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1.1 Background 
Food is a critical contributor to health, well-being and a major source of pleasure, worry 
and stress in the daily lives of many (Rozin et al. 1999, Wilcock et al. 2004). All expect that 
food is safe but, unfortunately, absolute safety does not exist. Most people, for example, 
will experience a foodborne disease at some point in their lives. More than 200 diseases 
are spread through food and this results in millions of people falling ill every year due to 
hazardous food (WHO 2011). Food contamination can occur at different stages in the food 
supply chain that ranges from on-farm production, harvest, processing, storage, transport, 
retail and preparation. Such food contamination not only influences human health and 
well-being, but also affects the economy and society as a whole. For example, the EHEC 
O104:H4 (Enterohemorrhagic Escherichia coli O104:H4) outbreak in 2011 had far-reaching 
effects starting in Germany. During this outbreak 18 people died (Muniesa et al. 2012) and 
lettuce, cucumbers and tomatoes that were falsely blamed to cause the outbreak, became 
difficult to sell. This outbreak led to huge economic losses especially for local producers. 
The food chain is becoming longer and more complicated through globalization of food 
production and trade. This could cause more foodborne disease outbreaks and challenges 
tracing their contamination source.  

Food contamination and associated foodborne diseases are strongly related to local 
climatic conditions (D'Souza et al. 2004). Climate change may affect the prevalence of 
bacteria, growth of fungi or pests and therefore alter the risk of foodborne disease 
(Miraglia et al. 2009, Jacxsens et al. 2010, Tirado et al. 2010). Roughly one-third 
(population attributable fraction) of salmonellosis cases in England, Wales, Poland, the 
Netherlands, the Czech Republic and Switzerland can now be attributed to higher 
temperatures (Semenza and Menne 2009). In Australia, the rate of salmonellosis also 
increases with decreasing latitude and consequently with increasing average yearly 
temperatures (Hall et al. 2002). D’Souza et al. (2004) found a statistical correlation 
between these seasonal salmonellosis patterns and the mean monthly temperature of the 
previous month. The mechanisms underlying the observed seasonality in foodborne 
disease are, however, not fully understood, but they are likely a complex interplay of 
different factors. These factors include bacterial growth and survival, human behaviour, 
consumption patterns and agriculture management practices (Van Staveren et al. 1986, 
Ziegler et al. 1987, Franz et al. 2014). 

Climate change and food safety thus both affect human health. Climate change not only 
has an impact on crop production or food security (Fischer et al. 2005, Gregory et al. 2005) 
but also on food safety and incidence and prevalence of foodborne diseases (Miraglia et 
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al. 2009, Tirado et al. 2010, Bezirtzoglou et al. 2011, Lal et al. 2012). Before I further 
specify the research gap and the objectives of this thesis, the two research fields ‘climate 
change’ and ‘food safety’ will be introduced and defined. 

Food Safety 
Food safety is an umbrella term for a system of measures aimed at minimizing the risk of 
foodborne disease from the farm to fork food chain including food handing, preparation 
and storage. Food safety research studies microbiological hazards and natural and man-
made chemical hazards. Microbiological hazards contain enteric bacteria, viruses and 
parasites. Natural chemical hazards contain mycotoxins that are produced by moulds and 
may occur in juices, acid sauces (e.g. ketchup) or dried products (e.g. apricots or peanut 
butter). Man-made chemical hazards contain pesticide and heavy metals residues.  m 

A high level of food safety requires an adequate food quality management system from 
farm to fork to prevent foodborne disease. In industrial food production and retail this is 
usually covered by Hazard Analysis and Critical Control Points (HACCP) (Pierson and 
Corlett 1992, Mortimore and Wallace 2013). It is a management system in which food 
safety is addressed through the analysis and control of biological, chemical and physical 
hazards from harvest to consumption. In agriculture this is represented by hygiene 
guidelines like Good Agricultural Practices (GAPs). GAPs  implementation includes proper 
GAPs education and training, worker health and hygiene, irrigation water quality, manure 
use and land selection, on-farm sanitation and record keeping (Bihn et al. 2006). For 
example, the use of animal manure as fertilizer increased the risk of E. coli contamination 
in both organic and conventional farms (Mukherjee et al. 2007). The use of contaminated 
surface water increases foodborne pathogens contamination on fruits and vegetables 
(Islam et al. 2004a, Islam et al. 2004b, Steele and Odumeru 2004). Infected persons who 
work with fresh fruits and vegetables, also increase the risk of transmitting foodborne 
diseases (Definitions and Water 1998). Farmers should be trained to understand and 
follow basic hygienic principles to lower the possibilities of contaminating food, water 
supplies and other workers. Throughout my thesis research, agriculture management 
practices turned out to be very important for food safety. Although agriculture 
management practices were not the main focus in my thesis, they are still an important 
part of the study. Therefore they are introduced here.  

In this thesis, I especially focus on the microbial safety of fresh produce measured by the 
contamination rate with Escherichia coli (E. coli). Since the presence of E. coli indicates 
faecal contamination, it is valid to state that the presence of E. coli implies an increased 
risk of pathogen presence (Edberg et al. 2000, Tallon et al. 2005). The chance of having 
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pathogens in samples is relatively low due to the high food quality standard, especially in 
the developing countries, and the challenge of representative sampling. Instead, E. coli is 
extensively studied, which gives more data to model and the chance to compare different 
studies. Although often challenged, the common assumption is that its presence indicates 
an increased probability of pathogen presence (Holvoet et al. 2014). Hygienic status is 
therefore used in my thesis to represent the microbial safety of LGVs. 

Climate Change 
Climate is commonly defined as the weather averaged over a long time period. The 
standard averaging period is thirty years. Climate change refers to a statistically significant 
variation in either the mean state of the climate or in its variability, persisting for an 
extended period of decades or longer (IPCC 2013a). Climate change is a current global 
concern and, despite some continuing controversy about the magnitude of its effects, has 
affected the food production systems and supply chain (IPCC 2014a, b).  

Natural and anthropogenic greenhouse gases that change the Earth’s energy budget are 
drivers of climate change. Radiative forcing quantifies the change in the energy budget 
caused by these changes (IPCC 2013b). Positive radiative forcing leads to surface warming, 
negative radiative forcing leads to surface cooling. The current total radiative forcing is 
positive. The largest contribution to total radiative forcing is caused by the increase in 
atmospheric CO2 concentrations due to anthropogenic greenhouse gases emissions since 
1750 (IPCC 2013b). 

Many changes in the atmosphere have been observed based on local measurements and 
remote sensing from satellites. These changes include changes in greenhouse gas 
concentrations, temperature increase, precipitation pattern changes, changes in extreme 
events and changed radiation budgets. The global surface temperature increase for the 
end of the 21st century is likely to exceed 1.5°C to 4.5°C, extremely unlikely to be less than 
1°C and very unlikely to be greater than 6°C (IPCC 2013b). Global warming increases the 
evaporation of water from land and ocean and allows the atmosphere to hold more 
moisture. This change leads to more extreme precipitation. Annual mean precipitation is 
likely to increase by the end of this century in the high latitudes and tropical regions. In 
mid-latitude areas, arid regions will likely become drier and wet regions will likely become 
wetter (IPCC 2013b). Extreme events (heat waves, droughts and extreme precipitation) 
will very likely become more frequent, more intense and of longer duration and occasional 
cold winter extreme will continue to occur (IPCC 2013b). The downward thermal and net 
radiation has been increasing since the early 1990s.  
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Climate Change and Food Safety 
The gap between climate change and food safety studies indicates lacking understanding 
and methods or tools to study and quantify future climate change impacts on food safety. 
Climate change and food safety usually were considered separated scientific disciplines 
before 2010. In 2010 a special issue entitled “Climate Change and Food Science” was 
published in Food Research International. This special issue defined the agenda for this 
emerging interdisciplinary research field. It has now positioned itself and is gradually 
gaining more attention. Several review articles describe the climate-change impacts on 
food safety qualitatively. Two major recent reviews (Miraglia et al. 2009) from this special 
issue were based on a Food and Agricultural Organisation report (FAO 2008) and the EU 
FP6 project SAFE FOODS respectively. Overall, these reviews conclude that climate change 
could negatively affect food safety and that more research helps to improve 
understanding of the consequent problems and develop adaptation strategies.  

Veg-i-Trade project 
The European funded large collaborative FP7 Veg-i-Trade project was launched in 2010 for 
a 4-year period to fill this research gap. The project was introduced in the 2010 Food 
Research International Special Issue on Climate Change (Jacxsens et al. 2010). It was set up 
to study the impact of international trade and climate change on fresh produce safety. 
Fresh produce includes fresh fruits and vegetables. This commodity includes a variety of 
crops and cultivars with a high diversity in production practices. Moreover, fresh produce 
is a commodity often grown in open fields with intensive use of water and is thus 
vulnerable to local weather conditions. Veg-i-Trade combined field studies, statistical 
analyses, scenario analyses and risk assessments. The project investigated to which extent 
climate change increases the prevalence or levels of enteric pathogens, pesticide use, 
mould growth and associated mycotoxin production. Furthermore, the project studied 
possible increased use of chemical crop protection products, because of increasing pest 
and disease pressures due to more favourable future conditions compared to the current 
West European temperate climate. Climate and climate change will in particular likely 
affect the introduction of biological or chemical contaminants at the pre-harvest stage of 
fresh produce production. Other phases of the food chain will be less affected, because 
processing and transport are generally done in controlled inside environments. 

Leafy green vegetables (LGVs) are an important part of a healthy diet. They provide fibre, 
vitamins, minerals and phytochemicals for our daily need. Fresh, fresh-cut or ready-to-eat 
leafy vegetables (e.g. lettuce, spinach, cabbages, chicory and endive) are frequently 
consumed. And this consumption is increasing because it is promoted as part of a healthy 
diet. LGVs are identified as the fresh produce commodity group of highest concern from a 
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microbiological safety perspective (FAO/WHO 2008), because they are often grown in the 
open field and vulnerable to contamination from manure used as fertilizer, soil, water 
used for irrigation, and contact with (faeces of) wildlife (FAO/WHO 2008). Moreover, they 
are grown and consumed raw and in large volumes. Bacteria, such as Salmonella spp. and 
pathogenic Escherichia coli strains are the main pathogens causing foodborne disease 
through LGVs (Takkinen et al. 2005, Friesema et al. 2008, Söderström et al. 2008, Gajraj et 
al. 2012). 

A Horticultural Assessment Scheme (HAS) has been developed in the Veg-i-Trade project 
to assess the level of microbiological quality of leafy vegetables. HAS is a systematic 
approach to sample, analyse and standardise the sampling scheme in various regions 
within Veg-i-Trade. HAS defined the identification of critical sampling locations, the 
selection of microbiological parameters, the assessment of sampling frequency, the 
selection of sampling method and method of analysis, and finally data processing and 
interpretation (Holvoet et al. 2011). All Veg-i-Trade sampling data used in this thesis were 
collected and analysed under HAS.  

My thesis research was part of the Veg-i-Trade project. Within the framework of Veg-i-
Trade, my role was to bridge climate change and food safety by introducing the research 
methods, i.e. climate scenario analysis, from climate change studies to food safety 
research. I have prepared climate scenario data for other impact studies in Veg-i-Trade on 
pesticide and mycotoxin. Besides that, my research focused on microbial safety of LGVs, 
i.e. lettuce and spinach.  

1.2 Objective, Research Questions and Scope 
In line with the above-mentioned research gaps, this thesis aims to quantify the impacts 
of climate change on the microbial safety of pre-harvested leafy green vegetables. The 
hygienic status of LGVs as measured by contamination with generic E. coli was taken as a 
proxy for the microbial safety. To achieve this objective, my research requires literature 
review, statistical model development, climate data downscaling and multi-criteria 
scenario analysis (Figure 1.1). This interdisciplinary research will bring new methods/ tools 
and mind sets to food safety research. This connected food safety and climate change 
studies will enable food safety scientists to assess food microbial safety risks using a 
systems analysis approach.  

The main question of this thesis is “What are the climate-change impacts on the 
microbial safety of leafy green vegetables?” This main question is addressed through the 
following research questions: 
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1. What are the impacts of climate change on contamination sources and pathways 
of foodborne pathogens? 

2. How do climatic conditions quantitatively affect the E. coli contamination of pre-
harvested leafy greens? 

3. How to downscale climate and climate-change data for local food safety analysis? 
4. How does the safety of LGVs evolve under future climate scenarios?  

 

Figure 1.1 Process and methods of this thesis. Round boxes are data and knowledge inputs and 
square boxes are major results in this thesis (Chapter 2 to 5). Arrows are data and knowledge flow.  

To answer these research questions, the process and methods of this thesis are indicated 
in Figure 1.1. Each step answers a specific research question. Firstly, I reviewed the 
literature for and synthesised major impacts of climate change (temperature increases 
and precipitation pattern changes) on contamination sources (manure, soil, surface water, 
sewage and wildlife) and pathways of foodborne pathogens (focussing on Escherichia coli 
O157 and Salmonella spp.) on pre-harvested leafy greens. Secondly, with these qualitative 
impacts as knowledge background, I developed a statistical model in R (R Core Team 2013) 
using sampling data, climate data and agriculture management information as inputs. This 
model identified the climate and management variables that are associated with the 
probability of LGVs contamination with generic E. coli using regression analysis. This model 
also explored how climatic conditions directly and indirectly affect the E. coli 
concentration on LGVs. Thirdly, to apply suitable climate data in the statistical model to 
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study future impacts, I have prepared a tool in MATLAB and Excel to downscale coarse 
climate data for local food safety scenario analysis. I also illustrated how this tool can be 
used with impact models. Finally, I applied the downscaled data to the statistical model 
and used multi-criteria scenario analysis to explore future food safety.  

1.3 Outline of the Thesis 
This introduction (Chapter 1) and the combined discussion and conclusion (Chapter 6) of 
this thesis are written to connect the four independent scientific papers that are 
presented in Chapters 2 to 5.  

Chapter 2 is the knowledge background of this thesis and answers Research Question 1. 
This chapter synthesises major impacts of climate change on contamination sources and 
pathways of foodborne pathogens (focussing on Escherichia coli O157 and Salmonella spp.) 
on pre-harvested LGVs. These are formulated as a conceptual framework. Major positive 
and negative impacts of temperature increases and precipitation pattern changes on 
pathogen prevalence in each contamination source and pathways have been reviewed. I 
started my research on foodborne pathogens. However due to the, fortunately, limited 
positive samples of pathogens on leafy greens, to develop a robust model was very 
challenging. After this review, I chose generic E. coli as an indicator to do the rest of the 
analysis.  

Chapter 3 is the core data analysis of this thesis and answers Research Question 2. This 
chapter identifies the climate and management variables that are associated with the 
probability of LGVs contamination with generic E.coli and to explore how weather 
conditions directly and indirectly affect the E. coli presence and concentration on LGVs. I 
have used E. coli data of 562 LGV samples between 2011 and 2013 taken from 23 open-
field farms from Belgium, Brazil, Egypt, Norway and Spain. This is the first large-scale 
meta-analysis on E. coli presence and concentration on LGVs. Meta-analysis allows a 
generic model to identify the statistically significant variables for E. coli contamination 
throughout the regions. I used logistic mixed effect regression and linear regression 
models to study the statistical relationship between these variables. In general, climate 
and good management practices should be studied together for E. coli presence and 
concentration on LGVs. 

Chapter 4 is the data preparation connecting Chapter 3 and Chapter 5 of this thesis, and 
answers Research Question 3. I present a tool in this chapter to prepare climate and 
climate change data for local food safety scenario analysis. This chapter also illustrates 
how this tool can be used with bacterial growth model. As an example, coarse gridded 
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data from two general circulation models, HadGEM2-ES and CCSM4, are selected and 
downscaled using the ‘Delta method’ with quantile-quantile correction for the official 
weather station Ukkel in Belgium. Observational daily temperature and precipitation data 
from 1981 to 2000 are used as a reference for this downscaling. Data are provided for four 
future representative concentration pathways (RCPs) for the periods 2031–2050 and 
2081–2100. The climate projections for these RCPs show that both temperature and 
precipitation will increase towards the end of the century in Ukkel. The climate change 
data are then used with Ratkowsky's bacterial growth model to illustrate how projected 
climate data can be used for projecting bacterial growth in the future. This approach helps 
food safety researchers to perform their own climate change scenario analysis. 

Chapter 5 is the future projection and answers Research Question 4. This chapter explores 
the development and application of a multi-criteria scenario analysis tool to study future 
food safety. I apply climate scenario analysis and multi-criteria scenario analysis on the 
statistical model presented in Chapter 3 using pre-harvest spinach in Spain as an example. 
I demonstrate the tool step by step with a sensitivity analysis to show the possibility of 
including different perspectives of interests in food safety studies. Moreover I calculate 
the future E. coli concentration changes on spinach in RCP8.5 and RCP 2.6 at the end of 
the century in Spain. This multi-criteria tool provides a platform to study changes in 
weather or climate, and management impacts on future food safety together with 
different perspectives or interests of stakeholders. The tool provides the opportunity to 
involve different stakeholders in the analysis and support their decision making process. In 
this way a multi-criteria analysis delivers a new mind set and method to study food safety 
in a systematic way and enhances the quality of agricultural management decisions for 
leafy green vegetables. 

Lastly, Chapter 6 synthesised the main findings and methodological lessons learnt and 
concludes the thesis. 
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Abstract 

The likelihood of leafy green vegetables (LGVs) contamination and the associated 
pathogen growth and survival are strongly related to climatic conditions. Particularly 
temperature increase and precipitation pattern changes have a close relationship not only 
with the fate and transport of enteric bacteria, but also with their growth and survival. 
Using all relevant literature, this study reviews and synthesises major impacts of climate 
change (temperature increases and precipitation pattern changes) on contamination 
sources (manure, soil, surface water, sewage and wildlife) and pathways of foodborne 
pathogens (focussing on E. coli O157 and Salmonella spp.) on pre-harvested LGVs. 
Whether climate change increases their prevalence depends not only on the resulting 
local balance of the positive and negative impacts but also on the selected regional 
climate change scenarios. However, the contamination risks are likely to increase. This 
review shows the need for quantitative modelling approaches with scenario analyses and 
additional laboratory experiments. This study gives an extensive overview of the impacts 
of climate change on the contamination of pre-harvested LGVs and shows that climate 
change should not be ignored in food safety management and research.  
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2.1 Introduction 
Fresh fruit and vegetables are increasingly recognized as an important source of 
foodborne disease outbreaks in many parts of the world (Cummings et al. 2001, Beatty et 
al. 2004, Sivapalasingam et al. 2004, FAO/WHO 2008, Hanning et al. 2009, Wendel et al. 
2009, Moretti et al. 2010, Gajraj et al. 2012). The risks of foodborne disease caused by 
fresh produce are illustrated by multiple outbreaks with high numbers of illnesses in 
several regions of the world, such as in Europe (Horby et al. 2003, Söderström et al. 2005, 
Takkinen et al. 2005, Friesema et al. 2008, Nygård et al. 2008, Söderström et al. 2008), the 
United States (Ackers et al. 1998, Wendel et al. 2009, Mody et al. 2011), Japan (Michino et 
al. 1999) and Australia (FAO/WHO 2008). Every year approximately 76 million people in 
the US become ill from foodborne disease and over 12% of these disease cases are linked 
to fresh produce (Klonsky 2006). The European percentage is similar (Miraglia et al. 2009). 
One of the causes of foodborne disease is contamination of fresh produce by foodborne 
pathogens originating from manure, soil, sewage, surface water or wildlife.   

Leafy green vegetables (LGVs) are identified as the fresh produce commodity group of 
highest concern from a microbiological safety perspective (FAO/WHO 2008), because they 
are often grown in the open field and vulnerable to contamination from contaminated 
manure used as fertilizer, soil, water used for irrigation, and contact with (faeces of) 
wildlife (FAO/WHO 2008). Moreover, they are grown and consumed raw and in large 
volumes. Bacteria, such as Salmonella spp. and pathogenic Escherichia coli strains, are the 
main pathogens causing foodborne disease through LGVs (Takkinen et al. 2005, Friesema 
et al. 2008, Söderström et al. 2008, Gajraj et al. 2012).  

The incidence in foodborne disease is generally correlated with climate conditions 
(Miraglia et al. 2009, Jacxsens et al. 2010, Tirado et al. 2010). Roughly one-third 
(population attributable fraction) of salmonellosis cases in England, Wales, Poland, the 
Netherlands, the Czech Republic, and Switzerland can be linked to higher temperatures 
(Semenza and Menne 2009). In Australia, the rate of salmonellosis also increases with 
decreasing latitude and consequently with increasing average yearly temperatures (Hall et 
al. 2002). These seasonal salmonellosis patterns were statistically correlated with the 
mean monthly temperature of the previous month (D'Souza et al. 2004). Similarly, in the 
Australian subtropical and tropical regions, temperature and rainfall were positively 
associated with the number of salmonellosis cases (Zhang et al. 2010). The mechanisms 
underlying the observed seasonality in foodborne disease are not fully understood, but 
they are likely a complex interplay of different factors. These include human behaviour 
and consumption patterns (Van Staveren et al. 1986, Ziegler et al. 1987), pathogen 
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prevalence in the animal reservoir and pathogen environmental survival patterns. The risk 
of foodborne disease is directly related to the prevalence of bacteria on LGVs. The 
likelihood of LGV contamination and the associated pathogen concentrations are strongly 
related to environmental conditions. Though uncertain, the observed seasonality and 
climate relationships should thus not be ignored; they may result in higher risks.  

Changes in temperature, distribution of precipitation (including more extreme events, 
such as floods and droughts), UV and moisture content are already observed worldwide 
(Meehl et al. 2007). Temperature has increased since the start of observations in 1654 
(Camuffo and Bertolin 2012). Droughts have already become more common, especially in 
the tropical and subtropical regions since the 1970s (Meehl et al. 2007). Consistent with 
precipitation changes, runoff is notably reduced in southern Europe and increased in 
Southeast Asia and at high latitudes. The larger simulated runoff changes reach a 20% 
increase compared to 1980 to 1999 mean values. These changes will likely become more 
apparent in the future (Meehl et al. 2007). Climate changes will mainly impact the 
contamination sources and pathways of bacteria onto LGVs during the pre-harvest phase. 
Other phases of the food chain will be less affected, because generally processing and 
transport are done in controlled environments. 

Several studies focus on climate change and foodborne diseases (Rose et al. 2001, FAO 
2005, Lafferty 2009, Semenza and Menne 2009). There is also considerable understanding 
of how climatic variables affect pathogen survival in different environments. However, 
only few studies (e.g. Miraglia et al. 2009, Moretti et al. 2010, Tirado et al. 2010) have 
addressed the relationship between climate change impacts and the microbial safety of 
LGVs. Moretti et al. (2010), for example, qualified the impacts of temperature on post-
harvest fresh produce quality from a biochemical perspective and summarised that the 
crop will mature sooner with higher temperature during the growing season. A systematic 
overview encompassing the impacts of temperature and precipitation changes on the 
contamination sources and pathways of bacteria on LGVs is, however, still missing. Such 
an overview is essential to quantitatively assess the impact of climate change on LGVs 
safety. 

This paper therefore aims to review and synthesise major impacts of climate change 
(temperature increases and precipitation pattern changes) on contamination sources and 
pathways of foodborne pathogens (focussing on E. coli O157 and Salmonella spp.) on pre-
harvested LGVs. Relevant literature, including peer review scientific papers and grey 
literature, on LGVs but limited to E. coli O157 and Salmonella spp., has been studied for 
each contamination source and pathway, and for their relationship to different climate 
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variables. Each contamination source has been searched in combination with each of 
these two pathogens, and with temperature and precipitation. In this study, firstly, 
contamination sources and pathways of E. coli O157 and Salmonella spp. onto LGVs are 
identified. These are formulated as a conceptual framework (Section 2.2). Then we 
summarised major positive and negative impacts of temperature increases and 
precipitation pattern changes on pathogen prevalence in each contamination source and 
pathway (Section 2.3). Although the reviewed literature and data was relatively limited to 
Europe and North America, the study aims to provide a generic worldwide overview. 

2.2 Contamination sources and pathways 
Two foodborne pathogens will be discussed in this review: Escherichia coli O157 and 
Salmonella spp. in general. Different Salmonella serotypes will be discussed depending on 
the literature. This choice was made because these pathogens are the leading cause of 
bacterial foodborne illness on LGVs and are well documented in many studies (Beuchat 
1996, Bach et al. 2002, Sivapalasingam et al. 2003, Sivapalasingam et al. 2004, Maurer and 
Lee 2005, Hanning et al. 2009). These two pathogens are also representative for other 
foodborne bacterial pathogens and their abundant literature will likely result in a deeper 
analysis.  

The contamination sources and pathways associated with LGVs contamination with E. coli 
O157 and Salmonella spp. form the basis for the conceptual framework (Figure 2.1). 
Beuchat (2006) reviewed the literature for generic contamination sources and pathways 
for fresh produce. We build on this by summarising these findings and adding more recent 
literature. The principal reservoir for E. coli O157 is cattle and other small ruminants such 
as sheep and deer (Hancock et al. 2001). The main reservoirs for Salmonella spp. are pigs 
(Fedorka-Cray et al. 2000) and poultry (Aserkoff et al. 1970, Vandeplas et al. 2010). The 
pathogens shed in the faeces of these animals can subsequently contaminate LGVs 
directly or indirectly by contamination of soil and water.  Additionally, the pathogens can 
enter the environment via shedding from incidental hosts (e.g. humans and insects) or 
wildlife. We therefore consider manure, soil, surface water, sewage and wildlife to be the 
most likely contamination sources.  

Manure 

Contaminated manure from livestock and faeces from wildlife form the primary source of 
environmental contamination with zoonotic pathogens such as E. coli O157 and 
Salmonella spp. Livestock and wildlife may defecate on land (Figure 2.1, arrow a) or 
directly into surface water (Figure 2.1 arrow b). The pathogens in livestock manure are 
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killed by different treatments, such as long-term storage and/or composting. The use of 
improperly treated manure is an important risk factor for the microbial safety of LGVs 
(Franz and Bruggen 2008, Jiang and Shepherd 2009). Such livestock manure may 
contaminate LGVs when applied during plant growth (Figure 2.1 arrow c) and by 
contaminating water supplies (for example surface water) via surface and subsurface 
runoff (Figure 2.1 arrow d) (Jackson et al. 1998). Contamination of LGVs that grow on the 
manure-amended soils might occur by splash dispersal (Figure 2.1 arrow e) during rain 
events (Madden 1997, Pielaat and van den Bosch 1998, Franz et al. 2008b, Monaghan and 
Hutchison 2012).  

 

Figure 2.1 Bodies and pathways of pathogenic bacteria on leafy green vegetables. Boxes show 
bodies of pathogenic bacteria, arrows and words in the middle of arrows indicate pathogen flow. 
WWTP stands for waste water treatment plant. The letters a-o are referred to in the text.  

Soils 

Soil amended with contaminated manure or faeces can be a source of E. coli O157 and 
Salmonella spp. which can persist in the soil up to several months (Jamieson et al. 2002, 
Unc and Goss 2006, Barak and Liang 2008, Franz et al. 2008a, Semenov et al. 2009, Van 
der Zaag et al. 2010, Franz et al. 2011). When plants are grown in contaminated soils 
internalization (Figure 2.1 arrow f) of pathogenic E. coli  and Salmonella spp. via root 
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uptake has been described in laboratory settings (Solomon et al. 2002, Franz et al. 2007, 
Deering et al. 2012). This process however is thought to be rare in field conditions and, 
additionally, E. coli O157 does not persist in the leaves more than seven days (Erickson et 
al. 2010a). The evidence for internalisation of Salmonella spp. via soil has not been found. 
E. coli O157 (Donnison and Ross 2009), Salmonella spp. and Salmonella infantis (Miner et 
al. 1967, Jacobsen and Bech 2012) can be transferred by runoff from soils via the surface 
and subsurface to the surface water (Figure 2.1 arrow g). 

Surface water 

Cooley et al (2007) reported that surface water is a possible vehicle of transmission of E. 
coli O157 for pre-harvest LGVs contamination. Livestock and wildlife may get (re)infected 
by consumption of contaminated water (Figure 2.1 arrow h). Surface water may not only 
contaminate fruits and vegetables by irrigation (Rose et al. 2001, Bach et al. 2002, Okafo 
et al. 2003, Sivapalasingam et al. 2003, Islam et al. 2004a, Islam et al. 2004b, Steele and 
Odumeru 2004, Erickson et al. 2010b) (Figure 2.1 arrow i) but also as result of flooding 
(Figure 2.1 arrow j) of production fields after (extreme) rain events (Cooley et al. 2007, 
Orozco et al. 2008).  

Like with root uptake from the soil, application of contaminated irrigation water can lead 
to internalization of both E. coli O157 and Salmonella spp. into the edible part of LGVs 
through open stomata (Kroupitski et al. 2009) (Figure 2.1 arrow k). Extreme weather 
conditions (i.e. drought and heavy rains) have been shown to increase the levels of 
internalized Salmonella Typhimurium into lettuce leaves (Ge et al. 2011). 

Sewage 

In developing countries and arid regions, sewage is often used for irrigation (Nichols et al. 
1971, Amoah et al. 2005, WHO/UNICEF JMP 2010) (Figure 2.1 arrow i). It is cheap and 
efficient, as sewage also contains a high concentration of bioavailable nitrogen and 
phosphorus from domestic waste. Normally sewage flows back to surface water after 
being treated in waste water treatment plant (Figure 2.1 arrow l). Untreated sewage 
(Figure 2.1 arrow m) or improperly treated effluents from wastewater treatment plants 
used for irrigation may contain high levels of pathogens (Nichols et al. 1971, Gale 2005, 
Gerba and Smith 2005). Sewer overflows (Figure 2.1 arrow n) may cause many Salmonella 
serotypes (Claudon et al. 1971) and commensal E. coli (McLellan et al. 2007) to enter the 
surface water and/or soil directly.  
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Wildlife 

Wildlife (e.g. insects, birds and mammals) may carry pathogenic bacteria in their digestive 
and respiratory systems, skin, hooves and hair or feathers (Ray and Bhunia 2008, WHO 
2011). These wildlife share similar exposure pathways with livestock (c.f. Figure 2.1). 
Moreover, they might damage the leaves (Figure 2.1 arrow o), which provide vulnerable 
entry points for foodborne pathogens into the plant and leaching of nutrients that will 
facilitate pathogen persistence (Orozco et al. 2008).  The wildlife driven contamination is 
further excluded from this review, as contamination by wildlife is random and currently 
unpredictable. This makes quantification very difficult. Moreover, climate change impacts 
on wildlife are species specific (McCarthy et al. 2001, Root and Schneider 2002, Petzoldt 
and Seaman 2005, Mawdsley et al. 2009). We expect that in the area where LGVs are 
grown wildlife will remain present under current climate change scenarios even though 
specific species may vary. Additionally, producers will often attempt to keep wild life out 
of the fields by fencing or removing vegetation around the field. 

Summary  

Contamination sources and pathways vary depending on the practical farming 
management in different parts of the world. In general, manure amended soil and 
irrigation water are better studied sources.  

2.3 Influence of climate variables 
Climate is commonly defined as the weather averaged over a long time. The standard 
averaging period is thirty years. As mentioned in the introduction, the incidence of 
foodborne disease is related to climatic conditions. Temperature and precipitation 
patterns and other climate factors are expected to change due to an increase in the 
radiation balance of the earth caused by greenhouse gas emissions. Standard practice in 
climate research is the application of different scenarios. These scenarios comprise 
plausible changes in factors driving climate change, such as population growth and land 
use changes. Climate models are run for these different scenarios to determine projected 
changes in climate variables worldwide. These changes differ by scenario and region, but 
generic changes are as follows: 

Modelling studies project that temperature will continue to increase gradually over time, 
resulting in a 2°C to 5°C increase of 1-in-20 year extreme daily maximum temperature by 
the late 21st century (IPCC 2012). Highest temperature increases will be over land and at 
high northern latitudes (Figure 2, IPCC 2007).  
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Figure 2.2 Multi-model mean projections of changes in surface air temperature (°C) (top) and 
precipitation (mm day=1) (bottom). Changes are annual means for the SRES A1B scenario for the 
period 2090 to 2099 relative to 1980 to 1999. General Circulation Models, representing physical 
processes in the atmosphere, ocean, cryosphere and land surface, are the most advanced tools 
currently available for simulating the response of the global climate system to increasing 
greenhouse gas concentrations. Key assumptions of SRES A1B scenarios: a future world with very 
rapid economic growth, low population growth, rapid introduction of new and more efficient 
technology and balanced energy sources. Credit: Climate Change 2007: The Physical Science Basis. 
Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on 
Climate Change, Figure spm6 and Figure 10.12. Cambridge University Press. 
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The amount of precipitation is expected to increase in some areas (e.g. high latitude and 
tropical regions, and in winter in the northern mid-latitudes) and decrease in others (e.g. 
southern Europe and the Mediterranean region, central Europe, central North America, 
Central America and Mexico, northeast Brazil, and southern Africa) (IPCC 2012) (Figure 3, 
Meehl et al. 2007). Moreover, the distribution of precipitation is expected to change, 
resulting in an increase in the number of extreme precipitation events even in areas with 
decreasing precipitation. (Meehl et al. 2007, IPCC 2012). The characteristics of what is 
called extreme weather may vary from place to place. But an extreme weather event 
would normally be as rare as or rarer than the 10th or 90th percentile (IPCC 2007). These 
events might intensify floods or droughts in some catchments, areas and seasons (IPCC 
2012). This has already been observed in several regions (Meehl et al. 2007). 

Due to temperature and precipitation changes, evapotranspiration changes affect 
atmosphere and soil moisture. Increased land precipitation intensity together with 
increased temperature lead to a higher moisture content of the atmosphere at a rate of 
about 7% for every 1°C rise (Trenberth et al. 2007). The annual mean soil moisture 
decreases in the subtropics and the Mediterranean region and increases in east Africa, 
central Asia, and some other regions with increased precipitation (Meehl et al. 2007). We 
discuss soil humidity changes together with precipitation changes.  

Ultraviolet (UV) radiation is another variable that impacts bacterial contamination of LGVs 
and that is influenced by climate change. UV radiation changes have been simulated by 
radiative transfer models for all IPCC scenarios. The amount of UV at the surface result 
from ozone concentrations in the upper troposphere and lower stratosphere, cloud cover 
and the aerosol type, content and distribution (Penner et al. 1999). Under clear skies, UV 
light can effectively kill microbes (Yaun et al. 2003). Cloud cover, however, is very difficult 
to predict due to geometrical complexity and temporal variability of clouds (Penner et al. 
1999, Sausen et al. 2005). Future UV changes on foodborne pathogens will therefore not 
be further discussed in this paper.   

Climate change may impact on the contamination sources and pathways of E. coli O157 
and Salmonella spp. These impacts may increase the likelihood of LGVs contamination and 
human disease associated with consumption of contaminated LGVs. Climate change may, 
therefore, increase the risk of disease due to foodborne contamination. Seasonality of the 
human prevalence of infections (mostly acquired through direct contact with animals or 
manure, and increasingly through consumption of raw vegetables) indicates climate 
change impacts (Section 2.1). The E. coli O157 incidence of human disease is generally 
higher in summer months and early fall (Douglas and Kurien 1997, Van Duynhoven et al. 
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2004, Rangel et al. 2005) and the daily Salmonella incidence closely follows ambient 
temperature with the a lag of 2 to 14 days (Naumova et al. 2007). However, the causal 
mechanisms behind the seasonal patterns remain elusive and may vary among different 
pathogens and geographic regions due to several confounding factors (e.g. animal housing, 
diet). Furthermore, there may be heterogeneity between strains of a particular pathogen. 
For instance, some strains may be better adapted to higher temperatures or tolerate drier 
conditions, which may enhance their environmental survival capacities and ultimately the 
likelihood of LGVs contamination (Franz et al. 2011).  

From this literature review the relationship between climate change and contamination 
sources and pathways of E. coli O157 and Salmonella spp. is evident. The next section 
discusses for each source of both pathogens first possible impacts of temperature and 
then possible impacts of precipitation. Manure and soil are combined as the climate 
change impacts on these sources are similar. Also the important seasonal relationships are 
discussed. Table 2.1 summarises all impacts. 

2.3.1 Manure and Soil 

Temperature 
Seasonality of E. coli O157 in livestock 

Many studies are available on the seasonal patterns of E. coli O157 prevalence among 
livestock, from which general relations between temperature and pathogen prevalence 
and/or shedding rates can be deduced. Ultimately these relations can be used, to a certain 
extent, to predict the likelihood of having contaminated manure. Since the causal 
relations remain unclear, these have not been explicitly added to Figure 2.1. Higher 
prevalence and/or increased shedding rates have been observed in cattle during summer 
months (Heuvelink et al. 1998, Hussein and Sakuma 2005, Schouten et al. 2005, Ogden et 
al. 2006, Berends et al. 2008). The role of temperature in the seasonality of E. coli O157, 
however, has been questioned: The North-American latitudinal gradient of E. coli O157 
prevalence, for example, showed an opposite relation to the temperature gradient 
(Meyer-Broseta et al. 2001). Seasonality has also been observed in regions with little 
seasonal temperature fluctuations (Miller et al. 2004). Interestingly, a strong correlation 
between increased day length and E. coli O157 prevalence in cattle was observed in North 
America (Edrington et al. 2006). This, is unlikely to be affected by climate change. This 
indicates that indeed also other factors may be involved. 

Seasonality of Salmonella in livestock 
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In the US, the occurrence of Salmonella on dairy farms increases with increasing seasonal 
temperature (Pangloli et al. 2008). In Denmark, the seasonal variation of the prevalence in 
pork and the human incidence is similar (Hald and Andersen 2001). However, several 
factors, such as management practices, concurrent diseases and elevated temperatures 
that lead to stress and higher multiplication rates of Salmonella, could well cause seasonal 
trends (Hald and Andersen 2001). Salmonella prevalence in Danish finisher pig herds was 
also higher in summer and fall as compared to spring and winter (Baptista et al. 2009). 

Direct effects of climate change on environmental fate of E. coli O157 and Salmonella 

Weather conditions influence transport and dissemination of pathogens from their 
reservoirs into the environment, food crops like LGVs and other hosts. Higher soil 
temperatures may lead to an increased use of potentially contaminated animal manure 
due to a faster depletion of soil nutrients as a result of increased biological soil activity 
(Franz et al. 2008a) (Table 2.1, a). 

Temperature increase has a close relationship with foodborne bacteria growth and 
survival (Ratkowsky et al. 1982, Himathongkham et al. 1999, Beuchat 2002, Jiang et al. 
2002, D'Souza et al. 2004, Mukherjee et al. 2006, Beuchat and Mann 2008, FAO 2008, 
Franz and Bruggen 2008, Lake et al. 2009, Nelson 2009, Pan and Schaffner 2010). Although 
commensal E. coli has been found to establish a stable population in the soil environment 
(Byappanahalli and Fujioka 2004, Ishii et al. 2006), the conditions for survival of foodborne 
pathogens are considered to be unfavourable once excreted from the animal gut. 
However, pathogens like E. coli O157 and Salmonella spp. are able to survive for extended 
periods (up to months) in manure and soil (Franz and Bruggen 2008). The survival of E. coli 
O157 and many Salmonella serotypes in soil and manure decreases with increasing 
temperature (Wang et al. 1996, Kudva et al. 1998, Himathongkham et al. 1999, Mukherjee 
et al. 2006, Semenov et al. 2007, Danyluk et al. 2008) (Table 2.1, b). The main reason for 
this inverse relation between temperature and persistence in soils is the increased levels 
of microbial competition due to increased (metabolic) activity of the native microflora 
(Semenov et al. 2007).  

Indirect effects of climate change on the ecology of E. coli O157 and Salmonella 

Several indirect effects of climate change can be defined. Higher temperatures might lead 
to increased susceptibility of livestock to animal disease. This, might make them more 
vulnerable to (asymptomatic) colonization by human enteric pathogens. Higher 
temperatures might also affect feeding strategies which can have a profound effect on the 
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prevalence and shedding rate of human pathogens by altered ecological conditions in the 
animal gut (Jacob et al. 2009). Direct or indirect effects of climate might also  affect the 
super-shedding phenomenon (i.e. some cattle may harbour and shed bacteria at higher 
levels that others), which strongly influence dissemination pathogens into the 
environment and ultimately to humans (Matthews et al. 2006). In addition, with higher 
temperatures cattle may graze more outside where they are more exposed to pathogens. 
They then feed on grass, which affects survival and shedding rates (Jacob et al. 2009). 
These indirect effects are not considered and thus not summarized in Table 2.1. 

Precipitation for E. coli O157 and Salmonella 
The impact of precipitation on bacteria contamination of manure and soil is relatively 
limited. Increased land precipitation intensity together with increased temperature lead to 
a higher moisture content of the atmosphere at a rate of about 7% for every 1°C rise 
(Trenberth et al. 2007) and a higher soil moisture content. Such higher air and soil 
humidity could enhance survival of pathogens in moisturised soil and manure (Warriner 
2005, Warriner et al. 2009) (Table 2.1, e). 

Higher intensity of rain events also enhance the chance of splashing manure and soil 
particles to fresh produce (Madden et al. 1996, Franz et al. 2008b, Cevallos-Cevallos et al. 
2012) (Table 2.1, f). 

2.3.2 Surface water 

Temperature for E. coli O157 and Salmonella 
Generally pathogen cell numbers decline over time when added to surface water (Vital et 
al. 2008). E. coli O157, however, has been observed to grow in surface water at 30 °C with 
low carbon concentration (Vital et al. 2008). The survival of both E. coli O157 and 
Salmonella spp. in surface water decreases with increasing temperatures (Rhodes and 
Kator 1988): the survival of E. coli O157 in surface water is up to 13 weeks at 8 °C (Wang 
1998) and it strongly decreases with increasing temperatures. But it can still survive up to 
8 weeks at 25°C (Wang 1998) (Table 2.1, c). An unusually prolonged outbreak in the 
summer of 1991 of bloody diarrhoea and hemolytic-uremic syndrome caused by E. coli 
O157 was traced to shallow swimming water (Keene et al. 1994). This outbreak suggests 
that these foodborne pathogens survive in lake water. Survival of Salmonella spp. is 
greater than that of E. coli (the faecal indicator) in surface water. In low water 
temperatures (less than 10°C), more than 83% of salmonellae survived after 1 week 
compared to less than 6% of E. coli during the same period (Rhodes and Kator 1988) 
(Table 2.1, c). 
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Precipitation for E. coli O157 and Salmonella 
Increased temperatures and decreased precipitation enhance evapotranspiration (Meehl 
et al. 2007). This results in an increased need for irrigation of crops (Table 2.1, g). On the 
other hand, water scarcity in dry regions may result in future technological and 
management changes, such as subsurface drip irrigation instead of overhead sprinkler 
(Fonseca et al. 2011) or new water treatment methods which have lower contamination 
risk. Such technological changes may lower the risk of contamination via irrigation water.  

Intensive precipitation may increase surface and subsurface runoff, which might be an 
intermediate contamination pathway of pathogens from manure at livestock farms and 
from grazing pastures (Table 2.1, h). When crops are irrigated with this water, 
contamination might be increasing. 

Flooding as a result of extreme precipitation events can bring pathogens from surface 
water to fresh produce and might contaminate whole fields (Orozco et al. 2008, Donnison 
and Ross 2009) (Table 2.1, i).  

2.3.3 Sewage 
The impact of temperature on pathogen survival in sewage water is very limited. 
Decreased cell numbers of the Enterobacteriaceae family and Salmonella genus have been 
observed with temperature increase (Wolna-Maruwka et al. 2009) (Table 2.1, d). The die-
off of commensal E. coli and Salmonella spp. in wastewater is related to desiccation of the 
sewage and was faster in warmer and drier conditions (Horswell et al. 2007).  

Heavy rainfall in a relatively short time could cause sewer overflows to surface water 
and/or soil (Tierney et al. 1977, Watkins and Sleath 1981) (Table 2.1, j). This increases the 
risk of contaminated irrigation water. In drought-prone regions, the dilution of sewage in 
streams is reduced when surface water discharge decreases. So the concentration of 
pathogens in the surface water increases. This, increases the concentration of pathogens 
in the surface water (Senhorst and Zwolsman 2005, Hofstra 2011) (Table 2.1, k). In 
addition, a shortage of irrigation water and the high costs of artificial fertilizer may 
increase the use of sewage as a source of water and nutrients (Table 2.1, l).  

2.4  Concluding remarks 
The objective of this paper was to review and synthesise major impacts of climate change 
(temperature increases and precipitation pattern changes) on contamination sources and 
pathways of foodborne pathogens (focussing on E. coli O157 and Salmonella spp.) on pre-
harvested LGVs.  
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Contamination sources (e.g. soil, manure, water, etc.) and pathways (irrigation, splash, 
contact with faeces, etc.) of E. coli O157 and Salmonella spp. onto LGVs were identified. 
Then the positive and negative impacts of temperature increases and precipitation pattern 
changes on pathogen prevalence in each contamination source and pathway have been 
elaborated.  

Temperature likely increases everywhere, but precipitation patterns differ largely by 
region. Already arid regions are expected to become drier, while wet regions are expected 
to become wetter and extreme precipitation events are expected to occur more often 
worldwide. These changes have both positive and negative impacts on contamination 
sources and pathways that influence E. coli O157 and Salmonella spp. survival in manure, 
soil and water.  

Whether climate change increases the prevalence of E. coli O157 and Salmonella spp. on 
pre-harvest LGVs depends on the balance of the positive and negative impacts and on the 
applied climate change scenarios for specific areas. There are, however, to date no 
quantitative studies assessing this balance and talking into account all positive and 
negative impacts. This review shows the need for quantitative modelling approaches with 
scenario analyses to understand the net impact of climate change on the contamination of 
pre-harvested LGVs. Also additional laboratory experiments, such as splash tests for both 
pathogens and LGVs and contamination of LGVs after irrigation with contaminated surface 
water – issues that appear to be missing from the literature-, would aid our understanding.  

This study gives an innovative and extensive overview of the impacts of climate change on 
the contamination of pre-harvested LGVs. Although the balance of positive and negative 
impacts requires further study, this review clearly shows that climate change should not 
be ignored in food safety management and research.  
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Table 2.1 The influence of climatic changes on contamination pathways and pathogens survival. *+/- explains the positive/negative relation between 
the columns “Climate variables” and “Changes”. For example, e) precipitation is positively correlated with survival of pathogens in manure and moist 
soil. So, survival of pathogens in manure and moist soil will increase with increased precipitation and decrease with decreased precipitation. ** the 
relationship between survival of E. coli O157:H7 in sewage and increased temperature is unclear. 

Climate variables Contamination 
sources 

Relationship* Changes Pathogens Reference 

Temperature manure & soil + a) use of manure  Franz et al., 2008a 

- b) survival of pathogens in manure 
and soil 

E.coli O157:H7 Himathongkham et al., 1999, 
Kudva et al., 1998, Mukherjee et 
al., 2006, Semenov et al., 2007, 
Wang et al., 1996, 

Salmonella Danyluk et al., 2008, 
Himathongkham et al., 1999, 
Semenov et al., 2007 

surface water - c) survival of pathogens E.coli O157:H7 Wang, 1998 
 Salmonella Rhodes and Kator, 1988 

sewage - d) survival of pathogens E.coli O157:H7**  

   Salmonella Wolna-Maruwka et al., 2009 

Precipitation manure & soil + e) survival of pathogens in manure 
and moist soil 

E.coli O157:H7 Warriner, 2005, Warriner et al., 
2009 

Salmonella Warriner, 2005, Warriner et al., 
2009 

+ f) chance of splash  Cevallos-Cevallos et al., 2012, 
Franz et al., 2008b, Madden et 
al., 1996 
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surface water - g) amount of irrigation water   

+ h) surface and subsurface run-off   

+ i) chance of flood  Donnison and Ross, 2009, Orozco 
et al., 2008 

sewage + j) chance of sewage overflow  Tierney et al., 1977, Watkins and 
Sleath, 1981 

- k) concentration of waste water in 
surface water stream 

 Hofstra, 2011, Senhorst and 
Zwolsman, 2005 

- l) use of sewage as a source of 
water and nutrients 

  



 

  



 

 

 

 

 

 

 

 

Chapter 3 

Modelling Leafy Green Contamination by 
Escherichia coli at Pre-harvest Stage 

 

 

 

 

 

Liu, Cheng 

Nynke Hofstra 

Eelco Franz 

 

This chapter has been accepted with minor revision in  

Journal of Food Protection (2015) 



Modelling leafy green contamination by Escherichia coli at pre-harvest stage 
 

30 
 

Abstract 

The observed foodborne disease seasonality suggests that climatic conditions play a role 
and that changes in the climate may affect pathogens presence. However, whether this 
effect is direct or indirect through other factors, e.g. farm management remains elusive. 
This study aimed to identify the climate and management variables that are associated 
with the contamination (presence and concentration) of leafy green vegetables (LGVs) 
contamination with generic E. coli. This study used E. coli data of 562 LGVs (lettuce and 
spinach) samples taken between 2011 and 2013 from 23 open-field farms from Belgium, 
Brazil, Egypt, Norway and Spain. Mixed effect logistic regression and linear regression 
models were used to study the statistical relationship among the dependent and 
independent variables. Climate and agriculture management practices together both had 
influence on E.coli presence and concentrations. Temperature had a stronger influence 
(had a significant parameter estimate and highest R-squared) than management practices 
for E. coli presence and concentrations on LGVs. Minimum temperature of the sampling 
day (odds ratio [OR] 1.47), region and application of inorganic fertilizer were important for 
E. coli presence. Maximum temperature three days before and region were important for 
concentrations (R2 = 0.75). Region was a variable masking many management variables 
including rain water, surface water, manure, inorganic fertilizer and spray irrigation. 
Climate variables had a positive relationship with E. coli presence and concentrations. 
Temperature, irrigation water type, fertilizer type and irrigation method should be 
considered systematically in fresh produce safety studies in the future. 
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3.1 Introduction 
Leafy green vegetables (LGVs) have been identified as the fresh produce commodity group 
of the highest concern from a microbiological safety perspective (FAO/WHO 2008), 
because they are often grown in the open field and vulnerable to contamination from 
manure used as fertilizer, soil, water used for irrigation, and contact with (faeces of) 
wildlife (FAO/WHO 2008). Moreover, LGVs are grown and consumed raw and in large 
volumes. Pathogenic Escherichia coli strains are one of the main concerns with respect to 
foodborne disease associated with LGVs (Takkinen et al. 2005, Friesema et al. 2008, 
Söderström et al. 2008, Gajraj et al. 2012).  

The incidence of foodborne disease is generally correlated with climate conditions 
(Miraglia et al. 2009, Jacxsens et al. 2010, Tirado et al. 2010). Roughly one-third 
(population attributable fraction) of salmonellosis cases in England, Wales, Poland, the 
Netherlands, the Czech Republic, and Switzerland can be linked to higher temperatures 
(Semenza and Menne 2009). In Australia, the rate of salmonellosis also increases with 
decreasing latitude and consequently with increasing average annual temperatures (Hall 
et al. 2002). The correlation between foodborne disease and climatic conditions is (partly) 
reflected in a strong seasonality of many foodborne diseases. The seasonal salmonellosis 
patterns have been statistically correlated with the mean monthly temperature of the 
previous month (D'Souza et al. 2004). Similarly, in the Australian subtropical and tropical 
regions, temperature and precipitation have been positively associated with the number 
of salmonellosis cases (Zhang et al. 2010).  

The mechanisms underlying the observed seasonality in foodborne disease are not fully 
understood, but they are likely a complex interplay of different factors. Besides climatic 
conditions, these factors include human behavior and consumption patterns (Van 
Staveren et al. 1986, Ziegler et al. 1987), farm management practices, pathogen 
prevalence in the animal reservoir and pathogen environmental survival patterns. The risk 
of foodborne disease associated with LGVs is directly related to the likelihood of 
occurrence and the subsequent level of contamination. The observed seasonality suggests 
that climatic conditions influence pathogens presence and/or level (Liu et al. 2013). 
Improved understanding of this is important for better control and surveillance of LGV 
contamination particularly in the face of ongoing climate change. Whether the effect of 
climate on LGV contamination is direct or indirect through other factors, e.g. farm 
management remains elusive. These farm management practices are affected by climate 
and could be influenced even more or in different ways by climate change.  Though 
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uncertain, the effect of seasonality and climate on produce food safety should thus not be 
ignored as it may result in higher risks (Liu et al. 2013).  

Changes in temperature, distribution of precipitation (including more extreme events, 
such as floods and droughts), ultraviolet radiation (UV) and moisture content are already 
observed worldwide (Meehl et al. 2007). Temperature has increased since the start of 
observations in 1654 (Camuffo and Bertolin 2012). Consistent with precipitation changes, 
runoff is notably reduced in southern Europe and increased in Southeast Asia and at high 
latitudes. The larger simulated runoff changes reach a 20% increase compared to 1980 to 
1999 mean values. Droughts have already become more common, especially in the 
tropical and subtropical regions since the 1970s (Stocker et al. 2013c). These changes will 
likely become more apparent in the future (Stocker et al. 2013c). Climate changes will 
mainly impact the contamination sources and pathways of bacteria onto LGVs during the 
pre-harvest phase. Other phases of the food chain will be less affected, because generally 
processing and transport are done in controlled environments. 

Good agricultural management practices are essential for food safety control and they are 
often applied in response to particular climatic conditions (Manning and Baines 2004). 
Response strategies have been developed to adapt to the pressures on fresh produce 
safety due to climate change (Kirezieva et al. 2015). The use of animal manure for 
fertilization of production fields increased the risk of E. coli contamination in both organic 
and conventional farms significantly (Mukherjee et al. 2007, Park et al. 2013, Park et al. 
2014). Farmers should follow good agricultural practices for handling animal manure in 
order to minimize the risk of introducing pathogens. Such practices include manure 
composting and minimizing direct or indirect contact between manure and produce 
(Definitions and Water 1998). The use of contaminated surface water may also lead to 
contamination (Islam et al. 2004a, Islam et al. 2004b, Steele and Odumeru 2004). 
Groundwater is generally less likely to be contaminated with pathogens than surface 
water. Shallow wells and improperly constructed or old wells may be more likely to be 
susceptible to contamination (Definitions and Water 1998, Ceuppens et al. 2014). Infected 
persons who work with fresh produce also increase the risk of transmitting foodborne 
illnesses (Definitions and Water 1998). Farmers should understand and follow basic 
hygienic principles to lower the possibilities of contaminating fresh produce, water 
supplies and other workers.  

A review of the impacts of climate change on micro-organisms (Liu et al. 2013) improved 
the qualitative understanding that will now be used to study these impacts quantitatively. 
Farmers are likely to change management practices to adapt to climate change (Kirezieva 
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et al. 2015). It is important to have a better understanding of the quantitative changes in 
the face of management schemes and climate change. Such quantitative analyses are 
sparse due to little data availability, so aggregation of the available information in a meta-
analysis may be useful to achieve a higher statistical power and generalizability.  

This study aimed to explore how climate and agriculture management factors contribute 
to E. coli contamination on LGVs across different regions. The focus was on identifying a 
combination of statistically significant variables that best explained observed variation in 
E.coli presence and contamination level throughout regions. We addressed these 
objectives by applying statistical modeling (Section 3.2) on E. coli presence and 
concentration data from production fields in different regions. The meta-analysis in this 
study combined findings from independent studies from different regions within the Veg-
i-Trade project. Subsequently, the results of logistic and linear regressions with climate 
and management variables were presented and summarized (Section 3.3). Finally data 
complexity and limitations were discussed and concluded with lessons learnt in this meta-
analysis (Section 3.4). 

3.2 Methods 

3.2.1 Data 
The data used in this study were collected within the Veg-i-Trade project which aimed to 
study the impact of climate change and globalisation on safety of fresh produce. A 
Horticultural Assessment Scheme (HAS) has been developed in the Veg-i-Trade project to 
assess the level of microbiological quality of leafy green vegetables. HAS was a systematic 
approach to sample, analyse and standardise the sampling scheme in various regions 
within Veg-i-Trade. HAS defined the identification of critical sampling locations, the 
selection of microbiological parameters, the assessment of sampling frequency, the 
selection of sampling method and method of analysis, and finally data processing and 
interpretation (Holvoet et al. 2011). All Veg-i-Trade sampling data used in this study were 
collected and analysed under HAS.  

This meta-analysis included raw sampling data from Holvoet et al. (2013), Ceuppens et al. 
(2014), Uyttendaele et al. (2014) and Castro-Ibáñez et al. (2014). Our study used E. coli 
data of 562 LGVs samples taken from 23 open-field farms from six regions (Figure 3.1): 
Belgium (n = 160), Brazil (n = 69), Egypt (n = 18), Norway (n = 99) and Spain (n = 216). All 
farms grew lettuce, except for the farms in Spain that grew spinach. The data were 
collected from 2011 to 2013 by different laboratories of the local universities or research 
institutes within the Veg-i-Trade project. Each laboratory had its own detection limits 
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(Table 3.1). All samples were taken at the moment of harvest or, one, two or three weeks 
before harvest. Climate variables included daily average (Tavg, Tavg3, Tavg7), minimum 
(Tmin, Tmin3, Tmin7) and maximum (Tmax, Tmax3, Tmax7) temperature of the sampling 
day, three days and seven days before, daily precipitation (P), three days (P3) and seven 
days total precipitation (P7). Management variables included categorical variables (Region 
and toilet distance (ToiletD)) and binary variables (drinking water (DrinkingW), rain water 
(RainW), groundwater (GroundW), surface water (SurfaceW), drip irrigation (Drip), spray 
irrigation (Spray), flood irrigation (Flood), composted manure (-derived) (Manure) 
including composted manure and mixture with composted manure, inorganic fertilizer 
(Inorganic), non-animal organic fertilizer (NonAOrganic), farm animal presence (FarmA)). 
Missing values were omitted when regression models can only run with complete 
observations. Temperature and precipitation data were collated from the most nearby 
weather station for each farm. The data sources are summarized in Table 3.1.  
Management information was collected by means of a farmer questionnaire.  

 

Figure 3.1 Sampling farms distribution. Black dots are sampling farms cooperated within Veg-i-Trade 
project.  
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Table 3.1 Summary of leafy green vegetables samples collected in this meta-regression study. Composted manure (-derived) category includes 
composted manure and mixture with composted manure. Non-animal organic category includes compost and mixture of mineral and organic fertilizer. 

 Belgium Brazil Egypt Norway Spain Total 

Total # of samples 160 69 18 99 216 562 
E. coli Detected 20 14 10 3 12 59 
Percentage (%) 12.5 20.3 55.6 3 5.6 10.5 
Detection limit (log10 
CFU/g) 

0.7 1 1 1 2  

Tavg Min-Max (mean) 
(°C) 

12.4-19.6 (17.4) 15.5-29.8 (24.1) 15.4-25.9 (19.8) 7.7-16.2 (12.5) 8.4-17.3 (12.8)  

Tavg3 Min-Max (mean) 
(°C) 

10.8-25.0 (16.9) 16.3-27.6 (22.9) 16.1-27.3 (19.9) 5.2-21.6 (12.5) 8.5-19.8 (13.2)  

Tavg7 Min-Max (mean) 
(°C) 

13.8-21.5 (17.6) 15.6-30.5 (23.3) 13.8-29.6 (21.0) 6.4-16.4 (13.1) 7.1-16.9 (12.5)  

Tmax Min-Max (mean) 
(°C) 

15.5-28.1 (22.0) 16.0-36.0 (29.8) 22.3-31.2 (25.8) 3.0-21.7 (14.9) 12.32-24.7 
(18.2) 

 

Tmax3 Min-Max (mean) 
(°C) 

13.2-33.7 (22.4) 22.0-35.0 (28.9) 20.9-34.8 (26.6) 0.4-22.9 (15.0) 13.2-24.0 
(19.14) 

 

Tmax7 Min-Max (mean) 
(°C) 

8.6-15.7 (12.2) 16.0-36.0 (28.9) 20.4-38.3 (28.0) 8.6-21.7 (15.2) 10.8-24.7 (17.7)  

Tmin Min-Max (mean) 
(°C) 

6.9-16.6 (13.2) 11.0-22.0 (17.9) 10.0-21.6 (14.3) 1.7-21.8 (10.0) 0.8-12.8 (7.6)  

Tmin3 Min-Max (mean) 
(°C) 

4.8-18.5 (12.0) 10.0-23.0 (17.0) 8.2-19.8 (13.7) -1-28.00 (10.42) 2.2-15.2 (8.1)  

Tmin7 Min-Max (mean) 
(°C) 

8.6-15.7 (12.2) 11.0-22.0 (16.7) 7.4-23.0 (14.4) 1.7-21.6 (10.9) 1.0-12.9 (7.7)  

Maximum precipitation 
amount: P, P3, P7(mm)  

17.5, 38.3, 67.0 42.1, 110, 214.6 0.0, 0.0, 0.0 21.4, 40.2, 58.0 16.1, 20.2, 36.8  

Weather data source The Royal Instituto www.tutiempo.net Norwegian Sistema de  

http://www.tutiempo.net/
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Meteorological 
Institute of 
Belgium (RMI) 

Naciional de 
Meteorologia 
(INMET) 

www.worldweatheronline.
com 
 
 
 

Meteorological 
Institute web portal 
eKlima, 
LandbruksMeteorolo
gisk Tjeneste 
(lmt.bioforsk.no) 

Información 
Agrario de 
Murcia (SIAM) 
(Siam.imida.es) 

Rain water (# of 
samples) 

160 57 0 0 0  

Surface water (# of 
samples) 

0 0 12 48 216  

Drinking water ((# of 
samples) 

0 0 0 27 0  

Groundwater (# of 
samples) 

0 12 6 0 0  

Spray irrigation (# of 
samples) 

160 57 0 99 216  

Drip irrigation (# of 
samples) 

0 12 12 0 0  

Flood irrigation (# of 
samples) 

0 0 6 0 0  

Composted manure 
(derived) (# of samples) 

24 57 18 51 216  

Inorganic fertilizer (# of 
samples) 

88 0 0 48 0  

Non animal organic (# of 
samples) 

48 12 0 0 0  

Farm Animal Presence (# 
of samples)  

113 24 No information 0 0  

Toilet Distance 
 

0-100m 0-100m 
100-200m 
200-500m 

No information No information 0-100m 
100-200m 
200-500m 

 

 

http://www.worldweatheronline.com/
http://www.worldweatheronline.com/
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3.2.2 Statistical model 
The data were analysed using the statistical software package R version 3.0.2. All 
statistical tests were assessed for significance at the 95% confidence level (p < 0.05) 
except for univariate analysis (p < 0.25).  

The data were checked for collinearity by the Variance Inflation Factor (VIF) between 
categorical and binary variables and the phi coefficient between binary variables. In case 
of collinearity (VIF > 2 or phi coefficient > 0.6) the variable with the least biological 
relevance was omitted from further analysis.  

We focussed on assessing the relationship of E. coli with climate variables first and then 
assessed management variables. In this way, impacts of climate or management variables 
can be analysed separately in order to further understand how climate or management 
individually influence the LGVs safety. After that all variables were combined in the final 
model to study the overall effects of climate and management influence on LGVs safety. 
Due to the hierarchical structure in the data (with repeated sampling at the same farm) a 
mixed effects model with Farm as random effect was applied. All variables from Table 3.1 
are included in the models. 

The stepwise selection method developed by Hosmer and Lemeshow (2004) was used to 
select variables for the logistic regression model. Spearman’s rank correlation was used to 
assess correlations between numeric and ordinal variables. Univariate analysis was 
applied by fitting a univariable regression model to obtain the estimated coefficient, the 
estimated standard error, the likelihood ratio test for the significance of the coefficient 
and the univariable Wald statistic. Any variable with a likelihood ratio test that has a p-
value < 0.25 is a candidate for the multivariable model. Using a more tolerant significance 
level (p < 0.25 instead of p < 0.05) allowed for inclusion of variables that are of potential 
importance at the model building stage (Bendel and Afifi 1977, Mickey and Greenland 
1989). With these variables, we followed the backward selection method to choose the 
variables for the multivariable model. The overall importance of each categorical variable 
included in the multivariable model was verified by an examination of the Wald statistic. 
Variables which were not selected for the multivariable model were added back into the 
model. By doing this we could identify the variables that by themselves are not 
significantly related to the E. coli present but make an important contribution in the 
presence of other variables (Hosmer Jr and Lemeshow 2004). Interactions and quadratic 
terms were checked for the variables in the model.  



Modelling leafy green contamination by Escherichia coli at pre-harvest stage 
 

38 
 

Finally the mixed-effect model was implemented through the “lme4” package (Bates et al. 
2014) and “lmeTest” package (Kuznetsova et al. 2014) in R software with the random 
effect Farm. In this study, all samples were combined and treated as one data set. Region 
was taken as fixed variable to exacerbate the differences in the sampling effort and 
detection limits among regions.  

Logistic regression 
To investigate the E. coli presence/absence on LGVs in the open field farms data (n = 562) 
were fitted to a logistic regression model, combining the different variables and locations 
together. This model aimed to separately assess the contributions of the climate and 
management variables to the observed variation in E. coli presence.  

In logistic regression model, Akaike Information Criterion (AIC) was used to compare and 
select the best model. AIC measures the relative quality of a model for model selection 
(Akaike, 1974). After the final model was chosen, the odds ratio (OR) was calculated from 
the parameter coefficients. The parameter coefficients give the change in the log odds of 
the E. coli presence for a one unit increase in the predictor variable.  

To assess the robustness of a model’s predictive ability, a 10-fold cross validation was 
conducted. The data were randomly divided into 10 subsets of equal size and 9 subsets 
were used for training the model while the 10th subset was used to test the model’s 
predictive ability. This process was repeated 10 times, every time with a different test 
subset. So all observations were used for both training and testing, and each observation 
was used for validation exactly once. The mean area under the curves (AUC) was 
calculated. An area of 100% represents a perfect test and an area of 50% represents a 
worthless test.  

Multiple linear regression  
In the next step, we studied the observed variation in log10 transformed E. coli 
concentration levels to approximate data normality. The E. coli positive data (n = 59) was 
fitted to a linear mixed effect model, combining the different variables as fixed effects 
variables and Farm as a random effect. Visual inspection of residual plots (standardized 
residuals with fitted value) for homoscedasticity test and a q-q plot for normality test were 
performed to check the assumptions for linear regression. Such linear regression model 
assessed the relative contributions of the climate and management variables to the 
observed variation in E. coli concentrations. We again used the Hosmer and Lemeshow 
(2004) method and the backward approach to select independent variables. The F-test 
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was used to select the best model fit. Root Mean Square Error (RMSE) and Mean Absolute 
Error (MAE) were calculated to evaluate models. Lower values are better.  

3.3 Results 

3.3.1 Data 
In total 59 E. coli samples were positive. Very few samples (in total 18) were tested for E. 
coli on LGVs on farms in Egypt but more than half of them were positive (Table 3.1). 
Among 99 samples in Norway, only 3 of them were E. coli positive (Table 3.1). The 
presence ranged between 3% in Norway to 20.3% in Brazil. But these differences should 
be taken with awareness of large differences in the lower detection limit among studies, 
ranging from 0.7 log10 CFU/g in Belgium to 2 log10 CFU/g in Spain (Table 3.1).  

The mean (median) concentration of the positive samples was 1.91 (2.00) log10 CFU/g 
with standard deviation of 0.81. In general, the highest E. coli concentrations were found 
in samples from Brazil (Figure 3.2). The observed E. coli concentrations on LGVs range 
from the detection limits to 3.9 log10 CFU/g in Brazil (Figure 3.2). E. coli concentrations 
below the detection limits are indicated as 0 log10 CFU/g in Figure 3.2. 

The Tavg in Brazil was very high (up to 30°C, Table 3.1). Brazil also had highest P among all 
regions (Table 3.1). In contrast, Egypt had no rain on the sampling days. In general, the 
days which E. coli positive samples were found were dry in all regions, except for Brazil 
(Table 3.1). The variation in climate was not only due to the different geographic locations, 
but also to different growing seasons. For example, farmers in Spain grow spinach in their 
winter time from September to March to avoid the high temperature in their summer 
time, while farmers in the rest of the regions grow lettuce during their summer time. 
Consequently, the temperature during the sampling period in Spain had a similar range as 
the temperature during the sampling period in other regions, such as Norway (Table 3.1). 
In total about 60% of the sampling days had precipitation amount less than 0.1 mm.  

In this dataset management variables were region specific. Some of the regions happened 
to have only one type of irrigation water or irrigation method. For instance, flood 
irrigation was applied only in Egypt. All samples from Belgium used rain water and all 
samples from Egypt and Spain used composted manure or a mixture with composted 
manure. The details for each management variable are summarised in Table 3.1.  
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Figure 3.2 E. coli concentration (top: all samples, bottom: positive samples only) on lettuce sampled 
at farms in Belgium, Brazil, Egypt, and Norway and on spinach at farms in Spain. The box width is 
proportional to the square-roots of the number of observations in the regions. 

3.3.2 E. coli presence on leafy green vegetables 
Logistic regression was applied separately for both climate variables and management 
variables to assess relations with E. coli presence on LGVs using the method described in 
Section 3.2.2. Results are presented accordingly in this section.  

Climate variables and E. coli presence 
For climate variables, univariate analysis results showed that all variables in this analysis 
had a p-value <0.25 except for P. Since temperature or precipitation variables were not 
independent, only one variable should be selected for temperature and one for 
precipitation. The univariate Wald Test suggested that P3 was the only significant 

Belgium Brazil Eygpt Norway Spain

0
1

2
3

4
5

E.coli concentration on leafy green

All samples

E.
 c

ol
i c

on
ce

nt
ra

tio
n 

(lo
g1

0 
C

FU
/g

)

Belgium Brazil Eygpt Norway Spain

0
1

2
3

4
5

E.coli concentration on leafy green

E. coli positive samples

E.
 c

ol
i c

on
ce

nt
ra

tio
n 

(lo
g1

0 
C

FU
/g

)



Chapter 3 
 

41 
 

precipitation variable (p < 0.05). And Tmin had the lowest AIC value. So Tmin, P3 and 
Region were chosen after the univariate analysis. 

Upon completion of the univariate analyses, firstly the variables Tmin, P3 and Region were 
selected for the multivariable analysis. With backward selection, the Wald test for 
importance of the categorical variable and interaction check, the best model was the 
following: 

𝑙𝑙𝑙𝑙 𝑝𝑝
(1−𝑝𝑝)

=  𝛽𝛽0 +  𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝛽𝛽2𝑃𝑃3 + 𝛽𝛽3,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + ɛ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹    Eq.1 

Where 𝑝𝑝 = the probability of having an E. coli positive sample, βi are constants, Tmin = 
minimum temperature of the sampling day in °C, P3 = total precipitation amount of three 
days before sampling day, 𝛽𝛽3,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  = dummy variable for region, ɛ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  is the random 
effect for farm. The β estimates are available in Table 3.2. However some samples had no 
E.coli presence at high Tmin and some samples had E. coli presence with low P3.   

The estimated coefficients showed the odds of having E. coli positive samples on LGVs 
increased when temperature and cumulative precipitation amount increased with one 
measurement unit (°C or mm). For 1°C increase in daily minimum temperature, the odds 
of having E. coli positive samples on LGVs increased by a factor of 1.48 (95%CI 1.27-1.73) 
(Table 3.2). For 1mm increase in three days cumulative precipitation, the odds of having E. 
coli positive samples on LGVs increased by a factor of 1.02 (95%CI 1.01-1.03) (Table 3.2). 
Tmin and P3 had a statistically significant relation with E. coli presence.  

Table 3.2 Final mixed effect logistic regression models to estimate generic Escherichia coli 
absence/presence on lettuce and spinach. 

 β  i Estimate Odds Ratio(95% CI) p-value 

Climate model (n = 559):    
Variance (standard deviation) was 3.06 (1.75) for random effect Farm 
β 0 -8.339 0.00(0.00-0.01) <0.000 
β 1 (Tmin) 0.391 1.48(1.27-1.73) <0.000 
β 2 (P7) 0.019 1.02(1.01-1.03) 0.003 
β 3,Belgium Reference Reference Reference 
β 3,Brazil -1.203 0.30(0.02-3.70) 0.348 
β 3,Egypt 3.092 2.20 (1.64-295.47) 0.020 
β 3,Norway -2.088 0.12(0.00-3.61) 0.225 
β 3,Spain 0.327 1.39(0.06-29.69) 0.834 



Modelling leafy green contamination by Escherichia coli at pre-harvest stage 
 

42 
 

Management model (n = 520):    
Variance (standard deviation) was 1.33 (1.15) for random effect Farm 
β 0 -1.184 0.31(0.02-4.28) 0.379 
β 1,RainW 2.497 12.14(1.80-81.99) 0.010 
β 2,Spray -3.315 0.04(0.00-0.86) 0.040 
Joint model (n = 520):    
Variance (standard deviation) was 1.81 (1.35) for random effect Farm  
β 0 -9.016 0.00(0.00-0.00) <0.000 
β 1 (Tmin) 0.401 1.51 (1.29-1.76) <0.000 
β 2,SurfaceW 0.844 2.33 (0.23-23.78) 0.476 
β 3,Inorganic 1.334 3.80 (0.50-29.01) 0.198 
β 0 -9.433 0.00(0.00-0.00) <0.000 
β 1 (Tmin) 0.388 1.47(1.26-1.72) <0.000 
β 2,Belgium Reference Reference Reference 
β 3,Brazil 0.664 1.94(0.14-27.11) 0.621 
β 4,Norway -17.589 0.00(0.00-0.00) 0.997 
β 5,Spain 2.273 9.71(0.00-168.09) 0.118 
β 6,Inorganic 2.714 1.51(0.92-247.23) 0.057 

Management variables and E. coli presence 
For management variables both univariate analysis results and Wald test results showed 
that all variables in this analysis had a p-value < 0.25 except for NonAOrganic. Drinking 
water was not used for any samples after the missing values were removed. DrinkingW 
was therefore dropped from multivariate analysis. All other management variables were 
selected as candidates of the multivariate model (n = 520). The VIF results showed that 
Region had collinearity with RainW, surfaceW and Spray. This meant the region effect in E. 
coli presence model may be a proxy for these management practices. Although we 
preferred to keep Region in the model to exacerbate the differences in the sampling effort 
and detection limits among regions, it would be a huge sacrifice to avoid so many 
variables which have more relevance factors. Therefore Region was not included in the 
selection. 

Upon completion of the univariate analyses, all variables were selected for the 
multivariable analysis. With backward selection and the Wald test for importance, the 
best model was following with Farm as a random effect term: 

𝑙𝑙𝑙𝑙 𝑝𝑝
(1−𝑝𝑝)

=  𝛽𝛽0 +  𝛽𝛽1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝛽𝛽2,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  ɛ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹      Eq.2 
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Where 𝑝𝑝 = the probability of having an E. coli positive samples, β i are constants, β1, RainW 
= dummy variable for rain water, β2, Spray = dummy variable for spray irrigation, ɛ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 R = 
random effect for farm. Spray irrigation showed a protective effect (Table 3.2). Using rain 
water for irrigation versus other irrigation water types increased the odds of having E. coli 
contamination on LGVs by a factor of 12.14 (Table 3.2).  

All variables and E. coli presence 
The backward selection was performed once more combining significant (p-value < 0.25) 
climate and management variables to predict E. coli presence on LGVs. Region was again 
not included in the backward selection. The combined model has the following form: 

𝑙𝑙𝑛𝑛 𝑝𝑝
(1−𝑝𝑝)

=  𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝛽𝛽2,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛽𝛽3,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + ɛ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹    Eq.3 

Where 𝑝𝑝 = the probability of having an E. coli positive samples, Tmin = minimum 
temperature in °C, β i are constants, 𝛽𝛽2,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = dummy variable for surface water, 
𝛽𝛽3,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = dummy variable for inorganic fertilizer, and ɛ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 R = random effect for farm. 
Because Region had collinearity with SurfaceW, the joint model was run again with the 
variable Region instead of SurfaceW. Comparing to Eq.3 a significantly lower AIC was 
found in that model with the following form:  

𝑙𝑙𝑙𝑙 𝑝𝑝
(1−𝑝𝑝)

=  𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝛽𝛽2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝛽𝛽3,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 +  ɛ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹     Eq.4 

Where 𝑝𝑝 = the probability of having an E. coli positive samples, Tmin = minimum 
temperature in °C, β i are constants, 𝛽𝛽2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = dummy variable for regions, 𝛽𝛽3,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 
dummy variable for inorganic fertilizer, and ɛ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 R = random effect for farm. The odds 
ratio (Table 3.2) shows that for a 1°C increase in minimum temperature, the odds of 
having E. coli contamination on LGVs increase by a factor of 1.47, assuming management 
remains the same. In both Eq.3 and Eq.4, Tmin had significant influence on estimating E. 
coli contamination. Although other variables did not have a significant p-value (< 0.05), 
they improved the model fit significantly according to the AIC test. Therefore management 
variables were also included in the final mixed model. Although Eq.4 was the best model 
fit for this meta-analysis, we also presented Eq. 3 because it provided more understanding 
of the variable Region and it would be more useful than Eq.4 for future studies on 
prediction model in specific region. Cross validation analysis of Eq.4 showed that the mean 
AUC was 88% (range 79% to 95%) (Figure 3.3). So the model has a good predictive value.  



Modelling leafy green contamination by Escherichia coli at pre-harvest stage 
 

44 
 

Since Tmin was the only significant variable in the joint model, we concluded that 
although climate and management variables together influence E. coli presence on LGVs, 
Tmin had stronger influence on E. coli presence than management variables. 

 

Figure 3.3 Receiver operating characteristic (ROC) curves for each of the 10-fold cross validation. 

3.3.3 E. coli concentrations on leafy green vegetables 
Visual inspection of normality plots of standardized residuals and the homoscedasticity 
test (residual plot of standardized residuals with fitted values) did not reveal any obvious 
deviation from normality. The random effect Farm was dropped because its effect was 
negligible to the smaller dataset (59 samples from 16 farms). To assess the effect of the 
climate variables and management variables on the E. coli concentrations, E. coli positive 
samples were fitted to the linear regression model with the method explained in Section 
3.2.2. Results of climate and management variables are presented in this section. 

Climate variables and E. coli concentration 
Based on univariate analysis, variables Tavg, Tavg3, Tavg7, Tmax, Tmax3 (highest R-
squared: 0.38), Tmax7, Tmin and P7were significant (p < 0.25). Since the temperature 
variables were not independent, only one variable should be selected. So Tmax3, P7and 
Region were chosen after the univariate analysis. With backward selection, the Wald test 
for importance of the categorical variable, the F-test to select the best model fit and the 
interaction check, the final model had the following form: 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇3 +  𝛽𝛽2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅      Eq.5 

Where Y = E. coli concentration in log10 CFU/g, β i are constants, Tmax3 = maximum 
temperature of three days before sampling day in °C and 𝛽𝛽2,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = dummy variable for 
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region. Maximum temperature was significantly and positively correlated with E. coli 
concentrations (Table 3.3). This model gave RMSE of 0.38 and an MAE of 0.30 indicating a 
high accuracy. The adjusted R-squared was 0.75 with an associated p-value less than 0.00. 
Figure 3.4 graphically shows the regression of Tmax3 and E. coli concentration for each 
region. This regression gave an adjusted R-squared of 0.38 and an associated p-value of 
0.00 (Figure 3.4) indicating E. coli concentrations had a significant positive correlation with 
Tmax3.  

 

Figure 3.4 Correlation of E. coli concentration with daily average temperature for each region.  

Table 3.3 Parameter estimates, standard error and p-value in the final linear regression models to 
estimate generic Escherichia coli (log10 CFU/g) on lettuce and spinach.  

 β  i Estimate Std. Error p-value 

Climate model (n = 59, R2 = 0.75)    
β 0 (Intercept) 0.258 0.432 0.553 
β 1 (Tmax3) 0.041 0.020 0.043 
β 2,Belgium Reference Reference Reference 
β 2,Brazil 1.432 0.215 <0.000 
β 2,Egypt 0.765 0.169 <0.000 
β 2,Norway 0.287 0.294 0.333 
β 2,Spain 1.090 0.151 <0.000 
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Management model (n = 56, R2 = 0.67)    
β 0 (Intercept) 1.561 0.236 <0.000 
β 1,RainW 0.471 0.185 0.014 
β 2,Spray 0.594 0.195 0.004 
β 3,GroundW 1.663 0.357 <0.000 
β 4,Inorganic -1.544 0.169 <0.000 
Joint model (n = 56, R2 = 0.69)    
β 0 -0.502 0.589 0.399 
β 1 (Tmax3) 0.083 0.016 <0.000 
β 2,Manure 0.613 0.249 0.017 
β 3,Inorganic -0.557 0.266 0.041 
β 4,Spray 0.391 0.168 0.024 

Management variables and E. coli concentration 
In the management model, variables FarmA and ToiletD were excluded in the univariate 
analysis, because the missing values in these two variables were 17% and 25% of the total 
samples. Too many samples would have to be excluded for the regression analysis if these 
two variables were included in the dataset. Three samples from Norway were excluded 
from the dataset due to the missing values in irrigation water type. Upon completion of 
the univariate analysis, all variables had a p-value < 0.25 except for SurfaceW and Flood. 
The VIF results showed that Region had multi-collinearity with RainW, Manure, Inorganic 
and Spray.  This meant that the region effect may be a proxy for these management 
practices. Therefore Region was not included in the selection. With backward selection, F-
test and interaction check, the final model (n = 56) had the following form: 

𝑌𝑌 =  𝛽𝛽0 +  𝛽𝛽1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝛽𝛽2,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛽𝛽3,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝛽𝛽4,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼    Eq.6 

Where Y = E. coli concentration in log10 CFU/g, β i are constants, 𝛽𝛽1,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = dummy 
variable for rain water, 𝛽𝛽2,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  = dummy variable for spray irrigation, 𝛽𝛽3,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  = 
dummy variable for groundwater and 𝛽𝛽4,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  = dummy variable for inorganic fertilizer. 
The influence of rain water, spray irrigation, groundwater and inorganic fertilizer were 
significantly different from all other irrigation water types and fertilizer types (Eq.6). This 
model gave an RMSE of 0.44 and a MAE of 0.32 indicating a high accuracy. Adjusted R-
squared is 0.67 with a p-value less than 0.00. The model parameter coefficients are given 
in Table 3.3. Inorganic fertilizer gave a protective effect compared with other fertilizer 
types (Table 3.3). E.coli concentrations were positively related with RainW, Spray and 
GroundW.  
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All variables and E. coli concentration 
Climate variables and management variables were then combined to predict E. coli 
concentrations. All variables selected for the multivariable analysis in the previous two 
models were combined for the stepwise selection. According to this joint model, the E.coli 
concentrations on LGVs were estimated with the following equation:  

𝑌𝑌 =  𝛽𝛽0 +  𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇3 + 𝛽𝛽2,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽3,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 +  𝛽𝛽4,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   Eq.7 

Where Y = E. coli concentration in log10 CFU/g, β i are constants,𝛽𝛽2,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = dummy 
variable for composted manure (-derived), 𝛽𝛽3,𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = dummy variable for inorganic 
fertilizer, 𝛽𝛽4,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  = dummy variable for spray irrigation. In the joint model Tmax3, 
Manure, Inorganic and Spray were selected to estimate E.coli concentrations. This model 
gave RMSE of 0.42 and a MAE of 0.31 indicating a high accuracy. Adjusted R-squared was 
0.69 with a p-value less than 0.00. Inorganic fertilizer again had a protective effect 
compared to other fertilizer types (Table 3.3). E.coli concentrations were positively related 
to higher maximum temperature and using composted manure (-derived) and spray 
irrigation.  

This model had a lower adjusted R-squared than Eq.5. Multi-collinearity was present 
among Region, Manure, Inorganic and Spray. Eq.5 was the best model fit for estimating E 
.coli concentration on LGVs based on this meta-regression analysis and the variable Region 
was masking three other management variables. Eq.7 was, though, useful for future 
prediction modelling in a specific region.  

We concluded that both climate and management variables influence the E.coli 
concentration significantly. Tmax had the strongest influence (adjusted R-squared of 0.38) 
among all variables.  

3.4 Discussion  
Our study identified a combination of statistically significant variables that best explained 
observed variation in E. coli presence and concentrations. A two-step approach was taken 
to first study the relation between climate and management variables and E. coli presence 
and secondly to study the relationship between climate and management variables and E. 
coli concentrations. For climate variables, Tmin and P7 were important for the presence. 
Tmax3 was important for the concentration. For management variables, RainW and Spray 
were important for both presence and concentrations. In addition to these two variables, 
GroundW and Inorganic were also important to estimate E. coli concentrations. When 
climate and management variables were combined, both temperature and management 
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practices influenced the E. coli presence and concentrations together. Temperature had a 
stronger influence (shown by significant parameter estimate and highest R-squared) than 
management practices for E. coli presence and concentration on LGVs.  

Inorganic fertilizer had a positive parameter estimate in the E. coli presence model. This 
differed from our expectation since inorganic fertilizer should be sterile. However, the 
parameter estimate was not significant, meaning that, although inorganic fertilizer 
significantly explained data variation, the parameter estimate was not representative for 
indicating directional changes in E. coli contamination. The contra-intuitive risk factor of 
inorganic fertilizer most likely is due to the nature of the dataset and the fact that 
regression analysis does not identify true causal relations. Many of the positive samples 
arose from farms using inorganic fertilizer but the true contamination source may be 
other factors not considered in this study. The farmers applying inorganic fertilizer 
happened to have a higher percentage of positive samples than the ones using composted 
manure. Almost all of these positive samples from farmers applying inorganic fertilizer 
were from the same farm in Belgium. The contamination cannot be from the inorganic 
fertilizer, but is most likely due to the hygiene conditions on the farm or other factors that 
cannot be explained by our dataset. Non-significant variables should not be used in 
predicting future E. coli presence, while we think the E .coli concentration model with an 
adjusted R-squared of 0.75 is applicable for scenario analysis. 

Our results for E.coli presence show similar results compared to other studies. Results 
from Park et al. (2015) indicated that the E.coli presence was determined by the 
environment (state). Strawn et al (2013) also summarised that manure application, 
irrigation water, temperature and precipitation increase the risk of pathogen 
contamination. Pagadala et al (In press) stated with their univariate analysis that irrigation 
water source was a significant variable for all indicator bacteria on tomatoes. And Region 
was a significant variable for total coliforms levels.  

This study on E. coli concentrations has slightly different results compared to the study of 
Park et al. (2014, 2015) which are, to our knowledge, the first studies on E. coli presence 
and concentration combined with climate and management variables. They concluded 
that E.coli presence was determined by farm management (manure application), 
environment (state) and climate variables (29 days average precipitation). Once a 
contamination event had occurred, the count of generic E.coli on spinach was determined 
by weather only (mean precipitation of the past 29 days and mean maximum temperature 
over the past 9 days) (Park et al. 2015). The results from our study showed that if E. coli is 
present on LGVs, the concentration was determined by Tmax3 and Region which was a 
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variable with high collinearity with management variables. We found that the influence on 
E. coli presence was a combination between climate and management. This is probably 
because the different model objectives and experimental set up. The study of Park et al. 
(2015) tested a cumulative weather effect which considered the survival of E. coli between 
contamination and sampling. We did not take the dynamics in the period between 
contamination and sampling into consideration due to lack of information on UV which is 
the most important factor for bacteria survival.  

Our results showed that the E. coli presence and concentrations had positive relationships 
with temperature. Castro-Ibáñez et al (2014) also found that coliform counts were 
positively related to temperature. An increasing temperature due to climate change may 
increase the E. coli concentrations in the future although the actual E. coli concentrations 
increase with 1°C is low. A direct positive effect of temperature on E. coli presence and 
contaminations is, however, not expected given the general observed negative relation 
between temperature and environmental persistence (Franz et al. 2014). From a 
microbiology perspective, E. coli is expected to have reduced survival with increasing 
temperature in soil, manure or water (Wang and Doyle 1998, Mukherjee et al. 2006, Liu et 
al. 2013, Franz et al. 2014). Temperature may affect environmental factors like wildlife 
intrusion, insect activity, and irrigation frequency, which in turn directly affect E. coli 
presence and concentrations. These environmental factors should be included in the 
future sampling and analysis to cover more potential contamination pathways. 

 

Figure 3.5 A diagram shows statistically significant effect of climate and management variables on E. 
coli presence and concentration. Solid arrows indicate quantified significant effects from this study. 
Dash arrows indicate unquantified potential association. Plus (minus) signs indicate positive 
(negative) relationship between variables and E. coli presence/concentration. 

The relationships found in this study for E. coli concentrations, climate and management 
variables are illustrated in Figure 3.5. Both climate and management variables had a direct 
and positive relationship with E. coli presence and concentrations. In addition, climate 
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may indirectly relate to management variables and then influence the E. coli 
concentrations. Although these management practices vary in different temperature 
zones, this difference is often due to different social-economic conditions in these zones. 
Fertilizer type and irrigation water type may also be influenced by Gross Domestic Product 
(GDP) and GDP happens to be lower in higher temperature countries in this study. We do 
not have sufficient data to conclude on this. Further research is needed to prove climate 
variables influence E. coli concentrations strongly via management practices.  

The current study has some minor limitations. First, LGV samples used in the modelling 
may not represent the situation in large farms due to high uncertainty of the 
measurements. Secondly, the length of measurement period was short to observe the 
changing management behaviour due to climate change. However, a broad temperature 
range in the data was able to cover that. Third, the precipitation data used may not fully 
represent the precipitation over the farms. Although the most nearby weather station 
next to the LGVs farm were taken, the distance still ranged up to 50 kilometres away from 
the farm. Fourth, only little precipitation was observed on the sampling days and we have 
thus far not looked at rain amounts over more than 7 days. Medina-Martínez et al (2015) 
found that lettuce was contaminated after a flood in Spain and bacteria disappeared after 
7 days due to UV radiation. Fifth, overall warmer regions happened to have comparatively 
many positive samples. We did not study whether this is also because of the other social-
economic factors, e.g. facility availability and knowledge of the farmers. Sixth, besides 
climate and management variables, many other environmental variables influence E. coli 
contamination on LGVs, e.g. wildlife fencing around the farms, wildlife appearance 
frequency. These environmental factors were not included in the regression analysis.  

Meta-analysis provides opportunities to perform statistical analysis with limited positive 
samples from each region. Including the regions with different climate conditions and E. 
coli concentrations enlarges the range of temperature and E. coli concentrations. This way, 
our analysis is founded on a larger range of data. Although Region appears to be an 
important variable for E. coli contaminations in this study, the meta-analysis allows a 
generic model to identify the statistically significant variables for E. coli contamination 
throughout the regions. From this study we have learnt several lessons for future meta-
analysis: a) Experimental design in meta-analysis has to be standardized as much as 
possible. In our study all samples were taken according to the HAS which is developed in 
the Veg-i-Trade project. Each partner used the same sampling method and questionnaire. 
However, the sampling and analysis in different regions were not designed for a meta-
analysis from the start. Even though the sampling was performed according to the same 
scheme, we had to work with two produce types (lettuce and spinach) and, more 
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importantly, different detection limits. b) Meta-analysis has more strict sampling 
requirements than individual studies. The combined datasets need to have a 
representation that is as balanced as possible of all levels of management variables. If a 
study is set up for a meta-analysis, then every management variable would ideally have 
the same amount of samples. It is better to have all management variables covered in 
each region. When the data from other studies outside the Veg-i-Trade are included, some 
management variables only occurred in one region. Therefore it was impossible to include 
other studies outside the Veg-i-Trade project in this meta-analysis. This highlights the 
need for a coordinated future international sampling collection effort and for 
development of study design and reporting standards to assure that the data collected 
and results reported in different regions are comparable and could be used in subsequent 
meta-analyses. Including studies with very different sampling efforts may give different 
results than the studies with similar sampling efforts. c) Some of the regional differences 
are not defined in meta-analysis and they should not be ignored. The differences in joint 
models with and without Region show that the variable Region explained the regional 
variations in many management practices, but also additional regional differences. I 
recommend to enlarge the model boundary in future studies by including these additional 
differences (e.g. variation in detection limits, experimental material and equipment, local 
hygiene, social economic development levels, presence of wildlife intrusion, insects 
activity, irrigation frequency, soil type and slope/topography) to complete the system 
analysis of LGVs safety. 

This is the first large scale meta-analysis on E. coli presence and concentrations on LGVs. 
This study combined climate and management variables from 23 farms and included more 
than 562 samples. The current study sets the baseline for future monitoring of climate and 
contamination relationships. The significant climate and management variables 
(temperature, fertilizer and irrigation water types and irrigation methods) determined in 
this study should be considered systematically in fresh produce safety studies in the future.  

Acknowledgement  
The authors thank Dr. Evert-Jan Bakker for his statistical advice and help in this study. This 
research is funded by the EU FP7 Veg-i-Trade project (Grant agreement no 244994).



 

 

  



 

 

 

 

 

 

 

 

Chapter 4 

Preparing Suitable Climate Scenario Data to Assess 
Impacts on Local Food Safety 

 

 

 

 

 

Liu, Cheng 

Nynke Hofstra 

Rik Leemans 

 

This chapter has been published in  

Food Research International 68.Special issue (2015): 31-40.  



Preparing suitable climate scenario data to assess impacts on local food safety 
 

54 
 

Abstract 

Quantification of climate change impacts on food safety requires food safety assessment 
with different past and future climate scenario data to compare the current and future 
conditions. This study presents a tool to prepare climate and climate change data for local 
food safety scenario analysis and illustrates how this tool can be used with impact models. 
As an example, coarse gridded data from two General Circulation Models (GCMs), 
HadGEM2-ES and CCSM4, are selected and downscaled using the ‘Delta method’ with 
quantile-quantile correction for Ukkel, Belgium. Data are provided for four future 
Representative Concentration Pathways (RCPs) for the periods 2031-2050 and 2081-2100. 
The climate projections for these RCPs show that both temperature and precipitation will 
increase towards the end of the century in Ukkel. The climate change data are then used 
with Ratkowsky’s bacterial growth model to illustrate how projected climate data can be 
used for projecting bacterial growth in the future. This example shows that this 
downscaling method can be applied to assess future food safety. Our approach helps food 
safety researchers to perform their own climate-change scenario analysis. The actual 
algorithm of the downscaling method and its detailed manual is available in the 
supplementary material of the original publication. 
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4.1 Introduction 
The likelihood of food contamination is strongly related to prevailing weather and climate 
(FAO 2008, Nelson 2009, Lake et al. 2010, Liu et al. 2013). Temperature and precipitation 
patterns are, for example, closely related with not only the fate and transport of enteric 
bacteria but also with their growth and survival. A temperature increase and shifts in 
precipitation intensity and patterns change contamination processes (Liu et al. 2013). 
Additionally, climatic change, affects toxigenic fungi colonization and diffusion, and 
enhances the production of mycotoxins (Miraglia et al. 2008). Moreover, increased 
temperature and changing precipitation more rapidly degrade pesticides and thus can 
increase the use and costs of pesticides on certain crops (Chen and McCarl 2001). Pests 
from the southern areas may occur in the North due to temperature increase, although 
pesticide reformulation can be expected with new technology (Delcour et al. this issue). 
Liu et al (2013) clearly showed that considering climate change will be important in food 
safety research and management. 

Identification and quantification of climate change impacts on food safety requires impact 
modelling with different climate scenarios (Jacxsens et al. 2010, Liu et al. 2013). Such a 
modelling exercise requires the best possible climate and climate change data to specify 
both current and future conditions. These data are provided by the Intergovernmental 
Panel on Climate Change (IPCC) for specific future scenarios, which are commonly used by 
ecologists, hydrologists and agronomists to assess impacts on ecosystems, floods and 
droughts and food security respectively (Stocker et al. 2013b). Scenarios are plausible 
descriptions on how the future may unfold base on if-then propositions (Tirpak 1990). 
Changes in temperature, precipitation and other climate variables are calculated with 
General Circulation Models (GCMs). GCMs simulate the horizontal and vertical flow of 
matter (e.g. water, clouds, aerosols and air) and energy in the atmosphere and the oceans. 
The whole system is driven by the sun’s radiative energy and involves many complex 
interactions between, for example, ice, land, topography and greenhouse gases. The basic 
physics of this complex system are well understood (Sillmann et al. 2013, Stocker et al. 
2013b). The main uncertainties in understanding the climate system stem from subtle 
feedbacks and other interactions, and stochastic or tele-connected processes, such as the 
proverbial flap of the Amazonian butterfly wing causing a later storm in the North Atlantic 
(Brayshaw et al. 2009). Many different GCMs are developed to understand past, present 
and future climate change. All these different GCMs have slightly different objectives and 
focus, and together form a model ensemble, which captures some of the uncertainties 
(Kharin and Zwiers 2002, Tebaldi and Knutti 2007). Results from individual GCM and 
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averages/ranges from ensembles describe future climate conditions that could be used in 
impact studies (Christensen and Lettenmaier 2007). 

Until the most recent IPCC assessment came out in 2013, the radiative forcing levels 
resulted from socio-economic scenarios (e.g. SRES, the Special Report on Emission 
Scenarios by Nakicenovic et al. (2000)). Recently a new scenarios development procedure 
(Moss et al. 2010b) was generated by the climate change research community. The 
procedure starts from radiative forcing levels. For this procedure, representative 
concentration pathways (RCPs) have been distilled from the scenario literature to cover 
the best possible range of future atmospheric greenhouse gas concentrations. Four typical 
pathways were selected. These lead to radiative forcing levels of 8.5 W/m2 (business as 
usual), 6.0 W/m2 (slowdown in emissions), 4.5 W/m2 (mitigation) and 2.6 W/m2 (strong 
mitigation) by the end of this century (van Vuuren et al. 2011). The ‘strong mitigation’ RCP 
likely keeps climate change within the desired 2°C target of the politically agreed 
Copenhagen Accords.  Using RCPs as input data, GCMs calculate climate, atmospheric and 
carbon cycle projections to study the impacts (van Vuuren et al. 2011).  

While climate change projections are calculated, various socio-economic scenarios can be 
developed that are consistent with the specified RCPs. This procedure is substantially 
faster than the earlier procedure, but the RCPs only provide a future climate that results 
from the specific change in radiative forcing. Their outputs have become a look-up table 
and are no longer based on consistent social-economic assumptions, like in the SRES 
emission scenarios. Making consistent assumptions for additional policy scenarios or for 
local and regional scenario interpretations is straightforward for SRES (e.g. Metzger et al. 
2008), but extremely difficult for the RCPs (van Vuuren et al. 2011). To conform to the 
latest trends in climate research, we do use the GCM results for the new RCPs for this 
paper. 

Direct GCM outputs are inadequate for assessing local and regional food safety (Ramirez-
Villegas and Challinor 2012). The spatial GCM resolution (typically 200×200 km) is much 
coarser than the detailed resolution of food safety impact models. The GCM outputs are 
averages of large grid cells (40000 km2). This implies that these data are ‘smooth’ 
compared to local data, probably underestimating temperature and precipitation 
extremes of actual field situation (Hofstra et al. 2010). Additionally, the available temporal 
resolution of GCMs (typically daily averages) is also too crude for many food safety models 
(especially those that model pesticide use (Karpati et al. 2004)). These two issues result in 
a spatial and temporal resolution mismatch between the GCM output and the input 
required by food safety models. The data thus need to be processed before they can be 
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beneficially applied. This is generally done by combining climate data from local 
observations and GCM outputs. 

This study describes an appropriate methodology for combining climate and climate 
change data for food safety assessments. A methodology to downscale the GCM data to a 
locality (e.g. a field) for food safety modelling is developed (Section 4.2). Subsequently, 
the downscaled data are presented and summarised (Section 4.3) and an example in 
which these data are used to estimate future bacterial growth illustrates how the data can 
be used (Section 4.4). Finally, data uncertainties and limitations are discussed to show the 
robustness and applicability of our approach (Section 4.5). 

4.2 Methodology 
This section discusses the selected data sources and models, and presents how spatial and 
temporal scales and resolutions of the data are selected and prepared for food safety 
modelling. 

4.2.1 Observational data 
We take Ukkel, Belgium as an example location, since many food safety studies are 
performed on fields near Ukkle (Wesemael and Moens 2008). We could, however, select 
any other example site. Daily minimum and maximum temperature and precipitation data 
have been obtained from the Belgium Royal Meteorological Institute. 

4.2.2 The CMIP5 data and model choice 
GCM outputs from the fifth phase of the Coupled Model Intercomparison Project (CMIP5; 
(Taylor et al. 2012)) were used in this study. CMIP5 is a standard experimental climate 
change protocol for GCMs. All CMIPs’ data can be downloaded from the Earth System Grid 
Federation Portal (http://pcmdi9.llnl.gov/esgf-web-fe/). CIMP5 includes the most recent 
global GCM outputs available. These are also used in the most recent assessment report 
(AR5) of IPCC (Stocker et al. 2013b). 

To represent the full range of outputs, the full multi-model ensemble (including 
61different GCMs) for climate impact studies should ideally be used (Houtekamer and 
Derome 1995, Tebaldi and Knutti 2007). However, since we merely develop an approach 
to assess climate-change impacts on food safety (and running impact models 61 times is 
time-consuming), we feel that using the full models ensemble does not add information in 
this paper. On the other hand, using a single GCM projection as a representative of the 
possible change can lead to anecdotal future conditions and thus to misleading 
conclusions. When an uneven number of models are used, choosing the middle one as the 

http://pcmdi9.llnl.gov/esgf-web-fe/
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‘most likely’ one is tempting. For these reasons, data from two renowned GCMs are used: 
The Hadley Centre Global Environmental Model 2- Earth System (HadGEM2-ES) (Collins et 
al. 2008, Collins et al. 2011, Jones et al. 2011) and the Community Climate System Model 
version 4 (CCSM4) (Gent et al. 2011). The reasons for using HadGEM2-ES and CCSM4 GCM 
output are that they model temperature and most precipitation indices, including extreme 
precipitation, most robustly (Flato et al. 2013, Sillmann et al. 2013). These indices are 
important climate variables for food safety modelling (Liu et al. 2013). The HadGEM2-ES 
model is used for the core climate simulations carried out by the Met Office Hadley Centre 
for the CMIP5 project and the HadGEM2 series is one of the most important and 
commonly used GCMs for future climate projections. The open access CCSM4 model is 
developed and used by a community of scientists and students from universities, national 
laboratories and other institutions. This model is available from CCSM’s website 
(http:www.cesm.ucar.edu/models/ccsm4.0/).  

4.2.3 Spatial resolution and scale 
Gridded temperature and precipitation data from GCMs are used in this study. These 
gridded data should be interpreted as average values of an infinite number of points in the 
grid (Harvey et al. 1997). To get a feel for what the gridded data look like, maximum 
temperature from both GCMs for the grid on top of Ukkel, Belgium is presented in Figure 
4.1. The modelled current gridded data (grey lines) from the CCSM4 model are on average 
1°C higher than from the HadGEM2-ES model. The size of the grid indicates the model’s 
spatial resolution (HadGEM2-ES: 1.25°×1.88°, CCSM4: 1.25°×0.9°). The difference in 
modelled current maximum temperature is determined by these different resolutions. The 
HadGEM2-ES grid-cell covers a part of the cooler North Sea, while the CCSM4 grid-cell only 
covers land. This shows that the use of more than a single GCM is important for 
determining the proper climate context. 

Gridded data have less variability and less local climate characteristics, especially for 
precipitation, than an agricultural field (Hofstra et al. 2010). Keeping local data variability, 
however, is important for future field-level food safety studies. This requires adequate 
downscaling procedures that produce point data from gridded data. Such an approach is 
applied in this study by using the data from actual local weather stations near the fields as 
a reference for the climate variability.  

Grid cell selection 
Selection of a grid cell for downscaling is very much an expert judgement because weather 
stations are rarely located in the centre of a grid. Therefore, to estimate the best possible 
climate value, a locality can be assumed similar to its grid or interpolated from its 
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surrounding grids (Leemans and Cramer 1991, New et al. 1999) Another approach is to 
calculate the average of the surrounding grids (Wilby and Wigley 1997, Crawford et al. 
2007). The difference between simply using the single grid in which the station is located 
and interpolation, however, is small at local scale (Prentice et al. 1992). Calculating an 
average introduces arbitrariness and reduces the local patterns (Prentice et al. 1992). 
Therefore, we use the single grid cell on top of the local weather station in this study. 

Figure 4.1 Annual average maximum temperature at 2m height of the grid on top of Ukkel, Belgium: 
comparing observation data (1981-2000) with GCMs (a. HadGEM2-ES and b. CCSM4) gridded 
outputs (2006-2100), i.e. modelled current data and modelled scenario data. This study focuses on 
two future periods (2031-2050 and 2081-2100) which are indicated with dashed lines.   
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Delta method 
Many downscaling methods are used to produce weather data for impact models 
(Hawkins et al. 2013). The ‘delta’ or ‘change factor’ method is used in this study by 
overlaying the GCM’s projected climate with observed climate (Wilby and Wigley 2000, 
Arnell et al. 2003, Diaz-Nieto and Wilby 2005) (Eq.8). This ensures that the current climate 
is the actually observed climate and not the simulated GCM-based current climate with its 
obvious errors. Temperature change can simply be added to the observed temperature. 
Such addition, however, can result in negative precipitation values. Here a multiplicative 
approach (i.e. relative change) is usually used (Hawkins et al. 2013) (Eq.9). The method 
adds variability to the gridded data. 

Future station data = observation current data + (modelled scenario data – modelled 
current data)        Eq.8 

Future station data = observation current data × (modelled scenario data / modelled 
current data)        Eq.9 

Quantile-quantile correction 

We apply quantile-quantile correction to ensure that the future station data and the 
observed data are distributed similarly. This correction is analogous to the quantile-
perturbation approach (Ntegeka and Willems 2008, Willems and Vrac 2011). The observed 
data are perturbed with the modelled data, considering the projected changes in 
percentiles. The method has been developed in Excel and contains the following steps 
(repeat for all months in the twenty year period (i.e. all 240 months) and scenarios): 

1. Modelled current and scenario data are ranked and percentiles are calculated. 

2. An intermediate summary or lookup table is produced. The columns of this table 
contain the percentiles, the modelled current value for each percentile and the modelled 
scenario value for each percentile. 

3. Anomalies are calculated for each percentile by subtracting the modelled current value 
from the modelled scenario value for temperature or dividing the modelled scenario data 
by the modelled current data for precipitation. The resulting anomalies represent the 
future change in temperature or precipitation. 

4. Observed data are ranked and percentiles are calculated for each day. 
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5. Then the percentile of each observed day is retrieved from the table and the anomaly 
value for that percentile is then added to the observed value for temperature (Eq.8) or 
multiplied with the observed value for precipitation (Eq.9). 

These five steps produce the final output: daily future data for the location of the 
observational station. 

A routine with this quantile-quantile correction and its detailed manual is available in the 
supplementary material of the original publication. To apply the routine, daily station data 
for a twenty-year period, modelled data for the grid on top of the station for the same 
twenty-year period and corresponding modelled twenty-year scenario data are required. 
This procedure can be used for any meteorological station. 

4.2.4 Temporal resolution and scale 
The projected climate data from GCMs have various temporal resolutions: monthly, daily, 
6 hourly and 3 hourly. Most of the impact models are driven by daily weather inputs and 
observed weather data are generally available with a daily time step. Some food safety 
studies, for instance on pesticide residues (Chen and McCarl 2001, Van Boxstael et al. 
2013) and mycotoxins (Van de Perre et al. 2014a) require, however, hourly data to more 
accurately assess impacts. This can be achieved by coupling large-scale datasets with 
weather generators (Ramirez-Villegas and Challinor 2012).  

Hourly weather generators are models calibrated on observed hourly weather series over 
an appropriate period for a site or a grid. Hourly weather is stochastically generated with 
precipitation considered to be the primary variable and other variables (e.g. maximum and 
minimum temperature) determined by a regressed relationship with precipitation (Ivanov 
et al. 2007, Fatichi et al. 2013). Hourly weather generators can be used to gain an even 
finer temporal resolution for food safety modelling. A suitable example is the weather 
generator specially developed for agricultural applications by Ivanov et al. (2007).  

Our tool (see Section 4.2.3), does not provide hourly data. If needed, Ivanov et al.’s (2007) 
weather generator can be used to produce hourly input. This generator, though, requires 
much additional input data, such as cloudiness, shortwave radiation, wind speed and 
humidity. Alternatively, a simpler but less realistic approach can be used to estimate 
hourly temperature from daily maximum and minimum temperatures. Schaub (1991), for 
example, fits a hyperbolic tangent function through minimum and maximum temperature. 
Two straightforward methods from Waichler and Wigmosta (2003)  predict hourly 
precipitation. Their first method uniformly distributes the daily precipitation over all 24 
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hours. This will strongly underestimate extreme precipitation events. The second method 
uses a relative month-hour fraction for each month. Also this downscaling method poorly 
fits observations (Waichler and Wigmosta 2003). Using daily or observed hourly 
precipitation instead would be much better. Although these simple temporal downscaling 
methods may not strongly influence the results of impact models, they strongly simplify 
reality. Testing the influence of temporal downscaling on impact model outputs could 
easily be done by running the impact model with observed hourly data and with 
temporally downscaled data and compare both results. 

The database provided in this study for food safety modelling includes daily values from 
2006 to 2100. For the presentation, twenty years of these data are used to account for 
inter-annual variability. The twenty-year reference and two scenario periods are specified 
as 1981-2000, 2031-2050 for the near future and 2080-2100 for the far future.  

4.3 Results 
Daily data of temperature and precipitation are presented for Ukkel, Belgium, to illustrate 
the changes in climate over the period 1981-2100. Daily data are provided for the four 
RCPs and the two GCMs, HadGEM2-ES and CCSM4. The resulting data are summarised in 
Figures 4.2, 4.3 and 4.4. 

The annual average maximum temperature (Figure 4.2) and annual total precipitation 
(Figure 4.3) are calculated for current and future scenarios for both GCMs. Maximum 
temperature and precipitation increase towards the end of the century in all four RCPs 
(Figure 4.2 and 4.3). In the near future (i.e. 2031-2050; Figure 4.2a and 4.2c) the 
differences in temperature increase are small because the radiative forcing is still very 
similar as this is still strongly dominated by historic emissions. However, there are slight 
differences in the details. For example, RCP6.0 starts with a lower radiative forcing 
increase than RCP4.5. For the far future (i.e. 2081 – 2100; Figure 4.2b and 4.2d), the 
temperature increase diverge and range from 2oC to 7oC.  RCP8.5 projects the highest (i.e. 
5-7°C) increase by the end of this century (Figure 4.2b and 4.2d). Modelled scenario data 
values from the HadGEM2-ES GCM are approximately 1°C higher than for the CCSM4 GCM 
(Figure 4.2). This could be an artefact of the CCSM4 model as it simulates current climate 
for the Ukkel grid approximately 1°C warmer than HadGEM2-ES. The simulated future 
climates are similar but this leads to a larger change (Eq. 8). 

Data users can choose other GCM data projections for their impact studies. Figure 4.4, for 
example, gives daily maximum temperature averaged over twenty years. Daily maximum 
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temperature is projected under RCP8.5 to increase approximately 2°C (CCSM4) and 4.5 °C 
(HadGEM2-ES) in January and 5°C (CCSM4) and 6°C (HadGEM2-ES) in August (Figure 4.4). 

4.4 Data application example 
Climate data are used with Ratkowsky’s (1983) bacterial growth model to illustrate how 
projected climate data can be used for bacterial growth modelling. Our results do not 
necessarily represent reality, because we did not thoroughly collect all necessary data for 
the model parameters and did no proper model validation. This example is included for 
illustration purposes only. The Ratkowsky model describes the bacterial growth rate 
throughout its entire temperature range and is widely used: 

 𝑟𝑟 = [𝑏𝑏(𝑇𝑇 − 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)]2 × {1 − exp[𝑐𝑐(𝑇𝑇 − 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)]}   Eq.10 

Where r is the growth rate (h-1), b (°C-1h-0.5) and c (°C-1) are the Ratkowsky parameters, 
Tmin and Tmax are the minimum and maximum temperature at which growth is observed 
(°C). Zwietering et al (1991) estimated b, c, Tmin and Tmax values and we use their 
approximations for Lactobacillus plantarum (Table 4.1). T is the hourly temperature 
downscaled from projected daily temperature from each scenario (RCPs, HadGEM2-ES 
and CCSM4) for Ukkel, Belgium. In this example, a hyperbolic tangent function (Schaub Jr 
1991) through daily minimum and maximum temperature is used to downscale daily data 
to hourly data. The Ratkowsky model is then run at an hourly time-step for the current 
and two future periods (i.e. 1981-2000, 2031-2050 and 2081-2100).  

Table 4.1 Ratkowsky parameters used in this example, as estimated for Lactobacillus plantarum by 
Zwietering et al (1991). 

Ratkowsky parameters Estimates for Lactobacillus plantarum by Zwietering et al. 1991 

b 0.041 °C-1h-0.5 

c 0.161°C-1 

Tmin 3.99 °C 

Tmax 43.7 °C 
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Figure 4.2 Annual average maximum temperature (measured at 2m) at weather station Ukkel, 
Belgium: comparing observed data (1981-2000) and future scenario data from GCMs HadGEM2-ES 
(a and b) and CCSM4 (c and d) in the near (2031-2050, a and c) and far future (2081-2100, b and d). 
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Figure 4.3 Annual total precipitation at weather station Ukkel, Belgium: comparing observation data 
(1981-2000) and downscaled scenario data from model HadGEM2-ES (a and b) and CCSM4 (c and d) 
in the near (2031-2050, a and c) and far future (2081-2100, b and d). 
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Figure 4.4 Daily mean temperature averaged over 20 years at weather station Ukkel, Belgium: 
comparing observation data (1981-2000) and downscaled scenario data from model HadGEM2-ES (a 
and b) and CCSM4 (c and d) in the near (2031-2050, a and c) and far future (2081-2100, b and d). 

0

5

10

15

20

25

30

1/Jan 1/Mar1/May 1/Jul 1/Sep 1/Nov

Tm
ea

n 
(°

C
) 

2031-2050 
a. HadGEM2-ES 

0

5

10

15

20

25

30

1/Jan 1/Mar1/May 1/Jul 1/Sep 1/Nov

Tm
ea

n 
(°

C
) 

Time (day) 

c. CCSM4 

Obs 1981-2000
RCP2.6 2031-2050
RCP4.5 2031-2050
RCP6.0 2031-2050
RCP8.5 2031-2050

1/Jan 1/Mar1/May 1/Jul 1/Sep 1/Nov

2081-2100 
b. HadGEM2-ES 

1/Jan 1/Mar1/May 1/Jul 1/Sep 1/Nov
Time (day) 

d. CCSM4 

Obs 1981-2000
RCP2.6 2081-2100
RCP4.5 2081-2100
RCP6.0 2081-2100
RCP8.5 2081-2100



Chapter 4 
 

67 
 

We determine how bacterial growth changes if temperature rises as projected with the 
HadGEM2-ES and CCSM4 GCMs for the four RCPs. Hourly Lactobacillus plantarum growth 
rates averaged over 20 years are presented in Figure 4.5. The upper and bottom lines 
show the maximum and minimum Lactobacillus plantarum growth rate averaged over 
1981-2000. The variability of the growth rate during the growing season is largest in 
August (Figure 4.5).  Maximum and minimum Lactobacillus plantarum growth rate per day 
during the growing season averaged over 20 years are calculated for each scenario in the 
far future (2081-2100) and compared with the current growth rate (1981-2000) (Figure 
4.6). For both GCMs and all RCPs, the only day on which daily maximum temperature 
(43.8°C) is higher than Tmax is calculated by HadGEM2-ES for RCP8.5 in August 2090. The 
growth rate is projected to increase in the future and the highest growth rate for Ukkel 
will be in August.  

We can also determine the number of days that temperature is suitable for Lactobacillus 
plantarum to grow. This number of days is calculated for each scenario and compared 
with the numbers between 1981 and 2000 (Figure 4.7). In both models and all scenarios, 
the number of days that the bacteria can grow increases due to the substantial increase in 
number of days that daily average temperature is higher than Tmin .  

 

Figure 4.5 Hourly Lactobacillus plantarum growth rate averaged over 20 years at Ukkel, Belgium: 
calculated from temporally downscaled observation data (1981-2000). 
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Figure 4.6 Maximum (a and c) and minimum (b and d) Lactobacillus plantarum growth rate averaged 
over 20 years at Ukkel, Belgium: calculated from observation data (1981-2000) and downscaled 
scenario data from model HadGEM2-ES (a and b) and CCSM4 (c and d) in the far future 2081-2100. 
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Figure 4.7 Over 20 year averaged number of days that Lactobacillus plantarum may grow at Ukkel, 
Belgium: calculated from observation data (1981-2000) and downscaled scenario data from model 
HadGEM2-ES (a and b) and CCSM4 (c and d) in the near (2031-2050, a and c) far future (2081-2100, 
b and d). 
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4.5 Discussion and Conclusion 
In this study we described a tool to prepare climate data for use in local food safety 
scenario analysis. We also illustrated how the data can be used with impact models. 
Unfortunately, how the future will unfold is unknown. Therefore, the results of scenario 
analysis must always be interpreted carefully. These results are not precise predictions but 
just plausible futures (Jones 2000). Scenario users should be aware that the processes to 
prepare and downscale climate data introduce uncertainties, because these uncertainties 
will propagate through the impact assessment (Jones 2000). The main uncertainties are: 

• Forcing, model and natural variability uncertainties (Hawkins and Sutton 2009, 
Deser et al. 2012, Taylor et al. 2012): Forcing uncertainties are due to limited 
knowledge of factors and their interactions influencing the climate system. Model 
uncertainties arise due to the differences in, for example, physical and numerical 
formulations. Natural variability uncertainties relate to the obvious variability of 
the climate system. Many studies (i. e. Meehl et al. 2007, Moss et al. 2010b) 
review these uncertainties of climate change projections, and show that they are 
real but not questioning the general trends of climate change. 

• The uncertainty of precipitation extremes projections. These are so high that 
their practical utility can be questioned (Fatichi et al. 2013).  

• The uncertainties related to the grid cell selection and downscaling method in 
producing climate data for the impact models (Hawkins et al. 2013). Ho et al. 
(2012) compare a so-called ‘bias correction’ method with the ‘delta method’ and 
conclude that both methods give different future climates. The uncertainties 
stemming from these differences could be equal to those from the different RCPs.  

• The technical uncertainties in the temporal downscaling from daily to hourly data. 
These uncertainties relate to our ability to implement mathematical formulations 
in statistical analysis (Waichler and Wigmosta 2003). Additionally, weather 
generators are constructed for specific locations, creating uncertainties when the 
generator is applied elsewhere (Semenov and Barrow 1997, Semenov et al. 1998, 
Wilks and Wilby 1999). Which weather generator should be used when requires a 
careful decision, since hourly data for calibrating each climate variable are lacking 
(Semenov and Barrow 1997, Semenov and Brooks 1999, Semenov 2007). 
Moreover, weather generators are not weather forecasting tools. Weather 
generators just statistically describe weather data, but any particularly generated 
weather sequence cannot replace  weather observations at a given time in either 
the past or future (Wilks and Wilby 1999). 
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The original ‘delta method’ uses a mean monthly anomaly, since the anomaly value varies 
little over the observation period. The daily values, however, vary much more. Therefore, 
we used the quantile-quantile correction. This enables adding different anomaly values 
based on the ranked daily values and thus strengthens the data variability of the 
observational station. The quantile-quantile correction straightforwardly uses the 
distribution of observational data, which describes the local variability, but requires the 
availability of a representative period of observations. Using the distribution from the 
observation data for all future scenarios can be disadvantageous because it standardizes 
the variability among scenarios. This neglects possible future shifts in extremes. 

In this study we described a method for preparing climate and climate change data for 
food safety assessment. Our method was exemplified by determining how the bacteria 
growth rate may change in Ukkel if temperature changes according to the four RCP 
scenarios. We conclude that the downscaling method is satisfactorily applicable for food 
safety assessment. Impact modellers in the field of food safety are recommended to work 
directly with climate modellers to better understand the limitations and uncertainties in 
scenario analysis. Our results show that the outputs from each GCM differ. Researchers 
who will apply this method in food safety scenario analysis, should therefore use as many 
GCM outputs and scenarios as possible to obtain a plausible range of outcomes. This will 
increase the confidence in their impact assessment. Our tool will stimulate food safety 
researchers who are interested to study the impacts of climate change in their own 
scenario analysis. 
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Abstract 

Food safety is a complex interplay of different climate and management variables and the 
future food safety is likely affected by climate change. This study explores the 
development and application of a multi-criteria scenario analysis tool to statistically model 
future food safety using a pre-harvest vegetable (spinach) in Spain as an example. 
Subsequently, the tool was demonstrated step by step with a sensitivity analysis to show 
the possibility of, for example, stakeholders’ interests in food safety studies. This study 
calculated the future E.coli concentration changes on spinach in the scenarios ‘RCP 8.5’ 
and ‘RCP 2.6’ at the end of the century in Spain. The results indicate that E.coli 
concentrations are projected to increase by 0.2 log10 CFU/g to 0.3 log10 CFU/g 
(depending on the climate scenarios and management options applied) due to higher 
temperature at the end of the century compared with the E. coli concentrations at the end 
of the last century. This comparison assumed no changes in agriculture management 
practices. The results show this tool is appropriate to select the best management 
practices considering climate change and other. This multi-criteria tool provides a platform 
to study changes in weather or climate, and management impacts on future food safety 
together with different stakeholders’ perspectives or interests. Such a multi-criteria 
analysis likely delivers a new mind set and method to determine study food safety and it 
enhances the quality of agricultural management decisions for leafy green vegetables. 
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5.1 Introduction 
The incidence in foodborne disease is generally correlated with local weather and climate 
conditions (Miraglia et al. 2009, Jacxsens et al. 2010, Tirado et al. 2010). The observed 
foodborne disease seasonality suggests that climatic conditions play a role and that 
climate changes may affect pathogens presence and concentration. A recent review of the 
impacts of climate change on micro-organisms (Liu et al. 2013) improved the qualitative 
understanding and this will now be used to study these impacts quantitatively. The 
mechanisms underlying the observed seasonality in foodborne disease are not yet fully 
understood, but they are likely a complex interplay of different factors. Besides climatic 
conditions, these factors include human behavior and consumption patterns (Van 
Staveren et al. 1986, Ziegler et al. 1987), farm management practices (Kirezieva et al. 
2015), pathogen prevalence in the animal reservoir and pathogen environmental survival 
patterns (Liu et al. 2013). Farmers are likely to change management practices to adapt to 
climate change (Kirezieva et al. 2015). For example, farmers in some areas may need to 
set up an alternative water sources for irrigation (e.g. valley dams, rain harvesting systems 
and ponds) to adapt to the drought in the future. Diverting from surface water to rain 
water irrigation likely increases contamination probabilities, because rain water is 
collected and stored in reservoirs which are often open to birds and insect (and their 
droppings).   

A previous study (Liu et al. Accepted) combined climate and management variables and 
included more than 560 samples from 23 farms in Belgium, Brazil, Egypt, Norway and 
Spain. They presented a regression model and concluded that temperature, manure, 
inorganic fertilizer and spray irrigation are statistically significant for E. coli concentration 
on leafy green vegetables. In this study we use a pre-harvest leafy green vegetable (i.e. 
spinach) samples in Spain and the regression model from the previous study as an 
example to study future food safety with a multi-criteria scenario analysis tool. The 
concepts of scenario, climate scenario and multi-criteria scenario analysis which all will be 
used in this study are introduced as follows. 

Scenario: Scenario in this study is defined as a plausible combination of current and 
possible future agricultural management practices. Such scenario starts from the current 
state with a specific set of current practices and develop towards a future state with 
specific set of current and future practices. 

Climate scenario: A climate scenario is defined as plausible and often simplified 
representations of future climate, based on an internally consistent set of climatological 
relationships that has been constructed for explicitly investigating the potential 
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consequences of anthropogenic climate change, often serving as input to impact models 
(IPCC 2013a). The climate change research community uses scenarios to improve 
understanding on how the future may unfold base on ‘what if’ propositions. These 
scenarios include the complex interactions of the climate system, ecosystems, and human 
activities and conditions. The outputs of scenario analyses provide plausible descriptions 
of what may happen. They are not predictions but merely not-implausible projections. 
Scenarios help to evaluate uncertainties in the full climate system (the human 
contributions, responses of the Earth system and impacts of climate change) and the 
implications of implementation of different mitigation (i.e. measures to reduce net 
emissions) and adaptation (i.e. actions that facilitate coping responses to the new climate 
conditions) measures (Moss et al. 2010a). 

A new scenarios development procedure (Moss et al. 2010b) was generated by the IPCC 
research community and used for IPCC’s latest assessment report (Stocker et al. 2013a). 
Representative concentration pathways (RCPs) have been distilled from the scenario 
literature to cover the best possible range of future atmospheric greenhouse gas 
concentrations. Four typical pathways were selected. These lead to radiative forcing levels 
of 8.5 W/m2 (i.e. business as usual), 6.0 W/m2 (i.e. slowdown in emissions), 4.5 W/m2 (i.e. 
mitigation) and 2.6 W/m2 (i.e. strong mitigation) by the end of this century (van Vuuren et 
al. 2011). The ‘strong mitigation’ RCP likely keeps climate change within the desired 2°C 
target of the politically agreed Copenhagen Accords (van Vuuren et al. 2011). The RCP 
scenarios provide outputs that answer the question: “What is the future climate (e.g. 
temperature) if radiative forcing changes?” 

Multi criteria scenario analysis: A multi criteria analysis is a decision-support tool, 
developed for complex problems that include multiple quantitative and/or qualitative 
problematic aspects and interactions (Macoun and Prabhu 1999). Multi-criteria scenario 
analysis is used to select the best scenarios based on several criteria, including climate 
change and various management options. To our knowledge, only one study from 
Mazzocchi et al. (2013) used multi criteria analysis on regulating mycotoxin contents in 
cereals.  

This chapter explores the development and application of a multi-criteria scenario analysis 
tool to study future food safety. This objective is addressed by applying and combining 
climate-scenario analysis and multi-criteria analysis on a statistical model using pre-
harvest spinach in Spain as an example (Section 5.2). Subsequently, the tool is 
demonstrated step by step by determining future microbial safety on spinach in Spain as 
an example. A sensitivity analysis was performed to show the possibility of including 
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different stakeholders’ perspectives or interests in food safety studies (Section 5.3). After 
that, strengths and weakness of this tool are discussed and concluded (Section 5.4). 

5.2 Material and Method 

5.2.1 Data 
 General Circulation Models (GCMs) outputs from the fifth phase of the Coupled 
Model Intercomparison Project (CMIP5: Taylor et al. 2012) were used in this study. CMIP5 
is a standard experimental climate change protocol for GCMs. All CMIPs’ data can be 
downloaded from the Earth System Grid Federation Portal (http://pcmdi9.llnl.gov/esgf-
web-fe/). CIMP5 includes the most recent global GCM outputs available. These are also 
used in the most recent assessment report (AR5) of IPCC (Stocker et al. 2013d). Many 
different GCMs are developed to understand past, present and future climate change. All 
these different GCMs have slightly different objectives, focus and parameterizations, and 
together their output form a model ensemble, which captures the major range of 
uncertainties (Kharin and Zwiers 2002, Tebaldi and Knutti 2007). The future temperature 
data were downscaled using the ‘Delta method’ with quantile-quantile correction which is 
explained in the precious work (Liu et al. 2014). The coarse gridded data were from the 
GCM Community Climate System Model version 4 (CCSM4). Outputs from one model are 
used in this study to illustrate our approach. It thus only provides one realisation from the 
possible ensemble range. In future more comprehensive applications, we recommend to 
use the full ensemble to capture the climate model uncertainties (Liu et al. 2014). 
Observational daily temperature data from 1981 to 2000 were used as a reference for this 
downscaling. Downscaled data were provided for four future RCPs for the periods 2031-
2050 and 2081-2100. In this study RCP2.6 and RCP 8.5 are used to illustrate the range of 
the climate change projection from the CCSM4 model.  

5.2.2 Statistical Model  
The E. coli concentration model (Eq.11: Liu et al., submitted) had an adjusted R-square of 
0.69. The model gave Root Mean Square Error (RMSE) of 0.422 and a Mean Absolute Error 
(MAE) of 0.308. Together, this indicates a high accuracy. Therefore, we used this model to 
estimate E.coli concentration in the future. This estimation was used to demonstrate the 
tool’s appropriateness to study future food safety. The model had the following form: 

𝑌𝑌 =  −0.502 + 0.083 × 𝑋𝑋1 + 0.613 × 𝑋𝑋2 − 0.557 × 𝑋𝑋3 + 0.391 × 𝑋𝑋4   Eq.11 

Where 𝑌𝑌 = E. coli concentration in log10 CFU/g, 𝑋𝑋1  = maximum temperature three days 
before the sampling day in °C, 𝑋𝑋2 = the application of manure (yes = 1, no = 0), 𝑋𝑋3 = the 

http://pcmdi9.llnl.gov/esgf-web-fe/
http://pcmdi9.llnl.gov/esgf-web-fe/


Exploring a multi-criteria scenario analysis tool to study future food safety 
 

78 
 

application of inorganic fertilizer (yes = 1, no = 0), 𝑋𝑋4 = the application of spray irrigation 
(yes = 1, no = 0). In this model, all dependent variables had significant influence on 
estimating E. coli concentration.  

5.2.3. Multi criteria scenario analysis 
This tool evaluates the relative importance of all criteria involved and reflect their 
importance in the final decision making process (Dodgson et al. 2009). The procedure of 
our Multi criteria analysis follows the approach by Dodgson et al. (2009) and is 
summarised in Box 5.1. 

5.3 Results 
Step 1 Establish the decision context. 

The overall objective of the multi-criteria scenario analysis was to explore the future food 
safety of pre-harvest leafy greens and select the most suitable management scenario. And 
this objective was converted to four criteria: E. coli concentration, cost, yield and nutrient 
loss from soil. 

Step 2 Identify management scenarios to be appraised. 

The results from Liu et al. (in preparation), showed that using manure, inorganic fertilizer 
and spray irrigation had a statistically significant influence on E. coli concentration. The 
combinations of using manure, inorganic fertilizer, spray irrigation, other irrigation ways 
and other fertilizer type were used in this study as management scenarios. These six 
scenarios are presented in Table 5.1. 

Step 3 Identify criteria. 

The first criterion was the E. coli concentration on the spinach calculated with Eq.11. Cost 
and Yield were criteria identified by farmers and local policy makers and relate to their 
perspective and interest. Nutrient loss from soil/soil health from the environment impact 
perspective was the criteria important to environmental scientists and local policy makers. 
These criteria were chose as examples to represent the interests of each expert group. E. 
coli is the hygiene indicator for food safety (Holvoet et al. 2014). Cost and yield are two of 
the main factors that farmers and policy makers considered in their management 
strategies. Nitrogen and/or phosphorus loss from the fertilizer applied in the soil may flash 
into the water and cause eutrophication in the river systems (Mayorga et al. 2010). 
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Box 5.1. Procedure for applying multi-criteria analysis 
Step 1. Establish the decision context. 

a. Identify the overall objective 
b. Convert objective to measurable criteria 

Step 2. Identify the management scenarios to be appraised.  
Step 3. Identify criteria. Identify criteria for assessing the consequences of each scenario. 

Management criteria were identified based on farmers, local policy makers and 
environmental scientists’ perspectives.  

Step 4. ‘Scoring’. Assess the expected performance of each scenario against the criteria.  
The E. coli concentrations were calculated with daily maximum temperatures 
from 1981 to 2000 as a reference period for climate change. A distribution was 
fitted with these twenty years concentration data in @RISK version 5.7. The 
concentrations were calculated again with future (from 2081 to 2100) daily 
minimum temperatures which are projected under RCP 2.6 and RCP 8.5. These 
two climate scenarios’ outputs from CCSM4 model are used in this tool to 
illustrate one possibility of highest and lowest RCP projections in the climate 
change ensemble. 

Step 5. ‘Weighting’. The weighting of the criteria takes place in two steps:  
a. Ranking the importance of criteria. 
b. Assigning the weights of the different criteria on a 0-1 scale to achieve a total 

weight of 1. 
Step 6. Combine the weights and scores for each scenario to derive an overall value. The 

overall preference score (Si) of option i was the sum of all weighted average 
scores on each criterion. 
𝑺𝑺𝒊𝒊 = 𝒘𝒘𝟏𝟏𝑺𝑺𝒊𝒊𝒊𝒊 + 𝒘𝒘𝟐𝟐𝑺𝑺𝒊𝒊𝒊𝒊 + ⋯+ 𝒘𝒘𝒏𝒏𝑺𝑺𝒊𝒊𝒊𝒊 = ∑ 𝒘𝒘𝒋𝒋𝑺𝑺𝒊𝒊𝒊𝒊𝒏𝒏

𝑱𝑱=𝟏𝟏     

 (Eq. 2) 
Where 𝒘𝒘𝒋𝒋 = weight for criterion j, 𝑺𝑺𝒊𝒊𝒊𝒊 = score for option i on criterion j, n = 
amount of criteria taken into account.  

Step 7. Examine the results. 
Step 8. Sensitivity analysis.  

a. Different weights were given to each criterion to illustrate various desirable 
futures in the perspective of different stakeholders.  

b. Different scores are given to each scenario to test the sensitivity of this tool. 
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 Step 4 ’Scoring’. 

The procedure of giving scores was explained by means of an example in which four 
scenarios of agriculture practices are compared (Table 5.1). E. coli concentration, costs, 
yield and nutrient loss from the soil were the criteria defined in the previous step. 

For the first criterion, the mean E. coli concentrations in 20 years for each scenario in the 
reference period and in the future under RCP2.6 and RCP8.5 are presented in Table 5.1. 
Projected daily maximum temperature was downscaled by the tool published in Liu et al. 
(2014). The mean E.coli concentration slightly increased in the future (2081-2100) 
compared with the reference period between 1981 and 2000. The concentration 
differences between scenarios were small (0.2 log10 CFU/g). We used values of RCP 8.5 
for further analysis to represent the highest change. The combination of using manure and 
spray irrigation gave the highest (2.7 log10 CFU/g) mean E. coli concentration in the far 
future.  

The scores for other criteria are examples on how this tool can be used. In other 
applications, expert team should give scores for each criterion based on the local fertilizer 
price and soil types to calculate nutrient loss from the soil. Costs are normalized figures in 
which the value for the most expensive scenario (combination of other irrigation ways and 
inorganic fertilizer) is set at 1 and the costs of other scenarios are calculated in proportion 
to the most expensive scenario. Yield and nutrient loss are scored on the categories low 
and high. In this example, application of inorganic fertilizer and manure got a low score for 
yield because the yield is lower than the production when organic material are used on 
the produce (Sanwal et al. 2006). Inorganic fertilizer provided similar yield with composted 
manure (Warman and Havard 1996), in general we gave it a low score. Inorganic fertilizer 
also got a low score in this example for nutrient loss from soil. When inorganic fertilizer 
are used, 30% of total phosphorus is lost from the soil, while manure causes 60% loss of 
total phosphorus from the soil (Tabbara 2003). This is, however, strongly determined by 
soil type. Therefore in other applications, specific scores should be assigned based on the 
actual local soil type.  

In order to make the performance of these different criteria comparable to each other, 
they were scaled in a way that the lowest score/category was given a value 0.0 and the 
highest score/category 100. The lowest scores are 1.15 for E. coli concentration, 0.2 for 
costs, low for yield and nutrient loss. The highest scores are 2.72 for E. coli concentration, 
1.0 for costs, high for yield and nutrient loss. Performance scores between these values 
are calculated by linear interpolation, which transforms Table 5.1 to Table 5.2. 
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Step 5 ‘Weighting’. 

In this example equal importance of criteria were assumed. Each criterion got a weight of 
0.25, which cumulates to a total weight of 1.00. 

Step 6 & 7 Combine the weights and scores for each scenario to derive an overall value and 
examine the final results. 

The weighting and the calculated overall performance scores on the basis of the 
performance given in Table 5.2 are shown in Table 5.3. Consequently the combination of 
using spray irrigation and other fertilizer type and the combination of other irrigation ways 
and other fertilizer type had the highest overall performance value (76 and 72) in this 
example. Since two scenarios got similar high scores, a further analysis by, for example, 
applying a sensitivity analysis, was needed to test the performance and uncertainties of 
this tool and the significance of the outcome.  

Step 8 Sensitivity analysis.  

A sensitivity analysis was performed by running the procedure again with different values 
of criterion weight representing the different perspective in the decision process (Table 
5.4). When the E. coli concentration gets a weight of 0.7 representing a strong focus on 
food safety, the scenario of using inorganic fertilizer and other irrigation ways got the 
highest performance value (80). If decision making is inclined to farmer’s perspective with 
low cost (weight 0.4) and high yield (weight 0.4), then using spray irrigation and other 
fertilizer type got the highest performance value of 79. If the assessors tend to avoid 
eutrophication in the water system, then environmental impacts related criteria get high 
weight of 0.7. This gave the highest performance value of 90 on the combination of using 
spray irrigation and other fertilizer type and 89 on the combination of using other 
irrigation ways and fertilizer type. These results showed that the sensitivity analysis was 
especially useful when the assessors have different opinions about the weight or scores. 
Such sensitivity analysis shows that in this example scenario spray irrigation and other 
fertilizer types almost always had highest score.  

5.4 Discussion and Conclusions 
This study calculated the future E.coli concentration changes on pre-harvest leafy green 
vegetables in RCP 8.5 and RCP 2.6 at the end of the century in Spain. The results indicate 
the E.coli concentration are projected to increase 0.2 log10 CFU/g to 0.3 log10 CFU/g 
(depending on the climate scenarios and management options applied) due to higher 
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temperature at the end of the century, assumed no changes in agriculture management 
practices, compared to the concentrations at the end of the last century. This positive 
relationship, however, is opposite to the expectation that, at least in temperate climate 
zones, E. coli concentrations would decline faster with higher temperature (Franz et al. 
2014). Temperature influences many additional factors, such as wildlife appearance, 
insects’ activities and irrigation frequency, which might be important. Therefore, we 
speculate that the increase in E. coli contamination is probably due to an indirect effect of 
increasing temperature, and not directly related to warmer days (Liu et al., submitted). 
The study also demonstrated step by step a multi-criteria scenario analysis tool to study 
future safety of pre-harvest spinach in Spain as an example. The results show this is a very 
useful, flexible and easy to apply tool to select the best management practices considering 
climate change and indicators for other factors, such as management practices.  

Multi-criteria analysis is a method commonly used in environmental science, to include 
several stakeholders and to a better inform decision-making process. Although, several 
strengths and weaknesses of stakeholders’ participation in decision-support processes 
exists, involving them actively in research is supported by Bulkeley and Mol’s (2003) 
review. In this study we adapted this commonly used method to study future food safety 
and developed the multi-criteria scenario tool. Our multi-criteria scenario analysis tool has 
several strengths, which correspond to the evaluation from Bulkeley and Mol’s (2003) 
review: 1) Since food safety is influenced by both climate and agriculture management 
practices (Liu et al. submitted), the tool provides a possibility to simultaneously study 
climate and management impacts on future food safety changes; 2) The tool includes 
different stakeholders’ perspective or interests and prioritises these interests; 3) It gives a 
more complete picture of the impacts of each individual scenario; and 4) It shows the 
decision makers or farmers the best way forward to effectively adapt to climate change. 

To demonstrate the tool we kept the actual scoring and weighting relatively simple. 
Sensitivity analysis can test not only the changes in weight but also in scores. In this 
example only the sensitivity of weight was tested. In other applications multi-criteria 
scenario analysis may have the following challenges: 1) involving all relevant stakeholders 
and obtaining their preferences (i.e. weights) can be difficult; 2) A small and active group 
of stakeholders may dominate the process; and 3) A mutual understanding among 
stakeholders about the problem and the goals is rarely obtained.  

Since this is an exploratory study, the changes of other criteria besides climate-change 
induced temperature increase were not included. For example, a higher soil temperature 
leads to an increased use of potentially contaminated animal manure due to a faster 
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depletion of soil nutrients resulting from increased biological soil activity (Franz et al. 
2008a). These, most likely major socio-economic changes, should not be ignored in more 
realistic applications. Apply, for example, the new scenario framework ‘Shared 
Socioeconomic Pathways’ for climate change research, which has been developed to study 
the climate change on socioeconomic aspects (O’Neill et al. 2014), could well complement 
the different climate-change scenarios and ensembles.  

This multi-criteria tool provides a platform to study changes in weather or climate, and 
management impacts on future food safety together with different stakeholders’ 
perspectives or interests. The tool allows to better involve different stakeholders in the 
analysis and likely supports their decision making process. In this way, such a multi-criteria 
scenario analysis delivers a new mind set and method to study food safety and enhances 
the quality of agricultural management decisions for leafy green vegetables. 
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Table 5.1 Performance matrix of six agriculture management practices combinations. Other fertilizer type  is non animal organic fertilizer. Other 
irrigation ways include flood irrigation and drip irrigation.  

Scenarios Mean of E. coli concentration distribution in 20 years 
(min, mode, max of Triangular distribution) 

Costs (-) Yield (*) Nutrient loss 
from soil/soil 
health (*) 1981-2000 2081-2100  RCP 2.6 2081-2100 RCP 8.5 

Manure + Other irrigation ways 2.04  
(1.32, 1.50, 3.32) 

2.14  
(1.39, 1.58, 3.44) 

2.33  
(1.54, 1.72, 3.72) 

0.4 Low High 

Inorganic fertilizer + Other 
irrigation way 

0.87 
 (0.21, 0.26, 2.15) 

0.97  
(0.28, 0.34, 2.28) 

1.15  
(0.44, 0.44, 2.56) 

1 Low Low 

Spray + Other fertilizer type 1.82  
(1.11, 1.27, 3.10) 

1.92  
(1.18, 1.35, 3.22) 

2.10  
(1.33, 1.48, 3.50) 

0.5 High Low 

Manure + Spray 2.44  
(1.69, 1.91, 3.71) 

2.53  
(1.76, 1.99, 3.83) 

2.72  
(1.91, 2.13, 4.11) 

0.2 Low High 

Inorganic fertilizer + Spray 1.27  
(0.57, 0.71, 2.54) 

1.36  
(0.65, 0.78, 2.66) 

1.54  
(0.80, 0.88, 2.95) 

0.7 Low Low 

Other irrigation ways + Other 
fertilizer type 

1.44  
(0.73, 0.88, 2.70) 

1.53 
 (0.81, 0.95, 2.83) 

1.71  
(0.95, 1.07, 3.11) 

0.8 High Low 
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Table 5.2 Performance of the scenarios on a 0 (lowest) – 100 (highest) scale. Other fertilizer type  is non animal organic fertilizer. Other irrigation ways 
include flood irrigation and drip irrigation.  

Scenarios Mean E.coli concentration 
 2081-2100 RCP 8.5 

Costs Yield Nutrient loss from soil/soil health (*) 

Manure + Other irrigation ways 25  75 0 0 
Inorganic fertilizer + Other irrigation way 100  0 0 100 
Spray + Other fertilizer type 40  63 100 100 
Manure + Spray 0  100 0 0 
Inorganic fertilizer + Spray 75  38 0 100 
Other irrigation ways + Other fertilizer type 64  25 100 100 

Table 5.3 Calculation of weighted and overall performance values. Other fertilizer type  is non animal organic fertilizer. Other irrigation ways include 
flood irrigation and drip irrigation.  

Scenarios Mean E.coli 
concentration 

 2081-2100 RCP 8.5 

Costs Yield Nutrient loss from 
soil/soil health (*) 

Overall 
performance value 

Manure + Other irrigation ways 6  19 0 0 25 
Inorganic fertilizer + Other irrigation way 25  0 0 25 50 
Spray + Other fertilizer type 10  16 25 25 76 
Manure + Spray 0  25 0 0 25 
Inorganic fertilizer + Spray 19  10 0 25 44 
Other irrigation ways + Other fertilizer type 16  6 25 25 72 
Weight 0.25 0.25 0.25 0.25 1 
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Table 5.4 Sensitivity analysis. Other fertilizer types include composted manure and non animal organic fertilizer. Other fertilizer type  is non animal 
organic fertilizer. Other irrigation ways include flood irrigation and drip irrigation. 

Scenarios Mean E.coli concentration 
 2081-2100 RCP 8.5 

Costs Yield Nutrient loss from 
soil/soil health (*) 

Overall performance 
value 

Manure + Other irrigation ways 18 8 0 0 26 
Inorganic fertilizer + Other irrigation way 70 0 0 10 80 
Spray + Other fertilizer type 28 6 10 10 54 
Manure + Spray 0 10 0 0 10 
Inorganic fertilizer + Spray 53 4 0 10 67 
Other irrigation ways + Other fertilizer type 45 3 10 10 68 
Weight 0.7 0.1 0.1 0.1 1 

Manure + Other irrigation ways 3 30 0 0 33 
Inorganic fertilizer + Other irrigation way 10 0 0 10 20 
Spray + Other fertilizer type 4 25 40 10 79 
Manure + Spray 0 40 0 0 40 
Inorganic fertilizer + Spray 8 15 0 10 33 
Other irrigation ways + Other fertilizer type 6 10 40 10 66 
Weight 0.1 0.4 0.4 0.1 1 

Manure + Other irrigation ways 3 8 0 0 11 
Inorganic fertilizer + Other irrigation way 10 0 0 70 80 
Spray + Other fertilizer type 4 6 10 70 90 
Manure + Spray 0 10 0 0 10 
Inorganic fertilizer + Spray 8 4 0 70 82 
Other irrigation ways + Other fertilizer type 6 3 10 70 89 
Weight 0.1 0.1 0.1 0.7 1 
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This thesis aims to quantify the impacts of climate change on the microbial safety of pre-
harvested leafy green vegetables (LGVs). The hygienic status of LGVs as measured by 
contamination with generic E. coli was taken as a proxy for the microbial safety. This 
research was part of the EU-funded interdisciplinary Veg-i-Trade project. Four research 
questions (RQs) guided my analysis:  

1) What are the impacts of climate change on contamination sources and pathways 
of foodborne pathogens?   

2) How do climatic conditions quantitatively affect the E. coli contamination of pre-
harvested leafy greens?  

3) How to downscale climate and climate-change data for local food safety analysis?  
4) How does the safety of LGVs evolve under future climate scenarios?  

I structured these questions in a logic way to answer the main question of my thesis: What 
are the climate-change impacts on microbial safety of leafy green vegetables? My 
research process and methods are described in Figure 1.1. These research questions are 
answered and discussed in section 6.1 to 6.4. Methodological lessons learnt are discussed 
(Section 6.5) before I conclude with the main findings (Section 6.6). 

6.1 Impacts of climate change on contamination sources and 
pathways (RQ1) 
RQ1 was answered in two steps. Firstly, contamination sources and pathways were 
defined. These sources included manure, soil, surface water, sewage and wildlife. 
Contamination pathways included irrigation, splash, contact with faeces, surface run-off 
and overflow. Secondly, I elaborated the positive and negative impacts of temperature 
increases and changes in precipitation pattern on pathogen prevalence for each 
contamination source and pathway. The net climate-change impacts depended on the 
balance of the positive and negative impacts, and on the applied climate change scenarios 
for specific areas.  

This interdisciplinary study started with a mutual understanding of the terminology in the 
two research fields, ‘climatology’ for climate change and ‘food microbiology’ for food 
safety. I started this research with little knowledge about food microbiology research and 
its research methods. A systematic review was more than necessary for me to learn the 
fields’ state-of-the-art and to combine the knowledge comprehensively into a conceptual 
diagram (Figure 2.1) and a table (Table 2.1), which qualitatively indicate the climate 
impacts on foodborne pathogens. I eventually limited this review to two foodborne 
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pathogens to achieve a more in-depth review. The pathogen Listeria was also reviewed 
but was dropped during the revision to give a better focus on the other two pathogens. 
The risk factors for Listeria contamination in fruits and vegetables are summarised by Park 
et al (2012). They also concluded that irrigation water and soil are two main 
contamination sources. In this thesis, I initially focused on pathogenic contamination of 
LGVs in Chapter 2. Then I switched to the hygiene indicator generic E. coli in the rest of the 
chapters. E. coli was better covered by data compared to pathogens. This review ended 
with an identified research gap: lack of quantitative studies with scenario analyses to 
understand the net impact of climate change on the contamination of pre-harvest LGVs. I 
fill this research gap by addressing the remaining RQs and the further research in this 
thesis.  

 

Figure 1.1 Process and methods of this thesis. Round boxes are data and knowledge inputs and 
square boxes are major results in this thesis (Chapter 2 to 5). Arrows are data and knowledge flow.  

6.2 Statistical modelling Meta-regression analysis (RQ2) 
RQ2 was answered by mixed effect logistic regression and linear regression models. 
Climate and agricultural management practices both had influence on E. coli presence and 
concentration. Temperature had a stronger influence than management practices for E. 
coli presence and concentration on LGVs. Minimum temperature on the sampling day, 
region and application of inorganic fertilizer are important for E. coli presence (odds ratio 
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[OR] 1.47). Maximum temperature on the three days before the sampling day and region 
are important for E. coli concentration (R2 = 0.75). The variable Region masks many 
management variables including irrigation water use and fertilizer use. Temperature has a 
positive relationship with E. coli presence and concentration. Climate, irrigation water 
type, fertilizer type and irrigation method should be considered systematically in fresh 
produce safety studies in the future. 

After defining the conceptual framework in Chapter 2, I started this study with the goal of 
developing a simulation model based on Franz et al. (2008b). Such a model has the 
advantage of identifying explicit mechanism and causal relationships (Adams et al. 2013), 
predicting under uncertainty and applying what-if scenario analysis. However, including 
several contamination pathways (e.g. splash, irrigation and manure application) and 
climate influences in this simulation model was too ambitious. The contamination 
pathways were too complicated to be included in one model and, more importantly, the 
quantitative influences by climate were unknown. Instead, a statistical model was 
developed to study the quantitative impact of climate and climate change. During the 
process of model development, I have learned a lot about statistical modelling as 
summarised in Section 6. 5.  

Meta-analysis was used in Chapter 3 to answer the second research question. I did not 
limit myself only to the data collected in the Veg-i-Trade project, but also requested data 
from the literature studying climate and management impacts on E. coli contamination on 
leafy green vegetables. These studies included Loncarevic et al. (2005), Mukherjee et al. 
(2007), Ailes et al. (2008), Strawn et al. (2013) and Park et al. (2014). As a result, Park et al. 
(2014) shared their sampling data with me, the others sadly did not respond or responded 
positively but never followed up with actual data. Combining different studies with big 
differences in the sampling set up and data structure, however, gave a high degree of 
pseudoreplication. For this reason, I decided to use only Veg-i-Trade data in Chapter 3 and 
summarised the lessons learnt during this excise for future meta-analysis in Section 6. 5. 

Chapter 3 aimed to identify a combination of statistically significant variables that best 
explained observed variation in E.coli presence and contamination level. However, several 
of these best explaining variables have counter-intuitive relations with E. coli 
contamination. Inorganic fertilizer had a positive parameter estimate in the E. coli 
presence model. This differed from my expectation since inorganic fertilizer should be 
sterile. However, the parameter estimate was not significant meaning that, although 
inorganic fertilizer significantly explained the data variation, the parameter estimate was 
not representative for indicating directional changes in E. coli contamination. The counter-
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intuitive risk factor of inorganic fertilizer most likely is due to the dataset’s nature and the 
fact that regression analysis does not identify true causal relations. Many of the positive 
samples arise from farms using inorganic fertilizer but the true cause of contamination 
may be other factors not considered in this study. Similarly, a direct positive effect of 
temperature on E. coli presence and contamination is not expected given the general 
observed negative relation between temperature and environmental persistence (Franz et 
al. 2014). Temperature may affect environmental factors like wildlife intrusion, insect 
activity, and irrigation frequency, which in turn directly affect E. coli presence and 
concentrations. These environmental factors should be included in the future sampling 
and analysis to cover more potential contamination pathways.  

6.3 Climate and climate change data downscaling (RQ3) 
RQ3 was answered with a new method described in Chapter 4 for preparing climate and 
climate change data for food safety assessment. I selected HadGEM2-ES and CCSM4 
models and downscaled data using the ‘Delta method’ with quantile-quantile correction. I 
illustrated the method by determining how the bacteria growth rate may change if 
temperature changes according to the four representative concentration pathways (RCP) 
scenarios. The downscaling method was satisfactorily applicable for food safety 
assessment.  

The quantile-quantile correction straightforwardly uses the distribution of observational 
data, which describes the local variability, but requires the availability of a representative 
period of observations. Using the distribution from the observation data for all future 
scenarios can be disadvantageous because it standardizes the variability among scenarios. 
This unrealistic future having the same pattern as the present observational station data 
neglects possible future shifts in extremes.  

This study took place at the end of 2013 when some of the GCM teams were computing 
their final RCP runs. Shortly after the data analysis, the fifth assessment report of the 
Intergovernmental Panel on Climate Change (IPCC) was published documenting the 
various RCPs. I recommend checking the errata information for CCSM4 (used in Chapter 4) 
and CESM1 models (available on www.cesm.ucar.edu/CMIP5/errata) before choosing the 
model runs because these new scenarios are definitely work-in-progress. For example, 
CCSM4 RCP2.6 r6i1p1 run was withdrawn from the CMIP5 archive due to an error found in 
the data. This simulation will not be re-run since RCP2.6 is not often used. Despite, this 
limitation, all food safety impact studies are recommended to rely on the latest climate-
change scenarios. 

http://www.cesm.ucar.edu/CMIP5/errata
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My downscaling tool provided a user friendly platform (in MATLAB and Excel) and was 
developed especially for food safety researchers to explore the impact of climate change 
on their impact models, such as the climate change impact study on mycotoxins (van de 
Perre et al. 2014b). More downscaling tools are, however, available to downscale the RCP 
data. A commonly used method in meteorology is the Climate Data Operator (Schulzweida 
et al. 2006) available from https://www.mpimet.mpg.de/cdo. This operator requires more 
experience in programming and data management in Linux systems. A package (code also 
written in MATLAB) developed by Oregon State University’s College of Engineering was 
released shortly after my manuscript was submitted. The package is available 
at http://globalclimatedata.org/. This tool also produces a delta downscaled data with a 
30 arc-second monthly precipitation surface. However, its temporal scale is still too coarse 
for food safety research.  For this research my tool is still the most appropriate. 

6.4 Future projection (RQ4) 
RQ4 was answered in Chapter 5 by applying climate change data to the E. coli 
concentration model presented in Chapter 3 using pre-harvest spinach in Spain as an 
example. I explored the development and application of a multi-criteria scenario analysis 
tool in Chapter 5. The step by step demonstration and the sensitivity analysis showed this 
is an applicable tool to select the best management practices, considering climate change 
and other indicators.  

Although the main focus of Chapter 5 was to explore the tool, I also calculated the future 
E.coli concentration changes on Spanish spinach in climate-change scenario RCP 8.5 and 
RCP 2.6 at the end of this century. This way, all research questions become connected and 
RQ4 was addressed. The results indicated that the mean E.coli concentration over 20 years 
were projected to increase between 0.2 log10 CFU/g and 0.3 log10 CFU/g (depending on 
the climate scenarios and management options applied) due to higher temperature at the 
end of the century, compared with the concentrations at the end of the last century. This 
analysis assumed no changes in agriculture management practices. 

To further detail the calculation for E. coli concentrations, historical concentrations are 
compared with near and far future concentrations during the growing season for four 
RCPs (Figure 6.2). These are computed with historical and projected daily maximum 
temperature from the CCSM4 (Gent et al. 2011). Daily concentrations are averaged over 
20 years. E. coli concentrations on spinach in Murcia, Spain increase in all four RCPs 
(Figure 6.2). In the near future (i.e. 2031-2050), the differences in E. coli concentration 
increase are small because the radiative forcing for this period is still similar to that of 
today. Temperature change in this period is still strongly dominated by historic emissions. 

https://www.mpimet.mpg.de/cdo
http://globalclimatedata.org/
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For the far future (i.e. 2081-2100), the E. coli concentration increases diverge between the 
different RCPs and range from 0.05 log10 CFU/g to 0.40 log10 CFU/g. RCP8.5 projects the 
highest (i.e. between 0.22 log10 CFU/g - 0.40 log10 CFU/g) average increase for this period.  

Climate change data from only one GCM were used in this analysis. E. coli concentrations 
calculated with climate-change data from other GCMs are likely different but the 
calculated direction of the trends will probably be very similar. For example, projected 
temperature data from the HadGEM2-ES GCM are approximately 1 °C cooler than for the 
CCSM4 GCM (Chapter 4). To capture the full range of climate change uncertainties, I 
recommend to use either the ensemble mean (the most cost-effective approach) or the 
full ensemble range (the most informative approach) as supported by Christensen et al. 
(2007), Kharin et al. (2002) and Tebaldi et al. (2007). How these different ensembles were 
generated is explained in Chapter 4.  

Since this was an exploratory study, the changes in management practices due to climate 
change (e.g. adaptation efforts) were excluded. For example, a higher soil temperature 
may lead to an increased use of potentially contaminated animal manure due to a faster 
depletion of soil nutrients as a result of increased biological soil activity (Franz et al. 
2008a). Such processes and their interactions should not be ignored in other, more 
realistic applications. Applying, for example, the new scenario framework ‘Shared Socio-
economic Pathways’, which has been developed to consistently combine socio-economic 
aspects with the RCP scenarios (O’Neill et al. 2014), could well complement the different 
climate-change scenarios and ensembles. 

At the start of this PhD, I planned to study the E. coli concentration changes in the future 
due to future climate change induced temperature and precipitation changes. Chapter 3, 
however, showed management also had significant influences on the fate of E. coli. The 
methodology of multi-criteria analysis was then adapted to be used as a tool to study the 
future food safety including both climate and management influences together. I kept the 
actual criteria selection, scoring and weighting overly simplistic for the purpose to 
demonstrate the application of the tool without forming an expert team or diving into the 
literature. In other applications, more appropriate criteria, scores and weights should be 
discussed among expert teams and assigned to each scenario based on local situations.  
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Figure 6.2 Comparison of historical (1981-2000), near future 2031-2050 (top) and far future 2081-
2100 (bottom) E. coli concentration on spinach in Murcia (Spain) during growing season.  The future 
E. coli concentration were calculated with future daily maximum temperature in four Representative 
Concentration Pathways (RCPs) projected by global circulation model CCSM4.  

1.0

1.4

1.8

2.2

2.6

3.0

1/Sep 1/Oct 1/Nov 1/Dec 1/Jan 1/Feb 1/MarE.
 c

ol
i c

on
ce

nt
ra

tio
n 

(lo
g1

0 
C

Fu
/g

) 

Growing season (day) 

E. coli  concentration (Murcia, Spain) 
2031-2050 

Obs 1981-2000 RCP2.6 2031-2050 RCP4.5 2031-2050

RCP6.0 2031-2050 RCP8.5 2031-2050

1.0

1.4

1.8

2.2

2.6

3.0

1/Sep 1/Oct 1/Nov 1/Dec 1/Jan 1/Feb 1/MarE.
 c

ol
i c

on
ce

nt
ra

tio
n 

(lo
g1

0 
C

FU
/g

) 

Growing season (day) 

E. coli  concentration (Murcia, Spain) 
2081-2100 

Obs 1981-2000 RCP2.6 2081-2100 RCP4.5 2081-2100

RCP6.0 2081-2100 RCP8.5 2081-2100



Chapter 6 
 

97 
 

6.5 Methodological lessons learnt 
This section summaries some of the most important methodological lessons that I have 
learnt throughout my thesis. 

Meta-analysis provides opportunities to perform statistical analysis with limited positive 
samples from each region. From this study, I have learnt several lessons for future meta-
analyses:  

a) Experimental design in meta-analysis has to be standardized as much as possible. In 
my study all samples were taken according to the Horticultural Assessment Scheme 
(HAS) which is developed in Veg-i-Trade project. This sampling protocol enables the 
same sampling method and information input. However, the sampling and analysis in 
different regions initially were not fully designed to conduct a meta-analysis. Even 
though the samples were taken using the same scheme, I had to work with two types 
of produce and, more importantly, different detection limits.  

b) Meta-analysis has more strict sampling requirements compared to individual studies. 
The resulting combined datasets need to have the best-possible balanced 
representation of management variables and their various levels. If a study is aimed 
to do a meta-analysis, then its sampling would ideally have the same amount of 
samples for each management variable. Ideally all management variables should also 
be covered in each region. For this reason it was impossible to include other studies 
outside the Veg-i-Trade project in my meta-analysis. This highlights the need for a 
better coordinated future international sampling collection effort and for 
development of study design and reporting standards. Because a better 
standardisation will assure that the data collected and results reported in different 
regions are comparable and compatible, and can be used in subsequent meta-
analyses. Including studies with very different sampling efforts may give totally 
different results.  

Some of the regional differences are not well defined in the meta-analysis, but they 
should not be ignored. The difference in my joint regression models with and without the 
variable Region show that this variable not only explains the regional variations in many 
management practices, but also additional regional differences. I recommend to enlarge 
the model boundary in future studies by including these additional differences (e.g. 
variation in detection limits, experimental material and equipment, local hygiene, social 
economic development levels, presence of wildlife intrusion, insects activity, irrigation 
frequency, soil type and slope/topography) to complete the system analysis of LGVs safety. 
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The climate data downscaling tool presented in Chapter 4 can be used for data outputs 
from any GCM. However, each GCM has different parameterizations and settings for the 
model. For example, HadGEM2-ES has 360 days in a year and its base date is December 1, 
1859 versus 365 days (no leap year) and January 1, 1850 in the CCSM4 model. These 
differences have to be verified and adjusted in the downscaling process. Because of such 
inconsistencies, I recommend to use programming software, such as MATLAB or R, rather 
than ArcGIS. ArcGIS is easier to use for visualisation and for selecting a specific location, 
but does not quickly allow addressing and adjusting the inherent inconsistencies of the 
required GCM results. 

E. coli is used as a hygiene indicator in this thesis to study microbial safety of LGVs. Since 
the presence of E. coli indicates faecal contamination, it is valid to state that the presence 
of E. coli implies an increased risk of pathogen presence (Edberg et al. 2000, Tallon et al. 
2005). However, the behaviour (growth and survival) of generic E. coli and enteric 
pathogens may significantly differ, even for pathogenic E. coli (Franz et al. 2014). To 
further study the risks of foodborne diseases in the future, the prevalence and the link 
between hygienic indicator and foodborne pathogens should be included.  

6.6 Main findings 
This thesis assessed and quantified the impacts of climate change on microbial safety of 
pre-harvested leafy green vegetables contaminated with generic E. coli. With one degree 
increase in minimum temperature of the sampling day, the odds of having E. coli presence 
on leafy green vegetable increase by a factor of 1.5. The mean E. coli concentrations over 
twenty years are expected to increase between 0.2 log10 CFU/g and 0.3 log10 CFU/g 
(depending on the climate scenarios and management options applied) due to higher 
temperature towards the end of this century, compared to the concentrations at the end 
of the last century. For this conclusion, no changes in current agriculture management 
practices were assumed. I obtained these quantitative climate-change impacts on future 
food microbial safety in a series of sequential steps which construct my thesis (Figure 1.1).  

The pioneering research presented in my thesis not only quantified climate change 
impacts on LGVs contamination by E. coli for the first time, but also brought new methods 
and tools to food safety research. The climate change data downscaling tool presented in 
Chapter 4 provides detailed temporal and spatial climate data for climate scenario analysis 
in food safety assessment studies. The multi-criteria scenario analysis tool presented in 
Chapter 5 provides a platform to study the consequences of changes in weather or climate, 
and management impacts on future food safety together with different perspectives or 
interests of stakeholders. This tool especially provides an opportunity to involve different 
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stakeholders in the analysis and support their decision making process. A more traditional 
way of studying the fate of bacteria is to follow the bacteria from the contamination 
reservoirs (e.g. manure or soil) to the produce. Chapters 3 and 5 deliver a new mind set to 
systematically study food safety by simultaneously combining climate and management 
variables. The results in these two chapters show that climate and agricultural 
management practices both had influence on E. coli presence and concentration. 

The climate data downscaling tool demonstrated in Chapter 4 has already been used in a 
climate change impacts on a mycotoxin study (van de Perre et al. 2014b) in Poland and 
Spain and a pesticide study in Belgium (Veg-i-Trade Consortium 2014). This example can 
stimulate food safety researchers, who are interested to study the impacts of climate 
change, by providing a comprehensive scenario analysis for any location in the world. The 
multi-criteria scenario analysis tool and the quantified climate change impacts on LGVs 
can be used by multiple stakeholders, including farmers and policy makers, during their 
decision making process to achieve mutual understanding of their challenges and the best 
strategies to adapt to climate change.  
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Summary 
 

Climate change is generally recognized as a major threat to humans and the environment. 
With respect to food production, climate change does not only affect crop production or 
food security, but possibly also effects on food safety by affecting the prevalence and 
levels of bacteria, fungi or other pests and pesticides. Fresh-cut or ready-to-eat leafy 
vegetables (e.g. lettuce and spinach) are increasingly consumed because they are 
promoted as part of a healthy diet. Such leafy green vegetables (LGVs) are identified as 
the fresh produce commodity group of highest concern from a microbiological safety 
perspective, because they are often grown in the open field and therefore vulnerable to 
contamination and contact with (faeces of) wildlife. Moreover, they are grown and 
consumed in large volumes and often consumed raw. Bacteria, such as Salmonella spp. 
and pathogenic Escherichia coli strains are the main pathogens causing foodborne disease 
through LGVs. A major knowledge gap is understanding how climate change may directly 
or indirectly affect the contamination of LGVs. This primarily relates to the current lack of 
methods and tools to link climate data and climate change scenarios to food safety.  

My thesis aims to quantify the impacts of climate change on microbial safety of pre-
harvested LGVs. To achieve this, I reviewed the literature and synthesised major impacts 
of climate change on contamination sources and pathways of foodborne pathogens 
(focussing on Escherichia coli O157 and Salmonella spp.) on pre-harvested LGVs (Chapter 
2). Subsequently, I developed a statistical model that identifies the weather and 
management variables that are associated with the LGVs contamination with generic E. 
coli using regression analysis (Chapter 3). To apply suitable climate data to this statistical 
model to assess future impacts, I have prepared a tool to downscale coarse climate and 
climate change data for local food safety scenario analysis (Chapter 4). Finally, I applied 
the downscaled data to the statistical model and used multi-criteria scenario analysis to 
explore future food safety (Chapter 5). E.coli is used as a hygienic indicator in this thesis to 
study microbial safety of LGVs. Its presence is indicative for an increased pathogen 
presence probability.  E. coli and many foodborne bacteria share the same contamination 
pathways and climate change is expected to similarly impact on both bacteria. Hygienic 
status is therefore used in my thesis as a proxy for the microbial safety of LGVs. 

The major result of the literature review in Chapter 2 is that the impact of climate change 
on LGV contamination depends on the resulting local balance of the positive and negative 
impacts. The review shows that the interactions between climate change and 
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contamination are real but poorly understood. Therefore, integrative quantitative 
modelling approaches with scenario analyses and additional laboratory experiments are 
needed.  

With this knowledge background, mixed effect logistic regression and linear regression 
models were developed to identify the climate and management variables that are 
associated with the presence and concentration of E. coli on LGVs (Chapter 3). These 
models used E. coli data of 562 lettuce and spinach samples taken between 2011 and 2013 
from 23 open-field farms from Belgium, Brazil, Egypt, Norway and Spain. Weather and 
agriculture management practices together had a systematic influence on E.coli presence 
and concentration. Temperature explained most of the observed variation on E. coli 
prevalence and concentration on LGVs. Minimum temperature of the sampling day (odds 
ratio [OR] 1.47), region and application of inorganic fertilizer explained a significant 
amount of variation in E. coli prevalence. Maximum temperature on three days before 
sampling and region best explained the variation in E. coli concentration (R2= 0.75). Region 
is a variable masking many management variables including use of rain water, surface 
water, manure, inorganic fertilizer and spray irrigation. Climate variables and E. coli 
presence and concentration are positively related. The results indicate that climate change 
will have an impact on microbiological safety of LGVs. These impacts can be directly 
through an increasing temperature, but also indirectly through changes in irrigation water 
type, fertilizer type and irrigation method. Therefore, climate change and farm 
management should be considered more systematically in an integrated way in future 
studies on fresh produce safety. 

To prepare climate data for local food safety scenario analysis, a climate data downscaling 
tool was presented and demonstrated (Chapter 4). Coarse gridded data from two general 
circulation models, HadGEM2-ES and CCSM4, were selected and downscaled using the 
‘Delta method’ with quantile-quantile correction for the Belgium meteorological station in 
Ukkel. Observational daily temperature and precipitation data from 1981 to 2000 were 
used as a reference period for this downscaling. Data were provided for four future 
representative concentration pathways (RCPs) for the periods 2031–2050 and 2081–2100. 
These RCPs are radiative forcing scenarios for which future climate conditions are 
projected. The climate projections for these RCPs show that both temperature and 
precipitation will increase towards the end of the century in Ukkel. The climate change 
data were subsequently used with Ratkowsky's bacterial growth model to illustrate how 
projected climate data can be used for projecting bacterial growth in the future. In this 
example, the future growth rate of Lactobacillus plantarum and the number of days that 
the bacteria are able to grow are both projected to increase in Ukkel. This example 
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illustrates that this downscaling method can be applied to assess future food safety. This 
downscaling tool is relatively straightforward compared to other more complex 
downscaling tools, so the food safety researchers can easily understand and apply it to 
their impact studies.  

With the statistical model (Chapter 3) and downscaled climate data (Chapter 4), a multi-
criteria scenario analysis tool was developed to explore future food safety using pre-
harvest spinach in Spain as an example (Chapter 5). The future E. coli concentrations on 
spinach were projected to change in RCP 8.5 and RCP 2.6 by the end of the century in 
Spain. The E. coli concentration was projected to increase between 0.2 log10 CFU/g and 
0.3 log10 CFU/g (depending on the climate scenarios and management options applied) 
due to higher temperature by the end of the century compared to the concentrations by 
the end of the last century. This comparison assumed no changes in agricultural 
management practices. This tool can be used to help selecting the best management 
practices considering climate change and other indicators. 

The pioneering research presented in my thesis brought new methods and tools, and 
another mind set to food safety research. The climate-change data downscaling tool 
provides detailed temporal and spatial climate data for climate scenario analysis in food 
safety assessment studies. The multi-criteria scenario analysis tool provides a platform to 
study changes in weather or climate, and management impacts on future food safety. This 
tool also allows for inclusion of different stakeholders’ perspectives or interests and 
supports their decision making processes. Moreover, the thesis presents a statistical 
model that can be used to study the relationship between climate and E. coli 
contamination. 

My thesis quantified the impacts of climate change on microbial safety of pre-harvested 
LGVs contaminated with generic E. coli for the first time. With one degree increase in 
minimum temperature of the sampling day, the odds of having E. coli presence on LGVs 
increase by a factor of 1.5. The mean E. coli concentrations are also expected to increase. 
Climate change should not be ignored in food safety management and research.  



 

  



 

Samenvatting 
 

Klimaatverandering wordt algemeen beschouwd als een groot risico voor mens en milieu. 
Als het gaat om voedselproductie beïnvloedt klimaatverandering niet alleen de 
wereldwijde gewasopbrengst en de voedselbeschikbaarheid, maar mogelijk ook de 
voedselveiligheid door verandering van de verspreiding van bacteriën, schimmels en 
andere contaminanten. De productgroep met het hoogste risico op microbiologische 
verontreiniging zijn verse bladgroenten, zoals spinazie en sla. Deze groenten worden 
aanbevolen als onderdeel van een gezond dieet. Verse bladgroenten worden veelal rauw 
geconsumeerd en vaak in grote volumes in het open veld geteeld. Hierdoor kan het gewas 
in contact komen met wilde dieren of uitwerpselen daarvan. De verontreinigingen van 
verse bladgroenten omvatten bacteriën, zoals Salmonella spp en pathogene stammen van 
Escherichia coli. Een belangrijke vraag is hoe klimaatverandering de voedselveiligheid van 
verse bladgroenten zal beïnvloeden. Hierover is nog weinig bekend. Er is nog geen 
algemeen erkende methode om klimaatgegevens en klimaatscenario’s te koppelen aan 
voedselveiligheid. 

In mijn onderzoek kwantificeer ik het effect van klimaatverandering op de 
microbiologische veiligheid van verse bladgroenten in het veld. Om dit te bereiken heb ik 
de belangrijkste literatuur samengevat om besmettings-routes van ziekteverwekkers op 
verse bladgroenten en de effecten van klimaatverandering erop in beeld te brengen 
(Hoofdstuk 2). Hierbij heb ik mij voornamelijk gericht op Salmonella spp. en Escherichia 
coli O157. E. Coli wordt in dit onderzoek gebruikt als indicatororganisme voor de 
microbiologische verontreiniging van verse bladgroenten. De aanwezigheid van deze 
bacterie duidt op verhoogde kans op de aanwezigheid van andere pathogenen. E. coli en 
veel andere door voedsel overgedragen bacteriën hebben immers dezelfde 
besmettingsroutes. Klimaatverandering zal naar verwachting een vergelijkbare invloed 
hebben op deze bacteriën. Daarom wordt de microbiologische veiligheid van verse 
bladgroenten in dit onderzoek weergegeven middels de concentratie van E. Coli. 

Vervolgens heb ik een statistische regressieanalyse toegepast waarmee de weer- en 
teeltvariabelen zijn geïdentificeerd, die worden verbonden aan de verontreiniging van 
verse bladgroenten met goedaardige E. coli (Hoofdstuk 3). Weervariabelen uit 
klimaatscenario’s kunnen in deze regressieanalyse worden toegepast om toekomstige 
effecten op de voedselveiligheid te voorspellen. Hiervoor heb ik een instrument 
ontwikkeld waarmee klimaatgegevens en klimaatanomalieën uit mondiale 
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klimaatmodellen kunnen worden gedetailleerd voor een scenarioanalyse van 
voedselveiligheid in een specifiek teeltgebied (Hoofdstuk 4). Vervolgens heb ik de deze 
gedetailleerde gegevens toegepast in het regressiemodel uit Hoofdstuk 3. Met de 
resultaten van dit regressiemodel en een multicriteria scenarioanalyse schets ik een beeld 
van veranderingen in de voedselveiligheid als gevolg van klimaatverandering (Hoofdstuk 
5).  

Uit mijn literatuuronderzoek van Hoofdstuk 2 blijkt dat het netto effect van 
klimaatverandering op het risico op microbiologische verontreiniging van verse 
bladgroenten afhangt van de lokale balans tussen positieve en negatieve invloeden. Mijn 
literatuuronderzoek laat zien dat er een reëel verband is tussen klimaatverandering en 
verontreiniging. Dit is verband is echter onvoldoende onderzocht. Integrale, kwantitatieve 
modellen in combinatie met scenarioanalyse en aanvullende laboratoriumonderzoeken 
kunnen worden gebruikt om deze kennisleemte op te vullen. Met deze motivatie zijn 
gemengde logistische en lineaire regressiemodellen ontwikkeld waarmee de klimaat- en 
teeltvariabelen zijn geïdentificeerd die kunnen worden gekoppeld aan de aanwezigheid en 
concentratie van E. coli op verse bladgroenten (Hoofdstuk 3). Deze modellen gebruiken de 
gemeten E. coli concentraties van 562 monsters van spinazie en sla, genomen tussen 2011 
en 2013 op 23 tuinbouwbedrijven (teelt op open grond) in België, Brazilië, Egypte, 
Noorwegen en Spanje. De combinatie van het weer en de teeltpraktijk heeft een 
systematische invloed op zowel het voorkomen als de concentratie van E. coli op verse 
bladgroenten. De meeste variatie hierin kan worden verklaard door de temperatuur. De 
minimum dagtemperatuur tijdens de monstername (Odds Ratio [OR] 1.47), de regio en de 
toepassing van kunstmest verklaren samen een significant deel van de variatie in het 
voorkomen van E. coli. De maximum temperatuur van de 3 dagen voor de monstername 
en de regio hebben de meeste verklarende waarde voor de concentratie van E. coli 
(R2=0.75). De geografische regio is een verklarende variabele die verschillende lokale 
teeltvariabelen maskeert, zoals het gebruik van regenwater of oppervlaktewater voor 
irrigatie, het gebruik van dierlijke mest of kunstmest en het gebruik van sproei-irrigatie. 
Klimaatvariabelen en de aanwezigheid en concentratie van E. coli zijn positief gerelateerd. 
De resultaten laten dan ook zien dat klimaatverandering invloed zal hebben op de 
microbiologische veiligheid van verse bladgroenten. Dit kan een een directe invloed zijn 
door hogere temperaturen tijdens het groeiseizoen, maar ook een indirecte invloed door 
veranderingen in het gebruik en de herkomst van irrigatiewater, het gebruik en de 
herkomst van dierlijke mest, en het gebruik van kunstmest. Deze teeltvariabelen en hun 
gevoeligheid voor klimaatvariabelen zullen verder moeten worden gekwantificeerd om de 
toekomstige voedselveiligheid van verse producten te bepalen.  
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Een instrument voor het detailleren van klimaatgegevens voor een scenarioanalyse van de 
lokale voedselveiligheid wordt gepresenteerd in Hoofdstuk 3. Grove roosterdata van twee 
algemene circulatiemodellen (HadGEM2-ES en CCSM4) zijn geselecteerd. Deze data zijn 
gedetailleerd voor het Belgische weerstation Ukkel (nabij Brussel) met behulp van de 
zogenoemde “Delta Methode” met een kwantiel-kwantiel correctie. De gedetailleerde 
klimaatdata zijn vervolgens toegepast in het Ratkowsky model voor bacteriegroei. Op deze 
manier kunnen klimaatscenario’s worden gebruikt om de theoretische groeisnelheid van 
bacteriën in een veranderd klimaat te voorspellen. Op basis van de gedetailleerde 
klimaatdata van Ukkel wordt voorspeld dat de theoretische groeisnelheid van 
Lactobacillus plantarum en het aantal dagen met gunstige groeicondities voor deze 
bacterie zullen toenemen in de toekomst. Deze illustratieve toepassing laat zien dat de 
gebruikte methode voor het neerschalen van klimaatdata geschikt is voor het beoordelen 
van de toekomstige voedselveiligheid van gewassen in het open veld. Bovendien is de 
gebruikte methode relatief eenvoudig toe te passen en daarom geschikt voor studies naar 
de klimaateffecten in de voedingswetenschappen. 

Met het regressiemodel (Hoofdstuk 3) en de gedetailleerde klimaatdata (Hoofdstuk 4) is 
een multicriteria scenarioanalyse ontwikkeld. Dit instrument is toegepast op spinazie in 
het open veld in Spanje (Hoofdstuk 5). Een verandering van de concentraties van E. coli op 
het gewas wordt voorspeld voor de klimaatscenario’s RCP 8.5 en RCP 2.6 aan het einde 
van de 21e eeuw. De E-coli concentratie neemt toe met 0.2 log10 CFU/g tot 0.3 log10 
CFU/g (afhankelijk van het betreffende klimaatscenario en de toegepaste teeltvariabelen) 
als gevolg van temperatuurstijging en in vergelijking met de gemodelleerde concentraties 
aan het einde van de 20e eeuw. Voor deze vergelijking is aangenomen dat er geen 
veranderingen zijn geweest in de teeltpraktijk. De multicriteria scenarioanalyse kan 
worden gebruikt om de beste teeltpraktijk af te stemmen op de verwachte 
klimaatverandering. 

Naast nieuwe methoden en instrumenten, heeft dit vernieuwend onderzoek een nieuwe 
invalshoek in het onderzoek naar voedselveiligheid opgeleverd. Het instrument voor het 
detailleren van klimaatdata produceert de ruimtelijke en temporele noodzakelijke 
klimaatvariabelen voor scenario-analyses van voedselveiligheid bij klimaatverandering. De 
multicriteria scenarioanalyse maakt het mogelijk om veranderingen van het klimaat in 
combinatie met veranderingen in de teeltpraktijk te beschouwen. Hierbij kunnen 
verschillende belangen en methoden in de agrarische praktijk worden meegenomen. Op 
die manier kan het instrument het opstellen van milieu- en landbouwkundig beleid onder 
klimaatverandering ondersteunen. Het in dit promotieonderzoek ontwikkelde statistische 
model beschrijft de relatie tussen besmetting met E. coli en het klimaat. 



 
 

124 
 

Nog niet eerder is het effect van klimaatverandering op de microbiologische veiligheid van 
verse bladgroenten gekwantificeerd. Als de minimum temperatuur tijdens monstername 
stijgt met één graad Celsius neemt de kans op aanwezigheid van E. coli op verse 
bladgroenten toe met een factor van 1.5. Er wordt dan ook verwacht dat toekomstige E. 
coli concentraties zullen toenemen. Daarom mag klimaatverandering niet worden 
genegeerd in het onderzoek naar voedselveiligheid. 
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