light of the unfavorable genetic correlation found for average 

growth. Knowledge about the pleiotropic effects of a marker is important even when 

the genetic correlation is known; especially for traits that can only be measured after 

slaughter. This is important to assure that haplotypes selected early in life will not 

unfavorably affect other traits.  

 

Table 4.2 Genetic correlations ± standard error between androstenone and production 

traits, and androstenone and reproduction traits. 

Trait Dutch Landrace Large White Pietrain 

GR 0.07 ± 0.08 -0.08 ± 0.14 0.22 ± 0.10 

BF 0.35 ± 0.07 0.39 ± 0.12 0.27 ± 0.09 

LBW -0.08 ± 0.10 0.06 ± 0.16 - 

TNB -0.01 ± 0.11 -0.10 ± 0.18 -0.06 ± 0.20 

BW -0.28 ± 0.15 -0.34 ± 0.22 - 

NTEAT -0.13 ± 0.06 -0.24 ± 0.12 - 

MOTILITY -0.37 ± 0.29 -0.37 ± 0.33 -0.11 ± 0.27 

NSPERM 0.00 ± 0.19 -0.59 ± 0.24 -0.24 ± 0.20 

GR - growth rate (g/day); BF - backfat thickness (mm); LBW - litter birth weight (kg); TNB - total number 

of piglets born; BW - birth weight (kg); NTEAT - number of teats; MOTILITY - sperm motility (% of motile 

cells); NSPERM - number of spermatozoa per ejaculation (billions) 

 

In summary, selection for the Asian low-androstenone haplotypes within the 1.94 

Mbp region would not unfavorably affect other breeding goal traits, even suggesting 

favorable results for NTEAT and NSPERM in some lines. 
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Supplementary material 

 
Table S4.1 Models used for association study 

Models 

GR = u + sex + HYM + SNP + animal + litter 

BF = u + sex + HYM + weight + method + SNP + animal + litter 

LBW = u + HYM + parity + tnb + SNP + dam + pe 

TNB = u + HYM + parity + SNP + dam + pe 

BW = u + sex + HYM + tnb + parity + SNP + animal + litter 

NTEAT = u + sex + HYM + SNP + animal + litter 

MOTILITY = u + HYM + station + lab + interval + age + conc + SNP + animal + pe 

NSPERM = u + HYM + station + lab + interval + age + SNP + animal + pe 
Random effects are in italics 
GR - growth rate (g/day); BF - backfat thickness (mm); LBW - litter birth weight (kg); TNB - total number 
of piglets born; BW - birth weight (kg); NTEAT - number of teats; MOTILITY - sperm motility (% of motile 
cells); NSPERM - number of spermatozoa per ejaculation (billions) 
u - mean; sex - sex of the animal; HYM - contemporary group defined by farm of birth, year, and month; 
SNP - genotype of the SNP marker; weight - weight of the animal when measurement was taken; method 
- method of backfat measurement; parity - number of parities of the dam; station - artificial insemination 
station; lab - laboratory where sperm was examined; interval - interval of semen collection; age - age of 
animal when semen was collected; conc - sperm concentration; animal - additive genetic effect of the 
animal; litter - litter in which the animal was born; pe - permanent environment effect 
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Abstract 

Genomic selection has been widely implemented in dairy cattle breeding where the 

aim is to improve performance of purebred animals. In pigs, however, the final 

product is a crossbred animal. This may affect the efficiency of methods that are 

currently implemented for dairy cattle. Therefore, the objective of this study was to 

determine the accuracy of predicted breeding values in crossbred pigs using 

purebred genomic and phenotypic data. A second objective was to compare the 

predictive ability of SNP when training is done in either single or multiple populations 

for four traits: age at first insemination (AFI), total number of piglets born (TNB), 

litter birth weight (LBW) and litter variation (LVR). We performed marker- and 

pedigree-based predictions. Within-population predictions for the four traits ranged 

from 0.21 to 0.72. Multi-population prediction yielded accuracies ranging from 0.18 

to 0.67. Predictions across purebred populations as well as predicting genetic merit 

of crossbreds from their purebred parental lines for AFI performed poorly (not 

significantly different from zero). In contrast, accuracies of across-population 

predictions and accuracies of purebred to crossbred predictions for LBW and LVR 

ranged from 0.08 to 0.31 and 0.11 to 0.31, respectively. Accuracy for TNB was zero 

for across-population prediction, whereas for purebred to crossbred prediction it 

ranged from 0.08 to 0.22. In general, marker-based outperformed pedigree-based 

prediction across populations and traits. However in some cases pedigree-based 

prediction performed similarly or outperformed marker-based prediction. There was 

predictive ability when purebred population(s) were used to predict crossbred 

genetic merit using an additive model in the populations studied. AFI was the only 

exception, indicating that predictive ability depends largely on the genetic 

correlation between PB and CB performance, which was 0.31 for AFI. Multi-

population prediction was no better than within-population prediction for the 

purebred validation set. Accuracy of prediction was very trait dependent.   

 

Key words: across-population, genomic selection, multi-population, reproduction 

traits, within-population 
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5.1 Introduction 

Genomic selection has been widely implemented in dairy cattle breeding where the 

aim is to improve performance of purebred animals (Berry et al. 2009; VanRaden et 

al. 2009; Hayes et al. 2009b). In pigs and poultry, however, the final product is a 

crossbred animal. This may affect the efficiency of methods that are currently 

implemented for dairy cattle. In pig breeding, multiple sire and dam lines are used, 

with a minimum of two lines (typically for crossbred sows) and often additional sire 

lines to produce a three- or four-way cross finisher pig (Lutaaya et al. 2001; Merks 

and De Vries 2002). 

 

Selection based on genomic estimated breeding values (GEBV) for purebreds (PB) 

using phenotypes on crossbreds (CB) is expected to increase the response to 

selection observed in CB compared to the situation in which only PB phenotypes are 

used. This increased response is expected when the genetic correlation between the 

PB and CB trait is less than 1, especially when the genetic correlation is 0.7 or less 

(Dekkers 2007). Genetic correlations between PB and CB performance vary and can 

be considerably less than 1 (Lutaaya et al. 2001; Zumbach et al. 2007; Cecchinato et 

al. 2010). Adding CB individuals to the training data is very expensive because, 

besides genotyping, it also requires additional identification and individual recording 

of target traits. Breeding companies are not inclined to make these investments 

unless there is evidence that predictions yield greater gains and higher accuracies. 

Simulation studies have shown that the response to selection is greater when PB 

animals are selected based on CB performance and that accuracy of prediction is 

high (Dekkers 2007; Ibánez-Escriche et al. 2009; Kinghorn et al. 2010; Toosi et al. 

2010; Zeng et al. 2013). There is, however, a lack of studies using real data. The 

number of genotyped crossbreds is not yet large enough to test the superiority of 

training on CB for PB selection. A first step towards finding the optimal genomic 

selection scenario for pigs is to determine predictive ability (accuracy), in real data, 

of GEBV for CB pigs based on PB genomic and phenotypic data. This will show how 

CB performance responds to the current practice of selection on GEBV in PB pigs.  

 

Recently, accuracies of within-population genomic prediction in pigs have been 

reported (Cleveland et al. 2010; Forni et al. 2011; Christensen et al. 2012; Tusell et 

al. 2013; Badke et al. 2014). These studies have shown that all traits had more than 

zero predictive ability within population in a variety of pig breeds using different 

methods. It has also been shown that using genomic information generally increased 

the accuracy of prediction compared to using only pedigree information (Forni et al. 
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2011; Christensen et al. 2012; Tusell et al. 2013). Using multi-population training 

might be a way fo increase the accuracy of prediction further. This is especially 

relevant to enable genomic selection for small populations when a closely related 

breed, or the same breed from another country, is added to the training set (Lund et 

al. 2014). An unresolved question is how to obtain accurate predictions from multi-

population datasets. The effectiveness of a multi-population genomic evaluation 

depends on many factors, e.g., differences in allele frequency and consistency of 

linkage disequilibrium (LD) between quantitative trait loci (QTL) and single 

nucleotide polymorphism (SNP), which could reduce the accuracy of prediction 

(Wientjes et al. 2013) whereas the larger reference population would potentially 

improve the accuracy.  

 

The objective of our study was to determine predictive ability (accuracy) in CB pigs 

using real PB genomic and phenotypic data. The outcome is a first step towards 

determining the optimal genomic selection scenario to select PB for CB performance. 

As in cattle, studying accuracy of prediction for multi-population datasets is 

important for species in which population size imposes upper limits to the training 

population size. Therefore, a second objective was to compare the predictive ability 

of SNP when training is done in either single or multiple populations in pigs. 

 

5.2 Material & Methods 

 

5.2.1 Data 

Genotypes were available from sows with own-performance information of three 

pig populations born from 2005 through 2012: 1,070 Dutch Landrace-based (DL) 

sows from 19 farms, 1,389 Large White-based (LW) sows from 14 farms and 287 

individuals from an F1 cross between these two commercial lines (DL sire/LW dams) 

originating from three farms. The genotyped CB animals had no specific family 

structure and the majority of them were not offspring of the genotyped PB animals, 

i.e., a number of generations separated PB and CB. The 287 CB animals were 

offspring from 76 sires and 170 dams. Four female reproduction traits were 

analyzed: age at first insemination (AFI), total number of piglets born (TNB), litter 

birth weight (LBW) and litter variation (LVR). AFI consisted of the age at the second 

estrus, which was the time that the first insemination was performed. TNB was the 

sum of all piglets born alive and stillborn. LBW was the sum of individual birth 

weights of all piglets born in the same litter. Finally, LVR consisted of the standard 

deviation (SD) of individual birth weight of the piglets from the same litter.  
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The PB and CB sows that were selected for genotyping have phenotypic records from 

multiple parities on multiple traits and have a large genetic contribution to future 

descendants. All PB sows were breeding animals from nucleus farms, whereas the 

CB sows belonged to farms where combined crossbred and pure line selection (CCPS) 

is applied. There was no strong selection for first parity performance in the 

genotyped sows, reducing any possible bias in TNB and LBW due to culling after first 

parity. 

 

Deregressed estimated breeding values (DEBV) were used as response variable for 

each trait undergoing study. The estimated breeding values (EBV) were deregressed 

for each trait separately using the methodology proposed by Garrick et al. (2009). 

DEBV, instead of EBV, were used to compute the GEBV accuracy because this 

removes the influence of the parents EBV and rescales the EBV according to its 

accuracy, i.e. the DEBV of the animals reflect their genetic merit. Ostersen et al. 

(2011) have shown that using DEBV rather than EBV for genomic prediction yields 

higher GEBV accuracies. The number of animals and records used to estimate the 

EBV are in Table 5.1. The EBV of each animal was obtained from the routine genetic 

evaluation by Topigs Norsvin using MiXBLUP (Mulder et al. 2012) in a multi-trait 

model (including all measured reproduction traits). The genetic evaluation was done 

across lines with phenotypes from the different populations treated as the same 

trait. A fixed line effect was included in the model for estimating EBV. In multi-

population prediction scenarios, this line effect was added back to the random 

additive genetic effect after estimating the EBV, and subsequently, the line effect 

was again included in the genomic prediction model. Adding back the line effect 

allows the differences of the level of EBV between-population to be maintained in 

the data. Therefore, in the genomic-prediction step the mean differences between 

populations are still present and this allows SNP effects (that differ in allele 

frequencies between lines) to explain these differences between lines.  

 

The model for obtaining the EBV for AFI included genetic line and herd-year-season 

as fixed effects and an additive genetic effect (animal) as random effect. For TNB, 

the fixed effects were genetic line, parity, interval between weaning and pregnancy 

(days), whether more than one insemination procedures were performed (yes or no) 

and herd-year-season. The random effects consisted of service sire, a permanent 

effect to account for the repeated observations of a single sow and an additive 

genetic effect (animal). EBV for LBW were obtained with a model that included 

genetic line, parity number, TNB and herd-year-season as fixed effects and a 

permanent effect and an additive genetic effect (animal) as random effects. The 
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model used for LVR was similar to the one used for LBW, except that TNB was 

removed. The reliabilities per animal, needed for deregression, were extracted from 

the genetic evaluation based on the methodology of Tier and Meyer (Tier and Meyer 

2004). The heritabilities (h2) used for deregression were estimated via restricted 

maximum likelihood (REML) using a pedigree-based relationship matrix and were 

also obtained from the routine genetic evaluation. The h2 of the traits were 0.30 for 

AFI, 0.11 for TNB, 0.38 for LBW and 0.14 for LVR. The genomic h2 of the DEBV were 

estimated via REML using ASREML 3.0 (Gilmour et al. 2009). 

 

Table 5.1 Number of phenotypes on crossbred and purebreds that were used to estimate the 

breeding values. 

Trait No. DL LW F1 Total 

AFI Records 304853 203933 190828 699614 

 Animals 304853 203933 190828 699614 

TNB Records 1483099 910349 864551 3257999 

 Animals 344583 223088 211117 778788 

LBW Records 158546 152722 7051 318319 

 Animals 46221 43403 2093 91717 

LVR Records 158167 146500 7037 311704 

 Animals 46124 42350 2083 90557 
AFI - age at first insemination, TNB - total number of piglets born, LBW - litter birth weight, LVR - litter 
variation  

 
Sows were genotyped using the Illumina PorcineSNP60 BeadChip (Ramos et al. 

2009). SNP with GenCall <0.15, unmapped SNP and SNP located on either the X or Y 

chromosome, according to the Sscrofa10.2 assembly of the reference genome 

(Groenen et al. 2012), were excluded. Quality control was performed in all 

populations simultaneously, which involved excluding SNP with call rate <0.95, minor 

allele frequency <0.01 and strong deviations of Hardy-Weinberg equilibrium 

(χ²>600). After quality control, 42,139 SNP remained out of the initial 64,232 SNP. 

Individuals with missing genotype frequency >0.05 were also removed. Missing 

genotypes of the remaining animals were imputed using BEAGLE 3.3.2 (Browning 

and Browning 2007).  

 

5.2.2 Statistical analyses 

GEBV were computed based on the genomic best linear unbiased prediction method 

(GBLUP). GBLUP uses a genomic relationship matrix (G) instead of the numerator 

relationship matrix (A). The G matrix contains genomic kinship indicating relatedness 

between animals and was used for prediction in all scenarios with the model: 
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= μ + + ,y 1 Zg e       

 

where y is the vector of DEBV, µ is the overall mean, g is the vector of random-

additive genetic effects assumed to be ~N(0, Gσ𝑎
2 ), Z is a design matrix allocating g 

to y, and e is a residual with heterogeneous variance due to differences in reliabilities 

of the DEBV (Garrick et al. 2009). In predictions where the training set contained 

more than one population, the fixed line effect present in the model for estimating 

EBV was also included in the GBLUP model as a fixed effect.  

 

The G matrix for within-population prediction was built according to VanRaden 

(2008), which was computed as  

 

i i= ' / 2 p qG ZZ  , 

 

where Z is a matrix of centered genotypes and pi and qi are the allelic frequencies of 

the ith marker based on observed genotypes. In predictions where the training set 

contained more than one population, the G matrix was built according to Chen et al. 

(2013), accounting for differences in allele frequencies between populations. 

We used ASREML 3.0 (Gilmour et al. 2009) to predict the GEBV with the G matrix 

entered as a user-defined matrix. Animals assigned to the prediction set had their 

DEBV removed before predicting GEBV.  

 

All scenarios were also analyzed using the A matrix, which contains the average 

additive genetic relationships of the animals based on the pedigree (PED-BLUP). The 

model for these analyses was similar to the GBLUP one, however the g vector of 

random-additive genetic effect was assumed to be ~N(0, Aσ𝑎
2 ). 

 

Genetic correlations between PB and CB performance were estimated for the four 

traits. We used records for DL, LW and F1 animals born from 2005 through 2012 

(Supporting Information, Table S5.1). Genetic correlations were estimated in 

bivariate analyses using REML in ASREML 3.0 (Gilmour et al. 2009). The effects of 

bivariate models were the same as those used to obtain the EBV (see above), 

however to estimate genetic correlations PB and CB performance were treated as 

different traits (Falconer 1952), which in matrix notation is: 

 

[
𝐲𝟏

𝐲𝟐
] =  [

𝐙𝟏 0
0 𝐙𝟐

] [
𝐠𝟏

𝐠𝟐
] + [

𝐞𝟏

𝐞𝟐
] 
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where yi is the vector of observations with i being 1 for purebred and 2 for crossbred 

data, Zi is the incidence matrix for gi, which is a vector of random additive genetic 

effects. The additive genetic variance is expressed as: 

 

var [
𝐠𝟏

𝐠𝟐
] = G0 ⊗ A 

 

where A is the numerator relationship matrix and G0 is a 2x2 covariance matrix with 

the purebred and crossbred variances in the diagonals, and the covariances in the 

off-diagonals. 

 

5.2.3 Scenarios and accuracy of prediction 

Seventeen scenarios were investigated that can be divided into four groups 

according to composition of the training and validation data sets as follows: 

 Scenarios 1-3: Training and validation data were subsets from the same 

population, DL, LW and F1 respectively, i.e., prediction was within-population. 

These scenarios determine how well the within-population prediction performs 

for the different traits. 

 Scenarios 4-7: Same as scenarios 1-3 but the remaining PB population(s) 

was/were added to the training data, i.e., prediction was multi-population. 

These scenarios determine whether adding data from a different PB population 

to the training data would increase the accuracy compared to the within-

population prediction.  

 Scenarios 8-11: One PB population was used for training to predict the other PB 

population. F1 data were not used in these scenarios, i.e., prediction was across 

breeds. These scenarios determine how well across-population predictions 

would perform.  

 Scenarios 12-17: PB populations were used for training and CB animals were 

used for validation. These scenarios determine how well CB genetic merit can 

be predicted from PB data alone, and whether inclusion of more than one 

parental PB population increases the accuracy.  

The accuracy of prediction was estimated as the correlation between the GEBV/EBV 

and the DEBV of the validation set animals for GBLUP/PED-BLUP. Prediction bias was 

calculated by regressing the validation variables (DEBV) on the prediction variables 

(GEBV/EBV). Accuracies were the average of a 20 random training-validation 

populations in scenarios 1-7, 9, 11, 13, 15 and 17. For scenarios 1-7, we randomly set 

aside part of the genotyped animals (N=50) and used those in a later step to 

determine the accuracy of prediction. These 50 were not included in the training for 
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those scenarios. In scenarios 9, 11, 13, 15 and 17 not all the available animals were 

used for training. Subsets of the training populations were sampled such that the 

same number of animals was used from each population per trait under study. Any 

differences in accuracies would then be due to the different populations used, and 

not to differences in the number of animals. Scenarios 8, 10, 12, 14 and 16 only had 

one estimate of accuracy because all the animals were used in the training 

population to maximize prediction accuracy of animals in another population. 

 

5.3 Results 

Estimates of genomic h2 of the DEBV across traits and populations ranged from 0.04 

to 0.58 (Table 5.2). Estimates of pedigree-based h2 of the DEBV across traits and 

populations ranged from 0.03 to 0.78 (Table S5.2). The genomic and pedigree-based 

heritabilities were similar in general. Genetic correlations between PB and CB 

performance for the four traits under study ranged from 0.31 for AFI to 0.90 for LBW 

(Table 5.3). 

 

Table 5.2 Estimated genomic heritability (h2) of the deregressed estimated breeding values 

across traits and populations under study. 

 Heritability (SE) 

Trait DL LW F1 

AFI 0.18 (0.04) 0.07 (0.02) 0.64 (0.12) 

TNB 0.04 (0.01) 0.05 (0.01) 0.12 (0.05) 

LBW 0.58 (0.05) 0.57 (0.04) 0.43 (0.12) 

LVR 0.21 (0.03) 0.11 (0.02) 0.17 (0.07) 
DL - Dutch Landrace, LW - Large White, F1 - cross between DL and LW, SE - standard error, AFI - age at 
first insemination, TNB - total number of piglets born, LBW - litter birth weight, LVR - litter variation 

 

Table 5.3 Genetic correlations between purebred and crossbred performance for the four 

traits under study 

Trait Genetic correlation (SE) 

AFI 0.31 (0.02) 

TNB 0.88 (0.01) 

LBW 0.90 (0.05) 

LVR 0.88 (0.06) 
SE – standard error, AFI- age at first insemination, TNB- total number of piglets born, LBW- litter birth 
weight, LVR- litter variation 

 

Accuracies for within-population predictions for scenarios 1-3 ranged from 0.22 to 

0.72 for GBLUP and from 0.21 to 0.64 for PED-BLUP across the four traits and 

different training sets, indicating a modest to good predictive ability (Table 5.4). The 
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regression coefficient of the GEBV/EBV on the DEBV for scenarios 1-3 ranged from 

1.03 to 1.70 for GBLUP and from 0.90 to 2.21 for PED-BLUP.  

 

For multi-population prediction of PB populations (scenarios 4 and 5) the accuracies 

ranged from 0.18 to 0.67, whereas for multi-population prediction (two PB + one CB) 

of the CB population (scenarios 6-7) the accuracies ranged from 0.17 to 0.45 for 

GBLUP and from 0.32 to 0.42 for PED-BLUP. When predicting PB (scenarios 4 and 5, 

Table 5.5), the addition of the other PB population resulted in lower accuracies for 

all four traits, in comparison to within-population prediction for GBLUP. When 

predicting CB (scenarios 6 and 7; Table 5.5) the addition of PB populations resulted 

in lower accuracies for AFI and TNB but higher accuracies for LBW and LVR. The 

regression coefficient of the GEBV/EBV on the DEBV for scenarios 4 and 5 ranged 

from 0.86 to 1.18 for GBLUP, whereas for scenarios 6 and 7 ranged from 0.80 to 3.11 

for GBLUP and from 0.97 to 5.00 for PED-BLUP. Accuracies and regression 

coefficients of the EBV on the DEBV were not computed for PED-BLUP for scenarios 

4 and 5 because the other PB population to be added is not related according to the 

pedigree. 

 

GEBV accuracy of across-breed prediction, i.e., predicting genetic merit of one PB 

from a different PB population, performed poorly for AFI and TNB (Table 5.6), 

accuracies were not significantly different from zero (P>0.05). Accuracies for LBW 

and LVR ranged from 0.13 to 0.26 across the different training sets for GBLUP. The 

regression coefficient of the GEBV on the DEBV for AFI and TNB ranged from -0.71 

to 1.37, whereas for LBW and LVR ranged from 0.70 to 1.40. Accuracies and 

regression coefficients of the EBV on the DEBV were not computed for PED-BLUP 

because the two PB populations are not related according to the pedigree. 

 

Accuracy of prediction in scenarios 12-17 that predicted genetic merit of CB using PB 

parental populations as training data performed poorly for AFI (Table 5.7), accuracies 

were not significantly different from zero for both GBLUP and PED-BLUP (P>0.05). 

For the other three traits, TNB, LBW and LVR, however, predictive ability was 

observed. Accuracies ranged from 0.11 to 0.31 for GBLUP and from 0.08 to 0.22 for 

PED-BLUP. The regression coefficient of the GEBV/EBV on the DEBV for AFI ranged 

from -1.14 to -0.15 for GBLUP and from 0.15 to 0.95 for PED-BLUP, whereas for TNB, 

LBW and LVR it ranged from 0.48 to 3.82 for GBLUP and from 0.53 to 7.76 for PED-

BLUP. 
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Table 5.4 GEBV accuracies from within-population prediction using GBLUP and PED-BLUP 

(scenarios 1-3) 

   N training  N validation  Accuracy† (SD)  Slope* 

Trait Scenario r2 DL LW F1  DL LW F1  GBLUP PED-BLUP  GBLUP PED-BLUP 

GLE 

1 0.45 1017 - -  50 - -  0.26 (0.16) 0.25 (0.15)  1.21 1.13 

2 0.45 - 1339 -  - 50 -  0.22 (0.09) 0.21 (0.19)  1.25 1.08 

3 0.33 - - 237  - - 50  0.37 (0.09) 0.30 (0.12)  1.04 0.90 

                

TNB 

1 0.45 1016 - -  50 - -  0.26 (0.12) 0.25 (0.12)  1.70 1.90 

2 0.49 - 1333 -  - 50 -  0.24 (0.15) 0.25 (0.15)  1.24 1.50 

3 0.40 - - 231  - - 50  0.40 (0.11) 0.35 (0.14)  1.52 2.21 

                

LBW 

1 0.78 1020 - -  50 - -  0.64 (0.09) 0.58 (0.06)  1.08 1.06 

2 0.80 - 1335 -  - 50 -  0.72 (0.06) 0.64 (0.07)  1.03 1.05 

3 0.77 - - 236  - - 50  0.40 (0.11) 0.39 (0.13)  1.10 1.27 

                

LVR 

1 0.50 1019 - -  50 - -  0.50 (0.11) 0.40 (0.10)  1.04 1.03 

2 0.53 - 1335 -  - 50 -  0.46 (0.09) 0.39 (0.15)  1.05 1.17 

3 0.49 - - 235  - - 50  0.34 (0.09) 0.33 (0.11)  1.03 1.19 
SD - standard deviation, DL - Dutch Landrace, LW - Large White, F1 - cross between DL and LW  
AFI - age at first insemination, TNB - total number of piglets born, LBW - litter birth weight, LVR - litter 
variation 
† - Estimate obtained by 20-random training-validation populations 
* - Regression coefficient of the GEBV/EBV on the DEBV 

r2 - Mean reliability of deregressed estimated breeding values from the training population 
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Table 5.5 GEBV accuracies from multi-population prediction using GBLUP and PED-BLUP 

(scenarios 4-7) 

    N training  N validation  Accuracy† (SD)  Slope* 

Trait Scenario r2 DL LW F1   DL LW F1   GBLUP PED-BLUP  GBLUP PED-BLUP 

AFI 

4 0.45 1017 1389 -  50 - -  0.20 (0.13) -  1.18 - 

5 0.45 1067 1339 -  - 50 -  0.18 (0.13) -  1.11 - 

6 0.41 1067 1389 237  - - 50  0.17 (0.09) 0.32 (0.12)  1.91 1.86 

7 0.41 237 237 237  - - 50  0.27 (0.11) 0.35 (0.11)  3.11 2.17 

                

TNB 

4 0.47 1016 1383 -  50 - -  0.21 (0.15) -  1.12 - 

5 0.47 1066 1333 -  - 50 -  0.23 (0.17) -  1.11 - 

6 0.44 1066 1383 231  - - 50  0.31 (0.18) 0.34 (0.11)  1.69 3.06 

7 0.44 231 231 231  - - 50  0.37 (0.14) 0.33 (0.12)  3.02 5.00 

                

LBW 

4 0.79 1020 1385 -  50 - -  0.51 (0.13) -  0.86 - 

5 0.79 1070 1335 -  - 50 -  0.67 (0.07) -  1.09 - 

6 0.78 1070 1385 236  - - 50  0.45 (0.11) 0.37 (0.09)  0.80 0.97 

7 0.78 236 236 236  - - 50  0.41 (0.15) 0.37 (0.11)  1.03 1.10 

                

LVR 

4 0.52 1019 1385 -  50 - -  0.38 (0.12) -  0.99 - 

5 0.52 1069 1335 -  - 50 -  0.41 (0.12) -  1.11 - 

6 0.51 1069 1385 235  - - 50  0.44 (0.10) 0.40 (0.14)  1.22 1.59 

7 0.51 235 235 235   - - 50   0.38 (0.12) 0.42 (0.08)  1.33 1.88 
SD - standard deviation, DL - Dutch Landrace, LW - Large White, F1 - cross between DL and LW  
AFI - age at first insemination, TNB - total number of piglets born, LBW - litter birth weight, LVR - litter 
variation 
† - Estimate obtained by 20-random training-validation populations 
* - Regression coefficient of the GEBV/EBV on the DEBV 

r2 - Mean reliability of deregressed estimated breeding values from the training population 
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Table 5.6 GEBV accuracies from across-population prediction using GBLUP (scenarios 8-11) 

      N training   N validation   Accuracy (SD)  Slope* 

Trait Scenario  r2 DL LW F1   DL LW F1   GBLUP  GBLUP 

AFI 

8  0.45 1067 - -  - 1389 -  -0.05  -0.57 

9  0.45 711 - -  - 1389 -  -0.04 (0.01)†  -0.71 

10  0.45 - 1389 -  1067 - -  -0.02  -0.27 

11  0.45 - 711 -  1067 - -  -0.02 (0.03)†  -0.43 

               

TNB 

8  0.45 1066 - -  - 1383 -  0.05  1.01 

9  0.45 693 - -  - 1383 -  0.04 (0.01)†  1.37 

10  0.49 - 1383 -  1066 - -  0.03  0.56 

11  0.49 - 693 -  1066 - -  0.00 (0.02)†  0.00 

               

LBW 

8  0.78 1070 - -  - 1385 -  0.26  0.83 

9  0.78 708 - -  - 1385 -  0.23 (0.04)†  0.83 

10  0.80 - 1385 -  1070 - -  0.22  0.73 

11  0.80 - 708 -  1070 - -  0.16 (0.03)†  0.65 

               

LVR 

8  0.50 1069 - -  - 1385 -  0.17  0.70 

9  0.50 705 - -  - 1385 -  0.15 (0.03)†  0.75 

10  0.53 - 1385 -  1069 - -  0.20  1.40 

11  0.53 - 705 -   1069 - -   0.13 (0.04)†  1.22 
SD - standard deviation, DL - Dutch Landrace, LW - Large White, F1 - cross between DL and LW  
AFI - age at first insemination, TNB - total number of piglets born, LBW - litter birth weight, LVR - litter 
variation 
† - Estimate obtained by 20-random training-validation populations 
* - Regression coefficient of the GEBV on the DEBV 

r2 - Mean reliability of deregressed estimated breeding values from the training population 
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Table 5.7 GEBV accuracies from prediction of crossbred genetic merit from purebred training 
data using GBLUP and PED-BLUP (scenarios 12-17) 

     N training   N validation   Accuracy (SD)  Slope* 

Trait Scenario r2 DL LW F1   DL LW F1   GBLUP PED-BLUP  GBLUP PED-BLUP 

AFI 

12 0.45 1067 1389 -  - - 287  -0.07 0.09  -0.75 0.81 

13 0.45 356 356 -  - - 287  -0.03 (0.06)† 0.04 (0.06)†  -0.40 0.53 

14 0.45 1067 - -  - - 287  -0.02 0.07  -0.15 0.95 

15 0.45 711 - -  - - 287  -0.02 (0.05)† 0.05 (0.04)†  -0.24 0.67 

16 0.45 - 1389 -  - - 287  -0.07 0.06  -1.14 0.73 

17 0.45 - 711 -  - - 287  -0.06 (0.05)† 0.01 (0.05)†  -0.95 0.15 

                

TNB 

12 0.47 1066 1383 -  - - 281  0.20 0.21  1.51 3.02 

13 0.47 347 347 -  - - 281  0.18 (0.09)† 0.22 (0.05)†  3.82 7.76 

14 0.45 1066 - -  - - 281  0.18 0.19  2.29 3.62 

15 0.45 693 - -  - - 281  0.18 (0.04)† 0.19 (0.04)†  3.15 4.71 

16 0.49 - 1383 -  - - 281  0.13 0.10  1.17 2.23 

17 0.49 - 693 -  - - 281  0.11 (0.04)† 0.08 (0.04)†  1.72 3.06 

                

LBW 

12 0.79 1070 1385 -  - - 286  0.31 0.14  0.62 0.54 

13 0.79 354 354 -  - - 286  0.18 (0.05)† 0.11 (0.05)†  0.52 0.60 

14 0.78 1070 - -  - - 286  0.26 0.10  0.65 0.53 

15 0.78 708 - -  - - 286  0.22 (0.04)† 0.14 (0.04)†  0.64 0.73 

16 0.80 - 1385 -  - - 286  0.22 0.11  0.55 0.63 

17 0.80 - 708 -  - - 286  0.17 (0.03)† 0.08 (0.05)†  0.48 0.59 

                

LVR 

12 0.52 1069 1385 -  - - 285  0.27 0.15  0.90 0.91 

13 0.52 353 353 -  - - 285  0.21 (0.08)† 0.13 (0.07)†  1.16 1.44 

14 0.50 1069 - -  - - 285  0.31 0.11  1.18 0.84 

15 0.50 705 - -  - - 285  0.28 (0.04)† 0.14 (0.05)†  1.24 1.25 

16 0.53 - 1385 -  - - 285  0.15 0.11  0.74 1.33 

17 0.53 - 705 -   - - 285   0.11 (0.04)† 0.12 (0.05)†  0.75 2.43 
SD - standard deviation, DL - Dutch Landrace, LW - Large White, F1 - cross between DL and LW  
AFI - age at first insemination, TNB - total number of piglets born, LBW - litter birth weight, LVR - litter 
variation 
† - Estimate obtained by 20-random training-validation populations 
* - Regression coefficient of the GEBV/EBV on the DEBV 

r2 - Mean reliability of deregressed estimated breeding values from the training population 
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5.4 Discussion 

Accuracies of genomically-predicted breeding values in CB and PB pigs were 

estimated for four female reproduction traits in 17 scenarios to optimize the use of 

genomic data for crossbred animals. We have used DEBV as response variable with 

a moderate to high mean reliability (ranging from 0.33 to 0.80) for the different traits 

and populations. The SD of the accuracies in scenarios in which we had replicates of 

training-validation populations varied according to the type of prediction (within-, 

multi-, across-, or PB to CB). Within- and multi-population predictions showed higher 

SD because the relationship between training and validation in each replicate could 

substantially vary due to different degrees of relationship within a population. For 

across- and PB to CB predictions, the relationship between training and validation 

populations was naturally lower, therefore in each replicate there was less variation. 

 

5.4.1 Within-population prediction 

LBW and LVR showed generally higher accuracies than AFI and TNB. This difference 

between traits may occur due to the lower reliability of the DEBV for AFI and TNB, 

which lowers the accuracy when number of observations is preset. Another 

possibility is that there are non-additive genetic effects (e.g., dominance, epistasis) 

affecting AFI and TNB more, whereas LBW and LVR may be regulated mainly by an 

additive action of the genes. Therefore, the importance of non-additive effects needs 

to be further investigated. Even with the low number of genotyped CB pigs, all traits 

showed predictive ability within the CB. Therefore, a greater number of genotyped 

CB should increase these accuracies. In general, GBLUP outperformed PED-BLUP 

across populations and traits, which is mainly a result of a better estimation of 

relationship among individuals by the markers. Similar results have also been 

reported in other studies using pigs (Forni et al. 2011; Tusell et al. 2013). The 

regression coefficients of the GEBV/EBV on the DEBV for both GBLUP and PED-BLUP 

were, in general, close to 1, indicating that the predictions were not severely biased, 

except for TNB, where some of them deviated considerably from 1.  

 

The level of accuracy found here is concordant with those found in other studies on 

pigs (Cleveland et al. 2010; Forni et al. 2011; Christensen et al. 2012; Tusell et al. 

2013; Badke et al. 2014). In these studies, as well as in ours, many traits and breeds 

were studied and within-population prediction always showed to have predictive 

ability. One of the studies (Tusell et al. 2013) also studied TNB for two PB populations 

and their F1 cross and also found that prediction within the F1 cross has greater 

accuracy than within-PB prediction. They argued that this might be caused by the 

structure and effective sample size of the populations under study. Accuracies found 
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by Christensen et al. (2012) were not statistically different between single-step BLUP 

(SS-BLUP) and GBLUP, but both were higher than pedigree-based prediction and 

GBLUP was shown to be more biased. The advantage of using SS-BLUP was an 

increase of accuracy for non-genotyped animals. Because our aim was to predict 

genotyped animals, we studied accuracies of prediction using GBLUP.  

 

5.4.2 Multi-population prediction 

Adding data from a different PB population to the training data (scenarios 4 and 5) 

decreased the accuracy of prediction compared with within-population predictions 

(scenarios 1-3) for GBLUP. Adding data from the two PB populations to the CB 

training data (scenario 6 and 7) had different results depending on the trait. LBW and 

LVR that had high genetic correlation between PB and CB performance had an 

increase in accuracy, whereas for AFI that had a low genetic correlation there was a 

decrease in accuracy. TNB had a high genetic correlation, however the accuracy also 

decreased, which was unexpected.  

 

If traits are genetically very different (low genetic correlation between PB and CB), 

then adding more animals with the other trait to the training is not expected to 

increase the accuracy. When the trait is the same (high genetic correlation), 

however, including more animals with the other trait (PB vs. CB) is expected to 

increase the accuracy. Besides having a high genetic correlation between the traits, 

the additional animals also need to have some (genomic) relationship to the 

validation animals. In addition to a low genetic correlation between PB and CB 

performance, the degradation of accuracy might result from differences in non-

additive effects.  

 

For PED-BLUP, adding the two parental PB populations in the training also had 

different results depending on the trait. AFI and LBW had an increase in accuracy, 

whereas TNB and LVR had a slight decrease in accuracy. The regression coefficient 

of the GEBV/EBV on the DEBV estimated to investigate bias for scenarios 4-7 was, in 

general, close to 1, indicating that the predictions did not suffer from a large bias, 

except for AFI, and TNB in scenarios 6 and 7. For these traits, whenever the PB 

parental populations were used as training and CB as validation set, the regression 

coefficient of the GEBV/EBV on the DEBV indicated that the estimates were severely 

biased.   

 

A review regarding multi-population prediction in cattle (Lund et al. 2014) has shown 

that combining populations, in general, increases the accuracy of prediction when 
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the breeds are the same but from different countries, to a lesser degree when the 

breeds are closely related, and has little or no benefit when the breeds are distantly 

related. Another study (Hayes et al. 2009a) has reported slightly higher accuracies 

when using multi-population prediction compared to within-population prediction 

in dairy cattle. Chen et al. (2013) used Angus and Charolais steers to determine the 

accuracy of prediction with GBLUP for within-population and multi-population 

prediction. In their study, accuracies did not always increase, suggesting that noise 

was being added to the predictions. The maximum increment in accuracy that they 

obtained was of 0.05, whereas a decrement of 0.07 was also obtained, which is 

within the same range as the differences observed in the current study. These 

studies showed that adding another PB population to the training data in cattle did 

not necessarily increase the accuracy of prediction, similar to our current results in 

pigs. 

 

De Roos et al. (2009) using simulated data, also showed that increasing the size of 

the training data by adding animals from a different population does not always 

increase the accuracy. An increase in accuracy over within-population was only 

found when the populations were closely related, when marker density was high, or 

when the size of initial within-population training data set was small. In our case, the 

number of markers was reasonable and in some scenarios the size of the within-

population training data set was small, but still we did not have a great increase in 

accuracy of prediction. This suggests that the marker density might not be sufficient 

to have similar LD level between QTL and marker in the different populations that 

are mixed. The genetic distance between the populations was probably an important 

factor that limited the benefit of adding training data from other populations.   

 

5.4.3 Across-population prediction 

Some predictive ability was observed when predicting across populations for LBW 

and LVR, whereas for AFI and TNB all the accuracies were null. Increasing the size of 

the training population slightly improved the accuracies of prediction, on average by 

0.05. Greater accuracies were found when DL predicted LW genetic merit, rather 

than the other way around (scenario 9 vs. scenario 11). The regression coefficients 

of the GEBV/EBV on the DEBV for scenarios 8-11 were, in general, close to 1 for LBW 

and LVR, indicating that the predictions did not suffer from much bias. For AFI and 

TNB, however, regression values greatly deviated from 1, sometimes with negative 

values, which we attribute to the very low accuracies we found. 
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In a study by Harris et al. (2008), the prediction across Holstein-Friesian and Jersey 

cattle breeds was also investigated. Predictions were not accurate, ranging from -0.1 

to 0.3 for 25 traits. In another study, Hayes et al. (2009a) predicted the GEBV of 

Jersey animals using a Holstein population as training data and vice-versa, resulting 

in accuracies ranging from -0.06 to 0.23 for five traits. Both studies report results 

that were very similar to ours that ranged from -0.05 to 0.26. 

 

The simulation study by De Roos et al. (2009) indicated that across-population 

prediction was substantially less accurate than within-population or multiple-

population prediction. These lower accuracies were due to differences in marker–

QTL LD phase between the populations. A marker may be in LD with QTL in a given 

population, but is not necessarily in LD with those QTL in the other population, 

resulting in poor predictions for the other population. These simulation results 

suggested that for our analyses a higher marker density would be required. Results 

of Veroneze et al. (2014) show that with the same 60K porcine SNP panel, the density 

of SNP is high enough to obtain reasonable levels of LD. This would predict that our 

SNP panel should be able to capture marker effects across breeds.  

 

5.4.4 Using purebred training data to predict crossbred genetic 

merit 

Using only the PB population(s) to predict the CB genetic merit with GBLUP has some 

predictive ability for TNB, LBW and LVR, whereas all the accuracies for AFI were null. 

Increasing the size of the training data by adding another PB population increased 

the accuracy for TNB and LBW, whereas for AFI and LVR it did not. However, when 

we increased the size of the training population by adding more animals of the same 

PB population, the accuracies usually increased. The accuracy of prediction for 

predicting CB animals based on PB animals appears to depend largely on the genetic 

correlation between PB and CB performance. As our results demonstrate, the 

greater the genetic correlation the higher the chances of having any or more 

predictive ability. AFI, for which the genetic correlation between PB and CB was very 

poor, had a zero accuracy of prediction showing that selection on PB is expected to 

have no effect on CB genetic merit.   

 

For PED-BLUP, the accuracies were in general lower than for GBLUP especially for 

LBW and LVR. Adding the second PB population in the training slightly increased the 

accuracy of prediction. 

 



5 Accuracy in pure and crossbred pigs 

 

 

91 
 

The greater accuracies found for TNB, LBW and LVR when training with DL rather 

than LW population can be explained by the slightly greater relationship between DL 

and F1 populations than between LW and F1. This higher relationship is specific for 

the animals included in this study. The F1 animals that were genotyped are more 

closely related to the DL animals that were genotyped than the LW animals that were 

genotyped.  

 

To test the impact of relationship between training and validation populations on 

the accuracy we split the training data into the 50% of animals that are MOST related 

to the validation set and the 50% that are LEAST related to the validation set 

(Supporting Information, Tables S5.3-S5.4). For AFI, TNB and LBW, using the 50% 

MOST related animals resulted in greater accuracies, whereas for LVR it did not. This 

indicates that if CB animals have closer genomic relationships to the PB animals used 

as training, higher accuracies for scenarios 12-17 could generally be expected. 

 

In cattle, Harris et al. (2008) used PB populations (Holstein-Friesian and Jersey) to 

predict the genomic breeding values of a cross between these two breeds. They used 

data from 4,500 sires genotyped for approximately 44K SNP. Their results show that 

using the two breeds as training population increased the accuracy by 5 - 10% 

compared to using only one of the breeds to predict the cross. The actual level of 

accuracy was not reported in their study. Our results were similar to theirs for TNB, 

LBW and LVR, where the genetic correlation between PB and CB performance is close 

to 1, but not for AFI.  

 

Results indicate that using a PB population to predict CB genetic merit can generate 

reasonable predictions. This, however, is not consistent for all traits. Although these 

results do not reflect the actual practice of genomic selection in pig breeding, they 

do provide an estimate of the accuracy of genomic prediction between CB and PB 

populations using real data. The results make a strong case for the genotyping and 

recording of CB animals, at least for a subset of traits where genetic correlations are 

away from 1.  

 

The low genetic correlation between PB and CB performance for AFI was also found 

in another study (Nagyné-Kiszlinger et al. 2013). They have reported values of 0.28 

and 0.39 for Hungarian Large White and Hungarian Landrace with their reciprocal 

cross. Possible reasons for this low genetic correlation were reported: 1) genes which 

affect the trait might be different among populations; 2) this trait is affected by non-

additive effects or environmental factors due to different management of PB and CB 
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animals (Nagyné-Kiszlinger et al. 2013). One clear environmental factor that 

probably reduces the genetic correlation of AFI between PB and CB is the use of 

batch farrowing systems in the production environment of CB sows. Suppression of 

estrus is used to synchronize the heat of the CB gilts which impacts the measurement 

of the trait and lead to these low correlations. 

 

Standardized EBV were used, therefore, a bias would possibly be introduced during 

deregression due to different reliabilities between breeds (Garrick et al. 2009). 

Additional sources for potential bias affecting the SNP effect estimates are the 

differences in the population mean of the breeds. The differences in the mean 

between populations was remedied by reintroducing the line effect after 

deregression. To test the impact of deregression on bias we investigated all 17 

scenarios for the trait AFI by analyzing phenotypes, which are not standardized, 

instead of DEBV. The correlation between the accuracies obtained by the two 

different approaches was 0.92, with a mean regression coefficient of the GEBV on 

the phenotype of 0.70. This correlation shows that using the phenotypes has good 

agreement with the accuracies calculated using DEBV; therefore any bias due to the 

process of standardization and deregression is expected to be limited.  

 

The reasonable accuracy for PB predicting CB genetic merit shows that in a current 

typical breeding program, selection in the PB does result in a phenotypic response in 

CB. AFI was an exception in our study, as the genetic correlation between PB and CB 

performance was very low. 

 

Further studies to compare the accuracy of genomic selection of PB for CB 

performance are needed. Other genomic models including breed-specific effects of 

SNP alleles or dominance (Ibánez-Escriche et al. 2009; Zeng et al. 2013) were 

described and were found to outperform an additive model only in specific cases, 

e.g., with high dominance levels or when the number of SNP is small relative to the 

size of the training population. Using these more complex models or a multiple-trait 

model (Christensen et al. 2014) to real data will be needed. 

 

In conclusion, there was predictive ability for purebred population(s) predicting 

crossbred genetic merit using an additive model in the populations studied when PB 

and CB traits have high genetic correlation. For practical implementation, estimation 

of genomic breeding values of PB animals for CB performance needs to be further 

studied with models that take into account the crossbred nature of training data. 

Multi-population prediction was no better than within-population prediction for PB 
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populations. Accuracy of prediction showed to be very trait dependent, hence, for 

the utility of data from other breeds in the application of genomic selection, each 

trait needs to be studied separately and no generalizations should be made. Finally, 

real-data accuracies were lower than what simulation studies have reported.  
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Abstract 

Genomic selection is applied in dairy cattle breeding to improve the genetic progress 

of purebred (PB) animals, whereas in pigs and poultry the target is a crossbred (CB) 

animal for which a different strategy appears to be needed. The source of 

information used to estimate the breeding values, i.e. using phenotypes of CB or PB 

animals, may affect the accuracy of prediction. The objective of our study was to 

assess the direct genomic value (DGV) accuracy of CB and PB pigs using different 

sources of phenotypic information. Data used were from three populations: 2,078 

Dutch Landrace-based, 2,301 Large White-based and 497 crossbreds from an F1 

cross between the two lines. Two female reproduction traits were analyzed: 

gestation length (GLE) and total number of piglets born (TNB). Phenotypes used in 

the analyses originated from offspring of genotyped individuals. Phenotypes 

collected on CB and PB animals were analyzed as separate traits using a single-trait 

model. Breeding values were estimated separately for each trait in a pedigree BLUP 

analysis and subsequently deregressed. Deregressed EBV for each trait originated 

from different sources (CB or PB offspring) were used to study the accuracy of 

genomic prediction. Accuracy of prediction was computed as the correlation 

between DGV and the DEBV of the validation population. Accuracy of prediction 

within PB populations ranged from 0.43 to 0.62 across GLE and TNB. Accuracies to 

predict genetic merit of CB animals with one PB population in the training set ranged 

from 0.12 to 0.28, with the exception when using CB offspring phenotype of the 

Dutch Landrace which resulted in an accuracy estimate around 0 for both traits. 

Accuracies to predict genetic merit of CB animals with both parental PB populations 

in the training set ranged from 0.17 to 0.30. We conclude that prediction within 

population and trait had good predictive ability regardless of the trait being the PB 

or CB performance, whereas using PB population(s) to predict genetic merit of CB 

animals had zero to moderate predictive ability. We observed that the DGV accuracy 

of CB animals when training on PB data was greater or equal than training on CB 

data. However, when results are corrected for the different levels of reliabilities in 

the PB and CB training data, we showed that training on CB data does outperform 

using PB data for the prediction of CB genetic merit, indicating that more CB animals 

should be phenotyped to increase the reliability and, consequently, accuracy of DGV 

for CB genetic merit. 

 

Key words: genomic selection, pig, prediction, reproduction traits, within-population  
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6.1 Introduction 

Genomic selection (Meuwissen et al. 2001) is applied in dairy cattle breeding with 

the aim to increase genetic progress of purebred (PB) animals (Berry et al. 2009; 

Hayes et al. 2009b; VanRaden et al. 2009). In pigs and poultry, however, the target 

is a crossbred (CB) animal. In pig breeding, multiple lines are usually used, with a 

minimum of two lines (normally for crossbred sows) and often additional sire lines 

to produce a three- or four-way cross finisher pig (e.g. Lutaaya et al., 2001). 

 

Selection on direct genomic values (DGV) for PB based on CB training data is 

expected to increase the genetic gain observed in CB animals over the use of PB 

training data (Dekkers 2007). Simulation studies (Ibánez-Escriche et al. 2009; Toosi 

et al. 2010; Zeng et al. 2013) have shown that this method of selection can result in 

high genetic gains and accuracies of prediction. Empirical studies that use genomic 

data to quantify these accuracies, however, are lacking. Moghaddar et al. (2014) 

studied accuracy of prediction when only CB sheep were used in the training set for 

three traits. They found accuracies ranging from 0.05 to 0.41 for PB validation 

populations. Hidalgo et al. (2015) studied prediction of CB genetic merit from a PB 

training set in pigs and showed that the accuracies are trait dependent (ranging from 

0 to 0.31). 

 

In many studies (Hayes et al. 2009a; Ding et al. 2013; Badke et al. 2014), 

(deregressed) estimated breeding values are used as the response variable for 

genomic selection. In genomic prediction, the source of information, i.e. using only 

the phenotypes of PB or CB animals, may influence the DGV accuracy. Therefore, the 

objective of our study was to assess the DGV accuracy in CB and PB pigs using 

different sources of phenotypic information for the estimation of the breeding 

values that are deregressed and used as response variable in the training data.  

 

6.2 Material & Methods 

The flowchart (Fig. 6.1) provides an overview of the study to clarify the steps that 

were taken in the genomic predictions. 

 

6.2.1 Data 

Genotypes were available from animals of three pig populations born between 2005 

and 2012. Populations consisted of 2,078 Dutch Landrace-based (DL), 2,301 Large 

White-based (LW) and 497 crossbred individuals from an F1 cross between these two 

commercial lines.  
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Figure 6.1 Flowchart of the steps taken in the current study. We used traditional BLUP to 
estimate the breeding values for purebred (PB) genotyped animals: one based on crossbred 
progeny and one based on the purebred progeny. These EBV based on crossbred and purebred 
offspring were deregressed. The DEBV were used as response variables (y) in the training data 
using a GBLUP model. The genomic relationship (G) matrix used in the GBLUP model varied 
according to the type of prediction (e.g. within-population, prediction PB to CB). DGV 
accuracies were computed as the correlation between DGV and DEBV from the different 
sources of information. The purebreds animals used in the study were from Dutch Landrace 
and Large White populations.  

 

All animals were genotyped using the Illumina PorcineSNP60 BeadChip (Ramos et al. 

2009). SNP with GenCall<0.15, unmapped SNP and SNP located on either the X or Y 

chromosome, according to the Sscrofa10.2 assembly of the reference genome 

(Groenen et al. 2012), were excluded. Quality control (QC) was performed within 

population for scenarios where the validation population was PB (scenarios 1-4), 

whereas QC was performed across all populations simultaneously for other scenarios 

(5-10). After within-population QC, 40,776 SNP for DL and 42,244 SNP for LW 

remained, whereas after across-populations QC, 43,027 SNP remained out of the 

initial 64,232 SNP. Quality control involved excluding SNP based on call rate (<0.95), 

strong deviations from Hardy-Weinberg equilibrium (χ²>600) and minor allele 

frequency (<0.01). Animals with more than 5% of missing SNP genotypes were also 

removed. Missing genotypes of the remaining animals were imputed using BEAGLE 

3.3.2 (Browning and Browning 2007).  
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We analyzed two female reproduction traits: gestation length (GLE) and total 

number of piglets born (TNB). GLE is the difference between insemination and 

farrowing dates in days, whereas TNB is the sum of all piglets born alive and stillborn. 

Phenotypes were available on the offspring of genotyped animals. Offspring included 

in the analyses were PB and CB animals that had at least one of their parents 

genotyped (Table 6.1). We divided the data into two sets of phenotypic records: 1) 

only PB offspring and 2) only CB offspring, which resulted in having four traits: GLE-

PB, TNB-PB (PB traits) and GLE-CB, TNB-CB (CB traits). For the CB genotyped animals, 

phenotypes on their offspring were used. These data sets were used to estimate 

breeding values that were subsequently deregressed and used as response variable. 

Breeding values were estimated in a single-trait analysis using a repeatability model 

in ASReml 3.0 (Gilmour et al. 2009).  

 

Table 6.1 Number of offspring with records used to estimate DEBV, and heritabilities for 

gestation length (GLE) and total number born (TNB) 

Population GLE h2
GLE TNB h2

TNB 

PB 109592 0.33 138472 0.13 

CB 85875 0.31 85875 0.15 
PB = Purebreds (Dutch Landrace + Large White) 
CB = Crossbreds 

 

The model used to obtain the estimated breeding values (EBV) for GLE included the 

fixed effects of genetic line, parity number, TNB, whether more than one 

insemination procedure was performed (yes or no) and heard-year-season, while the 

random effects consisted of service sire, a permanent environmental effect to 

account for the repeated observations of a single sow and an additive genetic effect 

(animal). The model for TNB was similar to the one used for GLE, except that the 

covariable TNB was replaced by interval weaning-pregnancy (days). 

 

Deregressed EBV (DEBV) of the genotyped animals were used as response variable 

in this study. EBV were deregressed using the methodology proposed by Garrick et 

al. (2009). The heritabilities used for the deregression were estimated while 

estimating the breeding values. The reliabilities of the EBV, also required for the 

deregression procedure, were estimated using the following formula (Gilmour et al. 

2009): 

 

r2 = 1 - 
si

2

(1 + fi)σa
2
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where si is the standard error reported for the EBV of the ith individual, fi is the 

inbreeding coefficient, and 𝜎𝑎
2 is the additive genetic variance. Further, reliabilities 

of the DEBV and the weighting factor (w) were also estimated following the 

methodology proposed by Garrick et al. (2009).  

 

6.2.2 GBLUP and genomic relationship matrix 

GBLUP uses a genomic relationship matrix (G) instead of the numerator relationship 

matrix (A). The G matrix contains the genomic relationship between animals and was 

used for prediction in all scenarios with the model: 

 

= μ + +y 1 Zg e       

 

where y is the vector of DEBV, μ is the overall mean, g is the vector of random 

additive genetic effects assumed to be ~N(0, Gσ𝑎
2 ), where G is the genomic 

relationship matrix and σ𝑎
2  is the additive genetic variance, Z is an incidence matrix, 

and e is the vector of random residual effects assumed to be ∼N(0, D𝜎𝑒
2), where D is 

a diagonal matrix calculated as I*wi, where I is an identity matrix, wi is the weight of 

the ith DEBV based on its reliability and σ𝑒
2 is the residual variance. In multi-

population prediction scenarios, the fixed line effect present in the model for 

estimating EBV was added back to the random additive-genetic effect and 

subsequently the line effect was again included in the genomic prediction model: 

 

* = μ + + +y 1 Xb Zg e         

 

where y* is the vector of DEBV plus fixed line effect, X is an incidence matrix for the 

line effects, b is a vector containing the line effects, and the other factors are 

aforementioned. 

 

The G matrix for within-population prediction was built according to VanRaden 

(2008), which was computed as  





m

1i
ii

' qp2/ZZG  

 

where Z is a matrix of centered genotypes, pi = 1 - qi is the allelic frequency for the 

ith marker based on observed genotypes, and m is the number of makers. For multi-

population prediction, the G matrix was built according to Chen et al. (2013), 

accounting for differences in allele frequencies between populations. Briefly, X is a 
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matrix with genotype values coded as -1, 0 and 1 for the three SNP genotypes and 

with dimension n x m (number of animals x number of SNP). Matrix X includes all 

animals from both the training and validation sets. The matrix X was organized into 

two blocks: [X1 X2]'where X1 represents the genotypes of line 1 and X2 the genotypes 

of line 2. P was a matrix of allele frequencies [P1 P2]'corresponding to X, each row in 

P1 (or P2) was a replicated row vector p1 (or p2) with the frequency of allele A for SNP 

k in line 1 (or line 2). The matrix Z was computed to set mean values of the allele 

effects to 0: [Z1 Z2]'=X-2P+1 where 1 is a matrix of ones. Therefore, the two-

population genomic relationship matrix was constructed as:  

 




























)p(1p2)]p(1)pp(1[p2

)]p(1)pp(1[p2)p(1p2

2k2k
21

2k2k1k1k

21
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22

'
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'

21

'

11

ZZZZ
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A 3-population genomic relationship matrix was constructed in a similar way as the 

2-population one. The difference is that the G matrix was a 3x3 block matrix with the 

diagonal blocks accounting for the allele frequency of the populations and the off-

diagonal blocks accounting for the combination of allele frequencies. 

 

We used ASREML 3.0 (Gilmour et al. 2009) to predict the genomic breeding values 

with the G matrix inputted as a user defined matrix. Animals assigned to the 

prediction set had their DEBV removed before predicting DGV.  

 

6.2.3 Scenarios and DGV accuracy 

Ten scenarios were investigated. These can be divided into two groups according to 

the training and validation data sets: 

 Within-population prediction (scenarios 1-4): training and validation data were 

subsets from the same PB population - DL or LW. The DEBV of the genotyped PB 

animals in the training and validation sets were estimated using the phenotypes 

of their offspring that were either CB or PB, i.e. prediction can be considered 

within-population. In scenario 1, for example, genotyped Dutch Landrace 

animals in the training and validation set had DEBV estimated using their CB 

offspring. Whereas, for scenario 2, genotyped Large White animals in the 

training and validation set had DEBV estimated using their PB offspring. These 

DEBV were used as response variable in the training set and used to compute 
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the accuracy in the validation set. These scenarios determine how well the 

model fits the within-population prediction (Fig. 6.1). 

 PB population(s), using different sources of phenotypic information, predicting 

CB genetic merit (scenarios 5-10): PB genotyped animals were used for training 

and CB genotyped animals were used for validation. DEBV used in the training 

by the PB genotyped animals were provided by their offspring phenotypes that 

were either PB or CB. These scenarios determine how well CB genetic merit can 

be predicted from DEBV of PB animals using different sources of phenotypic 

information and using single or both parental populations (Fig. 6.1 and 6.2).  

 

 
Figure 6.2 Flowchart of the steps taken for the prediction of crossbred (CB) genetic merit 

using both purebred (PB) parental populations in the training set. The deregressed estimated 

breeding values (DEBV) were computed according to Fig. 6.1. The DEBV of both parental 

populations were used as response variables (y) in the training data using a GBLUP model. The 

genomic relationship (G) matrix used in the GBLUP model included all genotyped animals from 

the three populations under study. The output of the GBLUP model is the DGV of the CB 

animals. These DGV were correlated to their DEBV and resulted in the DGV accuracies. The 

same steps were taken when the breeding values of both parental breeds were estimated 

based on their PB progeny. 

 

The DGV accuracy was estimated as the correlation between the DGV and the DEBV 

of the validation set animals. Accuracies were the average of 20 random training-

validation populations in scenarios 1-4. For these scenarios we randomly set aside 

part of the genotyped animals (N=100) and used those in a later step to determine 

the accuracy of prediction. These 100 animals were not included in the training for 

those scenarios. Scenarios 5-10 only had one estimate of accuracy to predict CB 
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animals, and all PB animals were used in the training set. DEBV, instead of EBV, were 

used to compute the DGV accuracy because this removes the influence of the 

parents’ EBV and rescales the EBV according to its accuracy, i.e., the DEBV of the 

animals reflect their genetic merit. It has been shown that using DEBV rather than 

EBV for genomic prediction yields higher DGV accuracies (Ostersen et al. 2011). 

Prediction bias was calculated regressing the validation variables (DEBV) on the 

prediction variables (DGV).  

 

6.2.4 Comparison between DGV accuracies 

Using different sources of information to estimate the DEBV resulted in DEBV with a 

range of reliabilities (Table 6.2). To correct for the difference in reliability between 

CB and PB estimation of EBV and enable a fair comparison, we computed expected 

accuracies for a situation where the mean reliability would be 0.5 (called “corrected 

accuracy” henceforth). We used the formula derived by Daetwyler et al. (2010): 

 

Exp.Accuracy= √
Nph2

Nph2+ Me

 

 

where Np is the number of individuals in the training set, h2 is the “heritability” of 

the response variable (we replaced the heritability by the mean reliability (r2) of the 

DEBV of a given trait of all genotyped animals), and Me is the number of independent 

chromosome which accounts for the genomic structure of the population. Firstly, we 

inserted the observed accuracy on the left-hand side in place of the “Exp. Accuracy”, 

and entered values for Np and h2 (r2) obtained in the training set to estimate the Me 

of the training set. With the estimated Me, we could then calculate the corrected 

accuracy for our standardized situation of h2 = r2 = 0.5. The corrected accuracies of 

the different scenarios under standardized values of h2 = r2 = 0.5 could then be 

compared. 

 

 

 

 

 

 

 

 

Table 6.2 Mean reliabilities (r2) of deregressed breeding values and number of animals (N) for 

gestation length (GLE) and total number born (TNB) 
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 GLE  TNB 

Population r2 N  r2 N 

DLPB 0.56 1,991  0.41 2,016 

DLCB 0.14 1,991  0.17 2,016 

LWPB 0.59 2,296  0.43 2,290 

LWCB 0.11 2,296  0.14 2,290 

CB 0.38 497  0.37 497 
DLPB - Dutch Landrace animals with breeding values estimated using purebred offspring 
DLCB - Dutch Landrace animals with breeding values estimated using crossbred offspring 
LWPB - Large White animals with breeding values estimated using purebred offspring 
LWCB - Large White animals with breeding values estimated using crossbred offspring 
CB - Cross between DL and LW animals 

 

6.3 Results 

DEBV estimated using PB or CB sources of information differed for both traits in both 

PB populations (e.g. Fig. 6.3).  

 
Figure 6.3 Scatter plot of deregressed breeding values. Estimation was done using different 
sources of information (crossbred or purebred) for gestation length in Large White population 

 

DGV in scenarios 1-4, in which within-population and trait prediction was performed, 

had good predictive ability. Accuracies for GLE-CB and TNB-CB for both populations 

ranged from 0.43 to 0.60, whereas for GLE-PB and TNB-PB ranged from 0.43 to 0.62 

(Tables 6.3 - 6.4). The regression coefficient of the DEBV on the DGV, which is a 

measure of bias, was less than 1 for the four traits under study (ranging from 0.43 to 

0.82).   

 

DGV accuracy in scenarios 5-10, in which genetic merit of CB animals was predicted 

using PB population(s) as training set, had different accuracies depending on the 
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source of information used to estimate the breeding values. The regression 

coefficient of the DEBV on the DGV for all these scenarios was less than 1, whereas 

the standard error ranged from 0.89 to 1.80. 

 

For scenarios 5-8, where the training set contained only one PB population, 

accuracies were not different from zero (P>0.05) for CB traits when the training set 

consisted of DL animals, whereas an accuracy of 0.17 was found for CB traits when 

the training set consisted of LW animals. For PB traits, this difference between the 

PB populations was not observed. Accuracies ranged from 0.12 to 0.28 for PB traits 

for both populations. The corrected accuracies for scenarios 5-8 ranged from zero to 

0.35 for CB traits, whereas they ranged from 0.13 to 0.26 for PB traits. 

 

For scenarios 9-10, which contained both parental populations together in the 

training set, the DGV accuracy was 0.19 for GLE-CB and 0.17 for TNB-CB, whereas it 

was 0.30 for GLE-PB and 0.22 for TNB-PB. The corrected accuracies for scenarios 9-

10 were 0.36 for GLE-CB, 0.30 for TNB-CB, 0.28 for GLE-PB and 0.24 for TNB-PB.  

 

6.4 Discussion 

When genomically predicting CB animals, training on DEBV based on phenotypes of 

CB animals is expected to result in better accuracy than training on DEBV based on 

phenotypes of PB animals. Therefore, accuracies of predicting breeding values of CB 

and PB pigs were estimated for two female reproduction traits in ten scenarios 

aiming to determine whether using phenotypic information from CB animals to 

estimate the breeding values of PB training animals can improve the accuracy of 

predicting CB genetic merit.  

 

Results presented are from analyses where animals in the training data were not 

selected based on the reliability of their DEBV. We have also analyzed all scenarios 

imposing a cut-off in the reliability of 0.05 for the breeding values (data not shown) 

and accuracies did not differ greatly from results presented. This suggests that 

adding this less reliable information, indeed, does not help to increase the accuracy 

of prediction. On the other hand, the prediction bias did become less when we 

removed the less reliable DEBV (mean values of the regression coefficient of the 

DEBV on the DGV of 0.45 when using all data and 0.55 when removing low-reliability 

DEBV), indicating that DEBV with low reliability affect the genomic prediction 

resulting in more bias. The standard error of the regression coefficients of the DEBV 

on the DGV were similar when using all data or when removing low-reliability DEBV. 
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6.4.1 Within-population prediction 

The comparison of PB versus CB data differs between the two traits. For GLE, the 

accuracy for GLE-PB was greater than for GLE-CB in both breeds. This may be 

explained by the difference in reliability for DEBV estimated using PB and CB animals. 

The difference is large for this trait in both DL (0.42) and LW (0.48) (Table 6.2). This 

difference in reliability is due to the lower number of records of trait generating the 

CB offspring than the PB offspring (Table 6.1). Conversely, for TNB, the DGV 

accuracies were greater for TNB-CB than for TNB-PB. For TNB, the differences in 

reliabilities were smaller than for GLE, both in DL (0.24) and LW (0.29).  

 

The accuracy of prediction for GLE-PB was greater than for TNB-PB possibly due to 

the greater reliability of DEBV for GLE-PB. There was no strong difference in reliability 

between GLE-CB and TNB-CB, but still DGV accuracies tended to be greater when 

DEBV reliabilities were greater.  

 

The regression coefficient of the DEBV on the DGV varied, but was smaller than 1 for 

all within-population prediction scenarios. This indicates that DGV’s variance was 

overestimated compared to the DEBV, which may occur because the animals to be 

genotyped were selected based on EBV (Mäntysaari et al. 2010).   

 

Previously we performed within-population prediction using the same populations 

(DL and LW), however the DEBV used as response variable were obtained from the 

Topigs Norsvin routine genetic evaluation which is a blend between PB and CB 

records (Hidalgo et al. 2015). In this previous study, accuracies ranged from 0.22 to 

0.72 for the four traits under study (age at first insemination, litter birth weight, total 

number of piglets born and litter variation). TNB was one of the studied traits and 

we obtained higher accuracies in the current study possibly due to the higher 

number of animals used in the training set.  
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Table 6.3 Accuracies of prediction for gestation length (GLE) using GBLUP. 

 Training  Validation      

 DL  LW  DL  LW  CB  Accuracy   

Scenario CB PB  CB PB  CB PB  CB PB  CB  Observed r2 =0.5 Slope* S.E. 

1 1,891 -  - -  100 100  - -  -  0.46 - 0.48 0.07 

2 - 1,891  - -  - -  - -  -  0.56 - 0.64 0.05 

3 - -  2,196 -  - -  100 -  -  0.48 - 0.48 0.07 

4 - -  - 2,196  - -  - 100  -  0.62 - 0.84 0.04 

5 2,008 -  - -  - -  - -  497  0.00 0.00 0.00 0.93 

6 - 2,078  - -  - -  - -  497  0.24 0.23 0.38 0.90 

7 - -  2,296 -  - -  - -  497  0.17 0.35 0.35 0.92 

8 - -  - 2,301  - -  - -  497  0.28 0.26 0.46 0.89 

9 2,008 -  2,296 -  - -  - -  497  0.19 0.36 0.31 0.91 

10 - 2,078  - 2,301  - -  - -  497  0.30 0.28 0.33 0.89 
DL - Dutch Landrace, LW - Large White, CB - crossbred between DL and LW, PB - purebred 
Accuracies of scenarios 1-4 were obtained by 20-random training-validation sets 
r2 =0.5 - Expected accuracy for a mean reliability of a training set of 0.5 (corrected accuracy) 
* - Regression coefficient of the DEBV on the DGV 

S.E. - Standard error of the regression coefficient. For scenarios 1-4, the values refers to the confidence interval 
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Table 6.4 Accuracies of prediction for total number born (TNB) using GBLUP 

 Training  Validation      

 DL  LW  DL  LW  CB  Accuracy   

Scenario CB PB  CB PB  CB PB  CB PB  CB  Observed r2 =0.5 Slope* S.E. 

1 1916 -  - -  100 -  - -  -  0.60 - 0.67 0.11 

2 - 1916  - -  - 100  - -  -  0.49 - 0.64 0.04 

3 - -  2190 -  - -  100 -  -  0.43 - 0.43 0.06 

4 - -  - 2190  - -  - 100  -  0.43 - 0.82 0.07 

5 2031 -  - -  - -  - -  497  0.00 0.01 0.01 1.80 

6 - 2077  - -  - -  - -  497  0.12 0.13 0.33 1.78 

7 - -  2289 -  - -  - -  497  0.17 0.31 0.36 1.77 

8 - -  - 2301  - -  - -  497  0.17 0.18 0.53 1.77 

9 2301 -  2289 -  - -  - -  497  0.17 0.30 0.31 1.79 

10 - 2077  - 2301  - -  - -  497  0.22 0.24 0.56 1.77 
DL - Dutch Landrace, LW - Large White, CB - crossbred between DL and LW, PB - purebred 
Accuracies of scenarios 1-4 were obtained by 20-random training-validation sets 
r2 =0.5 - Expected accuracy for a mean reliability of a training set of 0.5 (corrected accuracy) 
* - Regression coefficient of the DEBV on the DGV 
S.E. - Standard error of the regression coefficient. For scenarios 1-4, the values refers to the confidence interval 
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6.4.2 PB population(s) with different sources of information 

predicting CB genetic merit 

Different breeds and sources of phenotypic information were analyzed in scenarios 

5 to 10 for their effect on the accuracy of predicting CB genetic merit. PB traits 

resulted in greater or equal accuracies than CB traits. One could imagine that using 

the breeding values estimated based on only CB phenotypes would result in greater 

accuracies to predict a CB population because the information comes from CB 

offspring, i.e. it is the same trait. However, there is generally less data available from 

CB individuals than from PB, resulting in a lower reliability of EBV when they are 

estimated using CB offspring. This is why greater accuracies were found when PB 

offspring were used.  

 

The corrected accuracies for CB traits were greater than for PB traits for LW 

(scenarios 7-8). For DL we were surprised to find DGV accuracies of zero for CB traits 

(scenario 5), that also resulted in a corrected accuracy of zero. Hence, for DL the CB 

traits did not outperform PB traits in prediction of CB genetic merit. To explain the 

greater accuracies found between LW and CB than DL and CB, we set out to compare 

relatedness between populations. Based on the pedigree relationship, the LW 

population is more related (0.014) to the CB animals than to the DL population 

(0.009), which explains this difference in accuracies. It is unlikely, however, that this 

lower relatedness is the only reason leading to the very low accuracy (zero) between 

DL and CB for CB traits, as there is still a degree of relationship between these 

populations. Trying to understand the value of zero found for CB traits of the DL 

population, we checked the accuracy of prediction for the same trait and population 

using a pedigree relationship matrix (A matrix) instead of the G matrix. We observed 

an accuracy of 0.11, which shows some predictive ability and therefore a similar or 

higher accuracy would be expected using GBLUP. The genotypes of the animals used 

in the training set for DL population are the same for both CB and PB sources of 

information, as we had predictive ability for DL population using DEBV estimated 

based on PB offspring, it indicates that the genotypes are also sound. Therefore, this 

result is still a surprise with no clear explanation.  

 

Our accuracies of prediction when using a single population in the training data are 

in accordance with R. Veroneze (personal communication) who predicted three-way 

crossbred performance from PB training data and reported values of accuracy 

ranging from 0.25 to 0.29. 
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The accuracy of prediction either increased or stayed the same when adding the 

other parental PB population to predict CB genetic merit (scenarios 9-10). When 

both parental populations were combined, the increase in accuracies were greater 

for PB traits than CB traits which reflects the greater reliability of the PB DEBV used 

as response variable. When both populations had some predictive ability in a single-

population prediction of the CB, there was an increase in accuracy from combining 

both of them in the training set. No increase was seen, as expected, when the DL 

population with DEBV from CB (scenario 5) was added, as the additional data did not 

have predictive ability in scenario 5.  

 

In our study, there generally was a small increase in accuracies with the addition of 

the second parental breed, however this is not always reported. Previous studies 

(e.g. Harris et al., 2008) showed the opposite, where using both parental breeds to 

predict the crossbreds did not increase the accuracy of prediction. 

 

The corrected accuracy, for scenarios 5-10, was greater for CB traits than PB traits; 

except for predicting the CB animals when using only DL (scenario 5). We calculated 

the genetic correlation between PB and CB performance which was 0.94 for GLE and 

0.90 for TNB, i.e. smaller than 1, which explains why a greater accuracy can be 

expected when predicting based on CB offspring. The genetic correlation between 

PB and CB performance was high but still, when comparing after correction for DEBV 

reliability, the CB traits outperformed PB traits. It means that for other important 

traits, where the genetic correlation between PB and CB performance is lower, the 

expected advantage of using CB traits for training will be even higher. In light of these 

results, it is suggested that phenotyping more CB animals is desired to increase DEBV 

reliability and consequently yield greater DGV accuracies. 

 

Simulation studies have shown that predicting SNP effects using CB information to 

select PB results in greater crossbred performance (Dekkers 2007; Ibánez-Escriche et 

al. 2009; Toosi et al. 2010; Zeng et al. 2013). Determining the accuracy of such 

scenarios in real data is desired, however, a large number of genotyped crossbreds 

is required. Currently, pig breeding companies may not collect this information 

because it requires genotyping CB individuals as well as additional identification and 

individual recording of target traits. Therefore, in order to assess the value of such 

data when available, we calculated predictive ability (accuracy), in real data, in CB 

pigs using PB genomic and phenotypic data which gives an idea of the accuracy of 

genomic prediction between CB and PB populations using real data within the 

limitations of currently available datasets. Nevertheless, studies determining the 



6 Genomic prediction using purebred or crossbred information 

 

 

113 
 

accuracy of genomic selection of PB for CB performance and studies considering non-

additive effects (e.g. dominance) are still needed. 

 

6.5 Conclusions 

DGV accuracies were equal or higher when training data were based on phenotypes 

of PB offspring compared to phenotypes of CB offspring. The main reason for the 

superiority of PB data was the greater reliability of the DEBV based on phenotypes 

of PB offspring. When corrected to the same mean reliability, however, prediction 

using CB traits outperforms the usage of PB traits, indicating that more CB animals 

should be phenotyped to increase DEBV reliability and, consequently, accuracy of 

DGV for CB genetic merit. 
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Abstract 

In pig breeding, as the final product is a crossbred (CB) animal, the goal is to increase 

the CB performance. This requires different strategies for the implementation of 

genomic selection from what is currently implemented in e.g. dairy cattle breeding. 

It seems better to estimate marker effects on the basis of CB performance and 

subsequently use them to select purebred (PB) breeding animals. The objective of 

our study was to assess empirically the predictive ability (accuracy) of direct genomic 

values of PB for CB performance across two traits using CB and PB genomic and 

phenotypic data. Accuracy of prediction of PB genetic merit for CB performance 

based on CB training data ranged from 0.23 to 0.27 for gestation length (GLE), 

whereas it ranged from 0.11 to 0.22 for total number of piglets born (TNB). When 

based on PB training data it ranged from 0.35 to 0.55 for GLE and from 0.30 to 0.40 

for TNB. Our results showed that there is predictive ability from using CB training 

data to predict PB genetic merit for CB performance. We also showed that using PB 

was better than using CB training data, mainly due to the structure of our data, which 

had small to moderate size of the CB training dataset, low relationship between the 

CB training and the PB validation populations, and a high genetic correlation (>0.90) 

between the studied traits in PB and CB individuals, thus favoring selection on the 

basis of PB data.  

 

Key words: crossbreeding, genomic selection, reproduction traits, within-population 

prediction   
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7.1 Introduction 

Genomic selection is currently primarily applied in purebred (PB) populations in dairy 

cattle (Hayes et al. 2009; VanRaden et al. 2009). In pig breeding and other livestock 

production systems, however, the final product is a crossbred (CB) animal, 

capitalizing on breed complementarity and heterosis. In pigs, therefore, the final goal 

is to increase CB performance which may require different strategies for the 

implementation of genomic selection from what is currently implemented in dairy 

cattle. Applying the dairy cattle strategy in pig breeding would put the focus on 

accelerating PB genetic progress, expecting an increase in CB performance as a 

correlated response. This strategy, however, might be suboptimal as purebred traits 

are often different from the crossbred traits, i.e. the genetic correlation between PB 

and CB performance may be considerably lower than 1 (Lutaaya et al. 2001; 

Cecchinato et al. 2010). 

 

In a better strategy, marker effects are estimated on the basis of crossbred 

performance and subsequently used to select purebred breeding animals. This 

strategy is expected to give better response to selection in crossbred performance 

and lower rates of inbreeding in the purebred parental populations compared to 

within-PB-population selection according to simulation studies (Dekkers 2007; 

Kinghorn et al. 2010; van Grevenhof & van der Werf 2015). The main factors affecting 

these responses to selection are: i) the size of the training dataset, ii) the relationship 

of the selection candidates with the training dataset, iii) the genetic correlation 

between PB and CB performance and iv) the volume of purebred phenotypes versus 

crossbred phenotypes. An empirical study in sheep of CB training data predicting PB 

genetic merit based on a mix of CB and PB performance has shown accuracies 

ranging from 0.05 to 0.41 (Moghaddar et al. 2014). Hidalgo et al. (2015b) who 

studied prediction of crossbred pigs using purebred training data, have reported that 

there is predictive ability, i.e. selection on purebreds would result in response in 

crossbred pigs. Also, they showed the importance of having a high relationship 

between PB and CB animals, and that for high accuracies the genetic correlation 

between PB and CB performance should also be high.  

 

Many studies have been reported for genomic prediction within PB populations 

(Cleveland et al. 2010; Badke et al. 2014), however, studies that empirically 

investigate accuracy of genomic prediction of PB based on CB performance in pigs 

are lacking. Therefore, the objective of our study was to empirically assess the 

predictive ability (accuracy) of genomic breeding values of purebred for crossbred 
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performance across two traits (gestation length and total number of piglets born) 

using CB and PB genomic and phenotypic data.   

 

7.2 Material & Methods 

 

7.2.1 Phenotypic and genotypic data 

Phenotypes and genotypes were available from sows with own-performance 

information of three pig populations: 1,668 Dutch Landrace-based (DL) sows, 2,003 

Large White-based (LW) sows and 914 crossbred (CB) animals from an F1 cross 

between these two purebred lines. The CB animals were roughly 50% from DL sires 

mated to LW dams and 50% LW sires mated to DL dams. All sows were born from 

2005 through 2013. The genotyped CB animals had no fixed family structure and the 

majority of them were not offspring of the genotyped PB animals, i.e. there was a 

distance in generations. The 914 CB animals originated from 184 sires and 487 dams. 

Two female reproduction traits were analyzed: gestation length (GLE) and total 

number of piglets born (TNB). GLE is the number of days between dates of 

insemination and farrowing, and TNB is the sum of all piglets born alive and stillborn. 

Phenotypic information of both traits for parities 2 to 7 was analyzed. First parity 

information was excluded because genetic correlations between first and later 

parities were much smaller than 1, i.e. they can be considered different traits 

(Hanenberg et al. 2001). Phenotypes were pre-corrected by subtracting the fixed 

effects of litter type (purebred or crossbred offspring), whether more than one 

insemination procedure was performed (yes or no), herd-year-season and for the 

covariates parity number and TNB (only for GLE). We corrected for service sire as a 

random effect. Descriptive statistics on the studied traits are in Table 7.1. 

 

Table 7.1 Descriptive statistics of gestation length (GLE) and total number of piglets born 
(TNB) for purebred and crossbred animals. 

  GLE    TNB  

Population Animals Records Mean (sd)  Animals Records Mean (sd) 

DL 1,615 6,136 116.32 (1.59)  1,668 6,536 15.41 (3.42) 
LW 1,904 7,812 115.24 (1.55)  2,003 8,258 16.43 (3.53) 
CB 550 2,071 115.38 (1.50)  914 3,598 15.54 (3.43) 

DL - Dutch Landrace, LW - Large White, CB - F1 cross between DL and LW 
sd - standard deviation 

 

For use as a pseudo-phenotype in the validation set, we estimated the breeding 

values (EBV) of the PB animals based on the phenotypes of their CB progeny while 

excluding phenotypes from animals that belonged to the training set. Heritabilities 
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and breeding values were estimated in a single-trait analysis using a repeatability 

model in ASReml 3.0 (Gilmour et al. 2009). These EBVs were deregressed using the 

methodology proposed by Garrick et al. (2009). The reliabilities of the EBV, also 

required for the deregression procedure, were estimated using the following 

formula (Gilmour et al. 2009): 

 

r2 = 1 - 
si

2

(1 + fi)σa
2
 

 

where si is the standard error reported for the EBV of the ith individual, fi is the 

inbreeding coefficient, and 𝜎𝑎
2 is the additive genetic variance. Further, reliabilities 

of the deregressed breeding values (DEBV) and the weighting factor (w) were also 

estimated following the methodology proposed by Garrick et al. (2009). The formula 

used to estimate the w is: 

 

wi = 
1 - h2

[c + (1 - ri
2)/ri

2]h2 

 

where wi is the weighting factor of the ith individual, h2 is the heritability of the trait, 

c is a scalar assumed to be 0.5, as suggested by Garrick et al. (2009), that indicates 

how much of the genetic variation is not accounted for by the markers, and ri
2 is the 

reliability of the DEBV of the ith individual. 

 

7.2.2 Scenarios 

We investigated seven scenarios which can be divided into three groups according 

to the structure of the training and validation data sets (Table 7.2): 

 Scenarios 1-3: training and validation data were subsets from the same 

population, DL, LW and CB respectively, i.e. prediction was within-population. 

These scenarios serve as references to evaluate whether the genomic data 

structure can provide reasonable accuracies for “standard” within-population 

genomic prediction. The validation population contained the 20% youngest 

genotyped animals of a given population. Selecting the youngest animals as the 

validation population mimics a typical breeding program where direct genomic 

values (DGV) are computed for the youngest animals to inform selection 

decisions. 

 Scenarios 4-5: CB phenotypes were used for training and DEBV of PB animals 

were used for validation. These scenarios determine how well the genetic merit 
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of PB animals for CB performance can be predicted from CB training data alone. 

The validation population consisted of the 20% of animals with the most reliable 

DEBVs of a given PB population. As the DEBV was based on CB progeny only, 

selection of the 20% of animals with the most reliable DEBVs resulted in a 

validation set with a reasonable level of DEBV reliability (ranging from 0.23 – 

0.64). The distribution of DEBVs of the validation animals did not show any 

deviations from the distribution of DEBVs of all animals. 

 Scenarios 6-7: PB phenotypes were used for training and the DEBV of PB animals 

for CB performance were used for validation. These scenarios determine how 

well genetic merit of PB animals for CB performance can be predicted from PB 

training data alone. This allowed for a comparison between accuracies when 

using PB or CB data as training set to predict genetic merit of PB animals for CB 

performance. The validation animals used in these scenarios are the same that 

were used for scenarios 4-5. Animals that belonged to the validation population 

were excluded from the training population.  

Table 7.2 Description of the scenarios under study. 

 Training  Validation 

Training phenotypes Validation phenotypes Sce. DL LW CB  DL LW CB 

1 X    X   Pre-cor. own phenotype Pre-cor. own phenotype 
2  X    X  Pre-cor. own phenotype Pre-cor. own phenotype 
3   X    X Pre-cor. own phenotype Pre-cor. own phenotype 
4   X  X   Pre-cor. own phenotype DEBV for CB performance 
5   X   X  Pre-cor. own phenotype DEBV for CB performance 
6 X    X   Pre-cor. own phenotype DEBV for CB performance 
7  X    X  Pre-cor. own phenotype DEBV for CB performance 
Sce. - Scenario, DL - Dutch Landrace, LW - Large White, CB - F1 cross between DL and LW, DEBV - 
Deregressed breeding value, Pre-cor. - Pre-corrected 

 

7.2.3 Genotyping 

Animals were genotyped using the Illumina PorcineSNP60 BeadChip (Ramos et al. 

2009). All genotyped PB animals were breeding animals from nucleus farms that 

were selected for genotyping because they had phenotypic records from multiple 

parities on multiple traits. Crossbred animals belonged to farms where phenotypic 

data from PB and CB animals were recorded to be included in genetic evaluations. 

Single nucleotide polymorphisms (SNP) with GenCall <0.15, unmapped SNPs and 

SNPs located on either the X or Y chromosome, according to the Sscrofa10.2 

assembly of the reference genome (Groenen et al. 2012), were excluded. Quality 

control (QC) was performed within populations for scenarios where within-

population prediction was performed (scenarios 1-3 and 6-7), whereas QC was 
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performed across all populations simultaneously for other scenarios (scenarios 4-5). 

After within-population QC, 42,360 SNPs for DL, 41,005 SNPs for LW and 43,265 SNPs 

for CB remained, whereas after across-populations QC, 38,201 SNPs remained out of 

the initial 64,232 SNPs. QC involved excluding SNPs with call rate <0.95, minor allele 

frequency <0.01 and strong deviations of Hardy-Weinberg equilibrium (χ²>600). 

Individuals with missing genotype frequency >0.05 were also removed. Missing 

genotypes of the remaining animals were imputed using BEAGLE 3.3.2 (Browning 

and Browning 2007). 

 

7.2.4 Statistical analyses 

Direct genomic values were computed based on the genomic best linear unbiased 

prediction method (GBLUP) to assess the prediction accuracy in all scenarios 

applying the following model: 

 

y = μ + Zg + Wu + e, 

 

where y is a vector of corrected phenotypes, μ is the overall mean, g is the vector of 

random-additive genetic effect assumed to be ~N(0, Gσ𝑎
2 ), where G is the genomic 

relationship matrix and σ𝑎
2  is the additive genetic variance, u is the vector of random 

effect of permanent environment assumed to be ~N(0, Pσ𝑝
2 ), where P is a diagonal 

matrix with the number of observations per sow on the diagonal and σ𝑝
2  is the 

permanent environmental variance, Z and W are incidence matrices, and e is the 

vector of random residual effect assumed to be ~N(0, Iσ𝑒
2), where I is an identity 

matrix and σ𝑒
2 is the residual variance. The random permanent environmental effect 

was included in the model to account for the repeated observations of a single sow. 

 

The G matrix for scenarios 1, 2, 3, 6 and 7 was built according to VanRaden (2008), 

which was computed as 



m

1i
ii

' qp2/ZZG , where Z is a matrix of centered genotypes 

and pi = 1 - qi is the allelic frequency for the ith marker based on observed genotypes, 

and m is the number of makers. For scenarios 4 and 5, the G matrix was built 

according to Chen et al. (2013) which accounts for differences in allele frequencies 

between populations. In short, X is a matrix with genotype values coded as -1, 0 and 

1 for the three SNP genotypes and with dimension n x m (number of animals x 

number of SNPs). Matrix X includes all animals from both the training and validation 

sets. The matrix X was organized into two blocks: [X1 X2]' where X1 represents the 

genotypes of line 1 and X2 the genotypes of line 2. P was a matrix of allele frequencies 
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[P1 P2]' corresponding to X, each row in P1 (or P2) was a replicated row vector p1 (or 

p2) with the frequency of allele A for SNP k in line 1 (or line 2). The matrix Z was 

computed to set mean values of the allele effects to 0: [Z1 Z2]'=X-2P+1 where 1 is a 

matrix of ones. Therefore, the two-population genomic relationship matrix was 

constructed as: 

 






























)p(1p2)]p(1)pp(1[p2

)]p(1)pp(1[p2)p(1p2

2k2k
21

2k2k1k1k

21
2k2k1k1k1k1k

'
22

'
12

'
21

'
11

ZZZZ

ZZZZ

G  

 

We used ASREML 3.0 (Gilmour et al. 2009) to predict the DGVs with G supplied as a 

user defined matrix. Animals assigned to the validation set had their corrected 

phenotypes removed before predicting DGV.  

We compared our realized DGV accuracy to the predicted accuracy for within-

population prediction according to the formula derived by Daetwyler et al. (2010): 

 

Predicted accuracy = √
Nph2

Nph2 + Me

 

 

where Np is the number of individuals in the training population, h2 is the heritability 

of the trait, Me accounts for the genomic structure of the population given by the 

number of independent chromosome segments (Me=2NeL/log(4NeL)). The effective 

population size (Ne) of each population was calculated according to the method of 

Gutiérrez et al. (Gutiérrez et al. 2009), using the software Relax2 (Strandén and Vuori 

2006). The genome length (L) was set to 19.54 Morgans, an average of four genetic 

maps studied by Tortereau et al. (2012). Wientjes et al. (2013) have shown that the 

formula used to compute Me based on Ne is appropriate and similar to the one based 

on the genomic and additive genetic relationship matrix derived by Goddard et al. 

(2011). 

 

The DGV accuracy was computed as the correlation between the DGV and the 

corrected phenotype/DEBV of the validation set animals divided by the square root 

of the heritability/reliability of the validation population. Prediction bias was 

calculated by regressing the validation variables (corrected phenotypes/DEBV) on 

the prediction variables (DGV). 
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7.3 Results 

The estimated Ne was 123 for DL, 105 for LW and 132 for CB, slightly higher than 

other studies that found Ne of 91 for Finnish Landrace (Uimari and Tapio 2010) and 

74 for Landrace from the USA (Welsh et al. 2010). 

 

7.3.1. Within-population prediction 

Crossbred animals had the highest h2 for both GLE and TNB, 0.50 and 0.19, 

respectively. For GLE, both pure populations had the same heritability of 0.41. 

Whereas for TNB, Large White had a slightly higher heritability (h2 = 0.15) compared 

to Dutch Landrace (h2 = 0.11).  

 

Scenarios 1-3 evaluated within-population predictions for which accuracies ranged 

from 0.54 to 0.79 across the two traits and different training sets (Tables 7.3-7.4). 

For both traits, the highest accuracy was observed in the LW population. The 

predicted accuracies according to Daetwyler et al. (2010) ranged from 0.45 to 0.76. 

The predicted accuracies were lower than realized accuracies for CB and around the 

realized values for DL and LW. 

 

The regression coefficient of the corrected GLE phenotype on the DGV was close to 

1, whereas for TNB it was considerably different from 1 with values 0.78 for DL, 0.59 

for LW and 1.81 for CB. A regression coefficient of the corrected phenotype on the 

DGV close to 1 indicates unbiasedness, whereas a value lower than 1 indicates 

inflation of the DGV variance, and a value greater than 1 indicates deflation of the 

DGV variance.  

 

Table 7.3 Accuracies of genomic prediction for gestation length (GLE) using GBLUP. 

  Training  Validation  Accuracy  

Sce. h2 DL LW CB  DL LW CB  Realized Predicted Slope* 

1 0.41 1,292 - -  323 - -  0.64 0.71 0.81 
2 0.41 - 1,523 -  - 381 -  0.71 0.76 0.90 
3 0.50 - - 440  - - 110  0.61 0.53 1.12 
4 0.43† - - 550  433 - -  0.27 - 0.31 
5 0.23† - - 550  - 523 -  0.23 - 0.20 
6 0.43† 1,494 - -  433 - -  0.55 - 0.50 
7 0.23† - 1,627 -  - 523 -  0.35 - 0.24 

Sce. - Scenario, DL - Dutch Landrace, LW - Large White, CB - F1 cross between DL and LW 
h2 - heritability of the trait for the validation population 
† - mean DEBV reliability of the validation population 
* - regression coefficient of the corrected phenotype/DEBV on the DGV 
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Table 7.4 Accuracies of genomic prediction for total number of piglets born (TNB) using 
GBLUP. 

  Training  Validation  Accuracy  

Sce. h2 DL LW CB  DL LW CB  Realized Predicted Slope* 

1 0.11 1,334 - -  334 - -  0.54 0.47 0.78 
2 0.15 - 1,602 -  - 401 -  0.64 0.59 0.59 
3 0.19 - - 731  - - 183  0.79 0.45 1.81 
4 0.64† - - 914  463 - -  0.11 - 0.26 
5 0.39† - - 914  - 523 -  0.22 - 0.39 
6 0.64† 1,575 - -  463 - -  0.30 - 0.69 
7 0.39† - 1,717 -  - 523 -  0.48 - 0.77 

Sce. - Scenario, DL - Dutch Landrace, LW - Large White, CB - F1 cross between DL and LW 
h2 - heritability of the trait for the validation population 
† - mean DEBV reliability of the validation population 
* - regression coefficient of the corrected phenotype/DEBV on the DGV 

 

7.3.2. Prediction of purebreds for crossbred performance 

Dutch Landrace animals in the validation population had higher reliabilities of their 

DEBV, compared to Large White animals, for both traits. For GLE, reliabilities were 

0.43 and 0.23, whereas for TNB they were 0.64 and 0.39. 

 

Scenarios 4-5 predicted genetic merit of PB for CB performance based on CB 

phenotypes and showed low to moderate predictive ability for GLE for the two PB 

populations with accuracies of 0.27 for DL and 0.23 for LW (Table 7.3). Some, but 

limited predictive ability was also found for TNB with accuracies of 0.11 for DL and 

0.22 for LW (Table 7.4). 

 

Scenarios 6-7 predicted genetic merit of PB for CB performance based on PB 

phenotypes. These scenarios showed moderate to high predictive ability for GLE for 

the two PB populations with accuracies of 0.55 for DL and 0.35 for LW (Table 7.3). 

Moderate predictive ability was also found for TNB with accuracies of 0.30 for DL and 

0.40 for LW (Table 7.4). 

 

The regression coefficient of the DEBV on the DGV for scenarios 4-7 was lower than 

1 for both GLE and TNB, which indicates that the variance of the DGV was 

overestimated. 

 

7.4 Discussion 

We studied accuracy of genomic prediction for two female reproduction traits in 

seven scenarios, covering i) within-population genomic prediction in PB and CB pigs, 

ii) prediction of genetic merit of PB animals for CB performance using a CB training 
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population, and iii) prediction of genetic merit of PB animals for CB performance 

using a PB training population. 

 

7.4.1. Within-population prediction 

Within-population genomic prediction (i) was used as point of reference and showed 

that the available genomic data resulted in reasonable accuracies in “standard” 

genomic prediction. Predicted and realized accuracies for within-population 

prediction slightly differ between each other. However, given that we have only two 

values per population, predicted and realized accuracies for within-population 

predictions were in good agreement, with an average difference of only 0.07. The 

regression coefficient of the corrected phenotype on the DGV for within-population 

prediction was close to 1 for GLE and considerably differed from 1 for TNB. Luan et 

al. (2009) have observed a trend that the greater the heritability of the trait, the 

smaller the bias. This trend could also be observed in our results. In general, bias is 

observed in populations that have undergone selection based on pedigree and 

phenotypes (Vitezica et al. 2011). TNB has been under stronger selection than GLE, 

which might have led to the more biased predictions. 

 

7.4.2. Comparison between crossbreds and purebreds predicting 

purebreds for crossbred performance 

We evaluated two strategies to select PB animals for CB performance: i) using CB 

training data and ii) using PB training data. In simulation studies, strategy (i) results 

in greater response to selection and lower rates of inbreeding (Dekkers 2007; Van 

Grevenhof and Van Der Werf 2015). This is expected, especially, in the case of having 

a considerable amount of CB training data, high relationship of the selection 

candidates with the training dataset, low genetic correlation between PB and CB 

performance and without major difference in data on PB phenotypes than CB 

phenotypes. Evaluating our results, however, we find the opposite results when 

comparing accuracies from scenarios 4-5 to 6-7. Strategy (ii) resulted in higher 

accuracy than strategy (i). The main reason for this counter-intuitive result lies in the 

structure of our data which had a small to moderate amount of genotyped CB 

animals in the training population, distant relationship between the CB training and 

the PB validation, a high genetic correlation between PB and CB performance (~0.90) 

and the greater amount of PB versus CB phenotypes. 

 

The number of animals used in the training dataset for scenarios 6-7 was greater 

than for scenarios 4-5. To enable a fair comparison between those scenarios, we 

have randomly selected PB animals in the training data to match the number of 
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animals used in the training of scenarios 4-5 (Table 7.5). These predictions were 

repeated 20 times, generating 20-random training PB populations; accuracy 

presented was the average of the 20 realized accuracies. Comparing the results when 

the same training data size is used, accuracy was still higher for PB training data 

rather than CB data. The differences, however, were not as great as when all PB 

animals were used.  

 

Table 7.5 Accuracies of genomic prediction using GBLUP with a restriction in number of 
training animals. 

  Training  Validation   

Trait r2 DL LW  DL LW Accuracy† Slope* 

GLE 0.43 550 -  433 - 0.41 0.46 
GLE 0.23 - 550  - 523 0.26 0.23 
TNB 0.64 914 -  463 - 0.26 0.72 
TNB 0.39 - 914  - 523 0.40 0.73 

GLE – Gestation length, TNB – Total number of piglets born, DL - Dutch Landrace, LW - Large White, CB - 
F1 cross between DL and LW 
r2 - mean DEBV reliability of the validation population  
† - estimate obtained by 20 random-training populations 
* - regression coefficient of the DEBV on the DGV 

 

The higher accuracies found with PB training data can, in part, be explained by the 

relationship between training and validation. The PB training population is more 

closely related to the validation population than the CB training population. In 

addition, the genetic correlation between PB and CB performance was not equal to, 

but close to unity, being 0.94 for GLE and 0.90 for TNB (Hidalgo et al. 2015a). While 

this high genetic correlation is not a disadvantage for using CB animals as training 

population, it also did not help to offset the other disadvantages our CB training 

populations suffered. Simulations that showed greater response for selecting PB for 

CB performance based on CB training rather than based on PB training assumed 

genetic correlation lower than 0.8 (Dekkers 2007; Van Grevenhof and Van Der Werf 

2015). 

 

To achieve high levels of accuracy, greater numbers of CB animals need to be 

included in the training set. The number of training animals with phenotypes should 

always be larger when the target is to predict CB compared to PB genetic merit for 

PB animals assuming a genetic correlation between PB and CB performance lower 

than 1, because the CB training animals always have at least half of their haplotypes 

originating from another population. In our dataset the genetic correlation was high. 

The additional number of animals needed may not be so large in this case. 
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The relationship between training and validation also plays an important role in the 

accuracy of prediction. In our study, there was a distance in generations resulting in 

a low number of CB animals with close relationship to the PB genotyped animals. In 

a scenario where there is a close relationship between CB and PB animals, greater 

accuracies are expected (Van Grevenhof and Van Der Werf 2015). It is also important 

to highlight that genomic selection for traits that are hardly measured in PB pigs, 

such as robustness in commercial conditions, CB phenotypic information might play 

a major role as PB phenotyping for such traits may be lacking or the data volume 

may be extremely limited.  

 

Further studies to compare the accuracy of genomic prediction of PB genetic merit 

based on CB performance with a larger training set are needed, even though in the 

current study using a small size training set already showed that there is predictive 

ability. In addition to larger training sets, other more complex genomic models that 

include breed-specific effects of SNP alleles or dominance (Ibánez-Escriche et al. 

2009; Zeng et al. 2013) can be employed. These models have been shown to 

outperform an additive model in specific cases, e.g. with high dominance levels or 

when the number of SNPs is small relative to the size of the training population. 

Further studies that develop more complex models and include larger datasets to 

predict PB genetic merit based on CB performance are needed and studies are 

underway (Bastiaansen et al. 2014). In addition, genomic prediction of traits for 

which the genetic correlation between PB and CB performance is much lower than 

1 should clarify if CB training data can outperform PB training data to predict genetic 

merit of PB for CB performance. At the moment phenotypes and genotypes on CB 

animals are limiting such further analyses. 

 

7.5 Conclusions 

Predictive ability was observed for genomic prediction of PB genetic merit for CB 

performance, which is interesting for production systems that have the CB 

performance as their final breeding goal and also for breeding programs that have 

limited data in PB animals. Prediction of PB genetic merit for CB performance using 

PB training was more accurate than using CB training data for GLE and TNB which we 

expect to be specific for the current dataset with high genetic correlations between 

CB and PB performance for the studied traits (~0.90) and the low relationship 

between the CB training and the PB validation populations. These results, however, 

are encouraging and it seems worth the effort and cost to produce better datasets 

to investigate the prediction of CB performance in PB lines from CB genotyped and 
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phenotyped animals, especially for traits with low genetic correlation between PB 

and CB performance and for traits which phenotypes are scarce in purebreds, e.g. 

disease related traits. 
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Abstract 

Background 

In pig breeding, the final product is a crossbred pig capitalizing on heterosis, which 

has dominance as one of its main causes. Our objectives were: 1) estimate variance 

components for crossbred pigs using an additive or an additive plus dominance 

model for two traits, gestation length (GLE) and total number of piglets born (TNB), 

2) test whether the dominance model was better than the additive model for 

prediction and for response to selection of purebreds for crossbred performance. 

This test was based on a training population of F1 crossbreds from a Dutch Landrace-

based (DL) and a Large White-based (LW) population, using either pedigree or 

genotypes, and 3) to estimate the additive genetic variance in crossbred 

performance that is explained by each parental purebred population. We used three 

methods: pedigree-based BLUP (PBLUP), genomic BLUP (GBLUP) and a genomic 

variable selection model (BayesC). For each method, we used an additive model 

(PBLUPA, GBLUPA and BayesCA) or an additive plus dominance model (PBLUPAD, 

GBLUPAD and BayesCAD). 

 

Results 

For both traits, PBLUPAD estimated no dominance variance. GBLUPAD estimated 

dominance effects that accounted for 33% of the genetic variance of GLE but none 

for TNB. Accuracies to predict purebreds for crossbred performance using an 

additive model ranged from 0.114 to 0.235 for GLE and from 0.060 to 0.134 for TNB 

across populations and methods. Using the dominance model accuracies ranged 

from 0.114 to 0.237 for GLE and from 0.063 to 0.129 for TNB across populations and 

methods. For GLE in the LW population GBLUPAD was 4% less accurate than GBLUPA. 

In general BayesCAD resulted in greater accuracy than BayesCA. GBLUP for TNB and 

pedigree-based analyses for both traits resulted in the same response to selection 

across populations. BayesC generally resulted in slightly greater selection responses 

than the other methods. PBLUP showed higher response to selection than GBLUP 

and BayesC for TNB in LW. We also estimated that genes from the LW population 

explained 1.25-fold and 1.75-fold more of the additive genetic variance in crossbred 

performance than genes from the DL population for GLE and TNB, respectively, but 

these differences were not statistically significant. 

 

Conclusions 

Genotype-based analyses are better at capturing dominance variance than pedigree-

based analyses. The dominance model can slightly improve the accuracy of genomic 

prediction and response to selection over the additive model for a trait that has 



 
 

dominance variation. In addition, there are indications that the proportion of genetic 

variance in crossbred performance differs between the parental purebreds used in 

the cross.  

 

Keywords 

breed-specific effects, genomic selection, heterosis, non-additive effects, Sus scrofa
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8.1 Background 

In pig breeding multiple purebred (PB) sire and dam lines are used to produce a 

three- or four-way cross finisher pig with superior performance in economically 

important traits (Lutaaya et al. 2001; Merks and De Vries 2002). The crossbred (CB) 

pigs are raised on commercial farms with poorer management and biosecurity 

conditions than nucleus farms. This difference in conditions between commercial 

and nucleus farms is often reflected in the traits. The genetic correlation for the same 

trait between PB and CB performance is not always 1 (Lutaaya et al. 2001; Zumbach 

et al. 2007; Cecchinato et al. 2010) mainly because of genotype-by-environment 

interactions between commercial and nucleus farms, and non-additive effects. 

Therefore one strategy is to use CB animals in the training set to estimate breeding 

values and select PB breeding animals for CB performance (Dekkers 2007; Van 

Grevenhof and Van Der Werf 2015). This strategy is expected to give a higher 

response in CB performance than within-PB-population selection (Dekkers 2007; 

Ibánez-Escriche et al. 2009; Kinghorn et al. 2010; Toosi et al. 2010; Zeng et al. 2013; 

Van Grevenhof and Van Der Werf 2015) especially when the genetic correlation 

between PB and CB performance is substantially less than 1. This higher response is 

because using CB information in the training population considers genotype-by-

environment effects and differences between PB and CB individuals. Using CB data 

in the training population also allows breeding for traits for which phenotypes are 

scarce in PB animals, because these traits cannot be evaluated in nucleus herds, such 

as disease traits (Ibañez-Escriche and Gonzalez-Recio 2011). 

 

Another advantage of predicting CB performance is that heterosis needs to be 

accounted for in the predictions. One of the main causes of heterosis is likely to be 

dominance (Xiao et al. 1995; Falconer and Mackay 1996; Charlesworth and Willis 

2009) making dominance an important component of crossbreeding programs. 

Estimating dominance effects using a pedigree-based analysis is difficult because it 

requires large amount of data on many full-sib families (Vitezica et al. 2013). 

Genomic information is better at estimating dominance than pedigree information 

because it uses heterozygosity of SNP genotypes (Vitezica et al. 2013). In addition, 

to maximize the performance of CB progeny, it is important to consider the 

frequencies of alleles in the breed that PB animals are crossed with to produce the 

CB progeny when estimating marker allele substitution effects and breeding values 

of PB animals for crossbred performance (Dekkers and Chakraborty 2004). 
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The breeding value of PB animals for CB performance using high-density SNP 

genotypes can be estimated using the dominance model by Zeng et al. (2013). This 

model estimates dominance while using the allele frequency of the other PB breed 

used to produce the CB progeny to calculate the allele substitution effects. Using 

simulation they showed that the dominance model had higher response to selection 

in CB performance than the additive model when the trait is affected by dominance 

and no retraining is done. Using CB animals to predict PB for CB performance with 

an additive model estimates accuracies ranging from 0.11 to 0.27 (Hidalgo et al., 

personal communication). However, no study has been reported that predicts PB for 

CB performance accounting for dominance. In addition, most pedigree-based studies 

on CB performance assume the contribution of the parental breeds to the additive 

genetic variance in CB performance is equal to the proportion of genes contributed 

by each breed to the cross. However, this equality may not occur because of parental 

imprinting and maternal effects, among others. Therefore our objectives were 1) to 

estimate components of variance for CB animals using an additive, and an additive 

plus dominance models for two female reproduction traits in pigs; 2) to assess 

empirically the performance of the dominance model compared with the additive 

model for prediction and for response to selection of PB for CB performance for the 

same traits using a CB training population; and 3) to evaluate the contribution of 

each PB population to the additive variance in CB performance. 

 

8.2 Material & Methods 

 

8.2.1 Data 

This experiment followed the regulations of the Netherlands law for the protection 

of animals. Phenotype and SNP genotype data were available on pigs from three 

populations: 402 Dutch Landrace-based purebreds (DL), 288 Large White-based 

purebreds (LW) and 914 CB pigs from an F1 cross between these two PB populations. 

The CB pigs were roughly 50% DL sires/LW dams and 50% LW sires/DL dams. The PB 

animals were breeding animals from nucleus farms. The CB animals were managed 

on five farms that recorded phenotypic data on PB and CB animals to be included in 

genetic evaluation. The pigs from the three populations were born between 2005 

and 2013. The CB animals had no fixed family structure and most were not offspring 

of the PB animals analyzed in this study. Two female reproduction traits were 

analyzed: gestation length (GLE) and total number of piglets born (TNB). GLE is the 

interval between insemination and farrowing in days, and TNB is the sum of all 

piglets born alive and stillborn in the same litter. Phenotypes of both traits for 
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parities 2 to 7 were analyzed. First parity records were excluded because genetic 

correlations between first and later parities are significantly lower than 1 (Irgang et 

al. 1994; Hanenberg et al. 2001; Oh et al. 2005) and are different traits.  

 

The response variables used to estimate variance components and for training were 

pre-corrected phenotypes instead of the original phenotypes of the genotyped CB 

animals. Pre-corrections were obtained by fitting a single trait pedigree-based linear 

model using ASReml v3.0 (Gilmour et al. 2009) with a larger data set that included all 

genotyped CB animals (914), the CB offspring of the genotyped PB animals and the 

CB contemporaries (76,866). Phenotypes were pre-corrected by subtracting 

estimates of the fixed effects of parity number, whether more than one insemination 

was performed (yes or no), and herd-year-season, as well as for the covariate of TNB 

(only for GLE). We also corrected for estimates of the random effect of service sire 

(estimated without pedigree). The response variable used for validation was the pre-

corrected mean performance of the CB offspring of PB animals, which is described 

in Table 8.1. To calculate this mean, we used the CB offspring of the genotyped PB 

animals and the CB contemporaries but did not use the phenotypes of the 914 CB 

animals that belonged to the training set. From the 402 DL animals used for 

validation, 75 were parents of the genotyped CB individuals, whereas, from the 288 

LW animals used for validation, 28 were parents of the genotyped CB individuals. 

The CB offspring of PB animals used to calculate the validation response variable 

were housed in a total of 187 farms, from which 4 were also farms housing the 

genotyped CB animals used for training. These overlapping numbers show that there 

were CB individuals used for training which had close relationships and were raised 

in the same environment as CB individuals used in the calculation of the mean CB 

offspring used for validation.  

 
Table 8.1 Description of the crossbred data used to compute the mean performance of the 
crossbred offspring of purebred animals (validation response variable) 

  GLE   TNB 

Description DL LW   DL LW 

Nr. of purebred animals 235 144  402 288 
Nr. of crossbred offspring 21,426 10,162  52,685 25,250 
Nr. of records of crossbred offspring 59,876 26,236  169,275 76,658 
Mean nr. of offspring per purebred animal 91.2 70.6  131.1 87.7 

GLE - gestation length, TNB - total number of piglets born, DL – Dutch Landrace, LW – Large White 

 

8.2.2 Genotyping 

Animals were genotyped using the Illumina PorcineSNP60 BeadChip (Ramos et al. 

2009). We excluded single nucleotide polymorphisms (SNPs) with a GenCall <0.15, 
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call rate <0.95, minor allele frequency <0.01 and strong deviations of Hardy-

Weinberg equilibrium (χ²>600). We also removed unmapped SNPs and SNPs located 

on the X and Y chromosomes based on the Sscrofa10.2 assembly of the reference 

genome (Groenen et al. 2012). This quality control was done across all populations 

simultaneously, leaving 38,201 of the initial 64,232 SNPs. Individuals with more than 

5% missing genotypes were also removed. Missing genotypes of the remaining 

animals were imputed using BEAGLE 3.3.2 (Browning and Browning 2007) separately 

for each population. 

 

8.2.3 Relationship matrices 

For each trait we ran two analyses, one with the CB animals with the DL population 

and the other with the CB animals with the LW population. Therefore, all genetic 

relationship matrices were built using information on two populations 

simultaneously: the CB population and the PB population under study in the given 

analysis (DL or LW). Pedigree-based additive relationship matrices were computed 

using ASReml v3.0 (Gilmour et al. 2009). Pedigree-based dominance matrices were 

computed according to Cocherkham (1954) using the package Synbreed (Wimmer et 

al. 2015) implemented in R (R Development Core Team 2013). Genomic additive 

relationship matrices (G matrix) were built according to VanRaden (2008) as 

ii
' qp2/  ZZG , where Z is a matrix of centered genotype codes (0/1/2) and 

pi = 1 - qi is the allele frequency for the ith SNP based on observed genotypes. To 

account for differences in allele frequencies between PB and CB populations, we 

built G following Chen et al. (2013). Briefly, the G matrix is a 2x2 block matrix, with 

the diagonals derived using the allele frequencies in each of the populations and the 

off-diagonal blocks derived using the combination of allele frequencies between the 

two populations. The genomic dominance relationship matrices were computed 

based on Vitezica et al. (2013) with modifications to account for the differences in 

allele frequency between the CB and PB populations: 

 

 

  




























2

2j2j

22

2j2j1j1j

2

2j2j1j1j

2

2

1j1j

)p(1p)]p(1)pp(1[p

)]p(1)pp(1[p)p(1p
'
dd

'
d1d

'
dd1

'
d1d1

MMMM

MMMM

D  

We computed the genomic D matrices using a matrix P that included all animals from 

both the training and validation sets. The matrix P was organized into two blocks: 

[𝐏1 𝐏2]
′ where 𝐏1 are the allele frequencies of the CB animals and 𝐏2 the allele 
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frequencies of the PB animals. The dimensions of matrices 𝐏1 and 𝐏2 were n x m 

where n was the number of animals and m was the number of SNP. For example, 

each row in 𝐏1 was a replicated row vector 𝐩1. The jth element in 𝐩1 was denoted as 

p1j, was the frequency of allele A of the jth SNP for the CB population. Matrix 𝐌d1 

was an n x m (number of CB animals x number of SNP) matrix, with the element for 

the ith individual at the jth SNP calculated as: 

 

Md1i,j = 

{
 
 

 
 

-2p1j
2

2p1j (1 - p1j)  

-2 (1 - p1j)
2

 for genotypes {
(AA)
(AB)
(BB)

 

 

The Md1 matrix computed the coefficients of dominance for the CB. The Md2 was 

computed similarly to Md1, except that the p2j was used in place of p1j, therefore 

the matrix Md2 had dimensions n x m (number of PB animals x number of SNP).  

 

8.2.4 Methods and statistical models 

We used three methods to estimate breeding values (EBV) of PB for CB performance: 

pedigree-based best linear unbiased prediction (PBLUP), genomic best linear 

unbiased prediction (GBLUP) and a Bayesian variable selection method (BayesC) 

(Habier et al. 2011). For each method, we used both an additive model (PBLUPA, 

GBLUPA and BayesCA) and an additive plus dominance model (PBLUPAD, GBLUPAD and 

BayesCAD). For PBLUP and GBLUP, we used ASReml v3.0 (Gilmour et al. 2009). 

Phenotypes of animals from the validation were removed. The additive and 

dominance models were also used to estimate variance components for both traits 

based on the genotyped CB animals. For PBLUPAD and GBLUPAD we supplied the 

pedigree-based D matrix (Dped), and the genomic G and D matrices (Dgen) as a user 

defined matrix to ASReml v3.0 (Gilmour et al. 2009).  

 

PBLUP. The pedigree-based additive model (PBLUPA) used for analysis was: 

 

y = μ + Zu + Wpe + e 

 

where y is a vector of pre-corrected phenotypes, μ
 
is the overall mean, u is the vector 

of random additive genetic effects assumed to be ~N(0, Aσu
2), where A is the 

numerator relationship matrix and σu
2 is the additive genetic variance, pe is the 

vector of random permanent environmental effects assumed to be ~N(0, PEσpe
2 ), 
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where PE is a diagonal matrix with the number of observations per sow on the 

diagonal and σpe
2  is the permanent environmental variance, Z and W are incidence 

matrices, and e is the vector of random residual effects assumed to be ~N(0, Iσe
2), 

where I is an identity matrix and σe
2 is the residual variance. A random permanent 

environmental effect was included in the model to account for repeated 

observations on a sow. 

 

The pedigree-based dominance model (PBLUPAD) used in the analysis was: 

 

y = μ + Zau + Zdd + Wpe + e 

 

where y, μ, u, pe, W and e are the same as the additive model, d is the vector of 

dominance effects assumed to be ~N(0, Dpedσd
2), where Dped is the pedigree-based 

dominance relationship matrix, σd
2 is the dominance variance, and Za and Zd are 

incidence matrices. 

 

GBLUP. The models used for GBLUPA and GBLUPAD were the same as PBLUPA and 

PBLUPAD, respectively, except that the variances and covariances of u and d were 

based on genomic information rather than pedigree. Therefore, u is the vector of 

additive genetic effects assumed to be ~N(0, Gσu
2), where G is the genomic additive 

relationship matrix and d is the vector of dominance effects assumed to be ~N(0, 

Dgenσd
2), where Dgen is the genomic dominance relationship matrix. 

 

BayesC. We used a modified version of GenSel (Fernando and Garrick 2008) to 

estimate the additive and dominance effects of SNP, which were then used to predict 

the EBV of the PB animals for CB performance. GenSel does not allow a repeatability 

model so the response variable used in this method was the mean of the pre-

corrected phenotypes of each CB animal, in this case we corrected also for the 

estimate of the permanent environmental effect. The residual variance was 

weighted using the keyword “rinverse” of GenSel that attributes values for the 

diagonal matrix of the residual variances. The weights (w) were calculated according 

to Falconer and Mackay (1996): 

 

w =  
1 + r(n - 1)

n
 

 

where r is the repeatability of the trait and n is the number of observations per 

animal. The repeatabilities used for GLE (0.60) and TNB (0.29) was computed as the 
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proportion of phenotypic variance explained by genetics and permanent 

environmental effects based on GBLUPA using the genotyped CB animals.  

 

For the additive model (BayesCA) effects were estimated with the following model: 

 

yi = μ + ∑ δjXij
αj + eij

m

j=1

 

 

where yi is the mean pre-corrected phenotype of the ith animal, μ is the overall mean, 

δj is the inclusion indicator variable of the jth SNP (0/1), Xij is the copy number of a 

given allele of the jth SNP (0/1/2), αj is the allele substitution effect of the jth SNP, and 

eij is the residual effect of the ith animal. Conditional on σα
2 , the variance of random 

substitution effects common to all SNP, αj had a mixture prior of a normal 

distribution and a point mass at zero: 

 

αj|σα
2  =  {

0
~ N(0,σα

2)  
with probability π

     with probability 1 - π
 

 

We used a probability 𝜋 of 0.99, i.e. 1% of the SNP were expected to have non-zero 

effects. A scaled inverse Chi-square distribution with degrees of freedom vα= 4 and 

scale parameter Sα
2  was specified as a prior for σα

2  ~ vαSα
2χvα

-2 . More details on the 

calculation of the scale parameter is in Fernando et al. (2007).  

 

For the dominance model (BayesCAD), effects were estimated with the following 

model: 

 

yi = μ +  ∑(δajXij
aj  + δdjKij

dj)  + eij

m

j=1

 

 

where yi, μ, Xij are the same as the additive model, Kij is the indicator variable for the 

heterozygous genotype of the jth SNP (0/1), aj is the additive effect, dj the dominance 

effect of the jth SNP, ej is the residual, and δaj and δdj are the inclusion indicator 

variables of the jth SNP (0/1) for the a and d, respectively. Conditional on πa (the 

probability that 𝑎𝑗  is zero) and σa
2 (the variance of aj when it is non-zero), the prior 

for aj is a mixture of a point mass at zero and a normal, similar to the additive model. 
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The dominance effect dj has a similar mixture prior independent of aj, given πd and 

σd
2, with corresponding definitions: 

 

dj|σd
2  =  {

0
~ N(0,σd

2)  
with probability πd

     with probability 1 - πd

 

 

We used a probability πd of 0.99, i.e. 1% of the SNP were expected to have non-zero 

dominance effects. The variance components σa
2 and σd

2 were assumed to have 

independent scaled inverse Chi-square distributions with their own degrees of 

freedom and scale parameters. The scale parameters Sd
2 and Sd

2 were computed as 

functions of the additive and dominance genetic variances which used the estimates 

from GBLUPAD. See Zeng et al. (2013) for additional details.  

 

For both models the EBV of PB animals was calculated as: 

 

EBV = ∑ Zijα̂j
r

m

j=1

 

 

where Zij is the marker genotype and α̂j
r is the estimated allele substitution effect of 

the jth SNP in breed r. For the dominance model, α̂j
r was calculated based on the 

estimates of a and d for that SNP and the allele frequency in the other breed that 

generated the CB animals (pj
r'): 

 

α̂j
r = α̂j + (1 - 2pj

r') d̂j 

 

See Zeng et al. (2013) for further details. 

 

8.2.5 Accuracy, bias, and response to selection 

The training population consisted of genotyped CB pigs with pre-corrected 

phenotypes. The validation population consisted of genotyped PB pigs from either 

the DL or LW population, with the pre-corrected mean performance of their CB 

offspring (Table 8.1). The accuracy was computed as the correlation between the 

EBV and the mean performance of the CB offspring of the validation animals. 

Prediction bias was calculated by regressing the validation variables (mean 

performance of the CB offspring) on the predicted values (EBV). As the expectation 

of the regression coefficient is 0.5 because the validation variable comes from the 
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offspring, we multiplied the regression coefficient by 2 so that a value of 1 indicates 

no bias. The validation animals belonged to multiple generations so we expected a 

genetic trend. To account for this, the EBV of the validation animals were deviated 

from the average EBV by year of birth. 

 

Observed response to selection of PB for CB performance was calculated by selecting 

a given proportion of the validation PB animals (from 0.1 to 0.5) based on their EBV. 

The mean CB performance of the progeny of all validation PB animals was subtracted 

from the mean CB performance of the progeny of the selected animals giving the 

observed response to selection. We also calculated the expected response to 

selection (R) using the following formula: 

 

R = irσa 

 

where i is the intensity of selection, r is the accuracy of the EBV and σa is the additive 

genetic standard deviation of CB performance for the trait in the parental PB 

population. The additive genetic standard deviation was estimated based on the 

contribution of each PB population to the genetic variance in CB performance based 

on pedigree information. This estimate is described in the next section. 

 

8.2.6 Crossbred genetic variance explained by each parental PB 

population 

We calculated the CB genetic variance explained by each PB population based on 

pedigree information by fitting the phenotypes of the genotyped CB animals to the 

model: 

 

𝐲 = μ + ZDLuDL + ZLWuLW + Wpe + e 

 

where y is a vector of pre-corrected phenotypes of the CB individuals, μ
 
 is the overall 

mean, 𝐮DL and 𝐮LW are vectors of random additive genetic effects for the DL and 

LW populations assumed to be ~N(0, Apop σupop
2 ), where Apop is the numerator 

relationship matrix based only on either population DL or LW, and σupop
2  is the 

additive genetic variance for each PB population, pe is the vector of random 

permanent environmental effects assumed to be ~N(0, PEσpe
2 ), where PE is a diagonal 

matrix with the number of observations per sow on the diagonal and σpe
2  is the 

permanent environmental variance, ZDL, ZLW and W are incidence matrices, and e is 

the vector of random residual effects assumed to be ~N(0, Iσe
2), where I is an identity 
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matrix and σe
2 is the residual variance. As the number of genotyped CB animals used 

in this analysis was relatively small. To improve accuracy of the estimate we included 

CB animals that were not genotyped but had phenotypes (CBall) in the analysis. The 

CBall data sets had 1,412 pigs for GLE and 2,273 pigs for TNB. To test whether the CB 

variances explained by each of the PB population were significantly different, we ran 

the same model but forcing the genetic variances to be the same and compared the 

two models using the Akaike’s Information Criterion (AIC) (Akaike 1974), which was 

calculated as: 

 

AIC = 2k - 2ln(L) 

 

where L is the maximized value of the likelihood function for the model, and k is the 

number of estimated parameters in the model. The number of estimated parameters 

was 4 when genetic variances for were estimated separately and 3 when they were 

forced to be the same. We also verified whether the difference in CB variances 

explained by the PB populations was not due to sire versus dam effects, e.g. due to 

imprinting, maternal, or sex chromosome effects. Therefore, we analyzed with the 

CB animals split into the reciprocal crosses: 1) DL sires and LW dams, and 2) LW sires 

and DL dams, applying the same model used for the calculation of the CB genetic 

variance explained by each parental PB population. 

 

8.3 Results 

Allele frequencies were different between the DL and LW populations with a 

correlation of 0.22. 

 

8.3.1 Additive and dominance variances 

Variance components for CB performance were estimated for GLE and TNB with 

PBLUP and GBLUP (Table 8.2) using the genotyped CB animals. Pedigree-based 

estimates of dominance variance were zero for both traits so PBLUPA and PBLUPAD 

had the same variance components. GBLUPAD, dominance effects accounted for 33% 

of the genetic variance of GLE but no dominance variance was found for TNB. 

Therefore, GBLUPA and GBLUPAD had the same variance component estimates for 

TNB. For GLE, GBLUPAD had slightly lower estimates of additive, permanent 

environmental and residual variances a lower narrow-sense heritability and a higher 

broad-sense heritability than GBLUPA.  
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Table 8.2 Estimates of variance components for crossbred performance using genotyped 
crossbred animals estimated for GLE and TNB. Variance components are for the additive (A), 
and additive + dominance (AD) models using pedigree and genomic BLUP for each trait. 

  PBLUPA 
  

PBLUPAD   GBLUPA   GBLUPAD 

Trait VA VP 
  

VA VD VG VP   VA VP   VA VD VG VP 

GLE 0.85 1.69 
 

0.85 0.00 0.85 1.69  0.89 1.79  0.70 0.35 1.06 1.76 

TNB 1.72 9.92 
  

1.72 0.00 1.72 9.93   1.91 10.13   1.91 0.00 1.91 10.12 
GLE - gestation length, TNB - total number of piglets born, VA - additive genetic variance, VD - dominance 

variance, VG - genetic variance, VP - phenotypic variance 

 

8.3.2 Accuracy and bias 

Accuracies to predict PB for CB performance using an additive model ranged from 

0.114 to 0.235 for GLE and from 0.060 to 0.134 for TNB across populations and 

methods (Table 8.3). Using dominance model, accuracies were very similar and 

ranged from 0.114 to 0.237 for GLE and from 0.063 to 0.129 for TNB across 

populations and methods (Table 8.3). For both traits, PBLUPA and PBLUPAD resulted 

in the same accuracies due to no dominance variance. Similarly, GBLUPA and 

GBLUPAD had no difference in accuracies for TNB. For GLE using GBLUPAD reduced the 

accuracy by 4% for the LW population compared with using GBLUPA. BayesC was the 

method that showed the greatest differences in accuracy between the additive and 

dominance models for GLE in the LW population. In general, BayesCAD resulted in 

higher accuracy than BayesCA, up to 5% higher for GLE and TNB in the LW population 

(Table 8.3). The correlation between EBV based on the different models across 

methods was either 1 or close to unity (Table 8.4). 

 

Table 8.3 Accuracy and bias of genomic prediction of breeding values of purebreds for 
crossbred performance using different methods and models for GLE and TNB. 

 Training  Validation  PBLUP  GBLUP  BayesC 

Trait Size  Size Pop. Model Acc. Bias  Acc. Bias  Acc. Bias 

GLE 550  235 DL A 0.233 0.61  0.233 0.44  0.235 0.49 

GLE 550  235 DL AD 0.233 0.61  0.233 0.50  0.237 0.52 

GLE 550  144 LW A 0.114 0.35  0.164 0.37  0.173 0.43 

GLE 550  144 LW AD 0.114 0.35  0.157 0.43  0.182 0.52 

TNB 914  402 DL A 0.089 0.50  0.122 0.44  0.134 0.47 

TNB 914  402 DL AD 0.089 0.50  0.122 0.44  0.129 0.40 

TNB 914  288 LW A 0.105 0.60  0.083 0.31  0.060 0.22 

TNB 914  288 LW AD 0.105 0.60  0.083 0.31  0.063 0.21 
GLE - gestation length, TNB - total number of piglets born, DL - Dutch Landrace, LW - Large White, Pop. - 

population, Acc. – accuracy, A - additive model, AD - additive + dominance model, Bias - regression 

coefficient of the corrected phenotype on the EBV 
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Bias ranged from 0.21 to 0.61 across traits, populations and methods (Table 8.3). The 

regression coefficients were always substantially lower than 1 indicating that the EBV 

were overestimated. Pedigree-based analyses were generally less biased than 

genotype-based analyses. For GLE accounting for dominance effects in the 

prediction model reduced bias. 

 

Table 8.4 Correlation (standard error) between estimated breeding values (EBV) of purebred 
validation animals obtained using the additive and the additive plus dominance model by 
method, trait and population 

Trait Population PBLUP GBLUP BayesC 

GLE DL 1.000 (7.87e-6) 0.986 (0.011) 0.983 (0.012) 

GLE LW 1.000 (1.05e-5) 0.993 (0.010) 0.983 (0.015) 

TNB DL 1.000 (1.2e-5) 1.000 (1.2e-5) 0.994 (0.005) 

TNB LW 1.000 (1.7e-5) 1.000 (1.7e-5) 0.996 (0.005) 

GLE - gestation length, TNB - total number of piglets born, DL - Dutch Landrace, LW - Large White 

 

8.3.3 Response to selection 

PBLUPA and PBLUPAD had the same responses to selection across traits and 

populations because no dominance variance was estimated (Figs. 8.1 and 8.2). 

Similarly, GBLUPA and GBLUPAD resulted in the same responses for TNB because no 

dominance variance was estimated. For GLE, EBV estimated using GBLUPAD had 

lower response to selection than EBV estimated using GBLUPA when the proportion 

selected was 0.1. However, response to selection on EBV from GBLUPAD was greater 

than that of GBLUPA when the proportion selected was greater than 0.1. Response 

to selection using BayesCAD was higher than BayesCA for GLE in the LW population 

but not in the DL population. For TNB, response to selection using BayesCAD was 

slightly lower than using BayesCA for both PB populations. Responses to selection 

using BayesC were slightly higher than other methods across traits and populations. 

Response to selection using PBLUP, however, was higher than using GBLUP and 

BayesC for TNB in the LW population. Observed and expected responses were similar 

across traits, populations and methods (Figs. 8.1 and 8.2).  

 

8.3.4 Crossbred genetic variance explained by each parental PB 

population 

To investigate potential reasons for the severe biases in EBV we observed (Table 8.3), 

we estimated the CB genetic variance that is explained by each PB population based 

on pedigree information using an additive model. Using the genotyped CB animals, 

for GLE, the LW population explained 5 times as much CB variance than the DL 
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population (Table 8.5); this difference was significant (Table 8.6). For TNB, the LW 

explained 1.5-fold more CB variance than the DL (Table 8.5), however, this difference 

was not significant (Table 8.6). When performing the same analysis but including CB 

animals that were not genotyped but had phenotype (CBall), the estimates were 

more accurate. The differences of CB variance explained by each of the PB 

populations for GLE became smaller and not significant, whereas for TNB the 

difference was maintained but still not significant (Tables 8.5 and 8.6). Nevertheless, 

we were interested in verifying whether the numerical difference in CB variances 

explained by the PB populations was not due to sire versus dam effects. We 

performed separate analyses with the CB animals split into the reciprocal crosses 

and showed that the numerical difference in CB variance explained by the two PB 

populations was still present, indicating that it was due to breed effects and not to a 

sire or a dam genetic effect (Table 8.5). 

 

 

 

 
Figure 8.1 Observed and expected response to selection in crossbred performance against 
proportion of purebred individuals selected based on EBV for crossbred performance. 
Includes additive and dominance models for different estimation methods for gestation 
length. (A) For GBLUP and PBLUP in the Dutch Landrace, (B) for BayesC in the Dutch Landrace, 
(C) for GBLUP and PBLUP in the Large White and (D) for BayesC in the Large White. 
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Figure 8.2 Observed and expected response to selection in crossbred performance against 
proportion of purebred individuals selected based on EBV for crossbred performance. 
Includes additive and dominance models based on different methods for total number of 
piglets born. (A) For GBLUP and PBLUP in the Dutch Landrace, (B) for BayesC in the Dutch 
Landrace, (C) for GBLUP and PBLUP in the Large White and (D) for BayesC in the Large White. 
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Table 8.5 Estimates of the crossbred genetic variance that is explained by each purebred population using all crossbreds or split into the reciprocal 
crosses. 

  CB  CBall  CBall (DL♂ x LW♀)  CBall (LW♂ x DL♀) 

Trait Parameter Variance (SE) Nr. animals  Variance (SE) Nr. animals  Variance (SE) Nr. animals  Variance (SE) Nr. animals 

GLE 

DL 0.07 (0.04) 

550 

 0.16 (0.04) 

1412 

 0.14 (0.06) 

655 

 0.15 (0.06) 

757 
LW 0.35 (0.08)  0.20 (0.04)  0.22 (0.06)  0.23 (0.07) 
Perm 0.55 (0.06)  0.51 (0.04)  0.39 (0.06)  0.60 (0.07) 
Residual 0.71 (0.03)  1.08 (0.03)  0.96 (0.04)  1.17 (0.04) 
Phenotypic 1.68 (0.09)  1.95 (0.06)  1.71 (0.08)  2.15 (0.10) 

             

TNB 

DL 0.34 (0.15) 

914 

 0.32 (0.11) 

2273 

 0.32 (0.14) 

1416 

 0.40 (0.21) 

857 
LW 0.52 (0.18)  0.56 (0.14)  0.50 (0.19)  0.62 (0.22) 
Perm 1.81 (0.22)  2.14 (0.18)  2.21 (0.26)  2.13 (0.28) 
Residual 7.23 (0.20)  8.37 (0.17)  8.20 (0.22)  8.53 (0.26) 
Phenotypic 9.90 (0.27)  11.39 (0.23)  11.23 (0.29)  11.68 (0.38) 

GLE - gestation length, TNB - total number of piglets born, DL – Dutch Landrace, LW – Large White, CB – genotyped CB individuals from the current study, CBall – 
genotyped CB animals and CB animals not genotyped but phenotyped, SE – standard error 
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Table 8.6 Comparison of statistical models based on Akaike’s Information Criterion (AIC). 
Used to test the significance of the difference in estimates of crossbred variance contributed 
by each parental purebred population 

Trait Data set Nr. of animals Model AIC 

GLE 

CB 

550 Different variances 2,256.88 
GLE 550 Same variance 2,263.74 
TNB 914 Different variances 11,481.98 
TNB 914 Same variance 11,480.46 

     
GLE 

CBall 

1,412 Different variances 5,851.32 
GLE 1,412 Same variance 5,849.56 
TNB 2,273 Different variances 4,096.00 
TNB 2,273 Same variance 4,095.64 

GLE - gestation length, TNB - total number of piglets born, CB – genotyped CB individuals from the current 

study, CBall – genotyped CB animals and CB animals not genotyped but phenotyped 

 

8.4 Discussion 

We estimated components of variance for CB animals using an additive and an 

additive plus dominance model for two female reproduction traits in pigs. For the 

same traits, we also studied prediction of PB for CB performance. For these 

predictions, we assessed whether including dominance improves the accuracy of 

prediction and response to selection using three prediction methods. All these 

analyses were performed using either pedigree or high-density genotypes. Lastly, we 

evaluated the CB additive variance specific to each parental PB populations. 

 

8.4.1 Dominance variance 

Heterosis has been reported in many studies for litter size (Bondoc et al. 2001; 

Cassady et al. 2002; Bidanel 2010; Nwakpu and Onu 2011) and gestation length 

(Cassady et al. 2002; Nwakpu and Onu 2011) in pigs. Also, dominance variance has 

been detected for number of piglets born alive (Culbertson et al. 1998). Based on 

these reports, one could expect dominance variance for both traits that were studied 

here. Pedigree-based analyses, however, resulted in zero estimates of dominance 

variance for both traits. This can be explained by the limited size of our CB data set 

and the limited number of full-sibs. In our data, a total of 360 individuals for GLE and 

532 for TNB had at least one full-sib included in the analyses. Estimation of 

dominance effects using a pedigree-based analysis is typically not performed 

because it is not very precise, as it requires large amounts of data on many full-sib 

families (Vitezica et al. 2013).  
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Using genotype data, on the other hand, we found dominance variance for GLE but 

not for TNB. Dominance variance can be estimated more precisely with genomic 

than with pedigree information, because it is possible to determine whether the 

assessed locus is heterozygous (Vitezica et al. 2013). These results demonstrate that 

GLE is affected by dominance, whereas TNB is a trait that may not be affected by 

dominance in the studied CB population. In this case, if there is heterosis for TNB in 

the pig populations under study, epistasis rather than dominance could be the cause 

of it (Hill and Mäki-Tanila 2015). In pigs, Nishio and Satoh (2014) studied two traits, 

which names were not revealed (T4 and T5), and found dominance to explain 24% 

and 15% of the genetic variance in PB lines. In PB dairy cattle, Sun et al. (2014) found 

that dominance explained around 10% of the genetic variance for a range of traits. 

One would expect greater dominance variance in CB than in PB populations (Nishio 

and Satoh 2014), so the lack of evidence of dominance variance for TNB in this study 

is surprising.  

 

8.4.2 Accuracy and bias 

Dominance variance was zero for pedigree-based analyses and for TNB in the 

genotype-based analyses (Table 8.2). Including dominance, therefore, was not 

expected to change accuracies of EBV of PB for CB performance for these cases and 

our results agreed with this expectation for PBLUP and GBLUP. For BayesC, however, 

dominance effects were still estimated even when dominance variance was 

estimated to be zero by GBLUPAD, which decreased accuracy for TNB for the DL 

population and increased accuracy for the LW population (Table 8.3). The estimation 

of dominance effects using BayesC might have been because we used the mean of 

the pre-corrected phenotypes of each CB animal as input instead of the repeated 

observations. When we used the mean of the pre-corrected phenotypes as input we 

found dominance variance using BayesCAD but not when we used repeated 

observations for PBLUPAD or GBLUPAD. Therefore as BayesC detected dominance 

variance we estimated non-zero dominance effects for a trait that has no dominance 

variance. Therefore it is likely that the decrease in accuracy for the DL population 

and the increase in accuracy for the LW population are due to chance.  

 

We estimated that dominance accounted for a third of the genetic variance for GLE 

based on GBLUP (Table 8.2). Consequently we expected an increase in accuracy of 

prediction when including dominance in the genomic prediction model. For the DL 

population, however, there was no change in accuracy, while we found a slight 

decrease in accuracy when dominance was included for GBLUP in the LW population 

(Table 8.3). Ertl et al. (2014) observed a similar results with accuracy decreasing for 
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EBV of milkability in dairy cattle when dominance was included in the GBLUP. 

Inclusion of dominance effects, however, increased the accuracy of prediction for 

GLE in both populations for BayesC, as expected.  

 

Genotype-based predictions (GBLUP and BayesC) generally had higher accuracies 

than pedigree-based predictions (PBLUP; Table 8.3). These higher accuracies are 

because genotype-based predictions use SNP genotypes which estimate the 

relationship coefficients among pigs better than pedigree-based prediction (Forni et 

al. 2011; Tusell et al. 2013; Hidalgo et al. 2015). BayesC had slightly higher accuracies 

than GBLUP. We also observed that the increase in accuracy by including dominance 

in the model was higher for BayesC than for GBLUP. This higher increase was possibly 

because BayesC accounted for the allele frequency of the mates when generating 

the CB pigs rather than just using the allele frequency of the same parental 

population when estimating the allele substitution effects (Dekkers and Chakraborty 

2004; Zeng et al. 2013). The allele frequencies in the DL and LW populations were 

quite different (correlation = 0.22), showing that the allele frequency of the other 

parental population might be relevant in the genomic prediction. To test this, we 

estimated the genomic predictions from BayesC based on allele substitution effects 

estimated using either the same or other breed’s allele frequencies. For GLE, the 

accuracy increased for DL when using the same breed’s allele frequency (0.237 when 

using LW frequencies compared with 0.245 when using DL frequencies), whereas for 

the LW, the accuracy decreased when using the same breed’s allele frequency (0.182 

when using LW frequencies compared with 0.174 when using DL frequencies). For 

TNB, the accuracies did not differ between using the same or other breed’s allele 

frequencies in estimation of allele substitution effects. Therefore, we could not 

confirm that using the other breed’s allele frequency is always beneficial when 

predicting variances using a dominance model. 

 

We found large dominance variance for GLE when using genomic information but 

the gain in accuracy of prediction was rather small (Tables 8.2 and 8.3). The 

correlation between EBV based on the different models across methods was either 

1 or close to unity (Table 8.4). This means that there was no or only small differences 

in the predictive ability between the A and AD models. Also, the correlation between 

allele substitution effects estimates from BayesCA and BayesCAD was high (0.90 for 

GLE, 0.98 for TNB), indicating that little difference in accuracy would be expected 

between models. Su et al. (2012) also found large non-additive genetic variances and 

a relatively small increase in accuracy of prediction of PB Durco pigs.  
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Bias was the same (PBLUP and GBLUP) or slightly decreased (BayesC; Table 8.3) when 

dominance variance was not estimated (Table 8.2). For example, for TNB across 

methods and when using PBLUP for GLE. For cases where dominance variance was 

found (Table 8.2), GBLUPAD and BayesCAD had less biased predictions for GLE than 

GBLUPA and BayesCA (Table 8.3). Nishio and Satoh (2014) also found regression 

coefficients smaller than 1 (ranging from 0.63 to 0.71) and less bias when dominance 

was included in the prediction model. 

 

The validation accuracies are estimated with standard errors, therefore some of 

these results may be due to random chance. Also, the reported accuracies are 

correlations of EBV with means of pre-corrected phenotypes rather than the true 

breeding value.  

 

8.4.5 Response to selection 

Response to selection evaluates the effectiveness of genomic prediction which is the 

final goal of a breeding program. Generally, studies report accuracies as an indicator 

of response to selection, however, studying response to selection based on different 

proportions of selected individuals is interesting because it is possible to compare 

multiple points between models, traits and populations. 

 

Responses to selection on EBV from the pedigree-based models and for TNB for the 

GBLUP method agreed with the results found for the dominance variance and 

accuracies of prediction for both PB populations. Since no dominance variance and 

no improvement in accuracy of prediction from including dominance was found for 

this situations, there was no improvement in response to selection (Figs. 8.1 and 8.2). 

For GLE, however, including dominance using GBLUP generally increased response 

to selection more than the additive model (Fig. 8.1). Using BayesCAD versus BayesCA 

increased response to selection for GLE in the LW population (Fig. 8.1), which agrees 

with the results for accuracy of prediction (Table 8.3). For the DL population, 

however, depending on the proportion selected, either BayesCA or BayesCAD had a 

higher response. For TNB, in general, using the dominance model did not increase 

response to selection due to the lack of dominance variance.  

 

8.4.6 Crossbred genetic variance explained by each parental PB 

population 

The amount of genetic variance in CB performance that was explained by each 

parental PB population differed between PB populations and data sets (Table 8.5). 

When we used the genotyped CB animals (550 for GLE and 914 for TNB), we found 
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that the LW population explained a significantly larger portion of CB variance than 

the DL population for GLE (Tables 8.5 and 8.6). When we included CB animals that 

were not genotyped but were phenotyped (CBall) and had more accurate estimates, 

the difference in CB variance for GLE that was explained by the two PB populations 

was lower and was not statistically significant (Tables 8.5 and 8.6). Nevertheless, we 

were interested in verifying whether the numerical difference in CB variances 

explained by the PB populations was not due to sire versus dam effects, e.g. due to 

imprinting, maternal or sex chromosome effects. The numerical difference in CB 

variance explained by the two PB populations was still present in the analyses using 

the reciprocal crosses (Table 8.5), indicating that it was due to breed effects and not 

to a sire or a dam genetic effect. This numerical difference, which was not confirmed 

using a larger data (CBall), could have been due to breed-specific allele effects. SNP 

allele effects can differ between breeds due to, for instance, epistatic effects, 

differences in allele frequency or differences in linkage disequilibrium between 

markers and QTL between breeds (Ibánez-Escriche et al. 2009). Other studies 

(Zumbach et al. 2007; Dufrasne et al. 2013) reported different variances contributed 

by parental populations to CB performance. They, however, treated these as sire or 

dam effects instead of breed effects. These studies did not analyze using the 

reciprocal crosses, which makes it impossible to disentangle whether the effects are 

due to sire, dam or breed. Although the large data set (CBall) found the non-

significant differences in CB variance explained by each of the PB populations, it 

would be beneficial to do the same study using additional populations and traits. If 

allele effects are breed-specific, a genomic model that includes breed-specific effects 

of SNP alleles is needed (Ibánez-Escriche et al. 2009). With the current data, we 

cannot trace the origin of the CB alleles, preventing us from doing such analysis. 

Studies that will enable determination of the breed of origin of alleles, however, are 

underway (Bastiaansen et al. 2014). 

 

8.5 Conclusions 

Genotype-based analyses have greater ability to capture dominance variance than 

pedigree-based analyses. For a trait with zero dominance variance, the additive and 

the dominance models were similar. For a trait that has non-zero dominance 

variance, the dominance model can slightly improve accuracy of prediction, 

response to selection and reduce bias over the additive model. Our data contained 

individuals from many generations with no fixed family structure; using a larger and 

better designed data set may result in higher accuracies and response to selection 

for both additive and dominance models. In addition, we found indications that the 
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contribution of parental breeds differed in the proportion of the crossbred genetic 

variance they explained, but these differences were not statistically significant in a 

larger population. 
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9.1 Introduction 

With the development of high-throughput and cost-effective genotyping methods, 

exploiting genomic information became an indispensable approach for major 

breeding companies. Pig production relies on crossbreeding, hence, the use of 

genomic data for selection for crossbred performance needs to be carefully 

assessed. Implementation of genomic selection in crossbreeding schemes cannot be 

a simple copy of what is applied in breeding programs for purebred performance.  

 

For the research presented in this thesis, I used genomic information from purebred 

and crossbred pigs. I have detected genomic regions associated with gestation length 

and with androstenone level by genome-wide association and fine-mapping 

analyses. Further, I studied potential pleiotropic effects of the androstenone level 

QTL on chromosome 6 on production and reproduction traits. To investigate the 

potential and peculiarities of applying genomic selection in a crossbreeding setting, 

I evaluated and showed that there is predictive ability between purebred and 

crossbred pigs. Consequently, genomic selection in purebred pigs will result in gains 

in the performance of crossbreds. In this Chapter, I discuss the relevance of my 

findings in a broader context. I will discuss how to integrate individual genetic 

markers with genomic selection, as well as different strategies for applying genomic 

selection in pig breeding using genotypes and phenotypes of purebred and crossbred 

animals.  

 

9.2 Integrating individual genetic markers with genomic 

selection 

For qualitative traits, DNA tests were developed, starting some 25 years ago, which 

allowed selection against an undesired condition or phenotype. For example, a 

recessive allele (HAL 1843TM) in the porcine ryanodine receptor (RYR1) gene that 

causes malignant hyperthermia in stressful conditions (Fujii et al. 1991). When a 

single locus is controlling the trait, a DNA test is an effective tool for selection. The 

majority of the production traits in livestock, however, are continuously distributed 

(quantitative) because many quantitative trait loci (QTL) are controlling the trait. Due 

to the high number of loci affecting the trait, individual QTL only explain a proportion 

of the total genetic variance.  

 

Because of the typically small effects, selection based only on individual markers was 

not applied in pig breeding companies. This was in contrast with the expectations 

that were set after the initial boom of genetic markers (Ibáñez-Escriche et al. 2014). 
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Genetic markers that explain part of the variance and are in linkage disequilibrium 

with a QTL, were incorporated into the genetic evaluation using customized SNP 

panels (Van Eenennaam et al. 2014). Such markers were used as complementary tool 

(Ibáñez-Escriche et al. 2014) resulting in marker-assisted BLUP (MA-BLUP) being 

applied by pig breeding companies. Like most QTL, the QTL regions for gestation 

length identified in Chapter 2 also explained a relatively small proportion of the 

genetic variance, 1.12% for the Dutch Landrace and 0.77% for the Large White pigs. 

Further, in Chapter 3, I fine-mapped a previously identified QTL region for 

androstenone level that also explained a small proportion of phenotypic variance, 

6% in the Duroc population (Duijvesteijn et al. 2010). These results are concordant 

with the vast literature that reported 13,030 QTL for 663 traits usually with small 

effects (Animal QTLdb, http://www.animalgenome.org/QTLdb).  

 

With the development of methods that allow to perform genomic prediction based 

on a large number of genetic markers (Meuwissen et al. 2001), and after the 

availability of commercial SNP chips, genomic selection (GS) became the center of 

attention for animal and plant breeders. Since then, GS has been implemented in 

dairy cattle (VanRaden et al. 2009) and it was shown to result in higher accuracies 

than traditional genetic evaluations (BLUP) (Hayes et al. 2009b). The main positive 

point of GS lies in its ability to capture the infinitesimal nature of the majority of 

economically important traits, which was exactly the main cause for the limited 

success of marker-assisted selection. In GS, all markers have their effects estimated 

without the need to know the biological meaning. All that is needed is a training 

population and sufficient computational power to run the genomic evaluation. The 

training population, which is phenotyped and genotyped, has to have sufficient size 

(Misztal 2011) and preferably be related to the selection candidates.  

 

Even though only few causative mutations have been identified so far, such 

significant markers will continue to be identified. Further developments in 

genotyping technology resulted in a reduction of costs, enabling the production of 

commercial high-density (HD) SNP chips (e.g. Illumina Bovine HD 770k SNP chip). 

Therefore, with more animals genotyped, which increases the sample size, and with 

the genome more densely covered with markers, which leads to a smaller distance 

between the SNP and the causative mutation, a more precise detection of QTL is 

expected. Genome-wide association studies (GWAS) using HD SNP panels have been 

performed in cattle (e.g. Purfield et al. (2015)). In pigs, a HD SNP chip has been 

recently developed with approximately 660,000 SNP, however, GWAS with this HD 

SNP chip are still lacking. The ultimate level of genotypic information is the sequence 
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data. Sequencing determines the order of all nucleotides of the DNA of a given 

organism. Therefore, sequence data contain the causative mutations of the trait. A 

GWAS using sequence data, hence, is expected to find the causative mutation 

(Meuwissen and Goddard 2010). There have been efforts to increase the numbers 

of sequenced animals (e.g. Daetwyler et al. (2014)), to enable GWAS with sequenced 

individuals. The approach that has been taken is to perform a GWAS using HD SNP 

chip genotype data and then focus on the identified peaks, performing a region-wise 

association study (RWAS) using imputed sequence data (Sahana et al. 2014; Wu et 

al. 2015). This method was able to refine previously detected QTL regions, however, 

it was not able to identify the causative mutation, mainly because of strong blocks 

of linkage disequilibrium. Another factor that might be hampering the identification 

of the causative mutation is that imputation is not 100% accurate, especially for rare 

variants and small reference panels.  

 

As these significant regions on the genome are still being found and described, it is 

of interest to integrate the significant markers in the genomic evaluation. This 

integration is relevant because, while the causative mutations are not detected, 

these significant markers provide knowledge regarding the genetic architecture of 

the trait. Although the effects found are not large, they might add to the prediction 

accuracy and thus should be explored. Integrating these markers into the genomic 

evaluation would be a form of marker-assisted genomic prediction. Here, the marker 

genotype (0, 1 or 2) is fitted as a fixed effect in the genomic prediction model (MA-

GBLUP). The outcome of this analysis is an estimate of estimated breeding value 

(EBV) of the animal and an estimate of the marker's allele substitution effect. After 

that, multiplying the estimate of the marker effect by the animal’s genotype (0, 1 or 

2) and adding this value to the EBV results in the animal’s EBV from MA-GBLUP. MA-

GBLUP offers the possibility to apply the results described in Chapters 2 and 3 to 

within-population genomic predictions as described in Chapters 5-7. 

 

Before implementing MA-(G)BLUP it is important to know the effect of the QTL on 

all traits in the breeding goal. Hence, assessing pleiotropic effects of that marker on 

other traits is recommended to avoid unfavorable effects due to pleiotropy and/or 

due to genetic hitchhiking. Grindflek et al. (2011) found markers on the pig genome 

affecting simultaneously the levels of boar taint compounds (e.g. androstenone) and 

of sex hormones. Given that the androstenone markers have an unfavorable impact 

on sex hormones, the use of such markers for selection would be challenging. I 

showed in Chapter 4, however, that selection for the marker on chromosome 6 that 

reduces androstenone level will have no unfavorable effect on production and 
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reproduction traits studied. Therefore, the use of that marker to reduce 

androstenone level in a breeding program becomes of interest. 

 

To show whether integrating significant markers with genomic prediction is relevant, 

I performed a MA-GBLUP analysis using the most significant marker of each 

population described in Chapter 2 and the marker studied in Chapter 4. Markers 

were: rs81308021 for androstenone level in the Duroc, rs81366467 for gestation 

length in the Dutch Landrace and rs344547786 for gestation length in the Large 

White. Individuals from three pig populations were used: 833 Duroc, 1,615 Dutch 

Landrace and 1,904 Large White animals. These animals were genotyped using the 

Illumina PorcineSNP60 BeadChip (Ramos et al. 2009) and quality control was 

performed on the genotypes according to the methods described in Chapter 5. After 

quality control, 41,289 SNP for the Duroc, 42,360 SNP for the Dutch Landrace and 

41,005 SNP for the Large White remained out of the initial 64,232 SNP. We analysed 

the data using ASReml 3.0 (Gilmour et al. 2009) with the model: 

 

y = μ + b1SNP + Zu + e 

 

where y is the vector of pre-corrected phenotypes, µ is the overall mean, b1 is the 

vector of regression coefficients of each SNP, SNP is the incidence vector for b1 with 

genotypic information (0, 1 and 2), Z is the incidence matrix for u, u is the vector of 

random additive genetic effects, assumed to be ∼N(0, G𝜎𝑢
2), where G is the genomic 

relationship matrix, and e is the residual error, assumed to be ∼N(0, I𝜎𝑒
2), where I is 

an identity matrix. The accuracy of prediction was estimated as the correlation 

between the EBV and the corrected phenotype in a set of validation animals. The 

validation population consisted of the 20% youngest genotyped animals of a given 

population. Phenotypes were corrected for fixed effects as described in Chapter 5. 

Prediction results of MA-GBLUP were compared to the results obtained from using 

the traditional genetic evaluation (BLUP), marker-assisted BLUP (MA-BLUP) and 

genomic evaluation (GBLUP) (Table 1).  
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Table 9.1 Accuracies of prediction for androstenone level (AND) and gestation length (GLE) 

using different methods. 

    Accuracy† (Bias*) 

Trait Breed Ntraining Nvalidation BLUP MA-BLUP GBLUP MA-

GBLUP 

AND DU 666 167 0.39 (1.43) 0.42 (1.29) 0.43 (1.01) 0.45 (1.07) 

GLE DL 1,292 323 0.29 (0.73) 0.31 (0.79) 0.41 (0.81) 0.42 (0.81) 

GLE LW 1,523 381 0.41 (1.11) 0.41 (1.11) 0.46 (0.90) 0.46 (0.90) 

DU - Duroc, DL - Dutch Landrace, LW - Large White, N - number of animals 
† - Correlation between EBV and pre-corrected phenotype 
* - Regression coefficient of the phenotype on the EBV 
 

MA-GBLUP resulted in the highest accuracy for all three analyses (Table 1). In the 

Large White population, no difference was observed from either including or 

excluding the marker as fixed effect for gestation length when comparing BLUP with 

MA-BLUP, nor when comparing GBLUP with MA-GBLUP. This result in the Large 

White population is probably due to the minor allele frequency (MAF) of the most 

significant marker being very low (0.01) (Chapter 2), which means that the majority 

of the animals had the same genotype. Therefore adding the same marker effect to 

the EBV of the vast majority of the animals would not affect the accuracy. For 

androstenone level in the Duroc, and for gestation length in the Dutch Landrace, 

there was an increase in accuracy when the significant marker information was used. 

The increase in accuracy for MA-BLUP over BLUP was greater than for MA-GBLUP 

over GBLUP. As BLUP uses only pedigree information, fitting the most significant 

marker as fixed effect can differentiate animals with regard to the QTL, leading to a 

possible increase in accuracy. The increase in accuracy of MA-GBLUP over GBLUP 

was not as great because GBLUP already accounts for the significant marker in the G 

matrix. However, even when the same genotypic information is present in the G 

matrix, fitting the significant marker separately as a fixed effect still resulted in higher 

accuracy of prediction because the marker effect is better captured by the model. 

Fitting the marker as a separate fixed effect is not expected to lead to lower 

accuracies, even if the marker is a false-positive. In such a case, the effect estimated 

would be zero, accuracy would remain the same, and thus no harm would be done 

to the prediction. An issue will occur when trying to fit more markers as fixed effects 

than the number of animals. In this case, estimation problems occur because of a 

lack of degrees of freedom to fit all effects simultaneously by least squares (Lande 

and Thompson 1990). However, markers with large effects are not so common, 

therefore this issue is not likely to become a problem for the MA-GBLUP model. The 

regression coefficients of the phenotype on the EBV were in general close to 1 in all 
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analyses included in Table 9.1, which indicates unbiased predictions. Less bias was 

observed for MA-BLUP than for BLUP, and for the genomic models GBLUP and MA-

GBLUP compared with MA-BLUP and BLUP. These analyses were performed in 

purebred animals, therefore I can predict that MA-GBLUP would result in greater 

response to selection in the pure lines over GBLUP. In a breeding program where the 

goal is to select purebred animals for purebred performance, MA-GBLUP is therefore 

recommended for traits with known significant marker(s). To extrapolate to 

prediction of crossbred performance, MA-GBLUP would be beneficial for both 

purebred and crossbred performance when the QTL is the same for purebred and 

crossbred performance. If the interest is to select purebred animals for crossbred 

performance, as is the case in pig breeding, I would expect that using MA-GBLUP 

could improve accuracy of prediction as long as the marker is affecting the crossbred 

population. 

 

9.3 Genomic selection in pigs 

Genomic selection has been introduced in dairy cattle breeding aiming to improve 

performance of purebred animals (VanRaden et al. 2009). In pigs, however, the end 

product is a crossbred animal which may require different strategies for the 

implementation of GS from what is currently applied in dairy cattle. In pig breeding, 

specialized sire and dam lines are kept in the breeding stock and crossed to produce 

a three-way or four-way cross finisher pig (Merks and De Vries 2002).  

 

In this thesis, I have analyzed androstenone level and reproduction traits. 

Reproduction traits generally have low heritability, but gestation length has 

moderate heritability. Genomic selection has a large added value for low-heritability 

traits (Muir 2007; Calus et al. 2008) because the accuracies of these traits are usually 

low as they depend on the heritability of the trait (Falconer and Mackay 1996; Muir 

2007; Visscher et al. 2008). For production traits, which generally have higher 

heritabilities, traditional genetic evaluation already provides EBV with high accuracy, 

therefore the added value of GS is less. In addition to heritability, other factors affect 

the value of GS, e.g. the time at which traits are measured. GS can have a great 

positive impact on the accuracy of EBV for meat-quality traits, which are measured 

after slaughter therefore usually measured on relatives of selection candidates. Also, 

GS is expected to have a larger impact on sex-limited traits, traits that are difficult 

(expensive) to record, and on traits that are recorded late in life (Muir 2007). This 

positive impact occurs because the accuracy of traditional genetic evaluation is 

limited for these traits. 
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In this section, I will discuss different strategies of genomic selection in pigs and their 

perspectives. The use of within-, across- and multi-population predictions will be 

discussed, along with the use of crossbred information for genomic prediction. 

 
9.3.1 Within-population prediction 

Pig breeders have focused on the estimation of breeding values of purebred animals 

using data obtained also from purebred animals which are kept in nucleus farms. In 

other words, the selection is applied to improve purebred genetic merit with an 

expectation for a response in crossbreds. In Chapters 5 and 6, results of within-

population genomic predictions are presented which showed considerably high 

accuracy of prediction. Within population, genomic prediction generally performed 

better than traditional genetic evaluation based on pedigree, which is also observed 

in other studies in pigs (e.g. Tusell et al. (2013)). Therefore genomic prediction, 

within-population, is recommended when the aim is to increase purebred 

performance. In practice, breeding companies currently perform within-population 

genomic prediction by applying the single-step approach (Misztal et al. 2009). This 

approach is preferred by breeding companies because current data sets still contain 

a large amount of data on phenotyped animals that are not genotyped. With the 

single-step approach, these records can still be used together with phenotyped and 

genotyped individuals to estimate the breeding values. Additionally, the pipeline for 

implementing the single-step approach is similar to the traditional genetic evaluation 

that was in use previously. The only major change is the replacement of the average 

numerator relationship matrix (A matrix) with an H matrix which contains the 

pedigree-genomic relationships (Legarra et al. 2009).  

 

Once within-population genomic prediction is implemented, accounting for the 

genetic architecture of the trait might be relevant. Weighting the G matrix increases 

the accuracy of prediction (Zhang et al. 2010; Tiezzi and Maltecca 2015; Veroneze 

2015). A practical problem is accounting for the genetic architecture in genomic 

evaluations would require a separate analysis for every single trait because a 

different G matrix would have to be built for each trait. To avoid this problem, using 

the MA-GBLUP methodology, described above, is a way of accounting for the 

markers with large effect in a multi-trait genomic evaluation without the need of 

constructing separate G matrices for each trait. 

 
9.3.2 Across-population prediction 

In pig breeding, multiple dam and sire lines are kept in the breeding stock. It is 

possible that a training dataset is not available for a specific line or that a design 
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might be desired in which training data would only be produced in some of the lines. 

In such cases, performing across-population prediction could be a good strategy 

(Hayes et al., 2009). Across-population prediction involves using population A as 

training dataset to predict population B. Studies in cattle have shown that training in 

one population to predict another results in accuracies close to zero (Harris et al., 

2008; Hayes et al., 2009; Chen et al., 2015). This low accuracy has been attributed to 

the different marker-QTL linkage disequilibrium phase across populations (De Roos 

et al. 2009). In pigs, we have also found accuracies close to zero for across-population 

predictions (Chapter 5). Therefore, under the current circumstances of a low number 

of animals, genotyped with around 60,000 SNP, I would not recommend across-

population prediction. No matter what the reason for the application of across-

population prediction would be, constraints in expenses or genomic breeding 

program design, the results are not encouraging. Instead, I would perform within-

population genomic prediction for the line that has a training population and 

continue the pedigree-based genetic evaluation for the other line. In the future, 

when more animals are sequenced and possibly more causative mutations are 

identified, across-population prediction might yield better accuracies.  

 

9.3.3 Multi-population prediction 

An alternative to across-population prediction is to have, in the training set, some 

animals from the same population that will be predicted, and increase the size of the 

training set by combining populations A and B. The increase in accuracy from multi-

population prediction is highly dependent on the relationship between the 

combined populations (De Roos et al. 2009). Many studies on multi-population 

prediction were performed in dairy cattle and have been reviewed by Lund et al. 

(2014). Generally, there is an increase in accuracy when the same breeds from 

different countries are combined, whereas this increase is minor when the breeds 

are only distantly related. Multi-population prediction in pigs, using Dutch Landrace 

and Large White animals plus the cross between these two populations was 

performed in Chapter 5. Results showed that adding the other population in the 

training set did not improve the accuracy compared with within-population 

prediction. The main reason for that was that the Dutch Landrace and Large White 

populations are only distantly related. Predicting the F1 cross using a multi-

population training data set, which contained the F1 cross plus both parental 

populations, was advantageous over within-population prediction when genetic 

correlation between purebred and crossbred performance was high (>0.9). The 

parental populations are closely related to the F1 which appears to have a positive 

impact on accuracy of multi-population prediction (Chapter 5). Also, having a high 
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genetic correlation between purebred and crossbred performance is relevant in 

boosting the accuracy of multi-population prediction. Thus, multi-population 

prediction in pig breeding can be recommended when predicting crossbred animals, 

given that populations are closely related and/or the genetic correlation between 

purebred and crossbred performance is 1 or close to unity. 

 

9.3.4 Using crossbred information for genomic prediction 

The final goal in pig breeding is to improve performance of the commercial crossbred 

pigs, taking advantage of heterosis and breed complementarity (Visscher et al. 

2000). Crossbred pigs are mostly raised in farms at the commercial level which have 

lower management and biosecurity conditions compared with nucleus farms. This 

difference in conditions between commercial and nucleus farms is often reflected in 

the traits (Dekkers 2007). The same trait when measured in a commercial crossbred 

animal is not genetically the same as when it is measured in a purebred animal at a 

nucleus farm. This difference between the traits is reflected in genetic correlations 

below 1.0, even when the same trait is measured in purebred and crossbred animals. 

Lutaaya et al. (2001) found genetic correlations of 0.62 for growth rate, and 0.32 and 

0.70 for backfat thickness between purebred and crossbred phenotypes. Whereas 

Cecchinato et al. (2010) found genetic correlation of 0.25 for piglet survival at birth.  

A strategy has been proposed in which crossbred animals are used in the training 

population to subsequently select purebred breeding animals for crossbred 

performance. This strategy is expected to give a higher response in crossbred 

performance compared with within-purebred-population selection (Dekkers 2007; 

Kinghorn et al. 2010; Van Grevenhof and Van Der Werf 2015). Besides the increase 

in response at the crossbred level, using crossbred data in the training population is 

also appealing because it allows breeding for traits for which phenotypes are scarce 

in purebreds. Some traits cannot be evaluated in nucleus herds, such as disease traits 

(Ibañez-Escriche and Gonzalez-Recio 2011).  

 

The strategy of maximizing response to selection of purebreds for crossbred 

performance by using a crossbred training population has only been evaluated in 

simulation studies (Dekkers 2007; Kinghorn et al. 2010; Van Grevenhof and Van Der 

Werf 2015). The main issue in performing empirical studies is the need of 

phenotypes and genotypes of crossbred animals. The collection of these data is 

costly because this requires, besides genotyping, the individual recording of 

phenotypes on animals that are kept in group-housing systems and often have no 

pedigree information. Breeding companies were hesitant to make such investments. 
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Recently, however, crossbred data for genomic selection in pigs is becoming 

increasingly important. 

 

In Chapter 5, data on purebred animals were used to predict performance of 

crossbreds. At the time, the number of genotyped crossbreds was not large enough 

to be used as a training population. Accuracies of predicting crossbred performance 

ranged from 0.11 to 0.31 for traits in which the genetic correlation between 

purebred and crossbred performance ranged from 0.88 to 0.90. These accuracies 

were not as great as accuracies for within-purebred-population, but they show the 

predictive ability between purebred and crossbred pigs. For the trait whose accuracy 

of prediction was zero, a low genetic correlation between purebred and crossbred 

performance was found (0.31) which is in line with this low accuracy. The predictive 

ability found for predicting crossbreds with purebred training data indicates that 

selection in the purebreds will result in a response in the crossbreds when the 

genetic correlation between purebred and crossbred performance is high.  

 

In Chapter 5, the response variable for genomic prediction was a deregressed 

breeding value from a routine genetic evaluation. This breeding value was estimated 

based on records from a mix of purebred and crossbred animals. In practice, there is 

no problem with the use of a breeding value from a routine genetic evaluation in the 

evaluation.  For research purposes however, it is important to investigate how the 

choice for purebred, crossbred, or a mix of data used to estimate the breeding values 

for genomic prediction affects accuracy. In Chapter 6, therefore, we looked into the 

source of phenotypic information used to estimate the breeding values for the 

training data set. Training on breeding values of purebred animals estimated using 

crossbred performance, resulted in more accurate prediction of crossbred genetic 

merit than training on breeding values of purebred animals estimated using 

purebred performance; as long as the breeding values that were used as response 

variable have the same reliability. Likewise, in a simulation study, Esfandyari et al. 

(2015) showed that selecting purebred animals based on crossbred performance 

data rather than on purebred performance data resulted in a greater response to 

selection in the performance of crossbred animals.  

 

The results from Chapters 5 and 6 were promising and showed the ability of 

purebred data to predict performance of crossbred pigs. Thereafter, I wanted to test 

whether the use of crossbreds in the training population results in greater accuracies 

than solely using purebreds to select purebreds for crossbred performance. This 

analysis became possible because more data on crossbred animals became available 
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(Chapter 7). There was predictive ability when using crossbred phenotypes as 

training data, however, the accuracies were lower than from using purebred 

phenotypes. Results of simulation studies (e.g. Dekkers (2007)) that showed greater 

accuracy from using data on crossbreds rather than on purebred animals in the 

training population were not confirmed by my results. This discrepancy is explained 

by the high genetic correlation (>0.90) between purebred and crossbred 

performance for the traits studied in this thesis. The simulations studies consider a 

lower genetic correlation between purebred and crossbred performance (0.70 - 

0.80) (Dekkers 2007; Van Grevenhof and Van Der Werf 2015). Further studies with 

other traits with lower genetic correlation between purebred and crossbred 

performance need to be carried out. I would expect that with lower genetic 

correlations between purebred and crossbred performance, the benefits from using 

crossbreds as training population would increase in comparison with using 

purebreds. With a breeding goal in which all traits have high genetic correlation 

between purebred and crossbred performance, there would be no need for a 

crossbred training population, current practice with purebred training would suffice. 

However, not all traits will have a correlation close to 1, as has been shown by other 

studies in pigs (Lutaaya et al. 2001; Cecchinato et al. 2010).  

 

Although greater response to selection is observed in simulation studies from the 

use of crossbred data for training, these scenarios need to be carefully assessed. 

Factors such as the reliability of field records and the generation lag could hinder 

genomic prediction (Ibañez-Escriche and Gonzalez-Recio 2011). As phenotypes will 

be recorded in crossbreds from commercial farms, the recording system must be 

well designed and correctly applied because the large number of crossbred animals 

might be a hindrance to data collection compared with nucleus farms. On top of that, 

the difference in generations between purebred selection candidates and crossbred 

pigs, might hamper the genetic gain of genomic selection based on crossbreds. Thus, 

there is a need for studying whether the additional genetic gains promised by 

simulations can be confirmed by empirical studies. The additional genetic gains must 

offset the disadvantages mentioned above.  

 

Using crossbred pigs in the training population to select purebreds for crossbred 

performance also has an effect on the purebred genetic progress. When genetic 

correlation between purebred and crossbred performance is high, one will still 

observe purebred genetic progress. If, however, the genetic correlation is low, one 

can expect less genetic progress in purebred, or even negative values. With 

crossbred training populations, the evaluation of breeding program performance will 
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need to shift from analyzing the genetic progress in purebreds to monitoring the 

improvement of crossbred performance. 

 

9.3.5 Using dominance information for genomic prediction 

Dominance is important in crossbreeding schemes as it is the likely basis of heterosis 

(Xiao et al. 1995; Falconer and Mackay 1996; Charlesworth and Willis 2009). 

Therefore, using a model that accounts for dominance is expected to be beneficial 

for genomic prediction with a crossbred training population. Hence, I have evaluated 

genomic prediction when dominance effects are accounted for in the model using a 

crossbred training population (Chapter 8).  

 

Some studies have reported dominance variance estimates using real pig data and 

pedigree-based models (Culbertson et al. 1998; Norris et al. 2010). Estimates of 

dominance variance are not so precise because they require massive amounts of 

data especially on full-sib families (Vitezica et al. 2013). Dominance variance 

estimates from pedigree information were found to be zero for gestation length and 

total number of piglets born (Chapter 8). With genomic information, dominance 

variance can be estimated more precisely based on heterozygosity of SNP genotypes 

(Vitezica et al. 2013). Studies using genomic data in purebred pigs, showed that non-

additive effects are relevant factors contributing to the genetic variation of the 

studied traits (Su et al. 2012; Nishio and Satoh 2014). In addition, they also showed 

that accounting for the dominance effects improved accuracy of genomic prediction, 

compared to accounting only for additive effects. Using genomic data from crossbred 

pigs I showed that, for a trait with dominance variation, accounting for dominance 

effects can slightly improve genomic predictions compared with accounting only for 

additive effects (Chapter 8) similar to the reports on purebred pigs mentioned above. 

Even though there was a slight improvement in prediction from adding the 

dominance effect, I expect that the inclusion of non-additive effects in routine 

genetic evaluations is still a long time ahead of us, if breeding companies will ever 

include them at all. It has been shown that breeding programs should focus on 

additive effects as they account for more than 50%, and often even 100% of the 

genetic variation (Hill et al. 2008).  

 

Besides a dominance model, a model accounting for breed-specific effects of marker 

alleles may be relevant in prediction of crossbreeding performance (Ibánez-Escriche 

et al. 2009). I have found indications that the proportion of genetic variance in 

crossbred performance differs between the parental purebreds that contributed to 
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the cross (Chapter 8). Such a model, however, needs to be empirically investigated 

before implementation in breeding programs can be considered.  

 

9.4 Concluding remarks 

In the first part of this thesis I describe research that detected genetic markers 

significantly associated with gestation length, fine-mapped a QTL region for 

androstenone level, and studied potential pleiotropic effects. I expect that GWAS will 

continue to be performed because they provide scientifically relevant results, 

especially with the greater statistical power when more animals will be sequenced 

or genotyped using HD SNP chips. With more markers, the physical distance between 

marker and the causative mutation will be shortened, therefore, QTL regions can be 

fine-mapped. However, finding the causative mutation will require more than just a 

GWAS using denser genotyping or sequence data. Linkage disequilibrium plays a 

major role in GWAS and one may require addition functional evidence to distinguish 

associated variants. The results of GWAS can be incorporated in a MA-GBLUP, to 

increase the accuracy of genomic prediction compared with GBLUP. 

  

In the second part of this thesis I describe genomic prediction using purebred and 

crossbred pigs, which is a subject that is highly relevant for pig breeding. Although 

little has been reported so far, efforts to have more data on crossbred animals have 

been ongoing and contributed to the analyses performed in this thesis. I have shown 

that there is predictive ability from using phenotypes of crossbred animals to predict 

the genetic merit of purebred animals for crossbred performance. Even though the 

results obtained did not confirm the simulation results, I expect that for other traits 

with low genetic correlation between purebred and crossbred performance, the 

simulation results will be confirmed. If confirmed in empirical studies, the use of 

crossbred training populations for genomic selection will be implemented by 

breeding companies. The implementation of crossbred training population will, at 

least in the foreseeable future be without accounting for non-additive effects. 

Reasons for omitting non-additive effects from prediction models are the large 

proportion of the total genetic variance explained by additive effects, the increased 

computational power required to generate for example a genomic dominance 

matrix, and the negligible added-value to accuracy shown so far from adding 

dominance to genomic prediction. 
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Summary 

In the last decade, high-throughput genomic information became available for most 

livestock species. Efficient use of this information is important for the 

competitiveness of a breeding company. Application of genomic selection (GS) in 

pigs, may require different strategies from what is currently applied in dairy cattle 

because the end product in pig production is a crossbred animal. In this work, I 

explored the use of genomic information for the genetic improvement of purebred 

and crossbred pigs. Firstly, working mainly in purebred animals, regions affecting 

gestation length (Chapter 2) and androstenone level (Chapter 3) were detected in 

the pig genome by genome-wide association and fine-mapping. Also, potential 

pleiotropic effects of the androstenone level quantitative trait locus (QTL) on 

reproductive traits were studied (Chapter 4). Secondly, we investigated the potential 

of GS in pig breeding by determining the accuracy of genomic prediction using 

different strategies. These strategies varied in training and validation populations, 

selected from multiple purebred lines and their crossbred offspring, different data 

types and models.  

 

Genome-wide association study (GWAS) identified two QTL regions for gestation 

length, one in the Dutch Landrace and one in the Large White (Chapter 2). Three 

associated SNP were detected in a QTL region spanning 0.52 Mbp on Sus scrofa 

chromosome (SSC) 2 in Dutch Landrace and for the Large White, four associated SNP 

were detected in a region of 0.14 Mbp on SSC5. The region of a previously detected 

QTL for androstenone level on SSC6 was fine-mapped, narrowing the region down 

from 3.75 Mbp to 1.94 Mbp and identifying a candidate mutation in SULT2A1 

(Chapter 3). This fine-mapped region was evaluated for possible pleiotropic effects 

on production and reproduction traits in pigs (Chapter 4). No unfavorable pleiotropic 

effects were found, indicating that using the studied marker for selection would not 

unfavorably affect the other relevant traits. 

 

In the later chapters I have investigated the potential of different strategies for the 

implementation of GS in pig breeding when the aim is to improve crossbred 

performance. Within-population prediction was showed considerably high accuracy 

of prediction (Chapters 5 and 6) while across-population prediction, evaluated in 

Chapter 5 had accuracies close to zero. Multi-population prediction, where 

combinations of Dutch Landrace and Large White animals plus their cross were used 

as training showed that adding data from other populations did not improve the 
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accuracy except when predicting the F1 cross with records from both parental 

populations added to the F1 training data. When only purebred data was used, there 

was some predictive ability for crossbred performance (Chapter 5). In the first study 

the training data contained a mix of records measured on purebred and crossbred 

animals. In Chapter 6, therefore, the source of training data was clearly separated 

into purebred and crossbred records. Training on breeding values of purebred 

animals that were estimated using crossbred offspring performance, resulted in 

more accurate prediction of their crossbred genetic merit compared with training on 

breeding values of those same animals, estimated using purebred offspring 

performance. Genotyped and phenotyped crossbreds in the training population 

were expected to have higher accuracies when predicting genetic merit for crossbred 

performance. However, in Chapters 5 and 6 we did not test this strategy because 

sufficient genotyped crossbred were lacking at that time. Later, with more crossbred 

data, we evaluated this strategy and the accuracies were not improved over the use 

of genotyped and phenotyped purebreds (Chapter 7) mainly due to the high genetic 

correlation between purebred and crossbred performance for the studied traits. 

Finally, the inclusion of dominance in the model, with a crossbred training population 

was evaluated. For a trait that had dominance variation, accounting for dominance 

effects can be slightly beneficial for genomic prediction compared with a model that 

accounts only for additive effects.  

 

Finally, in Chapter 9, the relevance of the findings was discussed, how breeders can 

benefit from the combination of genomic selection with the information of individual 

QTL. To finalize, I make suggestions for future studies and how breeders can make 

use of the results generated in the thesis. 
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Next generation sequencing - applications in animal breeding and genetics 2012 5.0 
Identity by descent (IBD) approaches to genomic analysis of genetic traits 2012 1.2 
Advanced methods and algorithms in animal breeding with focus on GS 2012 1.5 
Genetic analysis using ASReml 4.0 2014 1.5 
Introduction to statistical methods in quantitative genetics and breeding 2014 4.0 
Advanced quantitative genetics for animal breeding 2014 3.0 
Introduction to theory and implementation of genomic selection 2014 1.35 
   
Advanced statistics courses  (3 ECTS) 

  
Statistics for the life sciences 2012 2.0 
Advanced statistics course: design of experiments 2012 1.0 
   
PhD students' discussion groups (1 ECTS)  

  
Quantitative genetics discussion group 2012 1.0 
   
MSc level courses (12 ECTS)  

  
Genomics (ABG-30306) 2011 6.0 
Genetic improvement of livestock (ABG-31306) 2011 6.0 
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Professional skills support courses (6 ECTS) year credits 
Techniques for writing and presenting a scientific paper 2012 1.2 
Teaching and supervising thesis students 2012 1.0 
Writing grant proposals 2015 2.0 
High-impact writing course 2015 1.3 
Survival guide to peer review 2015 0.3 
   
Research skills training (5 ECTS) year credits 
Introduction to R for statistical analysis 2012 0.6 
Getting started in ASReml 2013 0.3 
External training period: SLU, Sweden 2013 2.0 
External training period: ISU, USA 2015 2.0 
   
Didactic skills training (2 ECTS) year credits 
Supervising practicals and excursions 

  
Genomics (ABG-30306) 2012 1.0 
Genomics (ABG-30306) 2014 1.0 
   
Education and training total (68 ECTS)   
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