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Abstract

Khoury, C.K. (2015). The conservation and use of crop genetic resources for food security.

PhD thesis, Wageningen University, Wageningen, The Netherlands. 305 pp.

Crop genetic diversity is a critical resource to address the nutrition and agronomic challenges facing
global food security. Increases in use of this diversity are expected but are dependent upon conservation,
availability, and access. Considerable erosion of crop genetic diversity has occurred in situ, i.e., in
farmers’ fields and natural habitats, and the variation conserved in ex situ genebanks is also vulnerable
due to insufficient resources. The window of opportunity to resolve these deficiencies and thus
accomplish a comprehensive global system for crop genetic diversity conservation and availability for

use will not remain open indefinitely.

Among the factors hindering the conservation of crop genetic resources is a lack of essential information
regarding this diversity. Questions include: (a) what is the status of diversity in our food systems, and
where are the greatest vulnerabilities?, (b) where can genetic diversity be found that can be useful in
increasing productivity and mitigating these vulnerabilities?, (c) is this genetic diversity available in the
present and in the long term?, and (d) what steps are needed to improve the ability for researchers to

access genetic resources critical for present and future crop improvement?

This thesis aims to contribute to the knowledge required to answer these questions through an
exploration of the need for, potential of, challenges and constraints regarding, and necessary steps to
enhance the conservation and use of crop genetic diversity. The research starts with an investigation of
the state of diversity in global food supplies, finding that national food supplies around the world have
become increasingly similar over the past 50 years, gaining in calories, protein, and fat, as animal-
derived foods and high-calorie plant foods have risen in importance. The proportion of diets consisting
of major cereals, sugar crops and oil crops has increased, while regionally and locally important cereals,

root crops, and oil crops have generally become further marginalized.

The thesis then delves into the potential for utilization of a particular set of genetic resources of
increasing interest globally — crop wild relatives. These wild cousins of cultivated species have been
used for many decades for crop improvement. Their utilization is likely only to increase due to
improvements in information on species and their diversity, advancements in breeding tools, and the
growing need for exotic genetic diversity in order to address compounding agronomic challenges. As
wild plants they are subject to a myriad of human caused threats to natural ecosystems. A focus on wild

genetic resources is thus timely both for biodiversity conservation and food security objectives.



Research on crop wild relatives first concentrated on the identification of potentially important wild
genetic resources at the national level in the United States. The resulting National Inventory listed close
to 5000 taxa. A prioritization of species based on value to food security emphasized close to 300 native

taxa that are most closely related to important food crops.

Once potentially valuable genetic resources are identified, subsequent information is needed regarding
where they occur, what diversity they may possess, and how well conserved and therefore available to
crop breeders they are. A ‘gap analysis’ methodology was proposed to answer these questions,
capitalizing on developments in digital occurrence and eco-geographic data as well as species
distribution modeling, intentionally utilizing freely available software and data, and incorporating a

novel expert evaluation tool.

The thesis then advances the gap analysis methodology, taking advantage of improvements in species
targeting, occurrence data, modeling, and expert feedback methods, and further utilizing eco-geographic
information to identify traits of value to crop improvement objectives. In case studies on the wild
relatives of bean (Phaseolus L.), sweetpotato [Ipomoea batatas (L.) Lam., 1. series Batatas], and
pigeonpea [ Cajanus cajan (L.) Millsp.], related species were found to be highly under-represented in ex
situ conservation systems and thus inadequately available to breeders and researchers. Species differed
among themselves and in comparison to the associated crop in their adaptations to temperature,
precipitation, and edaphic characteristics, and many species also showed considerable intraspecific
variation. Taxa and specific geographic locations were prioritized for further collecting in order to

improve the completeness of germplasm collections for these important crops.

While conservation of crop genetic diversity is fundamental to the availability of this diversity for
breeding, it is national and international policies that determine the real capacity for researchers to
acquire these resources. The thesis culminates in an exploration of the degree to which international
collaboration is required in order to achieve access to genetic resources where they are needed. Countries
were found to be highly dependent on crops whose genetic diversity largely sources from outside their
borders. This reliance is evident even in countries located in regions of high indigenous crop diversity
and has increased significantly over the past half century, bolstering evidence for the need for effective

national and international policies to promote genetic resource conservation and exchange.

Keywords: Agricultural development, Climate change adaptation, Crop diversity, Crop genetic
resources, Crop improvement, Crop wild relatives, Ex situ conservation, Food security, Gap analysis,
Germplasm conservation, Germplasm exploration, Interdependence, National inventory, Plant genetic

resources.
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CHAPTER 1

General introduction

BACKGROUND

Human beings have been remarkably successful over the course of their history in expanding
both in total population as well as distributional range across the planet. Perceived limits to
population growth (e.g., Malthus 1803, Vogt 1948, Ehrlich 1975) have been overcome
historically through innovation in the use of natural resources and their derivatives, e.g., via the
transition from gathering and hunting to agricultural societies, improvements in hygiene and
waste management in increasingly densely populated areas, antibiotics and other advancements

in medicine, and the agricultural green revolution (Diamond 2004, Gepts 2006).

Global food production has thus far kept pace with demand (Gepts 2006), and both the number
of stunted as well as underweight persons worldwide is declining (Kearney 2010, International
Food Policy Research Institute 2014, WHO 2015), but a number of persistent and novel
challenges bring renewed concern to the question of our ability to feed ourselves into the future.
First, from the perspective of human nutrition, although adequate food energy (i.e., calories) is
available as a global sum, disparities in access and challenges in distribution continue to create
hunger (Hawkesworth et al. 2010, Kearney 2010, Remans et al. 2011, WHO 2015). Second,
food system and demographic change, and the historical emphasis on macronutrients (i.e.,
carbohydrates, protein, and fat) in agricultural research and in development policies have had
mixed effects on providing for essential micronutrients. Although improvements have occurred
in some geographic areas, deficits in vitamin A, iodine, folate, iron, and/or zinc, among others,
persist in diets in more than half of all countries, affecting more than two billion persons
globally (Remans et al. 2011, CDC 2015, WHO 2015). Finally, economic development,
urbanization, and many facets of globalization have increased consumer purchasing power and
the availability particularly of energy dense foods (Popkin 2006, Pingali 2007, Hawkesworth
et al. 2010, Kearney 2010). In concert with lifestyle change, this ‘nutrition transition’ toward
diets high in animal products, sugars, and fat has globalized the epidemic of overweight and
obesity and its associated non-communicable illnesses, including heart disease, Type 2

diabetes, and cancer (Popkin 2006, Pingali 2007, Kearney 2010, Tilman & Clark 2014). While
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each of these branches of malnutrition individually occur more severely in particular areas
worldwide, the so-called ‘triple-burden’ of malnutrition (i.e., the coexistence of food insecurity,
undernutrition, and overweight) can now appear within the same regions, communities, and

even households (Gomez et al. 2013).

Agricultural production challenges are equally concerning. Food demand may as much as
double in the coming few decades, due both to the rising global human population and to
changing dietary expectations (Hoisington et al. 1999, Tilman et al. 2011, Kastner et al. 2012).
Yet projected future yield trends are no longer expected to keep pace with this increase in
demand (Ray et al. 2013). Real limitations in the further expansion of arable lands and the use
of water, phosphorus, and other natural resources are also being reached (Cordell ef al. 2009,
Foley et al. 2011), and pollution levels due to the excessive use of nitrogen fertilizers and other
inputs are considered to be well over those which may be considered safe (Rockstrom et al.
2009, Bodirsky et al. 2014). Arable lands and other natural resources dedicated to food
production are increasingly subject to competition from biofuel and other non-food crops (Ray
et al. 2012). There is also an increasing urgency to balance the use of lands and inputs for
agriculture with the maintenance of the integrity of wild habitat, biodiversity, and other
ecosystem services (Foley er al. 2005, Matson & Vitousek 2006, Phalan et al. 2011).
Compounding these challenges, global climatic change is generating greater uncertainty in
reliable agricultural production in an increasing number of regions due both to greater extremes
as well as to increased variation in temperatures and precipitation, and is additionally altering
pest and disease occurrences (Lobell et al. 2008, Burke et al. 2009, Jarvis et al. 2009, Wheeler
& von Braun 2013).

PROBLEM ANALYSIS

Realizing long-term global food and nutrition security will require achieving a level of balance
in demand from an informed and empowered populace, and sustainably producing sufficient
accessible food and nutrition in order to nourish this population (Ruel 2003, Alston et al. 2009,
Tilman & Clark 2015, Graham et al. 2007, Foley et al. 2011, Remans et al. 2011, West et al.
2014). While the pathway to this end is not completely evident, balancing food demand is likely
to require a wide range of actions including sustainable economic development and security,
education, reductions in inequality in human societies, and availability and access to family

planning services and technologies. In regard to food supply, it is expected to require
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maximizing productivity within defined arable lands with the use of renewable inputs, i.e.,
sustainable intensification, as well as reducing food waste (Godfray et al. 2010, Foley et al.

2011, Tilman et al. 2011, Struik & Kuyper 2014).

Producing more food on the same amount of land may be achieved through two main pathways
— making agronomic practices more effective to bring yields closer to potential, and increasing
potential yield through crop genetic improvement (Tilman et al. 2011). Innovations in
agronomy and in crop breeding have provided solutions to historical production constraints, but
have also contributed to the present challenges. Through the green revolution, traditional
practices of maintaining relatively low but reliable yields via the use of spatial crop genetic
diversity (i.e., the employ of diverse crop landrace populations, and numerous crops grown in
the same areas) have been replaced with technologies employing higher yielding, genetically
uniform crop varieties typically grown over large areas and supported by considerable use of
agricultural inputs (Gepts 2006, van de Wouw et al. 2009, 2010). Due to this spatial uniformity,
such varieties are typically substituted every few years in order to avoid crop failure resulting
from genetic vulnerability to pests and/or diseases (i.e., temporal diversity has mitigated the
loss of spatial diversity). Given the current and projected food demand, the global food system
is dependent upon the industry of modern crop varieties and agronomic practices to maintain

high yields (Hoisington ef al. 1999).

The question therefore is how production and associated food supply practices in the present
and future can increase food availability while better conserving natural resources, maintaining
critical ecosystem services, and being robust against climatic change and other shocks. The use
of genetic diversity in crop improvement, with the aim of improving the ecological efficiency
of crop production through traits such as drought and heat tolerance, input use efficiency, and
extended storage life, is considered to be a key answer to this question (Xiao et al. 1996,
Hoisington et al. 1999, Zhu et al. 2000, Gepts 2006, Guarino & Lobell 2011, McCouch et al.
2013).

Crop genetic diversity is generated through genetic mutation and recombination, and further
transformed through natural and artificial selection, and is therefore the product of the evolution
over time of crops and closely related wild plants in their agricultural and natural habitats. As

the source of agronomic traits employed for adaptation to biotic and abiotic stresses and for
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yield increases through breeding, and the palette from which food systems may be further

diversified, this genetic diversity is a biological cornerstone of food security.

Expectations of increases in utilization of crop genetic diversity are made under the assumption
that adequate variation will be available for exploration. Ironically, considerable erosion of crop
genetic diversity has occurred through the adoption of improved crop varieties or substitute
crop species and subsequent neglect of traditional varieties and crops, economic development
and associated shifts in consumer demand, land use change and habitat destruction, and
urbanization and the displacement of cultures associated with particular crops and varieties,
among other factors (Harlan 1975, Hoisington et al. 1999, Gepts 2006, Wilkes 2007, van de
Wouw et al. 2009, 2010). In some crops, only a fraction of the diversity once present is thought
to still be found today in farmers’ fields, e.g., in wheat varieties in some areas of the Fertile

Crescent (Harlan 1971, Gepts 2006).

Speaking on the importance of crop genetic resources and expressing concerns regarding their
state of conservation four decades ago, Jack Harlan, a preeminent American agronomist and

professor of plant genetics, stated,

“These resources stand between us and catastrophic starvation on a scale we cannot
imagine. In a very real sense, the future of the human race rides on these materials.
The line between abundance and disaster is becoming thinner and thinner and the
public is unaware and unconcerned. Must we wait for disaster to be real before we

are heard? Will people listen only after it is too late?” (Harlan 1975).

Due to the disappearance of crop genetic diversity in farmer’s fields and wild habitats, the
world’s genebanks originally established to make plant genetic resources readily available to
breeders for crop improvement, have become essential repositories for crop diversity
conservation (Hoisington et al. 1999, Gepts 2006, FAO 2010, Thormann et al. 2015). A
substantial portion of the world’s remaining heritage of food crop genetic resources is likely
now conserved exclusively in genebanks, and important steps have been taken to begin to
ensure reliable long-term funding for the conservation, documentation, and distribution of these
resources (Global Crop Diversity Trust 2013), and to facilitate access to this diversity

worldwide (FAO 2002).
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Unfortunately, though, many genebank collections holding unique genetic diversity fail to
comply with international standards due to degrading infrastructure, inconsistent power
supplies, far from ideal regeneration cycles and protocols, poor safety duplication,
unsophisticated documentation systems, and/or inadequate staff and resources to fulfill their
conservation and distribution mandates (FAO 2010, Khoury ef al. 2010). Two points regarding
the current state of the world’s heritage of crop genetic diversity are thus clear - much remains
to be done to secure the diversity threatened in situ and in under-funded genebanks, and the
window of opportunity to accomplish a comprehensive global system for genetic resources

conservation will not remain open indefinitely (Wilkes 2007, FAO 2010).

RESEARCH QUESTIONS AND OBJECTIVES

Among the factors hindering the actualization of a global system for crop genetic resources
conservation and availability is a lack of essential information regarding this diversity. A
number of primary questions have not been fully answered, including:

(a) what is the status of diversity in our food systems, and where are the greatest vulnerabilities?,
(b) where can genetic diversity be found that can be useful in increasing productivity and
mitigating these vulnerabilities?,

(c) is this genetic diversity available in the present and in the long term?, and

(d) if not available, what steps are needed to improve the ability for researchers to access genetic

resources critical for present and future crop improvement?

This thesis aims to contribute to the knowledge required to answer these questions through an
exploration of the need for, potential of, challenges and constraints regarding, and necessary

steps to enhance the conservation and use of crop genetic diversity.

RESEARCH APPROACH

The research starts with an investigation of the current state of diversity in global food supplies.
This also represents an exploration into a longstanding two-part assumption in the field of
genetic resources — that humanity relies on relatively few crops for its survival, and that this list

of important crops is growing smaller over time.

The thesis then delves into the potential for use of a particular set of crop genetic resources of
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increasing interest globally — crop wild relatives. These weedy and wild cousins of cultivated
crops have been used for many decades in order to introduce traits of value to crops through
breeding, particularly for pest and disease resistance (Iltis 1988, Xiao et al. 1996, Gur & Zamir
2004, Hajjar & Hodgkin 2007, McCouch et al. 2007, Khoury ef al. 2010, Maxted et al. 2012).
Their use in crop improvement is likely only to increase for a variety of reasons. First,
information is improving regarding the identity, potential, and conservation status of these
plants, and digital data platforms are making this information more readily available (Harlan
and de Wet 1971, Andersson & de Vicente 2010, The Plant List 2010, GBIF 2012, Wiersema
etal 2012, GRIN 2013, Vincent ef al. 2013). Second, advancements in geographic information
systems, both through the use of increasingly high resolution ecological (e.g., climatic, soil,
ecosystem classification, and human impact) data and evolving models and methods, are
enabling a more comprehensive conceptualization of the geographic distribution of crop
diversity and its conservation needs (Hijmans & Spooner 2001, Hijmans et al. 2005, Jarvis et
al. 2005, Elith et al. 2006; Phillips et al. 2006, Phillips & Dudik 2008, Costa et al. 2010,
Ramirez-Villegas et al. 2010, Parra-Quijano ef al. 2011, Hengl et al. 2014, Tapia et al. 2014).
In addition, rapidly progressing classical and genomic tools, technologies, and methods are
facilitating their use in crop breeding (Tanksley & McCouch 1997, Zamir 2001, Ford-Lloyd et
al. 2011, Volk & Richards 2011, McCouch et al. 2012). Finally, there is a growing interest in
the use of exotic genetic diversity in order to confront increasingly difficult pest and disease,
abiotic stress, and other agronomic challenges (Hoisington et al. 1999, Gepts 2006, Ortiz et al.
2008, Jarvis et al. 2009, Tester and Langridge 2010, Guarino & Lobell 2011, McCouch ef al.
2013, Henry 2014).

Crop wild relatives are genetic resources at the nexus of a number of critical global challenges.
They have the potential to contribute significantly to crop improvement, helping to address food
security and development goals, while improving the adaptation of crops to climate change
(Hoisington et al. 1999, Guarino & Lobell 2011, Dempewolf ef al. 2014). As wild plants, they
are subject to a myriad of human caused threats to natural ecosystems, including habitat
modification, urbanization, mining, logging, changing fire regimes, pollution, invasive species,
overharvesting, and climate change (Stein et al. 2000, Wilkes 2007, Jarvis et al. 2008, Loarie
et al. 2009, Brummitt & Bachman 2010, Khoury et al. 2010, Ureta et al. 2011). A focus on wild

genetic resources is thus timely both for conservation and crop improvement objectives.
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The research presented in this thesis was performed in contribution to a number of ongoing
crop wild relative initiatives active at different scales globally. "Adapting Agriculture to
Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives", is a ten year global
project aimed at identifying important crop wild relatives worldwide, assessing their
representation in genebanks, filling gaps in these ex situ collections through targeted collecting,
and pre-breeding collected samples in order to provide breeders with materials of interest for
adapting their crop varieties to climate change (Dempewolf et al. 2014). On the national level,
the United States is bringing together information needed to conceptualize the crop wild relative
diversity present in the country, assess its conservation needs, and organize strategies for long-
term management of this diversity by government, private, and other stakeholders (Plant
Germplasm Operations Committee 2010). Within the global CGIAR Research Programs,
including Roots, Tubers and Banana, and Grain Legumes, assessments are being made of the
state of conservation of crop wild relatives of mandate crops, with the aim of making the

diversity present in these species available to breeders worldwide (CGIAR 2015).

While conservation of crop genetic resources is fundamental to the availability of this diversity
for present and future breeding, it is not the only major constraint to utilization. National and
international policies on crop genetic resources determine the real capacity for researchers to
acquire diversity of potential interest (Fowler & Hodgkin 2004, Esquinas-Alcazar 2005,
Bjoernstad ef al. 2013). The thesis culminates in an exploration of the implications of the global
geographic distribution of crop genetic diversity for food security, in particular the level to
which international collaboration is required in order to achieve access to genetic resources
where they are needed. This research was performed in contribution to current negotiations for
the potential expansion of scope and membership within the International Treaty on Plant

Genetic Resources for Food and Agriculture (Plant Treaty) (FAO 2002).

THESIS OUTLINE

This thesis is organized into eight chapters (Figure 1). Following this general introduction,
Chapter 2 contextualizes the need for the use of diverse genetic resources in crop breeding in
order to mitigate vulnerability in global food supplies. This chapter represents an exploration
of central assumptions in the field of plant genetic resources — that humanity relies on relatively
few crops for its survival, and that this list of important crops is growing smaller over time -

inspired by a seminal article in the field that was published 25 years ago using data from 35
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years before the present (Prescott-Allen & Prescott-Allen 1990). Research questions include:
what is the state of crop species diversity in global food supplies?, what is the trend over time
in change in this diversity?, what are the most important crops globally?, and, what options

might be available to diversify food supplies in the future?

From this global context, Chapter 3 concentrates on the identification of potentially important
wild genetic resources at the national level. Focusing on the United States, a large and eco-
geographically diverse country with relatively advanced conservation policy and active national
genetic resources conservation efforts, the chapter presents an inventory of crop wild relatives
and other wild species of potential use in agricultural research. The chapter also develops a
method for prioritizing these wild species based upon their potential to contribute to food
security. Research questions include: how can crop wild relatives and other useful wild plants
be documented at the national level?, and, how can they be prioritized for conservation and

research actions?

Once potentially valuable crop genetic resources are identified, subsequent information is
needed regarding where they occur, what diversity they may possess, and how well conserved
and therefore available to crop breeders they are. Chapter 4 offers a methodology to answer
these questions at the crop genepool level, i.e., for the wild relatives associated with any
particular crop. This chapter builds upon developments in the generation of and access to digital
occurrence and eco-geographic data as well as improvements in modeling wild plant species
distributions, intentionally utilizing freely available software and data. The method also
includes a novel expert assessment methodology, using researchers knowledgeable in the
distributions and conservation concerns of crop wild relatives to evaluate the results. Research
questions include: how can modeled geographic distributions of crop wild relatives be used to
assess the comprehensiveness of the diversity represented in existing genebank collections?,
how can priorities for further collecting in order to fill gaps in the conservation of species in
genebanks be outlined at the species and population level?, and, how valid are these results

compared to expert opinion, and thus what are the potential limitations of the method?

Chapters 5 and 6 utilize the basic methodology outlined in Chapter 5, but also advance the
method by capitalizing on knowledge learned over the four years of doctoral research

completed since the publication of the original gap analysis case study. Along with
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improvements in species targeting, occurrence data, modeling, and expert feedback methods,
the chapters take an additional step by drawing upon eco-geographic information to indicate
the potential for species and specific populations to possess traits of value to crop improvement
objectives, particularly for abiotic stress tolerance. The chapters focus on crops differing
substantially in the state of existing information regarding associated wild relatives, as well as
historical use of the resources in crop improvement. Research questions include: what
constitutes a potentially useful wild relative of sweetpotato and pigeonpea?, where are these
species encountered?, what is the state of conservation and availability of these species to
researchers?, what are the highest taxonomic and ecogeographic priorities for further
collecting?, and, what traits do species and populations possess that may be valuable to specific

crop improvement objectives?

Chapter 7 focuses on access to crop genetic resources. Given the geography of crop genetic
diversity identified in previous chapters and additional literature stretching back to the works
of N. . Vavilov (1926), the chapter investigates the disjunct between where crop genetic
resources originated and are particularly diverse, and where crops themselves are currently
important in diets and production systems. The overall goal is to assess the degree to which
countries are interdependent in regard to crop genetic resources, and therefore need to engage
in international exchange in order to support the crop breeding that underlies their national food
supplies and production systems. As with Chapter 2, this research was inspired by an important
historical article (Flores-Palacios 1998), which contributed to the initial arguments for the
creation of the Plant Treaty (FAO 2002). Publication of Chapter 7 is intended to increase
membership and contribute to the rationale for expansion of the crops covered under the Plant
Treaty. Research questions include: how does the distribution of crop genetic diversity
associated with the world’s major crops indicate interdependence among countries in regard to
crop breeding efforts?, how dependent are countries on crop diversity from outside their borders
in order to support their food supplies and production systems?, how is this dependence
changing over time?, and what are the implications of this dependence in regard to current

political efforts focused on access to crop genetic resources?

Chapter 8 provides a general discussion of the research and its main results. The chapter offers
a summary of the current status of conservation of the crop genetic resources targeted in the

thesis, identifying limitations in the study and suggesting future research in order to make

10
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further progress on key questions in the field. The chapter also discusses the impact of the
research to date, and highlights ongoing activities that are building upon the efforts documented

here.
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Chapter 2

Abstract

The narrowing of diversity in crop species contributing to the world’s food supplies has been considered
a potential threat to food security. However, changes in this diversity have not been quantified globally.
We assess trends over the past 50 years in the richness, abundance, and composition of crop species in
national food supplies worldwide. Over this period national per capita food supplies expanded in total
quantities of food calories, protein, fat, and weight, with increased proportions of those quantities
sourcing from energy dense foods. At the same time, the number of measured crop commodities
contributing to national food supplies increased, the relative contribution of these commodities within
these supplies became more even, and the dominance of the most significant commodities decreased.
As a consequence, national food supplies worldwide became more similar in composition, correlated
particularly with an increased supply of a number of globally important cereal and oil crops, and a
decline of other cereal, oil, and starchy root species. The increase in homogeneity worldwide portends
the establishment of a global standard food supply, which is relatively species rich in regard to measured
crops at the national level, but species poor globally. These changes in food supplies heighten
interdependence among countries in regard to availability and access to these food sources and the
genetic resources supporting their production, and give further urgency to nutrition development

priorities aimed at bolstering food security.

Keywords: Crop diversity, Plant genetic resources, Agricultural development, Global analysis

18



Increasing homogeneity in global food supplies

INTRODUCTION

A shared axiom of ecology and nutrition is that, within certain ranges, diversity enhances the
health and function of complex biological systems. Species diversity has been shown to
stimulate productivity, stability, ecosystem services, and resilience in natural (Hooper et al.
2005, Cadotte et al. 2012, Hooper et al. 2012, Zhang et al. 2012, Gamfeldt et al. 2013) and in
agricultural ecosystems (Kirwan et al. 2007, Hajjar et al. 2008, Picasso et al. 2008, Bonin &
Tracy 2012, Cabell & Oelofse 2012, Davis et al. 2012, Kremen & Miles 2012, Mijatovi¢ ef al.
2013). Likewise, variation in food species contributing to diet has been associated with
nutritional adequacy (Frei & Becker 2004, Kennedy et al. 2005, Graham et al. 2007, Negin et
al. 2009) and food security (Ruel 2003).

The development of sedentary agricultural societies and further rise of modern agriculture is
generally considered to have led to a decline in the total number of plant species upon which
humans depend for food (Harlan 1975, Gepts 2006), particularly the wild, semi-domesticated,
and cultivated vegetables and fruits, spices, and other food plants that supplemented staple
crops with the provision of micronutrients and that historically bolstered food security during

crop failures (Doughty 1979). Harlan (1975) warned that

“most of the food for mankind comes from a small number of crops and the total
number is decreasing steadily. In the United States in the past 40 years, many
vegetables and fruits have disappeared from the diet, and the trend is going on all
over the world. More and more people will be fed by fewer and fewer crops.”

(Harlan 1975).

More recent analyses of dietary transition in developing countries in association with
globalization have noted increases in the diversity of plants contributing to diets locally, along
with a Westernization transition in preference of energy dense foods (i.e. animal products, plant
oils and sugars) over cereals, pulses, and vegetables, and of particular major crop plants within
these food categories over traditional crops (Kearney 2010, Pingali 2007). The impact of such
changes on overall crop diversity worldwide has not been comprehensively documented,
although recent changes in varietal and allelic level diversity of some crops have been
investigated (van de Wouw et al. 2009, 2010, Bonneuil et al. 2012). Given the potential food

security implications of narrowing of the diversity of crop species both in production systems
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and in food supplies, an assessment of the global state of crop plant species diversity is

warranted.

Here we examine changes in the diversity of the portfolio of crop species upon which humans
primarily depend for food security in regard to calories, protein, fat, and food weight. Using
national per capita food supply data published by the Food and Agriculture Organization (FAO)
of the United Nations, we analysed trends in the richness, abundance, and composition of
measured crop commodities in the food supplies of 152 countries comprising 98% of the

world’s population from 1961-2009.

MATERIALS AND METHODS

We analyzed FAO national per capita food supply data for all available measurements [calories
(kcal/capita/day), protein (g/capita/day), fat (g/capita/day), and weight (g/capita/day)], from
1961-2009, utilizing the full set of commodity and country listings, standardized across all
years. Food supply from plants represents national production plus imports plus or minus stock
changes over the survey period; minus exports, quantities used for seed, animal feed, and in the
manufacture of non-food products, and losses during storage and transport (Prescott-Allen &
Prescott-Allen 1990). Plant commodities clearly comprised of the same crop species were
aggregated into single commodities representing the crop species, e.g. olive oil and olives. After
aggregation, 52 crop commodities remained. Animal foods were included within the crop

importance analysis as a single aggregated commodity.

In order to align all time periods and include as much of the world’s population as possible, the
current nations formerly comprising the USSR, Yugoslav SFR, Ethiopia PDR, and
Czechoslovakia were aggregated into their former states, with national data merged by
weighted average based upon population of the respective states at the respective reporting year.
Belgium and Luxembourg were reported together during 1961-1999 and therefore recent years
listing the countries separately were merged as above. Data for two countries (Occupied
Palestinian Territories and Netherlands Antilles) did not appear consistently reported over the
study period and were excluded from the analysis. The resulting 152 comparable countries

comprised 98% of the world’s population across the study period.

Changes in the spread of crop commodities [based on the presence (>0) or absence of a crop in
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a given country in each year] were analyzed using generalized estimating equations with a
binomial error distribution, “country” as a grouping factor, and an autoregressive (AR-1)
correlation structure (i.e., time-lag correlation), using the “geeM” package in R. Slope
parameters from these models were extracted to show the direction and magnitude of change
for each commodity. Changes in globally aggregated absolute abundance were non-linear, and
were therefore analyzed by subtracting the 1961 abundance value from the 2009 value. Changes
in country-level absolute abundance were analyzed the same way, for consistency, and the per-
country difference was then averaged across countries. We analyzed changes in relative
abundances of crops (i.e., relative to the total value of all crops within a given country) using a
generalized linear mixed model with a binomial error distribution, with fixed effects for “year”
and “crop” and a random effect of “country.” Comparisons between crops were performed by
estimating the slopes of the predicted values for each crop in the model. Error bars were
calculated by estimating the maximum and minimum slope values based on the standard errors
of the predicted values. Crops for which fat or protein make up less than 1% of their weight
were removed from the analysis for those respective measurements. All mixed-effects models

were performed using the “Ilme4” package in R.

Changes in crop commodity richness in national food supplies were analyzed with generalized
linear mixed effects models with a Poisson error distribution and “country” as a random effect,
with random slopes for “year”, to account for repeated measures over time. The significance of
the fixed-effect “year” term in predicting richness was ascertained by conducting a Chi-squared
likelihood ratio test on nested models with and without the term. In order to estimate the
differences between countries in change in richness we extracted slope coefficients from the
random effects of the mixed-effects model for one measurement type, calories. These
coefficients represent the magnitude and direction of the change in richness for each country
but do not provide estimates of error. One country (Namibia) displayed a markedly inconsistent
jump in richness. The slope for this country was therefore derived from data only from
consistent years, with slope parameters estimated by weighted averaging of the slope in

consistent time periods. Analyses were performed using the “lme4” package in R.

We used Pielou's evenness index to measure how equally crops contributed to a country’s food
supplies in a given year, with linear mixed effects models in the “lme4” package to measure

change in evenness over time, as described above. Because Pielou’s evenness index can also
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reflect changes in richness, we additionally analyzed changes in dominance, defined as the
change in the proportion of the most abundant crop commodity in each country in each year,
using generalized linear mixed models with a binomial error distribution with the “lme4”
package in R. For evenness and dominance, slope parameters were extracted from the random
effects of the mixed models to estimate the direction and magnitude of the change in each

country.

We quantified the homogenization of crop commodity composition using Bray-Curtis distance
(dissimilarity) from each country to the global centroid (comparable to the global mean
commodity composition, which is inclusive of abundance) in each year using the “betadisper”
function in the R package “vegan”, with similarity derived by subtracting dissimilarity from 1.
A mean increase in similarity-to-centroid therefore represents a decrease in country-to-country
variation, and a homogenization of commodity composition over time. We then used linear
mixed models with “country” as a random factor to assess the significance of the change in
similarity-to-centroid over 1961-2009. Slope parameters were extracted from the random
effects of the mixed-effects models to estimate the direction and magnitude of the change in
similarity in each country. We also assessed homogenization using a non-metric
multidimensional scaling analysis (NMDS) with Bray-Curtis dissimilarities to compare the
mean and variance of commodity composition between three measurement years (1961, 1985
and 2009). Circles for each year represent 95% confidence intervals around the mean; smaller

circles indicate lower country-to-country variation in composition.

The number of crop species currently important to food supply was estimated by listing for the
most recent year (2009) the plant and animal commodities by decreasing importance until the
total contribution equaled 90% of each country’s food supply for each measurement, a threshold
which is inclusive of major contributors to supply and exclusive of commodities contributing
very small quantities (Prescott-Allen & Prescott-Allen 1990) (Supplementary Figure 1). One
biological species per commodity was recognized, except in cases where additional species
were clearly likely to contribute to that commodity in at least one listed country. For general
commodities, the minimum number of species most likely to contribute was identified

(Supplementary Table 1).
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RESULTS

As a global trend, national per capita food supplies from both plant and animal sources
consistently increased over the past 50 years for all variables, with animal foods becoming
increasingly important in contribution to protein and oil crops dominating fat food supplies

(Supplementary Figure 2).

From 1961-2009 all 52 measured crop commodities, which included both individual crops and
groups of crops producing similar products, with the exception of cottonseed oil, increased in
geographic spread (i.e. were counted as contributing to food supply in an increasing number of
countries) (Figure 1A, Supplementary Figure 3). The major cereals wheat, rice, maize and
barley, along with sugar, potatoes, and the general vegetables and fruits commodities
maintained their ubiquity in food supplies across the planet over the past 50 years. Crop
commodities with the greatest relative changes in spread over this period included oil crops
such as soybean, sunflower, palm oil, and rape & mustard. Commodities showing relatively
small changes in spread and not already globally ubiquitous included minor cereals such as

millets, sorghum, and rye, and starchy root crops such as yams, cassava, and sweet potatoes.

Wheat, rice, maize and other ubiquitous crop commodities were among those with the greatest
gains in both relative and absolute abundance in national per capita food supplies over the past
50 years (Figure 1B, Supplementary Figure 4-5). In addition, the degree of increase in spread
was generally a good predictor of change in the abundance of the crop commodities in food
supplies. For example, oil commodities such as soybean, sunflower, palm oil, and rape &
mustard were among the crops showing the greatest average increase in relative abundance in
national food supplies, whereas millets, rye, sorghum, yams, cassava, and sweet potatoes
showed the largest declines. Such global changes in abundance of measured crops in national
food supplies are similarly evident in global aggregated per capita food supply data, which

assesses global quantities in relation to total world population (Supplementary Figure 5).

The richness of national per capita food supplies in regard to the 52 measured crop commodities
increased consistently over the past 50 years for all variables (Figure 2A-B, Supplementary
Figure 6). National food supplies also increased slightly in evenness, indicating greater equality
in the relative abundance of each of the crop commodities contributing to per capita food supply

within each country, although mixed trends were evident worldwide (Figure 2C-D,
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Figure 2. Global change in richness, evenness, and dominance of crop commodities in national food
supplies from 1961-2009. (A) Global mean change in crop commodity richness (i.e., number of crops)
in national food supplies. Points represent actual data, and lines are 95% prediction intervals from
generalized linear mixed models with a Poisson error distribution. (B) World map displaying the slope
of change in crop commodity richness per country for calories. (C) Global mean change in evenness of
contributing crop commodities within national food supplies calculated by Pielou’s evenness index.
Points represent actual data, and lines are 95% prediction intervals for a linear mixed effects model. (D)
World map displaying the slope of change in evenness of national food supplies for calories. (E) Global
mean change in the dominance of the most abundant crop commodity in each country in each year.
Points represent actual data, and lines are 95% prediction intervals from a generalized linear mixed
model with a binomial error distribution. (F) World map displaying the slope of change in dominance
in national food supplies for calories.

Supplementary Figure 7). Dominance (estimated as the proportion of a country’s per capita
food supply comprised of the most abundant crop commodity) declined as a global trend over
the study period (Figure 2E-F, Supplementary Figure 8). Notable reductions in originally very
high levels of dominance were visible in rice in contribution to calories in Southeast Asia,

coconut for fat in Pacific Island countries, and groundnut for fat in Central African countries.

As national food supplies became richer for the 52 measured crop commodities and relative

abundance patterns of contributing commodities shifted, food supplies worldwide became
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Figure 3. Global change in similarity (homogeneity) of food supplies, as measured by Bray-Curtis
dissimilarity from each country to the global centroid (mean composition) in each year, converted to
similarity. (A) Global mean change in similarity-to-centroid of national food supplies. Points represent
actual data, and lines are 95% prediction intervals from linear mixed effects models. (B) Multivariate
ordination of crop commodity composition in contribution to calories in national food supplies in 1961,
1985 and 2009. Red points represent the multivariate commodity composition of each country in 1961,
blue points in 1985, and black points in 2009. Circles represent 95% confidence intervals around the
centroid in each year. Between 1961 and 2009, the area contained within these 95% confidence intervals
decreased by 68.8%, representing the decline in country-to-country variation of commodity composition
(i.e., homogenization) over time. (C) World map displaying the slope of change in similarity-to-centroid
of national food supplies for calories.

more similar in composition (inclusive of abundance) for all variables (Figure 3, Supplementary
Figure 9). This increase in similarity brought national food supplies around the planet closer to
a global standard composition. Between 1961 and 2009, homogeneity increased by 16.7%, as
measured by the mean change in similarity between each country and the global standard
composition, with a maximum (single-country) change of 59.7%. Likewise, mean among-
country similarity increased by 35.7%. East and Southeast Asian as well as Sub-Saharan
African countries as regional groups displayed the greatest changes in composition toward the
global standard over 1961-2009, in association with the greatest increases in measured crop

commodity richness and decreases in dominance.

As a measure of the relative importance of crop commodities in total global food supply,
inclusive both of plant and animal food sources, we found that 50 of the measured crop
commodities currently contribute to the top 90% of calories, protein, fat and weight around the

world. We estimate that these crop commodities are composed of 94 crop species from 70
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genera from 37 plant families (Supplementary Table 1).

DISCUSSION

The national-level data and multiple variables analyzed here represent the greatest degree of
disaggregation of globally comparable food supply data available and thus permit the highest
resolution analysis currently feasible for analyzing trends in food crop species utilization
worldwide. Food supply data is not directly equivalent to consumption, as food losses at the
household level are not measured, but represents a superior measure of the importance of food
crops to diets than does production data (Prescott-Allen & Prescott-Allen 1990). National level
food supply data both generalizes and underestimates total existing food crop species diversity,
as sub-national dietary variation, crops primarily encountered in home gardens and local
markets, seasonally important food plants, and culinary herbs, spices and other crops consumed
in relatively small quantities are not comprehensively reported in national statistics (FAO
2001). Furthermore, FAO food supply data does not specifically report statistics in regard to
micronutrients, where species richness may be particularly significant (Doughty 1979), nor
does it assess the indirect contribution to food supply of animal feed and forage plant species.
Along with listed crops such as maize and soybean that are major food sources for livestock,
global production statistics (FAO 2010a) indicate that crops such as pumpkins, alfalfa, and

clover should be recognized as critical indirect contributors to food supply.

More importantly, because of the limited number of individual crop commodities reported by
FAO combined with the aggregation of numerous crops into several general commodities, the
analyses lack the resolution necessary for elucidating trends in those geographically restricted
cereals, legumes, fruits, vegetables and other crops that may be especially sensitive to changes
in the global food system. Although some progress has been made in listing and proposing
monitoring strategies for such species (Hammer & Khoshbakht 2005, Padulosi & Dulloo 2012),
substantial improvements in the systems for reporting food production and supply are needed
to adequately monitor such crops globally. Ideally assessments of the state of crop diversity in
food supplies would integrate interspecific, varietal, and allelic level analyses of contributing
crop plants (Bonneuil et al. 2012) in combination with nutritional information (Remans et al.
2011) and recorded at subnational levels inclusive of regional, community, household, and

individual variation (Pingali 2007, Hawkesworth ef al. 2010).
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The increased food energy, protein, fat, and weight from plants in food supplies worldwide over
the past 50 years appear to primarily have been sourced from globally dominant crops
specifically reported by FAO. The total number of important crop species we identified
remained relatively consistent in comparison to a previous point estimate based on national-
level data from 1979-1981 (Prescott-Allen & Prescott-Allen 1990), but the spread and
abundance values of these crops have changed measurably. The rate of movement toward
homogeneity in food supply compositions globally continues with no indication of slowing.
This trend implies a likely deterioration in importance of un-reported minor and geographically
restricted food plants, along with the measured cereal, oil, starchy root and other crops that
displayed significant declines in abundance in national food supplies. Thus even as the number
of measured crops available to the consumer in a given country has increased over the past half-
century as a global trend, the total diversity of crops contributing significantly worldwide has

narrowed.

A series of interrelated factors are considered to have driven change in food supply
compositions worldwide. A primary driver for both diversifying diets and shifting toward
increased consumption of energy dense foods entails wealth increase and associated gains in
purchasing power. Transitions in dietary preferences, particularly toward Western diets (e.g.
meat and dairy, wheat, temperate vegetables and fruit, and sugary beverages) have been
associated with many facets of globalization and urbanization, including trade liberalization
and the development of extensive commodity transport systems, multinational food industries,
food quality and safety standardization, mass media, labor changes, smaller family sizes,
supermarkets, fast food, processed foods, and human migration. These drivers are detailed
elsewhere (Popkin 2006, Pingali 2007, Hawkesworth et al. 2010, Kearney 2010). The
modernization and globalization of agriculture through the replacement of human labor with
machinery, investments in the breeding and distribution of high yielding major crops as a
development strategy, and subsidies dedicated to a narrow range of crop commodities, among
other factors, have further contributed to the increasing global availability of a limited number
of major crop plants, with lesser priority given to nutritional diversity (Davis et al. 2004, Negin

et al. 2009).

Increases in measured crop species richness and evenness in food supplies may be considered

as indicative of enhanced food security on the local level, particularly in regard to availability
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and access. On the other hand, the increased ability globally to realize within diets the human
preference for energy dense foods (Kearney 2010) based upon a limited number of global crop
commodities and processed products has been associated with the rise in non-communicable
diseases such as adult onset diabetes, heart disease, and certain forms of cancer (Popkin 2006,
Pingali 2007, Kearney 2010), a trend which is impacting rapidly developing countries such as
China more quickly than projected (Kearney 2010). Such dietary changes have also contributed
to reductions in diversity in human oral and gut microbiota, which in return have negatively
impacted health (Lozupone ef al. 2012, Adler et al. 2013). With the number of over-nourished
worldwide surpassing the number of under-nourished (Popkin 2006), such diseases are
becoming epidemics, including within countries still grappling with significant constraints in
food availability. Making available and accessible adequate nutritional diversity within and in
supplement to the major crops comprising an ever-greater proportion of global food supplies is
critical (Ruel 2003, Graham et al. 2007, Remans et al. 2011). Engendering consumption

patterns cognizant of the impact of food crop choice on health is equally pressing.

The increasing reliance on a suite of truly global crop commodities implies a narrowing in the
diversity present in global agricultural systems as a whole, necessitating an equivalent
expansion in attention to production stability for these crops (Alston et al. 2009). The
importance of this stability is exacerbated by the necessity of increasing yields of major crops
in order to keep pace with demand, the future success of which has been questioned (Ray et al.
2013). From a genetic diversity perspective, increasing homogeneity in global food supplies
highlights the importance of the breeding and cultivation of varieties of these crops with diverse
genetic backgrounds (National Research Council 1972, Zhu et al. 2000). While varietal
diversity particularly of major cereal crops can in some regions be relatively high, for other key
crops such as banana only a handful of varieties are widely cultivated, despite substantial

diversity in the gene pool as a whole (Perrier ef al. 2011).

As crop development efforts rely upon the utilization of genetic resources (Gepts 2006), it is a
policy imperative to ensure the conservation of, and access to, as wide a range of genetic
diversity within these global crops as possible, along with the genotypic and phenotypic
information necessary to effectively utilize these resources (McCouch et al. 2012,
2013). Unfortunately, significant gaps remain in the conservation of crop genetic resources

(FAO 2010b) and access to this diversity requires improvement (Fowler & Hodgkin 2004). A
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number of crops considered here are not sufficiently covered under the pertinent international
treaty (FAO 2002), including plants significant to food supplies globally, such as sugar cane,

soybean and groundnut.

While our study identifies the major crop commodities critical to national food supplies
worldwide, current patterns of production of these crops are not guaranteed given ongoing and
predicted changes in climate (Lobell ef al. 2008, Burke et al. 2009, Wheeler & von Braun 2013),
the decline in availability of non-renewable inputs (Cordell e al. 2009), and increasingly severe
impacts of agriculture on soil, water quality and biodiversity (Foley et al. 2005). Such trends
may impact food security in regard to crop commodity trade (Fader et al. 2013), decrease the
nutritional quality of major crops (Dwivedi et al. 2013), and enhance the attractiveness of
under-researched crop species (Naylor ef al. 2004) that are productive and nutritious given

limited inputs, particularly under marginal or variable conditions (Jarvis et al. 2012).

Moreover the importance of crop commodities in food supplies, particularly in contribution to
protein and fat, may shift in response to health, natural resource, and climate pressures (Kearney
2010, Stehfest et al. 2009, Kastner et al. 2012, Pradhan ef al. 2013), counteracting the trend
demonstrated over the past 50 years in increased animal as well as energy-dense plant food
commodity consumption. The trajectory of Northern European food supplies appears to be
demonstrating such a trend (Kearney 2010). Providing that alternative food crops may still be
encountered, a further diversification of food supplies with interesting and nutritious crop plants

may bolster this evolution.
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Supplementary Figure 1. Global average additive contribution by ranked abundance of crop plant and
animal commodities to calories, protein, fat and weight in food supply, 2009. The dotted line shown at
90% displays the threshold utilized to determine the number of crops considered important to each
national food supply in 2009 (Supplementary Table 1), which is inclusive of major contributors to supply
and exclusive of commodities contributing very small quantities (Prescott-Allen & Prescott-Allen
1990).
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Supplementary Figure 2. Global change in national food supplies by food groups from plant and animal
sources, for (A) calories, (B) protein (C) fat and (D) weight, 1961-2009. Data displayed is mean per

capita values across all (152) countries.
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Supplementary Figure 3. Change in the total number of countries reporting each crop commodity, per

crop, 1961-2009.
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Supplementary Figure 3A. Change in the total number of countries reporting each crop commodity using
generalized additive modeling (GAM). Crop commodities are counted as present within a given country
in a given year when contributing to food supply (>0) for any variable. Crop commodities are listed in
ascending order from the value in 1961. The black line displays the mean value across crop commodities.
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Supplementary Figure 4. Slope of the change in relative abundance probability of crop commodities in contribution to (A) calories, (B)
protein, (C) fat, and (D) weight in national per capita food supplies from 1961-2009. Change in relative abundance probability was analyzed

using a generalized linear mixed model with a binomial error distribution, “year” and “crop” as fixed effects and “country” as a random
effect. Bars represent the slopes (+/- 95% confidence interval) of the predicted values derived from the model for each crop species.

Commodities contributing minimally to protein/fat (i.e. <I gram of protein/fat per 100 g of the item) were not included in (B) and (C) here.
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Supplementary Figure 5. Comparison of absolute abundance trends for crop commodities reported in contribution to (A) calories, (B) protein,

(C) fat, and (D) weight in global aggregate food supply data versus mean national food supply data, 1961-2009. In order to derive these

values, the absolute abundance of the crop in 1961 was subtracted from the 2009 value. For country-level changes, the between-years
difference was first calculated for each country and then averaged across all countries (+/- 95% CI). Global aggregate abundance is a single

global value and therefore no estimate of error is possible.
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Abstract

The use of crop wild relatives (CWR) in breeding is likely to continue to intensify as utilization
techniques improve and crop adaptation to climate change becomes more pressing. Significant gaps
remain in the conservation of these genetic resources. As a first step toward a national strategy for the
conservation of CWR, we present an inventory of taxa occurring in the United States, with suggested
prioritization of species based upon potential value in crop improvement. We listed 4,600 taxa from 985
genera and 194 plant families, including CWR of potential value via breeding as well as wild species of
direct use for food, forage, medicine, herb, ornamental, and/or environmental restoration purposes. US
CWR are related to a broad range of important food, forage and feed, medicinal, ornamental, and
industrial crops. Some potentially valuable species are threatened in the wild, including relatives of
sunflower (Helianthus annuus L.), walnut (Juglans regia L.), pepo squash (Cucurbita pepo L.), wild
rice (Zizania L.), raspberry (Rubus idaeus L.), and plum (Prunus salicina Lindl.), and few accessions of
such taxa are currently conserved ex situ. We prioritize 821 taxa from 69 genera primarily related to
major food crops, particularly the approximately 285 native taxa from 30 genera that are most closely
related to such crops. Both the urgent collection for ex sifu conservation and the management of such
taxa in protected areas are warranted, necessitating partnerships between concerned organizations,

aligned with regional and global initiatives to conserve and provide access to CWR diversity.

Keywords: Crop wild relatives, Plant genetic resources, Wild utilized species, National inventory
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INTRODUCTION

Nearly 40 years ago Jack Harlan outlined the major factors explaining the extent of use of wild
relatives of crops (CWR) in plant breeding. His list included the degree of domestication of the
crop, the perceived genetic vulnerability of the crop, the availability of CWR for utilization, the
degree of difficulty in using CWR in breeding, and the economic conditions and disposition of

breeders toward their use (Harlan 1976).

Utilization of CWR has steadily increased over the past decades, providing improved pest and
disease resistance, tolerance to abiotic stresses, increased yield, novel cytoplasms, and quality
traits to banana (Musa acuminata Colla), barley (Hordeum vulgare L.), bean (Phaseolus
vulgaris L.), cassava (Manihot esculenta Crantz), chickpea (Cicer arietinum L.), corn (Zea
mays L.), lettuce (Lactuca sativa L.), oat (Avena sativa L.), millet [ Pennisetum glaucum (L.) R.
Br.], potato (Solanum tuberosum L.), rice (Oryza sativa L.), sugarcane (Saccharum officinarum
L.), sunflower, tomato (Solanum lycopersicum L.), and wheat (Triticum aestivum L.), among
others (Iltis 1988, Xiao et al. 1996, Gur & Zamir 2004, Hajjar & Hodgkin 2007, McCouch et
al. 2007, Maxted et al. 2012a). Advancements in breeding, particularly through novel molecular
approaches, have increased the efficiency of the use of wild germplasm substantially (Tanksley
& McCouch 1997, Zamir 2001, Ford-Lloyd et al. 2011, Volk & Richards 2011). Research for
adaptation to future climates is likely to increase the exploitation of the variation represented in

CWR (Ortiz et al. 2008, Guarino & Lobell 2011).

Despite substantial efforts over these years, the most significant bottleneck in utilization
identified by Harlan - the availability of CWR for research and breeding - continues to be of
concern, with substantial genetic variation yet to be conserved, and financial and political

constraints still to be resolved (Fowler & Hodgkin 2004, FAO 2010).

An estimated one out of five plant species is threatened worldwide by habitat loss or
modification, agricultural modernization, pollution, over-exploitation, invasive species, and/or
climate change (Brummitt & Bachman 2010), and nearly 30% of the native flora of the United
States is of conservation concern (CPC 2012). CWR are not exempt from these pressures

(Wilkes 2007, Jarvis et al. 2008, Bilz et al. 2011, Ureta et al. 2011).

The urgent collection and subsequent storage in ex situ facilities, where these genetic resources
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can be made available for research and breeding is thus warranted. The complementary
protection of CWR in situ is necessary to support the ongoing evolution of CWR populations
(Maxted et al. 1997, Meilleur & Hodgkin 2004, Heywood 2008, Maxted & Kell 2009) in both
wild areas and traditional agricultural systems (Rawal 1975, GSPC 2002, Zizumbo-Villarreal
et al. 2005).

It is becoming increasingly feasible to formulate comprehensive strategies for the conservation
of CWR diversity due to advancements in understanding the taxonomic relationships between
crops and their wild relatives (Andersson & de Vicente 2010, Wiersema et al. 2012), improved
availability of data on the distribution of these taxa (e.g. FNA 2008a, GBIF 2012) and increased
power of distribution modelling and conservation analysis (Hijmans & Spooner 2001, Jarvis et

al. 2005, Ramirez-Villegas et al. 2010, Parra-Quijano et al. 2011).

The starting point for CWR conservation planning typically involves the creation of a checklist
of included CWR taxon names, to which ancillary data (e.g. eco-geographic information,
conservation status, utilization potential, etc.) is added to generate an inventory for the target
area of research (Maxted et al. 2008). National inventories of CWR have been published for a
growing list of nations, particularly in Europe (Magos Brehm et al. 2007, Maxted et al. 2012b),
and targeted subsequent conservation efforts have been made in over 40 countries worldwide
(Meilleur & Hodgkin 2004). On the global level, a specialist group is active in listing CWR of
conservation concern (International Union for Conservation of Nature, Species Survival
Commission 2008), an initiative is underway to document, collect, conserve ex sifu, and pre-
breed the CWR of major food and forage crops (Guarino and Lobell 2011), and progress is
being made in planning for an integrated system of genetic reserves for the CWR of highest

priority worldwide (Maxted & Kell 2009).

As a primary step in the process toward a national strategy for the conservation of CWR, we
report on an inventory of the CWR flora occurring in the US, and a prioritization of these taxa

based upon their potential value in agricultural crop research.

The United States Context
More than 20,000 species of plants, or about 7% of the world's flora, are native or naturalized

in North America north of Mexico (FNA 2008b), but the region has not been considered a major
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center of crop plant diversity (Vavilov 1926). Those indigenous species that were domesticated
before European contact in Eastern North America include pepo squash (Cucurbita pepo L.),
sunflower (Helianthus annuus L.), marsh-elder (/va annua L.), and chenopod (Chenopodium
berlandieri Moq.) (Smith 2006), and in the arid southwestern US include Sonoran panic
(Panicum hirticaule J. Presl var. hirticaule) (Nabhan 1985) and devil’s-claw (Proboscidea
parviflora (Wooton) Wooton & Standl. subsp. parviflora) (Bretting & Nabhan 1986).
Blueberry (Vaccinium section Cyanococcus) and cranberry (Vaccinium section Oxycoccus)
(Ballington 2001), blackberry (Rubus fruticosus L., sensu lato and hybrids) (Finn, 2001), and
pecan [Carya illinoinensis (Wangenh.) K. Koch] (Flack 1970) may be counted as more recent
domestications. The number of CWR native to the US may thus at first glance be estimated to

be fairly small.

Three factors increase the number of potentially valuable CWR significantly. The relatives of
a complex of Mesoamerican crop species, including corn, a number of bean (Phaseolus L.) and
squash species, chili pepper (Capsicum L.), American cotton (Gossypium hirsutum L.), and
tobacco (Nicotiana rustica L.) (Nabhan 1985, Zizumbo-Villarreal & Colunga-GarciaMarin
2010) are distributed in the southern regions of the US (USA-ARS National Genetic Resources
Program 2012). Second, a number of crops domesticated in other temperate regions of the world
are congeneric with species occurring in the US, for example strawberry (Fragaria L.)
(Hummer et al. 2011) and hops (Humulus L.) (Peredo et al. 2010). Finally, approximately 4,000
plant species have been introduced to the region since the Colombian Exchange (Guo et al.

2009), including weedy relatives of crop plants.

Several well-documented examples of use of native CWR in breeding exist. North American
wild grape (Vitis L.) germplasm proved critical in providing resistance to phylloxera
(Phylloxera vitifoliae Fitch) as a rootstock in European grape (Vitis vinifera L.) production in
the late 1800s, and these stocks continue to provide the basis for protection worldwide (Gale
2003). Genes for resistance to a range of diseases and pests, including rust (Puccinia helianthi
Schwein.), downy mildew [Plasmopara halstedii (Farl.) Berl. & De Toni], powdery mildew
[Golovinomyces cichoracearum (DC.) V.P. Heluta], broomrape (Orobanche cumana Wallr.),
sclerotinia head and stalk rot [Sclerotinia sclerotiorum (Lib.) de Bary], and sunflower moth
(Homoeosoma electellum Hulst), have been identified in native sunflowers and successfully

transferred into cultivars (Seiler & Gulya 2004).
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Several US government entities support activities focused on CWR conservation. The US
Department of Agriculture, Agricultural Research Service (ARS), National Plant Germplasm
System (NPGS) published in situ conservation guidelines for US CWR (Plant Germplasm
Operations Committee 1999), and recently formed a Subcommittee on CWR within the Plant
Germplasm Operations Committee (Plant Germplasm Operations Committee 2010). The NPGS
Germplasm Resources Information Network (GRIN) Taxonomy Section is preparing a database
of crop gene pools listing CWR based on an evaluation of breeding and crossability studies

(Wiersema et al. 2012).

Over the past decade the NPGS has supported 61 explorations for the US CWR of food, forage,
woody landscape and ornamental crop plants (K. Williams, personal communication 2012).
Genetic reserves for the wild relatives of grape (Pavek et al. 2001), chili pepper (Nabhan 1990),
and cranberry (K. Hummer, personal communication 2010) have been established. Explorations
regarding possible locations and feasibility of protected areas for CWR of pecan, potato, sweet
pea (Lathyrus L.), and edible alliums (A4/lium L.) were also completed (Plant Germplasm

Operations Committee 1999).

The US Forest Service (USFS) actively maintains a number of CWR populations in National
Forests (USFS 2010) and CWR are informally conserved across the US on these and other
public lands. The Bureau of Land Management, in partnership with the Millennium Seed Bank
of the Royal Botanic Gardens, Kew and local organizations across the country, has collected
CWR accessions within the “Seeds of Success” Program (Bureau of Land Management 2012).
Building upon a partnership between ARS and USFS to collaborate on the establishment of in
situ reserves for US CWR, the agencies are in the process of developing a coordinated strategy

for CWR management (L. Stritch, personal communication 2012).

MATERIALS AND METHODS

National Inventory of Crop Wild Relatives

In order to broadly cover the wild plant species occurring in the US that have potential value in
crop research, we compiled an Inventory of CWR that may be utilized in crop breeding as well
as wild utilized species (WUS) directly used for food, forage, medicine, herb, ornamental,
and/or environmental restoration purposes. Very few WUS are the central focus of plant

breeding programs, although some taxa may be semi-domesticated, and WUS may have a high
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potential for crop development.

For listed CWR we aimed to include the full range of taxa with the potential to contribute to
crop improvement, including both those species where gene exchange with the crop is relatively
straightforward, and more distant relatives requiring advanced techniques in order to produce
viable hybrid progeny. Our starting point for defining CWR followed Maxted et al. (2006, p.
2680): “A crop wild relative is a wild plant taxon that has an indirect use derived from its
relatively close genetic relationship to a crop; this relationship is defined in terms of the CWR
belonging to Gene Pools (GPs) 1 or 2, or taxon groups (TGs) 1 to 4 of the crop.” The definition
classifies taxa based on whether they occur in Harlan and de Wet’s (1971) crop GP 1 or 2,
encompassing closely related taxa that are relatively easy to cross using conventional methods
in breeding programs. If data from interspecific hybridization or genetic relatedness studies are
unavailable, Maxted et al. (2006) proposed a classification system based on taxonomic groups
equating to rank in relation to the crop species. Data on gene pool and taxon group concepts for
available crops was gathered from GRIN taxonomy (Wiersema et al. 2012) and from the

‘Harlan and de Wet Crop Wild Relative Inventory’ (Vincent et al. 2013).

A growing number of crops have benefitted from traits introgressed from distant gene pools
(Ballington 2001, Frese et al. 2001, Bradshaw et al. 2006, Mallikarjuna et al. 2006, Abberton
2007, Rygulla et al. 2007, Chuda & Adamus 2009, Mii 2009), and as breeding techniques
improve, taxa from such gene pools are increasingly likely to be of interest to crop improvement
programs. Such species are additionally useful for taxonomic and evolutionary research. We
therefore broadened our CWR definition to include species in the tertiary gene pool. In some
crops these may include taxa from related genera [e.g., Tripsacum L. for maize, Aegilops L.

and Amblyopyrum Eig for wheat (Wiersema et al. 2012)].

CWR and WUS taxa occurring in the US were compiled from the GRIN World Economic
Plants database, based on Wiersema and Ledn (1999), completed volumes of the Flora of North
America (FNA 2008a), McGuffin (2000), and the Native Seed Network Database (Native Seed
Network 2010). Both native and introduced taxa were included. In addition to listing taxa to the
infraspecific level, information on origin status, number of accessions (available plus
unavailable) in GRIN, noxious weed status, associated crop, crop gene pool and associated crop

use was obtained. Taxa with multiple uses were listed first by their primary use and thereafter
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by subsequent uses. For taxa with uses both as CWR and WUS, utilization as a genetic resource
was prioritized over direct uses. Additional data on occurrence and weed status was gathered
from the PLANTS Database (USDA NRCS 2010). The threat status of taxa was recorded from
NatureServe (NatureServe 2009) and the IUCN Red List of Threatened Species (IUCN 2012).

Taxonomic verification was performed via the ‘Taxonomic Name Resolution Service’ (Boyle
et al. 2013) and GRIN taxonomy (USDA-ARS National Genetic Resources Program 2012), the
latter of which served as the final authority. The Inventory was reviewed by NPGS curators,
members of the NPGS Crop Germplasm Committees, and USDA Agricultural Research

Service (ARS) crop experts, who submitted revisions and proposed additional taxa.

Prioritization of the Crop Wild Relatives of Agricultural Crops

When using an inclusive definition for crops together with a broad definition of CWR, national
and regional studies have resulted in the majority of flora being listed as CWR. Approximately
80% of the species in the European and Mediterranean floras were listed as CWR in an
inventory for that region (Kell ez al. 2008), and 77% of the flora of Portugal similarly listed as
CWR or WUS (Magos Brehm et al. 2007). Given the extent of potentially useful plant taxa in
the US and general resource constraints in conservation and research funding, we further
prioritized taxa within the Inventory in order to focus subsequent conservation efforts on

species with the greatest potential impact on crop research.

We first compiled and prioritized crop species based on their contribution to global agricultural
production and food security, with the assumption that important crops are the focus of the most
active breeding programs with experience in the utilization of exotic germplasm. The crop list
was collated from the Food and Agriculture Organization of the United Nations statistical
database (FAOSTAT) production and food supply data (FAO 2011), Annex 1 of the
International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGR) (FAO
2002), Appendix 2 (“Important Food Crops™’) of Groombridge & Jenkins (2002), and Prescott-
Allen & Prescott-Allen 1990). These sources emphasize food crops, but some include fiber,

forage, and industrial crops.

Listed crops were further prioritized based upon the number of sources and importance

attributed within the sources: 1) Major crops (Priority 1) were assigned to crops listed in more
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than one source, among the specific crop commodities listed in FAOSTAT and in Prescott-
Allen & Prescott-Allen (1990), and all crops in Annex 1 of the ITPGR and in Groombridge &
Jenkins (2002); 2) Minor and non-food crops (Priority 2) were assigned to crops listed in only
one source, plus crops recorded in FAOSTAT general commodities, as well as Annex 1 forages
and the “Brassica complex” crops other than those in the genus Brassica L. itself. The resulting
compilation of the world’s major crops included 242 crops and 268 genera (101 crops and 119
genera in Priority 1, and 141 crops and 149 genera in Priority 2) (Supplementary Table 1). The
list included all agricultural crops recorded in FAOSTAT as important to production or to food

supply in the US (FAO 2011).

The National Inventory was compared to the world’s major crops list and crosschecked with
GRIN taxonomy to derive a list of CWR taxa occurring in the US that are within the gene pools
of priority crops. The resulting list of priority CWR was reviewed by NPGS curators, members

of the NPGS Crop Germplasm Committees, and ARS crop experts.

Priority 1 CWR taxa were further categorized based upon perceived value and ease of utility in
breeding programs. Native plant species were assigned a higher priority, as they have a long
history of adaptation in contrast to naturalized species, which may have limited variation due
to the founder effect (Amsellem et al. 2001). Closely related (defined here as within GP 1-2 or
TG 1-3) native taxa, plus any additional taxa recorded in the literature or identified by
researchers as potentially useful in crop breeding, were assigned the highest priority (Priority
1A). Distantly related and/or non-native taxa that were not specifically identified by the
research community as a target for utilization were listed as Priority 1B. The few gene pools
(notably blackberry and raspberry in Rubus L.) for which relatedness information was not

available were categorized based upon occurrence status.

RESULTS AND DISCUSSION

The National Inventory contains 4,596 taxa, representing 3,912 species from 985 genera and
194 plant families. CWR in the inventory are represented by 2,495 taxa representing 1,905
species from 160 genera and 56 families. WUS are represented by 2,101 taxa from 2,007
species from 833 genera and 182 families. Major families are listed in Table 1. The Inventory
is available online at: http://www.ars-grin.gov/misc/tax/ (accessed 1 Oct. 2012). Future plans

are to fully integrate these data into GRIN so that detailed information is available for each
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Table 1. Major families of US crop wild relatives (CWR) and wild utilized species (WUS).

CWR (genetic resource of) WUS (direct use for)

Families No. of genera No. of taxa | Families No. of genera No. of taxa
Fabaceae 19 693 Asteraceae 97 216
Poaceae 31 448 Poaceae 71 156
Asteraceae 12 182 Rosaceae 29 135
Rosaceae 6 163 Fabaceae 52 106
Amaranthaceae 6 137 Ericaceae 23 79
Brassicaceae 11 67 Pinaceae 6 71
Grossulariaceae 1 67 Cyperaceae 6 55
Solanaceae 4 63 Salicaceae 2 48
Cyperaceae 1 48 Ranunculaceae 14 45
Amaryllidaceae 1 47 Boraginaceae 17 43
Other (46) 68 580 Other (172) 516 1147

taxon and the Inventory can be queried by taxonomy, priority level, and geographic distribution.

CWR identified in the US are primarily related to food crops (Table 2). These include genetic
resources for globally important crops such as strawberry, sunflower, sweet potato [I[pomoea
batatas (L.) Lam.], bean, bean, stone fruits (Prunus L.), and grape, as well as regionally
important crops such as pecan, yerba maté (llex paraguariensis A. St.-Hil.), quinoa
(Chenopodium quinoa Willd.), and cranberry. Forage and feed CWR are also well represented,
particularly legumes (7rifolium L., Lupinus L., Lotus L., and Astragalus L.) and grasses
(Agrostis L., Bromus L., Festuca L., and Poa L.). Significant genetic resources of medicinal
crops include Echinacea (Echinacea Moench), tobacco (Nicotiana L.), St. John’s-wort
(Hypericum L.), poppy (Papaver L.), and artemisia (4rtemisia L). CWR of ornamental crops
include Rosa L., Coreopsis L., Lilium L., Phlox L., Rudbeckia L. and Penstemon Schmidel.
CWR of material and industrial crops include relatives of flax (Linum L.), cotton (Gossypium

L.), and jatropha (Jatropha L).

The WUS species listed as distributed in the US are primarily utilized for ornamental,
restoration, and medicinal purposes. A number of food species of cultural and economic
significance are also identified, such as wild rice (Zizania L.), sugar maple (4Acer saccharum

Marshall), and pawpaw (A4simina triloba (L.) Dunal).

Non-native species comprise 12.3% of the Inventory (14.7% of CWR and 9.6% of WUS), and
212 taxa (4.6% of total) are Federal and/or State listed noxious weeds. Genetic resource

priorities for listed taxa should take into account weed regulations and conservation priorities
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Table 2. Uses of US crop wild relatives (CWR) and wild utilized species (WUS).

Use Major families (and No. of taxa) No. of No. of No. of
families  genera taxa
CWR (genetic resource of)
Food Poaceae (304), Fabaceae (168), Rosaceae 47 103 1472
(136), Amaranthaceae (95), Asteraceae
(90), Grossulariaceae (67), Brassicaceae
(61), Solanaceae (54), Cyperaceae (48),
Amaryllidaceae (47), Convolvulaceae
(40), Ericaceae (39), Asparagaceae (35)
Forage and feed Fabaceae (521), Poaceae (142), 5 29 709
Amaranthaceae (42)
Medicinal Asteraceae (63), Hypericaceae (44), 7 10 150
Euphorbiaceae (17)
Ornamental Plantaginaceae (39), Rosaceae (27), 5 6 99
Asteraceae (19)
Material and Linaceae (21), Malvaceae (13), 10 15 57
industrial Asteraceae (8)
Herb Lamiaceae (5) 1 2 5
Soil conservation Fabaceae (3) 1 1 3
WUS (direct use for)
Use Major families and number of taxa # of # of # of
families  genera taxa
Ornamental Ericaceae (65), Asteraceae (49), Fabaceae 149 440 812
(43), Rosaceae (41), Salicaceae (30),
Oleaceae (22), Poaceae (20),
Papaveraceae (17), Ranunculaceae (16)
Restoration Asteraceae (151), Poaceae (53), 83 336 755
Cyperaceae (48), Fabaceae (31),
Boraginaceae (29), Ranunculaceae (26),
Rhamnaceae (26), Apiaceae (23),
Onagraceae (22), Liliaceae (22),
Polygonaceae (18), Rosaceae (17)
Medicinal Asteraceae (12), Lamiaceae (11), 82 139 180
Fabaceae (9)
Food Rosaceae (72), Poaceae (6), Sapindaceac 17 26 112
(5
Forage and feed Poaceae (72), Fabaceae (11), Araceae (5) 9 61 99
Forestry Pinaceae (49), Cupressaceae (7), 16 28 87
Betulaceae (7)
Material and Fagaceae (9), Cupressaceae (6) 26 37 52
industrial
Soil conservation Fabaceae (3) 1 3 3
Turf Poaceae (1) 1 1 1

for the species affected by these invasive plants.

Several introduced CWR taxa were identified as containing genetic resources of interest to
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breeders, including relatives of beet (Beta vulgaris L.) (L. Panella, personal communication
2011), lettuce (B. Hellier, personal communication 2011), and clover (W. Williams, personal
communication 1997). Recent alfalfa (Medicago sativa L.) breeding efforts have used cold-
adapted naturalized populations of Medicago sativa L. subsp. falcata (L.) Arcang from South
Dakota to develop rangeland varieties adapted to the Intermountain West (Peel et al. 2009).
These examples demonstrate the potential value of novel variation in naturalized species

(Bossdorf et al. 2005), which should not be neglected in inventories of useful plant species.

The threat status of 3,512 (76.4%) taxa in the Inventory has been recorded in NatureServe.
Eight (0.2%) taxa were assessed as known or presumed extinct in the wild; 115 (2.5%) as
globally critically imperiled and 111 (2.4%) as imperiled; 337 (7.3%) vulnerable; 798 (17.4%)
apparently secure; and 2,143 (46.6%) globally secure. Of the included taxa, the International
Union for Conservation of Nature Red List of Threatened Species assessed 16 taxa as extinct,
endangered, or vulnerable (IUCN 2012). Sixty-two taxa are listed as endangered under the US
Endangered Species Act (Endangered Species Act of 1973, 16 U.S.C. Sec 1531), 10 taxa as
threatened, and 11 taxa as candidates for listing (NatureServe 2009). Among the taxonomic
groups with the largest number of threatened taxa are members of the family Fabaceae,
particularly within the genera Astragalus, Lotus, Lupinus, and Trifolium (see Supplementary

Table 2 for a full listing of extinct, imperiled, endangered, and threatened taxa).

Threatened species with known or high potential value in crop breeding include the wild walnut
Juglans hindsii (Jeps.) R. E. Sm., which is used as a primary rootstock for English walnut
(Juglans regia L.) worldwide and is critically imperiled in its native California habitat (Phillips
& Meilleur 1998), and close relatives of sunflower, squash, cotton, gooseberry (Ribes uva-
crispa L.), raspberry, onion (Allium cepa L.), wild rice, and plum (Table 3). The conservation

of these genetic resources should be prioritized urgently.

Over 96,000 gene bank accessions of 2,800 taxa listed in the Inventory are recorded in GRIN,
but a large proportion of this material is cultivated germplasm conspecific with wild taxa such
as American cotton (G. hirsutum) and chili pepper (C. annuum). Germplasm of Inventory taxa
listed as wild total 48,780 accessions, and that listed as both wild and from the US total 20,739
accessions from 2,135 taxa. These accessions are distributed unevenly within the Inventory,

with 51.8% of accessions comprised of 14 genera (Fraxinus L., Helianthus L., Pinus L., Avena
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Table 3. Threatened US crop wild relatives of major crops.

Taxon Priority US Nature  No. of
category ESA? Serve®  accessions*
1
Allium munzii (Ownbey & Aase ex Traub) McNeal P1B LE Gl 0
Allium obtusum Lemmon var. conspicuum Mortola & McNeal P1B T2t0o3 O
Allium scilloides Douglas ex S. Watson P1B G2to3 O
Cucurbita okeechobeensis (Small) L. H. Bailey PIA LE Gl 0
Fragaria chiloensis (L.) Mill. subsp. sandwicensis (Decne.) P1A T2 2
Staudt
Gossypium tomentosum Nutt. ex Seem. P1A G2to3 O
Helianthus carnosus Small P1B Glto2 2
Helianthus niveus (Benth.) Brandegee subsp. tephrodes (A. P1A G2* 10
Gray) Heiser
Helianthus nuttallii Torr. & A. Gray subsp. parishii (A. Gray) PIB GX* 0
Heiser
Helianthus paradoxus Heiser P1A G2 1
Helianthus smithii Heiser P1B G2 6
Helianthus verticillatus Small P1B Gl 2
Hordeum arizonicum Covas P1B G2to4 O
Ipomoea microdactyla Griseb. P1B G2 1
Juglans hindsii (Jeps.) R. E. Sm. P1A Gl 16
Lathyrus grimesii Barneby P1B G2 3
Lathyrus holochlorus (Piper) C. L. Hitchc. P1B G2 1
Leymus pacificus (Gould) D. R. Dewey P1B G2to3 O
Manihot walkerae Croizat P1B LE Gl 0
Phaseolus texensis A. Delgado & W. R. Carr P1B G2 0
Prunus eremophila Prigge P1B G1 0
Prunus murrayana E. J. Palmer P1A GX 0
Ribes binominatum A. Heller P1A G2to3 3
Ribes echinellum (Coville) Rehder P1B LT Gl 3
Ribes erythrocarpum Coville & Leiberg P1B G2 2
Rubus aliceae L. H. Bailey P1A GX 0
Rubus hawaiensis A. Gray P1A G2to3 13
Rubus macraei A. Gray P1A G2 1
Solanum incompletum Dunal P1B LE Gl 0
Solanum nelsonii Dunal P1B C G2 0
Solanum sandwicense Hook. & Arn. P1B LE Gl 0
Solanum wallacei (A. Gray) Parish P1B G2 0
Tripsacum floridanum Porter ex Vasey P1A G2 0
Vanilla mexicana Mill. P1A G2to4 O
Vicia menziesii Spreng. P1B LE Gl 0
Vicia ocalensis R. K. Godfrey & Kral P1B Gl 1
Zizania texana Hitchc. P1A LE Gl 0

'P1A = native taxa closely related to important crop plants; P1B = non-native and/or distantly related to important
crop plants. 2Taxa listed as endangered (LE), threatened (LT), or as a candidate for listing (C) under the US
Endangered Species Act of 1973, 16 U.S.C. Sec1531) (US ESA), and/or listed as known or presumed extinct in
the wild (GX), globally critically imperiled (G1), and globally imperiled (G2) in NatureServe (NatureServe 2009).
Note (G3) is categorized as globally vulnerable, and (G4) as apparently secure; and T denotes global listing at the
infraspecific level. *denotes threat assessment at the species level. “Number of accessions denotes NPGS
germplasm listed as wild and collected in the US.
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L., Elymus L., Vaccinium L., Rubus L., Vitis L., Fragaria L., Lupinus L., Achnatherum P.
Beauv., Ribes L., Solanum L., and Trifolium L.). Of the 232 taxa listed as endangered,
threatened, or as a candidate for listing under the Endangered Species Act (Endangered Species
Act of 1973, 16 U.S.C. Sec 1531) as well as taxa listed as known or presumed extinct in the
wild, globally critically imperiled, and imperiled in NatureServe (2009), only 157 accessions

listed as wild and collected in the US are conserved in the NPGS.

Priority Crop Wild Relatives of Agricultural Crops

Priority species occurring in the US total 2,256 taxa within 176 genera. These include 821 taxa
from 69 genera related to 63 major agricultural crops (Priority 1 gene pools) (Table 4), and
1,435 taxa from 107 genera of minor food crops, forages, and other crops (Priority 2)
(Supplementary Table 3). Within Priority 1, 285 closely related, native taxa from 30 genera are

listed 1A, and 536 distantly related and/or non-native taxa within 57 genera in 1B.

A number of iconic US edible WUS were given priority for conservation considerations. Within
Priority 1, these include sugar maple, wild rice, and American chestnut (Castanea dentata
(Marshall) Borkh.), plants that have held important stature in traditional regional diets. In
addition, 148 food, medicinal, and ornamental WUS from 22 genera were assigned to Priority

2.

At least 17 major crops have benefited from traits contributed by 55 Priority 1 CWR taxa (Table
5). As this count is limited to published references, it is likely an underestimate of the taxa

occurring in the US that have been successfully utilized in breeding programs.

The NPGS conserves 8,195 accessions of wild native Priority 1 taxa (3,952 Priority 1A and
4,243 Priority 1B), and 4,020 accessions of Priority 2 taxa. Of Priority 1 CWR, 366 (44.6%)
taxa are completely absent from ex situ collections and another 307 (37.4%) are represented by

less than 10 germplasm accessions.

Far from possessing few genetic resources, the United States contains a wealth of native and
introduced plants related to a broad range of crops. Significant gaps in the ex situ collections of
these taxa remain to be filled, and a number of potentially valuable species are threatened in

the wild. Meanwhile, new populations of some species are still being discovered (Kraft et al.
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Genus Associated Priority (and no. Genus Associated crop  Priority (and no.
Crop name of taxa)' name of taxa)'
Acer Sugar maple P1A (6) Juglans Walnut P1A (7) and P1B (2)
Aegilops Wheat PIB (5) Lactuca Lettuce P1A (10) and P1B (1)
Agropyron Wheat PIB (2) Lathyrus Grasspea PIB (31)
Allium Onion, garlic, and P1A (4) and P1B (43) | Leymus Wheat PIB (17)
leek
Artocarpus Breadfruit and PIB (1) Malus Apple PIB (4)
jackfruit
Asparagus Asparagus PIB (3) Manihot Cassava PIB (4)
Avena Oat PIB (3) Medicago Alfalfa P1B (10)
Beta Beet, sugar beet P1A (4) Nicotiana Tobacco PIB (9)
and chard
Brassica Cabbage, rapeseed, P1B (5) Olea Olive PIB (1)
etc.
Capsicum Chili pepper and PIA (2) Pennisetum Pearl millet PIB (10)
sweet pepper
Carica Papaya PIB (1) Persea Avocado PIB (3)
Carthamus Safflower PIB (1) Phaseolus Bean P1A (4) and P1B (15)
Carya Pecan P1A (9) and P1B (4) Piper Pepper P1B (1)
Castanea Chestnut P1A (3) and P1B (2) Pistacia Pistachio P1A (1)
Cinnamomum Cinnamon PIB (1) Prunus Stone fruits P1A (17) and P1B
(26)
Cocos Coconut PIB (1) Psathyrostachys Wheat PIB (2)
Colocasia Taro PIB (1) Pseudoroegneria Wheat PIB (1)
Corylus Hazelnut P1A (3) Psidium Guava P1A (1) and P1B (1)
Cucumis Melon PIB (4) Pyrus Pear PIB (1)
Cucurbita Pumpkin and P1A (8) and P1B (2) Ribes Currant and P1A (27) and P1B
squash gooseberry (40)
Cynara Artichoke PIB (3) Rubus Raspberry and P1A (58) and P1B
blackberry (10)
Daucus Carrot P1B (2) Saccharum Sugar cane P1B (9)
Dioscorea Yam PIB (3) Solanum Potato and tomato P1A (1) and P1B (38)
Diospyros Persimmon P1A (2) Sorghum Sorghum PIB (4)
Diplotaxis Cabbage, rapeseed, P1B (2) Syzygium Clove PIB (2)
etc.
Elymus Wheat P1B (43) Thinopyrum Wheat PIB (2)
Ficus Fig P1A (1) and P1B (3) Tripsacum Maize PI1A (4)
Foeniculum Fennel PIB (1) Vaccinium Blueberry and P1A (23) and P1B
Cranberry (16)
Fragaria Strawberry P1A(11) and P1B Vanilla Vanilla P1A (2)
(10)
Gossypium Cotton P1A (3) Vernicia Tung nut P1B (1)
Helianthus Sunflower P1A (23) and P1B Vicia Fava bean and vetch PIB (14)
(49)
Hordeum Barley PIB (18) Vigna Cowpea, bambara PIB (2)
groundnut, etc.
Ilex Maté P1A (6) and P1B (15) Vitis Grape P1A (29)
llicium Star-anise P1A (1) Zizania Wild rice P1A (6)
Ipomoea Sweet potato P1A (9) and P1B (31)

'P1A = native taxa closely related to important crop plants; P1B = non-native and/or distantly related to important
crop plants. Origin status from the Germplasm Resources Information Network (USDA-ARS National Genetic
Resources Program 2012). Contributing gene pool and taxon group concepts from Wiersema et al. (2012), and the

‘Harlan and de Wet Crop Wild Relative Inventory’ (Vincent ef al. 2013).
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Table 5. Confirmed use of priority crop wild relatives.

Taxon

Trait'

Aegilops cylindrica Host
Aegilops geniculata Roth
Aegilops tauschii Coss.

Allium fistulosum L.

Avena sterilis L.

Corylus americana Marshall
Helianthus anomalus S. F.
Blake

Helianthus argophyllus Torr.
& A. Gray

Helianthus bolanderi A. Gray
Helianthus debilis Nutt.
Helianthus deserticola Heiser

Helianthus divaricatus L.

Helianthus giganteus L.
Helianthus grosseserratus M.
Martens

Helianthus hirsutus Raf.

Helianthus maximilianii
Schrad.
Helianthus neglectus Heiser

Helianthus paradoxus Heiser

Helianthus pauciflorus Nutt.
Helianthus petiolaris Nutt.

Helianthus praecox Engelm. &
A. Gray

Helianthus resinosus Small
Helianthus strumosus L.
Helianthus tuberosus L.

Hordeum bulbosum L.

Ipomoea trifida (Kunth) G.
Don

Juglans californica S. Watson
Juglans hindsii (Jepss) R. E.
Sm

Juglans major (Torr.) A. Heller

and Juglans microcarpa
Berland
Juglans nigra L.

Lactuca serriola L.

66

Salt tolerance®®

Hessian fly resistance®

Rust resistance, wheat soil-borne mosaic virus, and wheat
spindle-streak mosaic virus?; drought tolerance®; yellow rust and
leaf rust resistance’; glutenins improvement®; agronomic traits and
yield improvement"; hessian fly resistance’; karnal bunt’; water-
logging toleranceX; and sprouting suppression!

Disease resistance™

Crown rust resistance” and yield improvement®

Eastern filbert blight resistance?

Fertility restoration?

Downy mildew resistance™*, disease resistance', and fertility
restoration?

Genetic stock" and fertility restoration?

Powdery mildew resistance’ and fertility restoration®
Downy mildew resistance®

Broomrape resistance*

Fertility restoration’ and cytoplasmic male sterility”
Broomrape resistance*

Fertility restoration aa¥
Broomrape resistance* and cytoplasmic male sterility”

Fertility restoration?
Salt tolerance®™ and fertility restorationd

Cytoplasmic male sterility* and sclerotinia resistance®
Verticillium resistance®, disease resistance', cytoplasmic male
sterility*!, sunflower moth resistance®, and fertility restorationd

Downy mildew, rust, verticillium wilt and broomrape resistance™;
fertility restoration?; and downy mildew resistance™

Fertility restoration™
Fertility restoration”

Broomrape resistance®, sunflower moth resistance®, and fertility
restoration’

Powdery mildew resistance¥, mosaic virus resistance®, septoria
resistance®, and leaf rust resistance®™

Root knot nematode and root lesion nematode resistance™

Rootstock®
Rootstock?®2°

Rootstock for alkaline soil*

Anthracnose resistance® and rootstock®
Downy mildew resistance



An inventory of crop wild relatives of the United States

Taxon Trait!

Lactuca virosa L. Leaf aphid resistance™
Malus fusca (Raf.) C. K. Rootstock®

Schneid.

Medicago sativa L. subsp. Winter hardiness®
falcata (L.) Arcang.

Pennisetum purpureum Pest resistance, vigor and yield"
Schumach.

Prunus andersonii A. Gray, Rootstock®

Prunus pumila L., Prunus

pumila L. var. besseyi (L. H.

Bailey) Gleason, and Prunus

rivularis Scheele

Pyrus calleryana Decne Rootstock®

Ribes nigrum L. Pest and disease resistance™

Ribes uva-crispa L. Gall mite resistance®
Solanum stoloniferum Schltdl.
& Bouche

Tripsacum dactyloides (L.) L.

Late blight resistance® and potato Y virus resistance™

Corn leaf blight resistance® and yield improvement and top firing
resistance®

Vitis acerifolia Raf., Vitis Rootstock*
aestivalis Michx., Vitis cinerea

(Engelm.) Engelm. ex

Millardet, Vitis cinerea var.

helleri (L. H. Bailey) M. O.

Moore, Vitis monticola

Buckley, Vitis mustangensis

Buckley, and Vitis vulpina L.

Vitis labrusca L. Cold tolerance*

Vitis riparia Michx. and Vitis Phylloxera vitifoliae resistance® and rootstock®

rupestris Scheele

"Published trait listing adapted from the ‘Harlan and de Wet Crop Wild Relative Inventory’ (Vincent et al.
2013). *Farooq et al. 1995, ®"Wang et al. 2003, °El Khlifi et al. 2004, ‘Cox et al. 1995, *Gororo et al. 2002, 'Ma et
al. 1995, ¢Pena et al. 1995 "Pestsova et al. 2006, ‘Suszkiw 2005, Villareal ef al. 1996, Villareal et al. 2001, Xiu-
Jin et al. 1997. ™Khrustaleva and Kik 1998, "Hoffman et al. 2006 , °Takeda & Frey 1976, PThompson et al.
1996, 9Seiler 1991a, "Hulke et al. 2010, *Miller & Gulya 1988, Jan et al. 2004, "Jan 1992, YJan & Chandler
1988, “Seiler 1991b, *Jan et al. 2002, YSeiler 2000, “Whelan & Dedio 1980, Seiler 1991c, *®*Lexer et al. 2004, *Jan
et al. 2006, *Miller & Gulya 1999, *Hoes et al. 1973, *Prescott-Allen & Prescott-Allen 1986, *Rogers et al.
1984, ®Hajjar & Hodgkin 2007, *Putt 1978, ¥Pickering & Johnston 2005, *Ruge-Wehling et al. 2006, *Toubia-
Rahme et al. 2003, *™Zhang et al. 2001, **Sakamoto 1976, “USDA-ARS National Genetic Resources Program
2012, **McGranahan & Leslie 2009, *Hooftman et al. 2007, *Eenink et al. 1982, *Barnes et al. 1977, *Hanna
1997, ®Barney & Hummer 2005, *Brennan 2008, *Bradshaw et al. 2006, *Ross 1979, *Goodman et al.
1987, *Reisch & Pratt 1996.

2012). Crops that are nationally as well as globally important to food security could benefit
significantly from the long-term conservation and exploitation of these taxa. Following the
prioritization of such taxa based upon their potential use value, planning for conservation will
be facilitated through an analysis of the range of distribution of these taxa, and the subsequent

identification of hotspots of richness of CWR in the US as well as geographic and taxonomic

gaps in germplasm collections and in sifu conservation.
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The focus on the gene pools of major agricultural crops during prioritization within the
Inventory resulted in a number of minor or locally important crops and WUS, forages and other
non-food crops holding secondary priority (Supplementary Table 3). Many of these taxa are
economically important and their native US genetic resources may have substantial use value.
The development and collation of information both on the utilization of these taxa in breeding
programs as well as the value of their associated crops will contribute significantly to their

potential for prioritization and subsequent conservation.

Given the considerable development pressures on wild plants in the US (Stein et al. 2000) and
projected increasing impacts from climate change (Loarie et al. 2009), both the urgent
collection for ex situ conservation and the management of taxa in conservation areas are
warranted. In order to achieve these goals for the diversity of prioritized taxa, broad partnerships
and networks between the federal, state, tribal and non-governmental organizations pursuing
conservation activities are needed. Because many of the taxa are distributed across national
borders and the genetic resources of such species are potentially valuable globally, such efforts
should be aligned with neighboring national strategies and with regional and global initiatives

to conserve and provide access to CWR diversity.
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SUPPLEMENTARY INFORMATION

Supplementary Table 1: Prioritization of agricultural crops worldwide.

Priority 1 Crops

Genus Crop name Genus Crop name
Abelmoschus Okra Lablab Lablab, hyacinth bean
Actinidia Kiwi Lactuca Lettuce

Allium Onion, garlic, leek Lathyrus Grass pea
Anacardium Cashew Lens Lentil

Ananas Pineapple Linum Flax, linseed
Arachis Peanut Malus Apple
Artocarpus Breadftuit, jackfruit Mangifera Mango
Asparagus Asparagus Manihot Cassava

Avena Oat Medicago Alfalfa
Bertholletia Brazil nut Musa, Ensete Banana, plantain

Beta, Patellifolia
Brassica, Diplotaxis
Cajanus

Camellia

Capsicum

Carica

Carthamus
Ceratonia

Cicer

Cicorium
Cinnamomum
Citrullus

Citrus, Fortunella*®, Poncirus*
Cocos

Coffea

Colocasia
Coriandrum
Corylus

Cucumis

Cucurbita

Cydonia

Cynara

Daucus, Tornabenea
Dioscorea
Diospyros

Elaeis

Elettaria

Eleusine

Fagopyrum

Beet, sugar beet, chard
Cabbage, rapeseed, etc.
Pigeonpea

Tea

Chili pepper, sweet pepper
Papaya, babaco
Safflower

Carob

Chickpea

Chicory

Cinnamon
Watermelon

Orange, grapefruit, lemon, etc.
Coconut

Coftee

Taro

Coriander

Hazelnut

Melon, cucumber
Pumpkin, squash
Quince

Artichoke

Carrot

Yam

Persimmon

Oil palm

Cardamom

Finger millet

Buckwheat

Olea

Oryza
Papaver
Pennisetum
Persea
Phaseolus
Phoenix
Pimenta
Pimpinella
Piper
Pistacia
Pisum, Vavilovia
Prunus
Psidium
Pyrus
Ribes
Ricinus
Rubus
Saccharum
Secale
Sesamum
Sinapis
Solanum, Lycopersicon
Sorghum
Spinacia
Syzygium
Theobroma
Trifolium

Triticosecale

Olive

Rice

Poppy

Pearl millet
Avocado

Bean

Date

Pimento

Anise

Pepper

Pistachio

Pea

Stone fruits

Guava

Pear

Currant, gooseberry
Castor oil
Raspberry, blackberry
Sugar cane

Rye

Sesame

Mustard seed
Potato, tomato, eggplant
Sorghum

Spinach

Clove

Cocoa bean

Clover

Triticale
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Ficus Fig Triticum, Aegilops, Wheat
Amblyopyrum, Dasypyrum,
Elymus, Leymus,
Psathyrostachys,
Pseudoroegneria, Thinopyrum
Foeniculum Fennel Vaccinium Blueberry, cranberry
Fragaria Strawberry Vanilla Vanilla
Garcinia Mangosteen Vernicia Tung nut
Glycine Soybean Vicia Fava bean, vetch
Gossypium Cotton Vigna Cowpea, bambara groundnut,
Helianthus Sunflower Vitellaria f(t;ite nut, shea nut
Hordeum Barley Vitis Grape
llex Maté Xanthosoma Yautia, cocoyam
Mllicium Badian Zea, Tripsacum Maize, popcorn
Ipomoea Sweet potato Zingiber Ginger
Juglans Walnut
Priority 2 Crops
Genus Crop name Genus Crop name
Abroma Indian flax Lepidium Cress
Abutilon China jute Lespedeza Lespedeza
Achras Sapodilla, chicle gum Licania Licania
Aframomum Aframomum cardamom Lolium Lolium
Agrostis Agrostis Lotus Lotus
Aleurites Aleurites moluccana Lupinus Lupin
Alopecurus Alopecurus Lygeum Alfa, esparto
Amaranthus Quihuicha, Inca wheat Macadamia Macadamia nut
Andropogon Andropogon Majorana Marjoram
Anethum Dill seed Mammea Mammee
Annona Cherimoya, custard apple Manilkara Balata
Anthriscus Chervil Maranta Arrowroot
Apium Celery Melilotus Melilotus
Arbutus Strawberry tree Mentha Peppermint
Areca Areca nut Mespilus Medlar
Arenga Sugar palm Metroxylon Sago palm
Armoracia, Barbarea, Brassica complex Morus Mulberry, loganberry
Camelina, Crambe, Eruca,
Isatis, Raphanobrassica,
Rorippa
Arracacoa Arracacha Myristica Nutmeg, mace
Arrhenatherum Arrhenatherum Myrtus Myrtleberry
Artemisia Tarragon Nasturtium Watercress
Asimina Pawpaw Neoglaziovia Caroa
Astrocaryum Astrocaryum Nephelium Litchi, longan, rambutan
Atriplex Atriplex Nicotiana Tobacco
Averrhoa Carambola Onobrychis Onobrychis
Bambusa Bamboo Opuntia Prickly pear
Bassia Bassia Ornithopus Ornithopus
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Boehmeria
Calocarpum

Canarium

Canavalia
Cannabis
Capparis
Carapa
Caryocar
Castanea
Ceiba
Chenopodium
Chrysanthemum
Chrysophyllum
Cochlearia
Coix

Cola
Corchorus
Coronilla
Crataegus
Crocus
Crotalaria
Croton
Curcuma
Cyamopsis
Cyperus
Dactylis
Dieva
Digitaria
Durio

Echinochloa

Eragrostis
Eriobotrya
Fagus
Feijoa
Festuca
Furcraea
Gaylussacia
Guizotia
Hedysarum
Hevea
Hibiscus
Humulus
Jatropha
Laurus

Lecythis
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Ramie
Sapote

Pili nut, Java almond, Chinese
olives
jack bean

Hemp
Caper
Carapa
Butter nut
Chestnut
Kapok fruit
Quinoa
Pyrethrum
Star apple
Horseradish
Adlay, Job's tears
Kola nut
Jute
Coronilla
Azarole
Saffron
Sunn hemp
Croton
Turmeric
Guar bean
Chufa
Dactylis
Jelutong
Fonio

Durian

Barnyard Millet, Japanese
millet
Teff

Loquat

Beech nut

Feijoa

Festuca

Fuque fibre, Mauritius hemp
Huckleberry, dangleberry
Guizotia

Hedysarum

Rubber

Kenaf, meshta, rosella hemp
Hops

Jatropha

Bay leaves

Paradise nut

Oxalis
Pachyrhizus

Palachium

Panicum
Parthenium
Paspalum
Passiflora
Pastinaca
Perilla
Petroselinum
Phalaris
Phleum
Phormium
Poa
Pongamia
Prosopis
Psophocarpus
Pueraria
Punica
Raphanus
Rheum
Rosa
Rumex
Salsola
Sambucus
Samuela
Sansevieria
Satureja

Scorzonera

Setaria

Shorea
Sorbus
Spondias
Stillingia
Stipa
Stizolobium
Tamarindus
Thymus
Tragopogon
Triadica
Trigonella
Tropaeolum
Ullucus
Urena

Zizyphus

Oca
Jicama, yam bean

Gutta-percha

Little millet, proso millet
Guayule

Kodo millet
Passion fruit
Parsnip

Perilla

Parsley

Canary seed
Phleum

New Zealand flax
Poa

Pongamia
Prosopis
Winged bean
Pueraria
Pomegranate
Radish

Rhubarb

Rose hips

Sorrel

Salsola
Elderberry
Palma ixtle
Bowstring hemp
Savory

Scorzonera

Foxtail millet

Shorea

Rowanberry, service-apple
Hog plum, mombin
Stillingia

Alfa, esparto

Velvet bean

Tamarind

Thyme

Opyster plant

Tallowtree Seed
Fenugreek seed

Mashua

Ullucu

Congo jute, malva, paka

Jujube

Priority 1 crops are generally major food crops; Priority 2 crops are minor food crops, forages, and other crops.
*denotes genera used for rootstock. Prioritization formed from an analysis of crops listed in FAO (2002), FAO

(2011), Groombridge & Jenkins (2002), and Prescott-Allen & Prescott-Allen (1990).
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Supplementary Table 2: Threatened US crop wild relatives and wild utilized species.

Taxon Priority (0N NatureServe IUCN #of
category  ESA accessions
Abies fraseri G2 VU 0
Abutilon eremitopetalum P2 LE G1 CR 0
Abutilon menziesii P2 LE Gl CR 0
Abutilon parishii P2 G2 0
Abutilon sandwicense P2 LE Gl CR 0
Agave murpheyi G2 0
Agave schottii var. treleasei Tl 0
Agave shawii G2-3 0
Agrostis hendersonii P2 Gl 0
Allium munzii P1B LE Gl 0
Allium obtusum var. conspicuum P1B T2-3 0
Allium scilloides P1B 2-3 0
Alopecurus aequalis var. sonomensis P2 LE Tl 0
Amaranthus brownii P2 LE Gl CR 0
Amaranthus pumilus P2 LT G2 6
Artemisia porteri P2 G2 0
Asimina tetramera P2 LE Gl EN 5
Astragalus aequalis G2 2
Astragalus agnicidus G2 0
Astragalus albens LE Gl 0
Astragalus ampullarioides LE Gl 4
Astragalus applegatei LE Gl 0
Astragalus bibullatus LE Gl 0
Astragalus brauntonii LE G2 0
Astragalus calycosus var. monophyllidius T2 0
Astragalus clarianus LE Gl 0
Astragalus cottonii G2 0
Astragalus cremnophylax G1 0
Astragalus cremnophylax var. cremnophylax LE Tl 0
Astragalus cremnophylax var. myriorrhaphis Tl 0
Astragalus cusickii var. packardiae C T2 1
Astragalus desereticus LT Gl 0
Astragalus diversifolius G2 0
Astragalus geyeri var. triquetrus T2-3 0
Astragalus holmgreniorum LE Gl 0
Astragalus humillimus LE Gl 0
Astragalus hypoxylus Gl 0
Astragalus jaegerianus LE Gl 0
Astragalus kentrophyta var. danaus T2-3 0
Astragalus lentiginosus var. coachellae LE T2 1
Astragalus lentiginosus var. micans Tl 1
Astragalus lentiginosus var. piscinensis LT Tl 1
Astragalus limnocharis G2 0
Astragalus limnocharis var. limnocharis Tl 0
Astragalus limnocharis var. montii LT Tl 0
Astragalus magdalenae var. peirsonii LT T2 0
Astragalus microcymbus C Gl 0
Astragalus mulfordiae G2 0
Astragalus nevinii G2 0
Astragalus osterhoutii LE Gl 0
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Taxon Priority UsS NatureServe IUCN #of
category  ESA accessions
Astragalus phoenix LT G2 0
Astragalus preussii var. laxiflorus T2 0
Astragalus pycnostachyus G2 0
Astragalus pycnostachyus var. lanosissimus LE Tl 0
Astragalus pycnostachyus var. pycnostachyus T2 0
Astragalus rafaelensis G2-3 1
Astragalus rattanii var. jepsonianus T2 0
Astragalus ravenii Gl 0
Astragalus robbinsii var. jesupii LE Tl 0
Astragalus robbinsii var. robbinsii X 0
Astragalus schmolliae C Gl 0
Astragalus sinuatus Gl 0
Astragalus tener Gl 0
Astragalus tener var. tener Tl 0
Astragalus tener var. titi LE Tl 0
Astragalus traskiae G2 0
Astragalus tricarinatus LE Gl 0
Astragalus trichopodus var. trichopodus T2-3 1
Astrophytum asterias G1 \'48 0
Atriplex canescens var. gigantea P2 Tl 0
Atriplex coronata var. notatior P2 LE Tl 0
Atriplex joaquiniana P2 G2 0
Betula uber LT Gl 1
Canavalia galeata P2 G2 0
Canavalia molokaiensis P2 LE Gl CR 0
Canavalia napaliensis P2 LE G1 CR 0
Capparis sandwichiana P2 G2 \'48 0
Ceanothus cyaneus G2 0
Ceanothus impressus G2-3 0
Centrosema arenicola G2 0
Chenopodium foggii P2 G2-3 0
Chenopodium incanum var. occidentale P2 T2-4 1
Cneoridium dumosum G2-3 3
Crataegus beata P2 G2-4 0
Crataegus harbisonii P2 Gl 1
Crotalaria avonensis P2 LE Gl 0
Croton alabamensis var. texensis P2 T2 0
Cucurbita okeechobeensis P1A LE Gl 0
Cuphea aspera P2 G2 1
Cupressus macrocarpa Gl 0
Cyperus fauriei P2 LE Gl 0
Cyperus pennatiformis P2 LE Gl 0
Cyperus pennatiformis var. bryanii P2 Tl 0
Cyperus pennatiformis var. pennatiformis P2 TX 0
Cyperus rockii P2 GX 0
Cyperus trachysanthos P2 LE Gl 0
Desmodium humifusum G1-2 0
Digitaria floridana P2 Gl 0
Digitaria pauciflora P2 C G1 0
Echinacea angustifolia var. strigosa P2 X 2
Echinacea laevigata P2 LE G2-3 9
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Taxon Priority UsS NatureServe IUCN #of
category  ESA accessions
Echinacea paradoxa P2 G2 1
Echinacea paradoxa var. neglecta P2 Tl 4
Echinacea paradoxa var. paradoxa P2 T2 5
Echinacea tennesseensis P2 G2 4
Eragrostis fosbergii P2 LE Gl 0
Ericameria pinifolia G2-3 0
Eriogonum cinereum G2 0
Eriogonum crocatum G2 0
Eriogonum giganteum G2 0
Eugenia koolauensis P2 LE Gl EN 0
Festuca hawaiiensis P2 C Gl 0
Festuca ligulata P2 C Gl 0
Fragaria chiloensis subsp. sandwicensis P1A T2 2
Franklinia alatamaha GX EW 0
Fraxinus papillosa G2
Fremontodendron mexicanum G2 0
Gossypium tomentosum P1A G2-3 0
Guaiacum sanctum G2 EN 0
Hazardia cana G2 0
Hedysarum boreale var. gremiale P2 Tl 0
Helianthus carnosus P1B Gl1-2 2
Helianthus niveus subsp. tephrodes P1A G2* 10
Helianthus nuttallii subsp. parishii P1B GX* 0
Helianthus paradoxus P1A G2 1
Helianthus smithii P1B G2 6
Helianthus verticillatus P1B Gl 2
Hibiscus brackenridgei P2 LE Gl 0
Hibiscus clayi P2 LE Gl CR 0
Hibiscus dasycalyx P2 C Gl 0
Hibiscus waimeae P2 G2 0
Hordeum arizonicum P1B G2-4 0
Hypericum cumulicola LE G2 0
Hypericum lissophloeus G2 1
Ipomoea microdactyla P1B G2 1
Juglans hindsii P1A Gl 16
Lathyrus grimesii P1B G2 3
Lathyrus holochlorus P1B G2 1
Lepidium arbuscula P2 LE G1 0
Lepidium barnebyanum P2 LE G1 0
Lepidium crenatum P2 G2 1
Lepidium jaredii P2 Gl 0
Lepidium papilliferum P2 LT G2 0
Lespedeza leptostachya P2 LT G3 0
Leymus pacificus P1B G2-3 0
Lindera melissifolia LE G2-3 0
Linum carteri P2 G2 0
Linum carteri var. carteri P2 C T1 0
Linum carteri var. smallii P2 T2 0
Linum lewisii var. alpicola P2 T2-4 0
Lotus argophyllus var. adsurgens P2 Tl 0
Lotus argyraeus var. multicaulis P2 Tl 0
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Taxon Priority UsS NatureServe IUCN #of
category  ESA accessions
Lotus argyraeus var. notitius P2 Tl 0
Lotus crassifolius var. otayensis P2 Tl 0
Lotus dendroideus var. traskiae P2 LE T2 0
Lotus nuttallianus P2 Gl 0
Lotus oblongifolius var. cupreus P2 T2 0
Lotus procumbens var. jepsonii P2 T1-2 0
Lotus rubriflorus P2 G1 0
Lupinus angustifolius P2 Gl1-5 0
Lupinus antoninus P2 G1 0
Lupinus arboreus P2 GI1-5 7
Lupinus citrinus P2 G2 1
Lupinus nipomensis P2 LE Gl 0
Lupinus rivularis P2 G2-4 6
Lupinus tidestromii P2 LE G2 0
Lupinus westianus var. aridorum P2 LE Tl 0
Lyonothamnus floribundus subsp. aspleniifolius T2 0
Malva assurgentiflora G2 0
Manihot walkerae P1B LE Gl 0
Mespilus canescens P2 G1 1
Opuntia basilaris var. longiareolata P2 T2 0
Opuntia basilaris var. treleasei P2 LE T2 0
Opuntia engelmannii var. flexospina P2 Tl 0
Opuntia engelmannii var. linguiformis P2 Tl 0
Panicum fauriei var. carteri P2 LE Tl 0
Panicum niihauense P2 LE Gl 0
Paxistima canbyi G2 0
Penstemon barrettiae P2 G2 0
Penstemon haydenii P2 LE G1-2 1
Phaseolus texensis P1B G2 0
Pinus radiata Gl LR/ 0
cd

Pinus torreyana Gl VU 0
Poa atropurpurea P2 LE G2 0
Poa mannii P2 LE Gl 0
Poa napensis P2 LE G1 0
Poa sandvicensis P2 LE Gl 0
Poa siphonoglossa P2 LE Gl 0
Portulaca molokiniensis P2 Gl

Portulaca sclerocarpa P2 LE G2

Portulaca umbraticola subsp. coronata P2 T2

Prunus eremophila P1B G1 0
Prunus murrayana P1A GX 0
Quercus dumosa G1-2 EN 0
Ribes binominatum P1A G2-3 3
Ribes echinellum P1B LT Gl 3
Ribes erythrocarpum P1B G2 2
Robinia hispida var. fertilis Tl

Robinia viscosa var. hartwigii T2

Rorippa subumbellata P2 C Gl 0
Roystonea regia G2-3 0
Rubus aliceae P1A GX 0
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Taxon Priority UsS NatureServe IUCN #of
category  ESA accessions
Rubus hawaiensis P1A G2-3 13
Rubus macraei P1A G2 1
Rumex giganteus P2 G2-3 0
Santalum ellipticum G2-3 0
Setaria arizonica P2 G2-4 0
Solanum incompletum P1B LE Gl 0
Solanum nelsonii P1B C G2 0
Solanum sandwicense P1B LE Gl 0
Solanum wallacei P1B G2 0
Spiraea virginiana LT G2
Suaeda californica Gl 0
Trifolium amoenum P2 LE Gl 1
Trifolium andinum var. podocephalum P2 Tl 0
Trifolium barnebyi P2 G1-2 0
Trifolium buckwestiorum P2 G1 1
Trifolium calcaricum P2 Gl 0
Trifolium douglasii P2 G2 3
Trifolium jokerstii P2 Gl 1
Trifolium leibergii P2 G2 1
Trifolium neurophyllum P2 G2 0
Trifolium owyheense P2 G2 2
Trifolium stoloniferum P2 LE G3 3
Trifolium thompsonii P2 G2 4
Trifolium trichocalyx P2 LE Gl 1
Tripsacum floridanum P1A G2 0
Vanilla mexicana P1A G2-4 0
Vicia menziesii P1B LE Gl 0
Vicia ocalensis P1B Gl 1
Wikstroemia uva-ursi G2 0
Zizania texana P1A LE Gl 0

Taxa listed as endangered (LE), threatened (LT), or as a candidate for listing (C) under the US Endangered Species
Act (US ESA), and/or listed as known or presumed extinct in the wild (GX), globally critically imperiled (G1),
and globally imperiled (G2) in NatureServe (NatureServe, 2012). Note (G3) is categorized as globally vulnerable,
(G4) as apparently secure, and (G5) as globally secure; and T denotes global listing at the infraspecific level.
*denotes threat assessment at the species level. IUCN Red Listing categories include extinct in the wild (EW),
critically endangered (CR), endangered (EN), vulnerable (VU), and lower risk/conservation dependent (LR/cd)
(IUCN 2012). P1A = native taxa closely related to important crop plants; P1B = non-native and/or distantly related
to important crop plants. # of accessions denotes NPGS germplasm listed as wild and collected in the U.S.
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Supplementary Table 3: Additional priority US crop wild relatives and wild utilized species.
Genus Associated crop # of Genus Associated crop # of
name taxa name taxa
Abutilon Chinese bell flower, 8
China jute
Actaea Black cohosh 1 Licania Oiticica 1
Agave Agave 4 Lilium Lily 5
Agrostis Bentgrass 15 Limnanthes Meadowfoam 1
Alopecurus Foxtail grass 4 Linum Flax 21
Amaranthus Amaranth 40 Lolium Annual ryegrass 3
Andropogon Andropogon 13 Lotus Lotus 77
Annona Cherimoya, custard 1 Lupinus Lupine 95
apple
Apios American 1 Manilkara Balata 1
groundnut, potato
bean
Apium Celery 1 Melilotus Sweet clover 3
Arbutus Strawberry tree 3 Mentha Mint 4
Armoracia Horseradish 1 Mespilus Medlar 1
Aronia Chokeberry 3 Morus Mulberry, 2
loganberry
Arrhenatherum  Oat-grass 2 Nasturtium Watercress 4
Artemisia Artemisia, 50 Oplopanax Devil's club 1
wormwood,
tarragon
Asimina Pawpaw 9 Opuntia Prickly pear 31
Atriplex Saltbush 37 Oxalis Oca 8
Bassia Bassia 1 Panax Ginseng 1
Boehmeria Ramie 1 Panicum Little millet, proso 37
millet
Bromus Brome 35 Papaver Poppy 14
Camelina Camelina 1 Parthenium Guayule 7
Canavalia Jack bean 6 Paspalum Kodo millet, ditch 42
millet
Capparis Caper 2 Passiflora Passion fruit 13
Chenopodium Quinoa 51 Pastinaca Parsnip 1
Chrysanthemum  Pyrethrum 1 Penstemon Penstemon 39
Chrysophyllum  Star apple 2 Phalaris Canary seed, 6
Phalaris
Cochlearia Scurvy-grass 1 Phleum Phleum 2
Coix Adlay, Job's tears 1 Phlox Phlox 9
Corchorus Corchorus 2 Physalis Groundcherry, 13
tomatillo
Coreopsis Coreopsis 8 Physaria Physaria 4
(Lesquerella)
Crataegus Hawthorn azarole 70 Pinus Pine nut 4
Crotalaria Sunn hemp 6 Poa Kentucky blue 42
grass
Croton Croton 15 Portulaca Portulaca 10
Cuphea Cuphea 5 Prosopis Mesquite 9
Cyperus Chufa 48 Pueraria Pueraria 3
Dactylis Dactylis 1 Raphanus Radish 1
Digitaria Fonio 20 Rhododendron Rhododendron, 30
azalea
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Genus Associated crop # of Genus Associated crop # of
name taxa name taxa

Echinacea Echinacea 13 Rorippa Cress 9

Echinochloa Barnyard millet, 15 Rosa Rose 27
Japanese millet

Eragrostis Teff 27 Rudbeckia Rudbeckia 11

Eruca Rocket 2 Ruellia Ruellia 2

Eugenia Pitanga, Suriname 3 Rumex Sorrel 19
Cherry

Fagus Beech nut 2 Salsola Salsola 4

Festuca Festuca 36 Sambucus Elderberry 11

Gaylussacia Huckleberry, 8 Satureja Savory 1
dangleberry

Glycyrrhiza Liquorice 1 Scorzonera Scorzonera 1

Hedysarum Hedysarum 7 Setaria Foxtail millet 27

Hibiscus Kenaf, meshta, 18 Simmondsia Jojoba 1
rosella hemp

Humulus Hop 6 Sorbus Rowanberry, 11

service-apple

Hydrastis Goldenseal 1 Stillingia Stillingia 2

Hypericum St John's wort 1 Thlaspi Field penny-cress 1

Jatropha Jatropha 4 Tragopogon Oyster plant 4

Lepidium Cress 37 Triadica Tallowtree Seed 1

Lespedeza Lespedeza 11 Trifolium Clover 96
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Chapter 4

Abstract

The wild relatives of crops represent a major source of valuable traits for crop improvement. These
resources are threatened by habitat destruction, land use changes, and other factors, requiring their
urgent collection and long-term availability for research and breeding from ex situ collections. We
propose a method to identify gaps in ex situ collections (i.c., gap analysis) of crop wild relatives as a
means to guide efficient and effective collecting activities. The methodology prioritizes among taxa
based on a combination of sampling, geographic, and environmental gaps. We apply the gap analysis
methodology to wild taxa of the Phaseolus genepool. Of 85 taxa, 48 (56.5%) are assigned high priority
for collecting due to lack of, or under-representation, in genebanks, 17 taxa are given medium priority
for collecting, 15 low priority, and 5 species are assessed as adequately represented in ex sifu collections.
Gap "hotspots", representing priority target areas for collecting, are concentrated in central Mexico,
although the narrow endemic nature of a suite of priority species adds a number of specific additional
regions to spatial collecting priorities. Results of the gap analysis method mostly align very well with
expert opinion of gaps in ex situ collections, with only a few exceptions. A more detailed prioritization
of taxa and geographic areas for collection can be achieved by including in the analysis predictive threat
factors, such as climate change or habitat destruction, or by adding additional prioritization filters, such
as the degree of relatedness to cultivated species (i.e., ease of use in crop breeding). Furthermore, results
for multiple crop genepools may be overlaid, which would allow a global analysis of gaps in ex situ

collections of the world's plant genetic resources.

Keywords: Crop wild relative, Ex situ conservation, Plant Genetic Resources, Germplasm exploration,

Tropical legumes
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INTRODUCTION

Crop wild relatives (CWR) are wild plant species sharing relatively recent common ancestry
with cultivated plants. CWR typically possess wide diversity, much of it not found in the crop,
and this diversity may be introgressed into the crop by plant breeders, with the ease of transfer
of genes generally dependent on the degree of relatedness between the wild species and the
domesticate (Harlan & de Wet 1971, Singh 2001). Wild relatives have provided to crops traits
such as pest and disease resistance, tolerance to abiotic stresses, increased yield, male sterility,
and quality, increasing the value and sustainability of banana, barley, beans, cassava, chickpea,
lettuce, maize, oats, pearl millet, potatoes, rice, sugar cane, sunflower, tomato, and wheat
production, among others. In the past 20 years, there has been a steady increase in the rate of
release of cultivars containing genes from CWR, and their contribution should only increase as
the development of molecular technologies makes identification and utilization of diverse
germplasm more efficient (Prescott-Allen & Prescott-Allen 1986, Tanksley & McCouch 1997,
Singh 2001, Hajjar & Hodgkin 2007).

Plant breeders obtain CWR material from genebanks. However, major gaps in the genetic
diversity of important crop genepools remain to be filled in ex situ germplasm collections.
These gaps are particularly evident for non-cereal crops (e.g., legumes, roots and tubers,
vegetables), and for wild and weedy forms (FAO 1997, Maxted & Kell 2009, Khoury et al.
2010). Maxted and Kell (2009) estimated that 94% of European CWR species are completely
missing from ex situ collections. At the same time, habitat destruction, invasive species,
urbanization, and the shift from traditional to industrial agricultural practices, among other
factors, continue to threaten PGR, and climate change is projected to impose further pressures
on both wild and agricultural ecosystems (Meilleur & Hodgkin 2004, Thuiller et al. 2005,
Brooks et al. 2006, Challinor et al. 2007, Intergovernmental Panel on Climate Change 2007,
Hawkins et al. 2008, Burke et al. 2009).

Clearly, much collecting of CWR diversity is still required. Unfortunately international efforts
in collecting plant genetic resources in general have been in decline in recent decades (FAO
2009b). The recent coming into force of the International Treaty on Plant Genetic Resources
for Food and Agriculture is, however, expected to provide impetus for the development of an
integrated, effective, efficient, global approach to conserving PGR. The development of

strategic planning approaches will be necessary to prioritize PGR for collecting as part of such
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a rational global system.

Gap analysis refers to a systematic method of analyzing the degree of conservation of taxa, in
order to identify those locations, taxa, and particular traits (adaptations) un- or under- secured
in conservation systems (Maxted ef al. 2008). Nabhan (1990) identified four ways by which
gap analysis techniques may lead to better collecting and conservation: targeting localities
where sets of species absent from existing collections can be obtained with least effort and cost;
determining which areas are “‘under-collected’ or ‘over-collected’ for germplasm relative to the
known distribution of a taxon; locating which regions have the greatest or most dissimilar
species richness compared with other regions; and outlining the ecological amplitudes of each
species so that a wider representation of the ecotypes or genetically adapted populations of each

can be sampled.

Geographic Information Systems (GIS) technologies have enabled a better understanding of
species distributions and of the representativeness of germplasm collections, and have
contributed to conservation planning of wild species, CWR, and domesticates (Nabhan 1990,
Jones et al. 1997, Hijmans & Spooner 2001, Hijmans et al. 2002, Jarvis et al. 2002, Jarvis et
al. 2003, Lobo Burle et al. 2003, Maxted et al. 2004, Jarvis et al. 2005, Graham & Hijmans
2006, Parthasarathy et al. 2006, Maxted et al. 2008). Pioneering the use of these tools in
conservation, Jones et al. (1997) successfully predicted the location of populations of wild
common bean (Phaseolus vulgaris), based on climatic suitability. Significant developments
have occurred in recent years in the application of GIS to PGR conservation planning, including
the development and validation of various approaches to niche modeling, new analysis tools
and extensions, and better access to geographic information, results and approaches (Hijmans

etal. 2001).

We propose here a gap analysis method designed to inform planning of germplasm collecting
for ex situ conservation, based upon available information resources, using GIS. The
distributions of ex situ collections are compared to GIS-modeled taxon distributions based on
both herbarium and genebank data. The gross total number of germplasm accessions, as well
as the distribution (geographical and environmental) of those accessions, are compared against
modeled distributions in order to identify gaps in ex sifu conservation coverage. These results

form the basis for a prioritization of taxa across the genepool for collecting, and the
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identification of the highest priority locations (i.e., diverse and under-represented areas) for the
most efficient and effective collecting, in order to further enhance ex situ holdings. Our model

genepool is Phaseolus.

The genus Phaseolus originated in the tropics and subtropics of the New World, and contains
up to 81 species and 34 infraspecific taxa (Gepts 2001, Singh 2001, Freytag & Debouck 2002,
Debouck 2009), having undergone a series of revisions, notably in association with members
of Vigna, which have included splitting some species into new genera (e.g., Strophostyles,
Dysolobium, Macroptilium, Minkelersia and Alepidocalyx) (Maxted et al. 2004). The main
centers of diversity for the genus are in wide Mesoamerica (from southern USA, Mexico, and
Central America down to Panama), the northern Andean region (Colombia to northern Peru),
and the central Andes (northern Peru, Bolivia to northwest Argentina). Of these, the
Mesoamerican centre is the richest in species (Delgado-Salinas 1985, Debouck 2000, Freytag

& Debouck 2002, Debouck 2009).

Phaseolus has five domesticated species, each a result of an independent domestication process:
P. vulgaris L.- common bean; P. [unatus L.- lima bean; P. coccineus L.- runner bean; P.
acutifolius A. Gray - tepary bean; and P. dumosus Macfady - year bean. The genus has been
cultivated for over 7000 years, and each of the cultivated species has distinct ecological
adaptations (Debouck & Smartt 1995). Common bean is the world’s most important legume for
food production and security, and represents 50% of the grain legumes consumed worldwide,
reaching primary importance in the staple diet of over 500 million people, especially for its
protein content (Gepts 2001, McClean et al. 2004). Common bean is now grown on over 27

million hectares globally, producing over 20 million tons (FAO 2009a).

Diversity in Phaseolus in relation to the cultivated species is organized into genepools based
on phylogenetic relationships (Smartt 1981, Singh & Jauhar 2005). The primary genepool of
cultivated species includes both cultivars and wild populations, hybrids of which are generally
fully fertile with no major reproductive barriers. P. vulgaris also allows a measure of
interspecific hybridization with species in its secondary genepool. P. lunatus and P. acutifolius

appear less capable of gene exchange with related species (Debouck 1999).

Like many important food crops, cultivars of common bean have a narrow genetic base,
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attributable to the genetic bottleneck accompanying the domestication process, stringent quality
requirements in the market, limited past use of exotic germplasm in breeding, and conservative
breeding programs for the crop (Singh 2001). Interspecific and wide intraspecific crossing have
been useful strategies for crop improvement, but given the still limited genetic base, more along
these lines is needed. Useful alleles for many agronomic traits deficient in common bean
cultivars, including resistance to storage insects, leathoppers, ascochyta blight, common
bacterial blight, white mold, bean common mosaic virus, rust, drought, and soil fertility
problems, as well as early maturity, adaptation to higher latitudes, upright plant type, pod
quality, and seed yield have been identified in wild common bean and species in the secondary
and tertiary genepools, and utilized in breeding programs (Kornegay & Cardona 1991, Delgado-
Salinas et al. 1999, Singh 2001, Acosta-Gallegos et al. 2007). Wild common bean has also
contributed high protein digestibility (Shelley-Dessert & Bliss 1991) and nodulation (Kipe-Nolt
et al. 1992) traits. Despite the increasing utilization of CWR in common bean breeding, Singh
(2001) estimated as much as 90% of the genetic variability available in the primary genepool
and related species as under- or not utilized. Widening of genetic diversity in the other
Phaseolus crop species may also prove important. The domestication of tepary bean involved
a severe genetic bottleneck event, leading to a particularly low level of genetic diversity in the

crop (Schinkel & Gepts 1988, Garvin & Weeken 1994, Munoz et al. 2006).

Close to 250 ex situ germplasm collections of Phaseolus, holding approximately 260,000
accessions, have been established worldwide (FAO 2009b). The vast majority of these
accessions are of common bean, with much smaller collections of the other cultivated species,
and a small percentage of wild species. The largest collections of CWR of Phaseolus are held
in the international collection managed by the Consultative Group on International Agricultural
Research (CGIAR), with close to 2000 accessions (The Consultative Group on International
Agricultural Research [CGIAR], System-wide Information network for Genetic Resources
[SINGER] 2009) and in the United States National Genetic Resources Program, with close to
500 accessions) (USDA, ARS, National Genetic Resources Program [NGRP] 2009).

MATERIALS AND METHODS
An eight-step gap analysis process is presented, which attempts to evaluate conservation
deficiencies at three different levels: (1) taxonomic, (2) geographic and (3) environmental. The

aim is to define the extent to which current genebank holdings represent total genetic diversity
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within a genepool. We apply the protocol to all the wild members of the genus Phaseolus.

Based upon the average of overall taxonomic, geographic, and environmental coverage factors,
the method produces a table outlining the high, medium and low priority species for collecting.
From this table, potential collecting areas for high priority species may be highlighted, and
overlapping high priority regions for the collection of multiple taxa identified. In detail, the

method is as follows:

Determination of target taxa, delineation of target area and harvesting of occurrence data
This involves five steps:

1. Identification of the target cultivated species.

2. Taxonomical review of all CWR related to the cultivated species, and analysis of
relatedness to the domesticated species using the concept established by Maxted et al.
(2000).

3. Creation of a database containing as many records as possible both of genebank
accessions and herbarium specimens, along with (when available) their respective
passport data, specifically the names of the places of collection and coordinates (i.e.,
latitude and longitude). Samples listed as weedy or cultivated are not included in the
database.

4. Cross-check, verification, and correction of geographic references (coordinates) through
thorough review of data and use of verification tools such as BioGeomancer
(www.biogeomancer.org) (Guralnick et al. 2006), Google Earth, and high detail physical
maps of localities, and strict selection only of verified geo-referenced samples for
distribution modeling, as the quality of location data strongly affects the performance of
niche modeling techniques (Graham et al. 2008).

5. Determine target area for the gap analysis: based upon the native (wild) distribution of
the target taxa. Depending on the genepool, the area can range from a small region within

a country to the entire world.

Determination of sampling deficiencies at the taxon level
A gross representativeness of genebank accessions for each taxon is calculated using the
‘sampling representativeness score’ (SRS, Equation 1), comparing total germplasm accessions

to herbarium records.
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Ry G5
GS+HS

*10 (Equation 1)

SRS is calculated as the number of germplasm samples (GS) divided by the total number of
samples, i.e., the sum of germplasm plus herbarium samples (HS), regardless of whether
samples contain location data. SRS therefore permits a general estimation of adequacy of
germplasm holdings of each taxon based upon all available data. In the case that a taxon has no
genebank samples, it is listed as a “high priority species” for collecting by setting the FPS (see
step 7 below) to 0.

In the rare case that for a particular taxon there is obviously deficient herbarium sample data in
comparison to germplasm records, the analysis should eliminate SRS as an input for that taxon,
as its inclusion would overestimate adequacy of conservation. Mapping of herbarium samples
and genebank accessions can be performed (e.g., using DIVA-GIS (version 7.1.70) (Hijmans
et al. 2001, Hijmans et al. 2005b) in order to provide a general geographic assessment of the

available data.

Create potential distribution models for taxa

Potential distributions of taxa are calculated using the maximum entropy (Maxent) model
(Phillips et al. 2006), with a set of bioclimatic variables and species presence data as inputs.
We do not consider the total number of samples with coordinates but the number of different
populations represented by those samples (unique locations) (Hernandez et al. 2006, Phillips et
al. 2006, Loiselle et al. 2008, Costa et al. 2010). We use Maxent due to its precision and
confidence when predicting species distributions (Dormann 2006, Elith et al. 2006, Hernandez
et al. 2006, Hijmans & Graham 2006, Phillips et al. 2006, Loiselle et al. 2008, Phillips & Dudik
2008, Costa et al. 2010). Default features are used in Maxent, in which complexity of the
models (represented by the number of terms and the type of interactions between environmental
variables) depend upon the number of input data points (Phillips ez al. 2006, Phillips & Dudik
2008). Background points for model training equal 10,000 random points over the distributional

range of the genepool in order to avoid overfitting (Phillips 2008, VanDerWal et al. 2009).

As the Maxent distribution is generally broader than the real distribution of the species, the

modeled distribution is further refined by selecting only known native areas and high
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probability zones, which generally are defined as the most climatically suitable for the taxon,
thus avoiding over-estimation of the realized niche (VanDerWal et al. 2009, Smolik et al.
2010). The potential distribution is limited to the native area reported in the literature and then
thresholded using the ROC (receiver operating characteristic) curve plot-based approach (point
on the ROC curve [sensitivity vs. 1-specificity] which has the shortest distance to the top-left
corner [0,1] in the ROC plot) (Liu et al. 2005, Phillips et al. 2006, Phillips & Dudik 2008). We
use this threshold as it provides a decent omission rate, is taxon-specific and shows better
performance than other thresholds when predicting potential presence (Liu et al. 2005). We call

this thresholded modeled distribution the “potential distribution coverage”.

Based on the above, for each taxon, we report three model performance metrics: (1) the 25-fold
average area under the ROC curve (AUC) (Liu et al. 2005, Elith et al. 2006, Phillips et al. 2006,
Phillips 2008) of test data (ATAUC), (2) the standard deviation of the test AUC of the 25
different folds (STAUC), and (3) the proportion of the potential distribution coverage with
standard deviation above 0.15 (ASD15). Maxent models with ATAUC above 0.7 (Smolik et al.
2010), STAUC below 0.15, and ASD15 below 10% can be considered “accurate and stable”
and are thus used in further calculations. We use three measures of model accuracy as the use
of AUC alone might mislead the interpretation given the sensitivity of this measure to spatial

autocorrelation (Lobo et al. 2008, Veloz 2009).

For those taxa for which the Maxent model training fails or is inaccurate or unstable, we assign
a priority to the taxa using the following criteria:

1. As with step (2), taxa with no genebank samples are listed as “high priority species” for
collecting by setting the FPS (see step 5 below) to 0.

2. Taxa with genebank samples but no herbarium samples with verified location data are
listed as “high priority species” for collecting, as more data are needed in order to perform
the analysis. Taxa with such paucity of herbarium records are likely to also have limited
germplasm conserved, and are therefore very likely to be “high priority species”.
However, these taxa might differ from taxa in (3a) since they already have at least one
genebank accession, which certainly permits some type of analyses (e.g., genetic
diversity). These taxa are thus differentiated from taxa in (3a) by a flag in the final
priorities table (see results).

3. Taxa with genebank samples and one or more herbarium samples with verified location
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data are assessed using the area of the convex hull around all known populations (unique
locations) of the taxon in lieu of potential distribution coverage. We use the convex hull
since, particularly for taxa with very limited occurrence data, it provides a polygon

resembling the type of area produced by the Maxent distribution model.

At this point, the potential distribution coverage for all taxa (for which a niche model is
possible) may be mapped together in order to display the distribution of the genus, and a
richness map along with an uncertainty map (i.e., maximum standard deviation of probabilities
among the species that are present in each pixel) for the genepool may be calculated from the

results.

Geographic coverage assessment

The adequacy of geographic coverage of genebank accessions is calculated as a ‘geographic
representativeness score’ (GRS, Equation 2), assessed by comparing the taxon potential
distribution coverage with the genebank samples geographic coverage, modeled using the

‘circular area statistic with a 50 km radius’ (CA50) value (Hijmans ef al. 2001).

GCG
GRS =——*10 (Equation 2)
PDC

GRS is thus the geographic coverage of germplasm collections (GCG) divided by the potential
distribution coverage of the taxon under analysis (PDC). The higher the GRS, the higher the

representativeness of genebank collections in relation to the potential distribution of the taxon.

Determination of environmental gaps

The adequacy of environmental coverage of genebank accessions is calculated as an
‘environmental representativeness score’ (ERS, Equation 3), assessed by comparing the
germplasm samples in relation to the full environmental range of the modeled taxon
distribution. The same set of climatic layers used for developing the potential distribution
coverage are standardized to have an average of zero and a standard deviation of 1 in order to
perform a principal components analysis. The first two of these spatially explicit components
(which normally account for more than 70% of the spatial variability) are reclassified into

twenty equal classes.
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EC

2
ERS =) w,——%*10 (Equation 3)
Z PED

1

For these two principal components (i = 2), ERS is calculated as the environmental coverage
(i.e., number of different classes) of germplasm collections (EC) divided by the potential
environmental coverage of the taxon under analysis (PED), times the weight (w) of the principal
component (weights of the two components are re-scaled so that the sum of their weights is 1).
If the total variation explained by the first two components is too small (i.e., less than 70%),

additional components can be included in the analysis, and should be weighted accordingly.

Rarity of each species based on environmental variables determination

All records for the genepool (i.e., GS + HS for all taxa combined) are plotted against a specific
environmental variable or linear combination of variables (i.e., vector or principal component)
to identify taxa with records falling in rare environmental classes (i.e., extremes of the
distribution). We assume that the frequency of the data presents a normal distribution and
‘environmentally rare’ taxa are those located in sites where extreme environmental conditions
are found (tails of the distribution - 5" [NSps] and 95" [NSpos] percentiles). A numeric value
(environmentally rare taxa score, ERTS, Equation 4) is calculated for each taxon as the number

of populations in rare environments divided by the total number of populations of that taxon.

NS, + NS

P95 *10

GS+HS

ERTS = (Equation 4)

As this step of the gap analysis should be conducted only when there is sufficient data for all
the taxa under analysis in order to avoid bias in the results (an abundant number of populations
so that a histogram can be calculated), usually it will not be included in the overall assessment.
We suggest that this step can be usefully included for the assessment of a specific subset of

well-sampled species.

Numeric assessment to determine the priority of collecting for ex situ conservation
All level-specific representativeness scores (SRS, GRS, ERS, and if possible ERTS) are
averaged with equal weight to obtain a final score of prioritization of species. The ‘final priority

score’ (FPS), is then used to classify taxa according to the following ranges: (1) as high priority
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species if the FPS is between 0 and 3, (2) as medium priority species if the FPS is between 3.01
and 5, (3) as low priority species if the FPS is between 5.01 and 7.5, and (4) as well conserved
species (no need for further collection) if the FPS is between 7.51 and 10. All taxa flagged as
high priority in steps (2) and (3) are included in the list of high priority taxa to be further

collected.

Prioritization of geographic areas for collecting germplasm

The potential collection zones for each high priority species are identified separately and then
combined to highlight those zones where gaps for multiple species overlap (“collection gap
richness”). This is done through the following steps:

1. Identify un-collected zones for each taxon by comparing the potential distribution
coverage with the current geographic coverage of germplasm collections (CA50). Areas
where the taxon is potentially present but already sampled are dismissed at this stage; the
remaining areas are highlighted as uncollected.

2. Four products treating all mappable high priority taxa are finally produced: (1) individual
maps showing potential collecting zones of all high priority taxa, (2) a map of collection
gap richness: the number of different taxa that can be collected in each 2.5 arc-minutes
(~5 km at the Equator) grid cell, (3) a map showing the maximum standard deviation of
high priority taxa (derived from the 25-fold Maxent model training procedure) in each
pixel, and (4) a map of the maximum distance of each pixel to the nearest accession (this
calculation is done taxon-by-taxon and then aggregated into a single map output, by

calculating the maximum of all ‘high priority taxa’.

Testing the gap analysis methodology
The methodology relies on available data and utilizes modeling tools, and is therefore
vulnerable to the quantity and quality of input data and the limitations of the modeling applied.
In order to test the quality of the results, we have compared them to expert opinion, as following:
1. Identify one or more experts on the target taxa (i.e., genepool)
2. Query the selected expert(s) to provide
a. A ranking of taxa for importance for conservation: To achieve this, the list of taxon
names under analysis is sent to the expert(s), who is asked to provide a rating from 1
to 10 for each taxon (where 1 corresponds to a very high priority [i.e., an incomplete

collection], and 10 corresponds to the lowest priority [i.e., a complete collection]),

98



A gap analysis methodology for collecting crop genepools

without having seen the results of the gap analysis. The expert is requested to rate taxa
strictly on the basis of adequacy of ex situ holdings for the taxon.
b. The expert is then shown the results of the analysis and is asked to give general
comments on the validity of the taxa and geographic prioritizations.
3. Compare the expert and method-based prioritization of each taxon using the relative
difference (RD) between the expert priority score (EPS) and the gap analysis FPS, with

respect to the total maximum possible difference (Equation 5).

_ FPS—EPS

RD *100 (Equation 5)

RD is calculated for each taxon and the number of taxa with very similar ratings
(-30% < RD < 30%), the number of taxa somewhat similar ratings (-50% < RD < 50%), and
the number of taxa with very different ratings (RD < -70% and RD > 70%) are then counted.
We also plot the FPS and the EPS in a scattergram and calculate both the Spearman correlation
coefficient and the P-value of the Spearman correlation coefficient. With these metrics, we aim
to provide a general evaluation of the gap analysis method in identifying high priority taxa in

comparison to best available expert knowledge.

RESULTS

Determination of target taxa, delineation of the target area and harvesting of occurrence
data

We conducted a literature review for the Phaseolus genus (Freytag & Debouck 2002, Salcedo
et al. 2006, Delgado-Salinas & Carr 2007, Debouck 2009, Salcedo et al. 2009), checked against
genepool experts (Debouck) and created a complete list of taxonomically verified species. We
used the concept established by Maxted et al. (2006), including with equal weight all taxa

belonging to taxon groups 1 to 4 of the genepool.

According to a recent revision of the Phaseolus genepool (Debouck 2009), there are 81 species
and 34 infra-specific taxa, totaling 115 taxa within the genepool. With various species
synonyms and historical revisions (Maxted et al. 2004, Freytag & Debouck 2002, Debouck
2009), specimen identification and data availability issues persist. Although taxonomically

verified herbarium specimens provided the bulk of the data used in the analysis, we also rely

99



Chapter 4

on the specimen identification performed by the individual holding institutions. Based on the
recent history of Phaseolus taxonomy, we made the following changes to the determination of
specimens used in the data: Any variant within P. polymorphus Wats. was considered as P.
polymorphus, and the same was done for P. coccineus L. and P. leptostachyus Benth. (Debouck
2000). The variants P. polystachyus subsp. smilacifolius (Pollard) Freytag and P. polystachyus
subsp. sinuatus (Nuttall ex Torrey & Gray) Freytag were considered as separated species (P.
smilacifolius and P. sinuatus, respectively), and the species P. pyramidalis Freytag and P.
palmeri Piper were merged into P. grayanus Woot. & Standl. The only infraspecific taxa that
were considered were those of wild teparies (P. acutifolius) and those of P. maculatus, for
which there was not enough evidence for merging into single species. For taxa with ongoing
taxonomic uncertainty (e.g., P. neglectus Hermann), we followed Debouck (2009) and CIAT’s
Genetic Resources Unit genebank practice. After these modifications, a total of 85 taxa were

finally listed, including 81 species and 4 infraspecific taxa.

We gathered data from all known available sources, including primary datasets accessed
directly from herbaria and genebanks, as well as online global databases, such as the Global
Biodiversity Information Facility (GBIF, www.gbif.org), the System-wide Information
Network for Genetic Resources (SINGER, www.singer.cgiar.org) database held by the CGIAR,
and the United States Department of Agriculture (USDA) Germplasm Resources Information
Network (GRIN, www.ars-grin.gov) database (Table 1).

Data were available for all taxa, including the 81 species, 2 subspecies and 2 varieties. The
entire dataset was carefully geographically verified and corrected using BioGeomancer, and,
when possible, new geographic references (coordinates) were added to the passport data. The
final dataset contained 11,442 records, of which 6,926 (60.5%) had coordinates or enough
location data to obtain coordinates, and 4,516 (39.5%) samples had no location data or

coordinates.

The analysis was based on the native range for the genus throughout the Americas (northeastern
United States to northern Argentina, including the Caribbean and the Galapagos Islands)
(Freytag & Debouck 2002, USDA, ARS, National Genetic Resources Program [NGRP] 2009).
Records outside the boundaries of the Americas, as well as those listed as weedy or cultivated,

were deleted and a final dataset was produced for analysis. The average total number of samples
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Table 1. List of institutions from which data was harvested.

Number of Number of
Institution records records

with without

coordinates coordinates
Genebank accessions
Bioversity International 7 51
CIAT-Genetic Resources Unit (via SINGER) 2278 250
German National Resource Centre for Biological Material (DSMZ) 0 2
International Livestock Research Institute (ILRI) 0 271
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) 0 21
National Vegetable Germplasm Bank, Mexico (BANGEV) 7 0
Native Seeds/SEARCH (NSS) 37 1
Plant Breeding and Acclimatization Institute (IHAR) 0 17
US National Plant Germplasm System (NPGS-GRIN) 1081 771
Sub-total 3410 1384
Herbarium samples
A Database System for Systematics and Taxonomy (SysTax) 2 49
Arizona State University Vascular Plant Herbarium 829 172
Bernice Pauahi Bishop Museum 0 1
Botanic Garden and Botanical Museum Berlin-Dahlem 0 1
Cahiers de Phaseologie (DGD) 1486 182
Canadian Biodiversity Information Facility 0 1
Colorado State University Herbarium (CSU) 33 4
Comision nacional para el conocimiento y uso de la biodiversidad (CONABIO) 1049 360
Dutch national node of the Global Biodiversity Information Facility (NLBIF) 0 25
Fairchild Tropical Botanic Garden Virtual Herbarium 2 18
GBIF-Spain 0 5
GBIF-Sweden 0 6
Harvard University Herbaria 2 86
Herbarium of the University of Aarhus 8 0
Instituto de Biologia, Universidad Nacional de Mexico, (IBUNAM) 0 2
Instituto de Ciencias Naturales 22 68
Instituto Nacional de Biodiversidad (Costa Rica) 78 0
Integrated Taxonomic Information System (ITIS) 8 0
Louisiana State University Herbarium 0 9
Missouri Botanical Garden 713 621
Museo Nacional de Costa Rica 100 45
Muséum national d'histoire naturelle et Réseau des Herbiers de France 4 0
National Botanic Garden of Belgium (NBGB) 70 20
National Museum of Natural History 28 64
NatureServe 0 134
NavNat, GE, FR 2 0
New Mexico Biodiversity Collections Consortium 0 112
New York Botanical Garden (NYBGQG) 7 4
Royal Botanic Gardens, Kew 1 2
The Deaver Herbarium, Northern Arizona University 8 0
University of Alabama Biodiversity and Systematics 6 0
University of California, Davis 0 7
University of Connecticut 1 0
University of Kansas Biodiversity Research Center 1 3
USDA Plants 402 65
Utah Valley State College (UVSC) 1 3
Sub-total 4863 2069
Total (genebank accessions and herbarium samples) 8273 3453
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Figure 1. Density of sampling (sampling richness) for (A) genebank assessions and (B) herbarium
records for Phaseolus.

per taxon was 144.8, but data was unevenly distributed. Samples were predominantly
concentrated in wild progenitors of domesticated species (i.e., P. acutifolius, P. coccineus, P.

dumosus, P. lunatus, P. vulgaris), comprising about 55% of the total records.

Germplasm collections of the Phaseolus genepool are not distributed equally in relation to total
herbarium collections (Figure 1). The number of genebank accessions in a 200 km cell ranged
from 1 to 273, while that of herbarium collections ranged from 1 to 373. Observable differences
in the two maps (gaps) are present in the eastern United States, Costa Rica, Nicaragua, and in
the north of Mexico and along its border with United States. Most of the areas in central Mexico
are however well sampled and it is possible that species occurring in those areas are adequately
conserved. This was also observed in some areas in South America (particularly in the
Colombian, Ecuadorian and Peruvian Andes), where a greater proportion of genebank
accessions have been collected, potentially indicating a better coverage of taxa in genebanks

for populations from these regions.
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Figure 2. Number of genebank accessions versus all samples (genebank accessions plus herbarium
specimen records).

Sampling deficiencies at the taxa level

Of 85 taxa, 35 (41.2%) had no germplasm accessions, 26 taxa (30.6%) had 1-9 accessions, and
24 taxa (28.2%) had 10 or more accessions. From the 85 taxa, 61 (71.8%) taxa presented a SRS
below 3, indicating poor representativeness of the number of genebank accessions in relation
to herbarium collections, whilst 16 taxa (18.8%) showed SRS between 3.01 and 5, 4 (4.7%)
between 5.01 and 7.5, and 4 (4.7%) greater than 7.5.

The total representativeness (only in terms of the total number of samples, Figure 2 —
intermittent line) is above the average representativeness of germplasm collections (continuous
line), signifying that on average, species are likely to have fewer genebank accessions than
herbarium specimens. P. vulgaris, P. acutifolius and P. lunatus appear well conserved in
relation to both the gross number of accessions (compared to other taxa), and in proportion to

their respective number of herbarium records.

Potential distribution models for taxa
We used high-resolution global climatic datasets developed by Hijmans et al. (2005).
WorldClim includes monthly data at 30 arc-seconds resolution (approximately 1 km near the

Equator) for total precipitation, and mean, maximum and minimum temperatures. Using such
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Table 2. List of derived bioclimatic variables used in the analysis.

1D Variable name Units
P1 Annual mean temperature °C
P2 Mean diurnal temperature range °C
P3 Isothermality N/A
P4 Temperature seasonality (standard deviation) °C
P5 Maximum temperature of warmest month °C
P6 Minimum temperature of coldest month °C
P7 Temperature annual range °C
P8 Mean temperature of wettest quarter °C
P9 Mean temperature of driest quarter °C
P10 Mean temperature of warmest quarter °C
P11 Mean temperature of coldest quarter °C
P12 Annual precipitation mm
P13 Precipitation of wettest month mm
P14 Precipitation of driest month mm
P15 Precipitation seasonality (coefficient of variation) %
P16 Precipitation of wettest quarter mm
P17 Precipitation of driest quarter mm
P18 Precipitation of warmest quarter mm
P19 Precipitation of coldest quarter mm

monthly datasets, 19 bioclimatic variables have been derived (Busby 1991), representing

average yearly climates, stressful and extreme conditions, and interannual seasonality (Table

2).

We downloaded WorldClim data at 30 arc-seconds, calculated the bioclimatic indices and
aggregated the 30 arc-seconds datasets to 2.5 arc-minutes using a bilinear interpolation in order
to reduce the computational time and data storage needs. Although most of the bioclimatic
indices used to develop the niche models are highly correlated (particularly in the tropics), we
used the complete set of 19 bioclimatic variables in Table 2 because (1) they are useful to
provide the best possible description of the climatic requirements of species during a single
average year, (2) these correlations might not hold in space and time, (3) the alternative
approach of dropping some variables leads to underestimation of distributions and poor
performance of Maxent (Hijmans & Graham 2006), (4) the alternative approach of reducing the
set of variables to a subset of orthogonal vectors (Dormann 2006) might lead to loss of valuable
climatic information and tends to complicate the interpretation of results of the application of
the niche model, and (5) the Maxent model prevents over-fitting due to the use of a set of
correlated environmental predictors by assigning weights based on the relative importance of

the variable to the model (Elith et al. 2006, Phillips et al. 2006, Phillips & Dudik 2008).
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Figure 3. (A) Taxon richness for Phaseolus based upon potential area of distribution of all taxa. (B)
modeling uncertainties as maximum standard deviations among all modeled taxa.

The geographic distributions of 51 out of the 85 taxa were considered sufficiently accurate and
stable to be mapped. Potential distribution coverage was estimated via the convex hull method
for 3 additional taxa (P. marechalii, P. salicifolius, and P. rotundatus). Therefore, a total of 54

taxa were assessed further.

The genus was modeled to occur from the northern border of the United States through Central
America, and along the Andean chain into northern Argentina (Figure 3A). Potential taxon
richness ranged from 1 to 23 taxa per grid cell. Taxon diversity hotspots were mainly found in
southern and western Mexico and in the southern United States, as well as some highland areas
of Guatemala, Honduras and Costa Rica, where 6 to 11 taxa are potentially distributed in a

single 5 km pixel.

Uncertainties in modeling distributional range calculated by the maximum standard deviation
among any possible class (i.e., taxon) varied from 0 to 0.32 (Figure 3B), with the vast majority
of the potential distribution coverage of the genus presenting a modeling uncertainty below
10%, and only very few areas presenting more than 15% variation in predicted probabilities.

High uncertainty areas do not coincide with high diversity areas, confirming the
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Figure 4. Geographic coverage of genebank accessions against total potential distribution coverage of
taxa.

reliability of the Maxent algorithm in predicting the geographic distributions of our set of taxa.
These small spots are located in southwestern Mexico along the very western edge of Nayarit
(municipalities of EI Nayar, Rosamorada, Tepic), along the borders of Guerrero and Oaxaca, in
northern Oaxaca, and in northeastern Michoacan. Despite the observed uncertainties, these
areas with more than 15% variability among predictions account to less than 10% of the total

potential distribution coverage of the genus.

Geographic coverage assessment

The comparison between the CAS50 and the size of the potential distribution showed that there
are 30 taxa out of the 54 assessed (55.6%) with GRS below 3.01 (less than 30% of
representativity in terms of geographic coverage), 12 taxa (22.2%) with GRS between 3.01 and
5, 4 taxa (7.1%) with GRS between 5.01 and 7.5, and 8 taxa (14.8%) with GRS greater than
7.5. The great majority of taxa have germplasm collections covering a geographic range
considerably smaller than the potential geographic area in which the taxon is distributed (Figure

4), thus indicating the need for further collecting in order to fill geographic gaps.

The average representativeness line (intermittent line) is above the complete representativeness

line (continuous line), indicating that the representativeness of germplasm collections in
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comparison to the total potential distribution coverage is low on average, and relatively high
only for a few species (namely the wild progenitors P. vulgaris, P. coccineus, P. acutifolius and

P. lunatus).

Determination of environmental gaps

The principal components analysis showed that the first two components explained up to 81.5%
of the total spatial variability among the Phaseolus genepool target area (61.2 and 20.3% for
PC1 and PC2 respectively). Re-scaling of these two components’ weights resulted in a weight
of 75.03% for PC1 and 24.97% for PC2. Out of the 54 modeled taxa, 10 (18.5%) presented
ERS below 3.01, indicating a significantly low environmental representativeness (i.e., less than
30%) in germplasm collections; 7 (13%) taxa presented an ERS between 3.01 and 5; 7 taxa
(13%) between 5.01 and 7.5; and 30 taxa (55.6%) above 7.5. Notably, environmental
representativeness of genebank accessions was found to predominantly fit in the two extreme

classes (below 30% and above 75%) for most of the taxa.

P. vulgaris and P. lunatus showed the highest coverage of potential environmental range, with
8 and 14 respectively out of the 20 classes along PC1, and 8 and 16 classes along PC2 (Figure
5). Germplasm representativeness of these environmental classes is for both species
significantly high (90% or more representativeness in both classes). For wild P. vulgaris, among
other cases (Figure 5), we found the environmental distribution of genebank accessions to be
broader than the environmental distribution of the potential distribution coverage, which may
be explained as an artifact given the use of the ROC-plot based threshold for binning the species
distributions (i.e., the omission rate), the native area (i.c., one or two small localities where the
taxon occurs might not be reported in literature), or the use of the CA50 around germplasm
locations, which might enlarge the range towards unsuitable habitats, particularly where the
landscape changes rapidly (e.g., topographically diverse regions, such as the Andes). A broad
range of adaptation to climatic conditions may be covered by current germplasm collections,
but it should be noted that small environmental gaps remain even for these well-sampled

species.

Rarity of each species
Rarity of species was not included in the analysis since there were significant sampling biases

that would lead to inaccurate results. In order to produce accurate results, the weight of the
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Figure 5. Coverage of genebank accessions versus potential environmental area for modeled species for
the first (left) and second (right) principal components.
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Table 3. List of taxa and data included in the analysis (see Supplementary Table 1 for full details).

1 HS , GA Total FPS Class EPS Class
Taxon HS" mey O wey T°@ Rpy  (GAP) (GAPY (DGD) (DGD)*
Sect. Acutifolii
P. acutifolius 219 119 396 67 615 186 5.7 LPS NA NA
P. acutifolius var. acutifolius 87 75 211 81 298 154 6.8 LPS 4 MPS
P. acutifolius var. tenuifolius 177 103 232 93 409 188 6.1 LPS 5 MPS
P. parvifolius 62 56 37 22 99 74 45 MPS 4 MPS
Sect. Bracteati
P. macrolepis 24 6 3 3 27 6 8.3 NFCR 4 MPS
P. talamancensis 13 4 2 1 15 4 7.5 LPS 6 LPS
Sect. Brevilegumeni
P. campanulatus 4 4 0 0 4 4 0.0 HPS 0 HPS
P. oligospermus 26 22 13 11 39 33 5.8 LPS 3 HPS
P. tuerckheimii 43 24 3 2 46 26 35 MPS 3 HPS
Sect. Chiapasana
P. chiapasanus 53 8 3 3 56 8 4.1 MPS 2 HPS
Sect. Coccinei
P. coccineus 1041 356 417 206 1458 560 7.3 LPS 4 MPS
Sect. Coriacei
P. maculatus 106 62 39 17 145 79 4.0 MPS NA NA
P. maculatus ssp. maculatus 203 138 30 18 233 151 4.5 MPS 4 MPS
P. maculatus ssp. ritensis 190 120 68 30 258 150 4.6 MPS 2 HPS
P. novoleonensis 4 3 2 1 6 3 3.6 MPS 2 HPS
P. reticulatus 6 4 2 2 8 6 23 HPS 3 HPS
P. venosus++ 10 6 0 10 6 0.0 HPS 0 HPS
Sect. Digitati
P. albiflorus 49 4 1 1 50 4 43 MPS 6 LPS
P. albiviolaceus+ 1 1 0 0 1 1 0.0 HPS 2 HPS
P. altimontanus# 2 2 2 2 4 2 NA HPS 4 MPS
P. neglectus 9 6 0 0 15 11 0.0 HPS 2 HPS
P. trifidus++ 1 1 0 0 1 1 0.0 HPS NA NA
Sect. Falcati
P. leptostachyus 308 170 115 102 423 270 6.7 LPS 4 MPS
P. macvaughii 11 7 1 1 11 7 1.4 HPS 2 HPS
P. micranthus 21 9 2 1 23 10 2.1 HPS 4 MPS
P. opacus++ 4 1 0 0 4 1 0.0 HPS NA NA
P. persistentus+ 1 1 0 0 1 1 0.0 HPS 0 HPS
Sect. Minkelersia
P. amabilis++ 8 1 0 0 8 1 0.0 HPS 0 HPS
P. amblyosepalus 10 10 0 0 10 10 0.0 HPS 0 HPS
P. anisophyllus++ 2 2 0 0 2 2 0.0 HPS 0 HPS
P. nelsonii 38 32 0 0 38 32 0.0 HPS 2 HPS
P. parvulus 168 101 29 17 197 118 32 MPS 2 HPS
P. pauciflorus 234 161 4 2 238 163 4.4 MPS 2 HPS
P. perplexus 11 7 2 1 13 8 1.7 HPS 3 HPS
P. plagiocylix++ 4 2 0 0 4 2 0.0 HPS 0 HPS
P. pluriflorus 86 56 10 7 96 63 4.0 MPS 3 HPS
P. tenellus 21 9 2 1 22 9 1.0 HPS 0 HPS
Sect. Paniculati
P. acinaciformis+ 1 1 0 0 1 1 0.0 HPS 0 HPS
P. albinervus++ 3 1 0 0 3 1 0.0 HPS 0 HPS
P. augusti 27 15 43 39 70 54 7.4 LPS 7 LPS
P. jaliscanus 66 12 2 1 68 12 1.8 HPS 2 HPS
P. juquilensis+ 1 1 0 0 1 1 0.0 HPS 0 HPS
P. lignosus+ 2 2 0 0 2 2 0.0 HPS 0 HPS
P. longiplacentifer+ 1 1 0 0 1 1 0.0 HPS 0 HPS
P. lunatus 575 275 742 342 1317 616 6.9 LPS 4 MPS
P. maculatifolius++ 2 1 0 0 2 1 0.0 HPS 0 HPS
P. marechalii 10 4 5 2 15 4 8.3 NFCR 3 HPS
P. mollis++ 14 6 0 0 14 6 0.0 HPS 0 HPS
P. nodosus++ 2 2 0 0 2 2 0.0 HPS 2 HPS
P. pachyrrhizoides 5 2 21 20 26 22 7.8 NFCR 8 NFCR
P. polystachyus 580 344 6 2 586 346 0.9 HPS 2 HPS
P. rotundatus++ 3 2 1 1 3 2 6.7 LPS 5 MPS
P. salicifolius 10 3 1 1 11 4 7.2 LPS 0 HPS
P. scrobiculatifolius+ 1 1 0 0 1 1 0.0 HPS 0 HPS
P. sinuatus# 76 12 1 1 77 12 NA HPS 2 HPS
P. smilacifolius++ 13 2 0 0 2 1 0.0 HPS 0 HPS
P. sonorensis++ 16 3 0 0 16 3 0.0 HPS 0 HPS
P. xolocotzii++ 1 1 0 0 1 1 0.0 HPS 0 HPS

Sect. Pedicellati
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P. dasycarpus++ 5 5 0 0 5 5 0.0 HPS 0 HPS
P. esperanzae 26 15 7 7 33 15 4.4 MPS 2 HPS
P. grayanus 184 77 49 36 233 113 5.0 MPS 3 HPS
P. laxiflorus++ 5 1 0 0 5 1 0.0 HPS 0 HPS
P. oaxacanus++ 6 2 0 0 6 2 0.0 HPS 3 HPS
P. pedicellatus 129 71 8 8 137 79 2.9 HPS 4 MPS
P. polymorphus 23 5 1 1 24 6 1.4 HPS 3 HPS
P. purpusii++ 5 1 0 0 5 1 0.0 HPS 0 HPS
P. scabrellus+ 4 4 0 0 4 4 0.0 HPS 2 HPS
P. teulensis+ 1 1 0 0 1 1 0.0 HPS 0 HPS
P. texensis 7 6 0 0 7 6 0.0 HPS 3 HPS
Sect. Phaseoli

P. albescens 8 8 0 0 8 8 0.0 HPS 2 HPS
P. costaricensis 64 44 4 3 68 46 6.6 LPS 6 LPS
P. dumosus 52 14 9 7 61 14 6.5 LPS 5 MPS
P. vulgaris 284 209 1674 452 1958 661 8.9 NFCR 7 LPS
Sect. Revoluti

P. leptophyllus+ 6 1 0 0 6 1 0.0 HPS 0 HPS
Sect. Rugosi

P. angustissimus 617 269 17 8 634 275 2.8 HPS 2 HPS
P. carteri 8 3 5 2 13 4 39 MPS 2 HPS
P. filiformis 682 397 98 46 780 441 4.6 MPS 2 HPS
Sect. Xanthotricha

P. esquincensis++ 4 3 0 0 4 3 0.0 HPS 0 HPS
P. gladiolatus++ 1 1 0 0 1 1 0.0 HPS 3 HPS
P. hintonii 12 7 11 7 23 14 43 MPS 2 HPS
P. magnilobatus 16 7 2 1 18 8 1.6 HPS 2 HPS
P. xanthotrichus 11 8 38 30 49 38 9.0 NFCR 5 MPS
P. zimapanensis 10 5 16 13 26 17 7.3 LPS 6 LPS
Not classified

P. glabellus 128 42 15 10 160 42 3.7 MPS 5 MPS
P. microcarpus 223 161 51 35 274 193 5.1 LPS 4 MPS

"Number of herbarium specimens. 2Number of genebank accessions. *Refers to the number of populations (unique
locations identified) represented by the set of samples. *Prioritization of taxa is done as follows: HPS: High priority
species, MPS: Medium priority species, LPS: Low priority species, NFCR: No further urgent conservation
required. FPS indicates the result of the method proposed in this paper, and EPS indicates the prioritization given
by expert knowledge (based on Daniel G. Debouck’s expertise in Phaseolus). +Indicates that the taxon had no
genebank accessions and no herbarium samples with coordinates or location data; ++indicates a taxon for which
a Maxent model was not possible and for which 0-few genebank accessions were available; #indicates a taxon
with some genebank accessions but no or limited herbarium samples with coordinates or location data. These taxa
are listed as HPS for further collecting in order to inform the gap analysis.

ERTS was finally established at 0.05, which is practically irrelevant and thus the step was
dropped. If a subset of species with reliable sampling were to be analyzed separately (e.g., the
five wild progenitors of the domesticated species), however, the ERTS could be calculated and

weighted equally with the other scores when calculating the FPS.

Numeric assessment to determine the priority of collecting for ex situ conservation for
each taxon

Out of the 85 taxa under analysis, 48 (56.5%) are either under-represented or not represented
in any way in genebanks and therefore flagged as HPS for collecting (Table 3). Of these taxa,
35 had no germplasm accessions, and 11 are listed as HPS due to the average of gross
representativeness, geographic, and environmental gaps (FPS below 3.01). A further 2 taxa (P.

sinuatus and P. altimontanus) couldn’t be assessed due to uncertainties in the modeling and the
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data, and are included as HPS due to the need for collecting in order to provide adequate data

for a gap analysis.

Medium priority for further collecting was given to 17 taxa (20%), 15 taxa (17.7%) were given
low priority, and only 5 taxa (P. macrolepis, P. marechalii, P. pachyrrhizoides, P.

xanthotrichus and P. vulgaris) were assessed as well represented in ex situ collections.

Prioritization of geographic areas for collecting germplasm

Thirty-six priority taxa (i.e., those flagged as high priority and with sufficient location data)
were mapped together, along with standard deviations on predicted Maxent probabilities
(aggregated for all the taxa using the maximum value) and distances to the nearest population
(also aggregated) (Figure 6). Potential collection sites have a richness of up to 7 taxa per grid
(Figure 6A). Zones where gaps in ex situ collections for many Phaseolus taxa overlap are
concentrated in central-western Mexico, with an extension along the Sierra Madre Occidental

north to Sonora.

Andean environments where Phaseolus species are likely distributed appear in general to be
adequately represented in genebanks for most of the species. Note that the narrow endemic
nature of many of the under- or un-sampled taxa results in a need for very finely targeted
collection trips to specific regions outside of the gap richness areas identified, for example to
collect from populations of P. carteri, P. novoleonensis, and P. plagiocylix in isolated regions

of Mexico, and P. mollis in South America.

The maximum modeling uncertainty (given by the maximum standard deviation of the 25 folds
per taxon) was slightly greater than 15% in a very small area (dark blue spot in western Nayarit,
Figure 6B). Interestingly, modeling uncertainties of high priority taxa had a maximum of 19%,
significantly lower than uncertainties of the whole set of taxa under analysis (Figure 3B),
strengthening confidence in results regarding high priority taxa. The distance to verified
populations (Figure 6C) was greatest (i.e., uncertainty) in northwestern Mexico (southern
Sonora, northern Sinaloa, and southwestern Chihuahua). The areas identified in these

uncertainty analyses are least likely to contain target species.

111



Chapter 4

[ Jo-o00s
-2 [ 0.051-0.1 1049 km
-6 B o.101-0.15 .
s I 0.151-032 0

Figure 6. (A) Zones where gaps in ex situ collections for multiple taxa overlap (collecting gap richness)
for high priority species. (B) modeling uncertainties as standard deviations among high priority modeled
taxa. (C) collecting uncertainties as maximum geographic distance to nearest known population.

Comparison with expert opinion

The expert authority for Phaseolus was Daniel G. Debouck (DGD), head of the Genetic
Resources Unit at the International Center for Tropical Agriculture (CIAT), author and co-
author of numerous publications on Phaseolus, including a survey of the Phaseolus genepool
in North and Central America (Freytag & Debouck 2002), who has participated in many
collecting missions for the genus throughout the Americas and has extensive expertise in
taxonomy (including research at 67 different herbaria in the last 32 years), ecogeographic

distributions, and level of in sifu and ex situ conservation of the genepool.

DGD did not assess 4 taxa: P. maculatus, and P. acutifolius since he considered it enough to
assess the subspecies and/or variants, and P. trifidus and P. opacus, since he considered them
as doubtful taxa. All figures below are thus based on the total number of taxa assessed by DGD
(81). Further taxonomic analyses of these species are needed in order to inform conservation

priorities.

In comparison to expert opinion, the gap analysis approach tended to underestimate priority for
collecting in a considerable number of cases (30.9% of the taxa); however, scores for 28 taxa
(34.6%) did align with expert opinion (with 0 as score for 24 of these). For 51 taxa (63%), the
method and DGD agreed on the priority class, and from the remaining proportion, the difference
was of one single class. In addition, the relative difference (RD) varied from -50% to 72.2%

and the maximum difference between our approach and the expert’s concept was around 7
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Figure 7. (A) Frequency distribution of the relative difference [RD] and (B) linear trend between Final
Priority Score (FPS) and Expert Priority Score (EPS) (the red dotted line indicates a 95% confidence
interval).

units in the priority scale of 10 units. Moreover, 87.7% of the validated taxa
(81) presented differences lower than 30% or greater than -30%, and only 2 taxa presented more
than a 50% or less than -50% difference (P. salicifolius with 7.2 in EPS and 0 in FPS, P.
marechalii with 8.3 in EPS and 3 in FPS). Only P. salicifolius was found to have more than
70% difference between EPS and FPS (Figure 7A).

The linear trend between EPS and FPS has a Spearman correlation coefficient of 0.79 (p <
0.0001, n=79). However, as previously stated, the gap analysis approach tends to underestimate

the priorities compared to expert opinion (average underestimation is -10.7%, Figure 7B).

A number of taxa fall far from the linear trend (i.e., P. neglectus, P. albiflorus, P. salicifolius
and P. pachyrrhizoides). Whilst for P. pachyrrhizoides this is due to a very high accuracy (ERS
and FPS are equal) in comparison with the propagating error in the regression line (i.e., the
underestimation error), differences for other taxa generally result from lack of geographic data
for a robust gap analysis, likely taxonomic misidentifications in records, and/or difficulty in

eliminating duplicates in records (e.g., P. neglectus, P. albiflorus).

For species such as P. xanthotrichus and P. oligospermus, the gap analysis approach indicated
little need for further collection, as germplasm has been collected throughout most of the region
of recorded herbarium collections and environments occupied by those collections. However,
expert knowledge on other areas of distribution of the species, under-recorded in online

herbarium data, gave the species higher priority on the EPS.
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DISCUSSION

Success of the gap analysis method in identifying priority taxonomic, geographic, and
environmental gaps is directly dependent on the quality of input data and robustness of the
modeling based upon the data. In this section we discuss uncertainties and limitations

concerning the method:

Input data availability, bias and certainty

The quality of the input geographic information (i.e., climatic and occurrence data) directly
affects the performance of species distributions models (Dormann 2006, Hijmans & Graham
2006, Graham et al. 2008, Loiselle et al. 2008, Wisz et al. 2008, Costa et al. 2010). Geographic
data for specimens is generally less than optimal and is unevenly distributed across taxa, due to
the bias of collecting activities toward particular species or locations, a historically insufficient
prioritization of recording and maintaining of geographic data, lack of high quality absence data
for species, and limited accessibility of stored data for some collections. Many regions of the
world remain un- or under-sampled, particularly highly inaccessible areas, and those

chronically affected by war or civil strife.

Recently described and/or under-studied taxa, such as P. acinaciformis, P. juquilensis, P.
longiplacentifer, P. persistentus, P. scrobiculatifolius, P. teulensis, P. albiviolaceus, P.
leptophyllus, P. lignosus, P. scabrellus, and P. sinuatus, may require further taxonomic
clarification, and are generally in need of further collecting, and characterization of the

collected populations, in order to clarify identification and facilitate accurate prioritization.

Infraspecific taxa (variants and subspecies), such as those of P. maculatus and P. acutifolius,
may also be incompletely treated in the analysis due to data constraints. There are several
records of these species that remain undetermined at the infraspecific level. Due to overlapping
ranges of distribution for various infraspecific taxa, unassigned records cannot be easily
differentiated based on collection location. In the gap analysis we have therefore assessed both

the species level and the infraspecific taxa.

More germplasm of Phaseolus may be conserved worldwide than the accession data used in
this analysis indicate, as the data from some genebanks was not accessible. We assume that,

with few exceptions, the accessions whose data was not accessible are also generally

114



A gap analysis methodology for collecting crop genepools

inaccessible to crop breeders and researchers worldwide. Areas where these collections were
made may not represent a gap for the particular holding collection, yet they are effectively a

very real gap for rest of the global community.

Duplication between and within institutes might inflate the numbers of unique records for some
of the taxa, leading to bias in the prioritization results. The use of different numbering systems,
and lack of tracking of former records, leads to an overestimation of samples held, and difficulty
in identifying duplicates, perhaps especially for the most commonly exchanged species (e.g.,
wild progenitors). For Phaseolus, we found that large differences can exist between the number
of records and of actual populations both for genebanks (up to 83.1%) and herbaria (up to
87.5%). The data preparation phase of the analysis involved a thorough identification of
duplicates in order to avoid inflation of numbers of records and therefore biases in prioritization.
Further, the geographic representativeness score (GRS) takes distinctness/uniqueness of
populations into account indirectly, and the environmental representativeness score (ERS)
addresses the issue by illuminating gaps in the abiotic adaptations of the sampled material (i.e.,

number of different climatic environments covered by the conserved material).

Location data constraints may also limit the taxa for which the method may be applied, as well
as lead to an underestimation of taxon distributions. From the 45 different data sources, 24
(53.3%) had more records without location data than with location data, and only 9 (20%) of
the sources presented all of their records with coordinates or with detailed location data (Table
1). For genebanks, 71.1% of the data presented reliable location data and 28.9% had either no
location data or location data were unreliable, whilst for herbaria, 70.2% of the data presented

coordinates and 29.8% did not present any useful location data.

Additional data, such as absence of the taxon, would certainly improve model-training by
increasing the model’s ability to discriminate between presence and absence areas. These data
are unfortunately not available in conventional genetic resources databases (Phillips & Dudik
2008, Lobo et al. 2010). Future collecting should be planned with an eye to the improvement
of gap analysis approaches and should thus consider a more systematic recording of absences,
geo-referencing all records, and making widely accessible data from all available germplasm
and herbarium samples. These actions will improve the performance of species distribution

models and any conclusions drawn from them.
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Ability of the species distribution model used (i.e., Maxent) to adequately predict the
potential and realized niche of taxa

The Maxent modeling technique was chosen for its ability to handle sample bias and spatial
autocorrelation of species data (Loiselle et al. 2008, Phillips 2008, Costa et al. 2010) so as to
provide high confidence species distributions models even given limited or biased location data.
Maxent is an algorithm known to reliably predict the potential niches of species, and has been
tested by several authors under a wide range of conditions and configurations (e.g., Elith et al.
20006, Phillips et al. 2006, Loiselle et al. 2008, Phillips 2008, VanDerWal et al. 2009, Costa et
al. 2010, Smolik et al. 2010, among others); although we note that some reports (Jimenez-
Valverde et al. 2008, Lobo et al. 2008, Fitzpatrick & Hargrove 2009) consider niche modeling
techniques misleading and of limited use in certain contexts. As the robustness of Maxent is

considered in the publications listed above, we do not provide a full analysis here.

We used the average test-data AUC, which showed that 52 species distribution models were
reliable (i.e., accurate and stable). Using the current configuration, the AUC statistic is not
likely to be biased by the pseudo-absences range (VanDerWal et al. 2009). Discrimination
between presence and absence sites was therefore considerably positive for most of the taxa
(~70%). Particularly good was the performance of taxon distribution models with more than 40

data points.

Moreover, the uncertainties associated with the application of a probabilistic model such as
Maxent and depicted by the 25-fold cross-validated models for each of the taxa indicated that
standard deviations among predictions ranged from 0 to 0.19. Collecting priorities are more
uncertain in limited areas (e.g., along the western coast of Mexico), but are relatively robust

across the vast majority of the distributional range of the genepool.

However, there was a set of taxa (those marked with + in Table 3) for which we were not able
to develop species distributions models due to either lack of samples or to the distribution of
those samples. These species could benefit from other approaches, such as Bayesian techniques
(Termansen et al. 2006), which are able to develop probability surfaces even from a single
point. Here we did not include these additional approaches, given the uncertainties involved
with these models. We rather use specimen data (i.e., herbarium sampling points) to depict areas

where these species can be potentially collected.
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Geographic collecting priorities
To analyze the validity of geographic gap results, we have calculated the stability (standard
deviation) of the Maxent models and have also provided the distance to the nearest population

within the collection zone (Figure 6).

Additional analyses, including threat level, can be incorporated into the methodology in order
to refine conservation priorities. Possible threats that could lead to genetic erosion in wild
species populations include fires, grazing pressure, invasive species, deforestation, habitat
modification and degradation, urbanization, and climate change, among others (Tanksley &
McCouch 1997). Accession-level genetic data may also serve as an input in order to identify
gaps in genetic diversity. Additional environmental data, such as soil type, may further define
potential distributions of species. These additional inputs are currently only rarely available at
high detail over large geographic areas or for all taxa in a genepool, but this may improve with
the ongoing development of GIS and decreasing costs of genotyping. Taxon-specific
knowledge may also be used to refine or weight priorities, giving some species higher
importance in the final result (e.g., focusing on specific traits of interest, adjusting to
phytosanitary/noxious weed constraints, recognizing legal constraints to access, prioritizing in

order to capitalize on appropriate seasonal collecting windows, etc.)

In our approach, we include all wild relatives of the crop without regard to relatedness to
cultivated species, weighting them equally, with the assumption that a wide range of taxa are
potentially useful to provide genes for crop improvement (Challinor et al. 2007), recognizing
the lack of data on relatedness. Information on relatedness and threat level can be added to the

prioritization exercise by experts with specific interests or familiar with local conditions.

When this is done for Phaseolus the following gaps are highlighted. Collecting a few (1-5)
populations is needed for 35 taxa that currently have no genebank samples conserved. Out of
the five wild progenitors of the domesticated species, P. vulgaris and P. dumosus have been
relatively well sampled, and only small gaps remain to be filled. Briefly, gaps for wild P.
vulgaris are present in: Oaxaca, El Salvador, Panama, western Andes of Venezuela, northern
central Bolivia, and San Luis in Argentina. For wild P. dumosus: eastern Chiapas and Alta
Verapaz in Guatemala. For the remaining three progenitors, the gaps are substantially more

important. For P. acutifolius: Sonora, Chihuahua, many spots in western Mexico and in
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Guerrero. For P. coccineus: Chihuahua down to Guatemala. For P. lunatus, gaps exist
throughout the very large range (from the Revillagigedo Islands, Baja California Sur and

Sinaloa to Puerto Rico, and down to Salta and Formosa in Argentina.

Regarding the secondary genepool of each of the five cultigens: for common bean, runner bean,
and year bean, additional collecting is needed for P. albescens, P. costaricensis, and P.
persistentus. For tepary, collecting is needed for P. parvifolius (all across its range from
Chihuahua down into Guatemala). For Lima bean, concerted effort is required because few (if
any) accessions are available for taxa within Section Paniculati, as well as P. maculatus, P.

novoleonensis, P. reticulatus, P. ritensis, and P. venosus within Section Coriacei.

For the remaining Phaseolus species (not highly related to any cultigen given molecular
evidence available today), a few accessions exist for taxa such as P. chiapasanus, P.
esperanzae, P. pluriflorus, and P. micranthus. Remaining species are in need of further

collecting in order to secure germplasm ex sifu.

Comparison with expert knowledge

The method performed well as compared with expert knowledge on the Phaseolus genepool,
81.2% of the taxa presenting differences between -30% and 30%, and only one taxon with a
difference of more than 70% between EPS and FPS. We note that although the expert will often
refine the analysis by adding further insight and by qualifying data, the gap analysis also holds
the potential to highlight taxonomic, geographic, and environmental gaps previously unknown

to the expert.

In order to provide a more robust test, multiple experts could be consulted. As GIS approaches
continue to expand and improve, a more comprehensive validation procedure may be performed

with a network of experts, facilitated through an online portal.

Expert intervention within the gap analysis method is especially critical during (1) thorough
taxonomical review of the genepool, including variants and/or subspecies changes according to
the latest studies, (2) the full evaluation and georeferencing of locality names in the dataset, and

(3) the further refining and correction of priorities when a data availability issue is detected.
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Expert taxonomic knowledge will of course also be vital in the actual field collecting, especially
for understudied species (e.g., P. albinervus, P. leptophyllus, and P. purpusii). This has proven
to be important in this genus, as numerous new species have been identified only during
germplasm collecting missions (e.g., P. altimontanus, P. costaricensis, P. novoleonensis, P.

persistentus, P. rotundatus, and P. talamancensis).

CONCLUSION

This study proposes a method for the rational prioritization of taxa within a genepool for
collection for ex situ conservation, using Phaseolus as a model. The method builds upon the
standard comparison of herbarium samples with genebank accessions via gap analysis (Maxted
et al. 2008), yet aims to address sampling biases by modeling species distributions with a robust
algorithm, and refining these distributions using two different criteria. Furthermore, the method
identifies priorities based not only on taxonomic and geographic gaps, but also environmental
gaps. Priority locations for sampling of gaps result, as well as gap richness models contributing
to the identification of collection locations for maximum efficiency. The results cover the four
target outcomes of gap analysis identified by Nabhan (1990). Collecting for ex situ conservation
should prioritize the resulting taxa, including those not or under-sampled ex situ, as well as
geographic and environmental gaps in the distribution of taxa with some degree of germplasm

currently conserved.

We found 48 high priority taxa (56.5%) (Table 3), 35 (41.1% of total) of these not recorded as
represented ex sifu by even a single accession. Acknowledging that the results for a number of
these species may potentially be affected by data availability constraints, in the most optimistic
case, around half of the taxa in the genepool are highly under-represented in ex situ
conservation. There is therefore a clear need for further collecting in order to cover the full

range of taxonomic, geographic and environmental diversity.

The greatest priority regions for further collecting are located in northern Central America (i.e.,
Mexico and Guatemala), with a maximum potential sampling richness of 7 species per 5 km
cell. However, there are a number of species that require individually targeted efforts in other

areas (e.g., P. mollis, in the Galapagos Islands).

Additional criteria, such as threats to taxa, and degree of relatedness of taxa to cultivated
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species, may also be included in the analysis, when data is sufficiently available. In order to
include a more complete picture of conservation, the method should ideally be coupled with in
situ gap analysis results (e.g., Meilleur & Hodgkin 2004), i.e., comparison of distributions with
the extent of protected areas. In general, the high priority taxa identified in the analysis are
likely to be those also most highly prioritized for in situ conservation, although this was not

explored in the current analysis.

The method is applicable to any set of related taxa, given adequate geographic data and a
thorough taxonomic and geographic referencing process. Genepools whose taxonomy has not
received sufficient attention (e.g., Oryza in the Americas), or which have not been well sampled
for herbarium specimens, will present particular challenges in producing reliable results. As
each genepool is different, the analysis must be adapted according to data availability, and
tested against expert knowledge, preferably repeatedly. Once the method has been applied to a
number of crop genepools, the prioritization of taxa and “gap richness” mapping may be applied
for these genepools together, potentially facilitating the identification of priority regions (“plant
genetic resource gap megacenters”) for the efficient and effective collecting of CWR diversity

on a global scale.
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Abstract

Crop wild relatives of sweetpotato [I[pomoea batatas (L.) Lam., I. series Batatas] have the potential to
contribute to breeding objectives for this important root crop. Uncertainty in regard to species
boundaries and their phylogenetic relationships, the limited availability of germplasm with which to
perform crosses, and the difficulty of introgression of genes from wild species has constrained their
utilization. Here we compile geographic occurrence data on relevant sweetpotato wild relatives and
produce potential distribution models for the species. We then assess the comprehensiveness of ex situ
germplasm collections, contextualize these results with research and breeding priorities, and use
ecogeographic information to identify species with the potential to contribute desirable agronomic traits.
The fourteen species that are considered the closest wild relatives of sweetpotato generally occur from
the central United States to Argentina, with richness concentrated in Mesoamerica and in the extreme
southeastern United States. Currently designated species differ among themselves and in comparison to
the crop in their adaptations to temperature, precipitation, and edaphic characteristics and most species
also show considerable intraspecific variation. With 79% of species identified as high priority for further
collecting, we find that these crop genetic resources are highly under-represented in ex situ conservation
systems and thus their availability to breeders and researchers is inadequate. We prioritize taxa and
specific geographic locations for further collecting in order to improve the completeness of germplasm
collections. In concert with enhanced conservation of sweetpotato wild relatives, further taxonomic
research, characterization and evaluation of germplasm, and improving the techniques to overcome
barriers to introgression with wild species are needed in order to mobilize these genetic resources for

crop breeding.

Keywords: Crop diversity, Crop improvement, Crop wild relatives, Food security, Gap analysis, Plant

genetic resources
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INTRODUCTION

Sweetpotato [I[pomoea batatas (L.) Lam.] counts among the world’s most important root crops,
grown on at least eight million hectares in 114 countries worldwide, with particular significance
to food supplies in the tropics and subtropics of East and Southeast Asia, and Sub-Saharan
Africa. The success of the crop in these regions is due to its adaptability to a wide range of agro-
ecological conditions, ease of propagation from cuttings, low input cultivation requirements,
and high productivity as well as nutritive value (Woolfe 1992). The crop can be cultivated from
humid to semi-arid conditions, from sea level to 3000 m.a.s.l. (Huaman 1987), and can
translocate photosynthetic products to the storage roots throughout the growing season, thereby
mitigating negative effects of temporary adverse conditions (Kays 1985). Sweetpotato produces
among the highest amounts of edible energy per hectare of all major food crops (de Vries et al.
1967), and is an important source of vitamin A and C, calcium, iron, and a number of essential
amino acids (Kays & Kays 1998, Tumwegamire et al. 2011). In addition to human consumption
of the storage roots and young leaves, the crop is utilized for animal feed, fuel, and starch

production.

In Sub-Saharan Africa, sweetpotato is predominantly cultivated in small plots characterized by
low fertility and drought-prone soils, producing relatively good yields with low inputs and
minimal labor costs. The crop has recently become the focus of targeted bio-fortification for
enhanced vitamin A. Orange-fleshed varieties have been bred with 50-fold more B-carotene
than standard varieties and these newly-released varieties rank first among roots and tubers in
Sub-Saharan Africa for their nutritional quality (Low et al. 2007, Hotz et al. 2012). Given its
adaptability, low-external input requirements, nutritional quality, and improvement potential, it
is not surprising that sweetpotato has become a priority in crop based strategies for enhancing
food security in the tropics (Pfeiffer & McClafferty 2007, Bill and Melinda Gates Foundation
2011, Bouis & Islam 2012).

The full potential of sweetpotato is far from realized, with particularly large yield gaps (ca. 20
t ha'!) remaining across rain-fed Sub-Saharan Africa due to a range of biotic and abiotic
constraints, especially sweetpotato virus disease (SPVD) and sweetpotato weevils (SPW), as
well as susceptibility to drought (Sutherland 1986, Valverde ef al. 2007, Ngailo et al. 2013,
Kivuva et al. 2015a, b). SPVD is a severe constraint on the continent, caused by the synergistic

interaction of two viruses transmitted by whiteflies and aphids, causing yield losses of up to
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98% under severe infections (Ngailo et al. 2013). SPW (Cylas spp.) are the most devastating
insect pests of the crop. Cylas formicarius elegantulus Summers, C. puncticollis Boheman and
C. brunneus Fabricius can cause yield losses of between 67% and 100% in Sub-Saharan Africa
(Smit 1997). The concealed feeding behavior, oviposition, and larval development of the
weevils in the storage roots make their control very difficult, necessitating the development of
improved management options, in particular via enhanced genetic resistance. Drought, and the
compounding effect of increasing heat on drought, is a rising concern particularly in regions
undergoing significant climatic change, both due to its direct effect on productivity (Low et al.
2009, Schafleitner ef al. 2010) as well as to its association with increased severity of damage
from SPW and SPVD (Munyiza et al. 2007, Mwololo et al. 2007). Lack of drought tolerance
in high B-carotene sweetpotato varieties has led to constraints in their adoption (Mwanga &

Ssemakula, 2011).

Crop wild relatives (CWR) are increasingly being recognized for their potential to contribute
valuable traits to breeding programs (Feuillet ez al. 2008, Guarino & Lobell 2011, Dempewolf
et al. 2014). CWR have provided breeders with genes for pest and disease resistance, abiotic
stress tolerance, and quality traits in an ever increasing number of food crops, such as banana,
barley, bean, cassava, chickpea, maize, lettuce, oat, potato, rice, sugarcane, sunflower, tomato,
and wheat, among others (Xiao et al. 1996, Hajjar & Hodgkin 2007, McCouch et al. 2007,
Khoury et al. 2010). Yet despite the successful history of contribution to the improvement of
major crops, systematic approaches to the use of CWR in the breeding programs of a number

of important staples, including sweetpotato, remain underdeveloped.

The morning glory tribe Ipomoeeae contains approximately 650-900 species and includes the
genus Ipomoea and nine other related genera (Wilkin 1999, Mabberley 2008). Although many
genera, subgenera, and sections of the Ipomoeeae are not monophyletic in phylogenetic
analyses, Ipomoea series Batatas (Choisy) D.F. Austin, which contains sweetpotato and 14
closely related CWR (Austin 1978, McDonald & Austin 1990), does form a monophyletic
lineage (Miller et al. 1999, McDonald et al. 2011, Eserman et al. 2014). These species include
wild L batatas (L.) Lam. [including Ipomoea batatas var. apiculata (Martens and Galeotti)
McDonald and Austin], Ipomoea cordatotriloba Dennstedt, Ipomoea cynanchifolia Meisn.,
Ipomoea grandiflora (Dammer) O’Donell, Ipomoea lacunosa L., Ipomoea leucantha Jacquin,

Ipomoea littoralis Blume, Ipomoea ramosissima (Poir.) Choisy, Ipomoea splendor-sylvae
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House, Ipomoea tabascana McDonald and Austin, Ipomoea tenuissima Choisy, Ipomoea

tiliacea (Willd.) Choisy in D.C., Ipomoea trifida (H.B.K.) G. Don, and Ipomoea triloba L.

Many sweetpotato CWR can be hybridized with the crop through controlled pollinations,
somatic cell, and/or ovule culture techniques (Diaz ef al. 1996). Crosses involving /. tabascana,
L. trifida, 1. triloba, I. littoralis, 1. grandifolia, 1. lacunosa, 1. leucantha, and wild I. batatas in
particular have resulted in relatively viable progeny (Nimmakayala et al. 2011). The wild
conspecific as well as I. trifida have been documented for their contribution to increases in
protein and starch content, and nematode and SPW resistance (Iwanaga 1988, Shiotani et al.
1994), although there is uncertainty for some material as to whether they may actually have
been feral forms of the cultivar (Nimmakayala ef al. 2011). Species that have been explored for
potential traits of use in crop improvement include /. trifida and 1. littoralis for yield and SPW,
scab [Elsinoé batatas (Saw.) Viegas et Jenkins], and black rot disease (Ceratocystis fimbriata
Ell. et Halst.) resistance; /. grandifolia for sweetpotato stem nematode and SPVD resistance;
and /. triloba for drought tolerance, root rot resistance, and foliar fungal disease resistances
(Iwanaga 1988, Jarret ef al. 1992, Komaki 2004, Zhang & Liu 2005, Nimmakayala et al. 2011).
Challenges in the creation of viable progeny between the CWR and the cultivated species are
not insignificant, though, due to differences in ploidy and interspecific incompatibility (Martin
1970, 1982, Teramura 1979, Shiotani ef al. 1994, Lu & Li 1992, Diaz et al. 1996, Komaki 2004,
Nimmakayala ef al. 2011).

A lack of basic knowledge about boundaries between species within /. series Batatas and a
dearth of diagnostic characters enabling differentiation of taxa - to facilitate reliable and
accurate species identification - is a fundamental stumbling block constraining the utilization
of sweetpotato CWR (Austin 1978, Austin 1988, Jarret ef al. 1992, Diaz et al. 1996, McDonald
et al. 2011, Nimmakayala ef al. 2011, Eserman et al. 2014). Needed studies have been delayed
in part due to the absence of plant materials for research, in particular the availability of
specimens with flowers and ripe fruits. Studies that have been performed have often been based

upon limited sampling (e.g., single accessions for /. /ittoralis and 1. tabascana).

Many unanswered questions regarding the relationships of CWR to sweetpotato potentially
impact the efficiency of breeding strategies for the crop. For example, do species such as 1.

tabascana and I. tenuissima represent distinct taxa (hybrid or otherwise) or rather rare variants
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of the crop? What is the range and genetic diversity present in truly wild forms of the crop
conspecific, compared to feral escapees? How accurate are the classifications of species with
highly disjunct distributions (e.g., I. cordatotriloba)? Are there as yet unrecognized cryptic
species within /. series Batatas [e.g., I. ‘austinii’ (Duncan & Rausher 2013)]? What are the
lineages and genetic resources potential of purported hybrid species (i.e., I. leucantha and 1.
grandifolia)? What are the geographic locations of new variation being generated through

hybridization among sweetpotato CWR?

The investigation, conservation, and availability of genetic resources of sweetpotato provide a
foundation for the crop’s long term viability and for its potential for improvement. To contribute
to these objectives, we analyzed the comprehensiveness of ex sifu conservation of sweetpotato
CWR through a series of questions: (a) what constitutes a potentially useful wild relative of
sweetpotato?, (b) where are these species encountered?, (c) what is the state of conservation
and availability of these species to researchers, and what are the highest taxonomic and
ecogeographic priorities for further collecting? And finally, (d) what traits do sweetpotato CWR

possess that may be valuable to crop improvement?

MATERIALS AND METHODS

Identification of target CWR species and occurrence data compilation

The CWR of sweetpotato analyzed in this study were selected based upon recent and historical
taxonomic and molecular phylogenetic research (Austin 1978, Austin & Huaman 1996, Austin
1997, Miller et al. 1999, McDonald ef al. 2011, GRIN 2013, Eserman et al. 2014), identifying
those wild species with a relatively close phylogenetic relationship to the crop (i.e., members

of I. series Batatas). We included all 14 wild species comprising the series in the analysis.

Domesticated sweetpotato /. batatas (6x) has been proposed as originating from interspecific
hybridization involving I. trifida (2x, 4x, 6x), 1. littoralis (2x), and/or I. leucantha (2x)
(Nishiyama 1971, Nishiyama 1982, Austin 1988). The species most closely related to the crop
have been posited to be I trifida followed by I. tabascana (4x) (Srisuwan et al. 2006,
Nimmakayala et al. 2011). Following the genepool concept of Harlan and de Wet (1971) and
due to ploidy incompatibility with the cultivated species, the putative closest related taxa to
sweetpotato are placed in the secondary genepool: wild forms of 1. batatas (4x), I. trifida, I.

littoralis, and I. tabascana (Jarret et al. 1992, Jarret & Austin 1994, Rajapakse et al. 2004,
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GRIN 2013). Species classified as tertiary wild relatives include: 1. cordatotriloba (syn.
Ipomoea trichocarpa Elliott), 1. cynanchifolia, 1. grandifolia, I. lacunosa, 1. leucantha, I.
ramosissima, 1. splendor-sylvae (syn. Ipomoea umbraticola House), I. tenuissima, 1. tiliacea,

and [. triloba (Jarret & Austin 1994, Huang et al. 2002, Rjapakse et al. 2004, GRIN 2013).

Occurrence records for these species were acquired from online biodiversity, herbaria, and
germplasm databases; through communications with herbaria and genebank managers, and
other crop researchers; and via direct recording of provenance data during visits to selected
herbaria (Supplementary Table 1). Germplasm data were obtained from repositories that
provide straightforward access to genetic resources and associated data to the global research
community through online information systems. The occurrence data were then compiled in a
standardized format, nomenclature was checked against GRIN Taxonomy for Plants (2013) and
The Plant List (2010), and duplicate records were eliminated. Existing coordinates were cross-
checked to country and being on land (Hijmans et al. 1999), and records with locality
information but no coordinates were geo-referenced using the Google Maps Geocoder v.3
(2013) application programming interface. Occurrence data were mapped, iteratively evaluated
for correctness, and further processed in order to form a final dataset of improved taxonomic

and spatial accuracy.

Challenges in using and in improving the large quantities of occurrence data now available from
online resources such as the Global Biodiversity Information Facility (GBIF) have been noted
(Gaiji et al. 2013), including geographic and nomenclatural data quality and the slow speed
with which aggregated datasets are updated (Mesibov 2013, Otegui ef al. 2013, Hjarding et al.
2014). In addition, particular caution must be applied to the occurrence records used in the
current paper as ongoing work (unpublished data) indicates that many I/pomoea occurrence
records in such online databases are identified as synonyms, excluded or invalid names, and
that many valid names were applied to specimens well outside of species known ranges. We
have identified some of these obvious errors but until all specimen records are correctly

identified and checked against an accurate taxonomy these data must be treated with caution.

A total of 5,614 occurrence records for the 14 taxa were included in potential distribution
modeling and/or in the conservation analysis, including 749 germplasm records sourced from

four genebanks, and 4,865 herbarium and other occurrence reference records sourced from 42
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providers. Records per species ranged from eight (/. tabascana) to 1,409 (1. trifida). Of these,
3,650 records containing unique cross-checked coordinates were used to model species
potential distributions and to locate the original collecting site of existing germplasm

accessions.

Species potential distribution modeling

A potential distribution model for each species was calculated using the maximum entropy
(Maxent) algorithm (Phillips et al. 2006), with a set of ecogeographic variables and unique
species presence records as inputs. We chose Maxent due to its extensive application in
predicting species distributions (Elith ef al. 2006; Phillips & Dudik 2008, Costa et al. 2010),
including those for wild relatives (Ramirez-Villegas et al. 2010, Conolly et al. 2012, Khoury et
al. 2015). We performed modeling at a resolution of 2.5 arc-minutes (~ 5 km? cell size at the
equator), employing 10,000 background points for model training over the combined
distributional range of the sweetpotato CWR. Ecogeographic inputs included altitude and 19
bioclimatic variables from the WorldClim database (Hijmans et al. 2005), and seven major
edaphic drivers of plant species distributions with consistent data coverage throughout the range
of the sweetpotato CWR species, obtained from ISRIC-World Soil Information (Hengl et al.
2014) (Supplementary Table 2). For the edaphic variables we calculated a weighted mean
across 0-5, 5-15, 15-30, 30-60, and 60-100 cm soil depth values in order to derive a single data
value for 0-100 cm. We then resampled the 30 arc-seconds resolution data to form 2.5 arc-

minutes inputs aligned with the WorldClim datasets.

Potential distribution models were produced by calculating the mean of replicates (k = 5), and
clipped by measuring the shortest distance between the receiver operating characteristic curve
(ROC-curve) and the top-left corner of the plot (Liu ez al. 2005). Models were constrained per
species by a native range defined at the country level as given in GRIN Taxonomy for Plants
(GRIN 2013), in order to focus prioritization recommendations on those regions with
populations exhibiting long-term adaptations to local ecogeographic conditions. We further
cross-validated and refined occurrence data based upon our knowledge of native distributions,
constraining localities for wild /. batatas to Mexico south to Peru, and not in the Caribbean; /.

leucantha to the USA and Mexico, and 1. littoralis to points within 100 km of the ocean.

In order to derive robust distribution models for each species, we analyzed Maxent results
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across three groups of ecogeographic inputs: a) the full set of 19 bioclimatic variables (Ramirez-
Villegas et al. 2010); b) the bioclimatic variables, altitude, and the additional set of seven
edaphic variables, totaling 27 input variables; and c) a species-specific derivation of the most
important drivers of distribution based upon presence data, further refined by removing highly
correlated variables. For the ecogeographic variables in the species-specific subset method, we
utilized a non-linear iterative partial least squares (NIPALS) algorithm to perform a principal-
component analysis (PCA), as NIPALS has the potential to handle data arrays in which the
number of observations is less than the number of input variables. We then identified those
variables with the greatest contribution (> 0.7 or < - 0.7) to the first two principal components
per species. Finally, we used a variance inflation factor (VIF) to identify the variables with a
low degree of collinearity (see Supplementary Table 3 for a list of variables identified per
species). A calibrated area under the ROC curve (cAUC) was obtained to assess the predictive

performance of each model (Hijmans 2012, Khoury et al. 2015).

The three modeling methods were compared against null models, and the species-specific
subset variables method showed the least overall spatial sorting bias among methods
(Spearman’s p for the 19 variables was 0.65, for 27 variables it was 0.72, and for the subset
method it was 0.25), although the differences in median AUC distributions across species for
each method were not significant (p = 0.095) through a Kruskal-Wallis non-parametric analysis
of variance test. Maxent models were subjected to a four-fold assessment process including: a)
the 5-fold average area under the ROC curve of test data (ATAUC), b) the standard deviation
of the test AUC of the 5 different folds (STAUC), c) the proportion of the potential distribution
coverage with standard deviation above 0.15 (ASD15), and d) the cAUC value. Models with
ATAUC above 0.7, STAUC below 0.15, ASD15 below 10%, and cAUC exceeding 0.40 were
considered accurate and stable (Ramirez-Villegas et al. 2010, Khoury et al. 2015).

The potential distribution models of the sweetpotato CWR generally performed well in regard
to the modeling assessment process. Four species demonstrated low cAUC values and one of
these an elevated ASD15 value, indicating greater uncertainty in the models (Supplementary
Table 3). Species-specific subset model outputs for taxa with relatively few distinct occurrence
points (< 20) (I. tabascana, 1. tenuissima, and I. cynanchifolia) lacked sufficient discriminatory
power, leading to highly inflated spatial models in comparison to recorded distributions.

Potential distribution models for these species were resolved by deriving an ensemble (i.e.,
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overlap) of the three input variation methods, verified by researchers knowledgeable in the
distribution of the species as more accurately representing the true known distributions.
Potential distribution models based upon the species-specific subset variables method were
therefore utilized in subsequent analyses for all species with adequate distinct occurrence points

(> 20). The ensemble method was used for the three species with limited occurrence data.

Analysis of current ex situ conservation and further collecting needs for CWR

We adapted a gap analysis methodology proposed by Ramirez-Villegas et al. (2010), combining
three metrics used to assess the urgency of further collecting in order to fill gaps in ex situ
conservation of CWR. The total sample representation of each species in genebank collections
was estimated via a sampling representativeness score (SRS), calculated as the number of
germplasm samples (G) divided by the total number of samples (G + herbarium samples (H))

(i.e., all other records aside from available genebank accessions).

The sufficiency of geographic coverage of germplasm collections of each species was estimated
through a geographic representativeness score (GRS), calculated as the share of the combined
total area of circular buffers of 50 km (CA50) placed around existing germplasm collection

points compared with the overall potential geographic distribution of the species.

The comprehensiveness of ecological coverage of germplasm collections of each species was
estimated through an ecological representativeness score (ERS), calculated by estimating the
distinct ecosystem classifications (Olson et al. 2001) represented in the CAS50 of existing
germplasm collection points compared with the diversity of ecosystems in which the overall

potential geographic distribution model of the species occurs.

A final priority score (FPS) for further collecting for ex situ conservation was assigned to each
species by averaging the three gap analysis metrics (SRS, GRS, and ERS). FPS scores were
further classified into four categories of urgency for collecting: high priority species (HPS) for
taxa whose 0 < FPS < 2.5 or when no germplasm accessions are currently conserved, medium
priority species (MPS) when 2.5 < FPS < 5, low priority species (LPS) when 5 < FPS < 7.5,
and ‘no further collecting recommended’ (NFCR) when 7.5 < FPS < 10. We produced
collecting priorities maps for all species, displaying the geographic areas that have not yet been

collected from within the potential distributions of taxa.
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The ecogeographic data preparation, species distribution modeling, and gap analysis were
written and performed in R v2.15.1 (R Core Team 2013), utilizing packages maptools (Bivand
& Lewin-Koh 2014), rgdal (Bivand et al. 2014), SDMTools (van der Wal et al. 2014), raster
(Hijmans 2014), sp (Pebesma & Bivand 2005, Bivand et al. 2013), dismo (Hijmans et al. 2013),
and plsdepot (Sanchez 2012). Resulting spatial files were mapped in ArcMap v.10 (ESRI2011).
Collecting priorities spatial files were analyzed using the Zonal Statistics tool in ArcMap to list

the countries prioritized for further collecting for ex sifu conservation.

Expert evaluation of conservation assessment results

In order to validate and/or expose deficiencies in our findings, we subjected the gap analysis
numerical and spatial results to an evaluation performed by seven crop experts with experience
in the systematics, distribution, and/or conservation status of CWR of sweetpotato: Richard E.
Miller, Southeastern Louisiana University; Robert W. Scotland and John R.I. Wood, University
of Oxford; Genoveva Rossel, International Potato Center; Lauren A. Eserman, University of
Georgia; Robert L. Jarret, USDA-ARS Griffin; and G. Craig Yencho, North Carolina State
University. These experts were first asked to provide an evaluation of the sufficiency of
germplasm collections per species based only upon their knowledge of the total number of
accessions conserved, and geographic as well as environmental gaps. Such an assessment
[comparable expert priority score (EPS)] was considered directly comparable to the FPS of the

gap analysis results.

A second evaluation score (contextual EPS) based on the entirety of expert knowledge,
including additional factors such as threats to species in sifu and prioritization by usefulness in
crop breeding, was collected in order to provide additional information to collecting
prioritization efforts. In both cases, an EPS between 0 and 10, aligned with the gap analysis
results prioritization scale, was requested. After these steps, experts were shown the gap
analysis data and asked to comment on assessed quantitative results, occurrence data, potential
distribution models, and maps of collecting priorities. Following these contributions by experts,
input occurrence data were further refined by eliminating clearly incorrect points and adjusting
country-level native areas, and the potential distribution modeling and gap analyses were re-
run using the refined datasets in order to improve the quantitative and spatial outputs. Expert
evaluation metrics displayed in the results pertain to a final evaluation of improved gap analysis

outputs, performed by five of the experts.
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A multiple factor analysis was used in order to compare the various forms of expert evaluation
inputs (i.e., comparable expert priority score, contextual expert priority score, evaluation of gap
analysis results score, evaluation of occurrence data, evaluation of potential species distribution
models, and evaluation of collecting priorities map) with the gap analysis results. An expert
evaluation index was created, which estimated the degree of accord between all experts and the
gap analysis results for each species, with a scale from 0 (disagreement) to 100 (agreement).

Analyses were performed using R package FactoMineR (Husson ef al. 2009).

Identification of ecogeographic characteristics of CWR

In order to evaluate the pairwise degree of geographic overlap between sweetpotato CWR
distribution models, we calculated an overlap measure equal to the frequency of shared 2.5 arc-
minute geographic cells between taxa divided by the sum of the total number of cells in which
either of the species are present (Kernohan et al. 2001, Fieberg & Kochanny 2005). To assess
the pairwise degree of ecogeographic niche overlap between species, we used Schoener’s index
for niche similarity (D) and the adjusted similarity index (I) as outlined in Warren et al. (2008),
using species distribution models and the species-specific subset of the 27 ecogeographic
layers/ensemble models as inputs. Overlap indices range from 0 (no overlap) to 1 (complete

overlap) and were implemented in the R package Phyloclim (Heibl 2011).

We utilized ecogeographic information in combination with species presence data in order to
identify populations of species with the potential for outstanding adaptations to climatic and/or
edaphic conditions of interest to sweetpotato breeding objectives. We assessed the relative
importance of the 27 ecogeographic variables (Supplementary Table 2) in explaining the total
variation through a PCA after confirming the validity of its use through a Bartlett’s test
performed in R package psych (Revelle 2015). We created a hierarchical cluster of principal
components (HCPC) in order to identify ecogeographic clusters for the sweetpotato wild
relatives, driven by those variables demonstrating > 15% difference () from the mean and a
reduction of > 20% from the mean standard deviation exhibited across all species, using R
package FactoMineR. Boxplots for each of the 27 ecogeographic variables were created based
upon CWR species occurrence data points, displaying the median and variance parameters per
species per variable. Comparable ecogeographic variable data for the sweetpotato crop was
extracted from area of cultivation maps (Monfreda et al. 2008) at a resolution of 5 arc-minutes,

with a random sample of 1,000 points weighted by harvested area, taken from the major
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cultivation areas in Asia, Africa, and Latin America.

RESULTS

Distributions of the wild relatives of sweetpotato

Sweetpotato CWR were modeled to occur from the central USA to northern Argentina in the
Americas, including the Caribbean (Supplementary Figure 1). Species richness was greatest in
central Mexico through Central America to the northern Andean region, and in the southeastern
USA, with up to nine species potentially overlapping in Mexico from the states of Veracruz
through the Yucatan peninsula (Figure 1). The Mexican and Central American regions of
distribution represent one of the posited centers of origin and primary diversity of cultivated
sweetpotato (Austin 1988, Austin & Huaman 1996, Zhang et al. 2000, Gichuki et al. 2003,
Roullier et al. 2013). Northwestern South America, with archeological remains of cultivated
sweetpotato from Peru dating back to 8,000 years BP, which are among the oldest recorded
domestication events on the continent (Piperno & Pearsall 1998, Shady Solis ef al. 2001),
displayed a considerably lesser but still notable degree of CWR species richness. One Old
World species (I. littoralis) (Austin 1991) was also modeled to occur in coastal areas of

Madagascar, South and Southeast Asia, Australia, and the Pacific region.

Analysis of current ex situ conservation and further collecting needs for CWR

Eleven out of the fourteen CWR species were assigned high priority for further collecting due
to insufficient genebank accessions in comparison to the total number of occurrence samples
(SRS), and to large geographic (GRS) and ecological (ERS) gaps in ex situ germplasm
collections in comparison to the full potential distributions of the species (Figure 2, Table 1,
Supplementary Figure 2). Six of these taxa are currently represented by < 10 accessions
conserved ex situ, moreover, with few exceptions these accessions lack associated geographic
occurrence information (Supplementary Table 3). Total sampling representativeness and
geographic coverage of species in germplasm collections were particularly lacking for taxa
assessed high priority, while gaps in ecological representativeness were less extreme for some
species (e.g., I. cordatotriloba, I. triloba, and I. splendor-sylvae). Ipomoea grandifolia and 1.
trifida were assessed as relatively well covered in regard to ecosystems represented ex situ,
which raised their final priority score into the medium priority for further collecting category.
Ipomoea tabascana was assessed as of low priority for further collecting due to existing

germplasm collections largely covering its very restricted distribution in southern Mexico,
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Figure 1. Species richness map for assessed sweetpotato crop wild relative potential distribution models
worldwide (A), with concentration of species in the neotropics (B).
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resulting in a high GRS score. The mean final priority score across all CWR was 1.75 + 1.82.

Paralleling the distribution of species richness of sweetpotato CWR, the regions identified for
further collecting of the greatest number of species included central and southern Mexico and
the southeastern USA, with up to seven species prioritized for further collecting occurring in
the same area (Figure 3). Further collecting priorities were recognized in a total of 50 countries
throughout the range of the genepool (Supplementary Figure 3, Supplementary Table 4).
Occurrence data, potential distribution models, and collecting priorities maps for all modeled
species are available in an interactive map format at http://www.cwrdiversity.org/ distribution-

map/.

Expert evaluation of conservation assessment results

The average of the directly comparable expert priority scores (EPS) across experts was 2.65
(£1.10) as a mean across species, varying 1.95 points on average from the FPS, with seven taxa
designated by the experts as HPS, and seven as MPS (Table 1, Figure 2). For most species, this
mean was highly influenced by one or two experts’ giving species considerably less priority
than the other experts. Species with closest accord between the gap analysis results and the
comparable expert analysis included 1. splendor-sylvae, I. trifida, 1. tenuissima, 1. littoralis, I.
tileacea, 1. ramosissima, and I. grandifolia. Taxa with the greatest difference between gap

analysis and comparable expert values included /. fabascana and I. leucantha.

Two species were assessed by the experts as higher priority for further collecting than the results
of the gap analysis. Although ex sifu collections for the highly restricted distribution of /.
tabascana were determined in the gap analysis to be fairly comprehensive (LPS), the experts
assigned the species high priority (HPS) for further collecting due to its very limited overall
number of germplasm holdings, and to the difficulty in producing viable seed in ex situ
conservation. Ipomoea grandifolia was assessed in the gap analysis as reasonably
comprehensively represented in regard to ecosystem diversity, and thus assigned medium

priority for further collecting, while the experts gave moderately higher priority to the species.

The contextual expert priority score per species, which also included the expert’s knowledge

of threats in situ as well as usefulness for crop improvement, did not vary widely from the
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Figure 2. Gap analysis results and comparable expert assessments per sweetpotato crop wild relative.
Species are listed by descending priority for further collecting by priority categories [high priority
species, HPS (red); medium priority species, MPS (orange); low priority species, LPS (yellow); and no
further collecting recommended, NFCR (green)]. The black circle represents the final priority score
(FPS) for the species, which is the mean of the sampling representativeness score (SRS), geographic
representativeness score (GRS), and ecological representativeness score (ERS).
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Figure 3. Further collecting priorities hotspots map for high priority (HPS) sweetpotato crop wild
relatives. The map displays areas worldwide (A) within the potential distributions of HPS species that
have not been previously collected for ex sifu conservation, with concentration of species in the
neotropics (B).
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comparable score [mean across all experts and species was 2.76 (£ 0.85); mean difference
between comparable and contextual expert scores across all species and experts was 0.11]. Due
largely to differences between the perceptions of relative sufficiency in regard to the overall
number of germplasm accessions by the experts versus gap analysis results (e.g., for I.
tabascana, 1. triloba, and I. leucantha), the comparable and contextual assessments did not
correlate well with the gap analysis results for the genepool as a whole (Supplementary Figure

4A-B).

The multiple factor analysis combining the comparable expert priority score, contextual expert
priority score, evaluation of gap analysis results score, evaluation of occurrence data, evaluation
of potential species distribution models, and evaluation of collecting priorities map, revealed
sufficient agreement among experts and variables to justify the use of the expert evaluation
index, although variation in expert option was notable for many species. Data inputs and
resulting distribution models were generally assessed positively as a mean across experts, with
eight species receiving very positive index values. Those species with the highest accord
between all variables and experts and the gap analysis results included 1. littoralis, 1. spendor-
sylvae, 1. ramosissima, I. tenuissima, and I. tiliacea. Those species with the lowest accord
included /. tabascana, I. triloba, and 1. grandifolia (Supplementary Figure 4). FPS results were
particularly influenced by spotty occurrence records for the majority of species, with gaps

recognized by the experts.

Identification of ecogeographic characteristics of CWR

The analysis of geographic and ecogeographic accord between pairwise potential species
distribution models segregated species well into temperate North American (e.g., 1. lacunosa,
1 tenuissima), Mesoamerican (e.g., I. splendor-sylvae, I. tabascana), widely distributed tropical
(e.g., 1. triloba, 1. trifida), and South American (e.g., I. grandifolia, 1. cynanchifolia) areas
(Supplementary Figure 5).

Strong linear relationships were found between bioclimatic variables within the study area,
justifying the application of the PCA, with 75.6% of variance explained through four principal
components (Supplementary Figure 6). The first principal component (32% of variation) was
correlated with temperature extremes and fluctuation. The second component (21.6% of

variation) was most occupied by precipitation variables related to drought. The third component
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(13.9% of variation), was related with altitude, and the final component (8.1%) with soil texture

characteristics.

Species occurrence data segregated into temperate and tropical ecogeographic clusters, with the
great majority of species’ distributions strongly occurring within a single cluster.
Ecogeographic variables most strongly influencing the definition of the temperate cluster (1)
included those associated with temperature variation and relatively low precipitation, elevation,
and soil organic matter. The most determinant variables in the tropical cluster (2) were related
to relatively high and consistent temperatures. Those species displaying a notable proportion of
occurrences within both clusters included /. cynanchifolia and I. triloba, and to a lesser degree

1. leucantha and I. ramosissima (Table 1, Supplementary Figure 6).

Ecogeographic niche assessments of sweetpotato CWR based upon occurrence data points
revealed large differences in potential adaptation to temperature, precipitation, and edaphic
characteristics (Table 1, Figure 4, Supplementary Figure 7). Such adaptation for many species
fell well outside the modeled niche of the cultivated species, particularly for high temperatures
both in wet and dry conditions, as well as high precipitation. Species of notable adaptation to
high mean annual, monthly, and quarterly temperatures included /. littoralis, 1. tabascana, I.
trifida, 1. leucantha, 1. tiliacea, I. tenuissima, I. triloba, 1. splendor-sylvae, and wild 1. batatas.
USA species 1. lacunosa stood out for adaptation to low temperatures, with 1. grandifolia, 1.
cordatotriloba, 1. tenuissima, and I. ramossissima also demonstrating cold tolerance. These

same species were among those displaying the widest adaptation to temperature fluctuation.

CWR of sweetpotato occurring in areas of high precipitation included /. ramossissima, I.
littoralis, 1. splendor-sylvae, 1. tabascana, I. tiliacea, I. trifida, and wild 1. batatas. Ipomoea
littoralis, I. trifida, 1. splendor-sylvae, I. leucantha, I. cynanchifolia, I. triloba, I. lacunosa, and
wild 1. batatas were distributed in regions with low precipitation. These species were also
among those displaying the widest adaptation to precipitation seasonality. Sweetpotato CWR
also displayed variation in adaptation to edaphic characteristics. Ipomoea tabascana, I.
grandifolia, 1. tiliacea, I. splendor-sylvae, I. ramosissima, I. cordatotriloba, and wild 1. batatas
occurred in clay soils, while I. tenuissima, 1. littoralis, 1. cynanchifolia, I. grandifolia, I.

leucantha, and I. cordatotriloba were distributed in sandy soils.
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Table 1. Utilization characteristics, number of germplasm accessions conserved ex situ, further
collecting priorities, and potential adaptive traits associated with ecogeographic niches of sweetpotato
crop wild relatives.

Taxon Gene Ploidy Germplasm  Gap Mean Eco Potential adaptation to
pool accessions analysis  expert  geographic
priority ~ priority  cluster

L batatas 2 4x=60 4(0) HPS HPS 2 Heat, high precipitation,
drought, precipitation
seasonality, clay soils

L cordatotriloba 3 2x, 4x 103 (67) HPS MPS 1 Cold, temperature
variation, clay soils,
sandy soils

1 cynanchifolia 3 2x=30 1 (0) HPS HPS 1,2 Drought, precipitation
seasonality, sandy soils

1 grandifolia 3 2x=30 124 (83) MPS MPS 1 Cold, temperature
variation, clay soils,
sandy soils

I lacunosa 3 2x=30 10 (1) HPS MPS 1 Cold, temperature
variation, drought

L leucantha 3 2x=30 18 (15) HPS MPS 1,2 Heat, drought,
precipitation seasonality,
sandy soils

L littoralis 2 2x=30 2(2) HPS HPS 2 Heat, high precipitation,
drought, precipitation
seasonality, sandy soils

1. ramosissima 3 2x=30 34 (30) HPS MPS 2,1 Cold, high precipitation,
clay soils
1. splendor-sylvae 3 2x=30 16 (9) HPS HPS 2 Heat, high precipitation,

drought, precipitation
seasonality, clay soils

1 tabascana 2 4x=60 4(2) LPS HPS 2 Heat, high precipitation,
clay soils

L tenuissima 3 2x=30 3(1) HPS HPS 1 Heat , cold, temperature
variation, sandy soils

1L tiliacea 3 4x=60 61 (44) HPS HPS 2 Heat, high precipitation,
clay soils

1 trifida 2 2x,3x,4x,6x 248 (159) MPS MPS 2 Heat, high precipitation,
drought, precipitation
seasonality

L triloba 3 2x=30 121 (74) HPS MPS 2,1 Heat, drought

Ploidy data adapted from Nimmakayala et al. (2011). Germplasm accessions displays both the total number of
accessions recorded in genebanks, as well as the number of accessions with unique geographic coordinates (i.c.,
unique populations) in parenthesis. HPS = high, MPS = medium, and LPS = low priority species for further
collecting.

148



Crop wild relatives of sweetpotato

A Annual Mean Temperature B Mean Temperature of Driest Quarter
- — = - B e B
5 E=mfEEE=E & o =l
L = I . L2 — =
g = Y I g
% E!D-
SERE m |38 ]
: 3 g ., m
a (s
5+ a0 4
T T T T T T T T T T T T T T 71 T+ r r r 1 r°r r °rr T’ T© © ©° T° 1
g £ 2 g g g g oo g 2 2 g & 2 2 2 2 385 8 8 2
EEEEEEEEENEREE g32-§§-§§2§ﬂ;§§§3
$ 3184258735385 3¢838 333 €35 2835 8¢87:s 5 83
I O A S gEEE T ES g
__.og__.a‘-'g = ] ._-8__.5{5 = E = i
S = = 5 3 = = &
C Annual Precipitation D Precipitation of Driest Quarter
o
— 3000 — 500 -
E .
— — 400 -
= BaEE :
z - [ 2 w0 -
3 L L L | 2
= = | = 220 ‘._..—-.
£ 1000 - m | s — - .
100 - u-
=
0 0
T r T rr & r°rOOOr 5" r T T T T T <r r°r T T T+ T T T°T T T T T T -7
§ 8§85 855 g% ;4 97s 358 § 78§53 4% § 85§ 53 8
i S <~ § 8§ g8~ ¢ S § 8§ =888~ 35¢8¢¢
R LI : : -8 s §F2i
<03 < 3 H 2 = S

Figure 4. Ecogeographic niches of crop wild relative species based upon their occurrence data presence
locations, and the sweetpotato crop, for (A) annual mean temperature, (B) mean temperature of the driest
quarter of the year, (C) annual precipitation, and (D) precipitation of the driest quarter of the year. The
thick grey line represents median values, boxplots between 25-75% variation, and open circles outliers
within 90% of total variation. For a principal component analysis of variables see Supplementary Figure
6 and for ecogeographic niches displaying total variation for all variables per species see Supplementary
Figure 7.

DISCUSSION

This article utilizes the most current knowledge on species concepts within /. series Batatas.
Due to taxonomic uncertainties and to the notable dearth of study material for sweetpotato
CWR, the results represent a preliminary understanding of the geography and conservation
status of the series, to be further refined following increased levels of collecting sufficient to
support the needed taxonomic and crossability research. Further collecting of germplasm thus
serves two purposes: a) conserves genetic resources for the long-term and makes these
resources available to breeders; and b) provides the basic materials needed by researchers to

understand the diversity present in the CWR of sweetpotato.

A total of 78.6% of the wild relatives of sweetpotato considered in this study were assessed as
high priority for further collecting for ex sifu conservation. With general agreement from expert

evaluators of medium to high importance for all species, it is clear that much remains to be done
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to safeguard the wild genetic resources of this critically important root crop. Included in this
list of priorities are species with very few germplasm accessions accessible to the global
community in genebank information systems, including I. cynanchifolia, I. littoralis, I.
tenuissima, 1. tabascana, 1. lacunosa, 1. leucantha, 1. splendor-sylvae, and clearly designated
wild forms of the crop conspecific 1. batatas. Such species represent the highest level of priority
for further collecting for use in systematic analyses as well as genetic resources conservation.
As the species diversity gaps in genebank collections largely align with the geographic
distribution of species richness of sweetpotato CWR, hotspots in central Mexico to Central
America, and in the extreme southeastern USA, represent particularly high priority regions for
efficient collecting of the sweetpotato genepool (Figure 3). Additional unrepresented
populations of high priority species such as 1. littoralis and I. cynanchifolia occur outside those
regions, thus targeted collecting throughout the geographic distribution of the genepool is

necessary in order to form comprehensive germplasm collections.

Due to having relatively large potential distributions occupying a diversity of ecosystems,
species such as /. triloba, 1. cordatotriloba, and I. tiliacea were categorized as high priority,
and /. trifida and 1. grandifolia as medium priority for further collecting despite having sizable
currently-existing germplasm collections. As the cost of conserving and investigating
germplasm ex situ is significant, a further assessment of what constitutes sufficient
representation of these species in germplasm collections is warranted. Given adequate
resources, further collecting may be worthwhile, as extremely valuable traits sourced from
CWR of some crops have been found in only a few populations despite screening of a large
number of accessions (Brar & Khush 1997), and accessions of individual CWR species such as
1. triloba have been shown to possess notable variation in traits such as tolerance to precipitation

(Martin & Jones 1973, Nimmakayala et al. 2011).

As Maxent models are based upon known presence points for species and are thus subject to
sampling bias, they may not fully capture the possibility of occurrence of populations of CWR
species in unique climates (Aratjo & Guisan 2006, Loiselle ef al. 2008, Kramer-Schadt et al.
2013). Further field exploration of climatic extremes beyond the edges of the distributions
created through these methods may therefore lead to the discovery of new populations with
particularly valuable adaptations to abiotic stress (Williams et al. 2009). Investigation of non-

native populations (e.g., 1. trifida in Asia) may also yield novel adaptations of use in crop
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improvement. As techniques for the utilization of distantly related germplasm improve, the
exploration of other Ipomoea species outside of I. series Batatas may also result in the
identification of beneficial traits [e.g., [pomoea purpurea (L.) Roth, for stem nematode and

SPVD resistance (Cao et al. 2009)].

Analysis of geographic overlap and ecogeographic similarities between species, as well as
ecogeographic clusters among all species, can supplement morphological and genetic analyses
in differentiating useful genetic resources, and can serve as a point of departure for identifying
taxonomically problematic populations for further investigation. These analyses may also
indicate geographic areas of particular interest in regard to high rates of hybridization, as in the
case of 1. cordatotriloba and I. lacunosa (Duncan & Rausher 2013), which indeed were
identified as sharing similar geographies and ecogeographic niches. The purported hybrid
descendent of these species, I. leucantha, was modeled as containing a much more extended
latitudinal gradient in the northern hemisphere than its parents, as well as a differing

ecogeographic niche, including potential adaptation to high heat and to drought.

Genetic resistance is essential to efforts to overcome major biotic and abiotic constraints in
sweetpotato production. As these constraints are often interrelated, e.g., drought stress with
SPW and SPVD damage, enhancement of broad resistance for traits such as drought may
improve yield across relatively large geographic areas, without the need to breed for resistance
to localized viral strains (Ngailo ef al. 2013). Such broad tolerance may also improve adoption
rates for sweetpotato varieties with other desirable characteristics, such as high B-carotene

content.

Reliable funding for germplasm collections is paramount in order to safeguard sweetpotato
CWR genetic resources in the long-term and to continue to make ex situ collections available
to the global community. Further investment in genebank information systems, ex sifu
conservation technologies (i.e., storage, testing, and regeneration), safety duplication of unique
germplasm, and ensuring facilitated access to genetic diversity is equally essential (FAO 2002,
FAO 2010, Khoury et al. 2010). In order to maximize the usefulness of conserved germplasm,
characterization and evaluation for traits of interest, and increased breeding research, which
have been limited for CWR of sweetpotato, are also needed. Further research combining

morphological studies, trait evaluations, and genetic diversity analyses is likewise critically
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needed for elucidating species boundaries and highlighting accessions of particular value for
use in breeding. Recent focused research has produced quick gains, including the identification
of new species (Duncan & Rausher 2013, Wood ef al. 2015). Through these actions the crop
research community will contribute to ensuring the long term viability of this important root

crop.
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SUPPLEMENTARY INFORMATION

Supplementary Figure 1(A-D). Sweetpotato [[pomoea batatas (L.) Lam.] crop wild relative potential
distribution models.
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I. ramosissima _ I. splendor-sylvae

.c
-

Supplementary Figure 1(E-H). Sweetpotato [I[pomoea batatas (L.) Lam.] crop wild relative potential
distribution models.
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I. tabascana

l. trifida

I. tiliacea

Supplementary Figure 1(I-L). Sweetpotato [[pomoea batatas (L.) Lam.] crop wild relative potential
distribution models.
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I. littoralis

Supplementary Figure 1(M-N). Sweetpotato [I[pomoea batatas (L.) Lam.] crop wild relative potential
distribution models.
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Supplementary Figure 3. Number of sweetpotato [[pomoea batatas (L.) Lam.] crop wild relatives
prioritized for further collecting for ex situ conservation per country. HPS = high, MPS = medium, and
LPS = low priority species for further collecting.
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Supplementary Figure 4. Expert evaluation accordance with gap analysis results: (A) correlation
between gap analysis results and comparable expert evaluation scores. (B) correlation between gap
analysis results and contextual expert evaluation scores. (C) correlation circle of all evaluation variables

[comparable expert priority score (Comparable), contextual

evaluation of gap analysis results score (

expert priority score (Contextual),
Evaluation), evaluation of occurrence data (Occ_data),

evaluation of potential species distribution models (SDM_map), and evaluation of collecting prioritics
map (Gap_map)]. (D) combined expert evaluation index score per sweetpotato [[pomoea batatas (L.)

Lam.] crop wild relative.
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Supplementary Figure 5. Geographic overlap and ecogeographic similarity of potential distribution
models between sweetpotato [I[pomoea batatas (L.) Lam.] crop wild relative species: (A) geographic
overlap of potential distribution models. (B) ecogeographic similarity index (I) of potential distribution
models.
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Supplementary Figure 7. Ecogeographic niches of crop wild relative (CWR) species based upon their
occurrence data presence locations, and the sweetpotato [[pomoea batatas (L.) Lam.] crop, per
bioclimatic and edaphic variable. The bold grey line represents median values, boxplots between 25-
75% variation, and circles outliers.
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Supplementary Figure 7A. Niches of CWR species and the sweetpotato crop for altitude.
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Supplementary Figure 7B. Climatic niches of CWR species and the sweetpotato crop for annual mean
temperature.
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Mean Diurnal Range
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Supplementary Figure 7C. Climatic niches of CWR species and the sweetpotato crop for mean diurnal

range.
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Supplementary Figure 7D. Climatic niches of CWR species and the sweetpotato crop for isothermality.
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Temperature Seasonality
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Supplementary Figure 7E. Climatic niches of CWR species and the sweetpotato crop for temperature

seasonality.
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Supplementary Figure 7F. Climatic niches of CWR species and the sweetpotato crop for maximum

temperature of the warmest month of the year.
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Min Temperature of Coldest Month
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Supplementary Figure 7G. Climatic niches of CWR species and the sweetpotato crop for minimum

temperature of the coldest month of the year.
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Mean Temperature of Wettest Quarter
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Supplementary Figure 7I. Climatic niches of CWR species and the sweetpotato crop for mean

temperature of the wettest quarter of the year.
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Supplementary Figure 7J. Climatic niches of CWR species and the sweetpotato crop for mean

temperature of the driest quarter of the year.
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Mean Temperature of Warmest Quarter
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Supplementary Figure 7K. Climatic niches of CWR species and the sweetpotato crop for mean

temperature of the warmest quarter of the year.
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Supplementary Figure 7L. Climatic niches of CWR species and the sweetpotato crop for mean

temperature of the coldest quarter of the year.
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Annual Precipitation
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Supplementary Figure 7M. Climatic niches of CWR species and the sweetpotato crop for annual

precipitation.
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Supplementary Figure 7N. Climatic niches of CWR species and the sweetpotato crop for precipitation

of the wettest month of the year.
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Precipitation of Driest Month
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seasonality.
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Precipitation of Wettest Quarter
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Supplementary Figure 7Q. Climatic niches of CWR species and the sweetpotato crop for precipitation

of the wettest quarter of the year.
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Supplementary Figure 7R. Climatic niches of CWR species and the sweetpotato crop for precipitation

of the driest quarter of the year.
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Supplementary Figure 7U. Edaphic niches of CWR species and the sweetpotato crop for bulk density.
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Supplementary Figure 7V. Edaphic niches of CWR species and the sweetpotato crop for cation exchange
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Supplementary Figure 7W. Edaphic niches of CWR species and the sweetpotato crop for percent clay.
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Supplementary Figure 7X. Edaphic niches of CWR species and the sweetpotato crop for organic carbon.
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Supplementary Figure 7Y. Edaphic niches of CWR species and the sweetpotato crop for pH.
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Supplementary Table 1. Sources of occurrence data for assessed sweetpotato [[pomoea batatas (L.)
Lam.] crop wild relative species.

Data provider Recordtype Number of
records
International Potato Center (CIP) Germplasm accession 585
Leibniz Institute of Plant Genetics and Crop Plant Research Germplasm accession 1
Millennium Seed Bank Partnership, Royal Botanic Gardens, Kew Germplasm accession 3
USDA, National Plant Germplasm System, Germplasm Resources Information Network Germplasm accession 160
(USDA NPGS GRIN)
Atlasof Living Australia (Flora Atlas NT) (via GBIF) Herbarium or otherrecord 356
Australia's Virtual Herbarium (AD, BRI, CANB, CBG, DNA, HO, MEL, NSW, PERTH) Herbarium or otherrecord 39
Bioversity Intemational Herbarium or otherrecord 208
Brazil Virtual Herbarium (CRIA) Herbarium or otherrecord 61
California Academy of Sciences Herbarium (CAS) Herbarium or otherrecord 128
Comision Nacional para el Conocimientoy Uso de la Biodiversidad (CONABIO) (viaGBIF)  Herbarium or otherrecord 97
Consortium of Pacific Northwest Herbaria(CPNWH) Herbarium or otherrecord 5
DIVEA, DEP, FEEMA Herbario Alberto Castellanos (GUA) Herbarium or otherrecord 18
Fairchild Tropical Botanical Garden (FTG) (via GBIF) Herbarium or otherrecord 712
Florida State University Robert K. Godfrey Herbarium (FSU) Herbarium or otherrecord 6
Harvard University Herbarium (HUH) Herbarium or otherrecord 8
Herbarium of National Taiwan University (TAI) (via GBIF) Herbarium or otherrecord 63
Herbarium of T aiwan Forestry Research Institute (TAIF) (via GBIF) Herbarium or otherrecord 56
Instituto Nacional de Biodiversidad, Costa Rica (INB) (via GBIF) Herbarium or otherrecord 87
International Center for Tropical Agriculture (CIAT)- Bioversity International, USDA. Atlas  Herbarium or otherrecord 155
of Paraguayan Crop Wild Relatives.
International Center for Tropical Agriculture (CIAT)- C. Azurdia, K.A. Williams, D.E. Herbarium or otherrecord 139
Williams, V. Van Damme, A. Jarvis and S.E. Castafio.2011. Atlas of Guatemalan Crop Wild
Relatives.
International Potato Center (CIP) Herbarium or otherrecord 231
Jardim Botanico de Rio de Janeiro (JABOT/R) Herbarium or otherrecord 106
Jardim Botanico do Rio de Janeiro (JBRJ) (via GBIF) Herbarium or otherrecord 119
Louisiana State University Herbarium (LSU) (via GBIF) Herbarium or otherrecord 116
Manchester University Herbarium (MANCH) Herbarium or otherrecord 2
McDonald & Austin (1990) Herbarium or otherrecord 1
Missouri Botanical Garden Herbarium (MO) Herbarium or otherrecord 44
Museo Nacional de Costa Rica (MNCR) (via GBIF) Herbarium or otherrecord 80
Museum national d'Histoire naturelle (MNHN) (via GBIF) Herbarium or otherrecord 509
Nationaal Herbarium Nederland (NHN) Herbarium or otherrecord 112
Natural History Museum UK Herbarium (BM) Herbarium or otherrecord 19
New York Botanical Garden Herbarium (NY) Herbarium or otherrecord 454
Plants of Taiwan Herbarium or otherrecord 56
Real Jardin Botanico de Madrid (MA) Herbarium or otherrecord 25
Royal Botanic Gardens, Kew (K) Herbarium or otherrecord 20
Scotland & Wood, personal communication Herbarium or otherrecord 8
Smithsonian Institution, National Herbarium (US) Herbarium or otherrecord 357
The Field Museum (F) Herbarium or otherrecord 58
Universidad del Valle Colombia Herbarium (CUVC) Herbarium or otherrecord 4
University of California Jepson Herbarium (UC/Jeps) Herbarium or otherrecord 63
University of California Riverside Herbarium (UCR) Herbarium or otherrecord 23
University of Kansas McGregor Herbarium (KU) (via GBIF) Herbarium or otherrecord 79
University of Oklahoma, Robert Bebb Herbarium (OKL) (via GBIF) Herbarium or otherrecord 53
US Academy of Natural Sciences Philadelphia Herbarium (PH) Herbarium or otherrecord 45
USDA, National Plant Germplasm System, Germplasm Resources Information Network Herbarium or otherrecord 131
(USDA NPGS GRIN)
West Virginia University Herbarium (WVU) Herbarium or otherrecord 12
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Supplementary Table 2. Ecogeographic variables utilized in sweetpotato [I[pomoea batatas (L.) Lam.]
crop wild relative potential distribution modeling and climatic niche analyses.

Variable Variable name Units
number

0 Altitude m

1 Annual mean temperature °C

2 Mean diurnal temperature range °C

3 Isothermality N/A
4 Temperature seasonality (standard deviation) °C

5 Maximum temperature of warmest month °C

6 Minimum temperature of coldest month °C

7 Temperature annual range °C

8 Mean temperature of wettest quarter °C

9 Mean temperature of driest quarter °C
10 Mean temperature of warmest quarter °C

11 Mean temperature of coldest quarter °C

12 Annual precipitation mm
13 Precipitation of wettest month mm
14 Precipitation of driest month mm
15 Precipitation seasonality (coefficient of variation) %

16 Precipitation of wettest quarter mm
17 Precipitation of driest quarter mm
18 Precipitation of warmest quarter mm
19 Precipitation of coldest quarter mm
20 Bulk density kg/m?
21 Cation exchange capacity cmol/’kg
22 Percent clay %

23 Organic carbon g/kg
24 pH in H,O pH
25 Percent silt %

26 Percent sand %
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Supplementary Table 4. Countries identified for further collecting per sweetpotato [I[pomoea batatas

(L.) Lam.] crop wild relative.

Taxon Priority Countries identified for further collecting

1. batatas HPS Belize, Bolivia, Brazil, Colombia, Costa Rica, Ecuador, El Salvador,
French Guiana, Guatemala, Guyana, Honduras, Mexico, Nicaragua,
Panama, Peru, Suriname, Venezuela

1 cordatotriloba HPS Argentina, Bolivia, Brazil, Mexico, Paraguay, USA

L. cynanchifolia  HPS Bolivia, Brazil

1 grandifolia MPS Argentina, Bolivia, Brazil, Paraguay, Uruguay

I lacunosa HPS USA

1. leucantha HPS Mexico, USA

1L littoralis HPS Australia, Fiji, French Polynesia, Guam, India, Indonesia, Kiribati,
Madagascar, Malaysia, Mauritius, Micronesia, N. Mariana Islands,
New Caledonia, Papua New Guinea, Philippines, Seychelles, Sri
Lanka, Taiwan, Thailand, Timor-Leste, USA

1. ramosissima HPS Belize, Bolivia, Brazil, Colombia, Costa Rica, Ecuador, El Salvador,
Guatemala, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru,
Venezuela

1 splendor-sylvae  HPS Belize, Costa Rica, El Salvador, Guatemala, Honduras, Mexico,
Nicaragua, Panama

I tabascana LPS Mexico

1 tenuissima HPS Cuba, Dominican Republic, Haiti, Puerto Rico, USA

1 tiliacea HPS Bahamas, Belize, Brazil, Colombia, Costa Rica, Cuba, Dominican
Republic, El Salvador, French Guiana, Grenada, Guatemala, Guyana,
Haiti, Honduras, Jamaica, Mexico, Nicaragua, Panama, Puerto Rico,
Sao Tome and Principe, St. Vincent and the Grenadines, Suriname,
USA, Venezuela

L trifida MPS Belize, Colombia, Costa Rica, Cuba, Ecuador, El Salvador,
Guatemala, Honduras, Mexico, Nicaragua, Panama, USA, Venezuela

1 triloba HPS Bahamas, Belize, Colombia, Costa Rica, Cuba, Dominican Republic,

Ecuador, El Salvador, Guatemala, Haiti, Honduras, Jamaica, Mexico,
Nicaragua, Panama, Peru, USA, Venezuela
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Chapter 6

Abstract

Pigeonpea [Cajanus cajan (L.) Millsp.] is a versatile, stress-tolerant, and nutritious grain legume,
possessing traits of value for enhancing the sustainability of dry sub-tropical and tropical agricultural
systems. The use of crop wild relatives (CWR) in pigeonpea breeding has been successful in providing
important resistance, quality, and breeding efficiency traits to the crop. Current breeding objectives for
pigeonpea include increasing its tolerance to abiotic stresses, including heat, cold, drought, and
waterlogging. Here we assess the potential for pigeonpea CWR to be further employed in crop
improvement by compiling wild species occurrence and ex situ conservation information, producing
geographic distribution models for the species, identifying gaps in the comprehensiveness of current
germplasm collections, and using ecogeographic information to identify CWR populations with the
potential to contribute agronomic traits of priority to breeders. The fifteen prioritized relatives of
pigeonpea generally occur in South and Southeast Asia to Australia, with the highest concentrations of
species in southern India and northern Australia. These taxa differ considerably among themselves and
in comparison to the crop in their adaptations to temperature, precipitation and edaphic conditions. We
find that these wild genetic resources are broadly under-represented in ex sifu conservation systems,
with 80% of species assessed as high priority for further collecting, thus their availability to plant
breeders is insufficient. We identify species and highlight geographic locations for further collecting in
order to improve the completeness of pigeonpea CWR germplasm collections, with particular emphasis

on potential traits for abiotic stress tolerance.

Keywords: Crop diversity, Crop improvement, Crop wild relatives, Food security, Germplasm

conservation, Plant genetic resources

188



Crop wild relatives of pigeonpea

INTRODUCTION

Challenges to global food production are compounding. Our growing population and dietary
expectations are projected to increase demand on food systems for at least the next four decades,
outpacing current yield trends (Ray et al. 2013). Limitations in land, water, and natural resource
inputs, competition for arable soils with non-food crops and other land uses, the need to
minimize harmful impacts on biodiversity and other ecosystem services, and greater climatic
variability further constrain production potential (Lobell et al. 2008, Cordell et al. 2009,
Rosenzweig, et al. 2013). Although gains in food availability may partially be obtained through
dietary change and waste reduction (Tilman & Clark 2014, West et al. 2014), a transition toward
more sustainable, yet highly productive, agricultural systems is necessary. This transformation
must be achieved through improved agronomic practices combined with the use of varieties of

crops with reliable yields under more adverse conditions (Foley et al. 2011).

One such crop is pigeonpea [Cajanus cajan (L.) Millsp.], a sub-tropical and tropical grain
legume that originated in the northern region of the Indian sub-continent, spreading to East
Africa at least 4000 years BCE, and then to Southeast Asia, West Africa, Latin America, and
the Caribbean. The seed is eaten as a green vegetable and dry pulse and is an important source
of protein, vitamin B, carotene, and ascorbic acid (Odeny 2007, Choudhary et al. 2013). The
pods and foliage of the plant are used as livestock forage and fodder, the crop is cultivated as a
green manure, and its woody stem is used as fuel and construction material (Mallikarjuna et al.
2011). Pigeonpea is an important income generator, particularly in Tanzania, Malawi, and

Myanmar as an export crop to India (Odeny 2007).

Pigeonpea is generally planted by smallholder farmers in low input, rain-fed conditions. The
crop is well suited to a wide range of agricultural systems, including intercropping and no-till.
Cultivation improves soil fertility through biological nitrogen fixation as well as through the
solubilization of soil-bound phosphorus (Mallikarjuna et al. 2011, Choudhary et al. 2013),
increasing the yield of intercropped cereals, other pulses, and vegetables (Saxena 2005, Odeny
2007), and has been shown to enhance the control of Striga (Odeny 2007). Pigeonpea is more
heat tolerant than the majority of grain legume crops (Figure 1) and is regarded as drought-
resistant. These traits are associated with the ability to maintain or regulate transpiration under
high temperatures and/or low soil moisture, for example through adjustment of leaf osmotic

pressure (Subbarao et al. 2000), maintenance of photosynthetic function under stress
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Figure 1. Climatic niches for temperature and precipitation for major grain legumes. (A) optimal range
and (B) minimum and maximum observed range (Bogdan 1977, van der Maesen 1989, Valenzuela and
Smith 2002, Odeny 2007, FAO 2010a, Sardana et al. 2010, Saxena et al. 2010).

(Lopez et al. 1987), and deep root systems (Flower & Ludlow 1987).

Due to its high nutritive value and agronomic traits, pigeonpea can play an increasing role in
low input production systems in India, East Africa, and elsewhere in the dry sub-tropics and
tropics (Saxena 2005, Odeny 2007). Concerted breeding efforts for this purpose have resulted
in a number of promising advances, particularly the creation of early maturing varieties, and
developments toward diverse high yielding hybrids (Saxena 2005, Saxena et al. 2013, Saxena
& Sawarganokar 2014). However, crop yield in most production regions is well below its
potential and has been stagnant for a number of decades, with increased production during this
time largely due to an expansion of harvested area (Jones et al. 2002, Saxena 2005, Odeny
2007). In order to increase pigeonpea yield and adaptability, current breeding priorities include
photoperiod insensitivity, resistance to biotic pressures, and tolerance to abiotic stresses,
notably waterlogged and mineral deficient soils, cold and heat stress, salinity, and drought

(Mligo & Craufurd 2005, Saxena 2005, Odeny 2007, Upadhyaya et al. 2007, Choudhary et al.
2011).

The long-term viability of major food crops, particularly in light of the increasing need for
sustainable production techniques, is dependent upon the use of diverse genetic resources to

maintain productivity and adapt to changing climatic conditions and emerging pest and disease
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Table 1. Published confirmed (C) and potential (P) uses of pigeonpea CWR in crop improvement.

Taxon Trait

C. acutifolius Cytoplasmic male sterility (C?), Pod borer resistance (C?), High seed weight
(C°), Sterility mosaic disease resistance (P°), Pod fly resistance (P9)

C. albicans High seed protein (C°,P°), Pod borer resistance (P?), Pod fly resistance (P9), Pod
wasp resistance (PY), Broad pods (P°), More seeds per pod (P°), Good forage
source (P°), Sterility mosaic disease resistance (P"), Salt tolerance (P?)

C. cajanifolius Nuclear male sterility (C?), Cytoplasmic male sterility (C"), High seed protein

(P°)
C. cinereus More seeds per pod (P°)
C. crassus High seed protein (P°), Good forage source (P°), Sterility mosaic disease

resistance (PY)

C. lineatus Cleistogamy (C'), Cytoplasmic male sterility (C'), Pod fly resistance (P9),
Sterility mosaic disease resistance (Pf)

C. mollis More seeds per pod (P°), High seed protein (P°), Good forage source (P°)

C. platycarpus Phytophthora blight resistance (C**), Sterility mosaic disease resistance (P°),
Pod borer resistance (P¢), Early flowering (P°), High seed protein (P°), Cyst
nematode resistance (pf), Salt tolerance (P#'), Aluminum toxicity resistance (P¢),
Annuality (P™), Photoperiod insensitivity (p"), High flower and pod setting (P")

C. scarabaeoides Pod borer resistance (C™), Sterility Mosaic Disease Resistance (C°), Protein
improvement (C°), Dwarfism (CP), Cytoplasmic male sterility (C9), Pod fly
resistance (PY), Pod wasp resistance (PY), Early flowering (P"), Salt tolerance
(P®), Aluminum toxicity resistance (P#), Drought tolerance (P")

C. sericeus High seed protein (C°), Cytoplasmic male sterility (C*), Pod borer resistance
(PY), Pod fly resistance (P9), Salt tolerance (P?), Sterility mosaic virus resistance
(P™Y), Phytophthora blight resistance (P™)

®Mallikarjuna and Saxena 2005, °Mallikarjuna et al. 2007, °Mallikarjuna et al. 2011, YSharma et al.
2003, *Upadhyaya et al. 2013b, fSaxena 2005, ¢Choudhary et al. 2011, "Saxena et al. 2005, Saxena et al.
1998, iSaxena et al. 2010, “Mallikarjuna et al. 2005, 'Subbarao et al. 1990, ™observation by authors, "Mudaraddi
et al. 2013, °Reddy et al. 1979, PReddy 1990, 9Saxena & Kumar 2003, "Upadhyaya 2006, Ariyanayagam et al.
1995.

pressures (Xiao et al. 1996, Guarino & Lobell 2011, McCouch ef al. 2013). Due to the genetic
bottleneck effect caused by domestication and crop improvement, pigeonpea cultivars possess
only a small portion of the overall genetic diversity present within the genepool (Kassa et al.
2012), which also includes traditional farmer varieties and wild related species (Vincent et al.
2013). Crop wild relatives (CWR) of pigeonpea have contributed valuable genetic resources for
pest and disease resistance, improved nutritional quality, desirable plant architecture, and
breeding efficiency. They are considered to possess superior levels of resistance to diseases
such as Fusarium wilt and Phytophthora blight, insect pests such as pod borer, pod fly, and pod

wasp, and tolerance to abiotic stress, in comparison to the cultivated species (Table 1).
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Increasing awareness of the extent of habitat destruction, invasive species, and other threats to
the habitats of the CWR of major crops has given urgency to efforts to identify important
species, determine their distributions, and to ensure their conservation for the long term and
thus their availability to plant breeders (Jarvis ef al. 2008, FAO 2010b, Khoury ef al. 2010).
Genetic resource conservation planning efforts have benefitted from advancements in
geographic information systems technologies, which have enabled high resolution species
distribution modeling in order to inform collecting priorities (Jarvis et al. 2005), recognition of
important gaps in ex situ collections (Ramirez-Villegas ef al. 2010), and the identification of
populations that may possess particularly valuable traits for crop improvement (Tapia et al.

2014).

Given the importance of pigeonpea in low input production systems in regions facing food and
nutritional insecurity and the capacity for enhancement of the crop through breeding, the aim
of this research is to contribute to ensuring the conservation and availability of a broad range
of diversity of CWR genetic resources of potential value to present and future crop
improvement objectives. Therefore, we analyzed the comprehensiveness of ex sifu conservation
of pigeonpea CWR through a series of questions: (a) what constitutes a potentially useful wild
relative of pigeonpea?, (b) where are these species encountered in the wild?, (c) what is the
state of conservation and availability of these species to plant breeders? If suboptimal, what are
the highest taxonomic and ecogeographic priorities for further collecting? And finally, (e) what
CWR resources possess high potential for contribution of traits of value for crop breeding

objectives?

MATERIALS AND METHODS

Identification of target CWR species and occurrence data compilation

We identified potentially useful CWR at the species level based upon a genepool concept
(Harlan and de Wet 1971) for pigeonpea, which focused on those wild species capable of
hybridization with the crop (i.e., members of the primary or secondary genepools), as these
species possess the greatest potential for successful introgression of traits (Vincent et al. 2013).
Taxa in the tertiary genepool with published evidence of confirmed or potential use in crop

improvement (Table 1) were also included.

Occurrence records for pigeonpea CWR were acquired from online biodiversity, herbarium,
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and germplasm databases; via communications with herbarium and genebank managers, and
other crop researchers; and through direct recording of provenance data during visits to selected
herbaria (Supplementary Table 1). Germplasm data were obtained from repositories that
provide straightforward access to genetic resources and associated data to the global research
community through online information systems. Occurrence data were compiled in a
standardized format and taxonomically verified following GRIN Taxonomy for Plants (2012)
and The Plant List (2010) as references. Existing coordinates were cross-checked to country
and verified as occurring on land (Hijmans et al. 1999), and records with locality information
but no coordinates were geo-referenced using the Google Maps Geocoder (2013) application
programming interface. Occurrence data were mapped, iteratively evaluated for correctness
with pigeonpea CWR experts, and subsequently further processed in order to form a final

dataset of maximized taxonomic and spatial accuracy.

Species potential distribution modeling

A potential distribution model for each species was calculated using the maximum entropy
(Maxent) algorithm (Phillips et al. 2006), with a set of ecogeographic variables and unique
species presence records as inputs. We chose Maxent due to its wide application in predicting
species distributions (Elith et al. 2006, Phillips & Dudik, 2008, Costa et al. 2010). We
performed modeling at a resolution of 2.5 arc- minutes (~ Skm x Skm cell size at the equator),
employing 10,000 background points for model training over the combined distributional range
of the pigeonpea CWR. Ecogeographic inputs included altitude and nineteen bioclimatic
variables from the WorldClim database (Hijmans et al. 2005), and seven major edaphic drivers
of plant species distributions with consistent data coverage throughout the range of the
pigeonpea CWR species, obtained from ISRIC- World Soil Information (Hengl et al. 2014)
(Supplementary Table 2). For the edaphic variables we calculated a weighted mean across 0-5,
5-15, 15-30, 30-60, and 60-100 cm soil depth values in order to derive a single data value for 0
-100 cm. We then resampled the 1 km resolution data to form 2.5 arc-minutes resolution inputs

aligned with the WorldClim datasets.

In order to refine and test the stability of the distribution models for each species, we analyzed
Maxent results across three ecogeographic input variations: (a) the full set of nineteen
bioclimatic variables (Ramirez-Villegas ef al. 2010); (b) the bioclimatic variables, altitude, and

the additional set of seven edaphic variables, totaling 27 input variables; and (c) a species-
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specific derivation of the most important drivers of distribution based upon presence data,
further refined by removing highly correlated variables. For the ecogeographic variables in the
species-specific method, we utilized a non-linear iterative partial least squares (NIPALS)
algorithm to perform a principal-component analysis (PCA), as NIPALS can handle data arrays
in which the number of observations is less than the number of input variables, and identified
those variables with the greatest contribution (>0.7 or <-0.7) to the first two principal
components per species based upon occurrence data points. We then used a variance inflation
factor (VIF) to identify the variables with a low degree of collinearity (see Supplementary Table
3 for a list of variables utilized per species). A calibrated area under the ROC curve (cAUC)
was obtained to assess the predictive performance of each model (Hijmans 2012). The three
modeling methods were evaluated with a correlation coefficient against a null model, and the
species-specific variables method showed the least spatial sorting bias among methods
(spearman’s rho for the 19 variables was 0.53; for 27 variables was 0.56; and for the species-
specific method was 0.37), and the differences in median AUC distributions across species for
each method were found to be statistically significant (p = 0.0002) through a Kruskal-Wallis
non-parametric analysis of variance test. Potential distribution models based upon the species-

specific variables method were therefore utilized in subsequent analyses.

Potential distribution models were constrained per species by a native range defined at the
country level as listed in GRIN (2012) and van der Maesen (1986), and were clipped by
measuring the shortest distance between the receiver operating characteristic curve (ROC-
curve) and the top-left corner of the plot (Liu e al. 2005). We limited the spatial analysis to the
native distributions of taxa in order to focus prioritization recommendations on those regions

with species with long-term adaptation to specific ecogeographic conditions.

Adapted from Ramirez-Villegas et al. (2010), Maxent models were produced using the cross-
validation option (k=5) and were subjected to a four-fold assessment process including: (a) the
5-fold average area under the ROC curve of test data (ATAUC), (b) the standard deviation of
the test AUC of the 5 different folds (STAUC), (c) the proportion of the potential distribution
coverage with standard deviation above 0.15 (ASD15), and (d) the cAUC value. Models with
ATAUC above 0.7, STAUC below 0.15, ASD15 below 10%, and cAUC exceeding 0.40 were
considered accurate and stable. For species where the Maxent model did not pass the cross-

validation, potential distributions were mapped with a circular buffer of 50 km (CA50)
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surrounding each geo-referenced record (Hijmans et al. 2001).

Analysis of current ex situ conservation and further collecting needs for CWR

We adapted a gap analysis methodology proposed by Ramirez-Villegas et al. (2010), combining
three metrics used to assess the urgency of further collecting in order to fill gaps in ex situ
conservation of CWR. The total sample representation of each species in genebank collections
was estimated via a sampling representativeness score (SRS), calculated as the number of
germplasm samples (G) divided by the total number of samples (G + herbarium samples (H))

(i.e., all other records aside from available genebank accessions).

The sufficiency of geographic coverage of germplasm collections of each species was estimated
through a geographic representativeness score (GRS), calculated as the share of the combined
total area of CAS50 placed around each existing germplasm collection point compared to the

overall potential geographic distribution of the species.

The comprehensiveness of ecological coverage of germplasm collections of each species was
estimated through an ecological representativeness score (ERS), calculated by estimating the
distinct ecosystem classifications (Olson et al. 2001) represented in the CAS50 of existing
germplasm collection points compared to the diversity of ecosystems in which the overall

potential geographic distribution model of the species occurs.

A final priority score (FPS) for further collecting for ex situ conservation was assigned to each
species by averaging the three gap analysis metrics (SRS, GRS, and ERS). FPS scores were
further classified into four categories of urgency for collecting: high priority species (HPS) for
taxa whose 0 < FPS < 2.5 or when no germplasm accessions currently exist; medium priority
species (MPS) when 2.5 < FPS < 5; low priority species (LPS) when 5 < FPS < 7.5; and ‘no
further collecting recommended’ (NFCR) when 7.5 < FPS < 10. We produced collecting
priorities maps for all species, displaying the geographic areas that have not yet been collected

from within the potential distributions of taxa.

The ecogeographic data preparation, species distribution modeling, and gap analysis were
written and performed in R v2.15.1 (R Core Team 2013), utilizing packages maptools (Bivand
& Lewin-Koh 2014), rgdal (Bivand et al. 2014), SDMTools (van der Wal et al. 2014), raster
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(Hijmans 2014), sp (Pebesma & Bivand 2005, Bivand et al. 2013), dismo (Hijmans et al. 2013),
and plsdepot (Sanchez 2012). Resulting spatial files were mapped in ArcMap v.10 (ESRI2011).
Collecting priorities spatial files were analyzed using the Zonal Statistics tool in ArcMap to list

the countries prioritized for further collecting for ex sifu conservation.

In order to validate and/or expose deficiencies in our findings, we subjected the gap analysis
numerical and spatial results to an evaluation performed by four crop experts with experience
in the distribution and/or conservation status of CWR of pigeonpea: Mulualem Kassa, Cereal
Research Centre, Agriculture and Agri-Food Canada; Sally Norton, Australian Grains
Genebank, Australia; Hari Upadhyaya, International Crops Research Institute for the Semi-Arid
Tropics (ICRISAT); and Jos van der Maesen, Naturalis Biodiversity Center, the Netherlands).
These experts were first asked to provide an evaluation of the sufficiency of germplasm
collections per species based only upon their knowledge of total accessions, and geographic
and environmental gaps. Such an assessment [comparable expert priority score (EPS)] was
considered directly comparable to the FPS of the gap analysis results. A second evaluation score
(contextual EPS) based on the entirety of expert knowledge, including threats to species in situ
and prioritization by usefulness in crop improvement, was collected in order to provide
additional information to collecting prioritization efforts. In both cases, an EPS between 0 and
10, aligned with the gap analysis results prioritization scale, was requested. After these steps,
experts were shown the gap analysis results and asked to comment on assessed quantitative
results, occurrence data, potential distribution models, and maps of collecting priorities.
Following these contributions by experts, input occurrence data were further refined by
eliminating clearly incorrect points and adjusting country-level native areas, and the potential
distribution modeling and gap analyses were re-run in order to improve the quantitative and
spatial outputs. Expert metrics displayed in the results pertain to the final evaluation of

improved gap analysis outputs.

A multiple factor analysis (MFA) was used in order to compare the various forms of expert
evaluation inputs with the gap analysis results, and an expert evaluation index was created,
which estimated the degree of accord between all experts and the gap analysis results for each
species, with a scale from 0 (disagreement) to 100 (agreement). Analyses were performed using

R package FactoMineR (Husson ef al. 2009).
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Identification of CWR with potential traits of use in breeding for abiotic stress tolerance
We utilized ecogeographic information in combination with species presence data in order to
identify populations of species with outstanding adaptations to climatic and/or edaphic
conditions of interest to pigeonpea breeding objectives. We assessed the relative importance of
the 27 ecogeographic variables (Supplementary Table 2) in explaining the total variation among
pigeonpea CWR through a PCA, utilizing all occurrence data points found within the native
areas of the species. We created a hierarchical cluster of principal components (HCPC) in order

to identify ecogeographic clusters for the species using R package FactoMineR.

Boxplots for each of the 27 ecogeographic variables were created based upon CWR species
occurrence data points, displaying the median and variance parameters per species per variable.
Comparable ecogeographic variable data for the pigeonpea crop was extracted from area of
cultivation maps (Monfreda et al. 2008) at a resolution of 5 arc-minutes, with a random sample
of 1000 points weighted by harvested area, taken from the major cultivation areas in Asia,
Africa, and Latin America. As both the CWR and the crop displayed outlier occurrence points
that could potentially contribute to an overinflated ecogeographic niche concept, for further
comparative analyses focused on breeding objectives for the crop we restricted the
ecogeographic niche per species to the central 90% of variation (i.e., 10% outliers were
excluded). Ecogeographic niches for CWR and the pigeonpea crop were mapped in R package
ggplot2 (Wickham 2009).

RESULTS

Wild relatives of pigeonpea

The genus Cajanus Adans. is composed of 32-34 taxa divided into three clades: Indian,
Australian, and Scarabaeoides (van der Maesen 1986, Kassa ef al. 2012). No wild conspecific
to the cultivated species exists, and thus there are no wild taxa falling within the primary
genepool of pigeonpea as defined by Harlan and de Wet (1971). The secondary genepool is
comprised of Cajanus cajanifolius (Haines) Maesen, in the Indian clade, the putative progenitor
of the crop (Kassa et al. 2012), C. acutifolius (F.Muell.) Maesen, C. albicans (Wight & Arn.)
Maesen, C. cinereus (F.Muell.) F.Muell., C. confertiflorus F.Muell., C. lanceolatus (W .Fitzg.)
Maesen, C. latisepalus (Reynolds & Pedley) Maesen, C. lineatus (Wight & Arn.) Maesen, C.

reticulatus (Dryand) F.Muell., C. scarabaeoides (L.) Thouars, C. sericeus (Baker) Maesen, and
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C. trinervius (DC.) Maesen (Saxena et al. 2005, Mallikarjuna et al. 2011). Three additional
species from the tertiary gene pool [C. crassus (King) Maesen, C. mollis (Benth.) Maesen, and
C. platycarpus (Benth.) Maesen] have been the subject of publications of confirmed or potential
uses in crop improvement and were therefore also included in the analysis (Table 1,
Supplementary Table 3). Cajanus volubilis (Blanco) Blanco was recorded in Wanjari et al.
(1999) as contributing sterility traits, but we believe that the material studied in this reference

was actually C. crassus, therefore C. volubilis was not included in this analysis.

A total of 3171 occurrence records for the fifteen CWR were gathered for use in potential
distribution modeling and in the gap analysis, including 377 germplasm accession records
sourced from six genebanks, and 2794 herbarium and other occurrence reference records
sourced from 17 providers (Supplementary Table 1). Records per species ranged from 15 (C.
mollis) to 594 (C. acutifolius). Of these, 1068 records containing distinct cross-checked
coordinates were used to model species potential distributions and to locate the original

collecting site of existing germplasm accessions (Supplementary Table 3).

CWR species distributions

Potential distribution models performed in Maxent passed the four-fold cross-validation for
eleven out of the fifteen CWR. Models for C. albicans, C. cajanifolius, C. mollis and C.
platycarpus failed the cross-validation due generally to insufficient and dispersed presence
records, and were instead mapped by creating CA50 buffers around their occurrences. Native
distributions of pigeonpea CWR occur from South Asia through Southeast Asia into northern
Australia, as well as on the eastern coast of Madagascar. Species diversity is richest in southern
India and in northern Australia, with up to six modeled potential species distributions

overlapping in a single area (Figure 2).

Analysis of current ex situ conservation and further collecting needs for CWR

Twelve out of fifteen species were assigned high priority for further collecting due to the
average of total samples, geographic, and ecological gaps in their ex situ germplasm collections
(Figure 3, Supplementary Table 3, Supplementary Figure 1). These high priority species
included taxa with narrow distributions (C. cajanifolius) as well as those with large ranges
(e.g., C. cinereus, C. crassus, and C. scarabaeoides). Cajanus albicans was assessed as medium

priority due to being modeled as relatively well represented ex sifu in regard to ecosystem
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Figure 2. Richness map for assessed pigeonpea CWR potential distribution models, including high
species richness areas in (A) southern India and (B) northern Australia.

coverage, and C. mollis and C. platycarpus as low priority for the same reason, plus high
sampling representativeness scores due to having a disproportionately large number of
germplasm samples in comparison to herbarium records. The failure of cross-validation of the
Maxent models for these species as well as for C. cajanifolius resulted in CA50 buffer potential
distributions that are likely to be underestimates of the full range of the taxa, especially given
the relatively dispersed distributions of available presence records. Thus, the gap analysis
assessments for these species likely overestimated the comprehensiveness of their coverage in

ex situ repositories. The mean final priority score across all CWR was 2.05 + 1.94.

Further collecting priorities for the pigeonpea CWR were identified in 20 countries, all of which
contained gaps for high priority species (Supplementary Figure 2, Supplementary Table 4). As
with species richness, the regions identified for further collecting of the greatest number of
species occurred in southern India and in northern Australia (Figure 4). Occurrence data,
potential distribution models, and collecting priorities maps for all species are available in an

interactive map format at http://www.cwrdiversity.org/distribution-map/.
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Figure 3. Gap analysis results and comparable expert assessments per species. CWR are listed by
descending priority for further collecting by priority categories [high priority species, HPS (red);
medium priority species, MPS (orange); low priority species, LPS (yellow); and no further collecting
recommended, NFCR (green)]. The black circle represents the final priority score (FPS) for the species,
which is the mean of the sampling representativeness score (SRS), geographic representativeness score
(GRS), and ecological representativeness score (ERS).
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Figure 4. Further collecting priorities hotspots map for high priority (HPS) pigeonpea CWR. The map
displays areas within the potential distributions of HPS species that have not been previously collected
for ex situ conservation, including areas of high species richness in (A) southern India and (B) northern
Australia.

The average of the directly comparable expert evaluation priority scores (EPS) across the four
experts correlated with the gap analysis results for pigeonpea CWR, with a mean EPS across
all experts and all CWR of 2.67 + 0.9. The assignment of lower priority for further collecting
in the mean score across experts in comparison to the gap analysis, with seven species assigned
as HPS and eight as MPS, was highly influenced by one expert’s determination of species at a
lower priority level than the other three experts. This trend was consistent across species (Figure
3; Supplementary Figure 3A, Supplementary Table 3). The contextual expert priority score per
species did not vary widely from the comparable score, with a mean across all experts and
species of 2.3 + 0.89. The mean contextual score gave slightly higher priority to species for
further collecting than did the comparable score, due to knowledge of threats to taxa in situ
and/or to the generally high value given to pigeonpea CWR in regard to their potential

contributions to crop improvement (Supplementary Figure 3B).

The multiple factor analysis revealed relatively strong agreement among the experts and the
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quantitative and spatial evaluation variables and thus confidence in the expert evaluation index
(Supplementary Figure 3C). Those taxa with the highest accord between all experts and
variables and the gap analysis results included Indian species C. trinervius and C. sericeus, and
most of the Australian species (C. cinereus, C. acutifolius, C. confertiflorus, C. lanceolatus,
and C. latisepalus). Cajanus scarabaeoides was given a very low index score, and assigned
least priority of all species for further collecting by the experts, due to the relatively large total
number of ex situ germplasm accessions held for the species, whereas the gap analysis assessed
the species as high priority due to large geographic and ecological gaps in ex situ collections in
comparison to the total potential distribution. The taxa with relatively few and dispersed
occurrence records and resulting CAS0 potential distribution models (C. albicans, C.
cajanifolius, C. mollis and C. platycarpus) were also among those species receiving the lowest
index scores (Supplementary Figure 3D). The evaluations thus served to highlight those species
with greatest need of further investigation in regard to their distributions, and at the same time
confirmed the robustness of the Maxent models in creating valid depictions of the general range
of those CWR with sufficient data availability. Furthermore, the evaluations were useful in
identifying erroneous occurrence records for the species, and in highlighting factors
contributing to sampling bias in existing collections (e.g., proximity to roads or to research

sites), which may affect species distribution modeling.

Identification of CWR with potential traits of use in breeding for abiotic stress tolerance
Strong linear relationships were found between ecogeographic variables within the study area,
justifying the application of the PCA, with 70.3% of variance explained through the first three
principal components. The first component (37.9% of variation) was generally positively
correlated with high and variable temperatures, soil bulk density and pH, and negatively with
precipitation and soil organic carbon. The second component (20.8% of variation) was
determined by extreme temperature variables. The third component (11.6% of variation), was
positively related with precipitation and finer soils (Supplementary Figure 4A; Supplementary

Table 2).

Occurrence data were segregated into three ecogeographic clusters. The first cluster,
corresponding to lowland areas of Southeast Asia and southern India, was characterized
generally by highly variable temperatures and finer soils. The second cluster corresponded to

more temperate and/or highland regions in South Asia as well as the eastern coast of Australia,
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Table 2. Agronomic traits prioritized in pigeonpea breeding objectives potentially associated with
ecogeographic niches of CWR.

Taxon Gene Gap Mean Eco Potential traits of value for major
pool analysis expert geographic  breeding objectives for abiotic stress
priority  priority  cluster tolerance in pigeonpea

C. acutifolius 2 HPS HPS 3 Heat, drought

C. albicans 2 MPS MPS 1,3,2

C. cajanifolius 2 HPS HPS 3,2 Heat

C. cinereus 2 HPS MPS 3 Heat, drought

C. confertiflorus 2 HPS HPS 2,3 Cold

C. crassus 3 HPS MPS 1,3 Temperature variation/ seasonality,
high precipitation, waterlogging

C. lanceolatus 2 HPS HPS 3 Heat, drought

C. latisepalus 2 HPS HPS 3 Heat, drought

C. lineatus 2 HPS MPS 1,3 High precipitation, waterlogging,
drought

C. mollis 3 LPS MPS 2 Cold

C. platycarpus 3 LPS MPS 3,2 Heat, temperature

variation/seasonality, cold
C. reticulatus 2 HPS MPS 3,2

C. scarabaeoides 2 HPS MPS 1,3,2 Heat, temperature variation/
seasonality

C. sericeus 2 HPS HPS 3,1,2 High precipitation, waterlogging,
drought

C. trinervius 2 HPS HPS 2,1 Cold, high precipitation

Genepool 2 refers to the secondary genepool, and 3 to the tertiary. Priority categories for the CWR of pigeonpea
included high (HPS), medium (MPS), and low priority species (LPS) for further collecting for ex sifu conservation.

and was characterized by dry conditions and colder temperatures. The third cluster,
corresponding more generally to India, the Mekong region, and northern Australia, was
characterized by low precipitation and low soil carbon (Supplementary Figure 4B). The
exploration of germplasm through the lens of ecogeographic clusters may facilitate the
identification of populations of species with valuable traits, in this case for temperature stress
resistance and waterlogging tolerance; cold tolerance; and tolerance to drought and low soil
fertility, respectively. The great majority of presence records of Australian species C.
acutifolius, C. cinereus, C. latisepalus, and C. lanceolatus, fell within one cluster, while the
South and Southeast Asian species generally contained populations falling into two or three

clusters (Table 2, Supplementary Figure 4C).

The assessment of climatic and edaphic niches of CWR species based upon occurrence data
points revealed large differences in adaptation to temperature, precipitation, and soil

characteristics variables (Supplementary Figure 5), including populations of species tolerant of
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low and high temperatures, as well as very low and very high rainfall. Such variables for many
species fell well outside the ecogeographic niche of the cultivated taxon, particularly for low

temperatures and high precipitation (Figure 5A).

For adaptation to high temperatures, populations of northern Australian species such as C.
latisepalus, C. cinereus, C. acutifolius, and C. lanceolatus stood out, as did C. platycarpus and
C. cajanifolius (Table 2, Supplementary Figure 5B,F,K). Taxa with large spreads in their
adaptation to temperature generally were those more relatively widespread species such as C.
scarabaeoides, C. crassus, and potentially C. platycarpus. Species with populations of notable
adaptation to low temperatures included C. mollis, C. trinervius, C. confertiflorus, and again C.
platycarpus (Supplementary Figure 5B,G,L). Scant occurrence information was available for a
number of these species and further exploration is needed to determine the full range of the
taxa, which may result in the identification of populations with even greater tolerance to

extreme temperatures, e.g., from populations at higher elevations.

Pigeonpea CWR occurring in areas of notably high annual and/or seasonal precipitation
included the central and southern Indian species C. lineatus, C. sericeus, and C. trinervius, as
well as C. crassus (Table 2, Supplementary Figure SM,N,Q). As populations of most of these
species are adapted to soils with relatively high clay content, these may also represent

candidates for traits for waterlogging tolerance (Figure 5B, Supplementary Figure SW).

Populations of CWR encountered in regions of very low annual and/or seasonal precipitation
included those from Australian species C. latisepalus, C. cinereus, C. acutifolius, and C.
lanceolatus, as well as C. sericeus and C. lineatus, among others (Table 2, Supplementary
Figure SM,O,R). The pigeonpea crop was also modeled as being tolerant to very low rainfall
regions. Despite such tolerance in pigeonpea, we identified eleven CWR species with
distributions occurring in regions with less annual precipitation than the driest areas modeled
within the middle 90% of occurrence data inputs in regard to the area of cultivation of the crop
(i.e., <500 mm). Maps of potential distributions for a selected number of these CWR that are
not currently represented in ex sifu genebanks are displayed in Figure 6, and the differentiation

of the occurrence data of these species in the PCA is shown in Supplementary Figure 4D.
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Figure 5. Ecogeographic niches of pigeonpea CWR for (A) annual mean temperature and precipitation
and (B) percent clay and annual precipitation. Niches per species represent the middle 90% of
occurrence points, i.e., 10% outliers were excluded. For niches per ecogeographic variable per species,

see Supplementary Figure 5.
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Figure 6. Potential distributions of selected CWR in (A) south Asia and (B) Australia that are not
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DISCUSSION

With 80% of the CWR of pigeonpea in this study assessed as high priority for further collecting
for ex situ conservation, agreement from expert evaluators of medium to high importance for
all species, and with significant geographic gaps in ex situ collections for virtually all species,
it is clear that further conservation action is needed to safeguard the wild genetic resources of
this important grain legume. Included in this list of priorities are species with very few
germplasm accessions accessible to the global community in genebank information systems,
including C. confertiflorus, C. trinervius, C. latisepalus, and the putative progenitor C.
cajanifolius. Such taxa represent the highest level of priority for further collecting to fill gaps
in germplasm collections at the species level. As the species diversity gaps in genebank
collections largely align with the geographic distribution of species richness of pigeonpea
CWR, hotspots in India and in northern Australia represent particularly high value regions for
efficient collecting of the taxa (Figure 4). These areas may also be of interest for encountering

genetic variation created through hybridization between CWR species.

Additional unrepresented distributions of high priority species such as C. crassus and C.
scarabaeoides occur outside these regions, thus targeted collecting throughout the geographic
distributions of the species is necessary in order to form germplasm collections that are
comprehensive at the population level. Non-native distributions of widespread species,
particularly C. scarabaeoides, may also be considered for further collecting in the search for
useful traits for crop improvement. As techniques for the efficient utilization of wide diversity
of plant genetic resources improve, the collection, conservation, and availability of more distant
relatives of the crop may also become more worthwhile. We assessed the representation of the
other 17-19 species within genus Cajanus in ex situ conservation as currently minimal, with

only 41 accessions from seven species listed in germplasm repositories.

Cajanus scarabaeoides and C. platycarpus were identified as exhibiting potential adaptation to
climatic extremes, and are represented by some diversity of accessions conserved ex situ.
Existing collections should therefore be further screened for adaptive traits. Other species
identified as having potentially useful adaptations in contribution to major abiotic stress
tolerance breeding objectives for pigeonpea are represented by very few germplasm accessions,
especially C. confertiflorus, C. trinervius, C. cajanifolius, C. latisepalus, C. lanceolatus, and C.

cinereus. The climatic extremes of potential distribution models, such as those displayed in

206



Crop wild relatives of pigeonpea

Figure 6, may represent particular areas of interest for exploration. As Maxent models are based
upon known presence points for species and are thus subject to sampling bias, they may not
fully capture the possibility of occurrence of populations of CWR species in unique climates
(Aragjo & Guisan 2006, Loiselle et al. 2008, Kramer-Schadt et al. 2013). Further field
exploration of climatic extremes beyond the edges of the distributions created through these
methods may therefore lead to the discovery of new populations with particularly valuable

adaptations to abiotic stress (Williams et al. 2009).

Despite sizable existing germplasm collections, species such as C. scarabaeoides and C.
albicans were categorized as medium or high priority for further collecting due to geographic
and ecological gaps in the collections. As the cost of conserving and investigating germplasm
ex situ is significant, particularly for CWR, a further assessment informed by genotypic
diversity analyses of what constitutes sufficient germplasm collections for pigeonpea CWR is
warranted. Given adequate resources, further collecting should be considered for these species,
as extremely valuable traits sourced from CWR of native Southeast Asian crops such as rice
have been found in only a few populations despite screening of a large number of accessions
(Brar & Khush 1997), and accessions of individual CWR species of pigeonpea have been shown
to possess notable variation in traits such as resistance to insect pests (Sharma et al. 2003), seed

protein content, and days to maturity (Upadhyaya et al. 2013a).

The regions of distribution of pigeonpea CWR species occur in areas undergoing habitat change
due to conversion to agriculture, logging, urbanization, mining, invasive species, and climate
change, among other factors (Sodhi et al. 2004, Sodhi et al. 2009, Upadhyaya et al. 2013a,
Sahai et al. 2014). It is clear that the window of opportunity for comprehensive collecting for

ex situ conservation of pigeonpea CWR will not exist indefinitely.

CONCLUSION

Pigeonpea cultivation is still largely limited to its origins in South Asia and in East Africa. Due
to its high nutritive value, agronomic versatility, stress-tolerance, and multiple uses, increasing
yield in existing production lands as well as expanding the crop into other areas of Asia and
Africa, as well as the Americas, can contribute toward greater agricultural sustainability and
improved human nutrition in sub-tropical and tropical regions. While pigeonpea already

possesses very favorable agronomic characteristics compared to other major grain legumes, its
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productivity can be improved via breeding, and its wild relatives show promise in providing
critical adaptive traits for major breeding objectives, including heat and cold tolerance, high
precipitation, waterlogging, and drought tolerance. Further collecting for ex situ conservation
of this diversity, securing long-term funding for this conservation and associated research,
ensuring safety-duplication of unique germplasm, and sharing of this diversity with the global
research community are critical to this process (FAO 2002, Esquinas-Alcazar 2005). Greater
investment in genotypic and phenotypic characterization and evaluation for traits of interest
(Mallikarjuna et al. 2011, Varshney et al. 2011, Upadhyaya ef al. 2013a) and in breeding
programs using CWR, represent equally urgent steps (Tester and Langridge 2010, Guarino &
Lobell 2011, Henry 2014). Through such actions the crop research community will contribute
to ensuring the long term viability of this important crop, and be better prepared to adapt to the

challenges facing present and future grain legume production.
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Supplementary Figure 2. Number of CWR species prioritized for further collecting per country. HPS =
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Supplementary Figure 3. Expert evaluation accordance with gap analysis results. (A) correlation
between gap analysis results and comparable expert evaluation scores. (B) correlation between gap
analysis results and contextual expert evaluation scores. (C) correlation circle of all evaluation variables
[comparable expert priority score (Comparable); contextual expert priority score (Contextual);
evaluation of gap analysis results score (Evaluation); evaluation of occurrence data (Occ_data);
evaluation of potential species distribution models (SDM_map); and evaluation of collecting priorities
map (Gap_map)]. (D) combined expert evaluation index score per species.
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Supplementary Figure 4. Principal component analysis of ecogeographic variables associated with occurrence data for crop wild relative species.

(A) contribution of variables to the first three components.
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Supplementary Figure 4. Principal component analysis of ecogeographic variables associated with
occurrence data for crop wild relative species. (B) geographic origin of clustered occurrence data points.

(C) contribution of cluster identified occurrence data points per species. (D) species’ occurrence data
points mapped over three principal components, with all points from the selected species highlighted in

Figure 6 colored.
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Supplementary Figure 5. Ecogeographic niches of crop wild relative (CWR) species based upon their

occurrence data presence locations, and the pigeonpea crop, per bioclimatic and edaphic variable. The

dark line represents median values, boxplots between 25-75% variation, and open circles outliers.
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Supplementary Figure SA. Niches of CWR species and the pigeonpea crop for altitude.
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Supplementary Figure 5B. Climatic niches of CWR species and the pigeonpea crop for annual mean

temperature.
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Supplementary Figure 5C. Climatic niches of CWR species and the pigeonpea crop for mean diurnal

range.
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Supplementary Figure 5D. Climatic niches of CWR species and the pigeonpea crop for isothermality.
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Temperature Seasonality
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Supplementary Figure SE. Climatic niches of CWR species and the pigeonpea crop for temperature

seasonality.
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Supplementary Figure SF. Climatic niches of CWR species and the pigeonpea crop for maximum

temperature of the warmest month of the year.
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Mean Temperature of Wettest Quarter
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Supplementary Figure 51. Climatic niches of CWR species and the pigeonpea crop for mean temperature

of the wettest quarter of the year.
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Supplementary Figure 5J. Climatic niches of CWR species and the pigeonpea crop for mean temperature

of the driest quarter of the year.
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Mean Temperature of Warmest Quarter
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Supplementary Figure 5K. Climatic niches of CWR species and the pigeonpea crop for mean

temperature of the warmest quarter of the year.
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Supplementary Figure 5L. Climatic niches of CWR species and the pigeonpea crop for mean

temperature of the coldest quarter of the year.
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Annual Precipitation
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Supplementary Figure 5SM. Climatic niches of CWR species and the pigeonpea crop for annual

precipitation.
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Supplementary Figure SN. Climatic niches of CWR species and the pigeonpea crop for precipitation of

the wettest month of the year.
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Precipitation of Driest Month
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Supplementary Figure 50. Climatic niches of CWR species and the pigeonpea crop for precipitation of

the driest month of the year.
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Supplementary Figure 5P. Climatic niches of CWR species and the pigeonpea crop for precipitation

seasonality.
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Supplementary Figure 5Q. Climatic niches of CWR species and the pigeonpea crop for precipitation of
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Supplementary Figure SR. Climatic niches of CWR species and the pigeonpea crop for precipitation of

the driest quarter of the year.
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Supplementary Figure 5S. Climatic niches of CWR species and the pigeonpea crop for precipitation of

the warmest quarter of the year.
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Supplementary Figure 5T. Climatic niches of CWR species and the pigeonpea crop for precipitation of

the coldest quarter of the year.
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Bulk density
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Supplementary Figure SU. Edaphic niches of CWR species and the pigeonpea crop for bulk density.
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Supplementary Figure 5V. Edaphic niches of CWR species and the pigeonpea crop for cation exchange

capacity.
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Supplementary Figure SW. Edaphic niches of CWR species and the pigeonpea crop for percent clay.
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Supplementary Figure 5X. Edaphic niches of CWR species and the pigeonpea crop for organic carbon.
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pH in H20

eaduoabid
snasaul "o
sndueafyerd 0
snjedoasne; ‘D
smjejosouel D
smjojnoe "o
$NaoLas "D
snjenanal o
SNJOYIIBIU0D "D
sifjow "o
snijoyuefes o
Sapl|0dRqERIRIS ")
snsseto D
suediqre D
VETTT )

smeauy D

Supplementary Figure 5Y. Edaphic niches of CWR species and the pigeonpea crop for pH.
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Supplementary Figure 5Z. Edaphic niches of CWR species and the pigeonpea crop for percent silt.
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Supplementary Figure SAA. Edaphic niches of CWR species and the pigeonpea crop for percent sand.
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Supplementary Table 1. Sources of occurrence data for assessed CWR species.

Data provider Record type Number
of
records

Australian Grains Genebank (AGG) Germplasm accession 201

International Center for Tropical Agriculture (CIAT) Germplasm accession 75

International Crops Research Institute for the Semi-Arid ~ Germplasm accession 89

Tropics (ICRISAT)

International Livestock Research Institute (ILRI) Germplasm accession 2

Millennium Seed Bank Partnership, Royal Botanic Germplasm accession 9

Gardens, Kew

World Vegetable Center (AVRDC) Germplasm accession 1

Australia's Virtual Herbarium (AD, BRI, CANB, CBG,  Herbarium or other record 1459

DNA,HO, MEL, NSW, PERTH)

Bioversity International Herbarium or other record 60

California Academy of Sciences Herbarium (CAS) Herbarium or other record 7

Consortium of Pacific Northwest Herbaria (CPNWH) Herbarium or other record 1

Harvard University Herbarium (HUH) Herbarium or other record 70

Missouri Botanical Garden Herbarium (MO) Herbarium or other record 9

Nationaal Herbarium Nederland (NHN) Herbarium or other record 114

National Herbarium of New South Wales (NSW) Herbarium or other record 74

Natural History Museum UK Herbarium (BM) Herbarium or other record 13

New York Botanical Garden Herbarium (NY) Herbarium or other record 49

Plants of Taiwan Herbarium or other record 125

Royal Botanic Gardens, Edinburgh (E) Herbarium or other record 40

Royal Botanic Gardens, Kew (K) Herbarium or other record 165

Smithsonian Institution, National Herbarium (US) Herbarium or other record 61

USDA, National Plant Germplasm System, Germplasm  Herbarium or other record 4

Resources Information Network (USDA NPGS GRIN)

van der Maesen (1986) Herbarium or other record 518

Western Australia Herbarium (PERTH) WAHerb Herbarium or other record 25
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Supplementary Table 2. Ecogeographic variables utilized in the species potential distribution modeling

and niche analyses.

Variable  Variable name Units
number

0 Altitude m

1 Annual mean temperature °C

2 Mean diurnal temperature range °C

3 Isothermality N/A
4 Temperature seasonality (standard deviation) °C

5 Maximum temperature of warmest month °C

6 Minimum temperature of coldest month °C

7 Temperature annual range °C

8 Mean temperature of wettest quarter °C

9 Mean temperature of driest quarter °C
10 Mean temperature of warmest quarter °C

11 Mean temperature of coldest quarter °C

12 Annual precipitation mm
13 Precipitation of wettest month mm
14 Precipitation of driest month mm
15 Precipitation seasonality (coefficient of variation) %

16 Precipitation of wettest quarter mm
17 Precipitation of driest quarter mm
18 Precipitation of warmest quarter mm
19 Precipitation of coldest quarter mm
20 Bulk density kg/m?
21 Cation exchange capacity cmol/’kg
22 Percent clay %

23 Organic carbon g/kg
24 pH in H,O pH
25 Percent silt %

26 Percent sand %
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Crop wild relatives of pigeonpea

Supplementary Table 4. Countries identified for potential further collecting per crop wild relative
species.

Taxon Priority Countries identified for further collecting

C. acutifolius HPS Australia

C. albicans MPS India, Sri Lanka

C. cajanifolius ~ HPS India

C. cinereus HPS Australia

C. confertiflorus HPS Australia

C. crassus HPS China, India, Indonesia, Lao PDR, Malaysia, Papua New Guinea,

Philippines, Thailand, Timor-Leste, Vietnam
C. lanceolatus HPS Australia
C. latisepalus HPS Australia
C. lineatus HPS India, Sri Lanka
C. mollis LPS Nepal

C. platycarpus LPS None modeled, but expected in India

C. reticulatus HPS Australia

C. scarabaeoides HPS Australia, Bangladesh, Bhutan, China, Fiji, India, Indonesia, Japan,
Madagascar, Malaysia, Myanmar, Nepal, Papua New Guinea,
Philippines, Sri Lanka, Taiwan, Thailand, Timor-Leste, Vietnam

C. sericeus HPS India

C. trinervius HPS India, Sri Lanka
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Chapter 7

Abstract

The crops that feed the world originated in specific geographic regions across the planet. Genetic
diversity within these crops and their wild relatives is considered to be historically particularly rich
within these regions. These genetic resources are regularly employed in crop improvement: thus,
preventing erosion of remnant genetic diversity occurring in situ, and ensuring the long-term access to
this diversity conserved in genebanks ex situ, are critical to continued increases in agricultural
productivity. The geopolitical significance of the geography of crop genetic diversity has not been
quantified. Here we assess the degree to which the food supplies and production systems of countries
worldwide are comprised of crops from each of these regions of diversity. We then examine dependence
of countries upon crops from regions of diversity other than their own (“foreign crops”), and determine
change in this dependence over the past 50 years. National food systems are thoroughly interconnected
worldwide in regard to the geographic origins of crop diversity. Countries are highly dependent on
foreign crops in their food supplies (68.7% as a global mean across food variables) and in their national
production systems (69.3%). This reliance is evident even in countries located in regions of high
indigenous crop diversity and has increased significantly over the past half century, stressing the need

for effective national and international policies to promote genetic resource conservation and exchange.

Keywords: Food security, Crop diversity, Crop origins, Interdependence, Plant genetic resources
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INTRODUCTION

As the source of traits employed for adaptation to biotic and abiotic stresses and for yield
increases through breeding, as well as the palette from which food systems may be further
diversified, crop genetic diversity represents a cornerstone of food security (Xiao et al. 1996,
Hoisington et al. 1999, Zhu et al. 2000, Gepts 2006, Guarino & Lobell 2011). The need for
utilization of this diversity to maintain or enhance crop productivity is likely only to grow given
rising food demand and increasing constraints on the use of non-renewable agricultural inputs,
limitations in further expansion of arable lands, soil degradation, and global climatic change

(Lobell et al. 2008, Cordell et al. 2009, Kearney 2010, Kastner et al. 2012).

Crop genetic diversity is generated through genetic mutation and recombination, and further
transformed through natural and artificial selection. Therefore, high levels of crop genetic
diversity are associated with the persistence of crops and their wild relatives in specific
geographic regions worldwide. A century ago, N. I. Vavilov described these “centers of origin”,
characterized by notably high levels of inter- and intra-specific variability in food crops. These
included Central America and Mexico; the Andes, Chile and Brazil-Paraguay; the
Mediterranean; the Near East; Ethiopia; Central Asia; India; China; and Indo- Malaysia
(Vavilov 1926, 1951, 1992). Since then, the number and boundaries of these centers have been
investigated and refined (Harlan 1951, Zhukovsky 1968, Harlan 1971, Zeven & Zhukovsky
1975, Zeven & de Wet 1982). Here we use the term “primary regions of diversity” to describe
these areas, which typically include the general geographic locations of the initial domestication
of crops, encompass major geographic zones of crop genetic diversity generated since that time,

and generally also include high species richness in related wild taxa.

New forms and combinations of crop genetic diversity may arise wherever farmers plant,
harvest and re-sow their seed (Harlan 1975, Nuijten ef al. 2009). The spread of crops outside
their centers of origin and their increasing contribution to the diets of diverse cultures in
different regions (Khoury et al. 2014) have therefore led to the development of “secondary
centers of diversity”, as well as novel genotypes arising outside of any such defined centers.
While all crop genetic diversity, regardless of geographic distribution, is of potential value to
crop improvement, the diversity generated over time in the primary regions is considered to be
the centerpiece of historical, current, and future crop improvement efforts due to its

comparatively high values at allelic, genotypic, and species levels (Vavilov 1926, Harlan 1971,
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Hoisington et al. 1999, Gepts 2006).

Severe erosion of crop genetic diversity is considered to have occurred over the past half
century, particularly through the adoption of improved crop varieties or substitute crop species
and subsequent neglect of traditional varieties and crops, economic development and associated
shifts in consumer demand, land use change and habitat destruction, and urbanization and the
displacement of cultures associated with particular crops and varieties (Hoisington ef al. 1999,
Gepts 2006, Wilkes 2007, van de Wouw et al. 2009, 2010). In some crops, a small fraction of
the diversity once present is thought to still be found today in farmers’ fields, e.g., in wheat
varieties in parts of the Fertile Crescent (Harlan 1971, Gepts 2006). Due to the loss of variation
in regions of diversity, the world’s genebanks originally established to make plant genetic
resources readily available to breeders for crop improvement, have become essential
repositories for crop diversity conservation. A substantial portion of the world’s remaining
heritage of food crop genetic resources is likely now conserved exclusively in genebanks

(Hoisington et al. 1999, Gepts 2006, FAO 2010, Thormann et al. 2015).

Thus, the long-term productivity and resilience of food systems depend upon the conservation
and use of crop genetic diversity, accessed either directly from regions of diversity or via
genebanks (Hoisington et al. 1999, McCouch et al. 2013). Unfortunately, significant gaps
remain in the conservation of crop genetic resources globally (Hoisington et al. 1999, Gepts
2006, FAO 2010) and international access to this diversity requires improvement (Fowler &
Hodgkin 2004, Bjernstad et al. 2013). These deficiencies may be due, in part, to lack of
information on the significance to modern food systems of the historical geographic
distributions of crop genetic diversity. Here we determine the degree to which the national food
supplies (measured in calories, protein, fat, and food weight) and national production systems
(measured in production quantity, harvested area, and production value) of countries worldwide
are comprised of crops from all the different primary regions of genetic diversity. In order to
assess the level to which international collaboration is required in order to achieve access to crop genetic
resources, we estimate the degree of dependence of countries upon crops from primary regions
of diversity other than their own (i.e., “foreign” crops), and determine change in this

dependence over the past 50 years.
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MATERIALS AND METHODS

We used food supplies and production systems data provided by FAO (2015) [for food supplies:
calories (kcal/capita/day), protein (g/capita/day), fat (g/capita/day), and food weight
(g/capita/day); for production systems: production quantity (tonnes), harvested area (ha), and
gross production value (million US$)]. National food supply from plants represents national
production plus imports plus or minus stock changes over the survey period; minus exports,
quantities used for seed, animal feed, and in the manufacture of non-food products, and losses
during storage and transport (Khoury et al. 2014). We utilized the full set of food crop
commodities included in food supply and production data. While food supplies data accounts
for direct human consumption, production data for crops such as maize and soybean is
potentially inclusive of livestock and industrial uses as well as human food. In the production
analysis we also included agricultural crops indirectly contributing to human food supplies via
livestock production (i.e., alfalfa, clover, and vetch). Non-food (e.g., industrial and fiber) crops
as well as animal product commodities were not included in the analysis. Plant commodities
comprised of the same crop species were aggregated into single commodities representing the
crop, e.g., sesame seed oil and sesame seed. After aggregation, 53 crop commodities remained
in food supplies data, and 132 crop commaodities in production data (Supplementary Table 1).
See Table S1 of Khoury et al. (2014) for a comprehensive listing of the crop species included

in the commodities treated in food supplies data.

For current food supplies and production systems, we analyzed data for each crop commodity
per country per measurement over the most recent three years for which sufficient data were
available (2009-2011). All (177) countries consistently reported during the time period were
included for food supplies variables, as well as for production quantity and harvested area
(Supplementary Table 2), covering 98.5% of the world’s population. All (141) countries
reported for (current million US$) production value were included, covering 94.1% of the

world’s population (FAO 2015).

For the analysis of change in dependence over time, food supplies data were assessed for each
year from 1961-2009, and production systems from 1961-2011, utilizing the full set of
commodity and country listings, standardized across all years. In order to align all time periods
and include as much of the world’s population as possible, the current countries formerly

comprising the USSR, Yugoslav SFR, Ethiopia PDR, and Czechoslovakia were aggregated into
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their former countries, with national data summed per year for production measurements, and
merged by weighted average based upon the population of the respective states during the
respective reporting year for per capita food supplies measurements. Belgium and Luxembourg
were reported together during 1961-1999 and therefore recent years listing the countries
separately were merged as above. Countries that did not have estimates in every year between
1961 and 2009/2011 were removed from the analysis. The resulting 152 comparable countries
treated in food supplies data comprised 98% of the world’s population across the study period
(Khoury et al. 2014). The 182 comparable countries covered in production quantity and
harvested area data comprised 99.7% of the global population, and the 115 countries covered
in (constant 2004-2006 million US$) production value data covered 88.5% (Supplementary
Table 2).

Primary regions of diversity were assigned based upon primary and secondary literature
regarding centres of crop diversity, origins of crop domestication, and high species richness of
closely related wild plants (Harlan 1951, Zhukovsky 1968, Harlan 1971, Zeven & Zhukovsky
1975, Zeven & de Wet 1982, Flores-Palacios 1998, Engels et al. 2001, Vincent et al. 2013,
GRIN 2014, Prota 2014). Regional classifications followed those listed in Annex 2 of the FAO
State of the World’s Plant Genetic Resources for Food and Agriculture (2010), modified to
more accurately represent eco-geographic parameters driving plant species distributions.
Specifically, both western and eastern Europe were split into north and south regions to account
for temperate versus Mediterranean ecologies; Australia and New Zealand were segregated
from remaining (tropical) islands of the Pacific region; and South America was split into
Andean, temperate, and tropical regions. A total of 23 eco-geographic regions were delineated
(Supplementary Figure 1). Countries whose boundaries included more than one eco-geographic
region were included in all appropriate regions (e.g., Colombia was assigned both to Andean

and to tropical South American regions) (Supplementary Table 2).

Crops whose primary areas of diversity encompassed more than one eco-geographic region
were listed in all appropriate regions (e.g., wheat was listed in Central Asia, West Asia, and the
South and East Mediterranean). Forty-two of the 53 crop commodities treated in food supplies
data, and 116 of the 132 crops in production data, were capable of being attributed to primary
regions of diversity, with the remaining general commodities which were not clearly

attributable to specific crop species listed as “not specified” (Supplementary Table 1).
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We constructed circular plots displaying the relative importance of primary regions of diversity
as sources of crops comprising current (2009-2011 average) national food supplies and
production systems, using methods and code adapted from Abel and Sander (2014). For
recipient data, regional food supply values (kcal or g, /capita/day) were formed per variable by
deriving a weighted average across countries comprising each region, with national values
weighted by population. Regional production values were calculated by summing values across

countries for each variable.

We estimated the degree to which a country’s food supplies and production systems are
dependent upon crops of “foreign” primary regions of diversity by determining the extent to
which such supplies/systems are composed of crops whose primary regions of diversity do not
coincide with the regions within which that country is located. The method was initiated with
the assumption that the primary diversity of crops within a given country’s food
supplies/production systems was completely foreign (100% dependence). The percent
contribution of all crops whose primary diversity was identified as in the same region as the
country was then subtracted to estimate a “maximum dependence” metric per country. In this
metric, those general crop commodities whose regions could not be specified were assumed to
be of foreign primary regions of crop diversity. The sum of the percent contribution of these
non-specified general crop commodities was then subtracted, resulting in a “minimum
dependence” metric which assumes that all non-specified crop commodities possess primary

diversity within the same region as the country (modified from Flores-Palacios 1998).

Mean dependence in food supplies and production systems per country was estimated using an
interval censoring method, where the response variable (the calculated dependence value in
each country in each year) was bounded between the minimum and maximum dependence
estimates for each observation. A model of this type allows the uncertainty around an
observation to be incorporated into the parameter estimates for the parameter of interest. For
estimates of current dependence, we modeled the mean of the most recent three years (2009-
2011). For estimates of change in dependence from 1961-2009/2011, intercepts and slopes per
country were modeled as random effects, where the mean hyper-parameter for the random
slopes represented the estimated slope (change in dependence over time) across all countries.
We allowed a correlation between country-level intercepts and slopes to account for the fact

that countries with high dependence have weaker dependence-time relationships than countries
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with low dependence (Gelman & Hill 2007). The interval-censored models were implemented
using a Bayesian framework in JAGS (v. 3.4.0) called from R (v.3.1.1), using the packages
rjags and R2jags. Non-informative (“flat”) priors were used for all coefficients. Convergence
was assessed using the Gelman-Rubin diagnostic (Gelman & Rubin 1992) and by visual
inspection of trace plots. Dependency values reported in the text represent the model-estimated
coefficient, £ the standard deviation. Credible intervals for each parameter are reported in

Supplementary Table 3-5.

We used Simpson’s diversity index (2009-2011 mean) to correlate the degree of contributing
crop diversity in current national food supplies/production systems with dependence on foreign
primary regions of diversity. The diversity-dependence relationship was modeled using a
simple linear model with both linear and quadratic terms. Diversity analyses were performed
using the vegan package in R (v. 3.1.1). We also correlated dependence with national Gross
Domestic Product (GDP) per capita purchasing power parity, using a mean GDP value across

2009-2011 for 169 available countries (World Bank 2014).

Crops were assigned importance individually for each food supplies and production systems
variable into 10% quantiles, from 1 (low importance) to 10 (high importance), based upon their
global aggregate (food supplies) and total global production values. A combined assessment
was performed on (136) unique crop commodities covered in food supplies and production
systems data (Supplementary Table 6). Thirty-seven of these commodities possessed both food
supplies and production systems data and were directly compared. An additional 92 crop
commodities with production systems values were embedded within 12 general commodities
in food supplies data (i.e., cereals, other; fruits, other; oilcrops, other; oranges & mandarines;
pulses, other; rape & mustard; roots, other; spices, other; sugar; tea; treenuts; and vegetables,
other). Food supplies values for most of the individual commodities were estimated by dividing
their total general commodity values equally across listed crops. For the sugar commodity,
sugarcane was assigned 70% and sugar beet 30% of the total value; for the tea commodity, tea
[Camellia sinensis (L.) Kuntze] was assigned 80%, mate 10%, and “not elsewhere specified”
(nes) tea 10%. Three additional production systems crop commodities (alfalfa, clover, and
vetches), which are livestock feed/forage crops and therefore are not recorded in food supplies
data, were assessed through quantile values derived solely from production systems variables.

Four general food supplies commodities (beverages, alcoholic; beverages, fermented;
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miscellaneous; and sweeteners, other) were not recorded in production systems variables, thus
these commodities were assessed through quantile values derived solely from food supplies
variables. Coverage of each crop in the Multilateral System (MLS; i.e., Annex 1) of the
International Treaty on Plant Genetic Resources for Food and Agriculture (FAO 2002) was
assessed, listing crops as covered, partially covered (often in the case of general crop
commodities, in which some portion of the crops within the commodity are covered in the MLS
and others not), or not covered (Supplementary Table 6). The extent of geographic importance
of crops was additionally documented by counting the number of countries listing each
commodity (>0) for each variable, as well as listing the plant commodities by decreasing
importance until the total contribution equaled 90% of each country’s food supply/ production
for each variable, a threshold which is inclusive of major contributors to supply/ production
systems and exclusive of commodities contributing very small quantities (Prescott-Allen &
Prescott-Allen 1990, Khoury et al. 2014). The total count of countries including each crop

commodity as important was then derived per crop commodity.

RESULTS

Primary regions of genetic diversity of agricultural crops were identified across the tropics and
subtropics, extending into temperate regions in both hemispheres (Figure 1, Supplementary
Figure 2). The food supplies and production systems of countries worldwide were found to be
comprised of a wide range of crops from diverse geographic backgrounds, indicating a
thoroughly interconnected global food system in regard to the geographic origins of crop
genetic diversity (Figure 2, Supplementary Figure 3). The evident widespread importance in
global food supplies particularly of major crops such as wheat, rice, sugarcane, maize, soybean,
potatoes, barley, oil palm, beans, tomatoes, bananas & plantains, and sugarbeet, among others,
lead to particular significance of key primary regions of diversity, including West, Central,
South, Southeast, and East Asia, the South and East Mediterranean, West and Central Africa,
Central America and Mexico, Andean and tropical South America, and southern Europe (Figure
2, Supplementary Figure 3-4). Cassava, rape & mustard, groundnut, grapes, apples, alfalfa,
sorghum, and millets were among other crops of particular international importance for one or

more food supply and/or production variables.

Dependence upon crops from foreign primary regions of genetic diversity in national food

supplies and production systems was highest (i.e., up to 100%) in those countries
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Figure 1. Primary regions of diversity of major agricultural crops worldwide. See Supplementary Table
1 for a list of primary regions for all assessed crop commodities.

geographically isolated from and/or located at great distance from the primary regions of
diversity of major staple crops (Figure 3, Supplementary Figure 5, Supplementary Table 3).
This includes Australia and New Zealand, the Indian Ocean Islands, the Caribbean, southern
South America, North America, southern Africa, and northern Europe. These countries are
generally in temperate climates, although tropical islands and some continental tropical regions,

such as Central Africa, also demonstrated very high levels of dependence for most variables.

Conversely, dependence upon foreign crops was lowest in countries located within the primary
regions of diversity of major crops, and where traditional staples are still cultivated and
consumed, such as Southeast Asia, the South and East Mediterranean, South Asia, Central
Asia, West Asia, and West Africa. The lowest levels of dependence were found in countries
with food systems dominated by a limited number of traditional staples such as rice, wheat,
yams, sorghum, and millets (see Supplementary Figure 6). Island nations predominantly
dependent upon native crops for fat, such as coconut in the tropical Pacific Region, and
countries with extreme agroecological conditions limiting national production to the cultivation
of a select number of native crops (e.g., dates in the United Arab Emirates and other arid nations

of West Asia) also exhibited very low levels of dependence for relevant food supply
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Figure 2. Circular plots indicating the importance of primary regions of diversity as sources of crops
comprising (A-B) calories in national food supplies, and (C-D) production quantity in national
production systems, averaged over 2009-2011. For recipient data, regional caloric food supply values
(kcal/capita/day) were formed by deriving a weighted average across countries comprising each region,
with national values weighted by population. Regional production quantity values were formed by
summing values across countries. For countries within regions, see Supplementary Table 2. Region
names are shortened in the figures; IO = Indian Ocean Islands, ANZ = Australia and New Zealand, and
C. America = Central America and Mexico; and in production quantity only, Car = Caribbean, and Pac
= Tropical Pacific Region. The direction of the importance contribution is indicated by both the origin
region’s color and a gap between the connecting line and the destination region’s segment. Arrows
indicating direction of contribution are also included as examples. The magnitude of contribution is
indicated by the width of the connecting line. Because the line width is nonlinearly adapted to the
curvature, it corresponds to the contribution size only at the start and end points. Figures on the left (A,
C) display only the most significant contributions (i.e., 95" percentile) for visibility, which correspond
to an approximate contribution of at least 1180 kcal/cap/day (A), and 212 million tonnes (C). In these
figures, the importance of rice, wheat, maize, sugarcane, and oil palm are evident. Figures on the right
(B, D) display all contributions. See Supplementary Figure 3 for circular plots for all measured food
supply and production variables.
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Figure 3. Dependence on foreign primary regions of diversity of crops per country in regard to (A)
calories in national food supplies, and (B) production quantity in national production systems, as a
modeled mean between minimum and maximum dependence per country, 2009-2011. Dependence scale
is degree of dependence (1 = completely dependent). See Supplementary Figure 5 for world maps
displaying dependence per country for all measured food supply and production variables.

and/or production metrics. In such extreme cases, though, low dependence was generally
evident in only one or a few food supplies or production metrics, while other variables exhibited

much higher dependence.

Although food supplies and production systems variables were highly correlated in degree of
dependence (Supplementary Figure 7-8), variation was also visible across variables, with
highest overall dependence evident in fat, production value, production quantity, and food
weight (Supplementary Table 3). Considerable variation in dependence was found within
geographic areas, e.g., ranging from (mean + SD) 48.2% =+ 1.6 for calories in Mexico, to 86.5%
+ 1.4 in Panama, within the Central America and Mexico region. Large variation in dependence
in production systems was also found within regions, e.g., ranging from 25.7% + 3.5 for
production value in the Philippines, to 94.1% + 1.1 for Malaysia, within the Southeast Asia
region. Countries with very high dependence for such production variables were exemplified
by the presence of extensive production systems dedicated to a limited number of high value,

foreign commodity crops, such as oil palm in Malaysia.

Dependence upon crops from foreign primary regions of genetic diversity was positively
correlated with diverse food supplies/production systems, although high dependence also
occurred in numerous countries with exhibiting low diversity (Supplementary Figure 6). Very
few countries, on the other hand, showed high diversity in their food supplies and/or production
systems and at the same time low dependence on crops of foreign primary regions of diversity.
National Gross Domestic Product was also associated with dependence, although with

considerable variation worldwide (Supplementary Figure 9).
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Figure 4. Change in dependence on foreign primary regions of diversity of crops in (A) national food
supplies (1961-2009) and (B) production systems (1961-2011). Lines represent change over time in the
mean between minimum and maximum dependence for each country in each year for each variable as
predicted by a quadratic regression. Transparent ribbons represent modeled mean change across all
countries (= 95% credible interval) in dependence for each variable, estimated using a Bayesian model
with an interval censored response variable bounded between minimum and maximum dependence.

Mean dependence across all countries on crops of foreign primary regions of diversity in food
supplies was 65.8% = 1.8 for calories, 66.6% + 2.1 for protein, 73.7% + 1.6 for fat, and 68.6%
+ 1.4 for food weight. Mean dependence in production systems was 71.0% + 1.8 for production
quantity, 64.0% = 2.2 for harvested area, and 72.9% = 1.9 for production value. The combined
mean dependence across food supply variables was estimated at 68.7%, across production
systems at 69.3%, and across food systems worldwide (i.e., both food supplies and production

systems, across all countries and all variables) at 68.9% (Supplementary Table 3).

National dependence upon crops of foreign primary regions of diversity increased significantly
as a global mean for all food supplies and production systems variables over the past half
century (Figure 4, Supplementary Table 4-5). Dependence in regard to calories increased from
62.7 to 67.4%, protein from 63.1 to 68.1%, fat from 63.4 to 73.2%, and food weight from 65.2
to 69.7% as measured in change in dependence from the mean of the first three years (1961-
1963) to the last three years (2007-2009) per country, averaged across countries worldwide.

Likewise, dependence in regard to production quantity increased from 64.1 to 69.0%, harvested
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area from 59.0 to 62.1%, and production value from 64.4 to 70.5% between 1961 and 2011.

Countries with the greatest increases in dependence over the period were located in Africa,
West, South, Southeast, and East Asia, Central America and Mexico, and Andean and tropical
South America (Supplementary Figure 10). A number of countries with the largest changes in
dependence upon foreign crops in contribution to their food supplies were also those with major
transitions in their production systems during the past 50 years (e.g., the growth of oil palm
cultivation in Malaysia and Indonesia, a crop whose primary regions of diversity are located in
West and Central Africa and the Neotropics; and soybean in Brazil, a crop of East Asian origin).
Most regions also contained countries with decreases in dependence over the period. Growing
consumption of major staples within the native regions of these crops, such as soybean in China,
or wheat in West Asia, may be a factor in this decrease. Dependence in regard to fat in food
supplies increased the greatest degree over the past 50 years among all variables, a trend that is
concordant with significant changes in the contributing crop species composition of national

food supplies globally over this period (Khoury et al. 2014).

DISCUSSION

The food supplies and production systems of countries worldwide are primarily composed of
crops that were initially domesticated and largely diversified elsewhere around the world. While
geography and climate constrained for some period following the agricultural revolutions ca.
10,000 BP the availability of crops to their regions, growth in migration, colonialism, and trade,
among other historical forces (Diamond 2004), increased the availability of crops beyond their
primary regions, and current economic and agricultural development, urbanization, and
globalization trends are making important food crops comprehensively available worldwide
(Khoury et al. 2014). Even countries located within the most ancient and richest primary regions
of diversity, e.g., West Asia, now exhibit considerable dependence on foreign crops in their

food supplies and production systems.

The range of crops covered in this analysis is not fully inclusive of all foodstuffs produced and
consumed in national food systems. Therefore, an underestimation and/or overgeneralization
of diversity is assumed, particularly in regard to plants primarily encountered in home gardens
and local markets, seasonally important foods, and culinary herbs, spices and other crops

consumed in relatively small quantities (Prescott-Allen & Prescott-Allen 1990). Some of these
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crops may be important to diets, particularly in their contribution of micronutrients (Doughty
1979). The aggregation of some crop commodities, the generality of the defined eco-geographic
regions, uncertainty for some crops as to their primary regions of diversity, and the subjective
nature of the boundaries of such regions, also lead to a degree of uncertainty in dependence
metrics. Acknowledging these limitations, the results are a very strong indication of the extent
of globalization of food systems and the resulting interdependence among nations on crop

genetic resources.

Complementary approaches to the current study have been taken to assess the degree of
interdependence among countries in provisioning the global food system. Analyses of
production versus consumption in nations globally have revealed increasing interdependence
in regard to trade in food (Fader et al. 2013, Porkka et al. 2013, D’Odorico et al. 2014,
MacDonald et al. 2015). Investigations of exchange of crop genetic resources in the form of
accession requests from international genebanks have also shown expanding transfers of
germplasm (Kloppenburg & Kleinman 1987, Dudnik et al. 2001, Smale & Day Rubenstein
2002, Day Rubenstein & Smale 2004, Fowler & Hodgkin 2004). The increasingly global
contribution of diverse breeding materials to the development of modern crop cultivars has also
been documented for major crops (Smale 1996, Gollin 1998, Brennan et al. 1999, Zhou et al.
2000, Cassaday et al. 2001, Fowler et al. 2001, Smale et al. 2002, Johnston et al. 2003). Such
studies bolster evidence of increased interdependence among nations in concert with greater

globalization of the crops and crop varieties providing our global food supplies.

The importance of continued access to diverse crop genetic resources through international
exchange in support of national production, and its corollary impact on national economies, is
unequivocal. Yet access to genetic diversity in important crops by major producers, wherever
their location, is equally critical for the reliable provisioning of global food supplies via
international trade, especially as countries have transitioned from food insecurity to trade
dependence (Fader et al. 2013, Porkka et al. 2013, D’Odorico et al. 2014, MacDonald et al.
2015). Production of the major crops is unevenly distributed across countries and for many
crops now generally occurs outside of the primary regions of diversity of those crops, e.g.,
China, India, the USA, the Russian Federation, France and Canada for wheat; the USA, China,
Germany, France, Brazil, and Argentina for maize; the USA, Brazil, Argentina and India for

soybean; and China, India, the Russian Federation, Ukraine, and the USA for potatoes.
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The evidently very high levels of interdependence among countries in regard to crop genetic
diversity supports the rationale for internationally coordinated mechanisms to facilitate access
to these resources worldwide, such as the Multilateral System (MLS) created within the
International Treaty on Plant Genetic Resources for Food and Agriculture (Plant Treaty) (FAO
2002). This interdependence also reinforces the importance of the international genebank
collections safeguarded as global public goods by the CGIAR international agricultural research
centres (Hoisington et al. 1999), which are covered under Article 15 of the Plant Treaty. While
the long-term sustainability of funding for these collections has partially been achieved (Global
Crop Diversity Trust 2013), an increased level of international support will be needed to secure
their role in conserving and distributing the genetic resources of their mandate crops. Moreover,
large gaps remain in the conservation of crop diversity not covered by CGIAR collections (FAO
2010, Khoury ef al. 2010). The window of opportunity for securing the world’s agricultural
diversity threatened in situ and in under-funded genebanks will not remain open indefinitely

(Wilkes et al. 2007, FAO 2010).

A comprehensive MLS should engender facilitated access to the genetic resources of all crops
of present and future international importance, but current access is suboptimal (Bjernstad et
al. 2013). As food systems undergo further transition due both to dietary change (Kearney 2010,
Khoury et al. 2014) and to novel production challenges (Lobell et al. 2008, Cordell et al. 2009,
Jarvis et al. 2009), a broadly inclusive and adaptable effort to conserve and provide access to

agricultural diversity internationally is prudent.

The Plant Treaty MLS has focused mostly on cereal, pulse, starchy root, and forage crops (listed
in Annex 1 of the Treaty) (FAO 2002), thus oil crops, vegetables and fruits are not well covered.
As much as 28.7% of global aggregate calories in food supplies, 19.0% of protein, 61.0% of
fat, 43.4% of food weight; and 41.0% of total global production quantity, 27.0% of harvested
area, and 41.2% of global production value are comprised of crops not covered by the MLS.
These include soybean, oil palm, sugarcane, groundnut, tomatoes, onions, grapes, coffee, cocoa
beans, and a variety of other vegetable, nut and fruit crops (Supplementary Figure 11,
Supplementary Table 6). As limited genetic resources research on these crops has been carried
out by CGIAR (Khoury & Jarvis 2014), their diversity is likewise underrepresented in the
international collections. These crops therefore constitute major gaps in coordinated efforts

among nations to conserve and make accessible valuable genetic resources. Furthermore, as
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greater variation in genetic materials is increasingly needed for future breeding of major crops
(Hoisington et al. 1999, Gepts 2006, Burke et al. 2009, Jarvis et al. 2009, McCouch et al. 2013),
the expansion of MLS coverage to include wild relatives of staples such as maize and cassava
will be important to the strengthening of a global system for the conservation and exchange of

crop genetic diversity.
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SUPPLEMENTARY INFORMATION

Supplementary Figure 1. Eco-geographic regions utilized in the analysis. See Supplementary Table 2
for a list of countries per region.
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Supplementary Figure 4. Importance of primary regions of diversity of crops in contribution to global
aggregate food supplies [(A) calories, (B) protein, (C) fat, and (D) food weight] and total global
production systems [(E) production quantity, (F) harvested area, and (G) production value], averaged
over 2009-2011.
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Supplementary Figure 5. Dependence on foreign primary regions of diversity of crops per country in
national food supplies [(A) calories, (B) protein, (C) fat, and (D) food weight] and production systems
[(E) production quantity, (F) harvested area, and (G) production value] as a modeled mean between
minimum and maximum dependence per country, 2009-2011. Dependence scale is degree of
dependence (1 = completely dependent).
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Supplementary Figure 10. Slope of change in dependence from 1961-2009 on foreign primary regions
of diversity in regard to national food supplies [(A) calories, (B) protein, (C) fat, and (D) food weight]
and from 1961-2011 for national production systems [(E) production quantity, (F) harvested area, and
(G) production value], measured as change in the modeled mean value between minimum and maximum
dependence for each country in each year for each variable.
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Supplementary Figure 11. Relevance of crop commodities in global food supplies and production
systems worldwide, and their coverage in Annex 1 of the International Treaty on Plant Genetic
Resources for Food and Agriculture (FAO 2002). Crops were assigned importance individually for each
variable into 10% quantiles, from 1 (low importance) to 10 (high), based upon their global aggregate
(food supplies) and total global production values. The center of the web is equivalent to 1; the outside
of the web to 10 in importance. All specific crops are displayed; 20 general commodities are not shown
here (see Supplementary Table 6 for all crops). Ani-Fen-Cor denotes Anise, Fennel and Coriander
treated together; Mango Guav denotes Mango and Guava; and Nut Card denotes Nutmeg and
Cardamoms. Blue outlines identify crop commodities covered in Annex 1, while red are not covered.
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The following supplementary tables contain extensive information on dependence metrics per
country and importance metrics per crop. These multi-sheet tables are too large to be
reproduced in the supplementary information of this chapter. They are available in the
“Interdependence among countries on crop genetic resources” project on Figshare (permanent
links below).

Supplementary Table 1. Crop commodities and eco-geographic regions assessed in food supplies and
production systems analyses.
permanent link: figshare.com/s/667b2840f33111e4a89b06ec4bbef141

Supplementary Table 2. Countries and eco-geographic regions assessed in food supplies and production
systems analyses.
permanent link: figshare.com/s/87d4197¢f4d311e4971b06ec4bbcf141

Supplementary Table 3. Estimated percent dependence on foreign primary regions of diversity in
national food supplies and production systems. Data includes the raw mean minimum and maximum
dependence values across 2009-2011 per country, and the mean value between minimum and maximum
per country across these years, as well as modeled mean values and variation metrics as estimated in a
Bayesian framework using an interval-censored response variable bounded between minimum and
maximum dependence estimates.

permanent link: figshare.com/s/f78dad72f33011e4b9{606ec4b8d1{61

Supplementary Table 4. Change in dependence on foreign primary regions of diversity in national food
supplies, 1961-2009. Data includes minimum and maximum dependence values for each variable for
each country in each year, as well as slopes of change and variation metrics over the time period as
estimated in a Bayesian framework using an interval-censored response variable bounded between
minimum and maximum dependence estimates. Year was centered at 1985 for modeling purposes, thus
model intercepts represent mean dependence in this year.

permanent link: figshare.com/s/2e0455fef33111e4898306ec4bbef141

Supplementary Table 5. Change in dependence on foreign primary regions of diversity in national
production systems, 1961-2011. Data includes minimum and maximum dependence values for each
variable for each country in each year, as well as slopes of change and variation metrics over the time
period as estimated in a Bayesian framework using an interval-censored response variable bounded
between minimum and maximum dependence estimates. Year was centered at 1985 for modeling
purposes, thus model intercepts represent mean dependence in this year.

permanent link: figshare.com/s/4134£534133111e4a89b06ec4bbcf141

Supplementary Table 6. Relevance of crop commodities in national food supplies and production
systems, 2009-2011. Importance by quantiles: crops were assigned importance individually for each
variable into 10% quantiles, from 1 (low importance) to 10 (high), based upon their global aggregate
(food supplies) and total global production values. Data also includes the number of countries counting
the crop within food supplies/production systems (>0) for each variable, as well as the number of these
countries in which the crop is important (i.e. within the top 90% of food supply/production system
variable). Within these importance counts, the number of foreign (i.e., countries whose location do not
overlap with the primary regions of diversity of the crop) countries and native countries are listed. In
addition, details on coverage in Annex 1 of the International Treaty on Plant Genetic Resources for Food
and Agriculture (FAO 2002) are provided for each crop.

permanent link: figshare.com/s/5029166af33111e48d2906ec4bbcf141
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CHAPTER 8

General discussion

DISCUSSION OF RESULTS AND IMPLICATIONS

This thesis aimed to contribute to the knowledge required to answer a set of key questions
regarding the need for, potential of, challenges and constraints regarding, and necessary steps
to enhance the conservation and use of crop genetic diversity. A discussion of the results and

their implications is presented in the following subsections.

The status of diversity and associated vulnerabilities in the global food system

In the past half century, very substantial changes have occurred in human diets worldwide and
in the production systems that sustain them. National food supplies around the world have
become increasingly similar (Figure 1), gaining in calories, protein, and fat, as animal-derived
foods and high-calorie plant foods (oils and sugars) have risen in importance. The proportion
of diets consisting of major cereals, sugar crops and oil crops has increased, while regionally
and locally important cereals, root crops, and oil crops have generally become further

marginalized [Khoury et al. 2014 (Chapter 2)].

These changes have been driven by globalization, urbanization, and economic development,
including agricultural research (Khoury & Jarvis 2014). While this nutrition transition has
enhanced food security by making macronutrients more readily available worldwide, it has had
mixed effects on micronutrient sufficiency and the over-consumption of macronutrients has
contributed to a global surge in diet-related non-communicable diseases (Popkin 2006, Pingali
2007, Kearney 2010). Dietary change is also linked with greater homogeneity in farmers’ fields
and the associated commodity trading systems, thus heightening concerns about genetic
vulnerability to biotic and abiotic stresses as well as food system vulnerability to climatic and

political instability (Chapter 2).

What can be done to mitigate the vulnerabilities created by placing our proverbial eggs in one
basket - an increasingly interconnected global food system, highly contingent upon trade in a

handful of selected food crop commodities, highly dependent on the extensive application of
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Figure 1. Increase in similarity (homogeneity) in national food supplies, 1961-2009. The figure depicts
a multivariate ordination of crop commodity composition in contribution to calories in national food
supplies in 1961, 1985 and 2009. Blue points represent the multivariate commodity composition of each
country in 1961, yellow points in 1985, and red points in 2009. Circles represent 95% confidence
intervals around the centroid in each year. Both x- and y-axis have been deliberately removed for
visualization purposes. See Khoury et al. (2014) (Chapter 2) for further details.

renewable and non-renewable resources, and creating major environmental impacts?

A comprehensive view of food and nutrition security encompasses consistent availability and
access to adequate, culturally acceptable and nutritious food as well as empowerment of
consumers to use this food for improved health. Over the long term, food security also requires

actions to mitigate the negative ecological effects of food systems and adapt agriculture to
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climatic change as well as to natural resource limitations. Achieving long-term food security
thus requires a holistic approach to agricultural development. From a crop diversity perspective,
such an approach aims to build food systems in which diverse varieties of a broad range of

crops can flourish in terms of production, markets, and consumption.

Key steps that can help to mitigate global food system vulnerabilities, increase agricultural
productivity and sustainability, and enhance human nutrition are proposed below. These actions
are divided into sections devoted to major staple crops, increasingly dominant oil crops, and
neglected or marginalized crops, with particular focus on the role of crop genetic resources in

enhancing food and nutrition security.

As wheat, rice, maize, and other critical staples gain importance in the global food system
(Figure 2), their production stability, nutritional quality, and environmental impacts become
ever more critical issues. Improving these crops in the face of land, water, and other resource
limitations, climate change, and agriculture’s increasing pressure on ecosystems, will
necessitate a range of research and political actions, including (a) conserving and describing
the genetic variation within these crops and their wild relatives and making diverse genetic
material and associated information available to researchers and breeders, (b) facilitating
sharing of diversity through the International Treaty on Plant Genetic Resources for Food and
Agriculture (Plant Treaty) and aligned political efforts, (c) breeding more productive and
resilient varieties, with emphasis on enhancing nutritional quality, stress tolerance, and resource
use efficiency, (d) promoting widespread adoption of genetically diverse, locally adapted
varieties to minimize vulnerability associated with genetic uniformity, and (e) developing more
ecologically efficient agronomic, storage, processing and distribution practices in order to

reduce their negative environmental impacts (Khoury & Jarvis 2014).

Challenges related to the production of oil crops such as soybean and oil palm that have become
an increasingly important part of global food supplies over the past 50 years (Figures 2 and 3)
include major impacts on natural ecosystems through deforestation, greenhouse gas emissions,
and vulnerabilities due to genetic uniformity in crop varieties. Key objectives for production
systems focused on oil production should be on reducing these ecological impacts, improving
species diversity at the system level (i.e., diversify crops) and enhancing genetic diversity at

the varietal level. Steps that can be taken to address these challenges include:
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Figure 2. Contribution of crop commodities to mean food supplies in developing countries for calories
(kcal/capita/day), 1969 and 2009 [Khoury & Jarvis 2014, based on Khoury ef al. 2014 (Chapter 2)].

(a) developing and promoting ecologically efficient production and processing methods, (b)
broadening the genetic diversity within major varieties, and (c) diversifying oil crop production,
processing, and markets by promoting less globally dominant oil crops such as coconut,

cottonseed, groundnut, olive, rape and mustardseed, sesame, shea nut, and sunflower.
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Figure 3. Median percent change in the relative contribution to calories (kcal/capita/day), from assorted
crops in national food supplies in developing countries, 1969-2009 [Khoury & Jarvis 2014, based on
Khoury et al. 2014 (Chapter 2)].

A number of cereal, root, and oil crop species have generally declined in terms of their relative
contribution to national and global food supplies in the past half century (Figure 3), although
they may remain significant particularly for rural communities in some developing regions.
These include sorghum, cassava, millets, sweetpotato, coconut, yams, and grain legumes,

among others. Agricultural research funding for these crops is minimal compared with funding
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for the major cereals (Khoury & Jarvis 2014). Since many of these plants are both stress tolerant
and nutritionally rich, investment in their conservation, improvement, and promotion offers a
wise long-term option for diversifying global food supplies, particularly as the environmental
challenges that agriculture faces intensify and as more people suffer from the negative health

effects of the nutrition transition (Popkin 2006, Pingali 2007, Kearney 2010).

The recent rise of quinoa (Zurita-Silva et al. 2014) demonstrates how global food supplies can
be diversified, particularly against a background of growing consumer interest in diverse and
healthy food alternatives. A potential benefit of globalization and urbanization trends may be
an increased tolerance for healthy non-traditional foods. Increasing the contribution of
marginalized crops in global food supplies requires focus both on establishment or
improvement of incentives for farmers and seed systems at the production level as well as
promotion at the consumer level. Specific actions may include: (a) identifying regionally and
locally important crop species that show potential for improved productivity, enhanced
nutritional quality, and greater competitiveness under challenging conditions, (b) conserving as
well as fostering the use of their genetic diversity, (c) breeding productive and resilient varieties
of these crops, with particular emphasis on traits such as increased micronutrient levels, storage
life, and versatility in processing and consumer use, (d) making these materials widely available
to breeders and other researchers, facilitating their uptake through agricultural extension and
training, and developing robust seed systems for their multiplication and distribution, and (e)

stimulating policy measures that strengthen market demand for these crops.

Potential, geographic distributions, and conservation priorities for crop wild relatives

A number of key impressions emerge from the present research devoted to identifying,
investigating the potential of, and determining the conservation status of the genetic diversity
represented in crop wild relatives. First, a great deal of wild diversity exists and is therefore
potentially available for use in breeding. The national assessment for the USA, a country
generally considered to be depauperate in regard to crop diversity (Vavilov 1926), identified a
great range of native and introduced species associated with a long list of important crops
(Chapter 3). Case studies on the wild relatives of beans, sweetpotato and pigeonpea revealed

diverse crop genetic resources widely distributed over regions and continents (Chapters 4-6).

Second, wild genetic resources have considerable potential to contribute traits of value to crop
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improvement. Populations of wild species related to sweetpotato (Chapter 5) and pigeonpea
(Chapter 6) are distributed in areas modeled to be well outside of the temperature, precipitation,
and soil characteristic comfort zone of these crops (see Figure 4 of Chapter 5, and Figures 5
and 6 of Chapter 6). Similar results have been reported for wild relatives and/or landraces of
other crops (e.g., Endresen et al. 2011, Tapia et al. 2014). Given the continual advances in
information on wild relatives, as well as improving breeding technologies facilitating the
utilization even of distantly related species (Zamir 2001, Cao et al. 2009, McCouch et al. 2013),
there is good reason to consider crop wild relatives as genetic resources of increasing potential

for major contributions to crop improvement.

Third, these wild genetic resources are drastically under-represented as a whole in ex situ
conservation systems. With an estimated 57% of wild relatives of bean (Chapter 4), 79% of
sweetpotato (Chapter 5), and 80% of pigeonpea (Chapter 6) assessed as high priority for further
collecting, and virtually all crop wild relative species determined to be insufficiently
represented in genebanks in regard to the full range of geographic and ecological variation in
their distributions, it is evident that much remains to be done to conserve their genetic diversity.
Such results are concordant with conservation assessments for other crop genepools (Khoury

et al. 2010).

Given such large gaps remaining in conservation needs for crop wild relatives, significant
resources needed for their maintenance ex situ, and seemingly chronic funding deficits for
genetic resources conservation (Khoury et al. 2010), a further assessment ideally informed by
genotypic diversity analyses of what constitutes sufficient germplasm collections for wild
relatives is warranted. As extremely valuable traits sourced from crop wild relatives have been
found in only a few populations despite screening of a large number of accessions (Brar &
Khush 1997), and given modeling of large variation within species in regard to traits such as
resistance to insect pests (Sharma et al. 2003), seed protein content and days to maturity
(Upadhyaya et al. 2013), and tolerance to high precipitation (Martin & Jones 1973,
Nimmakayala et al. 2011), the case can be made for increasing funding for collecting and
conservation so as to comprehensively conserve wild genetic resources. The window of
opportunity to fully collect and conserve this genetic diversity will not remain open indefinitely

(Wilkes 2007, FAO 2010).
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Along with ensuring their maintenance ex situ, further investment in genebank information
systems, ex situ conservation technologies (i.e., storage, testing, and regeneration), safety
duplication of unique germplasm, characterization and evaluation for traits of interest,
taxonomic and systematic studies, and breeding research are needed to mobilize wild genetic
resources for use in crop improvement (FAO 2010, Khoury ef al. 2010, Tester and Langridge

2010, Guarino & Lobell 2011, Henry 2014).

Access priorities for crop genetic diversity

Given the global geography of crop genetic diversity, it is evident that international
collaboration is critical to achieving access to these resources. The vast majority of countries,
even those located within the most ancient and richest primary regions of crop genetic diversity,
e.g., West Asia, are significant consumers and producers of crops whose genetic diversity
largely sources from outside their borders (Chapter 7). The importance of ‘foreign’ crops in
national food supplies and production systems is growing over time as national food systems
become more diverse and at the same time more homogeneous worldwide. These trends bolster
the rationale for considering genetic resources of internationally important crops as global
public goods, the common heritage of humankind, the conservation and facilitated access of
which should be proactively supported by all countries worldwide (FAO 2002, Esquinas-
Alcéazar 2005). They also reaffirm the critical importance of the germplasm collections
safeguarded by CGIAR and key national genebanks, which have born most of the burden of
germplasm distribution to the global agricultural research community over the past few

decades.

LIMITATIONS AND UNCERTAINTIES

The main limitations and uncertainties inherent in the thesis research relate to the reliability and
sufficiency of input information, and the robustness of modeling methods. Food supply and
production data managed by the Food and Agriculture Organization of the United Nations
(FAO) lack the specificity needed for an exhaustive analysis of changes in crop diversity
[Khoury et al. 2014 (Chapter 2)], and although significant efforts are being taken to improve
data variably reported by national institutions (e.g., FAO 2015), it is disappointing that annual
data was probably of greater scope and quality 35 years ago than it is now (R. Prescott-Allen,
personal communication 2014). Broad support for and increased investment in agricultural

statistics by all countries are critically needed in order to resolve these deficiencies.
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Significant further research is still needed to identify wild plant taxa, assess species boundaries
within taxonomic groups, and determine degrees of relatedness with associated crops, as
evidenced by the study on sweetpotato (Chapter 5). Incorrect or outdated species identifications,
synonymy, and erroneous or low resolution occurrence information are recognized challenges

in the utilization of the current openly available biodiversity resources (Gaiji ef al. 2013).

The rapidly evolving field of species distribution modeling is continuously improving in its
methodologies, but deficiencies and uncertainty are acknowledged (Dormann 2006, Hijmans &
Graham 2006, Graham et al. 2008, Jimenez-Valverde et al. 2008, Lobo et al. 2008, Loiselle et
al. 2008, Wisz et al. 2008, Fitzpatrick & Hargrove 2009), particularly in regard to sampling
bias due to the lack of absence information and imperfect sampling techniques (Aratijo &
Guisan 2006, Costa et al. 2010, Kramer-Schadt et al. 2013). The methods utilized in the thesis
drew upon the scientific literature to refine data inputs, capitalized on a large set of climatic and
edaphic variables to determine distributions, performed modeling with different variations of
this data in order to test robustness, and employed a set of statistical analyses to determine
confidence in the results. Further studies that validate modeling results (Jarvis et al. 2005,
Cobben et al. 2014) will be useful in the application of species distribution modeling to genetic
resources conservation planning. As the potential distributions maps created in this thesis and
elsewhere (e.g., Castafieda-Alvarez et al., 2015) are informing ongoing collecting missions
(Dempewolf et al. 2014), feedback from the fieldwork can result in improvements in the

methods used here.

While the analyses presented in Chapters 5 and 6 of this thesis revealed large eco-geographic
variation in wild populations compared with the cultivated species, further studies are needed
to correlate such variation with useful adaptive traits that can be bred into commercial
genotypes. Such analyses would improve the knowledge base on potential uses of crop wild

relatives.

An important tool employed in the gap analysis methodology to mitigate deficiencies and
uncertainty in input data and modeling techniques is the expert evaluation process, which can
involve a number of researchers and utilizes both quantitative and qualitative metrics (Chapters
4-6). Agricultural research in parallel with technology appears to be transitioning from high

quality restricted scope studies performed by a limited number of experts, to ‘big data’
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approaches drawing overall trends from large amounts of information. The expert evaluation
and the data processing and modeling steps bring together these classical and emerging methods
in the gap analysis, attempting to draw upon the strengths of both worlds. While the expert
assessments were considered to be extremely valuable in verifying the modeled results for the
crop genepools assessed here, the unfortunate reality is that there are fewer and fewer experts
left that have a full career of experience in taxonomy, genetic resources, and/or breeding. The
loss of these human encyclopedias on crop diversity has some regrettable parallels to the folk
tale of John Henry (Bradford 1931). Henry's ability as a (human) steel-driver was measured in
a race against the emerging technology of a steam powered hammer. Henry won, only to die in
victory with his hammer in his hand as his heart gave out from stress. As research transitions
from dependence on knowledge stored in human brains to data stored in online platforms,
improvements in data quality, modeling methods, and statistical analyses of significance of

trends will become ever more critical to the validity of results.

An additional uncertainty in regard to conceptualizing the future potential of crop genetic
diversity is that advancing molecular and breeding tools are expanding the capacity to
successfully introgress traits from distant relatives (Zamir 2001, McCouch et al. 2013, Henry
2014), making the boundaries of what might be considered potentially valuable related species
less obvious. Developments in cisgenic, transgenic, and gene editing techniques (Sander &
Joung 2014) will only widen the scope of possibility, with implications for genetic resource

conservation, exploration, and use.

This thesis represents concrete steps taken to conceptualize global change in crop diversity at
the species level, advance information on crop wild relatives for one country and for three crop
genepools, and contribute to policy arguments in support of facilitated access to crop genetic
resources of global importance. A comprehensive understanding of the diversity, conservation,
and utilization needs for genetic resources associated with the world’s crops requires parallel
and extended research efforts across other levels of diversity, regions and crop genepools. As
the present study proposes methods that rely upon openly available data, tools and software, it

is hoped that the effort will facilitate this further needed research.
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IMPACT
The results presented in this thesis have been received by the scientific community and the

public with remarkable interest.

The research on homogeneity in global food supplies (Khoury et al. 2014) was covered
extensively by the media, with over 300 articles, blogs, and podcasts published in the first year
following its release, including in top tier newspapers and journals such as Scientific American,
Time Magazine, and National Geographic (see the Publications of author section of this thesis
for references for a selection of these articles). This attention led to an altmetric score
considering the research among the top 100 articles ever published in PNAS, and within the 99"
percentile of all scientific articles ever tracked. The study was remarked upon by leaders of the
World Bank and CGIAR, inspired significant discussion on research and funding priorities in
CGIAR, generated a series of invited articles, blogs, and presentations given internationally,

and was further reproduced in academic textbooks, radio and television shows.

Research on crop wild relatives has also received considerable attention. The highly cited gap
analysis methodology (Ramirez-Villegas et al. 2010) has become a central method paper in the
field of exploration of diversity of wild relatives, and subsequent articles (e.g., Khoury et al.
2015) have a high number of viewings by scientists and the public. The national inventory of
the United States (Khoury et al. 2013) was also covered in American media and received the
2014 Crop Science Society of America C8 Division “Outstanding Papers in Plant Genetic

Resources” award.

A number of concrete actions associated with the present research are ongoing. Inspired by the
assessment of increasing homogeneity in global food supplies and subsequent research focused
on its implications in regard to agricultural development (Khoury & Jarvis 2014), CGIAR
international research centers are engaging in wider discussions regarding funding and research
priorities. Numerous crop genepool based gap analyses, bringing together a variety of
associated researcher experts, are in planning or have been initiated. A cumulative global
analysis communicating conservation concerns for over 1100 wild species related to 80 crops
is also nearing completion at the time of writing. Building upon the national inventory of the
United States, agencies are collaborating on refining knowledge on conservation concerns,

performing targeted collecting, and establishing management plans for the conservation of key
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iconic wild relatives in situ. Finally, the research on interdependence among countries on crop
genetic resources is being used as a formal submission to the Plant Treaty in contribution to

current negotiations for the potential expansion of scope and membership.

CLOSING REMARKS

How humanity will feed itself into the future remains an open question. Whether our ingenuity
will prove successful in finding new ways to innovate with natural resources to overcome
nutrition and production challenges as we surpass what appear to be safe planetary boundaries
(Rockstrom et al. 2009) remains to be seen. More than six decades ago, Aldo Leopold, a
preeminent American ecologist and conservationist, warned of the importance of natural

resource conservation to human wellbeing:

“To keep every cog and wheel is the first precaution of intelligent tinkering”

(Leopold 1949).

Sixty years later, it is clear that much work remains to be done to accomplish a comprehensive
global system for the conservation, exploration, access to, and use of crop genetic resources.
This work is more pressing than ever, given increasing homogeneity in the global food system,
the myriad of challenges facing agriculture, and threats to the survival of this diversity in the
wild, in farmers’ fields, and in under-funded genebanks. N. I. Vavilov’s oft cited statement on

the urgency of these efforts is still poignant:

“Time is short, time is short, there is so much to do” [N. 1. Vavilov, as recorded in

Cohen (1991)].
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Summary

The challenges to long-term global food and nutrition security are complex and compounding.
The increasing availability of energy-dense foods worldwide is reducing stunting and other
measures of undernutrition, but this nutrition transition demonstrates mixed success in
resolving micronutrient deficiencies, and the over-consumption of macronutrients is
contributing to the global surge in diet-related non-communicable diseases. Our growing
population and dietary expectations are projected to increase demand on food systems for at
least the next four decades, outpacing current yield trends. Limitations in land, water, and
natural resource inputs, competition for arable soils with non-food crops and other land uses,
the need to minimize harmful impacts on biodiversity and other ecosystem services, and greater
climatic variability further constrain production potential. Although future gains in food
availability may partially be obtained through dietary change and food waste reduction, an
increase both in productivity and sustainability on current agricultural lands is necessary. This
increase will be achieved through improved agronomic practices combined with the use of

varieties of crops with reliable yields under more adverse conditions.

As the source of traits employed for adaptation to biotic and abiotic stresses and for yield
increases through breeding, and the palette from which food systems may be further diversified,
crop genetic diversity is critical to increased productivity and sustainability. This biological
cornerstone of food security is generated through genetic mutation and recombination, and
further transformed through natural and artificial selection, and is therefore the product of the
evolution over time of crops and closely related wild plants in their agricultural and natural

habitats.

Expectations of increases in utilization of crop genetic diversity in order to address production
challenges are made under the assumption that adequate variation will be available for
exploration. Unfortunately, considerable erosion of crop genetic diversity is occurring through
economic development, demographic change, and habitat destruction. Due to the disappearance
of'this diversity in situ, i.e., in farmers’ fields and natural habitats, the world’s ex situ genebanks
originally established to make plant genetic diversity readily available to breeders for crop
improvement, have become essential repositories for crop diversity conservation, but these too

are vulnerable due to insufficient support and resources.
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Two points regarding the current state of the world’s heritage of crop genetic diversity are thus
clear - much remains to be done to secure the diversity threatened in situ and in under-funded
genebanks, and the window of opportunity to accomplish a comprehensive global system for

genetic resources conservation will not remain open indefinitely.

Among the factors hindering the conservation of crop genetic resources is a lack of essential
information regarding this diversity. A number of primary questions have not been fully
answered, including: (a) what is the status of diversity in our food systems, and where are the
greatest vulnerabilities?, (b) where can genetic diversity be found that can be useful in
increasing productivity and mitigating these vulnerabilities?, (c) is this genetic diversity
available in the present and in the long term?, and (d) if not available, what steps are needed to
improve the ability for researchers to access genetic resources critical for present and future

crop improvement?

This thesis aims to contribute to the knowledge required to answer these questions through an
exploration of the need for, potential of, challenges and constraints regarding, and necessary
steps to enhance the conservation and use of crop genetic resources. The research starts with an
investigation of the current state of diversity in global food supplies (Chapter 2). This also
represents an exploration into a longstanding two-part assumption in the field of genetic
resources — that humanity relies on relatively few crops for its survival, and that this list of

important crops is growing smaller over time.

In order to understand the state of diversity in global food supplies, trends over the past 50 years
in the richness, abundance, and composition of crop species in the national food supplies of
countries worldwide were assessed. Over this period national per capita food supplies expanded
in total quantities of food calories, protein, fat, and weight, with increased proportions of those
quantities sourcing from energy-dense foods. At the same time, the number of measured crop
commodities contributing to national food supplies increased, the relative contribution of these
commodities within these supplies became more even, and the dominance of the most
significant commodities decreased. As a consequence, national food supplies worldwide
became more similar in composition, correlated particularly with an increased supply of a
number of globally important cereal and oil crops, and a decline of other cereals, oil crops, and

starchy root and tuber species. The increase in homogeneity worldwide portends the
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establishment of a global standard food supply, which is relatively species rich in regard to
measured crops at the national level, but species poor globally. This research contextualizes the
need for the use of diverse genetic resources in crop breeding in order to mitigate vulnerability

created by greater homogeneity in global food supplies.

The thesis then delves into the potential for utilization of a particular set of genetic resources of
increasing interest globally — crop wild relatives. These weedy and wild cousins of cultivated
species have been used for many decades in order to introduce traits of value to crops through
breeding, particularly for pest and disease resistance. Their use in crop improvement is likely
only to increase because (a) information is improving regarding the identity, potential, and
conservation status of these plants, and digital data platforms are making this information more
readily available, (b) advancements in geographic information systems, due to increasingly high
resolution ecological data as well as evolving models and methods, are enabling a more
comprehensive conceptualization of the geographic distribution and conservation status of wild
species, (c) rapidly progressing classical and genomic tools, technologies, and methods are
facilitating their use in crop breeding, and (d) there is a growing interest in the use of exotic

genetic diversity in order to address compounding agronomic challenges.

Crop wild relatives are genetic resources at the nexus of a number of critical global challenges.
They have the potential to contribute significantly to crop improvement, helping to address food
security and development goals, while improving the adaptation of crops to climate change. At
the same time, as wild plants they are subject to a myriad of human caused threats to natural
ecosystems, including habitat modification, urbanization, mining, logging, changing fire
regimes, pollution, invasive species, overharvesting, and climate change. A focus on wild

genetic resources is thus timely both for conservation and food security objectives.

Research on crop wild relatives first concentrates on the identification of potentially important
wild genetic resources at the national level (Chapter 3). Focusing on the United States of
America, a large and eco-geographically diverse country with relatively advanced conservation
policy and active national genetic resources conservation efforts, the chapter presents an
inventory of crop wild relatives and other wild species of potential use in agricultural research.
The chapter also develops a method for prioritizing these wild species based upon their potential

to contribute to food security. The resulting National Inventory listed 4,600 taxa from 985

293



Summary

genera and 194 plant families, including wild relatives of potential value via breeding as well
as wild species of direct use for food, forage, medicine, herb, industrial, ornamental, and
environmental restoration purposes. Crop wild relatives were found to be related to a broad
range of important crops. Some potentially valuable species are threatened in the wild, and few
accessions of such taxa are currently conserved ex situ. The prioritization identified 821 taxa
from 69 genera primarily related to major food crops, with emphasis on approximately 285

native taxa from 30 genera that are most closely related to such crops.

Once potentially valuable crop genetic resources are identified, subsequent information is
needed regarding where they occur, what diversity they may possess, and how well conserved
and therefore available to crop breeders they are. Chapter 4 offers a ‘gap analysis’ methodology
to answer these questions at the crop genepool level, i.e., for the wild relatives associated with
any particular crop, with a case study on the wild relatives of bean (Phaseolus L.). This chapter
capitalizes on developments in the generation of and access to digital occurrence and eco-
geographic data as well as improvements in modeling wild plant species distributions,
intentionally utilizing freely available software and data. The method also includes a novel
expert evaluation methodology, using researchers knowledgeable in the distributions and
conservation concerns of crop wild relatives to assess the results. Of 85 assessed taxa, over half
were found to be highly under-represented in genebanks. Priority areas for collecting were

identified, particularly in central Mexico.

Chapters 5 and 6 represent advances on the basic methodology outlined in Chapter 4, taking
advantage of improvements in species targeting, occurrence data, modeling, and expert
feedback methods. The chapters also take an additional step by utilizing eco-geographic
information to indicate the potential for species and specific populations to possess traits of
value to crop improvement, particularly for abiotic stress tolerance. The chapters focus on crops
differing substantially in the state of existing information regarding associated wild relatives,

as well as historical use of the resources in crop improvement.

The potential for use of the crop wild relatives of sweetpotato [I[pomoea batatas (L.) Lam., .
series Batatas] is constrained by uncertainty in regard to species boundaries and their
phylogenetic relationships, the limited availability of germplasm with which to perform crosses,

and the difficulty of introgressing genes from wild species. Chapter 5 modeled the distributions
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of the fourteen species that are considered the closest wild relatives of sweetpotato, and found
that currently designated species differed among themselves and in comparison with the crop
in their adaptations to temperature, precipitation, and edaphic characteristics, and most species
also showed considerable intraspecific variation. With 79% of species identified as high priority
for further collecting, these crop genetic resources were found to be highly under-represented
in ex situ conservation systems and thus inadequately available to breeders and researchers.
Taxa and specific geographic locations were prioritized for further collecting, particularly in
diversity hotspots in Mesoamerica and in the extreme southeastern United States, in order to

improve the completeness of germplasm collections.

The use of crop wild relatives in pigeonpea [Cajanus cajan (L.) Millsp.] breeding has been
successful in providing important resistance, quality, and breeding efficiency traits. Current
breeding objectives for pigeonpea include increasing its tolerance to abiotic stresses, including
heat, cold, drought, and waterlogging. Like the sweetpotato study, Chapter 6 found considerable
variation among the fifteen wild relatives of the crop in regard to adaptations to climatic and
soil conditions. Likewise, the research assessed that these wild genetic resources are broadly
under-represented in ex sifu conservation systems, with 80% of species identified as high
priority for further collecting. Species and geographic locations particularly in southern India
and northern Australia were highlighted for further collecting in order to improve the
completeness of germplasm collections, with particular emphasis on collecting and conserving

populations possessing tolerance to abiotic stresses.

While conservation of crop genetic resources is fundamental to the availability of this diversity
for breeding, it is not the only major constraint to utilization. National and international policies
on crop genetic resources determine the real capacity for researchers to acquire diversity of
potential interest. The thesis culminates in an exploration of the implications of the global
geographic distribution of crop genetic diversity for food security, in particular the level to
which international collaboration is required in order to achieve access to genetic resources

where they are needed.

The research presented in Chapter 7 demonstrated that rich historical areas of crop genetic
diversity occur across the tropics and subtropics, extending into temperate regions in both

hemispheres. National food systems are thoroughly interconnected worldwide in regard to the
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geographic origins of crop diversity. Countries are highly dependent on crops whose genetic
diversity largely sources from outside their borders in their food supplies (68.7% as a global
mean across food variables) and in their national production systems (69.3%). This reliance is
evident even in countries located in regions of high indigenous crop diversity and has increased
significantly over the past half century, bolstering evidence for the need for effective national

and international policies to promote genetic resource conservation and exchange.

Chapter 8 provides a general discussion of the research and its main results. The chapter offers
a summary of the current status of conservation of the crop genetic resources targeted in the
thesis, identifying limitations in the study and suggesting future research in order to make
further progress on key questions in the field. The chapter also discusses the impact of the
research to date, and highlights ongoing activities that are building upon the efforts documented
here. Increasing awareness and information about the critical role of crop genetic diversity in
overcoming nutrition and production challenges offer a renewed opportunity to establish a more
comprehensive global system for its conservation and availability for use. Collecting,
improving conservation, performing further taxonomic, breeding, and associated research, and
resolving the politics of access to genetic resources are urgently needed in order to maximize

the potential for crop genetic diversity to contribute to improving food security.
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