VIDENTE 1.1: a graphical user interface and decision support system for stochastic
modelling of water table fluctuations at a single location






VIDENTE 1.1: a graphical user interface and decision support
system for stochastic modelling of water table fluctuations at a
single location

Includes documentation of the programs KALMAX, KALTFN, SSD and
EMERALD and introductions to stochastic modelling

Second, revised, edition

Marc F.P. Bierkens
Wichertje A. Bron
Martin Knotters

Alterra-rapport 613

Alterra, Green World Research, Wageningen, 2002



ABSTRACT

Bierkens, M.F.P., W.A. Bron and M. Knotters, 2002. VIDENTE 1.1: a graphical user interface and
decision support system for stochastic modelling of water table fluctuations at a single location; Includes
documentation of the programs KALMAX, KALTFN, SSD and EMERALD and introductions to
stochastic modelling. Wageningen, ALTERRA, Green World Research.. Alterra-rapport 613.
184 pp;. 62 figs.; 5 tables; 70 refs.

A description is given of the program VIDENTE. VIDENTE contains a decision support
system (DSS) to choose between different models for stochastic modelling of water table
depths and a graphical user interface (GUI) to facilitate operating and running four
implemented models: KALMAX, KALTFN, SSDS and EMERALD. In self contained parts
each of these models is described. These descriptions also include an introduction to the
practice of stochastic modelling. As each of the models can also be used in a stand alone
fashion, i.e. outside VIDENTE, input formats for each model are also given.

Keywords: groundwater, time series, stochastic, Kalman filter, DSS, GUI, prediction,
simulation

ISSN 1566-7197

This report can be ordered by paying € 27,- into bank account number 36 70 54 612 in the
name of Alterra, Wageningen, the Netherlands, with reference to Alterra-rapport 613. This
amount is inclusive of VAT and postage.

© 2002 Alterra, Green World Research,
P.O. Box 47, NL-6700 AA Wageningen (The Netherlands).
Phone: +31 317 474700; fax: +31 317 419000; e-mail: info@alterra.nl

No part of this publication may be reproduced or published in any form or by any means, or stored

in a data base or retrieval system, without the written permission of Alterra.

Alterra assumes no liability for any losses resulting from the use of this document.

Project 395-11963 [Alterra-rapport 613/EvL/11-2002]



Contents

Preface

Preface to the second, revised edition

General introduction

Part 1. Decision Support System and Graphical User Interface

1

Explanation of questions and results of the DSS
1.1 General

1.2 Results of the DSS

1.3 Questions asked in the DSS

Verklaring vragen en uitkomsten BOS
2.1 Algemeen

2.2 Uitkomsten

2.3 Vragen

Graphical user interface

3.1 Setup

3.2 Input files

3.3 Example run using KALMAX

References

Annex: Binary decision trees of the DSS

Part 2: Documentation KALMAX and KALTFN

1

2

Model, input variables and parameters
1.1 Model description
1.2 Input variables and parameters/invoervariabelen en parameters

Stochastic modelling: prediction, simulation and calibration
2.1 Prediction
2.2 Stochastic modelling
2.3 Calibration
2.4 Systematic application of KALMAX and KALFTN: step by step
2.4.1 Calibration
2.4.2 Verification: prediction without Kalman filter
2.4.3 Simulation
2.4.4 Estimating fluctuation quantities
2.4.5 On line predection monitoring

References

11

15

17
17
18
19

25
25
26
27

33
33
34
36

49

o1

63

65
65
67

73
73
78
79
80
81
82
83
83
87

89



Annex: Input instructions for KALMAX and KALTFN

Part 3: Documentation SSD

1

Model, input variables and parameters
1.1 Model description
1.2 Input variables and parameters/invoervariabelen en parameters

Stochastic modelling: prediction, simulation and calibration
2.1 Prediction
2.2 Stochastic modelling
2.3 Calibration
2.4 Systematic application of KALMAX and KALFTN: step by step
2.4.1 Calibration
2.4.2 Verification: prediction without Kalman filter
2.4.3 Simulation
2.4.4 Estimating fluctuation quantities
2.4.5 On line predection monitoring

References

Annex: Input instructions for SSD

Part 4: Documentation EMERALD

1.

2.

Model, input variables and parameters
1.1 Model description
1.2 Input variables and parameters/invoervariabelen en parameters

Stochastic modelling: prediction, simulation and calibration
2.1 Prediction
2.2 Stochastic modelling
2.3 Calibration
2.4 Systematic application of KALMAX and KALFTN: step by step
2.4.1 Calibration
2.4.2 Verification: prediction without Kalman filter
2.4.3 Simulation
2.4.4 Estimating fluctuation quantities
2.4.5 On line predection monitoring

References

Annex: Input instructions for EMERALD

Part 5: Input instructions for STATSIM

91

97

99
99
102

109
109
114
116
117
117
118
119
120
123

125
127

143

145
145
151

157
157
159
160
162
162
164
164
165
168

169
171

185



Preface

During almost six years of research several methods were developed for stochastic
modelling of the water table depth at a single location. These methods have different
levels of complexity, physical basis, data requirements and output variables.
However, a rational method to choose between these methods is lacking. Also,
because most of the computer programs to apply the stochastic methods were
developed in a research environment, no particular attention was paid to making
them user friendly. Therefore, a combined graphical user interface (GUI) and
decision support system (DSS) has now been developed to apply the stochastic
methods and to operate the associated computer programs. The GUI/DSS program
is called VIDENTE. Vidente is the Spanish word for “seer” or “soothsayer” (ziener
in Dutch) which translated into old Greek is stocastichV(a person who forecasts
a future event in the sense of aiming at the truth). In the modern sense, “stochastic”
in stochastic methods refers to the random element incorporated in these methods,
.e. to account for uncertainty. By taking uncertainty into account we have no hope to
predict the future water table depth better than deterministic methods. We are
however better in estimating how far off our predictions are going to be.

The research that lead to the development of the stochastic methods and their
programs was funded by DWK programs 228 and 328 (Spatial Patterns and
Variability in Soil and Groundwater) of the Dutch Ministry of Agriculture, Nature
Management and Fisheries. Martin Knotters and Dennis Walvoort have contributed
significantly to the development of the models implemented in VIDENTE. The
computer program EMERALD was developed entirely by Dennis Walvoort.

MB
Wageningen, October 5, 2000

Alterra-rapport 613 7






Preface to the second, revised edition

Since Vidente 1.0 was presented about two years ago, it proved to be a useful tool in
various studies on the dynamics of the water table depth. The present version,
Vidente 1.1, fulfils the wishes for improvement which raised during the first
applications of Vidente in practice. The realisation of Vidente 1.1 was financially
supported by Research Programme 395 of the Dutch Ministry of Agriculture, Nature
Management and Fisheries. In this project I fruitfully co-operated with Tonny
Otjens, Wichertje Bron and Jan Wesseling of Wageningen Software Labs (W!SL).
Wichertje and Jan worked on the software. I am grateful to my Alterra-colleagues
Peter Jansen, Jack van der Horst and Tom Hoogland. They critically tested the
performance of Vidente 1.0 in practice, and they initiated the opportunities for
further improvements which resulted in the present version, Vidente 1.1.

Martin Knotters, November 2002.
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General introduction

To model the fluctuation of shallow water tables at a single location, several
stochastic models have been developed at Alterra. The primary use of these models
is to extrapolate time series of water table depth in time in order to estimate
fluctuation characteristics of the water table depth (e.g. mean highest (MHW) and
mean lowest water table depth (MLW)) that are representative for the current climate
and hydrological conditions (Knotters and Van Walsum, 1997). Maps of these
fluctuation quantities are vitally important for land use planning and regional water
management (e.g. Finke et al., 1999). More recently, some of these models have been
used in a regionalised fashion for space time modelling of water table depth (e.g.
Bierkens et al., 2001).

The advantage of using stochastic models rather than deterministic models is that
stochastic models are better suited to capture extreme value statistics (such as MHW
and MLW), provide more realistically looking time series and can be used for risk
analysis: it is possible to estimate the probability that at a given date the water table
exceeds a critical value. When combined with costs models, the “expected cost of
exceeding” (=risk) can be estimated, which makes it possible to weigh the costs of
water management measures against the benefits of risk reduction (=cost of failure).
It is likely that risk based cost-benefit analyses will become more important in solving
environmental problems and water management under multiple interests.

The common factor between all models is that they describe the fluctuation of the
water table depth as a function of time and that they have a deterministic and a
stochastic component (noise model). The difference between the various models is
based on the amount of physics used to model the deterministic component, the
amount of information required to run the models and the number of variables the
model is able to generate (i.e. only water table depth or other water balance
parameters also). The models have been developed by different people and have
been implemented in different computer programs. People using these models
therefore raised two questions:

How do I choose between the various models for my specific application?

How do | operate all these different computer programs that have different input an
output formats?

To solve both programs simultaneously we have build the Windows application
VIDENTE. VIDENTE is programmed in Delphi 5 and consists of a Decision
Support System (DSS) to choose between the various models and a Graphical User
Interface (GUI) to operate the different programs from similar input and output
screens. Parts of this report have been implemented to serve as a help facility. The
DSS leads the user through a series of questions to the most appropriate model for
his or her problem. Next the GUI can be used to constitute the model input, run the
model and analyse the model output.

Alterra-rapport 613 11



In VIDENTE four different models have been implemented. Their names, which
are in fact the names of the computer programs, are given below as well as key
references in English and Dutch that describe the models and their application:
1. KALMAX - an auto-regressive exogenous variable model
2. KALTFN -asimple transfer-function noise model
Key references of these two models:
English
Bierkens, M.F.P., M. Knotters and F.C. Van Geer, 1999. Calibration of transfer
function-noise models to sparsely or irregularly observed time series. Water
Resources Research 35(6), 1741-1750.
Knotters, M. and M.F.P. Bierkens, 2000. Physical basis of time series models for
water table depths. Water Resources Research 36(1), 181-188.
Dutch
Bierkens, M.F.P, M. Knotters and F.C. Van Geer, 1999. Tijdreeksanalyse nu ook
toepasbaar bij onregelmatige meetfrequenties. Stromingen 5(2), 43-54.
Knotters, M. and M.F.P. Bierkens, 1999. Tijdreeksmodellen voor de
grondwaterstand; een kijkje in de black box. Stromingen 5(3), 35-49.
3. SSD - a stochastic differential equation of the soil water balance
Key references:
English
Bierkens, M.F.P., 1998. Modeling water table fluctuations by means of a
stochastic differential equation. Water Resources Research 34(11), 2485-2499.
Dutch
Bierkens, M.F.P., 1988. Eenvoudige stochastische modellen voor grondwater-
standsfluctuaties. Deel 1. Een stochastische differentiaalvergelijking.
Stromingen 4(2), 5-26.
4. EMERALD - A physically based stochastic model of soil- and groundwater flow
Key references:
English
Walvoort, D.J.J. and M.F.P. Bierkens, 1999. A stochastic modelling approach for
rapid assessment of groundwater dynamics. Report 171, DLO Staring
Centrum, Wageningen.
Dutch
Bierkens, M.F.P. en D.J.J. Walvoort, 1998. Eenvoudige stochastische modellen
voor grondwaterstandsfluctuaties. Deel 2: Gecombineerd bodem-
grondwatermodel met stochastische invoer. Stromingen 4(3), 5-20.
Additional references on the application of the KALMAX and SSD models for
space-time modelling of water table depth are Bierkens (2001), Bierkens et al. (2001),
Knotters and Bierkens (2001) an Knotters (2001), which can be found in the
reference list.

The following model has also been developed together with the models above, and
will be implemented in VIDENTE in the near future:
5. TARSO - a non-linear transfer function-noise model with threshold non-
linearity
Key reference only in English:
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Knotters, M. and J.G. de Gooijer, 1999. TARSO modeling of water table depths.

Water Resources Research 35(3), 695-705.

The following model has not been developed within our group but elsewhere at

Alterra (in combination with Wageningen University). When combined with a noise

model it is also suited for stochastic modelling of water table depth:

6. SWAP — A physically-based model of the soil-water-atmosphere-plant system at
a single location, including crop growth and water, heat and solute
transport through the soil.

Under certain circumstances the DSS will point to using SWAP. The program is

not implemented in VIDENTE but a 32bit Windows version is available from

http://www.alterra.wageningen-ur.nl/fset-onderzoek.htm (price $ 500). The key
reference (only in English) is:

Dam, J.C. van, J. Huygen, J.G. Wesseling, R.A. Feddes, P. Kabat, P.E.V. Van
Walsum, P. Groenendijk and C.A. Van Diepen, 1997. Theory of SWAP
version 2.0; simulation of water flow, solute transport and plant growth in
the soil-water-atmosphere-plant environment. Report 171, Department of
water Resources, Wageningen Agricultural University, Wageningen.
Technical Document 45, DLO Winand Staring Centre, Wageningen.

Finally, it is possible that the DSS will point to modelling techniques that are
available outside Alterra, such as univariate time series models implemented in
generals statistical or mathematical packages as MATLAB, SPLUS or GENSTAT.

This report consists of five parts. Part 1 describes the DSS and the GUI. The
possible results of the DSS are explained as well as the questions users have to
answer while running the DSS. The DSS is described both in English and in Dutch.
The binary decision trees upon which the DSS is based are given in the annex. The
GUI is mostly self explanatory. We only describe the global set up of the screens.
For illustration, KALMAX is applied to an example data and the input and output
screen are shown. In parts 2 to 4 the models are described: KALMAX/KALTFN
(part 2), SSD (part 3), EMERALD (part 4). Each of these parts is completely self
contained. This means that these parts can be read separately from the rest. It also
means that there is much redundancy between these parts. For instance, each part
provides an introduction to stochastic modelling (chapter 2). Because it is also
possible to use each model in a stand alone fashion, we also give the input
instructions (formats) for the computer programs of each model. Part 5 gives the
input instructions for the program STATSIM that can be used to calculate
fluctuation quantities from simulated water table depths.

Parts of this report that contain crucial information to operate VIDENTE have also
been written in Dutch. These are the description of the DSS and the lists of
parameters of each of the models.

This report comes with a CD. The CD contains the program VIDENTE, as well as
the subdirectory “standalone” with sources and executables of KALMAX,
KALTFN, SSD, and EMERALD and example input and parameter files. To run

EMERALD the screen resolution should be 600° 800. The programs on this CD are

Alterra-rapport 613 13



distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY.
No author or distributor accepts responsibility to anyone for the consequences of
using them or for whether they serve any particular purpose or work at all, unless he
or she says so in writing. Altering or redistribution of the software should be done
while giving proper reference and in accordance with the terms and conditions
mentioned in the GENERAL TERMS AND CONDITIONS AS TO THE
MAKING AVAILABLE OF COMPUTER SOFTWARE issued by Alterra (see
Word document on the CD).

14 Alterra-rapport 613



Part 1: Decision Support System and Graphical User Interface
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1 Explanation of questions and results of the DSS

1.1 General

The computer program VIDENTE is a graphical user interface (GUI) driving a
number of other computer programs. These programs contain methods for
stochastic modelling of water table depth fluctuations (phreatic surface) at a single
location.

The decision support system (DSS) chooses between the various methods based on

the following criteria:

1. Which are the target variables? Is the water table depth the only variable of
interest or are additional variables of the soil-groundwater system also important,
such as soil moisture content, specific discharge to drains and ditches and crop
transpiration?

2. How is the soil-groundwater system to be modelled? For instance, are more
drainage levels to be included, are surface water levels varying with time.

3. Limitations to the applicability of methods. For instance, the model implemented
in the program SSD cannot be applied to deep water tables.

4. Availability of data. For instance, to apply SSD at a location we need to know the
soil moisture retention curve and the drainage levels with respect to surface
elevation.

Based upon the answers to yes/no questions pertaining to one of the categories
above binary decision trees are built that eventually lead to one of the available
methods for stochastic modelling of water table depth (see Annex). Such a method is
a mathematical model that is implemented in a computer program. The computer
programs are driven by the GUI. The philosophy that it is best to use the most
simple method able to solve the problem at hand (parsimony) is implicit in the DSS.

Notice that the accuracy of the various methods or models is not included as a
criterion in the GUI. Implicitly the accuracy plays a role in criterion 3, where models
are limited to a domain in which they are expected to perform sufficiently accurate.
In case that several models are applicable, no relevant differences in accuracy are
found. This has been corroborated by several studies comparing the accuracy of
transfer function-noise models (TFN models), KALMAX, KALTFN, TARSO, SSD,
EMERALD and SWAP (Knotters and Van Walsum, 1997; Bierkens, 1998; Walvoort
and Bierkens, 1998; Knotters and De Gooijer, 1999; Bierkens et al., 1999).

Alterra-rapport 613 17



1.2 Results of the DSS

The following computer programs are included in VIDENTE (for an extensive

description of the implemented methods one is referred to parts 2 to 4):

1. KALMAX (ARX model, precipitation surplus as input : precipitation minus
Makkink reference evapo-transpiration (Winter et al.,, 1995), physical
interpretation possible);

2. KALTFN (a simple low order TFN model, precipitation surplus as input,
physical interpretation possible);

3. SSD (a physical model based on a stochastic differential equation of water table
depth derived from the soil-water balance, precipitation and potential evapo-
transpiration as input);

4. EMERALD (a quasi-analytical soil-groundwater model with added noise,
precipitation and potential evapo-transpiration as input).

Apart from these methods, the DSS may direct the user to one of the following

methods that are not implemented in VIDENTE, but elsewhere:

5. TARSO (non-linear time series model with threshold non-linearity, in each
regime a simple TFN model, precipitation surplus as input). Although this model
has been developed in our research group, it has not been implemented yet. The
goal is to do this in the near future;

6. Univariate time series analysis. In this case there is no input time series to explain
part of the variation of the observed water table depth. In univariate time series
analysis (ARIMA, SETAR (Tong, 1990; Hipel and McLeod, 1994)) the variation
of a time series is explained from the values of the time series at previous time
steps and a noise process. These models can be used for short time forecasts,
interpolation between observations and simulating replicas of the time series for
the observation period. However, these methods are not suitable for
extrapolating time series of water table depth (e.g. to the past) to correct for the
year by year variation of the weather (precipitation surplus) (Knotters and Van
Walsum, 1997). Univariate time series models are implemented in GENSTAT,
MATLAB and S-PLUS;

7. (Multiple) TFN modelling. For standard TFN modelling the observation
frequency of the input time series (e.g. precipitation surplus) have to be the same
as for the output time series (e.g. water table depth). For KALMAX, KALTFN,
SSD, EMERALD and SWAP this does not have to be the case. However,
multiple TEN models can be used to account for more input variables if these
are thought to influence variation of water table depth; e.g. river stages and
groundwater abstraction rates. Multiple TFN models are implemented in
GENSTAT and MATLAB.

8. SWAP. SWAP (van Dam et al., 1997) is a computer program for modelling the
Soil-Water-Atmosphere-Plant system. Flow through the unsaturated zone is
modelled by numerically solving Richards’ equation. SWAP not only provides the
water table depth, but also the soil moisture profile with time. Additionally,
transport (heat and inert solvents) can be modelled. Also, crop transpiration and
evapo-transpiration is modelled in a more sophisticated manner than in SSD and
EMERALD. It is even possible to model crop growth using the WOFOST
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model (Supit et al., 1994). SWAP is written in FORTRAN77, but a 32bit
Windows version is available from http://www.alterra.wageningen-ur.nl/fset-
onderzoek.htm. Costs are about $ 500. Of course, application of SWAP requires
more information about a site than using SSD or EMERALD. Apart from
SWAP many other codes for unsaturated flow are available. However, very few
of these are able to model phreatic surface, which is why they are not mentioned
here.

One outcome of the DSS may be that none of the above methods is suitable, for
instance because certain data are lacking. In particular the following messages can be
expected:

1. “Stochastic modelling of the water table depth or related variables is not
possible”. In this case a time series of water table depth is lacking. This time
series should first be recorded, or when a piezometer is present, its data should
be achieved from its owner.

2. “What you want is only possible if the necessary information is collected first”.
Here we have that based on criteria 1 to 3 above the outcome of the DSS is some
method or set of methods, but, apart from the water table depth, the necessary
data are lacking to apply these methods. If at all possible, an alternative method is
proposed. In most cases this will amount to neglecting certain effects (such as
varying surface water levels) or limiting the target variables (e.g. water table depth
only instead of water table depth and soil moisture content).

Finally, an outcome may be that multiple models are equally suitable for the
application at hand. In this case the user has to make his or her own decision.

1.3 Questions asked in the DSS

What are the target variables?

If the water table depth is the only target variable all methods introduced before can
be used. If next to the water table depth also the specific discharge or bottom flux
(or drainage resistance or effective porosity) is important, one should use KALMAX,
KALTFN, SSD, EMERALD or SWAP. If apart from those mentioned the average
soil moisture content is a target variable either SSD, EMERALD or SWAP can be
used. Finally, if apart from these variables time series of the soil moisture profile,
crop growth, soil firmness (capacity to carry machinery) and transport (heat or inert
solutes) are required, SWAP is the only option.

Do you have a time series of water table depth?

Without an observed time series of water table depth stochastic modelling of the
water table depth or related variables is not possible. This time series is necessary to
identify the noise process. For the empirical models such as ARIMA models,
KALMAX, KALTFN and TARSO, all parameters are calibrated using observed
water table depths, while for the more physical models such as SSD, EMERALD
and SWAP a number of conceptual parameters (e.g. effective porosity and drainage
resistance) are obtained through calibration.
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Do you have time series of precipitation and evapo-transpiration?

Without time series of precipitation and evapo-transpiration (or precipitation
surplus) it is not possible to model the water table fluctuations with TFN models,
KALMAX, KALTFN, TARSO, SSD, EMERALD or SWAP. In this case, univariate
time series analysis (e.g. ARIMA) can be an option. Note however that univariate
time series models are not suitable for extrapolating the time series of water table
depth to correct for the year to year variation of precipitation surplus.

Are additional temporally variable quantities likely to influence water table fluctuations?
Sometimes the variation of the water table depth not only depends on the
precipitation surplus but also on other temporally varying quantities such as river
stages or groundwater withdrawals. If this is the case this should be accounted for
explicitly. Whether this is possible depends on the presence of time series of these
additional input variables.

Do you have time series of additional input variables?

If, apart from precipitation surplus, the water table fluctuations are driven by other
variables, but no time series of these variables have been observed, one is forced to
account for these influences in an implicit manner. The influence of an extra input
variable can manifest itself partly as a trend and partly as additional fluctuation. The
trend can be accounted for by trend fitting, removing the fitted trend from the time
series of water table depth, conducting the analyses on the de-trended time series and
adding the trend afterwards (note that superposition is applied which assumes a
linear relation between the water table depth and the additional input variable). The
additional fluctuation cannot be accounted for and will lead to a larger noise
component (more uncertainty). If time series of the additional input variables are
present they can be included using multiple TFN models.

Has the time series of water table depth been observed with constant frequency?

Is the time interval between two successive observations the same for the entire time
series or at least approximately so? If this is not the case, standard TFN modelling
and TARSO cannot be applied.

Do you want to model the water table depth with smaller time steps than the time interval between
observations?

Even if the time series of water table depth is observed with a constant frequency
one may be interested in describing the water table depth with smaller time steps
than the interval between observations. In this case standard TFN modelling and
TARSO cannot be applied.

Are there any threshold non-linearities and do you wish to take these into account?

Examples of thresholds that divide the domain of water table fluctuation into parts
where the dynamics are very different: boundaries between soil layers of contrasting
texture and drainage levels of trenches. In the latter case, the trench drains the
groundwater whenever its level exceeds the trench bottom and is inactive otherwise.

20 Alterra-rapport 613



Has the time series of precipitation surplus been observed with constant frequency and is the interval
between its observations smaller than or equal to the smallest interval between the observations of
water table depth?

Using KALMAX, KALTFN, SSD, EMERALD or SWAP it is possible to model the
water table depth fluctuations with a smaller time step than interval between
observations of the water table depth. Moreover, it is not even required that the time
series of water table depth is observed with constant frequency. However, to do this
we require the time series of precipitation surplus to be observed with constant
frequency and with an interval between its observations smaller than or equal to the
smallest interval between the water table depth observations. If for certain periods
the water table depth has been observed with a higher frequency than the
precipitation surplus, the water table observations should be aggregated to the
frequency of the precipitation surplus.

Do you want to take non-linearity into account?

The relation between water table depth and precipitation surplus is in principal non-
linear. This can be caused by a trench that becomes inactive whenever the water table
drops below its bottom, soil heterogeneity and variations in soil moisture. If you
want to take such non-linearity into account (in this part of the decision tree) SSD,
EMERALD or SWAP should be used.

Apart from the water table depth, does the list of target variables also include specific drainage
discharge, bottom flux (or drainage resistance or effective porosity)?

If KALMAX or KALTFN is chosen a further choice can be made to interpret the
deterministic part of these models in terms of physical parameters. The deterministic
part of KALMAX and KALTFN has the following form (with h, the water table
depth and P, precipitation surplus (precipitation minus evapo-transpiration) at time
step t):

ht :C+a[ht-1' C]+bR

If the drainage level h, (surface water level or trench bottom with respect to surface
level) is constant (see next question) en known (see question thereafter), the drainage
resistance g [T], the effective porosity f [-] and the bottom flux ¢, [LT"] can be
estimated from the parameters ab and c¢ and time step Dt used (Knotters and
Bierkens, 2000):

b - Dt c-h
9=—" f = Q =
1l-a glna g

S

This is called the physical interpretation of KALMAX and KALTFN.

Do you want to take account of more than one drainage level or drainage levels that vary with time?
In principal one could give a physical interpretation to KALMAX and KALTFN
when several drainage levels are present (if these are ditches that don’t become
inactive when the water table drops below their bottom). However, in this case it is
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advised to use either SDD or SWAP. If the drainage levels are varying with time (e.g.
varying surface water levels) SSD or SWAP should be used.

Is the drainage level (bottom trench or surface water level) with respect to surface elevation known?
As shown in the equations above, a physical interpretation of KALMAX and
KALTFN requires the drainage level with respect to surface elevation.

Avpart from the precipitation surplus, are there additional variables that influence the water table
fluctuation?

This question is to decide between KALMAX and KALTFN. If the precipitation
surplus is the only input variable that influences the water table fluctuation, it can be
derived that the temporal dependence of the noise process is the same as that of the
(deterministic) water table depth (Knotters and Bierkens, 2000). In this case
KALMAX is preferred. If other variables such as river stages are influencing the
water table depth, and these variables have not been explicitly taken into account
(otherwise the choice would not have been between KALMAX or KALTN), these
influences end up in the noise so that the noise is likely to have a different correlation
structure than the water table depth. In this case it is more appropriate to use
KALTFN.

Is the water table fluctuating at depths larger than 2 m below the surface?

In these type of systems the infiltrating rain water will show a noticeable time shift
and a dampening as it travels through the large unsaturated zone to the phreatic
surface. This effect cannot be modelled with SSD so that EMERALD en SWAP are
the remaining options.

Do you want to model the reduction of evapo-transpiration in detail?

The reduction in evapo-transpiration is modelled rather simply in SSD and
EMERALD, i.e. as a loss function that depends on the average soil moisture content.
If you want the reduction to depend on the root distribution and the soil moisture
profile, to use a loss function that varies with time due to crop growth or to divide
evapo-transpiration into soil evaporation and crop transpiration SWAP should be
used.

Do you have information about unsaturated conductivity per soil layer?

When applying EMERALD or SWAP one needs information about the unsaturated
conductivity function per soil layer. This information can either be obtained directly
by taking laboratory measurements, or standard curves can be applied by linking
these to texture using pedo-transfer functions (Wésten and Van Genuchten, 1988;
Wadsten, 1997). In this case we need to have a texture profile description of the soil.

Do you have the following data: land use, soil moisture retention curve, drainage level?

To apply SSD, EMERALD or SWAP one needs (among other things) data about the
land use. Based upon land use the actual evapo-transpiration can be calculated from
the reference evapo-transpiration (e.g. using crop factors) and rainfall interception
can be determined. One is referred to the descriptions of EMERALD and SSD for a
table with interception factors and crop factors for various types of land use (see also
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the HELP capability of VIDENTE). Like the unsaturated conductivity k(y ), the soil
moisture retention curve q(y) can be obtained from laboratory measurements or
indirectly from texture descriptions and pedo-transfer functions (Wésten and Van
Genuchten, 1988; Wasten, 1997). Finally, the drainage level(s) with respect to surface
elevation are required.

Are most of the water table depths of the time series smaller than 50 cm?
EMERALD is not very suitable for modelling very shallow water table depths. In
that case either SSD or SWAP should be chosen.

Do you have the following data: land use, soil moisture retention curve, unsaturated conductivity,
drainage level?

To apply SWAP one needs (among other things) data about the land use. Based
upon land use rainfall interception, actual evapo-transpiration and, if needed, crop
growth can be calculated. The unsaturated conductivity k(y) and the soil moisture

retention curve q(y ) are needed for each soil layer. These can be obtained from
laboratory measurements or indirectly from texture descriptions and pedo-transfer
functions (Wosten and Van Genuchten, 1988; Wasten, 1997). Drainage level(s) with
respect to surface elevation are also required.
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2 Verklaring vragen en uitkomsten BOS

2.1  Algemeen

Het computerprogramma VIDENTE is een grafische user interface rond een aantal
computerprogramma’s met verschillende methoden voor de stochastische
modellering van de (freatische) grondwaterstandsfluctuatie op een locatie.

Het Dbeslissingsondersteunend systeem (BOS) selecteert tussen de verschillende

methoden op basis van de volgende criteria:

1. Wat is de doelvariabele? Is dit alleen de grondwaterstanden, of zijn ook andere
variabelen die betrekking hebben op het bodemwater-grondwater systeem van
belang, zoals bodemvochtgehalte, gewasverdamping en drainageafvoer?

2. Op welke wijze dient het bodemwater-grondwater systeem worden
gemodelleerd? Bijvoorbeeld, moeten er meerdere drainageniveaus worden
gemodelleerd, of dienen de slootpeilen in de tijd te kunnen variéren?

3. Beperkingen die aan de toepasbaarheid van de methode zitten. Bijvoorbeeld, het
model dat is geimplementeerd in het computerprogramma SSD kan niet worden
toegepast op te diepe grondwaterstanden.

4. De beschikbaarheid van de gegevens. Bijvoorbeeld, om SSD op een locatie toe te
passen moet daar informatie over de pfcurve beschikbaar zijn.

Op basis van ja/nee vragen die onder één van de bovenstaande categorieén vallen
wordt een binaire determinatieboom opgebouwd die uiteindelijk leidt tot de keuze
voor één van de methoden om de grondwaterstandsvariatie te modelleren. Een
methode bestaat uit een model dat de variatie van de grondwaterstand beschrijft en is
geimplementeerd in een computerprogramma. De computerprogramma’s kunnen
worden bedient via de grafische user interface (GUI). Impliciet is bij het BOS als
filosofie gekozen dat een gegeven probleem met een zo simpel mogelijke methode
die voldoet moet worden opgelost.

Opvallend is dat in het BOS de nauwkeurigheid van de modellen geen rol speelt.
Impliciet zit dit reeds in criterium 3, waarin modellen worden beperkt tot een
toepassingsgebied waarbinnen, op basis van de modelveronderstellingen, voldoende
nauwkeurige resultaten kunnen worden verwacht. In het geval dat meerdere
modellen toepasbaar zijn blijkt uit meerdere studies (Knotters en Van Walsum, 1994;
Bierkens, 1998; Bierkens en Walvoort, 1998; Knotters en De Gooijer, 1999; Bierkens
et al., 1999) dat er geen noemenswaardige verschillen in nauwkeurigheid optreden
tussen transfer-ruismodellen, KALMAX, KALTFEN, TARSO, SSD, EMERALD en
SWAP. De nauwkeurigheid van de modellen is dus niet in de beslisregels
meegenomen.

Alterra-rapport 613 25



2.2

Uitkomsten

De volgende computerprogramma’s zijn in VIDENTE opgenomen (voor een
uitgebreide beschrijving van de methoden wordt verwezen naar de HELP optie van
VIDENTE):

1.

2.

3.

KALMAX (ARX model, neerslagoverschot als invoer, fysische interpretatie
mogelijk);

KALTFN (een eenvoudig, lage orde transfer-ruismodel, neerslagoverschot als
invoer, fysische interpretatie mogelijk);

SSD (een fysisch model, gebaseerd op een stochastische differentiaalvergelijking
van de grondwaterstand, afgeleid op basis van bodemwaterbalans, neerslag en
verdamping als invoer);

EMERALD (een quasi-analytisch bodem-grondwatermodel met toegevoegd
ruisproces, neerslag en verdamping als invoer).

Naast deze methoden is het ook mogelijk uit te komen bij de volgende methoden die
niet in VIDENTE zijn geimplementeerd:

5.

26

TARSO (niet-lineair tijdreeksmodel met drempel niet-lineariteiten, in elk regime
een eenvoudig transfer-ruismodel, neerslagoverschot als invoer). Hoewel TARSO
wel is ontwikkeld binnen onze onderzoeksgroep, is dit model nog niet
geimplementeerd. Het is de bedoeling dit in de nabije toekomst te doen.
Univariate tijdreeksanalyse. In dit geval is er geen neerslagoverschot of andere
invoerreeks om de variatie van de grondwaterstand te verklaren. Bij univariate
tijdreeksanalyse (bijv. ARIMA, SETAR (Tong, 1990; Hipel en McLeod, 1994))
wordt de variatie van de reeks verklaard uit de waarden van de variabelen op
vorige tijdstappen en een ruisproces. Met deze modellen kunnen Kkorte
termijnvoorspellingen worden gedaan, er kan worden geinterpoleerd tussen
waarnemingen, en voor de duur van de waarnemingsperiode kunnen replica’s
worden gesimuleerd (voor ontwerpdoeleinden). Het is met deze methoden echter
niet mogelijk om een tijdreeks van grondwaterstanden te verlengen, bijv. naar het
verleden, om op deze wijze weersvariaties uit de reeks te filteren (zie Knotters en
Van Walsum, 1994). Univariate tijdreeksmodellen zijn geimplementeerd in
pakketten als GENSTAT, MATLAB en S-PLUS;

(Multiple) Transfer-ruismodellering. De frequenties van de invoerreeksen moeten
hier gelijk zijn aan die van de uitvoerreeksen (i.t.t. KALMAX, KALTFN, SSD en
EMERALD). Er kunnen echter wel multiple invoerreeksen worden
gemodelleerd, bijvoorbeeld als het grondwaterstandsverloop niet alleen afhangt
van het neerslagoverschot, maar ook van de standen in een nabijgelegen rivier of
het onttrekkingsdebiet van een pompstation in de buurt. Pakketten waarin
multiple transfer-ruismodellen zijn geimplementeerd: GENSTAT, MATLAB;
SWAP. SWAP (Van Dam et al., 1997) is een model van het bodem-water-plant-
atmosfeer systeem. Eéndimensionale stroming door de onverzadigde zone wordt
gemodelleerd door het numeriek oplossen van de Richards’ vergelijking. Met
SWAP kan daarom, behalve de grondwaterstand, ook het vochtprofiel worden
berekend, alsmede het transport van warmte en inerte stoffen. Verder is in
vergelijking met SSD en EMERALD de verdampingsreductie veel gedetailleerder
te modelleren, met name de gewasverdamping. Het is zelfs mogelijk om in
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SWAP gewasgroei te modelleren met het WOFOST model (Supit et al., 1994).
SWAP is geschreven in FORTRANTY7, maar er is nu ook een Windows versie
(kosten  $500) die tegen betaling kan worden gedownload via
http://www.alterra.wageningen-ur.nl/fset-onderzoek.htm Vanzelfsprekend
betekent het gebruik van SWAP dat nog meer informatie over de locatie nodig is
dan gebruikt in SSD en EMERALD. Naast SWAP zijn er natuurlijk nog veel
meer programma’s waarmee de stroming van water door de onverzadigde zone
op een locatie kan worden berekend. De meeste van die modelcodes berekenen
echter geen vrije grondwaterspiegel, zodat ze hier niet verder worden genoemd.

Het resultaat van het doorlopen van het BOS kan zijn dat geen van bovenstaande
modellen voldoet, omdat bepaalde benodigde gegevens ontbreken. In het bijzonder
zijn de volgende twee meldingen te verwachten:

1. *“Geen stochastische modellering van de grondwaterstanden of aanverwante
variabelen mogelijk”. In dat geval ontbreekt een tijdreeks van de
grondwaterstand. Deze zal eerst moeten worden verzameld (een langere tijd
regelmatig waarnemen) of, in het geval er reeds een grondwaterstandsbuis
aanwezig is, moeten worden aangeschaft bij NITG-TNO;

2. “Wat u wilt is alleen mogelijk indien u de ontbrekende informatie verzamelt”. In
dat geval is de gebruiker op basis van criteria 1 t/m 3 bij een bepaalde methode
uitgekomen en ontbreekt er andere informatie dan de grondwaterstand die nodig
is om deze methode toe te passen. In dat geval wordt er, indien mogelijk, ook
een alternatieve methode aangedragen. In de meeste gevallen zal dit alternatief
betekenen dat bepaalde zaken moeten worden verwaarloosd (bijv. homogene in
plaats van heterogene bodem) of dat men genoegen moet nemen met minder
doelvariabelen (alleen de grondwaterstand i.p.v. grondwaterstand en
vochtgehalte).

Tenslotte kan het zijn dat meerdere modellen net zo geschikt zijn voor het
betreffende probleem. In dat geval zal de gebruiker zelf moeten kiezen. Deze keuze
zal voornamelijk berusten op smaak.

2.3  Vragen

Wat zijn de doelvariabelen?

Als alleen de grondwaterstand de doelvariabele is, dan kunnen alle boven beschreven
methoden worden toegepast. Is men daarnaast geinteresseerd in specifieke afvoer,
kwel en infiltratie en hydraulische parameters als drainageweerstand en effectieve
porositeit, dan kunnen KALMAX, KALTFN, SSD, EMERALD en SWAP worden
toegepast. Behoort het gemiddeld vochtgehalte van de bodem tot de doelvariabelen,
dan voldoen alleen SSD, EMERALD en SWAP. In het geval men een tijdreeks van
het gehele vochtprofiel wil berekenen of tijdreeksen van gewasgroei, draagkracht en
transport (van warmte of inerte stoffen) kan alleen SWAP worden toegepast.
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Is er een tijdreeks van de grondwaterstand beschikbaar?

Om een stochastisch model van de grondwaterstandsfluctuatie toe te passen moet er
een tijdreeks van de grondwaterstand zijn. Alleen in dat geval kan men het
stochastisch gedeelte van het model (het ruisproces) identificeren. Overigens geldt
dat bij de meer empirische modellen (bijv. ARIMA, transfer-ruismodellen,
KALMAX, KALTEN, TARSO) alle parameters uit waargenomen
grondwaterstanden worden geschat, en bij de meer fysische modellen (SSD,
EMERALD, SWAP) een aantal moeilijk te meten parameters zoals de
drainageweerstand en de effectieve porositeit.

Is er een neerslag en verdampingsreeks?

Als er geen tijdreeksen van neerslag en verdamping (of het neerslagoverschot:
neerslag minus verdamping) zijn dan kunnen transfer-ruismodellen, KALMAX,
KALTFN, TARSO, SSD, EMERALD en SWAP niet worden toegepast. Univariate
tijdreeksanalyse met bijvoorbeeld ARIMA modellen is nog wel een optie. Het
probleem hierbij blijft dat extrapolatie ten behoeve van het corrigeren voor jaar tot
jaar fluctuaties van het neerslagoverschot niet mogelijk is.

Zijn er naast het neerslagoverschot nog andere variabelen die de grondwaterstand kunnen beinvloeden
en die variéren in de tijd?

Als er sterke aanwijzingen zijn dat de fluctuaties van de grondwaterstand niet alleen
verklaard worden door het neerslagoverschot, maar ook door andere in de tijd
variérende variabelen zoals onttrekkingen of een rivierpeilen, dan is het verstandig
om hiermee rekening te houden. Of dit feitelijk mogelijk is hangt af of er tijdreeksen
van deze exetra invoervariabelen aanwezig zijn.

Zijn er van deze extra invoervariabelen tijdreeksen aanwezig?

Als er wel sprake is van de beinvloeding van de grondwaterstand door een andere
invoervariabele dan het neerslagoverschot, zoals bijv. een ontrekking, maar er zijn
geen tijdreeksen daarvan, dan is men gedwongen om deze invoerreeks niet expliciet
mee te nemen. De invloed van een extra invoervariabele kan zich doen gelden op
twee manieren. Als een trend en als een extra fluctuatie. Het trendmatige gedeelte
kan worden verdisconteerd door een trend te fitten en van de
grondwaterstandstijdreeks af te trekken, de analyse op de residuen te doen en later de
trend er weer bij op te tellen (let op: dit is superpositie en verondersteld dus een
lineaire relatie tussen de grondwaterstand en de extra invoervariabele). De extra
fluctuatie kan niet worden verdisconteerd en manifesteert zich dan ook door een
grotere ruiscomponent (meer onzekerheid). Als tijdreeksen van extra
invoervariabelen wel aanwezig zijn, dan kunnen die worden meegenomen via
multiple transfer-ruismodellen.

Is de grondwaterstandstijdreeks equidistant?

De vraag is hier of de tijdsintervallen tussen twee waarnemingen constant zijn, of in
ieder geval (zoals bij grondwaterstanden in Nederland) bij benadering constant. Is dat
niet het geval dan kunnen standaard transfer-ruismodellen en TARSO niet worden
toegepast.
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Moeten de grondwaterstanden met een Kleinere tijdstap dt worden gemodelleerd dan de tijdstap tussen
de waarnemingen?

Zelfs als de tijdreeks van de grondwaterstand equidistant is kan men de wens hebben
om de grondwaterstanden met een Kkleinere tijdstap te willen modelleren dan die is
waargenomen. In dat geval kan men geen standaard transfer-ruismodellen en
TARSO toepassen.

Is er sprake van drempel niet-lineariteiten, bijv. bodemfysische grenzen of drainageniveaus en wilt u
hiermee rekening houden?

Typische voorbeelden van dergelijke drempels die het bereik van de
grondwaterstandsflucuatie indelen in verschillende domeinen (de reactie op het
neerslag-overschot in elk domein is anders) zijn contrasterende bodemlagen zoals
klei op zand en het voorkomen van drainageniveaus die droogvallen als de
grondwaterstand eronder komt (bijv. greppels).

Is de tijdreeks van het neerslagoverschot equidistant en is het interval ervan kleiner of gelijk aan het
Kleinste interval van de grondwaterstandsreeks?

Bij de toepassing van KALMAX, KALTFN, SSD, EMERALD en SWAP is het
mogelijk met een Kleinere tijdstap te rekenen dan de tijdstap van de
grondwaterstandsreeks. De reeks grondwaterstanden hoeft zelfs niet equidistant te
zijn. Wat we hiervoor wel nodig hebben is een equidistante tijdreeks van het
neerslagoverschot met een tijdstap kleiner dan de Kkleinste tijdstap van de
grondwaterstanden. In de Nederlandse praktijk zal dit meestal betekenen dat
dagwaarnemingen van neerslag en verdamping nodig zijn. Als de grondwaterstand
tijdens sommige perioden met een nog hogere frequentie dan het neerslagoverschot
is gemeten, bijvoorbeeld elk uur met divermetingen, dan zullen die
grondwaterstanden moeten worden uitgemiddeld tot de tijdstap van het
neerslagoverschot. Grondwaterstandsfluctuaties van hogere frequentie dan de
meetfrequentie van de reeks van het neerslagoverschot kunnen namelijk niet uit deze
reeks worden verklaard.

Wilt u rekening houden met niet-lineariteit?

In het algemeen is de relatie tussen het neerslagoverschot en de grondwaterstand
niet-lineair. Dit heeft te maken met bijvoorbeeld droogvallende waterlopen,
contrasten tussen bodemlagen en variaties in het bodemvocht. Als u daarmee
rekening wenst te houden moet u (op deze plek in de determinatieboom) SSD,
EMERALD of SWAP gebruiken.

Zijn naast de grondwaterstand ook de drainageafvoer, de kwelflux (of de drainageweerstand of de
effectieve porositeit) doelvariabelen?

Als gekozen wordt voor KALMAX of KALTFN dan kan men er verder voor kiezen
om deze te koppelen aan een fysische interpretatie of niet. Het deterministische
gedeelte van zowel KALMAX als KALTFN ziet er als volgt uit (h, is de
grondwaterstand en P, het neerslagoverschot op tijdstip t):

ht :C+a[ht-1' C]+bR
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Als het drainageniveau h, (ten opzichte van maaiveld) constant is (zie volgende
vraag) en bekend is (zie vraag daarna) dan kunnen de drainageweerstand g [T], de
effectieve porositeit f [-] en de onderrandflux (kwel/infiltratie) g, [LT"] uit de

parameters a,b en ¢ en de tijdstap Dt als volgt worden berekend (Knotters en
Bierkens, 1999):

b - Dt c-h
9=—" f = Q =
1-a glha g

S

Dit is de fysische interpretatie van KALMAX en KALTFN.

Wilt u rekening houden met meerdere drainageniveaus of variérende drainageniveaus?

Het is in principe wel mogelijk om bij meerdere drainageniveaus (als deze niet
droogvallen en constant zijn) een fysische interpretatie van KALMAX en KALTFN
te geven. In dat geval is het echter toch aan te raden SSD of SWAP te gebruiken. Bij
variérende drainageniveaus moeten SSD of SWAP in ieder geval worden gebruikt.

Is het drainageniveau (greppeldiepte of slootpeil) ten opzichte van maaiveld bekend?

Zoals blijkt uit bovenstaande formules is het drainageniveau h, (ten opzichte van
maaiveld buis) nodig om een fysische interpretatatie van KALMAX of KALTFN te
geven.

Zijn er behalve het neerslagoverschot nog andere invloeden die in de tijd variéren?

Dit gaat om de keuze tussen KALMAX en KALTFN. Als het neerslagoverschot de
enige invoervariabele is die de grondwaterstand beinvloedt, dan kan men afleiden dat
de afhankelijkheid in de tijd van het ruisproces hetzelfde is als die van de
(deterministische) grondwaterstand (Knotters en Bierkens, 1999). In dat geval
kunnen we KALMAX gebruiken. In het geval dat er nog meer invlioeden zijn (bijv.
rivierpeilen) die niet expliciet zijn gemodelleerd (anders was de keuze niet op
KALMAX of KALTFN gevallen) dan zitten die in de ruis. Dit betekent dat de
tijdsafhankelijkheid van de ruis anders zal zijn dan die van de grondwaterstand zelf
en is het gebruik van KALTFN op zijn plaats.

Zijn alle grondwaterstanden dieper dan twee meter beneden mv?

Bij dat soort diepe grondwaterstanden speelt de vertraging en demping van het
neerslagoverschot in de onverzadigde zone een rol. Dat wordt niet gemodelleerd
door SSD, zodat EMERALD en SWAP de overblijvende opties zijn.

Wilt u de verdampingsreductie gedetailleerd modelleren?

In EMERALD en SSD is de verdampingsreductie zeer eenvoudig geimplementeerd
als een verliesfunctie die afhangt van het gemiddeld vochtgehalte in de wortelzone.
Wilt u de verdampingsreductie modelleren als functie van de wortelverdeling en het
vochtprofiel, de reductiefunctie variéren in de tijd ten gevolge van gewasgroei of de
verdamping opsplitsten in bodemverdamping en gewasverdamping, dan zult u
SWAP moeten gebruiken.
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Heeft u informatie over de onverzadigde doorlatendheid per bodemlaag?
Bij de toepassing van EMERALD of SWAP dient u informatie te hebben over de
onverzadigde doorlatendheidskarakteristiek, kfy ), per bodemlaag. Deze informatie

kan direct beschikbaar zijn uit metingen of deze kan indirect worden geschat via een
vertaalfunctie gekoppeld aan de bodemtextuur via klassen (Wosten et al., 1994) of
continue vertaalfuncties (Wosten, 1997) van de Staringreeks, in welk geval de textuur
van de bodem(lagen) bekend moet zijn. Is deze informatie niet aanwezig, maar de
verlangde informatie in de volgende vraag wel, dan zult u SSD moeten toepassen.

Zijn de volgende gegevens beschikbaar: bodemgebruik, de bodemvochtretentiecurve, drainageniveau?
Om SSD, EMERALD of SWAP toe te passen moet u (onder andere) beschikken
over het bodemgebruik om de neerslag minus interceptie te berekenen uit de KNMI
neerslag en om de potentiéle verdamping te berekenen uit de Makkink
referentieverdamping. U wordt verwezen naar de beschrijvingen van SSD of
EMERALD (zie ook de HELPfunctie van VIDENTE) voor een tabel met
interceptieparameters en gewasfactoren. De bodemvochtretentie- of pF-curve, gy ),
van de bodem(lagen) is nodig. Net als k(y) kan deze direct worden gemeten of
worden afgeleid uit de textuurbeschrijving van de bodem(lagen) via klassen (W&sten
et al., 1994) of continue vertaalfuncties (Wosten 1997). Tenslotte moet u de
drainageniveau(s) ten opzichte van maaiveld kennen.

Bevinden de meeste grondwaterstanden zich binnen 50 cm beneden mv?
EMERALD is niet erg geschikt voor het modelleren van zeer ondiepe
grondwaterstanden. In dat geval moet gekozen worden tussen SSD en SWAP.

Zijn de volgende gegevens beschikbaar: bodemgebruik, bodemvochtretentiecurve, onverzadigde
doorlatendheid, drainageniveau?

Om SWAP toe te passen moet u (onder andere) beschikken over het bodemgebruik.
Dit is nodig voor het berekenen van interceptie, verdamping en eventueel

gewasgroei. De pf-curve q(y) en de onverzadigde doorlatendheid k(y) van de
bodem(lagen) zijn nodig. Deze kunnen direct worden gemeten of worden afgeleid uit
de textuurbeschrijving van de bodem(lagen) via klassen (Wdsten et al, 1994) of
continue vertaalfuncties (Wosten 1997). Tenslotte moet u de drainageniveau(s) ten
opzichte van maaiveld kennen.
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3 Graphical user interface

31 Setup

The DSS as well as the four models are controlled using a graphical user interface
(GUI) programmed in Delphi 5. The working of the GUI is mostly self explanatory.
Therefore, we will not provide an elaborate user manual, but give a global description
of the set up and the input requirements.

In the start up screen the user can choose between running the DSS (option “choose
model” selected with the mouse), and each of the four models. Before any actions
can be performed a new project should be defined, or an existing project should be
loaded first.

The DSS starts by choosing first from one of the four sets of target variables and
then moving down a binary decision tree by answering questions with *“yes” or “no”
by a mouse click. The outcome of the DSS is either some method implemented in
VIDENTE, a method not implemented in VIDENTE or the conclusion that further
data gathering is required. If the outcome is one of the models implemented in
VIDENTE, a button appears which leads the user directly to the input screen of that
model by a click of the mouse.

For each model there is an input screen and an output screen. The input screen is
divided into four tab sheets, each of which is used to provide input (parameters and
input file locations) for calibration, prediction and simulation with the model. These
three modes are explained in the model descriptions in the subsequent parts. After all
entries have been filled in, the model can be run by clicking the “Run” button. Also,
a tab sheet is reserved for providing the input to the program STATSIM, which is
used for statistical analysis of realisations simulated with the models (the output from
“simulation”).

The output screen consists of two tab sheets, one showing graphical output (if any)
and one output text files (if any).

The help files can be accessed using F1, the speed button or the pull down menu.

VIDENTE stores the output in the directory (= folder) that has been indicated by
the user as the directory where the new project should be stored (called “data
directory” in the dialog box that appears when creating a new project). Project meta-
information is stored in this directory in a file with “[name piezometer]” as root and
“.vpr” as extension. For each of the models, subdirectories are created and within
these subdirectories sub-subdirectories named “calibration”, “prediction”,
“simulation” and “statsim”. In these sub-subdirectories the associated temporary
input files for the models as well as the output of the model runs are stored.
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3.2  Input files

Model parameters are provided by filling in the screens. The input time series have to
be provided in the form of ASCII files. These files can be placed anywhere on the
computer. When a new project is created, the files are copied to the subdirectory at
which the new projects is stored.

File with meteodata (see Figure 1 for an example file)
Precipitation and evapo-transpiration (mm/d) of the following format:
Record 1: ndata - number of records with meteodata (integer)
Record 2, ndata+1:  year (integer, four digits, e.g. 1988)
month (integer, {1,2,...,12})
day (integer, {1,2,...,31})
precipitation (if necessary minus interception) (mm/day) (real)
evapo-transpiration  (mm/day) (real) (Makkink reference crop evapo-
transpiration in case of SSD and EMERALD)

KALMAX, KALTFN and SSD assume the values to be constant in the interval

<t,t+Dt]. In case of EMERALD time steps should always be one day (Dt=1), so that
a record is needed for every day number.

4018
1980 1 1 5.8 0.3
1980 1 2 0.6 0.3
1980 1 3 1.3 0.1
1980 1 4 9.1 0
1980 1 5 4.2 0.1
1980 1 6 6.2 0.1
1980 1 7 0.3 0.1
1980 1 8 0.8 0.1
1980 1 9 0 0.1
1980 1 10 0 0.1
1980 1 11 0 0.1
1980 1 12 0 0.4
1980 1 13 0 0.4
1980 1 14 0 0.2
1980 1 15 0 0.1

1gure T EXxample of input meteofile for VIDENTE

File with groundwater levels (see Figure 2 for an example file)
File with water table depth (cm reference level)
Record 1: ndata - number of records with water table observations
(integer)
Record 2, ndata+1:  year (integer, four digits, e.g. 1988)
month (integer, {1,2,...,12})
day (integer, {1,2,...,31})
water table depth (cm reference level) (real)

Note: intervals between observations do not have to be regular.
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210
1981 1 9 -103. 00
1981 2 23 -126. 00
1981 3 10 -96. 00
1981 3 25 -97. 00
1981 4 9 -122. 00
1981 4 24 -132. 00
1981 6 23 -137.00
1981 7 8 -125. 00
1981 7 23 -134. 00
1981 8 7 -131. 00
1981 9 21 -139. 00
1981 10 6 -137. 00
1981 10 21 -82.00
1981 11 5 - 105. 00
~igure 2 Example of file with water table depths for VIDENTE

File with surface water levels (see Figure 3 for an example file)
Only used by SSD. For each drainage level a time series of either a surface water level
(time varying, draining and infiltrating) or a ditch or trench bottom (constant in time,
only draining) is given. Levels in cm with respect to the reference level (=surface
level for SSD).
Record 1: ndata - number of records with surface water levels (integer)

nlevels — number of drainage levels recorded (integer)
Record 2, ndata+1:  year (integer, four digits, e.g. 1988)

month (integer, {1,2,...,12})

day (integer, {1,2,...,31})

For i =1, nlevels

drainage level i (cm reference level) (real)

24 2
1980 3 31 -180 -50
1980 9 31 -140 -50
1981 3 31 -180 -50
1981 9 31 -140 -50
1982 3 31 -180 -50
1982 9 31 -140 -50
1982 12 31 -180 -50
Figure 3 Example input file with varying surface water levels as used by VIDENTE (only used by SSD)

SSD assumes the levels to be constant between two observations, where the record
given provides the last day of a period. So in this case, water levels of drainage level 1
are 180 cm below reference level between January 1 1980 and March 31 1980, 140
cm below reference level from April 1 1980 to September 31 1980, etc. Note that if
the last record had not been added and we were modelling water table depth until
December 31 1982, that the period October 1 1982 to December 31 1982 would
have been given the value of —140, instead of —180. Also, note that we have two
drainage levels here. One surface water level varying with time and one trench or
drain with a bottom depth of 50 cm below reference.
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3.3  Example run using KALMAX

In this section we present an example application of VIDENTE where it is used to
run the model KALMAX.

We have created a subdirectory called “demo” at which we have put our data files,
i.e. “debilt.met” containing 30 years of precipitation and potential evapo-
transpiration from meteorological station “De Bilt” (Netherlands) (period January 1
1961 — December 31 1990) and the file “debilt.gws” containing the water table
depths observed two times a month for the period 1985-1990. Our goal is to obtain
fluctuation quantities (mean highest water table (MHW) and mean lowest water table
(MLW), etc) for the entire 30 year period.

After starting up VIDENTE the following start up screen (Figure 4) appears:
=10l x|

File Edit Help

DeH S 2R & @-

Which are the target variables?
Step 1

& 1) \Water tahle depth only All models
" 2y as 1 and/or specific (drainage) discharge, bottam flux KALWAX KALTFN, SS0.

{drainage resistance, effective porosity) EMERALD, S\WWAR
= 3) as 2 and/or avarage soil moisture contant S50 EMERALD, SWAP
4y as 3 and/or soil moisture profile, crop growth, soil

)_ F R SWAP

firmness, transpor

<< Back Iext»> Help

Figure 4 Opening screen VIDENTE

As can be seen, the user’s first action is to create or open a new project. For this
move the cursor to <file/new project> or <file/load project> or use one of the
speed buttons. The only action possible before a project is loaded is to change the
language from English to Dutch or vice versa. If a project is loaded or created and
the user wants to change the language again, the project has to be closed and saved
first. After the language has been changed, the saved project can be loaded again to
continue working on that project. Figure 5 shows the dialog box used to define a
new project.
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M Vidente =] 3
File Edit Help
el S R @ @-
Create new project: 5
: [ Step 1
MNumber piezo meter:
Jtest123
Drata directony:
[Mest 234 ]
models
lEp\L::t'me meteFo.ldat\‘:;.d I Hischarge, bottom flux, KALMAR KALTEM, S5D
| WProgram Files\YidentelDemahDebilt. me J sl EMERALD, SWAP
Inputfile groundwaterlevels:
IC:\Program Files\videnteh\DemohD ehilt gws re content S50, EMERALD, SWWAP
Inputfile sufacewaterLevels: crop growth, sail S
|
ok | cemeel |
<< Bach Mext »>

Figure 5 dialog box to define a new project

Here a subdirectory c:\test123 has been created where we have copied the data files
from the subdirectory c:\Program Files\Vidente\Demo. The project information
will be stored in a file test123.vpr.

Now we can proceed with either entering the DSS or going directly to one of the
models. To give some idea about the workings of the DSS we show two screens here
(Figure 6), one showing a yes/no question and one ending screen that leads to either
the model KALMAX or KALTFN.

B ________________________________==¢f

B e
NEE S D e -

T L6tk
D@ d nnid§:

A e Szl vark b guenilie Beely o iduenie
waler abie Puolizions?

Apar frarn ha presipladon (pis. 2 Beee sfdona
ik ihal il e walsd s B BT

g

|_H'_m] Tyl EALTRH wim
| e A s |
A Pk L
Figure 6 Example screens from the DSS; left a yes/no question and right an endpoint Teading to one of the models

If the user wants to remember the choices made that lead to the model, these can be
printed out. Clicking on the KALMAX button will start the input menu of the
KALMAX model. In Figure 7 we start with the calibration tab sheet. We calibrate
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the ARX model using the water table depths from 1985-1990. First the deterministic
calibration is performed. The closure criterion is used in the optimisation algorithm
and should be increased if obtaining a solution takes too long. Figure 7 shows the
input screen, where “mode = deterministic” is checked. Note that the output files
automatically get the extension “.dat” so that no extension have to be given. If one is
given, it is replaced by “.dat”. This entails that for the output files different names
have to be given.

B |
Fis Edt Hels
D E & R & -
| Cabestins | Piekanon | Simdon | Brardin |
—Inpul fles L il
Frecimision and evepmaicn Im=t=odstal Resullz Kaknan lber afts cabbialon
[Cratil e J e
Gioundeaier ewels: Caloratsd prameiss
[Cratil e J [ebiina
—HMode
% Delziminishz Cheiacleirhc 1espones bme:
" Btochastic 58467 TTZ20ET]
" Hoth
| pitial ke squsfinn | - —hlniz= oy .
a II].55 R O T E R SLTE S e Ten J
b I[I [ |
R = sk I'l—
c [1m : .
1 1 |
| O EE TS il ~Timai
el sttt [0 |F“’“"T"t s (a0 231
| I Timestep: 1
Cheaia gibeium 1=5
Hun

Figure 7 Example input screen deterministic calibration with KALMAX

During the calibration, the value of the closure criterium is monitored (Figure 8). The
calibration can be stopped by pressing the "~“stop" button.
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Progress

Function value

LA s s s s s A L L 8 s B s S s A 3 A B s L e s RS L R s st s
1 2343567 8891001121314 15161718192021 222324 252627 25293031 32 3354 35536 37 35 3940 41 424344454647 45495051 52

Figure 8 Monitoring of the closure criterium

After running the deterministic calibration, the program jumps to the output screen
(see hereafter) and a box appears (Figure 9) with the calibrated parameters, some
calibration statistics (ME, RMSE and MAE of the calibrated deterministic model in
cm) and the question whether we want them to replace our initial values. If we agree
the parameters are replaced.

Information

Do wou want o replace the parameters in yaur project with the fallawing calibrated parameters?
a: 01951439

b: 0457335

co-129.218262

Wariance white noize: 0.000000

Mean eror: -0.084613
Fioot mean squared error: 9.144839
Mean absolute eror: 7.468044

ﬂol

Figure 9 Pop up box appearing after deterministic calibration

The next step is to run the stochastic calibration while using and fixing the already
obtained parameters from the deterministic calibration. The input screen can be seen
in Figure 10. Notice that also the characteristic response time (days) is given which
can be calculated from the a-parameter (Bierkens et al., 1999; see Equation (34) in
section 2.4.4 of part 2). Observation of water table depth should not be taken further
apart than 60 days in order to calibrate the ARX model with a = 0.951.
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B Vidente |- O] x|
File Edit Help

Dl & 2@ € @ -

Calibratian | Prediction | Simulation | Statgim |

£ Input file: Cutput file:
Precipitation and evaporation [meteodata): Results K.alman filter after calibration:
[Dbit met I
Groundwater levels: Calibrated parameters:
ID ehilt. gws J |debiltpar.dat
Mode
¢ Deterministic Characteristic response time:
& Stochastic B0.32921 28872511
" Bath
Initial value equation parameters—— | [ Moize component:
] ID- 951483 Yanance of measurement error: ID
] ID. 4E7895
i i i : 10.
" 28 o1 Goh Yariance white noize process: i
lritial value Timer
Initial level watertable depth: BT Riam= T 85U J : I‘I 02l J
Timestep: I1
Clozure criteriurm: 1e5
Bun

Figure 10 Example input screen stochastic calibration with KALMAX

After the stochastic calibration a similar pop up box appears with the question
whether the parameters are to be preserved. Finally a calibration round is performed
with the mode “both”. Here in front of each parameter a check box appears (Figure
11). If the box is checked, the parameter is calibrated, if not it is fixed. For unbiased
estimates of the parameters all boxes should be checked. After all parameters have
been calibrated, again a pop up box appears (Figure 13) showing the final parameter
estimates and the final statistics. To preserve these parameters and use them for
prediction and simulation later on the user should click “yes”. Note that in case of
KALMAX these are predictions with the Kalman filter and are therefore slightly
better than those of the deterministic model (Figure 9) due to the updating (see
chapter 2 of Part 2 of this report).
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@Videnle

File Edit Help

- (O] %]

Dl E 2R & @ -

Calibration | Prediction | Simulation | StatSim |
Input file: Output file:
Precipitation and evaparation [meteodata): Results Kalman filter after calibration:
[Debitmet |||/ et dat
Groundwater levels: Calibrated parameters:
IDebiIt.gws J Idebiltpar.dat
Mode
" Deterministic Characteristic response time:
" Stochastic B0.3292128872511
| Both
Initial value equation p Moize component
v a ID- 951489 Wariance of measurement eror: ID
Vb ID.4B?895
i i i : |1 1.000
- R ¥ “arance white noize process:
Initial walue Timner
Initial level watertable depth: 100 fiemete J0.01.0) _I l1 S _I
Timestep: |1
Closure criterium: les
Bun

Figure 12 Example input screen total calibration with KALMAX

Information E

40 Do you want to replace the parameters in your project with the following calibrated parameters?
1 :
& 0935412
b: 0582962
o -128.836212
Vanance white noise; 12.165233

Mean enor: -0.080168

Root mean squared emor; 3.009336
Mean abzolute ermor: 7.227198

| Mo |

Figure 13 Pop up box appearing after total calibration

The results of the calibration can be looked at in the output screen. Each tab sheet of
each model has a separate input screen and output menu screen. For instance, the
calibration tab sheet of KALMAX has the input screen (Figure 12) and an output
screen (Figure 14). Which one the user is looking at is indicated by the arrow on the
left. The output screen itself consists of two tab sheets, a “graphics” sheet showing
output graphs if any are produced and “text” in which the content of text files
produced can be viewed. Figures 14 and 15 show the results of above calibration. In
Figure 14 a graph of observations and Kalman filter predictions is shown, as well as
innovations (differences between Kalman filter predictions and observations) and the
95% prediction limits of these innovations. The text file shows the content of the file
with calibration results, i.e. the parameter values (the line for which the number in
the last column is smallest) and on the bottom line ME, RMSE and MAE
respectively.

Alterra-rapport 613 41



I8 viderse

Fis Eci Hebp
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|
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|
1210
-140
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" 25% (m]
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Figurel4 Example output graphics screen from calibration with KALMAX

Fle Edl Hep

D & =28 £ @ - |
| Guaphics Test | !
i pukber of terations a7 =
stk E 0. 230316 D.CTFOCA 13D 01dDiL 1217344l =

0435041 0581419 _13@ 72614 13 181693

0 835141 0577359 139 921g46 12 DL44E3

0O 935944 0. .577302 =132E.731311 12 00172

0 935417 0 ER2361  -19@ @96212 17 16GE3

=0.0501 68 90093356 7 orENeG

1 o)

Figure 15 Example output text screen from calibration with KALMAX

Once the calibration is performed it is always wise to check whether the deterministic
part of the model is suitably parameterised (see section 2.4 of Part 2). To do this, a
prediction run can be made without the Kalman filter updating using the calibrated
parameters. Figure 16 shows the prediction input screen, Figures 17 and 18 the
output screens. Note that on the input screen the theoretical variance of the
prediction error (without updating) is given. This variance is calculated with Equation

42 Alterra-rapport 613



(18) in section 2.1 of Part 2. So a RMSE of about 9.9 cm is expected. The output
files show that the fit of the deterministic model looks satisfactorily and that the
actual RMSE is somewhat smaller than the theoretical one. (The bottom line in the
screen of Figure 18 shows ME, RMSE and MAE, respectively.) Also notice that the
validation statistics are slightly higher than those of Figures 13 and 15, as can be
expected as no updating is used here. The graphics in Figure 17 can be printed
directly or included into an Office document (Word, Powerpoint) by using copy and
paste. Besides a graph, Figure 17 gives a percentage of variance accounted for
(‘percentage explained’) and the variance of residuals (predicted minus observed
value), as measures of relative and absolute accuracy, respectively.

@Videnle |- 10] <]
File Edit Help

D2l &SR € @-

Calibration ~ Prediction ISimuIationl StatSim |

Input file: Output file:
Frecipitation and evaporation [meteodata): Predicted watertable depth:
[Debimet | ||| [debitpre
Groundwater levels: “alidation statistics:
[Debit gws I
T Mode
& Without Kal it Prediction variance:
ChE e 115194708361 547
= Wwith K.alman filter
—Initial walue equation parameter Noize component:
a ID-93541 2 Y anance o measurEmEnt enar ID
b ID.582982
4 I—_1 2B.836212 Wariance white noise process: |1 2165233
Initial walue Tirner
Initial level watertable depth: 00 B JESUU _| I1990 1231 J
Timestep: _I‘I
[lstire eriteri: les
Bun

Figure 16 Example input screen from prediction with KALMAX
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File Edit Help

=10l

Dl S 2R | & @-

180

Percentage explained = 72.1
Var. of res. = 81.7

Graphics I Text |
Iwat.dat ﬂ
pred. [em)
[ update [cm) 40
[ ]t [zm)
P [cm] 20 Time (days)
W 5
[] mﬁgi. [[ccnn';]] 200 400 GO0 200 1000 1200 1400 1600 1800 2000 2200
[ 25% [om) 0
[1 97.5% [em)
-20
-40
-E0

pred. [om]
——  meaz [cm)

Figurel7 Example output graphics screen from prediction with KALMAX

Videnle H=l

i Edi Hal
DEeE &S =R & @-
Graphics  Test |
- 0.935412 0.582962 —128.836212 0000000 &
|debitvaldat Bl Qi0ier . 9.299905 o7 657076 A

| |

Figurel8 Example output text screen from prediction with KALMAX
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Finally, using the calibrated parameters we simulate a sufficient number of
realisations of 30 years water table depth using the meteodata from 1961 to 1990 (see
input screen Figure 19). The results are analysed with the program STATSIM. The
input screen of STATSIM is shown in Figure 20. Results of STATSIM are a number
of graphic files and a textfile with univariate statistics (see section 2.4.4 of Part 2 for a
description). Shown here are the text file with statistics (Figure 21) and two graphics,
i.e. the frequency of exceeding graph (FOE graph) in Figure 22 and a regime graph in
Figure 23.

)
NERS R0 e e

|| Caliration | Frediction | Smukion | s |

Irputfies Dol e
Frecipilation and mvaporslion frstendaial Simulsind malmtebl depth
|Dhit mest S |[[[aesiin

“Sinredation

Iriial 7emct I-S&‘d?

Mumbor of resheslore- I'm[l
Mumber of vesrs pe eaisshan ﬁ
Fasl year of insiirsion |'|35'|

ol L P F."—"
Iritial v b mcuslior pavama s Moss components
1 (EEIH o P e ryer e o —
b B _
o 12 EE2 Vabrcouhambapiere (121028
Irdkial ~aksm —
|ritial lerwd wag et b chepibe Imi Rl [ s 0 EETEE] J
Timesitege I
(3 [P S = T |7
b

Figure 19 Example input screen for stochastic simulation with KALMAX
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igure 20 Example input screen for STATSIM

229308
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Figure 21 Example output text screen STATSIM showing statistics
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Figure 22 Example output text screen STATSIM showing FOE graph
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Figure 23 Example output text screen from STATSIM showing regime graph
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Annex: Binary decision trees of the DSS

Following is a set of binary decision trees that form the basis of the DSS. The DSS
starts with choosing one of the four options, depending on the target variables
variables. Each options is the root of a binary decision tree that leads to the choice of
a method based on answering a series of yes/no to questions. These questions as
well as possible outcomes of the decision trees are treated in chapters 2 (in English)
and 3 (in Dutch).
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Part 2: Documentation KALMAX and KALTFN

Programs for modelling the water table depth using transfer
function-noise models
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1 Model, input variables and parameters

1.1 Model description

An extensive description of the models and their use can be found in:

English

Bierkens, M.F.P., M. Knotters and F.C. Van Geer, 1999. Calibration of transfer
function-noise models to sparsely or irregularly observed time series. Water Resources
Research 35(6), 1741-1750.

Dutch

Bierkens, M.F.P, M. Knotters and F.C. Van Geer, 1999. Tijdreeksanalyse nu ook
toepashaar bij onregelmatige meetfrequenties. Stromingen 5(2), 43-54.

Here follows a brief description of the models and their parameters.
The basic model used in KALTFN is the following transfer function-noise model:

h, =h +n, (1)
h, =ah,_, +bP, (2)
n =c+f(n.; - c)+e, (3)
with

k discrete time steps of size Dt,i.e.t = kDt,k =01,2,...;

h, water table depth [L] at time step K ;

h, deterministic part of the water table depth [L] at time step k ;
n, auto-regressive noise process [L] at time step k ;

e, zero mean discrete Gaussian white noise process at time step k ;

Py precipitation surplus, i.e. average precipitation minus average potential evapo-
transpiration between (k- 2)Dt and kDt .

Equation (1) shows that the water table depth consists of a “deterministic” part
(Equation (2)), which is explained by variations of precipitation surplus, and a
“stochastic” part (Equation (3)) which describes the part that is not explained by
precipitation surplus. Equation (2) is called the “transfer function model”, and
Equation (3) the noise model. The total model is therefore called a transfer function-
noise model (TFN model). A TEN model is therefore a stochastic model and h, a
stochastic process. In chapter 2 the nature of stochastic processes is described.

The following parameters are distinguished:

a auto-regressive parameter of the transfer model [-];
b moving average parameter of the transfer model [T];
C average level of the noise process, which is the average water table depth in

case P,= 0 for all k;
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f auto-regressive parameter of the noise model [-];
2
S

e

variance of the white noise process e, [L].

The KALMAX model is somewhat simpler. Here we have that f =aso that the

TFN model (1)-(3) reduces to a so called auto-regressive exogenous variable model
(ARX model):

h, =c+a(h_, - c)+bR +e, (4)

Knotters and Bierkens (2000) give a physical interpretation of the ARX model (and
the transfer component of the TFN model). Figure 1 shows a simplified water
balance of a soil column. Apart from the precipitation surplus P, and the water table
depth h, the following variables and parameters determine the water balance of a soil
column (see Figure 1):

h the drainage level (surface water level or trench bottom) [L];

O the flux from/to the surface waters [LT™], which is assumed to be linearly
related to the water table depths as:

h, - h, (5)
g

Qux =

g the drainage resistance [T];
m effective porosity (specific yield) [-];
q, flux from/to deeper groundwater system [LT;

Pk

|

I»|k
........ _ h.-h
qd,k = k—gs_
s \ \ /

Figure 1. Schematic representation of the water balance of a soil column
Based on the simple model of Figure 1 Knotters and Bierkens (2000) derived the

following relationships between the ARX (transfer) parameters and the hydrological
parameters above:
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. expge% :
b=g(1- a) (6)

c=g, +h

Q-0

So, if the ARX model (4) or the transfer model (2) is calibrated to a time series of
water table depth and the local drainage level h, is known, we can invert relationships
(6) to calculate hydrological parameters that characterise the local water balance and
groundwater dynamics:

g=b_
1-a
e @
glina
c- h,
a, =
g

From the time averaged precipitation excess <P,> the time averaged water table
depth <h,> can be calculated, using either the hydrological parameters or the ARX
parameters:

<h>=h, +gla,+ <R > =c+—2—<p, > ®)
-a

1.2 Input variables and parameters / invoervariabelen en parameters

Next we list the input variables and parameters used in the programs KALMAX and
KALTFN (units between square brackets). First the English version is given,
thereafter the Dutch version.

English:

Input variables
Py average precipitation surplus (mm/d) between (k- 1)Dt and kDt , calculated

as the difference between precipitation P, and potential evapo-transpiration
E:

P=R - E 9)

Because we are dealing with statistical models, we are generally satisfied with using
the observed values of precipitation and potential evapo-transpiration from nearby
meteorological stations. In the Netherlands this means that for potential evapo-
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transpiration the so called reference crop evapo-transpiration of Makkink E, is used

(see Winter et al., 1995), which gives the transpiration of a full grass cover under
optimal conditions of water supply. For very different forms of land use (e.g. forest),
or if one seeks a physical interpretation of the ARX parameters (Equations 7) it may
be worthwhile to correct the precipitation surplus for rainfall interception and
different potential evapo-transpiration:

R, =@-F)R’ (10)
and

E’=FE (11)
where

F interception fraction (-);

F. crop factor (-);
P precipitation (mm/d) as observed by the meteorological station without
interception.

Table 1 list for a number of different land use classes the crop factor F, (Equation 5)
as well as the interception fraction F. Note that Equations (10) and (11) are not
executed in KALMAX or KALTFN. Thus, if one desires to correct precipitation for
interception and evapo-transpiration for crop type, these corrections should be
performed outside KALMAX or KALTFN and the corrected figures put into the
input file.

Parameters KALMAX (ARX model (4))

a auto-regressive parameter (possibly between -1 and 1; typically between 0.9-
0.99);

b mov)ing average parameter (days). Values typically range between 0.1 and 1 if
P is in mm/d,;

o level parameter (cm with respect to surface, e.g. -130);

S j variance of the white noise process e, (cm?’). Typical values range between 5
and 50 cm?;

S 5 variance of measurement error (cm?); only used in case the Kalman filter is

used (see chapter 2). In most time series analyses set to zero.

Parameters KALTEN (TEN model (1)-(3))

a auto-regressive parameter of the transfer model (possibly between -1 and 1;
typically between 0.9-0.99);

b moving average parameter of the transfer model (days). Values typically
range between 1 and 10;

o level parameter (cm with respect to surface, e.g. -130);

f auto-regressive parameter of the noise model (between 0 and 1); Typical

values range between 0.5 and 0.99;
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s§ variance of the white noise process e, (cm’). Typical values range between 5
and 50 cm?;

S 5 variance of measurement error (cm?); only used in case the Kalman filter is
used (see chapter 2). In most time series analyses set to zero.

Nederlands:

Invoervariabelen
Py gemiddeld neerslagoverschot (mm/d) tussen (k - J)Dt and kDt , berekend als

het verschil tussen neerslagP, and potentiéle verdamping E? :

R=R-E ©)

Omdat het hier gaat om statistische modellen is het meestal voldoende om te werken
met de waarden van neerslag en potentiéle verdamping zoals die worden gemeten op
nabijgelegen meteostations. In Nederland betekent dit dat voor de potentiéle
verdamping de Makkink referentieverdamping E; wordt gebruikt. Deze geeft de

verdamping van gras dat optimaal van water wordt voorzien. Als men rekening wil
houden met andere vormen van landgebruik en de ARX of TFN parameters fysisch
wil interpreteren (zie Vergelijking (7)) dan kan het de moeite waard zijn om de
neerslag te corrigeren voor interceptie en de verdamping te corrigeren met een
gewasfactor:

R =(@- F)R’ (10)
en
E = F.E (1)

waarbij

F interceptiefractie (-);

F. gewasfactor (-);

P neerslag (bij voorkeur cm/d) zoals waargenomen op het meteorologisch

station.

Tabel 1 geeft voor een aantal verschillende landgebruiksklassen de gewasfactor F, en
de interceptiefractie F,. We merken hier op dat vergelijkingen (10) en (11) niet in
KALMAX of KALTFN zijn geprogrammeerd, zodat deze berekeningen buiten
KALMAX en KALTFN moeten worden uitgevoerd en als gecorrigeerde waarden
aan deze programma’s aangeboden door ze in de invoerfile te zetten.

Parameters KALMAX (ARX model (4))

a autoregressieve parameter (-) (kan tussen -1 en 1 liggen, maar ligt meestal
tussen 0.9 en 0.99);

b moving average parameter (dagen). Waarden variéren meestal tussen 0.1 en 1 als
R inmm/d is;
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niveauparameter (cm referentieniveau, bijv. -130);

variantie witte ruis proces e, (cm’). Waarden variéren meestal tussen 5 en 50
cn?,

variantie meetfout (cm?); wordt alleen gebruikt bij toepassing van het

Kalman filter is (zie hoofdstuk 2). Bij tijdreeksanalyse is deze meestal gelijk
aan 0.

Parameters KALTEN (TEN model (1)-(3))

a

b

autoregressieve parameter van het transfermodel (-) (kan tussen -1 en 1
liggen, maar ligt meestal tussen 0.9 en 0.99);

moving average parameter van het transfermodel (dagen). Waarden variéren
meestal tussen 0.1 en 1 als R, in mm/d is;

niveauparameter (cm referentieniveau, bijv. -130);

autoregressieve parameter van het ruismodel (kan tussen 0 en 1 liggen, maar
ligt meestal tussen 0.9 en 0.99);

variantie witte ruis proces e, (cm’). Waarden variéren meestal tussen 5 en 50
cm?

variantie meetfout (cm?); wordt alleen gebruikt bij toepassing van het
Kalman filter is (zie hoofdstuk 2). Bij tijdreeksanalyse is deze meestal gelijk
aan 0.

Table 1. Crop factors and interception fractions for various crops and land use (sources in footnotes)

Crop/land use Fe Fi
Grassland 0.961 0.00
Potatoes 1.031 0.00
Beets 0.98! 0.00
Grain 0.951 0.00
Maize 0.921 0.00
Other crops 0.88! 0.00
Fallow 0.702 0.00
Deciduous wood 1.003 0.208
Coniferous wood 0.803 0.403
Tree nurseries 1.003 0.208
Other trees 0.908 0.308
Heath 0.702 0.00
Wetland vegetation 1.044 0.00
Dryland vegetation 0.702 0.00
Other vegetation 0.875 0.00
Orchard (soil not covered) 0.916 0.067
Orchard (grass strips) 0.976 0.067
Sports field 0.968 0.00
Public garden 0.97¢ 0.06°
Horticulture under glass 1.30%0 1.00
Horticulture not under glass 0.881 0.00
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1 Crop factor of average growing season according to Feddes, R.A., 1997. Crop factors in relation to
Makkink reference-crop evapo-transpiration. In: Verslagen en Mededelingen 39, pp. 33-45, CHO-
TNO, The Hague.
2 Jansen, P.C., 1986. De potentiéle verdamping van (half-)natuurlijke vegetaties. ICW nota 1703,
Wageningen (in Dutch).
3 Moors, E.J., AJ. Dolman, W. Bouten en AW.L. Veen, 1996. De verdamping van bossen O
19(16), 462-466 (in Dutch). Furthermore, the parameters for “tree nurseries” have been taken the
same as for deciduous wood, and those for “other wood” as the average of deciduous and coniferous
wood.
4 Seasonal average of Molinia from Moors, E.J., J.N.M. Stricker and G.D. van den Abeele, 1998.
Evapo-transpiration of cut over bog covered by Molinea Caerulea. Agricultural University,
Department of Environmental Sciences, report 73, Wageningen.
5 Average of wetland and dryland vegetation.
6 Assuming a tree coverage of 30% we calculate:
Orchard (soil not covered): Fc = 0.7" 0.88 (other crops) + 0.3" 1.0(deciduous trees) = 0.91
Orchard (grass strips): Fe = 0.7" 0.96 (grassland) + 0.3" 1.0(deciduous trees) = 0.97
7 Assuming a tree coverage of 30% we also assume 30% of the interception of deciduous wood
yielding an interception factor of 0.3" 0.20 = 0.06.
8 Taken the same as “grassland”.
9 Taken the same as “orchard (grass strips)”
10 All water is intercepted. The evapo-transpiration for horticulture under glass in the western part of
the Netherlands is about 700 mm/year, which is about 1.3 times the average reference evapo-
transpiration for that area (personal communication Philip Hamaker). The excess water needed is
obtained from the intercepted precipitation water that is collected in tanks.
11 Taken the same as “other crops”.
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2 Stochastic modelling: prediction, simulation and calibration

There are two different ways of using the stochastic models: prediction and
stochastic simulation. In the following sections these two different ways are further
explored. The section thereafter explains how the ARX or TFN parameters can be
estimated from time series of water table depth through calibration of the ARX or
TFN models. Finally, the last section recapitulates how the application of the
ARX/TFN models to a practical problem proceeds.

2.1 Prediction

Before we start with explaining prediction, we have to explain the nature of h, when
it is described with stochastic models. It means that we are uncertain about the exact
variation of h with time. We do know that it is likely to be lower in the summer time
and higher during the winter, but there is still a lot of unknown variation left. This
variation is due to errors in our inputs, model parameters and the fact that our model
itself is only an approximation of reality. Therefore, we vision that h, is not described
by a single function of time, but as a collection of possible functions, each of which
are equally probable of describing the real but unknown variation of h. Figure 2
illustrates this concept, showing four equally possible functions (note that for
convenience we have drawn them as continuous functions).

A
hk P R
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C NNy e
AlS TN e
P VA A S N ~7
A v [ ; e~
('_ pie v \\‘\ / e
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I % \\' /\-’ /.«/, '''''''' -
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\» \\‘\‘\ ‘,»// [1;"
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< ."‘\d\\.”f
—
K >

Figure 2 Equally probable realisations of the stochastic process hk

One particular function is called “a realisation” and the whole collection of equally
probable realisations, usually an infinite number of them, is called “the ensemble”
and h, is said to be “a stochastic process”. Now reality is assumed to be on of these
possible realisations, however which one exactly is unknown. We would want our
prediction to be such that the prediction error is minimal. However, because we do
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not know which of the realisations is reality it is not possible to evaluate the
prediction error either. Instead, we are forced to look at every time step at the
difference between our prediction and the values of all possible realisations. Suppose

that h,is the prediction andh? the value of realisation number i, then we seek a
prediction for which the following properties hold:

1. The prediction error, ie. the difference between our prediction and the
realisations, is on average equal to zero:

¥ ra .
& [h- nol=0 )
i=1

2. The average squared prediction error is minimal (as small as possible):
g [~ NE
a [hk - §'>] b minimd (13)
i=1

It turns out that we achieve this if we take as prediction at every time the average of
all realisations:

- Yy
h =E[hJ=a h (14)

i=1

The average of all possible realisations is called “the expectation” or “expected
value” of the stochastic process h, and is usually denoted with the operator E[]. If a
prediction is such that it has properties (12) and (13), it is said to be “unbiased”
(Equation 12) and *“optimal in least squared sense” (Equation 13). If we describe the
stochastic process h, with the TFN model or the ARX the expected value is the
deterministic part of these models:

h, =c+a(h,_, - ¢)+bP, (15)
Figure 3 shows the realisations with the optimal prediction. Also shown is the 95%-
prediction interval which gives for every time step the boundaries that contain 95%
of the realisations. Because the noise e, has a Gaussian (normal) distribution, the

95% prediction interval can be calculated from the standard deviation of the
prediction error s (t) as follows:

| +1.96s |
with

(16)
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For the TEN model the variance of the prediction error s 2 is equal to the variance
of the noise process n, (s 2) and can be calculated as (Bierkens et al., 1999):

S 2
sZ=si=—° 17
PEsier (17)
For the ARX model this variance is given by
S 2
g2=_"e 18
° 1-a’ (18)
A

h(t)

>
t

Figure 3 Prediction with the deterministic model (solid line) and boundaries of the 95% prediction interval (dashed
lines); grey lines are a number of realisations.

Observation time Observation time

Figure 4 Correcting a prediction (solid ling) with an observation without an observation error (Figure 4a) and with
an observation error (Figure 4b). The dashed lines show the 95% prediction interval, which will be of zero width
at the measurement time in case 4a and of limited width in case 4b.

In case we have observations of h, we can use these to further improve the

predictions. This is shown in Figure 4. Here we have a clue about the realisation that
stands for reality because it has been observed a number of times. If the realisations
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were without error, than the best strategy would be to simply set the predicted value
equal to the observation as soon as the observation comes in (Figure 4a) and proceed
from there. At that time the prediction error would be zero. If there is an
observation error, the truth would be somewhere in between and an improved
prediction would be some weighted average of the prediction and observation. The
prediction error would than be somewhat smaller than the observation error (Figure
4b).

An algorithm that performs such a correction is called the “Kalman filter”. Suppose
that h,, ,is the prediction at time step k that has been obtained using (15) and

corrections for all observations up to and including time step k-1 and at time step k
an observation y, is available. The corrected prediction is then obtained as follows:

-~ @ s2 . 0 ® s . 0
My = SL- —— e Py, (19)

2 +s 2 =Kl S 2 +s 2 -

& SitSy &S 1Sy, g

where
ﬁklk_l the “time update”, which is the optimal prediction at time step k given all

observations up to including time step k-1. The time update is such that the
difference between the time update and all realisations is on average zero and
that the variance of this difference is minimal:

¥ ~ .
& [ - n0]=0 (20)
i=1
5 [~ NE »
Sha=a [hk|k-1 - hﬁ')] b minimd (21)
i=1

skzlk_1 the variance of the error in the time update as defined in (21), which is
calculated by the Kalman filter;
hy  the “measurement update”, which is the optimal prediction at time step k

given all observations up to including time step k. The measurement update
is such that the difference between the measurement update and all
realisations is on average zero and that the variance of this difference is

minimal:
¥ ~ .
é. [hk|k - h<(l)] =0 (22)
i=1
2 g [" (i)]Z ..
Sk =a [ - he'| P minimal (23)

i=1
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S thevariance of the error in the measurement update as defined in (23) which
is also calculated by the Kalman filter;

S the variance of the error in the observation.
the time update is calculated by application of the deterministic model (15)

between time steps k-1 and k with measurement update ﬁ(k- 1| k- Das
initial condition:

F]k||<-1 =C+ a(ﬁk-ﬂk-l - C)+DbR, (24)

From Equation (19) the workings of the Kalman filter become clear. If the
observation error is small compared to the model prediction error (i.e. the time
update), the updating in (19) will be such that the measurement update is close to the
value of the observation. On the other hand, if the error in the time update is small
compared to the observation error, i.e. the model is very precise when compared to
the observations, the measurement update resembles very much the time update.

The weight used in the weighted average (19), i.e. [S g1 /(S .. +S ¢ )] is called the

“Kalman gain”.
If at time step k there are no observations available, we simply have:

A A

N = N1 (25)
S k2|k =S If|k—l (26)

If for a long time no observations are taken we have that s j, =s 5., ® s 2, i.e. the

Kalman filter prediction variances become equal to the prediction variance of the
deterministic models, as given in Equations (17) (TFN) or (18) (ARX).

Figure 5 is similar to Figure 3, but now we have a number of observations present
and predictions are performed with the Kalman filter. For convenience, we have
shown the case with no observation errors. At a number of time steps observations
are present. Again, our unknown reality is modelled as a large number of equally
probable realisations. However, because we have observations, only those
realisations are eligible that pass through the observations (in case of a small
observation error, the realisations do not have to pass through the observations
exactly, but should pass close by). The time update is shown, as well as the 95%
prediction interval. Because the predicted water table depth is updated, the variance
of the prediction error is smaller than without updating (Figure 3); to put it in
another way: the averaged squared difference between the prediction (time update)
and the realisations is smaller than without the use of the Kalman filter.
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Figure 5 Prediction with the Kalman filter (bold solid black line) and boundaries of the 95% prediction interval
(thin solid black lines); grey lines are a number of realisations, all passing through the observations; black dots are
observations.

2.2 Stochastic simulation

Prediction of water table depth is important if we are interested in the actual, but
non-observed water table depth. However, in many applications we are not
particularly interested in the actual water table depth, but in some fluctuation
quantities. For instance, we may be interested in the probability that at any day in the
near future the level of 30 cm is exceeded, or we want to know the mean highest
water table depth (MHW) or mean lowest water table depth (MLW) (Van der Sluijs
and De Gruijter, 1985). These fluctuation quantities cannot be estimated from the
predicted water table depth, because the predicted line typically overestimates the low
values and underestimates the high values (see Figures 3 and 5). The reason for this
is that it tries to minimise the squared prediction error (Equation 16).
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Figure 6 Example of simulating 100 realisations of water table depth and estimating the probability distribution
of MHW from it.

In this case we should do the following (See Figure 6):

1. simulate a large number (at least 100) realisations of the stochastic process h,
using either the TFN model (1-3) or the ARX model (4) where thee, are
simulated by drawing from a Gaussian distribution with mean zero and
variances 2;

2. for each simulated realisation the appropriate fluctuation quantities are estimated.
For 100 realisations this yields also 100 values of this property, e.g. 100 MHWs
and 100 MLWs;

3. the cumulative frequency estimated from the replicas of the fluctuation quantity
(e.g. the 100 MHWSs and MLWs) represents an estimate of the probability
distribution of the fluctuation quantity. This probability distribution expresses
the uncertainty about the true value of the fluctuation quantity, uncertainty that
arises from our model’s inability to predict the unknown water table depth
exactly. Usually the average of the replicas is used as an estimate of the true but
unknown fluctuation quantity and as a measure of uncertainty the 95%
confidence interval is calculated.

2.3 Calibration

To apply the ARX or TFN models at some location parameters {a,b,c,s 2} (ARX)

or {a,b,c,f,s 2} (TFN) must be obtained by calibrating the models to a time series

of water table depth. In case of a deterministic model, calibration only involves the
minimisation of some least squares criterion between predictions and observations.

However, in this case we also have to calibrate the noise parametersf ands . For

linear stochastic models this parameter could be estimated separately from the
residuals (differences between deterministic predictions and observations). However,
even for linear models, such a two step approach generally leads to biased parameter

Alterra-rapport 613 79



estimates (see Te Stroet, 1995). Also, if the time series is very irregular (not a
constant frequency), estimating f ands 2 is quite problematic. Here, a method is

used combining the Kalman filter and a maximum likelihood criterion that, given the
assumptions (model prediction errors and measurement errors are Gaussian
distributed), provides unbiased maximum likelihood estimates of the parameters. The
method can be used for irregularly and sparsely observed time series and has the
added advantage that it able to take account of measurement errors.

If we have M time steps with observations (not necessarily with regular intervals
between them), the method proceeds as follows (we assume that the input time
series, i.e. precipitation and potential evapo-transpiration have been collected for the
period for which we have observations):

1. choose initial values for parameters {a,b,c,s 2} (ARX) or {a,b,c,f ;s 2} (TFN);

2. use these parameter values to run the Kalman filter for the period that contains
the observations. This yields for each observation occasion an “innovation”

n=y,- ﬁlu_land the associated innovation variance (calculated by the Kalman
filter, see Bierkens, 1998) s 2 =s 1, +s 7 ;

3. From the M innovations and innovation variances the following maximum
likelihood criterion is evaluated (Schweppe, 1973):

3= Mln(ao)+aln[sn.]+a il @)
—1§Sn| Q

4. Choose a new set of parameters {a,b,c,s 2} (ARX) /{a,b,c,f ,s 2} (TFN);

5. Repeat steps 2 to 4 until ML-criterion (27) is minimised. The resulting parameter
set is a maximum likelihood estimate of the parameters.

Minimisation of (26), i.e. choosing the new set of parameters in step 3 such that the

value of (26) will decrease, is done with a minimisation algorithm. In SSD the

“downhill simplex method” is used (Press et al., 1986).

2.4 Systematic application of KALMAX and KALTFN: step by step

In the following example we assume that we have a location for which precipitation
and reference evapo-transpiration are known for the years 1970-1999 and we have
observations of water table depth available with an observation frequency of two
times a month for the years 1995-1999. Application of the ARX/TFN models has
two goals. First, we want to estimate fluctuation properties (MHW, MLW etc.) at the
location. Second, we aim to monitor the water table depth on a daily basis in the
future, while maintaining an observation frequency of two times a month. The
following steps are taken:
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2.4.1 Calibration

The parameters{a,b,c,s 2} (KALMAX) or {a,b,c,f ;s 2} (KALTFN) are estimated

through calibrating the models to the observations from 1995-1999 (section 2.3).
Usually it is assumed that the observations are without error, as in time series
analysis. However, an observation error variance of 1-4 cm? is appropriate for most
piezometer data. Although in theory the parameters of the deterministic model part

{a,b,c} and the parameters of the stochastic part{f ,s 2} should be calibrated

simultaneously, it is recommended to use a three-step procedure in KALMAX or

KALTFN (in VIDENTE these three modes can be chosen from in the Calibration

menu):

1.e fliJr)st, the parameters {a,b,c} are calibrated (called “deterministic calibration” in
VIDENTE). This achieved by fixing the parameter s > = 0 during the calibration
(in case of KALTFN fixf =0.95) and setting the observation error
variances §k =1 for all time steps;

2. in the second step, called the “stochastic calibration” the parameters {a, b, c} are

fixed at the values obtained in step 1 and the parameters s 2 (KALMAX) or

{f ,s 2} (KALTFN) are calibrated while setting s yzk =0for all time steps;

3. finally, using the parameter values found in steps 1 and 2 as initial estimates, all
parameters {a,b,c,s 2} (KALMAX) or {a,b,c,f,s 2} (KALTFN) are calibrated
in the last step, thus making sure that unbiased estimates of these parameters are
found (s f,k set at correct value). If the adjustment in step 3 is large, i.e. if very

different values of the parameters are found, we must be suspicious and perhaps
decide to use the parameters found in steps 1 and 2 and forget step 3.
The result of the calibration with KALMAX/KALTFN is a file with calibrated
parameters and the mean error (ME), root mean squared error (RMSE) and mean
absolute error (MAE) of Kalman filter time updates:

1% (-
ME :Vé (hk|k-1' Yk) (28)
k=1
o (e
RMSE = Va Peper = Y (29)
k=1
1Y~
MAE =—@a |hq-1 - Yk (30)
M =

Furthermore, the file with Kalman filter predictions is given, which contains the
Kalman filter time updates, measurement updates, their variances, observations,
innovations (see 2.3) and the innovations 95% prediction interval. Figure 7 shows an
example of the output from a calibration run.
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Figure 7 Example output from calibrating KALMAX or KALTFN

2.4.2 Verification: prediction without Kalman filter

After calibration, it is wise to check whether the deterministic part of the model is
able to describe the dynamics of the water table depth sufficiently well. An indication
that a deterministic fit is problematic would have been a strong adjustment of the
parameter values in step 3 of the Calibration step. Figure 7 shows the time updates
from the Kalman filter. A problem with using the Kalman filter could occur if the
number of observations is large. In that case, the resulting time updates could be
insensitive to the model dynamics, because updating is performed too Frequently. In
that case a small value of criterion (27) could still result in poor estimates of the
dynamic parameters a and b. Therefore, a prediction with the deterministic part of
the model should be made, without the updating. This can be achieved by running
KALMAX/KALTFN for the calibration period as a means of verification by setting

s 2 =0 and the observation error variances §k =1, and fixing the values of g, e;and
q, at their calibrated values (in VIDENTE this is an option in the prediction menu).

The result of the verification with KALMAX/KALTFN is a file with parameters
used and the following verification statistics:

1Y
ME :Vé (hk - yk) (31)
k=1
(1w ( )z
RVSE = (=3 - ¥ (32)
k=1L
M ~
MAE:Mié A - yk‘ (33)
k=1

82 Alterra-rapport 613



which are usually larger than the statistics from the Calibration run, because no
updating is used. KALMAX/KALTFN also give the file with predictions, the

observations and the residuals ﬁk - Y,. Figure 8 shows and example of the output
from a verification run, where in this case observations are present almost every day.
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A residual

0.2 17
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Figure 8 Example of verification of the deterministic part of the ARX or TFN model

2.4.3 Simulation

Using the calibrated parameters from the calibration step the programs
KALMAX/KALTFN can be used to simulate realisations of h, (If the local drainage
level is known, these time series can be converted to simulated realisations of
drainage discharge, using Equations 5 and 7). In case fluctuation quantities have to
be estimated multiple realisations must be simulated. The output consists of a file
containing the realisations of h,. This file can be used as input for the program
STATSIM in order to calculate the fluctuation properties. In our example we would
typically simulate realisations of 30 years long, i.e. using precipitation and potential
evapo-transpiration from 1970-1999, in order to obtain fluctuation quantities that are
representative for the current climate, and not only for the weather conditions for
the observation period 1995-1999 (see Knotters and VVan Walsum, 1997).

2.4.4 Estimating fluctuation quantities

Using the program STATSIM fluctuation quantities can be calculated from the
simulated realisations. The output consists of the following:

A file with statistics

An example of this output is shown hereafter in Figure 9. The mean highest water
table, the mean lowest water table and the mean spring water table are given
(expected values, median values and 5 and 95 percentiles). Here quantities are
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calculated per realisation. So, the uncertainty here reflects only model uncertainty.
The univariate statistics are statistics over all simulated water table depths, which
means that they reflect both the within year variation and the year to year variation of
the weather as well as the model uncertainty (variation between realisations).

Univariate Statistics

mean
variance
stdev.

-106.425819
360.064484
18.975365

3rd moment -539.639771

P01 -148.944107
P05 -138.432495
P10 -132.007401
P25 -119.718979
P50 -105.809341
P75  -92.923340
P90  -82.159462
P95  -75.837044
P99  -65.247566

Mean Highest and Mean Lowest Water Table and Mean Spring Water Table

mean 5% 50% 95% std

GLG(t) -135.358978 -138.189285 -135.264694 -132.976761  1.565006
GHG(t) -78.744606 -81.293327 -78.789520 -76.163002  1.535088
GLG(z) -135.058350 -138.189285 -134.869598 -132.487930  1.608089
GHG(w) -79.471909 -82.413284 -79.414589 -76.819191  1.603910
GVG(t) -99.525368 -103.282478 -99.257187 -96.835274  2.082639

Figure 9 File with fluctuation statistics as output of STATSIM; GHG: mean highest water table; GLG: mean
lowest water table; GV G: mean spring water table; between brackets: denoting whether the statistic is determined
for the whole year (t), the summer period (S) or the winter period (w).

A file with the frequency of exceeding graph (FOE-graph)

The FOE-graph gives for every level the number of days that the water table depth
on any future day of any future year (at the same climate and hydrological regime as
in the calibration period) exceeds that level. It is in fact the cumulative frequency
distribution, reflecting both the within year variation and the year to year variation of
the weather as well as the model uncertainty. Figure 10 shows an FOE-graph.
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Figure 10 Frequency of exceeding graph

A file with the regime graph

The regime graph gives for every day number in a future year the expected water
table depth, the median and the 5 and 95-percentiles. The variation per day number
therefore reflects both year to year variation (i.e. our uncertainty about the future
weather) as well as model uncertainty. Figure 11 gives an example of a regime graph.
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Figure 11 Regime graph; black solid line: mean; black dashed lines: 5- and 95-percentiles; grey solid line: median.

A file with the histogram

Like the FOE-graph, the histogram reflects both the within year variation and the
year to year variation of the weather as well as the model uncertainty. From the
histogram we can read the expected number of days that the water table depth will
be within certain boundaries. Figure 12 gives an example histogram.
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Figure 12 Example histogram

A file with the correlation function

The correlation function gives the correlation coefficient between day k and day k
+1 (= lag 1), day k and day k+ 2 (lag 2), day k and day k + 3 etc. The correlation
function reflects both the response time of the groundwater system, as well as the
periodicity of the rainfall surplus. The longer it takes for the correlation function to
cross the x-axis, the slower the response time of the groundwater system. However,
because the periodicity of the rainfall surplus is also included, we cannot read the
characteristic response time from the correlation function. The correlation function
is the average of the correlation functions that are estimated for the realisations. An
example correlation function is given below (Figure 13).

N

1

: N TN

NN e \
. /

. N4

-0.6

correlation

0 50 100 150 200 250 300 350 400 450 500
lag (days)

Figure 13 Example correlation function

The characteristic response time (in days) for the ARX model and the deterministic
part of the TFN model is given by (Bierkens et al., 1999):
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. -3
°"In(a)

(34)

The effective correlation length (time span over which n, is correlated in days) of the
noise process (3) is given by (Bierkens et al., 1999):

_ -3t
()

Of course many more fluctuation quantities could be estimated from the simulated
realisations; see for instance Bierkens (1998) and Knotters et al. (2000).

q. (35)

2.45 On line prediction and monitoring

Finally, using the calibrated model, the program SSDKOPT can be used for on line
prediction, where in between dates that observations of water table depth are taken,
optimal predictions of water table depth are obtained using the Kalman filter. The
Kalman filter can also be used as a monitoring instrument by running it on line and
checking whether not much more than 5% of the innovations fall outside the 95%
error bounds (see Figure 7). If 5% falls outside, a change in the hydrological system
may have occurred. An alternative way of monitoring such a change is running the
deterministic predictions on line and plot the observations together with the

prediction interval ﬁk +1.96s ., (with s calculated with Equations (17 or 18)). If the

observations start to plot outside this interval, a significant change in the hydrological
system may have occurred.
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Annex: Input instructions for KALMAX and KALTFN

C Copyright (C 2000, Alterra, Geen Wrld Research
C

C This programis distributed in the hope that it will be useful,

C but W THOUT ANY WARRANTY. No author or distributor accepts

C responsibility to anyone for the consequences of using it or for

C whether it serves any particul ar purpose or work at all, unless he
C says so in witing. Everyone is granted permi ssion to copy, nodify
C and redistribute this program but only under the condition that the
C the reference belowis given and that this notice and the above

C copyright notice remain intact.

C
cceceeececeeeecececceceecccccecececccccececccccccececccccccccccccccececcccccceccccccccece
¢ Program KALMAX - KALman filtering of a sinple ar MAX nodel

c

¢ Goal : Calibration of a sinple ARVAX nodel of daily tinme steps

c on neasurenents of water table depths taken at irregular

c intervals. The programuses the output of the Kalman filter in
c Schweppe's maxi nrum i kelihood criteriumto obtain estinmates of
c the paraneters of the ARMAX-nodel. The program can al so be

c used as stand al one Kalman filter (no optinization).

c

¢ Version: 1.0 (Cctober 14th 1997)

¢

c Oder of ARMAX: n=1, r=1, s=0

c

c Author: Marc F.P. Bierkens

¢ Reference: Bierkens, MF.P., M Knotters and F.C. Van Geer, 1999.

c Calibration of a transfer-function noise nodels to sparsely
c or irregularly observed tine series.

c WAt er Resources Research 35(6), 1741-1750.
C************************************************************************
c Input:

c interactive:

c parfile - name of paraneter file (input variables)
g************************************************************************
c PARFI LE
C************************************************************************
c record 1: nmeasfile - nane of file with neasurements of water
c tabl e

c record 2. netfile - nane of file with precipitation and

c ref erence evapotranspiration

c record 3: kalfile - name of file with Kalman filter results
c record 4: optfile - name of file with results of

c optim zation

c record 5: iflag - 0: calibration node

c 1: - Kalman filter node (no calibration)
c - Prediction node: set iflag to "1"
c and set varw = 0 and sneas = 1

c 2: Simul ati on node

c (the following inputs are only used for sinulation
c but val ues nust be supplied even for nbdes 0 and
c 1)
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c i seed - random seed, only used in sinmulation

c node

c nsim - nunber of realizations required

c nyears - nunber of years per sinulated

c realization

c year1l - first year of the sinulated realizations
c record 6: initial values of paraneters to be calibrated: if a
c paranmeter is actually calibrated it should be given
c a non-zero initial val ue!

c par0(1l) - deltal (-)

c par0(2) - omegaO (days)

c par0(3) - cpar (cm

c par0(4) - varw (cnR)

c record 7: Indicators that are "1" if paraneters are to be

c calibrated and "0" if they are not.

c doi =1,4{

c i cal code(i)

c

c if all codes are zero, the Kalman filter is only

c run once with the paraneters given in record 4.

c record 8: gwevO - initial value of groundwater |evel

c record 9:

c smeas - variance of measurenent error (cnR)

c record 10:

c dstep - tinme step (days)

c sintim - total simulation tinme (days)

c (in sinmulation node: sintimalso includes
c the startup tine)

c ftol - closure criterion used in calibration

c node ftol typically has a val ue between
c 0. 000001 and 0.01. If the nunber of

c iterations exceeds 100 ftol should be

c i ncreased.

c record 12:

c startim- startup tine (days)

c (only relevant in simulation node; the

c time in days used for warmng up the

c simul ati on ndays recorded in output =

c sintimstartimand should total the

c nyears per realization)
S********************* end pararreter fiIe*******************************
c
C************************************************************************
c MEASFI LE - file with nmeasurements of heads
C************************************************************************
c record 1: nneas - nunber of neasurenents

c do i = 1,nneas {

c record(i+1): xmtime(i) - measurenment time-step (days)

c xmeas(i) - neasurenent (m
g********************* end flle Wth ﬂ’EﬁSUI’en’EI"ItS kkkkhkkhkhkkkhkkhkhkhkhkkhkkhkhkhkxkkhkhkhkk
g************************************************************************
c METECFI LE - file with neteo data
C************************************************************************
c record 1: ndays - nunber days to read

c ncol s - nunber of columms present

c cfac - multiplication factor (for unit conversion)
c if right unit: cfac =1

c icolp - colum nunber precipiation

c i colep - colum nunber pot. evapotranspiration

92 Alterra-rapport 613



c do i = 1, ndays {

c record(i+1): xnmtime(i) - measurement time-step (days)

c ncol s col ums

c

C********************* end n-et eofl I e kkkkhkhkhkhkkhkkhkhkhkhhkdhkhkhkhkhkdhkxhkdhkhrhkhkhkdhxkddx
c

c Qutput:

C****'k******************'k******************'k*****************************

o

OO0 O0O000O00000000000O00 00

1) kalfile

a) in kalman filter or calibration node
time - time (days)
gwo - time update (m bel ow surface)
gwl - neasurenent update (m bel ow surface)
sgwo - error variance tine update (nR/day2)
sgwl - error variance measurenent update

(n2/ day?2)
when neasurenents are avail abl e:

xnmeas - neasured val ue (m bel ow surface)
(xmeas - gw0) - innovation (m bel ow surface)

b) in simulation node:
unformatted file (can be used as input for STATSIM
record 1: yearl — first year of simulated realisation
nsim— nunber of sinulated realisations
nyears — nunber of years per realisation
do k = 1,nsim

do i = 1,nsteps
record 1 + (k-1)*nsim+ i: gwl — sinulated water
tabl e depth
enddo
enddo

c note: nsteps = int(sintinfdstep)

C************************************************************************

OO0 000

2) optfile:
iter - iteration number
doi =1, nw+4 {
par (i) - paraneters
funk(par) - value of criterium

ccccececeecececceccececccececceccecccecccececccececccececcccecccecccececccecccccccecccccccccccccccccccce

The following is an example parameter file for KALMAX

-120
0

365

32cl 3415. 10

debilt.ca

armaxcl5. k10

arnmaxcl5. 010

0 -79359 1 5 1992

. 954939 0.442178 -129.935593 2.0
1111

1. 4017 0.00001
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C Copyright (C 2000, Alterra, Geen Wrld Research
C

C This programis distributed in the hope that it will be useful,

C but W THOUT ANY WARRANTY. No author or distributor accepts

C responsibility to anyone for the consequences of using it or for

C whether it serves any particular purpose or work at all, unless he
C says so in witing. Everyone is granted perm ssion to copy, nodify
C and redistribute this program but only under the condition that the
C the reference belowis given and that this notice and the above

C copyright notice renain intact.

CCcccccececececcececccececcceccecccecccececccecceccceccceccecccecccecccceccceccccecccccccccccccccccccce

¢ Program KALTFN - KALman filtering of Transfer Function Noi se nodels
c

c Coal : Calibration of a transfer function noise nodel of daily tine
c steps on neasurenents of water table depths taken at irregular
c intervals. The programuses the output of the Kalnman filter in
c Schweppe's maxi mum | i kelihood criteriumto obtain estinmates of
c the paraneters of the TFN-nodel. The program can al so be used
c as stand al one Kalman filter (no optim zation).

¢

c Version: 0.0 (october 13th 1997)

c

¢ Order of TFN: n=1, r=1, s=1, p=1, q=0, b=0

c

c Author: Marc F.P. Bierkens

¢ Reference: Bierkens, MF.P., M Knotters and F.C. Van Ceer, 1999.

c Calibration of a transfer-function noise nodels to sparsely
c or irregularly observed tine series.

c WAt er Resources Research 35(6), 1741-1750.
C************************************************************************
Cc I nput:

c interactive:

c parfile - name of paranmeter file (input variabl es)

c
C************************************************************************
c PARFI LE

C************************************************************************

c record 1: neasfile - nane of file with neasurements of water
c tabl e

c record 2: netfile - name of file with precipitation and

c ref erence evapotranspiration

c record 3: kalfile - nanme of file with Kalman filter results
c record 4: optfile - name of file with results of

c optim zation

c record 5: iflag - 0: calibration node

c 1: - Kalman filter node (no calibration)
c - Prediction node: set iflag to "1"
c and set varw = 0 and sneas = 1

c 2: Simul ation node

c (the following inputs are only used for simulation
c but val ues nust be supplied even for nodes 0 and
c 1)

c i seed - random seed, only used in simulation

c nmode

c nsim - nunber of realizations required

c nyears - nunmber of years per sinulated

c realization

c yearl - first year of the sinulated realizations
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c record 6: initial values of paraneters to be calibrated: if a
c paranmeter is actually calibrated it should be given
c a non-zero initial value

c par0(1) - deltal

c par0(2) - onegal

c par0(3) - onmegal (set to zero at all tinmes)

c par0(4) - phil

c par0(5) - cpar

c par0(6) — varw

c record 7: Indicators that are "1" if paraneters are to be

c calibrated and "0" if they are not (ical code(3)=0
c at all times).

c doi =1,6{

c i cal code(i)

c

c if all codes are zero, the Kalman filter is only

c run once with the paraneters given in record 4.

c record 8: gwev0 - initial value of groundwater |eve

c record 9:

c sneas - variance of neasurenent error (nR)

c record 10:

c dstep - tinme step (days)

c sintim - total sinmulation tine (days)

c (in sinmulation node: sintimalso includes
c the startup tine)

c ftol - closure criterion used in calibration

c node ftol typically has a val ue between
c 0. 000001 and 0.01. If the nunmber of

c iterations exceeds 100 ftol should be

c i ncreased.

c record 11:

c startim- startup tine (days)

c (only relevant in sinulation node; the

c time in days used for warmng up the

c simul ati on ndays recorded in output =

c sintimstartimand should total the

c nyears per realization)
S********************* end para”eter flle EE R S R R T
g************************************************************************
c MEASFI LE - file with nmeasurements of heads

C************************************************************************

c record 1: nneas - nunber of neasurenents

c cfac - conversion factor

c do i = 1,nneas {

c record(i+1): xntime(i) - nmeasurenment time-step (days)

c xneas(i) - neasurenent (m

c

c********************* end flle V\ﬂth n’EaSuren’entS EE R R Ik O kO
c
C************************************************************************
c METECFI LE - file with neteo data
C************************************************************************
c record 1: ndays - nunber days to read

c ncol s - nunber of columms present

c cfac - multiplication factor (for unit conversion)
c if right unit: cfac =1

c icolp - colum nunber precipiation

c i colep - colum nunber pot. evapotranspiration
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c do i = 1, ndays {
c record(i+1): xnmtime(i) - measurement time-step (days)
c ncol s col ums
c
C********************* end n-et eofl I e kkkkhkhkhkhkkhkkhkhkhkhhkdhkhkhkhkhkdhkxhkdhkhrhkhkhkdhxkddx
c Qutput:
C************************************************************************
c 1) kalfile
a) in kalman filter or calibration node

time - time (days)

gwo - tinme update (m bel ow surface)

gwl - neasurenent update (m bel ow surface)

sgwo - error variance tine update (nR/day2)

sgwl - error variance neasurenent update

(n2/ day?2)
when neasurenents are avail abl e:
xmeas - neasured val ue (m bel ow surface)
(xmeas - gw0) - innovation (m bel ow surface)

b) in simulation node:

do k = 1,nsim

OO0 0000000000000 000

C note: nsteps =int(sintindstep)

unformatted file (can be used as input for STATSIM

record 1: yearl — first year of simulated realisation
nsim— nunber of sinulated realisations
nyears — nunber of years per realisation

do i = 1,nsteps
record 1 + (k-1)*nsim+ i: gwl — sinulated water
tabl e depth
enddo
enddo

C**********************************************'k*************************

c 2) optfile:

c iter - iteration nunber

c doi =1,nw+4 {

c par (i) - paraneters

c

c funk( par) - value of criterium
ceceeecececeeceececccececcccccececccccececccccccececcccccccecccccccececcccccceccccccccece

The following is an example parameter file for KALTFN

32cl 34ra. 10

debil t.ca

tf nc15. k10

tf nc15. 010

0 -79359 1 5 1992
0. 954996 0.44010 0. 0.908164 -129.935883 15.492792
110111

-120

0.

1. 4017 0. 00001
365
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Part 3; Documentation SSD

A program for modelling the water table depth using a stochastic
differential equation of the soil water balance
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1 Model, input variables and parameters

1.1 Model description

An extensive description of the model, its derivation and use can be found in:
English

Bierkens, M.F.P., 1998. Modeling water table fluctuations by means of a stochastic
differential equation. Water Resources Research 34(11), 2485-2499.

Dutch

Bierkens, M.F.P., 1988. Eenvoudige stochastische modellen voor grondwaterstands-
fluctuaties. Deel 1: Een stochastische differentiaalvergelijking. Stromingen 4(2), 5-26.

Here follows a brief description of the model and its parameters.
The water table depth is described with the following stochastic differential equation
(SDE):

G(h)% = P(1) - E.(S(h),t) +q, () - qq(h,1) +Xx(t) (1)

The SDE is derived by setting up the water balance for a soil column (Figure 1),
where it is assumed that the soil moisture is at equilibrium at all times. The following
variables and parameters are distinguished:

h(t)  water table height with respect to some reference level [L] representing the
water storage in the groundwater zone;

S(h)  average soil saturation [-], which is zero if the soil is completely dry (all pores
are filled with air) and 1 if the soil is saturated (all pores are filled with water).
The average soil saturation represents water storage in the vadose zone;

It is assumed that the soil moisture profile is at equilibrium at all times. The
equilibrium profile is modelled with the following Van Genuchten-type of
relationship (Troch et al., 1993) (y is suction head [L]):

n+l

VN

¢ 2
+@y)"d @

a(z)°a.¢ ) =q, +(@, - q,)8

where a [L"] and n [-] are Van Genuchten-type parameters, ¢ [-] is the saturated

moisture content and ¢, [-] the residual moisture content of the soil. Note that
instead of the exponent n/(n-1) that normally appears in the Van Genuchten’s
relationship (Van Genuchten, 1980) the exponent n/(n+1) is used. Using (2) the
average soil saturation can be written explicitly as a function of the water table height
with respect to the surface elevation z,):
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s(h) =a;{1+ a(z- h)] 3)

(z,- h)

The assumption of an equilibrium soil moisture profile entails that the model is only
suitable for shallow water table depths. In this case the redistribution of soil moisture
as a result of precipitation or changing water table depth occurs rapidly, so that an
equilibrium soil moisture profile can be expected to occur almost instantaneously.
Moreover, the equivalent soil moisture profile, i.e. the soil moisture profile that will
allow the time-averaged vertical flux to pass through the soil column, is
approximately equal to the equilibrium profile for shallow water tables (Salvucci and
Entekhabi, 1994).

G(h): dynamic storage coefficient [-] given by:
3 | 7

G(h) =e, +(a, - q,)@- [1+[a(z - W] "] 7 g (4)
é a

The dynamic storage coefficient can be derived from (2) (Bierkens, 1998). The
parameter e, the residual groundwater storage (due to air bubbles and surface

depressions) that remains when the water table is close to the surface: h(t) ® z.
From (4) it can be seen that the storage coefficient decreases when the water table is
closer to the surface. This can be expected because a shallower water table has the
effect that more soil pores are filled with water.

P(t)  net precipitation [LT™]: precipitation minus interception by foliage;
E.(S,t) actual evapo-transpiration [LT"], which depends on the so called Makkink

reference crop evapo-transpiration E,(t) [LT"] (Winter et al., 1995), a crop
factor F, (1.0 for standard grassland (Feddes, 1987) and the soil saturation as:

E.(S,t) =F.E, (0[st)]* (5)
where ¢ is a constant (»0.5 for fully vegetated soils (Lowry, 1959));

q(t)  flux from/to the deeper groundwater [LT™;
qq(h,t) drainage to/from the surface waters [LT™.

Usually several types of surface water systems (including trenches and drains) are

present. The total flux gy(h,1) is thought of as the sum of separate fluxes q;(h,t) to the
my surface water systems present:

4, (ht)= & q,(h.1) )

i=1

100 Alterra-rapport 613



Each of these fluxes depends on the water table height h(t) relative to the surface
water level H,(t) [L] and a drainage resistance g [T] as:

h(t)- H,, (0.

qq (h1) = (7)

If level H(t) < h(t) the surface water drains the groundwater, if H(t) > Rh(t) it
supplements the groundwater. It is also possible that a trench or a drain is present, in
which case H(t) represents the trench bottom or drain elevation. Drains or trenches
drain if H(t) < h(t) and are inactive if H(t) > h(t).

x(t) system noise: a white noise process, which models all variations in h(t) that

cannot be explained by the model (including both the model error and the
errors due to uncertainty about parameters and input variables).

The problem with a continuous white noise process is that it has infinite variance.
This means that no real solution to (1) would be possible. To overcome this
problem, not the white noise itself is modelled but the white noise process multiplied
by a small time step dt, which is the same as an independent the increment of the
Wiener-Levy process b (t) (Brownian motion) over the interval dt:

x(t)dt = b(t+dt)- b(t)° db, (8)

The symbol db, is used to denote this increment, which has the following statistical
properties (E[] means expected value):

E[db,]=0 "t
E[db?]=s %dt 9)
E[b(t+d)b(®)] =0 " dtt 0

From the last property it can be concluded that two increments of any two non-
overlapping time periods dt, and dt, are independent, no matter how small dt
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Figure 1. Schematic representation of the stochastic model for the soil water balance of a soil column

1.2 Input variables and parameters / invoervariabelen en parameters

Next follows the list of input variables and parameters used in the program SSD
(units between square brackets), first in English, then in Dutch:

English:

input variables

P(t)  precipitation minus interception losses (mm/d). P(t) can be calculated from
the measured precipitation R(t) (mm/d) using the interception fraction F;

P(t) = (1- F)R() (10)

Table 1 gives values of F, for a number of different land use classes. Note that SSD

does not take care of Equation (10), so that in the input file P(t) and not R(t) must be

given;

E.(t) Makkink reference crop evapo-transpiration (mm/d);

surface parameter and initial conditions

Z, surface level (=reference level: usually set to 0) (cm). We advise to use the
average water table depth, as is z, is also used to give on the screen an
indication of the characteristic response time and the prediction variance.

h, initial value water table depth (cm reference surface level e.g. -130);
crop/land use parameter
F. crop factor [-] (see Equation 5). Table 1 gives the crop factor F, for a number

of different land use classes;
soil parameters

(o} saturated volumetric water content (-) (see Equation 2);
o residual volumetric water content (-) (see Equation 2);

Van Genuchten-type parameter (cm™) (see Equation 2);
n Van Genuchten-type parameter (-) (see Equation 2).
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Values of q,,q,, @ and n for representative soils can be obtained from Table 2;

€ residual groundwater storage (-) (see Equation 3). Typical values range
between 0.001 and 0.1;

hydrological parameters

qy bottom flux: flux from/to deeper groundwater (mm/d) (see Equation 1).
Typical values range between —1.0 and 3.0 mm/d,;

my number of surface water systems (see Equation 6). These include also
trenches and drains;

for each surface water level the following parametersi =1,2,...

H,;  drainage level (cm) with respect to surface level (e.g. —150). This can either be
a surface water level or trench bottom or drainage depth. It is also possible
that the drainage levels depend on time, i.e. H(t), in which case they are
input variables are read from a file (see Equation 7);

dflag. A flag which is “0” if system i is only draining (trenches and drains) and “1”
if system i is both draining and infiltrating. The case that the surface water
level depends on outflow from the water course and the inflow from the
groundwater (as in a natural stream) is not modelled here;

g drainage resistance (days) of surface water system i (see Equation 7). Values
may range between 5 and 500 days;

noise parameters

s #  variance of the system noise process db, (see Equations 8 and 9) (mm?’/d?).
Typical values range between 10 and 50 mm?®/d?
S 5 variance of measurement error (cm?/d%); only used in case the Kalman filter

is used (see chapter 2). In most time series analysis set to zero.

In Table 2 the parameters for relationship (3) are given for the soils of the Staring
Series (Wasten et al., 1994). Remember that relationship (3) is different from the
original Staring Series so the parameters are also different. If the Staring Series is to
be used together with SSD the correct parameters should be read from Table 2. The
SDE has been derived for homogeneous soil profiles only. However, we added a
number of additional codes for layered profiles. Table 3 lists the combination layers
analysed and the Staring Series codes used for each of the layers. The effective
parameters were obtained as follows. Suppose we have profile with 25 cm sand on 75
cm clay. First, for a large number of suction heads the soil moisture content is
calculated for both sand and clay, using Equation (2). Next the total soil moisture
content for each suction head is calculated by taking a weighted average of the soil
moisture contents of sand (weight 0.25) and clay (weight 0.75). The result is an
effective soil moisture equilibrium function for a soil of 25 cm sand on 75 cm clay or
75 c¢cm clay on 25 ¢cm sand. Finally the associated soil physical parameters can be
found by fitting Equation (2) to the effective soil moisture equilibrium function.

Nederlands:

invoervariabelen

P(t)  Neerslag min interceptie (mm/d). P(t) kan berekend worden uit de gemeten
neerslag R(t) (mm/d) via een interceptiefactor F;
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P(t) = 1- F)R() 10)

Tabel 1 geeft waarden van F; voor verschillende landgebruiksklassen. SSD
zelf past formule (10) niet toe. De gebruiker moet P(f) dus buiten SSD
berekenen en in de invoerfile meegeven en niet R(t);

E.(t) Makkink referentieverdamping (mm/d);

referentie en beginvoorwaarde

Z, referentiehoogte (meestal het maaiveld, gelijk gezet aan 0) (cm);

h, beginwaarde grondwaterstand (cm referentie, bijv. -130). Neem hiervoor bij
voorkeur de gemiddelde grondwaterstand, omdat deze parameter ook wordt
gebruikt om op het scherm een indicatie te geven van de karakteristieke
responstijd en de predictievariantie.

parameter landgebruik

F. gewasfactor (-) (Vergelijking 5). Tabel 1 geeft gewasfactoren voor
verschillende landgebruiksklassen;
bodemparameters

(o} verzadigd watergehalte (-) (zie Vergelijking 2);

o residueel watergehalte (-) (zie Vergelijking 2);

a Van Genuchten parameter (cm™) (zie Vergelijking 2);

n Van Genuchten parameter (-) (zie Vergelijking 2).

Tabel 2 geeft waarden van g, ,g, , @ and n voor een aantal representatieve
textuurklassen;

€ residuele grondwaterberging (-) (zie Vergelijking 2). Waarden van deze
parameter variéren meestal tussen 0.001 and 0.1;

hydrological parameters

ay kwel/infiltratie: flux van/naar dieper grondwater (mm/d) (zie Vergelijking 1).
Waarden van deze parameter variéren meestal tussen —1.0 (infiltratie) en 3.0
(kwel) mm/d;

My aantal gemodelleerde opperviaktewatersystemen (zie Vergelijking 6).
Hieronder vallen ook drains en greppels;

Voor elk oppervlaktewatersysteem i = 1,2,...

H,;  drainageniveau (cm maaiveld) (bijv. —150). Dit kan ofwel een oppervlakte-
waterniveau zijn ofwel een draindiepte of greppeldiepte. Het is ook mogelijke
dat de drainageniveaus afhangen van de tijd i.c. H(t). In dat geval moeten ze
van een file worden ingelezen (zie Vergelijking 7);

dflag  Als deze vlag op “0” staat geeft deze aan dat het oppervlaktewatersysteem i
alleen draineert en dus kan droogvallen (greppels en drains) and als deze op
“1” staat dat systeem i is zowel kan draineren als kan. Bedenk dat alleen
opgegeven peilen worden gemodelleerd. Natuurlijke oppervlaktewateren
waarbij het peil afhangt van het instromend grondwater en het uitstromend
oppervlaktewater worden hier niet gemodelleerd;

g drainageweerstand (dagen) van oppervlaktewatersysteem i (zie Vergelijking
7). Waarden van deze parameter variéren meestal tussen 5 en 500 dagen;

Ruiscomponenten

s ?  variantie van de systeemruisdb, (zie Vergelijkingen 8 and 9) (mm°/d’).
Waarden van deze parameter variéren meestal tussen 10 and 50 mm?*/d?;
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s 2 variantie van de meetfout (cm?”/d?). Deze is alleen relevant als het Kalman

filter wordt gebruikt (hoofdstuk 2). Bij tijdreeksanalyse wordt deze parameter
meestal gelijk verondersteld aan 0.

Tabel 2 geeft de parameters voor Vergelijking (3) (de pf-curve) voor standaard
textuurklassen van de Staring Reeks (Wosten et al., 1994). We herhalen hier nogmaals
dat Vergelijking (3) afwijkt van de normale formulering van de Van Genuchten pf-
curve, zodat de parameterwaarden ook afwijken van de waarden die vermeld staan in
Woasten et al. (1994). Dus als SSD gebruikt wordt dan moeten de Van Genuchten
parameters van de Staringreeks worden gelezen uit Tabel 2. Tabel 2 geeft ook
effectieve Van Genuchten parameters voor bodems die uit verschillende
verhoudingen van zand/Kklei, zand/veen en veen/klei bestaan. De verhoudingen van
deze texturen per code staan in Tabel 3.

Table 1. Crop factors and interception fractions for various crops and land use (sources in footnotes)

Crop/land use Fe Fi
Grassland 0.961 0.00
Potatoes 1.031 0.00
Beets 0.981 0.00
Grain 0.951 0.00
Maize 0.921 0.00
Other crops 0.88! 0.00
Fallow 0.702 0.00
Deciduous wood 1.003 0.208
Coniferous wood 0.803 0.408
Tree nurseries 1.008 0.208
Other trees 0.908 0.308
Heath 0.702 0.00
Wetland vegetation 1.044 0.00
Dryland vegetation 0.702 0.00
Other vegetation 0.875 0.00
Orchard (soil not covered) 0.916 0.067
Orchard (grass strips) 0.976 0.067
Sports field 0.968 0.00
Public garden 0.97° 0.06°
Horticulture under glass 1.300 1.00
Horticulture not under glass 0.8811 0.00

1 Crop factor of average growing season according to Feddes, R.A., 1997. Crop factors in relation to
Makkink reference-crop evapo-transpiration. In: Verslagen en Mededelingen 39, pp. 33-45, CHO-
TNO, The Hague.

2 Jansen, P.C., 1986. De potentiéle verdamping van (half-)natuurlijke vegetaties. ICW nota 1703,
Wageningen (in Dutch).

3 Moors, E.J., AJ. Dolman, W. Bouten en A.W.L. Veen, 1996. De verdamping van bossen HO
19(16), 462-466 (in Dutch). Furthermore, the parameters for “tree nurseries” have been taken the
same as for deciduous wood, and those for “other wood” as the average of deciduous and coniferous
wood.
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4 Seasonal average of Molinia from Moors, E.J., J.N.M. Stricker and G.D. van den Abeele, 1998.
Evapo-transpiration of cut over bog covered by Molinea Caerulea. Agricultural University,
Department of Environmental Sciences, report 73, Wageningen.
5 Average of wetland and dryland vegetation.
6 Assuming a tree coverage of 30% we calculate:
Orchard (soil not covered): Fc = 0.7" 0.88 (other crops) + 0.3" 1.0(deciduous trees) = 0.91
Orchard (grass strips): Fe = 0.7" 0.96 (grassland) + 0.3" 1.0(deciduous trees) = 0.97
7 Assuming a tree coverage of 30% we also assume 30% of the interception of deciduous wood
yielding an interception factor of 0.3" 0.20 = 0.06.
8 Taken the same as “grassland”.
9 Taken the same as “orchard (grass strips)”
10 All water is intercepted. The evapo-transpiration for horticulture under glass in the western part of
the Netherlands is about 700 mm/year, which is about 1.3 times the average reference evapo-
transpiration for that area (personal communication Philip Hamaker). The excess water needed is
obtained from the intercepted precipitation water that is collected in tanks.
11 Taken the same as “other crops”.
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Table 2. Building blocks (texture classes) of the Staring Series with the soil physical parameters of Equation (2).
Description of building blocks can be found in Wosten et al. (1994).

0s ar a N

Topsoils

B1 0.446 0.0534 0.00203 0.803
B2 0.433 0.0611 0.00286 0.943
B3 0.465 0.0729 0.000785 0.701
B4 0.445 0.0467 0.00175 0.758
B7 0.430 0.0985 0.000359 0.540
B8 0.440 0.1330 0.000562 0.781
B9 0.437 0.1050 0.000396 0.783
B10 0.430 0.1250 0.00013 0.609
B11 0.626 0.2900 0.0000905 0.484
B12 0.548 0.2780 0.0000597 0.468
B14 0.425 0.1290 0.000345 0.773
B16 0.733 0.1210 0.000434 0.677
B17 0.749 0.3200 0.000182 0.541
B18 0.790 0.3210 0.00025 0.580
Subsoils

01 0.365 0.0201 0.00764 1.333
02 0.383 0.0372 0.00696 1.316
03 0.354 0.0416 0.00294 0.924
04 0.364 0.0292 0.00179 0.873
05 0.342 0.0125 0.0148 1.002
06 0.459 0.1320 0.0000138 0.335
08 0.470 0.0967 0.000736 0.795
09 0.476 0.0892 0.000602 0.770
010 0.500 0.1500 0.000433 0.751
o11 0.437 0.1580 0.0000857 0.464
012 0.578 0.2630 0.000189 0.627
013 0.579 0.2430 0.0000236 0.453
014 0.381 0.0449 0.00066 1.181
015 0416 0.1280 0.000482 0.797
016 0.906 0.1700 0.00076 0.816
o17 0.883 0.2230 0.000478 0.686
Two texture classes

ZV1 0.773 0.1780 0.000583 0.647
ZV?2 0.651 0.1390 0.00105 0.688
ZV3 0.521 0.0963 0.00274 0.857
ZK1 0.542 0.2140 0.000343 0571
ZK2 0.496 0.1660 0.00125 0.683
ZK3 0441 0.1090 0.00156 0.968
KV1 0.812 0.2290 0.000371 0.644
KV2 0.734 0.2410 0.000316 0.635
KV3 0.567 0.2520 0.000253 0.625
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Table 3. Additional codes for two or more layer profiles consisting of two texture classes. Figures in table refer to
the fraction of total soil depth consisting of associated texture class. For instance, 25% of the depth of a soil column
with Z\V/1 consists of sand (building block O2) and 75% of the depth of peat (building block O17).

Sand (0O2) Peat (O17)
ZV1 0.25 0.75
ZV?2 0.50 0.50
ZV3 0.75 0.25
Sand (02) Clay (012)
ZK1 0.25 0.75
ZK2 0.50 0.50
ZK3 0.75 0.25
Clay (012) Peat (017)
KV1 0.25 0.75
KV2 0.50 0.50
KV3 0.75 0.25
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2. Stochastic modelling: prediction, simulation and calibration

There are two different ways of using the stochastic differential equation: prediction
and stochastic simulation. In the following sections these two different ways are
further explored. Also, some of the parameters, namely g €, g, and s ?, can usually
only be obtained through calibration. The section thereafter explains how calibration
of the SDE is achieved. Finally, the last section recapitulates how the application of
the SDE to a practical problem proceeds.

2.1 Prediction

Before we start with explaining prediction, we have to explain the nature of h(f) when
it is described with a stochastic model like Equation (1). It means that we are
uncertain about the exact variation of h with time. We do know that it is likely to be
lower in the summer time and higher during the winter, but there is still a lot of
unknown variation left. This variation is due to errors in our inputs, model
parameters and the fact that our model itself is only an approximation of reality.
Therefore, we vision that h(t) is not described by a single function of time, but as a
collection of possible functions, each of which are equally probable of describing the
real but unknown variation of h. Figure 2 illustrates this concept, showing four
equally possible functions.
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Figure 2 Equally probable realisations of the stochastic process h(t)

One particular function is called “a realisation” and the whole collection of equally
probable realisations, usually an infinite number of them, is called “the ensemble”
and h(t) is said to be “a stochastic process”. Now reality is assumed to be on of these
possible realisations, however which one exactly is unknown. We would want our
prediction to be such that the prediction error is minimal. However, because we do

Alterra-rapport 613 109



not know which of the realisations is reality it is not possible to evaluate the
prediction error either. Instead, we are forced to look at every time step at the
difference between our prediction and the values of all possible realisations. Suppose
that h(t) is the prediction and h(t) the value of realisation number i, then we seek a
prediction for which the following properties hold:

1. The prediction error, i.e. the difference between our prediction and the
realisations, is on average equal to zero:

¥ ~
4 [ho- nol=o w
i=1

2. The average squared prediction error is minimal (as small as possible):

g[ﬁ(t)- h (t)]2 b minmd (12)

i=1

It turns out that we achieve this if we take as prediction at every time the average of
all realisations:

h(t) = EIh®] = & h () (13)

The average of all possible realisations is called “the expectation” or “expected
value” of the stochastic process h(t) and is usually denoted with the operator E[]. If a
prediction is such that it has properties (11) and (12) it is said to be “unbiased”
(Equation 11) “optimal in least squared sense” (Equation 12). If we describe the
stochastic process h(t) with a stochastic differential equation like equation (1) the
expected value is (approximately) given by the solution of only the deterministic part
of the differential equation (1):

defh] _

G(E[h])F = P(t)- E,(S(E[h]),t) +q,(t) - q, (ELh],t) (14)

Figure 3 shows the realisations with the optimal prediction. Also shown is the 95%-
prediction interval which gives for every t the boundaries that contain 95% of the

realisations. Because the noise db,has a Gaussian (normal) distribution, the 95%

prediction interval can be calculated from the standard deviation of the prediction
error s (t) as follows:

[ELh(t)] £ 1.965 ]

with
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i \/6.‘1 o - ho)’ (15)

As shown hereafter, the variance of the prediction error can be estimated using a
Kalman filter. As it happens, for a non-linear model like (1) the prediction error
depends on water table depth. A rough estimate of the average prediction error can
be obtained with the following formula (based on Bierkens et al., 1999 and Knotters
and Bierkens, 2000):

2 = s (16)

‘? Dt ou
éG(h)gm 2

where his some nominal value of the water table depth (usually the mean value),
G(h) the associate storage coefficient and g the effective drainage resistance of the

number md(ﬁ) of active drainage levels for the nominal water table depth h. The
effective drainage resistance is calculated as:

-1

1
h)

) 1
O« = a — (17)
i-1 Oi]

O"‘<~'C

—n Lo\ /
3

h(t)

>

t

Figure 3 Prediction with the deterministic model (solid line) and boundaries of the 95% prediction interval (dashed
lines); grey lines are a number of realisations.

In case we have observations of h(t) we can use these to further improve the
predictions. This is shown in Figure 4. Here we have a clue about the realisation that
stands for reality because it has been observed a number of times. If the realisations
were without error, than the best strategy would be to simply set the predicted value
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equal to the observation as soon as the observation comes in (Figure 4a) and proceed
from there. At that time the prediction error would be zero. If there is an
observation error, the truth would be somewhere in between and an improved
prediction would be some weighted average of the prediction and observation. The
prediction error would than be somewhat smaller than the observation error (Figure
4b).

Observation time Observation time

Figure 4 Correcting a prediction (solid ling) with an observation without an observation error (Figure 4a) and with
an observation error (Figure 4b). The dashed lines show the 95% prediction interval, which will be of zero width
at the measurement time in case 4a and of limited width in case 4b.

An algorithm that performs such a correction is called the “Kalman filter”. Although
the Kalman filter can be used in continuous time, it is much easier to use it for

discrete time steps t = kDt, k = 0,1,2,... In our case, this could for instance be time
steps of one day, if the input variables such as precipitation and evapo-transpiration
have been observed daily. Suppose that h(k|k- 1)is the prediction at time step k

that has been obtained using (14) and corrections for all observations up to and
including time step k-1 and at time step k an observation Yy, is available. The
corrected prediction is then obtained as follows:

- e 2 (o e 0
Ak Tk) = G- — M Tk k- 1)+ GBSy (18)
%]

k-1 TSy, g S k-1 TSy,

where

h(k| k- 1) the “time update”, which is the optimal prediction at time step k given all
observations up to including time step k-1. The time update is such that
the difference between the time update and all realisations is on average
zero and that the variance of this difference is minimal:

¥
o

a lhk|k-1- hkDo)|=0 (19)

i=1
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¥ ~
s2. =4 |Ak|k-1- h(koy| b minmd (20)

i=1

S k2|k-1 the variance of the error in the time update as defined in (20), which is
calculated by the Kalman filter;

ﬁ(k| k)  the “measurement update”, which is the optimal prediction at time step

k given all observations up to including time step k. The measurement
update is such that the difference between the measurement update and
all realisations is on average zero and that the variance of this difference

is minimal:
¥ra.
& A1 - haon) =0 @
i=1
2 g ~ 2 ..
S =a [k |Kk)- h(kDt)] P minimd (22)
i=1
S k2|k the variance of the error in the measurement update as defined in (22)
which is also calculated by the Kalman filter;
s? the variance of the error in the observations.

Yk
The time update is calculated by application of the deterministic model (14) between

time steps k-1 and k with measurement update ﬁ(k- 1| k- Das initial condition:

Ak k- D) =R(k- 1]k~ 1)+ “3(1) P(t)- Ea(S(E[h]),(t;)(k;qv(t)' Ay (L) (23)

(k-2)Dt

From Equation (18) the workings of the Kalman filter become clear. If the
observation error is small compared to the model prediction error (i.e. the time
update), the updating in (18) will be such that the measurement update is close to the
value of the observation. On the other hand, if the error in the time update is small
compared to the observation error, i.e. the model is very precise when compared to
the observations, the measurement update resembles very much the time update.
The weight used in the weighted average (18), i.e. [S g, /(S .. +S ;. )] is called the
“Kalman gain”.

If at time step k there are no observations available, we simply have:

h(k |K) = h(k |k - 1) (24)

S If|k =S lf|k-1 (25)
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If for a long time no observations are taken we have that's g =s g, ® s, i.e. the

Kalman filter prediction variances become equal to the prediction variance of the
deterministic models, as given in Equation (15), and approximated with Equation
(16).

Figure 5 is similar to Figure 3, but now we have a number of observations present
and predictions are performed with the Kalman filter. For convenience, we have
shown the case with no observation errors. At a number of time steps observations
are present. Again, our unknown reality is modelled as a large number of equally
probable realisations. However, because we have observations, only those
realisations are eligible that pass through the observations (in case of a small
observation error, the realisations do not have to pass through the observations
exactly, but should pass close by). The time update is shown, as well as the 95%
prediction interval. Because the predicted water table depth is updated, the variance
of the prediction error is smaller than without updating (Figure 3); to put it in
another way: the averaged squared difference between the prediction (time update)
and the realisations is smaller than without the use of the Kalman filter.

hit
\ £ hikik-1)

>

t

Figure 5 Prediction with the Kalman filter (bold solid black line) and boundaries of the 95% prediction interval
(thin solid black lines); grey lines are a number of realisations, all passing through the observations; black dots are
observations.

2.2 Stochastic simulation

Prediction of water table depth is important if we are interested in the actual, but
non-observed water table depth. However, in many applications we are not
particularly interested in the actual water table depth, but in some fluctuation
quantities. For instance, we may be interested in the probability that at any day in the
near future the level of 30 cm is exceeded, or we want to know the mean highest
water table depth (MHW) or mean lowest water table depth (MLW) (Van der Sluijs
and De Gruijter, 1985). These fluctuation quantities cannot be estimated from the
predicted water table depth, because the predicted line typically overestimates the low
values and underestimates the high values (see Figures 3 and 5). The reason for this
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is that it tries to minimise the squared prediction error (Equation 15). In this case we

should do the following (See Figure 6):

1. simulate a large number (at least 100) realisations of the stochastic process h(t). A
realisation is simulated by numerical evaluation of the following integrals (based
on Equation (1) with Equation (8) for the noise component):

\P(t)- E,(S(E[h]).t) +q,(t) - g, (E[h].t)
h(t) =h(te) + & S0 ot +OG—db (t) (26)

to

where the increments of the Gaussian process b(t) are simulated for an
integration step of size dt by drawing from a Gaussian distribution with mean
zero and variance dt. The numerical evaluation of the second integral is not
particularly straightforward, because of the special properties of the process b(t).
Special Runge-Kutta integration can be used as explained by Newton (1991);

2. for each simulated realisation the appropriate fluctuation quantities are estimated.
For 100 realisations this yields also 100 values of this property, e.g. 100 MHWs
and 100 MLWs;

3. the cumulative frequency estimated from the replicas of the fluctuation quantity
(e.g. the 100 MHWSs and MLWs) represents an estimate of the probability
distribution of the fluctuation quantity. This probability distribution expresses
the uncertainty about the true value of the fluctuation quantity, uncertainty that
arises from our model’s inability to predict the unknown water table depth
exactly. Usually the average of the replicas is used as an estimate of the true but
unknown fluctuation quantity, and as a measure of uncertainty the 95%
confidence interval is calculated.
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Figure 6 Example of simulating 100 realisations of water table depth and estimating the probability distribution
of MHW from it.
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2.3 Calibration

To apply the SDE at some location the following parameters must be given a value:
z, 9, 0,a nF, F, H, g, ¢,and s 2_Elevation z, is usually known from
surveying. The parameters g, g, a, n can either be obtained from laboratory analysis
on sample cores, or they can be taken from a reference soil moisture retention curve
belonging to the texture class of the soil (e.g. Wosten and Van Genuchten, 1988)
(Table 2). The drainage water levels H, and the dominant land use near the location
are determined from field observations. From the dominant land use follow the
interception factor F, and the crop factor F, (Table 1). The resulting parameters g, e,
q,and s 2 must be obtained by calibrating the SDE to the time series of water table
depth. In case of a deterministic model, calibration only involves the minimisation of
some least squares criterion between predictions and observations. However, in this
case we also have to calibrate the noise parameter s °. For linear stochastic models
this parameter could be estimated separately from the residuals (differences between
deterministic predictions and observations). However, even for linear models, such a
two step approach generally leads to biased parameter estimates (see Te Stroet,
1995). Also, if the time series is very irregular (not a constant frequency), estimating

s’ is quite problematic. Here, a method is used combining the Kalman filter and a

maximum likelihood criterion that, given the assumptions (model prediction errors

and measurement errors are Gaussian distributed), provides unbiased maximum

likelihood estimates of the parameters g, e, g,and s 2, The method can be used for

irregularly and sparsely observed time series and has the added advantage that it is

able to take account of measurement errors.

If we have M time steps with observations (not necessarily with regular intervals

between them), the method proceeds as follows (we assume that the input time

series, i.e. precipitation, potential evapo-transpiration and surface water levels have

been collected for the period for which we have observations):

1. choose initial values for parameters g, e, g,and s 2

2. use these parameter values to run the Kalman filter for the period that contains
the observations. This yields for each observation occasion an “innovation”

n =y - ﬁ(l |l - I)and the associated innovation variance (calculated by the

Kalman filter, see Bierkens, 1998) s * =s 1 +s 2 ;

3. from the M innovations and innovation variances the following maximum
likelihood criterion is evaluated (Schweppe, 1973):

¥ o2, 47l
J=MIin(2)+3 njs 2]+ &"a @27)
=1 =181

&

choose a new set of parameters g, e, g,and s 2.
5. repeat steps 2 to 4 until ML-criterion (27) is minimised. The resulting parameter
set is a maximum likelihood estimate of the parameters.
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Minimisation of (27), i.e. choosing the new set of parameters in step 3 such that the
value of (27) will decrease, is done with a minimisation algorithm. In SSD the
“downhill simplex method” is used (Press et al., 1986).

2.4 Systematic application of SSD: step by step

In the following example we assume that we have a location for which the values of
Z, 0, O, &, n, F, F, have been determined. Surface water levels, precipitation and
reference evapo-transpiration are known for the years 1970-1999 and we have
observations of water table depth available with an observation frequency of two
times a month for the years 1995-1999. Application of the SSD model has two goals.
First, we want to estimate fluctuation properties (MHW, MLW etc.) at the location.
Second, we aim to monitor the water table depth on a daily basis in the future, while
maintaining an observation frequency of two times a month. The following steps are
taken:

2.4.1 Calibration

The parameters g, e, ¢,and s 2 are estimated through calibrating the SDE to the
observations from 1995-1999 (section 2.3). For this purpose the program SSDKOPT
is used. Usually it is assumed that the observations are without error, as in time series
analysis. However, an observation error variance of 1-4 cm? is appropriate for most
piezometer data. Although in theory the parameters of the deterministic model part
g,€ 0, and the parameter of the stochastic part s 2 should be calibrated
simultaneously, it is recommended to use a three-step procedure in SSDKOPT (in
VIDENTE these three modes can be chosen from in the Calibration menu):

1. first, the parameters g, e, q, are calibrated (called “deterministic calibration” in
VIDENTE). This achieved by fixing the parameter s % = 0 during the calibration
and setting the observation error variances §k =1for all time steps.

2. in the second step, called the *“stochastic calibration” the parameters g, e, g, are
fixed at the values obtained in step 1 and the parameter s ? is calibrated while
setting s yzk =Ofor all time steps.

3. finally, using the parameter values found in steps 1 and 2 as initial estimates, all
parameters g, e, g, and s 2 are calibrated in the last step, thus making sure that
unbiased estimates of these parameters are found (s f,k set at correct value). If the
adjustment in step 3 is large, i.e. if very different values of the parameters are
found, we must be suspicious and perhaps decide to use the parameters found in
steps 1 and 2 and forget step 3.

The result of the calibration with SSDKOPT is a file with calibrated parameters and

the mean error (ME), root mean squared error RMSE) and mean absolute error
(MAE) of Kalman filter time updates:
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1Y (-
ME = -8 ocik-1- vi) (28)
k=1
1y (-
RVISE =\/Va Ak k-2~ y, ) (29
k=1
M ~
MAE = — 3 [A(k |k - 1)- yk‘ (30)
M2

Furthermore, the file with Kalman filter predictions is given, which contains the
Kalman filter time updates, measurement updates, their variances, observations,
innovations (see 2.3) and the innovations 95% prediction interval. Also given is a file
with the other water balance terms, such as soil saturation, specific discharge and
actual evapo-transpiration. Figure 7 shows an example of the output from a
calibration run.
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Figure 7 Example output from calibrating the SDE

2.4.2 Verification: prediction without Kalman filter

After calibration, it is wise to check whether the deterministic part of the model is
able to describe the dynamics of the water table depth sufficiently well. An indication
that a deterministic fit is problematic would have been the a strong adjustment of the
parameter values in step 3 of the Calibration step. Figure 7 shows the time updates
from the Kalman filter. A problem with using the Kalman filter could occur if the
number of observations is large. In that case, the resulting time updates could be
insensitive to the model dynamics, because updating is performed too frequently. In
that case a small value of criterion (25) could still result in poor estimates of the
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dynamic parameters g, e,and q,. Therefore, a prediction with the deterministic part
of the model should be made, without the updating. This can be achieved by running

SSDKOPT for the calibration period as a means of verification by setting s 2= 0
and the observation error variances jk =1, and fixing the values of g, e,and g, at
their calibrated values (in VIDENTE this is an option in the prediction menu). The

result of the verification with SSDKOPT is a file with parameters used and the
following verification statistics:

1Y (-
ME =rad (h(th)- yk) (31)
k=1
1y >
RVISE =Jﬁa (Fkon - v, @)
k=1
MAE:Vlg A(KDY) - yk‘ (33)

=~
1

1

which are usually larger than the statistics from the calibration run, because no
updating is used. SSDKOPT also gives the file with predictions, the observations and

the residuals ﬁ(th)- Y,. Figure 8 shows an example of the output from a
verification run, where in this case observations are present almost every day.
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Figure 8 Example of verification of the deterministic part of the SDE model by prediction without updating
2.4.3 Simulation

Using the calibrated parameters from the calibration step the program SSDPATH
can be used to simulate single realisations of h(t) and all related properties such as soil
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saturation, drainage discharge and evapo-transpiration. In case fluctuation quantities
have to be estimated, multiple realisations are required which can be simulated using
the program SSDSIM. The output of SSDSIM consists of three files, containing
respectively the realisations of h(t), S(t) and q,(t). These files can be used as input for
the program STATSIM, in order to calculate the fluctuation properties. In our
example we would typically simulate realisations of 30 years long, i.e. using
precipitation and evapo-transpiration (and possibly surface water levels) from 1970-
1999, in order to obtain fluctuation quantities that are representative for the current
climate, and not only for the weather conditions for the observation period 1995-
1999 (see Knotters and Van Walsum, 1997).

2.4.4 Estimating fluctuation quantities

Using the program STATSIM fluctuation quantities can be calculated from the
simulated realisations. The output consists of the following (here we describe the
output for h(t); similar output can be obtained for S(t) and g,(t):

A file with statistics

An example of this output is shown hereafter in Figure 9. The mean highest water
table, the mean lowest water table and the mean spring water table are given
(expected values, median values and 5 and 95 percentiles). Here quantities are
calculated per realisation. So, the uncertainty here reflects only model uncertainty.
The univariate statistics are statistics over all simulated water table depths, which
means that they reflect both the within year variation and the year to year variation of
the weather as well as the model uncertainty (variation between realisations).

Univariate Statistics

mean -106.425819
variance  360.064484
stdev.  18.975365
3rd moment -539.639771

P01 -148.944107
P05 -138.432495
P10 -132.007401
P25 -119.718979
P50 -105.809341
P75 -92.923340
P90  -82.159462
P95 -75.837044
P99  -65.247566

Mean Highest and Mean Lowest Water Table and Mean Spring Water Table

mean 5% 50% 95% std

GLG(t) -135.358978 -138.189285 -135.264694 -132.976761  1.565006
GHG(t) -78.744606 -81.293327 -78.789520 -76.163002 1535088
GLG(z) -135.058350 -138.189285 -134.869598 -132.487930  1.608089
GHG(w) -79.471909 -82.413284 -79.414589 -76.819191  1.603910
GVG(t) -99.525368 -103.282478 -99.257187 -96.835274  2.082639

Figure 9 File with fluctuation statistics as output of STATSIM; GHG: mean highest water table; GLG: mean
lowest water table; GV G: mean spring water table; between brackets: denoting whether the statistic is determined
for the whole year (t), the summer period (s) or the winter period (w).
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A file with the frequency of exceeding graph (FOE-graph)

The FOE-graph gives for every level the number of days that the water table depth
on any future day of any future year (at the same climate and hydrological regime as
in the calibration period) exceeds that level. It is in fact the cumulative frequency
distribution, reflecting both the within year variation and the year to year variation of
the weather as well as the model uncertainty. Figure 10 shows an FOE-graph.
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Figure 10 Frequency of exceeding graph

A file with the regime graph

The regime graph gives for every day number in a future year the expected water
table depth, the median and the 5 and 95-percentiles. The variation per day number
therefore reflects both year to year variation (i.e. our uncertainty about the future
weather) as well as model uncertainty. Figure 11 gives an example of a regime graph.
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Figure 11 Regime graph; black solid line: mean; black dashed lines: 5- and 95-percentiles; grey solid line: median.
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A file with the histogram

Like the FOE-graph, the histogram reflects both the within year variation and the
year to year variation of the weather as well as the model uncertainty. From the
histogram we can read the expected number of days that the water table depth will
be within certain boundaries. Figure 12 gives an example histogram.
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Figure 12 Example histogram

A file with the correlation function

The correlation function gives the correlation coefficient between day k and day k
+1 (= lag 1), day k and day k+ 2 (lag 2), day k and day k + 3 etc. The correlation
function reflects both the response time of the groundwater system, as well as the
periodicity of the rainfall surplus. The longer it takes for the correlation function to
cross the x-axis, the slower the response time of the groundwater system. However,
because the periodicity of the rainfall surplus is also included, we cannot read the
characteristic response time from the correlation function. The correlation function
is the average of the correlation functions that are estimated for the realisations. An
example correlation function is given below (Figure 13).
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Figure 13 Example correlation function
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Strictly speaking, the characteristic response time of a non-linear system like
Equation (1) actually does not exist, because it depends on the water table depth
itself. However, an average value of the characteristic response time (in days) can be
approximated as (in analogy with Knotters and Bierkens, 2000):

t. =3G(h)gy (34)

where his some nominal value of the water table depth (as in Equation (16)). The
response time gives the maximum time interval that is allowed between observations.

Of course many more fluctuation quantities could be estimated from the simulated
realisations; see for instance Bierkens (1998) and Knotters ¢t al. (2000).

2.45 On line prediction and monitoring

Finally, using the calibrated model, the program SSDKOPT can be used for on line
prediction, where in between dates that observations of water table depth are taken,
optimal predictions of water table depth are obtained using the Kalman filter. Also,
non-observed properties can be predicted with the model, such as soil saturation,
drainage discharge and actual evapo-transpiration. The Kalman filter can also be used
as a monitoring instrument by running it on line and checking whether not much
more than 5% of the innovations fall outside the 95% error bounds (see Figure 7). If
more than 5% falls outside, a change in the hydrological system may have occurred.
An alternative way of monitoring such a change is running the deterministic
predictions on line and plot the observations together with the prediction interval

h, £1.96s . (with s approximated with Equation (16) or calculated exactly by

running SSDKOPT without the observations). If the observations start to plot
outside this interval, a significant change in the hydrological system may have
occurred.
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Annex: Input instructions for SSD

Note: For all stand alone SSD programs (SSDKOPT, SSDPATH, SSDSIM) the
input of levels (initial water table depth, surface level, surface water levels) is in
meters (m) and the variance of the observation error in meters squared (m?). This is
different from the input screens of VIDENTE where all these inputs for SSD (in
accordance to the other programs) are in cm and cn’.

The program SSDKOPT is used for calibration (deterministic, stochastic, all
parameters) and prediction (with and without the use of a Kalman filter)

Header of the program SSDKOPT with input instructions

C Copyright (C 2000, Alterra, Geen Wrld Research
C

C This programis distributed in the hope that it will be useful,

C but W THOUT ANY WARRANTY. No author or distributor accepts

C responsibility to anyone for the consequences of using it or for

C whether it serves any particul ar purpose or work at all, unless he
C says so in witing. Everyone is granted perm ssion to copy, nodify
C and redistribute this program but only under the condition that the
C the reference belowis given and that this notice and the above

C copyright notice renain intact.

cceeececeeeceeccceceeceeccccececcccccececcccccccecccccccceccccccccecccccccecccccccceccce
c Program SSDKOPT - Soil Stochastic Differential equation Kalman filter
c and OPTi m zation

Goal : Cal i bration of a stochastic nodel for the sinulation of
groundwat er heads and drai nage di scharge, using a Kal man
filter formof the Gaussian maxi num |i kel ihood criterium
The nodel is postulated in the formof a Stratonovitch
stochastic differential equation which is nunerically sol ved
with Runge kutta integration.

Version: 1.2 (decenber 8th 1997)
* Equilibriumprofile nodelled with a nodified van Genuchten
nmodel
* Maxi mum t hree drai nage | evels
* bounci ng boundaries in optimzation
* closure criteriumoptimzation (ftol) read fromfile

Author: Marc F.P. Bierkens

Ref erence: Bierkens, MF.P., 1998. Modelling water table
fluctuations by neans of a stochastic differenti al
equation. Water Resources Research 34(10), 2485-2499.

OO0 0000000000000 00O0

C************************************************************************
c Input:
c interactive:

c parfilel - nanme of paraneter file for the stochastic nodel

c parfile2 - nane of paraneter file for the calibration part
c
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C************************************************************************

c

PARFI LE1

C************************************************************************

¢ The val ues should be put in the paranmeter file in the follow ng order

c

OO0 0000000000000 0000000000000000000000000000000000000O0000OO0

128

general input:
record 1) : outfile - nane output file of perdiction routine
record 2)
irandom - integer flag which is set to O if the
nmean trajectory is required. Al other
values lead to the simulation of random

pat hs.

i seed - seed for the random generator; val ue
nmust be negative; a value is always
needed

met eo paraneters:

record 3) : ipflag - if zero, precipitation is constant,
if not zero it is the unit nunber under
which the precipitation is read

record 4) : if ipflag .eq. O then

xnp - nean precipitation (mmiday)
vp - variance precipitation (m/day?2)
el se
vp - variance of noise on precipitation
(m2/ day?2)
must be at first 10 positions
i col nr - colum nunmmer that nust be read from

file must be at positions 11-20
precnane - nane of precipitation input file
endi f
record 5) : iepflag - if zero, potential evapotranspiration
is constant, if not zero it is the unit
nunber under which the potentia
evapotransipration is read.
record 6) : if iepflag .eq. O then

Xmep - nean potential evapotranspiration
(' day)

vep - variance potential evapotranspiration
(mmR/ day2)

exps - exponent of the relation average soi

saturation and act ual
evapotranspiration (-)
cropf - crop factor (1.0 for grass)
el se
input file
vep - variance of noise potential evapo-
transpirati on (n2/day2)
nmust be at positions 1-10
exps - exponent of the relation average soi
saturation and actua
evapotranspiration (-) nust be at
positions 11-20
cropf - crop factor (1.0 for grass)
nmust be at positions 21-30
icolnr - colum nunber to read fromfile
nmust be at positions 31-40
evapnanme - nane of potential evapotranspiration
i nput file
endi f
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c soi | physical paraneters (nodified van Genuchten nodel)

c record 7): thesat - saturated volunetric water content (-)
c theres - residual volunetric water content (-)

c al pha - al pha value of nodel (positive) (1/cm
c expn - exponent of the nodified van Genuchten
c relation (-)

c eps0 - elastic (residual) groundwater storage
c (-)

¢

c geohydr ol ogi cal paraneters and inputs

c record 8):

c xsurf - surface elevation level (mreference

c | evel)

c record 9):

c gwstart - groundwater level at start simulation
c (mreference |evel)

c record 10) iwflag - if zero, water levels are constant,

c if not zero it is the unit nunber under
c whi ch the water |evels of nearby water
c courses are read.

c if iwflag .eq. O then

c record 11): nwe - nunber of different drainage |evels
c (maxi mum of 3)

c record 12):

c doi =1,nw {

c w (i) - water |evel of nearby water

c course i (mreference) |eve

c ganma(i) - drainage resistance of ith water
c course (days)

c }

c el se

c record 11): nwe - nunber of different drainage |evels
c must be placed in first ten

c posi tions

c w nane - name of file with water |evels

c record 12):

c doi =1,nn {

c gamme(i) - drai nage resistance of |evel

c (days)

c }

c endi f

c record 13) idrcode (i=1, nwc)

c - if one, the water course is both

c draining and infiltrating; if zero the
¢ water course is only draining, i.e. when
c the groundwater table is above the

c drai nage |l evel of this water course

c record 14) ivflag - if zero, vertical fluxes are constant,
c if not zero it is the unit nunber under
c whi ch the vertical fluxes are read

c record 15) if ivflag .eq. O then

c vflux - flux to/from deeper groundwater

c (nm day) ;

c positive value for exfiltration

c (upwar ds)

c el se

c viname - name of file with vertical fluxes

c endi f

c parameters for numerical integration:
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c record 16):

c dstep - time step (days)

c sintim - total integration time (days)

c iwite - frequency (time steps) of witing the

c results

c intflag - if equal to 1 a first order Runge-Kutta

c integration will be performed, otherw se
c a fourth order Runge Kutta will be used

c iint - nunber of integration steps per tine

c step not exceedi ng MAXI NT

c

C******************** end paran-eter flle 1 khkkhkhkkkhkhkhkhkhkdkhkhkkhhkhkhkhkhkhrkhkhhkhxhkhhkxk*k
c

C************************************************************************

c PARFI LE2

C************************************************************************

c record 1: neasfile - nane of file with neasurenents
record 2: kalfile - nanme of file with Kalman filter results
record 3: optfile - name of file with results of
optim zation
record 4: initial values of paraneters to be calibrated: if a

parameter is actually calibrated it should be given
a non-zero initial value

doi =1,nw {
parO(i) - initial drainage resistance

) [gamme(i)] (days)

parO(nwc+1l) - initial value of epsO [epsO] [-]

parO(nwc+2) - initial vertical flux [vflux]
(nmt day)

parO(nwc+3) - initial additive noise variance [vp]
(mm/ day?2)

par 0( nwc+4) initial multiplicative noise variance
[vep] (mR/day2); If vp is calibrated
vep nmust be set to "0." and ical code

(nwc+4) set to "0".

record 5: integer code to determ ne whether to calibrate
a paraneter: (1) or not: (0)
doi =1, nnc+4 {
i cal code(i)

}
record 6: gwl

initial value of groundwater |evel for
filter algorithm (mreference |evel)

OO0 O0O00000O0000000000000O0000O0O0

sgwl - initial value of neasurenment update
variance (nR)

c record 7:
c sneas - variance of neasurenent error (nR)
c record 8:
c ftol - closure criteriumfor optimzation,
c typi cally having a val ue between 0.0001
c and 0.001. If no mninumvalue is reached
c within 100 iteration steps, the closure
c criterium should be increased.
S********************* end paran-eter flle 2 R S I S S I I
g************************************************************************
c MEASFI LE - file with neasurenents of heads
C************************************************************************
c record 1: nneas - nunber of neasurenents
c convf - conversion factor to convert the nunbers
c inthe file to the nunbers used in the
c program
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do i = 1,nneas {
record(i+1): xnmtime(i) - measurement time-step (days)
xmeas(i) - measurenment (mreference |evel)

OO0 O0

C********************* end flle Wth rreasuren-ents kkkkhkkkhkkhkkhkkkhkhkhkkhkhkkhkhkkhkk*x
Cc
c************************************************************************

c FI LES WTH METEODATA - precipitation or potential evapotranspiration

C************************************************************************

c record 1: ndata - nunber data to read

c ncol s - nunber of columms present

c cfac - multiplication factor (for unit conversion)
c if right unit: cfac =1

c do i = 1,ndata {

c record(i+1): time(i) - tine-step (days)

c ncol s colums (one of which is precipition or
c potential evapotranspiration)
c }

¢

c note : input will be assuned constant for tine(i-1) < timestep <=

c time(i)

C********************* end rTEteOfI|e EE R R R S R R S S
g************************************************************************
c FILE WTH WATER LEVELS

C************************************************************************

c record 1: ndata - nunber data to read

c do i = 1,ndata {

c record(i+1): time(i) - tine-step (days)

c nw colums with water levels (mw th respect
c to reference level; i.e. one colum for
c every level of water course)

c }

c

c note : input will be assuned constant for tine(i-1) < time step <=

c time(i)

C********************* end flle V\Ath Watel’ |evels EE R I I S S O O O o
g************************************************************************
c FILE WTH BOTTOM FLUXES

C************************************************************************

c record 1: ndata - nunber data to read

c do i = 1,ndata {

c record(i+1): time(i) - tine-step (days)

c colum with bottom fluxes (mm day)

c }

c

c note : input will be assuned constant for tine(i-1) < time step <=

c time(i)

c********************* end fl I e bottom fl uxes R R R S I o O
c

c Qutput:
C************************************************************************
c 1) outfile:

c file with a time series of the follow ng record:

c record i =1 to int(sintinldstep):

c tinme - tinme (days)

c pnet - net precipitation P (nmm day)

c gw evl - groundwater |evel (mreference |evel)

c ssl - nmean soil saturation (-)

c df | ux - discharge flux (nmm day)

c (positive when out of system

c pl as - overland fl ow (M1 day)

c rest - rest termof water balance (Eq. 1) (miday)
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C******************************

2) bal ance. out:

file with a tine

conponent s

record i
tinme
st gw
stsoi l
cunpnet

1toi

OO0 0O0O00O0 00

cundf | ux
cunmvf | ux
cunpl as

cunrestl

R S O O

3) kalfile:
time
gwo
gwl
sgwo
sgwl

when neasurenents

Xmeas

EE R R R I I R R R IR R I I S I I R Ik
4) optfile:

iter

doi =1, nw

par (i)

{
funk( par)

OO0OO0O0000000000000000O000O000O00O0

(xmeas - gw0)

R I O

series of cumulative water bal ance

nt (sintimdstep):

time (days)

cumal itive storage in groundwater (nm
cunalitive storage in soil noisture (m)
cunl ative ampunt of net precipitation
(nm)

cumal itive amount drained to water
courses (M)

cumalitive amount fronito deeper
groundwat er (m

cunmul ative amount of generated surface

wat er (nmm

rest termof cumul ative water

(mm)

R R S S S R S

bal ance

time (days)

time update (m bel ow surface)
nmeasur enent update (m bel ow surface)
error variance tinme update (n2/day2)
error variance neasurenent update
(n2/ day?2)

are avail abl e:

nmeasured val ue (m bel ow surface)

i nnovati on (m bel ow surface)
ER R R S I o S S

iteration nunber

+4 -{

paraneters

val ue of criterium

ccecececececceccececccecccececccececceccecceccecccecceccecceccceccccccccecccceccccccccccccccccccccccccce

Following are parameter files (parfilel and parfile2) for SSDKOPT

sdec1510.
0 -79359
14

out

20.0 4 debil t. cal

15
0.0

0.5 1.0

0.433 0.0611 0.00286 0.943 0.05

4017. 1 4 100

5 debilt.cal parfilel

32cl 3415. 10
sdec15. k10
sdec15. 010

114. 466400 0. 000640 2.331859 28.383366 0

11110
-1.30 0.0
0

0. 0001

parfile2

132
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The program SSDPATH is used for simulating a single realisation, not only of the
water table depth but of all water balance terms.

C Copyright (C 2000, Alterra, Geen Wrld Research
C

C This programis distributed in the hope that it will be useful,

C but W THOUT ANY WARRANTY. No author or distributor accepts

C responsibility to anyone for the consequences of using it or for

C whether it serves any particul ar purpose or work at all, unless he

C says so in witing. Everyone is granted perm ssion to copy, nodify

C and redistribute this program but only under the condition that the
C the reference belowis given and that this notice and the above

C copyright notice renmain intact.

C
ccecececececececececececececececececececececcecceccecceccecccccccccccccccccccccececcececccceccccccecceccee
¢ Program SSDPATH - Soil Stochastic Differential equation sanple PATH
generati on

Goal : Simul ati on of sanple paths of groundwater head and drai nage
dicharge froma sinplified nodel of soil/groundwater
interaction. The nodel is postulated in the formof an
Stratonovitch stochastic differential equation which is
nunerically solved with Runge kutta integration

Ver si on: 2 3 (october 25th 1996)
* Equilibriumprofile nodelled with a nodified van Genuchten
nmodel
* Maxi mum t hree drai nage | evel s

Author: Marc F.P. Bierkens

Ref erence: Bierkens, MF.P., 1998. Mddelling water table fluctuations
by means of a stochastic differential equation
WAt er Resources Research 34(10), 2485-2499

R R R R S Sk O AR o S R I R R IR o S ok S b R R kS S Rk Ok I e

I nput :
parfile - nane paraneter file

The val ues should be put in the parameter file in the foll ow ng order:

general input:
record 1) : outfile - name output file
record 2)
irandom - integer flag which is set to O if the
mean trajectory is required. Al other
val ues lead to the simulation of random

pat hs.

i seed - seed for the random generator; val ue
nmust be negative; a value is always
needed

net eo paraneters

record 3) : ipflag - if zero, precipitation is constant,
if not zero it is the unit nunber under
whi ch the precipitation is read

OO0 000000000000 000000000000000000000000O0
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record 4) : if ipflag .eq. 0 then

xnp - nmean precipitation (nmmi day)
vp - variance precipitation (m2/day?2)
el se
vp - variance of noise on precipitation
(m®/ day?2)

nmust be at first 10 positions
icolnr - colum numrer that nust be read from
file must be at positions 11-20
precnane - nane of precipitation input file
endi f
record 5) : iepflag - if zero, potential evapotranspiration
is constant, if not zero it is the unit
nunber under which the potentia
evapotransipration is read.
record 6) : if iepflag .eq. O then

Xmep - nean potential evapotranspiration
(' day)

vep - variance potential evapotranspiration
(mmR/ day2)

exps - exponent of the relation average soi

saturation and act ual
evapotranspiration (-)

cropf - crop factor (1.0 for grass)

el se

input file

vep - variance of noise potential evapo-
transpirati on (n2/day2)
nmust be at positions 1-10

exps - exponent of the relation average soi
saturation and actua
evapotranspiration (-) nust be at
positions 11-20

cropf - crop factor (1.0 for grass)
nmust be at positions 21-30

icolnr - colum nunber to read fromfile

nmust be at positions 31-40
evapnanme - nane of potential evapotranspiration

input file
endi f
soi | physical paraneters (nodified van Genuchten nodel)
record 7):
thesat - saturated volunetric water content (-)
theres - residual volumetric water content (-)
al pha - al pha value of nodel (positive) (1/cm
expn - exponent of the nodified van genuchten
relation (-)
eps0 - elastic (residual) groundwater storage
()
geohydr ol ogi cal paraneters and inputs
record 8):
xsur f - surface elevation level (mreference
| evel)
record 9):

gwstart - groundwater level at start sinulation
(mreference |evel)
record 10) iwflag - if zero, water levels are constant,
if not zero it is the unit nunber under
whi ch the water |evels of nearby water
courses are read.

OO0 OO0 O0O00O0O00000000000000000000000000000000000000000000000000O0000OO0
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if iwflag .eq. O then
record 11): nwe - nunber of different drainage |evels
(maxi mum of 3)

record 12):
doi =1,nn {
w (i) - water |evel of nearby water
course | (mreference |evel)
ganma(i) - drainage resistance of ith water
course (days)
}
el se
record 11): nwe - nunber of different drainage |evels
must be placed in first ten
posi tions
w nane - nane of file with water |evels
record 12):
doi =1,nn {
gamme(i) - drai nage resistance of |evel
(days)
}
endi f

record 13) idrcode (i=1, nwc)

- if one, the water course is both
draining and infiltrating; if zero the
water course is only draining, i.e. when
the groundwater table is above the
drai nage |l evel of this water course

record 14) ivflag - if zero, vertical fluxes are constant,
if not zero it is the unit number under
which the vertical fluxes are read
record 15) if ivflag .eq. O then
vflux - flux to/from deeper groundwater
(mm day); positive value for
exfiltration (upwards)

OO0 O0OO0O00000000000000000000000000000000000000000000O0

el se
vinane - neaemof file wth vertical fluxes
endi f
paraneters for nunerical integration:
record 16):
dstep - time step (days)
sintim - total integration tinme (days)
iwite - frequency (time steps) of witing the
results
intflag - if equal to 1 a first order Runge-Kutta
integration will be perforned, otherw se
a fourth order Runge Kutta will be used
iint - nunber of integration steps per tine
step not exceedi ng MAXI NT
c******************** end paran-eter flle EE R R S I o O S o O

c

C************************************************************************

c FI LES W TH METEODATA - precipitation or potential evapotranspiration

C************************************************************************

c record 1. ndata - nunber data to read

c ncol s - nunber of columms present

c cfac - multiplication factor (for unit conversion)
c if right unit: cfac =1

c do i = 1,ndata {

c record(i+1): tinme(i) - tine-step (days)

c ncol s colums (one of which is precipition or
c potential evapotranspiration)
c }
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c note : input will be assuned constant for tine(i-1) < timestep <=

c time(i)
C************************************************************************
c FILE WTH WATER LEVELS
C************************************************************************
c record 1: ndata - nunber data to read
c do i = 1,ndata {
c record(i+1): time(i) - tine-step (days)
c naw colums with water levels (mw th respect
c to reference level; i.e. one colum for
c every |l evel of water course)
c
c note : input will be assuned constant for tine(i-1) < time step <=
c tinme(i)
C************************************************************************
c FILE WTH BOTTOM FLUXES
C************************************************************************
c record 1. ndata - nunber data to read
c do i = 1,ndata {
c record(i+1): tinme(i) - tine-step (days)
c colum with bottom fluxes (mm day)
¢
c note : input will be assuned constant for tine(i-1) < time step <=
c tinme(i)
C************************************************************************
c Qutput:
c 1) outfile:
file with a time series of the followi ng record:
record i =1 to int(sintinidstep):

tinme - tinme (days)

pnet - net precipitation P (nm day)

gw evl - groundwater |evel (m

ssl - nean soil saturation (-)

df | ux - discharge flux (nmm day)

(positive when out of system
pl as - overland fl ow (M1 day)
rest - rest termof water balance (Eq. 1) (mmiday)

2) bal ance. out :
file with a time series of cumul ative water bal ance

OO0 0000000000000 00000000O0000OO0

conmponent s
record i =1 to int(sintinfdstep):
tine - time (days)
st gw - curmalitive storage in groundwater (mm
stsoil - curalitive storage in soil noisture (M
cunpnet - cunfative anount of net precipitation
(nm
cumdflux - cunalitive anobunt drained to water
courses ()
cunvflux - cumalitive amount fronito deeper
groundwat er (mm
cunpl as - cumul ative anmount of generated surface
wat er ()
cuntrestl - rest termof cunmulative water bal ance
(nm)

ccceececeecceccecccececcecceccceccceccecccceccecceccecccecceccccecccccccceccccccccccccccccccccccccccccce
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Example parameter file for SSDPATH

sdepl5. k10
1 -79359 1000
14
28. 437038 4  debilt.val
15
0.0 0.5 1.0 5 debilt.val
0.433 0.0611 0.00286 0.943 0.000103
0.0
-1.30
0
1
-1.60 111. 006554
1
0
2. 409005
1. 2191. 1 4 100

The program SSDSIM is used for simulating multiple realisations of water table
depth (m), soil saturation (-) and drainage discharge (mm/d).

C Copyright (C 2000, Alterra, Green Wrld Research

C

C This programis distributed in the hope that it will be useful

C but W THOUT ANY WARRANTY. No author or distributor accepts

C responsibility to anyone for the consequences of using it or for

C whether it serves any particul ar purpose or work at all, unless he

C says so in witing. Everyone is granted perm ssion to copy, nodify

C and redistribute this program but only under the condition that the
C the references below is given and that this notice and the above

C copyright notice remain intact.

C
ccecececececececececececececececececececceccecccccccccccccccccccccccccccccccccccccccccccccccee
c Program SSDSIM - Soil Stochastic Differential equation Sl Ml ation

c program

c

c Coal : Sinulation of multiple realizatiuons of groundwater head

c dr ai nage di charge and soil saturation froma sinplified node
c of soil/groundwater interaction. The nodel is postulated in
c the formof an Stratonovitch stochastic differential equation
c which is nunerically solved with Runge Kutta-integration

c

c Version: 2.1 (aprl 3th 1997)

c * Equilibriumprofile nodelled with a nodified van Genuchten
c nodel

c * Maxi mum t hree drainage |evels

c

c Author: Marc F.P. Bierkens

¢ Reference: Bierkens, MF.P., 1998. Mdelling water table fluctuations
c by neans of a stochastic differential equation

c Wat er Resources Research 34(10), 2485-2499

c

C************************************************************************

Cc I nput:
parfile - name paraneter file

****x* The val ues should be put in the parameter file *****x**kxkdkrxskix
Kk kK k% |n the follow ng Order EIE R O I o o O

OO0 O0
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OO0 000000000000 0000000000000000000000000000000000000000000O0000O0

138

general input:

record 1) : outfilel - nane binary output file gws
record 2) : outfile2 - nanme binary output file sat
record 3) : outfile3 - name binary output file dis
record 4)
irandom - integer flag which is set to O if the

mean trajectory is required. Al other
val ues lead to the sinmulation of random

pat hs.

i seed - seed for the random generator; val ue
must be negative; a value is always
needed

nsim - nunber of realisations to be sinulated

met eo paraneters:

record 4) : ipflag - if zero, precipitation is constant,
if not zero it is the unit nunber under
which the precipitation is read

record 5) : if ipflag .eq. 0 then

xnp - nean precipitation (mmiday)
vp - variance precipitation (m/day?2)
el se
vp - variance of noise on precipitation
(m2/ day?2)
must be at first 10 positions
i col nr - colum nunmmer that nust be read from

file must be at positions 11-20
precnane - nane of precipitation input file
endi f

record 6) : iepflag - if zero, potential evapotranspiration
is constant, if not zero it is the unit
nunber under which the potentia
evapotransipration is read.

record 7) : if iepflag .eq. O then

Xmep - nean potential evapotranspiration
(' day)

vep - variance potential evapotranspiration
(mmR/ day2)

exps - exponent of the relation average soi

saturation and act ual
evapotranspiration (-)
cropf - crop factor (1.0 for grass)
el se
input file
vep - variance of noise potential evapo-
transpirati on (n2/day2)
nmust be at positions 1-10
exps - exponent of the relation average soi
saturation and actua
evapotranspiration (-) nust be at
positions 11-20
cropf - crop factor (1.0 for grass)
nmust be at positions 21-30
icolnr - colum nunber to read fromfile
nmust be at positions 31-40
evapnanme - nane of potential evapotranspiration
i nput file
endi f
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record

record

record

record

record

record

record

record

record

record

record

OO0 000000000000 00000000000000000000000000000000000000000O0000O0
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soi |l physica

8):

geohydr ol ogi ca

9):

10):

11)

12)

13):

14)

15):

16)

17)

18)

t hesat
t heres
al pha
expn

epsO

xsurf

gwst ar t

iwflag

paraneters (nodified van Genuchten nodel)

saturated volunetric water content (-)
residual volunetric water content (-)
al pha val ue of nodel (positive) (1/cm
exponent of the nodified van genuchten
relation (-)

el astic (residual) groundwater storage

(-)

paraneters and inputs

surface elevation level (mreference
| evel)

groundwat er |level at start simulation (m
reference | evel)

if zero, water levels are constant,

if not zero it is the unit nunber under
whi ch the water |evels of nearby water
courses are read.

if inflag .eq. O then

nwc

- nunber of different drainage |evels
(maxi mum of 3)

- water |level of nearby water
course | (mreference |evel)

ganma(i) - drainage resistance of ith water

w nane

do i

course (days)

- nunber of different drainage |evels
nmust be placed in first ten
posi tions

- name of file with water |evels

1, nwe {

gamme(i) - drai nage resistance of |evel

endi f

(days)

i drcode (i=1, nwc)

ivflag

if one, the water course is both
draining and infiltrating; if zero the
wat er course is only draining, i.e. when
the groundwater table is above the

drai nage | evel of this water course

if zero, vertical fluxes are constant,
if not zero it is the unit nunber under
whi ch the vertical fluxes are read

if ivfilag .eq. 0 then

vl ux

el se

- flux to/from deeper groundwater
(mm day); positive value for
exfiltration (upwards)

vinane - neaemof file with vertical fluxes

endi f

paranmeters for nunerical integration
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c record 19):

c dstep - time step (days)

c sintim - total integration time (days)

c iwite - frequency (time steps) of witing the

c results

c intflag - if equal to 1 a first order Runge-Kutta
c integration will be performed, otherw se
c a fourth order Runge Kutta will be used.
c iint - nunber of integration steps per tine

c step not exceedi ng MAXI NT

c record 20):

c yearl - first year to be sinmulated (start at

c januari 1)

c record 21):

c

startim- startup tine (days)
C************************************************************************

c FI LES W TH METEODATA - precipitation or potential evapotranspiration

C***********************'k******************'k*****************************

c record 1: ndata - nunmber data to read

c ncol s - nunber of columms present

c cfac - multiplication factor (for unit conversion)
c if right unit: cfac =1

c do i = 1,ndata {

c record(i+1): time(i) - tine-step (days)

c ncol s colums (one of which is precipition or
c potential evapotranspiration)
c

c note : input will be assuned constant for tine(i-1) < timestep <=

c time(i)

C************************************************************************

c FI LE WTH WATER LEVELS

C************************************************************************

c record 1: ndata - nunber data to read

c do i = 1,ndata {

c record(i+1): time(i) - tine-step (days)

c nwe colums with water levels (mw th respect
c to reference level; i.e. one colum for
c every level of water course)

c

c note : input will be assuned constant for tine(i-1) < time step <=

c time(i)
C************************************************************************
c FILE WTH BOTTOM FLUXES

C******)\'*****************************************************************

c record 1: ndata - nunber data to read

c do i = 1,ndata {

c record(i+1): time(i) - tine-step (days)

c colum with bottom fl uxes (mm day)

c }

c

c note : input will be assuned constant for tine(i-1) < time step <=
c time(i)
C************************************************************************
c

c Qutput:

c

c unformatted files (can be used as input for STATSIM

c outfile 1:

c record 1. yearl - first year of simulated realisation
c nsim- nunber of sinulated realisations

c nyears - nunber of years per realisation
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c do k = 1,nsim

c do i = 1,nsteps

c record 1 + (k-1)*nsim+ i:

c gwl - sinulated water table depth (m
c enddo

c enddo

C note: nsteps = int(sintinldstep)

¢ The sane format for

c outfile2: ssl - soil saturation

c outfile3: df lux - drainage flux (mid)
cceceeceeceeceecececececececcecececcceccccececcccecccecceccccceccccececcccccceccccccecccccececcccce

Example parameter file for SSDSIM

sdes1510. hea

sdes1510. sat

sdes1510. di s

1 -79359 1000

14

28. 383366 4 debilt.va

0.0 0.5 1.0 5 debilt.val
0.0611 0.00286 0.943 0.000103
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Part 4: Documentation EMERALD

A program for modelling the water table depth using a physically
based stochastic model
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L. Model, input variables and parameters

1.1 Model description

An extensive description of the model, its derivation and use can be found in:
English

Walvoort, D.J.J. and M.F.P. Bierkens, 1999. A stochastic modelling approach for rapid
assessment of groundwater dynamics. Report 171, DLO Staring Centrum, Wageningen.
Dutch

Bierkens, M.F.P. en D.J.J. Walvoort, 1998. Eenvoudige stochastische modellen voor
grondwaterstandsfluctuaties. Deel 2: Gecombineerd bodem-grondwatermodel met
stochastische invoer. Stromingen 4(3), 5-20.

Here follows a brief description of the model and its parameters.

The basic model used in EMERALD (as applied in VIDENTE) is the following
physically based transfer function-noise model:

h, = h< +N, (1)
h, =h,+a(h_, - h) +bg, (k) +b,q, (k- 1) (2)
n,=fn_+e (3)
with

k discrete time steps of size Dt,i.e.t = kDt,k =01,2,...;
h, water table depth [L] at time step k;

h, deterministic part of the water table depth [L] at time step k;
n, auto-regressive noise process [L] at time step k;

e, zero mean discrete Gaussian white noise process at time step k;
0.(K) average net input to the groundwater system between
(k- Dt and kDt [LT] (= groundwater recharge + seepage — capillary rise);
h, surface water level [L] (assumed constant);
a auto-regressive parameter of the deterministic model [-];
b,,b, moving average parameters of the deterministic model [T];
f auto-regressive parameter of the noise model [-];

variance of the white noise process e, [L].

Equation (1) shows that the water table depth consists of a “deterministic” part
(Equation (2)), which is explained by variations of net groundwater input, and a
“stochastic” part (Equation (3)) which describes the part that is not explained by
precipitation surplus. Model (1)-(3) model is therefore a stochastic model and h, a
stochastic process. In chapter 2 the nature of stochastic processes is described.
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The deterministic model (2) that describes the water table fluctuation as a function of
net input is based on a solution to the linearised Boussinesq Equation as provided by
Kraijenhoff van de Leur (1958), Maasland (1959) and a further analysis of their
solutions by de Zeeuw (1966). For a derivation of Equation (2) we refer to Walvoort
and Bierkens (1999). Figure 1 shows the hydrological system under study.

>r70 X=L
o . .
i i ! Root
\'/dr i -i | zone
Qp i h 1S
i X 0. E Percolation
\:/ E zone
h =~ | Groundwater
T @ v m
v
o

Figure 1. Schematic representation of hydrological system modelled with Equation (2)

The following additional variables and parameters are shown in Figure 1.

d,
0p(K)

thickness of the root zone [L];

average percolation flux [LT"] between k-1 and k, which is the water that
percolates from the root zone when it is above field capacity;

average groundwater recharge [LT"] between k-1 and k;

average capillary rise [LT™] between k-1 and k;

flux from/to the deeper groundwater system. [LT"]. This flux, which is
assumed constant, can both be positive (seepage or exfiltration) and negative
(downward seepage or infiltration);

average drainage flux to surface water [LT"] between k-1 and k. This flux can
also be negative if the water table falls below the surface water level;

specific yield (effective porosity) [-];

drainage resistance [T] (here g = (L* /8kD), where KD is the transmissivity);

position along the strip of land with respect to the surface waters varying
from 0 (left) to L (right), where L is the distance between the surface waters.

Notice that in this scheme both the water table as the surface water level are
measured with respect to surface elevation. In the following we will describe the
three zones depicted in Figure 1 in more detail. The models of the root zone and the
percolation zone are almost entirely based on the work of Zwamborn (1995).

146
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Root zone
The root zone is modelled as a reservoir that overflows when it is full (see Figure 2).

Figure 2 Schematic representation of the root zone

For each time step the volume of moisture is calculated according to the following
balance equation:

Vie =Viey +[P(K) - B, (K) +q. (k) - q,(K)]Dt (4)

where

V, volume of soil moisture stored in root zone [L];

P(k) average precipitation minus interception losses [LT"] between k-1 and k;
E,(k) average actual evapo-transpiration [LT"] between k-1 and k.

The upper and lower boundaries V are governed by the soil moisture content at field
capacity g [-] and wilting point q,,, [-] respectively:

Vi = A (5)
Vmin = drqu (6)

If R(K) is the observed average precipitation between k and k-1 without interception
losses is, P(k) is calculated as:

P(k) = 1- F)R(K) (7)
where F; is the interception fraction. The actual evapo-transpiration is calculated as:
E, (k) =r(h,)F.E (k) (8)

where

E(k) average “Makkink reference crop evapo-transpiration” between k and k-1
[LT"], which gives the transpiration of a full grass cover under optimal
conditions of water supply;

F. crop factor [-];

r(h,)  reduction function giving the reduction in potential evapo-transpiration as a
function of average pressure head h, [L] in the root zone.
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Table 1 list for a number of different land use classes the crop factor F, as well as the

interception fraction F,. Figure 3 shows the reduction function that has two

parameters:

h pressure head at limiting point [L]. At this pressure head the evapo-
transpiration becomes smaller than potential (usually -500 cm);

Nup pressure head at wilting point [L]. At this pressure head the evapo-
transpiration becomes zero (usually -8000 cm);

Ip

r(hy) A
1
C >
Il el |

Figure 3 Evapo-transpiration reduction function

Pressure head is dependent on the moisture content of the root zone and is
calculated according to Van Genuchten (1980):

1

1B-q 55 7

h, =_8Mi - 1. (9)
a s~ U g -
& o

where a [L"], n[], . [-] and g, [-] are Van Genuchten parameters, in particular ¢ is
the saturated moisture content and ¢, the residual moisture content of the soil. The
Van Genuchten parameters for several representative soils have been tabulated by
Wosten et al. (1994) and are used by EMERALD by reading a file “staring.dat”. From

Van Genuchten’s relationship we can also obtain the soil moisture at field capacity q
« (for Equation (5)), i.e. the soil moisture content at h, = -100 cm. This file can be
edited to add Van Genuchten parameters of other soil types or samples. For the
moisture content needed in (9) the average moisture content of the root zone is
taken as calculated from the storage at the previous time step:

Vi
d

r

q= (10)

Finally, to complete the water balance the capillary rise has to be accounted for. The
capillary rise depends on the water table depth. As the water table depth is the object
of our calculation, the capillary rise is calculated from the water table depth at the
previous time step. First the maximum possible capillary rise is calculated as a
function g, of h,;:

9.7 (K) =g.(h.,) (11)
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The function g, is a logistic growth function of h whose form also depends on the
soil moisture retention curve and the unsaturated conductivity curve. These are both
parameterised with Van Genuchten (1980) parameters and can thus be obtained for
the representative soils tabulated by Waosten et al. (1994) and the “staring.dat”. In
Walvoort and Bierkens (1999) the function g, is given. If h,, is too deep below the
root zone, the capillary rise becomes zero.

Of course capillary rise can only occur if no percolation takes place, and if it occurs it
can never be so large that it exceeds the storage capacity of the root zone. Therefore,
the actual amount of capillary rise is given by:

.\I. 0 if Vk-l +[P(k) - Ea(k)]Dt >Vmax
a0 = Yo Mes PR BOI) oy, 49 10>V,
o I Viey +[PR) - E,(K) +a7™IDL £V
)

If capillary rise occurs no percolation occurs and vice versa. Percolation is therefore
given by:

qp(k)zil[(vk.1+[P(k)-DEta(k)]Dt)- Voo Via *[P(K) - E,(IDE>V,e  (43)

o otherwise

Percolation zone

In case of shallow water tables, the percolated water is added directly to the
groundwater as groundwater recharge: q,(k) = q,(k). However, if the unsaturated
zone is large, the percolated water will be significantly attenuated and delayed before
it reaches the groundwater. Flow through the unsaturated zone is described with
Richards’ Equation. To avoid solving this equation Zwamborn (1995) described the
attenuation and delay using a convolution equation:

qg(k):é_qp(i)U(Dt,k- i+1) (14)

where U (Dt, k)is the pulse response of the percolation zone, i.e. the outflow of a
linear system due to an input of unit volume occurring at a uniform rate for a period
Dt. The pulse response can be found by linearising Richards’ equation around the
effective soil moisture content g (see Walvoort and Bierkens (1999) for a
derivation). If the water table is deep enough a fair assumption is that the downward
flux in the percolation zone is equal to the unsaturated conductivity (gravity flow). So
the effective soil moisture content is that soil moisture content for which the
unsaturated conductivity is equal to the long year averaged groundwater recharge
<(,> (which is also equal to the long year average percolation):

Oy U k(@g)=<q, > (15)
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Wesseling (1991) gives the long year average soil water balance for various
combinations of land use and soil type. From these water balances the long year
average groundwater recharge can be obtained. The effective soil moisture content
follows from the unsaturated conductivity curve and the soil moisture retention
curve, which again can be obtained from the Van Genuchten parameters and a
representative soil type (Wosten et al., 1994).

In case more layers are present in the percolation zone, for each layer the effective
soil moisture content can be found and from this the pulse response. So, Equation
(14) is applied to each layer separately, while the outflow from one layer is used as
inflow from the layer below:

q;(k) = é Q..U (Dtk-i+1)  j=12..n, (16)

where n, is the number of layers, g; the outflow from layer j and U, (Dt,k) its pulse
response. Note that q, =q,and g, =d;.

It is also possible to assign for each layer i a fraction f, as bypass flow. This is flow
that is not delayed or attenuated but transferred to the next layer within the same
time step. This fraction can be seen as preferential flow through macropores or along
roots.

Groundwater zone
The net input to the groundwater system at any time step K is given by:

q, (k) = q4(k) - q.(k) +q, (17)

The varying water table due to this input is given by Equation (2). The parameters
have a physical meaning as Equation (2) is an approximation to a solution of the
linearised Boussinesq Equation provided by Kraijenhoff van de Leur (1958),
Maasland (1959) and a further analysis of their solutions by de Zeeuw (1966) (see
Walvoort and Bierkens (1999) for its derivation). The resulting expressions for the
parameters of (2) are:

2
a= expg e P Dto (18)
8Ny 5
=2 4a- 9an®%pu, (19)
eL g
b, =-abU, (20)
where
PX 0 21)

DU, psg a n3@1- a" )sn

=35,7..
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As can be seen, the dynamics of the water table depth depend on the distance of the
location to the surface waters. In most sandy soils, the largest component in the
drainage resistance is the resistance to flow close to the surface waters (including
entrance resistance), instead of the resistance to horizontal flow. In this case, the
form of the water table is more like a mesa (steep gradients close to the water
courses, almost no gradients elsewhere) rather than a sinus. It is best not to take
account of the distance in this case and use x=L/2, which means that the sinus terms
disappear from above equations. This is the standard setting in VIDENTE. The
distance to the water course is important in the following cases only: clayey soils and
unconfined sandy aquifers with deep water tables and large distances between water
Ccourses.

Because we are working with a physically based model of groundwater flow it is also
possible to obtain an expression like equation (2) for the drainage discharge to the
water courses [LT™] (Walvoort and Bierkens, 1999):

0q (k) =aqg, (k- 1) +b,q, (k) +b,q, (k- 1) (22)
with
2
a= expa? P Dtg (23)
8Ny gy
bl:%(l-a)+ DU, (24)
p
b, =-abU, (25)
where
_ 8 3 -2 n?
DU,=— an“@-a") (26)
P n=357.

1.2 Input variables and parameters Zinvoervariabelen en parameters

Next we list the input variables and parameters used in the program EMERALD
(units between square brackets). These will be given in English and in Dutch.

English:

Input variables

P(k) average precipitation minus interception (mm/d) between (k- 1)andk,
calculated from the measured precipitation with Equation (7). If interception
is accounted for, the calculation should be performed outside of EMERALD
en P(k) offered to EMERALD in the input file. Interception fractions for
various types of land use are given in Table 1;

E.(k) average Makkink reference crop evapo-transpiration between k and k-1, used
to calculate actual evapo-transpiration using Equation (8).

Alterra-rapport 613 151



soil and land use parameters
For top soil (root zone) and each subsoil layer (each layer in percolation zone):
Code code of reference soil type (texture class) used in the file “staring.dat”
(see Wosten et al., 1994 for an explanation of these codes). For each
code a set of van Genuchten parameters is read that is used to
characterise the soil physical properties of the layer (e.g. Equations (9)
and (15)). Staring.dat can be edited to include the Van Genuchten
parameters of additional texture classes of those obtained from
individual samples;
Thickness thickness of layer (cm)
fo bypass fraction (between 0 and 1). Gives for each layer the fraction of
percolation water that is preferential flow. This fraction is transferred
without delay and attenuation to the next layer. Not used for the root
zone layer. For shallow water tables (< 150 cm below surface) it is
advised to set this parameter at 1 for all layers;
F. crop factor [-] (see Equation 8). Table 1 gives for a number of different land
use classes the crop factor F;
Nt pressure head at field capacity (cm) (see Equation 5). Can be given as positive
(pressure head) or negative value (suction head). A typical value is 100 cm;

hip ET reduction limiting point (cm): pressure head at which the evapo-
transpiration becomes limited due to moisture shortage (Equation 8 and
Figure 3). Can be given as positive or negative value. A typical value is 500
cm;

Nup ET wilting point (cm): pressure head at which evapo-transpiration comes to a

stop (see Equations 6 and 8 and Figure 3). Can be given as positive or
negative value. A typical value is 8000 cm;

Hydrological parameters

h, drainage level (cm) with respect to surface elevation (e.g. —150) (see Figure 1).

This can either be a surface water level or trench bottom or drainage depth;

<(,> Long year average groundwater recharge (mm/year). This parameter is used
to calculate the effective soil moisture . of each layer of the percolation
zone (Equation 15; used in Equations (14) and (16)). Wesseling (1991) gives
typical values for various combinations of soil type and land use in the
Netherlands (e.g. grassland on loamy medium sand: 261 mm/year). In case
the bypass parameters for all layers are set to 1 this parameter is of no
consequence;

g drainage resistance (days) of surface water system (see Figure 1). Typical
values range between 30 and 500 days;

m specific yield (effective porosity) (-) (See Figure 1). Typical values range
between 0.15 and 0.25;

v seepage/infiltration: bottom flux from/to deeper groundwater (mm/d) (see
Figure 1). Typical values range between —1.0 (infiltration) and 3.0 mm/d
(seepage or exfiltration);

noise parameters (see Equation 3)

f auto-regressive parameter of the noise model (between 0 and 1); Typical

values range between 0.5 and 0.99;
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s¢

variance of the white noise process e, (cm’). Typical values range between 5
and 50 cm?’;

Nederlands:

Input variables

P(k) Gemiddelde neerslag min interceptie (mm/d) tussen tijdstappen
(k- )and k. Deze kan berekend worden uit de gemeten neerslag via

Vergelijking (7). Als rekening gehouden moet worden met interceptie dan
moet de evaluatie van Vergelijking (7) buiten EMERALD plaatsvinden P(k)
in de invoerfile van EMERALD worden gezet. Tabel 1 geeft
interceptiefracties voor verschillende landgebruiksvormen;
E(k) gemiddelde Makkink referentieverdamping tussen k and k-1. Hieruit wordt
door EMERALD de werkelijke verdamping berekend via Vergelijking (8);
Bodem- en landgebruiksparameters
Voor de bovengrond (wortelzone) en voor elke ondergrondlaag (percolatiezone):
Code code van de textuurklasse (bouwsteen) van de Staringreeks in
“staring.dat” (codes worden uitgelegd in Wasten et al., 1994). Voor
elke code wordt uit staring.dat een set Van Genuchten parameters
ingelezen waarmee de hydraulische eigenschappen van de
bodemlagen kunnen worden gekarakteriseerd (bijv. in Vergelijkingen
(9) and (15)). Staring.dat kan ook worden aangepast door er eigen
codes en bijbehorende Van Genuchten parameters aan toe te voegen
(bijv. individuele monsters);

Dikte laagdikte (cm);

fo bypass fractie (tussen 0 and 1). Deze geeft per laag de fractie van het
percolatiewater dat preferent stroomt (bijv. langs scheuren en
wortels). Dit water wordt zonder vertraging en demping binnen
dezelfde tijdstap toegevoegd aan de onderliggende laag. Voor
grondwaterstanden ondieper dan 150 c¢cm - maaiveld wordt
aangeraden om voor alle lagen een bypass fractie van 1 te hanteren;

F. gewasfactor [-] (zie Vergelijking 8). Tabel 1 geeft gewasfactoren voor
verschillende landgebruikstypes

he drukhoogte bij veldcapaciteit (cm) (zie Vergelijking 5). Kan zowel als een

negatieve waarde (drukhoogte) als positieve waarde (zuigspanning) worden

opgegeven. Een typische waarde is 100 cm;

Punt van verminderde verdamping: drukhoogte waarbij de actuele

verdamping minder wordt dan de potentiéle verdamping. Kan zowel als een

negatieve waarde (drukhoogte) als positieve waarde (zuigspanning) worden
opgegeven. Een typische waarde is 500 cm;

Nup Verwelkingspunt: drukhoogte waarbij de verdamping gelijk aan 0 wordt. Kan
zowel als een negatieve waarde (drukhoogte) als positieve waarde
(zuigspanning) worden opgegeven. Een typische waarde is 8000 cm;

Hydrologische parameters

h, drainageniveau (cm referentieniveau) (bijv. —150) (zie Figuur 1). Dit kan
zowel een oppervlaktewaterstand of peil zijn als de bodemhoogte van een
drain of een greppel;

Alterra-rapport 613 153



<g,> Langjarig gemiddelde grondwateraanvulling (mm/jaar). Deze parameter is

m

Qv

nodig om het effectieve watergehalte g.; van de lagen van de percolatiezone
te bepalen (Vergelijking (15); gebruikt om de pulsrespons in Vergelijkingen
(16) en (17) te bepalen). Wesseling (1991) geeft typische waarden van deze
parameter voor Nederlandse omstandigheden voor verschillende combinaties
van bodem en landgebruik (bijv. grasland op lemig matig zand: 261
mm/jaar). Als de bypass parameter van alle bodemlagen gelijk is aan 1, dan
doet deze parameter niet ter zake;

drainageweerstand (dagen) van het (zie Figuur 1). Waarden variéren meestal
tussen de 30 en 500 dagen;

effectieve porositeit grondwaterzone (specific yield in Engels) (-) (zie Figuur 1).
Waarden variéren meestal tussen 0.15 en 0.25;

kwel/infiltratie: flux van/naar dieper grondwater (mm/d) (zie Figuur 1).
Waarden van deze parameter variéren meestal tussen —1.0 (infiltratie) en 3.0
(kwel) mm/d;

ruisparameters (zie Vergelijking 3)

f

154

autoregressieve parameter van het ruismodel (kan tussen 0 en 1 liggen, maar
ligt meestal tussen 0.9 en 0.99);
variantie witte ruis proces e, (cm’). Waarden variéren meestal tussen 5 en 50

cm?
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Table 1. Crop factors and interception fractions for various crops and land use (sources in footnotes)

Crop/land use Fe Fi
Grassland 0.961 0.00
Potatoes 1.031 0.00
Beets 0.981 0.00
Grain 0.95! 0.00
Maize 0.921 0.00
Other crops 0.88t 0.00
Fallow 0.702 0.00
Deciduous wood 1.003 0.203
Coniferous wood 0.803 0.403
Tree nurseries 1.003 0.203
Other trees 0.903 0.303
Heath 0.702 0.00
Wetland vegetation 1.044 0.00
Dryland vegetation 0.702 0.00
Other vegetation 0.875 0.00
Orchard (soil not covered) 0.916 0.067
Orchard (grass strips) 0.976 0.067
Sports field 0.968 0.00
Public garden 0.97° 0.06°
Horticulture under glass 1.30%0 1.00
Horticulture not under glass 0.8811 0.00

1 Crop factor of average growing season according to Feddes, R.A., 1997. Crop factors in relation to
Makkink reference-crop evapo-transpiration. In: Verslagen en Mededelingen 39, pp. 33-45, CHO-
TNO, The Hague.
2 Jansen, P.C., 1986. De potentiéle verdamping van (half-)natuurlijke vegetaties. ICW nota 1703,
Wageningen (in Dutch).
3 Moors, E.J., AJ. Dolman, W. Bouten en AW.L. Veen, 1996. De verdamping van bossen HO
19(16), 462-466 (in Dutch). Furthermore, the parameters for “tree nurseries” have been taken the
same as for deciduous wood, and those for “other wood” as the average of deciduous and coniferous
wood.
4 Seasonal average of Molinia from Moors, E.J., J.N.M. Stricker and G.D. van den Abeele, 1998.
Evapo-transpiration of cut over bog covered by Molinea Caerulea. Agricultural University,
Department of Environmental Sciences, report 73, Wageningen.
5 Average of wetland and dryland vegetation.
6 Assuming a tree coverage of 30% we calculate:
Orchard (soil not covered): Fc = 0.7° 0.88 (other crops) + 0.3" 1.0(deciduous trees) = 0.91
Orchard (grass strips): Fe = 0.7" 0.96 (grassland) + 0.3" 1.0(deciduous trees) = 0.97
7 Assuming a tree coverage of 30% we also assume 30% of the interception of deciduous wood
yielding an interception factor of 0.3" 0.20 = 0.06.
8 Taken the same as “grassland”.
9 Taken the same as “orchard (grass strips)”
10 All water is intercepted. The evapo-transpiration for horticulture under glass in the western part of
the Netherlands is about 700 mm/year, which is about 1.3 times the average reference evapo-
transpiration for that area (personal communication Philip Hamaker). The excess water needed is
obtained from the intercepted precipitation water that is collected in tanks.
11 Taken the same as “other crops”.
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2. Stochastic modelling: prediction, simulation and calibration

There are two different ways of using a stochastic model: prediction and stochastic
simulation. In the following sections these two different ways are further explored.
The section thereafter explains how some of the parameters of EMERALD can be
estimated from time series of water table depth through calibration. Finally, the last
section recapitulates how the application of EMERALD to a practical problem
proceeds.

2.1 Prediction

Before we start with explaining prediction, we have to explain the nature of h, when
it is described with stochastic models. It means that we are uncertain about the exact
variation of h with time. We do know that it is likely to be lower in the summer time
and higher during the winter, but there is still a lot of unknown variation left. This
variation is due to errors in our inputs, model parameters and the fact that our model
itself is only an approximation of reality. Therefore, we vision that h, is not described
by a single function of time, but as a collection of possible functions, each of which
is equally probable of describing the real but unknown variation of h. Figure 4
illustrates this concept, showing four equally possible functions (note that for
convenience we have drawn them as continuous functions)
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Figure 4 Equally probable realisations of the stochastic process hi

One particular function is called “a realisation” and the whole collection of equally
probable realisations, usually an infinite number of them, is called “the ensemble”
and h, is said to be “a stochastic process”. Now reality is assumed to be on of these
possible realisations, however which one exactly is unknown. We would want our
prediction to be such that the prediction error is minimal. However, because we do
not know which of the realisations is reality it is not possible to evaluate the
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prediction error either. Instead, we are forced to look at every time step at the
difference between our prediction and the values of all possible realisations. Suppose

that h,is the prediction andh{ the value of realisation number i, then we seek a
prediction for which the following properties hold:

1. The prediction error, i.e. the difference between our prediction and the
realisations, is on average equal to zero:

¥ I~ _
& lh-n]=0 @
i=1

2. The average squared prediction error is minimal (as small as possible):
g [~ NE
a [hk - hé')] b minmd (28)
i=1

It turns out that we achieve this if we take as prediction at every time the average of
all realisations:

. ¥ o
he =E[h]=a h! (29)

i=1

The average of all possible realisations is called “the expectation” or “expected
value” of the stochastic process h, and is usually denoted with the operator E[]. If a
prediction is such that it has properties (27) and (28), it is said to be “unbiased”
(Equation (27)) and “optimal in least squared sense” (Equation (28). If we describe
the stochastic process h, with Equations (1)-(3) the expected value is the
deterministic part of these models:

h, =c+a(f., - ©) +bg,(K) +b,q, (k- 1) (30)
Figure 5 shows the realisations with the optimal prediction. Also shown is the 95%-

prediction interval which gives for every time step the boundaries that contain 95%
of the realisations. Because the noise e, has a Gaussian (normal) distribution, the

95% prediction interval can be calculated from the standard deviation of the
prediction error s (t) as follows:

| +1.96s |

with

s.=alh-nf @
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For the model (1)-(3) the variance of the prediction error s 2 is equal to the variance
of the noise process n, (s 2) and can be calculated as (Bierkens et al., 1999):

SZ
sZ=si=—° 32
e =S =1y (32)
A
h(t)

>
t

Figure 5 Prediction with the deterministic model (solid line) and boundaries of the 95% prediction interval (dashed
lines); grey lines are a number of realisations.

2.2 Stochastic simulation

Prediction of water table depth is important if we are interested in the actual, but
non-observed water table depth. However, in many applications we are not
particularly interested in the actual water table depth, but in some fluctuation
quantities. For instance, we may be interested in the probability that at any day in the
near future the level of 30 cm is exceeded, or we want to know the mean highest
water table depth (MHW) or mean lowest water table depth (MLW) (Van der Sluijs
and De Gruijter, 1985). These fluctuation gquantities cannot be estimated from the
predicted water table depth, because the predicted line typically overestimates the low
values and underestimates the high values (see Figures). The reason for this is that it
tries to minimise the squared prediction error (Equation 31). In this case we should
do the following (See Figure 6):

1. simulate a large number (at least 100) realisations of the stochastic process h,

using model (1-3) where thee, are simulated by drawing from a Gaussian

distribution with mean zero and variances ?;

2. or each simulated realisation the appropriate fluctuation quantities are estimated.
For 100 realisations this yields also 100 values of this property, e.g. 100 MHWSs
and 100 MLWs;

3. the cumulative frequency estimated from the replicas of the fluctuation quantity
(e.g. the 100 MHWSs and MLWs) represents an estimate of the probability
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distribution of the fluctuation quantity. This probability distribution expresses
the uncertainty about the true value of the fluctuation quantity, uncertainty that
arises from our model’s inability to predict the unknown water table depth
exactly. Usually the average of the replicas is used as an estimate of the true but
unknown fluctuation quantity, and as a measure of uncertainty the 95%
confidence interval is calculated.

A
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_.,//' \\ '\ \"l / _l' """ MHW3 >_
- \...\'! \‘\'\ /\ /.’:- o MHW.
LY ',_/__:ng,r_/. —- 0
A} * - —_— H
NN \\\. // ) P Z
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\ \V\{/ 4 7
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>
t

Figure 6 Example of simulating 100 realisations of water table depth and estimating the probability distribution
of MHW from it.

2.3 Calibration

Most parameters can be obtained from the combinations of soil profile descriptions
and land use classification in combination with standard values from the literature
(e.g. Table 1 and Wasten et al., 1994). However, the hydrological parameters
{g,mq,} and the noise parameters{f ,s 2} are difficult to estimate directly from

physical knowledge and must generally be obtained from calibration. To obtain
unbiased estimates of the parameters of a stochastic model like equation (1)-(3), they
should be estimated simultaneously, e.g. using a state estimator such as the Kalman
filter (see Te Stroet, 1995). Unfortunately, a Kalman filter as used in SSD (Bierkens,
1998) or KALMAX/KALTFN (Bierkens et al., 1999) has not been implemented yet
for EMERALD. Therefore, we use a two step procedure that, in theory, may lead to
unbiased estimates.

Step 1: calibration of the deterministic model (Equation (2))

The parameters {g,mq,} that are part of the deterministic model (2) are found by
running the deterministic model (2) only (prediction) and minimising the following
criterion with respect to {g,maq,} using L observations Y, j=1,.,L of water table
depth:
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JLgma) =8 [ @ma)- v, ]’ )

where h; (9,m.q,)is the prediction with the deterministic model with parameters

{9.mq,} at time step j where observation y, has been taken. Minimisation of (33) is

done with a minimisation algorithm. In EMERALD the “downhill simplex method”
is used (Press et al., 1986).

Step 2: calibration of the stochastic model (Equation (3))
With the estimated parameters {g,m¢,} obtained from step 1 the parameters

{f ,s 2} are estimated using the following steps:
1. calculate the L residuals from the L observations:

e, =h(§.Mma,)- v, j=1.,L (34)

2. calculate the auto-covariance function of the residuals. Assuming that
observation intervals are more or less equidistant, this auto-covariance function is
estimated as:

~ 1 L-k
Ck) = Wé_‘lei € k=01...K,, (35)

where K, is the maximum lag calculated. From Equations (31), (32) and (35) it
can be seen thatC(0) =s 2 =s ?;

3. fit the theoretical auto-covariance function of the noise model (3) given by
(Chatfield, 1989; p. 36):

2
Cl) = 25 K=0f1,..... (36)

to the experimental auto-covariance (35) by minimising the following weighted
least squares criterion:

It 15 2) = R W[ 521K - CR) (37)

where the weights w(k) are proportional to the number of data used in (35) to

obtain estimate é(k). Minimisation of (37) is obtained with the downhill-
simplex method (Press et al., 1986). In VIDENTE the default value of k., = 9 is
used.
Clearly, there is an inconsistency in these steps. In step 1 a criterion is used (Equation
33) that assumed that the residualse, are independent, whereas in step 2 a covariance
function is fitted that entails that the ¢, are dependent in time. This inconsistency is
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the cause of the bias in the parameter estimates. Criterion (33) yields biased estimates
of {g,mq,} if the ¢ are dependent in time. These biased estimates are then used in

step (2), yielding biased estimates of {f ,s 2} also. How serious this bias is depends

on the length of the series of observations. If the time span over which observations
have been taken is long compared to the effective correlation length, bias will be
small. The effective correlation length, i.e. the time span over which the ¢ are
correlated (in days), is given by (Bierkens et al., 1999):

g =D @)
In(f )

The correct way to estimate the parameters is to estimate {g,mq,} with generalised

least squares assuming dependent ¢; (as opposed to ordinary least squares used in

Equation (33)). However, for this we would need the parameters {f ,s 2} which are

also unknown. Therefore some iterative scheme must be used where a generalised

least square estimate of {g,mq,} is used in step 1 that is alternated with improved

estimates of {f ,s 2} as in step 2. The Kalman filter algorithm and a filter criterion

according to Schweppe (1979) as used in Bierkens et al. (1999) also provides such
unbiased estimates.

2.4 Systematic application of EMERALD: step by step

In the following example we assume that we have a location for which precipitation
and reference evapo-transpiration are known for the years 1970-1999 and we have
observations of water table depth available with an observation frequency of two
times a month for the years 1995-1999. Application of EMERALD has two goals.
First, we want to estimate fluctuation properties (MHW, MLW etc.) at the location.
Second, we aim to monitor the water table depth on a daily basis in the future, while
maintaining an observation frequency of two times a month. The following steps are
taken:

2.4.1 Calibration

The parameters{g,mq,,f ,s }are estimated through calibrating the model to the

observations from 1995-1999 (section 2.3). EMERALD calibrates the parameters of
the deterministic and the stochastic model consecutively, where it possible to fix each
of the parameters, if necessary. The result of the calibration with EMERALD is a file
with calibrated parameters and the mean error (ME), root mean squared error
(RMSE) and mean absolute error (MAE) of Kalman filter time updates:
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MEz%é(ﬁj . yj) (39)

1g [z 2
RMSE =, /-a (hj - yj) (40)
La
18|
MAE == [f; - Yi| (41)

Furthermore, if asked for in the EMERALD parameter file (standard in VIDENTE),
the output file contains for the calibration period the predictions of water table depth
(cm surface) and the following components of the water balance: P(k) (mm/d), E (k)
(mm/d) E,(k) (mm/d) E,(K) (mm/d) V., (mm), q,(k) (mm/d), q,(k) (mm/d), q.(k)
(mm/d) and q,(k) (mm/d) (all for the optimised parameter set {g,m¢,} ). For the
observation times, the observations of water table depth y, and the residuals y,-h, are
also given. With the calibrated parameters {f ,S 2} the prediction variance can be
estimated with Equation (32). Finally, the file contains the theoretical auto-covariance
function calculated with {f ,s 2} as fitted to the experimental one. Figure 7 shows the

prediction with the calibrated Equation (2) together with the observations. Also
shown are residuals with the theoretical prediction interval (Equation 32). Figure 8
shows the theoretical and experimental auto-covariance function as obtained with the

estimated parameters {fA,sA 2},

value (cm
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Figure 7 Example output from calibrating EMERALD
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Figure 8 Example output from calibrating EMERALD; fitted auto-covariance (solid ling) and experimental
auto-covariance (diamonds).

2.4.2 Prediction

When calibrating with the stand alone version of EMERALD, one should indicate
explicitly whether prediction has to be performed for the calibration period. In
VIDENTE this is standard. It is advisable to always predict the actual water table
depth for the calibration period also, because it enables you to plot a figure like
Figure 7. This way you can see whether the calibrated model captures the dynamics
satisfactorily. Of course, prediction is mostly used to obtain the water table depth
and the terms of the water balance for periods without observations (we must of
course have precipitation and potential evapo-transpiration for this period) . The
output is the same as described under 2.4.1. If in the prediction period observations
have been taken, EMERALD will use these to calculate statistics (39) to (41). Also,
these observations and the residuals are put in the output file together with the
predicted water table depths. This way a figure like Figure 7 can be made and the
calibrated model be validated for a different period than the calibration period.

2.4.3 Simulation

Using the calibrated parameters from the calibration step EMERALD can be used to
simulate realisations of h,. It is not possible to simulate realisations of the other water
balance terms in EMERALD as implemented in VIDENTE. Using a different
stochastic model than described in Equations (1)-(3), it is possible to simulate such
realisations with the stand alone version of EMERALD. We refer to Walvoort and
Bierkens (1999) for this option.
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In case fluctuation quantities have to be estimated, multiple realisations must be
simulated. The output consists of a file containing the realisations of h,. This file can
be used as input for the program STATSIM in order to calculate the fluctuation
properties. In our example we would typically simulate realisations of 30 years long,
i.e. using precipitation and potential evapo-transpiration from 1970-1999, in order to
obtain fluctuation quantities that are representative for the current climate, and not
only for the weather conditions of the observation period 1995-1999 (see Knotters
and Van Walsum, 1997).

2.4.4 Estimating fluctuation quantities

Using the program STATSIM fluctuation quantities can be calculated from the
simulated realisations. The output consists of the following:

A file with statistics

An example of this output is shown hereafter in Figure 9. The mean highest water
table, the mean lowest water table and the mean spring water table are given
(expected values, median values and 5 and 95 percentiles). Here quantities are
calculated per realisation. So, the uncertainty here reflects only model uncertainty.
The univariate statistics are statistics over all simulated water table depths, which
means that they reflect both the within year variation and the year to year variation of
the weather as well as the model uncertainty (variation between realisations).

Univariate Statistics

mean -106.425819
variance  360.064484
stdev.  18.975365

3rd moment -539.639771

P01 -148.944107
P05 -138.432495
P10 -132.007401
P25 -119.718979
P50 -105.809341
P75  -92.923340
P90 -82.159462
P95  -75.837044
P99  -65.247566

Mean Highest and Mean Lowest Water Table and Mean Spring Water Table

mean 5% 50% 95% std

GLG(t) -135.358978 -138.189285 -135.264694 -132.976761  1.565006
GHG(t) -78.744606 -81.293327 -78.789520 -76.163002  1.535088
GLG(z) -135.058350 -138.189285 -134.869598 -132.487930  1.608089
GHG(w) -79.471909 -82.413284 -79.414589 -76.819191  1.603910
GVG(t) -99.525368 -103.282478 -99.257187 -96.835274  2.082639

Figure 9 File with fluctuation statistics as output of STATSIM; GHG: mean highest water table; GLG: mean
lowest water table; GV G: mean spring water table; between brackets: denoting whether the statistic is determined
for the whole year (t), the summer period (s) or the winter period (w).
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A file with the frequency of exceeding graph (FOE-graph)

The FOE-graph gives for every level the number of days that the water table depth
on any future day of any future year (at the same climate and hydrological regime as
in the calibration period) exceeds that level. It is in fact the cumulative frequency
distribution, reflecting both the within year variation and the year to year variation of
the weather as well as the model uncertainty. Figure 10 shows a FOE-graph.
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Figure 10 Frequency of exceeding graph

A file with the regime graph

The regime graph gives for every day number in a future year the expected water
table depth, the median and the 5 and 95-percentiles. The variation per day number
therefore reflects both year to year variation (i.e. our uncertainty about the future
weather) as well as model uncertainty. Figure 11 gives an example of a regime graph.
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Figure 11 Regime graph; black solid line: mean; black dashed lines: 5- and 95-percentiles; grey solid line: median.
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A file with the histogram

Like the FOE-graph, the histogram reflects both the within year variation and the
year to year variation of the weather as well as the model uncertainty. From the
histogram we can read the expected number of days that the water table depth will
be within certain boundaries. Figure 12 gives an example histogram.
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Figure 12 Example histogram

A file with the correlation function

The correlation function gives the correlation coefficient between day k and day k
+1 (= lag 1), day k and day k+ 2 (lag 2), day k and day k + 3 etc. The correlation
function reflects both the response time of the groundwater system, as well as the
periodicity of the rainfall surplus. The longer it takes for the correlation function to
cross the x-axis, the slower the response time of the groundwater system. However,
because the periodicity of the rainfall surplus is also included, we cannot read the
characteristic response time from the correlation function. The correlation function
is the average of the correlation functions that are estimated for the realisations. An
example correlation function is given below (Figure 13).
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Figure 13 Example correlation function

The characteristic response time (in days) for the deterministic part of the
EMERALD (Equation 2) is given by (Bierkens et al., 1999):

_ - 30t
° " In(a)

t (42)

As already given in Equation (38), the effective correlation length (time span over
which n, is correlated in days) of the noise process (3) is given by (Bierkens et al.,
1999):

_- 3Dt (43)

SCO)

Of course many more fluctuation quantities could be estimated from the simulated
realisations; see for instance Bierkens (1998) and Knotters et al. (2000).

2.4.5 On line prediction and monitoring

Finally, using the calibrated model, EMERALD can be used for on line prediction,
where in between dates that observations of water table depth are taken, optimal
predictions of water table depth are obtained. EMERALD can also be used as a
monitoring instrument by running it on line and checking whether not much more
than 5% of the residuals fall outside the 95% error bounds (see Figure 7). If this is
the case, a change in the hydrological system may have occurred. An alternative way
of monitoring such a change is to plot the observations together with the prediction

interval h, +1.96s . (with s ,calculated with Equation (32)). If the observations

start to plot outside this interval, a significant change in the hydrological system may
have occurred.
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Annex: Input instructions for EMERALD

Following is the user’s manual of EMERALD of Walvoort and Bierkens (1999). The
stand alone version of EMERALD has some extra features that have not been
included in VIDENTE, mainly because they are rarely used. First, in VIDENTE the
ratio of the distance to the water course x and the distance between the water courses
L is always taken as ¥2. The stand alone version allows for other ratios. Furthermore,
the stand alone version allows for an additional noise model, called “internal noise”,
as opposed to the external noise model of Equations (1)-(3). In this internal noise
model, the coloured noise process (Equation 3) is added to the net input to the
groundwater system resulting in the following equations:

h, =hg+a(h._, - h))+bq,(k)+b,q, (k- 1) +bn, +b,n,_, (Al)

n =fn.+te (A2)

~

hk' hk

As can be seen, the properties of the error process (i.e. its variance and

correlation in time) are not only dependent on the noise parameterf but also on the
(physical) parameters a, bl and b2. EMERALD provides two different ways of
calibrating the noise process. Because the noise is now an intricate part of the system,
I.e. it is seen as the error in the net input gn(k), stochastic simulation is possible for
all other water balance terms that depend on hk, and not only for the water table
depth as in VIDENTE. It is not implemented in VIDENTE, because calibration of
the internal noise case is rather cumbersome and therefore not much used.

User's manual emerald (version: July 1998)

Introduction

EMERALD is implemented on a personal computer. It is written in Borland's Turbo
Pascal (version 7.0) for ms-dos (assumed screen resolution 600° 800). A data flow
diagram (DFD) of emerald is given in Figure Al. In this diagram, processes are
denoted by circles, temporary files by two parallel horizontal lines, user accessible
files by boxes, and data flows by arrows.
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Figure Al Data flow diagram of EMERALD

EMERALD is driven by a script file, which takes a central position in the DFD. A
script file contains a high-level computer language, i.e. the script, which prescribes
which actions to perform, which files to read, and where to store results. At run-
time, emerald reads the script, deciphers it by means of its built-in script interpreter,
and carries out the appointed tasks. Each line in the script file consists of a script
directive and associated parameters. In general, the syntax reads:

DIRECTIVE <mandatory_parameter> [optional _parameter] <option_1 |
option_2>

Throughout this manual, mandatory parameters are given in angular brackets and
optional parameters in square brackets. Furthermore, piping symbols, i.e. |, are used
to separate two or more options. Only one of these options should be selected.
Annotations should be preceded by a "+" on the first position of each commentary
line in the script file. Parameters printed in italics and Greek symbols should be
replaced by appropriate numeric values, parameters printed upright should simply be
copied. emerald's script language is order invariant. This means that the user can put
the script directives in any order (s)he prefers. However, if emerald encounters a
directive more than once, only the first is processed.

Script directives
In this section the script directives are addressed in alphabetical order.

BINARY output
syntax: binary <* | [Ea] [Ep] [V] [ap] [ag] [ac] [qn] [h] [qd]>
purpose: Stores output in direct access files. In case of simulation, storage of all realisations

may take up a substantial amount of disk space. In order to suppress this demand,
emerald offers the opportunity to store the realisations in direct access format. This
can be effectuated by means of the binary-directive. Its syntax is very similar to the
output-directive, except that no output file name(s) can be specified. emerald uses
default file names which consist of the parameter name of interest plus extension
rl4, e.g. Ea.rl4, Ep.ri4, and V.rl4. A description of these binary files is given in a
subsequent section.
example: binary h qd
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BYPASS

model parameters

syntax:
purpose:

example:

CALIBRATION

BYPASS <fb1> [fb2] ... [fog]

Governs the amount of bypass flow through subsoil layers 1 to 9. fp; should be
expressed as a fraction of the incoming flux of subsoil layer j.

BYPASS0.50.20.1

action

syntax:
purpose:

example:

CROP

CALIBRATION < [D] [H] [IF] [EF] > [tolerance]

Specifies the calibration method(s) to perform. The deterministic component is
calibrated when D is encountered on the parameter line, the stochastic component
is calibrated when 11, IF, and/or EF are encountered. These abbreviations stand
for Internal noise — Inverse model, Internal noise - Forward model, and External
noise - Forward model respectively. Optionally, the tolerance of the termination
criterion of the Downhill-Simplex method may be specified (Presset al., 1989).
When I, IF, and/or EF are supplied as parameters, EMERALD expects the
observations in the observation file to be separated by approximately equal time
steps (section 3.2). Furthermore, if 11 is specified, EMERALD replaces missing values
by predictions obtained by linear interpolation.

CALIBRATION D IF EF 1e-6

model parameters

syntax:
purpose:

example:

DRAINAGE

crop <fc> <hp > <hpp> <hpwp> <*|zc>

Supplies emerald with crop and soil specific parameters. The parameter line should
contain the following quantities:

fc = crop factor [-];

hpfe = pressure head at field capacity (cm);

hpip = pressure head at limiting point (cm);

hpwp = pressure head at wilting point (cm);

Zc = critical depth (cm);

* = critical depth according to Wdéstenet al., (1994) (cm).

EMERALD makes no distinction between positive and negative pressure heads.
CROP 1 -100 -500 -8000 *

model parameters

syntax:
purpose:

example:

DRAINAGE <zg> <x> <L>

Specifies the drainage parameters:

z¢= level of drainage base with respect to soil surface (cm);
x= lateral space co-ordinate (see Figure 2.1) [L];

L= distance between drainage courses (see Figure 2.1) [L].

See to it that x and L have corresponding units.
DRAINAGE -100 50 100
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FIX action
syntax: FIX <[gamma] [mu] [qVv] [phi] [sigma2]>
purpose: Keeps the parameters on the parameter line fixed to their initial values during
calibration. The initial values should be specified by the GROUNDWATER and NOISE
directives.
example: FIX gamma phi
[ GROUNDWATER | model parameters
syntax: GROUNDWATER <[> <?> <> <*|havg> <Qgavg™>
purpose: Provides the parameters of the saturated zone. The parameter line should contain
the following quantities:
? = specific yield [-];
G = drainage resistance (days);
ov = infiltration/seepage flux (mm/d);
havg = average groundwater level (cm);
* = average groundwater level is based on observation file (cm);
Ogavg = average flux in percolation zone (mm/y).
Groundwater levels should be given with respect to the soil surface.
example: GROUNDWATER 0.2 200 0 * 250

INITIAL

model parameters

syntax:
purpose:

example:

LAGS

INITIAL <Sg> <*[ho> <(do> <Qno> <No>
Gives the initial values of the following parameters:

So = initial saturation grade root zone [-];

ho = initial groundwater level with respect to the soil surface (cm);

* = h, equals the average groundwater level in the observation file (cm);
0do = initial specific discharge (mm/d);

no = initial net input to the groundwater system (mm/d);

No = initial value of noise process N.

The following default values are used if this directive is omitted: So: field capacity,
ho: drainage base, ddo, gno, and No are set to zero.
INITIAL0.8*000

action

syntax:
purpose:

example:

174

LAGS <nfit> [Npring

Specifies the number of lags involved in fitting the autocovariance function
(section 3.2). The optional parameter nprint Specifies the number of lags that should
be written to the output file. nprint Should always be greater than or equal to nrit. If
the LAGS - directive is omitted, nsit and nprint are set to 10 by default, i.e. lags 0 to 9
are used for fitting.

LAGS 15 20
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METEO input

syntax: METEO <file_name> [skip]

purpose: Specifies the name of the file containing time series of precipitation amounts and
evapotranspiration. Its file format is given in a subsequent section. The optional
parameter [skip] denotes the number of lines to skip in the meteo file (default:

skip=0).
example: METEO Eelde.met 1
NOISE model parameters
syntax: NoisE <f ><s 2>

e

NOISE <f ><S Z> <INTERNAL | EXTERNAL>

purpose: Specifies the parameters of the noise process. The first is sufficient to supply the
initial values in case of calibration, the latter is required in case of simulation. In
case of prediction, the variance of the prediction errors of h and/or qq are given if
the noise type is set to INTERNAL.

example: NOISE 0.25 0.01 INTERNAL

observations input

syntax: observations <dayl> <yearl> <day2> <year2> <file_name> [skip]

purpose: Specifies which part of observation file <file_name> should be processed. The
period of interest starts at <dayl> of <yearl> and ends at <day2> of <year2>.
[skip] refers to the number of lines to skip in <file_name>, and is 0 by default.

example: observations 1 1982 365 1991 12BL0015.dat 1

OUTPUT output

syntax: OUTPUT <file_name>

OuTPUT <file_name> <* | [P] [Ea] [Er] [Ep] [V] [ap] [ag] [qc] [gn] [h] [qd]>

purpose: Creates output file <file_name> which gives a summary of input parameters, and a
detailed description of model output. In case of prediction or simulation, the
requested output should be enumerated after <file_name>. The mnemonics on the
parameter line correspond to those used in the report. If the symbol * is used, all
parameters on the parameter line are written to <file_name>. In case of calibration,
it is sufficient to supply <file_name>.

example: OUTPUT Emerald.out h qd

PREDICTION action

syntax: PREDICTION <dayl> <yearl> <day2> <year2>

Purpose: Performs prediction. The parameter line specifies the start and end of the
prediction period, i.e. <dayl> of <yearl> and <day2> of <year2> respectively. If
the script contains the OBSERVATION-directive, validation and/or verification
measures are computed for the time span that is part of both the prediction period
and the observation period.

Example: PREDICTION 1 1982 365 1991

PRERUN action

syntax: PRERUN <* | #years>
Purpose: Specifies the length of the prerun or warming up period. A prerun of <#years>
years is required to eliminate the effect of the initial values. The prerun period
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Example:

SIMULATION

starts at the first day in the meteo file if <*> is encountered on the parameter line.
PRERUN 2.5

action

syntax:
Purpose:

Example:

SOIL

SIMULATION <day1> <yearl> <day2> <year2> <#runs> <#runs_out> <seed>
Performs simulation. The parameter line specifies the start and end of the
simulation period, i.e. <dayl> of <year1> and <day2> of <year2> respectively, the
number of realisations to perform <#runs>, the number of realizations to write to
the output file <#runs_out>, and the random seed <seed> to initiate the pseudo
random number generator (gasdev/ranl of Press ¢t al. (1989)).

SIMULATION 1 1982 365 1991 1000 1 12534

model parameters

syntax:
Purpose:

Example:

TMPDIR

SOIL <topsoil=thickness> <subsoil1=thickness> ... [subsoil9=thickness] [cut_off]

Specifies the soil physical characteristics of the unsaturated zone. The parameter
line contains building blocks of the Staringreeks (Wdsten et al., 1994), together with
their associated thicknesses (cm). A total of nine subsoil layers may be specified.
The root zone is represented by the topsoil layer, the percolation zone by the
subsoil layers. The amount of percolation not reaching the groundwater system due
to truncation of the pulse response function Up(? t,t) is governed by [cut_off]. This
quantity should be expressed as a fraction of the total amount of percolation. It
significantly affects the amount of CPU-time required. Default value: 1E-6.

SOIL B3=30 B3=20 O3=100 le-5

general

syntax:
Purpose:

Example:
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TMPDIR <path>

Designates the path to temporary files. Model performance may be significantly
improved if <path> denotes a RAM-drive.

TMPDIR e:\tmp
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Examples of script files for EMERALD

In Figures A2 and A3 examples of script files are given.

+ +++++++++++F A+ o+
+

+ Calibration of the determnistic and stochastic +
+ conponents (internal noise, forward nodel), +
+ followed by prediction (verification) +
+ +
+ period : 1982-1986 +
+ well : 12BL0015 +
+ location : Vries, Eelde +
+ +
+++++++++++++++ S+t

CALI BRATION D | F 1e-9

LAGS 20 20

PREDI CTION 1 1982 365 1986
OBSERVATI ONS 1 1982 365 1986 12BL0015. dat 5
METEO Eel de. net 1

PRERUN 2

QUTPUT prediction.out h

CRCP 1 100 500 8000 *

SO L B3=35 B3=20 B=30 O4=95 1le-6
GROUNDWATER 0.2 165 0 * 261

DRAI NAGE -80 1 2

INNTIAL 1 * 00O

BYPASS 1 1 1

NO SE 0 0. 001 | NTERNAL

Figure A2 Script to calibratt EMERALD and verify the deterministic model part with prediction

++++++++++++++++++++++++++
+ +
+ Calibration of the determnistic and stochastic +
+ conponents (internal noise, forward nodel), +
+ fol l owed by sinulation. +
+ +
+ period : 1982-1991 +
+ wel | : 12BL0015 +
+ location : Vries, Eelde +
+ +
+++++++++++++++++++++ A+t

CALI BRATION D | F 1e-9

LAGS 20 20

SI MULATION 1 1982 365 1991 1000 2 12534
OBSERVATI ONS 1 1982 365 1991 12BL0015. dat 5
METEO Eel de. net 1

PRERUN 2

QUTPUT Si nul ati on.out h qd

BI NARY h qd

CRCP 1 100 500 8000 *

SO L B3=35 B3=20 B=30 O4=95 le-6
GROUNDWATER 0.2 165 0 * 261

DRAI NAGE -80 1 2

INNTIAL 1 * 000

BYPASS 1 1 1

NO SE 0 0.001 | NTERNAL

Figure A3 Script to calibratt EMERALD followed by stochastic simulation
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Execution

The executable of emerald should be run in a ms-dos environment. If your operating
system is windows 3.x/95/98/nt, emerald should be executed in a ms-dos-box.
Execution starts after typing

EMERALD <script_file>

on the command-line, followed by pressing the enter/return-key. The name of the
script file should satisfy the ms-dos conventions, even when emerald is installed on a
windows-machine. File names may contain wildcarts in order to start several script
files on a row. For instance

EMERALD *.scr
processes all script files with extension scr in the active directory.

Input files

The data flow diagram of emerald discerns three (ascii) input files. The first contains
meteorological data, the second observed groundwater levels, and the third soil
physical characteristics.

The meteo file consists of four columns, i.e. day number (1-365 or 366), year (4
digits), amount of precipitation (mm), and amount of evapotranspiration according
to Makkink (mm). An example of a meteo file is given in Figure A4. Parameter skip
equals 1, because one header line is present. Missing values are not allowed.
Furthermore, the time step between successive lines should equal 1 day.

day year
1959
1959
1959
1959
1959
1959
1959
1959
1959
1959

=
QOINININIOININIO1 10
r—\mwl—\r\)wwwwhr—q

COONOUTAWNR
WNAOUINNAOUIT
©Soo0o0o000000o

=

Figure A4 Example of a meteo file

The observation file consists of three columns, i.e. day number (1-365 or 366), year
(4 digits), and observed groundwater levels (cm). The entries of the third column are
defined with respect to the soil surface, and are decreasing in downward direction.
All alphanumeric characters (including blanks) are regarded as missing values. An
example of an observation file is given in Figure A5. It contains one header line, so
parameter skip of the observation-directive should be set to 1.
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day year Y
14 1982 - 36
28 1982 -34
43 1982 -39
57 1982 -33
74 1982 -39
88 1982

104 1982 - 64

118 1982 -71

134 1982 -74

148 1982 -90

Figure A5 Example of an observation file

The file containing soil physical properties is called "Staring.dat" (Figure A6). This
file contains the Van Genuchten parameters, the critical depth, and the thickness of
the capillary fringe for all soil building blocks of the "Staringreeks™ (Wosten et al.,
1994). The user is allowed to add new building blocks, and edit existing ones.
However, see to it that the codes referring to the soil building blocks consist of three
characters at most.
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STARI NGREEKS, Wsten et al., 1994 (Technical Docunent 18)
topsoil s

code Tr Ts Ks a | n zc dae
Bl 0.01 0.43 17.46 0.0249 -0.140 1.507 94.0 19.2
B2 0.02 0.43 9.65 0.0227 -0.983 1.548 104.0 18.8
B3 0.01 0.45 17.81 0.0152 -0.213 1.412 151.0 19.3
B4 0.01 0.42 54.80 0.0163 0.177 1.559 201.3 19.8
B7 0.00 0.40 14.07 0.0194 -0.802 1.250 93.2 18.0
B8 0.00 0.43 2.25 0.0096 -2.733 1.284 102.3 15.1
B9 0.00 0.43 1.54 0.0065 -2.161 1.325 119.1 15.0
B10 0.01 0.42 1.17 0.0118 -4.795 1.224 58.2 10.8
Bll 0.00 0.60 5.26 0.0243 -5.395 1.111 29.0 10.5
Bl12 0.00 0.55 15.46 0.0532 -8.823 1.081 24.5 10.2
Bl4 0.01 0.42 0.80 0.0051 0.000 1.305 65.0 12.3
Bl6 0.00 0.73 13.44 0.0134 0.534 1.320 120.4 18.8
Bl17 0.00 0.72 4.46 0.0180 -0.350 1.140 30.0 11.9
B18 0. 00 0.77 6.67 0.0197 -1.845 1.154 43.9 14.0
subsoi | s

code Tr Ts Ks a | n zc dae
oL 0.01 0.36 13.21 0.0224 0.000 2.167 87.0 19.5
(0] 0.02 0.38 15.56 0.0214 0.039 2.075 96.0 19.6
(0¢] 0.01 0.34 18.30 0.0211 -0.522 1.564 127.0 19.4
A 0.00 0.36 53.10 0.0216 -0.520 1.540 189.0 19.8
(03 0.01 0.32 43.55 0.0597 0.343 2.059 42.0 19.4
6 0.00 0.41 5.48 0.0291 -6.864 1.152 61.6 12.4
(0:] 0.00 0.47 9.08 0.0136 -0.803 1.342 128.3 18.5
(0°] 0.00 0.46 2.23 0.0094 -1.382 1.400 107.0 16.3
O0 0.00 0.49 2.22 0.0107 -2.123 1.280 79.1 14.7
011 0.00 0.42 13.79 0.0191 -1.384 1.152 66.5 16.3
Ol2 0.00 0.56 1.14 0.0095 -4.171 1.159 33.1 8.9
013 0.00 0.57 3.32 0.0171 -4.645 1.110 25.1 9.6
Ol4 0.00 0.38 0.36 0.0025 0.057 1.686 140.0 12.2
o5 0.01 0.41 3.70 0.0071 0.912 1.298 109.2 17. 1
o6 0.00 0.89 1.07 0.0103 -1.411 1.376 58.1 13.2
o7 0.00 0.8 2.75 0.0127 -1.832 1.274 71.0 15.0
user defined soils

code Tr Ts Ks a | n 4 dae
D1 0.01 0.43 17.46 0.0249 -0.140 1.507 94.0 19.2
WL 0.01 0.36 13.21 0.0224 0.000 2.167 87.0 19.5

Figure A6 Example of "Staring.dat"

Output files

EMERALD always generates an ascii output file. It contains a summary of input
data, and the results of executed calibration, prediction and/or simulation routines.
In case of simulation, the results can also be stored in binary (direct-access) format
by using the binary-directive. The contents of each record is given in table Al.

Table AL Contents of binary (direct-access) files. Each record contains 4 bytes of information.

record contents

0 first year of the simulation period

1 final year of the simulation period

2 number of runs

3-eof  realizations, where the year-loop is embedded in the run-loop
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Disclaimer

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY. No author or distributor accepts responsibility to anyone for the
consequences of using it or for whether it serves any particular purpose or work at
all, unless he says so in writing. Everyone is granted permission to copy, modify and
redistribute this program, but only under the condition that proper reference is given
and that this notice and the above copyright notice remain intact.
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Part 5: Input instructions for STATSIM

The program STATSIM can be used as a postprocessor after simulations with
KALMAX, KALTFN, SSD and EMERALD. In case of EMERALD, the binary file
made by the Pascal program EMERALD has to be converted to an unformatted
Fortran file. To achieve this, two auxiliary programs are necessary:. the program
PAS2ASC to get from EMERALD binary output to an ascii file, and the program
ASC2FOR to get from this ascii file to Fortran unformatted input for STATSIM.
Both programs are also present in the STATSIM directory on the CD.

C Copyright (C 2000, Alterra, Geen Wrld Research
C

C This programis distributed in the hope that it will be useful,

C but W THOUT ANY WARRANTY. No author or distributor accepts

C responsibility to anyone for the consequences of using it or for

C whether it serves any particular purpose or work at all, unless he

C says so in witing. Everyone is granted permi ssion to copy, nodify

C and redistribute this program but only under the condition that proper
Creference is given and that this notice and the above

C copyright notice remain intact.

ccecececeecececececececececececececececececececececcecccececccccceccccccecccceccccececcccececcccccccccccecee
¢ Program STATSIM - cal cul ation of STATistics fromsinul ated data
c Goal: FromNSIMrealisations of sinmulated data wth:

c KALMAX

c KALTFN

c SSDSI M

c EMERALD (after converting eneral d output via PAS2ASC en

c ASC2FOR to a file readable by STATSIM

c Note: Only whole years can be simulated with these progranms if STATSIM
c is to be used.

c

¢ The programestimates: 1) univariate statistics, including VHWMW
c 2) histogram 3) frequency of exceedence, 4) reginme graph,

c 5) auto-correlation function

c

¢ Author: MF.P. Bierkens
c Date: April 1998; last nodified August 2000
cceceeeeceeceececcecececececcccececcccecceccecccecceccccececccccecceccccceccccccececccccccccece

g************************************************************************
c input: - file (unformatted) with sinulated data starting at januari 1
c record 1: yearl, nsim nyears

c - yearl: first year of sinulation

c - nsim nunber of realisations

c - nyears: numnber of years in simnulation

c do k = 1,nsim

c do i = 1, nsteps

c record 1 + (k-1)*nsim+ i: gwl — sinulated water table
c depth (or in case of

c SSD soil saturation or
c dr ai nage di scharge)
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enddo
enddo
note: nsteps = int(sintinfdstep)

out put :
- file with statistics and ghg/glg
- file with histogramdata (can be used to estimate histogram
- file with foe-curve
- file with regi necurve
- file with correlation function

C***********************************************************************

O0OO0O0O0O0O0O0O00O00O00O0
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