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Abstract Haloalkaliphilic microorganisms that grow opti-
mally at high-pH and high-salinity conditions can be found
in natural environments such as soda lakes. These globally
spread lakes harbour interesting anaerobic microorganisms
that have the potential of being applied in existing technolo-
gies or create new opportunities. In this review, we discuss the
potential application of haloalkaliphilic anaerobic microbial
communities in the fermentation of lignocellulosic feedstocks
material subjected to an alkaline pre-treatment, methane pro-
duction and sulfur removal technology. Also, the general ad-
vantages of operation at haloalkaline conditions, such as low
volatile fatty acid and sulfide toxicity, are addressed. Finally,

an outlook into the main challenges like ammonia toxicity and
lack of aggregation is provided.
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Introduction

The metabolic potential of anaerobic microorganisms has
been exploited in a wide range of applications, like volatile
fatty acids (VFAs), alcohols, H2 and methane production.
However, in format ion about the appl ica t ion of
haloalkaliphilic anaerobes that thrive in high-pH (>8.5) and
high-salt conditions (>35 g l−1) is very limited.

In these extreme environments, microorganisms adapted
physiological mechanisms to cope with high pH and salinity.
The high salinity of the environment must be compensated to
prevent osmotic stress and water leakage from the cell. To
cope with high salinity, microorganisms accumulate inorganic
or organic compounds that work as osmoregulators,
preventing the loss of water inside the cell (Dektova and
Boltyanska 2007). The high pH, on the other hand, affects
the proton balance and transport by the ATPases that are re-
sponsible for ATP production. Even though the pH of the
environment is alkaline, the cell inside usually operates close
to neutral pH. Cells cope with this by having more negatively
charged cell walls that generate a layer of more concentrated
protons, lower pH, near the cell while repelling anions. These
adaptations to alkaline conditions have already been recently
reviewed in more detail (Banciu and Muntyan 2015; Preiss
et al. 2015).

Various haloalkaline environments, like soda lakes, soda
solonchak soil, mining industry waste and leafs of salt
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secreting trees, have been described (Qvit-Raz et al. 2008;
Sorokin et al. 2008; Sorokin et al. 2014; 2015a; Santini et al.
2015). However, only soda lakes and soda solonchak soils
have the buffer capacity to maintain a high pH (> 8.5) and
high salinity (> 35 g l−1). Soda solonchak soils have a higher
aeration when compared to soda lakes and favour aerotolerant
microorganisms (Sorokin et al. 2008). Thus, soda lakes are the
most suitable habitats to find anaerobic haloalkaliphilic micro-
organisms. In these lakes, a high pH and salinity is caused by
the evaporative concentration of soluble sodium carbonates as
a result of low concentrations of divalent cations such as cal-
cium or magnesium in the ground waters and surrounding
minerals. The extremely high pH (between 9 and 11) is stable
due to a high alkaline buffering capacity of soluble carbonates
and salinity can go from 35 g l−1 up to saturation. Soda lakes
harbour highly active and diverse microbial communities
involved in the carbon, sulfur and nitrogen cycles.
Microbiological studies on soda lakes have been reviewed
by Sorokin et al. (2014; 2015a) Also, reviews on application
of haloalkaliphilic microorganisms on nitrogen cycle, sulfide
oxidation, heavy metals removal, biofuel production and en-
zyme production are available (Horikoshi 1999; Zhao et al
2014).

In this mini-review, research focused on potential applica-
tion of anaerobic haloalkaliphilic microorganisms in fermen-
tation of lignocellulosic feedstocks, methane production and
sulfur removal technology will be reviewed. The advantages
of low VFAs and sulfide toxicity and high methane content
will be discussed. We will also focus on the main technolog-
ical challenges, such as ammonia toxicity and lack of micro-
bial aggregation.

Anaerobic digestion of lignocellulosic feedstocks

The rate of hydrolysis of sugar polymers is crucial in the
fermentation of lignocellulosic feedstocks by anaerobic fer-
mentative bacteria. These feedstocks include waste from ag-
riculture, forest and paper industry where the hydrolytic step is
a bottleneck. This is mainly due to the highly packed crystal
structure of the fibres composed of lignin, cellulose and hemi-
cellulose (Mathews et al. 2015). To improve hydrolysis, an
alkaline pre-treatment can be performed to reduce the fibre
crystallinity, making them more accessible to attack of micro-
bial hydrolases (Hendriks and Zeeman 2009).

Fermentation

After alkaline pre-treatment, the current approach is
biofermentation at neutral pH after neutralizing the alkaline
broth. However, the use of haloalkaliphilic microorganisms
eliminates the need for pH adjustments, thus reducing costs

(Porsch et al. 2015). The information on haloalkaliphilic cel-
lulolytic anaerobes is, so far, limited to a few soda lake
alkaliphiles. Clostridium alkalicellulosi (Table 1) (Zhilina
et al. 2005; Zvereva et al. 2006) is able to produce acetate,
ethanol, lactate, hydrogen and traces of formate as products
during fermentation of cellulose and cellobiose. Pikuta et al
(2006) reported that Anaerovirgula multivorans can weakly
grow on cellulose in alkaline medium supplemented with
yeast extract. However, no growth kinetics and activity data
have been provided. The sugars released from the lignocellu-
losic feedstocks during alkaline pre-treatment can be used by
many cultured haloalkaliphilic saccharolytic fermenters. Such
bacteria, belonging to the genera Spirochaeta,Amphibacillus,
Alkaliflexus and Alkalitalea, were isolated from different soda
lakes and are capable of fermenting cellobiose and glucose,
the main product of cellulose hydrolysis (Table 1) (Zhilina
et al. 2001; Zhilina et al. 2004; Pikuta et al. 2009; Zhao and
Chen 2012). The fermentation products varied between spe-
cies but are mainly acetate, ethanol, lactate and hydrogen.
However, Halanaerobium hydrogeniformans produced ace-
tate, formate and hydrogen as main products in a haloalkaline
fed-batch bioreactor fed with hydrolysed switchgrass
(Table 1) (Begemann et al. 2012). Ethanol, lactate and hydro-
gen can be used by haloalkaliphilic acetogens, such as
Natroniella and Fuchsiella, converting them to acetate
(Table 1) (Zhilina et al. 2012).

Methane production

Methanogenic fermentation of wastes at haloalkaline condi-
tions can be an interesting option for renewable biogas pro-
duction. At high pH, VFA toxicity is reduced because VFA are
mostly present in the dissociated form which cannot easily
cross cell membranes and disrupt the proton balance
(Fig. 1). This would allow the operation of such bioreactors
at higher organic loadings. At high pH, the CO2 is more
retained as carbonates which could lead to a lower CO2 con-
tent in the biogas. Also, sulfide at high pH is mainly in the
ionized form (HS−) which is less volatile and toxic, resulting
in a gas with very low concentrations of sulfide. A recent
study on the digestion of the microalgae Spirulina at
haloalkaline conditions resulted in a biogas with a methane
content of 96 % and without traces of sulfide (Nolla-Ardèvol
et al 2015). This might reduce the need for biogas post-
treatment to remove CO2 and H2S, allowing the use of the
biogas directly in natural gas supply grid.

In soda lakes, the methanogenic activity in the sediments is
similar to freshwater lakes and marine sediments (Kuivila
et al. 1989;1990; Sorokin et al. 2015b). Just a few methano-
genic archaea have been isolated from soda lakes (Zhilina
et al . 2013; Sorokin et al . 2015b). The isolated
hydrogenotrophic methanogens belong to the genus
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Methanocalculus that use H2 and formate. The isolated
methylotrophic methanogens belong to the genera
Methanolobus andMethanosalsum that use various methylat-
ed compounds. Acetate conversion to methane is also possi-
ble, albeit at very low rates, either directly at moderate salinity
by alkaliphilicMethanosaeta or by syntrophic associations of
reversed acetogens and lithotrophicMethanocalculus at mod-
erate to high salinity (Sorokin et al., 2015b).

Sulfidogenesis

Bioreduction of inorganic sulfur compounds can be applied to
treat sulfur-rich waste streams with high pH and salinity orig-
inated from the oil, natural gas and mining industries. When
such streams are exposed to oxygen, mainly oxidized com-
pounds exist like sulfate, thiosulfate, sulfite or sulfur. Howev-
er in the environment, such compounds might be reduced,

Fig. 1 Effect of ammonia, sulfide and acetate (representing VFAs in
general) on microorganisms living at alkaline pH and chemical
equilibrium of ammonia sulfide and acetate at different pH values. 1—
at alkaline pH, ammonia tends to the un-ionized species (NH3) which can
cross cell membranes in contrast with the ionized species (NH4

+); 2—due
to the close to neutral pH inside the cell, the chemical equilibrium shifts
towards the NH4

+ species, consuming one proton (H+) and disrupting the

proton balance; 3—to compensate the lost H+, the primary source of H+ is
from the catabolic reactions; 4—also, antiporters in the cell membrane
may pump H+ in and simultaneously pump sodium (Na+) or potassium
(K+) out, generating an osmotic difference that needs to be compensated;
5—at alkaline pH, sulfide and acetate exist in the ionized form, HS− and
CH3COO

−, which cannot easily pass the cell membrane
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Table 1 Relevant haloalkaliphilic microorganisms for fermentation of lignocellulosic feedstocks at haloalkaline conditions and their role, optimum pH
and optimum salinity

Microorganism Metabolic type Optimum pH Optimum salinity (M Na+) Reference

Clostridium alkalicellum Cellulolytic/fermenter 9 0.15–0.3 Zhilina et al. 2005

Anaerovirgula multivorans Cellulolytica/fermenter 8.5 0.17–0.34 Pikuta et al. 2006

Spirochaeta alkalica Fermenter 8.7–9.6 0.5–1.7 Pikuta et al. 2009

Spirochaeta aficana Fermenter 8.8–9.75 0.85–1.2 Pikuta et al. 2009

Spirochaeta asiatica Fermenter 8.4–9.4 0.5–1 Pikuta et al. 2009

Amphibacillus tropicus Fermenter 9.5–9.7 0.17–3.6 Zhilina et al. 2001

Amphibacillus fermentum Fermenter 8–9.5 1.87 Zhilina et al. 2001

Alkaliflexus imshenetskii Fermenter 8.5 0.35 Zhilina et al. 2004

Alkalitalea saponilacus Fermenter 9.7 0.44–0.69 Zhao and Chen 2012

Halanaerobium hydrogeniformans Fermenter 11 1.3 Begemann et al. 2012

Natroniella acetigena Acetogen 9.7–10 2.1–2.7 Zhilina et al. 2012

Fuchsiella alkaliacetigena Acetogen 8.8–9.3 2.8–3.3 Zhilina et al. 2012

aMore information is required to clearly prove that Anaerovirgula multivorans is capable of growing on cellulose



producing sulfide which is toxic and characterized by the rot-
ten egg smell. To prevent this, the sulfur compounds can be
removed from such streams by microbial processes. Oxidized
sulfur compounds can be reduced to sulfide in a controlled
environment, like a bioreactor. The sulfide produced can be
biologically oxidized at oxygen-limited conditions to elemen-
tal sulfur, which has economic value (Janssen et al. 2009).
Sulfur cycle-related haloalkaliphilic bacteria can be found in
soda lakes where the microbial sulfur cycle is very active
(Sorokin et al. 2011). Haloalkaliphilic sulfate-reducing bacte-
ria (SRB) that use besides sulfate also thiosulfate and sulfite as
electron acceptor and often can disproportionate thiosulfate
and sulfite have also been isolated from soda lakes. Both
lithotrophic and organotrophic SRB have been described
and reviewed by Sorokin et al (2011; 2014; 2015a). Elemental
sulfur was never shown to be reduced by haloalkaliphilic
SRB. However, the specialized sulfur-reducing bacteria,
which can reduce or disproportionate elemental sulfur, are
also present in these environments (Sorokin et al. 2014;
2015a).

Sulfate reduction at haloalkaline conditions was tested
in anaerobic filters and gas lift bioreactors using various
electron donors (Zhou and Xing 2015; Sousa et al.
2015). These results revealed that the most reliable elec-
tron donors are formate, hydrogen and ethanol (Table 2).
The dominant SRB found in these bioreactors belonged
to the lithotrophic genera Desulfonatronospira and
Desulfonatronovibrio. As produced sulfide at high pH
is present in the dissociated form (HS−), this has a much
lower toxicity to the biomass compared to neutral pH
(Fig. 1). Sousa et al (2015) showed that sulfate reduction
occurred up to 260 mM of sulfide at pH 9, while at pH 7
the sulfide toxicity was already severe at 30 mM (Van
Houten et al. 1994). Therefore, bioreactors operated at

haloalkaline conditions can handle more concentrated
sulfur streams than at neutral pH.

Future challenges for haloalkaline bioreactor
research

The application of anaerobic haloalkaline microbial commu-
nities has numerous advantages. But even though these mi-
croorganisms are highly adapted to these extreme conditions,
there are challenges to overcome before applying such tech-
nologies at full scale.

Ammonia toxicity

One challenge is the ammonia toxicity at high pH (Fig. 1).
At haloalkaline conditions un-ionized ammonia (NH3)
rather than ammonium (NH4

+) is the dominant chemical
species, as the pKa is 9.25. NH3 can freely diffuse
through the cell membrane and disrupt the proton balance
inside the cells, making it toxic while NH4

+ cannot cross
the membrane and, therefore, is not toxic (Kayhanian
1999). After crossing the membrane, NH3 is protonized
into NH4

+ due to the near neutral pH in the cytoplasm
maintained by alkaliphiles which, in turn, may weaken
its neutral buffering. To compensate this, haloalkaliphiles
primarily use protons from the catabolic reactions or can
also use antiporters to transport protons into the cell while
transporting potassium or sodium out of the cells
(Kayhanian 1999). This use of antiporters, however,
would generate additional osmotic stress that needs to be
compensated.

Table 2 Comparison of different
studies on sulfate reduction in
bioreactors operated at
haloalkaline conditions

Reference Sousa et al. 2015 Zhou and Xing 2015 Zhou and Xing 2015

Reactor type Gas lift with three-phase
separator

Anaerobic filter Anaerobic filter

e− acceptor Sulfate Sulfate Sulfate

e− donor H2 Formate Ethanol

pH 9 9.5 9.5

Na+ conc. (M) 1.5 1 1

Temperature (°C) 35 37 37

HRT (day) 3.3 1 1

Conversion rates
(mmol l−1 day−1)

18 85 89.5

Max. sulfide conc. (mmol l−1) 260 76 82

Side products Formate Acetate Acetate/formate/lactate

Biomass conc. (mg l−1) 7.2 (±3) N.D. N.D.

Biomass aggregation No aggregation N.D. N.D.

N.D. not described
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Lack of aggregation

The high pH and salinity in bioreactors can prevent a stable
aggregation of microorganisms which is usually essential for
biomass retention of slowly growing organisms. Previous
studies showed that aggregation in bioreactors at high pH
and salt concentrations did not occur at all or that stable gran-
ules disintegrated in high salinity bioreactors (Ismail et al.
2008; Sousa et al. 2015). The causes for this are still in dis-
cussion, and different mechanisms are proposed. At high pH,
the hydrophobicity of cell surfaces and extracellular polymer-
ic substance (EPS) might change and hydrophobicity has been
reported to affect the microbial attachment (van Loosdrecht
et al. 1987; Otto et al. 1999). Another possibility was pro-
posed by Ismail et al (2008) who suggested that at high Na+

concentrations, Na+ replaces divalent cations, such as Ca2+, in
the EPS matrix of aggregates, making the aggregates less sta-
ble. Another possible effect could be downregulation of car-
bon metabolism at high salinities as reported by He et al
(2010). This subsequently lowers the EPS production in fa-
vour of osmolites production to balance the high salinity. Yet,
halophilic isolates from the Halomonas genus were shown to
produce EPS, and this could point to a significant role of high
pH in the lack of aggregation at haloalkaline conditions
(Martínez-Cánovas et al. 2004). To overcome the challenge
of no aggregation at haloalkaline conditions, technologies like
use of a biofilm support material in the reactor or a membrane
biological reactor (MBR) should be considered.

Operational challenges

Additional factors related to the engineering of haloalkaline
bioreactors need to be addressed. By operating bioreactors at
high salt and high pH, there is an increased risk of scaling if
divalent cations are added. This problem requires special at-
tention when designing and optimizing the processes. Also,
the high pH and salinity effluent might require additional
treatment to neutralize pH and salinity prior to its discharge.

Conclusions and future prospects

Application of haloalkaliphilic anaerobic microbial communi-
ties in the abovementioned processes is an interesting route to
consider in specific cases and/or to increase their efficiency.
Operation at haloalkaline conditions has several advantages,
like low VFA and sulfide toxicity, production of low CO2-
containing and H2S-containing biogas and reduced need for
pH control. On the other hand, the challenges of ammonia
toxicity and lack of biomass aggregation need to be over-
come for application in an industry. In general, more
laboratory-scale bioreactor studies focusing on these micro-
organisms are required. Information on reaction rates,

biomass growth and microbial communities during long-
term experiments in bioreactors is essential to scale up these
technologies.
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