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ABSTRACT 

This report contains notes on methods on economic optimization of animal 

breeding plans prepared for a Scandinavian post-graduate course in eco

nomic breeding planning at Helsinki, August 28 - September 8, 1978. The 

following subjects are covered. An introduction is given to determinis

tic models and Monte-Carlo procedures, secondly a comparison of methods 

to compute returns from breeding schemes as described by LINDHË (1968), 

PETERSEN et al. (1974), McCLINTOCK & CUNNINGHAM (1974), HILL (1974), 

NIEBEL (1974) and BRASCAMP (1973, 1974). The methods of McCLINTOCK & 

CUNNINGHAM and of HILL are shown to be identical, while the methods of 

LINDHË and PETERSEN et al., NIEBEL and BRASCAMP give different numerical 

results with the same basic assumption. The method of BRASCAMP (1975), 

based on HILL (1974), being most accurate. For the procedure of HILL a 

computer program (GFLOW) has been written and described 'dealing with 

various types of population structures. This program has been used for 

group work dealing with dairy cattle, pigs, sheep and poultry. Results 

are given. 

Comparisons of costs and returns has been discussed in relation to 

inflation and risk. Some attention has been payed to recent work of 

JAMES & HOPKINS in relation to consistent definitions of generation 

intervals, selection differentials and the matrix of genetransmission 

described by HILL. 
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1. INTRODUCTION 

In optimizing breeding schemes different stages may be distinguished. 

1. Definition of a breeding objective 

2. Description of alternative breeding schemes 

3. Estimation of economic and biological (including genetic) parameters 

needed 

4. Derivation of selection indices 

5. Quantitative comparison of the result of selection and selection 

efforts (costs) associated with alternative breeding schemes. 

The theoretical basis for especially 4 and 5 originates from HAZEL (1943), 

introducing selection index theory in animal breeding, from DICKERSON & 

HAZEL (1944) and RENDEL & ROBERTSON (1950), developing formulae to pre

dict annual genetic gain for given breeding plans. Here RENDEL & 

ROBERTSON (1950) themselves wrote: 'The application of the principles of 

problems arising in breeding farm animals for economical production are 

of comparatively recent origin. They are based on the theoretical con

siderations of WRIGHT, FISHER & HALDANE. The detailed application of 

their findings to animal breeding has been mostly due to LUSH and his 

co-workers. The general principles of this new approach are given by 

LUSH in his book Animal Breeding plans. 

In terms of volume of published literature the sequence of the 5 items 

mentioned above probably is - from much to few - 3 (especially genetic 

parameters), 4 (selection index theory and estimation of breeding values), 

2 and 5 and finally 1. It is remarkable that the basic item for opti

mization of breeding schemes - definition of goals - is not touched very 

much. The goal, normally, is more or less taken for granted. Exceptions in 

this field are NIEBEL et al. (1972) and a large scale study of the Centre 

of Agricultural Strategy'Strategy f or the U.K. dairy industry' (CAS-1978) . 

Another problem in this area is to define for which environment an objec

tive, an aggregate genotype, is valid. For example in pigs aggregate geno

types generally are (implicitely) defined for test-station conditions. In 

recent years many authors show that the genetic relationships between 

comparable traits measured under station and field conditions deviate 

from unity and vary from trait to trait. Consequently relative weights 
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for traits in selection indices will depend on the environment for which 

the aggregate genotype is defined. 

These notes are restricted entirely to item 5: Methods on economic 

optimization of breeding schemes. 

The lines initiated by DICKERSON & HAZEL (1944) and RENDEL & ROBERTSON 

(1950) were extended by ROBERTSON & RENDEL (1950) and ROBERTSON (1958) 

dealing with progeny testing with A.I. The latter paper deals with the 

choice to test more bulls with smaller progeny groups or fewer bulls with 

larger progeny groups, considering test capacity fixed. This is a balanc

ing of intensity of selection on the one hand and accuracy of selection 

on the other hand. SKJERVOLD (1963) and SKJERVOLD & LANGHOLZ (1964) ex

tended this further to application in a co-operative A.I. breeding scheme 

for dairy cattle populations. The effect of variation in progeny group 

size and in the percentage of the population inseminated with semen of 

young bulls was studied. Still, resulting annual genetic gain was object 

of study. 

The model of SKJERVOLD & LANGHOLZ (1964) was used in principle by LINDHË 

(1968) who introduced two additional elements, a) large variation in 

number of (deep frozen) doses of sperm stored per bull and b) another 

object of study: financial returns vs costs. In fact economic evaluation 

of cattle breeding schemes was introduced by POUTOUS & VISSAC 5 years 

earlier. After LINDHE's paper many studies followed on the topic economic 

optimization of breeding schemes, especially for dual purpose cattle. 

As indicated before, the object of study initially was (stable) annual 

genetic gain. Still in the approach of LINDHE financial returns are 

linearly .related with annual genetic gain. BRASCAMP (1973) showed that 

deviation from this may be serious and the methods developed by McCLINTOCK 

& CUNNINGHAM (1974) and HILL (1974) offer the possibility to deal elegant

ly with the reason: selection only ultimately results in stable genetic 

gain, not in the early years. McCLINTOCK & CUNNINGHAM (1974) refer to 

their method as a discounted gene flow technique. 

The set up of this notes is as follows. 

Chapter 2 deals with a short introduction to 2 simulation methods used in 

the study of breeding plans. These are the so-called deterministic model 

(applied in most cases) and the Monte Carlo method (applied e.g. by 

R0NNINGEN (1969), in a study of two stage selection). In Chapter 3 the 
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3 methods of computation of financial returns from breeding schemes are 

described as applied by LINDHË (1968) and PETERSEN et al. (1974), by 

NIEBEL (1974) and by BRASCAMP (1973, 1975). Many authors developed dif

ferent methods to compute financial returns. The methods described and 

compared in these notes are hoped to be representative. In Chapter 3, 

also the gene flow method of HILL (1974) is introduced. It will be dis

cussed, however, referring to the original paper. The same is valid for 

BRASCAMP1(1975), in an application of HILL's method. Chapter 4 deals 

with criteria to assess optimum schemes and some attention has been 

payed to the contrast between 'national' and 'commercial' breeding schemes 

with respect to this. In Chapter 5 applications of 'discounted expres

sions' (introduced by McCLINTOCK & CUNNINGHAM (1974)) have been dis

cussed, initiating with a comparison of the methods of McCLINTOCK & 

CUNNINGHAM (1974) and HILL (1974). For the method of HILL a matrix is 

needed to define transmission of genes from one generation to the next. 

In Chapter 6 this matrix is discussed more in detail, especially in 

relation with selection differentials and age structure. In Chapter 8 

some FORTRAN computer subroutines and functions have been given which 

may be applicable in optimization work. In this chapter also a computer 

program (GFLOW) is described. 

A summary of methods is given in 8.4, while in an appendix a part of 
BRASCAMP (1975) is reprinted. 

1.3 
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2. DETERMINISTIC MODEL AND MONTE CARLO METHOD 

Two types of approach will be illustrated with a simple example. Both 

approaches might be useful in optimization of breeding- or selection 

schemes. 

The approach - which is called deterministic model here - involves a se

quence of mathematical expressions which result in a criterion to maxi

mize. This criterion will depend on some parameters which may vary freely. 

The objective is to find the combination of parameters which maximizes 

the objective. 

The Monte Carlo method may be used if the approach above involves some 

assumptions which are not valid and cannot be fitted by mathematical 

function. In selection schemes the Monte Carlo method results in additive 

genetic values and fenotypic values for individuals. Selection is prac

tised within the simulated set and selection response is calculated from 

the simulated values of selected individuals. 

An example may clarify the methods. 

Consider a case of two stage selection, where n. places are available for 

the first stage and n. places for the second. Suppose that n. + 5n„ = 1000 

(e.g. stage two is 5 times as expensive as stage 1, one place at stage 1 

costs 1 money unit (stage 2 costs 5) and 1000 money units are available.) 

At stage 1 P. is measured (r.p. = .20, A is additive genetic merit) and 

at stage 2 P. is measured (r.p7 = .26). At the end we need to select 10 

individuals. The objective is to maximize the response to selection (that 

is average additive genetic merit of selected individuals). The parameters 

which are free to vary are n. and n_, given n. + 5n. = 1000. So n, » 1000, 

n 2 = 0 and n = 800, n = 40 etc. 

2.1. Deterministic model 

If n. = 1000 the situation is simple. The response to selection R can be 

calculated as 

R = V rApr°A • 

where i. is the intensity of selection with a proportion selected 

p, = 10/1000. Also if n. = 200 the situation is simple. 

2.1 
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We assume that in second stage only P„ is used (not an index with P, and 

P2) so 

R = i,.r.p,.a 
2-lAP2*"A * 

where i_ is the intensity of selection with a proportion selected 

P 2 = 10/200. 

All other cases are more complicated. For example if n. = 600, n_ • 80. 

So p . = n./n1 and p- » 10/n„. For first stage again 

Rl = VrAPraA 

but in second stage the distributions of A and P. are no longer normal. 

To adjust for this the formulae of COCHRAN (1951) can be used, to correct 

variances and covariances for the selection at first stage. In general 

this adjustment is 

cov(ab/c) = cov(ab) - cov(ac) cov(bc).C/var(c) 

where cov(ab/c) stands for the covariance between trait a and trait b 

after truncation selection for c, the other covariances and var(c) are 

values without selection and C = i(i-x). In the formula for C the i stands 

for the selection intensity for trait c and x stands for the abciss in 

a standard normal distribution at the point of truncation selection for 

trait c. 

In our case, the response to the second stage selection is 

R 2 = 12-rAP2/PrtJA/Pl 

or R2 = i2.cov(AP2/Pl)/ap2/pl 

A sequence of mathematical expressions to calculate R may be: 

n. = variable 

n 2 = (1000 - nj)/5 

i. = selection intensity with fraction selected n„/n 

i„ = selection intensity with fraction selected 10/n_ 

R i = V rApr°A 
x. = trunctation point with fraction selected n./n. 

C = ijUj-Xj) 

cov(AP2/Pl) » cov(AP2)-cov(APl).cov(PlP2).C/var(Pl) 

a p 2 / p ] = yvar(P2)-cov2(PlP2).C/var(Pl)' 

R2 = i2.cov(AP2/Pl)/ap2/pl 

2.2 



13 

R - R, • R2 

By trial and error we can find the optimal value for n (and n„). 

2.2. Monte Carlo Method 

We start with the general principle of the method. 

First consider the situation where we wish to simulate a set of data for 

a trait with mean u. and standard deviation o.. This can be done by re

peated calculation of 

X li = Pl + ali°l 

where a., are 'normal deviates', independent drawings from a set of nor

mal distributed random digits with mean zero and standard deviation 1. 

This works,since Ex. = Eu. + a..Ea. = u. and 

var x. = vary. + o2. var a = a2, as we wish. 

Now we wish to simulate a variable x., with mean u2
 an<* standard deviation 

o2, which has a correlation r „ with x.. 

Look at i 

X2i = y2 + alir12G2 + a 2 i ^ l 2 °2 

where a„. again are normale deviates, uncorrelated with a... 
2i ° li 

Now Ex, = Do I •> 
2 V\ 2 \/—T— 2 2 

var x- = rz o7 + vl-r a = az 
2 12 * 12 2 2 

cov x.x9 " f . , Oj a2 since cov a.a = 1 and cov a.a - 0 

The result is satisfactory. 

The term Vl-r2 can be found as follows. 
12 

First we know cov x.x. has to be ri2 oja2. To get this result we need 

x2i - p2 + axirl2o2 + a2id2l°2 

where a., are normal deviates, uncorrelated with a., and d„. remains to 

be solved. 
2 

But var x„. has to be equal o„, and so 

2.3 



14 

2 2 * A2 2 

var x2 = rI2a2 + d2I a2 

and 
21 

21 

<l-rj_2) 
2 
12 - f c 

This principle can be extended to many traits. 

Take x,, mean y3, standard deviation o3 and correlations with the previ

ous trait r., and r„,. 

First cov x,x- = r.-OiO^ 
13 13 1 3 

This gives: 

x3i = v ^ \ ir13°3+a2id32a3+a3id33°3' 

d,„ and d,, remain to be solved. 

Now, 

So 

\r~2 
cov x2x3 = r23a2o3 = r

1 2
ri3a203+ d

3 2
V 1 _ r i 2

 a2a3 

32 
= (r,,-r10r,,)/l/^? 

23 12 13 12 

Finally 

Or 

var x3 - (^3+(r23-r12r13)2/(l-r2
2)+d23)a3 

33 
= Vl-r2

3-(r23-r12r13)2/(l-r2
2). 

With more traits the d..'s become more and more complicated. With a com-

puter, however, the system is fairly easy to handle. The procedure to 

transform a correlation matrix into a triangle matrix with d..'s, j ̂  i 

is called Choleski-procedure (see e.g. BEDALL AND ZIMMERMANN, 1978), 

and may be written as the transformation of 

\ 
c. . c c, 

11 12 .In 
C22 C22 

I 

c . c .-— c 
nl n2 nn 

to D 
11 

d21 d22 

where C is a correlation matrix and D is a triangular matrix such that 

C = DD' 

2.4 
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The algebra to solve d.., j < i is as follows: 

i-1 2 
d.. = c . - E d, . d. . = 0 if i > j 

xi il , , ki ij 
k=l 

i-1 
d.. = (c. - I d, .d. .)/d.. if i < j 

ij 1J k = ] ki kj il 

Returning to our example. Putting x. , x. and x, as P., A and P„ respec

tively, we could simulate 1000 'individuals' using the appropriate para-

meters (ax = op,, c2 = aA , a3 = ap2> rJ2 = r^,, r,3 = rp]p2 and 

r_, = r J. Dependent on the combination of n, and n, we draw randomly 

n. individuals from 1000, representing the n. individuals tested at first 

stage. Then we pick the best n- individuals with respect to P. and the 

best 10 out of n0 individuals with respect to P_. 

The average A-value of these 10 individuals equals the response to se

lection. 

2.3. Merits of both methods 

The selection responses calculated with the deterministic model are expec

tations. So only one sequence of calculations is needed to get the expec

ted response for a particular combination of n. and n„. For the Monte 

Carlo procedure this is not so: An outcome for a particular set of 1000 

animals is an unbiased estimate of the expected response to selection(R) , 

but the standard deviation of this estimate is not zero. Consequently 

repeated calculation with different sets of 1000 animals are needed to get 

an estimation of R with a low enough standard deviation. So a disadvantage 

of the Monte Carlo procedure is that, in general, it is far more time con

suming. On the other hand, to get a standard deviation for R may be an 

advantage. 

For the Monte Carlo procedure we did n't make any assumption for selection 

intensities. Two comments should be made with respect to this. 

1. Implicitely, I assumed that i = z/p, where p is the proportion selected 

and z is the ordinate in a standard normal distribution at the trunca-

tionpoint x. If selection is from small numbers this gives an 

2.5 
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overestimate of i. Adjustment for this is possible (see chapter 8 ) . 

2. The relation i » z/p is valid for a standard normal distribution and 

adjustment for small numbers also assumes a standard normal distribu

tion. In the second stage distributions are no longer normal, so the 

formula given for the response to selection in the second stage is 

theoretically not correct. If one expects the bias in result to be too 

large, one may choose a Monte Carlo approach instead of a deterministic 

model. 

Summarizing: 

1. Monte Carlo methods generally are more time consuming than deterministic 

models. 

2. Deterministicmodels generally need more complicated theoretical know

ledge than Monte Carlo methods. 

3. With Monte Carlo methods it is easy to get standard deviations of re

sults, with deterministic models it is not. 

4. Sometimes deterministicmodels ara not appropriate because theoretical 

problems are not solved where Monte Carlo methods get around these pro

blems. 

2.6 
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3. METHODS TO COMPUTE RETURNS FROM BREEDING 
SCHEMES 

3.1. Introduction 

Some different approaches to compute financial returns from breeding 

schemes will be discussed in this chapter. 

These methods have been used by LINDHË (1968), BRASCAMP (1973), NIEBEL 

(1974), PETERSEN et al. (1974) and BRASCAMP (1975) for breeding schemes 

in dual purpose cattle. 

The discussion in this chapter will be limited to the returns from genetic 

improvement in dairy characters. 

The problem involved may be illustrated by Fig. 3.1, which shows a sche

matic relation between costs for different breeding schemes and annual 

genetic gain resulting from these schemes. Increasing costs may be thought 

to result from the purchase and progenytesting of more young bulls, the 

preparation and storage of more doses deepfrozen semen. Increasing annu

al genetic gain results from higher selection intensities, a higher accu

racy of progeny testing. 

tu 
en 

costs 

Fig. 3.1 Schematic relation between costs for a breeding scheme and 
annual genetic gain. 

3.1 
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Fig. 3.1 shows that with increasing costs put into a breeding scheme also 

the annual genetic gain increases. However, the increase of the annual 

genetic gain slows down at higher costlevels. Consequently, investments 

above a certain costlevel will not be worthwhile because the additional 

annual genetic gain resulting from it is considered to be too small. 

The obvious question now is above which costlevel the additional increase 

in annual genetic gain is considered to be too small to justify additional 

investments. Computation of returns from breeding schemes (which can be seen 

as a translation of annual genetic gain in the same units as costs: money) 

is considered to solve the question stated above. 

The question stated above involves two aspects: 

1. How to compute returns. 

2. According to what cirteria can we measure justification of further in

vestments. 

This chapter deals with the first aspect. The second aspect will be dis

cussed in chapter 4. 

Before discussing general differences between methods (3.3.) we will des

cribe the principle of discounting (3.2.). After that the methods will be 

described in more detail (3.4.). 

3.2. The principle of discounting 

The base of discounting is as follows. 

Suppose that the rate of interest is r. This may be 5 %, 8 %, 10 % etc. 

(r = .05, .08, .10) and may be the annual rate of interest received put

ting money in a bank or the annual rate of interest to pay borrowing money. 

There are several other possible meanings of r, but we will leave that to 

chapter 4. 

Receiving 1 money unit today may be seen to be equivalent to receiving 

1 + r money units one year after today. The additional r money units to

day are necessary to cover the difference of one year, because this r 

money units could be received otherwise by putting the one money unit in 

a bank for one year or has to be payed if one money unit has to be bor

rowed because the receipt is delayed by one year. 

3.2 
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In a breeding programme costs have to be made in different years and re

turns from this (i.e. production from improved animals) will be received 

in later years. Looking at one round of selection in a dual purpose 

breeding scheme, for example, the picture may be as follows. In the first 

year costs for buying young bulls and for performance testing for growth, 

in the second year costs for test inseminations, collection and storage 

of deepfrozen semen, maintenance of bulls (feeding, housing), some con

tinuing in third and later years up to the selection of bulls through 

progeny test results. Returns are attained from year 2 from slaughter-

progeny of performance tested young bulls and from year 9 or so from im

proved milk yield expressed in progeny of selected bulls. 

By discounting costs and returns are put on a same comparable basis. 

Suppose that the base year is the birth of a batch of young bulls, then 

costs in year 3 are multiplied by 1/(1+r) to discount these costs to the 

common basis and returns attained in year 10 are multiplied by l/(l+r) 

It is obvious that especially with high r, returns attained far in future 

have a very small discounted value and that from an economic viewpoint 

(when returns are calculated by discounting) short generation intervals 

are even more important than from a viewpoint of annual genetic gain. 

The choice of the base year varies somewhat with authors. With breeding 

schemes for dual purpose cattle commonly the year of birth of young bulls 

is taken or the year of selection of proven bulls. This choice generally 

will not affect the ranking of different breeding schemes in terms of 

economic evaluation because both costs and returns are affected to the 

same extent (both divided by a same factor, (l+r)n, where n is the num

ber of years between birth of young bulls and selection among young bulls 

based on progeny test results). 

Some algebra in relation to discounting will be given here: 

\mi (TT-r^^'-ÖTryn) ' r (3-'> 

£ (-j-rr)1 - '/r ( 3 - 2 ) 

i=l ' r 

3.3 
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3.3. General differences in methods 

The approaches worked out by LINDHË (1968) and PETERSEN et al. (1974) 

are indentical in principle. Returns computed by these authors are linear

ly related with the annual genetic improvement (AG). 

In the notation of PETERSEN et al. (page 250) 

«BF - N - A G BF' V BF / r < 3 - 3 ) 

In this formula R^ stands for financial returns from breeding scheme, 

N = population size, AG = annual genetic gain in butterfat, V = the 
or Br 

monetary value of an improvement of one kg butterfat and r « rate of in

terest. This formula will be discussed in more detail in 3.4. At this 

stage it is important to note that V_._ is independent of the breeding 
Br 

scheme (but is determined by economic and biological factors) and indepen

dent of AGRF- So in Fig. 3.1 we simply can put R_„ on the vertical axes 

and we end up with a relation between money and money, input and output. 

The annual genetic gain is computed by the formula of SKJERVOLD and 

LANGHOLZ (1964) 
,r 'SS * ('-y ) IPB * TDS * hit (3.4) 
AG 

LSS + ( 1"y ) LPB + yLYB + LDS + L] DD 

where I stands for the genetic superiorities for the pathways SS (sire to 

son), PB (proven bulls), DS (dam to son) and DD (dam to daughter) and L 

for the respective generation intervals, YB for young bulls (test bulls) 

and y for the proportion of inseminations with semen of young bulls. 

The method of LINDHË differs from PETERSEN'S in some assumptions and at 

first sight in the criterion to assess an optimum scheme. One difference 

will be mentioned in 3.4., the other in chapter 4. 

The method of NIEBEL (1974) is different from the previous one described. 

This difference may be illustrated in two ways: 

1. Comparing with (3.3), the method of NIEBEL (1974) amounts to a V 

which is not constant (as with PETERSEN and LINDHE) but depends on the 

breeding scheme. 

3.4 
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2. Combining (3.3) and (3.4), R^ equals: 

RBF - VSS + VPB + b3XDS (3-5) 

where for PETERSEN et al. b. - b, « V„„/r.ZL and b_ = (l-y).V„_/r.EL 
1 J Dr Z Dr 

(ignoring N and path DD). 

These weighing factors have been computed by NIEBEL differently and re

sult in other values for RRF- In principle b. and b, will be low compared 

with b_ because these factors are adjusted for the fact that female dairy 

offspring of bull sires and bull dams will be born much later than dairy 

offspring of proven bulls. Consequently discounted returns from these ge

netic superiorities (i.e. from improved milk yield) have less financial value. 

The methods of BRASCAMP1(1973, 1975) are characterized by the same basic 

idea as the method of NIEBEL. The weighing of the genetic superiorities 

of paths should depend on the time it takes for these genetic superiori

ties to be expressed in improved milk yield. Compared with NIEBEL, the 

weighing factors in (3.5) are derived by evaluation of the flow of genes 

of selected parents in time through the population; NIEBEL's weighing 

factors can be seen as approximations. 

The 1973 method is based on the financial value of the genetic superiori

ties for the different pathways expressed in subsequent generations of 

offspring of selected parents. This method was based on the ideas of 

McCLINTOCK and CUNNINGHAM (1974). 

The 1975 method is based on the financial value of the genetic superiori

ties for the different pathways expressed in subsequent years. This method 

is entirely based on the paper of HILL (1974), dealing with the flow of 

selected genes in time through a population. 

BRASCAMP (1975) concludes the 1975 method to be superior to the 1973 

method. Nevertheless, in the context of discussion of general differences 

between methods, it is worthwhile to describe one aspect of the 1973 paper. 

Let's denote financial returns, evaluated with the 1973 method as RT. 

Analogous to (3.3) RT may be written as 

RT = N.AG.DF.p/r (3.6) 

In comparison DF.p replaces V„_, in (3.3) and DF was called the discount 

Br 
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factor for the time lag between the starting point of a breeding scheme 

(the birth of a batch of young bulls) and the expression of resulting ge

netic superiority in the population. It should be mentioned that V,,- also 

consists of the product of two parts: p (the net income per kg butterfat, 

NI , according to the notation of PETERSEN) and a part similar to DF, 

say DF , a constant discount factor for the time lag. 

So DF - RT.r/(AG,p.N), and in the 1973 paper it was analysed how DF de

pended on the breeding scheme. In Fig. 3.2 (BRASCAMP, 1973) the relation 

is given between DF and two factors describing a breeding scheme: the 

proportion of the inseminations with semen of young bulls and the number 

of deepfrozen semen stored per young bull. It can be seen that DF varies 

from .33 to about .40. 
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3.4. The methods of PETERSEN et al. and LINDHË 

The returns K,v, according to Petersen et al. (1974) are computed as given 

in formula (3.3) 

ht • N-AGBF-VBF / r ( 3 ' 3 ) 

= N.ÛGBF.VBF.S ( J _ ) 1 ( see 3.2) 
i«1 1+r 

In this formula AG_„ has to be interpreted as the stable annual genetic 
DC 

gain, achieved by a continuous breeding programme and VR the value of 

one unit annual genetic gain from one year to another. 

The summing (and discounting) over an infinite number of years indicates 

that 

a) genetic gain, once created is assumed to be maintained infinitely 

b) as discussed in 3.1, financial returns are computed over an infinite 

number of years. 

I will not discuss assumption a) here. Assumption b) will be discussed in 

chapter 4, where the choice of time period for evaluation of returns will 

be discussed. It can be mentioned here, however, that when r » .1 (as 
n , 

PETERSEN assumes) for n = 10, 15, 20, » respectively .1 . >• ; equals 6.1, 

7.6, 8.5 and 10. So most returns are attained in early years and conse

quently the assumptions are less dramatic as it looks at first sight. 

The stable annual genetic gain is used by PETERSEN et al. as the increase 

in genetic superiority expressed in heifers from one year to another. The 

heifers in one year represent a fraction p. of all cows in a herd. A 

fraction p. = p. (1-p.) survives to a second lactation and will express 

the increase in genetic superiority one year later. In general, a fraction 

p.(1-p ) survives to the i-th lactation and will express the increase 

in genetic superiority i-1 years later. So the value of one unit increase 

in genetic superiority in heifers in year 1 discounted to year 1 has a 

total value (over 15 lactations) of 

VBF » NIBF-Vi0"'/"1- L^- r T
 (3-7> 

i=l (l-l).CI 
(1+r) 
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where NI,,,, is the net income per kg butterfat and CI is the calving inter-
DC 

val. Putting p. - .33 and r - . 1, and CI = 1, VD„ •= .839NID„ 

In PETERSEN'S paper costs have been discounted to the base year » year of 

first lactation of heifers born from proven bulls in the scheme. So the 

birth of young bulls from which these proven bulls are selected takes 

place in year -9. 

The value for DF in Fig. 3.2 assumes as base year the year of birth of 

young bulls. . , 

So using PETERSEN'S figure .839 for I P - O - p . ) 1 " ' ' 

i-1 (I + r )(i-»CI 

amounts to an average comparable value for 

DF of .839.(-j-i—)9 - .356, which is well in the range of Fig. 3.2. 

Summarizing the method of PETERSEN et al. (1974): 

1. A breeding programm is assumed which is in operation long enough to 

produce a stable annual genetic gain. 

2. The returns expressed in improved dairy progeny from one round of se

lection are assumed to start 9 years after the birth of a year batch 

of young bulls. 

3. Improvement expressed in heifers of year 9 are evaluated for subsequent 

lactations and discounted to year 9. 

4. This discounted value is maintained from year 9 to infinity and dis

counted in turn to the base year 9. 

A similar procedure has been developed for expression of genetic gain in 

growth rate. This will not be discussed here. 

The method adopted by LINDHE (1968) is similar to the method described 

above. As base year LINDHE adopts the year of birth of heifers born from 

proven bulls. At page 35 of his paper LINDHE calculates the value of 1 % 

improvement in milk yield as 3.36 millions Skr. This figure may be attained 

as follows. 

The net value of 1 % in milk yield values 10.6 Skr. (equivalent to NI_ ) . 

The value of one unit improvement in the first lactation of a heifer 
2 

values .83 (l/(l+r) ) , second lactation .78, third .71 and one third of 

a fourth lactation .69/3 (LINDHE assumes an average of 3 /3 lactations 

per cow). This adds up to .83 + .78 + .71 + .23 = 2.65. 

3.8 
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Now, 2.65 ' 10.6 » 28 Skr. is the value of 1 % improvement in milk yield 

applicable at birth of a calf. Since heifers represent 30 % of all cows, 

at population level this values 400000 • 28 * .3-3.36 millions. The 

only difference with PETERSEN (except choice of base year) is the approx

imation of 3 /3 lactations by 3 whole and 1/' 

stead of evaluating them over 15 lactations. 

imation of 3 /3 lactations by 3 whole and 1/3 of a fourth lactation in-

3.5. The method of NIEBEL 

To calculate returns from a breeding scheme basically the following 

formula is used (changed to notation used here) 

R EL j J J 

In this formula R stands for discounted returns, £L and I. for sum of 
J 

generation intervals and for genetic superiority as before, b. is a 

weighing factor, different for each pathway. 

This factor b. depends on the time it takes from the birth of selected 
J 

parents to birth of offspring and the time over which returns are to be evaluated. 

Suppose t. is the time between birth of selected parents and birth of off

spring and d is the time interval between birth of selected parents and 

the end of the period over which returns are to be evaluated. 

d 1 
Then b. = Z ' vk , (NIEBEL, page 122) (3.9) 

J k=t- (l+r)K 

the sum of constant amounts of money received between birth of offspring 

and end of evaluation period, discounted to the birth of selected parents. 

For path SS t. = L-_+yLyR+(l-y)Lp_, for dairy offspring is born from 

young bulls and proven bulls, being sons of the bull sires SS. 

For path PB t.. = Lpß, for path DS t̂  = ^ g » " ^ ^ » ^ ^ ^ 

It can be shown that by adopting (3.1) 

bj T ö ^ f i " ~n^)dJ ' r (3,10) < E 9 u i v a i e n t 

j L U r, j u+r; j ^ NIEBEL (1974) page 118-119) 

In fact NIEBEL divides not by 1/EL but by 1/CEL, where C is the "Nutzungs
dauer" = average number of lactations per cow. 
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So the weighings for the genetic superiorities of paths SS, PB and DS 

a r e b S S ' b P B , ( 1 " y ) 3 n d b D S 

3.6. The methods of BRASCAMP. See Appendix. 

In 3.7. the term "discounted expression per cow" will be discussed and 

in 3.8. the numerical values of discounted expressions implicitely or 

explicitely adopted by PETERSEN (1974), NIEBEL (1974) and BRASCAMP (1973, 

1975) will be compared. The term originates from McCLINTOCK and CUNNING

HAM (1974). 

3.7. Discounted expressions per cow 

As discussed in 3.3. the financial returns (R) from a breeding scheme can 

be written as: 

R - ( blISS+ b2IPB+ b3IDS)-P-N 

These returns are evaluated over a certain time period (PETERSEN, °° years, 

NIEBEL 25 years, BRASCAMP (1973) 4 generations of offspring, BRASCAMP (1975) 

25 years) and are the results from one round of selection. 

Now, the weighing factors b. may be called "discounted expressions per 

cow" or "per first insemination". They represent the discounted financial 

value of one unit genetic superiority. 

This discounted financial value is the result of the expression of (a part 

of) the genetic superiorities of the selected parents by offspring which 

show these superiorities during many years (and generations) after the 

original act of selection. 

Further this discounted value is thought to be accumulated in one imaginary 

cow in the base year. So multiplication with p and N gives the financial 

value discounted to the base year for the whole population. 

3.10 
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3.8. Numerical comparison of discounted expressions 

Discounted expressions per cow have been calculated by PETERSEN et al. 

(1974) and NIEBEL (1974) as follows. 

PETERSEN: For SS and DS the discounted expressions are equal and are cal

culated as ,356/ZL.r. The figure .356 has been calculated before (see 

3.4). For PB the discounted expressions are those for SS (and DS) multi

plied by (1-y), the proportion of inseminations with proven bulls. 

NIEBEL: For SS and DS the discounted expressions are calculated according 

to (3.10) devided by ^L, while for PB an extra multiplication with (1-y) 

is needed. 

In Table 3.1 results have been given. Assumptions: 

LSS=LPB=6-75* 4 B = 2 - 7 5 > hs'6' LDD=4-5' r « -,0-

Table 3.1 Discounted expressions per cow for 4 methods discussed in the 
text. 

Path Proportion of inseminations with young bulls 

SS 

Petersen (1974) 

Niebel (1976) 

Brascamp (1973) 

Brascamp (1975) 

PB 

DS 

Petersen (1974) 

Niebel (1974) 

Brascamp (1973) 

Brascamp (1975) 

Petersen (1974) 

Niebel (1974) 

Brascamp (1973) 

Brascamp (1973) 

.20 

.153 

.089 

.079 

.068 

.122 

.150 

.195 

.191 

.153 

.098 

.165 

.158 

.50 

.162 

.110 

.088 

.081 

.081 

.099 

.133 

.132 

.162 

.119 

.185 

.183 

.70 

.168 

.127 

.095 

.091 

.050 

.061 

.087 

.086 

.168 

.139 

.201 

.203 
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Comparison of discounted expressions calculated for PETERSEN and NIEBEL 

clearly illustrates the point that for paths SS and DS it takes much 

longer time to attain the first returns (from granddaughters!) than for 

PB (from daughters). This fact is accounted for by NIEBEL, not by PETERSEN. 

A further interesting point is the difference for DS between NIEBEL and 

BRASCAMP. This can be clarified looking at Figi 1 (Thesis page 6 ) . In this 

Fig. 1 DS are considered to be the dams of the batch of young bulls. So 

the base year for this path is the birth of their sons and first returns 

are attained from testdaughters of these young bulls (year 3 ) . In NIEBEL's 

approach the base year for DS is the birth of the dams themselves. Again 

the first returns are from testdaughters of their sons, but this happens 

in year 9 approximately. This difference would account for a factor 

l/(l+r) = .56, which is rather close to the difference in Table 3.1. 

The logic of this type of problems (choice of base year) will be discussed 

in chapter 4. 

The differences between BRASCAMP (1973) and (1975) have been discussed in 

the thesis (1975). It was concluded that the 1973-method contained some 

deviations caused by the approximation of 25 years by 4 full generations 

of offspring. Within 25 years for some pathways in Fig. 1 (appendix) later 

than 4th generation females are lactating, while most generations are not 

completed within 25 years. 

3.9. Numerical example to BRASCAMP (1975) 

In this part some more detailed results will be given of the application 

of the method of HILL (1974) to a particular dairy cattle example (BRAS

CAMP, 1975) to illustrate the flow of genes of selected parents in a po

pulation. 

Table 3.2 gives the genetic make up (associated with path SS) of males and 

females in different age classes and years. 

There are 7 male age classes (males of age 6 and 7 are bull sires and con

tribute 1/4 or 3/4 to their offspring in the respective years: generation 

interval = 6j years). 

Further there are 13 female age classes, contributing 0, .25, .22, .15, 

.10, .08, .06, .05, .03, .02, .02, .01 and .01 respectively to female re

placements and 

0, 0, .22, .18, .14, .11, .08, .07, .05, .04, .04, .04 and .03 respectively 

3.12 
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to male replacements (L™ = 4.5 and L = 6). 

The contribution of males to females is as follows: 

age class 2 and 3 (young bulls) approximately Jy and |y and age class 6 

and 7 (proven bulls) approximately J('~y) and 10~y)> resulting in 

L = 2j and L_ = 6}. These values are approximate where the probabili

ties for female offspring of young and proven bulls to enter the herd 

are assumed to be slightly different (Appendix 1, thesis). 

The 1 fe in year 1 age class 1, in year 6 age class 6 and in year 7 age class 7 

represent ageing of the young bulls, containing 100 % of their own genes. 

The males in year 6, age class 6 are bull sires and contribute J.J = .125 

of their genes to all bulls of age 1 in year 7 ( because 

.375 comes from bull sires a year older and the other half from females). 

Table 3.2 Genetic make u« (relative to path SS) in males en females in 
different years and age classes (1-7 males, 1-13 females) 
(y = .10) 

age 
class 

1 

2 

3 

4 

5 

6 

7 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

I 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

6 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

7 

.125 

0 

0 

0 

0 

0 

I 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

8 

.375 

.125 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

9 

0 

.375 

.125 

0 

0 

0 

0 

.001 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

years 
10 

0 

0 

.375 

.125 

0 

0 

0 

.008 

.001 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

11 

0 

0 

0 

.375 

.125 

0 

0 

.012 

.008 

.001 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

12 

0 

0 

0 

0 

.375 

.125 

0 

.001 

.012 

.008 

.001 

0 

0 

0 

0 

0 

0 

0 

0 

0 

13 

.017 

0 

0 

0 

0 

.375 

.125 

.017 

.001 

.012 

.008 

.001 

0 

0 

0 

0 

0 

0 

0 

0 

14 

.096 

.017 

0 

0 

0 

0 

.375 

.088 

.017 

.001 

.012 

.008 

.001 

0 

0 

0 

0 

0 

0 

0 

15 

.142 

.096 

.017 

0 

0 

0 

0 

.133 

.088 

.017 

.001 

.012 

.008 

.001 

0 

0 

0 

0 

0 

0 

25 

.037 

.029 

.021 

.071 

.073 

.039 

.024 

.037 

.036 

.027 

.067 

.068 

.023 

.029 

.033 

.015 

.133 

.088 

.017 

.001 

50 

.042 

.043 

.043 

.043 

.043 

.042 

.040 

.042 

.043 

.043 

.042 

.042 

.042 

.041 

.042 

.044 

.044 

.042 

.042 

.041 
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These bulls (with .125 of SS genes) are young bulls in year 8, age class 

2 and contribute .125.J.J".10 = .001 to all females in age class 1, year 

9. (Other genes from proven bulls, young bulls of 1 year older and fe

males) . 

Another example will be illustrated:.133 (year 15, age class 1 females). 

These females get their genes from parents in year 16. 

Parents are: young bulls of age class 2: .017.{.J*.10 = .000 

proven bulls of age class 7: .375.1.J*.90 = •Ï27 

and females in age classes 2, 3, 4, 5 and 6 

age class 2 .017.J'.25 - .002 

3 .001.J-.22 = .000 

4 .012.1'.15 - -001 

5 .008.J'.10 - .000 

6 .001.i'.08 = .000 

Together this gives .130 

So most genes originating from SS to this group of females is transmitted 

by sons of the bull sires, which are 7 year old proven bulls at that time. 

Following the pattern in Table 3.2 we see 

1. The first lactating females appear in year 10, expressing only .1 % of 

bull sires' genetic superiority. 

2. Even up to year 25 the pattern is very irregular. 

3. In year 50 all animals in all age classes contain about the same frac

tion of bull sires' genetic superiority: 4.2 %. This equals l/ZL=l/23.8, 

the weighing factor for I to calculate stable annual genetic gain. This 

stable value is about 3.8% for SD(=.9*4.2) and 4.2 % for DS. 

From Table 3.2 discounted expressions for SS can be derived. Heifers in 

age class 2 express .1 % of sires genetic superiority and heifers repre

sent a fraction f- of all lactating cows in that year. So per cow the 
10 

value of this .1 % is .001 "f „/(1+r) , since the lactation occurs in year 10. 

The value of improvement by SS expressed in year 15 is: 

(.088.f„+.017.f,+ .001.f. + .012.f,. + .008.f, + .001.f,)/(l+r)15. 

So the discounted expression per cow as discussed in 3.7 are the sum of 

the values calculated as above in subsequent years. The numerical values 

of f. are given in Appendix 2 (thesis). 

The discounted expressions will depend on the genetic make up of females 

in different years and age classes (a function of y, and generation inter

vals as caused by definition of gene transmission), on the number of years 

considered and on the interest rate. 
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Some results of the effects of number of years and interest rate are given 

in Table 3.3. 

Table 3.3 Effects of number of years considered and interest rate (r) 
on discounted expressions per cow (y - .20). 

Years 

Path 

5 

10 

15 

25 

50 

SS 

.0 

0 

.001 

.056 

.434 

1.341 

.05 

0 

0 

.028 

.166 

.313 

r 

.10 

0 

0 

.015 

.068 

.097 

.15 

0 

0 

.008 

.030 

.037 

SD 

.0 

0 

.187 

.437 

.751 

1.510 

r 

.05 

0 

.116 

.248 

.363 

.486 

.10 

0 

.074 

.146 

.191 

.215 

.15 

0 

.048 

.089 

.107 

.113 

Table 3.3 shows that the relative contribution of SS and SD to returns 

depends on the number of years considered. If the time period over which 

returns are to be evaluated is only 10 years, returns through SS simply 

have not occurred yet. The relative contribution of SS to SD increases as 

the number of years considered increases. Further consider the case 

r » .0, where no discounting has been adopted. Also in that case, the con

tribution of SS and SD to return is not equal. If gene flow is considered 

pathways contribute differently to returns, even if discounting is not 

adopted, caused by different 'speed' of expressing the genetic superiority 

of the paths in improved yield. 
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4. COMPARISON OF RETURNS AND COSTS; INFLATION 
AND RISK 

In this chapter some methods to compare returns and costs will be sum

marized (4.1.). Secondly we will discuss the effect on this comparison 

of inflation and risk (4.2.). Finally some remarks will be made how 

to come to a decision which breeding scheme should be adopted (4.3.). 

4.1. Methods of comparison of costsand returns 

Various methods have been described by NIEBEL (1974). 

Chapter 3 started with a schematic relationship between costs and annu

al genetic gain. We saw that putting more money (costs) into a breed

ing scheme results in higher annual genetic gain. However, the increase 

in annual genetic gain slows down at higher costlevels, so the question 

is: which costlevel is optimum. It was suggested then that translating 

annual genetic gain into money would provide a solution and chapter 3 

dealt with this translation. 

Here, three methods of comparison of costs and returns will be described. 

4.1.1. Net returns (Kapital Wert) 

This method has generally been applied in economic optimization of 

breeding schemes. It works as follows: For a breeding scheme costs 

associated with one round of selection (e.g. one batch of young bulls) 

are calculated and discounted to a base year. Returns resulting from 

this round of selection are calculated over a certain period ahead 

and are discounted to the same base year. (It is clear that the inter

est rate and number of future years to be considered have to be chosen 

beforehand). 

The difference between discounted returns and discounted costs is called 

net returns. The optimum breeding scheme is the scheme with highest 

net returns. Net returns (NR) can be calculated with the methods des

cribed in chapter 3. 

So for PETERSEN et al. 1974 (see formula 3.3) 
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NR - N'AG'V/r - C (4.1) 

NR - R - C 

where C stands for discounted costs. 

LINDHË (1968) adopted a different method to compare returns and costs. 

He computed marginal rates of interest. Take 2 alternative schemes in 

Fig. 3.1 with costs C. and C. (C„ > C.). For both schemes he calculated 

yearly returns as 

Ry - N-AG-V (4.2) 

1 
so ignoring E n+r)n (see 3.4) 

n»l 

Then marginal rate of interest (m) was computed as 

m - (Ry2 - Ryj)/(C2 - Cj) (4.3) 

and questioned if m is high enough to justify the additional costs 

c2-c,. 
Now, because R • 

and 

• Ry/r 

R2 - C2 - NR2 

Rj - C. - NRj 

R2 - Rl » C2 -
(Ry2-Ry,)/r -

ANR 
m " r C -C 

C2 Lj 

C„ - C + ANR 

:2-Cj + AN 

With the method of net returns scheme 1 and 2 are both optimal if 

ANR = 0. In that case m » r. If ANR > 0, m > r and if ANR < 0, m < r. 

So the criterion maximum net returns gives the same optimum scheme as 

LINDHË's marginal rate of interest provided that m = r. In the applica

tion of LINDHË extra investment was considered to be worthwhile if 

m > .10. So his method gives the same results as PETERSEN et al., 

using r » .10 with net returns. 

4.1.2. Internal interest rate 

The internal interest rate is the rate of interest for which discounted 

costs equal discounted returns. 
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A scheme with highest internal interest rate is considered to be optimal. 

Returns are affected more by increasing r than costs because returns 

occur in later years. So, if R - C is positive with r • .10, increas

ing r stepwise leads ultimately to the internal interest rate with 

R = C. It can be seen from Fig. 3.1 that R/C is larger at low cost 

levels than with high C. Consequently high internal interest rates will 

be found at low cost levels. This can be illustrated as follows. 

Denote undiscounted returns and costs as R0 and CO and discounted 

(interest rate r) as Rr and Cr. Assume further Cr - CO (TT—) and 

Rr = R0 (-pL) » ' 

Scheme 1: Scheme 2 

CO 

R0 

R10-C10 

R0/C0 

R10/C10 

r(Rr=Cr) 

S 

= 

SS 

= 

= 

= 

11 

220 

69 

20 

9.3 

46.5 % 

CO = 4 

R0 = 1 6 0 

R10-C10 = 53 

R0/C0 = 40 

R10/C10 = 18.7 

r(Rr=Cr) = 58.5 % 

In the example above we see two schemes with low and high costs repec-

tively. Following the net return criterion scheme 2 should be preferred, 

following the internal interest rate scheme 1. 

Another criterion sometimes seen is R/C, which also leads to schemes 

with low costs. 

4.1.3. Pay off period 

With net returns both interest rate and the time period over which re

turns are to be evaluated have to be chosen beforehand. With internal 

interest rate only the time period has to be chosen, the (internal) 

interest rate is criterion. 

With the pay off period only the interest rate has to be chosen, the 

time period is criterion. The pay off period is the time period over 

which returns have to be evaluated such that returns equal costs. A 

scheme with the shortest pay off period will be considered to be optimal. 
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As with internal interest rate this criterion leads to optimal schemes 

with low cost levels. HARING (1972) uses the pay off period in combi

nation with net returns. The pay off period is adopted as a additional 

criterion, together with net returns. 

4.2. Interest rate, inflation and risk 

4.2.1. Types of interest rate 

From table 3.3 it follows that choice of interest rate has large effect 

on discounted expressions and consequently on calculated financial re

turns from breeding schemes. Returns from one round of selec

tion are affected much more by choice of interest rate than costs. There

fore the optimum scheme found may depend rather much on interest rate 

chosen. 

SMITH (1978) gives a thorough discussion on the subject of interest 

rate and his arguments will be summarized here. He distinguishes three 

types of discount rates (interest rates). 

1 Opportunity cost rate, the cost of borrowing in the financial market. 

2 Social time preference rate, often lower than opportunity cost rates. 

This rate could be applied for long-term investments in the national 

interest, considering that for not purely economical reasons invest

ments in f.e. roads and national parks should be made even though 

these investments don't 'pay' as well as e.g. investments in a fac

tory for automobiles. 

3 A synthetic rate. This rate equals the social time preference rate. 

The point however is that both investments with high returns (dis

counted normally by the opportunity cost rate) and long-term invest

ments with low returns (discounted normally by the social time 

preference rate) are discounted by the social time preference rate. 

The definitions of interest rates above show that a simple choice can 

not easily be made. Other complicating factors are inflation rate, 

risk and tax rate. 
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4.2.2. Inflation 

Seeing a bank lending interest rate as loan for lending money, this 

interest rate will include inflation. (Then the loan keeps its value 

irrespective of inflation). For cost-benefit analyses inflation should 

be excluded (ref. SMITH, 1978). In case of national breeding schemes 

inflation might be excluded in so far as the price of improved pro

ducts (e.g. price of milk) follows the inflation rate. (RENKEMA, cited 

by BRASCAMP 1975, page 25). 

An inflation free interest rate can be calculated from 

(I + i) = O+qKl+t),. 

(SMITH, 1978) where i is bank lending rate, q inflation free interest 

rate and t inflation rate. 

So 

q = (i-t)/(l+t) 

4.2.3. Risk 

If the realization of returns is subject to risk, an increase of the 

discount rate will deal with this. If for example the probability that 

expected returns are indeed realized is 1-k, the risk rate may be said 

to be k. The required rate of return to justify investment (and so the 

discount rate to work with, r) will be 

r = (l+q)(l+t)/(l-k) - 1 (SMITH, 1978) 

(Note that with small k : (l-k)ftil/(l+k). 

Further increase of required rates of returns are necessary if tax has 

to be paid for the returns of investment. For the evaluation of breed

ing schemes as discussed in chapter 3, it may be worthwhile to evalu

ate if risk on realization of expected returns increases further in 

future. This would lead to make the discount rate time dependent. 
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4.3. National breeding schemes vs commercial breeders 

In all studies on economic optimization of breeding schemes financial 

returns are taken to result directly from genetic -improvement of live-

stock. This seems to me an approach of\investment in the national 

interest, -resulting in cheaper produced; milk,'pig meat and so on. 

If all animals in a nation improve with the same rate, it may very 

well be that individual farmers don't have much real advantage from it. 

In fact margins between in- and output may decrease. So from a national 

viewpoint the discount rate chosen may be low (2-3 % say) but from 

farmers' viewpoint it probably should be higher, e.g. to adjust for 

price changes lowering margins. 

A very important assumption in all these calculations is that animal 

population size remains constant. If on the contrary the total (milk) 

production should stay constant, the population size - and the discounted 

expressions in subsequent years - should decrease by something like 

AG %. This still is, however, a national approach. 

Suppose for example that two competing breeding programmes (A.I.studs) 

are in operation and that sales of semen is dependent on quality of 

bulls. Then the approach discussed above doesn't make much sense. Cost 

effectiveness does not follow any longer from costs versus discounted 

genetic improvement but probably on costs and expected sales. These 

sales of semen in turn may depend in the breeding scheme and the gene

tic improvement. This seems a more logical approach in general for com-

merical breeders (or breeding companies). The discount rate chosen for 

cost benefit analyses for breeding companies will be higher than for 

nationaj. breeding plans. The reason being that investment outside breed

ing might pay better. 

It may not be immediately clear that expected sales are depending on 

genetic merit of breeding stock and consequently on genetic improvement, 

especially if relative merit of stocks is not known. The following ex

ample may illustrate that this relation probably exists. Suppose a 

commercial pig breeding firm associated with a feed producing company, 

where feedstuffs for the pigs are delivered by this feed producing com

pany. If sales of pigs were independent of the genetic merit of the 

stock an obvious policy would be to select for higher feed conversion 

(and keep the pigs lean to avoid problems in selling slaughter pigs). 
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It seems to me that such a policy is against common sense and seems to 

prove the case. 

Of course it will be very difficult to link sales to genetic improve

ment and in addition to higher discount rates for reasons indicated 

earlier also risk is probably rather high. In Table 4.1 a comparison 

of perspectives for investment appraisal in animal improvement is 

given. 

Table 4.1 (from SMITH (1978)) 

Comparison of perspectives for investment appraisal in animal 
improvement 

Perspective 

Investment 

Time scale of invest 

ment and return 

Improvement in the 

national interest 

Improvement of nati

onal breeding stocks 

Returns to the investor 

Reasons 

Long 

Large 

(1) Value of improvement 

in all national com

mercial production 

(2) Permanent value of im

provement over time 

(3) Value of successive 

improvements accumu

lates 

(4) Low risk of no returns 

Investment justified Large 

Commercial breeding 

firm or breeder 

Improvement of own 

breeding stock 

Short 

Small 

(1) Returns from extra 

breeding stock sold 

(2) Temporary value from 

competetive advantage 

(3) Successive improve

ments needed to main

tain competetive po

sition 

(4) High risk of no returns 

Small 
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4.4. Conclusion 

The previous paragraphs indicate that no universal solution for econo

mic evaluation of breeding schemes exists. Methods adopted (4,1.), dis

count rate chosen (4.2.), length of evaluation period, risk are subject 

of discussion and will vary by the situation involved. 

One technical remark should be added here. In Chapter 3 (and in 4.1.) 

it was assumed that costs and returns associated with one round of se

lection were to be compared. For national breeding schemes this seems 

a reasonable approach. Especially if the evaluation period (T) is long 

it will give similar (or identical if T = °°) results as the alternative: 

evaluate cumulative costs and returns associated with subsequent rounds 

of selection from now to T years ahead. For a commercial breeding firm 

this alternative approach may be more appropriate. In addition to this 

the pay off period may be not important for national programs, for 

commercial firms it probably is. 
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5. APPLICATION OF DISCOUNTED EXPRESSIONS 

The term (standard) discounted expressions was introduced by McCLINTOCK 

and CUNNINGHAM (1974), as mentioned in chapter 3.6. and an application 

to computation of returns from breeding schemes has been illustrated in 

chapter 3.7. - 3.9. 

McCLINTOCK and CUNNINGHAM developed this method to account for different 

expressions (both in number of occasions as in time) of various traits 

in an aggregate genotype. Economic weights should be adjusted for this 

difference. 

In chapter 3.9. discounted expressions were used in relation to the method 

of HILL (1974). It seems worthwhile, therefore, to start this chapter with 

a comparison of both methods (5.1.). 

After that, the application to definition of the aggregate genotype will 

be summarized (5.2.). 

5.1. Comparison of the geneflow methods based on McCLINTOCK and CUNNING

HAM (1974)and HILL (1976) 

The method of McCLINTOCK and CUNNINGHAM may be summarized as follows: 

1. Compute the expected number of individuals in each generation and year, 

expressing the genotype transferred in initial mating. 

2. Multiply each expression with the additive genetic relationship be

tween the individual of initial mating and the individuals in which 

the expression is measured (generation). 

3. Multiply each expression with the discount factor for the year in which 

the expression takes place. 

The following simple example may illustrate the rules above. 

Suppose we have a population of dairy cows. The first lactation takes 

place in the second year of age, the second in the third year, the third 

in the fourth year. Of all animals having a first lactation, 60 % has a 

second and 40 % has a third. So in any one year 50 % of the cows are in 

first lactation, 30 % in second and 20 % in third. Now we wish to compute 

the number of discounted expressions of one successful insemination. This 

insémination takes place in year 1. The number of first lactation heifers 
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in year 4 resulting from this insemination will be 0.5, because the re

placement rate is 50 % (the example is infeasable). 

In Table 5.1 further numbers are given. 

In year 5 we will get 0.3 second lactation cows and in year 6 0.2. All 

of these are second generation animals (considering the bull to be first 

generation). Assuming that the relative contribution of females to re

placements is independent of age, in year 6 we will get 0.5 * 0.5 » 0.25 

third generation first lactation animals. In Table 5.1 the picture is 

completed up to year 10. It should be mentioned that genes are transmitted 

from second to later generations by females only. 

Up till now, we applied rule 1, and now we apply rule 2. 

In year 4 we have .5 animals expressing $ of bull's genotype. This gives 

.25 discounted expressions (with discount rate 0.). 

In year 8, for example, we have .29 third generation animals, expressing 

.29.J = .0725 of bull's genotype and .125 fourth generation animals, each 

expressing 1/8 of bull's genotype. (Adding to .0725 + .01563 = .08813). 

In total, over 10 years the number of discounted expressions (with dis

count rate 0) equals .83329. 

If the discount rate is not zero, the discounted expressions in year k 

have to be multiplied by l/(l+r) . 

Application of HILL's method to the example results in Table 5.2. 

Of the total matrix P after year 3 we only need the lower right quarter, 

being 

p l . ' 

P22 = 

P ] 2 and P ar 

0 . 

1. 

0 

0 

e 0 . 

.25 

0 

1 

0 

.15 

0 

0 

1 

.1 

0 

0 

0 

See for definition matrix P section 8.4. and appendix. 
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Table 5.1 The method of McCLINTOCK and CUNNINGHAM (1974) applied to an 
example (see text). Interest rate is 0. Numbers of animals 
from one insemination in different years and generations. 

year generation generation 

4 .5 

5 .3 

6 .2 .25 =.25 

7 .15+.15 =.30 

8 .10+.09+.10=.29 

9 * .06+.06=.12 

10 .04=.04 

generation 

4 

.125 =.125 

.075+.15 =.225 

.050+.09+.145=.285 

generation 

5 

.0625 

dis
counted 
expres
sions 

.25 

.15 

.1625 

.075 

.08813 

.05813 

.04953 

.83329 

Table 5.2 The method of HILL (1974) applied to an example (see text). 
Interest rate is 0. Proportion of genes from a bull expressed 
in males and females in different years and age classes. 

year 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

mal 

1 

1. 

0. 

0. 

es 

2 

0. 

1. 

0. 

age classes 

females 

1 

0. 

0. 

.5 

0. 

.125 

.075 

.08125 

.0375 

.04406 

.02907 

2 

0. 

0. 

0. 

.5 

0. 

.125 

.075 

.08125 

.0375 

.04406 

3 

0. 

0. 

0. 

0. 

.5 

0. 

.125 

.075 

.08125 

.0375 

4 

0. 

0. 

0. 

0. 

0. 

.5 

0 

.125 

.075 

.08125 

discounted 
expressions 

.25 

.15 

.1625 

.075 

.08813 

.05813 

.04953 

.83329 
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In chapter 3.9. we already discussed an example. So the figures in Table 

5.2 will not be illustrated with respect to the fraction of bull's geno

type expressed in different lactation and years. 

In year 4 females in age class 2 (first laction heifers) contain in 

average 50 % of bull's genotype. First lactation animals represent 50 % 

of all cows in year 4, so the number of discounted expressions is .25. 

In year 8 this is .8125".5+.075 *.3+.!25".2 = .08813, as before. 

Both methods give identical results in this example. This will generally 

be so, provided that assumptions made in both applications are identical. 

The difference in methods is a matter of sequence of computations; 

McCLINTOCK & CUNNINGHAM: numbers, dilution of genes, discounting 

HILL : dilution of genes, numbers, discounting. 

In general it seems to me that HILL's method is easier to handle, because 

it is easier to adapt complicating assumptions. Two examples are discussed 

below. 

1. DANELL et al. (1976) have extended McCLINTOCK and CUNNINGHAM'S method 

to two pathways: sires to offspring and dams to offspring. Subdivision 

of offspring to males and females (in terms of generation interval) 

complicates their extension further. With HILL's method it is easy to 

deal with various pathways of gene transmission. 

2. In the original papers of HILL and McCLINTOCK and CUNNINGHAM, the con

tribution of age classes (or lactation) is proportioned to their occur

rence. In practice this is normally not so. With HILL's method it is 

easy to deal with this by defining the contribution of age classes to 

offspring (in matrix P) and the relative occurrence differently (see 

BRASCAMP, 1975 , Appendix I and 2 ) . With McCLINTOCK and CUNNINGHAM'S 

method it is more difficult to adjust the model for a difference be

tween relative contribution of age classes to replacement and relative 

occurrence of offspring. DANELL et al. define three probabilities be

tween mating and replacement: 

1. F. (and P.), probabilities that matings with males (females) of 

different age classes will be successful when the females (males) 

are 100 % fertile. 

2. L., number of progeny surviving to maturity per successful mating 

in different female age classes. 

3. Q7 the probability of a surviving descendant being used as 
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replacement within the population. 

To deal with the problem discussed above Q'should be depending on j, 

the female age class. The corresponding element in the P-matrix would 

be {P. L.QT/EP.L.Q'T. 
J J J J J J 

An additional parameter in DANELL et al. is 

4. V., the probability that a breeding female entering the first age class 

still will be present in age class j. 

So the relative occurrence of age class j is V./ZV.. 

5.2. The definition of the aggregate genotype 

In this chapter the effect of discounted expressions on the economic 

weights in an aggregate genotype will be discussed. 

Traditionally, the economic weight of a trait is defined as the change in 

financial (better may be costs) associated with one unit change of the 

trait. As demonstrated by McCLINTOCK and CUNNINGHAM (1974) the economic 

weight should not only depend on the marginal returns (or costs) but also 

on discounted expressions. 

The first example of the correction of economic weights for number of ex

pressions probably is SMITH (1964) in the definition of aggregate geno

types for specialized sire and dam lines. He works with two traits, X_ 

(reproductive performance, e.g. littersize) and X„ (productive traits, 

e.g. growthrate during the fattening period). The relative economic 

weight (a)of Gn to G is defined as the value of one unit change in X^ 

relative to the value of n units change in X , n being the number of 

offspring per dam. Considering the reproductive performance of a dam as a 

trait of that dam, the aggregate genotype for a sire line should be G_ 

(because no expression of sire's X^ takes place in crossed offspring). 

Further the aggregate genotype of the damline should be aG, + jG„, because 

dams show 1 expression X_ in crossed offspring and $ n expressions X 

in crossed offspring (the n expressions are accounted for in a ) . 

These definitions of aggregate genotypes are equal to those of DANELL et 

al. (1974) for commercial herds with discount rate zero. Commercial herds 

are defined as obtaining all replacements from outside the own herds. 

The discounted expressions for B-traits (equivalent to X ) and A-traits 
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(equivalent to X ) are (DANELL et al.) .74 and .74'{'n, where .74 is the 

average non-return rate of female age classes and n is littersize. 

CUNNINGHAM and McCLINTOCK (1974) applied their 'discounted geneflow 

method' to a situation of dual purpose cattle with beefcrossing (a frac

tion k of dual purpose cows crossed with beef bulls). The relative magni

tude of discounted expressions for dairy and beef traits (E, and E. ) 
d b 

depend on 

1. Cow replacement rate: If cow replacement rate decreases E, decreases 

because of lower discount factors. The number of expressions per gener

ation will be equal, within a certain number of years lower. E, will 

increase because of a higher number of expressions. 

2. Beef crossing: For dairy traits the number of discounted expressions 

per insemination (dual purpose and beef) will remain constant with in

creasing k. 

Per dual purpose insemination, however, E, will increase because the 
d 

number of replacements per dual purpose insemination has to increase 

to keep the population size constant. 

If E d = 1 with k = 0, E d = l/(l-k) gives the dependency of k (CUNNING

HAM and McCLINTOCK, 1974, Table 3 ) . 

For beef traits the number of discounted expressions per insemination 

(i.e. dual purpose expressions from both dual purpose and beef insemina

tion) will decrease with increasing k because potential 'dual purpose 

beef' expressions are replaced by 'beef'. Per dual purpose insemination 

E, is affected only slightly. 
BRASCAMP (1974) found in his study that relative discounted expressions 
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for dairy and beef traits not only depended on the factors mentioned 

above, but to a small degree also were different per pathway. The reason 

being that he assumed unequal probabilities for dairy offspring of young 

and proven bulls to enter the dairy herd as replacement. 

DANELL, RÖNNINGEN, STRÖM, ANDERSSON and SUNGREN (1976) extended McCLINTOCK 

and CUNNINGHAM'S method to two'pathways (genes are transmitted by females 

and males, in McCLINTOCK and CUNNINGHAM'S original paper by females only 

(as in the example in chapter 3.1.)) and worked out the model for a hierar

chy with nucleus, sub-nucleus and commercial herds. Their extension was 

exemplified by a pig breeding situation. 

For slaughter and fattening traits they find small differences in dis

counted expressions. This is a matter of numbers: fattening expressions 

are counted in both slaughter animals and replacement animals. The ratio 

between discounted expressions for fattening traits and reproductive 

traits were discussed before and equalled half the littersize for females 

in commercial herds (discount rate zero). 

For nucleus herds this ratio is larger. Simplified this may be seen as 

follows (D = reproduction, S » fattening, discount rate = 0 and n = 7). 

generation 

1 

2 

3 

4 

5 

femal 

D 

.74 

.37 

.37 

.37 

.37 

2.22 

.es 

S 

-

2.59 

2.59 

2.59 

2.59 

10.36 

males 

D S 

-

.37 2.59 

.37 2.59 

.37 2.59 

.37 2.59 

1.48 10.36 

Females in the first generation express .74 D (as in commercial). Each 

female is replaced by one new one, expressing half the additive genetic 

merit (so generation 2 gives .37). Generation 3 remains .37 because genes 

are transmitted to the third generation offspring by both females and 

males, doubling the J*.37. 

With the same argument S is expressed in the second generation as 2.59 

(as in the commercial) and stays at that level in later generations. For 

males the situation is equal to females except there is no generation 1 

expression for D. 
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The actual figures calculated by DANELL et al. are 14.29, 2.38, 14.71 and 

1.70 (instead of 10.36, 2.22, 10.36 and 1.48), but the very simple approach 

illustrates - I think - the reason of the difference between commercial 

and nucleus. 

Another application of discounted expressions may be to attach a financial 

value to the genetic superiority of a breeding animal. Suppose for example 

that the economic value of growth rate in pigs per gram equals Skr .05 

(DANELL et al.). For a nucleus boar with a genetic superiority of 100 grams 

the financial value of 1 insemination would be 100'.05*9.38 = 46.9 Skr, 

9.38 being the discounted expressions with interest rate 10 %, compared 

with an average boar (more realistic would be to give such a financial 

value for a set of traits together). From a population viewpoint it is 

reasonable to take into consideration genetransmissipn via all different 

paths. To take a dairy cattle example again, females don't transmit genes 

to the next generations of females through females alone, but also through 

males. From the viewpoint of an individual farmer however, perhaps only 

transmission from females to females (after the initial insemination) 

should be included in the calculation. 

One point should be mentioned discussing the financial value of an inse

mination in contrast to returns of a breeding scheme (i.e. discounted 

expressions in both cases). It concerns the probability that one single 

insemination results in a first generation expression. 

Consider again a dairy cow example with replacement rate 1/C. For returns 

from a breeding scheme - i.e. discounted expression per cow - the number 

of first generation first lactation heifers is 1/C. In case of the finan

cial value of one single insemination consider a farmer with a stable 

herd size of n cows. Suppose nK inseminations per year are performed, in

cluding repeated inseminations. Annually /C cows will be replaced, so 

the number of first generation first lactation heifers per insemination 

is 1/KC. 

For later generations no further differences occur. If the replacement 

rate is independent on the age of the dam of the replacement heifer, in 

both cases the probability that a female age class gives a female re

placement is 1/C, irrespective non return rate (expressed in K ) . 

It should be pointed out that in this approach to the financial value of 

one single insemination sales of offspring from the insemination are not 
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taken into account. Only expressions in the own herd are considered. 

McGILLIARD (1978) computed net returns per single insemination where 

in principle discounted expressions are adopted - with a somewhat dif

ferent algebra. As indicated above, only genes transmitted from females 

to females are included. 

(For discussion one point in the paper of McGILLIARD might be raised 

(see paper). He seems to assume a replacement rate of 2'.155 = .31, 

according to matrix Y in the paper and there are totally i'1.356 ex

pressions of sire's predicted difference in first generation offspring 

within 10 years. 

The factor J stands for conception rate. Question: what's the implicit 

meaning of 1.356, being larger than 1?). 
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6. SELECTION DIFFERENTIAL AND MATRIX OF 
GENETRANSMISSION P 

In chapter 3 discounted financial return (R) from a breeding scheme is 

calculated as 

R - EE.I. (6.1) 
i 

where I. are genetic superiorities (genetic selection differentials) for 

different pathways of gene transmission and E. are weighing factors: 

discounted expressions (per cow). It follows from (6.1) that discounted 

expressions are assumed to be independent on genetic superiorities. This 

assumption has computational advantages. In a situation of dual purpose 

cattle for example, a breeding scheme can be described by 5 parameters: 

proportion of inseminations with young bulls, progeny group size, number 

of doses semen available per proven bull, population size and proportion 

selected after performance testing (parameters needed in addition to 

this are assumed to be biologically determined). 

Discounted expressions depend on only one of the 5 parameters, the pro

portion of inseminations with young bulls. If e.g. 6 alternatives are to 

be studied for this parameter, only 6 sets of discounted expressions are 

to be computed, instead of e.g. 10.000 sets, if this number of combina

tions of parameters are to be studied in total and if discounted ex

pressions depend on I, and so on all parameters. 

In this chapter the assumption of independence of discounted expressions 

and genetic superiorities will be discussed using the papers of BICHARD 

et al. (1973) and HOPKINS and JAMES (1977). They assume a situation 

where the selection criterion is known before reproductive age (as in 

sheep, pigs, beef cattle, but not in dairy cows). Their approach would 

lead to a P-matrix (describing ageing of breeding animals and transmis

sion of genes to the next generation) which is not constant. 

In section 6.2. we will discuss the systems called progeny selection and 

parent selection as studied by HOPKINS and JAMES. Finally in section 6.3. 

the validity of geneflow methods in prediction of returns will be dis

cussed more generally. 
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6.1. Selection differential and genetransmission 

Consider a situation in which potential breeding animals are tested be

fore reproductive age. The question is which animals are to be selected 

to replace parents which (randomly with respect to the selection cri

terion) left the population. Suppose, that the tested animals are off

spring of two age groups of dams and a single age group of sires (this 

is the example of BICHARD et al., 1973). Then there are two genetic sub

sets of offspring which differ G/2 in average genetic merit because 

the dams age groups differ G with a genetic gain of G. 

Finally suppose there are equal numbers of dams in both age groups 

giving equal numbers of offspring (N females per subclass). We need 2n 

replacement females. For simplicity we leave male selection out of the 

argument. 

Now we can distinguish three ways to select replacement females (BICHARD 

et al., 1973). 

a. selection with equal proportions within dam age classes 

b. phenotypic selection 

c. selection with adjustment for genetic difference between both subsets 

of offspring. 

In case a the female to female part of the P matrix will be (J i)» for 

both age classes of contribute equally to replacement females. In case b 

this is not so. There will be a tendency to select more offspring from 

the youngest dams, being J G better in average. In case c we will see 

that this tendency is even stronger. 

Now we will consider the genetic superiority of female replacements. 

In case a we select n/N females from both subsets giving a selection in

tensity i. If the average genetic merit of all offspring in the first 

age class is u., p, = V,~iG, resulting in an average of (p.+u.)/2 or 

p.-{G. The average genetic merit of individuals selected in the first 
2 . . 2 

subset is p. + ih a p and in the second y. + îh a , averaging to 
2 . 2 

u.-jG+ih a . So the average genetic differential in case a is ih o_. 
0 r I a = i h a P (6.1) 

In case b the situation is different. In Fig. 6.1 the distributions of 
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