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ABSTRACT 

Thunnissen, H.A.M, and E. Noordman, 1996. Classification methodology and operational 
implementation of the land cover database of the Netherlands. Wageningen (The Netherlands), DLO 
Winand Staring Centre. Report 124. 88 pp.; 1 Figs; 23 Tables; 47 Refs. 

Timely and accurate information on land cover on regional and national scales is required to support 
environmental policy and for physical planning purposes. In 1987 the LGN1 land cover database was 
produced with satellite images. An improved classification method has been developed, consisting 
of the integrated use of satellite images, digital geographical data, reference data, and expert knowledge 
in geographical information systems. The LGN1 database has been updated (LGN2 database) and the 
production of the LGN3 database has been started. To achieve commercial implementation or to 
continue operational implementation, the advantages of the LGN database over other digital 
geographical databases should be exploited. 
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Preface 

In 1987 it was decided to produce a land cover database of the Netherlands (further 
to be mentioned 'LGN1 database'), using satellite images. The classification accuracy 
of the LGN1 database showed a large variation over the country. Altough the 
classification results were disappointing in some areas, evaluation of the project 
showed that users of the LGN1 database were interested in an up-date of the database. 
However, the classfication results should be improved considerably. In 1992 the 'LGN 
Research Project' was started, aiming to develop an improved classification method 
and to investigate the possibilities to up-date the LGN1 database and to implement 
the database operationally, c.q. commercially. The results of this project are presented 
in this report. The project was carried out in the framework of the National Remote 
Sensing Programme (NRSP-2), under responsability of the Netherlands Remote 
Sensing Board. 

W.W.L. van Rooij is acknowledged for the analysis of the ERS-1 images and for 
the investigation of the possibilities of satellite images to classify buildings in 
agricultural area. 



Summary 

Backgrounds 
Because of the increasing concern about the impacts of man's intervention on the 
environment, timely and accurate information on land cover at regional and national 
scales is required to support environmental policy and for physical planning purposes. 
Therefore, in 1987 it was decided to produce a land cover data base of the Nether­
lands (further to be mentioned 'LGN1 database'), using satellite images. The LGN1 
database was produced by automatic classification of manually stratified single-date 
satellite images from 1986. The classification result showed a large variation over 
the country due to spectral confusion between different land cover classes. A compre­
hensive evaluation of the LGN1 database showed that users were interested in an 
up-date of the database. However, the classification result should be improved con­
siderably. In 1992 the 'LGN Research Project' was started, aiming to develop an 
improved classification method and to investigate the possibilities to up-date the 
LGN1 database and to implement the database operationally, c.q. commercially. In 
1993 the up-dating of the LGN1 database was started (the up-dated version of the 
LGN1 database will further be described as 'LGN2 database'). The up-dating was 
partially performed simultaneously with the LGN Research Project and was finished 
at the end of 1995. Dependent on the progress of the up-dating, results of the LGN 
Research Project which could applied operationally were incorporated in the current 
classification method or will be applied in future up-dates of the LGN database. Con­
versely, some problems met during the up-dating of the LGN-database were included 
in the LGN Research Project for additional research. In the framework of the LGN 
Research Project Landsat TM, SPOT, and ERS-1 satellite images were used. 

Significant improvements of the classification result could be expected by a reduction 
of the spectral confusion between the different land cover types. Similarity in spectral 
reflectances at the image acquisition date impedes consistent identification and map­
ping of a large number of important land cover types when using single-date satellite 
images. However, spectral signatures of a wide range of cover classes, such as agri­
cultural crops or natural vegetation, vary throughout the year. By that, classes which 
appear very similar in spring, may become separable at other stages of the 
phenological cycle. It is therefore expected that multi-temporal approaches provide 
important means to improve classification accuracy. Further classification improve­
ment of spectral overlapping land cover classes may be expected by the use of other 
digital geographical data. These data often contain useful additional spatial or tem­
poral information on land cover classes. Moreover, the discrimination between differ­
ent land use classes may be impossible because they posses similar spectral 
reflectance. For example, a short herbaceous cover may represent agricultural use, 
or recreational use, or residential use. In these cases discrimination between different 
land cover/use classes can only be achieved by using other digital geographical data 
or by visual image interpretation techniques. 

The (integrated) use of additional digital geographical data and multi-temporal 
satellite data for obtaining land cover information was an important research item 



in the LGN Research Project. Further, much attention was paid to the development 
of a validation procedure for the LGN database. 

Combined use of satellite images and other digital geographical data 
In the Netherlands several nation-wide digital geographical databases are available 
or will be available in near future. The most relevant databases are the 'CORINE 
Land Cover database', the 1 : 50 000 soil map (including water-table classes), the 
'Land Use Database' of the State Department for Physical Planning (the so-called 
'BARS Land Use Database'), the 'Land Use Database' of the Central Bureau of 
Statistics (the so-called 'CBS Land Use Database'), topographic maps at scales 
1 : 50 000, and 1 : 25 000/10 000 (the topographic maps on the scales 1 : 25 000 
and 1 : 10 000 contain the same information), and the 'Agricultural Statistics' of 
the CBS. The possibilities to use these databases in combination with satellite images 
in order to improve the classification result were assessed. 

Because of the deviating nomenclature and scale of the CORINE Land Cover database 
this database is not suitable to be used for stratification or postclassification sorting 
in the framework of the LGN project. The BARS and CBS Land Use Databases and 
the digitized topographic databases enable, in principle, discrimination between the 
main land use types in the LGN2 database, i.e. agricultural area, built-up area, and 
natural area and forest. However, because of the thematic classes, cost, accuracy 
and continuity of the data, use of the CBS Land Use Database is preferred. The CBS 
Agricultural Statistics enable a further subdivision of agricultural area. In the frame­
work of the LGN project, use of these ancillary digital data for stratification purposes 
is preferred to use for postclassification sorting. Stratification is rather simple, during 
the classification it is easier to deal with smaller areas, it decreases spectral variation 
and confusion and enables to better focus the discrimination process on problem 
classes. At last, stratification may separate different land use classes which are 
spectrally similar. On the contrary, the recoding of misclassified spectral classes 
by postclassification sorting can be rather troublesome. When ancillary data are not 
available before the classification, use of these data for postclassification sorting 
may be efficient. Because it is applied after classification, misclassifications can 
be corrected by recoding, avoiding a time comsuming new classification. 

Some LGN land cover classes, especially greenhouses, orchards, roads and buildings 
in agricultural areas, are also included in other digital geographical databases 
(especially the CBS Land Use Database and the digitized topographic databases). 
Classifying these classes again by interpretation of satellite images is, generally, 
waste of time. However, satellite images can sometimes be used for up-dating these 
classes. Further, the use of satellite images can also be preferred because of financial 
reasons. 

When land cover statistics for strata are available (e.g. CBS Agricultural Statistics) 
class-based a-priori probabilities, estimated by the relative areas of the land cover 
classes, can simply be included in the (maximum likelihood) classification process. 
However, even for spectral overlapping classes the increase in classification accuracy 
is small. In stead of providing a-priori probabilities, the CBS Agricultural Statistics 
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seem more suitable to be used for stratification and validation purposes. The 
possibilities of using conditional a-priori probabilities, based on soil type and water 
table classes, in the maximum likelihood classification process are rather poor. Gen­
erally, the increase in classification accuracy is small. Moreover, estimation of 
conditional a-priori probabilities requires often a considerable additional sampling 
effort. The cost of acquiring these data does not balance the expected classification 
improvement. On very wet soils (water table classes I, II and II*) grassland is the 
only crop grown. Water table classes could also be used to discriminate between 
wet and dry natural areas. In these cases water table classes should be used for addi­
tional stratification, rather than for providing a-priori probabilities. 

A field-based classification could considerably improve the classification result for 
agricultural crops. The 1 : 10 000 topographic database may be used as a base to 
obtain actual field boundaries by automatic and/or visual interpretation of satellite 
images. However, it has to be investigated if the required field boundaries can be 
obtained in an operational and cost effective way. 

Classification methodology and optimal acquisition dates and availability of satellite 
images 
An improved classification methodology for the LGN database has been developed, 
consisting of the integrated use of satellite images (i.e. Landsat TM and SPOT), digi­
tal ancillary data, reference data, and expert knowledge. The classification method 
is characterized by a stratified approach, i.e. every stratum is separately classified. 
For an optimal classification result the following strata have to be distinguished: 
agricultural area, urban area, less densely built on area, dry natural area (including 
forest), wet natural area (including forest) and water. If the stratification is outdated 
with respect to the acquisition dates of the satellite images the strata can be up-dated 
by visual interpretation of the satellite images, supported by simultaneous consultation 
of topographic maps and aerial photographs. The CBS agricultural regions should 
be used for a further subdivision of the agricultural strata. 

In general, mono-temporal classification using Landsat TM images, obtained during 
the period mid-May to late September, provide good classification results (> 90%) 
for most non-agricultural classes. For an accurate classification of most agricultural 
crops the use of multi-temporal satellite data is required. It is preferred to use the 
original spectral bands for image classification and to classify each satellite image 
separately. Subsequently, the classified images can be combined in a GIS to form 
the final classification result, using conditional 'IF-THEN' statements. The use of 
a vegetation index (e.g. NDVI) may be useful for the discrimination between bare 
and vegetated fields, especially in spring. In practice, visual interpretation often 
appears to be a valuable tool, complementary to automatic classification. Advanced 
hardware and software enable the simultaneous interpretation of different satellite 
images, while the interpretation result can directly be stored in digital form by on 
screen digitizing. 

The extent to which use of multi-temporal data improves the classification result 
is dependent on the cover types involved, crop growth conditions and the spectral 
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resolution, number and acquisition dates of the used satellite images. In general, 
Landsat TM images are preferred to SPOT images because of the presence of middle-
infrared TM bands required for accurate land cover classification. Moreover, Landsat 
TM images are considerably cheaper than SPOT images. However, the ageing sensors 
on board Landsat 5 and the loss of Landsat 6 at launch threaten continuity of Landsat 
imagery. On the other hand SPOT 4, planned for launch in 1996, will be equiped 
with a middle infrared band. The possibility of SPOT of pre-programmed, off-nadir, 
imaging will increase the chance of getting suitable images. Phenological data for 
the main crops growing in a stratum (e.g. planting/sowing date, ripening) and 
cultivation practices (e.g. conversion of grassland into arable land and vice versa, 
harvesting, after growth) should be taken into consideration when selecting optimal 
image acquisitions. For most agricultural areas, it is advised to use (Landsat TM) 
images obtained in several periods of the growing season. In general, the increased 
classification result counter-balances the additional cost for purchase and processing 
of additional images. When images from suboptimal periods or images with poor 
spectral resolution are used, spectral confusion may result in classification accuracies 
and reliabilities below 70%. To ensure the required minimum classification result, 
mixed agricultural classes (e.g. maize/sugar beet) have to be defined. Mixed classes, 
however, hamper efficient classification of the satellite images and operational 
application of the LGN database. Therefore, it is prefered to avoid using suboptimal 
images as much as possible, even if one would have to wait another growing season 
for more suitable images. For training the classifier and validation of the classification 
result suitable reference data are of great importance. In order to optimize the 
gathering of reference data, high quality quick look data should be made available 
on line within 24 hours of acquisition of the image. 

The classification of greenhouses, orchards and buildings in agricultural area prove 
to be troublesome. Special classification techniques were developed for these classes. 
In order to get accurate information on the location of greenhouses, they should be 
digitized from maps or copied out of existing databases. Satellite images may be 
useful for up-dating of greenhouses in existing digital databases. 

The use of satellite images obtained late in the growing season provides best 
classification results for orchards. Visual interpretation of these satellite images, sup­
ported by topographic maps, provides in most areas sufficient classification results 
for the LGN database. 

Buildings in agricultural areas can not be sufficiently accurately classified by automa­
tic classification of individual optical satellite images. Visual interpretation proves 
more succesful. Visual interpretation is not only guided by tone but also by size 
and situation (e.g. with regard to roads) of the buildings. A specific classification 
method has been developed, using these specific characteristics of buildings. The 
method exists of the combined use of multi-temporal NDVI images and ancillary 
data and the application of specific GIS techniques. By applying this method most 
(large) farms and clusters of small buildings are correctly classified, while scattered 
small buildings (dwelling-houses, sheds and the like) are only partly correctly clas­
sified. The backscatter values of ERS-1 SAR images are not suitable for the 
classification of buildings in agricultural area. It is interesting to investigate the possi-
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bilities of ERS multi-pass SAR inferometry for the classification of buildings in agri­
cultural area. 

In (near) future LGN classes like greenhouses, orchards and buildings in agricultural 
area, can simply be copied out of other available geographical databases. However, 
there may be financial or copyright contraints. Moreover, in practice, data in these 
geographical databases will often be outdated compared with the acquisition dates 
of the satellite images. In the latter case, satellite images could be used for up-dating 
of the concerning LGN classes. 

The ERS-1 SAR, which operates in the microwave part of the spectrum, is not hin­
dered by cloudiness or haze. Especially the multi-temporal classification of agricul­
tural crops in the LGN database requires a regular data acquisition. A field-based 
multi-temporal classification of ERS-1 images provides, in principle, good 
classification results. A field-based classification requires the availability of digital 
field boundaries. These data are, however, not available and digitization of field 
boundaries for large areas is too expensive. A pixel-based multi-temporal 
classification of ERS-1 SAR images leads for all crops to significant lower 
classification results than the field-based classification. 

Following the classification, different postprocessing techniques could be applied 
to further improve the classification result. To remove noise and to improve the 
overall classification accuracy a 3 x 3 pixel majority filter has to be applied on the 
output from the automatic classifier. The disappearance of small objects is not 
considered to be a problem for applications on a regional scale. In order to prevent 
pixels from being converted to very dissimilar classes, each stratum has to be filtered 
separately. The influence of mixed classes on the classification result could possibly 
be decreased by application of a selective majority filter. In the case of mixed classes, 
which contain only two crop types and have a relatively high reliability (at least 
70%), application of a 3 x 3 selective majority filter could effect a considerable 
improvement of the classification result. The filter should be applied three times 
in succession. Only under specific conditions other window sizes may be applied 
and mixed classes which contain more than two crop types may be filtered. 

Locally, misclassifications could be corrected by application of postprocessing 
techniques like 'CLUMP' and 'SIEVE' operations, specific developped filters or 
postclassification sorting. 

As a final step in the post-classification processing it is important to perform a visual 
check of the classification result. In this way obvious classification errors can be 
interactively corrected. 

Collection of reference data and classification accuracy assessment procedure 
In order to create un unbiased and statistical valid sample of pixels, simple random 
sampling or stratified random sampling schemes are preferred. Due to time and 
budget constraints the accuracy assessment of the non-agricultural classes in the 
LGN2 database has been based on a stratified, systematic sampling scheme. For the 
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concerning classes the results of this sampling scheme are comparable with the results 
of a random sampling scheme. By reason of efficiency, the sampling is concentrated 
on the most important (groups of) non-agricultural LGN2 classes. The accuracy 
assessment of the non-agricultural LGN2 classes that are less important and/or show 
little variability or are (partly) copied out of other high quality databases, is only 
performed qualitatively and/or in a non-site-specific way. 

The gathering of a statistical valid sample of pixels for the agricultural crops in the 
entire Netherlands is estimated to take 150 à 200 working days. So due to time and 
money constraints a random or systematic sampling and even a random cluster sampl­
ing per stratum is not feasible. Therefore, in the framework of the LGN database 
a 'controlled' cluster sampling is proposed. The 'controlled' cluster sampling is a 
sampling method in which all (agricultural) plots bordering on a number of selected 
sections of roads are sampled. For all agricultural strata a number of outwardly 
representative sections of roads have to be selected on the basis of topographic maps 
and satellite images. For the main agricultural crops in a stratum at least 10 plots 
have to be sampled. In order to maximize the information derived from cluster sampl­
ing, the sampled pixels used for the accuracy assessment consist of clusters of 3 x 3 
pixels in the centre of the plots. For small plots only the centre pixel is sampled. 
Comparison of the accuracy assessments of the classification result of a test site, 
performed with reference data from both a controlled cluster sampling and a sys­
tematic sampling, shows that individual classes may show some deviations. However, 
the overall classification accuracies of both approaches are comparable. To better 
found the reliability of the controlled cluster sampling, it is advised to compare the 
results of the controlled cluster sampling with the results of the random or systematic 
sampling in some other test sites. 

The CBS Agricultural Statistics are suitable for a non-site-specific accuracy assess­
ment of the LGN2 database. One should take into consideration that the CBS Agricul­
tural Statistics contain net cultivated areas, while the agricultural stratum in the LGN2 
database contains the total agricultural area inclusive of ditches, (minor) roads, 
hedges, farm yards, farms and other buildings. 

Application, cost and benefit analysis and implementation of the LGN database 
The main users of the LGN(2) database are national and regional governmental 
agencies. Because of its digital format the LGN database can be easily combined 
with other digital information. It has frequently been used for different purposes 
in the fields of environmental protection, water management, nature conservation 
and physical planning on regional and national scales. Mostly, the LGN data are 
combined with other geographical information, such as soil type, water-table, the 
occurrence of seepage, meteorological data, and the application of animal manure, 
fertilizers and pesticides. 

The cost of production of the LGN2 database amounted to Dfl 1 120 000 (i.e. circa 
Dfl. 0.35 per hectare). The selling price of the LGN2 database has been determined 
on the basis of the cost, the expected number of users and negotiations with 
(potential) users. The selling price of the LGN2 database depends on the area 

14 



required, the number of classes, the spatial resolution and the number of applications. 
The earnings from sale of the LGN2 database amount to circa Dfl 1 170 000, 
inclusive of warrants at Dfl 350 000 (situation June 1996). 

The LGN database is used for many applications. According to some users, the 
benefits of using the LGN database exceed the cost. In practice, the LGN database, 
once being available, appears often to be used for all kinds of unintended applica­
tions. An accurate estimation of the benefits, however, is troublesome. Information 
from the LGN database is mainly used by governmental agencies which are 
responsible for policies in the fields of environmental protection, water management, 
nature conservation and physical planning on regional and national scales. The effects 
of using the LGN database on the quality of the pursued policy are difficult to assess. 

Operational implementation of the LGN database has been achieved when the data­
base or parts of the database are up-dated at regular intervals and the up-dating is 
largely paid by the users of the database. Commercial implementation implies that 
the up-dating is completely paid by the users. At this moment operational implemen­
tation of the LGN database has been achieved in contrast with commercial 
implementation. The chance of commercial implementation or continuity of 
operational implementation of the LGN database in near future is determined by 
the need of land cover data and the cost of gathering these data. In this framework 
the LGN database has to compete with other available nation-wide digital land 
cover/use databases, especially the topographic databases and the CBS Land Use 
Database. Evaluation of the different databases shows that (a part of) the LGN 
database may distinghuish itself favourably from the CBS Land Use database and/or 
the topographic databases, especially concerning cost, thematic classes, timeliness 
and dataprocessing. That means that, altough there may be some overlap, the 
databases largely supplement each other. In practice, combined use of different 
databases will give a surplusvalue to the separate databases. In order to achieve 
commercial implementation or to continue operational implementation of the LGN 
database, the advantages of the LGN database with respect to other digital geo­
graphical databases should be exploited as much as possible. Further, in order to 
meet customers' needs more satisfactorily, the LGN database should become a more 
flexible product and the classification accuracy and reliabilitiy of some classes should 
be improved. Finally, more users should be found. In order to reach these objectives, 
the following activities have to be performed: setting up a subscription system, 
variation of up-date intervals for different classes and/or areas, no inclusion of mixed 
classes by applying only optimal images, intensifying the marketing and reducing 
of the production cost. At last, the possibility of using the 1 : 10 000 topographic 
database for performing a field-based classification should be investigated. 
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1 Introduction 

The need of land cover data 
Because of the increasing concern about the impacts of man's intervention on the 
environment, timely and accurate information on land cover at regional and national 
scales is required by national and regional governmental agencies to support 
environmental policy and for physical planning purposes. For environmental purposes 
especially agricultural land cover data is required. Pollution from diffuse sources 
(e.g. application of pesticides and manure surplusses) threatens the soil and 
groundwater quality in The Netherlands. These pollution loads vary with the various 
agricultural crops. Information on agricultural land cover can be obtained from land 
use statistics and topographical maps. However, land use statistics are only available 
for restricted areas (e.g. municipalities or provinces) and cannot be derived for areas 
with deviating boundaries (e.g. river basins and groundwater protection areas). 
Topographical maps do often not contain all required land cover classes, are often 
outdated and were till recently not available in digital form. 

Historical background 
In 1987 it was decided to produce a land cover database of the Netherlands (further 
to be mentioned 'LGN database'), using satellite images (Thunnissen et al., 1992a 
and 1992b). The spatial resolution of images obtained with both the LANDS AT 
Thematic Mapper (TM) and the French satellite SPOT is in general sufficient for 
the recognition of the individual agricultural fields in The Netherlands. The objectives 
of the land cover classification project were: 
— Realization of a national land cover data base, containing information on the spa­

tial distribution of main agricultural crops, deciduous and coniferous forest, water, 
natural area and built-up area. 

— Evaluation of the possibilities to get accurate land cover information for the dif­
ferent physiographic units in The Netherlands by interpretation of satellite images. 

— Definition of additional activities and research required for operational implemen­
tation of the LGN data base. 

The first version of the LGN database (further to be mentioned 'LGN1 database') 
was produced by automatic classification of manually stratified single-date satellite 
images from 1986. The classification accuracy showed a large variation over the 
country due to spectral confusion between different land cover classes. The overall 
classification accuracy for 18 reference areas varied between 50 and 84%, while the 
average overall classification accuracy amounted to 67%. The extent of spectral con­
fusion in a stratum was dependent on the occurring land cover, size and shape of 
the land cover units, spectral resolution and acquisition dates of the satellite images 
and crop development. Regionally, crop development was strongly influenced by 
stress due to drougth or water logging. Further, the classification result was influ­
enced by the applied stratification and the limited availability of field reference data. 
Another disadvantage of the classification, applied mainly on the basis of spectral 
signatures, was that various land use classes could not be differentiated because they 
possessed similar spectral properties. For example, a short herbaceous cover may 
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represent agricultural use, or recreational use, or residential use. 

Altough the classification results of the database were disappointing in some areas, 
evaluation of the results of the LGN project showed that users of the LGN1 database 
(i.e. national and regional governmental agencies) were interested in an up-date of 
the database (Thunnissen et al., 1992a). However, the classification results should 
be improved considerably. 

Objectives of the current study 
In 1992 the 'LGN Research Project' was started, aiming to develop an improved land 
cover/use classification method, using satellite images and other digital geographical 
databases, and to investigate the possibilities to up-date the LGN1 database and to 
implement the database operationally, c.q. commercially. 

Approach 
Significant improvements of the classification result could be expected by a reduction 
of the spectral confusion between the different land cover types. Similarity in spectral 
reflectances at the image acquisition date impedes consistent identification and map­
ping of a large number of important land cover types when using single-date satellite 
images. However, spectral signatures of a wide range of cover classes, such as agri­
cultural crops or natural vegetation, vary throughout the year. By that, classes which 
appear very similar in spring, may become separable at other stages of the 
phenological cycle. It is therefore expected that multi-temporal approaches provide 
important means to improve classification accuracy. Further classification improve­
ment of spectral overlapping land cover classes may be expected by the use of other 
digital geographical data. Discrimination between different land use classes which 
possess similar spectral properties can only be achieved by using other digital 
geographical data or by visual image interpretation techniques. During the last decade 
several nation-wide digital geographical databases have become available. The 
(integrated) use of digital geographical data and (multi-temporal) satellite data was 
an important research item in the LGN Research Project. In this framework also 
attention was paid to optimal acquisition periods and the availability of satellite 
images which are both of outmost importance for the classification results, using 
multi-temporal satellite images. 

For an effective use of land cover data derived from remote sensing images, it is 
of importance to have knowledge of the accuracy of these data. Therefore, a study 
was made of available classification accuracy assessment procedures, taking into 
account time, cost and practical restrictions associated with the LGN project. 

In contrast to 10 years ago (LGN1 database) in 1996 several other digital land 
cover/use databases are available. The chance of operational, c.q. commercial 
implementation of the LGN database in near future is determined by the need of land 
cover data and the cost of gathering these data. In this framework the LGN database 
has to compete with other available nation-wide digital land cover/use databases, 
especially the topographic databases and the CBS Land Use Database. The LGN 
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database can be competitive when the database distinguishes itself favourably from 
the other databases. The different databases were mutually compared and a cost and 
benefit analysis of the LGN database was performed. 

In 1993 the up-dating of the LGN1 database was started (the up-dated version of 
the LGN1 database will further be described as 'LGN2 database'). The up-dating 
was partially performed simultaneously with the LGN Research Project and was fin­
ished at the end of 1995 (Noordman et al., 1996). Dependent on the progress of the 
up-dating, results of the LGN Research Project which could applied operationally 
were incorporated in the current classification method or will be applied in future 
up-dates of the LGN database. Conversely, some problems met during the up-dating 
of the LGN 1-database were included in the LGN Research Project for additional 
research. The project was carried out in the framework of the National Remote 
Sensing Programme (NRSP-2), under responsability of the Netherlands Remote 
Sensing Board. 

Contents of the report 
In the framework of the LGN Research Project and the up-dating of the LGN1 data­
base a large number of satellite images were obtained and reference data were 
gathered. Chapter 2 contains a review of the satellite images and reference data used 
in the LGN Research Project. Moreover, the legend of the LGN2 database is pres­
ented. Chapter 3 draws up an inventory of available nation-wide digital geographical 
databases. The possibilities to use these databases in combination with satellite images 
in order to improve classification accuracy are assessed. Chapter 4 discusses the 
improved classification methodology. Attention is paid to stratification, automatic 
and visual classification, postprocessing techniques and optimal acquisition dates and 
the availability of satellite images. Chapter 5 discusses different accuracy assessment 
procedures, considering time, cost and practical restrictions associated with the LGN 
project. An adapted sampling scheme for the accuracy assessment of the LGN 
database has been proposed. Finally, in Chapter 6 applications, cost-benefit analysis 
and operational and commercial implementation of the LGN database are discussed. 
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2 Data sources and nomenclature 

2.1 Data acquisition and test sites 

For the execution of the LGN Research Project satellite images and reference data 
gathered for the the production of the LGN2 database were used. Moreover, additional 
satellite images and reference data were gathered for test sites in the provinces of 
Drenthe and Flevoland (Fig. 1). The classifications of the test sites in the provinces 
of Drenthe and Flevoland were performed independent of the LGN2 database. The 
LGN2 database was produced by classification of images obtained with both the 
Landsat-5 (Thematic Mapper) and the SPOT (multispectral mode) satellite (Tables 
1 and 2). For the production of the LGN2 database mainly satellite images obtained 
in 1992 and 1994 were used (Noordman et al., 1996). Reference data, required for 
training the classifier and assessing the accuracy of the classification, were obtained 
by interpretation of topographic maps and aerial photographs and by field surveys. 
The sampling schemes applied in the LGN2 project are discussed in 5.4. 

5=7* 
< N > 

\. 

*"l 

v 

—t. 

/ 

.J 
< o 

Fig. 1 Situation of the Zuid Flevoland (1) and Drenthe (2) test sites 

21 



Table 1 Wave length bands and spatial resolution of the Thematic Mapper sensor aboard the 
Landsat satellite 

Band Wave length 
(urn) 

Resolution 
(m) 

Description 

1 
2 
3 
4 
5 
6 
7 

0.45- 0.52 
0.52- 0.60 
0.63- 0.69 
0.75- 0.90 
1.55- 1.75 

10.40-12.50 
2.08- 2.35 

30 
30 
30 
30 
30 

120 
30 

visible blue 
visible green 
visible red 
near infra red 
middle infra red 
thermal infra red 
middle infra red 

Table 2 Wave length bands and the spatial resolution of the SPOT satellite 

Band Wave length 
(urn) 

Resolution 
(m) 

Description 

1 0.50- 0.59 
2 0.61-0.68 
3 0.79- 0.89 
panchromatic 0.51- 0.73 

20 
20 
20 
10 

visible green 
visible red 
near-infrared 
visible 

The test site in the province of Flevoland, further to be mentioned 'Zuid Flevoland 
test site', was only used to investigate the possibilities of the first European Remote 
sensing Satellite (ERS-1) for crop classification. The used ERS-1 images and the 
reference data of the Zuid Flevoland test site are described in 4.10. 

Table 3 Satellite 

Satellite 

SPOT 
SPOT 
Lansat-5 (TM) 

images covering < the Drenthe 

Scene 

45 -243 
45 -242 

198 /23 

test site in 1991 

Acquisition date 

3 February 
29 July 
2 September 

The test site in the province of Drenthe, further to be mentioned 'Drenthe test site', 
is covered by three satellite images from 1991 (Table 3). The SPOT image from 29 
July 1991 contains some scattered clouds. The Drenthe test site is largely situated 
on the Drenths plateau and the outmost western and eastern parts are partly situated 
in the 'Veenkoloniën'. The Drenths plateau consists of sligthly undulating sandy soils 
and slopes gradually from east to west. The sandy plateau is intersected by brook 
valleys with peat and hystic soils. The Veenkoloniën largely consists of peat and 
hystic soils. The Drenthe test site is characterized by a mixed agricultural land use. 
Further some large forests and natural areas occur in the test site. Reference data 
of the Drenthe test site were collected in the field in september 1991 based on a sys­
tematic sampling scheme (Table 4). The sampling points coincide with the points 
of intersection of the 1 km grid lines on the Dutch topographic maps. The use of 
these points facilitates the location of the sampling points. To avoid problems due 
to positional inaccuracies of the satellite images, sampling points near agricultural 
field boundaries were shifted to a point at least several pixels away from the field 
boundary. In the reference class 'mixed forest' both deciduous and coniferous forest 
occupy more than 25% of the forested area. No samples were taken within built-up 
area. In addition to the systematic sampling, agricultural fields situated in some out-
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wardly representative reference areas were sampled. The reference areas were visually 
selected on the basis of topographic maps. 

Table 4 Result of the systematic sampling in the Drenthe test site 

Land cover Number of 
samples 

Grassland 126 
Maize 33 
Potatoes 133 
Sugar beets 64 
Cereal 50 
Other agricultural crops 11 
Decidious forest 39 
Coniferous forest 101 
Mixed forest 23 
Nature area with low vegetation 32 

2.2 Nomenclature 

It is important to distinguish between 'land cover' and 'land use'. Whereas land use 
refers to human activity of a certain kind for a given land surface, land cover refers 
to the vegetational and artificial construction occupying the land surface. To enable 
discrimination between the main land use types (i.e. agriculture, built-up area and 
natural area) the legend of the LGN2 database (Table 5) was adapted with regard 
to the LGN1 database. The LGN2 legend distinguishes 25 classes, grouped in a 
two-level hierarchy Discrimination between the main land use types enabled the 
definition of new classes (e.g. 'grass in urban area'). Moreover, the class 
'greenhouses' was added to the LGN2 database. In this report the LGN2 classes will 
be mentioned 'land cover' classes. However, when the functional land use of a LGN2 
class is explicitely meant, the LGN2 class will be mentioned 'land use' class. 

To enable applications of the LGN2 database on a regional scale mininimum clas­
sification accuracies and reliabilities of 70% are required. However, poor spectral 
separability and cultivation practices such as harvesting may result in classification 
accuracies and reliabilities below 70%. In these cases mixed agricultural classes, 
containing more than one agricultural class, are defined (4.5). 
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Table 5 Legend to 

Level 1 

the LGN2 data base of the Nethei 

Level 2 

Hands 

1 Agricultural area 1.1 grass 
1.2 maize 
1.3 potatoes 
1.4 beets 
1.5 cereals 
1.6 other agicultural crops 
1.7 bare soil in agricultural area 
1.8 greenhouses 
1.9 orchard 

1.10 bulbs 

2 Forest 2.1 
2.2 

deciduous forest 
coniferous forest 

3 Nature area 3.1 heath land 
3.2 other nature area with low vegetation 
3.3 bare soil in nature area 

4 Water 4.1 
4.2 

inland waters 
marine waters 

5 Built-up area 5.1 continuous urban area 
5.2 built-up in rural areas (exclusive of farms) 
5.3 deciduous forest in urban area 
5.4 coniferous forest in urban area 
5.5 densely forested residential area 
5.6 grass in urban area 
5.7 bare soil in rural built-up areas 
5.8 main roads and railways 
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3 Satellite images and other digital geographical data 

3.1 Introduction 

An automatic pixel-based classification of (multi-temporal) satellite images is only 
based on differences in spectral reflectances. However, in practice the spectral 
reflectances of different land cover classes are often not completely unique. Moreover, 
different land use classes cannot be differentiated because they posses similar spectral 
reflectance (Thunnissen et al., 1992b). For example, a short herbaceous cover may 
represent agricultural use, or recreational use, or residential use. In these cases (spec­
tral confusion) land cover/use classes cannot be discriminated from satellite images 
alone and ancillary data are required to make an accurate distinction. In this frame­
work especially the use of digital geographical databases is promising. In the Nether­
lands several nation-wide digital geographical databases are available or will be 
available in near future. The most relevant databases are the 'CORINE Land Cover 
database', the soil map of the Netherlands (scale 1 : 50 000), the 'Land Use 
Database' of the State Department for Physical Planning (the so-called BARS data­
base), the 'Land Use Database' of the Central Bureau of Statistics (CBS), topographic 
databases at scales 1 : 50 000, 1 : 25 000 and 1 : 10 000, and the 'Agricultural 
Statistics' of the CBS. In this chapter the possibilities to use these databases in com­
bination with satellite images in order to improve classification accuracy are assessed. 
At first different approaches to use ancillary data will be discussed. 

3.2 Ancillary data 

3.2.1 Stratification 

Different approaches can be applied for combination of ancillary data with satellite 
images. Hutchinson (1982) distinguishes between incorporation of these data either 
before, during or after classification, through stratification, classifier operation, or 
postclassification sorting. Use of ancillary data prior to classification involves a 
division of the area to be classified into smaller, more hogeneous areas or strata based 
on some criterion or rule, so that each stratum may be processed independently 
(Hutchinson, 1982). Stratification has different advantages. During the classification 
it is easier to deal with smaller areas. Moreover, seperate land cover classes show 
probably less spectral variation within strata. The spectral characteristics of any set 
of objects, such as soil or vegetation types, are likely to vary over distance. As vari­
ance increases, the likelihood of confusion between spectrally similar objects also 
increases (Hutchinson, 1982). At last, stratification may seperate different land use 
classes which are spectrally similar. So, stratification increases the quality of the 
classification process when compared to the uniform treatment of a whole area or 
image. Moreover, separate classification of the different strata with a limited number 

25 



of land cover classes enables to better focus the discrimination process on problem 
classes and to reduce misclassifications due to spectral confusion. 

Stratification can be performed by interactive interpretion of satellite images, sup­
ported by ancillary data, or by using digital land use databases. The former method 
was applied during the production of the LGN1 database (Thunnissen et al., 1992b). 
The interpretation of the data and the digitization of the strata required a considerable 
effort. It is obvious that the latter method is preferred, especially when large areas 
have to be classified. When relevant geographical databases are available, stratifi­
cation can simply be applied. Moreover, generally, the accuracy of the stratification 
is higher in comparison with manual stratification. However, at the time of the pro­
duction of the LGN1 database no nation-wide digital land use database was available. 

3.2.2 A-priori probabilities 

An approach of using ancillary data during classification involves the specification 
of the a-priori probabilities in the maximum likelihood decision rule. In most 
classifications a-priori probabilities are assumed to be equal for all classes. However, 
a-priori probabilities can be specified based on knowledge either on the areas 
occupied by the land cover classes in a stratum or on known relations between land 
cover classes and ancillary data. The determination of a-priori probabilities based 
on the relative areas of the land cover classes in a stratum leads to equal probabilities 
for all pixels in a certain class. Ancillary data (e.g. a soil map) can provide spatial 
and/or temporal information on the occurrence of certain land cover classes. This 
information can be included in the maximum likelihood decision rule by means of 
conditional a-priori probabilities (Strahler, 1980 and Janssen, 1993). This means that 
the a-priori probability depends on the value of a conditioning variable (e.g. the crop 
in the preceding growing season or soil type). Application of conditional a-priori 
probabilities is expected to result in a higher classification accuracy than application 
of class-based a-priori probabilities, estimated by the relative areas of these classes 
(Janssen, 1993 and Van der Wel, 1993). 

Use of a-priori probabilities prove to be most effective when classes have spectral 
overlap (Janssen, 1993). If the considered classes have a high spectral separability, 
the application of a-priori probabilities at its best results in a marginal increase of 
classification accuracy. The more different are the values of the a-priori probabilities 
of spectral overlapping classes, the higher is the information content and the more 
effect has the application of a-priori probabilities. However, when the a-priori prob­
ability becomes large and approaches 1 (since the sum of the probabilities of all 
classes amounts to 1 the probabilities of the remaining classes will be low) the classi­
fication will be forced into the class with high probability. For simililar reasons the 
a-priori probability approaching 0 may remove a class from the classification result. 
Therefore, extreme values of a-priori probabilities may overestimate or underestimate 
the occurrence of the concerning classes (Strahler, 1980 and Van der Wel, 1993). 
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Class-based a-priori probabilities, estimated by the relative areas of these classes, 
can be derived either from field sampling or from available statistics. Estimation of 
conditional a-priori probabilities requires often additional sampling that is consider­
able beyond conventional spectral classification (Strahler, 1980 and Janssen, 1993). 
It is up to the user to balance the cost of acquiring these data with the expected clas­
sification improvement. 

3.2.3 Postclassification sorting 

The use of ancillary data after classification is based on the observation that a single 
spectral class may often represent subsets of more than one land cover class. In 
postclassification sorting, individual pixels of these problem spectral classes are 
assigned to the appropriate land cover class using ancillary data. Hutchinson (1982) 
mentions several advantages of postclassification sorting. It is efficient because it 
deals only with problem classes. Furthermore, it is relatively simple to include several 
types of ancillary data in developping decision rules. Finally, because it is performed 
after classification, errors made in rule selection can be corrected easily as opposed 
to those made prior to classification using stratification. 

However, in practice the recoding of spectral classes, representing more land cover 
classes, by postclassification sorting can be rather troublesome. Van der Laan (1988) 
combined a classified Landsat-TM image (10 land cover classes were distinguished) 
of a test site situated in the southern part of the Netherlands with a digitized topo­
graphic map (9 relevant classes were selected) in order to improve classification 
accuracy. The pixel by pixel comparison may result in 90 (potential) combined 
classes. The combined classes were recoded to the correct classes or to newly, defined 
classes. The recoding of the 'misclassified' pixels was based on expert judgement 
and additional visual interpretation. In order to improve the classification of the main 
roads in the LGN2 database, postclassification sorting was applied (4.11 and 
Noordman et al., 1996). The polygons of the main roads, including verges and veg­
etated areas within roundabouts, were derived from the CBS Land Use Database (3.4). 
The recoding of the classified pixels was not unambiguous and resulted, locally, in 
a poor discrimination between the road surfaces and the contiguous vegetated areas. 

3.3 CORINE Land Cover database 

In order to determine the European Community's environment policy, evaluate the 
effects of this policy correctly and incorporate the environmental dimension into other 
Community policies, we must have a proper understanding of the different features 
of the environment. It was against this background that the CORINE (CoORdination 
of INformation on the Environment) Programme was started to gather, coordinate 
and ensure the consistency of information on the state of the environment and natural 
resources. One of the primary thematic items of this programme is land cover. 
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The main objective of the CORINE Land Cover project is the gathering of coherent 
information on land cover for the European Community and the integration of this 
information into a Geographical Information System (GIS). The CORINE Land cover 
database of the Netherlands was produced by the DLO Winand Staring Centre 
(Thunnissen and Van Middelaar, 1995). The methodology consists of computer-
assisted visual interpretation of earth observation satellite images, with the 
simultaneous consultation of additional data, into the categories of the CORINE Land 
Cover Nomenclature. In order to consider the complete spectrum of land cover an 
European nomenclature has been developed, the legend of which distinguishes 44 
classes, grouped in an open three level nomenclature system. The CORINE 
nomenclature is primary directed on characterization of the landscape and many 
classes are heterogeneous and consist of different land cover types. Therefore, the 
nomenclature is not consistent with the LGN nomenclature. The scale of the land 
cover database is 1 : 100 000. The surface area of the smallest unit mapped is 25 
ha. For line elements the minimum width is 100 m. 

Because of the deviating nomenclature and scale of the CORINE Land Cover database 
this database is not suitable to be used for stratification or postclassification sorting 
in the framework of the LGN project. 

3.4 BARS and CBS Land Use Databases 

The BARS and the CBS Land Use Databases have much in common and are 
considered in the same section. The CBS Land Use Database provides information 
on land use of the total area of the Netherlands. The nomenclature consists of 33 
land use classes and, especially for non-agricultural and non-natural areas, land use 
is decribed in detail (Table 6). The classification is largely based on functional land 
use. For instance 'Parks and public gardens' consist of grass, forest and public gar­
dens. Gardens and public greens, situated in residential areas, are assigned to 'Resi­
dential areas'. The CBS Land Use database discriminates between dry and wet natural 
areas. Scattered houses and farms in rural areas are assigned to the surrounding area 
(mostly agricultural area or forest). In general, areas smaller than 1 ha are not 
included in the CBS Land Use Database. 

Up to and including 1985 the main sources of information were municipal administra­
tions, and the data were stored on analogue maps and published as land use statistics 
for grid cells of 500 m x 500 m. From 1989 onwards information on land use change 
is obtained by interpretation of aerial photographs (scale 1 : 10 000). In urban areas 
city plans are used as ancillary data. The actual land use data are stored as digitized 
maps in a GIS. The digital land use database based on aerial photographs from 1989 
is available for the entire country. The production of the digital land use database 
based on aerial photographs from 1993 will be concluded in 1996. In the digital CBS 
Land Use Databases linear elements, like railways and roads, are included with their 
real width. 
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The BARS Land Use Database consists of a digitized land use map and was produced 
by the State Department for Physical Planning. The nomenclature consists of 33 land 
use classes. For the description of the nomenclature one is referred to Noordman 
et al. (1996). The main sources of information were the analogue CBS land use maps. 
Additional land use data were obtained from different governmental agencies and 
public utilities and by interpretation of topographic maps. The CBS land use classes 
'Holiday recreation', Social-cultural facilities' and 'Other public facilities' were fur­
ther subdivided in the BARS database. In addition to greenhouses, orchards are also 
included in the BARS database. Other agricultural area, including farms, is included 
in the BARS class 'Other area'. The classification accuracy of glasshouses varies 
strongly and in some areas large contiguous (agricultural) areas are included in the 
BARS class 'Greenhouses'. In general, classes in urban and rural areas smaller than 
1 and 5 ha, respectively, are not included in the BARS Land Use Database. Linear 
elements, like railways and main roads, are included as line elements, irrespective 
of their actual width. The BARS database was up-dated in 1993 and 1994, mainly 
on the basis of topographic maps and city plans. Dependent on the revision dates 
of the these maps the actuality of different map sheets of the BARS database varies 
strongly. In future, the BARS database will not be up-dated anymore. 

Both the CBS and the BARS Land Use Databases enable discriminination of the 
main land use types in the LGN2 database (i.e. agricultural area, built-up area, and 
natural area and forest) and, consequently, could be used for stratification or 
postclassification sorting. For this purpose the relevant classes should be aggregated. 
However, the CBS database is more accurate and contains smaller land use units 
in rural areas. Moreover, the CBS Land Use Database contains some classes, 
especially greenhouses and main roads, that are also included in the LGN2 database. 
Further, the discrimimination between wet and dry natural areas in the CBS Land 
Use Database provides useful additional information (4.2). The BARS database will 
not be up-dated anymore. The cost of the nation-wide CBS and BARS Land Use 
Databases amount to Dfl 17 000 and 150 000, respectively. 
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Table 6 CBS Land Use Database nomenclature 

Railways, tramways and métros 
Metalled roads (incl. verges) 
Unmetalled and half-metalled roads 
Water reservoirs 
Other water wider than 6 m 
Cemeteries 
Sports grounds 
Airfields and airports 
Allotments 
Dumping sites 
Car wreck sites 
Mining areas 
Parks and public gardens 
Holiday recreation 
Recreational objects and areas 
Social-cultural facilities 
Other public facilities 
Industrial areas 
Water wih a primarily recreational function 
Commercial and trade areas 
Residential areas 
Building sites for industrial areas 
Building sites for other purposes 
Woodland 
Glasshouses 
Other agricultural use 
Dry natural areas 
Wet natural areas 
Other areas 
Waddenzee, Eems, Dollard 
North sea 
Ussel lake 
Oosterschelde en Westerschelde 

3.5 Topographic maps 

The topographic maps of the Netherlands on the scales 1 : 50 000 and 
1 : 25 000/10 000 (the topographic maps on the scales 1 : 25 000 and 1 : 10 000 
contain the same information) will be available in digital form within a few years. 
The up-date frequency of the topographic data depends on the population density 
and varies between 4 and 8 years. The annual price (inclusive of up-dates) depends 
on the up-date frequency and varies between Dfl 840 and 1 680 for one 1 : 50 000 
map sheet (i.e. 500 km2) and between Dfl 550 and 1 110 for one 1 : 10 000 map 
sheet (i.e. 62.5 km2). The entire country is covered by 101 1 : 50 000 map sheets 
and circa 600 1:10 000 map sheets. 

The topographic databases could be used for discrimination of some main land use 
types, e.g. urban area, natural area and forest. The topographic databases contain, 
however, some land cover classes, of which the functional use can only be determined 
by using contextual information, e.g. grassland and forest situated in urban area (parks 
or sport grounds), grassland used for recreational purposes and such-like. These 
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classes cannot be automatically assigned to the correct strata, making the topographic 
data less suitable for stratification of satellite images or postclassification sorting 
of classified images. The topographic databases contain some important classes, 
especially greenhouses, orchards, railways, main roads and buildings in agricultural 
areas, which are also included in the LGN2 database. Because of the readability of 
the topographic maps the width of roads and railways on the map do not correspond 
with their actual width. 

The 1 : 10 000 topographic map contains detailled information on linear elements 
in agricultural area, such as ditches, hedges and (unmetalled) roads, which often 
coincide with boundaries between agricultural lots. Janssen (1993) showed that the 
classification result for agricultural crops could be improved considerably by per­
forming a field-based classification. A field contains only one crop type. Lots indi­
cated on the 1:10 000 topographic map may comprise several fields. The 1:10 000 
topographic map may be used as a base map to obtain actual field boundaries by 
automatic and/or visual interpretation of satellite images. Automatic interpretation 
techniques include segmentation techniques, such as edge detection, region growing 
and clustering. Visual interpretation means on screen digitizing of the missing field 
boundaries. For this purpose the lot boundaries in the topographic database should 
be projected on the satellite images. The number of field boundaries indicated on 
the 1 : 10 000 topographic map shows large variation over the country dependent 
on the occurring landscape. 

Some of the lot boundaries in the digital topographic database are not connected with 
other lot boundaries and form dangling arcs, resulting in polygons which may contain 
several lots. Algorithmes have to be developed to automatically connect these 
dangling lines with other lot boundaries. 

It can be concluded that the combined use of the 1:10 000 topographic database 
and satellite images may provide field boundaries to be applied in a field-based 
classification. However, it has to be investigated if the required field boundaries can 
be obtained in an operational and cost effective way. 

3.6 Agricultural Statistics 

The General Census of Agriculture, organized by the CBS, is taken annually in May, 
covering all agricultural holdings with a minimum size of three Netherlands Size 
Units (NSU). The NSU is a standard expressing the economical size of an agricultural 
holding. Among other things, the General Census of Agriculture provides information 
on the areas of the agricultural crops grown (further to be mentioned 'CBS Agricul­
tural Statistics'). The CBS Agricultural Statistics contain cultivated areas, not includ­
ing roads, ditches and hedges less than 4 m wide that intersect or bound the cultivated 
area. Fields are assigned to the municipality where the main buildings of the holding 
are situated, irrespective of real location of the fields. Incidentally, this can lead to 
large deviations with respect to the real (net) cultivated area in a mumicipality 
(Central Bureau of Statistics, 1983). The Agricultural Statistics are published per 
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municipality, per province, and per 'agricultural region'. Agricultural regions are 
more or less homogeneous areas as far as soil type and agricultural land use are 
concerned. The Netherlands are subdivided in 66 agricultural regions. 

In principle, the CBS Agricultural Statistics could be used for the determination of 
class based a-prori probabilities based on the relative areas of the land cover classes 
in a CBS agricultural region (3.2.2). Different authors applied such class based a-prori 
probabilities. Moreover, the effects of applying these class-based a-prori probabilities 
were assessed in the Drenthe test site. Janssen (1993) applied a-priori probabilities 
based on the relative areas of the agricultural crops in a test site, situated around 
the village of Biddinghuizen in the province of Flevoland. The test site consists of 
large agricultural fields. The maximum likelihood classification was performed, using 
bands 3, 4 and 5 of a Landsat-TM image that was acquired on 7 July 1989. The crops 
had a homogeneous spectral appearance on the satellite images and showed a very 
high spectral seperability. Each crop was represented by only one spectral class. To 
assess the effect of a-priori probabilities in a situation with poor spectral discrimi­
nation, the maximum likelihood classification was also performed for TM band 4 
alone. Application of the class-based a-priori probabilities resulted in improvements 
of the overall classification accuracy of 0.7 and 4.4% for the situations with high 
and poor spectral seperabilities, respectively, with regard to the clasification accu­
racies, using equal a-priori probabilities. The 'overall classification accuracy' is calcu­
lated by dividing the number of correct classified pixels by the total number of pixels 
sampled (4.3). 

Keeman (1991) applied a-priori probabilities based on the relative areas of the 
agricultural crops in a test site situated near Nieuw Buinen in the eastern part of the 
province of Drenthe. The test site is characterized by narrow, elongated fields. The 
classification was performed, using bands 3, 4 and 5 of a Landsat-TM image that 
was acquired on 14 July 1987. Classification performance was poor. Because of the 
narrow fields circa 40% of the pixels consisted of mixed pixels. The poor classifica­
tion result was largely caused by the misclassification of mixed pixels. Application 
of the class-based a-priori probabilities resulted in improvement of the overall 
classification accuracy of only 0.5% with regard to the clasification accuracy, using 
equal a-priori probabilities. 

The Drenthe test site was also classified, using a-priori probabilities based on the 
relative areas of the agricultural crops. The relative areas were estimated on the basis 
of the systematic sampling (2.1). The maximum likelihood classification was per­
formed, using bands 3, 4 and 5 of a Landsat-TM image that was acquired on 2 
September 1992. As far as not yet harvested, some crops had a heterogeneous spectral 
appearance on the satellite images caused by drougth damage and withering. There­
fore, crops were represented by different spectral classes and showed a moderate 
spectral seperability. Application of the class-based a-priori probabilities resulted 
in improvement of the overall classification accuracy of 1.3% with regard to the 
classification accuracy, using equal a-priori probabilities. 

It can be concluded that even for spectral overlapping classes the improvement of 
classification accuracy by using class-based a-priori probabilities seems small. The 
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effectivity of a-priori probabilities seems not only to be influenced by spectral overlap 
(3.2.2) but also by spectral variability of the seperate land cover classes. Probably, 
(large) spectral variability hampers the assignment of representative training areas. 

Instead of providing a-priori probabilities, the CBS Agricultural Statistics seem more 
suitable to be used for stratification and validation purposes. Especially the CBS agri­
cultural regions could be used to divide the area to be classified into smaller, more 
hogeneous areas. For each agricultural region the areas of the occurring agricultural 
crops are known. So, the classified areas of agricultural crops can be compared with 
the areas provided by the CBS Agricultural Statistics. 

3.7 Soil maps 

A digitized soil map on a scale of 1 : 50 000 is available for the entire country. 
Drainage classes, which are indicated on the soil map as so-called water table classes, 
provide information on the depth and seasonal fluctuation of the groundwater table 
(Van der Sluijs and De Gruijter, 1985). The water table classes are based on the mean 
highest (MHW) and the mean lowest (MLW) groundwater tables (Table 7), repre­
senting the average winter and summer water tables, respectively, in a year with an 
average precipitation and evaporation. Soil type and water table class may be used 
as conditioning a-priori probabilities in order to improve land cover classification 
accuracy. Keeman (1991) studied the relationship between water table classes and 
land cover in 3 test sites in the eastern part of the Netherlands. The test sites showed 
only vague relationships between water table classes and land cover. For one test 
site, situated near Nieuw Buinen (3.6), the data were used to determine conditional 
a-priori probabilities. Application of these conditional a-priori probabilities resulted 
in improvement of the overall classification accuracy of 0.9% with regard to the 
classification accuracy, using equal a-priori probabilities. The field surveys for the 
soil maps used in the study of Keeman (1991) were performed during the period 
1972-1980. From that time changes in water management have effected changes in 
groundwater level in many areas. By that, information on water table classes on the 
soil maps of the test sites will probably be outdated. Moreover, the areas studied 
by Keeman (1991) contained only small areas with water table classes, characterized 
by high groundwater levels. Especially in areas with high groundwater levels 
significant relationships between water table class and land cover are to be expected. 
Eventually, relationships between soil type and land cover were not analysed by 
Keeman. 

Table 7 Water table classes (MHW-
both in cm below surface) 

I II1 

MHW 
MLW <50 50-80 

-mean highest water 

III1 IV 

<40 >40 
80-120 80-120 

table, MLW=mean lowest water table; 

V' VI VII2 

<40 40-80 80-140 
>120 >120 >120 

1 A code with * means 'drier part' (MHW deeper than 25 cm). 
2 A code with * means 'very dry part' (MHW deeper than 140 cm). 
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In order to assess if significant relationships occur between the conditioning vari­
ables soil type and water table class and land cover, some recent or recently up-dated 
soil maps in the provinces of Drenthe and Overijssel were visually compared with 
the topographic maps on a scale of 1 : 50 000. So far as agricultural crops are con­
cerned only grassland and arable crops were considered. On 'Duin' and 'Vlak' vague 
soils only forest and dry open natural area occur. In general, arable crops dominate 
on peat and hystic soils with water table classes above III* (Table 7), while on peat 
and hystic soils with water table classes III and III* grassland dominates. On very 
wet soils (water table classes I, II and II*) grassland is mostly the only crop grown. 
For the remaining soil types and water table classes no distinct relationships with 
land cover were found. For the above mentioned groups of water table classes situated 
within peat and hystic soils in the Drenthe test site pixel based priors were derived 
(Table 8). Only two land cover classes were considered: grassland and arable land. 
Very wet soil (water table class below III) did hardly occur in the test site. The 
Drenthe test site was classified using, using bands 3,4 and 5 of a Landsat-TM image 
acquired on 2 September 1992. The agricultural crops showed a moderate spectral 
separability (3.6). Altough application of the conditional a-priori probabilities resulted 
in minor changes in areas of grassland and arable land, the overall classification accu­
racy did not change with regard to the classification accuracy, using equal a-priori 
probabilities. So far as the relationhip between 'Duin' and 'Vlak' vague soils and 
forest and dry open natural area is concerned it should be remarked that both land 
cover classes occur in the same stratum (4.2) and show, generally, a high spectral 
seperability. Therefore, no significant classification improvement is expected by 
appying a-priori probabilities. 

Table 8 A-priori probabilities of grassland and arable land occurring on peat and hystic soils 
with two groups of water table classes in the Drenthe test site 

Water table 
clases 

HI and III* 
IV and above 

A-priori probabilities 

grassland 

0.71 
0.23 

arable land 

0.29 
0.77 

It seems that, in general, the soil map does not provide a-priori information that can 
be used for improvement of the classification accuracy. Only, in the case that 
particular crops require specific physical conditions (e.g. bulbs) or extreme physical 
conditions allow only specific crops to be grown (e.g. grassland on very wet soils), 
the soil map could provide useful a-priori information. Especially the relation between 
grassland and soils with very high groundwater levels may be of importance because 
of the occurring spectral confusion between (very) wet grassland and winter cereals 
on TM images obtained in spring. Moreover, the NDVI values of wet grassland may 
be low which may cause wet grassland to be included in the low NDVI range, 
representing bare soil. Finally, information on water table class can be used to 
discriminate between wet and dry natural areas. Both natural areas show different 
spectral signatures for forest and grassland and, consequently, have to be classified 
separately (Noordman et al., 1996). In these cases the water table classes should be 
used for additional stratification, rather than for providing a-priori probabilities. The 
possibility of using a-priori information from soil maps in order to improve the 
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Classification accuracy of bulbs will be investigated in the framework of the so-called 
CAMOTIUS project (Van der Wel and Gorte, 1995). 

3.8 Conclusions 

It can be concluded that different digital geographical databases of the Netherlands 
enable the discriminination of the main land use types in the LGN2 database: agricul­
tural area, built-up area, and natural area and forest. Because of the thematic classes, 
cost, accuracy and continuity of the data, use of the CBS Land Use Database is pre­
ferred. The CBS Agricultural Statistics enable a further subdivision of agricultural 
area. In the framework of the LGN project it is preferred to use these ancillary digital 
data for stratification purposes. Stratification is rather simple, it decreases spectral 
variation and confusion and enables to better focus the discrimination process on 
problem classes. In special cases ancillary data, not available before the classification, 
may be applied to correct misclassifications (postclassification sorting). Because it 
is applied after classification, misclassifications can be corrected by recoding, avoid­
ing a time comsuming new classification. When relevant digital data are available 
before classification, in general, stratification is prefered to postclassification sorting. 
Some LGN2 land cover classes, especially greenhouses, orchards, roads and buildings 
in agricultural areas, are also included in other digital geographical databases. 
Classifying these classes again by interpretation of satellite images is, generally, waste 
of time. However, satellite images can sometimes be used for up-dating these classes. 
Further, the use of satellite images can also be preferred because of financial reasons. 

When land cover statistics for strata are available class-based a-priori probabilities, 
estimated by the relative areas of the land cover classes, can simply be included in 
the classification process. However, the increase in classification accuracy is small. 
The possibilities of using conditional a-priori probabilities, based on soil type and 
water table classes, are rather poor. Generally, the increase in classification accuracy 
is small and estimation of a-priori probabilities requires often a considerable 
additional sampling effort. The cost of acquiring these data does not balance the 
expected classification improvement. On very wet soils (water table classes I, II and 
II*) grassland is the only crop grown. Water table classes could also be used to 
discriminate between wet and dry natural areas. In these cases water table classes 
could be used for additional stratification, rather than for providing a-priori prob­
abilities. 

Combined use of the 1 : 10 000 topographic database and satellite images may 
provide field boundaries to be applied in a field-based classification. The classifi­
cation result for agricultural crops could be improved considerably by performing 
a field-based classification. It has to be investigated if the required field boundaries 
can be obtained in an operational and cost effective way. 
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4 Classification methodology 

4.1 Introduction 

The LGN1 database was produced by automatic classification of manually stratified 
mono-temporal Landsat TM images from 1986 (Thunnissen et al., 1992b). The classi­
fication accuracy showed a large variation over the country. Similarity in spectral 
reflectances at the image acquisition date impeded consistent identification and map­
ping of a number of important land cover types. With a view to the up-dating and 
operational implementation of the LGN database an improved classification method, 
resulting in a significant improvement of the clasification result, had to be 
developped. Significant improvements of the classification result could be expected 
by a reduction of the spectral confusion between the different land cover types. 
Spectral signatures of a range of cover classes, such as agricultural crops, vary 
throughout the year. By that, classes which appear very similar in spring, may become 
separable at other stages of the phenological cycle. It is therefore expected that multi-
temporal approaches provide important means to improve classification accuracy. 
Further classification improvement of spectral overlapping land cover classes could 
be expected by the use of other digital geographical data. Use of ancillary digital 
geographical data for stratification of the satellite images seems most suitable (3.8). 
After classification different postprocessing techniques could be applied to further 
improve classification accuracy. 

For land cover classification purposes Landsat TM and SPOT images are already 
used on an operational basis. However, using these sensors, which operate in the 
visible and infrared part of the spectrum, regular data acquisition is often hindered 
by clouds in the Netherlands. Active microwave sensors acquire data independent 
of clouds. It is therefore investigated if the microwave data supplied by the imaging 
Synthetic Aperture Radar (SAR) on board of the first European Remote sensing 
Satellite (ERS-1) can also be used for land cover classification in behalf of the LGN 
database. 

This chapter discusses the improved classification techniques. Attention is paid to 
stratification (4.2), automatic and interactive mono- and multi-temporal classification 
(4.4 and 4.5) and postprocessing techniques (4.11). The possibilities of using ERS-1 
images in behalf of the LGN database is discussed in 4.10. The classification of 
greenhouses, orchards and buildings in agricultural areas proved to be troublesome. 
Specific classification techniques were developed for these classes (4.7, 4.8 and 4.9). 
The improved classification methods have mainly been developed on the basis of 
the data gathered in the Drenthe test site and for the production of the LGN2 database 
(2.1). 
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4.2 Stratification 

Stratification of the satellite images, prior to the classification, is the most suitable 
method to discriminate the main land use types in the LGN2 database (3.8). Different 
nation-wide digital geographical databases of the Netherlands enable the 
discriminination of the main land use types in the LGN2 database: agricultural area, 
built-up area (including sport and leisure facilities, dumping sites, mining areas, parks 
and public gardens and the like), natural area and forest and water. Because of the 
thematic classes, cost, accuracy and continuity of the data, use of the CBS Land Use 
Database is preferred (3.4). Because this database was not yet available during the 
start of LGN2 project the BARS Land Use Database was used for the stratification 
of the satellite images used in the LGN2 project and for the classification of the 
Drenthe test site. The individual land use classes were aggregated into main land 
use classes or strata. Depending on the source data used for the production of the 
BARS database the actuality of different map sheets of the BARS database varied 
strongly. The main land use classes were up-dated by visual interpretation of satellite 
images, supported by simultaneous consultation of topographic maps and aerial photo­
graphs. For this purpose the aggregated BARS database was superimposed on the 
geometrically corrected and contrast enhanced satellite images. The land cover 
changes were directly digitized on screen. The main land cover changes concerned 
extensions of towns, sport and leasure facilities and mineral extraction sites. In gen­
eral, these land cover changes could readily identified on satellite images. First classi­
fication results showed that the stratum 'built-up area' had to be subdivided into 
urban areas and less densely built on areas, such as sports grounds, airports, 
recreational areas, dumping sites and the like. The spectral signatures of forest and 
grassland in wet natural areas (i.e. inland marches and peat bogs) differed consider­
ably from the spectral signatures of these classes in dry natural areas. Therefore, 
a subdivision of natural areas into dry and wet nature area would be very useful. 
As distinct from the BARS database, this subdivision can be made with the CBS 
Land Use database (3.4) and the soil map (3.7). 

The spectral characteristics of, especially, agricultural crops are likely to vary over 
distance. The CBS agricultural regions were used to divide the agricultural stratum 
into smaller, more hogeneous areas. For each agricultural region the areas of the 
occurring agricultural crops were known (3.6). 

4.3 Classification approaches and assessment of classification 
accuracy 

The improved classification procedure consists of the integrated use of satellite 
images, digital ancillary data, reference data and expert knowledge. The classification 
method is characterized by a stratified approach (4.2), i.e. every stratum is separately 
classified. For each stratum the occurring land use is known beforehand and each 
stratum must be covered by the same satellite images. A stratum is further subdivided 
when a part of the stratum has to be classified with satellite images from other acqui­
sition dates. Different classification approaches were evaluated: mono-temporal, 
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multi-temporal, automatic and visual classification. Prior to the classification the 
satellite images were geometrically corrected by identifying ground control points 
in the original imagery and on the reference topographic maps. In general, first-order 
order polynomal transformation equations were applied. Some (parts of) satellite 
images were geometrically corrected using second-order order polynomal transform­
ation equations. The positional accuracy of the corrected satellite images was checked 
by projecting the BARS vector database on the satellite images. The images were 
resampled (by applying the nearest neighbour algorithm) to 25 m by 25 m to achieve 
a close match with standard map sheets of The Netherlands. It was decided to use 
the maximum likelihood algorithm for the (supervised) automatic classification 
approach. For specific applications, such as the discrimination between bare and 
vegetated areas, the Normalized Difference Vegetation Index (NDVI) was applied: 

NDVI=(IR-R)/(IR+R) 

where R and IR denote the pixel values in the red and near-infrared bands, 
respectively. Bare soil has a NDVI value near zero. The NDVI value increases as 
a funtion of the leaf are index. 

In order to get an optimal land cover discrimination Landsat TM images were pre­
ferred to SPOT images because of the availability of TM bands in the middle-infrared 
part of the spectrum. Various surveys in agricultural and/or forestry study sites, using 
TM images, showed TM bands 3, 4 and 5 (Table 1) to be most suitable for land cover 
classification (Thunnissen et al., 1992a). Moreover, these bands are less affected by 
haze problems than is the blue and green part of the spectrum (Fuller et al., 1994). 
Consequently, we used TM bands 3, 4 and 5. When suitable TM images were lacking 
SPOT images were selected. SPOT bands 1, 2 and 3 (Table 2) were used in the 
classification process. Field reference data, topographic maps and satellite images 
were used for selecting training areas representative of the land cover classes to be 
classified. 

The classification approaches were evaluated in the Drenthe test site and in a number 
of strata of the LGN2 database. Classification results were assessed by visual com­
parison of the classified images with reference data (i.e. topographic maps and aerial 
photographs) and by checking the labels of a sample of pixels from the classified 
image against the reference classes determined in the field. The classification accu­
racy of the sampled pixels are presented in error matrices (Table 9). From these 
matrices the percentage of pixels from each class in the image labelled correctly by 
the classifier can be estimated, along with the proportion of pixels from each class 
erroneously labelled into every other class. The reference data are usually represented 
by the columns of the matrix and the classified data are represented by the rows. 
The 'overall classification accuracy' is calculated by dividing the number of correct 
classified pixels by the total number of pixels sampled. In addition, accuracies of 
individual land cover classes can be computed in a similar way. Story and Congalton 
(1986) distinghuish 'producer's accuracy' and 'user's accuracy' (Table 9). 'User's 
accuracy' is also called reliability. The 'producer's accuracy', further called accuracy 
for short, is the probability for a reference sample to be correctly classified. This 
accuracy measure is calculated by dividing the number of correct classified pixels 
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in a class by the total number of pixels in that class as derived from the reference 
data (i.e. the column total). The 'user's accuracy' or reliability is defined as the 
probability that a sample from the classified image actually represents that category 
on the ground. This accuracy measure is calculated by dividing the number of correct 
classified pixels in a class by the total number of pixels that were classified in that 
class (i.e. the row total). The statistical evaluation of the error matrix is discussed 
in 5.3. 

Table 9 The error matrix and the calculated accuracy measures as presented by Congalton, 
1991. Numbers in the matrix express numbers of pixels 

Classified data 

Deciduous forest 
Coniferous forest 
Barren 
Shrub 
Column total 

Overall accuracy = 

Deciduous 
Coniferous 
Barren 
Shrub 

Reference data 

deciduous 
forest 

65 
6 
0 
4 

75 

= 321/434 = 74% 

Producer's Accuracy 
65/75 = 87% 
81/103 = 79% 
85/115 = 74% 
90/141 = 64% 

coniferous 
forest 

4 
81 
11 
7 

103 

User's 
65/115 
81/100 
85/115 
90/104 

barren 

22 
5 

85 
3 

115 

Accuracy 
= 57% 
= 81% 
= 74% 
= 87% 

shrub 

24 
8 

19 
90 

141 

row total 

115 
100 
115 
104 
434 

4.4 Mono-temporal classification 

At this point, it should be noted that spectral classes may differ from informational 
classes in the sense that each of the informational classes (in this case LGN2 classes) 
may comprise several spectral subclasses (Hill, 1993). This appears obvious for the 
LGN2 classes 'other agricultural crops' and 'other nature area with low vegetation'. 
The former class includes of course numerous crops and the latter includes a wide 
range of different species and canopy structures. But it equally holds for most other 
LGN2 classes. After the classification, the individual spectral classes have to be com­
bined to form the desired informational classes. In general, mono-temporal classifi­
cation of Landsat TM images, obtained during the period mid-May to late September, 
provided good results for most LGN2 classes in the strata built-up area (including 
urban areas and less densely built on areas), natural area and forest and water. 
However, some of the concerning LGN2 classes could not be distinguished because 
they possessed similar spectral reflectances. For example, densely forested residential 
areas could not be distinguished from (patches of) forest situated in urban area. 
Discrimination of these LGN2 classes could be achieved by recoding the concerning 
spectral classes to the corresponding LGN2 classes on the basis of the spatial distribu­
tion of individual BARS classes. Athough not included in the LGN2 database, larch 
forms an important tree species because it looses its needle-leaves in autumn, which 
is of importance in hydrological (groundwater recharge!) and environmental 
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(atmospheric deposition!) studies. Larch proved to be accurately classified when 
additional images from winter were used. 

Tables 10 and 11 show some final results of the mono-temporal classification 
approach for the Drenthe test site and the LGN2 database. For the calculation of the 
overall classification accuracy of the Drenthe test site, the reference class mixed for­
est, classified as one of the spectral classes decidous or coniferous forest, was con­
sidered to be correctly classified. In the reference data of the LGN2 database mixed 
forest was not distinghuished. 

Table 10 Error matrix showing the result of the mono-temporal classification approach for the 
stratum 'forest and natural area' in the Drenthe test site. The classification was performed with 
a Landsat TM image acquired on 2 September 1991. Numbers in the matrix express numbers of 
pixels. 

Classified data 

Deciduous forest 
Coniferous forest 
Open natural area 
with low vegetation 
Total 

Accuracy (%) 

Reference data 

deciduous 
forest 

31 
5 
0 

36 

86.1 

coniferous 
forest 

6 
85 
7 

98 

86.7 

mixed 
forest 

7 
14 
2 

23 

91.3 

open natural 
with low veg 

1 
0 

28 

29 

96.6 

area 
station 

total 

45 
104 
37 

186 

Reliability 

(%) 

84.4 
95.2 
75.7 

Overall classification accuracy (inclusive of mixed forest): 88.7% 

Table 11 Error matrix showing the result of the mono-temporal classification approach for 
some(aggregated) LGN2 classes. The classification was performed with Landsat TM images 
acquired on 12 and 24 May 1992. Numbers in the matrix express numbers of pixels (after 
Noordman et al., 1996) 

Classified data 

Deciduous forest 
Coniferous forest 
Natural area with 
low vegetation 
Urban area 
(built-up) 
Green urban area 
Total 

Accuracy (%) 

Reference data 

decidu­
ous 
forest 

80 
3 
5 

0 

0 
88 

90.9 

conife­
rous 
forest 

13 
94 
2 

0 

0 
109 

86.2 

natural 
area 
with low 
vegetation 

7 
3 

92 

0 

0 
102 

91.3 

urban 
area 
(built-up) 

0 
0 
1 

94 

5 
100 

90.2 

green 
urban 
area 

0 
0 
0 

5 

92 
97 

94.0 

arable 
land 

0 
0 
0 

1 

3 
4 

94.8 

total 

100 
100 
100 

100 

100 
500 

Reliability 
• (%) 

80.0 
94.0 
92.0 

94.0 

92.0 

Overall classification accuracy: 90.4% 
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4.5 Multi-temporal classification of agricultural crops 

For an accurate classification of most agricultural crops the use of multi-temporal 
satellite data is required. A problem of multi-temporal approaches to automatic image 
classification is the increasing data volume which results from a simple combination 
of the spectral bands from each of several acquisitions. In this study the combination 
of three satellite images would produce a 9-band composite image (only TM bands 
3, 4 and 5 were used). Different data reduction methods have been developed, such 
as optimal band selection, ratios and differences of spectral bands and statistical 
transformations (e.g. principal component analysis). In numerous remote sensing 
applications, various combinations of bands in the visible and near-infrared part of 
the spectrum have proven their suitability to emphasize important plant phenological 
characteristics. However, these so-called vegetation indices only use a part of the 
spectral information that is provided by the Landsat Thematic Mapper sensor, and 
the reduction to one single parameter for each date usually implies too big informa­
tion losses to be further used for land cover classification. Nevertheless, the use of 
vegetation indices may be very useful for specific applications such as the discrimina­
tion between bare and vegetated areas. Statistical transformations, such as principal 
component analysis, are data dependent. By that, objects, having similar spectral 
characteristics, may show different colours in different transformed images (Sheffield, 
1985), making it difficult for an interpreter to apply previous experience of 
colour-surface relationships. As a result, it was decided to use original spectral bands 
for image classification. 

When using a composite image, containing all the selected bands of the obtained 
satellite images, three bands have to be selected for graphical display. By that, only 
a part of the spectral information can be used for the selection of training areas. An 
other problem is related to the number of spectral classes per agricultural crop or 
field. A particular crop or agricultural field may comprise several spectral classes 
on each of the satellite images, dependent on crop growth conditions (e.g. water 
supply and soil type), phenological stage (e.g. emergence, ripening and withering) 
and cultivation practices (e.g. conversion of grassland into arable land, use of differ­
ent varieties, harvesting and after growth). As a result the composite image will often 
comprise an excessive number of spectral classes, making the selection of the training 
areas a time-consuming and difficult task (Hill, 1993 and Fuller et al., 1994). There­
fore, it was decided to classify each satellite image seperately (i.e. mono-temporal 
classification) and to combine the classified images in a GIS to form the final clas­
sification result, using conditional 'IF-THEN' statements. Mostly, a NDVI image 
from spring a was used to mask the satellite images from summer prior to classification. 

To enable applications of the LGN2 database on a regional scale, mininimum clas­
sification accuracies and reliabilities of 70% are required. However, poor spectral 
separability and cultivation practices such as harvesting may result in classification 
accuracies and reliabilities below 70%. In these cases mixed agricultural classes (e.g. 
maize/sugar beet) were defined. However, when agricultural crops A and B showed 
large spectral confusion, but crop A covered only a relative small area in comparison 
with crop B, then class A was assigned to class B and no assignment to a mixed 
class occurred. The decision to define mixed classes is based on the expertise of the 
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interpreter, data from the CBS Agricultural Statistics and field reference data. In case 
of partial spectral overlap, resulting in classification accuracies and reliabilities below 
70%, the classification process was aimed at the subdivision of the overlapping 
classes into 'pure' and mixed classes. The inclusion of mixed classes will be demon­
strated on the basis of the classification of the Drenthe test site. In general, the defini­
tion of mixed classes effects a (considerable) improvement of classification accuracies 
(inclusive of mixed classes) and reliabilities. However, classification accuracy of 
the pure classes decreases (Tables 12 and 13). 

Table 12 Error matrix showing the classification result for the agricultural crops in the Drenthe 
test site derived from a Landsat TM image acquired on 2 September 1991. Numbers in the 
matrix express numbers of pixels 

Classified 
data 

Grass 
Maize 
Potatoes 
Sugar beets 
Bare soil 
Total 

Accuracy (%) 

Reference data 

grass 

87 
0 

11 
7 

20 
125 

69.6 

maize 

0 
22 

1 
7 
3 

33 

66.7 

potatoes 

8 
7 

39 
30 
48 

132 

29.6 

sugar 
beets 

4 
7 
3 

43 
6 

63 

68.3 

cereals 

2 
0 
1 
0 

47 
50 

0.0 

other 
agricultu­
ral crops 

0 
1 
1 
0 
8 

10 

0.0 

total 

101 
37 
56 
87 

133 
414 

Reliability 

(%) 

86.1 
59.5 
70.0 
49.4 
0.0 

Overall classification accuracy: 46.3% 

Table 13 Error matrix showing the classification result for the agricultural crops in the Drenthe 
test site derived from a Landsat TM image acquired on 2 September 1991. Mixed classes were 
included. Numbers in the matrix express numbers of pixels 

Classified 
data 

Grass 
Maize 
Potatoes 
Sugar beets 
Cereals/pota­
toes 
Maize/sugar 
beets 
Maize/pota­
toes/sugar beets 
Total 

Accuracy (%) 
Accuracy 
inclusive of 
mixed classes (%) 

Reference data 

grass 

87 
0 
8 
1 

17 

0 

12 

125 

69.6 
69.6 

maize 

0 
9 
1 
0 
2 

13 

8 

33 

27.3 
90.1 

potatoes 

8 
0 

28 
2 

37 

1 

56 

132 

21.2 
91.7 

sugar 
beets 

4 
4 
1 

24 
3 

19 

8 

63 

38.1 
80.1 

cereals 

2 
0 
1 
0 

47 

0 

0 

50 

0.0 
94.0 

other 
agricultu­
ral crops 

0 
0 
1 
0 
6 

1 

2 

10 

0.0 
0.0 

total 

101 
13 
40 
27 

113 

39 

86 

414 

reliability 
(%) 

86.1 
69.2 
70.0 
88.9 
74.3 

94.1 

83.7 

Overall classification accuracy: 35.8% 
Overall classification accuracy (inclusive of mixed classes): 81.4% 
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The NDVI image derived from the SPOT image from 3 February 1991 was used to 
discriminate between grassland and bare soil in the multi-temporal classification of 
the Drenthe test site. Subsequently, using the NDVI mask, the satellite images from 
summer were used for the classification of the arable crops. The LGN2 class 'other 
agricultural crop' formed a heterogeneous class, often consisting of small fields. This 
class was not included in the classification. The final classification result was obtained 
by combination of the separately classified satellite images (Table 14 and 15). 

As expected the multi-temporal classification approach (overall accuracy exclusive 
of mixed classes: 55.0%) is superior to the single-date classification (overall accuracy 
exclusive of mixed classes: 35.8%). Both classification approaches provide compar­
able overall classification accuracies inclusive of mixed classes (76.0% versus 81.4%). 
The multi-temporal classification approach without distinction of mixed classes 
resulted in an overall classification result of 63.4%. In the latter case no additional 
information is available on the misclassified pixels. In practice, the decrease in clas­
sification accuracy of the pure classes has to be balanced with the improvement in 
classification accuracy (inclusive of mixed classes) and reliability and the additional 
information resulting from the introduction of mixed classes. 

Table 14 Error matrix showing the multi-temporal classification result for the agricultural crops 
in the Drenthe test site. Mixed classes were included. Numbers in the matrix express numbers of 
pixels 

Classified 
data 

Grass 
Maize 
Potatoes 
Sugar beets 
Cereals 
Cereals/pota­
toes 
Maize/sugar 
beets 
Maize/pota­
toes/sugar beets 
Total 

Accuracy (%) 
Accuracy 
inclusive of 
mixed classes (%) 

Reference data 

grass 

91 
0 
6 
1 
1 

11 

0 

10 

125 

72.8 
72.8 

maize 

2 
8 
1 
0 
1 
0 

13 

8 

33 

24.2 
87.9 

potatoes 

23 
0 

73 
2 
1 

11 

1 

21 

132 

55.3 
79.5 

sugar 
beets 

7 
4 
3 

22 
1 
3 

16 

7 

63 

34.9 
71.4 

cereals 

3 
0 
3 
0 

33 
11 

0 

0 

50 

66.0 
88.0 

other 
agricultu­
ral crops 

0 
0 
1 
0 
2 
4 

1 

2 

10 

0.0 
0.0 

total 

126 
12 
87 
25 
44 
40 

31 

48 

414 

Reliability 
(%) 

72.2 
66.6 
83.9 
88.0 
75.0 
55.0 

93.5 

75.0 

Overall classification accuracy: 55.0% 
Overall classification accuracy (inclusive of mixed classes): 76.0% 
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Table 15 Combination of the separately classified satellite images to form the final classification 
result for the agricultural crops in the Drenthe test site. The conditional statements were applied 
in the order in which they are placed 

NDVI image 
(3 Februari 1991) 

Classified SPOT 
image 
(19 July 1991) 

Classified TM 
image 
(2 September 1991) 

Final classification 
result 

High NDVI high NDVI grassland 

Low NDVI 

potatoes 
cereals 
maize/potatoes/ 
sugar beet 

sugar beet 
maize 
potatoes 

potatoes/cereals 
potatoes/cereals 

potatoes/cereals 
maize/sugar beet 
maize/potatoes/ 
sugar beet 
other cops 

sugar beet 
maize 
potatoes 
potatoes 
cereals 
potatoes 

potatoes/cereals 
maize/sugar beet 
maize/potatoes/ 
sugar beet 
other crops 

The overall classification accuracy of the pure classes is well below 70%. This is 
due to considerable spectral confusion on the satellite images from 29 July (SPOT) 
and 2 September 1991 (Landsat TM) and harvesting activities, mainly in August. 
The spectral confusion on the SPOT image from 29 July 1991 was caused by the 
poor spectral resolution of SPOT, while the spectral confusion on the Landsat TM 
image from 2 September 1991 was mainly caused by withering of potatoes and water 
stress. During the month of August 1991 there was hardly any rainfall. Therefore, 
on 2 september 1991 dry conditions occurred in the field. 

The NDVI image from February was expected to accurately distinguish between 
grassland and arable land. Actually, the result is somewhat disappointing (Table 14). 
That is largely caused by the early acquisition date of the SPOT image. Evaluation 
of the reference data and the satellite image showed that about 13% of the fields 
which showed bare soil in February were sown with grass in spring, while about 27% 
(!) of the fields which were covered with crops in February were used for growing 
arable crops. The latter fields concerned both grasslands, converted into arable land, 
and fields covered with a second crop grown after harvesting of the main crop. (e.g. 
for the purpose of green manuring). The same cultivation practices were found during 
the processing of the TM image of 14 Februari 1994, which was used for the multi-
temporal classification of agricultural crops in the LGN2 database in large areas in 
the western and southern part of the Netherlands (Noordman et al., 1996 and 4.6). 

Spectral confusion between different agricultural crops may have different reasons. 
An important reason is a deviating crop development due to, for example, shortage 
of water and/or nutrients or water logging. By that, misclassified pixels often form 
irregular patterns within a field. Agricultural fields may also show (large) spatial vari­
ability in spectral refectance due to, for example, ripening or withering, causing (clus­
ters of) misclassified pixels to occur in a more or less regular distribution. Based 
on field shape, patterns of misclassified pixels and/or spatial variation in refectance 
(texture) these fields can often be visually recognized as separate fields with a par-
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ticular crop. Besides shape, pattern and texture the location amidst other fields (con­
text) may also play an important part in the visual interpretation process. Grassland 
areas, for example, can often readily be visually recognized on the basis of the char­
acteristic variation in reflectance caused by grazing, mowing and regrowth. So in 
many cases visual interpretation of satellite images is superior to automatic classifica­
tion, which is solely based on the spectral characteristics of individual pixels. 

Prior to the decision to use visual interpretation techniques instead of automatic 
classification the pro's and cons have te be compared. Factors as time, classification 
accuracy and the importance of the crop have to be taken into consideration. In prac­
tice, visual interpretation often appears to be a valuable tool, complementary to auto­
matic classification. Advanced hardware and software enable the simultaneous inter­
pretation of different satellite images, while the interpretation result can directly be 
stored in digital form by on screen digitizing. During the production of the LGN2 
database visual interpretation proved to be necessary in many areas in order to get 
an acceptable classification result. However, the overall information content of the 
multi-temporal satellite data is so high, that only automatic approaches can provide 
classification results for (very) large areas. 

4.6 Optimal acquisition dates and availability of satellite images for 
the clasification of agricultural crops 

The classification of agricultural crops in the LGN database is based on a multi-tem­
poral approach (4.5). Landsat TM and SPOT XS are the most suitable satellite images 
for land cover classification in the framework of the LGN project. Optimal image 
acquisition dates, required spectral resolution and the availability of satellite images 
are discussed in this chapter. 

In general, Landsat TM images are preferred to SPOT images because of the presence 
of middle-infrared TM bands required for accurate land cover classification. More­
over, Landsat TM images are considerably cheaper than SPOT images. A SPOT 
coverage is circa 5 times more expensive per unit area covered. Altough the Landsat 
5 satellite, which was launched over eleven years ago in 1984, continues to provide 
high quality multispectral imagery, the ageing sensors on board Landsat 5 threaten 
continuity of Landsat imagery. Landsat 6 was lossed at launch and Landsat 7 is 
scheduled for launch in December 1998. On the other hand SPOT 4, planned for 
launch in 1996, will be equiped with a middle infrared band. The possibility of SPOT 
of pre-programmed, off-nadir, imaging will increase the chance of getting suitable 
images. 

Phenological data for the main crops growing in a stratum (e.g. planting/sowing date, 
ripening) and cultivation practices (e.g. conversion of grassland into arable land and 
vice versa, harvesting, after growth) should be taken into consideration when selecting 
optimal image acquisitions. A minimum image data set should include at least one 
image from spring and one image from summer. For many crops April/May is the 
optimal image acquisition period in spring. Nevertheless grassland and winter cereals 
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may be confused in early spring (April). Discrimination between grassland and arable 
land, using a winter image, may be hindered by aftergrowth (e.g. fields covered with 
crops used for green manuring), conversion of grassland into arable land and vice 
versa (4.5). The last two practices are especially of importance in areas with mixed 
land use, where both grasland and arable land cover relative large areas. The growing 
of a second crop after the harvest of the main crop (e.g. cereals) is strongly increasing 
last years for the purpose of green manuring, improving soil structure and decreasing 
the risk of plant diseases. In areas with clay soils the second crop is mostly ploughed 
before winter. For many arable crops the month of July is the optimal image acquisi­
tion period in summer as far as the the minimum image data set is concerned. How­
ever, the use of additional images from other periods will, in general, considerably 
improve the classification result. Experience has shown that the optimal image data 
set should include images from May, June and August. The increased classification 
result, in general, counter-balances the additional cost for purchase and processing 
of these images. In practice, the choice of the images to be used should be based 
on the occurring land cover, the required classification result and the available 
satellite images. 

When images from suboptimal periods or images which lack spectral bands in the 
middle-infrared part of the spectrum are used, spectral confusion may effect the 
inclusion of mixed classes in the LGN database. Mixed classes hamper efficient 
classification of the satellite images and operational application of the LGN database. 
Therefore, it is prefered to avoid using suboptimal images as much as possible, even 
if one would have to wait another growing season for more suitable images. 

For training the classifier and validation of the classification result the availability 
of suitable reference data is of great importance. Reference data of agricultural crops 
have to be gathered in the field. In practice, the final choice of the images to be used 
for classification is often made in late summer. For example, a part of the agricultural 
crops in the LGN2 database of the western part of the Netherlands was classified 
using satellite images obtained on 16 August 1994. Mostly, the final choice can only 
be made after visual evaluation of the quick look data for determination of location 
(especially for SPOT images), quality and information content of the images. Existing 
catalogues of acquisitions proved unreliable, especially as far as the cloudiness is 
concerned, and made no distinctions between cloud over sea or land. Moreover, 
marked differences existed between assessments made at Fucino and Kiruna (TM). 
However, it can take some weeks after image acquisition before the quick looks them­
selves are available. Therefore, in practice, often a restricted time period is available 
for field survey. Many crops are already harvested in late summer. With the modern 
electronic tools quick look data should be made available on line within 24 hours 
of acquisition of the image. 
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4.7 Classification of greenhouses 

The LGN1 database was produced by automatic classification of Landsat TM images, 
using bands 3,4 and 5. Because of the low spectral separability of greenhouses this class 
was included in the LGN1 class 'built-up area' (Thunnissen et al., 1992b). However, infor­
mation on the location of greenhouses is of great importance for physical planning and 
environmental purposes. Therefore, greenhouses should be included in the LGN2 database. 

Greenhouses are included in the topographic databases (3.5) and the CBS Land Use 
Database (3.4). Both databases were, however, not yet available in digital form during 
the start of LGN2 project. Greenhouses are also included in the BARS database (3.4). 
The classification accuracy of greenhouses varies, however, strongly in the BARS 
database and in some areas large contiguous (agricultural) areas are included in the 
BARS class 'Greenhouses'. Therefore, it was decided to investigate the possibilities 
of satellite images to classify greenhouses. Different satellite images (SPOT and 
Landsat TM) were visually evaluated in several test sites in order to determine the 
optimal band combinations for the classification of greenhouses (Table 16). Herewith, 
most attention was paid to the Landsat TM images from 15 and 24 May 1992, which 
covered the entire country. The visual evaluation of the satellite images was supported 
by 1 : 25 000 topographic maps and aerial photographs. 

Table 16 Satellite images used for determination of the optimal band combinations for the clas­
sification of greenhouses 

Satellite images Scene Acquisition Date 

SPOTXSenP 45-245 01-09-1987 
SPOT XS 42-244 27-06-1992 
Landsat TM 198-24 13-07-1990 
Landsat TM 198-24 02-09-1991 
Landsat TM 198-24 15-05-1992 
Landsat TM 198-24 14-02-1994 

For the classification of the multispectral SPOT images bands 1, 2 and 3 (Table 1) 
were used. Optimal Landsat TM band combinations proved to vary for different areas 
and acquisition dates. Favourable band combinations found were 1, 2 and 3, 3, 4 and 
5 and 2, 6 and 7 (Table 2). In general, the SPOT panchromatic band proved lo be 
less successfull than the SPOT multitemporal bands. In spite of the low spatial 
resolution of TM band 6 (120 m), in many areas the band combination 2, 6 and 7 
was found to be superior to other band combinations for the discrimination of green­
houses. The greenhouses showed a relatively low radiation temperature on the TM 
images from 13-07-90, 02-09-1991 and 15-05-1992. The recording of the thermal 
band of the TM image from 14-02-1994 had failed. The best classification result was 
achieved by using band combination 4, 5 and 3 (depicted as red, green and blue 
respectively) of the Landsat TM image from 14-02-1994. For none of the selected 
band combinations automatic classification of the greenhouses provided sufficient 
classification accuracy and reliability. In general, the greenhouses showed a relatively 
large spectral variability and spectral overlap occurred, especially with bare soil and 
built-up area. However, most greenhouses could visually be distinguished. So, for 
an optimal classification result an interactive interpretation of the selected band 
combination(s) should be performed. Therefore, in some test sites the greenhouses 
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were classified by interactive interpretation of band combination 2, 6, 7 (depicted 
as red, green and blue respectively) of the Landsat TM image from 15 and 24-05-
1992. These images covered the entire country. Spectral confusion of greenhouses 
with bare soil could largely be solved by masking the satellite image with a NDVI 
image from summer, when most plots were covered with vegetation. Spectral confu­
sion of greenhouses with built-up area could only be solved by using ancillary data, 
namely topographic maps and aerial photographs. Relatively small greenhouses, 
consisting of only a few pixels, were often difficult to locate on topographic maps 
and aerial photographs. 

The results of the interactive classification of greenhouses in the test sites were 
compared with the CBS Agricultural Statistics (3.6) and with the greenhouses on the 
1 : 25 000 topographic maps and aerial photographs.The greenhouses in the test sites 
were digitized from the 1 : 25 000 topographic maps. Small greenhouses could mostly 
not be distinghuished because of the restricted spatial resolution of the satellite 
images. The minimum size of the greenhouses required for recognition amounts to 
circa 0.5 ha. The classification result of large greenhouses or greenhouse complexes 
often proved to show forms which deviated strongly from the real greenhouses. 
Moreover, the classified greenhouses and greenhouse complexes were generally 
considerably larger than in reality. The classified and real greenhouses sometimes 
overlaped one another less then 50%. The differences beween the classification results 
and the real greenhouses were caused by the spatial resolution of the Landsat TM 
images (120 m for band 6 and 30 m for bands 2 and 7) and spectral confusion with 
neighbouring pixels. Mixed pixels (coinciding only partly with the greenhouses) and 
houses, buildings and open areas situated among contiguous greenhouses were often 
classified as 'greenhouses' making the classified greenhouses generally (considerably) 
larger than the real greenhouses. Consequently, interactive classification of 
greenhouses can both overestimate and underestimate the area of greenhouses 
dependent on the occurring situation. Therefore, the classification result cannot be 
validated by comparing the classified areas with the areas according to the CBS Agri­
cultural Statistics. 

Evaluation of the above mentioned results shows that greenhouses cannot be 
sufficiently accurately classified by visual interpretation of Landsat TM images. 
Therefore, it was decided to digitize the greenhouses from the most recent 1 : 25 000 
topographic maps. To restrict the number of maps to be digitized, only the 
municipalities, containing more than 10 ha greenhouses, were considered. The concer­
ning municipalities were selected from the 1992 CBS Agricultural Statistics. In 
principle the boundaries of individual greenhouses were digitized. However, houses, 
buildings and (small) open areas situated within greenhouse complexes were also 
included in the LGN2 class 'Greenhouses'. Subsequently, the greenhouse database 
was up-dated to the situation in 1992. For this purpose the digitized geeenhouses 
were projected on the satellite images from may 1992. Possible changes, i.e. disappea­
rance or extension of greenhouses, were traced by visual interpretation of the satellite 
images. Special attention was paid to those municipalities which showed relative large 
differences between the area of greenhouses digitized from the topographic map and 
the area of greenhouses according to the CBS Agricultural Statistics of 1992. In a 
number of these areas the interpretation of the satellite images was supported by use 
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of aerial photographs from 1989. The interactive classification of greenhouses proved 
to be strongly supported by the simultaneous projection of the greenhouses digitized 
from the topographic map, providing useful additional information on spectral 
reflectance, shape, context and location of the greenhouses. The final classification 
results were semi-quantitatively validated by comparison of the classified areas with 
the areas according to the CBS Agricultural Statistics and by visual comparison of 
the classified greenhouses in some test sites with aerial photographs from 1989 and 
1992 (Noordman et al., 1996). 

As stated above greenhouses are also included in other digital geographical databases. 
If possible, greenhouses should be copied out of these databases into up-dates of the 
LGN database. However, in practice, data in the geographical databases will often 
be outdated compared with the acquisition dates of the satellite images. In these cases, 
the present LGN2 database forms a reliable starting point for the up-dating of green­
houses in future versions of the LGN database. The up-dating can be restricted to 
the municipalities where the change in area of greenhouses exceeds a certain 
minimum area, according to the CBS Agricultural Statistics. Because many greenhou­
ses appear different on different satellite images the simultaneous use of several 
images is expected to improve the classification result. 

4.8 Classification of orchards 

The LGN1 database was produced by automatic classification of Landsat TM images, 
using bands 3, 4 and 5. The classification result of orchards was rather poor because 
of spectral confusion with grassland and forest (Thunnissen et al., 1992b). Because 
forests and orchards occur in separate strata (4.2) of the LGN2 database, the spectral 
confusion between orchards and grassland constitutes the main problem. 

Topographic maps contain information on orchards. These maps were, however, not 
yet available in digital form during the start of LGN2 project. The BARS database 
contains only large orchard complexes and contains no orchards at all for a large 
part of the province of Limburg. Therefore, it was decided to investigate the possibili­
ties of satellite images to classify the orchards not present in the BARS database. 
For this purpose different satellite images (SPOT and Landsat TM) from different 
acquisition dates were evaluated in two test sites in order to determine the optimal 
band combinations and acquisition dates for the classification of orchards. The test 
sites were situated in the 'Betuwe', an area in the middle of the Netherlands densily 
grown with fruit trees. 

Table 17 Satellite images used for determination of the optimal band combinations and 
acquisition dates for the classification of orchards 

Satellite images 

SPOT P and XS 
SPOT XS 
Landsat TM 
Landsat TM 

Scene 

42-244 

Acquisition Date 

27-06-1986 
42-24427-06-1992 
198-2402-09-1991 
198-2415-05-1992 
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Due to the high spatial resolution of SPOT panchromatic images (10 m), these images 
could possibly be suitable to detect textural characteristics of orchards connected with 
the regular row spacing of the fruit trees. Close visual inspection of the contrast 
enhanced SPOT panchromatic image from 27 June 1986 (other panchromatic images 
were not available) showed, however, no spectral variation characteristic of orchards. 

For the classification of the multispectral SPOT image bands 1, 2 and 3 (Table 1) 
were used. The optimal Landsat TM band combination for the classification of 
orchards consists of the bands 3, 4 and 5 (Table 2). In the beginning of the growing 
season spectral confusion with grassland dominated, while in the course of the 
growing season spectral confusion with grassland decreased and spectral confusion 
with forest increased. The change in spectral confusion is caused by the increase in 
soil coverage of the orchards during the growing season. Because forest and orchards 
occur in separate strata the spectral confusion between orchards and forest is a minor 
problem in the LGN2 database. Therefore, classification of satellite images obtained 
late in the growing season provided the best clasification results. Nevertheless, for 
none of the selected satellite images automatic classification of orchards provided 
sufficient classification accuracy and reliabiliy. Therefore, it was decided to classify 
the orchards by visual interpretation of satellite images supported by topographic 
maps. For the LGN2 database TM images obtained on 13 July 1990 (southern half 
of the Netherlands) and 2 September 1991 (northern half of the Netherlands) were 
used. In a large part of the province of Limburg orchards are rather small and/or show 
a low density of trees, hampering an accurate classification. In this area the orchards 
were digitized from the 1 : 25 000 topographic maps. For practical reasons the 
digitization of orchards from satellite images and topographic maps was only 
performed for the municipalities, containing more than 10 ha orchards according to 
the 1992 CBS Agricultural Statistics. The digitized orchards and the orchards in the 
BARS database were included in the LGN2 database. Subsequently, the areas of 
orchards in the LGN2 database were compared with the areas of orchards according 
to the CBS Agricultural Statistics of 1992. The municipalities of which the areas of 
orchards in both databases showed relative large differences were selected for further 
interpretation. For this purpose the orchards in the LGN2 database were projected 
on the satellite images and misinterpretations and possible changes, e.g. disappearance 
of orchards, were traced by visual interpretation of the satellite images supported 
by use of topographic maps. 

As stated above orchards are also included in the digital topographic databases. If 
possible, orchards should be copied out of these databases into future up-dates of 
the LGN database. In practice, data in the topographic databases will often be 
outdated compared with the acquisition dates of the satellite images. In these cases, 
the present LGN2 database forms a reliable starting point for the up-dating of 
orchards in future versions of the LGN database. The planting of fruit trees will only 
be perceptible on satellite images after some years. Therefore, some field work may 
be necessary. The up-dating can be restricted to the municipalities where the change 
in area of orchards exceeds a certain minimum area, according to the CBS Agricul­
tural Statistics. 
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4.9 Classification of buildings in agricultural area 

Buildings in agricultural areas can in principle be copied out of topographic 
databases. Most topographic maps were, however, not yet available in digital form 
during the start of LGN2 project. Automatic classification of different satellite images 
showed that scattered buildings in agricultural areas could not be sufficiently accura­
tely classified by automatic classification (Thunnissen et al., 1992b). The poor classi­
fication results were mainly caused by spectral confusion with bare soil and ripened 
cereals. However, on many satellite images most buildings in agricultural area could 
visually be distinguished. Visual interpretation is more succesful than automatic 
classification because visual interpretation is not only guided by tone but also by 
size and situation (e.g. with regard to roads) of the buildings. It was investigated 
if a specific method could be developed for the classification of buildings in agri­
cultural areas, using satellite images and ancillary data. 

The classification method was developed in a test site situated between Arnhem and 
Nijmegen in the eastern part of the fluviatile district of the Netherlands. Five test 
sites, situated in different characteristic landscapes, were selected for validation of 
the classification method. In four test sites a qualitative validation was performed. 
For the test site 'Gelderse Vallei' a semi-quantitative validation was performed. The 
test site 'Gelderse Vallei' is situated in the centre of the Netherlands in the 
Pleistocene sandy district. For the test site between Arnhem and Nijmegen 4 optical 
satellite images were available (Table 18). The roads included in the BARS and the 
CBS Land Use Databases (3.4) were used as ancillary data in the classification 
proces. The BARS database contains only the main roads while nearly all roads 
(inclusive of unmetalled roads) are included in the CBS Land Use Database. Topo­
graphic maps and aerial photographs were used for the validation of the classification 
results. For the test site situated between Arnhem and Nijmegen all buildings in the 
agricultural stratum were digitized as points. Clusters of buildings were digitized 
as one point. For the test site 'Gelderse Vallei' all buildings were transfered to trans­
parencies which could be superimposed on hard copies of the classification results. 
In addition to optical images, the possibility of ERS-1 SAR images for the classifica­
tion of buildings was investigated. The results of the latter research are discussed 
in 4.10. 

The developed classification method exists of a combination of multi-temporal NDVI 
images (4.3) and the application of several GIS techniques. All satellite images were 
converted into NDVI images. Subsequently, a NDVI range was selected containing 
the buildings in agricultural area. The lower-value of the NDVI range equals zero, 
while the upper-value was visualy determined by trial and error. 

Table 18 Optical satellite images used for the development of a method for the classification of 
buildings in agricultural area 

Satellite images Scene Acquisition Date 

SPOT 
SPOT 
Landsat TM 
Landsat TM 
Landsat TM 
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45-245 
45-245 

198- 24 
198- 24 
198- 24 

07-08-1992 
08-08-1992 
03-08-1986 
02-09-1991 
15-05-1992 



As the upper NDVI value increased not only the number of buildings in the NDVI 
range increased but also the number of pixels erroneously classified as 'built-up area' 
increased. Experience showed that the optimal NDVI range should contain at least 
all large buildings, i.e. farms. The NDVI range may differ for each separate satellite 
image. After selection of the NDVI range one value was assigned to all pixels within 
the range. All other pixels were recoded to 0. Besides a large number of buildings, 
the selected NDVI ranges contained stretches of main roads, fields and patches of 
bare soil, fields with ripened cereals and mixed pixels. Most fields with bare soil 
or ripened cereals and some stretches of main roads were considerably larger then 
the farms and could be separated from the farms and removed from the NDVI range 
by application of a 'CLUMP' and 'SIEVE' operation. Groups of contiguous pixels 
in the selected NDVI range (called 'clumps') were identified by their sizes and 
clumps, to be considered too small for the present application, were filtered out or 
'sieved'. Clumps larger than 14 pixels were considered to be fields with bare soil 
or ripened cereals or stretches of main roads. In this way buildings bordering on 
fields with bare soil or ripened cereals were erroneously removed from the NDVI 
range. 

Because the classification methodology to be developed applies to buildings in 
agricultural areas, the test sites were stratified using the agricultural strata as derived 
from the BARS database (4.2). This stratification has to be performed after the 
'CLUMP' and 'SIEVE' operation, because stratification may create small clusters 
of pixels along the strata boundaries which are too small to be sieved. The 
stratification could also be performed at the end of the classification procedure. 

Buildings are supposed to show relatively low NDVI values on every satellite image 
irrespective of their acquisition date. By combination of NDVI images of different 
acquisition dates (clusters of) pixels with a permanent low NDVI value could be 
selected. In some cases (clusters of) pixels, often representing small buildings, did 
not coincide or overlap on different satellite images because of positional errors due 
to the geometric correction of the satellite images. This problem could largely be 
solved by applying a pixel growing technique, i.e. the areas of the original (clusters 
of) pixels in the NDVI range were expanded by application of a 3 x 3 maximum 
filter. To prevent large clusters from becoming too large and the number of 
misclassified pixels from increasing considerably, pixel growing has to be applied 
to only one NDVI image. Application of the pixel growing technique on one image 
from summer proved to give best results. Pixel growing has to be applied, of course, 
prior to the combination of the separate NDVI images. All pixels overlapping in at 
least two NDVI images were stored in the so-called 'building' GIS layer. Besides 
buildings this 'building' GIS layer contained also some scattered (clusters of) pixels 
of main roads and bare soil. In general, the classification accuracy of the buildings 
decreased, the reliability of the classified buildings increased and the number of 
misclassified pixels decreased as the number of combined NDVI images increased. 
Most large farms and clusters of small buildings were included in the building GIS 
layer, while many scattered small buildings (dwelling-houses, sheds and the like) 
were not included in the building GIS layer. Images from summer, when most fields 
were covered with vegetation, contributed most to the classification result. 
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The (clusters of) pixels of main roads, still present in the building GIS layer after 
combination of the NDVI images, could be removed by overlaying the building GIS 
layer with the main roads included in the CBS Land Use Database. A further 
improvement of the classification result could be obtained by defining buffer zones 
around the roads included in the CBS Land Use Databases. The CBS Land Use 
Database contains nearly all roads (inclusive of unmetalled roads). Most buildings 
are situated near a road. So the classification result could be improved by creating 
a buffer of 125 m around all roads and removing all 'buildings' outside the buffer 
zones from the building GIS layer. 

The developed technique for the classification of scattered buildings in agricultural 
areas was validated in 5 test sites. In four test sites a qualitative validation was per­
formed by a visual comparison of the classification result with topographic maps. 
For the test site 'Gelderse Vallei' a semi-quantitative validation was performed by 
superposition of the buildings, transfered to a transparency, on hard copies of the 
classification result. In all test sites 3 or 4 satellite images were used for the 
classification. The classification results of the test sites were more or less comparable 
with the result of test site between Arnhem and Nijmegen where the classification 
technique was developed. Most large farms and clusters of small buildings were 
included in the building GIS layer, while many scattered small buildings (dwelling-
houses, sheds and the like) were not included in the building GIS layer. In the test 
site 'Gelderse Vallei' 91% of the large farms and 64% of the (clusters of) small 
buildings were correctly classified, while the number of (clusters of) pixels 
erroneously classified as building was less than 2%. In practice the results of the 
developed classification method will show some variation dependent on the present 
land cover and the quality and acquisition dates of the used satellite images. 

Scattered buildings in agricultural areas are not yet included in the LGN2 database 
but will be included in up-dated versions of the database. As stated above buildings 
in rural areas are also included in the digital topographic databases. If possible, these 
buildings should be copied out of these databases into future up-dates of the LGN 
database. However, in practice, data in the topographic databases will often be 
outdated compared with the acquisition dates of the satellite images. In these cases, 
large buildings could be accurately up-dated by the developed classification method­
ology, using satellite images. 

The possibilities of ERS-1 SAR images to classify buildings in agricultural area is 
discussed in 4.10. 

4.10 Application of ERS-1 images 

For land cover classification purposes Landsat TM and SPOT images are already 
used on an operational basis. However, using these sensors, which operate in the 
visible and infrared part of the spectrum, regular data acquisition is often hindered 
by cloudiness or haze in the Netherlands. Especially the multi-temporal classification 
of agricultural crops in the LGN database requires a regular data acquisition. Active 
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microwave sensors acquire data independent of clouds. With the launch of the first 
European Remote sensing Satellite (ERS-1) the first long-term spaceborne imaging 
microwave sensor has become available. The ERS-1 (and its successor the ERS-2) 
carries an imaging Synthetic Aperture Radar (SAR) which provides a continuous 
source of radar data for observation of the earth through the years. The use of ERS-1 
images increases data reliability. It is, therefore, of importance to investigate if ERS-1 
imagery could be used to improve the operational efficiency of the classification of 
agricultural crops. 

Buildings often appear on the SAR images as bright spots. The high backscatter sig­
nals are caused by the so-called corner effect of smooth perpendicular surfaces 
oriented towards the satellite. The classification of scattered buildings in agricultural 
area, using optical sensors, is troublesome (4.9). Therefore, also the possibility of 
ERS-1 SAR images to map buildings was investigated. 

The applicability of the ERS-1 SAR images was investigated in the Zuid Flevoland 
test site, situated in the central part of the Netherlands (Fig. 1). The landscape struc­
ture is characterized by a division into large, rectangular lots. In general, the lots 
are 85 ha in size. In total twelve different crops are present in the test site. The main 
crops grown are potatoes, sugar beets and winter wheat, which cover approximately 
53% of the area. The other crops grown are maize, spring barley, winter rape, beans, 
peas, grass, lucerne and orchards. A crop type map of the test site for the 1992 
growing season was established based on a ground-based survey. 

The ERS-1 satellite supplies SAR C-band data (VV polarization with an incidence 
angle of 23° at mid-swath). For the Zuid Flevoland test site 14 ERS-1 SAR images, 
acquired in 1992, were available (Schotten et al., 1995). On the basis of crop 
separability indexes optimal sets of ERS-1 images were selected for crop classifica­
tion. Schotten et al. (1995) found that in the Zuid Flevoland test site application of 
a field-based multi-temporal classification of in total 12 crops, resulted in an overall 
classification accuracy of 80% of the fields. This corresponds with 88% of the area 
(Table 19). For these classification eight images were used from the 1992 growing 
season starting at 12-05-92 with time intervals varying from 7 to 19 days up to 
03-11-92. Using less images, resulted in lower overall classification accuracies. A 
field-based classification requires the availability of digital field boundaries. These 
data are, however, not available and digitization of field boundaries for large areas 
is too expensive. Approaches to obtain field boundaries automatically, such as edge 
detection and region growing techniques, cannot be applied on an operational basis. 
Therefore, also the possibilities of a pixel based classification of ERS-1 images was 
investigated. A pixel-based classification is complicated by the presence of speckle. 
In order to reduce the speckle a Gamma-Gamma MAP (Maximum A Posteriori) filter 
(Lopes et al., 1993) was applied. This filter reduces speckle while preserving spatial 
resolution and structural features. After application of the Gamma-Gamma MAP filter 
an extra 5 x 5 majority filter was applied. The latter filter was used to simplify the 
selection of training areas because the variances within the fields were still quite 
large. To compare the results of the pixel based classification with those of the field-
based classification, the pixel based (maximum likelihood) classification was carried 
out with the same eight-date multi-temporal data set for the Zuid Flevoland test site. 
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The pixel-based crop classification leads for all crops to significant lower 
classification accuracies and reliabilities than the field-based classification (Tables 
19 and 20). The pixel-based classification resulted in an the overall classification 
accuracy of 55% (Table 20). The variances in backscatter still present within the indi­
vidual fields lead to small misclassified clusters of pixels throughout the result of 
the pixel-based classification. 

The result of the multi-temporal pixel-based classification of ERS-1 SAR images 
is rather poor. However, sometimes the available optical satellite images do not allow 
some crops to be classified with sufficient accuracy or reliabilty. In these cases mixed 
classes are included in the LGN database (4.5). These mixed classes could possibly 
be used for masking ERS-1 SAR images prior to a pixel-based classification. Since 
only a restricted number of classes have to be distinguished, the classification result 
is likely to increase. Two examples of mixed classes which occur in the LGN2 data­
base are grass-winterwheat and potato-sugarbeet-maize. These two classes were used 
to mask the filtered ERS-1 images of the Zuid Flevoland test site. These areas were 
classified again, but now only for the crops present in the mixed class. The results 
are presented in Tables 21 and 22. 

Table 21 Influence (%) of crop segmentation on the pixel based classification result of the 
eigth-date ERS-1 SAR data set for potato, sugar beet and maize 

Crop type 

Potato 
Sugar beet 
Maize 

Classification of all crops 

accuracy 

43 
36 
4 

reliability 

73 
53 
38 

Classificatie 
sugar beet a 

accuracy 

56 
70 
25 

m of potato, 
nd maize 

reliability 

73 
52 
33 

Table 22 Influence (%) of crop segmentation on the pixel based classification result of the eigth-date 
ERS-1 SAR data set and of the ERS-1 SAR image from 16-8-1992 for winter wheat and grass 

Crop type 

Winter wheat 
Grass 

Eight date data set 

classification of classificat 
all crops winter wh 

grass 

accuracy 

90 
73 

reliability accuracy 

56 91 
78 91 

ion of 
eat and 

reliability 

93 
89 

Image from 16-8-1992 

classification of 
winter wheat and 
maize 

accuracy reliability 

98 83 
75 96 

The classification result of the masked ERS-1 SAR images for the mixed class potato-
sugar beet-maize is rather poor. The backscatter signatures of these crops remain 
similar throughout the growing season in contrast with the backscatter signature of 
most of the other crops. Masking of the ERS-1 images for the mixed class grass-
winter wheat, however, shows a significant improvement of the classification result. 
Classification accuracy and reliability for grass increase from 73% to 91% and from 
78 to 89%, respectively. For winter wheat classification accuracy and reliability 
increase from 90% to 91% and from 56 to 93%, respectively. Winter wheat is also 
one of the few crop types which can be discriminated from the other crops with only 
one ERS-1 image (Schotten et al., 1995). Therefore, an extra classification was done 
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with one image, acquired on 16-08-1992, for the mixed class grass-winter wheat. 
This resulted in an reasonable classification result (Table 22). However, this good 
result may not be expected for all ERS-1 acquisition dates during the growing season. 
Optimal image acquisition dates for the discrimination between specific crops can 
be calculated with so called separability indices (Schotten et al., 1995). To determine 
these optimal acquisition dates, backscatter time series from different years and for 
different crops have to be analysed. 

It can be concluded that ERS-1 imagery cannot be used to improve the operational 
efficiency of the classification of agricultural crops in the framework of the LGN 
database. Only in specific cases ERS-1 SAR images could be used complementary 
to images from optical satellites to improve the classification result of agricultural 
crops which show spectral confusion in the optical part of the spectrum. However, 
further research is required to determine the optimal acquisition dates for the dis­
crimination between specific crops. Possible application of ERS-1 images in the pro­
duction process of the LGN database will strongly depend on the occurring mixed 
classes, the number of required images and the availability and (processing) cost of 
the images. In this framework also other available SAR images (JERS-1 and Radarsat) 
and SAR images which are foreseen with planned missions (Envisat) have to be 
included in further research. 

The classification of buildings situated in the agricultural stratum of the LGN data­
base was troublesome (4.9). Therefore, also the possibility of ERS-1 SAR images 
to map buildings was investigated. Buildings appear on the SAR images as bright 
spots. The high backscatter signals are caused by the so-called corner effect of 
smooth perpendicular surfaces oriented towards the satellite. The incoming radar sig­
nal is reflected by corners formed by soil-wall surfaces. The interpretation of ERS-1 
images from three different tracks over the Zuid Flevoland test site learned that only 
a limited number of farms could be distinguished. Only on images of one of the 
tracks (track 29) a number of buildings could be classified by a simple slicing pro­
cedure. On images of the other two tracks (tracks 423 and 151) buildings did not 
have a higher backscatter than several agricultural fields and thus making a differenti­
ation difficult. The different results of the tracks can be explained by the looking 
direction of the SAR system and the orientation of most buildings in the test site. 
Many roads in the test site are Northwest-Southeast or Southwest-Northeast oriented 
and most of the farms are build with the same orientation along these roads. The 
looking direction of the SAR in track 29 appears to be perpendicular towards the 
east-oriented walls of the farms. An implication of this feature for the rest of the 
Netherlands is that only buildings with a specific orientation (perpendicular towards 
the looking direction of the radar) can be discriminated. Thus, multi-temporal SAR 
data coming from different tracks will increase the maximum number of buildings 
which can be distinguished. 

Images of the phase difference between two SAR images acquired from two (nearly) 
repeated SAR coverages are called interferograms (Van der Kooij et al., 1995). The 
coherence of the phase of the interferogram is a quality measure for the phase 
preservation, with time and surface type. Temporal decorrelation can be caused by 
small changes of location of scatterers within the resolution cell between the passes. 
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Temporal decorrelation depends strongly on the nature of the scattering object. Water 
will decorrelate very fast (within approximately 0.1 second). Vegetated areas 
decorrelate fast especially during the growing season, while bare agricultural fields 
may show complete loss of coherence by management practices like plowing. On 
the contrary, solid scatterers like houses do hardly decorrelate for long time intervals. 
When used in a proper way the coherence can provide valuable additional information 
on land use (Van der Kooij et al., 1995). It is therefore, interesting to investigate 
the possibilities of multi-pass inferometry for the classification of buildings in agri­
cultural area. 

4.11 Postprocessing 

Following the classification, different postprocessing techniques could be applied 
to further improve classification accuracy. 

Classified data often manifest a salt-and-pepper appearance due to the inherent spec­
tral variability encountered by a classifier when applied on a pixel-by-pixel basis 
(Lillesand and Kiefer, 1994). Majority filtering is often applied to remove this 
salt-and-pepper appearance, thereby producing a more map-like product. Majority 
filtering assigns the most frequently occurring class in a N x N pixel (moving) win­
dow to the central pixel of the window. Gurney and Townshend (1983), Kenk et 
al. (1988) and Thunnissen et al. (1992a) showed that simple majority filtering results 
in significant classification accuracy increase when the pixel is significantly smaller 
than the size of the objects being classified. However, the majority filter has a number 
of disadvantages, resulting in a less desirable final product. These undesirable charac­
teristics stem from the lack of control over minimum polygon size and pixel class 
conversion (Kenk et al., 1988). This results in pixels being converted to very dis­
similar classes, the positional shifting of hard natural boundaries and the disappear­
ance of small objects. 

To remove noise and to improve the overall classification accuracy it was decided 
to apply a 3 x 3 pixel majority filter on the output from the automatic classifier. The 
disappearance of small objects was not considered to be a problem for applications 
on a regional scale. If required, important classes can be excluded from filtering. 
In order to prevent pixels from being converted to very dissimilar classes, each 
stratum was filtered separately. 

The influence of mixed classes on the classification result could possibly be decreased 
by application of a selective majority filter. A selective majority filtering involves 
the assignment of the most frequently occurring pure class in a N x N pixel window 
to the central pixel of the window labeled with a mixed (agricultural) class in the 
original classification result. The mixed class code of the 2central pixel of the window 
can only be changed to the code of one of the constituent classes. This approach 
is based on the assumption that pixels of a mixed class are likely to be surrounded 
by correctly classified pixels of pure classes. A selective majority filtering was 
applied to the classification result of the agricultural crops in the Drenthe test site. 
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A preliminary data set was used which deviated from the final classification result 
as presented in Table 14. The reliabilities of the mixed classes in the preliminary 
dataset were relatively low compared with those in Table 14. The data were filtered 
three times and different window sizes were applied. Selective majority filtering was 
found to improve the accuracy of the pure classes (between 4 and 30%). The accuracy 
improved more as window size increased and the filter was applied more times in 
succession. The reliability of the pure classes, however, increased only sligthly (up 
to 2%) or (in most cases) decreased (between 2 and 38%). The decrease in reliability 
of pure classes was caused by erroneous assignment of mixed classes. The risk of 
erroneous assignment of mixed classes increased as window size increased, the relia­
bility of the mixed classes decreased and the number of the constituent classes 
increased. In the case of relative large window sizes, mixed classes were erroneosly 
assigned to pure classes in neighbouring fields. The reliability of the major mixed 
class in the dataset used in the selective majority filtering approach was relatively 
low, which frequently resulted in wrong class assignment. When the number of 
constituent classes increased, the chance of assigning wrong classes also increased. 
In fact only one pure pixel in the window could change the class of the central pixel. 
Therefore, the effect of selective majority filtering could possibly be improved by 
applying different tresholds, rather than using a simple majority rule. 

Evaluation of the results of selective majority filtering in the Drenthe test site showed 
that in the case of mixed classes, which contain only two crop types and have a rela­
tive high reliability (at least 70%), application of a 3 x 3 selective majority filter 
could effect a considerable improvement of the classification result. The filter should 
be applied three times in succession. In other cases the result of application of a 
selective majority filter is doubtful. Because the reliability of the mixed class is of 
decisive importance for the succes of selective majority filtering, the filter should 
only be applied after evaluation of the classification result. When a mixed class con­
sists of crops which were harvested on the image acquisition date, the pixels in this 
class will not be surrounded by correctly classified pixels of a pure class. So in this 
case no selective majority filter may be applied. 

Experience gained during the production of the LGN2 database showed that under 
specific conditions (e.g. occurrence of large fields which contain clusters of pure 
classes as well as clusters of mixed classes with high reliability) other window sizes 
may be applied and mixed classes which contain more than two crop types may be 
filtered. Application of selective majority filtering in these cases requires competent 
and experienced inpreters which have knowledge of the area to be classified. 

During the production of the LGN2 database in some areas misclassification of small 
clusters of pixels occurred which did not disappear by application of a simple 3 x 3 
majority filter. Some frequently occurring misclassifications were: 
— In specific cases mixed pixels were continually erroneously classified as a particu­

lar class. For example, mixed pixels, containing deciduous forest and water, were 
continually classified as coniferous forest. 

— Locally, geometric deviations beween different satellite images covering the same 
area were larger than 1 pixel. Combination of the separately classified images 
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could result in classification errors, especially along transitions between different 
land cover types. 

— Locally spectral confusion between two agricultural crops resulted in small 
scattered clusters of wrongly classified pixels. 

Most of the above-mentioned type of misclassifications were corrected by application 
of a 'CLUMP' and 'SIEVE' operation and/or existing or ad-hoc developed filters 
(Noordman et al., 1996). 

In special cases ancillary data, not available before the classification, may be applied 
to correct misclassifications (postclassification sorting, 3.2.3). Because it is applied 
after classification, misclassifications can be corrected by recoding, avoiding a time 
comsuming new classification. In order to improve the classification of the main roads 
in the LGN2 database, postclassification sorting was applied (Noordman et al., 1996). 
The polygons of the main roads, including verges and vegetated areas within round­
abouts, were derived from the CBS Land Use Database (3.4). The recoding of the 
classified pixels was not unambiguous and resulted, locally, in a poor discrimination 
between the road surfaces and the contiguous vegetated areas. 

For specific LGN2 classes other data sources were superior to satellite images (e.g. 
greenhouses, 4.7) or visual interpretation of satellite images was superior to automatic 
classification (e.g. orchards, 4.8). Classes copied out of external databases or obtained 
by visual interpretation have to be excluded from majority filtering. 

As a final step in the post-classification processing of the LGN2 database a visual 
check of the classification result was performed. For this purpose the classification 
result was visually compared with the 1 : 50 000 topographical map and obvious 
misclassifications were interactively corrected. 

4.12 Conclusions 

An improved classification methodology for the LGN database has been developed, 
consisting of the integrated use of satellite images, digital ancillary data, reference 
data and expert knowledge. The classification method is characterized by a stratified 
approach, i.e. every stratum is separately classified. 
For an optimal classification result the following strata have to be distinguished: 
agricultural area, urban area, less densely built on area, dry natural area (including 
forest), wet natural area (including forest) and water. If the stratification is outdated 
with respect to the acquisition dates of the satellite images the strata can be up-dated 
by visual interpretation of the satellite images, supported by simultaneous consultation 
of topographic maps and aerial photographs. The CBS agricultural regions should 
be used for a further subdivision of the agricultural strata. 

In general, mono-temporal classification of Landsat TM images, obtained during the 
period mid-May to late September, provide good results for most LGN2 classes in 
the strata urban area, less densely built on area, natural area and forest and water. 
Although not included in the LGN2 database, larch proves to be accurately classified 

62 



when an additional image from winter is used. For an accurate classification of most 
agricultural crops the use of multi-temporal satellite data is required. In order to 
maximize spectral information, to ensure an optimal selection of training areas and 
to avoid an excessive number of spectral classes, it is preferred to use (a selection 
of) the original spectral bands for image classification and to classify each satellite 
image separately. Subsequently, the classified images can be combined in a GIS to 
form the final classification result, using conditional 'IF-THEN' statements. The use 
of a vegetation index (e.g. NDVI) may be useful for the discrimination between bare 
and vegetated fields, especially in spring. The extent to which use of multi-temporal 
data improves the classification result is dependent on the cover types involved, crop 
growth conditions and the spectral resolution, number and acquisition dates of the 
used satellite images. 

When poor spectral separability and cultivation practices such as harvesting may 
result in classification accuracies and reliabilities below 70%, mixed agricultural 
classes (e.g. maize/sugar beet) have to be defined to ensure the required minimum 
classification result. In general, the definition of mixed classes effects a (considerable) 
improvement of the (overall) classification result. 

Due to deviating crop development or the occurrence of particular crop phenological 
stages considerable spectral confusion may occur. By that automatic classification, 
which is solely based on the spectral characteristics of individual pixels, will effect 
poor classification results. Based on field shape, patterns and/or spatial variation in 
reflectance and the the location amidst other fields, these fields can often be visually 
recognized as separate fields with a particular crop. So in many cases visual 
interpretation of satellite images is superior to automatic classification. Prior to the 
decision to use visual interpretation techniques the pro's and cons have te be 
compared. Factors as time, classification accuracy and the importance of the crop 
have to be taken into consideration. In practice (e.g. LGN2), visual interpretation 
often appears to be a valuable tool, complementary to automatic classification. 
Advanced hardware and software enable the simultaneous interpretation of different 
satellite images, while the interpretation result can directly be stored in digital form 
by on screen digitizing. 

The classification of greenhouses, orchards and buildings in agricultural area prove 
to be troublesome. Therefore, special classification techniques were developed for 
these classes. Greenhouses show a relatively large spectral variability and spectral 
overlap occurs, especially with bare soil and built-up area. Both automatic and visual 
classification of greenhouses result, generally, in insufficient classification results. 
Visual classification is, however, superior to automatic classification. In order to 
get accurate information on the location of greenhouses, they should be digitized 
from maps or copied out of existing databases. 

Orchards show spectral confusion with grassland and forest. In the beginning of the 
growing season spectral confusion with grassland dominates, while in the course 
of the growing season spectral confusion with grassland decreases and spectral confu­
sion with forest increases. The change in spectral confusion is caused by the increase 
in soil coverage of the orchards during the growing season. Because forest and 
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orchards occur in different strata of the LGN database, the spectral confusion between 
orchards and grassland constitutes the main problem. Therefore, classification of satel­
lite images obtained late in the growing season provides best classification results. 
Nevertheless, automatic classification of these images provides insufficient classifica­
tion result. Visual interpretation of these satellite images, supported by topographic 
maps, provides sufficient classification results in most areas. 

Buildings in agricultural areas can not be sufficiently accurately classified by automa­
tic classification of individual optical satellite images. The poor classification results 
are mainly caused by spectral confusion with bare soil and ripened cereals. Visual 
interpretation proves more succesful. Visual interpretation is not only guided by tone 
but also by size and situation (e.g. with regard to roads) of the buildings. A specific 
classification method has been developed, using these specific characteristics of 
buildings. The method exists of the combined use of multi-temporal NDVI images 
and ancillary data and the application of specific GIS techniques. By applying this 
method most (large) farms and clusters of small buildings are correctly classified, 
while scattered small buildings (dwelling-houses, sheds and the like) are only partly 
correctly classified. Images from summer, when most fields are covered with vegeta­
tion, contribute most to the classification result. The backscatter values of ERS-1 
SAR images are not suitable for the classification of buildings in agricultural area. 
It is, however, interesting to investigate the possibilities of ERS multi-pass SAR 
inferometry for the classification of buildings in agricultural area. 

From 1997 LGN classes like greenhouses, orchards and buildings in agricultural area, 
can simply be copied out of other available geographical databases. However, there 
may be financial or copyright contraints. Moreover, in practice, data in these 
geographical databases will often be outdated compared with the acquisition dates 
of the satellite images. In the latter case, satellite images could be used for up-dating 
of the concerning LGN classes. Interactive on screen up-dating of the LGN classes 
greenhouses and orchard can be strongly supported by the simultaneous projection 
of these classes already present in the LGN database, providing useful additional 
information on spectral reflectance, shape, context and location of the concerning 
LGN classes. The up-dating of the greenhouses can be improved by masking the 
satellite image with a NDVI image from summer, when most plots are covered with 
vegetation. By that the spectral confusion of greenhouses with bare soil decreases 
considerably. For purpose of efficiency the up-dating of greenhouses and orchards 
can be restricted to the municipalities where the change in area exceeds a certain 
minimum area, according to the CBS Agricultural Statistics. 

The ERS-1 SAR, which operates in the microwave part of the spectrum, is not hin­
dered by cloudiness or haze. Especially the multi-temporal classification of agricul­
tural crops in the LGN database requires a regular data acquisition. A field-based 
multi-temporal classification of ERS-1 images provides, in principle, good 
classification results. A field-based classification requires the availability of digital 
field boundaries. These data are, however, not available and digitization of field 
boundaries for large areas is too expensive. A pixel-based multi-temporal 
classification of ERS-1 SAR images leads for all crops to significant lower 
classification results than the field-based classification. In some cases a pixel-based 
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Classification of ERS-1 SAR images could be used complementary to images from 
optical satellites to improve the classification result of agricultural crops which show 
spectral confusion in the optical part of the spectrum (i.e. mixed classes). Further 
research is required to determine the optimal acquisition dates for the discrimination 
between specific crops. Possible operational application of ERS-1 images in the pro­
duction process of the LGN database will strongly depend on the occurring mixed 
agricultural classes, the number of required images and the availability and (process­
ing) cost of the images. In this framework also other available SAR images (JERS-1) 
and SAR images which are foreseen with planned missions (Radarsat and Envisat) 
have to be included in further research. 

Following the classification, different postprocessing techniques could be applied 
to further improve the classification result. To remove noise and to improve the 
overall classification accuracy, a 3 x 3 pixel majority filter has to applied on the 
output from the automatic classifier. The disappearance of small objects is not 
considered to be a problem for applications on a regional scale. In order to prevent 
pixels from being converted to very dissimilar classes, each stratum has to be filtered 
separately. The influence of mixed classes on the classification result could possibly 
be decreased by application of a selective majority filter. Evaluation of the results 
of selective majority filtering shows that in the case of mixed classes, which contain 
only two crop types and have a relative high reliability (at least 70%), application 
of a 3 x 3 selective majority filter could effect a considerable improvement of the 
classification result. The filter should be applied three times in succession. Only under 
specific conditions other window sizes may be applied and also mixed classes which 
contain more than two crop types may be filtered. Application of selective majority 
filtering in these cases requires competent and experienced inpreters which have 
knowledge of the area to be classified. 

During the production of the LGN2 database in some areas misclassification of small 
clusters of pixels occurred which did not disappear by application of a simple 3 x 3 
majority filter. Most of these misclassifications could be corrected by application 
of a 'CLUMP' and 'SIEVE' operation and/or existing or ad hoc developed filters. 

In special cases ancillary data, not available before the classification, may be applied 
to correct misclassifications (postclassification sorting). 

Classes copied out of external databases or obtained by visual interpretation of 
satellite images have to be included in the final LGN database without application 
of the 3 x 3 majority filter. 

As a final step in the post-classification processing it is advised to perform a visual 
check of the classification result. In this way obvious classification errors can be 
interactively corrected. 
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5 Collection of reference data and classification accuracy assess­
ment procedure 

With a view to the validity of the decisions based on the information in the LGN 
database it is of great importance that sufficient reference data are obtained for 
assessing the accuracy of the results obtained. This chapter discusses some consider­
ations and techniques for reference data collection and classification accuracy 
asessment, especially sampling scheme (5.1), sample size (5.2) and sample evaluation 
procedures (5.3). Because of practical considerations adapted reference data collection 
and accuracy assessment procedures have been set up for the LGN database (5.4). 

Congalton (1991) distinguishes 'site-specific' and 'non-site-specific accuracy 
assessment'. Site-specific accuracy assessment means that the locational and classifi­
cation accuracy are both assessed together. Non-site-specific accuracy assessment 
applies only to the classification accuracy while ignoring locational accuracy. In 
this report 'classification accuracy' means 'site-specific accuracy'. When 
'non-site-specific accuracy assessment' is discussed it will be explictely mentioned. 
The non-site-specific accuracy assessment applied in the LGN project will be dis­
cussed in Section 5.5. 

5.1 Sample scheme 

The most usual way of assessing the accuracy of a per-pixel classified remote sensing 
images is by selection of a sample of pixels from the classified image and checking 
their labels against classes determined from reference data. Sampling may be selected 
on the basis of a variety of sampling schemes. To ensure that the results are an accu­
rate reflection of the performance of the classifier, a random distribution of sampling 
points over the whole stratum must be sought (Van Genderen et al., 1978). A diffi­
culty that can arise with simple random sampling is that it is area-weighted (Richards, 
1986 and Congalton, 1991). That is, large classes tend to be represented by a larger 
number of sample points than the smaller classes (e.g. Table 4); indeed some very 
small classes may not be represented at all. To avoid this it is necessary to ensure 
small classes are represented adequately. For this reason stratified random sampling 
is often applied where a minimum number of samples are selected from each strata. 
The most appropriate stratification to use is the actual thematic classes themselves. 
Consequently, the user should choose a random sample within each thematic class 
to asses the classification accuracy of that class. That means that the reference data 
to be used for the accuracy assessment can only be gathered after the classification 
has been performed in stead of in conjunction with the training data collection. 
Moreover, the gathering of reference data can cause temporal problems for classes 
that change quickly in time (e.g. agricultural crops). In these cases, only a simple 
random sampling can be applied. 
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To make the ground collection effort more efficient, a systematic sampling could 
be performed. Systematic sampling is a method of sampling in which the sampling 
units (pixels) are selected at some equal interval in space. The advantage of system­
atic sampling is that it is easier to locate the samples on the ground. A major disad­
vantage of systematic sampling is that if the population contains some periodicity, 
then the regular spacing of the sample units might result in unrepresentative samples 
(Congalton, 1988a). By application of spatial autocorrelation analysis of the patterns 
of error in the classification results of different test sites Congalton (1988b) showed 
that for the agriculural and range test sites systematic sampling overestimated the 
population statistics (i.e. mean and variance), while in the forest test site systematic 
sampling adequately estimated population statistics. These differences have to do 
with the complexity of the areas. The pattern of error in the forest classification result 
was more complex and linear than the more simple, blocky pattern found in the range 
and especially the agricultural classification results. This was caused by the periodic­
ity in the error patterns, which was pronounced in the agricultural area, slightly less 
in the range area and hardly present in the forest area. Congalton concludes that 
'depending on the complexity of the area as determined by spatial autocorrelation 
analysis, systematic sampling may yield adequate results. However, periodicity in 
remotely sensed data due to positive correlation between errors could result in a poor 
estimate of the population parameters ...'. Therefore, 'systematic sampling should 
be used only with extreme caution'. However, it must be mentioned that the 
overestimation of the mean (estimate of classification accuracy) as found by 
Congalton in the agricultural study area amounted 2.5% maximum. 

In many circumstances, simple random and even stratified random sampling and sys­
tematic sampling pose serious problems as the selected pixels are not easily accessible 
for field verification, making the sampling expensive and time consuming. Under 
such conditions, (random) cluster sampling (i.e. sampling groups of neighbouring 
pixels) has been frequently selected as the sampling strategy (Congalton, 1988a), 
especially to collect information on many pixels very quickly. It is much easier and 
cheaper to visit a few large areas than to visit many smaller areas. A problem related 
to cluster sampling lies in the spatial autocorrelation of neighbouring pixels because 
each pixel is not independent of the other. From correlation analysis, Congalton 
(1988a) concluded that, in order to maximize the information derived from cluster 
sampling, small custers should be taken, using no more than 10, or at most 25 pixels 
per cluster. 

5.2 Sample size 

To ensure that the results of the accuracy assessment are an accurate reflection of 
the performance of the classifier, in addition to a random distribution of sampling 
points over the whole stratum a minimum sample size for each class is required. Van 
Genderen et al. (1978) and Rosenfield et al. (1982) have adressed this problem, using 
binomial statistics. Commencing from different view points their approaches lead 
to different minimum sample sizes. Rosenfield et al. are interested in ensuring that 
the accuracy indicated from the samples (i.e. sample mean) is a reasonable (constant) 
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approximation of the actual map accuracy. In contrast, Van Genderen et al. base their 
approach on ensuring that the set of samples is representative. Both have their merits 
and in practice one may wish to choose a compromise of between 30 and 60 samples 
per category (Richards, 1986). However, Congalton (1991) states that 'because of 
the large number of pixels in a remotely sensed image, traditional thinking about 
sampling does not often apply. ( ) Therefore, practical considerations more often 
dictate the sample size selection. A balance between what is statistically sound and 
what is practically attainable must be found'. From experience Congalton recommends 
as a 'good rule of thumb' the collection of a minimum of 50 samples for each land 
cover class in the error matrix. For especially large areas (i.e. more than 4000 km2 

or a large number of land cover classes (i.e. more than 12 classes) he recommends 
to increase the minimum number of samples to 75 or 100 samples per land cover 
class. It may be useful to adjust the number of samples for each land cover class 
based on the relative importance of that class within the objectives of the classi­
fication or by the inherent variability within each of the land cover classes. 

5.3 Sample evaluation 

Once the sampling has been performed the classification accuracy has to be evaluated. 
The most common way to represent the classification accuracy is in the form of an 
error matrix, as described in 4.3. The error matrix can be statistically evaluated. If 
appropriate sampling is performed confidence limits can be determined, based on 
the binomial distribution. Binomial probabilities may be calculated for the classifica­
tion as a whole or for individual classes. Hord and Brooner (1976) and Richards 
(1986) describe a procedure by which the 95 percent confidence interval can be 
derived, given the sample size and the number of correctly classified pixels in a 
sample. The most common method to derive sample estimates from systematic 
sampling, is to assume that the sample is random and use the appropriate equations 
from simple random sampling (Congalton, 1988). Congalton (1988) showed that, 
if the situation dictates it, (random) cluster sampling can also be used for estimation 
of the classification accuracy. However, small clusters should be taken using no more 
than 10 pixels per cluster or 25 pixels per cluster, maximum. 

5.4 Sampling schemes and classification accuracy assessment 
procedure in the LGN project 

For the assessment of the classification accuracy of the LGN database a distinction 
was made between the non-agricultural classes and the agricultural classes. In order 
to create un unbiased and statistical valid sample of pixels, simple random sampling 
or stratified random sampling schemes are preferred (5.1). However, due to time and 
budget constraints it has been decided to base the accuracy assessment of the 
non-agricultural classes on a systematic sampling scheme. The (potential) sampling 
points coincide with the points of intersection of the 1 km grid lines on the Dutch 
topographic maps. The use of these points facilitate the location of the sampling 
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points. To avoid oversampling a stratified systematic sampling was performed. The 
stratification is based on (groups of) the actual thematic classes themselves. The 
sampling is concentrated on the most important (groups of) LGN2 land cover classes, 
namely (the LGN2 class codes are indicated between brackets): deciduous forest (2.1), 
coniferous forest (2.2), open vegetated nature area (3.1 and 3.2), built-up area (5.1 
and 5.2) and green urban area (5.3 up to and including 5.6). From all the points of 
intersection of the 1 km grid lines situated in the different (groups of) LGN2 classes 
100 samples were selected randomly. The reference classes for the selected sampling 
points was derived from topographic maps and, if necessary, from aerial photographs. 
Because of the positional accuracy of the pixels in a geometrically corrected image 
(the RMS error can be as large as 1 à 2 pixel, section 4.3), it is difficult to determine 
the reference class if a selected pixel is situated in a heterogeneous area. In these 
cases the reference class represents the class that covers the majority of the area in 
a 3x3 pixel window. This is allowable because the LGN2 classification result was 
spatially smoothed using a 3x3 majority filter. 

The (groups of) non-agricultural LGN2 classes to be sampled are rather complex 
and it is assumed that no periodicity in the data occurs. Therefore, the population 
estimates were obtained by assuming simple random sampling and using the appropri­
ate equations. 

The accuracy assessment of the land cover classes which are less important and/or 
show little variability (i.e. bare soil in nature area (3.3), water (4.1 and 4.2) and bare 
soil in rural built-up areas (5.7)) and the land cover classes that are (partly) copied 
out of other high quality databases (i.e. greenhouses (1.8), orchards (1.9), heath land 
(3.1) and main roads and railways (5.8)) was only performed qualitatively and/or 
in a non-site-specific way (section 5.5). 

For the assessment of the classification accuracy of the agricultural classes reference 
data should be gathered in the field. In practice there is often a time lapse between 
acquisition date and classification date, hampering the execution of a stratified 
sampling as it can not be based on the classification result. So, in these cases only 
a simple random or systematic sampling has to be performed, requiring a large sample 
size to ensure an adequate sample size for all the classes concerned. Another problem, 
related to the time lapse between acquisiton date and classification date concerns 
the dynamic land use change in agricultural areas. After the selection of suitable 
satellite images, often a restricted time period is available for gathering reference 
data of agricultural crops. Because a stratified classification of the agricultural area 
is performed (4.2), every stratum has to be classified seperately. Totally, circa 70 
agricultural strata were distinguished. The sampling effort can be adjusted based on 
the homogeinity of the strata. Only heterogeneous strata require a comprehensive 
sampling. Nevertheless, the gathering of a statistical valid sample of pixels for the 
agricultural crops in the entire Netherlands is estimated to take 150 à 200 working 
days. A random cluster sampling may only slightly reduce the sampling effort. So 
due to time and money constraints a simple random or systematic sampling and even 
a random cluster sampling per stratum is not feasible. Therefore, in the framework 
of the LGN database a 'controlled' cluster sampling is proposed. 

70 



The 'controlled' cluster sampling is a sampling method in which all (agricultural) 
plots bordering on a number of selected sections of roads are sampled. For all agricul­
tural strata a number of outwardly representative sections of roads are selected on 
the basis of topographic maps and satellite images. Topographic maps provide useful 
information on land cover (grasland or arable land), the spatial distribution of land 
cover and plot size, while satellite images provide more detailed in formation on 
the occurring agricultural crops. For the main agricultural crops in an stratum at least 
10 plots have to be sampled. If the mininimum number of plots are not present along 
the selected sections of roads, additional samples have to be collected for the concern­
ing crops. The sampled pixels used for the accuracy assessment consist of clusters 
of 3x3 pixels in the centre of the plots, minimizing the intracluster correlation and 
maximizing the information derived from cluster sampling (Congalton, 1988). For 
small plots only the centre pixel is sampled. In addition to accuracy assessment a 
part of the reference data is also used for training of the classifier. The proposed 
sampling procedure has some main disadvantages: 
— The sampling procedure does not guarantee the samples to be truly representative 

of the classification result. Therefore, the resulting error matrices provide no statis­
tically valid estimates of classification performance and no confidence limits can 
be calculated; 

— A part of the sampled fields is often used to get information on the reflection char­
acteristics of the different agricultural crops. Subsequently, large homogeneous 
fields are selected on the screen by the interpreter for training the classifier. In 
practice, mostly only a few sampled fields prove to be suitable training areas. 
Moreover, many satellite images cover several strata. In these cases the selected 
training are often transferred to other strata, requiring no or only minor adaptions. 
Therefore, it is believed that the use of a small part of the reference data for train­
ing purposes effects no significant overestimation of classification performance. 
Nevertheless, it is thought desirably to sample in future some large, homogeneous 
plots exclusive for training of the classifier, complementary to the controlled 
cluster sampling; 

— The clusters of pixels or individual pixels selected for the assessment of the classi­
fication accuracy of agricultural crops represent areas of homogeneous land cover. 
This leads to the problem that those areas which represent mixtures of different 
agricultural crops will not be represented by the sample. In consequence, accuracy 
values based on such samples must be expected to be significantly higher than 
the true accuracy of the classified image (Corves and Place, 1994). However, 
accuracy assessment of the LGN1 database by comparison of the classification 
result with gridded reference areas on a pixel by pixel basis showed that (mixed) 
pixels along field boundaries may wrongly be considered in error (Thunnissen et 
al., 1992a en 1992b). This is caused by positional errors occurring from inaccur­
acies in the position of boundary pixels in the classified image and the gridded 
reference areas. These inaccuracies in the position of boundary pixels are caused 
by geometric correction of satellite images, delineation of boundaries during field 
survey or by interpretation of aerial photographs, digitization of reference maps 
and vector to raster conversion of the reference maps. 
Mixed (boundary) pixels may be classified as one of the constituent classes or as 
one of the remaining classes. When mixed pixels are classified as one of the 
constituent classes the positional inaccuracies only cause a slight shift in boundary 
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position. These location errors are of minor importance for applications on a 
regional scale. Therefore, boundary pixels classified as one of the constituent 
classes are considered to be correctly classified. Boundary pixels classified as one 
of the remaining classes are erroneously classified. Separate classification accuracy 
assessment of boundary pixels in the LGN1 database showed that in most reference 
areas most of the boundary pixels were correctly classified as one of the constitu­
ents classes (Thunnissen et al., 1992a en 1992b). Visual inspection of the LGN2 
database showed that also in mostly all agricultural strata most boundary pixels 
were correctly classified. Therefore, omitting boundary pixels from the sampled 
clusters is not expected to cause significant overestimation of classification per­
formance. However, when locally many boundary pixels are misclassified, omitting 
boundary pixels from the sampled clusters must indeed be expected to significantly 
overestimate classification performance. 

— In the controlled cluster sampling approach only agricultural fields are sampled. 
However, the agricultural strata contain also minor roads, ditches, farms and farm 
yards. These classes are classified as one of the agricultural crops. By that, the 
reliability of the classified agricultural crops is underestimated. 

In the Drenthe test site a controlled cluster sampling was performed (2.1). The results 
of the classification accuracy assessment, using the reference data from the controlled 
cluster sampling, are presented in Table 23. Comparison with the results of the 
accuracy assessment performed with the reference data from the systematic sampling 
(Table 14) shows that individual classes show some deviations. However, the overall 
classification accuracies of both approaches are comparable. To better found the 
reliability of the controlled cluster sampling, it is advised to compare the results of 
the controlled cluster sampling with the results of the random or systematic sampling 
in some other test sites. However, using the LGN land cover database in practice, 
we must realize that the results of the classification accuracy assessments are only 
statistical valid as the error matrices are truly representative of the entire classifica­
tion. Because, especially the sampling of the agricultural crops is not based on a 
(stratified) random sampling approach, the results must be used with caution. 
Nevertheless, we think that the results of the accuracy assessments provide a fair 
indication of the quality of the classified images. 

For LGN2 database the controlled cluster sampling was only performed in a restricted 
number of strata (Noordman et al., 1996). This is mainly caused by the restricted 
time and man-power available for the field survey. The actual collection of field ref­
erence data should be incorporated in the operational implementation of the LGN 
database (6.2). 

Finally, it should be remarked that when performing a classification accuracy assess­
ment, it is often implicitely assumed that the reference data are 100% correct. In 
practice this assumption is not true. 

In addition to the accuracy assessment on the basis of the site-specific controlled 
cluster sampling also a non-site-specific accuracy assessment of the agricultural crops 
was performed. The latter method will be discussed in 5.5. 
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Table 23 Error matrix showing the multi-temporal classification result for the agricultural crops 
in the Drenthe test site. The classification accuracy assessment was performed by using the 
reference data from the controlled cluster sampling. Numbers in the matrix express numbers of 
pixels 

Classified 
data 

Reference data Reliability 
(%) 

grass maize potatoes sugar cereals other 
beets agricultu­

ral crops 

total 

Grass 968 77 168 
Maize 4 85 6 
Potatoes 71 20 387 
Sugar beets 0 12 10 
Cereals 59 8 23 
Cereals/pota- 77 6 49 
toes 
Maize/sugar 
beets 
Maize/pota­
toes/sugar beets 
Total 

Accuracy (%) 77.1 21.0 54.4 
Accuracy 77.1 69.6 70.5 
inclusive of 
mixed classes (%) 

2 100 3 

75 97 66 

1256 405 712 

44 
14 
52 

159 
2 
4 

75 

29 

379 

42.0 
69.4 

7 
0 

19 
4 

185 
49 

11 
6 
16 
2 

31 
35 

0 4 

10 25 

274 130 

1275 
115 
565 
187 
308 
220 

184 

302 

3156 

75.9 
74.0 
68.5 
85.0 
60.1 
44.5 

95.1 

63.6 

67.5 
85.4 

0.0 
0.0 

Overall classification accuracy: 56.5% 
Overall classification accuracy (inclusive of mixed classes): 71.3% 

5.5 Non-site-specific accuracy assessment 

The CBS Agricultural Statistics contain information on the areas of the agricultural 
crops for each of the 66 'agricultural regions' in the Netherlands (3.6). Agricultural 
regions are more or less homogeneous areas as far as soil type and agricultural land 
use are concerned. By comparing the classified areas in the LGN2 database with 
the areas provided by the CBS Agricultural Statistics a non-site-specific accuracy 
assessment of the LGN2 database was performed. The CBS Agricultural Statistics, 
however, contain net cultivated areas, while the agricultural stratum in the LGN2 
database contains the total agricultutal area inclusive of ditches, (minor) roads, 
hedges, farm yards, farms and other buildings. A part of this agricultural infrastruc­
ture was included in the neighbouring fields during the classification or by majority 
filtering of the classification result. The remaining part of the agricultural infrastruc­
ture was mainly classified as grassland or bare soil. This implies that especially the 
grassland and bare soil areas are overestimated in the LGN2 database. The part of 
the agricultural infrastructure, classified as bare soil, was assigned to the arable 
class(es) which contained a considerable area bare soil on the image acquisition date. 
The accuracy of the LGN database could be improved considerably in future by 
copying the agricultural infrastructure out of other available digital geographical data­
bases. 
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5.6 Conclusions 

In order to create un unbiased and statistical valid sample of pixels, simple random 
sampling or stratified random sampling schemes are preferred. However, due to time 
and budget constraints it has been decided to base the accuracy assessment of the 
non-agricultural classes in the LGN database on a stratified systematic sampling 
scheme. For the concerning classes the results of this sampling scheme are 
comparable with the results of a random sampling scheme. By selecting the points 
of intersection of the 1 km grid lines on the Dutch topographic maps as (potential) 
sampling points, the location of the sampling points is facilitated considerably. By 
reason of efficiency, the sampling is concentrated on the most important (groups 
of) LGN2 land cover classes. From all the points of intersection of the 1 km grid 
lines situated in the different (groups of) LGN2 classes 100 samples are selected 
randomly. The reference classes for the selected sampling points can be derived from 
topographic maps and, if necessary, from aerial photographs. The accuracy assessment 
of the land cover classes that are less important and/or show little variability or are 
(partly) copied out of other high quality databases, is only performed qualitatively 
and/or in a non-site-specific way. 

The gathering of a statistical valid sample of pixels for the agricultural crops in the 
entire Netherlands is estimated to take 150 à 200 working days. So due to time and 
money constraints a simple random or systematic sampling and even a random cluster 
sampling per stratum is not feasible. Therefore, in the framework of the LGN data­
base a 'controlled' cluster sampling is proposed. The 'controlled' cluster sampling 
is a sampling method in which all (agricultural) plots bordering on a number of 
selected sections of roads are sampled. For all agricultural strata a number of 
outwardly representative sections of roads are selected on the basis of topographic 
maps and satellite images. For the main agricultural crops in an stratum at least 10 
plots have to be sampled. The sampled pixels used for the accuracy assessment con­
sist of clusters of 3x3 pixels in the centre of the plots in order to maximize the 
information derived from cluster sampling. For small plots only the centre pixel is 
sampled. Comparison of the accuracy assessments of the classification result of the 
Drenthe test site, performed with reference data from both a controlled cluster 
sampling and a systematic sampling, shows that individual classes may show some 
deviations. However, the overall classification accuracies of both approaches are 
comparable. To better found the reliability of the controlled cluster sampling, it is 
advised to compare the results of the controlled cluster sampling with the results 
of the random or systematic sampling in some other test sites. 

Using the LGN land cover database in practice, we must realize that the results of 
the classification accuracy assessments are only statistical valid as the error matrices 
are truly representative of the entire classification. Because, especially the sampling 
of the agricultural crops is not based on a (stratified) random sampling approach, 
the results must be used with caution. Nevertheless, we think that the results of the 
accuracy assessments provide a fair indication of the quality of the classified images. 

The CBS Agricultural Statistics are suitable for a non-site-specific accuracy assess­
ment of the LGN2 database. One should, however, take into consideration that the 
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CBS Agricultural Statistics contain net cultivated areas, while the agricultural stratum 
in the LGN2 database contains the total agricultural area inclusive of ditches, (minor) 
roads, hedges, farm yards, farms and other buildings. The accuracy of the LGN 
database could be improved considerably in future by copying the agricultural infra­
structure out of other available digital geographical databases. 
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6 Application, cost and benefit analysis and operational imple­
mentation of the LGN database 

6.1 Applications 

The main users of the LGN(2) database are national and regional governmental 
agencies. Because of its digital format the LGN database can be easily combined 
with other digital information. Is has frequently been used for different purposes in 
the fields of environmental protection, water management, nature conservation and 
physical planning on regional and national scales. Mostly, the LGN data are combined 
with other geographical information, such as soil type, water-table, the occurrence 
of seepage, meteorological data, and the application of animal manure, fertilizers 
and pesticides. Underneath some main applications of the LGN database are 
summarized. 

Physical planning 
The LGN database can provide an overview of the land cover in a specific area, in 
contrast to the CBS Agricultural Statistics, which are available for administrative 
units only and therefore have a low spatial resolution. The LGN database was used 
to allocate soil and groundwater protection areas, to design monitoring networks for 
soil and groundwater quality and to determine the relation between land use/cover 
and soil and groundwater quality (e.g. TAUW, 1994 and Van Drecht et al., 1996). 
LGN has also be used for an inventory of land use in nature development and 
groundwater extraction areas. 

The DLO Winand Staring Centre (SC-DLO) has developed a spatial decision-support 
system for physical planning, called WATRO (Steenvoorden et al., 1993). This system 
contains information on land use (LGN) and soil and groundwater characteristics. 
Using WATRO, land use planners can assess the effects of different land use 
scenario's on the environment or investigate the suitability of an area for a specific 
type of land use. 

Extension of built-up areas threatens the open space in rural areas (e.g. Ministery 
of Agriculture, Nature Management and Fisheries, 1995). To support physical 
planning policy, it is therefore of great importance to have up-to-date information 
on urbanization. This information can be derived from the LGN database. 

Environmental protection 
The effect of (proposed) measures on the quantity and quality of groundwater and 
surface water are studied regularly, using regional water and solute transport models. 
In these models, évapotranspiration, groundwater recharge and irrigation are often 
related to land cover/use, just like nutrient loads and uptake, and the distribution 
of nutrient applications and uptake over the year. Atmospheric deposition and the 
application of pesticides are also often related to land cover. The required information 
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on land cover/use for these models can be derived from the LGN database (e.g. 
Schouwmans et al., 1990; Thunnissen et al., 1992a, Reijerink and Breeuwsma, 1992; 
Vermulst, 1993; Querner, 1993; Van Walsum et.al., 1996; Van Walsum and 
Veldhuizen, 1996; Van der Bolt et al, 1994; Meinardi, 1994 and Gehrels, 1995). 

Wopereis (1991) studied the suitability of soils for low-emission manure application 
on grassland in sandy areas. 

For national and regional policies in the fields of water management and the 
environment, information on land use is indispensable. For the underlying envi­
ronmental and water system studies, the LGN database was used (e.g. Nationale 
Milieuverkenningen (National Institute of Public Health and environmental Protection, 
1993), de Derde Nota Waterhuishouding (Ministery of Transport and Public Works, 
1989) en provinciale Milieu- en waterhuishoudingsplannen (e.g. Provincie Gelderland, 
1994) 

In the early eighties, pesticides were found in drinking-water extracted in the 
Drentsche Aa catchment area (province of Drenthe). The main causes of these 
contaminations were spray drift, surface run-off, and spilling when water was being 
pumped for spraying. To prevent this, alternative filling places were constructed so 
that farmers need not use streams and ditches for their water supply. Because pesti­
cides are mainly used on arable land, the sites of these filling places were selected, 
using the LGN database in order to minimize the distance between the filling places 
and the fields. 

Water management 
SC-DLO has made a cost-benefit analysis of several promising combinations of 
measures to prevent soil erosion and flooding in the southern part of the Province 
of Limburg. Information on slope, land cover (LGN) and soil type has been taken 
into account (Van Eck et al., 1995). 

The Directorate-General of Public Works and Water Management and the 
Provinces of Gelderland and Overijssel are developing inundation models for the 
major rivers of the Netherlands. An important input parameter in these models is 
the roughness coefficient. The spatial distribution of the roughness coefficient can 
be calculated, using data from the LGN database. 

Mobile telecommunication 
The planning of a national mobile telecommunication network is based on predictions 
of signal propagation. The signal propagation is influenced by surface roughness, 
which can be estimated on the basis of land cover. The LGN database is used for 
the planning of a telephone network. 
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6.2 Cost and benefit analysis and implementation of the LGN data­
base 

6.2.1 Cost and earnings 

The cost of production of the LGN2 database amounted to Dfl 1 120 000 (i.e. circa 
Dfl 0.35 per ha). The selling price of the LGN2 database has been determined on 
the basis of the cost, the expected number of users and negotiations with (potential) 
users. The selling price of the LGN2 database depends on the area required, the num­
ber of classes, the spatial resolution and the number of applications. The earnings 
from sale of the LGN2 database amount to circa Dfl 1 170 000, inclusive of warrants 
at Dfl 350 000 (situation June 1996). 

6.2.2 Benefits 

The LGN database is used for many applications (6.1). According to some users, 
the benefits of using the LGN database exceed the cost. In practice, the LGN data­
base, once being available, appears often to be used for all kinds of unintended 
applications. An accurate estimation of the benefits, however, is troublesome. 
Information from the LGN database is mainly used by governmental agencies which 
are responsible for policies in the fields of environmental protection, water manage­
ment, nature conservation and physical planning on regional and national scales. The 
effects of using the LGN database on the quality of the pursued policy are difficult 
to assess. 

In addition to the above-mentioned users, different drinking water companies and 
water boards are interested in the data. However, purchase of the data is often ham­
pered by the high selling price. Finally, there is much interest in digital land cover 
data for research and educational purposes. In practice, however, hardly any budget 
is available for purchase of data. Therefore, many subareas of the LGN2 database 
have been supplied free of charge for research and educational purposes. 

6.2.3 Operational and commercial implementation 

Operational implementation of the LGN database has been achieved when the data­
base or parts of the database are up-dated at regular intervals and the up-dating is 
largely paid by the users of the database. Commercial implementation implies that 
the up-dating is completely paid by the users. The cost of up-dating the whole LGN2 
database is estimated at Dfl 900 000. At this moment operational implementation 
of the LGN database has been achieved. Meanwhile the production of the LGN3 (!) 
database has already been started. Commercial implementation of the LGN database 
has not yet been achieved. 
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The chance of commercial implementation of the LGN database in near future is 
determined by the need of land cover data and the cost of gathering these data. In 
this framework the LGN database has to compete with other available nation-wide 
digital land cover/use databases, especially the topographic databases (3.5) and the 
CBS Land Use Database (3.4). The LGN database can be competitive when the 
database distinguishes itself from the other databases by cost, thematic classes, clas­
sification accuracy and reliabilitiy, geometric accuracy, up-date frequency, timeliness 
or data processing. These factors will be discussed separately: 

Cost (all prices mentioned are exclusive of VAT) 
Both the LGN database and the 1 : 50 000 and 1:10 000 topographic databases are 
sold against market prices, while the CBS Land Use Database is sold below market 
price. The annual price of the topographic databases (inclusive of up-dates) depends 
on the up-date frequency and varies between Dfl 840 and Dfl 1 680 for one 
1 : 50 000 map sheet (i.e. 500 km2) and between Dfl 550 and Dfl 1 110 for one 
1 : 10 000 map sheet (i.e. 62.5 km2). The prices of the 1 : 50 000 and 1 : 10 000 
topographic databases for the entire Netherlands amount to circa Dfl 112 500 and 
Dfl 455 500 per annum, respectively. These prices are inclusive of up-dates. The 
annual prices are based on the most frequent applications of the databases. For more 
or less intensive applications higher or lower prices may hold. The prices are constant 
per unit of area. 

The price of the LGN2 database for the entire Netherlands amounts to Dfl 200 000. 
The price per unit of area increases as the required area decreases. For example, the 
average price of the LGN2 database for one province amounts to circa Dfl 75 000. 
The prices of up-dated versions of the LGN2 database are estimated at 70 à 80 per 
cent of the price of the LGN2 database. However, when optimal satellite images are 
available and no mixed classes have to be included in the LGN database, the prices 
can be reduced further. The price of the LGN database decreases as the number of 
required classes decreases and/or raster size increases. Also the number of appli­
cations may influence the price. By applying this flexible price policy, it is aimed 
as much as possible that application of the database is not hampered by too high cost. 
Nevertheless, for many (potential) users the cost are too high. Although the database, 
once being available, is used for all kinds of unintended applications, the cost have, 
mostly, to be paid from the budget of only one or two projects. In practice, this often 
results in long, internal decision-making. Moreover, in practice, many (potential) users 
prove to be unacquainted with the LGN database. 

The price of the CBS Land Use Database for the entire country amounts to circa 
Dfl 17 000. The price is likely to rise in future. 

Thematic classes 
Underneath, it is briefly discussed to what extent the LGN2 classes differ from or 
correspond with classes in the CBS Land Use Database and the topographic databases. 

80 



The CBS Land Use Database distinghuishes 33 land use classes, especially for arti­
ficial, non-agricultural areas (Table 6). The classification is largely based on func­
tional land use and the separate classes may contain several land cover types. For 
instance 'Parks and public gardens' consist mainly of grass and forest, and gardens 
and public greens, situated in residential areas, are assigned to the class 'Residential 
areas'. The topographic databases contain topographic point, line and area informa­
tion. Especially some area elements in these databases, for example grassland and 
forest, are characterized by land cover and the functional use of these classes can 
only be determined by using contextual information, e.g. grassland and forest situated 
in urban area (parks or sport grounds), grassland used for recreational purposes and 
such-like. For the main land use types of the LGN2 database (i.e. 'built-up area', 
'natural area', 'forest' and 'agricultural area'), the database contains information on 
land cover. So, for example, grassland used for recreational or sport purposes is dis­
criminated from pastures. 

In the CBS Land Use Database forests are labeled as woodland. Forested areas in 
the topographic databases are subdivided in polygons bounded by linear elements, 
mostly footpaths. Deciduous and coniferous forest are distinghuished. When both 
deciduous and coniferous forest occur within the same polygon it is labeled as mixed 
forest. Because the LGN2 database contains information per pixel, it can distinguish 
deciduous and coniferous forest within separate polygons in the CBS Land Use Data­
base and the topographic databases. 

In the CBS Land Use Database two agricultural classes are distinghuished: 'glass­
houses and 'other agricultural use'. The topographic databases distinguish five agri­
cultural classes: arable land, grassland, orchards, tree nurseries and glasshouses. 
Finally, the LGN2 database contains 10 agricultural classes: the main agricultural 
crops (Table 5) and glasshouses. 

The LGN2 database as well as the CBS Land Use Database and the topographic data­
bases contain little information on land cover in open natural areas. 

Scattered buildings in agricultural areas are only included in the topographic data­
bases. This class will, however, be included in up-dated versions of the LGN2 data­
base, using a newly developed method to derive this class from satellite images (4.9). 

Railways and the main roads and watercourses are included in the CBS Land Use 
(3.4) with their real width. The width of roads, railways and watercourses in the topo­
graphic databases do not correspond with their actual width. The railways and the 
main roads and watercourses in the LGN2 database were for the greater part copied 
out of the CBS Land Use database and up-dated by visual interpretation of satellite 
images. 

Classification accuracy and reliabilitiy 
Altough no exact figures are known on the classification accuracy and reliability of 
the topographic databases and the CBS Land Use Database they are supposed to be 
high. Nevertheless, locally edge matching problems and label errors were found in 
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the CBS Land Use Database. So far little experience has been gained by using the 
topographic databases. As far as the LGN2 database is concerned the classification 
accuracy and reliability of the non-agricultural classes vary between 80 and 95%, 
while most values exceed 90% (4.4 and Noordman et al., 1996). Spectral confusion 
occurs only between different land cover classes within the same stratum (e.g. decidu­
ous and coniferous forest). The classification accuracy and reliability of the agricul­
tural crops, inclusive of mixed classes, are, in general, above 70% (Noordman et al., 
1996). The classification accuracy of greenhouses and orchards in the LGN2 database, 
finally, are estimated at 90 and 70%, respectively (Noordman et al., 1996). 

Geometric accuracy 
Both the topographic databases and the CBS Land Use Database are based on the 
interpretation of aerial photographs (on scales 1 : 17 000 and 1 : 10 000, respect­
ively), while the LGN database is based on the interpretation of satellite images. 
Therefore, the topographic databases and the CBS Land Use Database are superior 
to the LGN database as far as geometric accuracy is concerned. On the average, the 
geometric accuracy of the LGN database amounts to circa ±25m, which is sufficient 
for applications on regional scale. 

Up-date frequency 
The up-date interval of the topographic data varies between 4 and 8 years. From 1-1-
1998 the up-date interval will amount to 4 years for all map sheets. The CBS Land 
Use Database will be up-dated every 3 years. Most users of the LGN database prefer 
an up-date interval of 5 years. The up-dating of the LGN database is complicated 
by the need of satellite images acquired in specific periods (4.6). Because of cloud­
iness, optimal satellite images will not be available every year. An analysis of avail­
able Landsat images (Landsat 1 to 5) of the Netherlands during the period 1975-1988 
showed that the average frequency of obtaining a cloud-free summer image of the 
entire country is about once per two years (Van der Laan, 1989). A cloud-free sum­
mer images can exist of imagery from different acquisition dates. Moreover, some 
of the analysed satellites had overlapping acquisition periods. The simultaneous 
availability of spring and summer images was not analysed. By experience gained 
during the period 1986-1995 the average frequency of obtaining suitable Landsat 
5 images from spring and summer is estimated at once every 3 à 4 years. For the 
classification of particular classes (e.g. extension of towns and mineral extraction 
sites) monotemporal images are sufficient and the acquisition period is less critical. 
Therefore, these classes can be up-dated more frequently. Future satellites, especially 
SPOT 4 and Landsat 7, are likely to increase the availability of images of suitable 
spatial and spectral resolution (4.6). 

Timeliness 
Timeliness refers to the period required for delivering of products. When sufficient 
equipment and trained staff are available, the classification result can, in principle, 
be delivered within a few months after the acquisition date of the satellite images. 
A fast on line availability of high quality quick look data is a prerequisite for a timely 
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delivery of classification results (4.6). On the contrary, the interpretation of aerial 
photographs can take a few years. Both the topographic databases and the CBS Land 
Use Database are based on the interpretation of aerial photographs. 

Data processing 
The topographic databases and CBS Land Use database are stored in vector format, 
while the LGN database is stored in raster format. The 1 : 10 000 topographic 
database, the CBS Land Use database and the LGN database occupy circa 20 Gb, 
500 Mb and 20 Mb of disk space, respectively, for the entire Netherlands. Especially 
the processing of the topographic databases and, to a less extent, the CBS Land Use 
database for relatively large areas may be very time consuming and requires large 
amounts of disk space. 

6.2.4 Conclusions 

It can be concluded that (a part of) the LGN database may distinghuish itself 
favourably from the CBS Land Use and/or the topographic databases, especially con­
cerning cost, thematic classes, timeliness and dataprocessing. That means that the 
mentioned databases do not replace each other. Altough there may be some overlap, 
the databases largely supplement each other. In practice, combined use of different 
databases may give a surplusvalue to the separate databases. In order to achieve 
commercial implementation or continue operational implementation of the LGN data­
base, the advantages of the LGN database with respect to other digital geographical 
databases should be exploited as much as possible. Further, in order to meet 
customers' needs more satisfactorily, the LGN database should become a more 
flexible product and the classification accuracy and reliabilitiy of some classes should 
be improved. Finally, more users should be found. In order to reach these objectives, 
the following activities have to be performed in near future: 
— Setting up a subscription system. Participants will be provided with an up-dated 

version of (some areas or classes of) the LGN database at more or less regular 
intervals on payment of a fixed price each year. A subsciption system has advan­
tages for both users and producers of the database. The users pay a rather small 
amount each year, facilitating the financing. The producers are assured of continu­
ity of revenues, facilitating the work planning, especially the acquisition of 
satellite images (including SPOT Programming Requests), the gathering of field 
reference data, the appointment of skilled employees and the delivery of timely 
products; 

— Defining a more flexible product by variation of up-date intervals for different 
classes and/or areas, dependent on the needs of the users, the rate of change and 
the importance of the concerning classes and the availability of suitable satellite 
images; 

— Improving the classification results by using only images from optimal acquisition 
periods and with the required spectral resolution. Mixed classes have to be 
avoided; 

— The classification result of agricultural crops could be improved considerably by 
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performing a field-based classification. By that, the usefulness of the LGN 
database in projects on local to regional scale would increase. In principle, 
combined use of the 1 : 10 000 topographic database and satellite images may 
provide field boundaries to be applied in a field-based classification. It is advised 
to perform further research into algorithmes to obtain the required information 
for a field-based classification in an operational and cost effective way; 
The recently available LGN2 database will be used for a comprehensive marketing 
campaign; 
The production cost should be reduced further. 
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