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Abstract 

 

The ability of accurately predicting microalgae productivity at commercial scale under outdoor 

conditions is crucial to evaluate the potential of algae as renewable feedstock for food, feed, chemicals 

and biofuel. However, most of the published assessments used algal productivity projections based on 

laboratory data or on models that have not been fully validated under relevant conditions. The 

uncertainty attributed with the use of such productivity estimates is a significant concern. Overestimating 

full-scale productivity will significantly bias the estimated cost-efficiency and environmental performance. 

It is therefore crucial to validate algae productivity models for outdoor conditions before application in life 

cycle, techno-economical and scalability assessments. 

The aim of this study was to independently validate the algae biomass productivity modelling 

framework developed by Slegers et al. [1]–[3]. The scenario models incorporate a time-resolved 

simulation of microalgae growth on solar irradiation, culture temperature, species-specific characteristics 

and photobioreactor geometry. The accuracy of the productivity models was assessed against data 

collected from two pilot-scale algae production systems: (1) raceway pond, (2) horizontal tubular 

photobioreactor (PBR) at AlgaePARC.  

The models were found to accurately predict productivity under outdoor conditions in the Netherlands. 

An overall accuracy of +3.23 % over 45 days of cultivation in the raceway pond and -3.55 % over 121 

days of cultivation for the horizontal tubular PBR was obtained. A global uncertainty/sensitivity analysis 

showed that the uncertainty of the model output was in a range of ±14.65 % for the raceway pond and 

±11.27 % for the horizontal tubular PBR. The main attributors for this model uncertainty were indicated 

for each system. With the range of productivity prediction and the associated model uncertainty the 

fitness of the model for economic and environmental assessments was investigated. The model 

predictions were found to be in the same range to reported outdoor productivities and could be 

categorized in the lower range of used productivity assumptions in previous assessments. With the 

attributed model uncertainty it was shown that uncertainties in biofuel cost are reduced by more than 

half when compared to results found in literature.  

The validation of this modelling approach is an important step for refining feasibility assessments of 

algae biotechnology. 
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1 Introduction 

At the moment our society is heavily based on fossil fuel, which is nowadays widely accepted as 

unsustainable due to depleting resources and its involvement in the accumulation of greenhouse gases in 

the atmosphere [4]. Facing a future shortage of petrochemicals, the biobased economy aims at the 

replacement of fossil feedstocks by renewable feedstocks to obtain biobased products [5]. 

During the past years microalgae got increased attention as a renewable feedstock (third-generation) 

for food, feed, chemicals, and biofuel [6]. Microalgae are characterized by high areal yields and 

photosynthetic efficiency, the possibility to be produced on arid land, generally a year-round cultivation 

and a low water footprint [7][8]. An interesting feature of several microalgae species is the ability to 

accumulate various commodities like carbohydrates, lipids, proteins and pigments in high amounts. 

Currently, microalgae are already used for several applications like feed, bio-fertilizer, and as ingredient 

in several cosmetics and health foods for human consumption, due to their high content in 

polyunsaturated fatty acids and anti-oxidants [9].  

Various reactor designs for algae cultivation are currently available. The reactor layouts are ranging 

from the classical raceway pond (RP) to tubular PhotoBioReactors (PBR) and flat panel PBR, to more 

sophisticated systems like the biofilm PBR and the foam PBR [10] [11] (figure 1-1). Shape and 

dimension of the used bioreactor strongly determine the achievable algae productivity on sunlight. A very 

important factor is the light path of the bioreactor. At systems with a short light path, it is possible that 

not all the light is absorbed by the algae. This leads to less optimal light usage and lower photosynthetic 

efficiencies. When systems have a very long light path, algae mostly respire and the biomass productivity 

will decrease when light is lacking too sustain the biomass. The optimal design therefore searches for the 

best combination of reactor dimensions in relation to the local light conditions and growth properties of 

the algae species. 

 

Figure	1-1.	Four	different	algae	production	systems	operated	at	the	research	facility	AlgaePARC	at	WUR.	From	left	to	right:	
(1)	Raceway	Pond;	(2)	Horizontal	tubular	PBR;	(3)	Vertical	stacked	tubular	PBR;	(4)	and	Flat	panel	PBR	[12].	

Although the number of studies on outdoor production of algae in experimental, pilot or commercial 

scale is increasing, there is still a lack of large scale facilities to cover the future demand of algae 

biomass [2]. Various life cycle (LCA), techno-economical, and resource assessment studies have 

evaluated the potential of commercial scale algae production for biofuel and biochemicals based on 

predictions of high areal yields [13]–[19]. Most of the published assessments used projections of algal 

productivity based on growth models extrapolated from laboratory-scale data or on non-validated models 

that have not been fully validated under outdoor conditions [20]. The uncertainty associated with the use 

of such productivity estimates is a significant concern because overestimating full-scale productivity 

would significantly bias the estimated cost-efficiency (i.e. overestimation of projected revenues) and 

environmental performance [21].  



 | Introduction 

Lukas Trebuch  Master Thesis 

6 

  
The life cycle, techno-economic, and resource assessments in literature are strongly influenced by 

wide range of assumptions regarding yearly areal productivity and composition of the algae mass, 

resulting in a large spread of end results [19] [21] [27] (table 1-1).  

 

Study	 Type	of	Study	 Cultivation	
System	

Location	 Productivity		
[g	m-2	day-1]	

[16]	 LCA	 PBR/open	pond	 UK	 27.4	

[19]	 Microalgae	Potential	 PBR/open	pond	 NS	 11.0	–	22.0	

[18]	 Microalgae	Potential	 PBR	 immersed	 in	
water	basin	

USA	 4.4	–	14.8	

[14]	 LCA	 Open	Pond	 Australia	 30.1	

[22]	 Cost-Analysis	 Open	Pond	 New	Mexico	 20.0	–	30.1	

[23]	 Techno-Economical	
Assessment		

PBR/open	pond	 Japan	 30.0	–	40.0	

[24]	 Cost-Analysis	 Open	Pond	 NS	 19.3	–	24.8	

[25]	 Techno-Economical	
Assessment	

Open	Pond	 Guinea-Bissau;	Spain;	Sweden	 4.7	–	14.8	

	
Table	1-1.	Areal	productivity	[g	m-2	day-1]	found	in	different	life	cycle	assessments,	techno-economical	assessments,	cost	
analysis	and	literature	focused	on	the	potential	of	microalgae.	Abbreviations:	UK	–	United	Kingdom;	NS	–	not	specified;	USA	
–	United	States	of	America;	

 

For example Wijffels et al. [19] used in their study an algae productivity in PBRs between 11.0 – 22.0 g 

m-2 day-1, while Wang et al. [24] used a biomass productivity of 30.0 – 40.0 g m-2 day-1 in open ponds as 

a starting point, resulting in different outcomes. Other studies have based the evaluation of the 

geographical productivity potential on a conversion of solar irradiance to biomass using the 

photosynthetic efficiency [18]. In the study of Jonker et al. [25] a micro-algae growth model is 

introduced, which accounts for sunlight intensity, temperature and mixing. Further light conversion 

efficiency, photo-inhibition and dark respiration are taken into account. However, monthly irradiance is 

used as a model input, not representing the daily variations in light conditions. In addition, the model 

predicts algae growth by using a photosynthetic efficiency of 9%, which was never achieved during 

outdoor cultivation [26], and fails to incorporate cultivation architecture.  

In order to predict algae productivity a large variety of empirical and mechanistic models for divers 

production systems have been developed [15] [17] [25] [30]–[36]. Since outdoor algae productivity is 

affected by many factors, such as weather conditions, characteristics of algae species, reactor design and 

operating conditions, models are very divers in the assumption that have been made. In the paper of 

Béchet et al. [33] 40 different algae growth modelling approaches are reviewed and compared to each 

other. All of the addressed models describe the relationship between algae and light intensity and make 

use of the Photo Irradiance (PI) curve. The PI curve gives the influence of light on the rate of 

photosynthesis (figure 1-2). Béchet et al. categorized the different models in three groups depending on 

how they address light intensity over the algae culture (incident, average or local), photo acclimation, 

photo saturation and photo inhibition [34]. Type I model are characterized by expressing the rate of 

photosynthesis of well-mixed cultures as a function of the average light intensity (Iav) over the culture, 

called “light integration” [35]. In this case the assumption is made that every cell experiences the same 
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light conditions and hence has the same rate of photosynthesis. At the same time photo acclimation, 

photo saturation and photo inhibition is neglected. 

 
Figure	1-2.	PI-Curve	illustrating	the	three	different	model	types.	Type	I:	"Light	Integration"	uses	the	average	light	conditions	
over	 the	cultivation	system;	Type	 II:	 "Growth	 Integration"	uses	a	 light	gradient	along	 the	 light	path	 to	calculate	 the	 local	
growth	 rate	 at	 reactor	 depth	 (z);	 and	 Type	 III:	 "Light	 History"	 focuses	 on	 single	 cells	 and	 the	 light	 fluctuations	 they	
experience	at	the	time	(t).	

 

Type II model are taking the light gradient, which occurs within the broth, into account, called “growth 

integration”. First the light distribution in the reactor is calculated, usually using Lambert-Beer law, and 

then the biological model expresses the local rate of photosynthesis as function of the local light 

intensity. Finally, the local rates of photosynthesis are summed up to obtain the global rate of 

photosynthesis. Type III model are the most complex approach to calculate algae productivity. In this 

approach the rate of photosynthesis of an individual cell is considered as a function of its “light history”. 

A way to calculate the flow field in the reactor and the trajectory of the algae cell is the Computational 

Fluid Dynamics (CFD) [36] [37] [38]. The complexity of the model increases from type I to type III, 

which increases the capability of the model to describe outdoor production. However with increasing 

complexity more parameters are necessary for the calculation. This implements the increasing effort to 

gather the parameters and the risk of including noise of the measurements [34] [33]. 

Several studies validated algae productivity models with experimental data. However, the majority of 

the studies used data obtained from lab-scale experiments under continuous light conditions; often using 

artificial light sources [32]. For this reason the application of those models to field conditions is limited 

[20]. Only limited studies focused on validation of the model with outdoor productivity data.  

Bosma et al. [35] predicted the volumetric algae production in a pilot-scale bubble column reactor 

under outdoor conditions using a regression model for the biomass growth equation. All light angles are 

used to derive the light path for Lambert-Beer law to predict the light gradient in the culture volume. 

However the regression-based equation makes it difficult to apply the model to light and temperature 

conditions outside the employed range of conditions. Pruvost et al. [39] developed a model to study 

Cell	(t0) Cell	(t1) Cell	(t2)

Iaverage

µaverage

“Light Integration”
(Type I)

“Growth	Integration”
(Type	II)

“Light	History“
(Type	III)

Light

Gr
ow

th
	R
at
e

Iz(2) Iz(0)Iz(1)

µz(0)
µz(1)
µz(2)
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different harvesting regimes in ponds and flat panels and included also scattering by algae cells. In 

addition, measured weather conditions are used and a two-dimensional light path is applied to Lambert-

Beers law. However the effect of temperature on algal growth is neglected. Since temperature 

fluctuations can significantly influence productivity the application of this model to outdoor conditions is 

limited [40][27]. Quinn et al. [8] found a good fit for lipid productivity predictions compared to a 

commercial scale production system of Solix©. However, this model is limited to the specific production 

system and was only validated within a narrow temperature range of 19 – 26 °C. Since, culture 

temperature can vary up to 15 °C per day [41] the application of this model is limited as well. Recently, 

Béchet et al. [20] demonstrated a validation of an algae productivity model previously developed [41] 

using pilot-scale outdoor productivity data. The modelled productivity was compared with experimental 

pilot-scale data and a good fit was found. However, the short-term experiments for model 

parameterization introduce a considerable model uncertainty. Even though the models above described 

were validated against outdoor productivity data, these only consider one situation and one algae species 

and are not designed to predict productivity in various reactor designs. Therefore, future life cycle, 

techno-economic, and scalability assessments need models that consider the integration of 

geographically and temporally resolved biological growth modelling, which can be adapted to specific 

algae species and reactor types, in order to increase accuracy. 

Slegers et al. [9] [23] [24] addressed this issue and developed a modelling framework, capable of 

predicting algae productivity for different algae species, locations, reactor designs and weather 

conditions. This framework was used in various scenario studies on reactor design, operational concepts 

and environmental conditions, and the performance of algae production, cultivation supply logistics and 

processing of biomass. Although the annual productivity predictions of the models are in the same range 

as annual productivity data found in literature, a further evaluation of the model framework is necessary 

[14][42].  
 In this study the productivity models that were developed by Slegers et al. [1]–[3] were validated with 

outdoor productivity data obtained at AlgaePARC. Validation with experimental productivity data is crucial 

to determine the model accuracy under outdoor conditions. In addition a successful validation will verify 

the use of these productivity models in future life cycle, techno-economic, and scalability assessments. 

During this work several research questions are addressed:  

 

v Which production parameter or variable is the most influential on algae productivity in the 

raceway pond and horizontal tubular PBR at AlgaePARC? 

v How do the two productivity models of Slegers et al. [1]–[3] behave in respect to the different 

model inputs and their attributed uncertainties? 

v How does the model fit improve to the obtained dataset at AlgaePARC when providing model 

inputs in different intervals? 

v What is the accuracy of the model prediction and are there explanations for deviations between 

measured and predicted productivity?  
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2 Validation Approach 

The validation approach taken in this thesis is presented in figure 2-1. Techniques used in other 

validation approaches found in literature (appendix E: table E-2) are taken into account and are applied if 

they are considered as suitable. The following steps (1. – 6.) are performed sequentially during the 

validation procedure of both productivity models and are categorized in four different groups: (1) data 

analysis (1. – 3. step); (2) model analysis (4. step); (3) comparison measured/predicted (5. step); (4) 

model evaluation (6. step). 

 

1. Data Cleaning 

For both systems a dataset obtained at AlgaePARC in 2014 is used as model input to compare the 

measured productivity with predicted productivity. Therefore, it is crucial to investigate if the dataset 

exhibits gaps and to detect possible measurement errors, for the successful validation the productivity 

models. Data gaps are filled according to the approach of Slegers et al. [2] where gaps smaller than 10 

measurements are filled with the average of the two neighbouring measurements. Otherwise the missing 

dataset is replaced by data of a neighbouring day at the same daytime. Larger gaps than a day are 

excluded of the validation procedure. 

 

2. Comparison of Measured/Modelled Productivity 

Subsequently, the predicted productivity of the models, using location, reactor and algae specific 

inputs, is compared to the measured productivity. A statistical comparison is made based on relative 

deviation (%) between the value of measured and predicted productivity and visually analysed by using 

a parity plot. This plot is used in statistical validation [43] and was already used in the validation 

approach of Bosma et al. [35]. Possible explanations for deviations are identified with detailed weather 

information obtained from the weather station Veenkampen in Wageningen, and recorded operational 

problems during operation at AlgaePARC. Days that exhibit a large relative deviation (>±100%) and/or 

show an operational problem are excluded from model validation.  

 

3. Statistical Evaluation 

After the first comparison between measured and predicted productivities was made, a principal 

component analysis (PCA) and a bivariate correlation analysis (BCA) is performed to explore the cleaned 

data set and to understand the influence of production conditions on measured algae productivity. These 

methods are commonly used to analyse and identify patterns in large and complex data-sets [44].  

 

4. Global Uncertainty/Sensitivity Analysis 

A global uncertainty and sensitivity analysis is performed to investigate the influence of biological and 

physical parameters and variables on the model prediction. In the study of Quinn et al. [8] and Béchet et 

al. [20] the importance of a uncertainty/sensitivity analysis was stressed. Quinn et al. used a local 

analysis, neglecting interactions between the model inputs, and assumed a fixed uncertainty range for 

the model inputs of ±20 %. Béchet et al. utilized a global sensitivity analysis that considers interactions 

among model inputs. The uncertainty attributed with the parameterization of the model inputs was used 

in this sensitivity analysis. Since a global uncertainty/sensitivity analysis proofed to be superior, this 

analysis is taken in this thesis. The analysis used in this thesis is based on Monte Carlo Sampling 

demonstrated by Saltelli et al. [45]. The uncertainty range used is obtained from the error attributed 
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with experimental determination of model input. For model inputs where no experimental data is 

available uncertainty ranges used in other sensitivity analyses found in literature are used. 

 

(5. Modelling Scenarios) 

After the determination of the influence of the model inputs and their associated variation, several 

model scenarios are carried out and compared on accuracy of prediction. The predictions of the different 

scenarios are compared visually based on cumulative productivity, as proposed by Béchet et al. [20]. 

Further, the outcome is analysed statistically in respect to relative deviation to the measured daily and 

cumulative productivities of a production period. Parallel to this the influence of model inputs on the 

relative deviation is investigated. This method was used by Bosma et al. [35] during validation of a 

model predicting volumetric algae productivity. In addition, the influence of the used time interval on the 

accuracy of the model prediction is evaluated. 

 

(6. Evaluation of Model Performance) 

Finally, the model scenarios that predicted productivity the most accurately for each type of 

photobioreactor are chosen and are further evaluated. The model performance is assessed including the 

model uncertainty obtained from the global uncertainty analysis. The model uncertainty of the raceway 

pond and the horizontal tubular system are plotted as upper and lower bound 95% confidence interval in 

the graphs displaying cumulative productivity. With this visual approach we can identify if the prediction 

inaccuracies are the result of the uncertainty in model inputs or due to model assumptions. In addition 

the fitness of the model for economic and environmental assessments is addressed, by comparing the 

prediction to results of different modelling studies and reported outdoor productivities.  At the end, 

possible improvements for future work are suggested. 
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Figure	2-1.	This	is	the	step-by-step	validation	approach	used	in	this	thesis,	which	is	categorized	in	four	major	parts:	(1)	Data	
Analysis,	(2)	Model	Analysis,	(3)	Comparison	Measured/Predicted,	and	(4)	Model	Evaluation.	Abbreviations:	Kabs	–	spectrally	
averaged	absorption	coefficient;	µmax	–	maximum	specific	growth	rate;	rmax	–	maintenance	associated	respiration	rate;	Topt	–	
optimum	growth	temperature;	Tlet	–	lethal	culture	temperature;	beta	–	modulation	temperature	curve	factor;	PFD	–	photon	
flux	density	[µmol	m-2	s-1];	Reflect	–	surface	and	ground	reflection;	Tculture	–	culture	temperature;	Cx	–	biomass	concentration;	

2.	Comparison	of	Measured/Modelled	Productivity

Deviation	(%)	larger	than	± 100%2.2	Identify	days	with	large	relative	Deviation

2.3	Find	explanation	for	large	relative	Deviation
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4.	Uncertainty/Sensitivity	Analysis A	global	sensitivity	analysis	provides	a	more	detailed	
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assessments?	Evaluate	the	necessity	of	changes	in	
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3 Material & Methods 

In this part of the thesis the materials and methods, used to validate the algae productivity models of 

Slegers et al. [1]–[3] are presented. First, the pilot-scale outdoor production systems used at AlgaePARC 

are described. Followed by the introduction of the model framework of Slegers et al. [1]–[3]. 

Subsequently, the materials and methods used during the data analysis and model analysis are 

described. Finally, the comparison between measured and predicted productivity is discussed.  

 

3.1 Production Systems 
The productivity data from the following two algae production systems at AlgaePARC are used for 

model validation in this thesis: (1) open raceway pond and (2) horizontal tubular PBR. These design are 

pilot-scale photobioreactors, which occupy about the same ground area (25 m2), installed at the same 

location (longitude: 5.66°; latitude: 51.99°) and are exposed to the same climatological conditions. The 

systems are controlled via a supervisory control and data acquisition (SCADA) system for automatic 

operation, online data collection and generation of alarms in cases of malfunctions. The algae production 

systems were operated in turbidostat, the biomass concentration is kept constant. When the biomass 

concentration exceeds the turbidostat set point a harvesting is started and new water and nutrients are 

added. Culture temperatures are controlled between a low and high set point (20 °C/30 °C), except for 

the raceway pond where cooling occurs via natural cooling by evaporation of water.  

 

 

3.1.1 Raceway Pond 

The dimensions of the raceway pond are 3 × 9 m (W× L) and is designed with central pillars at the 

side, which are connected with a plate to create a loop/raceway flow. The system is operated with a 

liquid level of 0.20 m resulting in a total volume of 4.7 m3. During the operation period in 2014 the 

raceway pond is run in turbidostat with a biomass concentration of 0.5 g L-1. During rainfall, liquid culture 

is automatically harvested to keep the liquid level at 0.20 m. Mixing of the algae broth is realized 

through a paddle wheel at 0.25 m s-1. Temperature is measured and controlled by means of active 

Figure	3-1.	The	two	algae	production	systems	operated	at	the	research	facility	AlgaePARC	at	WUR.	From	left	to	right:	(1)	Raceway	
Pond;	(2)	Horizontal	tubular	PBR; 
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heating via two heat exchangers. Since the lower range (20 °C) for the raceway pond cannot be kept 

due to limited heating capacity, the operation period is limited to late spring to early autumn. Further 

specifications can be found from table 3-1. 

 

3.1.2 Horizontal Tubular PBR 

The tubes used in the horizontal tubular PBR have an inner and outside diameter of 0.046 m and 0.05 

m, respectively. A distance of 0.05 m between the tubes is used; implicating that only 50% of the 

ground area is covered in the horizontal system. This system consists of 3 loops, each of 80 m long [46]. 

Algae cultivation is performed in three different turbidostat regimes. A low biomass concentration of 0.75 

g L-1, a medium biomass concentration of 1.50 g L-1 and a high biomass concentration of 2.50 g L-1 are 

used. High dissolved oxygen (DO) could be growth inhibiting for algae [47]. Therefore oxygen produced 

by algae is removed continuously in a vertical column by the injection of ambient air. To prevent biofilm 

formation, elastomers (3-5 mm) are circulating with the culture broth to clean the system. Further 

specifications can be found from table 3-1. 

	

Specification	 Raceway	pond	 Horizontal	tubular	PBR	
Light	path	[m]	 0.20	 0.046	
Tubular	length	[m]	 --	 240	(3x80)	
Volume	[m3]	 4.73	 0.56	
Illuminated	volume	(%)	 100	 73	
Ground	area	occupied	(m2)	 25.4	 27.0a	

Illuminated	surface	A/V	ratio	[m2	m-3]	 5	 63.7	
Biomass	concentration	[g	L-1]	 0.5	 0.75;	1.5;	2.5b	
a	including	half	of	the	ground	area	occupied	by	the	dummies	at	northern	and	southern	sides	of	the	reactor	
b	the	system	was	operated	at	three	different	biomass	concentrations	
	

Table	3-1.	Specifications	of	the	pilot-scale	photobioreactors	at	AlgaePARC	[46]	

 

3.1.3 Production Organism 

In both pilot-scale production systems the algae species Nannochloropsis sp. is cultivated during 

experiments at AlgaePARC. This unicellular seawater alga is categorized as an oleaginous species due to 

high accumulations of lipids found in the cell and therefore gains high interest as renewable resource for 

biodiesel production [6] [7] [50].  

 

More detailed information on the pilot-scale algae production facility at AlgaePARC can be found in the 

study of Bosma et al. [46] and in appendix A. 
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3.1.4 Online Measurements 

During operation of the production systems several online measurements are performed. A summary of 

the measurements used during this thesis can be found in table 3-2. Measurements for light and 

temperature are used as model inputs. The other measurements are used during data cleaning and 

comparison of measured and predicted productivity to assess the operational conditions. A detailed list of 

all the online measurements performed during cultivation and the manufacture of the sensors used can 

be found in table A-1 in appendix A 

 

Measurements	 Unit	 Interval	

Pyranometer	 Direct	and	diffuse	light	 10	s	
Temperature	 °C	 60	s	
Turbidity	 NTU	 60	s		
Water	flow	 m3	h-1	 60	s	
Water	level	 m	 60	s	
Carbon	dioxide	 L	kg-1	 60	s	
Recirculation	flowa	 m3	h-1	 60	s	
Airflowa	 m3	h-1	 60	s	
	 	 	
a	only	tubular	system	 	 	
 

Table	3-2.	Online	measurements	conducted	during	algae	cultivation	in	the	raceway	pond	and	the	horizontal	tubular	PBR	at	
Algae	PARC	[46]	

 

3.1.5 Offline Measurements 

Besides the online measurements, offline measurements (table 3-3) are performed to determine the 

biomass concentration of the algae in the production system. Optical density measurements 750 nm 

were performed on a daily basis (samples taken between 09:00-10:00 am) to measure biomass 

concentration. In addition dry weight measurements are done three times a week (09:00-10:00 am) and 

the correlation between OD750 and dry weight is determined, which are used to calculate the turbidostat 

set point.  

	

Measurements	 Unit	 Interval	

Biomass	Concentration	(OD750)	 --	 daily	
Biomass	Concentration	(DW)	 g	L-1	 3x	per	week	
Absorption	Coefficient	 m2	kg-1	

	
3x	per	week	

	 	 	
Table	3-3.	Offline	measurements	performed	at	AlgaePARC	during	algae	cultivation	in	the	raceway	pond	and	the	horizontal	
tubular	PBR	
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3.2 Algae Productivity Models 

In this study the mathematical models of Slegers et al. [1]–[3] are used to predict outdoor productivity 

of algae for two pilot-scale production systems at AlgaePARC: (1) raceway pond, and (2) horizontal 

tubular PBR. The productivity model uses location specific light angles, day lengths and reported direct 

and diffuse light intensities, reactor variables like geometry and wall material, ground material and algae 

characteristics. Further, detailed bio-physics-based models are applied to determine the light input on 

the reactor surface and the light gradient in the bioreactor. The local light intensity is then used to 

calculate the specific growth rate at a point along the light path.  

The specific growth rate is calculated according to a modified version of the model developed by Geider 

et al. [51]. This growth model connects the photosynthetic activity of the algae cell to the local light 

intensity and irradiance dependent chlorophyll a: carbon ratio (equation 3-1). Since the chlorophyll a: 

carbon ratio in the cell !! (gchl a g-1
C) and the functional cross section of the photosynthetic apparatus ! 

(gC (mol-1ph) m2 g-1
chl a) are difficult to determine experimentally, the model was adapted to the needs at 

AlgaePARC; instead of the chlorophyll a: carbon ratio and the photosynthetic apparatus, the yield of 

biomass on photons (!!/!!) and the absorption coefficient (!!"#) were used in the productivity models [13] 

[14] (equation 3-2). The modified growth model used in this thesis is displayed in equation 3-3: 

	

!!"#$%! !, ! = !!! 1 − !"# −! !!"# !, !  !!(!, !)
!!!

− !!"# Equation 3-1 

	  

∝ !! !, ! = !!/!!(!)
!!"#(!)
1000  Equation 3-2 

  

!!"#$%! !, ! = !!! 1 − !"#
−!!"# !, !  !!/!! !!"#1000

!!! (!)
− !!"# Equation 3-3 

 

Both the yield on biomass on photon ( !!/!!) and the absorption coefficient (!!"#) can be determined 

experimentally for a specific algae strain. However, both parameters in the model were assumed to be 

constant, and thus neglect cellular acclimation of the algae to specific light conditions.  

The maximum carbon specific rate of photosynthesis depends on the maximum specific growth rate 

!!"# (s-1) and the maintenance coefficient as given by: 

	

      

!!! (!) = !!"#!!(!) + !!"# Equation 3-4 

 

3.2.1 Modelling the influence of temperature on algae growth 

Since algal growth is not only influenced by light, temperature can strongly influence algal growth. As 

temperatures in outdoor cultivations vary significantly it is important that the growth is modelled as a 

function of light and temperature. The model first established by Geider et al. [53] is fully light 

dependant and lacks the influence of temperature [52]. In order to include the effect of temperature in 

the model a temperature dependent factor (!!) is introduced, which was first proposed by Blanchard et 
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al. [54]. This approach was chosen by Slegers et al. [2] and avoids complex equations, which deal with 

nonlinear relations between light and temperature dependent growth.  

   

!!(!) =
!!"# − !!"#$"%&(!)

!!"# − !!"#

!!
!"# −!!

!!"# − !!"#$"%&(!)
!!"# − !!"#

− 1  Equation 3-5 

 

 

where !!"#  (°C) is the lethal temperature, !!"#  (°C) the optimal temperature, !!"#$"%&  (°C) the culture 

temperature and !! (-) the curve modulating constant. 

 

Further information on the productivity model can by found in the publications of Slegers et al. [1]–[3].  

 

3.2.2 Modelling light attenuation 

In order to calculate the light the algae receives at a certain culture depth the light path has to be 

determined. The law of Lambert-Beer is used to calculate the light gradient in the culture broth: 

 

!!"# !, ! =  !!"#,!" ! !! !!!!"#!! ! Equation 3-6 

 

where !!"#is the local light intensity in [µmol m-2 s-1] at a certain depth (! [m]), !!"#,!" is the light 

intensity in [µmol m-2 s-1] at the reactor surface, ! is the extinction coefficient of the culture broth, which 

is taken as 1 for seawater, !!"# is the spectrally averaged absorption coefficient [m-2 kg-1]and !! is the 

biomass concentration in the bioreactor [g L-1]. 

 

 

3.2.3 Model Input 

To validate the algae productivity models established by Slegers et al. it is necessary to provide the 

experimentally determined model parameters (e.g. absorption coefficient Kabs, dimensionless parameter 

for temperature fit β) and measured model variables (e.g. light and temperature) from the operating 

period of 2014. The specific biological model parameters for Nannochloropsis sp. were determined by 

previous studies carried out by De Vree [46] and Van Dam [34] at AlgaePARC. The absorption coefficient 

was obtained by taking the average of the measured values over the production period of the two 

different production systems, biomass concentration and run. As biomass concentration, the turbidostat 

set point or the average biomass concentration over a production run is taken. Location specific 

parameters and reactor specific parameters are known. In the case of biomass concentration and 

absorption coefficient the input is taken constant or variable depending on the model scenario used (find 

explanation later in the text). A summary of all model parameters used as model input can be found in 

table 3-4 and table 3-5. 
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Symbol	 Description	 Unit	 Value	
Algae	Specific	Parameters	
µmax	 Maximal	specific	growth	rate	 [d-1]	 0.81		
rmax	 Maintenance	associated	respiration	rate	 [d-1]	 0.084	
Yx/ph	 Theoretical	maximum	yield	 [g	mol-1]	 1.175	
β	 Dimensionless	parameter	fit	to	moderate	µ(T)	curve	 [	--	]	 3.646	
Topt	 Optimal	growth	temperature	 [°C]	 25	
Tlet	 Lethal	temperature	 [°C]	 38	
Location	Specific	Parameters	
λ	 Lambda	=	longitude	

East	is	positive	
West	is	negative	

[degree]	 5.66	
	

Φ	 Phi	=	latitude	
North	is	positive	
South	is	negative	

[degree]	 51.99	

timezone	 Time	zone	in	which	the	location	is	in	 [	--	]	 UTC+1	
Reactor	Specific	Parameters	
Raceway	Pond	
w	 Width	of	the	raceway	pond	 [m]	 3.0	
L	 Length	of	the	raceway	pond	 [m]	 9.0	
d	 Depth	of	the	raceway	pond	 [m]	 0.2	
Horizontal	tubular	PBR	
d	 Light	path	 [m]	 0.046	
l	 Length	of	the	tube	 [m]	 80	
γ	 Orientation	of	the	reactor	 [--]	 N-S	
	
Table	3-4.	Model	parameters	used	for	validating	the	algae	productivity	models	of	Slegers	et	al.	[1]–[3]	

	

System	 Kabs	 Cx	
	 [m2	kg-1]	 [g	L-1]	
Raceway	Pond	
Run	1	 146.96	 0.44	
	 	 	
	 	 	 	Horizontal	tubular	PBR	
Cx	=	0.75	g	L-1	 	 	
Run	1	 160.66	 0.71	
Run	2	 121.81	 0.95	
	 	 	
Cx	=	1.50	g	L-1	 	 	
Run	1	 150.60	 1.67	
Run	2	 175.70	 1.54	
	 	 	
Cx	=	2.50	g	L-1	 	 	
Run	1	 210.66	 2.71	
Run	2	 213.34	 1.87	
Run	3	 250.53	 2.33	
 

Table	3-5.	Averaged	absorption	coefficient	(Kabs),	averaged	biomass	concentration	(Cx)	and	average	culture	temperature	
(Taverage)	recorded	during	cultivation	and	used	as	model	input	for	the	different	runs	of	the	production	systems	at	AlgaePARC.
	 	

 

The model variables for the different production systems, such as light, culture temperature, biomass 

concentration and absorption coefficient, are measured and provided for the year 2014 (table 3-6). 

Biomass concentration and absorption coefficient are used as constant and varying input, therefore they 

appear both as parameters and variables. The light data is obtained by a BF5 Sunshine Sensor by Delta-

T Device Ltd. This sensor has three output channels: (1) Total (global) solar irradiation, (2) Diffuse 

irradiation and (3) Sunshine status; all measured on a horizontal plane. Since direct and diffused light is 
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required as model input the direct light has to be calculated. Direct light is obtained by subtracting the 

diffuse irradiation from the total irradiation: 

 

!!"#$%& = !!"!#$ − !!"##$%& Equation 3-7 

 

The radiation output of the sensor is set to PAR spectrum in photon flux density [µmol m-2 s-1].  

	

Symbol	 Description	 Unit	 Value	
Idirect	 Direct	light	intensity	 PAR,	[µmol	m-2	s-1]	 --	
Iindirect	 Diffuse	light	intensity	 PAR,	[µmol	m-2	s-1]	 --	
Tculture	 Culture	Temperature	 [°C]	 --	
Cx	 Biomass	Concentration	 [g	L-1]	 --	
Kabs	 Spectrally	 averaged	 absorption	

coefficient	
[m2	kg-1]	 --	

	 	 	 	
 

Table	3-6.	Model	variables,	which	are	used	to	validate	the	algae	production	models	by	Slegers	et	al.	[1]–[3]	

 

 

3.2.4 Model Interval 

Since the measurements of light and temperature are in different time intervals, 10s and 60s 

respectively (table 3-2), the minimal interval of the model input and therefore also the model output is 

set to 10 min. The measurements of light and temperature within the 10 min time frame are averaged 

over the period. As an example the averaging procedure for the culture temperature of the production 

system is presented: 

 

 

!!"#$"%& ! = 1
!  !!,!"#$"%& !

!

!!!
 Equation 3-8 

 

 

where !!"#$"%& is the averaged culture temperature [°C 10min-1], !!,!"#$"%& is the original measured culture 

temperature [°C min-1], and ! is the number of measurements during the model interval (10 min).  

 

3.2.5 Model Output 

The model predicts according to the model inputs algae productivity every 10 min. Since these precise 

predictions are not necessary and measured algae productivities are only available per day, the output of 

the model is chosen to be daily productivity predictions [g m-2 day-1]. According to the requirement of 

the analysis on the prediction, the daily productivity predictions are summed up for 2 days, 3 days, 

weekly, monthly or the entire modelling period. 
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3.3 Data Analysis 

3.3.1 Data Cleaning 

For both systems the data set obtained at AlgaePARC in 2014 was used as model input and as well as 

experimental data set to compare the modelled algae biomass productivity with the biomass productivity. 

Therefore it is crucial to investigate if the data set exhibits gaps and to detect possible measurement 

errors, in order to successfully validate the algae productivity models. 

Gaps and possible mismatches in the data are found by using developed function in Excel that detects 

gaps in a time series (appendix B). Gaps in the time series are filled in Excel in three ways: (1) larger 

gaps than 10 measurements are filled with data from a day that exhibited similar weather conditions. 

These days are selected by using weather information from Veenkampen and should be within the same 

month or season, preferably the day before or after the day that contains the data gap. (2) Smaller gaps 

(< 1 hour) are filled with the average of the data neighbouring data points. (3) Gaps larger than 24 

hours are excluded from the validation procedure and values are set to 0. A detailed list of all gaps found 

in the obtained data from the three pilot-scale systems can be found in the appendix B (equation B-1). 

As a first step of finding measurement errors daily productivity measured and predicted are compared 

to each other on the basis of relative deviation. Relative deviations bigger than 100% are investigated 

carefully on the operational and weather conditions. The measurements on light, temperature, biomass 

concentration, pH, and salinity, gave valuable insights into operation conditions. At AlgaePARC a logbook 

is kept where all operational problems, which occur, and actions, which are taken, during production are 

documented. In addition exact weather conditions for the production period from De Veenkampen, a 

weather station west of Wageningen, the Netherlands, were obtained. With the help of these sources the 

deviations between measured and predicted productivity can be explained and can be categorized into 

three different groups: (1) operational conditions (including weather), (2) operational problems, and (3) 

model related deviations.  

Generally after inoculation the production system was run in a start-up phase where no consistent 

turbidity control and harvesting regime was applied. Daily productivity values in this phase of the 

production period were not taken for further analysis, since culture conditions were not stable and not 

representative.  

 

3.3.2 Principal Component Analysis (PCA) and Bivariate Correlation Analysis (BCA) 

Since the pilot scale system at AlgaePARC delivers a large variety of measured variables it is necessary 

to explore the obtained data. A step further to investigate the data set from the raceway pond and 

horizontal tubular PBR in more detail, is to perform a principal component analysis (PCA).  

PCA is a way of identifying patterns in data, and expressing the data in such a way as to highlight their 

similarities and differences. Since patterns in multivariate data can be hard to find, PCA is a powerful tool 

for analysing data. The main objective of performing a PCA is to gain insight into the interactions 

between the different measured variables during cultivation. With this method measured variables during 

the algae production will be analysed. 

In addition to the PCA a bivariate correlation analysis (BCA) between the measured variables and the 

calculated areal productivity was performed. BCA is the analysis of two variables to explore the 
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association between them. The main aim of the BCA is to get more information on the effect of 

operational conditions on productivity.  

The PCA and the BCA are applied to a series of measured variables: (1) Light (average, total), (2) 

temperature (average, minimum, maximum), (3) biomass concentration (measured), (4) absorption 

coefficient (measured), (5) productivity (measured), and (6) pH (measured). The list of measured 

variables can be found in table 3-7. Before these variables can be used for PCA their distribution had to 

be verified for normality using a Kolmogorov-Smirnov test. Variables, which are not significant for 

normality according to the Kolmogorov-Smirnov test, have to be excluded from further analysis. 

Both analysis, the PCA and BCA, are performed in IBM SPSS Statistics® (version 22) using a build-in 

function of the software. A detailed description of the procedure and the settings used in SPSS are 

provided in appendix B. 

	

Symbol	 Description	 Unit	
Pexp	 Measured	algae	productivity	 [g	m-2	d-1]	
Iaverage	 Average	light	input	 [µmol	m-2	d-1]	
Itotal	 Total	light	input	 [µmol	m-2	d-1]	
Taverage	 Average	culture	temperature	 [°C	d-1]	
Tmin	 Minimum	culture	temperature	 [°C	d-1]	
Tmax	 Maximum	culture	temperature	 [°C	d-1]	
Turbaverage	 Average	turbidity	 [NTU	d-1]	
Turbmin	 Minimum	turbidity	 [NTU	d-1]	
Turbmax	 Maximum	turbidity	 [NTU	d-1]	
Cx	 Experimentally	determined	dry	weight	 [g	L-1]	
Kabs	 Spectrally	average	absorption	coefficient	 [m	kg-2]	
pH	 Power	of	hydrogen	 [--]	
 

Table	3-7.	Measured	variables,	which	are	used	for	the	Principal	Component	Analysis	(PCA)	

 

3.4 Model Analysis 

3.4.1 Global Uncertainty/Sensitivity Analysis 

Most of the model inputs are well known universal constants, but others are specific to the cultivation 

conditions of the experiments described in this study and are experimentally determined in situ. 

Experimental error on these specific parameters and variables may cause inaccuracy on model 

predictions. In order to get a better understanding on the behaviour of the model in respect to the 

different model inputs and their attributed uncertainty a global uncertainty and sensitivity analysis was 

performed. In contrast to the local uncertainty/sensitivity analysis, which uses one at a time variations 

around the operation point, the global analysis includes interaction between parameters inside a search 

space [55]. The sensitivity analysis is based on a Monte Carlo sampling which means that each 

parameter varies randomly between the given minimum and maximum (table 3-8). The ranges were 

either calculated from the standard deviation of the available experimental data or based on data found 

in literature [8], [12], [20]. The uncertainty ranges were used as inputs to determine the Saltelli-Sobol 

coefficients based on Saltelli [45]. The total Sobol coefficients quantitatively indicate the influence of 

each parameter on the variance of the predicted productivities and are a measure of the importance of 

each parameter on the model prediction, which is algae productivity. The analysis is performed using the 

modelling framework of Yao [55] developed in MatLab. 
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Symbol	 Description	 Unit	 Value	 Range	
	 	 	 	 	
Biological	Parameters/Variables	 	
Kabs	 Spectrally	averaged	absorption	coefficient	 [m	kg-2]	 --	d		 ±	12	%	a	

µmax	 Maximal	specific	growth	rate	 [d-1]	 0.81		 ±	8	%	a	

rmax	 Maintenance	associated	respiration	rate	 [d-1]	 0.084		 ±	5	%	a	

β	 Dimensionless	parameter	fit	to	moderate	
µ(T)	curve	

[	--	]	 3.646		 ±	10%	b	

Topt	 Optimal	growth	temperature	 [°C]	 25		 ±	4	%	c	

Tlet	 Lethal	temperature	 [°C]	 38		 ±	2.5	%	c	

Cx	 Biomass	concentration	 [g	L-1]	 --	d	 ±	8.5	%	a	

	 	 	 	 	 	
Physical	Parameters/Variables	
Idirect	 Direct	light	input	at	reactor	surface	 [µmol	m-2	s-1]	 --		 ±	10	%	b	

Idiffuse	 Diffuse	light	input	at	reactor	surface	 [µmol	m-2	s-1]	 --		 ±	10	%	b	

Rdirect	 Reflection	of	direct	light	on	reactor	surface		 [--]	 --		 ±	10	%	b	

Rdiffuse	 Reflection	of	diffuse	light	on	reactor	surface	 [--]	 --		 ±	10%	b	

Rground	 Reflection	of	diffuse	light	on	ground	surface	 [--]	 --		 ±	10%	b	

ωdirect	 Interior	light	angle	of	direct	light	 [degree]	 --		 ±	10	%	b	

ωdiffuse	 Interior	light	angle	of	diffuse	light	 [degree]	 --		 ±	10	%	b	
T	 Culture	temperature	 [°C]	 --		 ±	4	%	c	
	 	 	 	 	
a	uncertainty	range	from	experiments;	b	range	after	Slegers	et	al.	[12];	c	range	after	Béchet	et	al.	[20];	d	value	dependent	on	
production	system	used	(table	3-5)	

 

Table	3-8.	Model	parameters/variables	chosen	to	use	in	global	uncertainty	and	sensitivity	analysis	and	the	range	in	they	
vary	for	Monte	Carlo	Simulation	

 

 

Parameters and variables chosen for the sensitivity analysis are divided into two categories: (1) 

biological inputs and (2) physical inputs. A summary of all used inputs can be found in table 3-8. The 

biological inputs for Nannochloropsis sp. were previously determined by experiments performed at 

AlgaePARC or obtained from literature [46] [34]. Therefore, it is crucial to investigate the importance of 

accuracy of the acquisition of those inputs for future application of the model to different algae species. 

The physical inputs chosen are related to the calculation of the light path and the culture temperature 

during production. The investigation on variables influencing the light path ranges from the primary light 

input at the reactor surface, to the reflection of light at the reactor surface, to the interior light angle in 

the culture broth.  

First, the model inputs are investigated separately to observe interaction in the biological and physical 

part of the model individually. Later both categories of model inputs are investigated together to observe 

combinatory effects and to evaluate the importance of biological inputs over physical inputs. 

More information on the global uncertainty/sensitivity analysis can be found in appendix C. 
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3.5 Comparison between measured and predicted productivity 

3.5.1 Parity Plot 

In order to evaluate the fit of the model, the parity plot is used as a visual method. In this graph the 

observed (y) daily productivity is directly plotted versus the predicted (ŷ) productivity, with the line y = ŷ 

marked to indicate the position of the 'perfect fit'. Within visual techniques, observed vs. predicted plots 

are shown to have superior diagnostic capabilities compared to the more widely-used time-series plots 

[43]. Bosma et al. used the parity plot for validating a model for volumetric algae productivity [35]. 

 

3.5.2 Cumulative Productivity 

Next to daily areal/volumetric productivities, productivities are cumulated to evaluate the performance 

of the model over time. For this method the data obtained after the data-cleaning step are taken as a 

consecutive data set and the model productivity is summed up production day after production day. In 

this way the overall performance of the model can be investigated and trends are better visible. 

However, the model performance on a daily basis is not so apparent, since daily deviations between 

measured and predicted are hard to detect.    

The cumulative productivity is calculated as following: 

 

!!"#"$(!) = !!"#
!

!!!
!  Equation 3-9 

 

where !!"#"$  is the cumulative productivity over the production period [g m-2], !!"#  is the daily 

productivity [g m-2 day-1] and ! is the number of production days [day]. 

 

3.5.3 Overall Accuracy 

The overall accuracy (Δ) of the model was calculated from the mean absolute percentage error defined 

as follows [43]: 

  

∆ =  !!"#"$,!"#$ −  !!"#"$,!"#
!!"#"$,!"#

 Equation 3-10 

 

where Pcumul,pre and Pcumul,exp (g m-2) are the cumulative predicted and measured productivities in the 

outdoor reactors over the period of cultivation. The root-mean-square error (RMSE, in g m-2 d-1) was also 

used to quantify the error on the daily productivity and was defined as follows [43]: 

 

!"#$ =  1
!  !!"#"$,!"#$ − !!"#"!,!"# Equation 3-11 
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where N is the total number of days and Pcumul,pre and Pcumul,exp are the predicted and experimental 

cumulative productivities (g m-2 d-1). 

 

 

3.5.4 Influence of Model Input on Overall Accuracy 

Originally the two productivity models incorporate the steady state conditions of cultivation. For the 

raceway pond, biomass concentration is kept constant and culture temperature is modelled using local 

climatological data. For the horizontal tubular system both biomass concentration and temperature were 

assumed to be constant over the production period. For both systems the absorption coefficient in the 

growth model adapted for AlgaePARC (equation 3) was taken constant, neglecting photo acclimation [1]. 

From the online measurements on temperature and the offline biomass concentration measurements 

show that values for temperature, biomass concentration and absorption coefficient vary significantly 

over time. Temperature is a very dynamic variable, which can vary up to 10 °C per day. Biomass 

concentration and absorption coefficient are deviating in a more narrow range, but exhibit daily 

variations depending on irradiance and temperature. In order to evaluate the improvement of accuracy 

of the model on a daily basis, certain model input are changed from constant to varying inputs. The 

recorded data at AlgaePARC on biomass concentration, temperature and absorption coefficient are taken 

as new inputs for the model. Temperature measurement every 10 minutes are takes as input, while 

biomass concentration and absorption coefficient are taken as daily inputs. Since biomass concentration 

measurements are only performed 3 times per week and always in the morning of a production day, 

missing values for the simulations were filled with the average value over the whole production period. 

The model performance on each of these runs is evaluated separately with various scenario settings. 

Predictions with fixed and varying biomass concentration, fixed and varying culture temperature and 

fixed and varying absorption coefficient and every combination between them are considered.  

The temperature regime at the raceway pond is not changed, since assuming constant culture 

temperature was not reasonable due to large temperature fluctuations over the production run. To 

evaluate the performance of the model of the horizontal tubular system several different model scenarios 

were done. Different model input options for biomass concentration, culture temperature and absorption 

coefficient are considered. As biomass concentration input three different values are used: (1) the 

biomass concentration of the turbidostat set-point, (2) the averaged biomass concentration over the 

production period and (3) the biomass concentration values obtained from the DW-measurements. In 

respect to culture temperature the averaged temperature over the production period and the 

temperature measured online while production was used as a model input. Further the averaged 

absorption coefficient over the production period and the measured absorption coefficient of 

Nannochloropsis sp. was used for evaluation. An overview of all the modelling scenarios, which are 

conducted, can be found in table 3-9. 

The results of these scenarios are compared visually based on cumulative productivity and statistically 

in respect to relative deviation to the measured daily and overall cumulative productivities of a 

production period.  
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Production	System	 Scenario	 Cx	 Tculture	 Kabs	

	 	 	 	 	
Raceway	Pond	(RP)	
	 1	 fixed	 measured	 fixed	
	 2	 fixed	 measured	 measured	
	 3	 measured	 measured	 fixed	
	 4	 measured	 measured	 measured	
	 	 	 	 	
Horizontal	Tubular	PBR	(HT)	
	 1	 fixed	 fixed	 fixed	
	 2	 fixed	 measured	 fixed	
	 3	 measured	 fixed	 fixed	
	 4	 measured	 measured	 fixed	
	 5	 fixed	 fixed	 measured	
	 6	 fixed	 measured	 measured	
	 7	 measured	 fixed	 measured	
	 8	 measured	 measured	 Measured	
	 	 	 	 	

 

Table	3-9.	Modelling	scenarios	used	for	the	raceway	pond	and	the	horizontal	tubular	PBR	in	order	to	evaluate	the	model	fit	
with	changing	model	inputs.	Abbreviations:	Cx	–	biomass	concentration;	Tculture	–	culture	temperature;	and	Kabs	–	spectrally	
averaged	absorption	coefficient;	fixed	–	model	input	is	taken	constant	over	the	production	period;	measured	–	the	measured	
value	obtained	during	production	is	taken	as	model	input	with	an	interval:	Cx	(daily),	Tculture	(10	min),	Kabs	(daily);	

 

3.5.5 Influence of measured variables on relative deviation 

Since light, temperature and biomass concentration are variable, it is interesting to investigated how 

the model prediction perform in comparison to the measured productivity at the pilot-scale algae 

production systems. The productivity models will eventually over- or underestimate measured daily 

productivities. In addition the correlation of the relative deviation between measured and predicted 

productivity on these variables is investigated. In this way the model behaviour is explored and it is 

researched if this behaviour can be address to a specific part of the model, which is receiving light, 

temperature and biomass concentration as input. In order to evaluate the correlation, the relative 

deviation is plotted against one of the variables (biomass concentration, temperature, light) as 

demonstrated by Bosma et al. [35]. 
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4 Results and Discussion 

 

In this part of the report the results of this thesis are presented and discussed. First the data analysis is 

presented consisting out of a data cleaning step to find gaps and measurement errors, followed by a 

principle component analysis (PCA) and a bivariate correlation analysis in order to explore the data set 

obtained at AlgaePARC. Subsequently, the model predictions are compared to the measured productivity 

of the pilot scale production systems and explanations for deviation are searched. A global uncertainty 

and sensitivity analysis is performed to investigate the impact and importance of biological and physical 

input parameters on the model output. With this knowledge several model scenarios are carried out and 

compared to each other in terms of accuracy of their prediction. Parallel to this the influence of model 

inputs on the relative deviation between measured and predicted daily productivity is investigated. 

Finally, the model that predicted the most accurate algae productivity in the given situations is chosen 

and discussed in detail. 

 

 

1.1 Selecting Data for Model Validation 
The data set of the raceway pond contained 37 gaps, and the data set of the horizontal tubular system 

had 43 gaps. Filling procedures were applied according to the description in materials/methods, where 

smaller gaps (<1 hour) were filled with the value before and after the event, and bigger gaps were 

replaced with data from a day exhibiting similar weather and culture conditions. Larger gaps than 24 

hours were left out of the validation procedure, which led to a total amount of 62 days and 148 days for 

the raceway pond and the horizontal tubular PBR, respectively. 

As a first step to identify measurement errors measured productivity and predicted productivity were 

compared to each other on the basis of relative deviation (%). With the knowledge on weather 

conditions, operational conditions and operational problems the deviations could be categorized in three 

different groups: (1) operational conditions (including weather), (2) operational problems, and (3) model 

related deviations (figure 4-1). 

Operational conditions and operational problems strongly influenced the daily measured productivity 

outcome. During production the turbidity signal could show unstable values, influencing harvest of algae 

broth. In the raceway pond, high light intensities, culture temperatures and rain had the biggest 

influence on biomass fluctuations. High light intensities and culture temperature led to evaporation and 

thereby concentration of the algae broth, while rain led to a dilution of the culture broth. Dilution and 

evaporation of the algae broth also resulted in fluctuation in salinity, nitrate and other nutrients, affecting 

algae growth. Since the productivity models assume optimum growth conditions the predicted 

productivity could be significantly different from the measured one.  
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Figure	4-1.	Parity	plot	of	the	measured	against	the	predicted	daily	productivity	of	the	raceway	pond	in	between	day	150	and	
227.	Marked	comparison	of	measured	and	predicted	productivity	(encircled	by	dashed	line)	are	excluded	from	further	
analysis.	A	–	measurement	errors	due	to	operational	problems;	B	–	model	related	errors;	C	–	errors	due	to	operational	
conditions.	

 

In the horizontal tubular system fluctuations in turbidity are mainly addressed to biofilm formation in 

the tubing of the system. In addition biomass concentration varied significantly at days with high light 

intensities and temperatures close to the lethal temperature of Nannochloropsis sp. As a counter 

measure for biomass these fluctuations the turbidity set point was adapted to the current situation to 

sustain the set biomass concentration in the culture broth. However, at several points during production 

the horizontal tubular system had to be stopped and cleaned properly to restart cultivation.  

Even though the turbidity sensor was cleaned daily for the raceway pond and weekly for the horizontal 

tubular PBR, biofilm formation was an issue during measurements. Formation of biofilm at the sensor led 

to higher measured turbidity values and could lead to an earlier harvesting procedure, which distorted 

the measured daily productivity by underestimating the value of the day where biofilm formation 

occurred. On the other hand daily productivities could be overestimated when the control software 

(SCADA) did not initiate harvesting, even though the turbidity exceeds the turbidity set point. In other 

cases the volume that had to be harvested, exceeded the volume that could be harvested in the 

maximum harvesting time set in the control system. This resulted in a harvesting time alarm. A common 

action that had been taken at AlgaePARC was to reset the SCADA software in order to restart harvesting. 

Such an event could bias the daily productivity as well, since a delay in harvesting could have occurred.  

Further, a reason for large deviations between measured and predicted biomass productivity was the 

behaviour of the model at unfavourable growth conditions. At these days, the solar input was not enough 

to sustain the culture, as respiration was larger than growth and therefore for some of these days the 

model calculated a negative daily biomass production. Similar trends were seen in the scenario study of 

Slegers et al. [1]–[3] on the raceway pond, tubular PBRs and vertical flat panel PBRs for France and the 

Netherlands [3,4]. However compared to the measured daily productivity of the same days in most of 

the cases a slightly positive productivity was recorded. There are two explanations: Firstly, that biology 

of algae could handle harsher conditions in terms of low light in comparison to the assumption made in 

A

B

C

C

C
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the model. Since light adaptation was not included in the model and a constant absorption coefficient 

is used, algae are assumed to be light limited at higher light intensities. Secondly, the effect of 

temperature on algae growth could be responsible for this deviation. Beta (βT) is a value, which is fitted 

to experimental data obtained under continuous light and temperature (24 hours). However the culture 

temperature can increase or decrease within an hour significantly. Therefore the adaptation dynamics of 

biology to constantly changing temperature is not included in the temperature model. This simplification 

of biology can as well create a significant difference between the model prediction and the observed 

productivity.  

Days that exhibited the conditions or problems described above and resulted in a relative deviation 

larger than 100 % were excluded from validation. Since this resulted in very fractured data set, the 

production days during validation were treated as if they would be consecutive. An extensive list of all 

the days, which were excluded and the reason for doing so can be found in the appendix B. An overview 

of the amount of available days for further data analysis and validation of the productivity models of 

each system and run is given in table 4-1. 

 

System	 Days	Available	 Days	Excluded	 Days	Used	
	 	 	 	
Raceway	Pond	
Cx	=	0.5	g	L-1	 71	 26	 45	
	 	 	 	
Horizontal	Tubular	PBR	
Cx	=	0.75	g	L-1	 30	 6	 24	
Cx	=	1.50	g	L-1	 90	 29	 61	
Cx	=	2.50	g	L-1	 43	 14	 29	
Total	 163	 49	 114	

	
Table	4-1.	Overview	of	the	available	data	of	the	different	production	systems	and	the	number	of	used	days	for	validation	

 

Important to note is that the data selection procedure used during validation might have an influence 

on the outcome of the study. The criteria used were chosen to the best of our knowledge, but could differ 

from researcher to researcher and may bias the result of every further analysis performed. Therefore it is 

crucial to be critical about the steps taken during this thesis. 
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4.1 Investigation of Trends and Patterns in the Data Set obtained 

at AlgaePARC 
 

After selection of the dataset, a PCA was performed to investigate on trends and patterns in the data. 

In addition a BCA was conducted to examine the correlation of productivity to system variables. Since 

the results obtained from both analyses are similar and support one another they are presented together 

for each production systems. The analyses generally showed commonly known influences of cultivation 

conditions on algae growth. However the analyses also revealed operation conditions, which limited 

productivity during the cultivation period. A graphical representation of the PCA and BCA can be found in 

appendix B. 

4.1.1 Raceway Pond 

The PCA of the raceway pond resulted in two principal components with a total variance explained of 

74.6 %. The first principal component is associated with “light”, since both average light and total light 

input, the absorption coefficient and productivity are attributed with the first column of the component 

matrix. The second principal component is associated with “temperature”, since both average and 

minimal temperature, average turbidity and measured biomass concentration are in the second column 

of the component matrix. From the PCA and the correlation factors of the BCA it is shown that the 

measured productivity exhibit a positively correlation with light and temperature. Further, the maximal 

temperature is positively correlated with light and productivity, which is due to the reason that 

productivity increased on days with higher culture temperatures and culture temperature was increased 

at higher light intensities. 

The PCA and BCA show that biomass concentration and productivity is positively correlated with 

temperature. Therefore an increase in temperature generally led to an increase in biomass concentration 

and productivity during cultivation. This relation can be explained due to the reason that the average 

culture temperature over the production period was lower than the optimal growth temperature of 

Nannochloropsis sp. Therefore days with higher average, minimal or maximal temperatures are 

associated with higher productivities. Biomass concentration however showed a negative relation to 

productivity, leading to the conclusion that the system exhibited a too high biomass concentration during 

production. Since the raceway pond has the longest light path (0.20 m) the effect of biomass 

concentration on productivity was strong. The optimum biomass concentration for Nannochloropsis sp. in 

the pilot scale raceway pond at AlgaePARC was found to be at 0.15 g L-1
 using the algae productivity 

model by Slegers et al. [3] (Appendix D: figure D–2). Below the optimal biomass concentrations excess 

sunlight energy could not be employed for growth, while self-shading of algae as a consequence of too 

high biomass concentrations resulted in enhanced cellular respiration [3]. The negative correlation of 

biomass and productivity indicates that at a biomass concentration of 0.5 g L-1 light was could not reach 

the lower layers of the culture and algae growth was thus limited by the amount of light. 

 

4.1.2 Horizontal tubular PBR 

The PCA and BCA of the horizontal tubular system were performed on the data sets for different 

turbidostat operations (0.75 g L-1 (low), 1.50 g L-1 (mid), 2.50 g L-1 (high)). In every case the first 

principal component is dominated by light and temperature, while the second principal component is 
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associated with productivity and biomass concentration. Light and temperature exhibit the strongest 

positive correlation in all production runs (appendix B), since culture temperature was increasing with the 

light input significantly during operation. This effect is addressed to the smaller culture volume and the 

stronger influence of light energy on temperature compared to the raceway pond.  

However, the PCA and the BCA resulted in divers observations in regard to the interactions between the 

measured variables at different turbidostat operations. The production at 0.75 g L-1 and 1.5 g L-1 

exhibited similar behaviour, since similar weather conditions are recorded. Whereas, the production at 

2.5 g L-1 showed different correlations in between the measured variables. The production run was 

during mid-summer and resulted in a higher average culture temperature and higher average light 

intensities compared to the other two production scenarios.  

Measured productivity at low and mid biomass concentration shows a positively correlation with light, 

temperature and biomass concentration. Generally with decreasing absorption coefficient the productivity 

increased and they were similar negatively correlated as observed at the raceway pond. However at the 

highest biomass concentration the productivity appeared negatively correlated with light and 

temperature. As discussed above light had a strong influence on the culture temperature of the system. 

At several occasions the cooling system of the horizontal tubular system was not able to keep the upper 

temperature boundary (30 °C). This led to temperatures close to the lethal temperature of 

Nannochloropsis sp. Generally the culture temperature was higher than the optimal growth temperature 

leading to higher productivities at lower average temperature.  

Since the light path of the horizontal tubular system is shorter than in the raceway pond, a change in 

biomass concentration did not exhibit a strong effect on productivity as compared to the raceway pond. 

At the low biomass concentration the productivity increased with biomass concentrations, while at the 

middle biomass concentration a change in biomass concentration did not affect productivity significantly. 

At the highest biomass concentration the adverse effect was observed, since higher productivities were 

generally associated with lower biomass concentration. This led to the conclusion that the optimal 

biomass concentration for the horizontal tubular system must be located in the near surroundings of 1.5 

g L-1. With the aid of the productivity model [1] the optimal biomass concentration for the horizontal 

tubular system was found to be at 1.25 g L-1 (appendix D: figure D–3). 
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4.2 Model Sensitivity to Uncertainties in Model Inputs 
The results of the global uncertainty/sensitivity analysis for both systems are shown in figure 4-2. The 

model inputs are categorized into biological related (green) and physical related (blue) inputs. The bars 

represent the calculated Total Sobol-Coefficients, which are indicating the impact of the uncertainty of a 

parameter on the uncertainty of the model output. From the analysis the model inaccuracy, caused by 

the uncertainty attributed to the input, is quantified. Further, the reduction of the model inaccuracy by 

addressing uncertainties in the model inputs is evaluated. 

Figure	4-2.	Total	Sobol	Coefficients	of	the	global	sensitivity	analysis.	Parameters/variables	in	the	green	box	are	associated	
with	biology	and	parameters/variables	in	the	blue	box	are	associated	with	physics.	Abbreviations:	Cx	–	biomass	
concentration;	Kabs	–	spectrally	averaged	absorption	coefficient;	µmax	–	maximum	specific	growth	rate;	rmax	–	respiration	
rate;	βT	–	temperature	curve	modulating	factor;	Toptimum	–	optimum	growth	temperature;	Tlethal	–	lethal	temperature;	Itotal	–	
total	light	input;	Rtotal	–	reflection	of	total	light	on	water	surface;	Rground	–	ground	reflection	of	total	light;	ωtotal	–	interior	light	
angle	of	total	light;	Tculture	–	culture	temperature;	

 

4.2.1 Raceway Pond 

The model inputs contributing the most to the output of the productivity model of the raceway pond 

are: the spectrum-averaged light absorption coefficient (Kabs), biomass concentration (Cx), maximum 

specific growth rate (µmax), respiration rate (rmax) and the interior angle of total light (ωtotal). These 

biological parameters are very influential since the algae productivity in the raceway pond is highly 

determined by the growth characteristics of the algae. The absorption coefficient influences the available 

light in the calculation of the light gradient and the usage of photons along the light path. In addition the 

biomass concentration plays a major role in the calculation of the light attenuation (equation 3-6) along 

the light path and therefore strongly influences the algae productivity. Therefore a lower value for Kabs 

and Cx results in a further penetration of light in the culture and will therefore result in higher 
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growth/productivity. Further the total light input (Itotal), the interior light angle of total light, which 

determine the length of light path and therefore the light intensity the algae receives, show the highest 

influence on the model output from the physical model inputs investigated. Further, the temperature 

model, including beta (βT), optimum growth temperature (Toptimum), lethal temperature (Tlet), exhibits a 

considerable influence on the model output. However, compared to light related model inputs the 

temperature related model inputs are less influential. The reflection of light on the water surface of the 

raceway pond exhibit the lowest Sobol-coefficients and thereby the lowest contribution to the model 

output. Generally, the biological parameters are explaining the majority of influence on the model output 

of the raceway pond. The physical aspects are most related to light transfer than to temperature. 

However, the physical aspects are still of secondary importance for the model output, since light has a 

stronger effect on algae biology than temperature [56]. 

From the global uncertainty/sensitivity analysis it resulted that the uncertainty of the model inputs led 

to an overall model accuracy of ±14.62 %. Further the analysis showed that by addressing the 

uncertainty in the measurements of the absorption coefficient, maximal specific growth rate and 

respiration rate had the potential to increase the accuracy of predicted biomass productivity with 83%. 

However this model uncertainty is expected to decrease significantly, when light conditions are not 

limited for algae growth. By either reducing the biomass concentration or operating the system under the 

same regime at a location with elevated irradiances, would notably reduce the impact of the absorption 

coefficient and biomass concentration on the model output. 

 

4.2.2 Horizontal tubular PBR 

The analysis of the horizontal tubular system shows that the model output is the most influenced by 

physical inputs like culture temperature, total light input and interior light angle. The biological inputs 

have generally less impact on the output and are dominated by the maximum specific growth rate, the 

optimum growth temperature and the lethal temperature. The strong influence of temperature on the 

model outcome is explained by the on average higher culture temperatures compared to the raceway 

pond and the higher sensitivity of the productivity model to these elevated temperatures (appendix D: 

figure D-1). This is also shown by the increased importance of the biological parameters (βT, Toptimum, 

Tlethal) associated with the temperature calculation, which were of minor importance in the raceway pond. 

Light related inputs such as the total light input and the total interior light angle of the total light input 

proof to be the second most influential factors in the productivity calculation. These model input 

determine the light path and the amount of light the algae receives during cultivation and therefore 

exhibit this strong relationship. However the reflection of diffuse light at the ground surface (Rground) did 

not affect the model output strongly, which is comparable to the reflection of total light at the water 

surface of the raceway pond.  

The maximum specific growth rate showed a similar influence in both production systems. However, 

the absorption coefficient and the respiration rate had a comparably small impact on the model output in 

comparison to the raceway pond. This difference is explained due to the geometry of the two reactor 

systems. Since, the horizontal tubular PBR has a smaller light path, the formation of dark zones in the 

culture broth is reduced. Thereby the importance of the absorption coefficient and the influence of dark 

respiration are diminished. The same applies for the biomass concentration, which strongly determine 

the light distribution and the light that the algae receive. The short light path makes the effect of the 
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biomass concentration on the algae productivity negligible compared to the other parameters and 

variables investigated. 

The global uncertainty/sensitivity analysis shows that the effect of the uncertainty attributed with the 

model inputs led to an overall model accuracy of ±11.27 %. Further, from the analysis it follows that 

addressing the uncertainty in the measurement of the culture temperature, the total light intensity and 

interior light angle, the growth rate and respiration rate has the potential to reduce the variance in 

predicted biomass productivity with 89%. Since temperature variations can be of higher order at 

locations with increased irradiances, the model uncertainty can be elevated as well. Due to the high 

sensitivity of the productivity model to temperature fluctuations, it is important to further evaluate the 

temperature model before modelling scenarios are performed for southern locations, e.g. Italy, Spain, 

Algeria. 

 

The global sensitivity analysis gives valuable insights into the differences between the two algae 

productivity models. While the model output for the raceway pond is highly influenced by the accuracy of 

biological parameters/variables such (Kabs, Cx, µmax, rmax), the model output of the horizontal tubular 

system is highly dependent on the physical input temperature that influences the temperature model. 

This information provides useful knowledge what model inputs have to be determined precisely and what 

part of the model should be investigated in order to improve the model fit. For further analysis we 

focussed on the effect of the absorption coefficient and biomass concentration for the raceway pond and 

temperature for the horizontal tubular PBR,  

 

4.3 Effect of used model input interval on overall accuracy 
For every production run different operational regimes were applied and every run experienced 

different climatological conditions. The total light input, average temperature, average biomass 

concentration and absorption coefficient in the two systems during the various runs can be found in 

appendix A (table A-2). Originally the two productivity models were designed to incorporate the steady 

state conditions of cultivation. In the case of the raceway pond, biomass concentration was kept constant 

and culture temperature was either kept constant or modelled using local climatological data. In the case 

of the horizontal tubular system both biomass concentration and culture temperature were assumed to 

be constant over the production period. In the used productivity models the absorption coefficient was 

assumed constant for both systems neglecting photo acclimation. From the online measurements on 

temperature and the biomass concentration measurements in the morning of a production day showed 

that values for temperature, biomass concentration and absorption coefficient vary significantly over time 

(appendix A).  

The global sensitivity analysis showed that absorption coefficient and biomass concentration had a 

large impact on prediction of algae productivity for the raceway pond, and temperature in the prediction 

for the horizontal tubular system. Therefore, it was investigated if by using measurements from the 

production period as model inputs the accuracy of the model on a daily basis could be improved. The 

model inputs such as biomass concentration, absorption coefficient and culture temperature (only 

horizontal tubular system) were addressed. The model performance for each production run was 

evaluated using various scenario settings (table 3-9). Predictions with fixed and varying biomass 

concentration, fixed and varying culture temperature and fixed and varying absorption coefficient and 

every combination between them were evaluated. The results of these scenarios were compared in 

respect to relative deviation to the measured daily and cumulative productivities of a production period.  
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4.3.1 Raceway Pond 

The scenario evaluation of the raceway pond is illustrated in figure 4-3. Four different scenarios are 

displayed; two for fixed and varying biomass concentration and two for fixed and varying absorption 

coefficient. From the graph we see that the biomass concentration had the biggest influence on the 

model prediction. This was already indicated by the global uncertainty/sensitivity analysis. In the first 

scenario both biomass concentration (set at 0.50 g L-1) and absorption coefficient (146.96 m2 kg-1) were 

used as model input. An accurate estimation of algae productivity was made with an overall relative 

deviation of 3.23 %. When the measured biomass concentration was used, the model overestimated the 

productivity by more that 50 %. Biomass concentrations were determined on samples taken in the 

morning; due to night biomass loss this value can deviate from the set point for harvesting. The model 

predicts higher growth at lower biomass concentration, since the dark zone is smaller, resulting in an 

overestimation of the productivity. The optimal biomass concentration, 0.15 g L-1, for the raceway pond 

was calculated by the productivity model [3]. Consequently, using biomass concentrations lower than 0.5 

g L-1 will result in higher algae productivity predictions.  

Figure	4-3.	Different	scenarios	for	the	raceway	pond	expressed	in	cumulative	production	[g	m-2].	Abbreviations:	Cx	fix	–	fixed	
value	for	biomass	concentration,	Cx	var	–	measured	biomass	concentration,	K	abs	–	fixed	value	for	absorption	coefficient,	K	
abs	var	–	measured	absorption	coefficient.	

When implementing the measured absorption coefficient as model input in both scenarios with fixed 

and varying biomass concentration the algae productivity prediction was lower than using the fixed 

value. In the majority of the modelled production period the values of the measured absorption 

coefficient were close to the mean value of 146.96 m2 kg-1. However, in between production day 25 and 

33 and after day 43 the measured absorption coefficient values were often higher than the mean. This 

could be explained due to climatological conditions. Within this period light intensities were higher than 

at other days. Therefore the algae was adapting to the new environmental conditions by changing their 

pigment content, resulting in a higher value for the absorption coefficient.  
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The highest accuracy of the model was found when using the turbidostat set point for biomass 

concentration and the averaged absorption coefficient over the production period as input. Implementing 

measurements for those two model inputs resulted in larger deviation from the measured productivity. 

The sensitivity analysis showed that both inputs have a very large influence on the model prediction, 

making the accuracy of the prediction low. However for fully evaluating the implementation of varying 

biomass concentration and absorption coefficient more data on both variables has to be obtained. 

 

4.3.2 Horizontal tubular PBR 

In figure 4-4 the results of the scenario evaluation are depicted for different turbidostat operations and 

runs. Four of the initially eight scenarios are shown, since differences between some chosen scenarios 

were not significant. Two of the scenarios are with fixed and varying biomass concentration and two with 

fixed and varying temperature. For HT: 1.5 g L-1 Run 2, HT: 2.50 g L-1 Run 3 only limited data points 

were available and operational issues (biofilm formation in the tubing) biased the reported productivities. 

Therefore these two production runs are left out of the validation procedure. The graphs for cumulative 

productivity can be found in the appendix D (figure D-4, figure D-6). 

The scenarios using different absorption coefficient are not displayed, since using the measured values 

did not have a large impact on the predicted productivity. Only limited data points were available and the 

sensitivity of the model to the absorption coefficient is rather low, as indicated by the performed 

sensitivity analysis. In most of the cases using fixed or varying biomass concentration as input, no 

significant difference between the modelling outcomes are observed. In almost every case the 

introduction of the measured biomass concentration as model input led to an underestimation of the 

predicted algae productivity. Measured biomass concentrations were generally lower at concentrations of 

0.75 and 1.50 g L-1 and higher at the concentration of 2.50 g L-1 compared to the set point. The optimal 

biomass concentration in respect to maximum productivity for Nannochloropsis sp. in the horizontal 

tubular PBR was found at 1.25 g L-1. In figure D-3 (Appendix D) the behaviour of the model at different 

biomass concentrations is illustrated. At biomass concentrations lower than 0.75 g L-1 and higher than 

2.50 g L-1 the model underestimated algae productivity. At 1.50 g L-1, measured biomass concentrations 

were lower than the set point; therefore the model overestimated algae productivity. 

A much bigger difference in productivity prediction was observed by selecting either a fixed culture 

temperature (averaged over the production period) or the measured culture temperature as model input 

(10 min). Generally the use of a fixed temperature input resulted in the best model fit. However, the use 

of the measured culture temperature led in the most cases to an underestimation of productivity. This is 

explained due to the high sensitivity of the productivity model to changes in temperature. Generally the 

average temperature of each production run was very close to the optimum growth temperature of 25 

°C. However, the temperature within a day could vary significantly at different biomass concentrations 

and runs. Therefore, it was very important to consider this in the analysis on the effect of temperature 

on the model output. As shown by Van Dam [34] the curve of the temperature factor fT for 

Nannochloropsis sp. is declining faster at temperatures higher than the optimal temperature (appendix 

D, figure D-1). 
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Figure	4-4.	Different	modelling	scenarios	for	the	horizontal	tubular	system	at	different	biomass	concentrations	(0.75	g	L-1,	
1.50	g	L-1,	2.50	g	L-1)	and	runs	represented	in	cumulative	productivity	[g	m-2].	Abbreviations:	Measured	–	measured	areal	
productivity,	for	modelling	scenarios:	Cx	fix	–	biomass	concentration	is	fixed,	Cx	var	–measured	biomass	concentration	is	
used,	T	fix	–	culture	temperature	is	fixed,	T	measured	–	measured	culture	temperature.	

 

At HT: 0.75 g L-1 Run 1, Run 2, and HT: 2.50 g L-1 Run 2 the model underestimated algae productivity 

when introducing the measured temperature values over the day. Regarding the temperature distribution 

over the whole production period most of the measured values were above the optimal temperature with 

several values close to the lethal temperature. While using the average temperatures of these runs led to 

a good model fit, using the varying temperature input led to an underestimation of productivity by the 

model. Comparing this model behaviour at other turbidostat settings and production runs a different  
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model behaviour was found. In the cases of HT: 1.5 g L-1 Run 1, HT: 2.5 g L-1 Run 1 an overestimation of 

algae productivity was obtained when the fixed culture temperature was used as model input. However, 

introducing the measured culture temperature resulted in a good model fit. During these production runs 

the temperatures were generally lower and normally distributed around the average temperature over 

the production. Further, they did not result in extreme temperatures as compared to the other runs.  

A possible explanation for this model behaviour is the high sensitivity to culture temperature and the 

shape of the current temperature curve (equation 3-5), which is modulated by the factor beta (βT). 

Regarding the fit of the temperature curve to the experimental data of Sukenik et al. [48], growth rates 

at lower temperature appear to be overestimated and higher temperatures appear to be underestimated 

(appendix D, figure D-1). The influence of modelling variables on the deviation between measured and 

predicted daily productivities support this by showing that generally the model underestimates at high 

temperatures (appendix D). This could explain the underestimation of the model at HT: 0.75 g L-1 Run 1, 

Run 2, and HT: 2.50 g L-1 Run 2, due to the high temperature values in the measurements used as a 

model input. The usage of the average temperature as model input on the contrary neglected the 

influence of these high temperatures and therefore resulted in a good fit. The overestimation of 

productivity at HT: 1.5 g L-1 Run 1, HT: 2.5 g L-1 Run 1 when using the average temperature as model 

input can be explained due to the slight overestimation of the temperature model at these temperatures. 

However, using the measured values as model both over- and underestimation of productivity occurred. 

This resulted in a good model fit, since the over- and underestimation compensated each other. 

In addition the current temperature model neglect the dynamic of adaptation of algae cells to changes 

of temperature in time. The model assumes an instant effect of temperature on the growth rate. 

However, biology processes usually take time and follow a certain dynamic. Therefore we assumed that 

the growth rate of algae is dependent on temperature and time as well, since an exposure to high 

temperatures for several minutes or several hours would have a different impact on growth. The 

underestimation by the model at high temperatures could be also a result of this dynamic of biology 

when using temperature inputs with short time intervals. The algae cells can possibly grow under high 

temperatures for a certain period of time, whereas the model assumes no biomass productivity.  

At locations where greater temperature fluctuations during the day are expected (e.g. Italy, Spain, 

Algeria), the impact of temperature changes on the model input is assumed to be even larger. Therefore 

a detailed evaluation of the current temperature model is suggested, to eliminate the model uncertainty 

attributed to temperature variations.  

Even though similar light and temperatures conditions at HT: 2.50 g L-1 Run 1, Run 3, and HT: 1.50 g 

L-1 Run 2 were recorded, different results were obtained when implementing varying model inputs such 

as temperature. In these three runs operational issues occurred; biofilm formation in the tubing caused 

fluctuating turbidity. The turbidity set point was frequently adapted during the operational period, which 

could bias the measurements. This had the strongest influence on HT: 1.50 g L-1 Run 2 where 

measurements are in between the modelling scenario outcomes. Therefore it is assumed that the 

measured productivities are lower due to the operational issues and suggested to be critical about the 

results of these runs.  
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A summary of the discussed model scenarios for both systems at different operational conditions 

and production runs in terms of their model performance can be found in table 4-2. The values written 

bold represent the model scenario, which resulted in the best model fit. The best prediction for the 

raceway pond deviates +3.23 % from the actual recorded productivity. The model for the horizontal 

tubular PBR predicts with an overall accuracy of -3.55 % when taken the average over all turbidostat 

regimes and production runs. The relative deviation over the different turbidostat regimes in the 

horizontal tubular PBR resulted in: Cx = 0.75 g L-1 with +1.19 %; Cx = 1.50 g L-1 with +1.35 %; Cx = 

2.50 g L-1 with  

-6.09 %. 

 

System	 Scenario	 Relative	Deviation	 Scenario	 Relative	Deviation	
	 	 [%]	 	 [%]	
Raceway	Pond	 	 	
Run	1	(45	days)	 Cx	fix,	Kabs	fix	 3.23	 Cx	var,	Kabs	fix	 54.30	
	 Cx	fix,	Kabs	measured	 -14.02	 Cx	var,	Kabs	measured	 25.85	
Horizontal	Tubular	PBR	 	
Cx	=	0.75	g	L-1	 	 	 	 	
Run	1	(	 Cx	fix,	Tculture	fix	 2.97	 Cx	var,	Tculture	fix	 4.07	
	 Cx	fix,	Tculture	measured	 -35.37	 Cx	var,	Tculture	measured	 -35.98	
Run	2	 Cx	fix,	Tculture	fix	 111.57	 Cx	var,	Tculture	fix	 100.49	
	 Cx	fix,	Tculture	measured	 -1.78	 Cx	var,	Tculture	measured	 -10.80	
Cx	=	1.50	g	L-1	 	 	 	 	
Run	1	 Cx	fix,	Tculture	fix	 35.50	 Cx	var,	Tculture	fix	 37.66	
	 Cx	fix,	Tculture	measured	 1.35	 Cx	var,	Tculture	measured	 -2.35	
	 	 	 	 	
Cx	=	2.50	g	L-1	 	 	 	 	
Run	1	 Cx	fix,	Tculture	fix	 -7.95	 Cx	var,	Tculture	fix	 -10.45	
	 Cx	fix,	Tculture	measured	 -32.00	 Cx	var,	Tculture	measured	 -33.88	
Run	2	 Cx	fix,	Tculture	fix	 1.86	 Cx	var,	Tculture	fix	 -11.32	
	 Cx	fix,	Tculture	measured	 -70.76	 Cx	var,	Tculture	measured	 -70.87	
	

Table	4-2.	Summary	of	Relative	Deviation	[%]	between	predicted	and	measured	productivity	for	different	production	
systems,	turbidostat	set	points	and	runs.	The	scenarios,	which	resulted	in	the	best	model	fit,	are	in	bold.	

 

Generally, the change in biomass concentration input at the raceway pond and the temperature input 

at the horizontal tubular PBR had the strongest influence on productivity prediction. Using the turbidostat 

set point for biomass concentration and the average absorption coefficient over the production period as 

model input for the raceway pond resulted in the most accurate prediction. For the horizontal tubular 

PBR in the most cases using the fixed temperature input lead to the best model fit. Using varying 

temperature input led to accurate predictions when temperatures are below and close to the optimum 

growth temperature. In case where culture temperatures are above the optimum temperature and close 

to the lethal temperature the model tended to underestimate algae productivity significantly, which can 

be addressed to the current temperature model used.  

The model settings resulting in the best model fit were taken for further evaluation on the influence of 

time interval on accuracy of model prediction. In addition it was investigated if the model inaccuracy can 

be addressed to the uncertainties in the model inputs or to the assumptions made during establishing the 

productivity models. 
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4.4 Influence of model interval on accuracy of prediction  
When comparing measured and predicted productivity on daily basis, the relative deviation between the 

two productivities was observed to be large at certain days. A visual representation of the model 

performance on predicting daily algae productivities for the raceway pond and horizontal tubular PBR can 

be found in figure 4-5. Compared to the model of the raceway pond, the model for the horizontal tubular 

PBR generally predicts more accurate on daily basis. This is explained due to less variation in measured 

conditions in the horizontal system. Since the tubular system provides a closed environment for algae 

cultivation, the growth conditions are more controlled compared to the raceway pond leading to less 

variation in parameters, which are essential for algae growth. As previously discussed, operational 

conditions varied in the raceway pond more compared to the horizontal tubular system. Salinity, nitrogen 

and other nutrients fluctuated over the production days in the raceway pond, affecting algae growth. Due 

to the fact that the model assumes optimal growth conditions in terms of salinity and nutrients, this 

could lead to larger deviations in daily algae productivity compared to the horizontal tubular system, 

where conditions are closer to the optimal growing conditions for Nannochloropsis sp. 

Figure	4-5.	Parity	plot	of	measured	against	modelled	areal	productivity	from	(1)	Raceway	Pond,	(2)	Horizontal	Tubular	PBR.	

 

Although the model the prediction deviate significantly from the measurement on a daily basis and 

prediction appears very scattered, the overall prediction on algae productivity of an entire production 

period is reasonable accurate. As shown previously, the model for the raceway pond predicted algae 

productivity with a relative deviation of +3.23 %, and the model for horizontal tubular PBR with an 

average relative deviation of -3.55 % over all production runs. In order to determine the reliability of 

model predictions on a timescale, the accuracy of the model was evaluated at different time frames: 1 

day; 2 days; 3 days; week; month; entire period. In figure 4-6 the performance of the raceway pond 

and the horizontal tubular system at different intervals are compared. A distinctive trend can be 

observed in this graph. At daily productivities the relative deviation ranged in between ±80 %, leading to 

the conclusion that on this level the predictions cannot be taken as accurate. However, moving to larger 

time frames the relative deviations gets smaller and smaller with the best result when predicting 
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productivity of the entire production period. Generally for both systems the deviation between 

measured and predicted productivity levelled out when going to larger time frames.  

While the model implements variations in light and temperature immediately, algae cells need time to 

adapt to new environmental conditions meaning that biology is slower than the models assume. Photo 

acclimation of the algae cell is a process, which is not happening immediate with changing light 

conditions. Increasing or decreasing the pigment content for optimal light uptake can take algae cells 

many hours up to several days [9]. When temperature changes of the culture broth, micro algae are 

adapting their biomass composition in order to regulate their membrane fluidity, the amount and activity 

of Rubisco, and starch and sucrose content [57] [58]. This process takes time as well and is not 

happening instantly [59].  

At certain points during production this delay of adaptation of biology was observed. Occasionally, 

measured daily algae productivities still resulted in a considerable high value the following days after a 

significant decrease in total light input or temperature from one day to another. A delay in productivity 

was also observed when the light input or temperature significantly increased from one production day to 

another. Usually the adaptation of the system could be observed 1 or 2 days after a change in light or 

temperature input. An example for this effect can be found in appendix D (figure D-9). 

 

Figure	4-6.	Box	plot	of	relative	deviations	[%]	between	measured	and	predicted	areal	productivity	at	different	model	
intervals:	1	Day;	2	Days;	3	Days;	1	Week;	1	Month.	Left:	Raceway	Pond.	Right:	Horizontal	Tubular	PBR.	
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4.5 Evaluation of model accuracy considering model uncertainty 
 

The model settings, which resulted in the best model fit in respect to the observed productivities were 

taken to model productivity for the operational period of the different systems and biomass 

concentrations. The model uncertainty calculated in the global uncertainty/sensitivity analysis of the 

raceway pond and the horizontal tubular PBR are plotted as upper and lower bound in the graphs 

displaying cumulative productivity. With this visual approach it is possible to identify if the prediction 

inaccuracies are the result of the uncertainty in model inputs or due to model assumptions. 

1.1.1 Raceway Pond 

For the raceway pond using a fixed biomass concentration and fixed absorption coefficient resulted in 

the most accurate prediction of productivity. In figure 4-7 measured and predicted cumulative 

productivities are displayed. The upper and lower boundaries of the 95% confidence interval calculated 

from the model uncertainty are included. The overall model uncertainty is ±14.62 %. In the first 10 days 

of production various measurements are outside of the boundaries of prediction, meaning that the model 

under- or overestimated. However, after the 10th day of production the measurements were found to fall 

within the confidence interval of the predicted productivities. This indicates that after this period the 

uncertainties on the model inputs can explain the overall inaccuracies of the productivity predictions. This 

observation is supported by the results of the analysis of the used model interval on the accuracy of the 

model. There it was shown that deviations between measured and predicted are considerable large on 

smaller time frames less than a month. 

 

Figure	4-7.	Cumulative	productivity	in	the	raceway	pond	between	May	and	August	2014.	Comparison	of	experimental	data	
and	model	prediction.	Grey	dashed	line	represents	the	upper	and	lower	boundaries	of	the	confidence	interval	of	the	model	
attributed	uncertainty	(±14.62	%)	
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4.5.1 Horizontal Tubular PBR 

From the modelling scenarios of the horizontal tubular system different model settings resulted in the 

most accurate prediction of algae productivity. In most of the cases fixed biomass concentration, fixed 

absorption coefficient and fixed temperature resulted in the smallest deviation between measured and 

predicted productivity. Fixed values for these model inputs where used at production runs HD: 0.75 g L-1 

run 1, run 2, HD: 1.5 g L-1 Run 2, and HD: 2.5 g L-1. However during HD: 1.5 g L-1 Run 2, HD: 2.5 g L-1 

Run 1 and Run 2 the best results were achieved when introducing the measured culture temperature as 

model input. This model behaviour was explained due currently used temperature model. 

In figure 4-8 the outcome of the different model settings, which fitted the best to the respective 

production scenario, are illustrated. The upper and lower boundaries of the confidence interval of the 

model accuracy are included in this graphical representation. The boundaries were calculated from the 

model uncertainty obtained from the global uncertainty analysis, which was found to be ±11.27 %. In 

the most cases the measurements in the beginning of a production process were outside of the 

boundaries of the model prediction. In early phase of production the model over- or underestimated 

model productivity. However, after approximately a week of production the measurements fell inside the 

uncertainty range of the model prediction, leading to the conclusion that inaccuracies of the productivity 

predictions on a larger time frame could be addressed to the uncertainty of the model inputs. For 

production run HD: 1.5 g L-1 Run 2 and HD: 2.5 g L-1 Run 3, the measured algae productivity was found 

to be outside of the model prediction. However those two production runs are short and operational 

issues occurred which biased the calculated algae productivity. As previously discussed above, biofilm 

formation led to unreliable productivity measurements, which make the validation of the model with 

these production runs not feasible not feasible. Therefore they were excluded from the main body of this 

thesis. 

 

Generally, the fit of the model prediction of Slegers et al. [1] [2] [14] to the measured data obtained at 

AlgaePARC was very accurate over longer periods of time. However, at smaller time frames the model 

the deviation between measured and predicted productivity could be rather large. This is explained due 

to the delayed response of biology to changes in cultivation conditions, while the models assumed instant 

adaptation and operational issues (early or delayed harvesting). However, daily predictions are not 

needed when evaluating the potential of algae at commercial scale. Productivities predictions larger than 

a month are sufficient in order to assess the economical and environmental impact of algae 

biotechnology. As a last part the productivity models of Slegers et al. [1]–[3] are compared to reported 

outdoor productivities and the compared other modelling studies used in various assessments. 



  Results and Discussion |  

Lukas Trebuch  Master Thesis 

43 

 

Figure	4-8.	Cumulative	productivity	in	the	horizontal	tubular	system	at	different	biomass	concentrations	(0.75	g	L-1,	1.50	g	L-
1,	2.50	g	L-1)	and	production	runs	between	May	and	October	2014.	Comparison	of	experimental	data	and	model	prediction	is	
made.	Grey	dashed	line	represents	the	upper	and	lower	boundaries	of	the	confidence	interval	of	the	model	attributed	
uncertainty	(±11.27	%)	
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4.6 Fitness of the model for economic and environmental 

assessments 
 

In the Introduction it was stated that a wide range of algae productivity assumptions are used in past 

assessments. This wide range resulted from the large uncertainty associated with full-scale productivity 

predictions. The productivity predictions of the models of Slegers et al. [1]–[3] were found to be in the 

lower third of the productivity assumptions reported in various assessments. An average daily 

productivity of 10.7±1.0 [g m-2 day-1] is predicted for the raceway pond for the Netherlands. When 

compared to literature the prediction for the raceway pond was found to be in between reported 

productivities in England (6.8 g m-2 day-1) [60] and Italy (12.9 g m-2 day-1) [61]. Daily productivities for 

the horizontal tubular PBR were depended on the biomass concentration used during production with the 

highest productivity found at a biomass concentration of 1.5 g L-1. The three averaged daily 

productivities predictions obtained for the three different turbidostat regimes are displayed in table 4-3. 

The average productivity over all production runs is 9.8±1.1 g m-2 day-1. However there is only limited 

reported productivity data for tubular systems using various reactor set-ups mainly in southern locations 

such as Spain. Therefore a comparison of productivities for the Netherlands is not feasible.  

 

System	 Biomass	Concentration	 Averaged	Daily	Productivity		
	 [g	L-1]	 [g	m-2	day-1]	
Raceway	Pond	 0.5	 10.7	±	1.0	
	 	 	
Horizontal	Tubular	PBR	 0.75	 7.2	±	0.8	
	 1.50	 11.7	±	1.3	
	 2.50	 10.4	±	1.2	
	 	 9.8	±	1.1	(average)	
	 	 	

Table	4-3.	Averaged	daily	productivities	[µmol	m-2	day-1]	predicted	by	the	productivity	models	of	Slegers	et	al.	[1]–[3]	for	the	
raceway	pond	and	horizontal	tubular	PBR	at	different	turbidostat	regimes.	

 

In the scenario studies of Slegers et al. [1] [3] algae productivity in the Netherlands, France and 

Algeria for cultivation in raceway pond and horizontal tubular PBR was assessed (appendix D: table D-1). 

In this study a relative increase in productivity of 57.9 % for France and 115.1 % for Algeria, in respect 

to the Netherlands, for the horizontal tubular PBR was reported. For the raceway pond only Algeria (69.9 

% productivity increase) was investigated, since climatological data for France were missing. The 

productivity predictions obtained in this thesis were extrapolated with these relative productivity 

increases. This resulted in productivity projections for the raceway pond of 18.2±1.7 g m-2 day-1 for 

Algeria and for the horizontal tubular PBR in 15.5±2.1 g m-2 day-1 in France, 21.2±2.8 g m-2 day-1 in 

Algeria. The productivity projection of the raceway pond for Algeria is comparable with a productivity of 

16.4 g m-2 day-1 obtained in California, which is on a similar latitude than Algeria [62]. The productivities 

obtained for the horizontal tubular PBR are comparable to productivities found in literature; for France a 

modelled productivity between 14.1 – 16.8 g m-2 day-1 was obtained by Fernández et al. [63]; in Spain 

productivity of 19.1–19.8 g m-2 day-1 [29] are reported and for Brazil modelled productivities of 25.0 g 

m-2 day-1 [42] are obtained – these productivities are comparable to the model predictions for Algeria. 

However further validation for these locations and climatological conditions are needed to verify the use 

of the productivity models under these conditions. 
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In the study of Rogers et al. [64] the biofuel production costs using a raceway pond are investigated. 

In a sensitivity analysis performed during this study, the uncertainty attributed with the productivity was 

assumed to be ±33 %. In comparison the productivity model of Slegers et al. [1]–[3] showed an 

associated uncertainty of ±14.62 % (raceway pond) and ±11.27 % (horizontal tubular PBR). When 

translated into the biofuel cost variation the range in which the biofuel cost are varying can be reduced 

by 55.7 % and 65.8 %. This would significantly reduce the uncertainty in economical assessments and 

will help to evaluate the potential of algae as a renewable feedstock. 

The productivity models of Slegers et al. [1]–[3] were found to accurately predict algae productivity in 

the Netherlands and showed similar productivity values when compared to other reported outdoor 

productivities in similar climatological conditions. Extrapolation productivities to locations such as France 

and Algeria resulted in comparable values compared to reported productivities in literature. In addition it 

was demonstrated that the model accuracy has the potential to eliminate uncertainties in production 

costs. Therefore the productivity models are considered as suitable for application in life cycle, techno-

economical and scalability assessments in the Netherlands. 
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5 Conclusion 

 

In this study the productivity models for the open raceway pond and the horizontal tubular PBR 

developed by Slegers et al. [1]–[3] were validated with productivity data obtained at AlgaePARC with 

outdoor systems. A principal component analysis (PCA) and bivariate correlation analysis (BCA) showed 

a strong correlation between light, temperature, biomass concentration, absorption coefficient and 

measured productivity during algae production in the pilot-scale systems. The strong negative correlation 

between biomass concentration and absorption coefficient with productivity indicate that during 

cultivation the raceway pond was light limited. While in the horizontal tubular PBR productivity was 

highly dependent on the culture temperature.  

The model accuracy was assessed using algae species specific, reactor specific parameters and 

climatological data during the production period as model inputs. The models were found to accurately 

predict productivity for the raceway pond and the horizontal tubular PBR under outdoor conditions. The 

model of the raceway pond predicted with an overall accuracy of ±3.23 % over 45 days of cultivation. 

While the model of the horizontal tubular PBR predicted with an overall accuracy of ±3.55 % over 121 

days of cultivation. When compared to other studies the accuracy of the productivity models of Slegers et 

al. was found to be higher. The best model fit was found when model inputs are taken constant by using 

the average measured value over the production period.  

As experimentally determined parameters and variables were necessary as model input, it was 

assessed to what degree the uncertainty of the model inputs had an influence on the uncertainty of the 

model output. By using a global uncertainty/sensitivity analysis, the uncertainty of the model output was 

found to be ±14.67 % for the raceway pond and ±11.26 % for the horizontal tubular PBR. While the 

calculation of the light path and the growth model had the largest influence in the productivity model of 

the raceway pond, the temperature model primarily determined the output of the horizontal tubular PBR. 

In general the physical part of the model showed a larger impact in the horizontal tubular system 

compared to the raceway pond where the biological model was the most influential. This can be 

explained by the stronger link to light and temperature in the productivity model of the horizontal tubular 

system. With the results of the uncertainty analysis it was shown that differences between measured and 

predicted productivity were primarily caused by experimental errors, rather than by model assumptions. 

With the range of productivity prediction and the obtained model uncertainty the fitness of the model 

for economic and environmental assessments in the Netherlands was investigated. The model was found 

to predict in the same range as reported outdoor productivities. In addition it was shown that the 

productivity models have the potential to reduce uncertainties in biofuel cost by half. This relative small 

model uncertainty and the good representation of outdoor cultivation on longer production periods (>1 

month), makes the productivity models suitable for application in life cycle, techno-economical and 

scalability assessments. In this way, the validated productivity models will help to evaluate the potential 

of microalgae as a renewable feedstock for food, feed, bio-chemicals and biofuel in the future. 
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6 Perspectives 

 

The models developed by Slegers et al. [1]–[3] were found to accurately predict algae productivity for 

the raceway pond and the horizontal tubular PBR in the Netherlands under outdoor conditions. The 

overall accuracy for the raceway pond is +3.23 % over 45 days of cultivation and for the horizontal 

tubular PBR -3.55 % over 121 days of cultivation. The best model fit was obtained when the model 

inputs were taken constantly (using the average measured value over the complete production period). 

The global uncertainty/sensitivity analysis showed that the uncertainty of the model output was found to 

be ±14.67 % for the raceway pond and ±11.26 % for the horizontal tubular PBR. This uncertainty 

analysis indicated that differences between measured and predicted productivity were caused by 

experimental errors rather than by model assumptions. The sensitivity analysis of the productivity 

models also revealed that growth model had the largest influence in model of the raceway pond, the 

temperature model in the horizontal tubular PBR was more important. In the horizontal tubular PBR the 

physical part of the model showed a larger impact compared to the raceway pond, since the model is 

stronger linked to light and temperature. Even though the productivity models showed a good overall 

performance, various suggestions for future work are proposed: a) A different approach for the 

calculation of the measured algae productivity, b) validation with data-sets obtained in different years, 

seasons and location, c) validation of the raceway pond at different biomass concentration, d) a detailed 

evaluation of the temperature model, e) implementing photo-acclimation and nightly biomass loss. 

 

6.1 Extending/Expanding validation  
The validation performed in this thesis was based on productivity data obtained from cultivation 

experiments in 2014. Since the data set used in this thesis could bias the validation, we suggest that the 

validation should be extended with datasets of several production runs of various years obtained at 

AlgaePARC (e.g. dataset of AlgaePARC from 2015). In this way, the influence of the year-to-year 

variation in weather conditions on the model fit can be investigated. This would allow further 

investigation and improvement of the accuracy of the productivity models in the Netherlands. In 

addition, the validation of the productivity models should be further extended to different locations and 

different climatological conditions where productivity data are available (e.g Southern Europe: Italy, 

France, Spain). This will extend the understanding of how the model incorporates different weather 

conditions and location specific parameters. Hence, a successful full validation would verify the use of the 

productivity models in various algae life cycle, techno-economical and scalability assessments at different 

location and climatological conditions.  

In addition it is suggested to further investigate the influence of the used interval for the model input, 

especially in respect to light and temperature. In this thesis only the intervals of 10 min and averaged 

values over the production period are taken as temperature input and only a 10 min interval for light. An 

evaluation of temperature changes every hour, day, week and month (averaged value of the period) to 

use as input are therefore suggested. The same is recommended for light as well. This will give further 

insight into the model behaviour in respect to different intervals used for the model inputs. 
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6.2 Measured algae productivity 

In this thesis the calculation of measured algae productivity was based on the volume harvested from 

the production system and the average of the dry weight concentration measurement in the morning of a 

production day (appendix A: equation A-1). This approach could bias the actual algae productivity, since 

the volume harvested is influenced by rain and evaporation in the raceway pond. Furthermore, the 

biomass concentration in the morning is not representative for the biomass concentration at which 

harvesting starts. Therefore, for future research it is suggested to calculate algae productivity on the 

basis of the actual biomass concentration used as set point for harvesting, e.g with the turbidity value. 

This will give a more accurate daily productivity measurement, especially for the raceway pond where 

harvesting occurred also due to liquid level increase by rain. 

 

6.3 Influence of biomass concentration in raceway pond 
As shown in Results & Discussion the biomass concentration used during cultivation of the raceway 

pond led to light limitation during production. Since biomass concentration had a significant impact on 

the model output it is important to validate the productivity model of the raceway pond against 

productivity data obtained at different biomass concentrations. Therefore it is suggested that similar to 

the horizontal tubular PBR the validation should be performed for a low, medium and high biomass 

concentration (e.g low: 0.15 g L-1, middle: 0.25 g L-1, high: 0.5 g L-1). This will give valuable insight into 

the model behaviour at different biomass concentration and the influence of the modelling of light 

attenuation (equation 3-6). 

 

6.4 Temperature model 
The temperature model used in the productivity models of Slegers et al. [1]–[3] is dependent on β, the 

dimensionless parameter fit to moderate the µ(T) curve. This parameter was determined previously by 

Van Dam [34] by fitting the temperature dependent factor (fT) (equation 3-5) to growth rates found at 

four different temperatures (18°C, 25°C – optimal growth temperature, 32°C, 38°C – lethal 

temperature) and continuous light (24 hours) by Sukenik et al. [48]. A literature comparison performed 

by Van Dam showed that available data is limited and that during the determination of growth rates at 

different temperature various biomass concentrations, light intensities and reactor design are used. This 

significantly influenced the results of the conducted experiment and therefore Van Dam suggested to 

obtain more reliable data for the determination of β. When looking at the current fit of the curve obtained 

by Van Dam to the experimental data of Sukenik et al. [48], it can be noticed that between the optimal 

growth temperature and the lethal temperature the curve declines faster than the experimental value 

indicated (appendix D: figure D-1). At a temperature of 32 °C the predicted growth rate is almost half of 

the measured value of Sukenik et al. [48]. At the same time the fit of the curve on lower temperatures 

than the optimal growth temperature is higher than the experimental value at 18°C leading to a slight 

overestimation at these temperatures. This observation is coinciding with the model behaviour at the 

horizontal tubular PBR where the model overestimated at lower temperatures (<25°C) and 

underestimates at higher temperatures (>25°C). Even though four values are enough for fitting the 

Arrhenius equation (equation 3-5) the current fit indicates that the fitting procedure of Van Dam [34] 

could be imperfect. Therefore future work has to focus on correct determination of β for Nannochloropsis 
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sp. eventually with experiments determine growth rates at different temperatures conducted at 

AlgaePARC.  

Further, the current temperature model neglects the dynamics of biology to temperature changes. 

Therefore research should be focus on understanding and mathematically describing the adaption of 

algae cells to temperature over time. Experiments under changing light and temperature conditions at 

different time steps (e.g 10 min, 30 min, 60 min, 120 min, 180 min) will give insight into the dynamics 

of algae biology.  

Improving the temperature model would increase the accuracy of productivity prediction especially of 

the horizontal tubular PBR, since the model output is highly determined by the culture temperature. In 

addition the model accuracy at location with elevated irradiances and culture temperatures (e.g. France, 

Algeria) will depend strongly on the temperature range in which the model predicts accurately. A 

successful determination of the temperature model will significantly increase the model fit in a broader 

temperature range and will increase the predictions on smaller time scale for both systems.  

 

6.5 Implementing photo-acclimation and nightly biomass loss 
As showed in Results & Discussion the model fit is decreasing on timeframes less than a month. It is 

deviating the most at daily productivity predictions. This deviation could be reduced by addressing 

several facts: The model tends to over- and underestimates at certain cultivation conditions. In the 

horizontal tubular PBR it was found that at high light intensities the model overestimates, while at low 

light intensities the model underestimates. The behaviour at the different light conditions can be 

explained due the lacking photo-acclimation of the model. The absorption coefficient, which is used as a 

model input is averaged over the production period and therefore at days with high average light 

intensities the model overestimates and at low average light intensities the model underestimates, 

because the adapted growth model (equation 3-3) does not adapt to the current light conditions. 

However in areas with large variations in light conditions like the Netherlands the incorporating of 

varying absorption coefficients during the day and year may be appropriate [12]. The implementation of 

photo-acclimation would increase the model fit on smaller intervals significantly, since absorption 

coefficient can vary daily. The model of Slegers et al. [1]–[3] used originally the growth relation 

developed by Geider et al. [51] including light acclimation. Therefore a further adaptation is proposed to 

the productivity models used in this thesis to incorporate varying absorption coefficients. This will 

increase the model fit on smaller time intervals significantly. 

Another issue that could be addressed when improving the model performance at smaller time interval 

is the calculation of nightly biomass loss. In a comparison of the average nightly biomass losses 

measured at AlgaePARC and predicted by the model a significant different trend could be observed 

(appendix D). The modelled biomass loss showed to be increasing with biomass concentration. This was 

explained due to the fact that the rate of night time respiration is modelled using first-order kinetics in 

regard to cell concentration. Further the night time respiration is only associated with the maintenance 

coefficient and therefore constant over time. However, the opposite trend was observed for the 

measured biomass loss recorded at AlgaePARC. The calculated biomass loss was decreasing with 

increasing biomass concentration. Similar results were obtained by Michels et al. [65] for Tetraselmis 

suecica. In that study the highest nightly biomass loss rate was recorded at the optimal biomass 

concentration of this organism in the production system used during research. Michels et al. explained 

this trend due to higher maintenance costs due to the increasing growth rate. The night metabolism is 

determined by numerous environmental factors including prior light intensity history, nutrient status, 
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temperature and the species itself [66]. In the study of Vítová et al. [67] it was shown that the 

respiration duration of the C. reinhardtii cell cycle is affected by both prior experienced light intensity and 

temperature. The study of Le Borgne et al. [68] stresses that although biomass concentration influences 

the biomass loss during night, the effect is negligible compared with that of temperature. Therefore, it is 

suggested to investigate into the modelling of nightly biomass loss and couple it to temperature and 

specific growth rate. In order to validate the incorporation of biomass loss correctly two biomass 

concentration measurements could be performed per day; one at sunrise and one at sunset. In this way 

the algae productivity during the day and the biomass loss during night can be validated independently, 

as showed previously by Béchet et al. [20] 

 

With even further refinement and validation of the algae productivity model of Slegers et al. [1]–[3] 

more accurate algae biomass predictions can be made. This will extend the application range in various 

algae assessments at different locations and will even further leverage the reliability of the model in the 

scientific and economic community. 
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Appendix A 
 

In this part of the appendix more detailed information on the research facility AlgaePARC at WUR is 

provided. Schematic drawings of the raceway pond (figure A-1) and horizontal tubular PBR (figure A-2) 

are displayed. Further, measurements taken (table A-1), the light and temperature distribution  

(figure A-3 and figure A-4) and the general operational conditions (table A-2) during the production runs 

are given. Information that is not shown can be found in the paper of Bosma et al. [46] on the design 

and construction of this facility.  

 

A–1 Production Systems at AlgaePARC 

A–1.1 Raceway Pond 

 

 

 

 
Figure	A-1.	Schematic	drawing	of	the	raceway	pond.	Dashed	lines	show	control	strategies.	Abbreviations:	DO,	dissolved	
oxygen;	MFC,mass	flow	controller;	T,	temperature;	turb,	turbidity	[46].	
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A–1.2 Horizontal Tubular PBR 

 
Figure	A-2.	Schematic	drawing	of	the	large	horizontal	tubular	system	(HD).	Dashed	lines	show	control	strategies.	
Abbreviations:	DO,	dissolved	oxygen;	MFC,	mass	flow	controller;	T,	temperature;	turb,	turbidity	[46].	

 

A–1.3 Measurements performed at AlgaePARC 

In table A-1 all the measurements conducted during production at AlgaePARC are listed. In addition the 

used Sensor is indicated. 

	

Measurements/Equipment	 Sensor	 Information	
	 	 	
Light	measurement	(PAR)	 CaTec	Li-Cor	LI-190SA	 PAR,	μmol	m−2	s−1	
Pyranometer	 Delta-T	devices	Sunshine	sensor	BF5	 Direct	and	indirect	light	
Gas	analysis	 Servomex	4100	 0–100%	O2	

0–2.5%	CO2	
Temperature	 Endress	+	Hauser	TSM487-AFE	 Easytemp	
Nutrient	addition	 Sartorius	Midrics	MAPP	 DC/FE	
Water	flow	 Kobold	MIK-5NA-20-A-E34R	 MIK	
Sample	gas	cooler	 Buhler	technologies	PKE511	 Peltier	cooler	
Water	level	 Endress	&	Hauser	

FTW31-B2A5CA0A	
5	pins	

pH/temperature	 Elscolab	InPro3250/120/PT100	 Stratos	Pro	
Dissolved	oxygen	 Mettler	Toledo	InPro6800/12/220	 M300	
Turbidity	 Optek	AS16-05	 Control	4000	
Carbon	dioxide	 Bronkhorst	F201CV	 EL-FLOW	
Recirculation	flowa	 Endress	+	Hauser	

50	W40-UA0A1AA0AAAA	
	

Airflowa	 Kobold	DOG-1101L-F25N-S-D	 DOG	
	 	 	
a	only	tubular	system	 	 	
 

Table	A-0-1.	Specification	of	online	measurements	and	equipment	for	(1)	Raceway	Pond,	(2)	horizontal	tubular	PBR	and	(3)	
vertical	stacked	tubular	PBR	[46]	
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A–1.4 Measured Productivity Data 

 

With the results of the biomass measurements (offline dry weight measurements), the volume added 

per day and the occupied ground area, the areal productivities can be determined. Daily productivities  

[g m-2 day-1] at AlgaePARC are calculated by: 

 

 

!!"# =
!!"#$!%# ∗ !!""#"

!!"#$%&
 Equation A-1 

 

 

where !!"#$!%# [g L-1]is the averaged dry weight over the production period, !!""#" [L day-1] is the volume 

of water added per day to the system and !!"#$%& [m2] is the ground area covered. 

 
 

A–1.5 Light and temperature conditions at pilot-scale production systems at AlgaePARC 

 
 

Figure	A-3.	Boxplot	of	light	Intensity	[µmol	m-2	s-1]	distribution	found	in	the	different	runs	of	the	raceway	pond	and	
horizontal	tubular	system	at	AlgaePARC	in	2014.	

RP:	0.50	gL-1 HT:	0.75	gL-1 Run	1 HT:	0.75	gL-1 Run	2 HT:	1.50	gL-1 Run	1 HT:	1.50	gL-1 Run	2 HT:	2.50	gL-1 Run	1 HT:	2.50	gL-1 Run	2 HT:	2.50	gL-1 Run	3

Production Run
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Figure	A-4.	Boxplot	of	temperature	[°C]	distribution	found	in	the	different	runs	of	the	raceway	pond	and	horizontal	tubular	
system	at	AlgaePARC	in	2014.	

 

RP:	0.50	gL-1 HT:	0.75	gL-1 Run	1 HT:	0.75	gL-1 Run	2 HT:	1.50	gL-1 Run	1 HT:	1.50	gL-1 Run	2 HT:	2.50	gL-1 Run	1 HT:	2.50	gL-1 Run	2 HT:	2.50	gL-1 Run	3

Production Run
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Table	A-0-2.	Summary	of	the	operational	conditions	during	cultivation	in	the	pilot-scale	systems	at	AlgaePARC.	Displayed	are	the	production	period;	areal	productivity;	biomass	concentrations;	
minimum,	average	and	maximum	absorption	coefficient;	total	light;		and	minimum,	average	and	maximum	temperature	of	different	runs	performed.	

System	 Period	 Pexp	 Cx,	average	 Kabs,	min		 Kabs,	average		 Kabs,	max	 Itotal		 Tmin	 Taverage		 Tmax	
	 	 [g	m-2	day-1]	 [g	L-1]	 [m2	kg-1]	 [m2	kg-1]	 [m2	kg-1]	 [mol	m-2	day-1]	 [°C	day-1]	 [°C	day-1]	 [°C	day-1]	
Raceway	Pond	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
Run	1	 30/05/2014	–	15/08/2014	 10.4	 0.44	 126.5	 146.96	 189.4	 38.26	 20.7	(11.5)	 24.0	 28.01	(33.06)	
	 	 	 	 	 	 	 	 	 	 	
Horizontal	Tubular	PBR	 	 	 	 	 	 	 	 	 	 	
Cx	=	0.75	g	L-1	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
Run	1	 24/08/2014	–	08/09/2014	 7.6	 0.71	 118.1	 160.66	 180.3	 26.64	 20.7	(18.9)	 25.3	 30.8	(32.5)	
Run	2	 18/08/2014	–	30/09/2014	 7.1	 0.95	 105.1	 121.81	 130.8	 18.95	 20.9	(21.7)	 24.4	 28.5	(33.0)	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
Cx	=	1.50	g	L-1	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
Run	1	 02/04/2014	–	22/05/2014	 8.4	 1.67	 112.7	 150.60	 187.0	 30.03	 19.6	(16.9)	 23.6	 28.6	(34.0)	
Run	2	 29/05/2014	–	21/06/2014	 11.6	 1.54	 154.1	 175.70	 197.2	 38.00	 20.4	(17.8)	 25.4	 31.0	(33.2)	
	 	 	 	 	 	 	 	 	 	 	
Cx	=	2.50	g	L-1	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
Run	1	 25/06/2014	–	07/07/2014	 7.2	 2.71	 192.7	 210.66	 231.5	 37.37	 20.8	(19.8)	 25.9	 32.0	(34.0)	
Run	2	 17/07/2014	–	29/07/2014	 13.5	 1.87	 165.0	 213.34	 242.7	 37.13	 20.2	(17.1)	 27.7	 31.1	(33.7)	
Run	3	 30/07/2014	–	06/08/2014	 5.5	 2.33	 246.8	 250.53	 253.5	 40.80	 21.2	(20.0)	 26.3	 31.5	(32.0)	
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Appendix B 

B–1  Data Analysis 
 

B–1.1   Finding Gaps 

Gaps in the dataset were found with a function created in Excel. The function detects greater gaps than 

the specification in a time series. In the example a gap greater than 10 min (1/1400 of a day) between 

cell A2 and A1 is searched: 

 

 

=if(A2-A1>1/1400; "Gap"; "") Equation B-1 

 

 

B–1.2  Data selection 

An extensive list of all the days excluded from the validation procedure can be found in the file: 

 

“Productivity Data Evaluation – HT.xlsx” 

 

 

B–1.3  Exploratory Data Analysis 

Before any statistical analysis a dataset has to be explored, otherwise inferences cannot be made. The 

data exploration was performed using SPSS Statistics (v22). 

 

From the menu in SPSS the following option is selected: 

 

Analyze à Descriptives à Explore 

 

Important are the plots on normality with the statistical test and the Kolmogorow-Smirnow test. The 

Kolmogorow-Smirnow should be not significant for normality. If the variables are not normally 

distributed they are not suitable for principal component analysis and bivariate correlation analysis. 
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B–1.4 Principal Component Analysis (PCA) 

PCA can be generalized as correspondence analysis (CA) in order to handle qualitative variables and as 

multiple factor analysis (MFA) in order to handle heterogeneous sets of variables. Another advantage of 

PCA is that once patterns have been found they can be compressed, ie. by reducing the number of 

dimensions, without much loss of information [69]. Mathematically, PCA depends upon the eigen-

decomposition of positive semi-definite matrices and upon the singular value decomposition (SVD) of 

rectangular matrices [44]. The PCA is performed using SPSS Statistics (v22). The settings within the 

program used for this analysis are as following: 

 

From the menu in SPSS the following option is selected: 

 

− Analyze à Dimension Reduction à Factor Analysis 

 

The following options are chosen during conducting the analysis: 

 

− Descriptives: univariate, initial solution, coefficients, significance levels, KMO 

− Extraction: unrotated factor solution, screen plot 

− Options: sorted, supress small coefficients: 0.4 

 

The solution of the PCA is checked on the number of components. After that it is decided on the 

number of components that should be used for the further analysis. 

 

The following options are chosen for the PCA analysis with reduced number of components: 

 

− Number of fixed factors: usually 2 or 3 depending on the result of the initial PCA 

− Rotation: loading plots 

− Rotated solution of factor analysis is obtained either by using Varimax or Oblimin 

 

 

Following criteria have to be checked in the outcome of the analysis conducted in SPSS. When they are 

not applying the analysis is not significant: 

 

KMO/Barlet < 0.05 

Communalities > 0.6 

FVE > 0.6 

Screen plot of variance explained should be in an elbow shape 

Component matrix: 

Classify the variable to the component that has the higher score (loading) 

Correlation Matrix:  

Coefficients between 0.3 – 0.9 
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B–1.4.1 Raceway Pond 

Total	Variance	Explained	

Component	 Initial	Eigenvalues	 Extraction	Sums	of	Squared	Loadings	 Rotation	Sums	of	Squared	Loadings	

Total	 %	of	Variance	 Cumulative	%	 Total	 %	of	Variance	 Cumulative	%	 Total	 %	of	Variance	 Cumulative	%	

1	 4.867	 48.672	 48.672	 4.867	 48.672	 48.672	 4.012	 40.121	 40.121	

2	 2.588	 25.884	 74.556	 2.588	 25.884	 74.556	 3.443	 34.434	 74.556	

3	 1.608	 16.083	 90.638	
	 	 	 	 	 	

4	 .633	 6.332	 96.970	
	 	 	 	 	 	

5	 .217	 2.175	 99.145	
	 	 	 	 	 	

6	 .060	 .605	 99.750	
	 	 	 	 	 	

7	 .013	 .125	 99.875	
	 	 	 	 	 	

8	 .008	 .084	 99.959	
	 	 	 	 	 	

9	 .004	 .036	 99.995	
	 	 	 	 	 	

10	 .001	 .005	 100.000	
	 	 	 	 	 	

Extraction	Method:	Principal	Component	Analysis.	
	

Table	B-0-1.	Total	variance	explained	of	the	PCA	of	the	raceway	pond	

 
Figure	B-1.	Plot	of	the	total	variance	explained	of	the	PCA	of	the	raceway	pond	
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Figure	B-2.	Rotated	component	plot	of	the	PCA	result	performed	on	measured	variables	of	the	raceway	pond.	Abbreviations:	
Abslight	–	total	light	input	[mol	m-2	day-1];	Avglight	–	average	light	input	[µmol	m-2	s-1];	Measured	–	measured	areal	
productivity	[g	L-1	day-1];	Tmax	-	maximum	culture	temperature	[°C	day-1];	abscoef	–	spectrally	averaged	absorption	
coefficient	[kg	m-2];	Tmin	-	minimum	culture	temperature	[°C	day-1];	Taverage	–	average	culture	temperature		
[°C	day-1];	cXa	–	measured	biomass	concentration	[g	L-1];	AvgTurb	–	average	culture	turbidity	[NTU];	

 
Figure	B-3.	Component	matrix	obtained	from	the	PCA	on	the	raceway	pond.	This	matrix	contains	of	two	principal	
components.	The	values	represent	how	large	the	contribution	of	a	variable	is	to	the	component.	In	the	case	of	MaxTem	the	
the	higher	value	indicate	that	this	variable	is	attributed	with	the	first	component.	Abbreviations:	Abslight	–	total	light	input	
[mol	m-2	day-1];	Avglight	–	average	light	input	[µmol	m-2	s-1];	Measured	–	measured	areal	productivity	[g	L-1	day-1];	Tmax	-	
maximum	culture	temperature	[°C	day-1];	abscoef	–	spectrally	averaged	absorption	coefficient	[kg	m-2];	Tmin	-	minimum	
culture	temperature	[°C	day-1];	Taverage	–	average	culture	temperature	[°C	day-1];	cXa	–	measured	biomass	concentration	[g	L-
1];	AvgTurb	–	average	culture	turbidity	[NTU	
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B–1.3.2 Horizontal Tubular PBR 

 
Figure	B-4.	Rotated	component	plot	of	the	PCA	result	performed	on	measured	variables	of	the	horizontal	tubular	PBR	
Cx=0.75	g	L-1.	Abbreviations:	PFDmax	–	max	light	input	[mol	m-2	day-1];	PFDavg	–	average	light	input	[µmol	m-2	s-1];	Pareal	–	
measured	areal	productivity	[g	L-1	day-1];	Tmax	-	maximum	culture	temperature	[°C	day-1];	Kabs	–	spectrally	averaged	
absorption	coefficient	[kg	m-2];	Tempmin	-	minimum	culture	temperature	[°C	day-1];	Tavg	–	average	culture	temperature	[°C	
day-1];	DWcalc	–	measured	biomass	concentration	[g	L-1];	Turbavg	–	average	culture	turbidity	[NTU];	

 
Figure	B-5.	Rotated	component	plot	of	the	PCA	result	performed	on	measured	variables	of	the	horizontal	tubular	PBR	
Cx=1.50	g	L-1.	Abbreviations:	PFDmax	–	max	light	input	[mol	m-2	day-1];	PFDavg	–	average	light	input	[µmol	m-2	s-1];	Pareal	–	
measured	areal	productivity	[g	L-1	day-1];	Tmax	-	maximum	culture	temperature	[°C	day-1];	Kabs	–	spectrally	averaged	
absorption	coefficient	[kg	m-2];	Tempmin	-	minimum	culture	temperature	[°C	day-1];	Tavg	–	average	culture	temperature	[°C	
day-1];	DWcalc	–	measured	biomass	concentration	[g	L-1];	Turbavg	–	average	culture	turbidity	[NTU];	
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Figure	B-6.	Rotated	component	plot	of	the	PCA	result	performed	on	measured	variables	of	the	horizontal	tubular	PBR	
Cx=2.50	g	L-1.	Abbreviations:	PFDmax	–	max	light	input	[mol	m-2	day-1];	PFDavg	–	average	light	input	[µmol	m-2	s-1];	Pareal	–	
measured	areal	productivity	[g	L-1	day-1];	Tmax	-	maximum	culture	temperature	[°C	day-1];	Kabs	–	spectrally	averaged	
absorption	coefficient	[kg	m-2];	Tempmin	-	minimum	culture	temperature	[°C	day-1];	Tavg	–	average	culture	temperature	[°C	
day-1];	DWcalc	–	measured	biomass	concentration	[g	L-1];	Turbavg	–	average	culture	turbidity	[NTU];	

B–1.4 Bivariate Correlation Analysis (BCA) 

The BCA is performed on the measured variables during the cultivation at AlgaePARC. The analysis is 

conducted in SPSS Statistics (v22). 

 

From the menu in SPSS the following option is selected: 

 

Correlate à Bivariate 

 

The correlation factors of the analysed variables on measured productivity are displayed in figure B-7.  
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Figure	B-7.	The	correlation	factor	of	measured	variables	from	the	raceway	pond	and	the	different	turbidostat	operations	of	
the	horizontal	tubular	system	in	respect	to	the	measured	productivity.	Abbreviations:	Itotal	-	total	light	input	[mol	m-2	day-1];	
Taverage	-	average	culture	temperature	[°C	day-1];	Tmin	-	minimum	culture	temperature	[°C	day-1];	Tmax	-	maximum	culture	
temperature	[°C	day-1];	K	abs	–	spectrally	averaged	absorption	coefficient	[kg	m-2];	Cx	–	biomass	concentration	[g	L-1].	
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Appendix C 

C–1  Local Uncertainty/Sensitivity Analysis 
 

Prior to the global uncertainty/sensitivity analysis a local uncertainty/sensitivity analysis was 

performed. The drawbacks of such a way of computing sensitivity are that it depends on the linearity of 

the model, and no interactions of inputs are studied [55]. For this analysis the same uncertainty ranges 

for the model inputs were chosen as for the global uncertaint/sensitivity analysis (table 3-8). The result 

of this local uncertainty/sensitivity analysis showed similar importance of the model inputs. In the case of 

the raceway pond the absorption coefficient, diffused light input and the interior light angle of diffused 

light showed similar importance. However the optimum and lethal temperature of Nannochloropsis sp. 

weighted more than the maximum specific growth rate and the respiration rate. In the case of the 

horizontal tubular system a much similar result compared to the global sensitivity analysis was obtained. 

The culture temperature had the largest effect on the model output, however when looking at beta, 

optimum and lethal temperature, they were almost equally important as the maximum specific growth 

rate and respiration rate. On the contrary in the global analysis the difference between these parameters 

was much more distinct. The tornado charts obtained from the local uncertainty/sensitivity analysis can 

be found in figure C-1 and figure C-2. 

Slegers et al. performed an global uncertainty and sensitivity for the productivity model used for single 

standing flat panels [2]. Since at this point experimental data were not available, the ranges in which the 

parameters vary were based on current best knowledge. The absorption coefficient was varied in a range 

of 50 %, functional cross section of the photosynthetic apparatus by 40 %, maximum specific growth 

rate and maximum respiration rate by 20 % each. The results obtained in this analysis corresponded 

with the result of the raceway pond obtained in this study. The most essential parameters found were 

the spectrum-averaged light absorption coefficient, maximum specific growth rate and functional cross 

section of the photosynthetic apparatus.  
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Figure	 C-1.	 Tornado	 Plot	 of	 the	 local	 sensitivity	 analysis	 performed	 on	 the	 productivity	 model	 of	 the	 raceway	 pond.	
Abbreviations:	 k_abs	 –	 spectrally	 averaged	 absorption	 coefficient;	 Topt	 –	 optimum	 growth	 temperature;	 Tlet	 –	 lethal	
temperature;	 beta1	 –	 temperature	 curve	 modulating	 factor;	 r_max	 –	 maintenance	 associated	 respiration	 rate;	 µmax	 –	
maximum	 growth	 rate;	 I_direct	 –	 direct	 light	 input;	 I_diffuse	 –	 diffuse	 light	 input;	 R_direct	 –	 reflection	 of	 direct	 light;	
R_diffuse	–	reflection	of	diffuse	light;	Beer_direct	–	 interior	 light	angle	of	direct	 light;	Beer_diffuse	–	interior	 light	angle	of	
diffuse	light;	T_water	–	culture	temperature.	

 
Figure	 C-2.	 Tornado	 Plot	 of	 the	 local	 sensitivity	 analysis	 performed	 on	 the	 productivity	model	 of	 horizontal	 tubular	 PBR.	
Abbreviations:	 k_abs	 –	 spectrally	 averaged	 absorption	 coefficient;	 Topt	 –	 optimum	 growth	 temperature;	 Tlet	 –	 lethal	
temperature;	 beta1	 –	 temperature	 curve	 modulating	 factor;	 r_max	 –	 maintenance	 associated	 respiration	 rate;	 µmax	 –	
maximum	 growth	 rate;	 I_direct	 –	 direct	 light	 input;	 I_diffuse	 –	 diffuse	 light	 input;	 R_direct	 –	 reflection	 of	 direct	 light;	
R_diffuse	–	reflection	of	diffuse	light;	Beer_direct	–	 interior	 light	angle	of	direct	 light;	Beer_diffuse	–	interior	 light	angle	of	
diffuse	light;	T_water	–	culture	temperature.	
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C–2  Global Uncertainty/Sensitivity Analysis 
In order to perform the global uncertainty/sensitivity analysis error factors (e) are introduced to the 

productivity model (table C-1). These factors cause a variation in the specified uncertainty range of the 

biological or physical model input that should be investigated. The concept of Monte-Carlo Samplings are 

used for causing the input fluctuations [55]. 

 

	

Model Input Implementation of error factor 

(1) Absorption coefficient !!"# =  !!"# ∗ !(1) 
(2) Specific growth rate µ!"# =  µ!"# ∗ !(2) 
(3) Maintenance associated respiration rate !! =  !! ∗ !(3) 
(4) Temperature curve modulating factor !!"# =  !!"# ∗ !(4) 
(5) Optimum growth temperature !!"#$%&% =  !!"#$%&% ∗ !(5) 
(6) Lethal temperature !!"#!!" =  !!"#!!" ∗ !(6) 
(7) Total Light Input !!"!#$ =  (!!"#$%& +  !!"##$%&) ∗ !(7) 
(8) Ground reflectivity !ℎ! = 0.2 ∗ !(8) 
(9) Interior light angle !!"#$! = !!"!#$ ∗ !!!!"#∗ !!∗!∗!(!) 

(10) Culture temperature ! = ! ∗ !(10) 
(11) Biomass Concentration !! =  !! ∗ !(11) 

 

Table	C-1.	Implementation	of	error	factors	in	the	productivity	models	of	Slegers	et	al.	[1]–[3]	

 

 

C–2.1 Biological model inputs 

 

 
Figure	C-3.	Total	Sobol-Coefficients	of	the	biological	parameters/variables	investigated	in	the	productivity	model	of	the	
raceway	pond.	
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Figure	C-4.	Total	Sobol-Coefficients	of	the	biological	parameters/variables	investigated	in	the	productivity	model	of	the	
horizontal	tubular	PBR.	

 

C–2.2 Physical model inputs 

 

 
Figure	C-5.	Total	Sobol-Coefficients	of	the	physical	parameters/variables	investigated	in	the	productivity	model	of	the	
raceway	pond.	

 
Figure	C-6.	Total	Sobol-Coefficients	of	the	physical	parameters/variables	investigated	in	the	productivity	model	of	the	
horizontal	tubular	PBR.	

 

C–2.3  Combination of biological and physical model inputs 
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Figure	C-7.	Total	Sobol-Coefficients	of	the	biological	and	physical	parameters/variables	investigated	in	the	productivity	
model	of	the	raceway	pond.	

 

For the plot displayed in the main body of the report, the total Sobol-coefficients are combined for the 

direct and diffuse light in order to compare it to the results of the horizontal tubular PBR. 

 

 
Figure	C-8.	Total	Sobol-Coefficients	of	the	biological	and	physical	parameters/variables	investigated	in	the	productivity	
model	of	the	horizontal	tubular	PBR.	
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Appendix D 

D–1  Productivity Model 
 

Original version: 

 

The specific growth rate is calculated according to the model developed by Geider et al. [51]. This 

growth model is connects the photosynthetic activity of the algae cell to the current light intensity and 

irradiance dependent chlorophyll a: carbon ratio. Photo inhibition is not taken into account [3].  

 

!!"#$%! !, ! = !!! 1 − !"# −! !!"# !, !  !!(!, !)
!!!

− !!"# Equation D-1 

 

The specific growth rate depends on the chlorophyll a:carbon ratio in the cell !! (g Chl a g-1 C) and on 

the photon flow density !!"# (µmol m-2 s-1) experienced by the algae cell at the position in pond depth z 

(m) and time t. The chlorophyll a: carbon ratio in the algae cell adapts to the according light conditions. 

The specific growth rate also depends on the maximum carbon specific rate of photosynthesis !!!  (s-1), 

the functional cross section of the photosynthetic apparatus ! (g C (mol-1 photons) m2 g-1 Chl a) and the 

maintenance metabolic coefficient !!"#. 

The functional cross section ! is taken constant. The chlorophyll a: carbon ratio is given by: 

 

!! !, ! =  !!,!"#
1

1 + !!"# ! !!"# !, !
2!!!

 Equation D-2 

 

D–2  Temperature Model 

 
Figure	D-1.	Curve	of	the	temperature	dependent	factor	(fT)	used	in	this	thesis.	Curve	is	fitted	to	data	by	Sukenik	et	al.	[48]	
with	a	beta	of	3.646	by	Van	Dam	[34].	
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D–3  Optimal Biomass Concentration 
 

 
Figure	D-2.	Influence	of	biomass	concentration	on	areal	productivity	[g	m-2	d-1]	in	the	raceway	pond.	

 

 
Figure	D-3.	Influence	of	biomass	concentration	on	areal	productivity	[g	m-2	d-1]	in	the	horizontal	tubular	PBR.	
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D–3  Cumulative Productivity 

During the production run Horizontal Tubular PBR (HT): 1.5 g L-1 Run 2, HT: 2.50 g L-1 Run 3 

operational issues and limited data points biased the model validation. During both runs biofilm 

formation led to unstable turbidostat signals. The readjustment of the set point to maintain constant 

biomass concentration had an significant effect on the harvesting procedure. 

 
Figure	D-4.	Different	modelling	scenarios	for	the	horizontal	tubular	system	at	a	biomass	concentrations	of		1.50	g	L-1	Run	2.	
Abbreviations:	Measured	–	measured	areal	productivity,	for	modelling	scenarios:	Cx	fix	–	biomass	concentration	is	fixed,	Cx	
var	–measured	biomass	concentration	is	used,	T	fix	–	culture	temperature	is	fixed,	T	measured	–	measured	culture	
temperature.	

 
Figure	D-5.	Cumulative	productivity	in	the	horizontal	tubular	system	at	a	biomass	concentrations	of	1.50	g	L-1	Run	2.	
Comparison	of	experimental	data	and	model	prediction	is	made.	Grey	dashed	line	represents	the	upper	and	lower	
boundaries	of	the	confidence	interval	of	the	model	attributed	uncertainty	(±11.27	%)	
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Figure	D-6.	Different	modelling	scenarios	for	the	horizontal	tubular	system	at	a	biomass	concentrations	of		2.50	g	L-1	Run	3.	
Abbreviations:	Measured	–	measured	areal	productivity,	for	modelling	scenarios:	Cx	fix	–	biomass	concentration	is	fixed,	Cx	
var	–measured	biomass	concentration	is	used,	T	fix	–	culture	temperature	is	fixed,	T	measured	–	measured	culture	
temperature.	

 

 
Figure	D-7.	Cumulative	productivity	in	the	horizontal	tubular	system	at	a	biomass	concentrations	of	2.50	g	L-1	Run	3.	
Comparison	of	experimental	data	and	model	prediction	is	made.	Grey	dashed	line	represents	the	upper	and	lower	
boundaries	of	the	confidence	interval	of	the	model	attributed	uncertainty	(±11.27	%)	

 
 

  



 | Appendix D 

Lukas Trebuch  Master Thesis 

74 

  
D–4  Average biomass loss during night 

The decrease of the biomass concentration during the night at AlgaePARC is calculated via the 

measured linear relationship between the turbidity and the biomass concentration obtained at AlgaePARC 

(equation D-3). The average biomass loss rate due to nightly respiration was determined at each 

biomass concentration (CX) used in the different algae production systems. The biomass concentration is 

converted from NTU into gL-1 with the following calculation: 

 

!! =
!!,!"#
!!"#:!"

 Equation D-3 

 

where !! is the biomass concentration in the culture [g L-1], !!,!"# is the biomass concnetraion in the 

culture in [NTU], and !!"#:!" is the ratio between NTU and dry weight. 

The average rate of biomass loss during the night was calculated with the following formula used by 

Michels et al. [65]: 

 

!"#$%&# !"#$%&& !"## =  ln (!!,!) − ln (!!,!)
∆!!"#!!

 Equation D-4 

 

where !!,! is the biomass concentration at sunset [g L-1], !!,! is the biomass concentration at sunrise [g L-

1], and ∆!!"#!! is the time period of the night from sunset to sunrise [h]. 

The nightly biomass loss measured at AlgaePARC for the different systems and biomass concentrations 

is compared to the biomass loss predicted by the productivity models.  

D–5  Biomass loss during night 
During the night, biomass concentration decreases. The endogenous respiration is the self-evident 

process responsible for this biomass loss. During respiration compounds like carbohydrates are used to 

provide the cells with sufficient energy to maintain their metabolic activity [14] [15]. Energy is used at 

the cost of biomass.  

In figure 11 the average nightly biomass losses measured at AlgaePARC and predicted by the model for 

the raceway pond and horizontal tubular system are compared to each other. Generally the algae 

productivity models of Slegers et al. [1], [3] result in an overestimation of biomass loss during night, 

since the biomass concentration was assumed to stay constant during the night. In addition the modelled 

biomass loss showed to be increasing with biomass concentration. This was explained due to the fact 

that the rate of night time respiration is modelled using first-order kinetics with regard to cell 

concentration. An equal biomass loss rate for every biomass concentration is taken, since it is assumed 

that night time respiration is only associated with the maximum respiration rate maintenance and 

therefore constant over time. This resulted in higher biomass losses at higher biomass concentrations 

due to prevailing respiration at night. 

However the opposite trend was observed for the measured biomass loss recorded at AlgaePARC. The 

calculated biomass loss was decreasing with increasing biomass concentration. At a biomass 

concentration of 0.5 g L-1 the biomass loss was recorded to be the highest, having the lowest biomass 

loss at a biomass concentration of 2.5 g L-1.Similar results were obtained by Michels et al. [65], which 

studied the effect of biomass concentration and growth rate on the nightly biomass loss rate of 

Tetraselmis suecica. In this study the highest nightly biomass loss rate was recorded at the optimal 
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biomass concentration of this organism in the production system used during research. This nightly 

biomass loss rate was higher than the ones found for biomass concentrations of 1.5 g L-1 and 2.0 g L-1. 

Michels et al. explained this trend due to higher maintenance costs due to the increasing growth rate.  

 

 
 

Figure	D-8.	The	measured	and	predicted	average	biomass	loss	of	different	biomass	concentration	in	the	raceway	pond	(RP)	
and	horizontal	tubular	system	(HD).	(Error	bars	represent	the	95%	confidence	interval)	

The night metabolism is also determined by numerous environmental factors including prior light 

intensity history, nutrient status, temperature and the species itself [66]. In the study of Vítová et al. 

[67] it was shown that the respiration duration of the C. reinhardtii cell cycle is affected by both prior 

experienced light intensity and temperature. Michels et al. [65] investigated in addition the effect of the 

growth rate on the nightly biomass loss. Microalgae with a higher growth rate due to higher prior light 

history were found to store relatively more energy in the formation of carbohydrates, which can then 

easier be used in the following night for the maintenance of the cells. Therefore, Michels et al. expect a 

linear correlation between the specific growth rate and the nightly biomass loss rate of the same day. 

This effect was also studied by Torzillo et al. [72] that found the similar relation ship between biomass 

composition and biomass loss during night. 

In the study of Le Borgne et al. [68] it is stresses that biomass concentration do have an influence on 

the biomass loss during night, but the effect is negligible compared with that of temperature. In the 

modelling study of Collins and Boylen, the specific rate of respiration of A. variabilis was shown to 

increase from 0.2 to 1.0 g carbon/g biomass d-1 when temperature varied from 10 °C to 40 °C. As 

temperature can drop by more than 10 °C at night during outdoor cultivation [41], the impact of 

temperature on night-time respiration must be considered. 

Although the model overestimated biomass loss during night, the net biomass gain could be accurate 

even if both the rates of growth and respiration were systematically overestimated, thereby cancelling 

out their respective errors.  
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D–6  Bar Plot 

 
 
Figure	D-9.	Bar	Plot	of	the	first	16	days	of	production	in	the	raceway	pond	at	AlgaePARC.	In	this	graph	the	instant	adaption	
of	the	model	and	the	delayed	reaction	of	biology	to	changes	in	light	and	temperature	can	be	observed.	

In figure D-9 five production days in the raceway pond are depicted. During this period an increase in 

total light intensity is recorded with a sudden drop at day 225. With increasing light, algae cells are 

slowly adaption to the new conditions. On the day where the light intensity decreases significantly the 

highest productivity is recorded meaning that the cells exhibit still a high specific growth rate. Only on 

the second day of the decrease in irradiance the effect on biology is notable. 

D–7  Influence of model variable on relative deviation 

 
Figure	D-10.	Influence	of	average	temperature	[°C	day-1]	on	relative	deviation	[%]	between	measured	and	predicted	
productivity.
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System	/Location	 P.	tricornum	
(Kabs=75)	

Increase	in	
productivity	in	

respect	to	the	base	
scenario	

T.	pseudonana	
(Kabs=269)	

Increase	in	
productivity	in	

respect	to	the	base	
scenario	

Average	
productivity	
increase	

Extrapolation	of	Model	
Prediction	

Extrapolation	
of	Model	

Uncertainty	

	 [g	m-2	day-1]	 	 [g	m-2	day-1]	 	 	 [g	m-2	day-1]	 [g	m-2	day-1]	

Raceway	Pond	
	 	 	 	 	 	 	Netherlands	(Base	Scenario)	 11.4	

	
2.2	

	 	
10.7	 1.0	

France	 --		
	

--	
	 	 	 	Algeria	 17.5	 53.5%	 4.1	 86.4%	 69.9%	 18.2	 1.7	

	 	 	 	 	 	 	 	Horizontal	Tubular	PBR	
	 	 	 	 	 	 	Netherlands	(Base	Scenario)	 12.7	

	
7.4	

	 	
9.8	 1.3	

France	 19.5	 53.5%	 12.0	 62.2%	 57.9%	 15.5	 2.1	

Algeria	 26.5	 108.7%	 16.4	 121.6%	 115.1%	 21.1	 2.8	
	

Table D-0-1. Extrapolation of predicted productivity data to other locations such as France and Algeria by using the scenario estimates of Slegers et. al [1], [3]. 
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Appendix E 

E–1  Literature research 
 

 

Study	 Cultivation	System	 Location	 Productivity		
[g	m-2	day-1]	

[73]	 Raceway	Pond	 Australia	 24.9	
[42]	 Raceway	Pond	 Brazil	 10.7	
[74]	 Raceway	Pond	 Spain	 8.2	
[75]	 Raceway	Pond	 Italy	 5.5	
[61]	 Raceway	Pond	 Italy	 12.9	
[60]	 Raceway	Pond	 England	 6.8	
[62]	 Raceway	Pond	 California	(USA)	 16.4	
[12]	 Raceway	Pond	 California	(USA)	 17.5	
[63]	 Horizontal	Tubular	PBR	 France	 14.1	–	16.8	
[29]	 Horizontal	Tubular	PBR	 Spain	 19.1–19.8	
[76]	 Horizontal	Tubular	PBR	 Spain	 32	
[77]	 Horizontal	Tubular	PBR	 Spain	 21.8	±	0.3	
[42]	 Horizontal	Tubular	PBR	 Spain	 25.0	
[78]	 Flat	Panel	 Czech	 23.5	(July)	

11.1	(September)	
[79]	 Flat	Panel	 Israel	 12.8	–	22.5	
	
Table	E-0-1.	Comparison	of	area	productivities	reported	in	literature.	
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Study	 Modelling	Approach	 Cultivation	System	 Validation	with	 Strength	 Weaknesses	
 
  

[8]	
16	model	inputs;	

Includes	lipid	production;	

PBR	immersed	in	
water	basin	

Commercial-
scale	outdoor	
productivity	
data	

Considers	light	and	temperature	effect	on	growth;	

Validation	with	outdoor	productivity	data	(9	weeks);	

Validated	in	narrow	temperature	range	(19-26	°C);	

Light	calculation	not	clear;	

Can	not	be	transferred	to	other	reactor	systems;	

Local	uncertainty/sensitivity	analysis	

[20]	 Growth	model	based	on	
oxygen	production	rate;	 Tubular	Airlift	

Pilot-scale	
outdoor	
productivity	
data	

Considers	light	and	temperature	effect	on	growth;	

Validation	with	outdoor	productivity	data	(148	days);	

Separate	validation	of	day-time	production	and	night-
time	loss;	

Global	uncertainty/sensitivity	analysis;	

Short-term	indoor	experiments	for	model	
parameterization	introduce	large	model	uncertainty;	

[35]	
Volumetric	Productivity;	

Regression	Model;	
Tubular	Airlift		

Pilot-scale	
outdoor	
productivity	
data	

Considers	light	and	temperature	effect	on	growth;	

Validation	with	pilot-scale	productivity	data	

Regression	Model;	

Can	not	be	transferred	to	light	and	temperature	
conditions	outside	the	range	used	to	determine	the	
regression	model;	

[30]	
[39]	

Two	dimensional	light	
path;		

Scattering	by	algae	
included;	

Rectangular	PBR	

Pilot-scale	
outdoor	
productivity	
data	

Two	dimensional	light	path;	

Scattering	by	algae	included;	
Temperature	effect	on	growth	is	neglected;	

[80]	
[63]	

Hyperbolic	growth	
model;		

Average	light	intensity;	

Horizontal	tubular	
PBR	

Pilot-scale	
outdoor	
productivity	
data	

Simple	growth	model,	easy	to	parameterize;	

Temperature	effect	on	growth	is	neglected;	

Average	light	intensity	over	the	reactor	is	used	to	
calculate	growth;	

[81]	
Two	physical	and	two	
species-specific	biological	
inputs;	

Roux-Flasks/	

Raceway	Pond	

Lab-scale	
productivity	
data		

Only	two	physical	and	two	species	–specific	biological	
inputs	are	needed;	

Validation	with	lab-scale	experiments	under	continuous	
light;	

Temperature	effect	not	included;	

[32]	
	

	
Raceway	Pond	

Lab-scale	
productivity	
data		

Validation	with	lab-scale	productivity	data	from	15	
algae	strains	at	different	temperatures;	

Not	validated	with	outdoor	productivity	data;	

Light	attenuation	is	not	included;	

Experimental	set-up	not	clear;	

Table	E-0-2.	Comparison	of	modelling	approaches	found	in	literature	accounting	for	the	cultivation	systems,	which	the	model	is	designed	for,	the	data	used	for	validation	and	the	strength	and	
weaknesses	found	in	the	applied	procedure.	Grey	shaded	rows	are	validated	against	lab-scale	experiments	under	controlled	conditions.	They	are	mentioned	as	example	studies	for	model	validation	
with	lab-scale	experiments.	
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