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Abstract 12 

Acoustic data collection trials on pelagic freezer-trawlers were realised in 2012 during several fishing trips 13 

targeting blue whiting west of the British Isles in spring, North Sea herring in summer, and horse mackerel in 14 

the English Channel and Celtic Sea in autumn. Echosounders were calibrated and time- and position-stamped 15 

data logged along the path covered by the vessels. The acoustic detections recorded during different types of 16 

trawler activity within a fishing trip („searching‟, „stationary‟, and „fishing‟) were compared between target 17 

species. The highest proportion of time spent for activity „fishing‟ was observed in the blue whiting fishery 18 

(82%), while that value was lower in the horse mackerel and herring fishery (68% and 54%). In all fisheries 19 

the quantified mean fish densities recorded were significantly higher during „fishing‟ than during „searching‟. 20 

Changes in recorded fish density magnitudes over time before and after trawling also showed different 21 

patterns between fisheries. The quantified peculiarities exhibited by the specific fishing trip data is discussed 22 

in light of incorporating them in monitoring programs and analysis methods that can advance ecosystem 23 

understanding. Potential future approaches for analysis methods of opportunistically recorded acoustic 24 

fishing vessel data are discussed. 25 
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1. Introduction 29 

Sustainable management of marine resources and services is increasingly being based on an ecosystem 30 

approach (Bianchi and Skjoldal, 2008; Levin et al. 2009; McLeod and Leslie, 2009; Link, 2010; 31 

Katsanevakis et al. 2011; Kruse et al., 2012). Apart from a holistic understanding about how human activities 32 

impact on the system, such an approach requires quantitative knowledge about fundamental ecosystem 33 

processes (Curtin and Prellezo, 2010). To develop this knowledge, information on the distribution, 34 

abundance and productivity of different biological ecosystem components are required (Demer et al. 2009; 35 

Handegard et al. 2013). However, the specific monitoring and sampling programmes currently in place are 36 

largely designed to assess individual ecosystem components. Available data therefore often do not satisfy the 37 

requirements of advanced ecosystem models (Fulton, 2010; Rose et al. 2010). The latter are designed to 38 

enhance our ecosystem process understanding and to make predictions based on biological and physical 39 

characteristics of the ecosystem over extended spatio-temporal scales.  40 

Scientific acoustic surveys are an essential source of information for current stock assessments of widely 41 

distributed pelagic fish populations, which show distinct migration patterns throughout their life cycles (e.g. 42 

Iversen, 2002). Echosounders are used to continuously collect fish density data along systematic survey 43 

transects. The acoustic intensity reflected by the fish can subsequently be converted into average fish density-44 

per-area values inside the covered area. A survey age-structured biomass index for the targeted stock can 45 

then be derived from the acoustic data in combination with collected biological samples. However, scientific 46 

surveys are limited by practical and financial constraints and the resulting coverage often provides only a 47 

snapshot view of the stock abundance at a very particular point in time. Furthermore, many commercial 48 

stocks cannot be sufficiently covered by a directed acoustic survey due to resource limitations or survey 49 

practicalities. The resulting lack of spatially resolved abundance information for many species severely 50 

constrains the parameterisation and prediction capabilities of advanced ecosystem models needed to serve as 51 

a foundation for ecosystem-based management.  52 

One possible solution to the increased data requirements for the ecosystem approach was discussed by 53 

Koslow (2009), Trenkel et al. (2011), and Handegard et al. (2012), who specifically suggested the 54 

combination of different acoustic sampling platforms in a framework to simultaneously collect information 55 

on species distributions at previously inaccessible spatio-temporal scales. Godø et al. (2014) have thoroughly 56 

discussed and termed this integrated monitoring concept „Marine Ecosystem Acoustics‟ (MEA). They 57 

highlighted adequate temporal and spatial coverage as one of the main challenges that poses to be 58 
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unsurmountable with traditional sampling methods. To extend the temporal scales of data collection , Godø 59 

et al. 2014 proposed the possibility of enhanced and increased collection of acoustic data from ships of 60 

opportunity (e.g. ferries or fishing vessels), which are already becoming advanced and increasingly important 61 

acoustic platforms (Karp, 2007).   62 

Acoustic equipment available on pelagic fishing vessels is nowadays of comparable design and performance 63 

as those used on scientific research vessels. On many occasions, fishing vessels have in fact been chartered to 64 

carry out dedicated acoustic surveys following a standardised design (Honkalehto et al. 2011; Hordyk et al. 65 

2011; Karp 2007; Ressler et al. 2009). Providing that a list of protocols are defined to insure quality 66 

standards (Karp, 2007), these vessels can therefore serve as acoustic data collection platforms and provide 67 

useful information complementing or in some cases compensating for the lack of scientific survey data. The 68 

Dutch pelagic fleet is composed of a small number of large (80 - 145m length) freezer-trawlers which are 69 

operational all year round on different fishing grounds in the northeast Atlantic, off western Africa and in the 70 

south Pacific. A considerable amount of quantitative information on fish distribution and biomass could 71 

potentially be made available at negligible costs by simply recording acoustic data from these vessels during 72 

regular fishing trips. In order to make scientific use of these data, they would need to be collected routinely 73 

and at the required quality (Karp, 2007). Furthermore, it is evident that the behaviour of commercial vessels 74 

exhibited during fishing activities does not follow a systematic sampling design. Therefore, to allow for these 75 

data to be used as a source of useful information, it is essential to understand the mechanisms affecting the 76 

way they are collected.  77 

This paper describes the potential of regular acoustic data collected by freezer-trawlers to deliver: 78 

complementing information to monitoring surveys, relative biomass indices for target species, or population 79 

behaviour over wider temporal scales. Echosounders were calibrated and data collected during several fishing 80 

trips throughout an annual cycle targeting different commercially important species. The data were analysed 81 

to investigate differences caused by the behaviour of the different target species and the resulting fishing 82 

activity. Understanding such peculiarities will be vital for developing analysis methods to interpret and make 83 

use of these data in the process of ecosystem understanding. Eventually, potential future developments in 84 

analysis methods are discussed. 85 

 86 

2. Materials and Methods 87 

2.1. Data collection 88 
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Acoustic data were collected and recorded on pelagic freezer-trawlers during fishing trips between February 89 

and September 2012 targeting Northeast Atlantic blue whiting (Micromesistius poutassou), North Sea herring 90 

(Clupea harengus), and horse mackerel (Trachurus trachurus) in the English Channel (Table 1). All vessels 91 

included in the present study, were equipped with either the commercial Simrad ES70 or the scientific 92 

Simrad EK60 echosounders operated at 38 kHz. Time- and GPS position-stamped raw acoustic data from the 93 

echosounders were recorded to external hard disks. The hard disks were directly connected to the computers 94 

operating the echosounders prior to each individual fishing trip and collected after the trawlers returned to 95 

port. For operational reasons, echosounders were set to log data from the very beginning of the trip when 96 

leaving the home port until arrival back in port to prevent accidental data loss and to monitor the proper 97 

functioning of the echosounder during the whole recording period. During data collection, echosounder 98 

settings such as pulse duration, input power and transceiver gain remained fixed. 99 

2.2. Calibration of acoustic equipment 100 

Calibration of acoustic equipment used for scientific purposes is vital to ensure the correct functioning of the 101 

system, get an estimate of the stability of the recorded data, adjust the uncompensated received signal 102 

amplitude relative to that of a reference target, and to gain insights into potential error sources in the resulting 103 

dataset. A total of four calibrations of the 38 kHz Simrad ES70/EK60 systems installed onboard three 104 

different pelagic freezer-trawlers were successfully performed either directly before, during or adjacent to 105 

respective fishing trips. For each calibration, the vessels steamed into a sheltered bay close to the fishing 106 

grounds (either SW Ireland or Scapa Flow, Scotland, UK) and followed common recommendations for 107 

standard sphere calibrations of scientific split-beam echosounders (Foote et al. 1987; Simmonds and 108 

MacLennan, 2005). Each calibration was performed with two spheres attached at least 4 m apart to enable 109 

verification of the measurements as well as adding additional weight to the setup to enhance the stability of 110 

the top sphere used for calibration measurements. The raw data recorded during the calibration procedure of 111 

the ES70 systems were replayed and visualised in the calibration tool of the Simrad ER60 software 112 

(Andersen, 2001) to assure a sufficient amount and satisfying spread of data points throughout the beam had 113 

been collected. For the vessel where the EK60 system was available, the calibration was conducted 114 

completely using the ER60 software. 115 

2.3. Data processing 116 

The calibration settings were used to update the transceiver gains and acoustic beam patterns on the trawler 117 

equipped with the Simrad EK60 echosounder before the start of the effective fishing trip. For the other 118 
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vessels that used Simrad ES70 systems, the calibration values were applied a posteriori during post-119 

processing. Data collected by the Simrad ES70 echosounders contain an embedded systematic error 120 

component (Ryan and Kloser 2004). The error has the shape of a periodic triangular wave of approximately 121 

1dB peak-to-peak amplitude with a period of exactly 2721 data points. Inspection of the wave showed that 122 

data points remain stable for 16 pings, after which there is a step over to the next level where the next stable 123 

group of 16 data points resides. The structure of the error wave can be identified from the transmit pulse 124 

section in the raw data header information and used as a basis for adjusting the entire echogram accordingly. 125 

A java applet („ES60adjust‟) developed by scientists from the Australian Commonwealth Scientific and 126 

Industrial Research Organisation (CSIRO) was used to remove the triangular wave error (Keith et al., 2005). 127 

The wave-corrected acoustic raw data from the Simrad ES70, or the original raw data provided by the Simrad 128 

EK60 system, were post-processed and analysed using LSSS v1.6 (Large Scale Survey System, marec, NO, 129 

www.marec.no). Implementation of the calibration results were applied through the KORONA module 130 

within LSSS. The resulting error-corrected and calibrated datasets were then used for scrutinising procedures, 131 

i.e. the data post-processing where acoustic volume backscatter values (sV) of fish schools are allocated to 132 

species. The scrutinising process was based on a combination of expert judgement by scientists having 133 

covered the same areas and species with acoustic surveys, and the catch information available from trawl lists 134 

provided by the skippers.  135 

Scrutinising was done for data collected during four individual fishing trips with a total of 73 days. Individual 136 

fishing trips lasting approximately 3 weeks could be scrutinised within a total effort of 24 hours using LSSS. 137 

To improve data quality before the scrutinising process, the following pre-processing steps were performed 138 

in LSSS (c.f. Korneliussen et al., 2009): (i) remove spike noise from other, non-synchronised acoustic 139 

instruments; (ii) replace any missing pings by interpolation; (iii) quantify the background noise, using the 140 

data in each ping; (iv) remove the noise from the dataset. After echogram scrutiny, LSSS was used to 141 

produce output reports containing mean date, time, position and acoustic area density values (Nautical Area 142 

Scattering Coefficient (NASC), sA; m
2
 nm

-2
; MacLennan et al., 2002) of the respective fish species per 1 nm 143 

intervals along the track covered by the trawlers. 144 

2.4. Data analysis 145 

Using the information provided by the skippers‟ logbooks, the acoustic intervals corresponding to the start 146 

and end times of a trawl haul were identified for each fishing trip. For further analyses, only intervals 147 

between the start of the first and end of the last trawl were used in every fishing trip. Acoustic data also 148 
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contained the recorded speed of the vessels, and for every 1 nm interval the average vessel speed was 149 

available. During the data scrutiny process, intervals corresponding to stationary periods (e.g. after hauling or 150 

during catch processing) were identified based on low observed speed (below typical speeds observed during 151 

trawling: <~3 kts). Eventually, all intervals were allocated to three different activity periods: (1) „stationary‟, 152 

corresponding to all intervals having low observed speed (<~3 kts); (2) „fishing‟, corresponding to intervals 153 

within logbook recorded haul start and end times; and (3) „searching‟, corresponding to intervals falling 154 

between „fishing‟ and „stationary‟.  155 

Start and end times of the 1 nm intervals were used to allocate a duration and mid-time to different intervals. 156 

The interval mid-time was equal to the time of the middle ping in each interval. As the trawl information was 157 

time referenced, the mean times of the 1 nm fishing trip intervals were allocated to the nearest 15 minute time 158 

bin relative to the trawl start, i.e. the shooting of the trawl. Thereby, all intervals with a positive 15 minute 159 

time bin value (after trawl start) were only used if they also coincided with the activity „fishing‟ of that 160 

respective trawl. By definition, negative time bins corresponded to activity „searching‟ and started soonest 161 

after the end of the „fishing‟ activity of the previous trawl or any subsequent „stationary‟ activity. In that way, 162 

fish detection information of the recorded intervals could be related to trawling time and compared between 163 

the different trips.  164 

 165 

3. Results 166 

Data collected on blue whiting (WHB) trips covered areas along the continental shelf slope west of the 167 

British Isles and Ireland. The analysed herring (HER) fishing trip generally covered the northern North Sea 168 

around the Orkney and Shetland Islands, while data collected during a trip targeted at horse mackerel (HOM) 169 

covered the English Channel (Figure 1). The duration of different activity periods of the acoustic fish density 170 

interval data were compared by target species in the fishery. The highest proportion of time spent for activity 171 

„fishing‟ was observed for the analysed WHB fishing trips (82%). The time proportion allocated to „fishing‟ 172 

activity was less for both the HOM (68%) and HER (54%) trips, where proportionally more time for 173 

„searching‟ was used (Figure 2). Mean duration (±s.d.) of 1 nm trip intervals allocated to „fishing‟ were 13.8 174 

(±6.6; HOM), 15.5 (±6.4; HER), and 16.9 (±5.8; WHB) minutes. The observed mean speeds (±s.d.) for the 175 

„fishing‟ & „searching‟ activities were 4.5 (±1.5) & 11.8 (±1.9) for the HOM, 3.8 (±1.1) & 10.5 (±2.5) for the 176 

HER, and 3.5 (±0.9) & 8.8 (±2.2) knots for the WHB trip, respectively. sA measured per interval on each 177 

fishing trip were bootstrapped to give means and s.d. per trip activity (Figure 3). All trips showed significant 178 



7 

 

differences between mean sA recorded during „fishing‟ and „searching‟ (Student‟s t-test; HER: t = 64.6, p < 179 

0.001; WHB: t = 224.4, p < 0.001; HOM: t = 239.2, p < 0.001). The mean sA recorded during „fishing‟ were 180 

higher on all trips, with the HER showing a 1.5x, the WHB a 2.1x, and the HOM trip a 3.3x difference 181 

between „fishing‟ and „searching‟. There were distinct differences in the magnitudes of observed absolute sA 182 

values between the fisheries: mean sA values observed during WHB had magnitudes of x10
3
, those for HER 183 

had magnitudes of x10
2
, and those for HOM had magnitudes of x10

1
. For the HER fishing trip, the mean sA 184 

per individual 15 minute time bins around the time at which the net of the closest trawl was shot showed an 185 

approximately Gaussian distribution pattern. A LOESS curve fitted through the values showed a gradual 186 

increase in observed mean sA per time bin from about three hours before the trawling process towards a peak 187 

around the shooting time, and a coherent decrease thereafter (Figure 4a). To get an indication of expected 188 

density levels when detections are at a low level in areas away from the peak spots, the 5
th

  percentile of all 189 

observed acoustic fish detections throughout the „fishing‟ and „searching‟ activity was taken. For HER, the 190 

5
th

 percentile of observed densities was low at just 18.3 m
2
nm

-2
. For WHB trips, a higher low-level fish 191 

detection was observed (5
th

 percentile: 1595 m
2
nm

-2
). The LOESS curve fitted through the detections of blue 192 

whiting increased from 3.5 hours before trawling towards a peak around one hour before the shooting of the 193 

net and declined steadily thereafter (Figure 4b). As for WHB, the HOM fishery was characterised by a 194 

relatively high value of low-level fish detections (5
th

 percentile: 22.4 m
2
nm

-2
) during the „fishing‟ and 195 

„searching‟ activity when compared to peak detection values. Detections increased during the „searching‟ 196 

period throughout the 3.5 hour period before the start of the trawling process and peaked at the time when the 197 

net was shot. Thereafter, detections of horse mackerel decreased, however, the degree of decrease was less 198 

pronounced when compared to the other two fisheries (Figure 4c). The relative mean cumulative frequencies 199 

of acoustic fish detections per trawl event during the „searching‟ activity up to the point in time when 200 

trawling begun showed different rates of increase between fisheries. A logistic regression fitted to the mean 201 

cumulative acoustic detections per 15 minute bin for all trawls in the HER trip showed an increase at about 202 

two hours before the start of the fishing process. For the WHB trips, that increase was already evident at 203 

about three hours before the start of the trawls and the subsequent rate of increase was correspondingly 204 

smaller. For the HOM trip, the cumulative detections per 15 minute time bin exhibited a marked increase at 205 

about one hour before the start of the fishing activity. The values were generally more variable when 206 

compared to both the HER and WHB trips, resulting in a poorer (higher χ
2
 ratio) albeit still significant fit of 207 
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the logistic regression model to the HOM data (HER: χ
2
=0.60, p<0.001; WHB: χ

2
=0.81, p<0.001, HOM: 208 

χ
2
=1.43, p<0.001). 209 

 210 

4. Discussion 211 

In the process of incorporating the wider ecosystem in conservation and management decisions, such as for 212 

the ecosystem approach to fisheries management (EAFM), a sound understanding of the processes governing 213 

ecosystem mechanisms is required (Botsford et al., 1997; Duda and Sherman 2002; Pikitch et al., 2004; Cury 214 

et al., 2008; Bellido et al., 2011). This knowledge will have to be based on complex trophic ecosystem 215 

models relying on data collected at relevant spatial and temporal scales for validation and parameterisation 216 

(Handegard et al. 2013). Assessment methods used for management of fisheries resources have so far largely 217 

been focussing on individual species stocks and their life cycle characteristics without great consideration for 218 

interactions between species or environmental parameters, however, there are exceptions (Witherell et al., 219 

2000; Kaufman, et al., 2005; Constable, 2011). Most fisheries independent monitoring programmes currently 220 

in place have developed into accurate tools to assess trends in the state (biomass or abundance at age/length) 221 

of a stock life cycle stage. Consequently, they follow a rigid methodology to maintain time series integrity 222 

and concentrate at times and locations that provide optimal sampling conditions. In that way, the widespread 223 

distributions of pelagic fish stocks for example have led to the development of specific acoustic surveys that 224 

capture the adult stock components at times when they are most receptive to that survey technique 225 

(Simmonds and MacLennan, 2005). Often the time during or just before the spawning period is suitable 226 

because the fish aggregate in schools in distinct areas of their distributional range that can be covered by a 227 

survey vessel within a short time period (i.e. a few weeks) to minimise bias due to migration. Data required 228 

for the EAFM may however need to span a longer time period and wider space in order to capture relevant 229 

biological and physical interactions of fish stocks with their environment.  230 

The standardised and established setup of many dedicated pelagic fish monitoring surveys prevent collection 231 

of additional environmental and biological data over wider temporal and spatial scales as required for the 232 

EAFM (Handegard et al., 2013). Monitoring approaches that can deliver such data should ideally consist of a 233 

network of connected sensor platforms that can span many trophic biological scales and physical dynamics at 234 

high spatio-temporal resolution. The proposed network of sensor systems consist of stationary observations 235 

(buoys, landers), autonomous and controlled platforms, but also platforms of opportunity. The latter, albeit 236 

being hampered by a lack of controllable sampling design, have the advantage that they are relatively cheap 237 
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and operate over a wide area and time. One example of an opportunistic platform to monitor the pelagic 238 

ecosystem are fishing vessels. These are nowadays advanced acoustic platforms and have been used by 239 

scientists for example as survey vessels (Honkalehto et al. 2011; Hordyk et al. 2011; Karp 2007; Ressler et 240 

al. 2009) or to deliver high resolution small scale information on fish schooling characteristics (Shen et al., 241 

2008; Shen et al., 2009). In Eastern Canada for instance, near real-time management decisions about the 242 

herring fishery are taken on the basis of such industry based surveys (Melvin et al. 2001). Based on this idea, 243 

Canadian scientists have developed an automatic acoustic logging system and collected data on Atlantic 244 

herring during fishing operations in early 2000 (Melvin et al. 2002). The data were used to monitor the 245 

aggregation of herring and decide on the timing of the scientific survey (performed on the same fishing 246 

vessels). However, this approach comes with its own drawbacks as the availability of fishing vessels for 247 

performing such surveys is limited and the related costs and loss of income still have to be covered. Attempts 248 

have been made to combine data collection and fishing activity, for example by using spare time during 249 

regular fishing trips to perform mini-surveys (O'Driscoll and Macaulay 2005). But unfortunately that is only 250 

practicable when such time is available (e.g. during processing of the catch on a factory vessels) and if the 251 

fish resource is distributed over a restricted area (e.g. deep sea fish over sea mounts). Another way to utilise 252 

fishing vessels as acoustic sampling platforms is to collect data on them opportunistically. However, the 253 

application and utilisation of such data is problematic and has so far not been widely addressed. The primary 254 

reasons for this are: the large volume of data collected (requiring increased resources for analysis), the lack of 255 

system calibrations, and the absence of a predetermined sampling design, which therefore calls for novel and 256 

innovative statistical and/or modelling approaches. Barbeaux (2012) and Barbeaux et al. (2013) described 257 

analyses of opportunistically collected but non-calibrated fishing vessel data to inform on fish aggregation 258 

and distribution. In this paper we demonstrated the potential of routine acoustic data collection on freezer-259 

trawlers, the calibration of their echosounder systems, and initial interpretation of results from different 260 

fisheries as a first step in developing further data utilisation methods. 261 

Processing of large acoustic data sets is a real concern. While time required for analysis of scientific survey 262 

data can be considerable, the data amount resulting from weeks‟ worth of acoustic recordings from several 263 

fishing vessels is yet an order of magnitude bigger. A potential solution to this is automated data processing 264 

which may especially become applicable in cases where data were collected at more than one acoustic 265 

frequency or even over a wide bandwidth. Fishing vessels are continuously upgrading their acoustic systems 266 

and some already collect data at several frequencies. Such techniques have already been used successfully for 267 
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many years in scientific surveys to discriminate between groups of fish, micronekton and zooplankton and 268 

also for discrimination between biological targets and physical phenomena such as bubbles (Horne, 2000). 269 

Korneliussen and Ona (2002) used multifrequency processing techniques to distinguish various targets such 270 

as mackerel, swimbladdered fish, and zooplankton. With further advances in acoustic technology such as 271 

broadband systems (Lavery et al., 2010; Stanton et al., 2010; Stanton et al., 2011), identification of scattering 272 

groups or even individual species will likely be much improved and allow for more objective and automated, 273 

therefore efficient data processing approaches. 274 

In the data presented here, different acoustic detection patterns could be observed between the three target 275 

fisheries covered. Vessels involved in the blue whiting fishery were strongly confined to geographical 276 

features (shelf slope), as the resource is typically assumed to be aggregating there in high densities. As a 277 

result, more constant acoustic detections could be observed when blue whiting was targeted, with less time 278 

spent for searching once the fishing grounds were reached. Clupeids such as herring on the other hand are 279 

typically more characterised by localised schooling behaviour with larger shoals or schools and aggregations 280 

occurring more sporadically (Blaxter and Hunter, 1982; Blaxter, 1985; Beare et al., 2002), hence increasing 281 

the relative time spent searching for the trawlers. The observed magnitudes of fish densities in situations of 282 

low detection levels, typically away from fishing hotspots, where therefore relatively low for herring. A 283 

similar but even more heterogeneous distribution situation was observed for the horse mackerel fishery where 284 

differences in acoustic densities between „fishing‟ and „searching‟ seemed to be even higher. Based on such 285 

differences in aggregation and distribution patterns of the fish resource, cumulative detection patterns were 286 

also better predictable for species such as blue whiting and herring. An aspect that was not considered here 287 

but could have affected the nature of the observed data was the simultaneous use of  acoustic equipment other 288 

than the echosounder. To detect and pursuit schools especially during herring and horse mackerel fisheries 289 

the skippers make extensive use of omnidirectional sonars (Brehmer et al., 2006). With that additional aid, 290 

covering a larger volume of water, echosounder detections were not the only source of information available 291 

to influence fishing decisions. Recorded fish densities from the echosounder were therefore not solely 292 

affecting the duration of the „searching‟ period, which may have otherwise been extended had there been less 293 

acoustic tools available. Such interactions will have to be considered when analysing acoustic fish detections 294 

in combination with the behaviour of the fishers and fish distribution patterns to potentially derive for 295 

example abundance estimates from the data. Apart from the simple extraction of acoustic fish density values 296 
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in 2D space, quantification of acoustic detection patterns in relation to fishing behaviour will indeed be an 297 

important step in the process of deriving useful characteristics from acoustic fishing vessel data.  298 

Based on the data collection exercise described here, a few conclusions can be drawn in light of developing 299 

further steps to utilise acoustic fishing vessel data for ecosystem understanding. Measured acoustic densities 300 

represent an important proxy for fish abundance. These recorded densities may thus easily be translated to 301 

fairly accurate biomass levels representative for the locations of the different fish hotspot areas within the 302 

time window covered by the fishing vessels. More importantly, however, for these data to be useful for 303 

ecosystem management they need to be representative of the wider stock distribution and abundance over the 304 

wider temporal scales covered. The results showed that information on distribution patterns could indeed be 305 

derived from the data and that these differed between species. Given that some important species like herring 306 

show no population size-dependent effect on observed acoustic densities per fish school (Beare et al., 2002), 307 

it may be valid to link observations from hotspot areas to stock abundance. However, due to the effect of 308 

vessel behaviour the validity and sensitivity of such an approach still has to be verified. The fishing 309 

behaviour-governed acoustic detection characteristics together with knowledge about distribution patterns of 310 

different target species may for instance be used in developing individual based models (IBM) to verify 311 

analysis methods and derive robust and representative relative abundance indices (e.g. Shin and Cury, 2004; 312 

Bastardie et al., 2010). Similarly, irrespective of the specific aggregation behaviour of different species, fish 313 

searching time may also be affected by both stock biomass and/or stock area extension, and these factors 314 

including their interactions would have to be quantified in order to draw any useful conclusions. The linking 315 

of fishing patterns with acoustic observations could be facilitated by applying methods or approaches that are 316 

currently used to analyse vessel monitoring system (VMS) data (Deng et al., 2005; Mills et al., 2007; Lee et 317 

al., 2010; Gerritsen and Lordan, 2011). Finally, geostatistics (Matheron, 1971) could make a promising 318 

contribution to modelling the spatiotemporal fish distribution patterns given the preferential sampling of 319 

acoustic data from fishing vessels (Petitgas, 2001; Diggle et al., 2010). These different potential analysis 320 

approaches are further elaborated in the following paragraphs.  321 

The primary motivation of the vessel owners that participated in the collection and sharing of the data 322 

presented here was the wish to partake in the fisheries data collection and monitoring process for stock 323 

assessment. There is little doubt that increased stakeholder involvement in the stock assessment process has 324 

several benefits and may lead to more acceptable and therefore successful integrated ecosystem based 325 

fisheries management (Grimble and Wellard, 1997; Reed, 2008; Levin et al., 2009). One way to achieve this 326 
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is by using the acoustic data collected on fishing vessels to derive abundance indices, which can then be 327 

incorporate to stock assessment models. The data collected during fishing operations however follows by 328 

definition a selective sampling pattern and departs from the usual requirement for scientific surveys of 329 

performing a synoptic coverage of the stock. Data collected during fishing trips spans several weeks and the 330 

fishing seasons for stocks considered here typically extend over a one or two month period. This implies that 331 

the spatial distribution of the resource, especially for species actively migrating during the fishing season 332 

such as blue whiting, may change substantially over the period covered. There is thus a real risk of double 333 

counting the fish if the whole data set would be considered. In addition, sampling (i.e. fishing) effort is 334 

concentrated on areas of high fish density where catches are likely to be maximised, while areas of minor 335 

interest for the fishery, albeit still containing significant portions of for example younger fish, are not 336 

covered. In that respect, the fishing vessel acoustic data are more similar to the common catch per unit effort 337 

(CPUE) data derived in bottom trawl fisheries. „Acoustic detections per unit effort‟ could therefore be a 338 

useful CPUE proxy in pelagic fisheries, where the direct measure of CPUE solely based on trawl catches is 339 

not valid (Hilborn and Walters, 1992). Nonetheless, the methods commonly implemented to derive 340 

abundance estimates from scientific acoustic surveys, i.e. averaging detected fish densities over the surveyed 341 

area, will not be applicable to the acoustic data collected by fishing vessels due to the lack of a non-biased 342 

sampling design. Alternative types of indices, such as surface occupation indices (Castillo and Robotham, 343 

2004) could also be investigated for these data. The accuracy and robustness of different types of abundance 344 

indices derived from fishing vessel acoustic data may be investigated with an IBM fisheries simulator. Such a 345 

tool could be developed to model the behaviour of a fleet of vessels fishing on a spatially distributed resource 346 

and collecting “virtual” acoustic data along their track. Abundance indices can then be computed from these 347 

virtual data using different methods and compared to the “true” abundance which is known in the simulator. 348 

Realistic resource distributions can be based on the observed spatial distribution and variability of available 349 

scientific survey data. Calibration of the simulator to give the vessels a more realistic behaviour could be 350 

done using the combined information from the observed fishing behaviour characterised by the linked fishing 351 

activity and fish abundance. That information can be obtained from the collected acoustic fishing vessel data, 352 

as shown in the present study, e.g. the models and/or observed data described here in Figures 2-4. 353 

Preliminary results from that type of exercise indicate that abundance indices derived from fishing vessel 354 

acoustic data may be of a limited accuracy for species that are densely aggregated, such as blue whiting. 355 

However, abundance indices derived for more heterogeneously distributed species such as herring yielded a 356 
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higher accuracy (Brunel et al., 2013). This can be explained by the fact that for the latter species, searching 357 

time represents a larger proportion of the fishing trips, which may therefore result in a more representative 358 

sampling of the stock. 359 

A fruitful approach may be the combination of VMS data analysis tools, which are typically used to classify 360 

the different fishing trip activities (Lee et al., 2010), with acoustic fish density recordings collected on the 361 

same trips. VMS data are typically used to estimate spatial and temporal distributions of trawling impacts on 362 

species, habitats, and ecosystem processes (Collie et al., 2000; Kaiser et al., 2002), or to monitor fleet 363 

responses to management actions (Rijnsdoorp et al., 2001; Dinmore et al., 2003; Mills et al., 2005). Since 364 

2005, high resolution position data at intervals of 2h or less have been collected in EU waters from all fishing 365 

vessels >15m long (EC, 2003). Recorded acoustic data provide a spatial history record of the fishing trip, 366 

however at a much higher resolution, since data points are typically collected at an interval of one second. A 367 

whole suite of existing VMS data analysis tools could therefore be applied to the very high resolution time-368 

space acoustic data to supply a more accurate picture of fishing effort in addition to the synoptic collection of 369 

pelagic fish densities. A possible approach may then be to investigate if „trained‟ VMS methods could be 370 

used to replicate the acoustic observations of a fishing trip, i.e. to infer fish densities solely from speed and 371 

time-space position patterns of vessels. Gerritsen and Lordan (2011) presented an example where VMS data 372 

were combined with catch data in a bottom trawl fishery to derive spatially resolved catch and effort data at 373 

much higher resolution than previously possible. Following this, the same principle could therefore be 374 

applied to acoustic and VMS data in the case of pelagic fisheries.  375 

Arguably the most promising approach to analyse and model fish densities from fishing vessel acoustic data, 376 

due to the ability to take into account the spatial and temporal sampling peculiarities, are geostatistical 377 

methods. Essentially, geostatistics is used to model spatial variability of variables such as fish densities and 378 

then utilise that model to make predictions of variable values at given locations (Matheron, 1971). The 379 

methods have been established and widely used for fisheries applications, especially fish survey analyses 380 

(Petitgas, 2001; Rivoirard et al., 2008), survey design (Barange and Hampton, 1997; Fletcher  and Summer, 381 

1999), or ecological studies (Cianelli et al., 2008). Possible ways to use the potential of geostatistics with the 382 

type of acoustic data described here may include using co-kriging to combine different spatial datasets like 383 

fishing vessel, scientific survey or environmental parameter data (Petitgas, 2001). Georgakarakos and Kitsiou 384 

(2008) used that approach to model the spatial distribution of small pelagic fish. The method produced the 385 

best results when sea surface temperature and depth variables were included in the model, which indicated 386 
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the enhanced modelling potential when combining different data sources. They especially highlighted the 387 

significant reduction of the overall estimation error and its effect on subsequent stock assessment and 388 

management. There may also be potential in adding the acoustic information from fishing vessels usually 389 

collected in high density areas with those collected by survey vessels that follow a systematic design. These 390 

data would have to be from areas that were covered synoptically by both survey and fishing vessel platforms 391 

in order to avoid bias due to fish movement and variations in their aggregative behaviour (Petitgas, 2001). A 392 

further step may then be the incorporation of a model that takes into account the temporal change of the fish 393 

population, especially since the fishing vessel data covers an extensive time range (e.g. Zhou, 1998). Denham 394 

and Mueller (2010) used time varying spatial models to consider the underlying movement of fish 395 

populations over extended spatiotemporal dimensions to successfully estimate changes in prawn catch rates. 396 

In any case, ignoring the particular preferential sampling pattern of these data can lead to serious misleading 397 

geostatistical inferences (Diggle et al., 2010). 398 

Based on the freezer-trawler acoustic data collection exercise and results presented here, continuation and 399 

further development of such initiatives seem feasible. Opportunistically collected acoustic data from fishing 400 

vessels can provide an additional puzzle piece in the process to create a more holistic picture of the 401 

ecosystem. Their potential will be enhanced by the introduction of structured, more widespread data 402 

collection programmes and further development of automated data processing. Thereafter, there is a clear 403 

need for sophisticated data analysis methods in order to make these data operationally useful for ecosystem 404 

management. 405 
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Figure 1. Map of freezer-trawler fishing track from which acoustic data were collected in 2012. 542 

 543 

Figure 2. Relative proportion of time spent fishing (grey) and searching (white) after the vessels have 544 

reached the fishing grounds (HER: North Sea herring; WHB: Northeast Atlantic blue whiting; HOM: 545 

Channel horse mackerel), between starting the first and finishing the last trawl. 546 

 547 

Figure 3. Bootstrapped mean acoustic densities (n=1000) recorded on different fishing trips (HER: North 548 

Sea herring; WHB: Northeast Atlantic blue whiting; HOM: Channel horse mackerel) during fishing (grey) 549 

and searching (white) activities. 550 

 551 

Figure 4. Mean (+S.E.) fish densities (NASC: nautical area scattering coefficient) per 15 minute time bins 552 

before (negative values; „searching‟ period) and after (positive values; „fishing‟ period) shooting the net 553 

(zero) during: a) the herring, b) blue whiting, and c) horse mackerel fisheries. LOESS curves (solid lines) 554 

were fitted to the mean values and 5
th

 percentiles of fish densities observed during the „fishing‟ and 555 

„searching‟ periods are given (dashed lines). 556 
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