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1. Introduction

1.1 Flood risk and climate change

In the domain of flood risk analysis, the term flood risk is commonly
understood as the product of flood hazard and flood consequences (Plate 2002;
Apel et al. 2004). Flood hazard is characterised by the frequency of occurrence of
extreme events which cause flooding, and flood consequences consist of flood
damages under these events. Flood consequences are defined by the product of
flood exposure and vulnerability. Flood exposure consists of the people and
resources at risk. Vulnerability is the predisposition to be adversely affected. Put
simply, vulnerability to flooding is the lack of resistance when flooding would
occur (Kron 2005; IPCC 2012).

In the past decades, exposure to riverine and coastal flooding has increased
due to population growth, economic growth and urbanisation of flood-prone land.
According to Jongman et al. (2012), over 800 million people in the world are
exposed to a once in one hundred years (1/100) probability of river flooding, and
more than 270 million people to 1/100 years of coastal flooding. Jongman et al.
(2012) also estimated that at the global level asset exposure has increased from
1.8 trillion USD in 1970 to 35 trillion USD in river basins in 2005, and from 820
billion to 13 trillion USD in coastal zones. Low-lying coastal zones cover only 2% of
the world’s land surface, but 10% of the world population is living in these zones
(McGranahan et al. 2007).

Global flood risk will continue to increase in the coming decades due to
increasing flood exposure, increasing vulnerability and changing flood
frequencies. The largest increase in economic flood exposure is projected to occur
in Asia. In North America, Europe, Australia and Latin America, flood exposure will
also continue to increase despite a slowing trend in population exposure
(Jongman et al. 2012). Meanwhile flood frequencies will change due to soil
subsidence and climate change induced impacts on weather patterns, river flows
and sea levels (Syvitski et al. 2009; IPCC 2014).

Climate change has potential impacts on urban, riverine and coastal flood
frequencies. The projected increases in intensity and frequency of rainfall
extremes will decrease the performance of urban drainage systems (Mailhot and
Duchesne 2010). Without additional investments, this will lead to more frequent
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system failures, which, amongst others, increase the incidence of surface flooding.
Furthermore, peak river discharges and riverine flood frequencies are projected to
increase in large parts of Europe, Southeast Asia, Northeast Eurasia, Eastern and
low-latitude Africa, and some parts of Latin America (Feyen et al. 2012;
Hirabayashi et al. 2013). Moreover, without effective adaptation sea level rise will
lead to larger coastal flood risks worldwide, possibly reinforced by increasing
storm intensities in some regions (Webster et al. 2005; Knutson et al. 2010;
Nicholls and Cazenave 2010). Countries around the globe, therefore, have to
reconsider their current flood risk management strategies.

1.2 Flood risk management

Without additional flood risk management measures, expected damages
from flooding that can be ascribed to climate change will increase rapidly (Bosello
et al. 2007; Ciscar et al. 2011). Expected damages from increasing flood risk can be
mitigated by investment in flood risk reduction. The expected benefits of these
investments, which can be expressed in terms of monetary damage reductions,
are often higher than the costs to reduce flood risk. Flood risk management,
therefore, can improve social welfare.

For long-term decisions, such as decisions on investments in infrastructure,
anticipatory adaptation to climate change is needed (Smith 1997). Flood risk
infrastructures have typically long technical lifetimes and often involve fixed costs
of investment or modification (Gersonius et al. 2013). By anticipation of future
flood regimes frequent re-investment, which is costly due to the fixed costs
associated with every re-investment round, can be avoided. It is, for example,
clearly suboptimal to heighten a dike on a yearly basis (van Dantzig 1956).

Anticipatory adaptation relies on climate change impact projections. There
are, however, large uncertainties about climate change impacts on flood regimes.
Until now, there is no scientific consensus on which climate projections to use,
and how to use them for stormwater management and riverine and coastal flood
risk management (Hall 2007; Kundzewicz 2010; Rosenberg et al. 2010). Despite
climate change uncertainties, it is widely agreed that it is necessary to anticipate
climate-induced changes in flood frequencies by upgrading storage and
conveyance capacities of urban drainage systems and by updating fluvial and
coastal flood risk management strategies (Nie et al. 2009; Merz et al. 2010;
Katsman et al. 2011; Berggren et al. 2014).
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There is a large variety of flood risk management measures for different types
of flood risk. Coastal and fluvial floods can be classified as low-probability high-
impact floods and may cause economic and societal disruption (Vrijling 2001;
Jonkman et al. 2003). High probability-low impact floods from heavy precipitation
at the local scale, in contrast, have less impact on society. Inundation depths are
not comparable to those of fluvial and coastal flooding, but damages can still be
substantial (Hoes and Schuurman 2006; Wu et al. 2012).

For any type of flood risk, control measures are either aimed at reducing
flood frequencies or at mitigating flood exposure or flood vulnerability. Examples
of measures that reduce flood frequencies are dune restoration in coastal areas,
raising dikes in river basins, and upgrading drainage capacities in urban areas.
Flood exposure mitigation can be achieved through spatial planning, and
vulnerability can, for example, be reduced by implementing building codes and
the development of emergency plans (Hooijer et al. 2004; Aerts and Botzen 2011;
Wu et al. 2012; Hanley et al. 2014).

Due to climate change flood-related extremes can no longer be assumed to
be statistically stationary for flood risk management practices (Khaliq et al. 2006;
Milly et al. 2008; Merz et al. 2010; Rosenberg et al. 2010; Gilroy and McCuen
2012). It has, however, remained difficult to identify economically efficient and
robust investment options, and to determine optimal investment levels and
investment timing under climate change.

1.3 Economic analysis of flood risk management strategies under
climate change

Flood exposure and flood frequencies will continue to change. As a
consequence, investment in flood risk reduction will have to be repeated over
time. Flood risk management strategies can be defined as sequences of
investments in flood risk management measures. In order to identify economically
efficient and robust strategies, both optimal strategies of single measures have to
be identified, such as dike heights, as well as an optimal selection of investment
options, for example the choice between raising a dike and creating a floodplain.
Economic analysis of flood risk management strategies has become more
complex, because uncertain climate change impacts have to be incorporated in
the analysis (Zhu et al. 2007; de Bruin and Ansink 2011; Lickley et al. 2014).



Before an economic analysis of flood risk management strategies under
climate change is carried out, first the applicable decision criterion needs to be
considered. Cost-benefit analysis (CBA) aims at the maximisation of social welfare.
CBA has been frequently applied to assess flood risk management strategies and
to determine optimal flood protection standards (van Dantzig 1956; Zhu and Lund
2009; Eijgenraam et al. 2012; Kind 2014). Climate change increases the spread of
possible outcomes. As a result, decision criteria that include risk aversion may
lead to other optimal decisions than risk-neutral criteria. Risk-aversion has, for
example, recently been studied by Kuijper and Kallen (2012) and Wang et al.
(2015).

Decision-makers may also be regret-averse under climate change. This is for
instance reflected by the search for ‘no regret’ or ‘low regret’ flood risk
management options, which are relatively insensitive to different climate futures
(IPCC 2012; Wilby and Keenan 2012). For flood protection studies, regret aversion
may require an economic analysis that applies a regret-based decision criterion
(Brekelmans et al. 2012). Other decision criteria, such as minimax, Laplace,
Hurwicz or modified versions of these criteria can be considered as well (Clarke
2008; Gaspars-Wieloch 2014).

Once the decision criterion and the corresponding type of economic analysis
have been chosen for the optimisation of flood risk management strategies,
climate change uncertainty can be included in the analysis. The easiest way to
include climate change uncertainty is to use a ‘single future’ approach, in which a
single climate change scenario is applied to identify optimal investment strategies.
Examples are CBA with a deterministic parameter for the rate of sea level rise,
cost calculations of flood risk management strategies per design peak flow
scenario, and the analysis of cost-effective compliance with a flood risk standard
under a given rainfall scenario (van Dantzig 1956; Middelkoop et al. 2004; Mailhot
and Duchesne 2010). Expected-value based economic analysis, in contrast, assigns
subjective probabilities to different climate scenarios, or a probability distribution
to possible climate change futures. The probabilistic information can then be
applied to obtain estimates of the expected future flood risk (Purvis et al. 2008).

Climate change impact projections, furthermore, may be subject to change
over time. For example, recent assessments report larger uncertainty ranges of
sea level rise and extreme rainfall than in previous assessments (Wahl et al. 2013;
KNMI 2014). Moreover, more extreme value observations and scientific progress



may reduce or resolve climate uncertainties in the long run (Baker 2005; Khaliq et
al. 2006). Uncertainty that can be reduced by acquiring new knowledge has been
classified as epistemic (Merz and Thieken 2005). Possible changes in climate
information, including the possibility that uncertainty is reduced, can be applied
to study the value of flexibility and to develop adaptive flood risk management
strategies (Gersonius et al. 2013). The arrival of new information, or learning, can
be incorporated in an economic analysis of flood risk management strategies by
real options methods (Woodward et al. 2011). Learning can also occur upon the
arrival of new data, which can be analysed, for example, by means of Bayesian
updating (Davis et al. 1972). However, learning, as induced by the arrival of new
information, has received relatively little attention in economic flood risk
management studies. This thesis is therefore concerned with the economic
analysis of flood risk management strategies under climate change with learning.

Countries increasingly recognise that it is not only necessary to anticipate
changes in flood risk, but that it is also important to be able to respond to new
insights (Zevenbergen et al. 2013). The overall ability to adapt flood risk
management investments to changing insights is part of the adaptive capacity of a
water system (Pahl-Wostl 2007). Economic analysis of flood risk management
with learning about climate change impacts is useful to study trade-offs between
flexibility and costs, and to identify optimal strategies under possible changes in
climate information.

1.4 Research objective and research questions

The overall objective of this thesis is to investigate the impact of climate
change on investment in flood risk reduction, and to explore and apply
optimisation methods to support identification of optimal flood risk management
strategies. To this end, the following sets of research questions are addressed:

1. How can probabilistic extensions of cost-benefit analysis using climate
and learning scenarios be applied to improve decision-making on flood
risk management strategies? And what are advantages and limitations of
such probabilistic extensions?

2. What are optimal dike investment strategies under uncertainty and
learning about climate change impacts? What are the implications of the
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assumed learning process and the use of subjective probability
distributions to represent structural water level increase? And how large
are the differences in optimal investment levels without and with
learning?

3. What is the impact of new rainfall observations on cost-effective
investment in detention storage? Can ‘white noise’ be distinguished from
a structural shift of an extreme rainfall distribution? And what is the
relationship between the fixed costs of investment and the statistical
beliefs of a decision-maker about the risk of flooding?

4. What is the motivation for a minimax regret approach to study flood risk
management investments? Can a consistent dynamic minimax regret
procedure be developed, and can it be applied to practical flood risk
management problems? What is the impact of ‘learning scenarios’ on
optimal investment selection and optimal investment levels under a
minimax regret decision criterion?

The research questions are addressed in Chapters 2-5 of this thesis.

1.5 Methods

This thesis applies three different types of economic analysis to study flood
risk management strategies: (i) CBA with probabilistic extensions, (ii) a cost-
effectiveness analysis for the case where a flood protection standard has been set
and new rainfall data becomes available, and (iii) a dynamic robustness analysis
based on regret. The appropriateness of a type of economic analysis is
determined by the decision-context. It includes the decision-maker preferences
regarding risk, loss and regret, the perspective of the decision-maker, and the
relevant economic decision criterion.

To address the research questions, this thesis applies three main solution
methods: (i) decision tree analysis, (ii) dynamic programming, and (iii) a novel
dynamic minimax regret method. Decision tree analysis is applied throughout the
thesis in Chapters 2, 3 and 5 to explore research question sets 1, 2 and 4. Dynamic
programming methods are used to solve the economic models presented in
Chapters 3 and 4 in order to study research question sets 2 and 3 in more detail.
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In Chapter 4, moreover, stochastic dynamic programming is combined with
simulation of rainfall and water levels. In Chapter 5, a dynamic minimax regret
procedure is developed as well as a conceptual flood risk management model to
address research question set 4.

Decision tree analysis has been advocated for its simplicity and is commonly
used to explain the value of information and to study investment problems with
information arrival (Copeland and Antikarov 2003). The method finds its origins in
the binomial tree model of Cox et al. (1979) as an alternative model for financial
option pricing in discrete time. Simplified tree models with scenarios for real
options without risk-adjusted discounting followed shortly after (Conrad 1980).

The dynamic programming theory was developed by Bellman (1954). A
deterministic application to the problem of optimal dike height for a single
segment dike has been presented by Eijgenraam et al. (2012).

Rainfall-runoff-inundation simulation can be linked to an economic
optimisation module. An example of a rainfall generator is described by Cameron
et al. (1999). There are numerous software packages for the simulation of runoff,
flow, water levels and inundation. The results may serve as an input to a damage
model for CBA of upgrading urban drainage or regional surface systems, but this
setting is not often studied in practice (Pathirana et al. 2011). Cost-effective
compliance with a performance target under climate change can be studied in a
deterministic setting (Mailhot and Duchesne 2010). This, however, does not
account for randomness in the frequency of occurrence of extreme events. In
Chapter 4 simulation-optimisation methods are applied to include these effects
on optimal investment levels.

The minimax regret decision criterion has first been described by Niehans
(1948) and Savage (1951). The problem of dynamic inconsistency, as a result of
the dynamic application of the minimax regret decision criterion, has been studied
by Hayashi (2011).

1.6 Outline of the thesis

The research questions are addressed in Chapters 2-5. Figure 1.1 displays an
overview of the thesis chapters. Chapter 2 studies probabilistic extensions of CBA
with climate scenarios and learning and explores the scope of such extensions.
Chapter 3 revisits the problem of optimal dike height. An existing model is
extended with an uncertain rate of structural water level increase and perfect
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learning. Chapter 4 develops a cost-effectiveness model with rainfall variability
and climate change. It is applied to study the storage volume of a detention
storage facility in a Dutch polder system. Chapter 5 develops and applies a
consistent dynamic minimax regret procedure to a conceptual flood risk
management model. The thesis ends with a general discussion of modelling

approaches and results, and summarises the findings in Chapter 6.

Chapter 2:
CBA overview

Chapter 3:

Climate change and
flood risk

Uncertainty
approaches

Learning
approaches

Economic decision
analysis

Decision criteria

Figure 1.1 Thesis overview of Chapters 2-5

dike height

water levels

Structural change in |

Probabilistic futures

Perfect learning

Cost-benefit
analysis

Social welfare
maximisation
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Chapter 4:
detention storage

\ 4

Chapter 5:
dike, floodplain

Rainfall extremes

Peak river flows

Single scenario

Non-probabilistic
scenarios

New observations

Learning scenarios

Cost-effectiveness
analysis

Robustness analysis

Constrained cost
minimisation

Minimisation of
maximum regret




2. Economic analysis of adaptive strategies for flood risk
management under climate change”

Climate change requires reconsideration of flood risk management strategies.
Cost-benefit analysis (CBA), an economic decision-support tool, has been widely
applied to assess these strategies. This paper aims to describe and discuss
probabilistic extensions of CBA to identify welfare maximising flood risk
management strategies under climate change. First, uncertainty about the
changes in return periods of hydro-meteorological extremes is introduced by
probability-weighted climate scenarios. Second, the analysis is extended by
learning about climate change impacts. Learning occurs upon the probabilistic
arrival of information. We distinguish between learning from scientific progress,
from statistical evidence, and from flood disasters. These probabilistic extensions
can be used to analyse and compare the economic efficiency and flexibility of
flood risk management strategies under climate change. We offer a critical
discussion of the scope of such extensions and options for increasing flexibility.
We find that uncertainty reduction from scientific progress may reduce initial
investments, while other types of learning may increase initial investments. This
requires analysing effects of different types of learning. We also find that
probabilistic information about climate change impacts and learning is imprecise.
We conclude that risk-based CBA with learning improves the flexibility of flood
risk management strategies under climate change. However, CBA provides
subjective estimates of expected outcomes, and reflects different decision-maker
preferences than those captured in robustness analyses. We therefore advocate
robustness analysis in addition to, or combined with, cost-benefit analysis to
support investment decisions for flood risk reduction.

' Accepted for publication in Mitigation and Adaptation Strategies for Global Change (in
press):

van der Pol TD, van lerland EC, Gabbert S (2015a) Economic analysis of adaptive strategies
for flood risk management under climate change, DOI: 10.1007/s11027-015-9637-0
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2.1 Introduction

Cost-benefit analysis (CBA) has been widely applied to flood risk management
strategies, and its application has become more complex due to climate change
(van Dantzig 1956; Zhu and Lund 2009; Kind 2014; Lickley et al. 2014). This paper
discusses probabilistic extensions of CBA to identify welfare maximising strategies
under climate change. Flood risk, here defined as the expected monetary loss
from floods, is increasing in many regions of the world due to population growth,
economic growth and urbanisation, and due to the impacts of climate change on
weather patterns, peak river discharges, and sea levels (Milly et al. 2002;
Groisman et al. 2005; Jongman et al. 2012). Flood risk is composed of the product
of flood hazard, flood exposure, and vulnerability (Kron 2005; IPCC 2014). To
mitigate flood risk locally, flood risk management strategies can be implemented
that either mitigate flood hazard, exposure or vulnerability. Flood hazard
mitigation is achieved by implementing flood protection measures over time
which lower flood frequencies in vulnerable areas. Examples are restoration of
sand dunes and beach nourishment in coastal areas, raising or relocating dikes in
river basins, and extension of urban drainage capacities in urbanised areas. The
harmful consequences of flooding are reduced by flood exposure mitigation
through spatial planning, and by flood vulnerability mitigation, for example by
implementing building codes and preparation of emergency plans (Hooijer et al.
2004; Wu et al. 2012; Stive et al. 2013; Hanley et al. 2014).

Flood protection measures, especially engineering-based measures, will
continue to place a significant burden on national budgets and this trend is
reinforced by climate change (Narain et al. 2011). Due to climate change,
distributions of weather extremes, peak river discharges and water levels can no
longer be assumed to be statistically stationary (Milly et al. 2008). Moreover,
flood protection measures typically have long technical lifetimes and their
protection levels are highly sensitive to climate change (Gersonius et al. 2013). It
is therefore important to identify economically efficient flood risk management
strategies, i.e.: welfare maximising investments in flood protection measures and
other flood risk reducing measures over time, in response to current changes in
climate and in anticipation of future climate change.

Economic analysis of flood risk management strategies aims to efficiently
reduce the frequency and the consequences of various flooding events. These
include low-probability high-consequence flooding events, typically coastal and
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fluvial floods, and high probability-low consequence flooding events, for example
flash-floods in urbanised areas (Vrijling 2001; Wu et al. 2012). The latter may
cause damages if storage and drainage capacities are insufficient to detain, retain
or convey stormwater from heavy rainfall. From the perspective of a risk-neutral
social planner, Net Present Value (NPV) estimates of the total expected damage
costs from floods and the costs of protection determine the relative importance
of investing in flood risk reduction.

The objective of CBA is to maximise the stream of discounted net benefits, or
to evaluate whether or not an investment project improves social welfare
(Boardman et al. 2011). CBA compares avoided damages of different flood risk
management strategies, the monetised benefits of flood risk reduction, to their
costs (Jonkman et al. 2008; Zhu and Lund 2009; Dierauer et al. 2012). It has,
however, remained challenging to include climate change uncertainties in CBA of
flood risk management strategies. There is, amongst others, hydrologic
uncertainty about the effects of climate change on weather extremes, peak river
discharges and sea levels, and about the possible emergence of new information
about these changes over time. Furthermore, the outcomes of an economic
analysis of flood risk management strategies are sensitive to a range of other
uncertainties, including those originating from hydraulic, structural and economic
uncertainties (Bao et al. 1987).

This paper restricts attention to the impacts of climate change on hydrologic
uncertainty. Hydrologic uncertainty manifests, for example, through model
uncertainty about the type of a peak flow distribution, and statistical uncertainty
about its parameters over time. Moreover, hydrologic uncertainty is partly
epistemic, which, in contrast to natural or inherent uncertainty, can be reduced or
resolved by acquiring more knowledge (Merz and Thieken 2005).

The need to anticipate the possible emergence of new hydrologic information
and to identify adaptive flood risk management strategies under climate change
uncertainty is increasingly recognised; both in risk-based economic optimisation
approaches, as well as in recently developed robustness approaches (Kwadijk et
al. 2010; Woodward et al. 2011; Gersonius et al. 2013; Haasnoot et al. 2013).
However, until now scientific consensus is lacking both on how to address climate
change uncertainty and on how to incorporate learning in economic analysis of
flood risk management and other climate change adaptation strategies (Watkiss
et al. 2014). Moreover, probabilistic models to analyse efficient flood risk
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management strategies with new information are relatively scarce, and usually
consider only one type of new information (Woodward et al. 2011).

The central research questions of this paper are as follows:

(i) How can probabilistic extensions of CBA using climate and learning
scenarios be applied to improve decision-making on flood risk
management strategies?

(ii) What are advantages and limitations of such probabilistic extensions?
These questions are relevant to inform flood adaptation decisions at different
scales, from local decisions on flood risk management strategies to global
decisions on, for example, the allocation of adaptation funds. This paper therefore
informs adaptation strategies at different scales through economic analysis to
mitigate flood risk under climate change.

In this paper, two types of probabilistic extensions of CBA are considered.
First, uncertainty about the changes in return periods of hydro-meteorological
extremes is introduced by probability-weighted climate scenarios. Second, CBA is
extended by probabilistic arrival of new information, hereafter called learning,
about climate change impacts to introduce two phenomena: (i) the reduction of
epistemic uncertainty and (ii) the arrival of new data. We elaborate on different
types of learning, from scientific progress, from statistical evidence, or from flood
disasters, and discuss their reinforcing or opposite effects on optimal investment.
The methods to implement these types of learning originate from statistics and
the real options literature and have been widely used in many domains (Copeland
and Antikarov 2003; Press 2003). We describe their generic implementation in a
non-technical manner, and discuss the availability of the required probabilistic
information and implications for the economic efficiency and flexibility of flood
risk management strategies under climate change. Finally, we contrast cost-
benefit approaches with robustness approaches, which follow a different line of
analysis. We discuss the general findings and provide suggestions for the use of
methods to support decisions on flood risk management strategies.
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2.2 Climate change uncertainty and the climate change learning
process

2.2.1 Current approaches for including climate change uncertainty in
flood risk management decisions

Frequency analysis of extremes is required to estimate future flood risk, but is
plagued by hydrologic uncertainty. In the literature, a variety of methods have
been developed to assess return periods of extreme hydro-meteorological events
under climate change. Examples are perturbation methods used to specify design
rules or design storms with climate model simulations, and regression methods to
remove effects of serial dependence and non-stationarity in hydro-meteorological
observations (Khalig et al. 2006; Willems 2013). Until now, however, it has
remained unclear how the performance of flood defences and urban drainage
systems should be assessed under climate change (Kundzewicz et al. 2010;
Berggren et al. 2014). One approach is to exclude non-stationarity in the flood
hydrology from the economic analysis of flood risk management strategies, which
is still occasionally observed in theoretical work (Zhu and Lund 2009). However, in
the adaptation literature it has been emphasised that anticipatory adaptation is
required to support efficient decision-making on investments with fixed costs and
long technical lifetimes (Smith 1997). Here, we provide a brief description of two
important methods for water system design with the anticipation of climate
change impacts; (i) a fixed-factor increase of design intensities, for example
derived from the so-called delta-change method, for urban drainage design (Hay
et al. 2000; Arnbjerg-Nielsen 2012), and (ii) the use of a prior distribution of, for
example, sea level rise to estimate future coastal flood risk (Purvis et al. 2008).

Rainfall inputs used to evaluate the performance of urban drainage systems
are design storms, either from frequency analysis of annual maxima, or partial
duration series, or are obtained from continuous simulation (Cameron et al. 1999;
Boughton and Droop 2003; Cameron 2006; Mailhot et al. 2013). With the design
storm method a rainfall depth of an assigned duration with a given return period
is applied to a site (De Michele et al. 1998). This method assumes that the average
return period of the design storm coincides with the average return period of a
flow rate, if an appropriate duration is selected, together with one or more
representative synthetic storm hyetographs (Levy and McCuen 1999; Mays 2011).
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To account for climate change, the design storm can be increased with a fixed
factor (Waters et al. 2003). The appropriate uplift factor for the intensity of the
design storm can be chosen pragmatically, or derived from the delta-change
method, where rainfall events in a historical rainfall series are increased with
delta-change factors. These factors, which are different for different rainfall
intensities, are derived from the output of a regional climate model (Nilsen et al.
2011; Arnbjerg-Nielsen 2012). Uplift factors are, however, usually obtained per
climate change scenario. Such studies usually do not provide estimates of total
expected discounted costs of flood risk management strategies under multiple
climate futures provided that a certain uplift factor is chosen for the design of
flood protection measures.

Global climate change projections have remained highly uncertain. As a
consequence, most projections are presented without probability distributions
(Andronova and Schlesinger 2001; IPCC 2014). Prior distributions about regional
climate change impacts are required to estimate the expected damage reduction
over time associated with flood risk management strategies. It is, however,
questionable whether or not such expected damage estimates can be obtained in
the first place. Weitzman (2009), for example, argued that it may be inappropriate
to perform CBA under uncertain fat-tailed extreme value distributions containing
low probability but catastrophic events.

Nonetheless, some attempts have been made to estimate future flood risk
with probabilistic methods. Purvis et al. (2008) defined a triangular distribution for
sea level rise, where probabilities are set with IPCC scenarios based on the best
estimate, and the lower and upper bound of the scenarios. This distribution,
however, does not account for low-probability climate change scenarios, which, in
expected terms, may be important to determine optimal flood risk management
strategies. Van der Pol et al. (2014) showed this for a normal and log-normal
distribution for dike investments. Flood risk uncertainty is even larger if socio-
economic uncertainties are considered as well. Hall et al. (2005), for example,
studied flood risk under climate change and socio-economic scenarios.
Furthermore, Bouwer et al. (2010) constructed loss-probability curves for a range
of climate and socio-economic scenarios under a range of flood scenarios.
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2.2.2 Expert elicitation

Water defence systems are typically designed to withstand plausible high-end
scenarios of flood-related frequency changes, which would require different flood
protection measures and larger investments than under less severe climate
change impacts (Katsman et al. 2011). Estimates of the likelihood of more
extreme climate scenarios are therefore crucial to study the economic efficiency
of flood risk management strategies with risk-based economic optimisation
approaches using probability-weighted climate scenarios. In the previous section,
we discussed that only few studies examining the economic efficiency of flood risk
management strategies have applied prior probability distributions about climate
change impacts. In addition, the design of many urban flood protection measures
has been based on a single climate change scenario. Such pragmatic approaches
do not seem satisfactory, as expected damage costs may greatly increase if the
incidence of extreme weather events or high water levels is underestimated. This
raises the question of whether or not it would be more appropriate to obtain
prior distributions about climate change impacts from expert elicitation.

One could, for example, think of the Delphi method as a means to obtain
priors from expert elicitation (Dalkey and Helmer 1963). Many climate experts
reject participation in Delphi surveys and expectations of participants are too
diverse to reach consensus and to arrive at a single prior distribution specifying
likelihoods of rapid climate change (Arnell et al. 2005). Existing studies reveal that
some high-end scenarios, for example the collapse of the West-Antarctic Ice
Sheet, are considered to be unlikely in the near term (Vaughan and Spouge 2002).
Satellite observations confirm this finding, although there is now strong evidence
for partial ice-sheet thinning (Vaughan 2008). Despite the controversy of expert
elicitation it might provide valuable insights on the physical processes that are
more, or less likely to happen, which can be used to derive likelihood statements
about climate change effects on, for example, the weakening of the Atlantic
Meridional Overturning Circulation (Zickfeld et al. 2007). Expert opinion can also
be used for, for example, defining climate model parameter ranges for
perturbation purposes, or to distinguish between climate models based on quality
(Stainforth et al. 2005; Knutti et al. 2010).

From the above we draw the following conclusions. First, decision-making on
flood risk management strategies under climate change cannot be classified as
decision-making under risk. This is because the probabilistic changes in the
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frequency of occurrence of the relevant hydro-meteorological extremes under
climate change are not well-defined. Second, it can also not be classified as
decision-making under ignorance, as there appears to be at least some consensus
that some scenarios are less likely than others. This case is therefore best
described as decision-making under uncertainty characterised by imprecise
probabilities (Hogarth and Kuhnreuther 1995).

2.2.3 Learning about the impacts of climate change

In addition to uncertainty about climate change impacts, there is uncertainty
about the detection of future climate change signals, and uncertainty about how
decision-makers’ investment decisions may respond to possible climate signals. In
this section, we discuss different types of learning and their effects on climate
change adaptation decisions. We distinguish between learning from scientific
progress, from statistical evidence, and from flood disasters.

Information from scientific progress

Several authors have argued that climate change uncertainty cannot be
expected to reduce or to be resolved any time soon. Leach (2007), for example,
concluded that it may take hundreds if not thousands of years before reliable
parameter estimates of climate models will become available. According to Roe
and Baker (2007) uncertainty about climate change projections has not
significantly decreased over the past decades, and showed, furthermore, that the
probability of large temperature increases is relatively insensitive to reductions in
climate change process uncertainties.

Information from scientific progress, in contrast, might reduce uncertainty
about climate change impacts. Scientific progress can be modelled as probabilistic
events of information. Uncertainty reduction introduces a trade-off between costs
associated with immediate action, and increased exposure resulting from a learn
than act strategy. The conditions required for immediate action to reduce
emissions of a harmful pollutant such as CO, have been analysed by Gollier et al.
(2000), in which the degree of risk-aversion, irreversibility and the information
rate determines optimal action. Ingham et al. (2007) presented a model with both
mitigation and adaptation, and showed that the possibility to adapt together with
the prospect to learn tends to reduce climate change action today. In earlier work,
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Kolstad (1994) studied mitigation and adaptation decisions under perfect learning,
and investigated trade-offs between the effects of irreversibilities associated with
the accumulation of greenhouse gases, and the accumulation of abatement
capital.

If uncertainty is epistemic, and expected to gradually reduce over time,
flexible adaptation measures may be more economically efficient than inflexible
measures. Flexible climate change adaptation with learning from scientific
progress can be studied with risk-based optimisation approaches, such as real
options analysis, as well as robustness approaches (Copeland and Antikarov 2003;
Hallegatte et al. 2012). De Bruin and Ansink (2011), for example, distinguished
between structural measures with relatively high fixed costs, such as dikes, and
non-structural measures with relatively low fixed costs, such as beach
nourishment. For analysis of an adaptation measure in isolation, the expected
value of information is compared with the additional costs from immediate
investment in the measure. Hence, future learning through scientific progress may
have impacts on investment timing, size and portfolio of flood risk management
measures, and may also have an impact on greenhouse gas mitigation strategies.
Assumptions about the probabilities of learning in the near future, and the degree
of uncertainty reduction are, however, determinants of initial investment
strategies and the optimal responses to new information over time (van der Pol et
al. 2014).

New hydro-meteorological observations: evidence-based learning

New hydro-meteorological observations are an important source of new
information on changing flood risk. New hydro-meteorological observations may
provide statistical evidence regarding climate change impacts on flood regimes in
the future. It has, however, remained difficult to statistically detect changes in
weather patterns, river flows and acceleration of mean sea level rise. Short-term
trend detection is, amongst others, difficult due to multi-annual serial correlation,
variability, and sample size. Fowler and Wilby (2010) reported that the detection
of changes in seasonal precipitation may take several decades, and that this could
motivate a precautionary approach to climate change adaptation. Zhang et al.
(2004), furthermore, compared detection methods by simulations of 50 and 100
years of annual maxima. The simulation results show, in addition to differences in
the ability to detect trends, that none of the methods guarantee trend detection,
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and that the probability of no-detection is much lower for larger sample sizes for
any of these methods. Hamed (2008) showed that significant river flow trends
found in earlier annual flow maxima may be false if scaling is considered. Wahl et
al. (2013) reported that the rate of sea level rise over the past two to three
decades has been high as compared to the long-run average, but that similar
periods of high sea level rise have been observed at other times.

New hydro-meteorological observations can also be applied to evaluate
water system performance over time. Because new weather and water level
observations are not likely to reveal much information on structural climate
change impacts in the near future, one might be tempted to think that it is
irrelevant to consider the likelihood and effects of future observations on current
decisions on flood protection measures. This is, however, a misconception.
Weather variability and climate change uncertainty result in variability of best
estimates of flood probability, which, in turn, results in uncertainty about the
timing of new investments in flood protection measures, for example, through the
need to meet a flood protection standard. However, evidence-based flood
probability evaluation over time, and its effects on the economic efficiency of
flood risk management strategies, has largely remained unexplored in flood risk
management practices. It might, however, be highly relevant for efficient
decision-making. First, in contrast to learning from scientific progress it is certain
that new data will become available over time. Second, despite white noise,
extreme value data may still be applied to analyse changes in flood risk and
evaluate water system performance in the future. The underlying statistical
beliefs, however, may deviate from actual frequency distributions. Whereas
learning from scientific progress is about anticipation of better information by
uncertainty reduction, learning from statistical evidence is about anticipation of
new information that is not necessarily better. Effects of white noise can be
opposite to the effect of uncertainty reduction on optimal investment;
underestimation of a system’s performance might trigger new investments, which
can be anticipated by enlarging initial investments, while learning from scientific
progress tends to reduce overall investment till better information becomes
available. We will explain the latter in more detail in Section 2.3.3.
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Disasters: incident-based learning

Historic flood observations show that large-scale flooding events often lead
to large-scale investments in flood protection measures in developed countries
that go far beyond repair. Examples that led to such large-scale investments
include the 1953 flood in the Netherlands, the New Orleans flood by hurricane
Katrina, and the flood by the 2011 tsunami in Japan. There are several
explanations why investments in flood protection measures often take place after
large-scale incidents, but the phenomenon remains intriguing. Clearly, a failure of
a flood defence shows that a specific load has been greater than the resistance of
the defence. In a statistical sense, however, any single observation has only a
modest impact on extreme value estimates, even if its value is several times larger
than ever measured before (Coles and Pericchi 2003).

In some cases, an incident may reveal new failure modes of, for example, a
dike, and the flood probability estimate can be updated with this new
information. This, however, does not explain large-scale investments for cases
where a conventional failure mode, for example overtopping, was the primary
cause of flooding. Neumayer et al. (2014) argued that both individuals and
governments have incentives to underinvest in flood control. While this would
explain large-scale re-investments after a disaster for cases with a maintenance
backlog, it provides insufficient explanation for cases without backlog. Another
motivation for re-investment is the “never again”-argument, often heard after
large-scale disasters (Gerritsen 2005). A possibly related argument is victim
pressure, where victims may have a disproportionate share in the decision
process on flood control (Harries and Penning-Rowsell 2011).

Perhaps it is not important to understand why re-investment takes place
after a disaster, as long as the likelihood of incidents occurring earlier than
expected, together with the following investment response, are included in the
economic analysis of flood risk management strategies. To illustrate this, consider
that a decision maker can either invest in flood protection measure 1, with total
expected discounted costs A consisting of both investment costs and total
expected discounted damage costs, or in measure 2 with total costs B consisting
of investment costs only and no expected damage costs. Furthermore, consider
that A < B. At first sight, a risk-neutral decision maker would prefer measure 1.
As an extension, consider that the public will demand to invest in never again-
measure 2 if a disaster happens, and that the decision maker knows this in
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advance. Consider, furthermore, that the probability that a disaster happens
during the technical lifetime of flood protection measure 1 is larger than zero.
Now, despite that the decision maker is assumed to be risk-neutral, the risk-
attitude of the public leads to a change in the expected economic efficiency of
measure 1 through the probability of disaster during the lifetime of the
infrastructure. As a result, measure 2 might be preferred.

2.3 Economic models for flood risk management

In this section we turn to economic models for analysing and comparing flood
risk management strategies. We describe how a cost-benefit model can be
extended with climate scenarios to include uncertainty about climate change
impacts. We also provide a brief introduction to the modelling of the different
types of learning that were introduced in the previous sections (2.3.1-2.3.3).

2.3.1 Cost-benefit optimisation

Benefits of flood risk management can be estimated in monetary terms by
estimating the expected reduction in damages. Flood damage models can be used
for this purpose (de Moel and Aerts 2011). An optimal investment strategy can be
obtained by balancing discounted expected damages and costs of protection. In
early work, van Dantzig (1956) applied this concept to determine optimal dike
height. Improved versions of this model are still used today in the Netherlands to
analyse optimal dike height strategies and to determine economically efficient
flood protection standards (Brekelmans et al. 2012; Kind 2014). It is, furthermore,
increasingly recognised that, especially in a context of climate change uncertainty,
different types of flood protection measures have to be considered
simultaneously (de Bruin and Ansink 2011; Woodward et al. 2011; Meyer et al.
2012).

Many urban drainage system elements have been designed with particular
design storms and simple flow calculations instead of cost minimisation models,
and only few stormwater models include an economic analysis of alternative
stormwater management strategies (Zoppou 2001). Moreover, detailed CBA
studies of urban drainage systems are rare (Pathirana et al. 2011). One possible
explanation could be that in many countries CBA may not be legally required for
such systems. In the Netherlands, for example, uniform flood protection
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standards have been defined for regional water systems per land use type, rather
than setting flood protection standards at welfare maximising levels for every
water system (NBW 2005; Hoes and Schuurmans 2006). Cost-effectiveness
approaches are, hence, still predominant for urban drainage system design.
However, if flood protection standards are set at economically efficient levels the
solutions of cost-benefit analysis and cost-effectiveness analysis with an efficient
flood protection standard will coincide. Therefore, in what follows, we continue
with a cost-benefit model only.

In a CBA, the objective of a risk-neutral decision maker is to maximise the net
present value of the total expected net benefits associated with a portfolio of
flood protection measures over time (Eq. (2.1)):

T
W = maxE f (Be(X1.6, X0, ) — Ce(Z10) Za g, - ))e~OtdL (2.1)
Zit 5
where z; ; is the decision variable, and x; . is the stock of the flood protection
measure m; at system node i =1,2,.... System nodes, for example, can be
segments of a dike ring, open channels of a surface system, or pipe segments of a
sewer system. B; is a benefit function, C; is a protection cost function, § is the
discount rate, and T represents the end of the considered time horizon. Benefits
of flood risk management can be modelled as reduced damages, but expected
damages from floods can also be interpreted as costs. By symmetry, minimisation
of total expected discounted loss L yields the same optimal investment strategy
as under Eq. (2.1):

T
L = minE f(Dt(xllt,xzrt, ) + Ct(zlrt, ZZ,tJ ...))e_6tdt (22)

Zit
0

Consider a two-period model with a binary decision to invest (V) or not invest
(Np) at t,, followed by the binary decision to invest (V;) or not invest (N;) at
t = T,. This is displayed in Figure 2.1.
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Figure 2.1 Example of a two-period decision tree with decisions to invest (Vy; ;)
or not invest (Ny; N;) att =ty and at t = Ty, respectively

The optimal strategy follows from outcome minimisation, i.e.: min{4, B, C, D},
and results in investment strategy (Vy,N;) in this example. This example
represents a deterministic CBA, as the outcomes of different strategies are
assumed to be known with certainty. However, a deterministic CBA is not suitable
under climate change uncertainty, as multiple climate futures are possible
(Watkiss et al. 2014). Therefore, we now turn to a probabilistic extension of CBA
using probability-weighted climate scenarios.

2.3.2 Probabilistic modelling of climate change impact scenarios

Climate change impact scenarios can be introduced in the cost-benefit model
through defining possible states of nature in order to account for uncertainty
about climate change impacts. To illustrate this, consider that under a high
climate change impact scenario the annual increase of the flood probability is &
and that probability P, is assigned to this scenario, and that under a low climate
change impact scenario flood probability increases with & with probability
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P, =1—P,. The corresponding decision tree for this problem is displayed in

Figure 2.2.
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Figure 2.2 Decision tree for the two-period investment model extended with two
possible climate change scenarios (g; and &)

The expected outcome of a strategy is equal to the weighted average of the
total discounted costs under the two scenarios. For strategy {Vy;V;} the total
discounted expected costs are:
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A= PlAl + PhAh' (23)

and idem for outcomes B,C and D. Again, the optimal strategy follows from:
min{4, B, C, D}. In this example, only two climate scenarios are considered. The
general case would require a continuous prior distribution of climate change
impacts.

The importance of probability distributions for climate change adaptation
has, for example, been explained in the UKCPO9 projections, in which probabilistic
climate projections of over-land changes have been derived for the UK (Murphy et
al. 2009). However, probabilistic coastal projections are generally not available
(Lowe et al. 2009; IPCC 2014). Without probabilistic impact projections, the above
method can only employ probabilistic assumptions to derive expected flood
damages under climate change for different flood risk management strategies. As
a consequence, cost-benefit solutions may appear to be precise, while the
discretised probabilities or densities to arrive at the solutions are not (Hall 2007).
Risk-based cost-benefit optimisation using probability-weighted scenarios or
distributions, therefore, cannot provide final answers to optimal flood risk
management decisions. However, it supports the identification of economically
efficient management strategies using information that is available to the best of
our knowledge. Yet, this information is debatable. Sensitivity analysis can provide
insights in the sensitivity of solutions to distributional assumptions.

2.3.3 Models of learning

Modelling of scientific progress

Scientific progress may eventually lead to a better understanding of the
severity of climate change. This can be modelled as a probabilistic reduction of
climate change uncertainty over time. Figure 2.3 displays a simplified example of
the gradual reduction of sea level rise uncertainty over time. At t,, sea level rise
can be high or low, at T; the rate of sea level rise is approximately known, and at
T, sea level rise uncertainty is fully resolved, and we know the outcome with
certainty, for example B;.
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Figure 2.3 Graphical representation of gradual uncertainty reduction. Outcomes
for strategy {V,; N;} are displayed

The initial investment for this setting follows from:
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and the investment at decision moment t; depends on the available information
(g; or &,) at this moment. Larger problems with uncertainty reduction can be
formulated recursively by dynamic programming, for example, applied in van der
Pol et al. (2014). Clearly, future information has expected value. As a
consequence, investment decisions may be changed by the probability of future
information arrival, which has a general tendency to reduce overall investment
before the arrival of new information, for example by postponing investment
(deferral), changing the scale of investment (e.g. contraction), adaptive design or
alternative portfolio choices (switching). These are typical examples of real
options strategies from the real options literature. However, real options methods
have not often been applied to economic flood risk management studies
(Schwartz and Trigeorgis 2004; Woodward et al. 2011). This may be explained by
the probabilistic assumptions needed regarding information arrival. In Section
2.3.1 we discussed that there is no consensus about the timing of uncertainty
reduction, if reduced at all.
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Belief updating with new observations

Evidence-based learning can be approached from a frequentist or a Bayesian
perspective. Frequentist approaches interpret observations, for example of
extreme water levels, as random realisations from a “true”, but unknown
distribution. Re-sampling methods, such as bootstrapping, can be used to
evaluate the robustness of the initial estimates. Climate change, however,
introduces a trend in the data which can be studied with, amongst others, moving
window analysis, or regression methods. In a moving window analysis, a part of
the available observations is treated as if it is stationary (De Michele et al. 1998).
For every time step, for example every year, an extreme value distribution f is re-
estimated with the last N years of observations with standard statistical
procedures such as maximum likelihood or the method of L moments. The
likelihood of distributional estimates can then be studied by simulation of new
observations based on climate scenarios.

Contrary to frequentist approaches, Bayesian inference methods assume that
the unknown parameter 6 is a random variable and can be expressed by means of
prior beliefs P(0). This is a probabilistic specification of the decision maker’s
beliefs before new evidence has been observed. Prior beliefs can be updated with
sample data using Bayes law:

P(y|6)P(6)

PO == 5

(2.5)
where P(0]y) is the posterior belief after observing new event y, and P(8) is the
prior belief. P(y|6@) denotes the likelihood function, being the conditional
probability distribution of observed data. Prior beliefs about, for example,
extreme value distribution parameters, can either be based on subjective guesses
(Huard et al. 2010), or can make use of existing information. Bayes law allows
combining subjective beliefs with evidence gained from observed data, or
simulated data y that can be added to original data, in order to arrive at posterior
beliefs (Rajabalinejad and Demirbilek 2013). The posterior probability distribution
characterises beliefs about the hypothesis 8 (e.g. increase of mean temperature,
sea level rise) after seeing the data. An early application of Bayes theorem to
identify optimal protection levels for dike design under limited data and flood
uncertainty is found in Davis et al. (1972).
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As for the case of perfect learning, optimal investment strategies with
evidence-based learning can be studied by formulating the general investment
problem (Eq. (2.2)) recursively. The transition probabilities can be derived from
the belief updating process which follows from dynamic application of Bayes law
(Eg. (2.5)), and simulation of future hydro-meteorological observations.
Implementation of this setting is, however, complex and goes beyond the scope
of this paper. Note that variability in extremes is high relative to the expected
changes in frequency of extreme weather events, which suggests that effects
from variability in such settings may well be greater than the structural
distributional changes due to climate change in the coming decades, and could
increase optimal initial investment. So far, to our knowledge only few flood risk
management studies explore the impacts of future weather variability and
resulting transitions in beliefs on current investment decisions.

Modelling of disasters

In public choice theory the outcome of the net loss-minimising model (Eq.
(2.2)) has been called the social planner’s solution. It has, however, been argued
that social planner solutions may not be implemented, because it differs from
policy-makers’ preferences which are subject to various factors including the
discontent of voters (Hansen and Thisse 1981). Voter preferences for flood
protection may differ from a social planner perspective, as voters may be risk-
averse, or at least have a different planning horizon than the social planner.
Consider, as an example, voters who minimise total expenses on taxes and total
costs from flood damages during their lifetime. Consider, further, that voters can
observe whether or not flood disasters have occurred in previous years, and that
the discounted costs associated with a single flood disaster are typically larger
than the present value of total flood protection costs during the lifetime of a
person. Two general implications from the objective function of individual voters
can be deducted. First, the willingness-to-pay (WTP) for flood protection of an
individual voter is not constant over time due to the probabilistic arrival of new
information about the occurrence of disasters over time. As a result of the
objective function, the WTP of an individual voter might decrease over time if no
disaster occurs, but it might increase after the occurrence of a flood disaster.
Second, a decision-maker cannot be sure about the timing of re-investment in
flood protection, which now also depends on the stochastic nature of the
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occurrence of flood disasters. Early or frequent re-investment in flood protection,
furthermore, may be costly due to initial costs of flood protection measures. In
this setting, therefore, a risk-neutral decision-maker has to account for the risk-
averse preferences of voters.

2.4 Robustness analysis

The probabilistic extensions described in Section 2.3 require subjective
probabilistic information on climate change impacts and the arrival of new
information. However, climate change uncertainties have been classified as deep
(Kandlikar et al. 2005). Several authors have argued that the optimality criterion
should be abandoned in the presence of deep uncertainties and that research
effort should focus on the identification of robust strategies that perform
relatively well across a range of possible futures (Lempert et al. 2006; Hall et al.
2012).

Various kinds of robustness analysis have been developed, which appears to
be the result of the normative nature of the robustness concept. Robustness
analysis of adaptation strategies can be used to identify robust solutions in a
narrow sense by employing alternative decision criteria, for example, minimax or
minimax regret criteria (Clarke 2008). Other robustness methods analyse the
performance of robust solutions under different degrees of uncertainty, for
example info-gap theory (Hine and Hall 2010). Moreover, in recent robustness
analysis, such as adaptation pathways, stakeholder participation is used to explore
uncertainties, preferences, lock-ins and path-dependencies by qualitative
methods (Haasnoot et al. 2013).

Robustness approaches differ fundamentally from risk-based optimisation
approaches in at least two respects. First, they reject the assumption of risk-based
approaches that probabilistic information can be identified for analysis of
management strategies. Second, they reject the assumption that welfare
maximising solutions can be identified, and are instead aimed at identifying
solutions that are expected to perform relatively well under worst-case or a wide
range of scenarios.

28



2.5 Discussion

The probabilistic extensions of CBA described in this paper can be used to
analyse and compare the economic efficiency and flexibility of flood management
strategies under climate change. They thereby support economic decision-making
on flood risk management strategies. However, the results of a risk-based CBA of
flood risk management and other climate adaptation strategies using probability-
weighted scenarios have to be interpreted with care. Results can be misleading, as
assigned probabilities may misrepresent uncertainty (Hall 2007).

We observe that the underlying scientific debate on whether or not climate
change uncertainty should be addressed as subjective risk or deep uncertainty is
increasingly polarised. In many papers, authors either motivate a risk-based or a
robustness approach (Speijker et al. 2000; Hine and Hall 2010; Woodward et al.
2011; Brekelmans et al. 2012; Haasnoot et al. 2013). Clearly, both risk-based and
robustness approaches are defensible. We argue that, due to differences in
assumptions regarding decision-maker preferences and implementation of
uncertainty, they may provide different but complementary insights.

A standard approach to expected-value based optimisation assumes risk-
neutrality. The common use of CBA of flood risk management strategies reflects
that expected outcomes provide an important decision criterion for flood risk
management. However, expected-value optimisation is not the only relevant
decision criterion. Even if probabilities would be properly defined decision-makers
might, at least to some degree, be risk-averse. Risk aversion can be included in a
risk-based economic analysis of flood risk management strategies if a certain
degree of risk-aversion is assumed (Kuijper and Kallen 2012; Wang et al. 2015).
However, given the imprecise probabilities associated with the impacts of climate
change on flood frequencies and the high consequences of flooding, also other
decision-maker preferences may be applicable, such as uncertainty aversion, loss
aversion or regret aversion (Woodward and Bishop 1997; Clarke 2008; Weitzman
2009). These preferences do not fit in a standard cost-benefit framework (Hogarth
and Kunreuther 1995; Yager 2004; Clarke 2008).

Both CBA and robustness approaches impose extreme assumptions. In a
deterministic CBA uncertainty is largely ignored, while usually risk-neutrality with
known probabilities is assumed in an expected value-based CBA (Watkiss et al.
2014). Robustness approaches usually put implicit or explicit weights on possible
outcomes. For example, some decision criteria which are employed to obtain
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robust solutions, such as minimisation of maximum losses or maximum regret,
focus only on outcomes under worst case-scenarios. Other robust decision criteria
employ arbitrary scenario weights, or consider scenario outcomes to be equally
likely (Gaspars-Wieloch 2014).

Yet, it may not always be the case that the outcomes from risk-based
optimisation and robustness analysis diverge due to similarities between the
overall decision objectives. For example, recently robustness methods and
approaches have been developed to study adaptive flood risk management and
other climate adaptation strategies that can be changed at relatively low costs
over time (Kwadijk et al. 2010; Merz et al. 2010; Haasnoot et al. 2013). This refers
to the overall objective of decision-robustness, which is important for flood risk
management in addition to the robustness of a system to withstand disturbances
(Mens et al. 2011). Risk-based optimisation models with events of information
arrival also consider decision robustness by quantitative evaluation of the
flexibility of management strategies under the emergence of new information.

To understand the quantitative effects of learning presented in this paper
further applied economic analyses of flood risk management strategies is
required, with extensions to implement the different types of learning. Sensitivity
analysis allows the study of optimal long-run flood protection without the explicit
modelling of information arrival (Zhu et al. 2007). However, anticipation of
possible future information may help to avoid costly lock-in situations by giving
weight to information scenarios in which non-incremental adaptation decisions
would be required. Non-incremental changes in adaptation strategies tend to be
costly, but early implementation could in some cases reduce long-run adaptation
costs (Kates et al. 2012).

2.6 Conclusions

Climate change has introduced additional challenges for the economic
analysis of flood risk management strategies. At the local level decisions need to
be made on investment in flood risk reduction. At the global level strategies need
to be defined on how to allocate adaptation funds for flood risk management in
various regions of the world. This paper has discussed probabilistic extensions of
cost-benefit analysis to identify economically efficient strategies under climate
change. Uncertainty about the changes in return periods of hydro-meteorological
extremes was introduced by probability-weighted scenarios. We revisited expert
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elicitation as a means to study climate change uncertainty. Expert elicitation is
controversial. Yet, there appears to be some consensus that at least some of the
more extreme climate scenarios are less likely than others in the near term.

Learning about climate change impacts has remained a largely unexplored
domain in flood risk management. In the long run, uncertainty may be reduced
because of scientific progress and longer time series of hydro-meteorological
observations. Uncertainty reduction from statistical analysis of hydro-
meteorological observations is, however, not very likely in the near term as trend
detection tests may remain inconclusive in the coming decades, and convergence
will be slow due to the high degree of variability in these observations. We have
discussed that investment responses in the past have been strongly driven by
actual observations, both to evaluate the performance of water systems, for
example with a calibrated rainfall generator, and by the occurrence of disasters.
The analysis of the likelihood of and investment responses to possible climate
change signals, either as a result of transitions in beliefs about climate change
impacts, or induced by incidents, may therefore improve the economic efficiency
of decisions on flood risk management strategies. We have argued that risk-based
approaches reflect different decision-maker preferences and implementations of
climate uncertainty than robustness approaches. We have highlighted that flood
risk practitioners and policy-makers are not merely concerned with subjective
estimates of expected outcomes. We therefore advocate the use of robustness
methods in addition to, or combined with, cost-benefit analysis for the economic
analysis of flood risk management strategies to support decisions. For further
research, it would be interesting to combine cost-benefit and robustness solutions
in a meta-analysis.

Our paper contributes to the development of adaptation strategies through
economic analysis of flood risk reduction under climate change. Local investments
can be optimised, and global strategies on the allocation of adaptation funds can
be enhanced if the costs and benefits of flood risk management strategies of
individual countries are understood. Global strategies on the allocation of
adaptation funds for flood risk management can then be derived from an
economic analysis of costs and benefits of flood risk reduction that considers
uncertainty under climate change.
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3. Optimal dike investments under uncertainty and learning about
increasing water levels”

Water level extremes for seas and rivers are crucial to determine optimal dike
heights. Future development in extremes under climate change is, however,
uncertain. In this paper we explore impacts of uncertainty and learning about
increasing water levels on dike investment. We extend previous work in which a
constant rate of structural water level increase is assumed. We introduce a
probability distribution for this rate, and study the impact of learning about this
rate. We model learning as a single stochastic event where full information
becomes available. Numerical solutions are obtained with dynamic programming.
We find that the expected value of information can be substantial. Before
information arrives, investment size is reduced as compared to the benchmark
without learning, but investment frequency may be increased. The impact of
learning on the initial investment strategy, however, is small as compared to the
impact of uncertainty about increasing water levels by itself.

" published in Journal of Flood Risk Management:
van der Pol TD, van lerland EC, Weikard HP (2014) Optimal dike investments under
uncertainty and learning about increasing water levels, Volume 7, Issue 4, pages 308-318
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3.1 Introduction

Many countries are challenged to recurrently heighten their river and sea
dikes for reasons of, for instance, economic growth, climate change impacts on
water levels or soil subsidence. Estimated effects of climate change on peak river
discharges (cf. Graham et al. 2007; Hurkmans et al. 2010; te Linde et al. 2010) as
well as sea level rise predictions (cf. IPCC 2007; Guillerminet and Tol 2008;
Katsman et al. 2008; Vellinga et al. 2009; Schaeffer et al. 2012) are, however,
highly uncertain.

As expenditures on dikes place a significant burden on public budgets,
economically efficient investment in dikes is of major importance to governments
of countries with flood prone densely populated areas or low lying areas
representing significant economic activity. The objective is to find a balance
between investment costs and the reduction of expected damage costs of dike
heightening over time. This is a cost-benefit approach which can be used to
inform decision-makers on safety standards (e.g. Kind 2014). In a cost-
effectiveness analysis, in contrast, social welfare is not maximised. Costs, for
example, are minimised under a given safety standard or expected damages are
minimised under a budget constraint.

Water level extremes for seas and rivers are crucial to determine optimal dike
heights. In this paper we explore the impacts of uncertainty about increasing
water levels and the resolution of the uncertainty on optimal dike investment and
costs. It is likely that uncertainty about the structural increase in extreme water
level observations and the related flood risk under climate change will be reduced
over time as time series grow longer, as ‘low-data’ methods are developed and as
model uncertainties in climate and hydrological models are reduced (cf. Wagener
et al. 2003; IPCC 2007; Lenderink et al. 2007; Cunha et al. 2011). We refer to the
event of obtaining new information as learning. We study the impact of
uncertainty and learning on optimal dike investment strategies using a Bayesian
approach applying informed priors for the structural water level increase.
Structural water level increase is defined as the annual rate of the shift of the
cumulative water level distribution (n) (van Dantzig 1956). For instance, if the
exceedance probability of extreme water level x in year t is given, then in year
t + 1 the same exceedance probability applies to an extreme water level x + 1.
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A number of optimisation models have been developed to study the dike
heightening problem (van Dantzig 1956; Speijker et al. 2000; Eijgenraam et al.
2012; van der Pijl and Oosterlee 2012). Van der Pijl and Oosterlee (2012) derive
optimal increments from Hamilton-Jacobi-Bellman equations. The model is solved
for stochastic economic growth. Evidence, however, is lacking that a stochastic
process with drift can be used to represent water levels (cf. Booij 2005; Katsman
et al. 2008).

Various other approaches have been used to deal with uncertainty, ranging
from sensitivity analysis (Eijgenraam 2006) to minimisation of regret (Brekelmans
et al. 2012) or mean-variance minimisation (Kuijper and Kallen 2012), and
pragmatic approaches (Hoekstra and de Kok 2008). ‘Robust’ solutions perform
best according to some regret minimising rule. Such solutions, however, rely on
defined worst case scenarios and do not minimise expected costs (cf. Brekelmans
et al. 2012). In Eijgenraam (2006) an illustration is provided how one would
respond to the arrival of perfect information on the structural increase in extreme
water levels. Hoekstra and de Kok (2008) propose an approach in which dike
height is based on the worst case observation so far plus a safety margin. Figure
3.1 illustrates the recurrent heightening of a dike for a river dike ring in the
Netherlands. It shows dike heightening strategies for different rates of structural
water level increase (1): ‘no climate change and no soil subsidence’ (n = 0), ‘low
structural increase in extreme water levels’ (n, = 0.5) and ‘high structural
increase in extreme water levels’ (1 = 1.0). Note that even without climate
change the dike will be recurrently heightened if positive economic growth in the
area behind the dike is assumed.
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Figure 3.1 Base case solution with relative dike heights over time (h;) for a
homogeneous dike without uncertainty and without learning for different values
of n with the model and calibration of den Hertog and Roos (2008) (dike ring 15:
Lopiker- en Krimpenerwaard area, the Netherlands).

A probabilistic analysis which separates the effects of uncertainty about
increasing water levels from uncertainty resolution is missing in the growing
literature on optimal investment in dikes. The expected value of information from
learning is positive for two reasons. Firstly, one can respond to information. For
instance, if one would learn that ‘sea level rise is high’ dike heightening effort
would be increased from that moment onwards. Secondly, total costs, i.e.: the
aggregate of discounted expected damage and investment costs, may be reduced
by changing initial dike investments before learning takes place.

Examples of methods to analyse ‘real’ investment decisions under
uncertainty, irreversibility and learning are tree analysis, dynamic programming
and methods related to optimal stopping problems. For an overview of real

36



options literature see Schwartz and Trigeorgis (2004). The ability to change an
investment project is in this literature referred to as ‘managerial flexibility’. In the
dike heightening problem both the timing of consecutive dike heightening as well
as investment size can be adapted over time. One could think of a discretised time
horizon where there is an option to re-invest in the dike at every time step.
Together, the decisions constitute the investment strategy.

We study the dike heightening problem with a homogeneous dike model. The
problem of investment in a homogeneous dike was first described by van Dantzig
(1956) after a large flooding event in the Netherlands in 1953. The problem has
later been readdressed by Eijgenraam et al. (2012) by including economic growth
and by Brekelmans et al. (2012) with a multi-segment dike and robust
optimisation. The deterministic setting of the problem has been solved
analytically, with dynamic programming and as an impulse control problem (cf.
den Hertog and Roos 2008; Chahim et al. 2012; Eijgenraam et al. 2012). Results
have been made available to policy makers (Duits 2010).

We use dynamic programming to obtain numerical results for the case with
uncertainty and learning. Dynamic programming is similar to backwardly solving a
discrete ‘tree’. The tool of tree analysis has been used by Cox et al. (1979) as an
alternative model for financial option pricing in discrete time. The tool of tree
analysis has also been adopted in real investment analysis (Conrad 1980). It is now
widely applied (e.g. Copeland and Antikarov 2003).

3.2 The optimisation problem

To set the stage, we introduce the main elements of the deterministic
exponential homogeneous dike model developed by van Dantzig (1956),
Eijgenraam (2005; 2006), den Hertog and Roos (2008) and Eijgenraam et al.
(2012). We extend this base model with a probability distribution for the rate of
structural water level increase and we introduce perfect learning where full
information on the structural water level increase becomes available. We
distinguish between perfect learning at a given moment in time and perfect
learning modelled as a stochastic event.
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3.2.1 The deterministic base model

Cost-benefit analysis in the context of flood prevention goes to the 1936 US
Flood Control Act and earlier. To our knowledge, van Dantzig (1956) was the first
to provide a cost minimisation model for optimal investment in a ‘homogeneous’
dike. A homogeneous dike can be defined as a ‘single segment’ dike which can be
represented by a single set of parameters. Clearly, water defence systems such as
dikes are rarely homogeneous. An engineering level analysis encompasses
assessment of complex failure probabilities (e.g. Kingston et al. 2011). Consider a
risk-neutral decision maker who minimises total costs (Eq. (3.1)):

[ee)

[00)

r?glC = Ije'&f +J D.e 0t dt (3.1
j=0 0

where C is the Net Present Value of the total expected costs composed of the sum

of the construction costs of a sequence of dike investments (/;) at moments ¢;

(t= (tj)jE{O,l,Z,..}) and the expected damage costs (D;) over time which are

discounted at rate §. In the sequel we define t; = 0. At t, the dike may or may
not be heightened. The solution to the optimisation problem consists of two
control variables: optimal dike heightening moments t = (¢, t1,..) and amounts
u = (ug,uq,..) at those moments in time. When the dike is heightened it is
assumed that it is raised without delay.

The expected damage at time t is equal to the sum of probability weighted
flood losses at time t. We adopt the exponential expected damage cost function
(D;) for flooding events presented in den Hertog and Roos (2008) and Eijgenraam
et al. (2012) (Eq. (3.2)):

D; = P,V = P, ge *(Nt-ho)ygvt+ihe (3.2)

The value of loss V; depends on the economic value behind the dike at time t. The
exceedance probability P, ; in Eq. (3.2) has been discussed by van Dantzig (1956).
The initial flood probability P, o can be estimated from water level observations,
for instance annual maximum water levels or peak-over-threshold observations.
High water levels will be observed more frequently over time due to soil
subsidence and sea level rise or larger peak flows. The relationship between
climate change impacts and increasing water levels at the local level is complex.

38



The structural increase in frequency of occurrence of extreme water levels is
represented by a constant log-linear shift of the cumulative extreme value
distribution over time. We refer to n as (the rate of) structural water level
increase which, for example, can be expressed in cm/year. If only a single failure
mode is considered, namely that the dike will fail when the water level reaches
the ‘critical dike height’ and not otherwise, then there is no difference between
exceedance and flood probability. h; is the dike height at time t relative to hy = 0
and a is a shape parameter. When relevant we will distinguish between the dike
height before heightening (h;) and dike height after heightening (hj,; = h; + ;).
The annual growth of the economic value behind the dike is represented by
parameter y. Parameter { represents the additional losses incurred per cm dike
height increase. The homogeneous dike model has been applied in the context of
a sea dike and in the context of river dikes (cf. van Dantzig 1956; Eijgenraam et al.
2012).

We also adopt the exponential investment cost function of den Hertog and
Roos (2008) and Eijgenraam et al. (2012) (Eq. (3.3)):

Ij = (cr + buy)ei+ (3.3)

with ¢ > 0if u; > 0. ¢f is a fixed cost incurred every time the dike is heightened
and b represents constant marginal heightening costs. 1 is a constant for the
marginal cost increase in dike height. Due to fixed costs it will never be optimal to
continuously heighten a dike (van Dantzig 1956).

With exponential damage costs (Eq. (3.2)) and exponential investment costs
(Eqg. (3.3)) a periodic solution to the first order conditions of the problem (Eqg.
(3.1)) is obtained (den Hertog and Roos 2008). Periodicity implies that dike
increments (Eq. (3.4a)) and periods of time between consecutive dike heightening
moments are constant (Eq. (3.4b)), i.e.:

w=uVvj=1 (3.4a)
tj+1 — tj =T VJ >1 (34b)
Although numerical results suggest that periodic solutions are global minima, it
remains as yet unproven (cf. Chahim et al. 2012; Eijgenraam et al. 2012).

When investment and damage costs are not balanced over time a dike will
become ‘unhealthy’ at some moment in time. A dike is defined to be ‘unhealthy’
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when the damage reduction at time t associated with dike increment u is larger
than the costs of the investment accruing to that year (Eijgenraam 2006):

Dy;(hj) = Dy;(hj + @) > 81;(& hj + &) (3.5)

Den Hertog and Roos (2008) provide an equivalent mathematical result. Thus, a
‘healthy’ dike is heightened when condition (5) holds with equality. The
mathematics has been extensively dealt with by den Hertog and Roos (2008) and
Eijgenraam et al. (2012). We will not repeat it here, but we will apply the
analytical results to compute expected costs after perfect learning.

3.2.2 The benchmark model with uncertainty

In the base model the rate of the water level increase (1) is assumed to be
known. Now we explore a benchmark model where we relax this assumption. We
introduce a probability distribution for n which represents the beliefs about the
structural increase in extreme water level observations. Let 8 be the set of
possible states of 7, and define P; the probability that n; € 6 is the true state. If
no new information arrives the state of n remains unobserved and beliefs are
unaltered. Hence, the objective function of the benchmark model with
uncertainty is:

Cu = Tilpz,PiC(t,uln = 1) (3.6)
4 l

where C,,; denotes the total discounted expected costs for the no learning case
with a constant but unobserved state of n. The first-order conditions of (6) are:

9
Z'PiEC(t,um — 1) =0 (3.7a)
3 ]

d
D Py b =n) =0 (3.7h)

Substituting (2) and (3) in (7a), and rearranging gives (cf. den Hertog and Roos
2008):
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z P,Dye @it Vti=Gta=Ohj (g(@=0uj _ 1) = §(c; + buy) (3.8)
i

No time-independent 7 = w Y; P;n; can be identified to eliminate P; from Eq.
(3.8). Hence, no periodic strategy exists which is the certainty equivalent of the
optimal strategy under the benchmark model. This result is confirmed by our
numerical analysis (see Figure 3.3). This figure also includes results from the
benchmark model extended with learning. We now turn to the issue of learning.

3.3 Learning

We introduce a single moment in time at which perfect information is
received. This moment is referred to as the ‘moment of learning’ (t;). We first
analyse optimal investment when the moment of the information arrival is given.
Subsequently, a setting is introduced where the moment of learning is stochastic.

3.3.1 Perfect learning with a given moment of learning

After uncertainty resolution at t =¢t; the dike heightening problem is
reduced to the base model. The optimal dike heightening strategy is then
conditional on the observed state of 7 and the height of the dike at ¢;. We call the
costs incurred after learning terminal costs (R):

Y T
R(htp tlr’?i) = tmin Z Ij(hj,uj)e_&i + f Dt(htlni)e_at dt (39)
2/ U2
J=]2 t

with t; St and u; S u containing all t; and u; for which t; = t; (j = j;). We
specify T as the end of the time horizon, and Y as the index of the final
heightening. For every 3-tuple (hy,, t;,7;) @ unique ‘best response’ strategy exists.
This is the optimal dike heightening strategy given the height of the dike at time of
learning (h;,), the moment of learning (¢;), and the rate of water level increase

).
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Define Jy(hr) the total discounted costs incurred in period N on interval
[T, ). For the model to be applicable it must hold that limy_,c, Jy(hy) =0.' We
choose T such that Eq. (3.10.1) is approximately true. We discretise time and dike
height on interval [0,¢t;) and solve the investment problem backwards with
dynamic programming (Eq. (3.10.1)-(3.10.3)):

JnChy) =0 (3.10.1)
In-s(he)) = ) PRChey tim) (3.102)

tk+1

i) = mind (S P f De(hen)e3tde | + I (hy, we)e 5t
uk i
2%

+ Jie+1 (Rges1) (3.10.3)

where k = 0,1,..,N — 2, and with dike increment steps of Au and time steps of
At. Hence, u, = {0, Au, 2Au, .., hypgy} and t, = kAt.

Eg. (3.10.2) contains the expected terminal costs from t; onwards. Total expected
terminal costs are the weighted terminal costs of scenarios n; € 6 (i=1,2,..)
with prior probabilities P; of occurrence. Eq. (3.10.3) is the Bellman equation. It is
solved backwards in time. First Eg. (3.10.2) is calculated for
he, = {0,Au, 2Au, .., hypgy ), followed by Ji—y_z, Jx=n—3 etc. Lastly, C;: = Jo(0) is
obtained.

If the timing of arrival of perfect information is given, the optimal height of
the dike at the moment of learning is generally lower than the height of the dike
at that moment for the case without learning. This is best understood by analysing
a simple example. Consider the following case. At t;(s) a dike can be heightened
with ©(s). We use s to refer to some dike heightening strategy:

s(tu) = (to tiy ¢, )

Ug U1 U

! This is satisfied when the discount rate is sufficiently high.
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Assume, furthermore, that perfect information on the structural increase in
extreme water levels will arrive at a given moment t;(t;(s) < t; < t,(s)) and
that instead of heightening the dike at t; (s) one could wait for the information
before heightening the dike. Which of the two strategies, waiting or heightening
the dike at t;(s) with #(s), is less costly? The dilemma is graphically illustrated in
Figure 3.2.

he

u(s)

to t1(s) ¢ t,(s)
Figure 3.2 A simplified dike investment problem with two choices: construct a
dike at t; with height @ or postpone investment till learning at moment
ti(ty > ty)

Applying the dynamic programming equations (3.10.1-3.10.3) to this simplified
investment problem gives:

1]

¢/ = min z Pif D¢(h; = 0|n)e~" dt + J;(0) ,\11(ﬁ(5))e_5t1(5)
i
0

t1(s) ]
+ 3 B [ D= otmpetar+ [ piasimre ar
l 0 t1(s)
+]1(ﬂ(s))/ (3.11)

In Eq. (3.11), the discounted investment and damage costs incurred after learning
are J;(0) if hy; =0, or jl(ﬁ(s)) if hy, = u(s). Expected damage costs on interval
[to, t;) are higher when investment is postponed till t;. The difference in expected
damage costs on the interval is:
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D R| [ Dt =ompestac— [ Diasime de (3.12)

t1(s) t1(s)

The savings on investment when waiting are:
(cf + bﬁ(s)) eAU($)=8t4(s) (3.13)

The additional terminal costs due to postponement are:

D PR(he, = 0,um) = > PRGI(s), t,m:) (3.14)

Note that]l(htl = 0) > jl(htl = ﬁ(s)) because total expected terminal costs are
strictly decreasing in dike height. Hence, it is less expensive to wait with
heightening the dike if the gains from delaying the investment are higher than the
sum of the expected additional damage costs before heightening, and the
difference in expected terminal costs.

The above example illustrates that delaying a dike investment can be an
effective strategy to account for the possible arrival of new information. Another
simplified setting is one where waiting at t; (s) is not considered. Instead, imagine
an alternative increment u; < u(s) at t;(s). Clearly, changing the investment size
is another strategy to account for the possible arrival of information.
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Figure 3.3 Case study (dike ring 15: Lopiker- en Krimpenerwaard area, the
Netherlands): i) Deterministic base case strategy (no uncertainty, no learning) for
n = 0.76. ii) Uncertainty benchmark with n~N(0.73,0.12) and no learning. iii)
Optimal strategy before learning for t; = 55 (left panel) and t; = 60 (right panel),
which is followed by iv) a best response strategy after perfect learning (a selection
of best response strategies is displayed)

Figure 3.3 displays flexible dike heightening strategies resulting from Eq.
(3.10.1)-(3.10.3) with a given moment of learning at t = 55 years (left panel) or
t = 60 (right panel) for a dike ring. It shows that for this ring the introduction of a
probability distribution for the rate of structural water level increase enhances
dike increments over time and decreases time intervals between consecutive
increments as compared to the deterministic base case. The left panel shows an
example for a case where the ‘option to wait’ is exercised. The adverse effects of
waiting, however, are reduced by heightening the dike at t; more than for the
uncertainty benchmark without learning (h; = 57.5| t; = 55 versus hy = 55.5]
no learning). The right panel shows for learning at t = 60 that the dike is
heightened for a second time before learning. This example illustrates that the
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possibility of learning in the future may have an effect on the entire dike
heightening strategy before the information arrival. Comparing the left and the
right panel also shows that differences in expected moment of learning result in
different optimal dike heightening strategies. When t; = 60 it is not worthwhile
to wait for the information, and the dike is heightened at t = 51 but its height at
t; is lower (h, = 107.5| t; = 60) than the optimal height under the uncertainty
benchmark (h, = 109]|no learning).

3.3.2 The expected value of information

The expected value of information is equal to the (quasi) option value of
flexibility (Conrad 1980). Recall that minimum total discounted expected costs for
the benchmark case without flexibility are defined C,;; (Eq. (3.6)). The minimum
total discounted expected costs with a strategy adjustment after learning are C;
(Eq. (3.10.3)). Hence, the total expected value of information is equal to:

VoL, =C:, —C} (3.15)
nl l

The expected value of information is monotonically decreasing in t;:

d

—VolL <0 (3.16)
at,

Eg. (3.16) implies that when perfect information on the structural water level
increase arrives later in time its value decreases due to discounting. In the limit
(t; = o) total expected costs can no longer be reduced whatever information is
received.

Measure VOI; follows from a reference scenario where the decision maker
never receives information (cf. Woodward et al. 2011). However, decision makers
can adjust the initial investment strategy when new information becomes
available even if the event of learning was not expected. Define C; as the
expected total costs resulting from an initial strategy derived from the uncertainty
benchmark model (s*) which is adapted optimally at t;, i.e.:
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witht, <t; < tp4q.

We distinguish between VOI;, the total expected value of information defined as
the difference in expected costs between the benchmark and the best strategy
when it is known that information will arrive at t;, and the expected value of
information from reactive flexibility which is the difference between the
benchmark and the best reactive strategy when it is not known that information
will arrive at t;:

VoI, = C;, — C; (3.18)

We can, furthermore, compare reactive flexibility with an optimal flexible
strategy:

VoI, = C; — C} (3.19)

Measure VOI; is the expected value of information of knowing when we will
learn. It is associated with changes in the initial investment strategy. Hence, we
have disaggregated the total expected value of information (VOI;) in two
components:

where the total expected value of information is separated in the expected value
of learning the true 7 if the event of learning itself is not expected, and the value
of knowing that we will learn in the future.

3.3.3 Probabilistic learning

It was shown that dike investment is changed by the timing of learning. It is,
however, hard to identify the timing of learning about the structural increase in
extreme water level observations. For this reason, we model perfect learning now
as a probabilistic event. Figure 3.4 displays the discretised dike heightening
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problem with a probabilistic moment of learning (t;). We assume an
approximation of an exponential survival model where the conditional probability
of perfect learning (P;) is constant. A maximum moment of learning (t; pqx) is
included. For simplicity, it is assumed that if learning has not occurred before
t1max learning will occur at t; ;.

Extending Eq. (3.10.1)-(3.10.3) with conditional learning probabilities gives:

JnChy) =0 (3.21.1)
]N—l(htz) = Z,PiR(htp tl.maxrr]i) (3.21.2)
Je(hi) =

th+1

min
Ug
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L
2%

\ +P, ziPiR(hk' ko Mi) J

(3.21.3)
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Figure 3.4 Event tree

3.4 Implementation & results

We use a hybrid method which combines dynamic programming and base
case analytics after uncertainty resolution to find optimal investment strategies
before and after perfect learning.” Eq. (3.21.1)-(3.21.3) are solved to determine

? The code is provided on request.
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best flexible dike heightening strategies and total expected costs (C;). To limit
computation time we do not compute best response strategies (R) with dynamic
programming. Instead, best responses are computed with analytical results of
Eijgenraam et al. (2012) and built-in Matlab solvers ‘fzero’ and ‘fminbnd’. Dike
heightening strategies of the uncertainty benchmark without learning are found
with dynamic programming (Eq. 3.10.1 and 3.10.3). We use a time horizon of 1500
years with 300 years being cut off (T = 1200) which closely approximates an
infinite time horizon problem under the considered discount rates (§ = 0.025 and
6 = 0.04). The computation of C; is straightforward: the benchmark dike
heightening strategy is combined with best responses when information arrives.
The event of learning might take place at t,, or at ty; + At etc. as described in
Figure 3.4.

The implementation is executed in Matlab (R2012a; 64-bit) with local parallel
computing on a pc with a processor with 4 cores and 16Gb internal memory.
Solutions are obtained for a grid of At = 0.5 (year) and Ah = 0.5 (cm). To further
reduce solution time we define a non-binding maximum increment (u;;,4) and a
non-binding maximum dike height at t; ;45 (Amax). The maximum increment and
maximum dike height are chosen sensibly with results from test-runs with a
courser grid. Numerical results are presented for a river dike ring protecting the
Lopiker- en Krimpenerwaard area in the Netherlands southwest of Utrecht; see
Hoogheemraadschap De Stichtse Rijnlanden (2006) and ter Horst and Jongejan
(2013). Table 3.1 contains the calibration of this ring.

Table 3.1 Calibration of ring 15
ring 15°

0.001372

11810.4

0.0502

0.02

0.003764

0.0098

125.6422

1.1268

"Source: den Hertog and Roos (2008)
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Currently, downscaled climate change projections and impact assessments
are provided without probability distributions (e.g. van den Hurk et al. 2006;
Hurkmans et al. 2010). We perform a sensitivity analysis with two distributions
and two standard deviations. In Hurkmans et al. (2010) peak discharge estimates
range from 1.1-1.6 *10* m>/s for the river Rhine basin at the gauge station of
Lobith for a return period of one hundred years. If these estimates would
represent a 90% confidence interval of a normal distribution the standard
deviation would be 1.5*10° m?/s. Longer return periods than one hundred year
are applicable for primary water defences and standard deviation increases with
return period. In the original base model a structural increase in extreme water
levels of 0.76 cm/year is included for ring 15. From this a standard deviation in the
order of 0.1 cm/year might be reasonable.

For comparison, the mean is calibrated such that the expected total costs of
the benchmark model with uncertainty are approximately equal to the estimate
found under the original base case (545 million €) with a discount rate of 4% and a
standard deviation of 0.12. For ring 15 this results in 7 = 0.73 with a normal
distribution or 7 = 0.41 for a lognormal distribution. We make use of equal bins
of n with size 0.01 and truncate the distributions: two-sided atn = 0andn = 3.5
for the normal distribution and right-sided at n = 3.5 for the lognormal
distribution.

Perfect learning is a theoretical construct. Little is known about the process of
learning about climate change. We use a constant biannual conditional learning
probability of 1/100 and a maximum moment of learning at 400 years.

The impact of uncertainty and learning on dike heightening is demonstrated
below for the dike ring protecting the Lopiker-Krimpenerwaard area in the
Netherlands. This is a dike with a ‘maintenance backlog’ at t; which implies that
the dike is heightened immediately. Figure 3.5 displays results for a lognormally
distributed rate of water level increase. We already reported that a probabilistic
rate increases dike height: time intervals between consecutive heightening
decrease and dike increments increase over time. This is illustrated by the
‘uncertainty, no learning’ line in Figure 3.5. Probabilistic learning tends to
decrease overall investment in dikes: dikes are generally lower when learning has
not yet occurred compared to the base case with uncertainty but without
learning. However, we find a tendency to heighten dikes more often. This finding
is illustrated by the line ‘best flexible strategy before learning’ in Figure 3.5. For
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example, using a grid of 0.5 cm and 0.5 years the first increment with learning is
found to be 0.5 cm lower than without learning. The third increment takes places
at t = 92.5 with learning rather than at t = 94 but its increment size is smaller:
55.5 cm with learning rather than 63 cm without learning respectively.

4[][] T T T T T T T T T

350 —#— uncertainty, no learning T

—+— best flexible strategy before learning

300

-

250

I—

200

ht cm)

]

150

100

A0+ .

U* | | | | | | 1 | 1
0 20 40 60 80 100 120 140 160 180 200

time (years)

Figure 3.5 Optimal dike heightening strategy with a probabilistic n without
uncertainty resolution (—+—) and with probabilistic uncertainty resolution
(—+—) forn~logN(0.41,0.12) and § = 0.04

Table 3.2 displays the results of a sensitivity analysis with two standard
deviations (o), discount rates (&), and distribution types. The following is
observed. Firstly, a larger standard deviation increases total discounted expected
costs both without and with learning. This finding is independent of the assumed
discount rate and the assumed distribution type. Secondly, from Table 3.2 it can
be concluded that the total value of information (VOI,) is largest when the impact
scenarios of the higher quantiles have significant probability mass and relatively
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low discount rates are used. This can be observed by comparing VOI; under a
normal and lognormal distribution in Table 3.2. The total expected value of
information can even exceed total expected costs (i.e.: VOI; > C;) indicating that
learning might reduce total expected costs with more than half as compared to
total expected costs under the benchmark model. Thirdly, initial dike heightening
strategies without and with learning largely coincide under a normal distribution.
Gains of anticipation of information arrival are approximately zero (VOI3) under a
normally distributed n for the considered dike ring with the described
calibrations. With a heavy-tailed distribution gains of expecting information arrival
(VOI3) are higher. We find a reduction in total discounted expected costs of 15.1
million Euro (1.0% of costs under the benchmark) for the probabilistic learning
case with a relatively low discount rate (6 = 2.5%), a relatively high standard
deviation (¢ = 0.14) and a lognormal distribution for 7.

53



Table 3.2 Total discounted expected costs under the learning case and the
expected value of information in million € and as percentage of C,,; (in brackets)
for two standard deviations, discount rates and distribution types (ring 15)

o o) Normal Lognormal

0.12 0.025 C/ 863.8 (96.6) 723.4 (47.3)
vol, 30.7 (3.4)  805.0 (52.7)

V0I5 0.0 (0.0) 1.6 (0.1)
0.04 C 539.2 (99.1) 4747 (87.3)
VoL 4.7 (0.9) 69.2 (12.7)

VOI; 0.0 (0.0) 0.3 (0.2)
0.14 0025  C 867.1 (95.2) 727.3 (46.1)
vol, 43.8 (4.8)  850.9 (53.9)

VOI; 0.0 (0.0) 15.1 (1.0)
0.04 C/ 540.1 (98.8) 4755 (86.7)
vol, 6.4 (1.2) 732 (13.3)

VOl 0.0 (0.0) 0.4 (0.1)

3.5 Discussion

No prior distributions of beliefs about the likelihood of climate change
impacts have been reported so far; only impact scenarios are available (cf. van
den Hurk et al. 2006; IPCC 2007). The numerical results show that dike investment
is increased under a lognormal distribution for the rate of structural water level
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increase as compared to a normal distribution. Impacts of learning are also larger
under the former distribution. These findings illustrate the importance of
distributional assumptions for increasing water levels to compute optimal dike
heights. In the absence of consensus on likelihood of climate change impacts
robust control approaches can be used instead (e.g. Brekelmans et al. 2012).

The process of learning has been represented by an exponential survival
model with a constant conditional learning probability. When the probability of
learning in the near future is high the optimisation problem approaches the case
with a given moment of learning. When learning probabilities are close to zero, in
contrast, the solutions of learning and no learning cases are approximately equal.
An improved understanding of when new information might become available
and of the degree of uncertainty reduction over time would support the analysis.
Some authors have argued that climate change uncertainties have not decreased
in the past decades despite improved understanding of the climate system and
that, therefore, uncertainty may not be reduced in the short run (e.g. Hallegatte
2009). Learning about climate change impacts has been represented in a
simplified manner. An alternative approach is to replace the assumption of
probabilistic perfect learning with gradual learning through Bayesian updating.

We have used an existing base model which omits several real-world issues.
For instance, it is assumed that the dike is homogeneous and that it has a single
failure mode (van der Most and Wehrung 2005). Also river system interactions are
not modelled (Markus et al. 2010). Our learning analysis can be extended with
such features for real-world applications. The analysis in this paper can be used to
obtain a first indication of impacts of uncertainty and learning on optimal dike
heightening strategies. Further research on priors and the learning process about
climate change impacts is needed.

3.6 Conclusions

It is unlikely that expectations about climate change impacts will remain as
they are today, while climate change impacts are amongst the key determinants
for decision making on optimal dike height. These two observations motivate our
paper. We have extended an existing dike heightening model with a probability
distribution for the rate of structural water level increase to study impacts of
uncertainty and uncertainty resolution on dike investment and expected costs.
The analysis contributes in three ways to the understanding of the problem.
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(1) The analysis reveals important gaps in the current state of research. These
gaps need to be filled to solve the dike heightening problem with a greater
accuracy. It was shown that prior probability distributions constructed around
climate change impact scenarios are needed, as well as an improved
understanding of the learning process about climate change impacts.

(2) We show that a risk of overinvestment exists when learning is excluded
from the analysis, and that uncertainty by itself tends to increase investment over
time. We explain why initial investment in dikes is reduced when uncertainty is
high but uncertainty is reduced in the near future as compared to a strategy
where future learning is not expected. Our numerical findings also suggest that
the initial investment frequency may be increased. The effect of uncertainty as
such increases the first dike investment and for the presented cases it also
accelerates and increases next investments.

(3) Learning may reduce total discounted expected costs, the aggregate of
discounted costs of dike heightening and discounted damage costs, substantially.
For the reported cases we find expected values of information (VOI;) of
0.9% — 53.9% of total costs of the uncertainty benchmark. Hence, learning might
even reduce total discounted expected costs by more than half.

(4) We find that first dike increments are similar before learning for the
studied cases, whether or not the event of learning is expected from the start. The
cost difference between a flexible strategy anticipating information arrival and a
benchmark strategy which is adjusted in response to new information is small for
most investigated cases (VOI; < 1%).

Our results indicate that current and short-term dike height decisions are
weakly affected by future learning and this suggests that it could be left aside in
these decisions. Furthermore, it was shown that perceptions of the likelihood of
climate impacts have a significant effect on initial investments and that the value
of climate change impact information can be substantial especially when
information may become available in the near future. We have modelled learning
as an exogenous event. With research, however, it might be possible to influence
the timing of learning in order to improve the quality of the information on which
decision making will be based. That would make it possible to reduce the overall
expected costs of adaptation.
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4. Impacts of rainfall variability and expected rainfall changes on
cost-effective adaptation of water systems to climate change’

Stormwater drainage and other water systems are vulnerable to changes in
rainfall and runoff and need to be adapted to climate change. This paper studies
impacts of rainfall variability and changing return periods of rainfall extremes on
cost-effective adaptation of water systems to climate change given a predefined
system performance target, for example a flood risk standard. Rainfall variability
causes system performance estimates to be volatile. These estimates may be used
to recurrently evaluate system performance. This paper presents a model for this
setting, and develops a solution method to identify cost-effective investments in
stormwater drainage adaptations. Runoff and water levels are simulated with
rainfall from stationary rainfall distributions, and time series of annual rainfall
maxima are simulated for a climate scenario. Cost-effective investment strategies
are determined by dynamic programming. The method is applied to study the
choice of volume for a storage basin in a Dutch polder. We find that ‘white noise’,
i.e. trend-free variability of rainfall, might cause earlier re-investment than
expected under projected changes in rainfall. The risk of early re-investment may
be reduced by increasing initial investment. This can be cost-effective if the
investment involves fixed costs. Increasing initial investments, therefore, not only
increases water system robustness to structural changes in rainfall, but could also
offer insurance against additional costs that would occur if system performance is
underestimated and re-investment becomes inevitable.

" published in Journal of Environmental Management:
van der Pol TD, van lerland EC, Gabbert S, Weikard HP and Hendrix EMT (2015b) Impacts
of rainfall variability and expected rainfall changes on cost-effective adaptation of water
systems to climate change, Volume 154, pages 40-47
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4.1 Introduction

There is growing evidence that climate change will lead to an increase of the
intensity and frequency of heavy rainfall, the number and duration of droughts,
and increasing peak river flows (Ekstrom et al. 2005; Frei et al. 2006; IPCC 2007;
Lenderink et al. 2007; May 2008; Kirono et al. 2011; Vrochidou et al. 2013). Water
systems, including stormwater drainage, flood defence and water supply systems,
are vulnerable to changes in rainfall and runoff and need to be adapted (Hoes and
Schuurmans 2006; Medellin-Azuara et al. 2008; Nie et al. 2009; te Linde et al.
2010). This paper studies impacts of rainfall variability and expected changes in
the return periods of rainfall extremes on cost-effective adaptation of water
systems to climate change given a predefined system performance target. System
performance targets for water systems describe the minimum system
performance that is required by law or institutional arrangements. Examples are
flood risk standards for dike rings, flood risk standards for surface and urban
drainage systems, and water quality limits for receiving waters (EC 2000; NBW
2005; Kind 2014).

Climate change impacts are uncertain, and technical lifetimes of
infrastructure, such as sewers, open channels and dikes, are typically long (e.g.
100 years) and usually involve fixed costs (Read 1997; Arnbjerg-Nielsen 2012). An
optimal mixture of initial climate change adaptation measures therefore accounts
for the cost structure of available options (de Bruin and Ansink 2011). Moreover,
it has been suggested to compare the expected decrease in performance during a
portion of the expected lifetime of the infrastructure with a predefined
performance target (Mailhot and Duchesne 2010). However, best estimates of
extreme weather distributions, needed to evaluate infrastructure performance
over time, are generally not reliable. This is due to the number of extreme value
observations, weather variability, and uncertainty about the shift of extreme
value distributions due to climate change (Huard et al. 2010; Rosenberg et al.
2010). Moreover, one or few new observations may change beliefs about the
distribution parameters or distribution type, and hence about the return period of
extreme events (e.g. Coles and Pericchi 2003). Hitherto, the stormwater and flood
risk management literature has paid surprisingly little attention to the likelihood
of investment responses induced by new hydro-meteorological observations, and
to the implications for initial investment decisions (e.g. Fletcher et al. 2013).
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This paper analyses optimal investment levels in water system adaptations to
keep water system performance in line with a system performance target under
climate change. Effects of rainfall variability and projected structural changes in
rainfall on cost-effective investment levels are studied. To this end, the
optimisation problem is described mathematically. In addition, a solution method
is developed and applied to identify cost-effective investment strategies for
stormwater drainage system adaptations.

Figure 4.1 summarises inputs and processes required for design decisions
about elements of water systems. It includes: (i) hydro-meteorological
observations from the case study area, for example weather, or peak flows
observations, (ii) information about cost-structures and technical lifetimes, (iii)
expected changes in extreme-value distributions, (iv) failure probabilities of the
system before and after investment, (v) a system performance target, or other
design rules, and (vi) an analysis of system failure probabilities over time based on
simulated realisations of extremes. In the sequel, rainfall is used as observational
input, failure probability is defined by flood probability, and a flood risk standard
is applied to study cost-effective investment in stormwater infrastructure.

Investment
project
information

Expected changes in
P  extremevalue +—
distributions

Simulation of future
extremes and
performance analysis

Hydro-
meteorological
observations

Infrastructure
design

\ 4

\ 4

Performance before
and after —
investments

A 4

Performance
target(s)

Figure 4.1 Flowchart with required inputs (trapezoids) and processes (rectangles)
for decision-making on cost-effective infrastructure design
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4.2 Rainfall variability

Traditionally, the design of stormwater infrastructure has been derived from
so-called design storms. A critical design storm (CDS) specifies rainfall depth, i.e.
rainfall quantity, for an assigned probability of occurrence and duration (e.g. De
Michele 1998). Before simulation models were available, water system elements
have often been designed separately with design storms, rather than by analysing
the reliability of the system as a whole under a large number of rainfall events.
System reliability is equal to one minus the joint failure probability of the system
elements. For small water systems, system reliability (R,) at moment t can be
approximated by Eq. (4.1) if all individual system elements are designed for the
same CDS. In Eq. (4.1), r; is the average return period of the chosen design storm
at moment t. Clearly, this is a rough approximation, for which an appropriate
design storm duration, and representative synthetic rainfall events have to be
selected (cf. Levy and McCuen 1999; Mays 2011).

Re=(1-2) (4.1)
Tt

The CDS has to be chosen such that its average return period (r;) in the future
remains large enough to meet the reliability target under climate change.
Analogue to the work of Mailhot and Duchesne (2010), the return period of the
CDS could be chosen such that projected system reliability under a rainfall
scenario intersects with the system reliability standard at the end of the
compliance period. This is displayed in Figure 4.2, where the compliance period is
assumed to end by the year 2050.

Rainfall variability, however, causes reliability estimates to be volatile. To
illustrate this, a moving window analysis was applied where the last 50 years of
observations were used to estimate the return period of the original CDS (cf. De
Michele et al. 1998). Future rainfall was simulated by random draws from the
shifted (24-hour) annual maximum rainfall distribution over time. Figure 4.2
shows three main differences between projected reliability and reliability
estimates. Firstly, projected reliability decreases monotonically, but reliability
estimates do not due to rainfall variability. Secondly, median reliability estimates
are larger than projected reliability. Thirdly, the lower bound of the 95%-
confidence interval intersects with the reliability standard well before the
intersection of the projected reliability with the standard.
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Figure 4.2 Comparison of projected system reliability and moving-window system
reliability estimates, as derived from the expected or estimated return period of a
critical design storm?

Re-investment in the system is required as soon as the best estimate of the
system’s reliability, following from the best estimate of the return period of the
CDS (Eq. (4.1)), falls below the pre-defined reliability standard. This simplified
example illustrates that due to rainfall variability the timing of re-investment in
the system cannot be assumed to be known if a reliability standard has to be met.
Future beliefs about the return period of rainfall extremes are partly based on
new rainfall observations and may result in under- or overestimation of the actual
flood probability, and hence in over- or underestimation of system reliability.
Note that only overestimation of the flood probability can have unforeseen

> KNMI (2013) daily precipitation observations were used. The confidence interval has
been obtained from 10000 simulations. The Matlab code is available on request.
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financial consequences, as only experienced underperformance results in new
investments. Such investments may incur additional costs due to the fixed costs of
stormwater infrastructure. Cost-effective capacities of stormwater infrastructure
are therefore not only determined by current beliefs about future return periods
of rainfall extremes, but also by future beliefs about the return periods of the
extremes.

4.3 Mathematical representation of water system adaptations

We now turn to a model specification and solution method to determine
cost-effective water system adaptations. Consider the objective to find a cost-
minimising investment strategy (zg, Z4, ..., Zr) in a single water system element
up to the last year of time horizon T

T
_ _ 1(z;) + 0(x)
€= B <; (1+6)t ) 4.2

where C is the Net Present Value of total investment, operation and maintenance
costs. Annual investment costs are described by function I, and annual operation
and maintenance costs by function 0. Costs are discounted at rate §. The decision
variable z; gives the level of investment in additional storage or conveyance
capacity at year t, and x; represents the total stock of the system element at year
t before or, without construction time, directly after an investment. Investment z;
is realised in every year t at the beginning of that year, i.e.:

Xt1+= X¢ + Z (4‘3)
A reliability constraint is applicable during the compliance period [0, T],
R(ft,x:,Q) = « V tel0,T] (4.4)

where R(f:, x¢ Q) is the estimated system reliability, and « is the predefined
reliability standard. Estimated reliability is a function of (i) probability density
function f; estimated with a historical time series, (ii) stock x; and (iii) other
elements of the system, Q. In what follows, Q is kept constant over time. Eq. (4.4)
describes decision-maker behaviour. It reflects how the decision-maker
implements legislation that specifies the system reliability standard (a). We
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consider that best estimates are used to evaluate system reliability, and that
these estimates are not allowed to fall below the reliability standard at any year t
after investment in that year. Alternative specifications, for example with a
probabilistic constraint, could be considered to reflect alternative
implementations of the reliability standard.

In the context of stormwater infrastructure, an annual system reliability
estimate L follows from continuous simulation of rainfall, runoff and inundation:

LB

L=1
N

(4.5)
where N is the number of simulated years, and E;, = 1 if one or more flooding
events occur during a year k of the simulated series, else E; = 0. System
reliability can be obtained from Eq. (4.5) before and after investment.

Continuous simulation of rainfall, runoff and water levels is computationally
intensive even with stationary rainfall distributions. For this reason, an indirect
procedure is developed to estimate system reliability over time based on annual
maxima. As a first step, flood probability-rainfall curves h(v, x;, Q) are estimated
for 24-hour annual rainfall maxima and for a range of x;. These curves define the
conditional probability that if some 24-hour annual maximum v has been
observed in a year t, flooding has occurred in that year given x; and Q. Note that
this function is time-independent if there is a time-invariant upper bound on x;.
Furthermore, 24-hour annual maximum rainfall distributions are estimated.
Rainfall maxima are described by a Generalised Extreme Value distribution (GEV)
with cumulative distribution function (Jenkinson 1955):

F,(v) =exp {— [1 + & (v ; Ht)]_%} (4.6)

t

where ¢, is the shape parameter, o; is the scale parameter, and y; is the location
parameter. It is estimated with rainfall of the past ¢ years. Hence, the oldest
observation is dropped when a new annual maximum becomes available. Moving-
window analyses have previously been performed to study frequency changes in
design storms and annual maximum floods (De Michele et al. 1998; Jain and Lall
2001). A full data set can also be used for frequency analysis if the trend in the
data is removed; see Khaliq et al. (2006).
In a second step, reliability at the beginning of year t is estimated by:
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R(fxe Q) =1 - f £, (v, %, Q)dv @4.7)
0

where f;(v) is the density function of F;(v). In order to solve for the cost-
effective investment strategy an investment cost function, and an operation and
maintenance cost function for the water system element should be identified. A
linear investment cost function I is applied with fixed costs a and variable
investment costs of b per unit:

1(2) ={g+bz ;; jzg (4.8)

where z is the decision variable, the level of investment in additional storage or
conveyance capacity, in a given year t. For simplicity, the investment cost function
is assumed to be linear. For the main purpose of this paper, it is sufficient to work
with a simple investment cost function that accounts for fixed costs. The fixed
costs component (a) in Eqg. (4.8) motivates ‘anticipatory’ adaptation rather than
‘reactive’ adaptation (Smith 1997), as will be shown. Note that the investment
cost function is assumed to be time-independent.

Marginal annual operation and maintenance costs are assumed to be
constant:
0(x) = mx 4.9)

where m denotes unit costs of operation and maintenance.
Annual rainfall transition probabilities can be described by a three-
dimensional Markov process:

(€1 Oes1s Her1ler Ocr He)

We define the vector of distribution parameters as ¢@; = (&, 0, Us). The
conditional transformation probability can then be written as p(@¢+1|@¢). This
implies that distribution parameter estimates &;,4,0:+1 and ys,1 are stochastic
and depend on the parameter estimates at moment t. The optimisation problem
can now be formulated recursively. The Bellman equation is:

(4.10)

E{tr1((@es1l0), x + 2)}
146

Je(p,x) = min (I(z) +0(x+2)+
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s.t. R(fix+2)=2a«a (4.11)

where J; is the value function, and (¢;+1|¢) the stochastic transformation.

A practical way to implement the Bellman equation is to discretise the
parameter state space of ¢;. Let p;j:: = p:(9;|®;), where ¢; contains values for
distribution parameter estimates ¢;, o, and y;, and @; contains the estimates of

the next distribution. This gives:

o 1
Je(pi,x) = min (1(2) +0(x+2z)+ mzj pijt]t+1((pj'x + Z)) (4.12)

wheret =0,1,2,...,T—1, and z =0,Az,2Az,...,Xpax —X. In this paper,
transition probabilities (p;j;) are evaluated by simulation. Combining the moving-
window part of existing rainfall maxima (e.g. the last 40 years) with a simulated
series (e.g. the next 20 years) determines the distribution estimates at a particular
year. The oldest observation, e.g. an oldest annual maximum, is dropped to
inform estimates of the next year. Rainfall extremes, i.e.: future realisations, of
the next year can be simulated to estimate the new rainfall distribution. Many
repetitions provide an estimate of the distribution of transitions of distributional
beliefs. This method, however, is computationally intensive, and we therefore use
an approximation using ‘synthetic series’ for every distribution state to derive
transitions; see Section 4.1.
Terminal costs at the end of the time horizon are considered to be zero.

Jr(pix) =0 (4.13)

4.4 Solution methods and case study

4.4.1 Solution methods

The practical implementation of the solution method consists of three steps:
i. estimation of flood probability-rainfall curves for 24-hour annual
rainfall maxima
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ii. determination of lower and upper bounds of parameter estimates
&, 0: and pu; of the 24-hour annual maximum rainfall distribution
over time

iii. economic optimisation

To estimate flood probability-rainfall curves for 24-hour annual rainfall
maxima, a rainfall generator was calibrated with an original hourly rainfall series
as described in Cameron et al. (1999). Empirical rainfall duration and inter-arrival
time distributions were obtained. Furthermore, empirical average intensity
distributions per duration class were extrapolated with a Generalised Pareto
Distribution (GPD). For exceedances over thresholds, the GPD was shown to be
consistent for tail estimation under mild conditions (Pickands 1975). The GPD has
a flexible functional form. The shape parameter provides a concave, or a convex
plot, and a zero value reduces the GPD to an exponential distribution (Cameron et
al. 1999).

Duration profiles per class were randomly selected, and 1000 years of rainfall
were simulated. To reduce computation time, a selection of rainfall events from
the simulated series was used for runoff and inundation simulation, instead of
continuous simulation of runoff and water levels with the 1000 years of rainfall.
For this purpose, 24 hours of maximum rainfall were selected from every
simulated year of rainfall. Simulated rainfall in proceeding hours and in hours
following the event were added. The number of hours added was based on a
‘system recovery time’, which we pragmatically defined as the time needed to
restore the target water levels within the system after a one-hour rainfall event
with a return period of 10 years. The simulation of runoff and inundation was
repeated several times with the selected rainfall events, while changing system
element dimensions in the hydrological model. Temperature and wind conditions
were kept constant during all simulations. Finally, probit models were fitted to the
binary inundation results to obtain flood probability-rainfall curves for 24-hour
annual rainfall maxima.

To determine lower and upper bounds of parameter estimates &, g; and p;
of the 24-hour annual maximum rainfall distribution for all yearly decision
moments t, the original hourly rainfall series was transformed in a climate change
scenario series, and 24-hour annual maxima were selected from both the original
and the transformed series. Bootstrap samples were taken from the original 24-
hour annual maximum series, and matched with corresponding bootstrap samples
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of the transformed 24-hour annual maximum series. GEV parameter estimates
were obtained with maximum likelihood for every bootstrap sample. The GEV
parameters of each original and transformed bootstrap sample were (log)linearly
interpolated to find parameter estimates between t = 0 and the time horizon of
the climate scenario (Kharin and Zwiers 2005). This was followed by simulation of
times series of 24-hour annual maxima by random draws from bootstrap sample
distributions to determine lower and upper bounds of moving-window parameter
estimates of the 24-hour annual maximum distribution over time.

Cost-effective stormwater investment strategies are determined by solving
the value function (Eq. (4.12)) backwards in time. For this purpose, synthetic time
series of 24-hour annual rainfall maxima were created, which approximate
parameter estimates of the GEV parameter state space (&, o¢, 4s) at decision
moment t. The length of any synthetic series was kept fixed at 60 vyears,
corresponding to the number of observations in the moving window, and
percentile bins were used to construct the synthetic series. At every decision
moment t, possible parameter state transitions were computed for every
synthetic series. To achieve this, percentile bins of 24-hour annual maxima were
estimated from simulated 24-hour annual maxima for year t + 1 which were
obtained from random draws from the interpolated bootstrap samples of the GEV
distribution parameters. One observation of each synthetic series approximating
the oldest moving window observation of the original series, i.e.: the historical
observation of year t — 60 + 1, was then replaced by one discretised percentile
observation of t 4+ 1, and this was repeated for all percentiles. The value function
evaluation uses a grid interpolation to identify optimal action (z,) at decision
moment t given GEV parameter states ¢.(&;, o, 1) and total investment so far

(x¢).
4.4.2 Case study

As an empirical application of the solution method, the volume of a storage
basin in the Waalblok polder, the Netherlands, was studied. The Waalblok polder
is located in the South-Western part of the Netherlands near the city of The
Hague and has an area of 55 ha. Most of the area is covered by greenhouses. In
contrast to a standard polder, water is pumped into the polder in dry periods and
is discharged at sluices. Target water levels have been set at + 0.25 m above
datum (A.D.) and, in a small area, at - 0.1 m A.D. (Delfland Water Board 2010). The
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Waalblok is primarily used for greenhouse horticulture, and experienced regular
inundation problems in the past. To resolve this, various measures were
investigated (Gehrels et al. 2007). A pilot project was initiated which included the
realisation of an off-line storage basin; it only fills if the water level rises above the
crest level of the inlet. This storage basin, made of concrete, has been realised
under a greenhouse upstream at the border of the lower lying area (- 0.1 m A.D.)
to reduce flood risk in this sub-system.

Uniform flood risk standards, describing the maximum accepted annual flood
probability within a water system, have been defined for Dutch regional water
systems; see Table 4.1. First analysis showed that despite the realisation of a large
storage basin (7142 m®) the - 0.1 m A.D. subsystem of the Waalblok polder does
not meet the horticulture flood risk standard of one inundation event per 50 years
on average, see also Figure 4.4 in Section 4.5. We therefore applied the grassland
flood risk standard to analyse the cost-effective volume of the storage basin in the
- 0.1 m A.D. subsystem of the Waalblok polder.

Table 4.1 Dutch flood risk standards, describing maximum accepted annual flood
probabilities, for regional water systems per land use type and failure definitions
expressed as percentage of flooded land (source: NBW 2005)

Land use type Standard Failure definition
Grassland 1/10 >5%
Agriculture 1/25 >1%
Horticulture 1/50 >1%
Urban 1/100 >0%

The rainfall generator was calibrated with a homogenised hourly rainfall
series of 106 years for gauging station ‘de Bilt’ (KNMI 2004).* We increased these
observations with a fixed factor (10%) to correct for the ‘coastal effect’, a method
which has also been applied by the water board responsible for the Waalblok
polder system (Delfland Water Board 2005). We transformed the original hourly
rainfall series into a climate change (W) scenario following the procedures of the
KNMI transformation tool (Lenderink 2006; Bakker and Bessembinder 2012).

4 We combined the KNMI (2004) data set with homogenised rainfall for 2005-2012
supplied by KNMI via personal communication.
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To simulate water levels during heavy rainfall events we used hydrological
model Sobek Rural. Detailed overland runoff and flow ‘schematisations’ of the
Waalblok polder were provided by Water Board Delfland and RoyalHaskoning
DHV. Sobek Rural allows detailed flow and water level simulation from many
heavy rainfall events for real-world surface systems (Deltares Systems 2012).
Inundation was defined to occur if the target water level (- 0.1 m A.D.) in the area
increases with 60 cm or more, because the water level starts to exceed the
surface level of the lowest lying land at this point. We adopted a number of
system changes to increase the system performance. The water level in the - 0.1
m A.D. water level area tends to rise up to the water level of the + 0.25 m area
during heavy rainfall events. We increased, therefore, the pumping station
capacity at the downstream exit of the - 0.1 m A.D. subsystem with a factor 3;
from 10 to 30 m?/ min. Verhoeven (2010) proposed, furthermore, to change the
storage inlet to increase storage capacity use.’

Table 4.2 shows cost parameter values used for the case study. These were
derived from cost information that we obtained from Waterboard Delfland, and
are used for illustrative purposes only. Gehrels et al. (2007) report values in the
same order of magnitude as in Table 4.2.

® For our simulations the crest level of the orifice was lowered from + 0.65 m to + 0.3 m
and its width was doubled from 1.5 m to 3.0 m.

69



Table 4.2 Cost parameter values used for the economic analysis of the case study

Parameter Value (EUR)

a 1100000
b 88
m 1.3

Most of the three-step procedure was programmed in Matlab. We used Matlab
R2013a with parallel computing and optimisation toolbox. The Matlab code is
available on request.

4.5 Results

Storage basin volumes up to 10000 m* were considered in steps of 1000 m?
(Az). Figure 4.3 displays a selection of resulting flood probability-rainfall curves for
24-hour rainfall maxima and different storage volumes. Figure 4.3 shows that the
storage basin effectively reduces flood risk in the studied subsystem of the polder.
Marginal flood risk reductions were largest for small storage volumes, while
increasing the storage basin beyond 5000 m? had little effect on flood probability.
Although increasing the storage beyond 5000 m? still could prevent flooding in
some of the simulation runs, other measures would be needed to reduce flood
risk sufficiently to meet the horticulture flood risk standard (Figure 4.4).
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Figure 4.3 Selection of flood probability-rainfall curves for 24-hour rainfall maxima
for different storage volumes

Figure 4.4 reports initial annual flood probabilities in the studied subsystem
(-0.1 m A.D.) after an initial investment (z,). These flood probability estimates can
be obtained from the flood probability-rainfall curves presented in Figure 4.3.
Note that the annual flood probability associated with the occurrence of some 24-
hour annual rainfall event is the product of the probability of occurrence of this
event and the probability that this event results in flooding. The flood probability
is the sum of the probability products over all 24-hour events. As both the density
function of annual rainfall, and flood probability-rainfall curves are continuous,
estimates are obtained by numerical integration of flood probability-rainfall
curves for given storage volumes (Figure 4.3) multiplied by the density function of
annual rainfall. This is summarised by the integral in Eq. (4.7). A storage volume of
1000 m* meets the grassland flood risk standard at ¢,. This is, therefore, the cost-
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effective storage volume if only immediate compliance is required, and future
compliance is not considered. It is also the cost-effective initial volume for longer
compliance periods in the absence of fixed costs (a = 0).
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Figure 4.4 Initial annual flood probabilities for different storage volumes

Figure 4.5 shows total discounted costs for different storage volumes for a
compliance period of 38 years. These costs include investment and operation
costs. The minimum initial capacity is 1000 m* for compliance at ty. However,
1000 m® is no longer cost-effective because there is a risk that the estimated
subsystem reliability falls below the reliability standard somewhere in the coming
decades, which would require re-investment. The cost-effective volume for this
case is 2000 m>, which we find for shorter compliance periods (T > 2) as well. We
also find that the absolute cost difference between 1000 m® and 2000 m® is
increasing, and between 2000 m*® and 3000 m? is decreasing in T. This finding
demonstrates that the cost-effective storage volume tends to increase when the
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compliance period is increased, although the effect is negligible for T = 2. There
is, furthermore, a trade-off between operation costs and the risk of re-investment
in storage volume. While a larger initial storage basin reduces the probability that
re-investment is required, it goes along with increased costs of operation, and vice
versa. Hence, cost-effective investment strategies are driven by the investment’s
cost structure and the time horizon of the performance target. The time horizon
captures two effects: expected climate change impacts, and randomness in the re-
investment moment due to rainfall variability.

25 T T T T T T T T
+  MNP% of total costs for zDE}{

0.4

|:| | | | | | | | |
1000 2000 3000 4000 5000 BO0O0  7OO0  SO00 9000 10000
storage volume 2z, [m3]|

Figure 4.5 Total discounted costs for different storage volumes for a compliance
horizon till 2050

4.6 Discussion

In the context of climate change cost-effectiveness analysis of water system
adaptation options requires a performance target, for example a flood risk
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standard, and specification of expected revision moments of the performance
target. In practice, explicit definitions of revision moments are often lacking,
despite that economically efficient revision moments could be derived from a
cost-benefit analysis (NBW 2005; Kind 2014). Moreover, initial performance
targets are sometimes purposely set at economically inefficient levels (cf. Hoes
and Schuurmans 2006).

A longer compliance period, during which the performance target remains
unchanged, implies application of larger structural changes in rainfall to compute
initial cost-effective water system adaptations. Long-term performance targets,
therefore, increase the robustness of water systems to climate change. Moreover,
when the likelihood of future beliefs about return periods of rainfall extremes is
considered, a long-term performance target also reduces the probability of re-
investments early in time. Yet, our case study results illustrate that cost-effective
initial investments do not always change considerably when the time horizon of
the performance target is increased. The numerical results are mainly driven by
the cost structure of investment, expected rainfall changes, and the probability
that costly re-investments are required in the short-run as a result of new rainfall
observations. Other determinants are the initial state of the system, and the
statistical updating process applied. For the case study analysis, only one climate
change scenario was considered. So far, there is no scientific consensus on how to
use multiple climate change scenarios (Kundzewicz et al. 2010; Berggren et al.
2014). In this study moving window estimates were used to recurrently evaluate
performance. Alternatively, a statistical updating procedure could be applied on
transformed data, which could improve the reliability of the distribution estimates
over time (cf. Khaliq et al. 2006).

The three-step solution method described in this paper was designed to study
cost-effective investment strategies for investments in a single element of a
surface or urban drainage system. In certain cases, it may be reasonable to study
an investment strategy in one water system element in isolation. The subsystem
of the case study, for example, covers a relatively small area with a limited
number of subsystem elements. In addition, the storage basin incurs relatively
high costs compared to the other system elements, with no close substitutes for
reducing flood risk in the subsystem. For other cases, however, these conditions
may be different. Various algorithms could be used instead, for example, those
applied to identify cost-effective sewer designs (e.g. Swamee and Sharma 2013).
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The presented solution method can be extended to study multiple
investments. This would, however, require integrated models that allow
performance analysis of many system configurations at once (i.e.: the analysis of
large-scale combinatorial problems with many investment options, and many
investment levels). This was beyond the scope of this paper. Moreover, as water
system investments will often have non-linear investment cost functions, their
implications on cost-effective investment levels require further research.
Furthermore, cost-benefit analysis could be considered, but this would require
damage assessment (Jonkman et al. 2008; Pathirana et al. 2011).

4.7 Conclusions

Water systems, including stormwater drainage, flood defence and water
supply systems, are vulnerable to climate change and often need to be adapted to
keep system performance in line with performance targets, for example flood risk
standards. In current practices, structural changes in rainfall are commonly
anticipated in decisions on water system adaptations. In this paper, we argue that
rainfall variability may have an impact on initial cost-effective investments on the
basis of two premises. Firstly, it was assumed that decision-makers recurrently
evaluate the performance of the water systems for which they are responsible.
Secondly, it was assumed that decision-makers do not change the performance
target during a specified time horizon.

We started this paper by showing that rainfall variability and the limited
number of extreme value observations result in volatility of performance
estimates. We demonstrated that if these estimates are used to evaluate whether
or not a water system still complies with a predefined performance target, the
timing of re-investment in the system cannot be assumed to be known. As a
consequence, initial cost-effective investments are determined by current beliefs
about the future return periods of rainfall extremes, and by future beliefs about
the return period of the extremes. These beliefs will determine when re-
investment is necessary, rather than the actual structural changes in rainfall,
which cannot be observed in the short-run. So far, it has remained a challenge to
link current management practices and investments with an analysis of possible
rainfall realisations in the future. In this paper, an integrated solution method has
been developed to show how such an analysis could be implemented.
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The presented method has been developed to identify cost-effective
investment strategies for stormwater drainage system adaptations. Runoff and
water levels were simulated with rainfall from stationary rainfall distributions, and
time series of annual rainfall maxima were simulated for a climate scenario. Cost-
effective investment strategies were determined by dynamic programming. The
results suggest that increasing initial investments increases water system
robustness to climate change. For investments with large fixed costs shares this
may also reduce the probability that costly re-investments are required in the
short-run as a result of new rainfall observations. Increasing initial investments
could therefore offer insurance against costs from underestimation of the
system’s performance.
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5. A dynamic minimax regret analysis of flood risk management
strategies under climate change uncertainty with emerging
information on peak flows"

Investment decisions on flood protection are often guided by considerations of
regret. The ‘minimax regret’ (MR) decision criterion is used to identify
investments in flood protection which minimise worst-case regret. In this paper,
we study the dynamic application of the MR decision criterion to analyse
robustness of flood risk management (FRM) strategies under climate change
uncertainty with emerging peak flow information. The approach supports
identification of adaptive FRM strategies by including ‘learning scenarios’ about
peak flow development. We implement the MR decision criterion dynamically to
study optimal dike height and floodplain development in a conceptual FRM
model. Outcomes of static and dynamic MR analysis are compared. It is shown
that the dynamic model offers greater flexibility than the static model, because it
allows investments to be changed when new peak flow information emerges. We
conclude that dynamic MR solutions are more robust than the solutions obtained
from a static MR analysis of FRM investments due to ongoing changes in climate
change impact projections.

*Chapter is based on a submitted manuscript and a working paper presented in a thematic
session of the 21st Annual Conference of the European Association of Environmental and
Resource Economists in Helsinki, June 24-27, 2015:

van der Pol TD, van lerland EC, Gabbert S, Weikard HP and Hendrix EMT (2015) A dynamic
minimax regret analysis of flood risk management strategies under climate change
uncertainty with emerging information on peak flows
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5.1 Introduction

Investment decisions on flood protection are often guided by considerations
of regret, comparing an actual or a hypothetical outcome against a best
achievable outcome. The ‘minimax regret’ (MR) decision criterion is used to
support robust decision-making by identifying flood risk management (FRM)
solutions with the least worst-case regret (cf. Hall and Solomatine 2008;
Brekelmans et al. 2012). In its basic form, the MR objective is to minimise
maximum regret for a defined set of scenarios (Niehans 1948; Savage 1951). In a
one-shot or static MR application, this set is constant over time. However, recent
literature advocates ‘flexible’ or ‘adaptive’ FRM strategies which can be adapted
to new information at relatively low costs, motivated by the presence of ‘deep’
uncertainties, and the inherently limited capacity to predict the future and the
possible emergence of new information (cf. Pahl-Wostl 2007; Kwadijk et al. 2010;
Haasnoot et al. 2013). In this paper, we apply the MR decision criterion
dynamically to FRM strategies under the possible emergence of new climate
information.

Our starting point is an example of a static MR application to flood risk
management to illustrate how climate change impact scenarios result in selection
of flood protection measures using the MR criterion. Consider the choice between
raising inland dikes and investment in a storm surge barrier.® Table 5.1(a)
summarises total discounted costs, including investment and damage costs,
associated with both investment options under a ‘low’ (s;), ‘high’ (sy) or
‘extreme’ (sg) sea level rise scenario.

Table 5.1(a) Total discounted costs under different sea level rise scenarios:
raising inland dikes versus construction of a storm surge barrier

Measure / Scenario SL SH SE
Storm surge barrier Cy C, Cs
Inland dikes (A Cs Ce

® Dutch policy makers were facing this dilemma in the 80s along the estuary of the “New
Waterway” near Rotterdam. Raising the inland dikes would have required large-scale
investments, which resulted in the decision to construct an innovative storm surge barrier
(Bol 2005).
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An optimal ex-post decision (*) minimises the costs of both flood protection
measures for a given scenario. In this example, C; < C4, C; < C5 and Cg < C3.
Corresponding anticipated regret values are displayed in Table 5.1(b).

Table 5.1(b) Corresponding regret values

Measure / Scenario SL Sy Sg
Storm surge barrier 0 0 C; —Cq
Inland dikes Cy,—C Cs — G, 0

The regret values in Table 5.1(b) are ‘absolute’ regret values obtained from
subtracting the costs of an optimal ex-post alternative from the costs of the
selected adaptation measure for the scenario.

Suppose that C3 —Cg > C5 — C, > C4 — C;. MR of dike heightening is
Cs — C; and MR of investment in the storm surge barrier is C3 — Cgx. The optimal
strategy, when applying the MR criterion, is to raise inland dikes if scenarios
S;, Sy and sg are included in the MR analysis. Note that exclusion of extreme
scenario sg from the set of scenarios results in a decision to invest in the storm
surge barrier rather than to raise the inland dikes. This implies that MR decisions
are sensitive to the set of scenarios considered.

MR analysis of flood protection measures is challenged by climate scenario
choices. Including scenarios that cover the complete uncertainty set, i.e. “the
smallest closed set such that the probability of the data to take a value outside of
this set is zero” (Ben-Tal et al. 2009), might include highly unlikely, but
catastrophic climate scenarios and could lead to excessive investment costs or
extreme outcomes, such as ‘abandoning land’ (cf. Clarke 2008; Londsdale et al.
2008). Instead, ‘plausible high-end’ climate change impact scenarios can be used
for the analysis, as has been suggested for the updating of FRM strategies
(Katsman et al. 2011).

In addition, the set of ‘plausible’ climate change impact scenarios may be
subject to change over time. Examples are recent reports of larger uncertainty
ranges of sea level rise and extreme rainfall than previously reported (Wahl et al.
2013; KNMI 2014). In the long run, more extreme value observations and
scientific progress may reduce or resolve climate uncertainties (cf. Baker 2005;
Khaliq et al. 2006). When new information emerges, anticipated regrets may
change and investments can be adapted accordingly.
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So far, few authors have discussed the dynamic application of the MR
decision criterion with emerging information, and focus has mainly been on
theoretical problems (Krdhmer and Stone 2005; Hayashi 2011). To our best
knowledge, no dynamic application of the MR decision criterion to FRM cases has
been reported in the literature. This paper shows how the MR decision criterion
can be applied dynamically to analyse practical FRM investment problems under
climate change, and the important differences between static and dynamic MR
analysis due to the possible emergence of new information. First, a procedure is
developed to implement the MR decision criterion in a time-consistent manner
building on the work of Hayashi (2011). Next, a conceptual FRM model is
developed applying the dynamic MR procedure.

The structure of this paper is as follows. Section 5.2 provides a brief
motivation for MR analysis. Section 5.3 introduces the MR decision criterion
formally and develops a consistent procedure for its dynamic implementation.
Section 5.4 describes a conceptual FRM model, and applies the dynamic MR
procedure to this model. Section 5.5 presents results. Section 5.6 concludes and
discusses implications of our findings.

5.2 Motivation

Management strategies are robust when they perform relatively well across a
range of possible future states (Lempert et al. 2006). Robustness methods,
including MR applications, are generally motivated by the presence of ‘deep’
uncertainties (Woodward and Bishop 1997; Dessai and Hulme 2007; Clarke 2008;
Hine and Hall 2010; Green and Weatherhead 2014). Uncertainty is ‘deep’ when
probability or outcome information is ambiguous or lacking. Decision-making
under risk, in contrast, assumes known probabilities of possible outcomes
(Hogarth and Kunreuther 1995). Climate change uncertainties have been classified
as ‘deep’ (Kandlikar et al. 2005).

In this paper, robust solutions that minimise maximum regret are analysed
(cf. Averbakh 2000). Regret is a context-dependent measure, because its value
follows from outcome comparisons. Context-dependency implies that regret
values may change under different scenarios or investment alternatives. As a
result, no fixed relationship exists between a possible outcome and the objective
variable assumed in standard economic theory (e.g. Yager 2004). Therefore, a

80



decision-maker’s ability to anticipate regret induces axiom violations of expected
utility theory (Loomes and Sugden 1982).

Minimisation of maximum regret implies an infinite aversion against worst-
case regret for a given set of investment opportunities and scenarios. In flood risk
management, decision-makers are often regret- or loss averse. The common use
of safety margins reveals loss aversion. The ‘minimax’ criterion analyses maximum
losses. However, ‘minimax’ solutions may be associated with large regret, which
advocates MR analysis. Regret arises both from under- and overinvestment. For
example, a ‘very high’ dike may be robust to virtually any climate change impact
scenario with barely any flood risk remaining. Therefore, the largest dike
investment possible minimises maximum losses. Yet, this is not a low-regret
solution, as these investment costs will largely outweigh damage reduction under
any scenario (cf. Brekelmans et al. 2012).

MR analysis has several practical advantages over other robustness and
expected-value methods. Application of the MR criterion does not require
probabilistic information. The use of subjective probability distributions in
expected-value approaches is controversial, and might result in ‘bad’ adaptation
decisions (Hall 2007). It is generally considered easier to formulate a range of
scenarios, for example by setting parameter intervals, than to attach probability
distributions to these intervals. Furthermore, the MR decision criterion does not
rely on arbitrary scenario weights such as the Laplace decision criterion, which
uses equal scenario probabilities, the Hurwicz decision criterion, which employs
weights for pessimism and optimism, or combined decision criteria (e.g. Gaspars-
Wieloch 2014). Moreover, MR analysis usually yields a unique solution. More
recent robust decision-making methods, such as info-gap theory, give insights in
the robustness of solutions under different degrees of uncertainty (e.g. Hine and
Hall 2010). Info-gap theory, however, does not prescribe which measures to
implement.

5.3 Static versus dynamic regret minimisation

The MR decision criterion is mostly applied in static settings (Hayashi 2011).
Let C(s,z) be the Net Present Value (NPV) of the total costs of option z under
climate scenario s € 8. The maximum absolute regret (R) for mutually exclusive
adaptation investment options z,y € Z is mathematically defined by (e.g.
Kasperski 2008)
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R(z) = max{C(s,2) — min C(s, ¥)} (5.1)

The MR objective is given by

R* = min R(2). (5.2)

Z€EZ

Hence, the investment option that minimises maximum regret is
z" = argmin{R(Z)}. (5.3)
ZEZ

Sequential repetition of MR analysis over time could lead to dynamically
inconsistent decisions as discussed by Hayashi (2011). However, no procedure
was provided to resolve this problem. Dynamic consistency “imposes that the
sequence of choice dispositions of the decision-maker’s successive ‘selves’ has to
be connected across date-events in a recursive manner” (Hayashi 2011). In other
words, dynamic inconsistency arises when a decision-maker commits to an initial
plan as his final, but would prefer to change it later on. Time-inconsistent
decisions originate from context-dependency, as briefly explained in Section 5.2.
Information arrival implies a change in scenarios. Therefore, regrets change on
arrival of new information even if the scenario payoffs remain unchanged. This, in
turn, may result in a change of the initial plan, which is dynamically inconsistent.

To address this problem, we suppose that a decision-maker is not only
capable of anticipating regret, but also has the analytical capacity to anticipate
future optimal decisions, i.e. future decisions which minimise maximum regret for
any hypothetical sequence of previous decisions and events. In contrast to the
time-inconsistent implementation of Hayashi (2011), our method removes any
future suboptimal decision by a backward induction procedure. We will first
illustrate the procedure by means of an example and formalise it in Section 5.4.2.

Consider forward-looking regret in the two-period investment problem of
Figure 5.1.
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Figure 5.1 Decision-event-outcome tree for a two-period investment problem.
The sub-trees, marked (1) and (2), are solved to determine optimal decisions at
decision moment t; given that the initial decision is to postpone the investment

At moment t,, the decision maker either chooses to invest (J,) or to postpone
(Py) investment. The set of climate scenarios at decision moment t, is 6y =
{SLL, SLr> StL, Sun}- Under strategy (Jy,P;), i.e. invest at t, and postpone
investment at ¢t;, total costs are assumed to be scenario-independent, which is
displayed in the upper branch of the tree in Figure 5.1. Consider that at decision
moment t; it will be known whether or not climate change is severe or less severe
with scenarios sy, Syy € 61 or sy, Sy € 04, respectively. If the investment
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decision is postponed to moment t;, one can either invest (J;) at t; or postpone
again (P;).

The anticipated regret at moment t; after decision P, and new information
SyL, Syu € 61 does not depend on the costs (15) incurred up to moment t;, but
only on the consecutive outcome changes from the decision at t; (respectively,
+13,4+10, +25,4+18). The reader can verify that the minimising maximum regret
decision at moment t; is J; under climate information sy;, Syy € 61, and P;
under information s;;, s;y € 8;. This result is obtained from the static application
of the MR decision criterion to sub-trees (1) and (2) in Figure 5.1 respectively.

The initial optimal decision is derived from deleting outcomes of sub-optimal
decisions from the next period. In the example, outcomes of decision P; under
scenarios Sy, Syg € 01, and outcomes of decision i; under scenarios s;;, Sy gy €
0, are removed. This results in the decision tree displayed in Figure 5.2. Applying
MR Eqgs. (1) and (2) to this problem leads to the optimal decision at t; to postpone
investment. This is followed by investment at t; under climate information
SuL, Syu € 641, and no investment under climate information s;;, s,y € 6. Note
that this investment plan is dynamically consistent, because the decision-maker
will stick to the initial plan throughout the time horizon under every course of
events.
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Figure 5.2 Decision-tree after removal of non-optimal branches of the second
period

5.4 A flood risk management application

Section 5.4.1 describes a conceptual flood risk management (FRM) model for
a stylised FRM investment problem. The dynamic MR procedure explained in the
previous section is applied to this model in Sections 5.4.2-4.3.

5.4.1 A conceptual flood risk management model

Consider the problem of increasing river peak flows due to climate change
and a river dike protecting agricultural land as well as urban area. The current
river dike is expected to provide less flood protection in the future due to the
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impact of climate change on peak flows. A quick-scan of possible adaptation
options suggests two alternative adaptation strategies: either raising the existing
river dike, or creating detention compartments on agricultural land. In the latter
case, agricultural land can be deliberately flooded in order to attenuate peak
flows to prevent flooding of the downstream urban area. However, damages arise
from yield losses when detention area is used. Figure 5.3 illustrates the problem
setting studied in the remainder of this paper.

Urban area Agricultural land
lmax
E;
E L2 w
1 ly —==2 mazx
.'ED' 't' jﬂ@w | Detention 2 :1‘4‘:
] . Primary dike
DSttt River flow direction

Figure 5.3 Graphical representation of the problem setting for two detention
compartments

Figure 5.3 displays the length (,,,4,) and the width (w,,,4,) of the agricultural
land. The urban area is denoted by E;, and the total area of agricultural land is
denoted by E,. Upstream of the urban area, the agricultural land can be used to
create one or more rectangular detention compartments next to the existing
primary dike. We assume that the existing dike can be used as one of the sides of
the detention compartments. Detention compartment lengths are denoted by [,
withk = 1,2,...,K and [, < 1,4, and compartment widths are denoted by w;,
with w, < w4, The compartments can be flooded in a cascading order such
that the agricultural area that has to be flooded in order to prevent flooding of
the urban area is minimised.

We study a two-period investment problem with an infinite time horizon
divided into three parts: [ty, t1), [t1,T), and [T, o). At decision moments t, and
t; investment can take place in either the primary dike or in detention storage. In
the sequel, we denote these decisions moments by ti ( =0,1). At the initial
decision moment (ty), three different peak flow projections are available: a low
(s1), a medium (s;,) and a high (sy) peak flow scenario. We denote the set of peak
flow scenarios at decision moment t; by 6;. At t, the set of peak flow scenarios
consists of three scenarios, 8y = {s;, Sy, Sy}- Every peak flow scenario describes
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the development of an annual peak flow distribution, which is shifting over time
due to climate change. The annual maxima of peak flows Q are distributed
according to a Gumbel distribution, a subtype of the Generalised Extreme Value
(GEV) distribution without shape parameter, with cumulative distribution function
(Gumbel 1941)

F:(Q,s) = exp [—exp {— (Q _ #t(s)»], (5.4)

a¢(s)

where p;(s) is the location parameter, the mode, and o:(s) is the scale
parameter for peak flow scenario s at year t. Hence, a peak flow scenario s
defines distribution parameters of the annual peak flow distribution for any year
t: (Uo(s), u1(8), ...;09(s),01(s), ... ). Note that mean and variance follow from
the location and scale parameters (e.g. Forbes et al. 2011).

It is not only uncertain how peak flows will develop, but it is also hard to
predict whether or not peak flow uncertainty will be reduced in the future. The
future range of peak flow projections depends on future peak flow observations
and new insights from improved climate models. We model possible futures by
three ‘learning scenarios’, each represented by one or more information sets at
ty:

* ‘no learning’ scenario: the set of peak flow scenarios remains the
same as today, with no-learning information set 8; = {s;, Sy, Sy},

e ‘uncertainty reduction’ scenario: the set of peak flow scenarios
becomes smaller, either s; or sy disappears from the original set,
with uncertainty reduction set 8; = {s;, sy}, or 81 = {sy, Sy},

e ‘uncertainty resolution’ scenario: complete knowledge on the
development of the annual peak flow distribution is obtained, with
uncertainty resolution set 8; = {s;}, 6; = {sy}or 6, = {sy}.

To capture the notion of information sets, consider information superset 6;,
which contains possible information sets at decision moments t;. At decision
moment t, the superset contains only one set as 6, is given. At moment t;, the
information superset contains the information sets from the different learning
scenarios, i.e. @; = {{sL,sM,sH}, {si,smtb {smrsut, {s1} {su}, {sH}}.

Our conceptual FRM model contains a stage-discharge relationship and a
peak flow attenuation function (cf. Westphal et al. 1999; Vis et al. 2003). These
functions characterise the risk of flooding under different investment decisions.
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The model also contains simple investment cost functions and damage cost
functions. The model is described as follows:

Indices

j=01 Decision moment index

k=12,...,.K Detention compartment index

t=0,12,...,0 Year

Data

0; < 6; Set of peak flow scenarios at decision moment ¢;

S €0 Peak flow scenario describing an annual peak flow distribution
over time

Ue(s) Location parameter of annual peak flow distribution in year t
under scenario s

o+ (S) Scale parameter of annual peak flow distribution in year t under
scenario s

aq,a; Stage-discharge function coefficients

B1, B2, B3 Storage-attenuation function coefficients

C1,C, A Investment cost function coefficients of primary dike

dy,dy, ds Investment cost function coefficients of detention storage

1 Damage value per unit of flooded urban area per flooding event

2 Yield loss per unit of flooded agricultural land per flooding event

lnax Length of agricultural land

hmax Maximum dike height of the primary dike

Winax Width of agricultural land

E; Total urban area

E, Total agricultural area

Stock variables

h; Dike height of primary dike at decision moment t; before heightening

Xjk Storage volumes of existing compartments k = 1, ..., K; at moment ¢;

Decision variables
U; Dike increment of primary dike at moment ¢;
Vjk Storage volume of new compartment k = K; + 1, ..., K at moment ¢;
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ik Detention length of compartment k at moment t;
Wik Detention width of compartment k at moment ¢;

Objective function at t,
Minimisation of maximum regret at the initial decision moment (t,) is defined by

R* = min{RA,RB}, (55)

with R4 maximum regret under optimal investment in the primary dike (option A)
and Rg under optimal floodplain investment in detention compartments (option
B). Sections 5.4.2-5.4.4 describe how R, and Ry are obtained.

Constraints
Detention compartment width and length:

Wik < Whnax vj, k (56(1)
K

2 o<l v (5.6b)
k=1

Note that [j; = 2wj,, which maximises the surface of a rectangular detention
area for a given detention dike length, as one of the compartment sides is covered
by the existing primary dike. Detention volume is described by

Xjk = ZWﬁcg vj, k = Wi = L, (5.7)

where g is the ‘effective storage height’ capturing the distance between the
critical height of the floodplain dikes and the datum, i.e. the reference level of the
surface, which is assumed to be constant, and a fixed amount of storage in the
subsurface per surface unit.

Dike height is characterised by

The case of mutually exclusive investment options is studied. At moment ¢, this is
achieved by
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UgVor = 0 vk, (5.9a)
and at moment t; by
hlvlk =0 , U1 X — 0 Vk (Sgb)

Damage cost functions

We assume that if river stage S exceeds critical level (S), the primary dike
fails, otherwise it does not. In case of primary dike failure, flood losses are
assumed to be constant and independent of inundation depth’

Dy = p1E7 + p2E>. (5.10)

Annual use of detention compartments without primary dike failure gives
damages from yield losses in the compartments approximated by:

n(Q.xjk)

Dz(n(erjk):ij(xjk))z Z ZWJ%CPZ, (5.11)
k=1

where n(Q, xji) is the required number of detention compartments for a given
peak flow event Q.

Investment cost functions

The investment cost functions of dike construction or heightening are
represented by an exponential function described by Brekelmans et al. (2012).
Dike increments are denoted by u;, and the cost function of heightening the
primary dike by

_ohj ifui >0
Ca) = )€1 T cpuett i
14 (hj, u;) { 0 if uj =0 (5.12)
where hj,q is the relative dike height after heightening at t; with hy =0,
parameter c; the per kilometre heightening costs, ¢, the variable costs of
heightening the primary dike and A the per centimetre incremental costs per
kilometre of dike.

7 In actual model applications more complex damage specifications can be included, e.g.
damages depending on inundation depth and flood duration.
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The storage cost function is represented by

K
K K if Vjk,+1 > 0
dy +d Z v +d z I KT
Ig(vjp) =471 " 2 Jle T3 i I (5.13)
k=K1+1 k=K1+1
L 0 if Z Vjg,+1 =0
K=Ky 41

where d; are the fixed costs of investment in detention storage, and d is a linear
cost parameter, which includes a cost estimate of average infrastructure
protection and land purchase costs per unit of detention. Construction costs of
the floodplain dikes surrounding the detention compartments are captured in d;.
This term reflects ‘economies of scale’, which implies that increasing the capital
investment in detention results in a more than proportional increase in detention
volume. Note that IB(vjk) does not depend on previously constructed detention
compartments (indexed k = 1, ..., Kj).

Stage-discharge relationship

Peak flow events result in increasing water levels, called surface water
elevation, or stage. Stage can be studied in detail for peak flow events given the
water bed form, roughness coefficients, and river bed elevation differences. An
alternative is to identify a stage-discharge relationship, which can be directly
applied to analyse FRM strategies (e.g. Hoekstra and De Kok 2008). Stage-
discharge relationships are represented by a power function (e.g. Westphal et al.
1999)

1

az

S—a0% o Q= (—) , (5.14)
aq

where S is the surface water elevation, Q is the annual maximum peak flow

discharge, and a4 and a5 are constants.

Peak flow attenuation function

In order to attenuate peak flows to a given peak flow base level (Qpgse)
required detention storage volume H(Q) is represented by a quadratic function
of peak discharge Q (cf. Vis et al. 2003)
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H(Q) = {fr+hal + Fal” i; g g gzz: (5.15)

5.4.2 The primary dike problem

We first derive optimal investment strategies for the primary dike. Consider
the present value of the terminal costs V, from moment T onwards. Define a
cumulative distribution function G;(S,s), which is obtained by substituting Eqg.
(5.14) into Eq. (5.4). For the terminal condition we will assume that p;(s) = f(s)
and o:(s) =a(s) from T onwards. As a consequence, the annual flood
probability P;(h, s) is constant on interval [T, ) for a given dike height and peak
flow scenario. Define this probability by P(h,s) = 1 — G.(S(h),s), where S(h) is
the critical surface water elevation for a dike with height h. Terminal costs are
given by

 P(h,s)D; _ P(h,s)D,

Vy(h,s,u=0) = == o)
e 1+8) 6(1+9)

(5.16)

For a given dike height h, peak flow development scenario s and dike
increment decision u, the present value of the expected costs under scenario s
from decision moment t; onwards is

P;(hy,s)D;

Ty Va0 (5.17)

T
1
Vi(h,s,u) = WIAULM) + Z
t=t1

where h, = h + u. Given dike height h and information set 8 € ©,, the MR
decision at moment ¢ is

u” (h, 9) = ue[g'r’;gmn;i:_h] rsneaé( (Vl (h, S, u) - UE[O,frln"ilI;x—h] Vi (h, S, U)) (5.18)
For the perfect learning case, the MR computation (Eq. (5.18)) is trivial, as
0, contains only one scenario for this case (s, or sy, or Sy). As a result, maximum
regret is zero under the optimal strategy, which coincides with a deterministic
cost minimising investment.

Once all regret minimising decisions u*(h, 8) for decision moment t; have
been identified, V; (h, s, u) is replaced by V{ (h,s(0)) = Vl(h,s(B),u*(h, 9)), ie.
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any u(h,8) = u*(h,0) will not be implemented at decision moment t;. If the
primary dike is raised at the first decision moment (t,) the optimal investment in
the primary dike at this moment is

u,s)D
U* = argmin max max | I4(h=0,u) + Z (tf + ;)tl

Vi(hy = u,s(0
UE[0,Amay] 01€01 5691\ 1( 1 ( 1))

—

+ Vi (hy =v,5000) | |- (5.19)

S~—_

5.4.3 The floodplain problem

Next, we derive optimal investment strategies for the floodplain. Recall that
n(Q, xjx) is the number of required detention compartments for a given peak
flow Q > Qpgse- The number of required detention compartments is determined
by

n—-1 n
> %5 < HQ > Qnase) < Y (5.20)
k=1 k=1

where H(Q) follows from inserting Q in Eq. (5.15). Hence, the maximum peak
flow Q for which the number of required detention compartments is equal to n is
defined by

n

“Bot |B? = 4Bs(Br = ) ) | (5.21a)

k=1

Qup(n) = B

The minimum peak flow for which n detention compartments are required is
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n—-1

1
Qo) = 7~ \—[32 + (B2 = 4308 — ) xy0) | +do. (5.21b)
k=1

The probability P,,; that the number of used detention compartments is equal to
n under peak flow scenario s in year t is

Pnt(s) = Ft(Qup(n), 5) = Ft(Quow (1), 5) , (5.22)

with P,;(s) = P,(s) on interval [T, o). Define Q4. (K1): = Qup(n = K1), which
is the maximum peak flow whose water can be stored in the existing K; detention
compartments without causing flooding of the urban area. The present value of
the total expected damage costs under scenario s on interval [T, o) is

Vo (xp, S, v, =0) =

i i (pn(S)DZ (n, wk(xk))> + N (1 _ F(Qma’C(Kl))) - (5.23)
t=T n=1 t

(1+6) — (1+6)t ’
where the first term of the right-hand side consists of expected damages due to
the use of detention compartments to prevent flooding, and the second term
contains expected damages due to failure of the primary dike.

The remainder of the floodplain problem follows the same lines as the
primary dike problem. Given compartment volumes x; and information set
0 € 04, the MR decision at moment t;is

v,’:;(xk, 9) = arg min meaé( (Vl(xk, Vk,S(H)) — min Vl(xk,uk,s(e))). (5.24)
s Uk

Vi

Again, Vi(xy,s,vy) is replaced by Vi (xx,s(0)) = Vi(xg, s(0), vi(xx, 6)) and is
substituted in the MR equation for moment t,. This results in the optimal initial
investment in the floodplain.

5.4.4 Investment selection and threshold-to-switch

The choice for either investment in the primary dike or in floodplain
development follows from the cost differences between the options given the
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optimal investment strategies under the different learning scenarios. Between-
option regrets are calculated as follows:

RA = max max{VA(Hl,S) - V (91,5)} (525a)
916@1 N

RB = max max{VB(Ql,S) -V (91,5)} (5.25b)
916@1 sel

where V,(64, s) and Vz(84, s) are the total discounted costs under scenario s and
information set 8; € @, for investment in the primary dike, and investment in
detention compartments, respectively. The maximum regret minimising
investment option is obtained by substituting R, and Ry from Eqg. (5.25a) and Eq.
(5.25b) in Eq. (5.5).

To examine differences in flexibility between the two investment options, we
will also study the threshold-to-switch from investment in the primary dike, to
investment in the detention compartments based on adaptation capital
accumulation. For comparison, the average of the total discounted capital
investments under the specified learning scenarios is used as a negative measure
of flexibility, i.e.

L * *

Ra = Li(up) + %z al =( lui’ ;;t(lgl(l))) (5.26a)
=1

_ I 6, (1

Ky = I5(vj—ox) + LZ 5(v (11-:55‘)11( )) , (5.26b)

where L = |0,|, which is the number of learning scenarios. Next, the average
total discounted capital is minimised under an acceptable maximum regret, where
maximum regret is allowed to be higher than R*. Thus,

min(Ky,Kg) s.t. Ry<(1+a)R* , Rg<R*(1+a). (5.27)

Switching can occur if K, < Kz and R, > Rp, or if Kg < K, and Ry > R,. The
switching threshold & is:

R,—R
a= 'AR—*B'. (5.28)
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Thus, & reflects the amount of additional maximum regret as a fraction of R* that
has to be allowed in order to reduce adaptation capital accumulation by switching
between the investment options.

5.5 Implementation and results

In this section, results are presented of a numerical implementation of the
conceptual FRM model. The results illustrate the effects of emerging information
on optimal initial investment and on the optimal decisions after information
arrival.®2 Outcomes of static and dynamic MR analysis are compared.

5.5.1 Implementation

The conceptual model of Section 5.4 is calibrated with peak flow information
and information on dike and detention investment options from the lower Rhine
River for which data was readily available from the literature (cf. Vis et al. 2003;
Hoekstra and De Kok 2008; Hurkmans et al. 2010). We use our own assumptions
where appropriate. Baseline annual peak flow distribution of the river Rhine at
gauging station Lobith are reported by Hoekstra and De Kok (2008). They describe
an ‘extreme’ peak flow scenario in which the design discharge with a return
period of 1250 years increases from 16000 m® / sec. to 20000 m?/ sec. by the year
2100. We adopt this scenario as an upper scenario for 2100 and define two other
peak flow scenarios for 2050 and 2100. We consider that the design peak flow of
16000 m*/ sec. today changes to 17000, 18500 and 19000 m*/ sec. in 2050 under
scenarios sy, Sy and sy, respectively, and to 16700, 18000 and 20000 m>/ sec. in
2100. Note that the frequency of occurrence of peak flow extremes in the second
half of this century decreases under scenarios s; and sy as compared to 2050.
This is in line with the general findings reported in Hurkmans et al. (2010). Peak
flow distribution parameter estimates are obtained for intermediate years by
interpolation of the original and the scenario parameters (Kharin and Zwiers
2005).

Table 5.2 summarises the other parameters for the numerical case study. The
investment cost function is taken from a Dutch dike ring at the Lobith-
Westervoort-Doetinchem area (den Hertog and Roos 2008). Land use is assumed

Note that optimal decisions after information arrival have been called ‘optimal recourse’
decisions in the operations research literature.
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to be predominantly agricultural. Illustrative dimensions of the rural and urban
areas are considered to describe the surface area of the case study. The effective
distance between the datum and the water table is assumed to be small, which
implies the retention capacity in the subsurface to be limited. The dimensions of
the agricultural land (L4, and wy,,,) are calibrated such that the demand for
storage capacity is not restricted by the area dimensions. In practice, this is not
always the case at downstream river locations, for example, at the lower river
Rhine.

Floodplain construction is usually relatively expensive in comparison with
raising an existing dike. This is mainly due to the purchase of land and the costs of
protection of infrastructure in the area (cf. Vis et al. 2003; Brouwer and van Ek
2004). We consider a Dutch average agricultural land price of 3.5 €/ m?, and
consider that 5% of the floodplain area has to be converted at this price with no
alternative use. Note that farmers are compensated for inundation damages,
which enters the model through the damage function. A fraction of 0.7 of the land
acquisition costs is used to represent the average infrastructure protection costs
per m?, for example to protect roads and bridges within a detention area.’ This
results in an estimate of 0.3 €/ m?, which is divided by the effective storage height
(g), here assumed to be equal to 1 meter to obtain the value of parameter d,. We
consider that floodplain dikes are relatively inexpensive as compared to primary
dikes, and assume 1.4 million € / km to calibrate parameter d5. Fixed costs of
detention are assumed to be lower than of the primary dike at 10 million €. A
primary dike might involve more planning costs, because it stretches out over an
entire dike ring (cf. den Hertog and Roos 2008). For flooding of residential and
agricultural land constant value losses per square meter per flooding event are
used, respectively, derived or taken from the literature (Vis et al. 2003; de Moel
and Aerts 2011).

° These costs depend on local conditions. For example, in Brouwer and van Ek (2004) a
fraction of 2445/1790=1.4 is reported.
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Table 5.2 Default calibration

Parameter Value Units Based on:
Hoekstra and De Kok (2008):
Ho 5.170- 103 m3s~1  Rhine at Lobith
Hoekstra and De Kok (2008):
o 1.519-103 m3s~1  Rhine at Lobith
a; 0.7953 m1=3%g% Hoekstra and De Kok (2008)
ay 0.3229 - Hoekstra and De Kok (2008)
B1 1.093 - 1010 m3 Vis et al. (2003): quadratic regression
B —1.53-10° s Vis et al. (2003): quadratic regression
B3 53.43 m~3s?  Visetal. (2003): quadratic regression
c 3.5625- 107 € den Hertog and Roos (2008): ring 48
Cy 1.425-10° €cm~!  den Hertog and Roos (2008): ring 48
A 0.0063 cm™t den Hertog and Roos (2008): ring 48
own assumption:
dy 1.0 - 107 € see in-text explanation
own assumption:
d, 0.3 €m~3  seein-text explanation
own assumption:
ds 4.0 €m~3  seein-text explanation
own assumption:
Lmax 4.00-10* m see in-text explanation
own assumption:
Winax 2.00-10* m see in-text explanation
own assumption:
E, 8.00- 107 m? see in-text explanation
de Moel and Aerts (2011):
D1 75.60 €m2 residential value* damage factor (0.3)
D2 0.11 €m~2  Visetal. (2003)
den Hertog and Roos (2008):
1) 0.04 - risk-free rate + risk premium
own assumption:
g 1 m see in-text explanation
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The decision space of dike height is discretised to steps of Au = 1 cm with a
maximum dike height of h,,,,. Dike increments of the primary dike (u;),
therefore, take values 0, Au, ..., by, g — ht. The detention volumes are discretised
in steps of Av, =50 (10°m3) and the construction of a maximum of two
detention compartments per period (2x2) are allowed. We implemented and
solved the problem in Matlab R2013a. Running times are modest (seconds to
minutes) due to the specified number of decision moments and the coarse grid.
The code is available upon request.

5.5.2 Results

Figure 5.4 displays the optimal dike height strategy for the uncertainty base
case without learning, and optimal strategies for the specified learning scenarios.
The optimal increment at ty; is 55 cm for the uncertainty base case without
learning, followed by an increment of 33 cm at t;. This strategy is optimal under
the static minimisation of maximum regret, in which it is assumed that the
information set remains unchanged over time (0y =64 = {s;,Su, Sy}
Interestingly, the initial optimal increment is 58 cm under the dynamic
minimisation of maximum regret for the learning scenarios contained in
0, = {{SL,SM,SH}, {sp,sutb {smr syt {s.} {su} {sH}}. This result of an increase of
the initial investment due to future learning is counter-intuitive at first sight.
However, it is a consequence of both the timing of the second decision, which is in
the year 2050, as well as the optimal decisions that would follow at this decision
moment after information arrival, which are zero (i.e.: no heightening) if peak
flow increase turns out to be low (8; = {s.}), or low or moderate (8; = {s;, sy }).
Under the higher peak flow scenarios {sy, sy}, {sy} and {sy}, optimal increments
are 48 cm, 37 cm, and 58 cm at t4, respectively. As a result, total discounted costs
and regret decrease under worst-case scenarios by increasing the initial
investment as compared to the base case strategy without learning.

99



180 without learning scenarios, no learning (uncertainty base case) -
- with |earning scenarios, uncertainty reduction at t,: 8,={s s |
— - —--with leaming scenarios, uncerainty reduction at t,: 8,={s,,.5,}
140F e with |earning scenarios, uncertainty resolution: 8,={s, .
— — —with learning scenarios, uncertainty resolution: 8,={s
120} s oo B
T o0t -
J':'IF- ||||||||||||||||||||||||||||||||||||||||||||||||||
e
80 .
B0 E =
40 .
201 .

| | | | | | | 1
2020 2030 20400 2060 ZOBD 20F0 2080 X090 2100
time [year)

Figure 5.4 Optimal dike height strategy for the uncertainty base case without
learning (static regret) and optimal strategies under a number of learning
scenarios (dynamic regret)

The optimal floodplain development is to first invest in one detention
compartment with a storage capacity of 250 million m?® for the default calibration
with economies of scale (d; = 4.0). Recall that parameter d; represents the
economies of scale component of the investment cost function (Eg. (5.13)). For
this case, the reduction in damages from yield losses by the creation of a second
detention compartment does not outweigh the investment costs to create it. The
optimal decisions after information arrival are displayed in Table 5.3. The
investment pattern is similar to the one found for the dike height problem. Under
scenarios {s;, sy}, {s.} and {sy} and d; = 4.0 no second investment would be
required. For this case, information that peak flow increase is moderate or high
({sam, Sy }), or just high ({sy}) results in a second investment of 250 million m?® and
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400 million m?, respectively. When uncertainty is not reduced at t;, an additional
150 million m? is needed. Without economies of scale (d3 = 0.0) two unequally
sized detention compartments would be constructed at the initial decision
moment (ty) with volumes of 100 million m? and 200 million m>. For any case, the
total storage volume remains below the 2000 million m? that would be required at
the end of the century to accommodate a peak flow event with a return period of
1250 years under peak flow scenario sy. This implies that a higher flood
probability will be accepted with time, which is caused by the relatively high
investment costs. This effect is smaller when investment in the floodplain would
be less expensive (for example, if d, =0, or d; = 0), which results in larger
optimal detention storage volumes; a total of 800 million m? of storage would be
optimal under learning scenario 6; = {sy}and d; = 0.

Table 5.3 Optimal investments in detention volume at decision moment t;

d; = 4.0 d; = 0.0

V12 V13 V13 Via

(xx = 0,61) (xx = 0,61) (xx = 0,07) (xx = 0,01)

64 (million m?) (million m) (million m®) (million m®)
{SL,Sm, Sy} 0 150 50 200
{st, smu} 0 0 50 50
{sm,Su} 0 250 100 300
{s.} 0 0 0 0
{sm} 0 0 100 150
{su} 0 400 150 350

Table 5.4 displays a comparison of the NPVs of the total costs under different
learning and peak flow scenarios associated with both investment options.
Corresponding regret values are displayed as well. Based on the dynamic
application of the MR criterion investment in the primary dike is the preferred
option. This conclusion follows from the application of Eq. (5.5), i.e.:
min{7.3;11.0} = 7.3.
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Table 5.4 NPV of total costs under different learning and actual scenarios and

corresponding regret values in million €

0, Scenario NPV dikes NPV floodplain R Ry
{sL,sm, su} St 288.7 285.1 3.6 0.0
Sm 360.1 361.4 0.0 13

Sy 420.2 428.2 0.0 8.0

{sL,sm} SL 278.2 271.2 6.9 0.0
Sm 366.5 359.2 7.3 0.0

{sm,su} Sm 360.7 362.2 0.0 1.5
SH 411.2 422.2 0.0 11.0

{s1} SL 278.2 271.2 6.9 0.0
{sm} Sm 359.5 359.2 0.3 0.0
{su} Sy 409.9 419.0 0.0 9.1
7.3 11.0

Despite that the primary dike is the maximum regret minimising investment

option, more adaptation capital accumulates over time when the primary dike is

raised as compared to the option to invest in detention storage. Table 5.5 reports
the Present Value (PV) of dike and detention investment costs under the different
learning scenarios. Due to the postponement of investment, as well as due to the

relatively high unit costs of detention and the resulting reduction in investment,

total discounted investment costs of floodplain investment are relatively low.

Table 5.5 Comparison of total discounted investment costs

0, PV dike investments PV floodplain investments

{sL,sm,su} 180.8 172.9
{sL,sm} 154.7 148.2
{Sm, Sy} 194.8 183.4
{sL} 154.7 148.2
{su} 185.9 148.2
{sy} 203.8 198.0
Average 179.1 166.5

Recall that the average of total discounted investment costs under the

specified learning scenarios was defined as a negative measure of flexibility. The

average PV of floodplain investments is lower (min{179.1; 166.5} = 166.5). If a



decision-maker would be willing to accept an additional maximum regret of
11.0 — 7.3 = 3.7 million Euros, switching to investment in the floodplain would

be optimal (Eqg. (5.27)). The threshold-to-switch is 100% x F3-110l _ 51% of R*

(Eq. (5.28)).
5.6 Conclusions and discussion

This paper presents a dynamic ‘minimax regret’ (MR) modelling approach for
the analysis of flood risk management (FRM) investment problems under climate
change. The approach supports the identification of adaptive FRM strategies by
the inclusion of ‘learning scenarios’ about climate change impacts. We show how
the MR decision criterion can be applied dynamically in order to analyse
investments in flood protection. The important differences between static and
dynamic MR analysis of FRM investments due to the possible emergence of new
climate information are highlighted. The key message of this paper is that
dynamic MR solutions are more robust than the solutions obtained from a static
MR analysis of FRM investments due to ongoing changes in climate change impact
projections.

In recent work the importance of the emergence of new information has
been stressed for the successful adaptation to climate change, for example with
the development of methods related to ‘adaptation tipping points’ and ‘adaptive
pathways’ (cf. Kwadijk et al. 2010; Haasnoot et al. 2013). Unlike these methods, a
dynamic MR analysis provides detailed economic advice on optimal management
strategies based on regret aversion.

Robustness concepts are normative in nature. In this paper, a ‘narrow’
definition of robustness is employed, i.e.: minimisation of maximum regret.
However, other robustness approaches, such as info-gap theory and analytic
robustness methods, may give complementary insights in FRM strategies that
perform relatively well across a wide range of scenarios (cf. Lempert et al. 2006;
Hine and Hall 2010).

So far, applications of the MR decision criterion have mostly been restricted
to static settings (Hayashi 2011). Whereas static MR analysis provides insights in
the ability of a flood protection measure or a system to remain functioning under
scenarios of future disturbances, it is implicitly assumed that this set of scenarios
does not change over time. Dynamic MR analysis, in contrast, incorporates future
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information, which improves the robustness of decisions over time (cf. Mens et al.
2011).

The FRM problem solved in this paper could also be addressed from the
perspective of a social planner with an expected-value based cost-benefit
optimisation procedure (van der Pol et al. 2014). However, this approach assumes
risk-neutrality and requires information on the probabilities of future states and
events. In Europe, cost-benefit analysis is predominantly applied for economic
appraisal of flood protection and other adaptation measures, although its use is
controversial (Turner 2007; Watkiss et al. 2014).

We have shown that the implementation of the dynamic MR decision is
complex, and that a backward induction procedure is required to ensure dynamic
consistency. This procedure, however, is computationally intensive. The
computation time is determined by the number of learning scenarios and the
number of decision moments. Even if the number of learning scenarios is constant
over time, computation time is exponential in the number of decision moments.
However, the presented case illustrates that this is no obstacle to the application
of the dynamic MR procedure to FRM problems as long as the number of decision
moments is small. In this paper, the setting was restricted to two decision
moments, and mutually exclusive investment options. For further research it
would be interesting to study a multi-period case with complementary investment
options.

The inspection of average adaptation capital accumulation might be a useful
extension to obtain insights in the overall flexibility of dynamic MR solutions. We
argue that adaptation capital accumulation is risky, as invested capital can lose
some or all of its value under new information on climate change impacts. The
concept of ‘value-at-risk’ originates from finance (Linsmeier and Pearson 2000).
The value-at-risk, however, cannot be quantified in the absence of information on
the likelihoods of value losses.

The conceptual FRM model presented in this paper is stylised regarding the
cost functions and the risk of flooding. For example, fixed damages per flooding
event were assumed independent of dike height, flood scenario and flood
duration. Detention areas were assumed to be rectangular, and the infiltration
potential was assumed to be constant independent of previous weather. For the
dynamic MR approach to be applicable for decision support of real-world FRM
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investment decisions, the dynamic MR approach can be combined with a rainfall-
runoff-inundation model.
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6. General discussion and conclusions

This thesis investigates the impact of climate change on investment in flood
risk reduction, and applies optimisation methods to support identification of
optimal flood risk management strategies. The structure of this chapter is as
follows. Section 6.1 summarises key findings. Section 6.2 provides a general
discussion of modelling approaches and results. Section 6.3 presents model
limitations and suggestions for further research. Section 6.4 ends with modelling
and policy conclusions.

6.1 Research questions and summary of findings

1. How can probabilistic extensions of cost-benefit analysis using climate and
learning scenarios be applied to improve decision-making on flood risk
management strategies? And what are advantages and limitations of such
probabilistic extensions?

Chapter 2 presents probabilistic extensions of cost-benefit analysis (CBA) to
assess flood risk management strategies under multiple climate change impact
scenarios and learning, and discusses the scope of such extensions. Probabilistic
climate scenarios were used to model uncertainty about the changes in return
periods of hydro-meteorological extremes. Learning was modelled by probabilistic
events of information arrival. A distinction was made between learning from
scientific progress, from statistical evidence and from flood disasters.

The principle advantage of assigning probabilities to climate change impact
scenarios is that scenarios which are considered to be likely are given additional
weight in the economic analysis, and that scenarios that are considered to be
unlikely are still assigned relatively low but positive probabilities to optimise flood
risk management strategies. There appears to be some consensus that some of
the more extreme climate change impact scenarios are less likely. For example,
local sea level rise scenarios beyond one meter by 2100 are often considered to
be unlikely.

However, assigning probabilities to climate change impact scenarios is
controversial. Climate model ensembles mostly provide non-probabilistic
uncertainty ranges. Chapter 2 argues that expert elicitation methods are possible
instruments to obtain probabilistic statements. Yet, climate change uncertainties
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prevent convergence of opinions with these methods. It was discussed that flood
risk management under climate change is a case of decision-making under
uncertainty. Risk-based approaches provide subjective estimates of expected
costs. Subjective estimates of expected outcomes are arguably better than
outcomes obtained with single scenarios due to non-linear damage cost and
investment cost functions and their economic implications for the efficiency of
flood risk management strategies. It was also discussed that robustness
approaches may provide complementary insights to CBA, because they aim to find
solutions that perform relatively well under worst-case or a range of scenarios
and represent other types of decision-maker preferences, such as uncertainty
aversion, loss aversion or regret aversion.

A key advantage of extending CBA with learning is that flood risk
management strategies can be optimised under the possible arrival of new
climate change information. Trade-offs between flexibility and expected costs are
modelled, which could improve the flexibility of flood risk management strategies
over time and could reduce total discounted expected costs. Chapter 2 briefly
discussed that adaptive flood risk management is achieved in various ways,
including adaptive design, investment timing and scale, and portfolio choice of
flexible flood risk management measures. It was also discussed that different
types of learning may have different effects on investment strategies, for example
in terms of investment scale. For this reason, it may be useful to extend an
economic analysis of flood risk management strategies with different types of
learning.

The external validity of the discussed probabilistic learning models is limited
by uncertainty about the learning process. It is, for example, unclear if and when
hydrologic uncertainty will be reduced in the short-run. Outcomes are sensitive to
the assumed learning process. In contrast, a learning analysis with new flood-
related data does not rely on an exogenously defined learning process. Effects of
flood-related extremes on flood risk management decisions can be introduced in
an economic model by means of statistical updating and an analysis of possible
future realisations of extremes, including flood events. Still, uncertain climate
change impact projections are needed for this type of learning analysis.

2. What are optimal dike investment strategies under uncertainty and
learning about climate change impacts? What are the implications of the
assumed learning process and the use of subjective probability
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distributions to represent structural water level increase? And how large
are the differences in optimal investment levels without and with
learning?

Welfare-maximising dike investment strategies minimise total discounted
expected costs. In Chapter 3, total costs are assumed to consist of total
discounted investment costs and total discounted expected damage costs.
Expected annual damage costs are changing over time, and can be approximated
by the sum of probability-weighted monetised expected flood losses in a year
under climate change for a given dike height. Chapter 3 studies both cases of
perfect learning with a given learning moment and probabilistic learning, where
learning is implemented by a survival model. Chapter 3 demonstrated effects of
uncertainty resolution on optimal dike investment strategies. It was shown that
the original investment timing and size can be altered to anticipate and respond
to new information on exceedance frequencies, respectively before and after
information arrival.

The numerical results of Chapter 3 show that optimal dike investment
strategies and total expected costs are sensitive to distributional assumptions of
structural water level increase. However, subjective probability distributions of
structural changes in water levels are often lacking. Chapter 3 also shows that an
earlier investigated alternative, a model with a deterministic parameter for
structural water level increase, is highly sensitive to the assumed parameter value
due to the exponential investment and damage cost functions. The deterministic
base model, therefore, overlooks the importance of climate change uncertainty.

Chapter 3 also demonstrated that the timing of information arrival is
important for investment decisions. As a first step, investment in a dike was
studied for a given moment of learning. Optimal investment in the limit (t — o)
coincides with the uncertainty benchmark without learning, which is applicable
for the case where uncertainty reduction is expected to occur far away in the
future. In contrast, earlier learning can both result in a lower or a higher dike
before learning than under the benchmark without learning, depending on when
the information is obtained. In some cases initial investment can be increased to
be able to postpone investment later on, whereas for other cases multiple smaller
investments may be optimal as compared to the benchmark without learning.
This is due to trade-offs between the value of information, fixed costs of
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investment and additional damage costs, in expected terms, of waiting or reduced
investment scale.

In a second step, the more general case of probabilistic learning was studied.
The sensitivity of the outcomes to the assumed learning process led to the
conclusion that further research on realistic representation of learning is needed
to improve economic decision-making on dike height.

Moreover, Chapter 3 showed that learning may reduce discounted expected
damage and investment costs. For the cases considered, expected values of
information of 0.9-53.9% of total benchmark costs were reported. These
estimates are highly sensitive to distributional assumptions and the applied
discount rate. It was also shown that whether or not new information is expected
from the start differences between first dike increments are small (e.g. % cm) for
the studied cases. As a result, the expected cost difference between a flexible
strategy anticipating information arrival and a reactive strategy that is only
adjusted in response to new information is also small for most investigated cases.
The results indicate that for the case of dike investment optimal recourse
decisions are more important than the anticipation of new climate information, as
studied from the perspective of a risk-neutral social planner.

3. What is the impact of new rainfall observations on cost-effective
investment in detention storage? Can ‘white noise’ be distinguished from
a structural shift of an extreme rainfall distribution? And what is the
relationship between the fixed costs of investment and the statistical
beliefs of a decision-maker about the risk of flooding?

Chapter 4 studies impacts of rainfall variability and changing return periods of
rainfall extremes on cost-effective adaptation of water systems to climate change
given a predefined system performance target. An example of a system
performance target is a flood protection standard. It was shown that trend-free
variability of rainfall, i.e. white noise, might cause re-investment to occur earlier
than one would expect under projected changes in rainfall. Investment in flood
risk and stormwater adaptations can be increased to reduce expected costs from
underestimation of system performance. This was illustrated by a case study of
the cost-effective volume of a storage basin in a Dutch polder system used to
temporarily store stormwater from heavy rainfall.
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It was shown that rainfall variability and the limited number of extreme value
observations result in volatility of system performance estimates. Consequently, if
these estimates are used to evaluate whether or not a water system still complies
with a flood protection standard, the timing of re-investment in the system
cannot be assumed to be known. Therefore, initial cost-effective investments are
determined both by current beliefs about the future return periods of rainfall
extremes, as well as by future beliefs about the return period of the extremes.
These beliefs will determine when re-investment is necessary rather than the
actual structural changes in rainfall, which cannot be observed in the short-run.
This was demonstrated by applying a moving-window analysis. It is possible to
increase the moving-window length. Yet, this reduces the probability of detection
of climate change and increases the risk of overestimation of system
performance. In contrast, reducing the length of the moving-window increases
the probability of detecting climate change, but it also increases volatility of
system performance estimates.

Chapter 4 showed that increasing initial investment reduces the probabilities
of early re-investment. Frequent re-investment can be costly due to fixed costs of
investment, and motivates anticipatory climate change adaptation in general.
Flood risk infrastructure has typically a long technical life time and usually involves
fixed costs. In Chapter 4 the timing of investment is determined by the statistical
beliefs about the probability of flooding, which are compared to the predefined
flood protection standard over time. Increasing the initial investment has two
effects. Firstly, the actual flood probability will be lower than the accepted flood
probability for a longer period of time, because the system is able to cope with
larger structural changes in rainfall induced by climate change. Secondly,
increasing initial investment offers insurance against additional costs that would
occur in case of violation of the flood protection standard as a result of
overestimation of the actual flood probability.

4. What is the motivation for a minimax regret approach to study flood risk
management investments? Can a consistent dynamic minimax regret
procedure be developed, and can it be applied to practical flood risk
management problems? What is the impact of ‘learning scenarios’ on
optimal investment selection and optimal investment levels under a
minimax regret decision criterion?

111



Chapter 5 presents two arguments to motivate the application of the
minimax regret decision criterion to study flood risk management investments.
The first argument is about the general shortcomings of expected value-based
optimisation approaches. Expected-value based approaches assume that risks are
well-defined, and do not account for other decision-maker preferences under
ambiguity or in the absence of probabilities. This type of argument motivates
robustness analysis in general. The second argument focusses on the context-
specific motivation for applying the minimax regret decision criterion, including
evidence for regret aversion in the domains of flood risk management and climate
change adaptation and the anchoring of worst-case outcomes in the decision-
making on flood risk management strategies.

However, various theoretical and practical concerns have been expressed in
the literature for applying the minimax regret decision criterion (Yager 2004;
Hayashi 2011). Regret is a context-dependent measure, which implies that
solutions are sensitive to specified scenarios and alternatives. This, for example,
results in sensitivity to irrelevant alternatives (Yager 2004). A practical problem for
dynamic application of the minimax regret decision criterion is that the dynamic
analysis could result in time-inconsistent commitments (Hayashi 2011).

Chapter 5 develops a dynamic minimax regret procedure based on backward
induction used to sequentially eliminate sub-optimal decisions. The developed
procedure is computationally intensive. However, it remains tractable if the
number of decision moments is kept low. In Chapter 5, a two-period investment
case was studied.

The developed approach supports the identification of adaptive flood risk
management strategies by including learning scenarios about peak flow
development, and the dynamic minimisation of maximum regret over time under
these scenarios. As a proof of concept, optimal dike height and floodplain
development were studied with a conceptual flood risk management model.
Numerical differences in investment levels were highlighted by comparing
outcomes of static and dynamic minimax regret analysis. Also, thresholds-to-
switch between investment in dikes and floodplain development were studied.
The chapter concludes that dynamic minimax regret offers greater flexibility than
static application of the decision criterion, because it allows investments to be
changed at lower maximum regret when new peak flow information emerges.
Dynamic minimax regret solutions may be more robust than the solutions

112



obtained from a static minimax regret analysis of flood risk management
investments due to ongoing changes in climate change impact projections.

6.2 General discussion

This section briefly compares modelling approaches and results of Chapters
2-5, and puts the contribution of the thesis in a broader flood risk management
perspective.

¢ Modelling approaches

The need for adaptive flood risk management strategies has received
increasing attention in recent years, for example by the analysis of adaptation
tipping points and the application of quantitative learning methods to the flood
risk management domain (Kwadijk et al. 2010; Woodward et al. 2011; Gersonius
et al. 2013). However, the inclusion of climate change uncertainty and new
information in economic models for flood risk management has remained
challenging. The relevance and impact of new information on optimal strategies
has often been overlooked. This thesis contributes to the existing research by
implementing different types of learning processes in both probabilistic and non-
probabilistic models to optimise flood risk management strategies under climate
change uncertainty and the possible arrival of new information.

The models in Chapters 2-5 investigate several optimisation objectives.
Chapters 2 and 3 present cost-benefit models aimed at maximisation of social
welfare. In Chapter 3, economically efficient dike height is studied. Chapter 4 on
cost-effective water system optimisation, in contrast, minimises expected costs in
order to comply with a pre-defined flood protection standard. Hoes and
Schuurmans (2006), for example, argued that application of equal protection
standards to different systems may lead to economically inefficient investment
strategies. Yet, CBA is not always useful for practical or legal reasons (NBW 2005;
Pathirana et al. 2011). Equal protection standards have, next to practical
implementation advantages, also advantages regarding transparency, insurance
and flood risk communication. When such standards or other constraints are
treated as given in the decision-making process on flood risk management
strategies, the economic model has to reflect this as well for effective decision-
support.
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Chapter 5 on dynamic minimax regret departs from expected costs
minimisation applied in Chapters 2-4. Robustness analysis provides an alternative
to expected-value based approaches when climate change uncertainties are
considered to be deep (Kandlikar et al. 2005; Lempert et al. 2006). The minimax
regret decision criterion provides a narrow interpretation of robustness. Chapter
5 shows that for floodplain development and dike construction anticipated
regrets are larger than zero, and that dynamic minimax regret analysis is useful to
obtain insights in the robustness of flood risk management strategies over time.

Besides these differences the models in Chapters 2-5 consider several
implementations of learning. Chapter 2 provides an overview of types of learning
about climate change impacts that are relevant for the economic analysis of flood
risk management strategies. Chapter 3 on optimal dike height studies the effects
of probabilistic uncertainty resolution. Chapter 4 on cost-effective water system
optimisation addresses the arrival of new rainfall data. Chapter 5 on dynamic
minimax regret applies predefined learning scenarios.

The model in Chapter 3 on optimal dike height shows that even if a single
investment option is studied, identification of optimal strategies is complex under
the arrival of new information. It was shown that economic modelling is required
for a detailed understanding of trade-offs between flexibility and expected costs.
Recently, development of adaptive policy pathways under climate scenarios has
been proposed as a tool to study dynamic adaptation strategies (Haasnoot et al.
2013). However, iterative pathway construction is limited by the human capacity
to heuristically deal with high-dimensional problems, and therefore can only
consider a limited number of investment options, investment levels, and climate
and learning scenarios. In contrast, economic models with learning, as presented
in Chapters 2-5, can provide detailed economic analysis of flood risk management
strategies under climate change uncertainty and learning. These analyses can be
used to identify economically efficient, cost-effective or robust flood risk
management strategies.

e Comparison of main results of the thesis chapters

Throughout the thesis it was demonstrated that the outcomes of an
economic analysis of flood risk management strategies are sensitive to possible
changes in information about climate change. In Chapter 2, it was discussed that
the type of learning has an effect on optimal investment strategies. This is
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confirmed by the findings in Chapters 3-5. In Chapter 3 on economically efficient
dike height, initial dike investment is reduced by probabilistic learning from future
uncertainty resolution, whereas in Chapters 4 (cost-effectiveness analysis) and 5
(minimax regret analysis) initial investment is increased by future learning,
respectively from new observations and under predefined learning scenarios.
Moreover, when the welfare maximising economic model of Chapter 3 and the
maximum regret minimising model of Chapter 5 would be applied to the same
investment problem on optimal dike height, results are likely to be different,
because they use another objective and implementation of learning. The
numerical results of Chapters 3 and 5 seem to suggest that the effect of learning
on initial dike investment might be larger under minimisation of maximum regret
than under minimisation of total discounted expected costs. This, however, might
also be caused by the timing of new information and other learning assumptions.
A comparison of identical cases would therefore be interesting for further
research.

¢ Wider context of the thesis

The investment problems addressed in this thesis are based on Dutch flood
risk management cases. In practice, large differences can be observed in flood
exposure, definitions of acceptable flood risk and flood risk management
strategies across countries. Many countries try to find effective portfolios of flood
risk management measures that minimise flood frequencies, exposure and
vulnerability under changing conditions, including climate change. In the
Netherlands, a ‘multi-layer safety’ approach has been advocated in the domain of
flood risk management (de Moel et al. 2014). It encompasses hazard, exposure
and vulnerability mitigation. Historically, the Netherlands has invested in many
structural flood protection measures, which is not surprising given the portion of
land that is located below sea level and the proximity of rivers. Yet in other
countries, for example in Germany, controlled flooding has been more common
along rivers (e.g. Kreibich and Thieken 2009). In the United States, furthermore,
accepted flood probability has historically been much higher than in the
Netherlands (Kind 2014; Lickley et al. 2014). In developing countries, moreover,
high vulnerability of the poor and governmental budget constraints may play an
important role for flood risk management (Few 2003; Hanson et al. 2011). For the
economic models developed in this thesis to be applicable elsewhere, local
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conditions need to be carefully considered for the economic assessment of flood
risk management strategies.

The economic models with learning presented in this thesis are not limited to
local investment decisions for flood risk management. The modelling of learning is
also important to analyse global adaptation costs to climate change. Aggregation
of national flood risk management costs can be used to obtain estimates of global
flood risk management costs, including the economic effects of adaptive flood risk
management practices under different climate change futures. Moreover, the
understanding of differences in costs and benefits of flood risk management
strategies across countries may also support the development and distribution of
regional adaptation funds and improve international coordination of flood risk
management strategies.

6.3 Model limitations and directions for further research

6.3.1 Limitations

Mathematical models, by definition, represent reality by simplification. The
models presented in this thesis simplify reality at points where this was possible
with no or limited loss of generality. For example, the distinction between
exceedance probability and flood probability is clearly important for real-world
decisions. However, it has not been included in the models throughout this thesis,
as this distinction was not fundamental to the answering of the research
guestions. In the economic models of Chapters 3-5 various other modelling
assumptions have been introduced, which have been summarised in the
discussion sections of these chapters. Chapter 3, for example, considers dikes but
no other flood risk management measures, and uses simple damage and
investment cost functions. The learning process is considered to be exogenously
given in this chapter, as well as a time-independent discount rate. Chapter 4 uses
a simplified investment cost function, and modifies only one water system
element. Chapter 5 employs a narrow definition of robustness and a stylised flood
risk management model.

The primary focus on economics and flood risk under climate change provides
an important limitation of the models in this thesis. Other societal objectives,
such as equity issues or social justice, or impacts on landscape and biodiversity,
and interests of actors and stakeholders were beyond the scope of the research.
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6.3.2 Suggestions for further research

New research questions arise from my thesis. What is the best way to model
learning by bad experience (e.g. disasters)? Why are regret calculations unpopular
in practice? Can we combine robustness models for flood risk management to get
even more robust answers? What is the impact of budget constraints on adaptive
capacity over time in developing countries prone to flood risk? Next to alternative
model specifications, including those that consider a broader scope or improve
external validity, the following topics could be interesting for further study:

1. Disaster-based learning

In Chapter 2 learning from disasters was discussed as a special case of
learning from extreme-value observations. The model developed in
Chapter 4 assumes that decision-makers behave rationally and use
statistics to evaluate the performance of water systems. However,
disasters have often led to large-scale investments that went beyond
repair. The development of an expected-cost model that takes
probabilities of disaster realisations into account would be interesting,
especially for cases where annual flood probabilities are relatively high
(e.g. 1/100).

2. Multi-type learning
The numerical results of this thesis suggest that different types of learning
may sometimes have opposite effects. It would be interesting to develop
an economic model that combines different types of learning and to apply
it to flood risk management case studies.

3. Economic and climate uncertainties
In Chapter 2 it was mentioned that impacts of climate change on flood
risk are increased under high scenarios of economic growth. The effects of
learning may also be reinforced under these scenarios. The relevance of
this issue would be interesting for further study.

4. Meta-analysis of economically efficient and robust strategies
There are different robustness concepts and robustness decision criteria.
Chapter 5 has restricted attention to the minimax regret decision

117



criterion. Moreover, solutions found with the minimax regret model of
Chapter 5 are likely to be different from the solutions found with the
expected-value based cost-benefit model of Chapter 3. Economic
decision-making could be supported by developing meta-methods that
help to identify solutions that perform relatively well both in terms of
expected costs and under robustness definitions.

5. Adaptive capacity in developing countries
Adaptive capacity is time-dependent. The adaptive capacity of developing
countries is currently not only lower than the adaptive capacity of
developed countries, but may also be improved or reduced by current
adaptation decisions or reduced by disasters. Analysis of flood risk
management strategies under climate change uncertainty and learning in
developing countries could therefore be very interesting.

6.4 Conclusions

6.4.1 Modelling conclusions

Economic analysis of flood risk management strategies can be extended to
include climate change uncertainty and new information. This thesis has
demonstrated that concepts and methods from a number of disciplines are
required to support the identification of economically optimal investment
strategies. These disciplines include economics, operations research, statistics and
hydrology. The work process applied to the modelling chapters of this thesis can
be characterised by three main stages: (i) qualitative analysis of the decision
problem, (ii) model development and (iii) implementation.

The qualitative research stage, in which the main characteristics of the
decision problem are explored, is crucial. It starts from the notion that flood risk
management under climate change is a case of decision-making under
uncertainty, and that investment strategies can be adjusted over time on the basis
of new information. This thesis has shown that different optimisation objectives
can be considered for the economic optimisation of flood risk management
strategies under climate change. In Chapters 2 and 3 an expected-value based
cost-benefit analysis (CBA) was applied to identify welfare maximising strategies.
In Chapter 4 the case of cost-effective compliance with a given flood protection
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standard was considered, and in Chapter 5 the objective was to minimise
maximum regret over time.

Also determinants of optimal investment were explored. The cost-structure
of available flood risk management measures is a determinant of optimal
investment. Fixed costs of investment explain, for example, why dikes are raised
in intervals of several decades, a result of Chapter 3, and why future changes in
rainfall have to be included to determine initial investment in a storage basin
studied in Chapter 4. Several other determinants of optimal investment were
identified for the cost-effectiveness study in Chapter 4, including the projected
changes in rainfall, the compliance period of the flood protection standard, and
the likelihood of future rainfall realisations.

Optimisation models have been developed in Chapters 2-5. The economic
objectives have been formalised, together with the state variables (e.g. dike
height), decision variables (e.g. dike increments) and applicable constraints.
Dynamic programming is a useful method to study flood risk management
strategies under climate change, and was applied in Chapter 3 to dike investment
and in Chapter 4 to investment in a storage basin. Chapter 4, furthermore,
showed that for detailed economic analysis it is useful to combine stochastic
dynamic programming with the simulation of rainfall and hydrodynamics. In
Chapter 5 a conceptual flood risk management model was developed instead, but
for real-world applications such models provide insufficient realism. The dynamic
minimax regret approach developed in Chapter 5, however, could be linked to a
detailed rainfall-runoff-inundation model in a similar fashion as in Chapter 4.

The implementation of the models in Chapters 3-5 was a time-consuming
process. This may be a concern for real-world applications, especially when the
model components required for the final optimisation are not readily available.
Yet, the implementation itself is relatively straightforward. All model components,
from rainfall-runoff-inundation simulation to dynamic programming, are well-
described in the literature.

Learning can be implemented exogenously, for example by a survival model
applied in Chapter 3, or predefined learning scenarios in Chapter 5. Learning from
new observations, in contrast, can be introduced by simulation of extremes, as
was done in Chapter 4.

The external validity of the numerical results presented in Chapter 3 is limited
by probabilistic assumptions about climate change impacts and new information.
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Expected-value based CBA was applied to dike investment with a normal and a
lognormal distribution of structural water level increase and probabilistic
uncertainty resolution. The numerical results heavily rely on the probabilistic
assumptions about the learning process and the impacts of climate change on
exceedance frequencies. Estimates of expected total costs and the value-of-
information diverge, which suggests that sensitivity analysis is a requirement for
expected-value based CBA of flood risk management strategies under climate
change uncertainty with learning. The results of Chapter 3 also suggest that other
aspects, such as discounting, have to be considered in the sensitivity analysis.

Chapter 4 shows that mere randomness in extreme value observations in the
coming decades might trigger investment responses. Economic optimisation of
flood risk management strategies goes beyond uncertainty from the natural
system, for example, about the impacts of climate change on flood-related
frequencies. New observations change decision-makers’ statistical beliefs, which
introduces social uncertainty. So far, research on flood risk management rarely
addresses this type of uncertainty, while the economic consequences of early re-
investment can be significant. Noisy observational evidence for climate change
and changes in flood risk can be modelled in various ways, and the model in
Chapter 4 provides one example of this.

The advantages of the dynamic minimax regret approach in Chapter 5 are
that no probabilistic climate information is required, and that various learning
scenarios can be introduced. However, still a plausible range of climate scenarios
is needed, and learning scenarios have to be specified. Chapter 5 did not focus on
methods to specify learning scenarios, and considered a two decision period
model only. Upscaling the model to annual decision moments may be intractable,
as computation time is exponential in the number of decision periods.
Furthermore, the underlying assumption that decision-makers are merely
concerned with worst-case regret is a narrow interpretation of regret-aversion.
Yet, the overall information from a dynamic minimax regret analysis is useful to
obtain insights in maximum regrets, rather than in total expected costs, under
different flood risk management strategies that can be adapted over time on the
basis of new information.

The models in this thesis can be used to analyse learning effects on initial
investment and optimal recourse decisions, to support the identification of
optimal flood risk management strategies, and to obtain expected cost estimates
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or estimates of maximum regret. For any of these models holds that the
underlying model assumptions and model inputs together determine the quality
of the results. Given the severity of climate change uncertainties any model, no
matter how detailed, solved to economically optimise flood risk management
strategies supports economic decision-making by providing a small part of the
puzzle for the decision-making process on flood risk management strategies under
climate change.

6.4.2 Policy conclusions

Economic analysis of flood risk management strategies has become more
complex due to climate change. Despite severe climate change uncertainties, it is
widely shared that it is no longer sufficient to only consider changes in flood
exposure. Future changes in weather patterns, river flows and sea levels need to
be considered to effectively and efficiently reduce flood risks. Flood risk
infrastructures typically have long technical lifetimes and often involve fixed costs
of investment. Wrong choices today can therefore result in high costs and regret
in the future. An economic analysis of flood risk management strategies supports
the identification of economically optimal flood risk management strategies under
climate change, and provides insights in trade-offs between flexibility and
expected costs or regret. To analyse these trade-offs, learning is introduced as the
possible arrival of new information over time. Learning is particularly relevant to
gain insights in the benefits and costs of flexible flood risk management strategies.

This thesis distinguishes between different types of learning, which were
introduced in Chapter 2 and were summarised by learning from scientific progress
and from new data. Learning from scientific progress was studied in Chapter 3 to
determine optimal dike height under climate change uncertainty and uncertainty
resolution. Uncertainty resolution is an extreme case of uncertainty reduction.
Uncertainty resolution is not realistic, but more moderate versions of uncertainty
reduction can be expected from reduction of epistemic climate uncertainties with
time.

Chapter 3 demonstrates that learning from scientific progress has a large
effect on optimal investment if we would know for sure that climate change
uncertainty will be resolved, and if we would also know when it would be
resolved. In some cases initial dike investment is postponed, while in other cases
investment levels are reduced till uncertainty is resolved, or initial investment is
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increased in order to postpone investment later on. However, it is unclear how
long it will take till we will have better information on climate change impacts on
flood-related frequencies. Therefore, also solutions wunder probabilistic
uncertainty resolution were studied in this chapter. The probabilistic learning
cases show that learning could reduce expected costs significantly, for one case by
an estimated 54% of total costs, as a result of implementing optimal response
strategies as soon as new information becomes available.

The numerical results in Chapter 3 should be interpreted with care and
mainly carry qualitative messages. It was found that optimal dike investment
strategies are highly sensitive to probabilistic assumptions about climate change
impacts on exceedance frequencies, and also the assumed probabilistic learning
process could greatly influence the results. This highlights that there is a clear
need for better underpinning of these probabilistic assumptions, and also that
sensitivity analysis of these key uncertainties is necessary. The effects of
probabilistic learning on initial dike height for the studied cases were less than a
centimetre, which suggests that the modelling of learning from scientific progress
for short-term dike investment could be left aside.

Chapter 4 investigates effects of new rainfall data on cost-effective water
system investment under climate change. Unlike learning from scientific progress,
learning from new data is certain: every day 24 new hourly rainfall observations
will become available. These observations can be used to monitor the
performance of a local water system over time. In the model it was assumed that
if the estimated probability of flooding exceeds a predefined maximum accepted
flood probability re-investment is required. One drawback of this approach is that
the natural variation in rainfall observations is high, which results in volatility of
performance estimates. If, for example, a water system element is designed for an
event with a return period of 10 years in 2050, it is possible that somewhere along
the way the return period of this design event is estimated to be smaller than 10
years due to mere natural variation. Resulting performance underestimation can
be a trigger for new system investments, and this could be costly. Chapter 4
concludes that, if investments are associated with fixed costs, increasing initial
investment not only increases water system robustness to future climate change
impacts on rainfall, but it also provides insurance against costs that could arise in
case of underestimation of system performance.
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Chapters 2-4 consider expected cost minimisation as economic objective for
flood risk management. Chapter 5, in contrast, focusses on minimisation of
maximum regret as an alternative decision criterion. It has frequently been
expressed in policy briefings and reports on climate change adaptation that
adaptation should aim at no or low regret options. For flood risk management,
however, these options do not always exist for structural investments. For
example, if a low dike is constructed and sea level rise turns out to be high, this
gives regret, and visa-versa. These regrets can be anticipated and quantified. This
is explained in the introduction of Chapter 5. Whereas the concept of regret
minimisation is well-established, the dynamic application of the minimax regret
decision criterion has rarely been observed. In Chapter 5 it was shown that the
decision criterion can be applied dynamically to analyse flood risk management
strategies. By defining learning scenarios maximum regret minimising investment
strategies can be identified, provided that these strategies are adapted as soon as
new information becomes available. The results of a dynamic minimax regret
analysis are more robust than of a static minimax regret analysis. A dynamic
minimax regret analysis not only considers different climate scenarios, but also
accounts for possible changes in information, and the costs of response strategies
that would follow after information arrival under several informational scenarios.
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Summary

Urban, riverine and coastal flood risks have been increasing globally, and
flood risks will continue to increase in the coming decades as a result of growing
flood exposure and higher flood frequencies. The adverse effects of climate
change on flood frequencies can be mitigated by updating flood risk management
strategies. Flood risk management poses a burden on national budgets. Yet, flood
disasters may cause severe economic damages and social disruption. Economic
analysis of flood risk management strategies supports the identification of
economically optimal investments. Economic analysis of flood risk management
strategies has become more complex due to climate change uncertainties. It is
uncertain how weather patterns, river flows and sea levels will change in the
future, and it is also hard to predict how the current information about these
changes might alter over time. Learning, induced by the arrival of new
information, has received relatively little attention in economic flood risk
management studies. This thesis is therefore concerned with the economic
analysis of flood risk management strategies under climate change with learning.
The overall objective of this thesis is to investigate the impact of climate change
on investment in flood risk reduction, and to explore and apply optimisation
methods to support identification of optimal strategies.

Economic analyses applied throughout this thesis are cost-benefit analysis
(Chapters 2 and 3), a cost-effectiveness analysis (Chapter 4) and a robustness
analysis (Chapter 5). Studied flood risk management measures include dikes
(Chapters 3 and 5), a storage basin of a polder system (Chapter 4) and floodplain
development (Chapter 5). Learning is modelled as an exogenous process (Chapter
3), by simulation of new extreme-value data (Chapter 4) and by predefined
learning scenarios (Chapter 5).

Chapter 2 provides an overview of cost-benefit analysis (CBA) of flood risk
management strategies extended with climate change scenarios and learning, and
discusses the scope of such extensions. Uncertainty about the changes in return
periods of hydro-meteorological extremes is introduced by probabilistic climate
scenarios. Learning occurs upon the arrival of new information. A distinction is
made between learning from scientific progress, from statistical evidence and
from flood disasters. It is concluded that these probabilistic extensions of CBA are
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useful to support the identification of economically efficient flood risk
management strategies. However, the required probabilistic information for such
analyses, both on climate change impacts and on the learning processes, is ill-
defined. Moreover, decision-makers may not be merely concerned with subjective
estimates of expected outcomes. Robustness analysis can therefore be considered
to complement insights obtained from CBA of flood risk management strategies.

Chapter 3 revisits the problem of optimal dike height. Whereas dike
investment strategies have previously been studied in a deterministic setting,
Chapter 3 extends the original problem with climate change uncertainty and
probabilistic uncertainty resolution, an extreme case of uncertainty reduction. It is
demonstrated that investment timing and investment levels can be changed in
order to anticipate and respond to new information on exceedance frequencies,
respectively before and after information arrival. Optimal strategies are
determined by dynamic programming. It is found that the expected value of
information can be substantial. However, the effect on initial investments is
mostly small for the studied case of probabilistic learning. The results suggest that
it is more important to respond to new information than to anticipate these
changes. Moreover, it is found that optimal strategies are highly sensitive to the
probabilistic assumptions about structural changes in water levels. Therefore, a
better understanding about these probabilistic assumptions is needed and this
highlights the importance of sensitivity analysis.

Chapter 4 studies impacts of rainfall variability and changing return periods of
rainfall extremes on cost-effective adaptation of water systems to climate change
given a predefined system performance target, for example a flood protection
standard. Rainfall variability causes system performance estimates to be volatile.
These estimates may be used to recurrently evaluate system performance. A
model is presented for this setting, and a solution method is developed that
combines rainfall simulation and a hydrological model with stochastic dynamic
programming. It is demonstrated that if flood probability estimates are used to
evaluate whether or not a water system still complies with a flood protection
target, the timing of re-investment in the system cannot be assumed to be known.
It is concluded that increasing initial investments not only increases water system
robustness to structural changes in rainfall, but can also offer insurance against
additional costs that would occur if system performance is underestimated and
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re-investment becomes inevitable. Cost-structure is an important determinant of
cost-effective investment.

Chapter 5 departs from expected cost minimisation applied in Chapters 2-4.
The minimax regret decision criterion is applied dynamically to identify minimax
regret flood risk management strategies under the possible arrival of new
information. New information is introduced through predefined learning
scenarios, which are used to study dike investment and floodplain development.
Dynamic minimax regret applications are scarce, and the chapter shows that it is
possible to dynamically apply the decision criterion to practical flood risk
management cases. The chapter concludes that dynamic minimax regret solutions
are more robust than static solutions due to the ongoing changes in climate
change impact projections.

The following main conclusions are drawn from this thesis:

e Several decision objectives can be considered to economically optimise
flood risk management strategies, including expected welfare
maximisation, constrained cost minimisation and minimisation of
maximum regret;

e Probabilistic climate projections are useful for expected-value based
economic optimisation of flood risk management strategies. However,
solutions may be highly sensitive to assumed probabilities;

e For economic decision-support it is important to consider different types
of learning, from scientific progress and from new data, as well as their
effects on optimal investment.

¢ The explicit modelling of learning may improve an economic analysis of
flood risk management strategies;

e Learning can be implemented in both probabilistic and non-probabilistic
optimisation models;
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Samenvatting

Wereldwijd zijn overstromings- en wateroverlastrisico’s toegenomen en deze
trend zal zich naar verwachting voortzetten door de groei van economische
waarde in kwetsbare gebieden en de toenemende kansen op overstromingen.
Daarbij kunnen de nadelige effecten van klimaatverandering worden beperkt door
het verbeteren van strategieén die overstromingsrisico’s verminderen. Dit
risicomanagement is echter kostbaar voor nationale overheden, net zoals
overstromingsrampen die grote economische schade en sociale ontwrichting
kunnen veroorzaken. De economische analyse van overstromingsrisico’s en
managementstrategieén draagt bij aan het vinden van economisch optimale
investeringen. Deze analyses zijn complexer geworden door
klimaatonzekerheden. Niet alleen is het onzeker hoe weerpatronen, piekafvoeren
en zeeniveaus zullen veranderen, het is ook moeilijk te voorspellen of en hoe de
nu beschikbare informatie over deze veranderingen zal wijzigen met de tijd. Leren
door het verkrijgen van nieuwe klimaat-gerelateerde informatie heeft relatief
weinig aandacht gekregen in economische studies van overstromingsrisico’s en
managementstrategieén. Dit proefschrift richt zich daarom op de economische
analyse van strategieén die overstromingsrisico’s beperken onder
klimaatverandering met speciale aandacht voor leereffecten. Het doel van deze
studie is om onderzoek te verrichten naar de gevolgen van klimaatverandering
voor investeringen in maatregelen die overstromingsrisico’s beperken en om
geschikte optimalisatiemethoden toe te passen die bijdragen aan het vinden van
economisch optimale strategieén.

In dit proefschrift worden verschillende types van economische analyse
toegepast. In hoofdstukken 2 en 3 wordt kosten-batenanalyse uitgewerkt, in
hoofdstuk 4 wordt een kosteneffectiviteitsstudie gepresenteerd, en in hoofdstuk
5 een robuustheidsstudie. Daarbij worden diverse maatregelen die
overstromingsrisico’s beperken bestudeerd, inclusief het verhogen van dijken
(hoofdstukken 3 en 5), de aanleg van kleinschalige detentieberging in een
poldersysteem (hoofdstuk 4) en het creéren van meer ruimte voor rivieren
(hoofdstuk 5). Leren wordt gemodelleerd als een exogeen proces (hoofdstuk 3),
door middel van simulatie van extreme waarden (hoofdstuk 4) en met vooraf
gedefinieerde leerscenario’s (hoofdstuk 5).
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Hoofdstuk 2 geeft een overzicht van uitbreidingsmogelijkheden van kosten-
batenanalyse met klimaatscenario’s en leren om strategieén te analyseren die
overstromingsrisico’s beperken. Ook wordt de externe validiteit van deze
uitbreidingen beschouwd. Onzekerheid over de veranderingen in terugkeertijden
van hydro-meteorologische extremen wordt geintroduceerd door middel van
kans-gewogen scenario’s. Leren vindt plaats na het verkrijgen van nieuwe
informatie. Een onderscheid wordt gemaakt tussen leren door voortschrijdende
wetenschappelijke inzichten, leren door het verkrijgen van nieuw statistisch
bewijs en ervaringsleren uit het plaatsvinden van overstromingsrampen. Het
hoofdstuk eindigt met de conclusie dat deze kans-gebaseerde uitbreidingen van
kosten-batenanalyse bruikbaar zijn om economische efficiénte strategieén te
identificeren. De benodigde kans-informatie met betrekking tot de huidige stand
van kennis over de gevolgen van klimaatverandering en het leerproces is echter
incompleet en onnauwkeurig. Bovendien zijn beleidsmakers niet alleen
geinteresseerd in subjectieve schattingen van uitkomsten. Robuustheidsanalyse
kan worden overwogen om de inzichten van kosten-batenanalyse van strategieén
voor het beperken van overstromingsrisico’s aan te vullen.

Hoofdstuk 3 gaat verder met het vraagstuk van optimale dijkhoogte. In een
aantal eerdere onderzoeken zijn dijkophogingsstrategieén bestudeerd in een
setting van volledige zekerheid. Hoofdstuk 3 breidt het ophogingsvraagstuk uit
met klimaatonzekerheid en de probabilistische oplossing van onzekerheid, welke
een extreem geval is van de vermindering van onzekerheden. Er wordt
aangetoond dat zowel de investeringstiming als de omvang van dijkinvesteringen
kunnen worden gewijzigd om nieuwe informatie over overschrijdingskansen voor
te zijn of om adequaat te reageren na voortschrijdende inzichten over de
werkelijke overschrijdingskansen. Optimale strategieén worden bepaald met
behulp van dynamische programmering. De resultaten geven aan dat de waarde
van informatie substantieel kan zijn. Echter is het effect van probabilistisch leren
op de eerstvolgende investering in de meeste bestudeerde gevallen beperkt. De
resultaten lijken vooral te wijzen op het belang om adequaat te reageren wanneer
betere informatie beschikbaar komt, maar nuanceren de noodzaak om het
beschikbaar komen van deze informatie voor te zijn. Bovendien zijn de optimale
strategieén erg gevoelig voor kans-aannames over de structurele wijzigingen in de
terugkeertijden van hoge waterniveaus. Een beter begrip over deze kansen is
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daarom wenselijk en dit benadrukt ook het belang om een kans-
gevoeligheidsanalyse uit te voeren.

In  hoofdstuk 4 worden de effecten van natuurlijke variatie in
regenvalextremen en de structurele veranderingen in regenval bestudeerd op de
kosteneffectieve aanpassing van watersystemen onder klimaatverandering en een
gegeven doelstelling, bijvoorbeeld een wettelijk gedefinieerd maximaal
toegestaan overstromingsrisico. Variatie in natuurlijke regenval veroorzaakt
volatiliteit in faalkansschattingen van watersystemen. Deze schattingen kunnen
worden gebruikt om het functioneren van een watersysteem te beoordelen over
de tijd. Voor deze setting wordt een wiskundig model gepresenteerd en wordt
een oplossingsmethode ontwikkeld, welke regenvalsimulatie combineert met een
hydrologisch model en economische optimalisatie door middel van stochastisch
dynamische programmering. In het hoofdstuk wordt uitgelegd dat onder een
gegeven doelstelling de planning van investeringen in de tijd onzeker is. Het
vergroten van investeringen die nu worden gedaan helpt niet alleen om beter in
staat te zijn om grotere structurele veranderingen in regenval op te vangen, maar
vormt ook een verzekering tegen extra kosten die kunnen ontstaan door
overschatting van de faalkans van het systeem. Dat laatste kan resulteren in de
wens om hieuwe systeemaanpassingen te maken. De kostenstructuur van een
systeemelement is hierbij een belangrijke factor voor kosteneffectieve
investering.

In hoofdstuk 5 wordt afgeweken van de minimalisatie van verwachte kosten,
welke is toegepast in hoofdstukken 2-4. Het besliscriterium van minimalisatie van
maximale spijt, zgn. ‘minimax regret’, wordt dynamisch toegepast om spijt
minimaliserende managementstrategieén te vinden wanneer wijzigingen in de
huidige klimaatinformatie kunnen optreden. Deze informatie wordt
geintroduceerd in het model met vooraf gedefinieerde leerscenario’s. Als case
studie wordt de methode numeriek toegepast op een conceptueel model waarbij
maximale spijt van dijkverhoging met maximale spijt van tijdelijke overstroming
van compartimenten worden vergelijken. Dynamische toepassingen van de
minimax regret beslisregel zijn tot op heden zeldzaam en dit hoofdstuk laat zien
dat het methodisch mogelijk is om de regel dynamisch toe te passen op praktische
case studies voor overstromingsrisicomanagement. Dynamische minimalisatie van
maximale spijt kan robuustere oplossingen geven dan statische toepassing van de
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beslisregel, omdat dynamische toepassing kan omgaan met voortschrijdende

inzichten over de gevolgen van klimaatverandering.
De volgende hoofdconclusies volgen uit dit proefschrift:

Diverse besliscriteria kunnen worden overwogen voor de economische
optimalisatie van strategieén die overstromingsrisico’s beperken, inclusief
de maximalisatie van de verwachte welvaart, kostenminimalisatie onder
gegeven beperkingen of minimalisatie van maximale spijt;

Kans-gewogen klimaatscenario’s of kansverdelingen zijn nodig voor de
economische optimalisatie van risicomanagementstrategieén op basis van
verwachte waarden. De uitkomsten zijn hierbij gevoelig voor de kans-
aannames over de effecten van klimaatsverandering;

Voor economische beleidsondersteuning is het belangrijk om na te
denken over informatieveranderingen over de tijd, inclusief
voortschrijdende wetenschappelijke inzichten en het beschikbaar komen
van meer data, en de gevolgen van deze informatie voor investeringen.
Het explicit modelleren van leren kan de economische analyse van
managementstrategieén verbeteren;

Leren kan zowel in optimalisatiemodellen met als zonder kansen worden
geimplementeerd;
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