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ABSTRACT 

Biaou, S.S.H. (2009). Tree recruitment in West African dry woodlands: The interactive effects 

of climate, soil, fire and grazing. PhD thesis, Wageningen University, Wageningen, The 

Netherlands. ISBN: 978-90-8585-318-3 

Woodlands are among the most widespread seasonally dry forests, particularly in Africa. In 

dry regions, woodland is one of the few vegetation types having significant tree cover, thus 

supplying most forest products. Unfortunately, woodlands are disappearing rapidly due to 

the combined effects of unrestrained forest exploitation, increasing and frequent droughts, 

decreasing soil productivity, and disturbances by fire and herbivores. The scope of this study 

was to analyze how climate, soil, fire and grazing, and their interactions determine woodland 

dynamics: i.e. the competitive versus facilitative interactions between plants, the 

regeneration success of seedlings, and the species composition, richness and structure of 

woodlands. A broad-scale study was conducted in Benin where extensive examples of 

woodlands are still found. The results from this study confirmed that woodland dynamics is 

determined not only by the macro-climate (i.e. water stress), but also by soil-driven abiotic 

stress (i.e. salinity), disturbances by fire and grazing, facilitative plant-plant interactions, as 

well as interactions between these drivers. Facilitative plant-plant interactions contributed 

to successful recruitment in woodlands, and thus to high species richness and diversity at 

intermediate water stress levels. Disturbances by grazing and fire reduced competitive 

exclusion at intermediate water stress levels and improved the facilitative interactions 

among woodland tree species. Climate and soil conditions appeared to switch the direction 

of fire and grazing effects on tree recruitment and diversity, from positive at low abiotic 

stress levels to negative at high abiotic stress levels. Based on these results, it is suggested 

that forest managers should tune woodland harvesting in such a way that trees are left to 

create favourable conditions for new regeneration and plant nurse trees in degraded and 

open areas to create better conditions for seedling establishment. 

Key-words: Fire, Grazing, Water stress, Woodland, Savanna, Species richness, Tree density, 

Facilitation, Tree clustering, Soil fertility, Soil salinity, Regeneration, West-Africa, Benin. 
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SEASONALLY DRY WOODLANDS 

Woodlands are part of the tropical dry forest vegetations that are characterized by 

precipitation levels below 1600 mm and a dry season of more than 3 months per year 

(Menaut et al., 1995; Frost, 1996). Woodlands usually co-occur with patches of dense 

deciduous forest, savanna and steppe, with often sharp boundaries (Bellefontaine et 

al., 1997). These different vegetation patches differ in structure, with an increasing 

grass and decreasing tree cover from dense deciduous forest, woodland, savanna to 

steppe. They are often referred to, altogether, as “seasonally dry forests” (Bullock et 

al., 1995) or “woodland-savanna mosaics” because of their patchy distribution 

(White, 1983; Nangendo et al., 2006). The reason for such different vegetation 

patches in the same region has been attributed to soil productivity and disturbances 

by fire and herbivores (Menaut et al., 1995; Murphy & Lugo, 1995; Bellefontaine et 

al., 1997), and by interactions between those factors and the macroclimate (Sankaran 

et al., 2005). While dry forests as a whole are estimated to cover more than 40 % of 

the world vegetation (Murphy & Lugo, 1995), of which more than 50 % is on the 

African continent (Bellefontaine et al., 1997), tropical woodlands cover 4 % globally 

(Adams & Faure, 1997) of which 60 % is encountered in Africa (Mayaux et al., 2004). 

African woodlands consist essentially of two core types found in two distinct regions: 

the Isoberlinia woodland found in the northern hemisphere where they form almost 

continuous blocks from Mali to Uganda between 6-13
0
N latitude; and the 

Brachystegia woodland also called miombo which covers extensive areas in the 

southern hemisphere between 5-20
0
S latitude (Menaut et al., 1995; Bellefontaine et 

al., 1997; Sokpon et al., 2006). So far, the potential mechanisms responsible for the 

patchy mosaic structure of woodlands and the associated patterns in species diversity 

and density are little understood because of the large array of factors affecting them 

and the complex interactions among those factors (Frost, 1996). In this dissertation, 
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comparative and experimental studies were combined to disentangle such 

mechanisms to better understand the variation in structure, species composition, and 

diversity of woodlands, focusing on different vegetation patches across woodland-

savanna mosaics and on woodlands along a climatic gradient in Benin, West Africa. 

The Beninese woodlands studied here belong to the Isoberlinia woodland type which 

is typical of Africa northern hemisphere. This broad-scale study of Isoberlinia 

woodlands is presented, in order to address the following general question: How do 

climate, soil, fire and grazing, and their interactions influence the competitive versus 

facilitative interactions between plants, the regeneration success of seedlings, and 

the species composition, richness and structure of woodlands? 

THE DYNAMIC EQUILIBRIUM MODEL 

Huston (1979; 1994) proposed a general model explaining species-environment 

relationships which integrates gradients in resources such as water and nutrients, and 

in disturbances such as fire and grazing. The interactive effects of disturbances and 

resources were described using a three-dimensional graphical model called the 

“dynamic equilibrium model”. The model predicts optimal growth conditions for 

species at both intermediate levels of stress and disturbances, with stress determined 

by resource availability and disturbance by events that take away biomass from the 

system. Huston’s model can be viewed as a synthesis of two existing models, the 

intermediate disturbance hypothesis (Connell, 1979) and the intermediate stress 

hypothesis (Grime, 1973; Kammer & Mohl, 2002). The unifying prediction of these 

hypotheses is that species richness and species diversity display a unimodal 

relationship with disturbances frequency or intensity and with ecosystem 

productivity. At low stress level and low disturbance frequency or intensity, 

competitive dominant species likely exclude others species, what results in lower 

community diversity. At high stress level and high disturbance frequency or intensity, 
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the community diversity is potentially low because few species can survive under 

harsh conditions. At intermediate stress levels, higher community diversity is 

expected because of the overlap between the stress tolerant and stress intolerant 

species and/or the prevention of competitive exclusion due to the reduction of the 

species populations by disturbances. Huston’s model is appealing in the sense that it 

integrates both resource factors and disturbances that are considered important 

determinants of the vegetation dynamics of woodlands (Frost, 1996), and this model 

can be tested empirically for tropical woodlands, such as those encountered in Benin 

or other African countries. Most studies on how species respond to resources and 

disturbances, and how such responses drive species richness and diversity for African 

woodlands remain descriptive (Menaut et al., 1995; Fairbanks Dean, 2000; 

Chidumayo, 2001; Mosugelo et al., 2002; Nangendo et al., 2005; Nangendo et al., 

2006), or focus on single factors (Frost, 1996; Couteron & Kokou, 1997; Luoga et al., 

2004; Sawadogo et al., 2005; Gambiza et al., 2008). 

In this thesis, Huston’s model was used as a working hypothesis for predicting 

patterns in plant performance, vegetation structure, species richness of Beninese 

woodlands in response to soil and climate driven water stress gradients, to 

disturbances by grazers and fire, and to interactions between those factors (Figure 1). 

As the importance of the macro-climate in determining species distribution in dry 

regions has been frequently questioned (Gentry, 1995; Gillespie et al., 2000), the 

effect of water availability on plant community diversity and species distribution was 

investigated in chapter 2, and the effect on the regeneration success and coexistence 

of different tree species in chapter 3. The interactive effects between climate and soil 

driven water stress and fire and grazing on woodland dynamics are presented in 

chapter 4, and the interactions between the vegetation structure, fire and tree 

diversity are shown in chapter 5. While chapter 2 used data from several vegetation 

types (i.e. dense deciduous forest, woodland, savanna, gallery forest) across 
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woodland-savanna mosaics, all the remaining chapters focused on woodlands. Figure 

1 shows how these studies presented in chapters 2 through 5 jointly contribute to 

understanding the structure, composition and dynamics of the woodlands. In the 

next section, the predictions for those four chapters and the general approach 

applied are shortly introduced. 

WATER STRESS 

The role of water stress as a driving factor in woodlands is not fully understood 

(Gentry, 1995; Gillespie et al., 2000), probably because it is difficult to disentangle the 

effect of water stress from other environmental factors such as fire, herbivores and 

soil (Frost, 1996). In chapter 2, we tested the hypothesis that species richness shows 

a unimodal relationship with water stress whereas tree density decreases linearly 

with increasing water stress. The basic idea is that at high stress levels only stress 

tolerant species are successful, at low stress level few species dominate and exclude 

others, while at intermediate stress levels species of both extremes co-occur.  Here 

and in the remaining of the thesis, water stress is indicated by the water deficit which 

is the difference between the mean annual precipitation and mean annual 

evapotranspiration (Paltineanu et al., 2007). 
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Figure 1: Flowchart showing linkages between chapters of the thesis and factors / 

mechanisms investigated. Grey rectangular boxes represent factors / mechanisms 

investigated and white oval boxes refer to the components of vegetation studied. 

Although not explicitly drawn, interactions between abiotic stress and other factors 

were considered. 
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FACILITATION 

Under water-limited conditions, seedlings and saplings might benefit from close large 

neighbour trees, which reduce the evaporative demand and sometimes increase 

water availability in the soil by hydraulic lift (Horton & Hart, 1998). Dominant trees 

might thus facilitate the establishment and survival of seedlings, as has been shown 

for less productive arid and alpine ecosystems than the woodlands studied here (e.g. 

Choler et al., 2001; Armas & Pugnaire, 2005). We conducted an experiment in Benin 

where we experimentally assessed the role of facilitation by woodland dominant 

trees on seedling establishment along a water stress gradient. We predicted that 

seedling establishment, growth and survival would be more successful under 

dominant trees in closed tree patches than in gaps (i.e. between trees in woodland), 

and in open fields. Moreover, we predicted that such facilitative effects would be 

stronger for drought-sensitive species than for drought-tolerant species. 

FIRE AND GRAZING 

Tree regeneration capacity in woodland, as in other seasonally dry forests, is strongly 

related to fire and grazing regimes (Freson et al., 1974; Frost, 1996). Fire and 

herbivores can affect plant communities by reducing species populations, thus 

opening space whereby succession can be initiated or redirected (Welander, 2000) as 

well as preventing competitive exclusion by dominant species (Huston, 1979; 1994). 

Fire contributes also to maintain globally a higher ratio of grass to woody vegetation 

(Menaut et al., 1995). Interestingly, herbivores can potentially reduce grass biomass 

to an extent that they reduce fire occurrence (Van Langevelde et al., 2003), thus 

indirectly facilitating seedling establishment. Water availability not only conditions 

the species regrowth potential following disturbances (Proulx & Mazumder, 1998) 

but it can indirectly influence the extent of disturbances such as grazing and fire 

through its influence on grass biomass production (Coe et al., 1976; Govender et al., 
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2006). The actual consequences of such complex interactions are not yet clear (see 

Proulx & Mazumder, 1998; Osem et al., 2002). We evaluated the independent and 

interactive effects of grazing, fire and abiotic stress (i.e. water stress and soil 

conditions) on tree regeneration in woodlands of Benin. We tested the hypotheses 

that frequent fires and frequent grazing reduce sapling species richness and sapling 

density, particularly in combination, and that the negative effects of the two 

disturbances is higher under high abiotic stress.  

TREE CLUSTERING 

A patchy structure with local tree clusters and more open herbaceous patches is a 

striking feature of the studied woodlands. Tree clustering can originate from biotic 

interactions between plants, for example due to facilitative effects of nurse plants on 

seedling establishment (Tirado & Pugnaire, 2003), dispersal limitation of the species 

(Condit et al., 2002), soil heterogeneity (Getzin et al., 2008), as well as disturbances 

such as fire (Groen et al., 2008) and grazing (de Knegt et al., 2008). Vice versa, tree 

clusters influence the spread of fire since they may act as natural fire-breaks (Miller & 

Urban, 2000). Whatever mechanism promotes or alters tree clustering, such 

clustering has important consequences for plant community diversity because it 

affects the microhabitat conditions and resource partitioning among species, and 

thus species coexistence (Adler et al., 2001). We assessed the effect of tree spatial 

distribution on woody species diversity and explored the existence of potential 

feedbacks between tree spatial distribution and the probability of fire occurrence in 

woodlands of Benin. We tested the hypotheses that high fire frequency increases 

tree clustering, tree clustering reduces the probability of fire occurrence in 

woodlands and tree clustering increases species diversity. 
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STUDY AREA 

The fieldwork for this study was conducted in Benin where extensive African 

woodland-savanna mosaics are found. Benin is located between 6
0
30’ - 12

0
30’N 

latitude and 1
0
00’ - 3

0
40’E longitude. It occupies the central position of the Dahomey 

Gap, a dry fringe separating the rain forest blocks from West and Central Africa (Ern, 

1988; Jenik, 1994) (Fig 2a), and is characterized by a low annual precipitation ranging 

from 800 in the drier north to 1300 mm near the coast (Sokpon et al., 2001; Sokpon 

et al., 2006; Kokou et al., 2008). Major contrasts between climate zones of Benin are 

for the most part due to variations in the length of dry season and rainfall distribution 

(two rainy seasons in the south and one in the north and the central zone). In West 

African countries located in the Dahomey gap (i.e. Benin and Togo) savanna mostly 

reaches the coast while tropical rain forests and semi-deciduous forests are rare.  

This study focused on the vegetation north of 7
0
30’N (Fig. 2b), thus excluding 

the southernmost vegetation composed of islets of lowland rainforests and 

secondary grasslands. The study area is known as the domain of woodland-savanna 

mosaics in Benin and entails more than 75% of the country forest resources 

(Hountondji, 2008). Actually, the majority of forest reserves and the two National 

parks of Benin fall within this region. It also concentrates 85% of the total cattle 

population of the country (MEHU, 2002). Livestock production relies mainly on the 

natural vegetation for pastures and on the lopping of trees for fodder (Gaoue & 

Ticktin, 2007). Fire is a regular feature in this landscape dominated by open 

vegetation types. It is usually set deliberately, to clean bushes surrounding villages or 

to favour the regrowth of new grass for cattle and wild herbivores.  
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Figure 2: Map showing: (a) Location of Benin in West Africa, with black areas 

indicating rainforest blocks surrounding the country; (b) Location of the study sites, 

with shaded areas indicating administrative subdivisions within which fieldwork was 

conducted. 
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THESIS OUTLINE 

The thesis consists of six chapters including this general introduction (chapter 1), one 

descriptive study (chapter 2), three experimental studies (chapters 3, 4 and 5) and 

the synthesis (chapter 6). For chapter 2, the vegetation types surveyed comprised 

gallery forests, dense deciduous forests, woodlands and savannas. The three 

experiments (chapters 3, 4 and 5) were conducted in woodlands only. 

Chapter 2 describes biodiversity patterns across savanna-woodland landscapes in 

Benin and evaluates the limiting effect of water availability on tree species 

distribution and diversity. In this chapter, static vegetation data were used from 401 

plots positioned along a gradient of water stress.  

Chapter 3 evaluates the regeneration success of two tree species under different 

shading conditions and along a water stress gradient. We planted seedlings of the 

drought-sensitive Afzelia africana and the drought-tolerant Khaya senegalensis 

species under three shade conditions, at mesic and dry sites in Benin. Seedlings 

growth and survival were monitored during 13 months. 

Chapter 4 examines how fire and herbivory affect tree regeneration in woodlands 

along water stress and soil gradients. In this chapter we used data from a field 

experiment with 68 plots exposed to four experimental treatments (no disturbance, 

fire alone, grazing alone, grazing and fire) across climate and soil gradients. We 

monitored these plots yearly between 2003-2006 for changes in sapling species 

richness and density.  

Chapter 5 investigates how tree spatial distribution in woodlands affects tree species 

diversity and the probability of fire occurrence. It evaluates how these patterns 
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change along abiotic stress and disturbance gradients. The data used here come from 

the same experiment as chapter 4. 

Chapter 6 summarizes the main results of the thesis and discusses their theoretical 

and practical relevance. 

Because each chapter was written in a paper format, overlap could not be 

avoided in the introduction and methods sections of the chapters. Also, given the 

number of factors and interactions among factors in each experiment, the 

hypotheses were often recalled to facilitate the reading of the results. 
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ABSTRACT 

Although the macro-climate is known as the primary determinant of species distribution around the 

world, some studies indicated that water availability might be a poor predictor of plant diversity and 

density in dry regions (< 1600 mm rainfall). We tested this assumption in woodland-savanna mosaics 

of Benin where the gradient of water availability is determined by an increasing dry season length 

from south (ca. 5 mo) to north (ca. 7 mo). We assessed the effect of water stress on species richness 

and density for all woody plants (trees and shrubs) and for adult trees (dbh ≥ 10 cm) and juvenile 

trees (dbh < 10 cm capable of reaching 10 cm dbh) separately. We used vegetation data from 401 

plots surveyed between 2001 – 2006 and positioned along a gradient of increasing water stress, from 

418 mm to 1020 mm water deficit (annual rainfall – evapotranspiration).  

The total and juvenile species richness where highest at intermediate levels of water stress 

and lowest at the two extremes of the gradient. In contrast, adult species richness decreased 

monotonically with water stress. Total and juvenile tree density were not significantly related to 

water stress whereas adult density increased linearly with water stress. We observed large variations 

in the species richness and density across the gradient of water stress, possibly due to interactions 

with factors such as fire and grazing disturbances which might have reduced the maximum species 

richness achieved at different positions on the water stress gradient. Despite this, the water stress 

gradient resulted in a humped shaped pattern for the total and juvenile species richness, in line with 

the intermediate stress hypothesis. 

The patterns observed in our study resulted probably from changes in the balance between 

facilitative and competitive interactions among species along the water stress gradient as well as 

interferences of disturbances such as fire and grazing which might affect the species populations 

differently along the gradient. These results confirm previous findings that disturbances influence 

strongly the dynamics of dry vegetations but they also show that water stress is a key driving force in 

dry woodlands and savannas of Benin. Water stress potentially interacts with or modifies the 

importance of other local factors such as fire and grazing along the climatic gradient. 

Keywords: Benin, Dahomey gap, Dry ecosystems, Intermediate stress hypothesis, Savanna, Tree 

density, Tree diversity, Water stress, West-Africa, Woodland. 
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INTRODUCTION 

Most of the world dry vegetation is in Africa, Asia, and Latin America, with the largest 

part (> 50 %) on the African continent (Bellefontaine et al., 1997). Dry ecosystems 

share many similarities across continents; they occur in tropical regions receiving less 

than 1600 mm precipitation per year, with a highly seasonal rainfall and a prolonged 

dry season which generally exceeds three months per year (Menaut et al., 1995); the 

vegetation in dry ecosystems is mostly composed of a mosaic of savannas and 

woodlands. The structure and species composition of these woodland-savanna 

mosaics are strongly influenced by disturbances such as fire and herbivores (Menaut 

et al., 1995; Murphy & Lugo, 1995; Bellefontaine et al., 1997). Although dry forests 

are generally less species-rich than moister forests, plant diversity and life-forms (i.e. 

structural and physiological characteristics) can vary greatly in dry ecosystems, due to 

high environmental fluctuations and variable frequency and intensity of disturbances 

(Medina, 1995). Numerous studies show how resource availability and disturbances 

can affect species co-occurrence (Huston, 1994; Rosenzweig, 1995), however, much 

uncertainty remains regarding the form of their relationship to species diversity (e.g. 

Wright, 1983; Currie, 1991; Kondoh, 2001; Mittelbach et al., 2001; Pausas & Austin, 

2001) as well as their relative importance (e.g. Gentry, 1995; Gillespie et al., 2000; 

Kondoh, 2001; Cox et al., 2006), particularly in these dry regions. 

The macro-climate is known to influence species distribution around the world 

and tree diversity patterns. The intermediate stress hypothesis (Grime, 1973; 

Kammer & Mohl, 2002) proposed that species coexistence, thus diversity,  is likely 

enhanced at intermediate levels of stress (i.e. resource availability) because a limited 

number of species can survive under unproductive conditions while few strong 

competitors tend to dominate the system under more productive conditions. The 

shape of the diversity-productivity relationship should depend on the spatial scale 
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considered (Huston, 1994; Rosenzweig, 1995) but remains a subject of considerable 

controversy (Kondoh, 2001; Mittelbach et al., 2001; Pausas & Austin, 2001). 

Mittelbach et al. (2001) showed that a hump-shaped relationship between plant 

diversity and productivity (measured as plant biomass, net primary productivity, 

rainfall or evapotranspiration) is most likely at scales smaller than continents while 

both hump-shaped and positive relationships co-dominate at larger geographical 

scales. In contrast to species diversity, tree density is expected to increase linearly 

with productivity, partly because individuals can partition more resources 

(Rosenzweig, 1992) and also because it cannot reach saturation due to constraints 

exerted by several other limiting factors such as disturbances (Huston, 1979; 1994). 

In tropical regions, water variables represent the primary predictors for 

species distribution (Hawkins et al., 2003). In wet forests (i.e. rainfall > 1600 mm), a 

strong linear increase in species diversity and density has been mostly found with 

increasing rainfall (Gentry, 1988; Wright, 1992; Clinebell et al., 1995; Ter Steege et al., 

2003; Butt et al., 2008). In dry forests however, some studies indicated a poorer 

prediction power of water variables and suggested a stronger control of other 

mechanisms such as fire and herbivores (Gentry, 1995; Gillespie et al., 2000). The 

empirical support for this assumption is however poor as other studies found 

significant relationships between tree diversity and water availability in dry regions 

(e.g. Sagar & Singh, 2006). The role of water stress as a driving factor in dry forests is 

still not fully understood, probably because of the great array of factors such as 

disturbances and interactions among these factors interfering with climate gradient 

(Frost, 1996). 

In this paper we assess whether water availability can explain the variability in 

species diversity in Benin’s woodland-savanna mosaics and how it affects plant 

diversity and density. Benin is located in a woodland-savanna strip known as 

Dahomey gap (Ern, 1988; Jenik, 1994), Dahomey being the former name of Benin. 
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The Dahomey gap is a dry corridor in West Africa encompassing Togo and Benin and 

characterized by a low annual precipitation ranging from ca 800 in the drier north  to 

ca 1300 mm near the coast (Sokpon et al., 2006; Kokou et al., 2008), thus contrasting 

with the Upper Guinea region where annual precipitation reaches 4000 mm (Bongers 

et al., 2004). In the Dahomey gap, the gradient of water availability is determined by 

an increasing dry season length from south (ca 5 months) to north (ca 7 months). The 

understanding of plant distribution patterns in the Dahomey gap is rather poor and, 

like in the rest of West Africa, has a strong taxonomic emphasis (e.g. Keay, 1954-

1968, Akoegninou et al. 2006, Hawthorne and Jongkind 2007). Only recently has plant 

species occurrence been studied along environmental gradients at the regional level 

(Poorter et al., 2004; Holmgren & Poorter, 2007). However, all such studies have 

concentrated on the wet forests of Upper Guinea. 

We studied woody species distribution in woodland-savanna mosaics of Benin 

and predicted that species richness will peak at intermediate levels of water 

availability whereas tree density should decrease linearly with decreasing water 

availability. Since shallow rooted juveniles are expected to be more vulnerable to 

water stress than more deeply rooted adult trees, we anticipated a stronger 

relationship between species diversity and water availability among juveniles than 

trees. To test these predictions, we used vegetation data from 401 plots located in 

four nature conservation reserves along a gradient of water stress in Benin. We 

defined water stress in our study as the difference between the mean annual 

precipitation and the mean annual evapotranspiration, also known as water deficit 

(Paltineanu et al., 2007). Values ranged from 418 mm in our southernmost plots to 

1020 mm in the northernmost plots, indicating an increasing water stress in the study 

region. 
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METHODS 

Study region and water stress gradient 

The study region is confined between latitudes 7.78
o
N – 11.47

o
N and longitudes 

0.97
o
E – 2.70

o
E in Benin where we collected data from four nature conservation 

reserves: the Pendjari National Park, Ouénou-Bénou, Ouémé-Boukou and Monts-

Kouffé forest reserves (Fig. 1, Table 1). Savannas and woodlands represent the most 

important vegetation types in Benin with 44.9% and 38.4 % land cover respectively 

(Mayaux et al., 2004). Other vegetation types consist of gallery forests located 

alongside water strips and dry semi-deciduous forests, all represented in a lower 

proportion (< 5%). In our study region, the vegetation types consisted essentially of 

tree and shrub savannas, woodlands, gallery forests and dry semi-deciduous forests. 

We expressed the water stress gradient in our study region by the water 

deficit calculated as the difference between the mean annual precipitation and mean 

annual reference evapotranspiration, after Paltineanu et al. (2007). This was 

preferred over simple measures of rainfall and evapotranspiration as it integrates 

both parameters and provides a good indication of the water stress potentially 

experienced by plants. Because evapotranspiration is typically higher than 

precipitation in dry ecosystems (Murphy & Lugo, 1995), water deficit values in all our 

study plots were negative (Table 1); thus we took the absolute value to facilitate 

interpretation of our results. Water deficit in the study region ranged from 418 to 

1020 mm and was highly correlated with the latitudinal position of the study plots (r 

= 0.96, p < 0.001), precipitation (r = -0.91, p < 0.001) and evapotranspiration (r = 0.97, 

p < 0.001). The mean annual precipitation and mean annual reference 

evapotranspiration were between 1097 – 865 mm and 1514 – 1903 mm respectively. 

We obtained these climate data from the Aquastat database (FAO, 2008a) which 

contains mean monthly climate data at a 10 minute spatial resolution for the period 
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1961-1990. In the remaining of the paper we refer to water deficit as water stress 

which is a more intuitive way of expressing an increasing stress along the water 

gradient. 

 

Table 1: Summary characteristics of the four study zones. Water stress is indicated by 

the annual water deficit calculated as: annual precipitation – annual 

evapotranspiration. 

  Study zones 

Parameters Units Pendjari Ouénou-Bénou Monts-Kouffé Ouémé-Boukou 

General 

Area (ha) ha 458041 35398 216568 20500 

Number of study plots count 157 109 60 75 

Latitude °N 10.8 - 11.5 10.2 - 10.4 8.6 - 9.2 7.8 - 8 

Longitude °E 1 - 1.9 2.5 - 2.7 1.8 - 2.3 2.4  - 2.5 

Climate (averages) 

Rainfall mm/year 933 1074 1073 1092 

Evapotranspiration mm/year 1836 1753 1576 1515 

Water stress mm/year 902.6 696 502.4 423.4 

Species richness (range) 

Total count 2 - 24 8 - 31 4 - 31 5 - 30 

Adults count 1 - 13 1 - 17 2 - 17 2 - 17 

Juveniles count 1 - 19 5 - 29 1 - 20 2 - 24 

Tree density (range) 

Total Count/ha 320 - 18290 450 - 16620 85 - 64403 510 - 12060 

Adults Count/ha 20 - 2170 10 - 580 85 - 651 80 - 560 

Juveniles Count/ha 150 - 17270 290 - 16170 0 - 27270 230 - 11690 



Chapter 2: Effects of water stress - 22 

 

Figure 1: Location of the study sites in Benin. The study sites were sampled in four 

nature conservation reserves (numbers 1 to 4). Shaded areas on the map correspond 

to administrative subdivisions where the nature conservation reserves are located. 
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Vegetation sampling 

We used vegetation data from 401 plots distributed across the four nature 

conservation reserves and which we collected in 2001 for Pendjari, in 2003 for 

Ouémé-Boukou and Ouénou-Bénou, and 2006 for Monts-Kouffé. In all four study 

zones, forest inventories were carried out during the dry season between December 

and March. We sampled adult trees (dbh ≥ 10 cm) in 0.1 ha (50 x 20 m) plots, 

measured them for dbh and identified them to species. For smaller trees and shrubs 

(dbh < 10 cm), we used subplots of 500 m
2
 (50 x 10 m) at both Pendjari and Ouémé-

Boukou, 100 m
2
 (50 x 10 m) at Ouénou-Bénou and 50 m

2
 (four circular subplots of 2 

m radius) at Monts-Kouffé.  

We calculated for each study plot the species richness (number of woody 

species), the rarefied species richness and density. We used the rarefied species 

richness and standardized species densities to the number of stems per ha to account 

for differences in samples size between adults and juveniles. The rarefied species 

richness is the expected number of species in random subsamples of 50 individuals in 

each plot (Hurlbert, 1971). In each case, the calculations were done separately for the 

entire plant community as well as subsets of adults (dbh ≥ 10 cm) and juveniles which 

we defined as smaller individuals (dbh < 10 cm) capable of reaching 10 cm dbh within 

our study area (Lieberman & Li, 1992). Thus, juveniles did not include shrub species 

that could not grow to larger diameter classes (i.e. ≥ 10 cm dbh). In other word, 

adults and juveniles were representative of the same species pool. 
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Statistical analysis 

We assessed the effect of water stress on species richness and density for the total 

tree and shrub community (i.e. all woody individuals) and for subsets of adult trees 

(dbh ≥ 10 cm) and juvenile trees (species with dbh < 10 cm that have the capacity to 

grow up to dbh > 10 cm). Because species richness and density are likely constrained 

by several non-measured factors (e.g. burning, herbivory, soil properties) resulting in 

large dispersions in the data, we used quantiles regression (Koenker & Bassett, 1978; 

Koenker & Hallock, 2001) to assess the limiting effect of water stress on species 

richness and density. Quantile regression is increasingly used in ecology to estimate 

how any particular factor is limiting species distribution (e.g. Cade et al., 1999; Ter 

Steege et al., 2003; Sankaran et al., 2005). It consists in modelling the maximum 

response in the dependent variable imposed by the environmental factor considered 

instead of modelling the central tendency of the response. The variation below the 

upper boundary reflects limiting effects of other non measured factors (Cade et al., 

1999).  

Prior to quantile regressions fitting, we tested for spatial autocorrelation in our 

data using Moran’s I statistic. We found a significant autocorrelation for distances up 

to 3.25 km for species richness (p < 0.001) and 0.81 km for tree density (p < 0.001; 

Table 2). Thus, to correct for spatial dependence in our data, we incorporated to the 

regression models an autocovariate (i.e. spatial weight) that describes the response 

at a given site as a function of the responses at the 4 nearest neighbouring sites 

(Augustin et al., 1996).  

In the quantile regressions, we chose the upper quantile (q) based on the 

number of plots (n) available so that: n > 10 / (1-q) (see Scharf et al., 1998). Thus, we 

explored the effect of water stress on species richness and density for the 10
th

 

(lower), 50
th

 (median) and 95
th

 (upper) quantiles. We included the quadratic term for 
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water stress in each model to account for potential unimodal relationships and tested 

that the linear and quadratic coefficients were significantly different from zero using 

bootstrapped standard errors of the regression coefficients (Cade et al., 1999). The 

quadratic term was eventually removed in case it was not significant.  

We performed all analyses within the R 2.7.1 computing environment (R 

Development Core Team, 2008), with the packages “spdep” to test for spatial 

correlation and “quantreg” for quantile regressions. Significance tests for quantile 

regressions coefficients were performed using the Anova function available in the 

“quantreg” package.  

 

Table 2: Test of spatial correlation in species richness and density. Moran’s I was 

computed for eight distance lags (upper bound in bracket) and values close to 1 

indicate a strong spatial correlation in the data. Significant values are indicated by * 

(p < 5 %), ** (p < 1 %) and *** (p < 0.1 %) 

Distance lags 

(upper bound in km) 

Species richness Tree density 

1 (0.81) 0.31
***

 0.21
***

 

2 (1.63) 0.18
***

 0.02 

3 (2.44) 0.13
***

 0.01 

4 (3.25) 0.17
**

 -0.01 

5 (4.6) 0.10 -0.01 

6 (4.88) 0.08 -0.04 

7 (5.69) 0.05 -0.04 

8 (6.5) 0.07 0.02 
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RESULTS 

Both the species richness and tree density showed great variations across the study 

region. The total number of tree and shrub species recorded per plot ranged from 2 

to 31 while it was between 1 – 17 for adults (dbh ≥ 10 cm) and 1 – 29 for juveniles. 

Tree density was between 85 - 64403 stems per ha for the total, 10 - 370 stems per 

ha for adults and 0 – 27269 stems per ha for juveniles. 

Relationship between species richness and water stress 

We anticipated that the species richness will peak at intermediate levels of water 

stress. This hypothesis was found true for the total (trees and shrubs) and juvenile 

species richness but not for adults alone (Fig. 2). The total species richness displayed 

a unimodal pattern and reached its maximum at intermediate water stress, ca 650 

mm. This relationship was significant across all quantiles explored (i.e. 10
th

 - 95
th

), 

with typically positive coefficients for water stress and negative coefficients for its 

quadratic term (P < 0.001 in all cases; Table 3). The relationship between juvenile 

species richness and water stress was also unimodal and did not differ much from 

that of the total species richness. Clearly, the pattern for the total species richness 

was strongly determined by juvenile species richness. On the contrary, the 

relationship between adult trees species richness and water stress was monotonically 

decreasing. Regression coefficients for adult trees species richness were significant 

only for the lower (10
th

, P < 0.1 %) and median quantile (50
th

, P < 0.1 %) but not for 

the upper quantile (95
th

). This suggests that water availability did not have a strong 

influence on adult trees species richness. For the total species richness as well as 

juvenile and adult species richness, the data showed large dispersion at all points of 

the water gradient (Fig. 2), thus indicating a strong effect of other non-measured 

factors contributing to set the species richness below the climate potential. 
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Figure 2: Effects of water stress on species richness in woodland-savanna mosaics of 

Benin. Graphs are presented for the actual species richness (a, c, e) and the rarefied 

species richness (b, d, f); and from top downward: for (a, b) total adults and shrubs, 

(c, d) adult and (e, f) juvenile species richness. Dots on the scatterplots represent the 

observed values while curves represent fitted values for the 95
th

, 50
th

 and 10
th

 

regression quantiles. 

(a) (b) 

(c) (d) 

(e) (f) 

Total 

Adults 

Juveniles 
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Table 3: Quantile regression estimates for the effect of water stress on species 

richness, rarefied species richness and density in the woodland-savanna mosaics of 

Benin. We initially included the quadratic term (wd
2
) in all models to account for 

potential unimodal relationships but it was removed in cases it did not significantly 

improve the model fit. Regression coefficients that are significantly different from 

zero are indicated by * (p < 5 %), ** (p < 1 %) and *** (p < 0.1 %) for the 10
th

, 50
th

 and 

95
th

 quantiles (tau). 

 

tau Total (tree & shrubs) Adult trees (dbh ≥ 10 cm) Juveniles (dbh < 10 cm) 

wd wd2 wd wd2 wd wd2 

Species richness 

10
th

 0.122*** -0.0001*** -0.006***  0.085*** -0.0001*** 

50th 0.100*** -0.0001*** -0.007***  0.106*** -0.0001*** 

95
th 0.153*** -0.0001*** - 0.005  0.108*** -0.0001*** 

       

Rarefied species richness 

10
th 0.059*** -0.0001*** -0.006***  0.059*** -0.00005*** 

50th 0.049*** -0.00004*** -0.008***  0.061*** -0.00005*** 

95th 0.021 -0.00002 -0.006*  0.032* -0.00003** 

       

Tree density (number / ha) 

10
th -0.135  -0.155**  0.183  

50th 0.353  -0.119*  0.701  

95
th -22.430  1.081***  -5.181  
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We did not find strong differences between the actual and the rarefied species 

richness regarding the form of their relationship with water stress. Although the 

hump-shaped curves tended to level off at lower water stress, the relationship was 

significantly unimodal for both the total and juvenile species richness (Fig. 2, Table 3). 

For adults the relationship between the rarefied species richness and water stress 

was linearly decreasing and quite similar to the pattern observed with the actual 

species richness.  

Because there could have been some differences between gallery forests (i.e. 

vegetation alongside water strips) and upland vegetation types (i.e. savannas, 

woodlands, dense deciduous forests), we also analyzed the relationship between 

water stress and species richness separately for gallery forests and upland vegetation 

(graphs not shown). The patterns remained similar to those presented above for both 

gallery forests and upland vegetation types. In each case, the total and juvenile 

species richness were maximum at intermediate levels of water stress while for 

adults the species richness decreased linearly with increasing water stress. Thus, the 

species in gallery forests and upland vegetation seem to be constrained in a similar 

way by the climate-driven water stress gradient in the study region. 

We further examined the distribution of unique (i.e. found in only one zone) 

and shared species (i.e. common to ≥ 2 zones) across the gradient of water stress and 

found little differences between the four study zones, particularly between the low 

stress (19 %) and high stress (16 %) extremes of the gradient (Fig. 3). The proportion 

of unique species peaked at intermediate levels of water stress between 500 – 600 

mm (32.4 %). 
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Figure 3: Proportions of unique species along the water stress gradient. Unique 

species are those found in only a particular portion of the water stress gradient. 

Positions on the water stress gradient (x-axis) correspond to the four study zones in 

order of increasing water stress: Ouémé-Boukou, Monts-Kouffé, Ouénou-Bénou and 

Pendjari (see Table 1). 

Relationship between tree density and water stress 

We expected a decrease in tree density with increasing water stress. In contrast, the 

relationship between water stress and tree density was not significant for the total 

(trees and shrubs) density and juvenile density whereas adult density increased with 

water stress contrary to our hypothesis (Fig. 4, Table 3). For adult density, the 

regression coefficients were significant across all the quantiles explored (10
th

 – 95
th

). 

For the total and juvenile species, despite a perceptible decrease in density towards 

higher water stress, none of the regression coefficients was significant. As for the 

species richness, there was a large dispersion in tree density data suggesting that 

other non-measured factors were strongly influential along the water stress gradient. 
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Figure 4: Effect of water stress on the (a) 

total trees and shrubs density, (b) adult 

density and (c) juvenile density. Dots on 

the scatterplots represent the observed 

values while curves represent fitted values 

for the upper (95
th

, solid line), median 

(50
th

, dotted line) and lower quantile 

regression lines (10
th

, dashed line). Fitted 

curves are not plotted for total and 

juveniles because water stress has no 

significant effect on the total and juveniles 

density (see Table 3). 

                Total 

Adults 

Juveniles 

(a) 

(b) 

(c) 
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DISCUSSION 

Effect of water availability on species diversity 

We predicted that species richness will peak at intermediate levels of water stress 

and found it true for the total (tree and shrub) and juvenile species richness while 

adult species richness showed a monotonous decrease with increasing water stress 

(Fig 2). Not surprising, the total species richness was strongly determined by juvenile 

species. The results for total and juvenile species richness thus support the 

predictions by the intermediate stress hypothesis (Grime, 1973; Kammer & Mohl, 

2002). This hypothesis has been tested in various environments and has yielded 

contrasting results as some found it true (Townsend et al., 1997; Kammer & Mohl, 

2002; Bruun et al., 2006) while others did not (see Currie, 1991; Kondoh, 2001; 

Mittelbach et al., 2001; Pausas & Austin, 2001). To our best knowledge, this 

hypothesis has not been tested previously for dry African woodlands.  

At larger spatial scales plant diversity can increase almost linearly with 

productivity  because habitat heterogeneity and dissimilarity in species composition 

within regions likely increase with productivity (Rosenzweig, 1992; Chase & Leibold, 

2002). In contrast, within a region, peaked patterns can be expected in cases where 

species show clear differences in their tolerance to the environmental conditions 

along a gradient, with a clear advantage to strongest competitors at the most 

productive end of the gradient and to the species adapted to stressful conditions at 

the less productive end of the gradient (e.g. Bruun et al., 2006). Under intermediate 

conditions the overlaps between the two types of species should result in higher 

species diversity than the extremes. In our study however, we did not find the 

predicted high proportion of shared species at intermediate position of the water 

stress gradient (Fig 4). Instead, the intermediate position of the water stress gradient 
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showed a peak in the proportion of unique species, apparently adapted to 

intermediate conditions alone.  

Other factors not measured here should then be determinant for patterns 

observed in woodlands and savannas of Benin, which was also indicated by the large 

dispersion of the data below the upper quantile regressions (Cade et al., 1999). 

Environmental factors not included in this study and which could be influential 

comprise for example fire and herbivores. Disturbances regimes are far from uniform 

along a productivity gradient, particularly along a water stress gradient (Thonicke et 

al., 2001). Actually, a strong correlation is often found between ecosystem 

productivity or water availability and factors such as fire and herbivory, which are 

thought to exert a stronger control on the vegetation in dry ecosystems (Chidumayo, 

1988; Eva & Lambin, 2003; Sankaran et al., 2008). Fire intensity and frequency are 

strongly conditioned by the available fuel (i.e. grass biomass) and ambient moisture. 

Thonicke et al. (2001) showed that the fire return interval on the African continent 

varies with latitude in a bimodal manner with peaks in the dry sahelian zone and the 

wet tropical rain forest. This suggests that fire frequency peaks at intermediate water 

stress levels. From this, we hypothesize that the hump-shaped pattern, as driven by a 

high proportion of unique species, resulted from the improved species coexistence 

promoted by the absence of competition as periodic burning and perhaps herbivory 

reduced the species populations (Huston, 1979; Huston, 1994). The decrease in adult 

species richness with increasing water stress that we observed in our study tend to 

confirm this view as adults are less susceptible to fire disturbances under surface fire 

regimes and to herbivores. Such complex interactions between climatic factors and 

disturbances might explain the lack of correlation between water variables and 

species diversity reported by some authors in other dry regions (e.g. Gentry, 1995; 

Gillespie et al., 2000).  
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Effect of water availability on tree density 

Our hypothesis that tree density will decrease linearly with increasing water stress 

was not supported by the results presented here. We did not find any significant 

correlation between water stress and both total (tree and shrub) and juvenile density 

while adult density increased with water stress (Fig. 3, Table 3). We noted also a large 

dispersion in the density data, as for species richness, indicating a strong influence of 

other non-measured factors along the entire water stress gradient (Cade et al., 1999). 

Despite the lack of correlation with water stress, we observed that highest juvenile 

densities tended to occur at lower water stress, quite the opposite direction to adult 

that highest densities occurred at higher water stress. At lower water stress a great 

proportion of individuals apparently remain small while only a few grows up to the 

canopy. Since we eliminated the possibility that they belong to inherently small taxa, 

by selecting those capable of reaching larger diameter classes (i.e. dbh ≥ 10 cm), this 

could also be the result of interferences with disturbances along the water gradient.  

Overall this study show that water availability is an important limiting factor 

for woody species distribution in woodland-savanna mosaics of Benin, and that the 

high species richness at intermediate water stress resulted from a high proportion of 

unique species apparently adapted to those conditions. We observed however that 

local influences such as disturbances by fire and herbivores may play a significant role 

in fine-tuning the species distribution. Inclusion of a larger set of environmental 

factors in future studies should help elucidating underlying interactions between 

climatic factors and disturbances. 
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ABSTRACT 

The strength of competitive and facilitative interactions in plant communities is expected to 

change along gradients of resource availability.  Contrasting theoretical models predict that 

with increasing abiotic stress, facilitative effects will be higher, lower or similar than those 

found under more productive conditions. While these predictions have been tested in very 

stressful environments such as arid and alpine ecosystems, they have hardly been tested for 

more productive tropical woodlands, which cover extensive areas in Africa. Woodlands are 

characterized by tree patches surrounded by open herbaceous vegetation where trees can 

have positive or negative effects on the growth and survival of plants growing underneath.  

We experimentally assessed the role of facilitation for successful tree regeneration in 

woodlands along a climatic gradient in Benin, West Africa. We planted seedlings of the 

drought-sensitive Afzelia africana and the drought-tolerant Khaya senegalensis species 

under three shade conditions (tree shade in woodland, woodland gaps, and adjacent open 

fields), at mesic and dry sites. We found that tree seedling survival improved within 

woodlands compared to open fields along the whole climatic gradient. The relative benefits 

in seedling survival were larger at the dry site, especially for the drought-sensitive species. 

Nevertheless, plant interactions became neutral or negative during the dry season in the 

drier woodland, confirming that the net positive effects may be lost under very stressful 

abiotic conditions.  

We conclude that facilitation also occurs in the relatively more productive conditions 

of African woodlands. We found empirical support for the idea that facilitative interactions 

become stronger with increasing drought stress, particularly for drought sensitive species, 

but these net positive effects may be lost under extremely stressful conditions. Our results 

underscore the role of environmental gradients in space and time and the stress tolerance of 

species to explain competitive and facilitative interactions within plant communities.  

Key-words: Afzelia africana; Benin; Drought; Facilitation; Khaya senegalensis; Nurse tree; 

Positive interaction; Tree regeneration; Savanna; Seedling establishment. 
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INTRODUCTION 

Woodlands in Africa constitute a large and almost uninterrupted strip from Mali to 

Uganda, along an annual rainfall gradient from 700 to 1200 mm (Bellefontaine et al., 

1997). They cover up to 14 % of the total continent surface and represent about 25 % 

of the natural vegetation (Mayaux et al., 2004). Woodlands have the appearance of 

small open forests (Boughey, 1957) with larger woody cover and taller trees than 

savannas (Bellefontaine et al., 1997). In general, medium-sized trees (8-20 m height) 

cover more than 20 % of the stand (Pratt et al., 1966; Bellefontaine et al., 1997).  

 Woodlands typically occur in areas with 6-7 months dry season with little or no 

rainfall (Bellefontaine et al., 1997). Vegetation in such water limited environments is 

often characterized by a mosaic pattern, with woody patches of different density and 

size dispersed in a matrix of grassy plants (Lejeune et al., 2002). This mosaic structure 

is characterized by an uneven distribution of resources (i.e. light, water and nutrients) 

across microsites (Vetaas, 1992; Belsky, 1994; Schenk & Mahall, 2002). Many 

experimental studies have demonstrated that seedlings in such patchy environments 

can benefit from neighbouring plants because of reduced abiotic stress (e.g. Vetaas, 

1992; Holmgren et al., 1997; Armas & Pugnaire, 2005; Aerts et al., 2007), increased 

nutrient availability (e.g. Belsky, 1994; Armas & Pugnaire, 2005; Gómez-Aparicio et 

al., 2005) or reduced herbivore pressure (e.g. Smit et al., 2006; Aerts et al., 2007; 

Callaway, 2007). However, these studies on facilitative effects on seedlings typically 

focused on less productive ecosystems than the African woodlands (see Castro et al. 

2004, Armas and Pugnaire 2005, Aerts et al. 2007). 

 Bertness and Callaway (1994) proposed that the strength of facilitative 

interactions among plants should increase in more stressful environments. Later on, 

Holmgren et al. (1997) hypothesized that although positive and negative interactions 

probably occur simultaneously, a net facilitative effect should be expected when the 
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improvement of growth conditions (for instance by improved water relations) under 

a nurse plant exceeds the costs of growing under shade. The harshness of the stress 

factor and the species sensitivity to that factor should determine the net outcome of 

the interaction. An alternative null hypothesis would predict that the impacts of 

factors changing in relative abundance under shade (e.g. light and water) are 

completely independent, implying that for instance drought reduces plant growth by 

the same proportion at any irradiance (Sack & Grubb, 2002). Because the availability 

of resources is also temporally variable (e.g. Frankie et al., 1974; Gómez-Plaza et al., 

2001), one would expect that net facilitative effects of canopy trees become stronger 

during stressful periods such as dry seasons or dry years (Lortie & Callaway, 2006).  

 Moreover, tree species differ in their fundamental niche optima and stressful 

conditions for one species may be ideal for others (Liancourt et al., 2005; Callaway, 

2007). Consequently, plant-plant interactions can be expected to be positive, neutral, 

or even negative, depending on the species (Pennings et al., 2003; Maestre et al., 

2006) at relatively small spatial scales. In general, one would expect the less tolerant 

species to the stressful conditions to be more likely facilitated, particularly towards 

the ends of their distribution ranges (Choler et al., 2001; Liancourt et al., 2005), 

because facilitation occurs only when the benefits exceed the costs to be paid 

(Holmgren et al., 1997; Holmgren, 2000).  

 In this paper, we evaluate how tree seedling establishment is affected by a 

mosaic of shade conditions along a rainfall gradient across woodlands in Benin. We 

conducted a field experiment in order to test the following hypotheses: (1) seedling 

survival rate and height growth are highest under tree shade, intermediate in 

woodland gaps and lowest in open fields; (2) tree shade has a stronger facilitative 

effect in the dry season compared to the wet season; (3) tree shade has a stronger 

facilitative effect on the drought-sensitive species than on the drought-tolerant 

species, particularly in dry woodlands. This might be one of the first studies that tests 
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for facilitation effects for successful regeneration in African woodland ecosystems, 

which are considered more productive than the more intensively studied alpine and 

arid systems in the context of positive interactions in plant communities. The 

Beninese woodlands are part of a large and almost continuous strip of Isoberlinia 

woodlands extending from Mali to Uganda in Africa north of the Equator. 

METHODS 

Study sites 

The experiment was conducted at two sites in Benin: Kandi (11.17 °N, 3.04 °E) and 

Bassila (9.16 °N, 1.58 °E) differing in water stress condition (Fig. 1A). Woodlands 

represent the most abundant vegetation type in both experimental sites. Soils are of 

ferruginous type, usually limited in depth by gravel and lateritic formations, and 

characterized by low fertility (INRAB, 1995; Junge, 2004). 

 For each site, we used the water deficit (annual rainfall – annual 

evapotranspiration) as indicator of the water stress level (Paltineanu et al., 2007). 

Climate data for the two sites were obtained from the ASECNA (Agency for the Safety 

of Aerial Navigation in Africa) and the closest meteorological stations located in Kandi 

and Parakou (9.35 °N, 2.61 °E). Kandi is a drier site with a rainy season (months with 

rainfall > 50 mm) lasting 5 months (May to September) (Fig. 1B). During the 

experimental year (August 2005 - August 2006), water deficit reached - 694 mm at 

Kandi. The total rainfall was 1087 mm which is slightly higher than the average 1012 

mm recorded between 1971 - 2006. Temperatures ranged from 16.9 to 40.7 ⁰C, with 

the highest recorded in March (39.7 ⁰C) and April (40.7 ⁰C). Bassila has moister 

conditions with a longer rainy season lasting 7 months (April to October) (Fig. 1C). 

During the experimental year, water deficit and total rainfall reached -105 mm and 

1368 mm respectively. Temperatures varied from 21 to 38.8 ⁰C with the highest ones 
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recorded in March (38.7 ⁰C) and April (38.8 ⁰C). Longer climate data estimate average 

annual precipitation around 1168 mm (1960 - 2006) (Fig. 1C). 

 

 

Figure 1: Location of the study sites (A) and climate diagrams for the dry Kandi (B) 

and mesic Bassila sites (C). Rainfall distribution during the experiments (shaded bars) 

is presented together with the long-term average (white bars), average potential 

evapo-transpiration (PET, broken line) and average temperature (dotted line). 
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100 km 

A 
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Study species 

We used seedlings of two tree species with contrasting drought tolerance: Afzelia 

africana Sm. (Fabaceae- Caesalpinioideae),  a drought-sensitive species (Bationo et 

al., 2001) and Khaya senegalensis A. Juss. (Meliaceae), a drought-tolerant species 

(Okali & Dodoo, 1973; Dickinson et al., 2004; CAB International, 2008).  

 In Africa, Afzelia occurs naturally between latitude 5
o
N and 13

o
N and Khaya 

between 8°N and 15°N (CAB International, 2008). This latitudinal gradient is 

associated with a gradual increase in drought from the equator northward expressed 

by a lower annual precipitation and a longer dry season. Accordingly, natural 

populations of Afzelia are more abundant in the wetter Sudano-Guinean ecological 

region of Benin (Sinsin et al., 2004; Adomou, 2005) while Khaya extends farther into 

the northern dry Sudanian region (Natta, 2003; Adomou, 2005; Gaoue & Ticktin, 

2007). 

 Afzelia is a deciduous tree that may reach heights of 25 - 30 m and 1 m 

diameter (Arbonnier, 2000). It is common in dense evergreen and semi-deciduous 

forests as well as moist savannas (Hawthorne, 1995; Arbonnier, 2000). Khaya is a 

large semi-deciduous tree that grows up to 35 m tall and 2 m wide (Arbonnier, 2000). 

It is often found in uplands but in very dry regions grows mostly in riparian habitats or 

stream bottoms (Natta, 2003).  

 Afzelia and Khaya are frequent in West African woodlands although not as 

abundant as other species like Isoberlinia doka and I. tomentosa (Bellefontaine et al., 

1997; Sokpon et al., 2006). We selected Afzelia and Khaya because they are 

important multipurpose trees in sub-Saharan Africa that produce high value timber 

and fodder (Arbonnier, 2000) and are extensively used for reforestation programs in 

West African countries (Bellefontaine et al., 1997). Both species are classified as 
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vulnerable species by the IUCN (2007) because of habitat loss and unrestrained 

exploitation of their natural populations.  

Experimental design 

We planted seedlings of Afzelia and Khaya species in 15 experimental plots at Bassila 

and 9 plots at Kandi. At each site, plots were randomly selected and equally 

distributed among three treatments (Fig. 2): (1) under tree shade, (2) in woodland 

gap and (3) in open field. These treatments represented a decreasing level of shading. 

Seedlings under trees were shaded during the entire day. Because of the size of the 

gaps (approximately 20 m x 20 m) and the height of the surrounding trees (5 - 15 m), 

seedlings in woodland gaps were exposed to direct sunlight only at mid day (i.e. 

between 11:00 - 14:00). Seedlings in open fields were exposed to direct sunlight 

during the entire day. These open fields were old agricultural fields adjacent to 

woodlands, with no trees and few small shrubs.  

Plantation and monitoring 

We collected 576 seedlings (149 of Afzelia and 427 of Khaya) from two local nurseries 

in Bassila. Seedlings were one to two years old with heights ranging between 6 to 44 

cm for Afzelia and 9 to 69 cm for Khaya. For each species, we randomly allocated the 

seedlings to the treatments and sites, as well as the position within plot so that the 

whole range of seedling sizes was represented in all experimental treatments. At the 

beginning of August 2005, we cleared all experimental plots from present shrubs and 

planted 24 seedlings (6 Afzelia and 18 Khaya, based on the total seedlings available 

for each species) within each experimental plot. Seedlings were planted 1 m from 

each other to avoid competition between them.  

 For the under shade treatment, we distributed the 24 seedlings in 8 transects 

planting them at 1, 2 and 3 meters from the nurse tree trunk (see Fig. 2A). Most 
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nurse trees were Isoberlinia doka between 10 - 16 m tall, with crown diameters larger 

than 6 m and stem diameters between 29 - 46 cm.  

 

 

Figure 2: Experimental shading treatments: (A) under tree shade in woodland, (B) in 

woodland gap and (C) in open field. 
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Fire breaks and enclosures were installed around all plots but despite these 

precautions, four plots were burnt and we excluded them from the analysis. We also 

excluded from the analysis all accidentally broken seedlings. The remaining analyses 

are based on 477 seedlings (354 Khaya and 123 Afzelia), distributed among sites and 

shade conditions as presented in Table 1. We monitored seedling survival and height 

growth monthly between August 2005 and August 2006. 

Table 1: Seedlings distribution across sites and microsites.  

 Number of seedlings 

 Afzelia africana Khaya senegalensis 

 Microsites Mesic Dry Mesic Dry 

Open field 36 14 84 34 

Gap 19 16 53 56 

Under tree 24 14 69 58 

1 m from tree stem base   10 8 19 16 

2 m from tree stem base 10 2 22 22 

3 m from tree stem base 4 4 28 20 

     

Total 79 44 206 148 

 

Statistical analyses 

We conducted a survival analysis to test for the effects of shading (under tree shade, 

gap and open field) and overall site conditions (dry and mesic sites) on seedling 

survival using Cox proportional hazard regression models. We calculated the hazard 

ratio (HR) corresponding to the relative risk of death with vs. without a particular 

treatment. We included initial seedling height as a co-variable and tested for the 
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effects of single factors (shading and site) as well as the interactions “shading x site” 

and “shading x initial height”. Seedling distance to nurse tree was excluded from this 

analysis as it had a linear relationship with shading (Chan, 2004a, b). For both species, 

the proportional hazard condition of the Cox model was satisfied (Chan, 2004b). We 

considered a seedling as dead only when no resprouting occurred during the whole 

study period. During the experiment, 57 seedlings successfully recovered after 

apparently dying, of which 14.6% of all Afzelia and 11% of all Khaya seedlings.  

 Differences in seedling height growth were tested using a nested ANOVA, with 

shading, site, and season as well as their two-way interactions as explanatory 

variables. We included plot as a nested term within shading and within site to 

account for spatial correlations between plots. Season corresponded to three 

periods: early establishment (October 2005), end of the dry season (April 2006) and 

the next rainy season (August 2006). Because the original size of the seedlings could 

have conditioned their subsequent growth, we used the standardized height growth 

(SHG) obtained by dividing seedling height at a given time by the initial one (after 

Aerts et al. 2007). Prior to the analysis, we excluded all dead individuals, averaged 

SHG per plot to avoid pseudo-replication and log transformed it to meet the 

normality assumption. 

 To assess the facilitative effect of tree shade on seedling survival and growth, 

we calculated the relative interaction index (Armas et al., 2004) for each species and 

per site: RIIa/b = (Pa – Pb)/(Pa + Pb), with Pa the performance (survival rate or growth) 

achieved in one shade level (e.g. under tree shade) and Pb the performance achieved 

in another shade level (e.g. in the open field or in the gap). For instance, to compare 

seedling survival rate under tree shade (UT) and in the open field (OF), we calculated 

the index as: RIIUT/OF = (PUT – POF) / (PUT + POF). This relative interaction index has 

several advantages compared to other indices such as the relative competition index 

(RCI) or the relative neighbour effect (RNE). It is symmetrical around zero (-1 to +1) 
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with positive values indicating facilitation while negative ones indicate competition. It 

is also adapted to cases where plant performance is zero (e.g. survival) and is 

applicable to non-paired field experiments (see Armas et al., 2004). We calculated RII 

at the end of the experiment to compare the final outcome and for every month to 

assess the temporal variations. All statistical analyses were done using SPSS 16.0 

(SPSS Inc. 2007, Chicago). 
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RESULTS 

Woodland versus open fields 

We predicted higher seedling survival rate and higher height growth in woodlands 

compared to adjacent open fields. Seedling survival was indeed larger in woodlands 

compared to open fields, particularly for Afzelia (Fig. 3A and B). The higher survival in 

the woodland is reflected by rather low hazard ratios (HR < 1, p < 0.001) under tree 

shade and woodland gap (Table 2). We did not find a significant effect of shading on 

seedling growth but there was a significant interaction between shading and season 

(for Afzelia only) (Table 3). At both mesic and dry sites, seedling growth was higher in 

woodland compared to open field for Afzelia but not for Khaya (Fig. 3C and D). For 

Afzelia, standardized height growth (SHG = Hfinal/Hinitial) dropped from 1.17 under tree 

shade and 1.23 in woodland gaps to 0.76 in open fields at the mesic site (Fig. 3C). At 

the dry site, the height growth was negative for the surviving seedlings in the 

woodland (SHG = 0.41 in gap and 0.49 under tree shade), whereas all seedlings died 

in the open field. Khaya showed little growth differences across shade levels at the 

mesic site (Fig. 3D; SHG = 1.04, 1.06 and 0.98 in the open field, gap and under tree 

shade respectively). At the dry site, Khaya seedling growth was higher in open fields 

(SHG = 0.99) compared to woodland gaps (SHG = 0.80) and under tree shade (SHG = 

0.76) which is in contradiction with our hypothesis. Our results thus confirmed that 

seedling survival rate is higher in woodlands compared to adjacent open fields for 

both species, but in terms of seedling growth we only found it to be higher in 

woodlands for the drought-sensitive Afzelia. 
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Figure 3: Seedling survival (% +/- 1 SE, A and B) and standardized height growth 

(mean +/- 1 SE, C and D) for Afzelia africana and Khaya senegalensis at the dry (white 

bars) and mesic sites (shaded bars) during a one-year period (August 2005 – August 

2006). Lacking bars in the open field reflect 100% mortality. 
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Table 2: Effects of site (mesic vs. dry), shading (open field, woodland gap and under 

tree shade) and initial seedling height on the survival of Afzelia africana (n = 123) and 

Khaya senegalensis seedlings (n = 354) based on Cox proportional hazards regression. 

 Afzelia africana Khaya senegalensis 

 

P Hazard Ratio 

(HR) 

P Hazard Ratio 

(HR) 

Main factors and interactions terms 

Site <0.001  <0.001  

Shading <0.001  <0.001  

Initial height 0.734  <0.001  

Shading*Site <0.001  <0.001  

     

Site effect     

Dry site <0.001 1.714 <0.001 2.742 

     

Shading effect     

Gap <0.001 0.166 <0.001 0.213 

Under tree <0.001 0.434 <0.001 0.200 

     

Seedling size effect     

Initial height 0.734 - <0.001 0.981 

Note: P is the significance level of the factors; HR corresponds to the relative risk of death. For 

categorical variables, HR > 1 means that the category of interest likely have a shorter time to death 

compared to the reference category; the reference categories are mesic site and open field 

respectively for site and shading. For the continuous variable (i.e. initial height), HR < 1 means the 

relative risk of death decreases with one-unit increase in that variable. 
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Table 3: Results of the nested ANOVA for the effects of site (mesic vs. dry), shading 

(open field, woodland gap and under tree shade) and initial seedling height on the 

standardized height growth of Afzelia africana and Khaya senegalensis seedlings. P 

indicates the significance level of the factors.  

 Afzelia africana Khaya senegalensis 

 df F P df F P 

Shading 2 0.39 0.687  2 0.12 0.889  

Site 1 6.65 0.022 1 1.08 0.317  

Season 2 9.20 0.001 2 4.61 0.017 

Shading x Site 2 0.24 0.787  2 0.08 0.928 

Shading x Season 4 2.86 0.039 4 0.99 0.428 

Season x Site 2 9.52 0.001 2 3.25 0.052 

Plot (nested within shading and site) 14 3.71 0.001 14 2.21 0.031 

 

Woodland: tree shade versus gap 

We predicted that within woodlands, seedling survival and growth would be higher 

under tree shade compared to gaps. In contrast, Afzelia seedling survival was higher 

in woodland gaps than under tree shade at both the mesic and the dry sites (Fig. 3 

and 4). At the mesic site, almost all Khaya seedlings survived under tree shade and in 

gaps whereas at the dry site, this species survived better under tree shade (Fig. 4B). 

Both species showed similar SHG under tree shade and in gaps (Fig. 3 and 4) both at 

the mesic and the dry sites. Our prediction was thus only partially supported by the 

data. 
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Figure 4: Facilitative effects on seedling survival and growth. The facilitative effect is 

indicated by the Relative interaction index (RII) which is calculated as RII a/b= (Pa – 

Pb) / (Pa + Pb), with P being the performance (i.e. survival or growth) achieved in 

contrasting shade conditions “a” and “b”. 
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Figure 5: Seedling survival across time for Afzelia africana and Khaya senegalensis 

under the three shading treatments (open fields, woodland gap and under woodland 

tree) in the mesic and dry sites. 

 

Temporal variations in facilitation strength 

 We predicted that the drop in seedling survival and growth during the dry season 

would be less pronounced under tree shade than in more open conditions (gaps and 

open fields). Survival decreased during the dry season (November - April) for both 

species, particularly at the dry site (Fig. 5). At the mesic site, mortality was strongest 

in the open field for both species, which is in line with the prediction. This is also 

reflected by the positive RII values for the comparison of under tree and gap 
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conditions to open fields (Fig. 6). At the dry site, survival decreased dramatically 

during the dry season and the early subsequent rainy season in each of the three 

shading conditions. For Khaya, this decrease was stronger in open fields and gap 

conditions than under trees (Fig. 5D). For Afzelia, the decrease was initially slower in 

open fields; however, since survival in open fields continued to decrease in the 

subsequent rainy season, the ultimate survival was lowest for the open field (Fig. 5C). 

Overall, growth showed a similar temporal response as survival (data not shown). 

Except for Afzelia in the dry site, our results support the idea that the drop in seedling 

survival and growth during the dry season tends to be lower under tree shade than in 

more open conditions.  

Species tolerance to drought stress and facilitation  

We predicted that tree shade would have a stronger facilitative effect on the 

drought-sensitive species Afzelia than on the more drought-tolerant species Khaya, 

particularly in dry woodlands. Afzelia indeed showed a more positive and stronger 

response than Khaya when comparing woodland conditions to open fields (Fig. 4 and 

6). Moreover, the responses in Afzelia were much stronger at the dry site. However, 

we did not find such obvious patterns when comparing microsites conditions within 

woodlands (under tree and gaps).  
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Figure 6: Seasonal change in the Relative Interaction Index for seedling survival under 

tree shade and gap conditions compared to open fields in the mesic and dry sites. 

Positive values of RII indicate positive effect of shading on seedling survival under 

tree (solid line) or in gap (broken line). The dotted horizontal line on the graphs 

correspond to the reference line (RII = 0). 
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DISCUSSION 

Seedling facilitation in woodlands compared to open fields 

We found evidence that seedling survival was improved in woodlands compared to 

open fields for both Afzelia and Khaya species (Fig. 3 and 4). However, the patterns 

for seedling growth were less strong and species dependent. Afzelia, a drought-

sensitive species, grew more rapidly within woodlands, under nurse trees and in 

gaps, than in the open fields. In contrast, seedling height growth for the drought-

tolerant Khaya species differed little between shade levels and practically did not 

change across time. Several facilitation experiments have shown increased growth 

and survival of the facilitated species (Castro et al., 2002; Castro et al., 2004) while 

others have found either increased survival (Aerts et al., 2007; Callaway, 2007) or 

increased growth (Egerton et al., 2000; Bertness & Ewanchuk, 2002). Our results are 

consistent with the findings indicating the predominance of facilitative interactions 

among plants in stressful environments (Bertness & Callaway, 1994; Holmgren et al., 

1997; Callaway et al., 2002; Brooker et al., 2008). Since in dry regions, water 

limitation is an important bottleneck for the successful regeneration of tree species, 

we suspect that the improved seedling survival for both species and growth for the 

drought sensitive species (Afzelia) within the woodlands compared to the open fields 

resulted from reduced water stress conditions.  

Facilitation within woodlands: tree shade versus gaps 

We predicted that within woodlands, seedling survival and growth would be higher 

under tree shade compared to gaps. Surprisingly, Afzelia, the drought-sensitive 

species, survived better in gaps than under trees at both the mesic and dry sites (Fig. 

3 and 4). For Khaya, seedling survival was higher under nurse trees than in gaps at 

the dry site, while at the mesic site survival was similarly high in gaps and under 
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trees. Curiously, despite its presumed tolerance to drought (Okali & Dodoo, 1973; 

CAB International, 2008), water stress seems to be the dominant factor limiting 

Khaya seedling performance within woodlands. These rather simple explanations 

exclude more complex interactions that might occur within woodlands. A fuller 

explanation of tree facilitation in woodlands would have to take into account the 

improvement of soil conditions and microorganisms under nurse trees (Belsky, 1994; 

Armas & Pugnaire, 2005; Gómez-Aparicio et al., 2005) as well as changes in herbivory 

or disease levels (Callaway, 2007).  

Seasonal variation in seedling response to shade 

We predicted that the drop in seedling survival and growth during the dry season 

would be less pronounced under tree shade than in more open conditions. Seedling 

response to shading varied across time, with largest shifts at the dry site, particularly 

for the drought-sensitive species (Fig. 5 and 6). At the mesic site, seedlings growing in 

the open field showed a stronger decline in survival during the dry season than 

seedlings in the woodland. At the dry site, both Afzelia and Khaya showed a very 

rapid decline in survival under all shading conditions. For Khaya, this decline was 

strongest in open fields and gap conditions. These results support our hypothesis. In 

contrast, survival of Afzelia seedlings declined more rapidly during the dry season in 

woodlands than open fields. Nevertheless, although the rate of mortality was faster 

in woodlands, some seedlings survived until the end of the experiment while in the 

open fields seedling survival continued declining until no survivors were left.  
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Facilitation strength and species tolerance to stress 

The hypothesis that in dry conditions the facilitative effect of tree shade would be 

stronger on the drought-sensitive species was confirmed in this study (Fig. 4 and 6). 

At the dry site, all Afzelia seedlings in open fields died while some seedlings survived 

under tree shade (7.1 %) and in the gaps (12.5 %) whereas at the mesic site they were 

able to survive also in the open fields. Such strong contrasting responses were not 

found for Khaya, the drought-tolerant species. Our results support the idea that the 

species with the lowest tolerance to abiotic stress is more likely facilitated (Choler et 

al., 2001; Liancourt et al., 2005). A net facilitative effect should be expected when the 

improvements of growth conditions (e.g. water availability) under a nurse exceed the 

costs of growing under shade (Holmgren et al., 1997; Holmgren, 2000). Given the 

drought intolerant nature of Afzelia, this species might be at the extreme end of 

water stress, where plant interactions might turn from positive to neutral or even 

negative, emphasizing the species specific nature of plant responses along 

environmental gradient (Maestre et al., 2005; Maestre et al., 2006). 

CONCLUSION  

Our results show that tree seedling survival improved within woodlands compared to 

open fields along the whole climatic gradient. But the relative benefits in seedling 

survival were larger at the dry site especially for the drought-sensitive species. 

Nevertheless, plant interactions became neutral or even negative during the dry 

season at the drier woodland, confirming that the net positive effects may be lost 

under extreme stressful conditions. These results underscore the role of tree shade 

for facilitating regeneration in woodland systems with implications for the 

development of restoration programs. We thus show that facilitation might play a 

key role in the success of seedling regeneration in tropical woodlands, which are 

considered more productive than the more intensively studied alpine and arid 
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systems in this context. Our results also emphasize that the individual species stress 

responses, rather than the overall environmental stress conditions, determine the 

outcome of plant interactions.  
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ABSTRACT 

Fire and herbivory are the most frequent disturbances shaping tropical savannas and 

woodlands. Although these disturbances usually co-occur, their interactive effects on tree 

regeneration have rarely been experimentally assessed. We examined how fire and grazing 

affect tree regeneration in woodlands along gradients of soil conditions and water 

availability. We predicted that frequent fire and grazing combined would have a stronger 

negative effect on tree recruitment than each of these disturbances separately and that 

effects on tree recruitment would be more negative under high abiotic stress such as high 

salinity, low water availability or low soil fertility. We conducted a field experiment in Benin 

and applied four experimental treatments (no disturbance, fire alone, grazing alone, grazing 

and fire) to 68 plots distributed across climate and soil gradients. Each plot was monitored 

annually between 2003-2006 for changes in sapling species richness and density.  

Overall, an increase in fire frequency increased sapling species richness but did not 

have any significant effect on sapling density while grazing alone had no significant effect on 

either species richness or density. The two disturbances combined had a positive effect on 

sapling species richness but not density. However, under conditions of high soil salinity both 

species richness and density were reduced by grazing, whereas positive effects were 

observed under low salinity. Thus, the studied woodlands were resilient to fire and grazing 

disturbances but this resilience was lost under conditions of high abiotic stress. Our results 

emphasize that interactions between disturbances and abiotic stress are more important 

than the independent effects of these factors on tree regeneration. These results show that 

effects of the disturbances are reversed when critical thresholds are crossed in the abiotic 

environment. As grazing and fire are increasingly used as management tools in nature 

conservation, it is important to account for such shifts in the ecosystem response under 

changing environmental conditions. 

Keywords:  Burning, Disturbance, Grazing, Sapling recruitment, Savanna, Soil salinity, Soil 

fertility, Species richness, Water stress, Woodland. 
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INTRODUCTION 

Woodlands cover almost 14 % of the total surface in Africa and represent 25 % of its 

natural vegetation (Mayaux et al., 2004). They have larger woody cover than 

savannas (Bellefontaine et al., 1997) and are often characterized by a mosaic pattern, 

with woody patches of varying density and size dispersed in a matrix of herbaceous 

plants (Frost, 1996; Lejeune et al., 2002). While climate and soil set the limits to 

vegetation growth in tropical regions (Bond et al., 2005), fire and herbivory are the 

most frequent disturbance factors driving vegetation dynamics (Frost, 1996; Bond, 

2005; Sankaran et al., 2005; Mourik et al., 2007) and affecting species composition 

(Keeley et al., 2003; Zida et al., 2007), vegetation structure (Higgins et al., 2000; 

Sankaran et al., 2005; Zida et al., 2007), as well as nutrients cycling (van de Vijver, 

1999; Wan et al., 2001). As a result, woodlands can exhibit shifts between an open 

grassy state and a dense woody state. A decrease in woody biomass is generally 

accompanied by an increase in grass biomass and any factor such as disturbances 

that prevents one of these life forms will likely favour the other (Huston, 1994; Van 

Langevelde et al., 2003). 

Fire and herbivory usually co-occur in woodlands and savannas but most of 

our knowledge is based on studies focusing on each disturbance factor alone. 

Persistent and intensive browsing as well as frequent and intense fires can strongly 

limit tree recruitment (Bond & Keeley, 2005). On the other hand, there are several 

interesting indirect effects of herbivory and fire (Zimmerman & Neuenschwander, 

1984; Van Langevelde et al., 2003). By reducing grass biomass, grazers can potentially 

reduce fuel loads and reduce fire occurrence which indirectly facilitates tree seedling 

recruitment. Lower grass biomass can also reduce grass-tree seedling competition 

(Jeltsch et al., 1996; Ball et al., 2002). Several studies of vegetation dynamics in 

tropical regions noted that the increase in woody biomass is often associated with 
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increased herbivores populations (e.g. Jeltsch et al., 1997; Eckhardt et al., 2000; 

Roques et al., 2001; Sankaran et al., 2008). However, there is scarce empirical 

evidence of such positive effects of herbivory on tree recruitment (e.g. Silva et al., 

2001; Zida et al., 2007) and negative effects are also reported (Proulx & Mazumder, 

1998; Stern et al., 2002). The suggested indirect positive effects should depend on 

herbivores foraging behaviour since increased trampling and potential tree seedling 

consumption are often found as well (Pettit et al., 1995; Alemayehu Wassie, 2007). In 

regions with a prolonged dry season cattle browsing seems frequent because of 

increased food stress (e.g. Ouédraogo-Koné et al., 2006). 

The effects of herbivory and fire are expected to depend on abiotic stress 

determined by the availability of resources (Huston, 1994; Sankaran et al., 2005; 

Bucini & Hanan, 2007). Stress can be due to either a toxic level (e.g. salinity) or a low 

level of resources (e.g. water and fertility) and it affects mostly species growth while 

disturbances involve removal or destruction of plant biomass (Huston, 1994). The 

dynamic equilibrium model (Huston, 1979; Huston, 1994) predicts optimal conditions 

for species growth at both intermediate level of disturbances and intermediate level 

of stress. Dry conditions (Holmgren & Scheffer, 2001) and low soil fertility (Proulx & 

Mazumder, 1998) reduce plant resilience to disturbance, and clearly affect also the 

frequency and intensity of the disturbances themselves (Govender et al., 2006; Bucini 

& Hanan, 2007). Under productive conditions (e.g. high fertility and high water 

availability), competition between species is increased and few species tend to 

dominate the ecosystem, unless the species populations are reduced by an 

externally-imposed mortality by for example fire and grazing (Huston, 1994; Bond & 

Keeley, 2005). Although disturbances could limit sapling recruitment into adult size-

classes, particularly at high frequency and intensity of disturbances (Bond & Keeley, 

2005), plants can recover faster under productive conditions. Thus, the interplay of 
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fire and herbivory can probably have more pronounced negative effects under low 

productivity conditions. 

In this study, we evaluate how herbivory and fire affect tree regeneration in 

West African woodlands. We focus on how their independent and joint effects 

change with increasing abiotic stress of soil salinity, soil fertility and water availability. 

We hypothesized that (1) frequent fire reduces sapling species richness and sapling 

density, (2) frequent grazing reduces sapling species richness and sapling density (3) 

frequent fire and grazing combined have a stronger negative impact on sapling 

species richness and sapling density than each of the disturbances separately, (4) the 

negative effects of the two disturbances is higher under high abiotic stress. We also 

examined how woodland individual species were affected by the disturbances and 

stress factors and we checked whether species responses were consistent with those 

from the entire sapling community. In order to test the hypotheses, we applied four 

experimental treatments (no disturbance, fire alone, grazing alone, grazing and fire) 

to 68 plots distributed across climate and soil gradients in Benin and monitored each 

plot annually between 2003 and 2006 for changes in sapling species richness and 

density.  

METHODS 

Study area 

We conducted the experiment at 17 woodland sites along a latitudinal gradient in 

Benin. The sites were primarily selected so as to encompass the climatic range 

associated with woodlands distribution (Fig.1) (see Sokpon et al., 2006). Woodlands 

represent, after savannas, the second most important vegetation type in Benin, with 

38.4 % of total land cover (Mayaux et al., 2004). The annual precipitation (989 - 1198 

mm) and the reference evapotranspiration  (1587 - 1898 mm) in the study area (FAO, 
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2008a) are significantly correlated with the latitudinal position of the sites, expressing 

an increasing drought from south to north (Appendix 1). Accordingly, the dry season 

(i.e. months with precipitation less than half of evapotranspiration) is only 5 months 

(November-March) in the southern range of our study area while it extends to 7 

months (October-April) towards the north. Altitude of the study sites ranges between 

250 and 400 m. a. s. l. Soils derive from metamorphic and crystalline rocks and are 

mostly of ferruginous type (Faure & Volkoff, 1998). Soil texture on experimental sites 

varied from loamy sand (i.e. 6-12 % of clay, 11-34 % of silt and 70-82% of sand) to 

sandy loam (i.e. 10-18 % of clay, 18-23 % of silt and 55-67 % of sand). 

Experimental design and vegetation monitoring 

Across the climate gradient, we selected 17 sites in woodland forests and installed 

four treatment plots (20 x 20 m) at each of these sites in September-October 2003. 

We randomly assigned four treatments (control; fire only; grazing only; fire + grazing) 

to the four experimental plots of each site. This corresponded to a total of 68 plots 

initially equally distributed among the four treatments across the study area. We 

constructed enclosures for the grazing-free plots and cleared a fire break around all 

plots each year. 

At the initial sampling, we divided each experimental plot in four 100 m
2
 (10 x 

10 m) subplots and selected one randomly four sapling monitoring. We counted the 

number of sapling stems and species in this permanent subplot (100 m²) during the 

second half of the rainy season (August to October) each year from 2004 to 2006. 

Sapling refers here to woody species between 30 and 150 cm height and for multi-

stemmed individuals we counted each stem as a separate individual. Species 

identification and nomenclature followed Akoègninou et al. (2006).  
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Figure 1: Study sites locations in Benin. The shaded area on the graph corresponds to 

regions where woodlands occur in Benin and numbers (1 to 17) represent study sites. 
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Water stress 

We expressed water stress differences between experimental sites by the water 

deficit (in mm), calculated as the difference between the precipitation (P) and the 

reference evapotranspiration (ET) following Paltineanu et al. (2007). The annual 

water deficit was correlated with the latitudinal position of the sites and ranged from 

-414 mm to -919 mm from South towards North of the study area. Because all values 

for water deficit were negative, we took the absolute value in the following analysis 

to facilitate the interpretation of results. We obtained the average precipitation and 

reference evapotranspiration for each experimental site from the Aquastat climate 

database (FAO, 2008a). The FAO Aquastat is an interactive tool to query a spatial 

data-set containing mean monthly climate data at a 10 minute spatial resolution for 

the period 1961-1990.  

Soil conditions 

In August 2004, we collected soil samples in the first 30 cm soil surface within each of 

the 68 experimental plots in order to characterize soil variability. We collected the 

samples at the four corners and the centre of each experimental plot, and mixed 

them to form one composite sample per plot. The analyses comprised soil texture 

(i.e. sand, silt and clay proportions) and chemical properties (i.e. pH, total carbon, 

total nitrogen, organic matter, available phosphorus, cation-exchange capacity and 

exchangeable bases). Soil analysis was performed in Benin at the soil laboratory of 

the National Institute for Agricultural Research (Laboratoire des sciences du sol 

d’Agonkanmey, INRAB). 
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Figure 2: PCA ordination graph of woodlands soil samples. Numbers on the graph 

represent study sites (1 to 17) and letters (A –D) differentiate the four treatments 

plots from each site. The first axis is significantly correlated with Na content and 

explains 47.7 % of the variance in woodland soil conditions. The second axis is 

significantly correlated with soil fertility elements (Mg, Ca, CEC, total cations, 

phosphorus) and explains 20.3 % of the variance. 
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We reduced the dimensionality of soil data using Principal Component Analysis 

(PCA) with canoco software (ter Braak, 1987) after log transforming the data to 

account for differences in measurement scales. The PCA produced two main soil 

gradients: soil salinity and soil fertility which accounted together for 68 % of the total 

soil variance. Soil salinity (sodium content, Na) emerged as the predominant gradient, 

with 47.7 % of the total soil variance explained and it was highly correlated (r = 0.98) 

with the first PCA axis (PC1) (Fig. 2). This axis clearly separated sites characterized by 

a higher Na content (0.16-1.5 cmol kg
-1

) from those with a lower Na content (<0.16 

cmol kg
-1

). The second axis (PC2) was characterized by strong positive loadings of 

major soil fertility elements: total cations (TotCatio, r = 0.82), cation-exchange 

capacity (CEC, r = 0.85), exchangeable bases (r = 0.87, 0.87 and 0.58 respectively for 

Ca, Mg and K) and available phosphorus (P, r = 0.71). Soil total cations (3.3 - 13.3 cmol 

kg
-1

), CEC (3.8 - 13.8 cmol kg
-1

) and available phosphorus (1- 14 mg kg
-1

) varied greatly 

across experimental sites. We used plot scores on the first two principal components 

as proxies for soil salinity (PC1) and soil fertility (PC2) in the subsequent analysis. 

Fire and grazing disturbances 

Detailed fire and grazing history was not available for any of the experimental plots. 

Our observations during this four-year study indicate that woodlands in the study 

area usually burn at 1 to 2 years intervals, and mostly in the dry season between 

December and February. The study sites are located in woodlands that are grazed by 

cattle all the year except during the rainy season (April – October) when cows are tied 

to avoid their incursion in crop fields. Average cattle population density in the study 

area in 2004 was 13-22 animals / km
2
 (FAO, 2008b). At all sites, our grazing plots 

were visited mainly by domestic livestock composed essentially of cows (see 

photograph Appendix 2A). There was no grazing by large wild herbivores as all plots 

were located outside forest reserves. Due to logistical constraints (i.e. duration of the 
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experiment, number and geographical range of the study sites), we could not monitor 

precisely the grazing intensity and frequency in our experimental plots. Thus, we 

relied only upon our cattle exclusion treatment. 

Every experimental year, we burned the fire-only and fire+grazing plots in 

December-January when grasses are dry. This resulted in an almost homogeneous 

burning of the plot surface (see photograph Appendix 2B). Because most woodland 

species drop their leaves during the dry season, leaves frequently form a continuous 

and highly flammable layer that makes wild fires extremely difficult to control (see 

photograph Appendix 2C). Unintended fires occurred in several plots and complicated 

the initial two-factor design of the experiment. Thus, instead of using the initial 

treatment variable in our statistical analysis, we recorded every year the grazing 

occurrence (yes/no), the number of fires since the beginning of the experiment (nf) 

and the time since the last fire (tlf, in year). 

Statistical analysis 

To test for changes in sapling species richness and density across disturbances and 

abiotic stress gradients we used linear mixed effects models (Pinheiro & Bates, 1998). 

This approach allowed accounting for the unbalanced structure of our data (i.e. 

different number of observations per disturbance type per site after unintended 

fires) and the pseudo-replication (i.e. measurements of the same plots over time and 

plots nested within sites). We expressed the relative change in sapling species 

richness and sapling density as the ratio between the value at a given year (Nt) and 

the initial value (N0): Nt/N0 to estimate the extent of change from the original 

condition (i.e. values greater than one indicate an increase in sapling species richness 

or density). For each of the two dependent variables (density and species richness), 

we conducted the analysis in three steps: (i) baseline model comprising the random 

effect and errors covariance structure, (ii) full model including all fixed effects added 
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to the baseline model and (iii) determination of the best fitting model through the 

simplification of the full model.  

We compared alternate baseline models, with different random effect types 

and different error covariance structures, using likelihood ratio tests to check 

whether adding more complexity improved the model fit (see Pinheiro & Bates, 1998; 

Crawley, 2007). For both sapling species richness and density the model was 

significantly improved with plots nested within sites and the inclusion of a random 

intercept. We did not find a significant departure from homoscedasticity regarding 

errors variance for the two dependent variables. However, the model for sapling 

density was significantly improved with autocorrelation of responses, contrary to 

sapling species richness. 

We constructed the full model for each dependent variable by adding to the 

baseline model all available predictors and their two-way interactions. We excluded 

interactions with year because the available predictors were not time-dependent 

except the number of fires and time since last fire. Predictors used to model changes 

in sapling species richness and density were: year, grazing, number of fires, time since 

last fire, water deficit, soil salinity (PC1 scores), soil fertility (PC2 scores) and initial 

woody biomass (Table 1). Initial woody biomass was estimated by the total woody 

species basal area (dbh > 5 cm) in each plot at the first inventory. To provide an 

insight in the order of the subsequent removal of predictors, we segregated the 

variance explained by each variable for changes in sapling species richness and 

density using hierarchical partitioning of variance (Table 1). This consisted in 

computing the increase in the fit (measured here as R
2
) of all models with a specific 

variable compared with the equivalent model without that variable (Chevan & 

Sutherland, 1991; Mac Nally, 2002). 
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Table 1: Variables used for modelling changes in sapling species richness and density 

in woodlands. The explanatory power of each predictor is indicated by the 

percentage of variance it explained in the full model for sapling richness and density.  

Variable Encoding Description Range  
Effect 

included 

% Variance 

explained 

Richness Density 

year Integer 
Year after the initial 

sampling 
1 to 3 Fixed 2.3 5.8 

graz Categorical 

Grazing: Plot opened to 

grazing (Yes) or protected 

(No) 

- Fixed 6.0 2.3 

nf Integer 
Number of fires since the 

initial sampling 
0 to 4 Fixed 8.6 0.9 

tlf Integer 
Time since last fire (in 

years) 
0 to 4 Fixed 1.7 2.1 

wd Real Water deficit (mm) 414 to 909 Fixed 10.9 21.4 

sal Real 
Soil salinity = sites scores 

of PCA axis 1 
-0.84 to 1.22 Fixed 49.2 61.2 

fert Real 
Soil fertility = sites scores 

of PCA axis 2 
-0.75 to 1.13 Fixed 21.2 5.3 

biom Real 

Initial biomass = Basal 

area of trees (m2/ha, dbh 

> 5cm) 

6.2 to 29 Fixed 0.2 1.1 

Plot Categorical 
Plot identity (nested 

within sites); 68 plots 
- Random - - 
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We reduced the full model step by step, starting with the removal of the 

interactions involving variables with the lowest explanatory power as indicated by the 

hierarchical variance partitioning. At each step of the model simplification, we 

compared alternate models using the likelihood ratio test and selected the model 

that significantly improved the model fit with the lowest Akaike information criterion 

(AIC). We ultimately used the restricted maximum likelihood (REML) method to 

estimate parameters in the best fitting model following Pinheiro and Bates (1998). 

Final checking of the best fitting models indicated that residual errors were 

reasonably close to a normal distribution and that the linear model adequately 

explained the variation in changes of sapling species richness and density.  

To assess how species were individually influenced by disturbances and abiotic 

conditions, we analyzed the relative change in the density of each species separately, 

using the best fitting model obtained for the entire sapling community density. The 

relative change in the species density was calculated as previously described but we 

added 1 to the denominator to avoid dividing by zero for species that were not 

present at the initial sampling. In total 91 sapling species were observed during the 

whole study period but many were infrequent and valid statistical tests could not be 

performed on them. We conducted the analysis only for the 43 most common 

species (those observed at least in 15% of all samples). We then counted the 

proportion of negative and positive responses among the species for each predictor 

variable and used a chi-square test to assess whether the two outcomes are equally 

likely to occur (i.e. half of the responses are negative and half are positive). 

All analyses were performed within the R 2.7.1 computing environment (R 

Development Core Team, 2008) with the packages nlme for mixed models fitting and 

hier.part for variance partitioning. Likelihood ratio test was implemented with the 

Anova function available in R. 
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RESULTS 

Overall, grazing and fire explained less variation in sapling species richness and 

density than stress variables such as soil salinity and water deficit. In the full model 

for sapling species richness, the number of fires and grazing explained respectively 9 

% and 6 % of the variance while soil salinity and water deficit accounted respectively 

for 50 % and 11 % (Table 1). For sapling density, the number of fires and grazing 

explained respectively 1 % and 2 % of the variation compared to 61 % for soil salinity 

and 21 % for water deficit. Variance partitioning in the reduced models for sapling 

species richness and density confirmed this predominant role of stress variables (data 

not shown) as for the full models. 

Effects of fire  

We predicted a decline in sapling species richness and density with increasing fire 

frequency. In contrast, species richness increased significantly with the number of 

fires (P = 0.02) but not density (Table 2). The relative increase in sapling species 

richness was 38% at the highest fire frequency (burning four times) while it was 32 % 

in unburned woodlands and ranged from 22 % to 39 % at intermediate fire frequency 

(one to three fires). Clearly sapling species richness was promoted by fire and showed 

a monotonous increase under increasing fire frequency. 

Effects of grazing 

Contrary to our expectation grazing alone had no significant effect on sapling species 

richness and density (Table 2). The most probable reason is the significant interaction 

between grazing and other variables in the model such as fire and stress factors. 

Otherwise species richness tended to increase more in grazed (38 %) than ungrazed 

(24%) woodlands while the increase in density was similar in grazed (57 %) and 

ungrazed (57 %) woodlands, regardless of the influence of other factors. 
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Combined effects of grazing and fire 

Our third hypothesis stated that fire and grazing combined would have a more 

negative impact on sapling species richness and density than either fire or grazing 

alone. In contrast, grazing combined with high frequency of fires increased sapling 

species richness but had no significant effect on density (Table 2, Fig. 3A and 3B). 

Indeed, the increase in species richness was higher in grazed (27 - 48 %) than 

ungrazed woodlands (18 - 31 %) at any fire frequency, and it was highest (48 %) in 

grazed and most frequently burned woodlands (i.e. burned four times). Conversely, 

sapling species richness also increased under grazing combined with increasing time 

between fires by 37-44 %. These results suggest that grazing had a positive effect on 

species richness both with and without fire but the increase in species richness was 

larger at the highest fire frequency than without fire. In contrast, sapling density 

differed little between grazed and ungrazed plots at any fire frequency. We conclude 

that grazing and fire combined had a positive effect on sapling species richness but 

not density. 

Effects of grazing and fire along stress gradients 

We expected a more negative impact of both grazing and fire disturbances under 

high abiotic stress. High soil salinity had a negative effect on both sapling species 

richness and density (Table 2). High water deficit had also a negative effect on sapling 

species richness but not on sapling density while soil fertility had no significant effect 

on any of the dependant variables. We found a significant interaction effect of 

grazing and soil salinity on both sapling species richness and density. Under higher 

soil salinity, sapling species richness and density were further reduced by grazing (Fig. 

3C and 3D) while under lower soil salinity grazing increased sapling species richness 

and density. These results confirmed our hypothesis and suggest that grazing had a 
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negative effect on both sapling species richness and density under high abiotic stress 

but a positive effect under low abiotic stress. 

 

Table 2: Parameters estimate for change in sapling species richness and sapling 

density in woodland forests. The symbol “-” indicates variables removed during 

models fitting while for other variables the significance is indicated by the P-value. All 

independent effects are listed on the table whereas only significant interactions are 

presented. 

Variable  Sapling species richness Sapling density 

 Estimate P-value Estimate P-value 

Independent effects: 

Year   0.120 < 0.001 

Grazing     

Number of fires 0.055 0.022   

Time since last fire     

Water deficit - 0.001 0.036   

Soil salinity - 0.294 0.005 - 0.327 0.013 

Soil fertility 0.212 0.016   

Woody biomass     

Disturbances interactions: 

Grazing x Time since last fire 0.131 0.010   

Grazing x Number of fires 0.050 0.045   

Disturbances interactions with abiotic stress: 

Grazing x Soil salinity - 0.225 0.045 - 0.588 < 0.001 
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Figure 3: Interactive effects of grazing with fire disturbances (box plots) and grazing 

with soil salinity (scatter diagrams) on sapling species richness (left panel) and density 

(right panel). The predicted changes in sapling species richness and density are based 

on parameters of the best fitting models (Table 2) which account for the pseudo-

replication in the design. 

Sapling richness Sapling density 
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Individual species responses 

The selected 43 sapling species represented 90.3 % of the total sapling stems counted 

at all sites during the experiment. We analyzed the relative change in density of these 

species using the best fitting model for the entire sapling community density which 

included soil salinity and the interaction of grazing with soil salinity. In line with the 

results at the entire sapling community, 63 % of the species responded negatively to 

high salinity (χ2 
= 2.81, df = 1, p = 0.094) and 70 % responded negatively to grazing 

combined with high salinity (χ2 
= 6.72, df = 1, p = 0.010) (Table 3). The patterns 

observed in the species populations thus confirmed our hypothesis that disturbances 

have a negative impact on sapling recruitment at higher abiotic stress. 

 

Table 3: Effects of grazing and soil salinity on the density of individual woodland 

species. We assumed the same model as for the entire sapling community which 

included soil salinity and grazing as predictors. 

 

Individual species responses  

(n = 43) 

Test statistics 

Negative Positive df χ2
 p-value 

salinity 62.8 % 37.2 % 1 2.81 0.094 

salinity x grazing 69.8 % 30.2 % 1 6.72 0.010 
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DISCUSSION 

We noted that grazing and fire explained less variation in sapling species richness and 

density than stress conditions such as soil salinity and water deficit (Table 1). This is 

not particularly surprising given the broad array of climatic and soil conditions 

covered in our experiment. Climate and soil conditions are generally good predictors 

of species distribution and vegetation growth potential in tropical regions (Bond et 

al., 2005). The actual species growth is however expected to be locally constrained by 

the frequency and intensity of disturbances (Huston, 1994; Sankaran et al., 2005). In 

the following sections, although our results give emphasis to the significant role of 

interactions between disturbances and abiotic stress for sapling recruitment, we first 

consider the individual effects of the disturbances and evaluate how our results fit 

into the current knowledge. Finally we discuss the effects of the disturbances in the 

context of stress gradients and their implications for vegetation dynamics. 

Effects of fire and grazing on species diversity 

Contrary to our predicted negative effects of frequent fire and grazing on sapling, 

species richness increased significantly under high fire frequency but not under 

grazing (Table 2; Fig 3). In addition, the two disturbances combined resulted in a 

higher increase in sapling richness (48 % at the highest fire frequency) than for fire 

alone (22 - 39 %). Previous studies on the effect of fire and grazing disturbances on 

species diversity have yielded contrasting results and indicated that species richness 

can increase along a gradient of increasing disturbances (Schwilk et al., 1997; Hill & 

French, 2004; Kennard, 2004), decrease (Laris & Wardell, 2006; Zida et al., 2007) or 

peak in the middle of the gradient (Huston, 1979; Mackey & Currie, 2001). The 

generally accepted explanation for the disturbance-diversity relationship is that 

species diversity should reach its maximum at intermediate levels of disturbance 

(Intermediate Disturbance Hypothesis: Connell, 1979; Huston, 1994) because few 
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species can survive under frequent and intense disturbances while under conditions 

of infrequent disturbances the species richness decreases due to competitive 

exclusion by dominant species.  

In our experiment, saplings showed a monotonic increase in species richness 

under increasing fire frequency in contrast to the typical hump-shaped curve 

suggested by the Intermediate Disturbance Hypothesis. Apparently our burning plan 

did not cover the entire fire disturbance gradient and the observed pattern suggests 

a relatively low to moderate fire disturbance. The effect of fire could become 

negative under late burning in the dry season and probably under longer exposure 

(i.e. several more burning years). Other experiments indicated significant changes in 

species richness under grazing (Pettit et al., 1995; Proulx & Mazumder, 1998; 

Alemayehu Wassie, 2007) but in our experiment grazing alone had no significant 

effect on species richness. However, fire and grazing combined had more positive 

effect on sapling richness than fire alone in our experiment. There are several 

possible explanations underlying the interactive effects of fire and grazing on sapling 

diversity. Fire and grazing can increase plant diversity by opening space for 

colonization by new species (Collins, 1987; Chaneton & Facelli, 1991) and by reducing 

the competitive superiority of dominant species (Huston, 1994; Osem et al., 2002). 

Other probable influences on the ecosystem include seed dispersal by herbivores 

(Huston, 1994) and the creation of spatial heterogeneity by both fire and grazing 

(Groen, 2007) favourable to a higher diversity of species. 
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Effects of fire and grazing on regeneration density 

We predicted a decline in sapling density with increasing fire and grazing frequencies. 

In contrast, sapling density was not significantly affected by fire and grazing 

disturbances alone or in combination (Table 2; Fig 3). Depending on their intensity 

and frequency, fire and herbivores can lower tree regeneration (Brookman-Amissah 

et al., 1980; Cave & Patten, 1984; Laris & Wardell, 2006) or increase it (Ben-Shahar, 

1996; Hoffmann, 1998; Jacobs & Biggs, 2001). Besides, grazing is often cited as 

probable causal factor for the increased woody biomass observed around the tropics 

(e.g. Jeltsch et al., 1997; Eckhardt et al., 2000; Roques et al., 2001; Sankaran et al., 

2008). The increased woody biomass following disturbances usually results from 

increased resprouting. The removal of the aerial biomass following fire can activate 

dormant buds to produce more root suckers or sprouts (Zida et al., 2007). Similarly, 

herbivores can stimulate resprouting through damages caused by browsing and 

trampling (Roques et al., 2001; Zida et al., 2007). Although we also observed 

increased resprouting in our experimental plots (e.g. Appendix 2D), our results 

suggest that there was no significant effect of fire and grazing on regeneration 

density. 

Influence of abiotic stress 

We predicted a stronger negative impact of grazing and fire disturbances under high 

abiotic stress. The patterns observed in both the entire sapling community (Table 2; 

Fig 3) and in individual species responses (Table 3) supported this prediction. Soil 

salinity (potentially causing soil water stress) was the predominant abiotic stress 

factor influencing tree regeneration in the woodlands. High soil salinity combined 

with grazing had a negative impact on sapling species richness and sapling density, 

while the effects were positive under low soil salinity. Soil fertility had no significant 

effect in our experiment but results from other experiments suggest that stress 



 

 Chapter 4: Effects of fire and herbivory - 85 

factors can change from one region to the other. For example, Proulx and Mazumder 

(1998) found a reversal of grazing impact on species richness in nutrient-rich vs. 

nutrient-poor ecosystems including forests, grasslands and aquatic systems. Similar 

shifts were found in annual plant communities along a productivity gradient (Osem et 

al., 2002). Other studies reported a positive effect of grazing in wet ecosystems 

(Peltier & Eyog Matig, 1989) and a negative effect in dry ecosystems (Stern et al., 

2002). It could be that under unproductive environment, cattle compensate for food 

shortage by increased seedling consumption (e.g. Ouédraogo-Koné et al., 2006; 

Alemayehu Wassie, 2007). An alternate explanation for shifts in the effects of 

disturbances along resource gradients is that high stress can hamper woody plants 

regrowth following a disturbance (Proulx & Mazumder, 1998) while at lower stress, 

the disturbances reduce competitive dominance among species and promote high 

species richness (Huston, 1979).  

Factors regulating the balance between trees and grasses are of primary 

importance for the vegetation dynamics and can induce dramatic changes in the 

ecosystem. Our experimental results demonstrate that shifts can occur in the effects 

of disturbances as a result of changes in abiotic stress conditions. Woodlands studied 

here were apparently resilient to fire and grazing disturbances but this resilience was 

lost under high abiotic stress. This has great implications for ecosystem dynamics as 

change in feedbacks involves reduced tree regeneration. As trees and grasses 

respond in an opposite way to disturbances and stress (Huston, 1994), an increase in 

grass biomass could create positive feedbacks whereby the probability of fire 

increases and lock the ecosystem into a grassland state. Such changes in the 

trajectory of the system could lead ultimately to a highly resilient alternate state (i.e. 

more grassy state) (Holling, 1973; Ludwig et al., 1997; Kinzig et al., 2006).  
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CONCLUSION 

Overall, our results indicate that interactions between disturbances and abiotic stress 

are more important than the independent effects of these factors on tree 

regeneration in woodlands and can lead to significant changes in the ecosystem 

dynamics. Frequent fires increased sapling species richness but not density while 

grazing alone had not significantly influenced saplings species richness or density. Fire 

and grazing combined had a positive effect on sapling species richness but not on 

density. However, under conditions of high abiotic stress (i.e. soil salinity) sapling 

species richness and density were reduced by grazing. Thus, the ecosystem resilience 

to disturbances was lost under conditions of high abiotic stress. The results of the 

present study illustrate that the effects of grazing and fire can be better understood 

by taking into account abiotic stress gradients as well as potential interactions 

between the disturbances. 
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Appendix 1: Main characteristics of the study sites. Sites are ordered by increasing 

latitude. Only average values per site are presented here since each site is composed 

of four experimental plots. Water deficit is calculated as Rainfall – PET, which yields 

negative values. Thus, in the analyses we took the absolute values for water deficit. 

We used tree basal area (m
2
/ha, dbh≥5 cm) as proxy for initial woody biomass. 

 

Sites Latitude 

(
0
N) 

Longitude 

(
0
E) 

Rainfall 

(mm) 

PET 

(mm) 

Water 

deficit 

(mm) 

Soil salinity 

(PC1 

scores) 

Soil fertility 

(PC2 

scores) 

Initial woody 

biomass 

(m
2
/ha, 

dbh≥5 cm) 

1 9.047 1.652 1112 1587 - 475 0.33 0.01 17.82 

2 9.133 2.119 1059 1628 - 569 0.23 0.17 12.31 

3 9.150 1.719 1124 1606 - 482 0.12 0.06 13.33 

4 9.159 1.731 1124 1606 - 482 0.34 - 0.04 16.58 

5 9.163 2.082 1077 1622 - 545 0.28 - 0.13 14.90 

6 9.288 1.565 1198 1612 - 414 0.27 0.14 17.88 

7 9.468 2.759 1094 1672 - 578 - 0.12 0.00 14.83 

8 9.755 2.697 1094 1707 - 613 - 0.13 0.00 17.65 

9 9.765 2.698 1094 1707 - 613 - 0.11 - 0.10 20.80 

10 10.136 2.500 1082 1739 - 657 - 0.12 - 0.11 11.39 

11 10.142 2.524 1082 1738 - 656 - 0.15 - 0.14 19.32 

12 10.185 2.596 1079 1741 - 662 - 0.12 - 0.12 13.62 

13 10.276 2.692 1068 1765 - 697 - 0.13 0.02 19.29 

14 10.453 2.736 1053 1788 - 735 - 0.11 - 0.07 17.17 

15 10.964 3.397 1001 1859 - 858 - 0.19 0.06 18.43 

16 10.980 3.298 1001 1859 - 858 - 0.19 0.10 16.90 

17 11.170 3.041 989 1898 - 909 - 0.21 0.14 20.30 
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Appendix 2: Photographs showing: (A) a freshly burned experimental plots with red 

paint mark-ups indicating the level of measurement for tree diameter; (B) cattle 

grazing in recently burned woodland; (C) a ground fire fuelled by a mixture of dry 

grasses and fallen tree leaves which is typical of the woodlands studied; (D) 

resprouting from Isoberlinia doka species following fire. Photos credit: S.S.H. Biaou. 
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ABSTRACT 

Plants in arid and water-limited environments are expected to cluster due to facilitative 

interactions among plants. Little is known however about the consequences of facilitative 

interactions and tree clustering for plant community diversity. In this study, we evaluated 

the relationship between tree spatial clustering and species diversity using data from 

woodlands of Benin. Because fire has been proposed as one of the main drivers in 

vegetation patterning in woodlands and savannas, and because tree clustering can affect in 

return the probability of fire, we also explored the existence of feedback loops between tree 

spatial distribution and fire occurrence in woodlands. We tested the hypotheses that tree 

clustering improves plant diversity; fire promotes tree clustering; and tree clustering reduces 

the probability of fire.  

Tree clustering was predominant at most woodland sites and occurred at two spatial 

scales. At a fine scale (plant to plant association), tree clustering increased the species 

diversity through facilitation of rare species. At a coarse scale (patch to patch association), 

clustering had no significant effect on the species diversity. Tree clustering was not 

promoted by fires. Fire reduced inter-patch distances at the coarse scale, probably due to 

intense resprouting. Fine scale clustering of trees reduced the probability of fire while 

clustering at the coarse scale and total woody cover increased the probability of fire. Our 

results provide evidence that tree clustering increased plant diversity at a fine scale, which is 

compatible with Hacker and Gains (1997) theoretical model predicting a positive relationship 

between facilitation and species diversity. These results however did not provide enough 

support to potential feedback loops between tree spatial clustering and fire in the 

woodlands studied. 

Key-words: Benin, Facilitation, Feedbacks, Fire probability, Spatial patterns, Species 

diversity, Tree clustering, West-Africa, Woodland  
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INTRODUCTION 

Woodland represents approximately 25 % of the natural vegetation in Africa and is 

the second most important vegetation type on the continent after savanna (Mayaux 

et al., 2004). Woodland occur predominantly in areas with prolonged (6 - 7 months) 

dry season and generally have larger woody cover (> 20 %) and taller trees (8-20 m 

height) than savannas (Bellefontaine et al., 1997). In water limited environments like 

woodlands, plants often exhibit a strong clustering pattern with woody patches of 

varying density and size dispersed in a matrix of herbaceous plants (Couteron & 

Kokou, 1997; Aguiar & Sala, 1999; Lejeune et al., 2002). Because tree spatial 

distribution determines how the species use available resources such as water, light 

and soil nutrients it has direct consequences for species coexistence and plant 

community diversity (Callaway, 1997; Condit et al., 2000).  

Tree clusters might result from positive interdependence or facilitation 

between plants (Tirado & Pugnaire, 2003). Plant spatial association in harsh 

environments often results in improved growth and survival because of reduced 

abiotic stress (e.g. Aerts et al., 2007), increased nutrient availability (e.g. Gómez-

Aparicio et al., 2005), reduced herbivore pressure (e.g. Brooker et al., 2006; Smit et 

al., 2007) as well as increased protection from fire (Groen, 2007). By facilitating the 

species that would not normally survive under harsh conditions, tree clustering can 

enable species to increase their realized niche and thereby enhance the overall 

community diversity (Callaway, 1997; Hacker & Gaines, 1997; Liancourt et al., 2005; 

Michalet et al., 2006). Conceptual models (Holmgren et al., 1997; Brooker & 

Callaghan, 1998) and experimental studies  (Holmgren, 2000; Maestre & Cortina, 

2004; Maestre et al., 2006; Smit et al., 2007) suggest however that plant-plant 

interaction can be positive, neutral, or even negative, depending on the level of 

abiotic stress (e.g. water and nutrients availability) or disturbance (e.g. fire and 
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grazing). Therefore, facilitation is expected to promote species diversity at 

intermediate stress and disturbance levels (Hacker & Gaines, 1997; Michalet et al., 

2006).  

Tree clustering is not necessarily associated with facilitation among plants and 

several other factors can modify or generate patterns in tree spatial distribution, 

including fire and herbivores. At high frequency, fire can promote tree clustering by 

preferentially killing isolated trees (Hochberg et al., 1994; Groen et al., 2008). 

Interestingly, the expansion of tree clusters might in turn alter the spread and the 

probability of future fires as they may serve as natural fire-breaks in surface fires 

regime (Turner et al., 1989; Miller & Urban, 2000), or by indirectly reducing grass 

biomass due to competition between tree and grasses (Minnich & Chou, 1997). Such 

a negative feedback between tree clustering and fire could give rise to potential 

feedback loops in the ecosystem, with direct consequences for plant community 

dynamics and species coexistence. Herbivores can also promote tree clustering 

through selective or repetitive grazing of some patches due to the positive feedback 

between grazing and forage quality (Adler et al., 2001; de Knegt et al., 2008), or by 

accentuating small scale heterogeneity through trampling and deposition of dungs 

and urines in discrete patches (Afzal & Adams, 1992; Steinauer & Collins, 1995). 

However, at high grazing and fire frequencies, tree clusters can be disrupted as well. 

In this study we assess the effect of tree spatial distribution on woody species 

diversity and explore the existence of potential feedbacks between tree spatial 

distribution and the probability of fire occurrence in woodlands of Benin. We tested 

the hypotheses that (1) tree clustering increases species diversity; (2) high fire 

frequency increases tree clustering; and (3) tree clustering reduces the probability of 

fire occurrence in woodlands. An implicit assumption made here is that there may be 

feedback loops between tree spatial distribution and fire. Our analysis is based on a 

four years experiment in woodlands of Benin with fire and grazing disturbances along 
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gradients of water stress, soil salinity and fertility. We monitored changes in sapling 

species richness from 2003 to 2006 and assessed the limiting effect of tree clustering 

on the species diversity using quantiles regression. During the experiment, unplanned 

fires occurred from zero to three times in 32 fire-protected plots and we used those 

data to quantify the effect of tree spatial distribution on the probability of fire 

occurrence. We used tree spatial distribution at a given year as predictor of fire 

incidence the following year, after accounting for potential effects of other 

environmental factors (grazing, water stress, soil salinity and fertility). 

METHODS 

Study area and abiotic conditions 

The experiment was conducted at 17 sites located between 9.05
o
 - 11.17

o
 N latitude 

and 1.65
o
 - 3.4

o
 N longitude in Benin (Fig. 1). The mean annual precipitation and 

mean annual reference evapotranspiration are comprised respectively between 989 – 

1198 mm and 1587 – 1898 mm across the study sites (averages 1961 - 1990: FAO, 

2008a) and they were mostly correlated with the latidunal positions of the sites. 

Accordingly, the dry season (i.e. months with precipitation less than half of 

evapotranspiration) is only 5 months (November-March) in the southern range of our 

study area while it extends to 7 months (October-April) towards the north. Instead of 

using simple measures of rainfall and evapotranspiration in the analyses, we used 

water deficit (Paltineanu et al., 2007) as it integrates both parameters and provides a 

good indication of the water stress potentially experienced by plants. We calculated 

the water deficit (in mm) in each study site as the difference between the 

precipitation (P) and the reference evapotranspiration (ET) (Paltineanu et al., 2007). 

Because evapotranspiration is usually higher than precipitation in dry ecosystems 

(Murphy & Lugo, 1995), the annual water deficit was negative for all study sites and 

ranged from - 414 mm to - 919 mm from South towards North of the study area. To 
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avoid manipulating negative numbers and to facilitate the interpretation of results, 

we took the absolute value for water deficit in the subsequent analyses, and we refer 

to it as water stress from here onwards. 

 

 

Figure 1: Study sites locations in Benin. The shaded area on the map corresponds to 

regions where woodlands occur in Benin and numbers (1 to 17) represent study sites. 
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Soils in the study area are mostly of ferruginous type (Faure & Volkoff, 1998). 

In order to characterize soil variability in our experimental plots, we collected soil 

samples in the first 30 cm soil surface from all experimental plots in August 2004 and 

analyzed them for soil texture (i.e. sand, silt and clay proportions) and chemical 

properties (i.e. pH, total carbon, total nitrogen, organic matter, available phosphorus, 

CEC and exchangeable bases). We used one composite sample per plot consisting of a 

mixture of five sub-samples collected at the four corners and the centre of each plot. 

Soil analysis was performed in Benin at the soil laboratory of the National Institute for 

Agricultural Research (Laboratoire des sciences du sol d’Agonkanmey, INRAB). 

Soil texture on experimental sites varied from loamy sand (i.e. 6 - 12 % of clay, 

11 - 34 % of silt and 70 - 82% of sand) to sandy loam (i.e. 10 - 18 % of clay, 18 - 23 % 

of silt and 55 - 67 % of sand). Sodium (Na) content was between 0.08 - 1.5 cmol kg
-1

 

while soil total cations, cation-exchange capacity (CEC) and available phosphorus 

were respectively between 3.3 - 13.3 cmol kg
-1

, 3.8 - 13.8 cmol kg
-1

 and 1 - 14 mg kg
-1

. 

To reduce the number of soil variables and identify major soil gradients in our study 

area, we used a principal component analysis (PCA) with canoco software (ter Braak, 

1987) after log transforming the data to account for differences in measurement 

scales. Soil salinity (sodium content, Na) emerged as the predominant gradient, with 

43.3 % of the total soil variance explained and it was highly correlated (r = 0.98) with 

the first PCA axis (PC1). The second axis (PC2) was characterized by strong positive 

loadings of major soil fertility elements: total cations (TotCatio, r = 0.82), cation-

exchange capacity (CEC, r = 0.85), exchangeable bases (r = 0.87, 0.87 and 0.58 

respectively for Ca, Mg and K) and available phosphorus (P, r = 0.71). We eventually 

used plot scores on these two principal components as proxies for soil salinity (PC1) 

and soil fertility (PC2) in the subsequent analysis. 
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Experimental design 

In September-October 2003, we selected 17 sites in woodland forests across the 

climatic gradient and installed four treatment plots (20 x 20 m) at each of these sites. 

We randomly assigned four treatments (control; fire only; grazing only; fire + grazing) 

to the four experimental plots of each site and constructed enclosures for the 

grazing-free plots and cleared a fire break around all plots each year. The whole 

experiment involved 68 plots which were initially equally distributed amongst our 

four treatments. From 2003 to 2006 we measured and recorded the x-y coordinates 

of all individual woody species ≥ 30 cm height in each 10 x 10 m sub-plot.  

Using data from our consecutive samplings, we calculated the species richness 

and evenness for each plot by year. Data presented here were restricted to sapling 

species which we define as woody species between 30 and 150 cm height. To account 

for differences in sapling species density, we calculated the rarefied species richness 

(i.e. expected species richness) from a random subsamples of 25 individuals drawn in 

each plot (Hurlbert, 1971). For the species evenness we used Smith and Wilson’s 

index (Evar) which is independent from species richness and has equal sensitivity to 

minor and abundant species (Smith & Wilson, 1996). Evar is comprised between 0 - 1, 

with 1 indicating equal abundance of all species and values close to 0 indicating 

dominance.  

Fire and grazing disturbances 

Because detailed fire and grazing history was not available for any of the 

experimental plots, we used only information collected during our experiment from 

2003 to 2006. The study sites are located in woodlands that are grazed by cattle all 

the year except during the rainy season (April – October) when cows are tied to avoid 

their incursion in crop fields. There was no grazing by large wild herbivores as all plots 
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were located outside forest reserves. Average cattle population density in the study 

area in 2004 was 13-22 animals / km2 (FAO, 2008b).  

Every experimental year, we burned the fire-only and fire+grazing plots in 

December-January when grasses are dry. Unplanned fires occurred in several plots 

and instead of using the initial treatment variable in our statistical analyses, we 

monitored fire occurrence every year and recorded for each plot the number of fires 

since the beginning of the experiment and the time since the last fire (in year). 

Measures of tree spatial clustering  

We assessed the importance of tree spatial clustering in the studied woodlands and 

characterized changes in tree distribution pattern within plots using point pattern 

analysis based on the L-function (Fortin et al., 2002). The L-function is the linearized 

form of Ripley's K-function (Ripley, 1977). Ripley’s K describes how spatial 

interactions change through space and is calculated as the mean number of points 

lying within a circular window of varying radius t: K (t) = λ-1 Σ Σ It (ei, ej) / n, for i ≠ j 

and t > 0; λ 
is estimated as the density n/A where A is the area of the plot; It is an 

indicator function that takes value 1 when ej is within distance t of event ei and 0 

otherwise; n is the total number of points. The corresponding L-function is L(t) = sqrt 

(K(t) / π), with sqrt standing for “square root”. We applied Ripley's isotropic 

correction in the determination of the L-function and restricted t values to a 

maximum of 1/4 of the side length of the study plot to reduce bias arising from edge 

effects (Ripley, 1988). Tree spatial pattern is evaluated by plotting L(t) against t. The 

theoretical value of the L-function for a completely random (uniform Poisson) point 

pattern is L(t) = t. To test whether there is evidence to allow rejection of the 

complete spatial randomness hypothesis, a 95 % confidence interval for the 

theoretical L-function was obtained through Monte Carlo simulations. At distances 

where significant clustering occurs among plants the observed L-function lies above 
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the upper envelope of the theoretical distribution while it is below the lower 

envelope in case of a regular plant distribution (see Fig. 2). 

 

Figure 2: Examples of characterization of tree 

spatial distribution in woodland plots based on 

L-functions. The solid black line on each graph 

represents the observed L function; the 

oblique dashed line represents the theoretical 

distribution under complete spatial 

randomness; the dotted lines represent the 

lower and upper envelopes of the theoretical 

distribution (p = 5 %). At distances (r in cm) 

where spatial clustering is significant, the 

observed L-function lies above the upper 

envelope of the theoretical distribution (a; r > 

10 cm) while it is between the upper and lower 

envelopes for a random distribution (b; r > 20 

cm) and below the lower envelop for a regular 

distribution (c; r = 75 - 125 and r > 200 cm). 
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To quantify the degree of spatial clustering and facilitate comparison among 

plots in the subsequent analyses, we used the average nearest neighbour distance 

(NND). When plants are clustered NND should be smaller than situations where 

plants show random and regular patterns (Condit et al., 2000; Perry et al., 2008). We 

calculated NND based on the x-y coordinates of individual trees (≥ 30 cm height, 

including adult trees) in each plot. NND has the advantage of capturing information 

on how individual plants are associated on a fine scale but do not give indication on 

the overall importance of woody cover in a plot or clustering at larger spatial scale 

(i.e. beyond neighbour scale). Thus, we also estimated the number of tree clusters 

(NCL) and the total cluster size (area covered , ACL) in each plot using the image 

processing software NIH ImageJ 1.40g (Abramoff et al., 2004). For this purpose, we 

mapped all individual trees and identified tree clusters by connecting neighbouring 

trees that are separated by distance ≤ 0.5 m (Fig. 3). Clusters statistics (i.e. number 

and total size) were then estimated using ImageJ. We eventually used the nearest 

neighbour distance as indicator of fine scale tree clustering (plant to plant 

association) while we use the total cluster size to estimate woody cover in a plot 

respectively. The number of tree clusters in a plot was regarded as the degree of 

fragmentation of woody patches or spatial clustering at a coarse scale (patch to patch 

association). The average distance to nearest neighbour was correlated negatively 

with cluster size (Spearman correlation: r = - 0.83, p < 0.001) but not with the number 

of clusters (r = 0.07, p = 0.237). The number of clusters had a unimodal relationship 

with nearest neighbour distance (graph not presented), indicating that fine scale tree 

clustering could occur at both low and high degree of clusters fragmentation in a plot.  
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Figure 3: Procedure for clusters identification in woodland plots: (a) all individual 

trees within a plot were mapped and (b) surrounded by shaded circles of 0.5 m 

radius; (c) individuals separated by distance ≤ 0.5 m were then assembled into 

clusters (numbers 1 – 9) which sizes (m
2
) were estimated using the image processing 

software ImageJ. 

(a) (b) 
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Cluster Size (m2) 
1 16.6 
2 20.2 
3 1.8 
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5 10 
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Statistical analyses 

To assess the relationship between tree spatial clustering and sapling species 

diversity we used quantiles regression (Koenker & Hallock, 2001) with species 

richness and species evenness as dependent variables and nearest neighbour 

distance, number of clusters and cluster size as predictors. We explored the effect of 

tree clustering on sapling species richness and evenness for the 10
th

 (lower), 50
th

, 75
th

 

and 95
th

 (upper) quantiles. However, since we were interested in assessing the 

limiting effect of tree clustering on the potential / maximal sapling diversity, we 

considered the relationship significant only if regression coefficients were significant 

for quantiles > 50
th

. We included a quadratic terms of each predictor variable in the 

models to account for potential unimodal relationships and they were eventually 

removed in case they were not significant.  

To assess which factors determined changes in tree spatial patterns we used 

linear mixed effects models (Pinheiro & Bates, 1998) with fire, grazing, water deficit, 

soil salinity and fertility as fixed effects and plot as random factor. We calculated the 

relative change in tree spatial pattern as changes in nearest neighbour distance 

(NND), number (NCL) and size of tree clusters (ACL). For each of the three response 

variables we calculated the relative change as the ratio between the value of at a 

given year (t) and the initial value (t=0); for example: NNDt/NND0. We added all two-

way interactions to the full model for each dependent variable and reduced it step by 

step, starting with the removal of the interactions. At each step of the model 

simplification, we compared alternate models using a likelihood ratio test and 

selected the model that significantly improved the model fit with the lowest Akaike 

information criterion (Crawley, 2007). We ultimately used the restricted maximum 

likelihood (REML) method to estimate parameters in the best fitting model (Pinheiro 

& Bates, 1998).  
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We checked for potential feedback relationships between fire and tree spatial 

pattern using data from unplanned fire events that occurred during our experiment. 

Unplanned fires occurred from zero to three times in 32 fire-protected plots. Because 

fire was assessed consecutively on the same plots, we tested for potential pseudo-

replication in the data using a generalized mixed model but found no support for 

spatial pseudo-replication (plots nested within sites) nor for temporal pseudo-

replication (same plot censored consecutively). Therefore, we used logistic regression 

with binomial errors (i.e. fire: yes or no) to assess how the probability of fire 

occurrence at a given year (t) was affected by tree spatial distribution the preceding 

year (t-1). Since fire could also be determined by climatic conditions, grazing and soil 

properties, we included water stress, grazing, soil salinity and soil fertility in our 

model. To assess the quality of the fire model, we used  McFadden's "pseudo-R
2
" 

(McFadden, 1974) which is the proportional deviance explained by the best fitting 

model compared to the null model (intercept only). It was calculated as: (deviance of 

the model) - (deviance of the null model) / (deviance of the null model). 

We performed all analyses within the R 2.7.1 computing environment (R 

Development Core Team, 2008), with the packages “spdep” for spatial patterns 

analyses, “quantreg” for quantile regressions and “MASS” for logistic regressions. 
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RESULTS 

Overall, point pattern analyses based on L-functions suggested that tree clustering 

represented the predominant type of tree spatial distribution in the woodlands 

studied and this observation was consistent during the four study years (Fig. 4a-d). 

Trees were significantly clustered at distances < 150 cm for 54 - 84 % of the study 

plots and at distances between 150 – 250 cm for 45 – 59 % of the plots. For 16 - 43 % 

of the plots tree distribution did not deviate significantly from a random distribution 

at distances < 150 cm but the proportion of plots exhibiting random patterns 

increased at larger distances, reaching 49 - 54 % at distances between 200 – 250 cm. 

Trees showed some regularity at distances greater than 50 cm, though in only 1 - 3 % 

of the plots. The mean nearest neighbour distance for the great majority of study 

plots was < 100 cm (Fig. 4e), thus confirming the high tendency towards tree spatial 

clustering in the woodlands studied. 
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Figure 4: Relative frequency of tree spatial patterns identified in woodlands of Benin 

from 2003 and 2006. For each study year (a – d), stacked bars show proportions of 

study plots having clustered (hatched), random (white) and regular (black) spatial 

patterns per distance classes as suggested by point pattern analyses based on the L-

function. The number of plots studied is 65 in 2003 and 68 from 2004 to 2006 

because 3 plots were inventoried only after 2003. For all the four years pooled (e), 

each bar represents the proportion of plot having a mean distance to nearest 

neighbour in the range indicated on the x-axis. 

(e) All years pooled 

(b) (a) 

(c) (d) 
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Effects of tree clustering on sapling diversity 

Our hypothesis that sapling species richness increases with tree spatial clustering was 

found true at the fine scale clustering (i.e. smaller distance to nearest neighbour) but 

not at the coarse scale (number of tree clusters). Sapling species richness was 

strongly correlated with nearest neighbour distance (10
th

 to 75
th

 quantiles) and tree 

cluster size (10
th

 - 95
th

 quantiles), but not with the number of clusters (50
th

 quantile 

only) (Table 1, Fig. 5). The species richness decreased with neighbour distance (i.e. 

tree spacing) while it showed a unimodal pattern with increasing tree cluster size and 

was highest at intermediate cluster size. In order to check for potential influences of 

rare species, we assessed the effect of tree clustering on the species evenness (Fig. 

5b & d, Table 1). The species evenness increased with distance to neighbour while it 

decreased with the size of tree clusters.  

Thus, the highest species richness was found in woodlands with small 

distances to neighbours and large tree clusters but there were no strong differences 

regarding the number of clusters.  Clearly, high species richness in the woodlands was 

associated with fine scale tree clustering and was accompanied with reduced species 

evenness. 
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Figure 5: Effect of tree clustering on (a, c) sapling species richness and (b, d) 

evenness. We used the mean distance to nearest neighbour in each plot as proxy for 

fine scale tree clustering while cluster size indicate the total woody cover in a plot. 

Because the number of tree clusters had no significant effect on species richness (see 

Table 1), graphs with the number of clusters are not presented. Each dot on the 

scatterplots represents a study plot at a given year (2003 – 2004). The lines represent 

the 95
th

 (solid, upper line), 50
th

 (dotted, intermediate line) and 10
th

 (dashed, lower 

line) quantiles. 

Rarefied species richness Species evenness 

(b) (a) 

(c) (d) 
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Table 1: Effect of tree clustering on sapling species richness and evenness. Quadratic 

terms for the nearest neighbour distance (NND
2
), the number of tree clusters (NCL

2
) 

and cluster size (ACL
2
) were included in the quantile regressions only if they 

significantly improved the model fit. Regression coefficients that are significantly 

different from zero are indicated by * (p < 5 %), ** (p < 1 %) and *** (p < 0.1 %). 

 

 Rarefied species richness  

(dbh < 10 cm) 

Species evenness   

(dbh < 10 cm) 

tau NND NND
2
 NCL NCL

2
 ACL ACL

2
 NND NND

2
 NCL NCL

2
 ACL ACL

2
 

10th -0.039***  0.72 -0.015 0.26*** -0.002* 0.004* 0.00001 0.005*  -0.006***  

50th -0.051***  -0.80* 0.035** 0.36*** -0.004*** 0.008*** -0.00003* 0.002  -0.007***  

75th -0.037**  -0.59 0.023 0.32*** -0.004*** 0.007*** -0.00002* -0.01*  -0.008***  

95th -0.026  -0.75 0.028 0.31** -0.004** 0.006** -0.00002 -0.01***  -0.007***  
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Change in the strength of tree clustering along gradients of resources and 

disturbances 

We predicted an increase in tree clustering at high fire frequency but our data did not 

support this hypothesis. We found that fire had a negative effect on clustering at the 

coarse scale (i.e. reduction in the number of clusters) while it had no significant effect 

at fine scale (i.e. neighbour distance). The number of tree clusters significantly 

decreased at high fire frequency (P = 0.020) while it increased with time since last fire 

(p = 0.026) (Table 2). Both the nearest neighbour distance and cluster size were not 

significantly affected by fire.  

Changes in tree spatial patterns were also significantly influenced by abiotic 

conditions (i.e. soil salinity and water deficit) but not by grazing (Table 2). High soil 

salinity significantly reduced tree cluster size (p < 0.001) but had no significant effects 

on the nearest neighbour distance and the number of clusters. At high water deficit, 

both the distance to the nearest neighbour (p = 0.022) and the number of tree 

clusters (p = 0.040) increased significantly while cluster size was not affected by water 

deficit. We found also a significant interaction between water deficit and time since 

last fire which reduced the number of tree clusters but did not affect the distance to 

nearest neighbour, nor cluster size.  

Clearly, fire did not have any significant effect on fine scale clustering of trees, 

nor on total cluster size. Long time interval between fires increased the number of 

tree clusters (coarse scale clustering) but not at high water deficit where the number 

of clusters was reduced. 
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Table 2: Parameters estimate for the effect of fire, grazing and abiotic conditions on 

the change in woodlands tree spatial patterns. The relative change in each dependent 

variable was calculated as the ratio of the value at a given sampling occasion (2004 - 

2006) over the initial value recorded in 2003. 

 Dependent variables 

Relative change in 

the number of 

clusters 

Relative change in 

the clusters size 

Relative change in 

the nearest 

neighbour distance 

Factors Coef. P-value Coef. P-value Coef. P-value 

Year   0.067 < 0.001   

Number of fires - 0.041 0.020     

Time last fire 0.286 0.026     

Grazing       

Soil salinity   - 0.266 < 0.001   

Soil fertility       

Water deficit 0.0001 0.040   0.0001 0.022 

Water deficit x time last fire - 0.001 0.013     
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Unplanned fire events and their relation to tree spatial distribution 

Using data from unplanned fire events in our experiments, we tested the hypothesis 

that tree clustering lowers the probability of fire in woodlands. Our fire model 

explained 37 % of the variation (Pseudo R
2
) in fire incidence with nearest neighbour 

distance, number and size of tree clusters, water deficit, soil salinity and grazing as 

predictors variables. The effect of tree clustering on fire was scale-dependent. Tree 

clustering at a fine scale (small neighbour distance) reduced the probability of fire 

occurrence while high fragmentation of woody clusters (i.e. large number of tree 

clusters) increased the probability of fire (Table 3). These results suggest that highly 

dispersed trees and highly scattered woody clusters favoured the spread of fire in 

woodlands. Surprisingly, larger woody cover (i.e. cluster size) also increased the 

probability of fire. However, the interaction between cluster size and the number of 

clusters reduced the probability of fire, suggesting that under large woody cover (i.e. 

high tree cluster size) fire was less probable in highly fragmented woodlands (i.e. 

large number of clusters). 

Abiotic conditions such as water deficit and soil salinity also influenced the 

probability of fire occurrence. Fire was less likely at high water deficit and more likely 

at high soil salinity. However, at high soil salinity combined with high water deficit the 

probability of fire was reduced. Grazing affected the probability of fire occurrence in 

a more complex way. Grazing alone increased the probability of fire occurrence while 

it reduced the probability of fire at high nearest neighbour distance and at high 

number of tree clusters. Apparently, grazing had a negative effect on fire only in 

woodlands with highly dispersed trees (i.e. high neighbour distance) and highly 

dispersed woody patches (i.e. large number of clusters). 
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Table 3: Parameters estimate for the effects of tree clustering and abiotic conditions 

on the probability of fire occurrence in woodlands of Benin. We modelled fire 

occurrence at a given year as a function tree clusters characteristics (i.e. nearest 

neighbour distance, size and number of clusters) the preceding year, while 

accounting for other factors such as grazing and abiotic stress.   

 Fire occurrence (yes / no) 

(Pseudo R2 = 37.04 %) 

 Coefficient P-value 

Nearest neighbour distance (cm) 0.05 0.050 

Cluster size (m2) 0.46 0.012 

Number of clusters 1.31 0.013 

Water deficit (mm) - 0.01 0.062 

Soil salinity (index) 15.56 0.001 

Grazing 22.83 0.006 

Water deficit x Soil salinity - 0.03 0.002 

Grazing x Nearest neighbour distance - 0.11 0.005 

Grazing x Number of clusters - 0.79 0.036 

Cluster size x Number of clusters - 0.03 0.014 
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DISCUSSION 

Effect of tree spatial aggregation on sapling diversity in woodlands 

We predicted that species diversity should increase with tree spatial clustering and 

we used the mean nearest neighbour distance (plant to plant association) and the 

number of clusters (degree of fragmentation of tree clusters) as indicators of tree 

spatial clustering at fine and coarse scale respectively. Our results indicated that the 

species diversity increased with tree clustering at fine scale (Fig. 5, Table 1), which is 

in line with our hypothesis. In contrast, at the coarse scale, species diversity was not 

significantly correlated with the number of tree clusters. We also looked at the 

relationship between species richness and tree cluster size (total woody cover) and 

found that species richness increased with cluster size. This was not surprising since 

tree cluster was strongly correlated, negatively, with the mean nearest neighbour 

distance. We conclude that species richness was probably promoted by plant to plant 

associations in the studied woodlands. 

 These results conform to the previous findings indicating positive 

interdependence between plants in stressful environments (e.g. Callaway, 1997; 

Barnes & Archer, 1999; Tielborger & Kadmon, 2000; Choler et al., 2001; Tewksbury & 

Lloyd, 2001; Tirado & Pugnaire, 2003; Gómez-Aparicio et al., 2005; Aerts et al., 2007). 

For similar environmental conditions in Burkina Faso, Couteron and Kokou (1997) 

found tree clusters composed of multiple tree species but did not explicitly relate 

such patterns to facilitation among plants. Interestingly, we found that species 

evenness decreased at the same time the species richness increased, thus indicating 

that the proportion of rare species increased with fine scale clustering. It has been 

proposed that less tolerant (rare) species to the stressful conditions should be more 

likely facilitated (Choler et al., 2001; Davis et al., 2005; Liancourt et al., 2005). Our 

results thus confirm this idea. 
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Determinants of tree spatial distribution and effect of fire 

We hypothesized that tree clustering would increase with fire frequency but this was 

not found true in the conditions of the woodlands studied here. At a fine scale, fire 

had no significant effect on the nearest neighbour distance (Table 2). In contrast the 

number of tree clusters in a plot (coarse scale clustering) was significantly reduced by 

frequent fires while it increased with long time intervals between fires. These results 

suggest that other processes than fire determined the fine scale clustering of trees 

and that for some reasons, frequent fires promoted the interconnection of woody 

patches, thus reducing the number of tree clusters.  

In South African savannas, Groen et al. (2008) found that high fire frequency 

increased tree spatial clustering for rare species but not for dominant species. In this 

study we did not separate between rare and dominant species but the patterns we 

observed suggest a similar trend. An explanation for the negative effect of fire on the 

number of woody clusters here would be the increase in resprouting following fire. It 

has been demonstrated that the removal of aerial biomass following fire can activate 

dormant buds to produce more root suckers or sprouts. Most woodland species in 

West Africa have such a capacity to resprout vigorously (Bellefontaine, 1997; Zida et 

al., 2007). Conversely, our data suggest that this did not induce an increase of the 

total woody cover as cluster size did not change significantly. This could be due to 

sensible differences in fire intensity, with moderate fire intensity between patches 

enabling tree regeneration through resprouting while at the same time higher fire 

intensity at the peripheries of woody patches likely result in losses of woody cover. 

Without any measurements of fire intensity in our study plots we could however not 

prove the existence of such mechanisms.  

While grazing and soil fertility had no significant effects on tree spatial 

distribution, we noted a significant increase in both the nearest neighbour distance 
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and the number of tree clusters at high water deficit. This suggest an increase in 

competition between plants at the drier extreme of our water gradient which likely 

induced spacing of both individual plants (i.e. increase in neighbour distance) and 

woody patches (i.e. increase in number of clusters). This is in accordance with 

previous researches indicating that plant relationships can shift from facilitation to 

competition towards extremely stressful conditions (Holmgren et al., 1997; Brooker & 

Callaghan, 1998; Maestre & Cortina, 2004; Maestre et al., 2006).  

Tree spatial clustering could have resulted from other processes such as soil 

heterogeneity or limited dispersal. Under high soil heterogeneity we would expect 

the species richness to increase with the number of clusters within a plot, due to an 

increase in the number of potential niches (Chase & Leibold, 2002). The absence of 

relation between the species richness and the number of clusters that we noted 

previously provides little support for soil spatial heterogeneity in the studied 

woodlands. If dispersal limitation would apply to the woodlands studied here, we 

would expect the prevalence of mono-specific tree patches, thus a decreasing species 

richness with increasing clustering (e.g. Plotkin et al., 2000; Perry et al., 2008). 

Although it was suggested that tree resprouting could generate the same pattern 

(Groen et al., 2008), our data did not provide such evidence. 
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Effect of tree spatial patterns on fire occurrence 

We predicted a decrease in the probability of fire with increasing tree clustering. We 

found that the effect of tree clustering on fire was also scale-dependent. Whereas 

fine scale clumping of trees reduced the probability of fire, coarse scale clustering 

(i.e. number of tree clusters) and larger woody cover (i.e. cluster size) increased the 

probability of fire (Table 3). These results highlight three important determinants of 

fire in the woodlands. First, the fine scale clustering of trees may be associated with 

low grass cover and thereby a lower probability of fire. Second, the coarse scale 

clustering implies high fragmentation of woody patches and apparently a higher 

probability of fire possibly due to more space left for grasses between patches. These 

two observations are in accordance with previous findings related to fire behaviour in 

savanna-woodland ecosystems as determined by grass and woody biomasses (e.g. 

Jeltsch et al., 1996; Van Langevelde et al., 2003). Third, the total woody cover might 

indicate a higher availability of dead tree leaves, possibly fuelling fire. It was noted 

that dead leaves of the litter layer often constitute a larger proportion of fuel load in 

dry forests compared to grassland (Kauffman et al., 1994). In semi-arid conditions 

such as woodlands in Benin, where most tree species are deciduous, it is likely that 

dead leaves play an important role in the spread of fire.  

Surprisingly, we found that grazing alone increased fire probability whereas it 

reduced it in woodlands with highly dispersed trees (i.e. high neighbour distance) and 

highly dispersed woody patches (i.e. large number of clusters). Several possible 

reasons could explain such results. Fire could have been initiated on purpose by 

cattle herders to stimulate grass regrowth for their livestock. Another possible 

explanation might be that, because of the positive feedback between grazing and 

forage quality (Adler et al., 2001; de Knegt et al., 2008), cattle grazing could have 
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been most intense in woodlands with lighter tree cover, thus suppressing enough 

grasses to prevent fire in those woodlands.  

Overall, fire occurrence in the studied woodlands appeared to be the result of 

several opposing factors with complex interactions at different scales. We did not 

find enough evidence for a strong feedback loop between tree clustering and fire 

occurrence as tree clustering at fine scale and coarse scale produced opposite effects 

on fire probability. These results tend to confirm the observation by Thonicke et al. 

(2001) that in semi-arid Africa, it is not sufficient to consider fuel load (particularly 

grasses) and soil moister as key driver to simulate fire regimes. Several other 

mechanisms need to be considered such as interactions between the woody 

component and grazing, among others. 

  Taken together, our results suggest that tree clustering had a positive effect 

on species diversity through facilitation between plants at fine spatial scale. This 

conforms to models predicting a positive effect of facilitation on plant community 

diversity (Hacker & Gaines, 1997; Michalet et al., 2006). We also found support to the 

idea that this increase in species diversity was due to the facilitation of rare and 

probably stress-intolerant species (Hacker & Gaines, 1997; Liancourt et al., 2005; 

Michalet et al., 2006). Our data did not provide however evidence for the existence 

of feedback loops between fire and tree clustering in the woodlands studied. The fine 

scale tree clustering appeared to have a negative effect on fire but fire did not 

improve such tree clustering. On the contrary, fire seemed to reduce the coarse scale 

clustering of trees and to promote conditions favourable to future fires. Our results 

indicate also complex interactions between fire and other processes, such as grazing 

and tree clustering at different spatial scales, which need to be clarified by future 

researches.



 

 Chapter 5: Tree clustering, diversity and fire - 119 

ACKNOWLEDGMENTS 

S. S. H. Biaou acknowledges funding by the International Foundation for Science (IFS 

D-3493) and the Forest Ecology and Management Group (Wageningen University). M. 

Holmgren thanks the Dutch NWO Meervoud Programme (836.05.021). We thank A. 

Houngnon, G. Sinasson, N. Tohindé, E. Idjigberou and A. Zoumarou for their help with 

data collection; T. Sinandouwirou and Mrs. Ndah for their logistical support at Kandi 

and Bassila. 



120 

 

 

Recently cleared woodland for charcoal production 

  



 

 Chapter 6: General discussion - 121 

Chapter 6 

General discussion 

 

 

 

 

 

 



Chapter 6: General discussion - 122 



 

 Chapter 6: General discussion - 123 

Dry woodlands cover large areas in the tropics and particularly in Africa. The African 

woodlands are currently being used extensively and locally degenerated to poorer 

and more open vegetation. To come up with sustainable management strategies for 

woodlands, the interactive effects of multiple factors such as fire, herbivore grazing, 

and climate and soil conditions need to be understood. These drivers of woodland 

dynamics may buffer or reinforce each other while simultaneously influencing tree 

recruitment and species diversity in woodlands. The research reported here 

attempted to disentangle the effects of these multiple drivers on plant-plant 

interactions, tree recruitment, diversity and structure of dry woodlands in Benin. The 

Beninese woodlands are part of a large and almost continuous strip of Isoberlinia 

woodlands extending from Mali to Uganda in Africa north of the Equator. The 

following general question guided this research: How do climate, soil, fire and grazing 

and their interactions influence the competitive versus facilitative interactions 

between plants, the regeneration success of seedlings, and the species composition, 

richness and structure of woodlands? In the following sections the main results of 

this research are presented and discussed for their theoretical and practical 

relevance.  

WOODLAND ECOLOGY 

Huston’s dynamic equilibrium model (Huston, 1979; 1994) was used as main working 

hypothesis to make predictions regarding patterns in plant performance, species 

richness, structure of Beninese woodlands in response to soil and climate driven 

stress gradients, to disturbances by grazers and fire, and to interactions between 

those factors. This model predicts facilitative rather than competitive plant 

interactions, improved seedling establishment, improved species coexistence, and 

higher species richness and diversity at intermediate levels of stress and disturbance. 
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Patterns in diversity driven by water shortage 

The limiting effect of water stress on woody species richness and tree density was 

tested for trees in the semi-arid woodland-savanna mosaics of Benin. The predicted 

unimodal response in species richness to water stress was found to be true for the 

total tree and shrub community as well as for only the juvenile trees in the system, 

but not for adult trees that decreased in species richness with increasing water stress. 

The predicted linear decrease in tree density with increasing water stress was not 

found for the total community, nor for juveniles, while surprisingly adult tree density 

increased with water stress. 

It has been suggested that the highest tree species diversity occurs at 

intermediate stress levels because stress tolerant species dominate high stress 

conditions, stress sensitive species dominate the low stress conditions, and species of 

both groups co-exist at intermediate stress levels (e.g. Bruun et al., 2006). However, 

this was not observed in the Benin woodland-savanna landscapes studied here, as a 

high proportion of unique species explained the high diversity at intermediate stress 

level. It is probable that disturbances by fire and herbivores improved species 

coexistence at intermediate stress levels by reducing species populations, and thus 

preventing competitive exclusion among the species (Huston, 1979; Huston, 1994).  

This result suggests that disturbances did not affect the species the same way across 

the water stress gradient. While these results corroborate previous findings that 

disturbances strongly determine the dynamics of dry vegetation (e.g. Gentry, 1995; 

Gillespie et al., 2000), they also show the important role of water stress, potentially 

interacting with or modifying the importance of other local factors such as fire and 

grazing. We thus suggest that the hump-shaped pattern in species richness along the 

water stress gradient, as predicted from Huston’s model (1979; 1994), resulted from 
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positive plant-plant interactions and low competition between plants imposed by fire 

and grazing at intermediate stress levels.  

Facilitation by nurse trees 

While interactions between a water stress gradient and disturbances by fire and 

grazing potentially determine species distribution and species richness in woodland-

savanna mosaics of Benin, such interactions are likely to be modified by the structure 

of woodlands. The Isoberlinia woodland typically consists of mixtures of small 

isolated tree patches, small gaps and more open conditions. More specifically, it was 

expected that adult trees would improve the establishment of seedlings by reducing 

effects of drought (e.g. by modifying microclimate and evaporative demand). In 

chapter 3 the hypothesis was tested that seedling growth and survival is most 

successful under dominant trees, intermediate in woodland gaps, and lowest in open 

fields. It was also predicted that seedling performance would be improved by 

neighbouring trees during the dry season. Finally, it was tested whether these 

facilitative effects were stronger for stress intolerant species than for stress tolerant 

species. 

These hypotheses were mostly true as tree seedling survival improved within 

woodlands, both under trees and in gaps, compared to open fields along the whole 

climatic gradient, and seedling survival was the best in woodlands during the dry 

season, particularly for the drought-intolerant species. However, plant interactions 

changed with the level of stress, becoming neutral or even negative during the dry 

season in more water stressed woodlands. Tree regeneration in tropical woodlands is 

thus facilitated by the presence of so-called nurse trees that are expected to reduce 

the drought experienced by the seedlings. However, facilitation of the seedlings by 

nurse trees was observed when the water stress was not too extreme. As expected, 

this trend was stronger for the drought-intolerant than for drought-tolerant species. 



Chapter 6: General discussion - 126 

These results indicate that species differ in their response to adult tree shade, and 

such differential responses determine the species coexistence. 

Disturbances by fire and grazing 

The results of chapter 2 suggested complex interactive effects of water stress and 

disturbances on tree species distribution, species richness, and tree density. Fire and 

herbivory are the most frequent disturbances shaping tropical savannas and 

woodlands. In chapter 4 the independent and interactive effects of fire, grazing, soil 

salinity, soil fertility and climate driven water stress on the density and species 

richness of tree regeneration were experimentally evaluated. Specific predictions 

were that frequent fire and frequent grazing reduce sapling species richness and 

sapling density, particularly in interaction. Moreover, negative effects of the two 

disturbances were expected to be stronger at a high abiotic stress level determined 

by climatic and soil conditions. 

Soil salinity was the predominant abiotic stress factor influencing tree 

regeneration in the woodlands. Soil salinity and disturbances had a stronger influence 

on the sapling species composition and richness than on sapling density. Frequent 

fires and fires combined with grazing increased sapling species richness contrary to 

our first prediction. In line with our second prediction, sapling species richness and 

density were reduced by grazing at high soil salinity, while the effects were positive at 

low soil salinity. These results demonstrate how important interactions between 

disturbances and abiotic stresses are in the woodlands under study. They also show 

that the effects of a disturbance may shift from positive to negative depending on the 

level of accompanying abiotic stresses. Our results thus suggest that woodland 

management by fire and grazing should take into account these potential reversals in 

the disturbances effects across abiotic stress gradient such as illustrated here by soil 

salinity. 



 

 Chapter 6: General discussion - 127 

Tree clusters, species diversity and fire 

A patchy structure with local tree clusters and more open herbaceous patches is a 

striking feature of Isoberlinia woodlands in Benin and elsewhere. It was shown in 

Chapter 4 that fire, grazing and abiotic stress had little impact on tree density in 

woodlands. Thus, other mechanisms to explain local tree clusters in the woodlands of 

Benin needed to be explored, including the potential consequences of these tree 

clusters for tree diversity. Because tree clustering may affect the probability of fire 

occurrence, the existence of potential feedback loops between tree spatial 

distribution and fire occurrence was also addressed. It was hypothesized that fire 

promotes tree clustering, tree clustering reduces the probability of fire and tree 

clustering improves plant diversity. For this purpose, tree clusters were defined at a 

fine spatial scale by plant to plant associations, i.e. nearest neighbour distances, and 

at a coarser spatial scale by patch-to-patch associations, i.e. number of tree clusters 

in a plot.  

High levels of climate-driven water stress negatively affected tree clustering at 

the fine scale. This is in line with the results from chapter 2, indicating that facilitative 

effects of neighbouring trees could shift to negative effects at high water stress. Fire 

operated at a coarse scale: frequent fires reduced the number of patches because it 

probably promoted resprouting of trees, and thus isolated tree clusters became 

connected to each other. Vice versa, the tree clustering also influenced the 

probability of fire. The probability of fires decreased with shorter distances between 

trees in a cluster, but increased with the presence of more tree clusters because 

more open, inflammable, open patches were left in-between. 

Sapling diversity increased with fine scale clustering (plant-to-plant 

association) but not with coarse scale clustering (patch-to-patch association), 

suggesting that trees within clusters facilitate each other. Since rare species were 
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better able to survive in those tree clusters, tree clusters contribute to a higher 

species richness of the woodlands. These results confirmed the observation from 

chapter 2 that rare species (i.e. those less tolerant to stress) were apparently the 

most facilitated. Overall, these results provide evidence that tree clustering enhances 

tree species richness within tree clusters, thus confirming theoretical models 

predicting high species richness and diversity by facilitation between neighbouring 

plants in water stressed conditions (Hacker & Gaines, 1997; Michalet et al., 2006).  

Huston’s model revisited 

Huston’s general model for species-environmental relationships provided a 

conceptual basis for understanding the relationships between plant community 

dynamics and environmental factors in Beninese woodlands. Huston’s model 

prediction is based essentially on two mechanisms: plant-plant interactions and the 

externally imposed mortality by disturbances across resource gradient (Huston, 

1979). In our study, it was observed that the underlying mechanisms were more 

complex and diverse, and included a multitude of resource gradients (e.g. soil salinity 

and climate driven water stress) and disturbances (e.g. fire and grazing). Our study 

suggested that facilitative interactions dominated over competitive ones and 

contributed to successful recruitment, and thus to high species richness and diversity 

at intermediate stress levels. Moreover, the disturbance by grazing and fire reduced 

competitive exclusion at intermediate stress levels and improved these facilitative 

effects. Overall, these trends resulted in a high species richness and diversity 

particularly because rare species were facilitated at intermediate stress levels. This 

complex of interactions seems to drive the hump-shaped pattern in tree recruitment 

success and species richness at intermediate levels of stress and disturbances, as 

predicted by Huston’s model. 
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WOODLAND MANAGEMENT 

Woodland is the most abundant vegetation type having significant woody cover in 

savanna dominated ecosystems where rainforests are absent while closed forests 

such as gallery and dense deciduous forests are rare. As such, woodlands are 

ecosystems on which a great number of people in tropical countries depend for their 

livelihoods. Woodland tree species are typically exploited for fuel wood, charcoal, 

construction and furniture woods. Now that the traditional timber “hard wood” 

species are being depleted, threats are becoming more acute on woodland “soft 

wood” tree species such as Isoberlinia species in West Africa which are being cleared 

(e.g. Orthmann et al., 2006; Sokpon et al., 2006). The dangers that would result from 

the destruction of these woodlands are: the extension of savannas, an increase in fire 

damages, the denudation and drying up of soils, the reduced wood production and 

loss of tree species diversity. What is more, the wide extent of woodlands means that 

these changes, even locally, are likely to have globally significant impacts such as 

changes in climate (Malhi & Grace, 2000; Hoffmann et al., 2002; Bonan, 2008). It is 

therefore urgent to take appropriate measures for the conservation of woodlands. 

Based on the insights gained from this study, we put forward the following 

recommendations for a sustained use and management of woodlands. 

Fire and grazing disturbances 

Lessons from many different ecosystems showed that fire suppression is often not a 

viable option as it allows fuel to accumulate and increases the risk of more damaging 

fires (Rackham, 2008). On the other hand, expansion of cattle populations in dry 

regions is expected to follow the trend of human population growth while the 

traditional long-range movements of pastoralists and their livestock are being 

reduced. This suggests that an increasing grazing pressure should be expected in the 

future. While fire and grazing seem unavoidable, they could be used as tools for 
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conservation management because of their influence on habitat structure and 

biodiversity (Collins et al., 1998; Fuhlendorf & Engle, 2004). However, to use fire and 

grazing as a management tool, we must be able to predict when they will impact 

negatively or positively on tree recruitment and diversity. In this dissertation, it is 

shown that climate and soil conditions can induce significant shifts in the effects of 

disturbances by fire and grazing on tree recruitment and diversity (chapters 4 & 5). 

Positive influences of fire and grazing on woodlands tree diversity can be expected 

under productive conditions such as high water and soil nutrients availability. On the 

contrary, stressful conditions such as high salinity or low water and soil nutrients 

availability can hamper tree regrowth following disturbance and increase competition 

among the species. 

Woodland harvesting – planting – and facilitation of tree regeneration 

Plant community dynamics is largely dependent on the recruitment of new 

individuals to sustain the vegetation cover. In the dry regions where natural 

regeneration faces severe constraints such as water stress, and disturbances by fires 

and grazing, forest managers often seek methods that can ensure or accelerate tree 

regeneration. Our study demonstrated that seedlings regeneration success could be 

enhanced by building upon natural mechanisms such as facilitation. This implies that 

forest managers should tune woodland harvesting in such a way that trees are left to 

create favourable conditions for new regeneration, accounting for natural 

disturbances occurring at a particular site. For woodland restoration, the results 

presented here emphasize the need to plant nurse trees in degraded, open areas to 

create better conditions for seedling establishment and gradual re-establishment and 

recovery of degraded woodlands. Particularly at intermediate water stress levels, we 

expect positive effects of such measures for woodland restoration and for sustainable 

woodlands use. 
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Isoberlinia doka; a dominant woodland species increasingly exploited for timber
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Woodland in the wetter Bassila region in Benin 
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Summary 

 

Woodlands are among the most widespread seasonally dry forests, particularly in 

Africa. The so-called Isoberlinia woodlands extend from Mali to Uganda, north of the 

Equator. In these regions, woodland is one of the few vegetation types having 

significant tree cover, thus supplying most forest products. Unfortunately, woodlands 

are disappearing rapidly due to the combined effects of unrestrained forest 

exploitation, increasing and frequent droughts, decreasing soil productivity, and 

disturbances by fire and herbivores. For a sustainable use and management of these 

woodlands, we need to understand how these drivers influence, both individually and 

combined, woodland structure, dynamics and composition. This study aims at 

disentangling the effects of these multiple drivers on woodlands. The central 

question is how climate, soil, fire and grazing, and their interactions determine the 

competitive versus facilitative interactions between plants, the regeneration success 

of seedlings, and the species composition, richness and structure of woodlands. To 

answer this question, a broad-scale study was conducted in Benin where extensive 

examples of Isoberlinia woodlands are still found. Huston’s model for species-

environment relationships was used as a working hypothesis.  In line with this model, 

it was predicted that facilitative plant interactions would dominate over competitive 

plant interactions at intermediate levels of stress and disturbance and that, 

consequently, seedling establishment, species coexistence, and species richness and 

diversity would improve at such intermediate levels of stress and disturbance. 

Because the role of the macro-climate as a driving factor in dry woodlands is 

not fully understood, in chapter 2 the hypothesis was tested that species richness 

shows a unimodal relationship with water stress, whereas tree density decreases 
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linearly with increasing water stress. The results show that woodland species 

distribution is indeed strongly determined by climate-driven water stress and that 

species richness is highest at intermediate levels of water stress. Moreover, water 

stress appeared to interact with other local factors such as fire and grazing. It is 

proposed that the hump-shaped pattern in species richness along the water stress 

gradient results from positive plant-plant interactions and low competition between 

plants imposed by fire and grazing at intermediate stress levels. 

To further explore this facilitation hypothesis between tree species, the effect 

of large dominant trees on seedling establishment was investigated along the water 

stress gradient in chapter 3. Because seedlings in water stressed conditions can 

benefit from large neighbour trees that potentially reduce the evaporative demand 

and may increase soil water availability by hydraulic lift, it was hypothesized that 

seedling growth and survival would be more successful under dominant trees in 

closed tree patches than in gaps (i.e. between trees in woodland), and open fields. It 

was also expected that facilitative effects would be stronger for drought-sensitive 

species than for drought-tolerant species. In line with these predictions, tree 

regeneration in woodlands was found to be facilitated by the presence of large 

neighbour trees and this facilitative effect was stronger for the drought-intolerant 

than for drought-tolerant species. However, facilitation of seedlings by nurse trees 

was observed when the water stress was not too extreme. Thus, both the drought-

intolerant and the drought-tolerant species were facilitated by nurse trees at 

intermediate stress levels. 

In chapter 4, the potential interactive effects of water stress and disturbances 

by fire and grazing were studied in a large field experiment. Four treatments (no 

disturbance, fire alone, grazing alone, grazing and fire) were applied to woodlands 

distributed across climate and soil-driven water stress gradients. Changes in sapling 

species richness and density were monitored annually between 2003-2006. Soil 



 

 Summary - 159 

salinity (causing soil water stress) was the predominant abiotic stress factor 

influencing tree regeneration in the woodlands. Sapling species richness and density 

were reduced by grazing at high soil salinity, while they increased with grazing at low 

soil salinity. These results thus confirm that the effects of the disturbances were 

reversed: from positive at low abiotic stress to negative at high stress. The effect of 

the disturbances and abiotic stress were particularly strong for sapling species 

composition and richness, and much less for sapling density.  

Since a strong impact of fire and grazing was not observed for sapling density, 

the mechanisms that could be responsible for the patchy structure typical of the 

woodland studied were further investigated. Thus, in chapter 5, several mechanisms 

that could be determining the patchy structure of the woodland vegetation and its 

consequences for tree species diversity were explored. It was predicted that fires 

promote tree clustering while, vice versa, tree clusters reduce the probability of fire 

and improve tree species diversity. Tree clustering was studied at two scales: at a fine 

spatial scale by plant to plant associations, i.e. nearest neighbour distances, and at a 

coarser spatial scale by patch to patch associations, i.e. number of tree clusters in a 

plot. Tree clustering at the fine scale appeared to be reduced by high water stress 

while fire reduced the number of tree patches at the coarse scale. The probability of 

fires decreased with shorter distances between trees in clusters, but increased with 

the presence of more tree clusters because more open and inflammable patches 

were left in-between. Sapling diversity increased with fine scale clustering (plant-to-

plant association) but not with coarse scale clustering (patch-to-patch association), 

thus confirming that trees within clusters facilitate each other. 

Overall, the results from this study confirmed the complex nature of 

woodlands and indicated that woodland dynamics were determined not only by the 

macro-climate (i.e. water stress), but also by soil-driven abiotic stress (i.e. salinity), 

disturbances by fire and grazing, facilitative plant-plant interactions, as well as 
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interactions between these drivers. Three important conclusions could be drawn: (1) 

facilitative interactions contribute to successful recruitment in woodlands, and thus 

to high species richness and diversity at intermediate stress levels; (2) disturbances 

by grazing and fire reduce competitive exclusion at intermediate stress levels and 

improve the facilitative interactions among woodland species; (3) climate and soil 

conditions can induce significant shifts in the effects of disturbances by fire and 

grazing on tree recruitment and diversity. Based on these results, it is suggested that 

forest managers should tune woodland harvesting in such a way that trees are left to 

create favourable conditions for new regeneration. As for woodland restoration, the 

planting of nurse trees in degraded and open areas could create better conditions for 

seedling establishment and thus help to restore degraded areas. 
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Samenvatting 

 

Droge open bossen zijn wijdverspreid in de tropen, en in het bijzonder in Afrika. De 

zogenaamde Isoberlinia bossen strekken zich uit van Mali tot Oeganda, ten noorden 

van de Equator. In deze regio zijn deze bossen een belangrijke bron van 

bosproducten. Helaas verdwijnen deze bossen snel als gevolg van de gecombineerde 

effecten van onbeteugelde bosexploitatie, toename van frequentie en intensiteit van 

droogte, afnemende bodemproductiviteit, en verstoring door vuur en begrazing. 

Deze studie richt zich op de effecten van deze verschillende factoren op de structuur, 

dynamiek en soortenrijkdom van deze droge bossen. De centrale vraag is hoe het 

klimaat, de bodem, vuur en begrazing van invloed zijn op de concurrentie versus 

facilitatie tussen planten, het vestigingssucces van zaailingen, en de soortenrijkdom 

en bosstructuur. Om deze vraag te beantwoorden werd een grootschalig onderzoek 

uitgevoerd in Benin, waar uitgestrekte Isoberlinia bossen nog steeds voorkomen. Het 

model van Huston voor soort-omgeving relaties werd gebruikt als werkhypothese. 

Uitgaande van dit model, werd voorspeld dat faciliterende plant interacties 

domineren en dat daarom zaailing vestiging, co-existentie van soorten en 

soortenrijkdom en –diversiteit bevorderd wordt bij een intermediair niveau van 

klimaatsstress (droogte) en verstoring.  

Omdat de rol van het klimaat als sturende factor niet goed bekend is, werd in 

Hoofdstuk 2 de hypothese getest dat de soortenrijkdom het hoogste is bij een 

intermediair niveau van water stress, zoals bepaald door het klimaat. De resultaten 

laten zien dat soortenrijkdom inderdaad het hoogste is bij een intermediair niveau 

van water stress. Bovendien werd een interactie van water stress met vuur en 

begrazing geobserveerd, hetgeen suggereert dat de soortenrijkdom langs de water 
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stress gradiënt het resultaat is van positieve plant-plant interacties in combinatie met 

geringe onderlinge concurrentie. Het lijkt erop dat de concurrentie afgezwakt wordt 

door het optreden van vuur en begrazing, bij intermediaire water stress niveaus. 

Om deze hypothesis over facilitatie tussen boomsoorten verder te 

onderzoeken, werd een experiment uitgevoerd waarbij het effect van grote, 

dominante bomen op de vestiging van zaailingen langs de water stress gradiënt 

bestudeerd werd in Hoofdstuk 3. Bij water stress kunnen zaailingen voordeel halen 

uit grote buurbomen, omdat zij door beschaduwing de transpiratie kunnen 

verminderen en mogelijk, middels “hydraulic lift”, de waterbeschikbaarheid in bodem 

verhogen. Op basis hiervan werd voorspeld dat groei en overleving van zaailingen 

hoger zouden zijn onder dominante bomen in vergelijking met zaailingen op open 

plekken in het bos, of in het open veld. Tevens werd verwacht dat dat dit 

faciliterende effect groter zou zijn voor soorten die minder tolerant zijn voor effecten 

van droogte. De resultaten suggereren dat zaailingregeneratie gefaciliteerd wordt 

door de aanwezigheid van grote buurbomen. Overeenkomend met de verwachting is 

dit positief effect sterker voor een droogte-intolerante soort dan voor een droogte-

tolerante soort. Het faciliterend effect van moederbomen werd waargenomen 

wanneer de droogte niet al te extreem was, en beide soorten hadden voordeel van 

moederbomen bij intermediaire stress niveaus. 

In hoofdstuk 4 werden de effecten van water stress en verstoringen door vuur 

en begrazing onderzocht in een veldexperiment. Vier behandelingen (geen 

verstoring, alleen vuur, alleen begrazing, en begrazing gecombineerd met vuur) 

werden toegepast op bossen verspreid langs een klimaat- en bodem-gerelateerde 

waterstress gradiënten. De veranderingen in soortenrijkdom en dichtheid van jonge 

bomen werden jaarlijks geregistreerd tussen 2003-2006. Een hoog bodemzoutgehalte 

(als veroorzaker van droogtestress) bleek de belangrijkste factor die soortenrijkdom 

en dichtheid van bomen beïnvloedt. Soortenrijkdom en dichtheid van jonge bomen, 



 

 Samenvatting - 163 

vooral in combinatie met begrazing, zijn lager bij hoge zoutgehaltes, terwijl lage 

zoutegehaltes in combinatie met begrazing resulteerden in positieve effecten op 

soortenrijkdom. Deze resultaten laten zien hoe de effecten van de verstoringen 

kunnen omkeren, van positief bij lage abiotische stress naar negatief bij hoge 

abiotische stress. Deze effecten van verstoring en abiotische stress zijn vooral 

duidelijk voor de zaailingsamenstelling en soortenrijkdom, veel minder voor 

zaailingdichtheid. 

Daar er geen sterke invloed op zaailingdichtheid werd waargenomen, werden 

de mechanismen die verantwoordelijk zouden kunnen zijn voor het geclusterd 

voorkomen van bomen nader onderzocht in hoofdstuk 5. Omdat boomclustering de 

verspreiding van vuur kan veranderen, en vuur tegelijkertijd boomclustering kan 

bevorderen, en indirect de soortenrijkdom (door facilitatie), werden potentiële 

feedbacks tussen ruimtelijke verdeling van bomen en het voorkomen van vuur 

onderzocht. Boomclustering werd onderzocht door te kijken naar zogenaamde 

‘nearest neighbour distances’, en ook werd gekeken naar het aantal boomclusters in 

een plot. Afstanden tussen planten werden groter bij toenemende waterstress, 

terwijl het aantal boomclusters af nam bij optreden van vuur. Vuur kwam minder 

voor bij kortere afstanden tussen de bomen in de clusters, maar nam toe bij grotere 

aantallen cluster in een plot, waarschijnlijk omdat er meer open en brandbare 

plekken tussen clusters overbleven. Zaailingdiversiteit nam toe met clustering op 

kleine schaal (met kleinere afstanden tussen de planten binnen het cluster), maar 

niet bij toename van het aantal clusters. Dit bevestigt dat in deze bossen bomen in 

een cluster elkaar faciliteren. 

De resultaten van deze studie bevestigen dat de dynamiek van droge open 

bossen niet alleen bepaald wordt door het macroklimaat (m.n. waterstress), maar 

ook door bodemgerelateerde abiotische stress (m.n. zoutgehalte), verstoringen door 

vuur en begrazing, facilitatie door moederbomen, en combinaties van deze sturende 
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factoren. Drie belangrijke conclusies konden worden getrokken: (1) positieve 

interacties dragen bij aan de succesvolle vestiging van zaailingen en aan een hoge 

diversiteit en soortenrijkdom bij intermediaire stressniveaus; (2) verstoringen door 

begrazing en vuur beperken de concurrentie en onderlinge uitsluiting bij 

intermediaire stressniveaus en ondersteunen daardoor onderlinge facilitatie tussen 

de bomensoorten in deze droge bossen; (3) klimaat en bodemcondities kunnen 

significante veranderingen veroorzaken in de effecten van verstoring door vuur en 

begrazing op vestiging en diversiteit van zaailingen. Deze resultaten suggereren dat 

ook in deze droge bossen bosbeheerders bomen kunnen gebruiken om gunstige 

condities te creëren voor de vestiging van nieuwe generaties zaailingen. Voor herstel 

van gedegradeerde droge open bossen kan het planten van moederbomen leiden tot 

betere omstandigheden voor zaailingvestiging, en aldus voorwaarden scheppen voor 

het herstel van gedegradeerde gebieden. 
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Résumé 

 

Les forêts claires font partie des forêts tropicales sèches les plus répandues, 

particulièrement en Afrique. Les forêts claires à Isoberlinia s’étendent du Mali à 

l’Ouganda, au nord de l’équateur. Dans ces régions, la forêt claire constitue l’une des 

rares formations végétales possédant un taux de recouvrement important de ligneux, 

fournissant ainsi la plupart des produits forestiers. Malheureusement, les forêts 

claires disparaissent rapidement en raison des effets conjugués de l’exploitation 

forestière effrénée, l’augmentation de l’intensité et de la fréquence des sécheresses, 

la baisse de fertilité des sols, et des perturbations par le feu et les herbivores. Pour 

une utilisation et une gestion durable des forêts claires, il est important de 

comprendre comment ces facteurs influencent, aussi bien individuellement qu’en 

interactions, la structure, la dynamique et la composition spécifique des forêts 

claires. L’objectif de la présente étude est d’évaluer les effets de ces multiples 

facteurs sur les forêts claires. La question centrale est de comprendre comment le 

climat, le sol, le feu, les herbivores, et les interactions entre ces facteurs déterminent 

les interactions compétitives ou facilitatrices entre les plantes, le succès de la 

régénération, ainsi que la composition, la richesse spécifique et la structure des 

forêts claires. Pour répondre à cette question, une étude à grande échelle a été 

conduite au Bénin où de nombreux îlots de forêts claires à Isoberlinia doka sont 

encore retrouvés. Le modèle de Huston qui prédit la relation entre la distribution des 

espèces et les facteurs environnementaux a été utilisé comme hypothèse de travail. 

En conformité avec ce modèle, il a été prédit une prédominance des interactions 

facilitatrices sur la compétition entre les plantes aux niveaux intermédiaires de stress 

et de perturbations, et par conséquence une amélioration de la régénération des 
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arbres, de la coexistence des espèces, de la richesse spécifique et de la diversité des 

espèces à de tels niveaux intermédiaires de stress et de perturbations. 

 Du fait que le rôle du macroclimat en tant que facteur déterminant la 

dynamique des forêts sèches n’est pas entièrement compris, au chapitre 2 il a été 

testé l'hypothèse selon laquelle la richesse spécifique présente une distribution 

unimodale le long du gradient de stress hydrique, alors que la densité des arbres 

diminue linéairement avec l'augmentation du stress hydrique. Les résultats obtenus 

montrent que la distribution des espèces ligneuses est effectivement largement 

influencée par le climat qui détermine essentiellement le niveau de stress hydrique et 

que la richesse spécifique est plus élevée aux niveaux intermédiaires de stress 

hydrique. En outre, le stress hydrique semble interagir avec d'autres facteurs locaux 

tels que les feux et le pâturage par les herbivores. Il a donc été proposé que la 

structure unimodale de la richesse spécifique le long du gradient de stress hydrique 

résulte de la prédominance des interactions facilitatrices entre les plantes et de la 

réduction de la compétition entre les plantes par le feu et les herbivores aux niveaux 

intermédiaires de stress hydrique.  

Pour explorer davantage cette hypothèse de facilitation entre les plantes, 

l'effet des arbres dominants sur la régénération a été étudié le long du gradient de 

stress hydrique au chapitre 3. Puisque dans des conditions de stress hydrique élevé 

les jeunes plants peuvent bénéficier de meilleures conditions à proximité des arbres 

dominants du fait de la réduction de l'évapotranspiration et de l’augmentation de la 

disponibilité en eau par effet de captation hydrique, il a été émis l'hypothèse que la 

croissance des semis et leur survie seraient meilleures sous les arbres dominants en 

forêt claire que dans les trouées (entre les arbres), et dans les espaces dénudés. Il a 

été également prévu que l’effet de facilitation serait plus important pour les espèces 

intolérantes à la sécheresse que pour les espèces tolérantes à la sécheresse. En 

accord avec ces prédictions, la régénération des arbres dans les forêts claires est 
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facilitée par la proximité des arbres dominants et cet effet de facilitation est plus 

important pour l’espèce intolérante à la sécheresse que pour l’espèce tolérante à la 

sécheresse. Toutefois, la facilitation de la régénération par les arbres dominants n’a 

été observée que lorsque le stress hydrique n’était pas extrême. Ainsi, aussi bien 

l’espèce intolérante à la sécheresse que l’espèce tolérante à la sécheresse ont été 

facilitées par la proximité des arbres dominants aux niveaux intermédiaires de stress 

hydrique.  

Au chapitre 4, les effets interactifs potentiels entre le stress hydrique et les 

perturbations par le feu et les herbivores ont été étudiés dans le cadre d’une 

expérimentation à grande échelle dans les forêts claires. Quatre traitements (pas de 

perturbation, perturbation par le feu uniquement, perturbation par le pâturage 

uniquement, perturbation par le pâturage et feu combinés) ont été appliqués aux 

forêts claires distribuées le long d’un gradient de stress hydrique déterminé 

essentiellement par le climat et le sol. Les changements dans la richesse spécifique et 

la densité de la régénération ont été suivis annuellement entre 2003-2006. La salinité 

du sol (provoquant un stress hydrique) a été le principal facteur abiotique affectant la 

régénération des arbres en forêt claire. La richesse spécifique et la densité de la 

régénération ont été réduites sous pâturage dans les conditions de forte salinité du 

sol, alors qu'elles avaient augmenté sous pâturage dans les conditions de faible 

salinité du sol. Ces résultats confirment ainsi que l’effet de la perturbation a été 

inversé: de positif dans les conditions de faible stress abiotique à négatif dans les 

conditions de stress abiotique élevé. Les effets des perturbations et du stress 

abiotique ont été particulièrement plus important sur la composition et la richesse 

spécifique de la régénération, et moindre sur la densité de la régénération.  

Partant du constat que le feu et le pâturage n'avaient pas un impact important 

sur la densité de la régénération, les mécanismes qui pourraient être responsables de 

la structure agrégative des arbres, typique des forêts claires étudiées, ont été 
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davantage évalués. Ainsi, au chapitre 5, plusieurs mécanismes qui pourraient 

déterminer la structure spatiale des arbres en forêt claire et leurs conséquences pour 

la diversité spécifique des ligneux ont été analysés. Il a été émis l’hypothèse que les 

feux entretiennent la structure agrégative des arbres alors que, vice versa, la 

structure agrégative des arbres réduit la probabilité d’occurrence du feu et améliore 

la diversité des espèces. La structure spatiale des arbres a été étudiée à deux niveaux: 

à une échelle spatiale fine par l’analyse des associations entre les individus, c'est-à-

dire la distance moyenne au plus proche voisin, et à une échelle spatiale plus 

grossière par l’analyse des associations entre les agrégats d’arbres, notamment le 

nombre des agrégats d'arbres dans une parcelle. Les résultats ont montré que 

l’agrégation des arbres à l'échelle fine tend à diminuer dans les conditions de stress 

hydrique élevé alors que le feu tend à réduire le nombre des agrégats d'arbres à 

l’échelle grossière. La probabilité d’occurrence du feu a diminué avec la plus courte 

distance entre les arbres dans les agrégats, mais a augmenté avec la présence d’un 

plus grand nombre d’agrégats d'arbres du fait de l’accroissement des espaces ouverts 

et de la biomasse inflammable entre les agrégats. La diversité spécifique de la 

régénération était plus élevée avec l’agrégation des arbres à l’échelle fine 

(association des individus d’arbres), mais pas avec l’agrégation à l’échelle grossière 

(nombre d’agrégats), confirmant ainsi l’hypothèse de facilitation entre les arbres au 

sein des forêts claires.  

Globalement, les résultats de cette étude ont confirmé la nature complexe des 

forêts claires et ont indiqué que la dynamique de ces forêts claires est déterminée 

non seulement par le macroclimat (stress hydrique), mais aussi par le sol (salinité), les 

perturbations par le feu et les herbivores, les relations facilitatrices entre les arbres, 

ainsi que les interactions entre ces facteurs. Trois conclusions importantes sont à 

retenir: (1) la facilitation entre les arbres contribue au succès de la régénération dans 

les forêts claires, et par conséquent à une richesse spécifique et une diversité des 
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espèces plus élevées aux niveaux intermédiaires de stress hydrique; (2) les 

perturbations par les herbivores et le feu réduisent la compétition entre les arbres 

aux niveaux intermédiaires de stress hydrique, améliorant ainsi les relations 

facilitatrices entre les espèces en forêt claire; (3) les conditions de stress abiotique 

déterminées par le climat et le sol induisent des changements significatifs dans les 

effets des perturbations par le feu et le pâturage sur la régénération et la diversité de 

cette régénération. Sur la base de ces résultats, il a été proposé que les gestionnaires 

des forêts programment les coupes de manière à épargner des arbres qui pourront 

créer des conditions favorables à la régénération. Quant à la restauration des forêts, 

la plantation d'arbres-abri dans les terrains dénudés et les zones dégradées pourrait 

créer de meilleures conditions pour l'établissement des semis et contribuer à 

restaurer ces zones dégradées. 
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PE&RC PhD Education Certificate 

With the educational activities listed below the PhD candidate 

has complied with the educational requirements set by the C.T. 

de Wit Graduate School for Production Ecology and Resource 

Conservation (PE&RC) which comprises of a minimum total of  

32 ECTS (= 22 weeks of activities)  

Review of Literature (5.6 ECTS) 

- Effects of fire, herbivores and environmental gradients 

on vegetation dynamics (presented in the PE&RC discussion group: statistics, maths 

and modelling in production ecology and resource conservation) (2002) 

Writing of Project Proposal (7 ECTS) 

- The effects of spatial gradients (climate and soil) and man induced disturbances on 

the structure and dynamics of woodland forests in Benin (2002) 

Post-Graduate Courses (7.7 ECTS) 

- Multivariate analysis: PE&RC (2008) 

- Fire as a driver of system processes – past, present and future; PE&RC (2008) 

- Modelling techniques and systems engineering; PE&RC (2002) 

- Managing diversity in living systems; PE&RC (2002) 

Deficiency, Refresh, Brush-up Courses (3.1 ECTS) 

- GIS Basics; Lab. GIS and remote sensing (2002) 

- English course; CENTA (2002) 

- Introduction to EndNote; WUR Library (2002) 

Competence Strengthening / Skills Courses (6.1 ECTS) 

- Introduction to R for statistical analysis; WIAS (2008)   

- Scientific publishing; PE&RC (2008) 

- Methods in scientific research and grant proposal writing; NPT / Univ. of Parakou 

(2006) 

- Techniques for writing and presenting scientific papers; SENSE (2002) 

- System analysis, simulation and system management; PPS (2002) 
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Discussion Groups / Local Seminars and Other Scientific Meetings (8 ECTS) 

- Mini symposium: patterns and mechanisms of facilitation in plant and animal 

communities; REG (2008)  

- Mini symposium: functional traits and the ecological performance of tropical trees; 

Forest Ecology and Forest Management Group (2008) 

- PhD DAY, presentation: tree regeneration across woodland mosaics of Benin and the 

importance of tree facilitation; Tropical Ecology, Amsterdam (2008) 

- Ecological theories and applications; PE&RC (2008) 

- Weekly chair group seminars and presentations (6 months participation in 2002 and 

12 months in 2008), given 3 presentations in 2002 and 4 presentations in 2008 (2002 

& 2008) 

- Statistics, maths and modelling in production ecology and resource conservation; 

PE&RC discussion group (2002) 

- Production Ecology and Resource Conservation; PE&RC discussion group (2002) 

 

PE&RC Annual Meetings, Seminars and the PE&RC Weekend (0.9 ECTS) 

- PE&RC Introduction weekend (2008) 

 

International Symposia, Workshops and Conferences (4.5 ECTS) 

- Annual meeting of the Netherlands Ecological Research Network (NERN) (2008) 

- XVIIIth congress of the Association for the Taxonomic Study of the Flora of Tropical 

Africa (AETFAT); Yaoundé, Cameroun; presentation: tree species distribution patterns 

in Benin and their predictive value as indicators of disturbance (2007) 

- Tropenbos conference on Restoration and Sustainable Management of Forests in 

Ghana (2005) 

 

Courses in which the PhD Candidate Has Worked as a Teacher 

- Forest inventory and forest measurements; 5 days; FA-Univ. Parakou (2006) 

- Forest ecology; 3 days; FA-Univ. Parakou (2006) 

- Introduction to Informatics; 20 days; FA-Univ. Parakou (2005 to 2008) 

- Data analysis with SPSS; 20 days; FA-Univ. Parakou (2005 to 2008) 

 



 

 



 

 



 




