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Summary 
The global animal food chain, including land use change, currently generates 14.5% of global emissions of the 
greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), as measured in CO2 
equivalents. The bulk of GHG emissions originate from CH4 emissions from enteric fermentation, CH4 and N2O 
emissions from manure management, CO2 and N2O emissions from feed production, processing and transport, 
and CO2 emissions from energy consumption. No research has until now been done to assess the uncertainties in 
GHG emission profiles of livestock. Until now, research on uncertainties has been limited to either one 
greenhouse gas and /or to agriculture in general. The objective of this research is to assess the uncertainty in 
the model inputs and parameters of GHG emission profiles of livestock sectors. This research is limited to three 
continents: Africa, Latin America and Europe. The GHG included are CH4, N2O and CO2. 

The uncertainties were estimated with MITERRA-Global, which is an environmental assessment model, calculates 
the global greenhouse gases (GHG) emissions as CO2, CH4, and N2O, other atmospheric nitrogen emissions such 
as NH3, NOx and the N leaching to ground and surface water. It is a deterministic and static model that calculates 
annual emissions using emission and leaching factors. The model calculates N leaching from housing and manure 
storage systems and agricultural soils, and soil carbon stock changes based on IPCC Tier1 emission factors. For 
N2O direct soil emissions a Tier2 approach is also available. Besides total emissions per region or hectare, the 
model can also express emissions per livestock sector or per product. The main input data for MITERRA-Global 
are: crop data, livestock data, feed data, fertilizer consumption data and spatial GIS data. The calculation is 
generally carried out at a sub-national level (i.e. administrative regions within a county) but the model`s output 
can also aggregated to national or continental levels. This research aims to assess the uncertainties in the model 
inputs and parameters of the simulated GHG emission profiles of livestock sectors as estimated by the MITERRA-
Global model. The uncertainty assessment focuses on the probability distribution functions (pdfs) and the 
uncertainty propagation to the outputs of the MITERRA-Global model. This research is limited to three continents: 
Africa, Latin America and Europe. The GHG assessed are CH4, N2O and CO2.  

The model output uncertainty is caused by uncertainties in model inputs, model parameters, and model structure 
and model resolution. This research`s uncertainty quantification is limited to uncertainties in model inputs and 
model parameters, which are quantified based on the defining characteristics of their probability distribution 
functions, considering their spatial- and cross-correlation. The uncertainties in model inputs and parameters are 
derived from time series of census data, literature review or expert knowledge. These model inputs and 
parameters are further divided in nine groups based on data/parameter type and greenhouse gas. The final 
model output uncertainty and each uncertainty contribution for each nine group are quantified using Monte Carlo 
approach. The results are determined for each continent for the total GHG emission from the livestock sectors, 
the GHG emissions per livestock sector, per livestock product and per livestock production process.  

Expressed as coefficient of variation (cv, as standard deviation divided by mean) results indicates that 1) The 
model input and parameter uncertainty ranges from 0.001 to 0.82; 2) the output uncertainty ranges from 0.12 
to 0.17 for total GHG emission, 0.15 to 0.18 for CH4 emission, 0.22 to 0.37 for N2O emission and 0.24 to 0.31 
for CO2 emission; 3) the uncertainty in Europe is lower than in the other two continents; 4) the uncertainty 
ranges from 0.12 to 0.19 for beef and milk, and from 0.14 to 0.28 for pork, chicken and eggs; 5) uncertainty 
contribution in total GHG emissions from livestock is mainly determined by the N and CH4 emission factors in 
Africa and Latin America, while in Europe, livestock parameters and other emission factors and parameters also 
have a substantial effect; 6) uncertainty in beef and milk products is for 80% determined by the CH4 emission 
factors and for 20% by the N2O emission factors. Uncertainty in pork is for 30% determined by the CH4 emission 
factors, for 50% determined by the N2O emission factors, and for 20% determined by other emission factors and 
parameters. Uncertainty in eggs and chicken is for 40% determined by the N2O emission factors, for 40% 
determined by other emission factors and parameters, and for 10% determined by activity data. The uncertainty  
of total GHG emissions of livestock sectors is higher in Africa and in Latin America than that in Europe. The 
uncertainty of CH4 emission is lower  than that of N2O and CO2. CH4 emission factors and N emission factors 
contribute the most to the model output uncertainty.  
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 Introduction 1.

1.1 Background 
The increasing ecological footprint of global animal production enhances concerns on environmental 
problems (Delgado, 1999; Delgado et al., 1999; Smil, 2002; Steinfeld et al., 2006; Galloway et al., 
2007). Expanding livestock sectors worldwide contribute to expansion of agricultural land and associated 
deforestation, emissions of greenhouse gases (GHGs) (Steinfeld et al., 2006), eutrophication of surface 
waters (Seitzinger et al., 2005; Boyer et al., 2006) and nutrient imbalances (Smaling et al., 2008; Menzi 
et al., 2010). The global animal food chain, including land use change, generates 14.5% of global GHG 
emissions as measured in CO2 equivalents (Gerber et al., 2013), while its contribution in Europe is near 
14% (Steinfeld and Wassenaar, 2007). However, the contribution of livestock production to global 
anthropogenic greenhouse gas (GHG) emissions varies highly across the world (Lesschen et al., 2011b). 
The Food and Agriculture Organization of the United Nations (FAO) (Gerber et al., 2013) reported Latin 
America and the Caribbean have the highest level of emissions (almost 1.3 Gton CO2-eq), driven by an 
important production of specialized beef. East Asia has the second highest level of emissions (more than 
1 Gton CO2-eq). North America and Western Europe have similar GHG emission totals (over 0.6 Gton 
CO2-eq) and also fairly similar levels of protein output. South Asia’s total sector emissions are at the 
same level as North America and Western Europe but its protein production is half what is produced in 
those areas (Lesschen et al., 2011b). Ruminants contribute a large share due to their high emission 
intensity. For the same reason, emissions in sub-Saharan Africa are large, despite a low protein output 
(Gerber et al., 2013). 

The main GHG emission pathways related to livestock production are emissions of carbon dioxide (CO2), 
methane (CH4) and nitrous oxide (N2O) (De Boer et al., 2011). The bulk of GHG emissions originate from 
four main categories of processes: CH4 emissions from enteric fermentation, CH4 and N2O emissions from 
manure management, CO2 and N2O emissions from feed production, processing and transport, and CO2 

emissions from energy consumption (Gerber et al., 2013). Among the GHGs mentioned above, CH4 is 
estimated to be the dominant emitted GHG (about 44% of the sector’s emissions). The remaining part is 
almost equally shared between N2O (29%) and CO2 (27%) (Gerber et al., 2013) . 

The mandatory national reporting under the UN Climate Change Convention is usually done with the 
IPCC inventory approach using various default emission factors (EFs) for N2O and CH4 emissions from 
different sources. Emission factors are defined differently for N2O and CH4 emissions within the IPCC 
guidelines. For N2O the EF is defined in terms of the mass fraction N2O-N emissions of the different N 
inputs, e.g. kg N2O-N (kg N input)-1 (IPCC, 2006). However, for methane, the term EF is defined as the 
actual emission of CH4 per animal head, e.g. the IPCC Tier 1 EF(T) is defined as emission factor for the 
defined livestock population, kg CH4 head-1 yr-1. For dairy and other cattle, however, a Tier 2 approach is 
recommended for countries with large livestock populations based on a CH4 conversion factor (CF, kg 
CH4/gross energy consumed with feed; assuming that 6.5% of the gross energy of the feed consumed is 
emitted as CH4 (IPCC, 2006; Kros et al., 2012b).  

There are two main types of models that have been developed to calculate the GHG emission profiles of 
livestock sectors: process-based dynamic models and empirically based models, which are usually 
emission factor (EF) based models. Kros et al. (2012b) classified the GHG models concerning livestock 
production as regional models, farm models and process models. Daycent (Del Grosso et al., 2005) is an 
example of a process based model, while CAPRI (Weiss and Leip, 2012) and MITERRA (Lesschen et al., 
2011a) are EF based regional model. MITERRA-Europe is partly based on the models CAPRI (Common 
Agricultural Policy Regionalized Impact) (Weiss and Leip, 2012), and GAINS (Greenhouse Gas and Air 
Pollution Interactions and Synergies) (Winiwarter, 2005), supplemented with an N leaching module, a 
soil C module and a module for mitigation (Lesschen et al., 2011b). There are, however, substantial 
uncertainties in the base data and applied methodology such as assumptions surrounding allocation of 
feeds to livestock species. 

Lesschen et al. (2011a) used the MITERRA model to assess regional variations in dairy, beef, pork, 
poultry and egg production, and related GHG emissions in the 27 Member States of the European Union 
(EU-27), while distinguishing enteric fermentation, manure management, direct and indirect N2O soil 
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emissions, liming, fossil fuel use and fertilizer production. On a per kg product basis, they calculated GHG 
emissions for of 22.6 kg CO2-eq/kg beef, 1.3 kg CO2-eq/kg milk, 3.5 kg CO2-eq/kg pork, 1.6 kg CO2-
eq/kg poultry, and 1.7 kg CO2-eq/kg eggs. They reported, however, large variations in GHG emissions 
per unit product exist among EU countries, which are due to differences in animal production systems, 
feed types and nutrient use efficiencies.  

No research has until now assess the uncertainties in GHG emission profiles of livestock (Kros et al., 
2012a; Kros et al., 2012b). So far, research on uncertainties has been limited to either one greenhouse 
gas and /or to agriculture in general. Del Grosso et al. (2010) performed a nation-wide uncertainty 
analysis using the DAYCENT model combined with an empirically based approach to quantify 
uncertainties in soil N2O emissions from croplands in the USA. Wang and Chen (2012) reviewed the 
state-of-the-art knowledge on the parameterization and uncertainty analysis of soil GHG emission 
models and presented case studies for comparing the model uncertainties of the denitrification 
components of four models; DAYCENT, DNDC, ECOSYS, and COMP. (Kros et al., 2012a) analysed the 
uncertainty propagation using the INTEGRATOR model for the emissions of N2O for the entire EU27 and 
for individual countries. Karimi-Zindashty et al. (2012) used a Monte Carlo simulation to estimate the 
uncertainties in CH4 emissions from livestock in Canada, using IPCC Tier 2 methodology. Sommer et al. 
(2009) assessed the whole-system effects of technologies for reducing GHG emissions from livestock 
model farms using slurry-based manure management. 

This research assesses the uncertainties in GHG emission profiles of livestock sectors in Africa, Latin 
America and Europe. It is a follow up of research carried out on average emissions for Europe (Lesschen 
et al., 2011b), while further extending the research to other parts of the world (Latin America and Africa). 
This work is part of the FP7 EU project AnimalChange (An Integration of Mitigation and Adaptation 
Options for Sustainable Livestock Production under Climate Change). The integrated EU project 
AnimalChange (www.animalchange.eu) aims to provide scientific guidance on the integration of 
adaptation and mitigation objectives and design sustainable development pathways for livestock 
production in Northern and Sub-Saharan Africa, Latin America and Europe. One of the key objectives of 
this project is to quantify and reduce uncertainties in greenhouse gas (GHG) emissions and assesses 
climate change impacts on livestock systems (including grasslands) at regional scales, through system 
analyses, experiments, measurements, modelling and uncertainty analyses (Kros et al., 2012b). 

1.2 Problem statement 
The problem which will be addressed during this research is the uncertainty quantification of CH4, N2O 
and CO2 emissions of livestock sectors in Africa, Latin America and Europe estimated by MITERRA-Global. 

IPCC (IPCC, 2006) provides guidance in estimating and reporting uncertainties associated with annual 
estimates of emissions and removals. Uncertainty is defined as lack of knowledge of the true value of a 
variable, that can be described as a probability density function (pdf) characterizing the range and 
likelihood of possible values (IPCC, 2006). Among all the concepts associated with conducting an 
uncertainty analysis, accuracy and precision raise most attention. Accuracy refers to the agreement 
between the true values and the average of repeated measured observations or estimates of a variable. 
Precision, on the other hand, stands for the agreement among repeated measures of the same variable 
(IPCC, 2006). Both accuracy and precision are used to describe the model uncertainty. Thus, the lack of 
accuracy (known as systematic errors) and the lack of precision (known as random errors) can both be 
regarded as model uncertainty. Compared with random errors, systematic errors are much more difficult 
to be quantified. However, quantification can be made by comparing model predicted emission data with 
other model predictions or measured emission data.  

As in many other models, the output uncertainty of the MITERRA model is determined by three 
categories of uncertainty sources: (1) model input and parameter uncertainty (2) model structure 
uncertainty, and (3) model solution uncertainty (Kros et al., 2012a). In the context of MITERRA model 
inputs and parameters (MIPs) refer to (1) Activity data such as animal numbers, crop yields, N fertilizer 
amounts (2) Model parameters, in terms of excretion and  emission factors and (3) Biophysical data such 
as climate, land use, soil (uncertainty not considered in this study). The model input and parameter 
uncertainty is the main focus of uncertainty source in this study. As it has been discussed above, the 
uncertainty caused by model structure is relatively difficult to quantify. A possible way to assess is to 
compare the results of MITERRA with the results from other models. The model solution uncertainty 
refers to errors caused by rounding, numerical evaluation of integrals, suboptimal optimization solutions, 
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etc. However, it is assumed to have a marginal contribution to the output uncertainty and can therefore 
be ignored (Kros et al., 2012a). 

In order to assess the uncertainties in model outputs, the uncertainties of the model inputs need to be 
quantified first. The approach taken to analyse the uncertainty will be to determine the uncertainties in 
activity data and emission factors, and then to combine the uncertainties to provide uncertainty 
estimates for the entire inventory (IPCC, 2006). The approach of this uncertainty assessment contains 
both uncertainty quantification (UQ) and uncertainty analysis (UA) using a Monte Carlo (MC) simulation 
approach.  

The UQ analyses the uncertainties in model inputs and model outputs, while UA quantifies the 
contribution of individual sources of uncertainties to the output uncertainty. For UQ all model inputs and 
model parameters are considered uncertain, ranging from activity data to model constants. For UA we 
will select groups of model parameters for which we estimate the uncertainty contribution. The 
uncertainty analysis (UA) is accomplished by a Monte Carlo (MC) simulation with only one model 
input/parameter (group) considered uncertain for which the contribution is to be estimated. The other 
model inputs are considered certain by using their default values as stored in the MITERRA-Global 
database (Kros et al., 2012a).  

Some model inputs/parameters are correlated with other model inputs/parameters, which affects the 
uncertainty estimation (Kros et al., 2012a). Moreover, uncertainty about spatially distributed inputs 
tends to be positively spatially correlated, and this influences the degree to which uncertainties cancel 
out by spatial aggregation (Heuvelink and Pebesma, 1999). Therefore, when quantifying the uncertainty 
of model inputs and parameters mentioned above, both of their cross-correlations and spatial 
correlations will be taken into account. 

1.3 Research objective and research questions 

1.3.1  Research objective 
The general research objective is to assess the uncertainty in the model inputs and parameters (MIPs) of 
GHG emission profiles of livestock sectors in Africa, Latin America and Europe by a Monte Carlo analysis. 
The analysis includes probability distribution functions (pdfs) and propagation of uncertainties in the 
outputs of the MITERRA-Global model.  

1.3.2  Research questions 
The two main research questions, which will be addressed in this study, are: 

1. What are the uncertainties in CH4, N2O and CO2 emissions from livestock sectors in in Africa, 
Latin America and Europe?  

2. Which model inputs and/or parameters are the main sources of uncertainty contributing to the 
output uncertainty in CH4, N2O and CO2 emissions of livestock sectors in the three continents? 

These questions will be tackled by answering the following sub-questions: 

1. What are the main input data and parameters to be analysed in the uncertainty assessment?  
2. How can a statistical model (pdf) be built that fully characterizes the uncertainty of the main 

selected input data for MITERRA-Global for the various continents, described as probability 
distributions, including cross correlation for certain pairs of model inputs and/or spatial 
correlation in these uncertainties where relevant? 

3. How can model inputs and parameters realizations be sampled efficiently from their pdfs by 
using stochastic simulation techniques? 

4. How can the uncertainty propagation analysis be carried out in batch mode and its results be 
stored automatically? 

5. What is the uncertainty in the CH4, N2O and CO2 emissions of livestock sectors in the three 
continents and which model inputs and/or parameters contribute the most to this uncertainty? 

6. How can the results of the uncertainty contribution analysis be summarized and visualized and 
thus efficiently communicated to end-users in the three continents?  
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1.3.3  Structure of the report 
In addition to the introduction chapter, this report contains another four Chapters. Chapter 2 describes 
the Methodology for uncertainty quantification (UQ) and uncertainty analysis (UA) and how this 
methodology is applied to the MITERRA-Global model. Chapter 3 provides the results for the uncertainty 
quantification (UQ) and uncertainty analysis (UA). Chapter 4 provides the discussion and 
recommendations for the methodology and for the results. Chapter 5 provides the general conclusions of 
the research. 
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 Methodology 2.
A Monte Carlo (MC) analysis was used to analyse uncertainty of GHG emissions of livestock sectors in 
Africa, Latin America and Europe, using the MITERRA-Global model. The analysis includes uncertainty 
quantification (UQ) and uncertainty analysis (UA). UQ and UA are important subjects of AnimalChange 
project (Kros et al., 2012b). This methodology is descript by Kros et al. (2012b), adapted from Heuvelink 
et al. (2009). The purpose of UQ is to quantify the model input uncertainty and the model output 
uncertainty. Whereas UA is used to determine how much the individual (group of) model input 
uncertainty contribute to the model output uncertainty. Eight steps are identified in this methodology 
(Kros et al., 2012b): 

1. Defining the model, its inputs and outputs. 
2. Selection of uncertainty sources and the uncertain model inputs. 
3. Uncertainty quantification in model inputs. 
4. Method to combine uncertainties: Monte Carlo simulation. 
5. Selection of model outputs for which the uncertainty is assessed. 
6. Uncertainty quantification in model outputs. 
7. Uncertainty analysis of model inputs. 
8. Communicate the outcomes of the UQ/UA. 

Step 1 to step 7 were executed sequentially. Step 8 was applied to interpreted the UQ/UA results in the 
relevant steps.  

2.1 Estimation of GHG emission from livestock with 
MITERRA-Global 

MITERRA-Global is an environmental assessment model, which calculates emissions greenhouse gases as 
CO2, CH4, N2O and atmospheric nitrogen emissions as N2O, NH3, NOx and NO3 leaching to ground and 
surface water on a deterministic and annual basis using emission and leaching factors (Lesschen et al., 
2011a). The main emission pathways related to livestock production are shown in Figure 1.Those 
pathways are all included in the MITERRA-Global model except for food and feed processing. 

The modelling concept of MITERRA-Global is based on the MITERRA-Europe model (Velthof et al., 2009; 
Lesschen et al., 2011). MITERRA-Europe was partly based on the models CAPRI (Common Agricultural 
Policy Regionalised Impact), and GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies), 
supplemented with an N leaching module, a soil carbon module and a module for mitigation measures. 
Input data consists of activity data (e.g., livestock numbers, crop areas, animal production from Eurostat 
and FAO), spatial environmental data (e.g., soil and climate data) and emission factors (IPCC and 
GAINS). The model includes measures to mitigate GHG and NH3 emissions and N leaching and runoff. 

MITERRA-Global follows the same model structure as MITERRA-Europe based on relatively simple and 
transparent calculations using emission factors and statistical data. The main inputs and outputs of the 
MITERRA-Global model are given  in Figure 2. The main input data for MITERRA-Global are crop data, 
livestock data, feed data, fertilizer consumption data and spatial data (GIS data) on land cover, soil and 
climate. Outputs include N and P budgets and GHG emissions, the latter being the focus of this study. 
Besides total emissions per region or hectare based emissions, the model can also express emissions on 
a per product basis, following the top-down LCA based approach as described in Lesschen et al. (2011a). 

The calculation is carried out on a sub-national level. which is the level for which statistical input data are 
available for the main activities. The output can be provided at sub-national, national or continental level. 

MITERRA-Global accounts for the following GHG sources: CH4 from enteric fermentation, CH4 and N2O 
from manure management, direct and indirect N2O soil emissions, CO2 and N2O from organic soils, CO2 
from liming and urea application, and GHG from fertilizer production and fossil fuel use. All emissions are 
converted to CO2-eq using most recent estimates of 100 years global warming potential (GWP) values 
(IPCC, 2007), which are for CH4 and N2O 25 and 298 times the GWP of CO2, respectively (Lesschen et al., 
2014).  

CH4 emission from enteric fermentation were calculated using Tier1 emission factors (EF) derived from 
IPCC (2006). These Tier1 EFs are animal and continent specific. For EU27 country specific emission 
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factors are used for cattle. Tier2 approach is applied for enteric fermentation once the feed intake 
procedure is fully implemented in the model. This approach accounts for the amount and quality of feed 
intake and will therefore be country specific.  

The N2O emissions from agricultural soils consist of direct and indirect soil emissions. Direct N2O 
emissions are from application of N fertilizer and animal manure, crop residues and cultivation of organic 
soils, urine and faeces produced during grazing. Indirect N2O emissions are from N leaching, runoff and 
from atmospheric deposition of N volatilised from managed soils. The N2O emissions were calculated 
from IPCC (2006) EFs.  

 

 

Figure 1 Main emission pathways of CO2, CH4 and N2O related to livestock production (De Boer 
et al., 2011) as included in the MITERRA model (except for food and feed processing). 

 

 

Figure 2 Inputs and outputs of the MITERRA model (adapted from Lesschen et al. (2011a)) 
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Anaerobic decomposition of organic material in flooded rice fields produces methane, which escapes to 
the atmosphere primarily by transport through the rice plants. These emissions from rice cultivation are 
calculated according to the IPCC (2006) guidelines as a function of emission factors, cultivation period of 
rice and annual harvested are of rice. 

Drainage and tillage of organic soils leads to loss of C due to accelerated organic matter decomposition. 
The CO2 emissions from organic soils are calculated using IPCC (2006) EFs which distinguish arable land 
from grassland. In addition, CO2 emissions from liming and urea application are included based on the 
carbon content and IPCC (2006) EFs for these soil additives.  

For manure management the IPCC (2006) emission factors were used. For CH4 the EFs depend on animal 
type, average annual temperature and manure system. These EFs are region specific on the basis of the 
average annual temperature.  

 

2.2 Defining the uncertain model inputs and parameters 
As stated before, the uncertain sources include (1) model input and parameter uncertainty (2) model 
structure uncertainty, and (3) model solution uncertainty (Kros et al., 2012a). The model input and 
parameter uncertainty is the focus of this study. The model inputs and parameters (MIPs) that are 
considered in this uncertainty assessment are delivered by the group of MITERRA-Global developers. The 
MIPs, which can directly and/or indirectly influence the GHGs emissions (CH4, N2O and CO2 emissions) 
are selected. 

Although the spatial support of MITERRA-Global is sub-national regions, not all MIPs were available for 
each sub-national level. Based on the data sources, four different spatial levels are identified, i.e. sub-
national level, national level, continental level and generic level. The sub-national level is the lowest 
spatial level used in MITERRA-Global. In Europe the NUTS-2 regions are used. In Africa and Latin 
America, provinces or groups of provinces are used. The units of national level are equivalent to the FAO 
countries. The continental level uses IPCC continents. Inputs and parameters at generic level remain the 
same among continents. There were 89 MIPs selected and they are provided in Table 1 with their code, 
spatial levels and their meaning.  
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Table 1 Selected model inputs 

Nr. Code Spatial level Meaning 
1 AgroMapsCA_barley sub-national Crop(barley) area at sub-national level from Agromaps1 
2 AgroMapsCA_maize sub-national Crop(maize) area at sub-national level from Agromaps 
3 AgroMapsCA_other sub-national Crop(other) area at sub-national level from Agromaps 
4 AgroMapsCA_soybean sub-national Crop(soybean) area at sub-national level from Agromaps 
5 AgroMapsCA_wheat sub-national Crop(wheat) area at sub-national level from Agromaps 
6 AgroMapsCropProd sub-national Crop production at sub-national level from Agromaps 
7 BMFac_Gras generic fraction of N of bruto mineralisation available on grass 
8 BMFac_OtherAreable generic fraction of N of bruto mineralisation on arable land  
9 bNumAniRAINS national Animal numbers at country level for EU countries from GAINS 

10 CAPRI_NumAni sub-national Livestock numbers at NUTS2 level for EU 

11 CH4_EF_EntFer_cs sub-national Enteric fermentation (kg CH4 per animal per year) for cattle 
and sheep 

12 CH4_EF_EntFer_other sub-national Enteric fermentation (kg CH4 per animal per year) for other 
animals 

13 CH4_EF_ManManage sub-national Manure management methane EF by temperature (kg CH4 per 
head per year) 

14 CO2_L_gasoil generic CO2 EF for gasoil kg CO2/litter 
15 CompositionFertilizer generic Nutrient content of fertilizers in % (based on FAOSTAT data) 
16 CropAreaCAPRI sub-national Crop area at NUTS2 level for EU 
17 CropProperties sub-national only fuel use 

18 DevCrop sub-national Percentage of manure reserved for fodder crops (grass and 
fodder crops) 

19 EF_Fert_Prod national emission factors for fertilizer production 
20 EF1 sub-national emission fraction EF1 kg N-N2O per kg N(IPCC-1997) 

21 EF2 generic emission from histosols per ha EF2 in kg N-N2O per ha (IPCC-
1997) 

22 EF4 generic factor for indirect emission due to emission of ammonia kg N-
N2O per kg NH3 en NOX 

23 EF5 sub-national emission fraction of indirect emissions EF5 IPCC, 1997 pr kg 
N-N2O leaching and runoff 

24 EffFact generic 
Over fertilization factor, based on MITERRA-Europe. Set at 
1.25 for most crops, 1.1 for cereals and 1 for grass and 
perennial energy crops 

25 EU_ani sub-national horses and other animal numbers at NUTS2 region for EU, 
only for N excr is used 

26 Excr_EU sub-national N excretion for EU countries based on GAINS (only N 
excretion is used) 

27 FAO_AnimalProd national Animal production data (mostly expressed in tonnes) 
28 FAO_LandAreas national Land areas (1000 ha) 
29 FAO_NatCA_barley national Area Harvested (ha) for barley 
30 FAO_NatCA_maize national Area Harvested (ha) for maize 
31 FAO_NatCA_other national Area Harvested (ha) for other crops 
32 FAO_NatCA_soybean national Area Harvested (ha) for soybean 
33 FAO_NatCA_wheat national Area Harvested (ha) for wheat 
34 FAO_NatCP_barley national Production (tonnes) for barley 
35 FAO_NatCP_maize national Production (tonnes) for maize 
36 FAO_NatCP_other national Production (tonnes) for other 
37 FAO_NatCP_soybean national Production (tonnes) for soybean 
38 FAO_NatCP_wheat national Production (tonnes) for wheat 
39 FAO_NatFertilizer national Fertilizer consumption (tonnes of nutrients) 

1 http://kids.fao.org/agromaps/index.html  
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Table 2 Selected model inputs (Continued) 

40 feedset_Animals national Use of livestock items for animal feed per country from 
FAOSTAT) 

41 feedset_Crops national Use of crop items for animal feed per country from FAOSTAT) 
42 FertilizerType national Fertilizer consumption by fertilizer type from FAOSTAT 
43 Fqatm generic Fraction of deposited N available for crops 
44 Fqbiol generic Fraction of fixed N available for crops 
45 FQGraz generic fraction of N in plant available N from grazing 
46 FracR sub-national Fraction of crop residues that are removed (e.g. straw) 

47 GrasCorrEU sub-national Fraction of total grassland area that is classified as rough 
grazing (according to FSS definition) 

48 Grass_Yield sub-national Grassland yield (kg DM/ha) 
49 GrassCorrection sub-national Estimated fraction of natural grassland 
50 GrassYieldEstimate sub-national Estimated grassland yield (kg DM/ha) 
51 IPCC_Nexcretion sub-national N excretion (kg N per animal per year) 
52 LandCoverMap sub-national Area of land cover types 
53 LD_Buffaloes sub-national Number of buffaloes per sub-national region 
54 LD_Cattle sub-national Number of cattles per sub-national region 
55 LD_Chickens sub-national Number of chickens per sub-national region 
56 LD_Goats sub-national Number of goats per sub-national region 
57 LD_Pigs sub-national Number of pigs per sub-national region 
58 LD_Sheep sub-national Number of sheep per sub-national region 
59 LeachingStorage sub-national Leaching fraction of leaching from manure storages 
60 LivestockCountryTotal national Livestock number per country 
61 ManureSU_Burned continental Manure management system usage (%) burned 
62 ManureSU_DailySpread continental Manure management system usage (%) daily spread 
63 ManureSU_Digester continental Manure management system usage (%) digester 
64 ManureSU_Drylot continental Manure management system usage (%) drylot 
65 ManureSU_Lagoon continental Manure management system usage (%) lagoon 
66 ManureSU_Liquid continental Manure management system usage (%) liquid 
67 ManureSU_Other continental Manure management system usage (%) other 
68 ManureSU_Pasture continental Manure management system usage (%) pasture 
69 ManureSU_SolidStorage continental Manure management system usage (%) solid storage 
70 N_deposition_data sub-national NH3 and NOx deposition per region for 1860, 1993 and 2050 

71 N2_animal_EF sub-national N2 Emission factors from manure management based on 
EMEP-EEA 2009 guidebook 

72 N2O_grazing sub-national N2O-N emission factor for grazing 

73 N2O_manure_storage sub-national N2O-N emission factor (fraction) for manure management 
based on IPCC 2006 guidelines 

74 NH3_animal_EF sub-national Emission factors based on EMEP-EEA 2009 guidebook 

75 NH3_fert_EF sub-national Emission factors for total NH3 emissions from soils due to N 
fertiliser volatilization 

76 Nharvest sub-national Nutrient content of harvested crops g/kg harvested product 
77 Nindex generic Ratio of N in harvested crop versus residues 

78 NO_animal_EF sub-national NOx emission factors from manure management based on 
EMEP-EEA 2009 guidebook 

79 orgNGRaz generic fraction organic N in grazing manure 
80 OrgNLiqMan generic organic N (fraction) in liquid manure 
81 OrgNSolMan generic organic N (fraction) in solid manure 
82 PesticideUse national average level of pesticide use per ha in a country 
83 Precipitation sub-national Precipitation data per region in mm 
84 ShareFeed national Share of feed category per livestock type 
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Table 3 Selected model inputs (Continued) 

85 Temperature sub-national Temperature data per region in mm 
86 Texture_Clay sub-national Fraction of area with  soil texture clay 
87 Texture_Loam sub-national Fraction of area with  soil texture loam 
88 Texture_Sand sub-national Fraction of area with  soil texture sand 
89 TractorDensity national proxy parameter for the level of mechanisation of agriculture 

 

2.3 Quantifying the model input and parameter uncertainty 
The uncertainty of the model inputs are represented by probability distribution functions, extended by 
including the spatial-correlation (for the same MIP between different spatial locations) and cross 
correlation (between MIs at the same location).  

To limit the complexity of calculation, the pdfs are only derived for the continuous numerical MIPs. The 
approach for uncertainty quantification in the MIPs is adapted Kros et al. (2012b). For each MIP, the 
following characteristics are identified: 

• The probability distribution functions (pdfs) 
• The spatial-correlations  
• The cross correlations 

The full table of uncertainty quantification results is provided in Annex 2. 

2.3.1  The probability distribution functions 
Different distributions were used depending on whether the input or parameter is measured on a 
continuous numerical scale on a discrete numerical scale or on a categorical scale. It matters whether 
the input is constant in space and time or varies in space and/or time (Kros et al., 2012b). 

A sample consists of uncertain continuous numerical constant variables ((x1,y1),(x2,y2),...,(xn,yn)) is 
characterized by its cumulative distribution function (cdf) F of a continuous numerical variable X:  

 FX((x1,y1),(x2,y2),...,(xn,yn)) = P(Y(x1)≤y1, Y(x2)≤y2,...,Y(xn) ≤yn)   ( 1 ) 

The cdf is a continuous, non-decreasing function on the real numbers. The limit values are FX(-∞)=0 and 
FX(+∞)=1. The probability density function is the first derivative of F. The surface area below an interval 
describes the possibility a variable in sample Y. Figure 3 shows the plot of cdf and pdf. 

 

Figure 3 Plot of Cumulative distribution function and probability density function 

The parameters to describe a pdf include: 1) mean (µ), 2) minimum and maximum values, 3) 
distribution type and 4) measure of dispersion (in terms of standard deviation (σ) or coefficient of 
variation (cv), i.e. σ /µ). For this research, the mean (µ) of each model input/parameter (MIP) was read 
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in as default value in MITERRA-Global. The minimum and maximum values of the MIPs were are set 
based on the characteristics of each MIP: 

• For fractions, a minimum of 0 and maximum of 1 was used. Furthermore, for sets of MIs 
representing fractions with sum 1, a maximum sum 1 was applied. 

• For other MIs the minima and maxima were not fixed, but a physical minimum and a physical 
maximum was used. The physical minima and maxima depend on the system boundaries of the 
model. The minima and maxima may also be derived by the model developers. 

The Gaussian (normal) distribution is most often assumed to describe the random variation that occurs in 
the data from many scientific disciplines; the well-known bell-shaped curve can easily be characterized 
and described by two values: the arithmetic mean µ and the standard deviation σ, so that data sets are 
commonly described by the expression µ ± σ. However, many measurements show a more or less 
skewed distribution. Skewed distributions are particularly common when mean values are low, variances 
large, and values cannot be negative (Limpert et al., 2001). As it was described in Limpert et al. (2001) 
such skewed distributions closely fit the log-normal distribution. Figure 4 shows the example of a normal 
distribution and a lognormal distribution.  

 

Figure 4 Normal distribution and lognormal distribution 

A random variable X is log-normally distributed if log (X) has a normal distribution. Usually, natural 
logarithms are used, but other bases would lead to the same family of distributions, with rescaled 
parameters (Limpert et al., 2001).  

Hence, we chose two types of distributions to describe the MIPs: normal distribution and lognormal 
distribution (for skewed MIPs). When the mean values are not too small and the variance is not too large, 
a normal distribution is assumed. When the mean values are low, the variance is large and there is a 
multiple effect, a lognormal distribution is assumed. For lognormal distribution natural logarithm is used. 

The dispersion of normally distributed MIP is defined by the coefficient of variation (cv). A normally 
distributed MIP is denoted as X~N(µ, σ2). The parameters used to describe X are the mean (µ), and the 
variance (σ2). The standard deviation (σ) is the square root of the variance. Thus, the cv of a normal 
distribution X is:  

cv = σ/µ, X~N(µ, σ2)      ( 2 ) 

If the MIP is lognormal distributed, it is denoted as L~Λ (µ*, σ*2), where µ*
 and σ* denote the µ and σ of 

the log-transformed MIP values. 

The standard R package stat2 provides a calculation of the variance of a lognormal distribution. The 
probability density function (pdf) of a lognormal distribution Y, using the natural logarithm, equals to:  

2 http://stat.ethz.ch/R-manual/R-patched/library/stats/html/Lognormal.html 
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F(L)  = 1
 l ∙ σ√2 π 

exp (− 1
2σ2 (log(l) − µ)2)      ( 3 ) 

where μ and σ are the mean and standard deviation of the log transformed data.  

The mean of L is:  

µ∗  = exp (µ + 1
2

σ2)      ( 4 ) 

The variance of L is: 

σ∗2  = exp(2µ + σ2) ∙ (exp(σ2) − 1)    ( 5 ) 

Hence, the coefficient of variation is:  

cv∗ = �exp (σ2) − 1       ( 6 ) 

This cv* is approximately σ when that is small (e.g., σ < 0.5). 

2.3.2  Deriving the pdfs for model inputs 
The information regarding the pdfs of the model inputs is obtained from the MITERRA-Global group 
(expert knowledge) and online data base (FAOSTAT). The information for defining the spatial and cross-
correlation came from expert knowledge and previous research Kros et al. (2012a).  

Based on the data sources and data types, the MIPs are grouped into two categories with different 
uncertainty quantification methods:  

1. Input and parameter uncertainty derived from census data;  
2. Input and parameter uncertainty derived from literature and expert judgment 

The following session will explain which inputs are included in each category, the reasoning behind and 
the calculated/assigned uncertainty for each parameter. 

1. input and parameter pdf derived from census data 

Census data from FAO do not provide the associated uncertainty. However, we used the temporal 
variation in the yearly data as a proxy for the uncertainty. Since for census data, the sample size is the 
whole population, the variation obtained from data is equivalent to the variation of the population. The 
variation reflects the random error in data collecting and the variance of the true value.  

The database of FAOSTAT provide census data for the past. Thus, the pdfs of the MIPs which are derived 
from FAOSTAT will be calculated for the past 10 to 15 years (depends on the data availability), and used 
as the pdfs for the corresponding MIPs. Following are the parameters to describe the pdfs.  

Because those MIPs are all activity data on, a physical minimum (0) and a physical maximum (infinity) 
are used. For the FAO inputs, the mean values are usually large (e.g. annual crop production of a 
country) and the variances are usually very small. According to the rule described in section 2.3.1, a 
normal distribution is applied for all the MIPs in this group. 

The uncertainties of the inputs from the FAO database are calculated from the annual data from the past 
10 to 15 years. Since there is a clear difference for each input between continents, cv`s were derived for 
each continent and the results are presented in Table 4 .  

Note, however that this variation not only represent uncertainty, but also the “real” year-to-year 
variation and/or trend. For the data collected from the same country of the same category from different 
years, trends exist over years (see example below and Annex 1). Hence, the cv is corrected by the trend, 
by adding a linear least square fit line. For each input, a generic cv is calculated with the following 
procedures. Here the FAO crop area data (part of the original see Annex 1) is used as an example. The 
developed R script is provided in Annex 5. 
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Table 4 FAO input cv`s for each continent 

Code 
Eastern 
Europe 

Western 
Europe 

Middle 
East Asia 

Indian Sub-
continent 

North 
America 

Latin 
America Africa Oceania 

FAO_ 
AnimalProd 0.04 0.03 0.07 0.03 0.02 0.02 0.05 0.07 0.03 
FAO_ 
LandAreas 0.002 0.01 0.01 0.01 0.01 0.003 0.004 0.004 0.01 
FAO_ 
NatCA_barley 0.08 0.05 0.08 0.04 0.04 0.05 0.07 0.11 0.08 
FAO_ 
NatCA_maize 0.08 0.05 0.08 0.04 0.04 0.05 0.07 0.11 0.08 
FAO_ 
NatCA_other 0.08 0.05 0.08 0.04 0.04 0.05 0.07 0.11 0.08 
FAO_NatCA_ 
soybean 0.08 0.05 0.08 0.04 0.04 0.05 0.07 0.11 0.08 
FAO_NatCA_
wheat 0.08 0.05 0.08 0.04 0.04 0.05 0.07 0.11 0.08 
FAO_NatCP_ 
barley 0.16 0.09 0.11 0.05 0.08 0.08 0.09 0.11 0.19 
FAO_NatCP_
maize 0.16 0.09 0.11 0.05 0.08 0.08 0.09 0.11 0.19 
FAO_NatCP_ 
other 0.16 0.09 0.11 0.05 0.08 0.08 0.09 0.11 0.19 
FAO_NatCP_ 
soybean 0.16 0.09 0.11 0.05 0.08 0.08 0.09 0.11 0.19 
FAO_NatCP_
wheat 0.16 0.09 0.11 0.05 0.08 0.08 0.09 0.11 0.19 
FAO_ 
NatFertilizer 0.13 0.10 0.22 0.13 0.06 0.06 0.16 0.26 0.15 
feedset_ 
Animals 0.14 0.15 0.10 0.14 0.03 0.09 0.15 0.17 0.18 
feedset_ 
Crops 0.20 0.12 0.14 0.08 0.11 0.07 0.14 0.12 0.18 
Fertilizer 
Type 0.82 0.93 0.75 0.54 0.15 0.81 0.38 0.84 0.91 

 

Example: FAO crop area data 

Annual data from 2000 to 2012 (13 years) were collected. Observations of the FAO crop area data (O) 
are given as a three-dimensional data set, in which every observation is denoted by a country code (k), 
a crop code (l) and a year variable (m). These observations were collected and stored as shown in Table 
5.  

Table 5 Example of a record with FAO crop area data 

Row Country Crop Year 1 Year 2 Year 3 Year 4 Year 5 ... Year n 

i k l Ok,l,m1 Ok,l,m2 Ok,l,m3 Ok,l,m4 Ok,l,m5 ... Ok,l,mn 
 

First I analysed the data to see if trend exists. It is detected that for most of the data there is an 
increase in the trend. Since for the higher observation data, the uncertainty weighs more in the overall 
uncertainty, the highest 15 sets of data is plotted in Figure 5. From the plot, clear trend can be observed 
for most of the observations over years. 

As a result, when calculating the variance for the model input, the effect of the trend should be removed. 
First, for each row (for year k, crop l and year from 2000 to 2012) the cv of the FAO trend data is 
estimated by using the root mean square error (RMSE), being the quadratic sum of the mean error of an 
observation (Oi) and the predicted (Pi) value based on a linear trend (Janssen and Heuberger, 1995):  

RMSE = �∑ (Pi−Oi)2i
N

      ( 7 ) 
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Figure 5 Plot of the highest five FAO crop area data for soybean over 13 years* 

*The countries shown in Figure 5 refer to: India, Brazil, USA, China and Argentina (in the legend, from 
top to bottom). 

The RMSE should be approximately equal to the standard deviation of the measurement noise (Janssen 
and Heuberger, 1995). This means that the normalized RMSE (NRMSE), i.e. the RMSE divided by the 
mean of the observations equals the cv or row i: 

cvi ≈ NRMSE =
�∑ (Pi−Oi)2i

N
Oi

     ( 8 ) 

The cvi is the average of cvi,j weight by the expected crop area CAEi,j 

Then the generic cv for crop area cvcrop_area is calculated as follows: 

𝐜𝐯𝐜𝐫𝐨𝐩_𝐚𝐫𝐞𝐚 = ∑ 𝐜𝐯𝐢∗𝐦𝐞𝐚𝐧𝐢
∑ 𝐦𝐞𝐚𝐧𝐢

     ( 9 ) 

2. Input and parameter pdf derived from literature and expert judgment 

The inputs and parameters of which the uncertainties cannot be derived from historical data were 
estimated on the basis of literature data and expert knowledge. The minimum and maximum values, and 
the distribution type were estimated based on the system boundaries of MITERRA-Global model and 
literature. The variance is calculated or estimated differently, based on the information availability. 

The estimation of the minima and maxima follows the rule described in 2.3.1. The MITERRA-Global 
developers delivered the estimations. As it has been discussed in 2.3.1, usually a normal distribution was 
assumed. However when the mean value was low, variance large, and values are not allowed to be 
negative, a lognormal distribution was assumed. The variance is expressed in terms of cv. There are two 
ways of defining the variance: a) from literature directly and b) from literature and expert judgment. 

a. cv derived from literature 
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For some of the MIPs, uncertainty information was found from literature. This group of MIPs is 
summarized in Table 6 . 

Table 6 Uncertainties of model inputs and parameters derived from literature 

Model input code Literature source cv sd Distribution type min max 

N2O_manure_storage Flugsrud and Hoem (2011) 0.35  Lognormal 0 0.5 
CO2_L_gasoil Flugsrud and Hoem (2011) 0.03  Normal 0 5 
CH4_EF_ManManage Flugsrud and Hoem (2011) 0.25  Normal 0 250 
CH4_EF_EntFer_cs Flugsrud and Hoem (2011) 0.25  Normal 0 250 
CH4_EF_EntFer_other Flugsrud and Hoem (2011) 0.40  Normal 0 150 
NH3_fert_EF Monni et al. (2004) 0.30  Normal 0 0.5 
EF5 Monni et al. (2004)  0.50 Lognormal 0 0.5 
EF1 IPCC (2006)  0.28 Lognormal 0 0.5 
EF2 IPCC (2006)  0.63 Lognormal 0 50 
EF4 IPCC (2006)  0.82 Lognormal 0 0.5 
N2O_grazing IPCC (2006)  0.57 Lognormal 0 0.57 
 

However, this uncertainty information is usually provided with lower and upper limits. In order to derive 
the pdfs required for this research, calculations are needed. The calculation process is explained using 
the example of MIPs of which the uncertainty information can be derived from the IPCC. The information 
is summarized in Table 7. The calculation is explained below using EF1 as an example. 

Table 7 Uncertainty information derived from IPCC 

 
Information provided by IPCC Log-transformed properties 

  IPCC min IPCC mean IPCC max mean min max sd 

EF1 0.003 0.01 0.03 -4.61 -5.81 -3.51 0.28 
EF2 2 8 24 2.08 0.69 3.18 0.63 
EF4 0.002 0.01 0.05 -4.61 -6.21 -3.00 0.82 
N2O_grazing 0.007 0.02 0.06 -3.91 -4.96 -2.81 0.57 
 

For EF1, the IPCC (IPCC, 2006) provides a default value with minimum and maximum values. The 
default is assumed to be the mean of EF1. From the deviance of minimum and maximum from the 
default, it is clear that the distribution of EF1 is highly skewed. Based on the default method of this 
research, a lognormal distribution is assumed for EF1. Taking the interval determined by this minimum 
and maximum as the 95% confidence interval, the minimum is regarded as 2.5% percentile and the 
maximum as 97.5% percentile. For normal distribution X ~ N(µ, σ2), there is an empirical formula for the 
95% confidence interval: 

(µ – 1.98 σ, µ +1.98 σ)     ( 10 ) 

Thus, the difference between the log-transformed maximum and the log-transformed minimum equals to 
2 ×1.98 × σ: 

log(max)-log(min) = 2×1.98 σ    ( 11 ) 

Then the sd of this log-transformed distribution can be calculated as the σ. This sd is used as the cv of 
EF1. A proof for this assumption can be found in section 2.3.1.  

b. cv derived from expert judgment 

Based on a previous study by Kros et al. (2012b), for the MIPs there is little information available on 
uncertainties, cv`s are derived from expert judgment. We estimate the cv`s of these MIPs fall into one of 
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the three categories: high uncertainty (cv=0.5), moderate uncertainty (cv=0.25) and low uncertainty 
(cv=0.1). The rules for assigning uncertainty category to MIPs are: 

• low uncertainty is estimated for MIPs which are: 
o derived from good quality statistics data base 

• moderate uncertainty is used for all MIPs, which are not indicated with high or low uncertainty 
• high uncertainty is estimated for MIPs which are: 

o estimated based on expert knowledge 
o derived from other models 

2.3.3  Spatial correlations 
Given the limitation of data on the spatial-correlation, the spatial-correlations in the UQ is included in a 
pragmatic way as it is recommended by Kros et al. (2012a).  

For the lowest spatial level, sub-national level, it is assumed that within each sub-national region, the 
spatial-correlation equals to 1. It indicate that for a model input MIPi, it has a generic variance (σ2) 
within the sub-national region. For each MIP, spatial correlation coefficients are set between plots in 
different: 

• Sub-national regions within the same country: ρsub-national 
• Countries within the same continent: ρnational 
• Continents within the world: ρcontinental 

Dependent on the spatial dependence of the MIP, The spatial correlation coefficients are determined as 
five different levels, following the study by Kros et al. (2012a). The five levels are: perfect correlation (ρ 
=1), high correlation (ρ=0.8), moderate correlation (ρ=0.5), low correlation (ρ=0.2) and no correlation 
(ρ=0). 

The classes of spatial-correlation were assigned to reflect the spatial dependence of the MIPs. For the 
same MIP, if the variances of two plots at the same spatial level (e.g. between two countries) are 
independent, the ρnational was assigned to 0. Thus, the change of one plot will not affect the other. If the 
variances of two plots were perfectly correlated, the spatial correlation coefficient was assigned to 1. In 
this case, the variances of the two plots were the same. The classes Low, Moderate and High indicate 
different levels of dependence. Scatter plots (Figure 6) were used to show the strength of correlation. 

 

Figure 6 Scatter plots showing the strength of correlations when the correlation coefficient (ρ) 
takes on values from -0.2 up to 1 
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2.3.4  Cross correlations 
Cross correlations are defined by cross correlation coefficients, between related MIPs (Kros et al., 2012a). 
For different MIPs, MIPi and MIPj, at the same location, the cross-correlations denoted as ρcc(i,j), were 
obtained from census data or literature or expert knowledge. The cross-correlation pairs were selected 
based on previous research, census data and expert knowledge. The pairs of MIPs were grouped 
according to the method used to obtain the cross-correlation coefficient ρcc(i,j) and are listed in Table 8. 
The strength of correlations is shown in Figure 6.  

Table 8 MIPs for which cross-correlation are considered 

MIPi MIPj ρcc(i,j) Information source 

FAO_AnimalProd LivestockCountryTotal 0.9 Census data 
FAO_NatCA_wheat FAO_NatCP_wheat 0.81 Census data 
FAO_NatCA_maize FAO_NatCP_maize 0.81 Census data 
FAO_NatCA_soybean FAO_NatCP_soybean 0.81 Census data 
FAO_NatCA_barley FAO_NatCP_barley 0.81 Census data 
FAO_NatCA_other FAO_NatCP_other 0.81 Census data 
    
CH4_EF_ManManage Temperature 0.5 Previous research 
    
FAO_LandAreas LandCoverMap 0.5 Expert knowledge 
N2O_manure_storage N2_animal_EF -0.2 Expert knowledge 
NO_animal_EF N2O_manure_storage 0.8 Expert knowledge 
BMFac_Gras BMFac_OtherAreable 0.5 Expert knowledge 
 

1. Cross-correlation derived from census data 

Some of the census data (including FAO data, and other annual census data) were estimated to be cross-
correlated. The census data from past 10 to 15 years (depends on the data availability) were used to 
inspect these correlations. The calculation is illustrated using the example FAO_NatCA_wheat and 
FAO_NatCP_wheat.  

FAO_NatCA_wheat includes annual crop area data for wheat for each country. The average crop area for 
wheat was calculated for each country i year j, as the average crop area CropAreai,j. FAO_NatCP_wheat 
includes annual crop production data for wheat for each country. The average crop production for wheat 
was calculated for each country i year j, as the average crop production CropProdi,j. 

Then, for each year j, the NatFi,i and CropProdi,j at the same year are compared (see Table 9). 

Table 9 Cross-correlation between FAO_NatCA_wheat and FAO_NatCP_wheat for year j 

Country FAO_NatCA_wheat FAO_NatCP_wheat 

1 CropArea1,j CropProd1,j 
2 CropArea2,j CropProd2,j 
... ... ... 
i CropAreai,i CropProdi,j 
 

Then the cross-correlation coefficient for year j was calculated as ρj,, as well as the p value for 
significance. Subsequnetly, the average of the significant correlations were calculated as the cross-
correlation coefficient between FAO_NatCA_wheat FAO_NatCP_wheat ρcc(FAO_NatCA_wheat, 
FAO_NatCP_wheat), shown as ρcc in Table 10. This ρcc is the average of the significant correlation 
coefficients (with p value lower than 0.05). 

The strength of the correlation between FAO_NatCA_wheat and FAO_NatCP_wheat is shown in Figure 7. 
More examples can be found in Annex 1. 
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Table 10 Combing cross-correlations over years 

year Correlation coefficient  P value 

2000 ρ2000 P2000 
2001 ρ2001 P2001 
... ... ... 
2012 ρ2012 P2012 
mean ρcc  
 

2. Cross-correlation derived from previous research. 

There is only one pair of MIPs in this group: the NO_animal_EF and N2O_manure_storage. This cross 
correlation was based on (Kros et al., 2012a) . 

3. Cross-correlation defined based on expert knowledge 

These pairs of MIs are selected based on expert knowledge. Due to the lack of data, it is not practical to 
assign specific cross-correlation coefficients to each pair. Thus, the approach of assigning classes to 
these pairs is applied. The approach has been described in the section 2.3.3 The spatial-correlation. The 
same classes and corresponding coefficients are used for cross-correlation. The reasoning for each pair is 
described below. 

• N2O_manure_storage and N2_animal_EF   

More N2O (and NO) will lead to less N2, but the correlation is not very strong. So a negative low cross-
correlation was assumed. 

 

Figure 7 Scatter plot showing the cross correlation between FAO_NatCP_wheat and 
FAO_NatCA_wheat  
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• BMFac_Gras and BMFac_OtherAreable 

Theis refers to the fraction of N of gross mineralization available on grass and on arable land being no 
grass. Since the same process is described, a medium positive correlation is assigned. 

• CH4_EF_ManManage and Temperature  

A medium positive correlation was assigned because CH4 emission is temperature dependent. 

• FAO_LandAreas and LandCoverMap    

Satellite derived and FAOSTAT derived land use areas were, assignedto be medium positively correlated. 

2.3.5  Constructing a correlation matrix 
The cross-correlations and spatial-correlations were combined in a correlation matrix. For the same MIP, 
I and model developers assumed that A, B, C and D were different sub-national regions. A and B are 
from the same country, with ρsub. A and C are from different countries but in the same continents, with 
ρnat. A and D are from different continents, with ρcon. The correlation matrix is constructed using 2 MIPs: 
MIP1 and MIP2 with a cross correlation coefficient ρcc. An example of constructed correlation matrix is 
shown in Figure 8.  

  
MIP1 MIP2 

  
A B C D A B C D 

MIP
1 

A 1 ρsub1 ρnat1 ρcon1 ρcc 
ρcc*

�ρsub1 ∗ ρsub2 
ρcc*

�ρnat1 ∗ ρnat2 
ρcc*

�ρcon1 ∗ ρcon2 

B 
 

1 ρnat1 ρcon1 
ρcc*

�ρsub1 ∗ ρsub2 ρcc 
ρcc*

�ρnat1 ∗ ρnat2 
ρcc*

�ρcon1 ∗ ρcon2 

C 
  

1 ρcon1 
ρcc*

�ρnat1 ∗ ρnat2 
ρcc*

�ρnat1 ∗ ρnat2 ρcc 
ρcc*

�ρcon1 ∗ ρcon2 

D 
   

1 
ρcc*

�ρcon1 ∗ ρcon2 
ρcc*

�ρcon1 ∗ ρcon2 
ρcc*

�ρcon1 ∗ ρcon2 ρcc 

MIP
2 

A 
    

1 ρsub2 ρnat2 ρcon2 

B 
     

1 ρnat2 ρcon2 

C 
      

1 ρcon2 

D 
       

1 

Figure 8 Building the correlation matrix 

2.4 Defining the uncertain model outputs 
According to the scope of this study, the uncertain model outputs were limited to CH4, N2O and CO2 
emissions from livestock sectors in Africa, Latin America and Europe. The GHG emissions include total 
emissions from the aforementioned continents, and emissions at product level and sector level. The 
products include cattle meat, cow milk, eggs, pig meat, poultry meat, sheep and goat meat, and sheep 
and goat milk. The sectors include broilers, laying hens, dairy cows, other cattle, pigs, other poultry, 
sheep, goats, horses, camels, turkeys and other animals. In order to show the possible cause of the 
uncertainties, the outputs also include the uncertainties of CH4, N2O and CO2 from IPCC 
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categories ??shown in Table 11. All emissions were converted to CO2-eq using IPCC global warming 
potentials (GWP) (Lesschen et al., 2011b), which are for CH4 and N2O 34 and 298 times the GWP of CO2, 
respectively (based on IPCC AR5, 2013 (IPCC, 2013) for a 100 years times horizon).  

Table 11 IPCC categories considered in this study 

Emission code Process 

CH4 CH4_rice CH4 emission from rice cultivation  
CH4 EntericFermentation CH4 emission from enteric fermentation 
CH4 ManureManagementCH4 CH4 emission from manure management 
CH4 and N2O ManureManagement GHG emissions from manure management 
N2O CropArea Crop areas for soil N2O emission (direct + indirect) allocation 
N2O ManureManagementN2O N2O emission from manure management 
N2O N2O_ByProducts N2O emission from by product feeds (e.g. citrus pulp) 
N2O N2O_grazing N2O emission from grazing  
N2O N2O_soil Direct and indirect N2O emission 
CO2, N2O FertilizerProd GHG emissions from fertilizer production (tonnes CO2-eq) 
CO2 FuelUse CO2 emission from fuel use 
CO2 PesticideUse CO2 emission from pesticide use 

2.5 Quantifying the uncertainty in the model outputs 
The overall approach of obtaining the output uncertainty is illustrated in Figure 9. The methodology is 
explained in the following parts of this section, The results are shown in section 3.1. The R scripts are 
provided in Annex 6. 

 

Figure 9 Process for quantifying model output uncertainty 

2.5.1  Developing R-scripts for generating multiple realizations 
of model inputs and parameters 

The Monte Carlo (MC) approach is used to generate multiple realizations of model inputs and parameters 
based on the pre-defined pdfs. The concept of MC is to compute repeatedly model outputs with multiple 
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input realizations, at model-required scales, sampled from their pdfs using stochastic spatial simulation 
(Truong, 2009). The realizations were generated with the statistical software environment R.  

Due to the memory limits of the computer, the realizations of model inputs and parameters were divided 
into three different spatial levels: sub-national (containing MIPs at both sub-national level and national 
level), continental and generic levels, and carried out separately.  

1. Sub-national level 

The MIPs at sub-national and national level are all simulated at sub-national levels. For the national level 
MIPs, it is realized by setting the sub-national spatial-correlation coefficients to 1. After the realizations 
at sub-national level, the national MIPs are aggregated to national level. 

The R scripts were developed based on the package “sgsm”, which was developed for a previous 
research on the INTEGRATOR model (Kros et al., 2012b). After testing, it was found out that this 
package can only re-produce the imposed cross-correlation when the correlation matrix is not too big. 
Since the number of MIPs cannot be reduced, and the defined outputs are for three separated continents, 
this simulation at sub-national level was carried out for each continent separately. As a result, the spatial 
correlation at continental level is not taken into account for sub-national level and national MIPs. 
However, in the previous steps, these continental spatial correlations were mostly estimated to be 0, or 
in other cases, very small. This separating of simulation to each continent is expected to have negligible 
effect on the final outcomes. The process for deriving MIPs at sub-national level is shown in Figure 10. 

 

Figure 10 Flowchart showing the process of MC simulation at sub-national level 

The developed R scripts are the same for each continent, including three steps: 

Step 1: random sampling of MIPs at sub-national regions 

In this step, the required inputs are the spatial codes, the cross correlation matrix, the spatial-correlation 
coefficients and the code of MIPs. A cross- and spatial-correlation matrix is constructed within the 
package “sgsm” (as described in 2.3.5). Then using Monte Carlo algorithm, each MIP was sampled from 
a standard normal distribution. The Monte Carlo algorithm has the feature of short-term memory. After 
enough MC runs, the simulation is able to produce realizations with the same pdf as designed. The 
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number of MC runs were determined as 1000, based on previous study (Kros et al., 2012b) and tested 
with cdfs. Figure 11 shows the cumulative probability function plots of the randomly generated model 
inputs or parameters with different number of MC runs.  

 

Figure 11 Plot of cdfs for different MC runs 

The plots with more than 200 runs possibly produce roughly a smooth curve. With 1000 runs the 
simulated curve is very smooth.  Thus, in this study, we choose 1000 MC runs to analyse the uncertainty 
in the model outputs to obtain an accurate results. Increasing from 200 runs to 1000 runs will only 
slightly inprove the performance, but will significantly increase the modelling time. For uncertainty 
contribution analysis, we only need the relative contritution instead of exact results. Thus, for uncertianty 
analysis, 200 MC runs were used. The representativeness is tested and the results are shown in section 
3.1. 

The outcomes of this step are realizations with expected value equal to 0 and unite variance (variance 
equal to 1), denoted as S1. 

Step 2: post processing of realizations with pre-determined pdfs 

In this step, S1 was post-processed with the pre-determined pdfs of MIPs. The inputs of this step were 
the distribution type (normal distributed or lognormal distributed) and the variance (in terms of cv or sd, 
depends on the distribution type). The outcomes of this step are denoted as S2 and the calculation are 
explained for each distribution type: 

For a normally distributed MIP, the cv of this distribution (cvn) is used to represent the uncertainty of this 
MIP. The post process is written as: 

S2n = 1+S1* cvn      ( 12 ) 
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The result S2n has a normal distribution with and expectation as 0 and cvn as its cv. 

For a lognormally distributed MIP the cv of this lognormal distribution, i.e. the sd of its log-transformed 
distribution (sdn) was used to represent the uncertainty of this MIP. The post process is written as: 

S2log = S1* sdn      ( 13 ) 

The result S2log has a normal distribution with and expectation as 1 and sdn as its σ.  

Step 3: post processing of realizations to required spatial levels. For all the S2`s for MIPs at national level, 
an aggregation of sub-national level to national level was applied. For each MIP, the average of all the 
S2`s within one country is used as the final simulation (S) for this country. The results of this step are 
stored in gdx files. 

2. Continental level 

For the continental MIPs, a different approach was taken. This was achieved by using the “rmultnorm” 
function (Multivariate Normal Random Number Generator). The generator is based on the multivariate 
normal distribution, which is defined as: a multivariate random vector M with k elements, M = M 
(M1,M2,…Mk), that follows a normally distribution is denoted as M ~ Nk(μ, R), where μ = mean vector and 
R = variance-covariance matrix (k × k). The R matrix, with all combinations of Mi and Mj pairs, is 
calculated as: 

R[i,j] = ρ [i,j]* σi *σj     ( 14 ) 

Where ρ[i,j] is the correlation coefficient matrix for Mi and Mj, and σi , σj are the sds of Mi and Mj 
respectively. Similar to the approach for sub-national level MIPs, the first step is to generate S1 ~ N (0,1). 
The second step was to post-process this S1 to S based on the pre-defined pdf. 

For step one, the correlation matrix R had to to be constructed. Due to the memory limit, this step was 
also carried out separately for each continent. Thus, for each MIP, Mi and Mj represent MI at location i 
and j: 

R[i,j] = ρ [i,j]* σMi* σMi     ( 15 ) 

With the distribution MIP1 ~ N (0,1), σMi = 1, this formula can be written as 

R[i,j] = ρ[i,j]      ( 16 ) 

Thus, the R matrix for MIP is equal to the spatial-correlation matrix of MIP, which is represented in 
Figure 12 

 

i … j 

i 1 

 

ρcon 

… … 1 … 

j ρcon … 1 

Figure 12 Spatial correlation matrix for one continental MIP 

The outcome of this step was random sampled S1 ~ N (0,1) for each MIP at each continent. The next 
step is the same as the step 2 in sub-national level. The overall outcome is S with designed uncertainty 
information at continental level. 

3. Generic level 

MIPs at this level remain uniform through all the spatial levels. The same function “rmultnorm” is used. 
However, only one variance-covariance matrix R is constructed for all MIs. Since there is no spatial level 
needed, the R matrix equals to the cross-correlation matrix of all MIPs at generic level. Figure 13 is an 
example of this matrix 
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MIP1 MIP2 … MIPn 

MIP1 1 ρcc12 
 

ρcc1n 

MIP2 
 

1 
 

ρcc2n 

… 
  

1 
 

MIPn 
   

1 

Figure 13 Cross correlation matrix for generic MIPs 

The rest of the calculation is the same as in the continental level. The overall outcome is also S with 
designed uncertainty information. 

2.5.2  Running the MITERRA-Global model for the generated 
input and parameter simulations in batch mode and storing 
its output simulations 

The results of 2.5.1 (denoted as S) are stored in gdx format and are used as uncertain input uncertainty 
for MITERRA-Global.  

As a first step, this S was combined with the default values of MIPs (μdef) to get the “real inputs” (MCin`s) 
for MITERRA-Global. Depends on the distribution type of the MIP, one of the following two formulas is 
used to obtain the MCin: 

For a normally distributed MIP, the MCin is the product of μdef and Sn: 

MCin = μdef * Sn      ( 17 ) 

The result is a normally distributed MCin ~ N (μdef, σn
2), where σn/ μdef = cvn. 

For a lognormally distributed MIP, the log-transformed MCin is the sum of log-transformed μdef and Slog, 
so the MCin is calculated as: 

MCin = exp(log(μdef)+Slog)     ( 18 ) 

The result is a lognormally distributed MCin ~ Λ (µ*, σ*2), with cv* = sdn.  

These MCin`s are model inputs with expected value equal to the defaults and the variance determined 
from previous research. 

The default MITERRA-Global calculation use these MCin`s as model input data. The model was run for 
1000 times, same as the MC runs of the MIP simulation. The outputs from these 1000 runs were stored 
in gdx files.  

2.6 Analysing the contribution of individual uncertainty 
sources to the output uncertainty 

The MIPs are further grouped to nine groups ( 
 
 
Table 12). The MIPs are grouped in such a way what there is no correlation between MIPs from different 
groups. A new MC simulation was used to detect the uncertainty contribution of each group.  

Two methods were used to analyse the uncertainty contribution: one group at a time method and 
winding stairs scheme. They will be explained separately in the following of this section. The results of 
this comparison are shown in section 3.2.1.  
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Table 12 Grouped MIPs 

Code Description Including e.g. (group for all MIPs see Annex 2) 

LAD Livestock activity data livestock numbers and production 
CAD Crop activity data Crop areas and production 
OAD Other activity data Fertilizer consumption, pesticides, etc. 
BFD Biophysical data climate, soil data 
EFC CH4 emission factor EF manure management and enteric fermentation 
EFN N emission factors all N emission factors (including leaching and runoff) 
CPA Crop parameters N content, N index, etc., grass correction 
LPA Livestock parameters N excretion, manure system usage 
OPA Other emission factors and parameters CO2 emission factor, fertilizer composition 
 

2.6.1 One group at a time 
The MC run times for this step was set to 200 due to the limit of run times. Since the simulation process 
is time consuming, it is not practical to use 1000 runs for each group (i.e. 10000 runs in total). From the 
test (Figure 11) we concluded that with 200 runs the MC simulation was able to produce a satisfactory 
result. With the increase of the MC runs the performance only slightly improved but the time required 
performing the runs increased dramatically. Thus, in the end 200 MC runs were chosen for the 
uncertainty quantification. 

For the first 200 runs, all the MIPs were treated uncertain. It is the same approach used in 2.5. For each 
other 200 runs, only one out of nine group was randomized. The other eight groups remain constant 
(using the default value stored in MITERRA-Global database). The outputs were analysed with the 
method analysis of variance. The strategy is illustrated in Table 13. 

 
Table 13 One group at a time scheme used for analysing uncertainty contribution 

Run numbers Group 1) Variance 

1~200 LAD CAD OAD BFD EFC EFN CPA LPA OPA Varall 
201~400 LAD CAD OAD BFD EFC EFN CPA LPA OPA VarLAD 
401~600 LAD CAD OAD BFD EFC EFN CPA LPA OPA VarCAD 
601~800 LAD CAD OAD BFD EFC EFN CPA LPA OPA VarOAD 
801~1000 LAD CAD OAD BFD EFC EFN CPA LPA OPA VarBFD 
1001~1200 LAD CAD OAD BFD EFC EFN CPA LPA OPA VarEFC 
1201~1400 LAD CAD OAD BFD EFC EFN CPA LPA OPA VarEFN 
1401~1600 LAD CAD OAD BFD EFC EFN CPA LPA OPA VarCPA 
1601~1800 LAD CAD OAD BFD EFC EFN CPA LPA OPA VarLPA 
1801~2000 LAD CAD OAD BFD EFC EFN CPA LPA OPA VarOPA 
1) Regular font: parameters of the group are fixed to the default value (generally the mean) 

Bold font: parameters of the group are treated as uncertain 

The variance in Table 13 indicates the variance of the 200 outputs. The variance from the first 200 runs, 
Varall, is used as the reference to calculate the relative contribution of each group to the overall variance 
in the model outputs. The relative contribution of each MIP group to model output uncertainty was 
expressed as percentage contribution of the variance of a group to the overall variance (PVARgroup): 

PVARgroup = (Vargroup/Varall)*100%    (19) 
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2.6.2  Winding stairs scheme 
The winding stairs scheme was adapted from (Jansen et al., 1994). In total 1000 MC runs were used in 
this step. For the first 100 runs, all groups were set to uncertain and randomly sampled. For the 
following each 100 runs, one group is copied from the first 100 runs, and the other eight groups are 
sampled randomly. The scheme is illustrated in Table 14. 

Table 14 Uncertainty contribution winding stairs scheme 

Run Nr. Group1 

1~100 W0 LAD CAD OAD BFD EFC EFN CPA LPA OPA 
101~200 W1 LAD CAD OAD BFD EFC EFN CPA LPA OPA 
201~300 W2 LAD CAD OAD BFD EFC EFN CPA LPA OPA 
301~400 W3 LAD CAD OAD BFD EFC EFN CPA LPA OPA 
401~500 W4 LAD CAD OAD BFD EFC EFN CPA LPA OPA 
501~600 W5 LAD CAD OAD BFD EFC EFN CPA LPA OPA 
601~700 W6 LAD CAD OAD BFD EFC EFN CPA LPA OPA 
701~800 W7 LAD CAD OAD BFD EFC EFN CPA LPA OPA 
801~900 W8 LAD CAD OAD BFD EFC EFN CPA LPA OPA 
901~1000 W9 LAD CAD OAD BFD EFC EFN CPA LPA OPA 
1) Regular font: parameters of the group are sampled randomly 

Bold font: parameters of the group are copied from the first 100 runs 

Table 14 shows that each 100 runs are grouped and numbered from W0 to W9. In W0 all model inputs are 
randomly sampled. In W9 group 1 to group 8 are randomly sampled, group 9 is copied from the first 100 
runs (W0).  

The contribution of group Gi was calculated as:  

Perc_Gi = 0.5∗𝑐𝑜𝑣(𝑊0,𝑊𝑖)
𝑣𝑎𝑟(𝑊0)

 * 100%      ( 20 ) 

The cov(W0,Wi) is the covariance between run W0 and run Wi. The var(W0) is the variance of run W0. The 
var(W0) is the variance of run W0. Thus, the uncertainty contribution of group Gi was quantified as half of 
the covariance of two runs over the total variance of the completely random run.  
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 Results  3.

3.1 Uncertainty in model inputs and parameters 
In this section, I discuss a) how the test for the required sample size of simulation took place by means 
of cumulative frequency curves (section 3.1.1) and b) how the test for the reproduced cross correlation 
took place (section 3.1.2).  

3.1.1  Representativeness of model input and parameter 
uncertainty 

We have chosen model inputs and parameters from each of the four spatial levels to test the 
representativeness of the sampling methods. For each spatial level, the model inputs and/or parameters 
with the highest and lowest designed uncertainty are chosen. This is to test if the designed uncertainty 
will influence the representativeness. The designed uncertainty refer to the model input and/or 
parameter uncertainty quantified in section 2.3. Note that because for all the model inputs and 
parameters at continental level, the designed sd`s are all 0.25, only one model input at continental level 
is chosen to test the representativeness. 

The seven MIPs, the designed uncertainty and the produced uncertainty are listed in Table 15: 

Table 15 Selected MIPs to test the representativeness and the produced uncertainty 

Code Distribution type Spatial level sd* 

designed 100 runs 200 runs 1000 runs 

Fqatm Lognormal generic 0.25 0.24 0.25 0.25 
EF4 Lognormal generic 0.82 0.84 0.81 0.81 
       
ManureSU_Burned Normal continental 0.25 0.25 0.25 0.25 
       
bNumAniRAINS Normal national 0.10 0.09 0.09 0.10 
ShareFeed Normal national 0.25 0.24 0.24 0.24 
       
LandCoverMap Normal sub-national 0.10 0.10 0.10 0.10 
N2O_grazing Lognormal sub-national 0.57 0.58 0.56 0.56 
* The uncertainty is presented in terms of sd. For MIP which is log-normally distributed, this is the sd of 
its normally transformed distribution. 

Table 15 shows that for most of the MIPs the sd can be reproduced, even with only 100 runs. The results 
from 200 runs are the same as the results from 1000 runs. This indicates that both with 200 runs and 
with 1000 runs the sd can be reproduced. 

Figure 14 and Figure 15 show the simulated results. Figure 14 shows the simulated MIPs at generic level 
and continental level, which were carried out using standard R package. Figure 15 shows the results of 
simulated sub-national and national parameters. This simulation was carried out using “sgsm” package 
(details see section 2.5). 

The results are shown as cumulative density functions of 100, 200 or 1000 runs. Generic MIP only has 
one simulated result for one run of simulation. All of the simulated within the 100, 200 or 100 runs are 
used for the generic parameters to produce the plots in Figure 14 and Figure 15. For national parameters, 
each country gets its own simulated result within each run. Figure 14 and Figure 15 show only the plots 
for the simulations for one country. The medians are also given in the cdf plots. Note that all of these 
MIPs are sampled from normal distribution. The MIPs with designed lognormal distribution will be 
transformed to lognormal distribution after this step. Thus, the simulations for MIPs with lognormal 
distribution at this step are supposed to have 50% equally distributed around 1. Simulations for MIPs 
with normal distribution are designed to distributed equally around 0. The representativeness can be 
derived from the smoothness of the cdf curve and the difference between the median from 1 or 0.  
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Figure 14 cdf plot for simulated MIPs using standard R package  
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Figure 15 cdf plot for simulated MIPs using “sgsm” package 

For MIPs simulated with standard R package (results presented in Figure 14), 200 runs have similar 
performance compared with 1000 runs. Using 200 runs is sufficient to produce the designed normal 
distribution. There is a clear improvement from using 100 runs to using 200 runs. But there is no clear 
improvement observed from using 200 runs to using 1000 runs. 
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For MIPs simulated with “sgsm” package, however, Figure 15 shows that the designed normal 
distribution can be reproduced for national parameters (medians close to 1), but might not be 
reproduced for sub-national parameters (in this example median can be clearly different from 1). Clear 
improvement can be observed for sub-national parameters when increasing the simulation MC runs. The 
medians become much closer to the designed 1 and the curve become very smooth. Thus, the 1000 runs 
used for uncertainty quantification is sufficient to reproduce the uncertainty information and the 
distribution type. The 200 runs used for uncertainty analysis might not be sufficient for sub-national 
parameters. This deficiency might lead to a bias when quantifying the uncertainty contribution. The 
method used to quantify uncertainty contribution was analysis of variance. This bias is indeed reflected in 
the results of uncertainty analysis. For more discussion please see section 3.3.1. 

3.1.2  Representativeness of the cross-correlation 
For the cross-correlation, the following pair is detected: FAO_CA_wheat (area for growing wheat in each 
FAO country) and FAO_CP_wheat (wheat production in each FAO country). The result is shown in Figure 
16. 

 

Figure 16 Scatter plot and pdf plot for produced cross-correlation 

The scatter plot shows that there is a positive correlation between the model inputs FAO_CA_wheat and 
FAO_CP_wheat. The pdf plot shows that the probability density function of the correlation coefficients 
between the model inputs FAO_CA_wheat and FAO_CP_wheat. The designed correlation coefficient is 
0.81 and the produced correlation coefficient has the highest probability to be 0.82, with a small chance 
to be around 0.15. Almost all of the produced correlation coefficients are around 0.75 to 0.92. This 
indicates that the methods used can re-produce the designed cross-correlation. 

3.2 Uncertainties in GHG emissions from Africa, Latin 
America and Europe 

In this section, the results of quantification of the uncertainty in the model outputs, according to 
methodology 2.5, are presented. The outputs including the overall greenhouse emissions from livestock 
sectors, the GHG emissions for different livestock sectors, the GHG emissions for different livestock 
products, and the GHG emissions from key categories used by IPCC. The emissions as well as their 
uncertainty will be discussed. The results are presented in graphs in this section, and presented with 
tables in Annex 3. The corresponding R are given in Annex 7. 

3.2.1  Overall GHG emissions  
The total GHG emission and the CH4, N2O, CO2 emissions from Africa, Latin America and EU27 are 
presented in Figure 17. Their uncertainty (in terms of cv) is presented in Figure 18. The emission is 
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expressed with bar plots with error bar indicating an 95% confidence interval. The cv is visualized with 
bar plot. 

 

Figure 17 Overall GHG emissions from livestock production 
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Figure 18 Uncertainty (in terms of cv) of overall GHG emissions from livestock production 

Figure 17 shows that the total GHG emission is the highest in Latin America and the lowest in EU27. This 
trend remains the same for CH4 emission and N2O emission. But for CO2 emission, it is the highest in EU 
27 and lowest in Africa.  

Figure 18 provide the uncertainty information of the GHG emissions in the three continents in terms of cv. 
It shows that the output uncertainty ranges from 0.15 to 0.37 for the three greenhouse gases, the cv 
increases in the following direction: Total < CH4 < N2O,CO2. In terms of continents, the cv increases in 
the following direction: EU27 < Africa, Latin America. 

3.2.2  GHG emissions from livestock sectors  
The GHG emissions from different livestock sectors are presented in Figure 19. The uncertainties are of 
the livestock sectors are presented in Figure 20 in terms of cv. The emission is expressed with bar plots 
with error bar indicating an 95% confidence interval. The cv is visualized with bar plot. 

Figure 20 represents the result of emission per GHG per country per livestock sector and the result of the 
corresponding uncertainty in terms of cv. The uncertainty ranges from 0.12 to 0.42. 

For total emission, the plots show that Latin America has the highest emission for most of the sectors 
except for pigs. EU 27 has the lowest emissions except for pigs (Figure 19). The sector pigs has the 
highest emission in EU 27. The uncertainty, however, is in general higher in Africa and Latin America, 
lower in EU 27 (Figure 20). Africa has the highest uncertainty in turkey (0.33) and lowest in dairy caws 
(0.17). Latin America has the highest uncertainty in turkey (0.32) and lowest in dairy caws and sheep 
(0.18). EU 27 has the highest uncertainty in the sector other poultry (0.32) and lowest in dairy cattle 
(0.21).  

For CH4 emission, Figure 20 shows similar pattern for Africa and Latin America. Except for goats, horses 
and camels, the other sectors have similar uncertainties. The cv’s are around 0.18 for Africa and 0.17 to 
0.2 for Latin America. Goats, horses and camels have higher uncertainties. Goats have the highest 
uncertainty, 0.33 for both continents.  Goats also have the highest uncertainty in EU 27, a cv of 0.3.  
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Figure 19 GHG emissions from livestock sectors 
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Figure 20 Uncertainty (in terms of cv) of GHG emissions from livestock sectors 
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3.2.3 GHG emissions from livestock products  
The GHG emissions from different livestock products are presented in Figure 21. Their uncertainty is 
presented in Figure 22. The uncertainties are quantified in terms of cv. The emission is expressed with 
bar plots with error bar indicating an 95% confidence interval. The cv is visualized with bar plot. 

 

Figure 21 GHG emissions from livestock products 

Figure 22 shows that for total emission, the uncertainty ranges from 0.12 to 0.28. Africa and Latin 
America have higher uncertainty for each livestock product. For Africa, although there is a clear 
difference between the GHG emissions for different livestock product, the uncertainties are similar, 
around 0.2. For Latin America, sheep and goat meat, cattle meat, and sheep and goat milk have the 
highest emission per unit product. The uncertainties for these three products are only slightly lower 
compared with other product. EU share the similar pattern as Latin America, but has lower uncertainties 
for each product. 

Africa, Latin America and EU27 have similar uncertainties for CH4 emissions for each product. The 
products with significant high emissions do not have lower uncertainties. 

N2O emission is in general lower than CH4 emission for CH4 each product for each continent. The 
uncertainties for N2O are higher than that for the same product in the same continent. On contrary to the 
pattern found in the total emission, the products with higher emissions have higher uncertainty in Africa. 
In Latin America and EU27, the products with highest N2O emission have similar uncertainties compared 
with other products.  

In general, the uncertainty for CO2 emission is higher for each product for each continent, and the CO2 

emissions are much lower. Africa and Latin America have higher uncertainty than EU27. 
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Figure 22 Uncertainty (in term of cv) of GHG emissions from livestock products 

3.2.4 GHG emissions from key categories as used by the IPCC 
GHG emissions from key categories as used by the IPCC (2006) in livestock production are presented in 
Figure 23.  The uncertainty of these emissions is presented in Figure 24  The emission is expressed with 
bar plots with error bar indicating an 95% confidence interval. The cv is visualized with bar plot. The 
processes are ranked from the one with the lowest emission to the one with the highest emission. The cv 
is ranked in the same order.  

By comparing Figure 23 and Figure 24, it is found that there is no clear correlation between the amount 
of emission and the relative uncertainty. The category with the highest emission, CO2 emission from 
enteric fermentation, does have relative low uncertainty. However, N2O emission from soil and grazing 
are the second and third highest emission, with the first two highest uncertainty. 

For each category, EU27 has lower uncertainty than Africa and Latin America. Except for N2O from by 
product and CO2 from enteric fermentation, Latin America has the highest uncertainty for the other 
categories. For total emission,  Africa and Latin America have higher uncertainty, 0.17, than EU27, 0.12.  
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Figure 23 GHG emissions from IPCC categories  

 

Figure 24 Uncertainty (in term of cv) of GHG emissions from IPCC categories 
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3.3 Uncertainty contribution of model inputs and parameters 
to GHG emissions from Africa, Latin America and Europe 

In this section the results of the uncertainty contribution of each group to the model outputs are 
visualized with stacked bar plots. The results are also given with tables in Annex 4. The corresponding R 
scripts are given in annex 8.  

In this study, two methods were applied for quantifying the uncertainty contribution of each group to the 
model output uncertainty, which were explained in section 2.6. For the final results I use the results from 
one group at a time scheme. The difference between two results are shown in section 3.3.1. The reason 
why I choose this method is also be explained in section 3.3.1. 

3.3.1  Total GHG emissions 
1. Comparing results from one group at a time scheme and winding stair scheme 

Here I compared the results from two methods for the uncertainty contribution to CH4 emission and N2O 
emission from the three continents. Since in the winding stairs scheme I only used 100 runs for each 
group, I also compared the impact of MC run numbers on the uncertainty contribution results.  

 

Figure 25 Comparing results from different methods 

Figure 25 shows that similar results were gained from the compared two methods.  Apart from N2O 
emission in EU27, one group at a time scheme with 100 runs (oneVary100) and with 200 runs 
(oneVary200) provide almost the same results. This indicates that 100 runs with one group at a time 
scheme can already provide a relatively stable results.  

With 100 runs, one group at a time scheme (oneVary100) and winding stairs scheme (winding) are able 
to indicate which group contributes the most to the model output uncertainty. However, the uncertainty 
contribution expressed with percentage can be different for the two methods. Moreover, the winding 
stairs scheme sometimes provides results that are lower than 0. In addition, the sum of uncertainty 
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contribution of all nine groups gained from winding stairs scheme can be much higher or lower than 
100%. For example, the sum of contribution to N2O emission from Africa, as shown in Figure 25, is much 
higher than 100%. This indicates that compared with one group vary at a time scheme, winding stair 
scheme is less suitable for this research. Thus, I decided to use the results from one group at a time 
scheme. More detail discussion of the methods is provided in section 4.2.  

2. Uncertainty analysis results from one group at a time scheme.  

 

Figure 26 Uncertainty contribution of different group of MIP to total GHG emissions from 
livestock (see Table 12 for the explanation of the used codes) 

For total emission, group N emission factors (EFN) and CH4 emission factors (EFC) are the main factors 
affecting the uncertainty in Africa and Latin America. In Europe, Livestock parameters (LPA) and Other 
emission factors and parameters (OPA) also have a significant effect. 

Uncertainties for different GHG emissions are influenced by different groups. Uncertainty for CH4 emission 
is mainly caused by CH4 emission factors, with a small fraction caused by Livestock activity data (LAD). 
N2O emission uncertainty in Africa and Latin America is mainly caused by N emission factors (EFN) 
(>95%). But in EU27, although Livestock parameters (LPA) also contribute a substantial uncertainty 
(23%). Uncertainty of CO2 emission is caused by more factors. Other emission factors and parameters 
(OPA) and Livestock parameters (LPA) are the main factors. Crop parameters (CPA) contribute 10% and 
6% uncertainty to Africa and Latin America. However, it does not have a detectable effect on the 
uncertainty of CO2 emission from EU27. 
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3.3.2  GHG emissions from different sectors 
The results of uncertainty contribution of each group of MIPs to the GHG emissions from different 
livestock sectors are presented in Figure 27. 

 

Figure 27 Uncertainty contribution of different group of MIPs to GHG emissions from different 
livestock sectors (see Table 12 for the explanation of the used codes) 
 

The plot shows that the main factors contribute to the output uncertainty are in line with the ones in 
3.3.1. The main MIPs that propagate uncertainty to the model outputs are N emission factors (EFN) and 
CH4 emission factors (EFC). Distinguishing sectors, for total emission, Laying hens and broilers are 
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different from the other sectors. For those two factors, livestock parameters (LPA) and other EF and 
parameters (OPA) propagate more uncertainty. 

For CH4 emission, CH4 emission factors (EFC) is still the most important MIP that cause the output 
uncertainty. The uncertainty contributions in the three continents are all higher than 95% (except for 
turkey in EU27). For N2O emission, N emission factors (EFN) is the one contribute the most to the model 
output uncertainty. But for Laying hens and broilers, livestock parameters (LPA) has a higher uncertainty 
contribution compared with it for other sectors.  For CO2 emission, there is a difference between 
continents. In Africa, crop parameters (CPA) contribute to over 50% of the uncertainty in CO2 emission 
from the sectors sheep, goats and other cattle. While in Latin America and EU27, for the same sectors, 
the contribution of group crop parameters (CPA) is much lower 1% to 8%. For the other sectors, 
livestock parameters (LPA) and other EF and parameters (OPA) are the main factors influent the 
uncertainty. 

3.3.3  GHG emissions from different products 
The uncertainty contribution results of groups of MIPs to GHG emissions from livestock products are 
presented in Figure 28. 

 

Figure 28 Uncertainty contribution of different group of MIPs to GHG emission from different 
livestock products (see Table 12 for the explanation of the used codes) 

For total emission, the three continents show the same pattern. The main MIPs that propagate 
uncertainty to the model outputs are N emission factors (EFN) and CH4 emission factors (EFC) for sheep 
and goat products, and cattle or cow products. For poultry meat, pig meat and eggs, the main MIPs that 
contribute to the model output uncertainty are N emission factors (EFN), livestock parameters (LPA) and 
other EF and parameters (OPA).  

For CH4 emission, CH4 emission factor (EFC) is the dominant factor for all products in all continents. For 
N2O emission, there is also a difference between two groups of products. For the products related to 
ruminant animals, livestock parameters (LPA) contribute more to the uncertainty than for the products 
from non-ruminant animals (poultry meat, pig meat and eggs). For CO2 emission, Latin America and 
EU27 share similar pattern and Africa is different. In Africa, other EF and parameters (OPA) is the main 
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factor controlling the uncertainty for CO2 emission from poultry meat, pig meet, eggs and cow milk. For 
sheep and goat meat/milk, cattle milk, crop parameters (CPA) contribute the most to the uncertainty.  
For the other two continents, Latin America and EU27, however, livestock parameters (LPA) and other EF 
and parameters (OPA) are always the major MIPs that cause the output uncertainty. For poultry meat, 
pig meat and eggs, livestock activity data (LAD) contribute more than they contribute to other sectors 
(13~14% vs. 1~5%). 

3.3.1  GHG emissions from key categories as used by the IPCC 
The uncertainty contribution results from MIPs to key categories as used by the IPCC are presented in 
Figure 29.   

 

Figure 29 Uncertainty contribution of different group of MIPs to GHG emission from different 
IPCC categories (see Table 12 for the explanation of the used codes) 

The plot shows that there is a clear difference between the different categories. For processes that only 
have CH4 emissions (CH4_rice, EntericFermentation, ManureManagementCH4), the main MIPs that 
contribute to the uncertainty are CH4 emission factors (EFC).  

For categories that only have N2O related emissions (N2O_ByProducts, N2O_grazing, N2O_soil, 
ManureManagementN2O), the causes can be different. For N2O_ByProducts, N2O_soil, and 
ManureManagementN2O, the uncertainty is mainly caused by N emission factors (EFN). However, for 
N2O emission from grazing (N2O_grazing), the uncertainty is mainly caused by livestock activity data 
(LAD). There is a continental difference regarding uncertainty in N2O emission from manure management 
(ManureManagementN2O). The two main groups cause this uncertainty are N emission factors (EFN) and 
livestock parameters (LPA). While in EU27, the dominant factor is EFN (contribute 90% to the output 
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uncertainty), in Africa, the contribution of EFN is lower (54%) and LPA have higher uncertainty 
contribution (37%).  

For categories that have only CO2 emission (FuelUse and PesticideUse), the uncertainty contribution is 
different. For CO2 emission from fuel use (FuelUse), other activity data (OAD), crop parameters (CPA) 
and livestock parameters (LPA) caused the main uncertainty in Africa and Latin America. But in EU27, 
other activity data (OAD) does not play an important role. For CO2 emission from pesticide use 
(PesticideUse), the three continents have similar patterns. The uncertainty is mainly caused by livestock 
parameters (LPA) and livestock activity data (LAD). The importance of crop activity data (CAD) decreases, 
and that of other activity data (OAD) increases in the following direction: Africa, Latin America, and EU27. 

Manure management is related to both CH4 and N2O emission. The uncertainty is mainly caused by CH4 

emission factors (EFC) in EU27 (92%). In Latin America, CH4 emission factors (EFC) and N2O emission 
factors (EFN) are equally important (39% and 44%). In Africa, CH4 emission factors (EFC) have a higher 
impact than N2O emission factors (EFN) (50% and 24%). 
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 Discussion and recommendations 4.
In this chapter, I discuss the methods used to quantify model input and parameter uncertainty, the 
methods used to simulate model inputs and parameters, and the output uncertainty of MITERRA-Global 
model. The outputs and output uncertainty of MITERRA-Global are compared with other studies. I also 
provide recommendations for future research.  

4.1 Statistical models used to quantify model input and 
parameter uncertainty 

This research is limited to the uncertainty due to uncertainty in model inputs and model parameters. I do 
not consider the uncertainty in categorical input data, such as land use maps and soil maps nor the 
uncertainty due to model structure and model implementation.  

Three methods were used to obtain the model input and parameter uncertainty: from census data, from 
literature and from expert judgement. In this section I discuss those three methods respectively. 

4.1.1  Model input uncertainty calculated from census data. 
As it has been introduced in Chapter 2, some model input uncertainty can be derived from census data. 
In this research, I applied this method to FAO data only, due to the lack of data availability on the other 
uncertainty sources.  

The advantage of this method that it is in general objective compared with the other two methods. Based 
on census data, one can get insight into what the dispersion is in collected data and can also calculate 
the correlations. This will help modeller gain more knowledge about the data quality. One of the model 
inputs, FertilizerType, for example, has unexpected high uncertainty (details see Table 4). When 
examining the source data, I found out that for some countries, for the same type of fertilizer, the 
documented fertilizer consumption can have up to five orders of magnitude difference. In addition, there 
are many missing data and many zero values in the data set. According to the data documentation rule 
applied by FAO, the missing data are documented as Not Available (NA). But since it is not likely that the 
total fertilizer consumption by fertilizer type for a country will change dramatically from year to year, I 
suspected that the reason why there are so many zero values is because some missing data are also 
documented as zero. But as I did not find a clear explanation from the FAO website, I did not leave out 
the zero values when conducting this calculation. In general, this calculation confirmed the hypothesis 
that most of the data from FAO database have good quality and low uncertainty.  

This method also has its limitations. The first limitation is that this uncertainty analysis is done for the 
current scenario only. It has been proved in section 2.3.1 that when using the variation of the census 
data, it is important to correct for the trend. Failure to correct for these trends will clearly overestimate 
the uncertainty. However, some other uncertainty analyses also include uncertainty in future scenario, 
such as Kros et al. (2012a). In this case, one should be cautious to correct the uncertainty for the trend. 
But what exact method should be used for the future scenarios is not within the scope of this study. 

A second limitation is that accurate and comprehensive measurement data of the whole emission 
category are seldom available (Monni et al., 2004). For example in this research, although there are 
many model inputs based on census data, it was only possible to get enough data for the ones derived 
from FAO database. This is because in order to derive the pdf, one need more years of time serious data. 
The more data available, the more accurate the result is. These annual data, however, are very limited, 
especially for continental or global scale models like MITERRA-Global. 

I would recommend future research to obtain more census data for for quantifying model input 
uncertainty. This research showed that the model input data quality might not be in line with the 
expectation. A better examination of the census data can improve the accuracy of the uncertainty 
assessment. 

4.1.2  Model input and parameter uncertainty derived from 
literature 

It was also possible to derive uncertainty information from literature for some model inputs and 
parameters. There have been many research carried out on quantifying (part of) the uncertainty related 
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to livestock processes. Although different models were used, those models sometimes share same 
parameters in certain processes. This makes it reasonable to use some of their research results.  

However, there are many different ways to document the uncertainty of the model inputs/parameters 
and the uncertainty of the model outputs. The different ways sometimes make it difficult to interpret and 
compare the results. IPCC (2006) provides guideline on uncertainty documentation, suggesting that the 
uncertainty should be reported as the percentage lower and upper bound of the 95% confidence interval 
over the mean. However, different literature sources use many different  documentation ways. It is not 
always clear how to interpret and to compare the information. Flugsrud and Hoem (2011), for example, 
documented the uncertainty in the model parameters as standard deviation percent with distribution 
type (same as the cv used in this research). Part of the results from Flugsrud and Hoem (2011) is shown 
in Table 16. 

Table 16 Example data from Flugsrud and Hoem (2011) 

IPCC Source 
category Pollutant source Gas 

Standard deviation. 
per cent 

Distribution  
type 

4B11-12 
Manure management - 
N2O N2O Fac2 Lognormal 

5A1 
Forest Land remaining Forest 
Land, Wildfires CH4/N2O 75 Lognormal 

 

Table 16 shows the uncertainty as “Standard deviation. per cent”. On might easily interpret it as 
standard deviation as a percentage of mean. However, under the end of the table with footnote, Flugsrud 
and Hoem (2011) states that Fac2 indicates that 2σ is a factor 2 below and above the mean. This means 
that the uncertainty is actually presented as two times the standard deviation as a percentage of mean. 
Moreover, it is not very clear how one should use this uncertainty information. With no further 
information, I interpreted the “Fac2” as the lower bound is 1/2 of the mean and the upper bound is two 
times the mean. It is also not clear what 75 means for the second one. In some research this information 
is used as the cv of the lognormal distribution, thus, the sd of the log-transformed distribution. But in 
some research, it is used as the range of this distribution (similar as the Fac2) in this example. Then it is 
actually two times the sd of the log-transformed distribution. 

The different ways of documenting model output uncertainty can also cause inconvenience.   Monni et al. 
(2004) present model output uncertainty as upper bounds of the 95% confidence interval expressed as 
percent relative to the mean value (roughly two times the standard deviation). Winiwarter and Rypdal 
(2001) also provide the model output uncertainty as two times the standard deviation over the mean. 
However, FAO provides the uncertainty as standard deviation as percentage of the mean in an life cycle 
assessment of GHG emissions from the dairy sector (Gerber et al., 2010), while also provides the 
uncertainty as two times deviation over the mean in a global assessment of emissions and mitigation 
opportunities (Gerber et al., 2013). This difference makes it difficult to compare results from different 
research, especially when the actually meaning of uncertainty is not stated clearly.  

Both of the document methods mentioned above have its advantage and disadvantage. Coefficient of 
variance (standard divided by mean) is a widely accepted measure of dispersion. It can be directly used 
in the uncertainty calculation and calculation. However, a highly skewed distribution is less easy to be 
characterized by the coefficient of variance. The calculation of the coefficient of variance is more difficult 
(see section 2.3.2). In addition, given the coefficient of variance, the reader would still find it difficult to 
get a rough impression of how the distribution might look like. In this case, a 95% confidence interval 
might give more insight into how a highly skewed distribution looks like. However, using 95% confidence 
interval also has its disadvantage. The confidence interval usually has to be transformed to standard 
deviation in order to perform an uncertainty assessment.  

In this research, using the coefficient of variance and the standard deviation to document the uncertainty 
is reasonable, since the model output emissions do not have highly skewed distributions. It is also clearly 
stated in this research how the uncertainty is presented (in terms of cv). For future research, I 
recommend to document the uncertainty in a way that is the most easy to conduct the research and to 
compare results with other studies. However, no matter in which way the uncertainty is documented, it 
should be clearly stated in the report and ambiguous headers should be avoided.  
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4.1.3  Model input and parameter uncertainty based on expert 
judgement 

The quantification of the uncertainty in terms of statistical properties requires information and this is 
generally hard to get. Therefore, I must rely on expert judgement for some of the model inputs and 
parameters. 

The estimation was mainly based discussion with experienced MITERRA-Global developers. One of the 
main difficulties in the discussion was how to determine the distribution type. Normal and lognormal 
distribution were chosen to represent the distribution type. In many research (Monni et al., 2004; 
Flugsrud and Hoem, 2011), lognormal distribution is applied when the uncertainty is higher than 60% (in 
terms of cv). However, the natural reason behind a lognormal distribution is that there should be a 
multiple effective instead of an additive effect which affect the value of the model input or parameter. 
Thus, when determining the distribution types, in addition to the magnitude of the uncertainty, we also 
considered the characteristics of the MIPs. Both forms of distribution cause problems. When applying 
normal distribution to a non-negative MIP (which is often the case in this research), the minimum value 
is set to zero. The negative values will be cut/off. Thus, the uncertainty might be underestimate. When 
applying a lognormal distribution, it is not possible to get negative values but unrealistic positive outliers 
can be generated. This might cause an overestimation of the uncertainty. To avoid the second situation, 
I applied a practical upper limit of those MIPs.  

4.2 Statistical models used to derive model inputs and 
parameters from their pdfs for uncertainty quantification 
and uncertainty analysis 

In this section, I discuss the adequacy of the used method (one group at a time scheme) for deriving 
model inputs and parameters from their pdfs. First I discuss the simulation method in general. Then I 
discuss the two sampling scheme: on group at a time vs. winding stairs scheme. 

The representativeness of the simulated MIPs has been tested and the results are presented in section 
3.1. I performed three experiments with different run numbers (100, 200 and 1000) to test if the chosen 
200 MC runs were sufficient. All three groups showed a good performance on reproducing the designed 
uncertainty. But for the “sgsm” method, in some cases it might not be able to reproduce a completely 
normal distribution with 200 runs at sub-national level. The test results for cross-correlation (results 
presented in section 3.1.2) showed that the designed cross-correlation can be reproduced with a 
reasonable accuracy. It can be concluded that with 1000 MC runs the designed uncertainty can be fully 
reproduced. With 200 runs, the variance can still be reproduced but some of the distributions might not 
be reproduced. Since only the variance that is used for uncertainty analysis, this simulation method 
should be sufficient for this study. 

For the uncertainty analysis, two sampling methods were used: on group at a time and winding stairs 
scheme. From the results presented in 3.3.1, it can be concluded that both sampling methods are able to 
allocate the major MIPs, which cause the model output uncertainty. This can be achieved even with only 
100 runs. However, some strange performance showed by the winding stairs scheme: negative 
uncertainty contribution and overall uncertainty contribution much higher than 150%. Winding stairs 
scheme calculate the uncertainty contribution using the covariance: 

Perc_Gi = (0.5*cov(W0,Wi))/(var(W0))  * 100% (details see section 2.6.2)        ( 21) 

In the paper where winding stairs scheme was developed (Jansen et al., 1994), it was discussed that for 
complex non-linear models, this scheme is not very suitable. Furthermore, the 0.5*cov(W0,Wi) can only 
be used to represented the variance caused by group Gi when there is no correlation between groups. 
Although the groups were defined so that there is no correlation between groups, this is not assured 
because of the complexity of the model. One might suspect that the strange performance of winding 
stairs scheme was caused by limited run numbers used (100 MC runs). However, by comparing the 
results with one group at a time scheme, the clear difference shows that the run number is not the main 
factor that causes this performance.  
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Winding stairs scheme was developed in the last decade of the 20th century (Jansen et al., 1994), when 
the calculation capacity of computers was very limited. It is shown in this study that winding stairs 
scheme is able to provide reasonable results for uncertainty contribution with limited runs. However, 
when the number of runs is not a major limitation, winding stairs scheme might not be a best choice for 
this type of models. For future research, I recommend to use the on group at a time method, if there is 
no great need to reduce the sampling time. 

4.3 Uncertainty of GHG emissions from livestock predicted by 
MITERRA-Global model 

In this section I discuss the results on uncertainty of GHG emissions predicted by MITERRA-Global model. 
I reflect on what might be the main causes of uncertainties. I also compare these results with other 
studies. Note, however, that a detailed explanation on the uncertainties would require in-depth expertise 
of MITERRA-Global model from modellers. 

4.3.1  GHG emissions estimated by MITERRA-Global  
First I compare the results from this research with Gerber et al. (2013) on total emission from livestock 
production and emissions per livestock sector for the three aforementioned continents. 

Table 17 Comparing results GHG emissions from livestock with Gerber et al. (2013) 

 % total GHG emission 

 
This study 
Base year average2007-2009 

FAO (% total GHG emission) 
Base year 20051 

Continent Africa Latin America EU27 All continents on global scale 

CH4 65 70 60 44 
N2O 33 28 33 29 
CO2 1 2 8 27 

1) Results obtained from FAO report using Global Livestock Environmental Assessment Model (GLEAM) 
(Gerber et al., 2013) 

Table 17 shows that CH4 contributes the most to the GHG emissions from livestock production. However, 
in the study provided by FAO (Gerber et al., 2013) using GLEAM model, the contribution from CO2 

emission is much higher than the contribution in this study. The cause might be that some of the GHG 
emission sources are not included in MITERRA-Global model. GLEAM included more CO2 emission sources, 
such as Land-use change, embedded energy related to manufacture of on-farm buildings and equipment, 
direct on-farm energy use for livestock (e.g. cooling, ventilation and heating), and post farm gate 
activities (e.g. transport of live animals and products). From the difference we can also concluded that 
those energy used in livestock production and in transportation contributes considerably to the GHG 
emissions from livestock sectors. This finding is in line with the study done by FAO (Gerber et al., 2013): 
CO2 emission from land use change caused by soybean cultivation contributes 0.7% to the total GHG 
emissions for cattle milk and beef.  CO2 emission from land use change caused by pasture expansion 
contributes 14.8% to the total GHG emissions from beef. CO2 emission cause by direct & indirect energy 
contributes 2.2% to GHG emissions from cattle milk production and 0.9% to GHG emissions from beef 
production. For the pig supply chains, CO2 emission from direct and indirect energy use contributes 3.5% 
to the total GHG emissions, CO2 emissions from land use change caused by soybean cultivation 
contributes 12.7% to the total GHG emissions. 

4.3.2  Uncertainty in GHG emissions estimated by MITERRA-
Global  

When examining the results of uncertainty in overall GHG emission based on results from section 3.2 and 
section 3.3, I found that that CO2 and N2O have higher uncertainty than CH4, but the uncertainty in total 
emission is determined mainly by CH4 emission factors and N emission factors. This can be explained by 
the difference in IPCC global warming potentials (GWPs). Although the uncertainty in CH4 emission is 
much lower than the uncertainty in CO2 emission, CH4 has 28 times global warming potentials compared 
with CO2 (IPCC, 2013) and the CH4 emission is much higher than CO2 emission. Thus, the contribution of 
CH4 to the variance in total emission is higher than CO2. 
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Another observation is that the uncertainty in Europe is lower than the uncertainty in Latin America and 
Africa. This might be explained by the different approach used in Europe and in other continents by 
MITERRA-Global. This might be caused by different approach (Tier2 instead of Tier1) applied in EU27, or 
better data quality.  

CH4 emissions from enteric fermentation were calculated using Tier 1 emission factors (EF) derived from 
IPCC (2006).These Tier1 EF are animal and continent specific. For EU27 country specific emission factors 
were used for cattle (dairy cows and other cattle). Once the feed intake procedure is fully implemented in 
the model, Tier2 approach is applied for enteric fermentation for EU27. There is also difference in N2O 
emissions. For N excretion factors, the IPCC Tier 1 EFs are used (IPCC_Excretion) for Latin America and 
Africa, while for EU27 country specific excretion factors (Excr_EU) from GAINS(Klimont and Brink, 2004) 
are used (Tier2 approach). This difference might have caused the much lower uncertainty in N2O soil 
emission from Europe (see Figure 24). 

In addition, the uncertainty derived from the census data is in general larger in Latin America and Africa 
than that in Europe (details see section 2.3.2). Some data are also available at a more detailed level in 
Europe, and this detailed spatial levels might also helped reducing the uncertainty in Europe. The crop 
area, for example, is at NUTS2 level(defined as sub-national level in this study) for EU and at national 
level for the other two continents. Figure 24 in section 3.2.4 shows a considerable decrease in the 
uncertainty of N2O emission cause by the category crop area. Another example is the uncertainty in N2O 
emission caused by manure management, which is largely determined by N emission factors and 
livestock activity data. Some of the MIPs in the livestock parameters group, such as animal numbers, 
livestock numbers and N excretion factor are available at more detailed spatial level in Europe. As a 
results, the uncertainty of  N2O emission caused by manure management is much lower in Europe, and 
the uncertainty contribution of the livestock parameters group is also much smaller than that in the other 
two continents (see Figure 29). 

The uncertainty in GHG emission is largely determined by CH4 emission factors. The results for different 
sectors show that horses, camels and goats have higher uncertainty in CH4 emission than other animals. 
This might be because that there is a clear difference in the input uncertainty for those products. The 
CH4 emission factor for enteric fermentation for cow and sheep is 0.25, while it is 0.4 for other animals. 
The reason why pigs do not have a higher uncertainty in  CH4 emission might be that the CH4 emission 
factor is very small for pigs. Thus, the CH4 emission from pigs concerning enteric fermentation, which 
does not contribute much to the overall uncertainty in CH4 emission by pigs. 

For different products, there is a clear difference between the meat/milk product and other products. 
Uncertainty in emissions from products by ruminant animals (beef, caw milk, sheep milk, etc) are mainly 
determined by CH4 and N2O emission factors. While for pork, it is mainly caused by N emission factors 
and livestock parameters (including N excretion, manure system usage). For eggs and chicken, it is 
determined mainly by N2O emission factors, livestock parameters, crop parameters, other emission 
factors and parameters. Furthermore, the uncertainty in milk and beef products in Europe is also 
influenced by livestock parameters. Livestock parameters, however, does not have much effect in the 
other two continents. This difference might be explained by the fact that Europe has higher CH4 emission 
from manure management. This is found by this research (details see Figure 23 and annex4). This result 
is also in line with the results from Lesschen et al. (2011b). 

I also compare the  uncertainty quantification results from this research with other research. A report 
from FAO (Gerber et al., 2013) presented that the 95 percent interval of confidence for ruminants is 
around ± 50 percent, while it is between ± 20 and 30 percent for monogastrics. In terms of cv, it means 
that around 0.25 for ruminants and 0.1 to 0.15 for monogastrics. In this study, it is 0.12 to 0.3 for both. 
It was also discussed in  FAO report (Gerber et al., 2013). The higher uncertainty for monogastrics in this 
study might be associated with the high uncertainty involved in the N2O direct and indirect soil emission 
and the high uncertainty in the CO2 emission. In addition, the study provided by FAO (Gerber et al., 2013) 
is only performed for a few selected country. Usually, the uncertainty in country level should be lower 
than it in continental level (Kros et al., 2012a). However, only a few selected countries might not be 
representative for the uncertainty at country levels in general. This might be why the estimate from this 
study is not lower than the one by FAO (Gerber et al., 2013). Another study done by FAO (Gerber et al., 
2010) also performed an uncertainty assessment for the GHG emissions from dairy sector. The results 
showed a standard deviation of 12 to 13 percent of the average value for meat and milk, in both Sweden 
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and Nigeria. In this study, the standard deviation for meat and milk is 0.12 to 0.13 in EU and 0.17 to 
0.19 in Africa. For all of the calculation in this FAO study (Gerber et al., 2010), a Tier2 approach is used. 
In MITERRA-Global, Tier1 approach is used in Latin America and Tier2 approach is partly applied in EU. 
This indicates that the uncertainty estimated for MITERRA-Global is reasonable. The difference between 
the uncertainty in Nigeria (Gerber et al., 2010) and the uncertainty in Africa (this study) also confirmed 
that a Tier2 approach should be able to reduce the uncertainty. 

 

 

  

 
 

49 



 Conclusions 5.
The uncertainty in the model inputs and parameters (MIPs) of GHG emission profiles of livestock sectors 
in Africa, Latin America and Europe has been assessed. The model output uncertainty of MITERRA-Global 
model regarding GHG emission from livestock sectors has been assessed by a Monte Carlo analysis. The 
uncertainty contribution from model inputs and parameters to model outputs is also calculated and 
visualized.  

Estimate of GHG emission from livestock sectors in Africa, Latin America and Europe from MITERRA-
Global shows different levels of uncertainty for different emissions from different sectors/products/source 
categories. The level of uncertainty is also different for different continents. In general, the GHG 
emissions from livestock in Europe has a lower uncertainty than that in Africa and Latin America. In 
general, the CO2 emission has the highest uncertainty and CH4 has the lowest in relative terms. The 
uncertainty contribution results show that for different greenhouse gases, the uncertainty is caused by 
different model inputs and/or parameters. But in general, the CH4 and N emission factors contribute the 
most to the uncertainty in total GHG emission. 

Hereafter, I provide the conclusion of each sub-research question: 

1. What are the main input data and parameters to be analysed in the uncertainty assessment?  

The main input data are livestock activity data, crop activity data, other activity data (including for 
example fertilizer consumption, pesticides use, etc.), and biophysical data (including climate, soil 
data, etc.). The main model parameters to be analysed include CH4 and N emission factors (including 
leaching and runoff), crop parameters, livestock parameters and other parameters (including CO2 EF, 
fertilizer composition, etc.).  

2. How can a statistical model (pdf) be built that fully characterizes the uncertainty of the main selected 
input data for MITERRA-Global for the various continents, described as probability distributions, 
including cross correlation for certain pairs of model inputs and/or spatial correlation in these 
uncertainties where relevant. 

A statistical model (pdf) can be built based on variation in census data, information gained from 
literature or from expert knowledge. For uncertainty calculated from census data, it is important to 
take into account that the variance should be correct for the real year-to-year trend. For uncertainty 
derived from literature and/or expert judgement, firstly the distribution type and sd/cv should be 
determined. Then a maximum value and a minimum value should be set to prevent unrealistic 
outliers. No data were used to derive the spatial correlation. By determining if there is a dependency 
between plots, the spatial correlation is determined with expert knowledge. For cross correlation, it 
can be calculated from census data when there is enough data available. When there are no data 
available, the pairs of model inputs and/or parameters with inter-dependency are assigned to be 
correlated.  

3. How can model inputs and parameters realizations be sampled efficiently from their pdfs by using 
stochastic simulation techniques? 

The model inputs and parameters are sampled with developed R scripts. There are two possible 
methods. When there is only spatial correlation or only cross correlation, the sampling can be 
achieved using the standard R package “rmultnorm” with a developed spatial or cross correlation 
matrix and the model input and parameter pdfs . When both cross and spatial correlation need to be 
taken into account, the package “sgsm” is used. For the second method, a spatial-cross-correlation 
matrix needs to be constructed so that all the correlations are taken into account. The model input 
and parameter pdfs are also needed.  

4. How can the uncertainty contribution analysis be carried out in batch mode and its results be stored 
automatically? 

This is achieved using developed R scripts with a one group at a time scheme. In this scheme with 
200 runs only one group is varying according to the predefined pdf, the other group of model inputs 
and parameters use the default value stored in MITERRA-Global model. The results are stored in gdx 
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files and read in by MITERRA-Global. In MITERRA-Global, the simulated results with the uncertainty 
information is combined with the default value within MITERRA-Global to obtain the real model 
inputs with uncertainty. The MITERRA-Global is run with these uncertain model inputs to produce the 
uncertain model outputs, which are also stored in gdx files. 

5. What is the uncertainty in the CH4, N2O and CO2 emissions of livestock sectors in the three 
continents and which model inputs and/or parameters contribute the most to this uncertainty? 

The uncertainty in the total GHG emissions of livestock sectors is 17% (in terms of cv) in Africa and 
Latin America, 12% in Europe (EU27). For CH4 emission, the uncertainty is 18% in Africa, 21% in 
Latin America and 15% in Europe. The uncertainty in N2O is 37% in Africa, 31% in Latin America and 
22% in Europe. The uncertainty in CO2 emission is 31% in Africa, 32% in Latin America and 24% in 
Europe. CH4 emission factors and N emission factors contribute the most to this uncertainty. 

6. How can the results of the uncertainty contribution analysis be summarized and visualized and thus 
efficiently communicated to end-users in the three continents? 

The results of uncertainty quantification are summarized with the following statistical parameters: 
mean, sd, cv, 2.5% percentile and 97.5% percentile. It is visualized with bar plot of average 
emission with error bars (indicating the 95% confidence interval) and with bar plot of cv`s. The bar 
plot of average emission with error bars provide a background information: how high is the emission 
and if the output is equally distributed around the mean. The cv provides the uncertainty information. 

This research shows large variation in uncertainties in both model inputs/ parameters and model outputs, 
and large variation in uncertainty contributions of different model inputs/parameters to different model 
outputs. Some activity data and emission factors showed uncertainty. For calculating the uncertainty 
contribution to the model outputs, one group at a time approach is more feasible than winding stairs 
approach.  

The uncertainty (% in terms of cv) of total GHG emissions of livestock sectors is higher in Africa and in 
Latin America (17%) than that in Europe (12%). The uncertainty of CH4 emission (15% to 21%) is lower  
than that of N2O (22% to 37%) and CO2 (24% to 31%). CH4 emission factors and N emission factors 
contribute the most to this uncertainty.  

In this study, the uncertainty of total GHG emissions is less subject to the uncertainty of CO2 emission 
compared with other study, because of the excluding of energy use and land use change. The Tier2 
approach applied in EU substantially decreased the uncertainty of GHG emissions from Europe. Thus, 
further implementing the Tier2 approach may further decrease the uncertainty of the MITERRA-Global. 
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Annex 1 Data related to uncertainty quantification in 
MIPs 
1.1 Plot of FAO data 
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1.2 Example of FAO crop area data 

COUNTRY 
CODE 

CROP 
CODE 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

1 1717 156585 191331 184869 194816 197983 202111 157554 172629 170005 164014 155666 158838 170272 

1 1817 156585 191331 184869 194816 197983 202111 157554 172629 170005 164014 155666 158838 170272 

1 15 106440 108380 119224 126112 124479 127574 100188 98400 92810 88530 86574 77806 93476 

1 1814 50145 82951 65645 68704 73504 74537 57366 74229 77195 75484 69092 81032 76796 

1 44 47100 79600 61701 60392 64628 65462 49400 65180 66260 66511 60954 67873 65135 

1 1801 36208 38603 34866 32901 42692 44085 45048 45680 44598 44908 46035 45553 
 1 116 34202 31752 30474 32286 35690 34299 33012 31612 34298 31998 28326 28665 31243 

1 1720 34202 31752 30474 32286 35690 34299 33012 31612 34298 31998 28326 28665 31243 

1 1735 23427 23075 24062 27202 26273 26852 29178 31460 29663 30076 27928 30677 
 1 1800 23427 23075 24062 27202 26273 26852 29178 31460 29663 30076 27928 30677 
 1 560 14571 14314 12434 11301 13560 13475 14098 14097 14390 14292 14613 14478 
 1 515 5959 8846 8761 8000 8000 8300 8000 8942 8298 8811 9321 8962 
 1 388 5588 5351 5618 7236 6374 6291 7205 7372 6257 6231 6517 6837 
 1 463 4900 5200 5300 6800 6300 6800 7500 7825 7539 7821 7397 7656 
 1 521 4171 3960 2915 2700 3500 3700 3600 2905 2727 2756 2788 2729 
 1 567 3386 3300 3853 4058 4030 3860 4000 5884 5446 6163 4470 5764 
 1 526 3300 3243 3200 3400 5100 5300 5700 8215 8140 7808 7928 7739 
 1 534 3267 3200 3220 3500 5200 5400 5700 4532 4269 4283 4317 4509 
 1 358 3083 3239 3425 3290 3202 3444 3573 3531 3418 3070 3217 3453 
 1 56 2552 2602 3252 3310 3127 3161 2528 3541 3963 2637 2729 3524 3075 

1 826 2528 1088 890 526 480 210 80 118 170 297 417 614 
 1 397 2500 2000 1949 2019 2231 2367 2360 2408 2339 2549 2237 2548 
 1 1726 2024 1806 1720 1923 1984 1848 1969 1993 2199 2053 1874 1952 2005 

1 176 1994 1769 1687 1777 1799 1688 1770 1884 2083 1952 1765 1864 1868 

1 403 1946 1975 2116 1853 2097 2078 2394 2227 2487 2085 1869 1961 
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1.3 Cross correlation scatter plots of FAO data 
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Annex 2 Results of uncertainty quantification in MIPs 
The table below provides the complete results of uncertainty quantification for MIPs. In the code column the code for MIPs used in MITERRA-Global are listed. The 
Group column indicates which group this MIP belongs to. Full description of groups can be found in section 2.6. The distribution type, cv, sd, min, max are 
parameters describing the probability distribution function of the MIP (details see section 2.3.1). The Spatial_level indicates at what spatial level this MIP is used 
in the model. The rhoSUB, rhoNAT and rhoCON indicates the spatial correlation coefficient at subnational level, national level and continental level. 

Nr. Code Group Distribution type cv  sd Min Max Spatial_level rhoSUB rhoNAT rhoCON 
1 AgroMapsCA_barley CAD normal 0.1  0 inf sub-national  0.8 0.5 0 
2 AgroMapsCA_maize CAD normal 0.1  0 inf sub-national  0.8 0.5 0 
3 AgroMapsCA_other CAD normal 0.1  0 inf sub-national  0.8 0.5 0 
4 AgroMapsCA_soybean CAD normal 0.1  0 inf sub-national  0.8 0.5 0 
5 AgroMapsCA_wheat CAD normal 0.1  0 inf sub-national  0.8 0.5 0 
6 AgroMapsCropProd CAD normal 0.25  0 inf sub-national  0.8 0.5 0 
7 BMFac_Gras CPA normal 0.25  0 1 generic 1 1 1 
8 BMFac_OtherAreable CPA normal 0.25  0 1 generic 1 1 1 
9 bNumAniRAINS LAD normal 0.1  0 inf national 1 0.5 0 

10 CAPRI_NumAni LAD normal 0.1  0 inf sub-national  0.5 0.5 0 
11 CH4_EF_EntFer_cs EFC normal 0.25  0 250 sub-national  0.8 0.8 0.5 
12 CH4_EF_EntFer_other EFC normal 0.4  0 150 sub-national  0.8 0.8 0.5 
13 CH4_EF_ManManage EFC normal 0.25  0 250 sub-national  0.8 0.8 0.5 
14 CO2_L_gasoil OPA normal 0.03  0 5 generic 1 1 1 
15 CompositionFertilizer OPA normal 0.25  0 100 generic 1 1 1 
16 CropAreaCAPRI CAD normal  0.1  0 inf sub-national  0.8 0.5 0 
17 CropProperties OAD normal 0.25  0 500 sub-national  0.5 0.5 0.2 
18 DevCrop CPA normal 0.25  0 100 sub-national  0.8 0.5 0.2 
19 EF_Fert_Prod OPA normal 0.25  0 10 national 1 0.5 0.2 
20 EF1 EFN Lognormal  0.28 0 0.5 sub-national  0.5 0.5 0.2 
21 EF2 EFN Lognormal  0.63 0 50 generic 1 1 1 
22 EF4 EFN Lognormal  0.82 0 0.5 generic 1 1 1 
23 EF5 EFN Lognormal  0.5 0 0.5 sub-national  0.5 0.5 0.2 
24 EffFact CPA normal 0.25  0 5 generic 1 1 1 
25 EU_ani LAD normal 0.1  0 inf sub-national  0.5 0.5 0 
26 Excr_EU LPA normal 0.1  0 200 sub-national  0.8 0.5 0 
27 FAO_AnimalProd LAD normal 0.021  0 inf national 1 0.5 0 
28 FAO_LandAreas CAD normal 0.003  0 inf national 1 0.8 0 
29 FAO_NatCA_barley CAD normal 0.063  0 inf national 1 0.8 0 
30 FAO_NatCA_maize CAD normal 0.063  0 inf national 1 0.8 0 
31 FAO_NatCA_other CAD normal 0.063  0 inf national 1 0.8 0 
32 FAO_NatCA_soybean CAD normal 0.063  0 inf national 1 0.8 0 
33 FAO_NatCA_wheat CAD normal 0.063  0 inf national 1 0.8 0 
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34 FAO_NatCP_barley CAD normal 0.122  0 inf national 1 0.5 0 
35 FAO_NatCP_maize CAD normal 0.122  0 inf national 1 0.5 0 
36 FAO_NatCP_other CAD normal 0.122  0 inf national 1 0.5 0 
37 FAO_NatCP_soybean CAD normal 0.122  0 inf national 1 0.5 0 
38 FAO_NatCP_wheat CAD normal 0.122  0 inf national 1 0.5 0 
39 FAO_NatFertilizer OAD normal 0.082  0 inf national 1 0.5 0 
40 feedset_Animals LAD normal 0.068  0 inf national 1 0.5 0 
41 feedset_Crops LAD normal 0.075  0 inf national 1 0.5 0.2 
42 FertilizerType OPA normal 0.571  0 inf national 1 0.5 0 
43 Fqatm CPA Lognormal  0.25 0 1 generic 1 1 1 
44 Fqbiol CPA normal 0.25  0 1 generic 1 1 1 
45 FQGraz CPA normal 0.25  0 1 generic 1 1 1 
46 FracR CPA normal 0.25  0 1 sub-national  0.8 0.5 0.2 
47 GrasCorrEU CPA normal 0.1  0 1 sub-national  0.8 0.5 0 
48 Grass_Yield CAD normal 0.25  0 20000 sub-national  0.8 0.5 0 
49 GrassCorrection CPA normal 0.5  0 1 sub-national  0.8 0.5 0.2 
50 GrassYieldEstimate CAD normal 0.5  0 15000 sub-national  0.8 0.5 0.2 
51 IPCC_Nexcretion LPA normal 0.25  0 200 sub-national  0.8 0.5 0.2 
52 LandCoverMap BFD normal 0.1  0 inf sub-national 0.8 0.5 0 
53 LD_Buffaloes LAD normal 0.25  0 inf sub-national  0.5 0.5 0 
54 LD_Cattle LAD normal 0.25  0 inf sub-national  0.5 0.5 0 
55 LD_Chickens LAD normal 0.25  0 inf sub-national  0.5 0.5 0 
56 LD_Goats LAD normal 0.25  0 inf sub-national  0.5 0.5 0 
57 LD_Pigs LAD normal 0.25  0 inf sub-national  0.5 0.5 0 
58 LD_Sheep LAD normal 0.25  0 inf sub-national  0.5 0.5 0 
59 LeachingStorage EFN normal 0.5  0 50 sub-national  0.8 0.5 0.2 
60 LivestockCountryTotal LAD normal 0.05  0 inf national 1 0.5 0 
61 ManureSU_Burned LPA normal 0.25  0 1 continental 1 1 0 
62 ManureSU_DailySpread LPA normal 0.25  0 1 continental 1 1 0 
63 ManureSU_Digester LPA normal 0.25  0 1 continental 1 1 0 
64 ManureSU_Drylot LPA normal 0.25  0 1 continental 1 1 0 
65 ManureSU_Lagoon LPA normal 0.25  0 1 continental 1 1 0 
66 ManureSU_Liquid LPA normal 0.25  0 1 continental 1 1 0 
67 ManureSU_Other LPA normal 0.25  0 1 continental 1 1 0 
68 ManureSU_Pasture LPA normal 0.25  0 1 continental 1 1 0 
69 ManureSU_SolidStorage LPA normal 0.25  0 1 continental 1 1 0 
70 N_deposition_data OAD normal 0.25  -200 10000 sub-national  0.8 0.2 0.2 
71 N2_animal_EF EFN Lognormal  0.5 0 1 sub-national  0.8 0.5 0.2 
72 N2O_grazing EFN Lognormal  0.57 0 0.5 sub-national  0.8 0.5 0.2 
73 N2O_manure_storage EFN Lognormal  0.35 0 0.5 sub-national  0.5 0.5 0.2 
74 NH3_animal_EF EFN normal 0.25  0 1 sub-national  0.8 0.8 0.5 
75 NH3_fert_EF EFN normal 0.3  0 0.5 sub-national  0.8 0.5 0.2 
76 Nharvest CPA normal 0.25  0 100 sub-national  0.8 0.5 0.2 
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77 Nindex CPA normal 0.25  0 20 generic 1 1 1 
78 NO_animal_EF EFN Lognormal  0.5 0 0.5 sub-national  0.8 0.5 0.2 
79 orgNGRaz CPA normal 0.25  0 1 generic 1 1 1 
80 OrgNLiqMan CPA normal 0.5  0 1 generic 1 1 1 
81 OrgNSolMan CPA normal 0.5  0 1 generic 1 1 1 
82 PesticideUse OAD normal 0.158  0 100 national 1 0.5 0 
83 Precipitation BFD normal 0.1  0 10000 sub-national  0.8 0.5 0.2 
84 ShareFeed LPA normal 0.25  0 1 national 1 0.5 0 
85 Temperature BFD normal 0.1  -50 50 sub-national  0.8 0.8 0.2 
86 Texture_Clay BFD normal 0.25  0 1 sub-national  0.8 0.2 0 
87 Texture_Loam BFD normal 0.25  0 1 sub-national  0.8 0.2 0 
88 Texture_Sand BFD normal 0.25  0 1 sub-national  0.8 0.2 0 
89 TractorDensity OAD normal 0.1  0 10000 national 1 0.8 0 
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Annex 3 Results of uncertainty quantification in model 
outputs 
The tables below provide the results of uncertainty quantification in model outputs. The results are 
discussed in section 3.2. The uncertainty information is presented using mean (in ton CO2-eq) and cv of 
the estimated emission.  

3.1  Total GHG emissions 

Continent mean (ton CO2-eq)  cv 

Total CH4 N2O CO2  Total CH4 N2O CO2 

Africa 5.4E+08 3.5E+08 1.8E+08 4.7E+06  0.17 0.18 0.37 0.31 

Latin America 9.0E+08 6.3E+08 2.5E+08 1.5E+07  0.17 0.21 0.31 0.32 

EU27 4.0E+08 2.4E+08 1.3E+08 3.3E+07  0.12 0.15 0.22 0.24 
 
3.2 GHG emissions for livestock sectors 

Continent Sector mean (ton CO2-eq)  cv 

Total CH4 N2O CO2  Total CH4 N2O CO2 

Africa Broilers 3.2E+06 4.8E+05 2.4E+06 3.2E+05  0.18 0.21 0.22 0.37 

 
Camels 2.7E+07 2.4E+07 2.9E+06 

 
 0.30 0.33 0.42 

 

 
DairyCows 1.2E+08 7.1E+07 4.4E+07 2.6E+06  0.17 0.21 0.32 0.33 

 
Goats 6.0E+07 3.9E+07 2.1E+07 1.4E+05  0.25 0.33 0.39 0.37 

 
Horses 1.3E+07 9.2E+06 3.9E+06 

 
 0.25 0.32 0.41 

 

 
LayingHens 2.2E+06 2.3E+05 1.7E+06 2.3E+05  0.19 0.21 0.22 0.37 

 
OtherAnimals 3.7E+05 1.3E+05 2.4E+05 

 
 0.22 0.21 0.32 

 

 
OtherCattle 2.6E+08 1.7E+08 8.5E+07 9.0E+05  0.19 0.21 0.39 0.39 

 
OtherPoultry 1.4E+05 2.2E+04 1.2E+05 

 
 0.31 0.21 0.37 

 

 
Pigs 5.0E+06 1.4E+06 3.3E+06 2.9E+05  0.19 0.20 0.28 0.37 

 
Sheep 5.5E+07 3.8E+07 1.7E+07 1.4E+05  0.18 0.21 0.39 0.37 

 
Turkeys 1.1E+05 8.5E+03 1.1E+05 

 
 0.33 0.21 0.35 

            

EU27 Broilers 1.1E+07 3.4E+05 7.7E+06 2.8E+06  0.20 0.18 0.22 0.23 

 
DairyCows 1.2E+08 8.0E+07 3.6E+07 8.8E+06  0.12 0.15 0.22 0.24 

 
Goats 3.8E+06 1.7E+06 1.7E+06 3.5E+05  0.17 0.30 0.21 0.23 

 
Horses 2.6E+06 1.8E+06 7.7E+05 

 
 0.19 0.25 0.26 

 

 
LayingHens 7.8E+06 2.8E+05 5.5E+06 2.1E+06  0.20 0.18 0.23 0.23 

 
OtherAnimals 1.2E+06 7.3E+05 4.8E+05 

 
 0.15 0.18 0.26 

 

 
OtherCattle 1.6E+08 1.1E+08 4.6E+07 8.2E+06  0.14 0.18 0.23 0.28 

 
OtherPoultry 5.0E+02 1.1E+02 3.8E+02 

 
 0.31 0.21 0.39 

 

 
Pigs 5.8E+07 2.7E+07 2.2E+07 8.5E+06  0.14 0.16 0.25 0.23 

 
Sheep 3.5E+07 2.1E+07 1.2E+07 2.1E+06  0.14 0.20 0.22 0.25 

 
Turkeys 2.9E+03 1.1E+03 1.8E+03 

 
 0.26 0.23 0.37 

            
Latin  

America Broilers 7.3E+06 1.1E+06 5.5E+06 8.0E+05  0.25 0.19 0.31 0.27 

 
Camels 2.7E+06 1.9E+06 8.6E+05 

 
 0.23 0.29 0.40 

 

 
DairyCows 1.1E+08 7.4E+07 3.1E+07 3.7E+06  0.18 0.22 0.31 0.31 
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Goats 7.4E+06 4.5E+06 2.8E+06 1.4E+05  0.23 0.33 0.31 0.34 

 
Horses 1.9E+07 1.4E+07 4.5E+06 

 
 0.25 0.31 0.38 

 

 
LayingHens 3.5E+06 3.1E+05 2.7E+06 4.5E+05  0.28 0.18 0.33 0.27 

 
OtherAnimals 2.8E+06 1.4E+06 1.4E+06 

 
 0.21 0.20 0.35 

 

 
OtherCattle 7.2E+08 5.2E+08 1.9E+08 9.2E+06  0.19 0.21 0.35 0.35 

 
OtherPoultry 3.6E+04 8.2E+03 2.8E+04 

 
 0.28 0.18 0.35 

 

 
Pigs 1.3E+07 4.3E+06 7.8E+06 5.9E+05  0.20 0.19 0.30 0.27 

 
Sheep 1.8E+07 1.1E+07 6.4E+06 3.4E+05  0.18 0.21 0.31 0.34 

 
Turkeys 2.4E+05 2.2E+04 2.2E+05 

 
 0.32 0.19 0.35 

  
3.3 GHG emission for livestock products 

Continent Product Emission (kg CO2-eq /kg product) 
 

cv 

Total CH4 N2O CO2 
 

Total CH4 N2O CO2 

Africa CattleMeat 41.82 27.73 13.94 0.15 
 

0.19 0.21 0.39 0.39 

 
CowMilk 4.12 2.48 1.55 0.09 

 
0.17 0.21 0.32 0.33 

 
EGGS 0.85 0.09 0.66 0.09 

 
0.20 0.20 0.22 0.38 

 
PigMeat 4.43 1.26 2.91 0.26 

 
0.19 0.20 0.27 0.38 

 
PoultryMeat 0.80 0.12 0.60 0.08 

 
0.18 0.20 0.22 0.38 

 
SheGoaMeat 43.77 29.22 14.44 0.11 

 
0.18 0.20 0.39 0.38 

 
SheGoaMilk 21.70 14.49 7.16 0.05 

 
0.18 0.20 0.39 0.38 

           EU27 CattleMeat 19.83 13.09 5.71 1.02 
 

0.13 0.17 0.23 0.28 

 
CowMilk 0.84 0.54 0.24 0.06 

 
0.12 0.15 0.21 0.24 

 
EGGS 1.17 0.04 0.82 0.31 

 
0.20 0.18 0.23 0.23 

 
PigMeat 2.57 1.21 0.98 0.38 

 
0.14 0.16 0.25 0.23 

 
PoultryMeat 1.20 0.04 0.85 0.31 

 
0.20 0.17 0.22 0.23 

 
SheGoaMeat 35.96 20.89 12.75 2.30 

 
0.13 0.18 0.21 0.25 

 
SheGoaMilk 7.96 4.63 2.82 0.51 

 
0.13 0.18 0.22 0.25 

           Latin  
America CattleMeat 44.30 31.94 11.79 0.57 

 
0.18 0.21 0.34 0.35 

 
CowMilk 1.45 0.99 0.41 0.05 

 
0.18 0.21 0.31 0.31 

 
EGGS 0.53 0.05 0.41 0.07 

 
0.28 0.18 0.33 0.27 

 
PigMeat 2.04 0.69 1.25 0.09 

 
0.20 0.19 0.30 0.28 

 
PoultryMeat 0.39 0.06 0.29 0.04 

 
0.25 0.18 0.31 0.27 

 
SheGoaMeat 58.22 35.95 21.18 1.09 

 
0.16 0.18 0.31 0.35 

 
SheGoaMilk 41.79 25.81 15.20 0.78 

 
0.16 0.18 0.31 0.35 

 
3.4 GHG emission for IPCC categories 

Category mean (ton CO2-eq) cv 

Africa Latin America EU27 Africa Latin America EU27 

CH4_rice 
 

 8.5E+04 
 

 0.19 

CropArea 4.6E+05 3.5E+05 9.0E+04 0.34 0.28 0.15 

EntericFermentation 3.4E+08 6.1E+08 1.9E+08 0.19 0.22 0.18 

FertilizerProd 5.2E+06 2.0E+07 3.4E+07 0.44 0.42 0.37 

FuelUse 2.0E+06 3.3E+06 1.4E+07 0.34 0.32 0.22 

ManureManagement 2.0E+07 2.9E+07 5.4E+07 0.19 0.18 0.15 

ManureManagementCH4 1.3E+07 1.7E+07 4.5E+07 0.2 0.19 0.18 
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ManureManagementN2O 6.9E+06 1.1E+07 9.4E+06 0.4 0.36 0.24 

N2O_ByProducts 2.5E+06 4.6E+06 5.7E+06 0.34 0.42 0.37 

N2O_grazing 1.4E+08 1.5E+08 2.0E+07 0.45 0.44 0.39 

N2O_soil 2.6E+07 7.3E+07 8.0E+07 0.51 0.42 0.31 

PesticideUse 1.0E+05 1.9E+06 1.3E+06 0.2 0.23 0.2 

Total 5.4E+08 9.0E+08 4.0E+08 0.17 0.17 0.12 
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Annex 4 Results of uncertainty contribution from MIPs to 
model outputs 
The tables below provide the results of the uncertainty contribution from MIPs to model outputs. The 
results are discussed in section 3.3. The groups of MIPs are defined in section 2.6 ( 
 
 
Table 12). 

  4.1 Total GHG emission 

Continent Emission Uncertainty contribution (%) 

LAD CAD OAD BFD EFC EFN CPA LPA OPA 

Africa Total 2 0 0 0 50 39 0 1 0 

 
CH4 3 0 0 0 98 0 0 0 0 

 
N2O 0 0 0 0 0 73 0 1 0 

 CO2 3 1 5 0 0 0 10 25 50 
           

Latin America Total 2 0 0 0 73 16 0 1 0 

 CH4 3 0 0 0 97 0 0 0 0 

 N2O 0 0 0 0 0 75 0 4 0 

 CO2 1 4 2 0 0 0 6 21 49 
           

EU27 Total 4 0 0 0 49 37 0 17 8 

 
CH4 5 0 0 0 96 0 0 0 0 

 
N2O 2 0 0 0 0 88 1 23 5 

 CO2 5 1 6 0 0 0 0 34 58 
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 4.2 GHG emissions for livestock sectors 

Continent Sector 
Uncertainty contribution (%) 

Total  CH4 

LAD CAD OAD BFD EFC EFN CPA LPA OPA  LAD CAD OAD BFD EFC EFN CPA LPA OPA 

Africa 

Broilers 3 1 2 0 3 30 1 17 13  3 0 0 0 97 0 0 0 0 

Camels 1 0 0 0 97 2 0 0 0  1 0 0 0 99 0 0 0 0 

DairyCows 2 0 0 0 58 36 0 2 0  2 0 0 0 100 0 0 0 0 

Goats 1 0 0 0 69 22 0 0 0  1 0 0 0 98 0 0 0 0 

Horses 1 0 0 0 71 16 0 0 0  1 0 0 0 97 0 0 0 0 

LayingHens 3 1 2 0 1 31 1 17 14  3 0 0 0 98 0 0 0 0 

OtherAnimals 1 0 0 0 10 50 0 8 0  3 0 0 0 98 0 0 0 0 

OtherCattle 1 0 0 0 57 36 0 0 0  2 0 0 0 100 0 0 0 0 

OtherPoultry 0 0 0 0 1 55 0 4 0  3 0 0 0 98 0 0 0 0 

Pigs 2 0 0 0 7 59 0 19 4  3 0 0 0 96 0 0 0 0 

Sheep 2 0 0 0 63 30 0 0 0  2 0 0 0 100 0 0 0 0 

Turkeys 0 0 0 0 0 59 0 5 0  3 0 0 0 95 0 0 0 0 

                     

EU27 

Broilers 11 1 1 0 0 41 2 34 20  3 0 0 0 98 0 0 0 0 

DairyCows 4 0 0 0 60 28 0 12 6  4 0 0 0 96 0 0 0 0 

Goats 2 0 0 0 63 30 0 10 3  1 0 0 0 100 0 0 0 0 

Horses 1 0 0 0 79 15 0 0 0  1 0 0 0 100 0 0 0 0 

LayingHens 10 1 1 0 0 46 1 34 19  3 0 0 0 99 0 0 0 0 

OtherAnimals 9 0 0 0 50 39 0 5 0  6 0 0 0 94 0 0 0 0 

OtherCattle 3 0 0 0 66 26 0 10 3  4 0 0 0 96 0 0 0 0 

OtherPoultry 2 0 0 0 2 54 0 22 0  6 0 0 0 100 0 0 0 0 

Pigs 9 1 1 0 36 38 1 25 13  4 0 0 0 100 0 0 0 0 

Sheep 3 0 0 0 59 31 0 10 3  3 0 0 0 97 0 0 0 0 

Turkeys 18 0 0 0 10 58 0 18 0  22 0 0 0 71 0 0 0 0 
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Latin  
America 

Broilers 6 5 0 0 1 31 10 25 1  4 0 0 0 96 0 0 0 0 

Camels 2 0 0 0 82 21 0 1 0  2 0 0 0 98 0 0 0 0 

DairyCows 2 0 0 0 76 14 0 4 1  3 0 0 0 97 0 0 0 0 

Goats 1 0 0 0 76 17 0 1 0  1 0 0 0 99 0 0 0 0 

Horses 1 0 0 0 91 8 0 0 0  1 0 0 0 99 0 0 0 0 

LayingHens 6 5 0 0 0 31 11 24 1  4 0 0 0 95 0 0 0 0 

OtherAnimals 4 0 0 0 24 48 0 23 0  4 0 0 0 100 0 0 0 0 

OtherCattle 2 0 0 0 74 16 0 1 0  3 0 0 0 97 0 0 0 0 

OtherPoultry 1 0 0 0 2 70 0 20 0  5 0 0 0 94 0 0 0 0 

Pigs 3 1 0 0 11 52 2 21 0  3 0 0 0 95 0 0 0 0 

Sheep 2 0 0 0 64 26 0 2 0  2 0 0 0 98 0 0 0 0 

Turkeys 1 0 0 0 0 70 0 22 0  4 0 0 0 96 0 0 0 0 
 

Continent Sector 
Uncertainty contribution (%) 

N2O  CO2 

LAD CAD OAD BFD EFC EFN CPA LPA OPA  LAD CAD OAD BFD EFC EFN CPA LPA OPA 

Africa 

Broilers 2 1 1 0 0 40 1 15 4  4 1 3 0 0 0 0 18 65 

Camels 0 0 0 0 0 71 0 0 0  0 0 0 0 0 0 0 0 0 

DairyCows 0 0 0 0 0 72 0 3 0  3 1 4 0 0 0 4 22 59 

Goats 0 0 0 0 0 75 0 0 0  0 2 9 0 0 0 53 23 9 

Horses 0 0 0 0 0 73 0 0 0  0 0 0 0 0 0 0 0 0 

LayingHens 2 1 1 0 0 41 1 15 4  4 1 3 0 0 0 0 18 65 

OtherAnimals 0 0 0 0 0 56 0 9 0  0 0 0 0 0 0 0 0 0 

OtherCattle 0 0 0 0 0 74 0 0 0  0 2 9 0 0 0 56 22 7 

OtherPoultry 0 0 0 0 0 55 0 4 0  0 0 0 0 0 0 0 0 0 

Pigs 1 0 0 0 0 75 0 22 1  4 1 3 0 0 0 0 18 65 

Sheep 0 0 0 0 0 72 0 1 0  0 2 9 0 0 0 53 23 9 

Turkeys 0 0 0 0 0 59 0 5 0  0 0 0 0 0 0 0 0 0 
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EU27 

Broilers 7 1 0 0 0 67 3 24 8  12 2 8 0 0 0 0 36 45 

DairyCows 1 0 0 0 0 90 1 22 5  4 1 4 0 0 0 0 30 64 

Goats 1 0 0 0 0 90 0 18 2  4 1 12 0 0 0 1 38 44 

Horses 0 0 0 0 0 81 0 2 0  0 0 0 0 0 0 0 0 0 

LayingHens 7 1 0 0 0 72 2 23 8  12 2 8 0 0 0 0 37 46 

OtherAnimals 3 0 0 0 0 86 0 12 0  0 0 0 0 0 0 0 0 0 

OtherCattle 0 0 0 0 0 92 1 23 3  1 0 4 0 0 0 1 31 65 

OtherPoultry 1 0 0 0 0 55 0 23 0  0 0 0 0 0 0 0 0 0 

Pigs 6 1 0 0 0 76 2 22 7  12 2 9 0 0 0 0 38 46 

Sheep 1 0 0 0 0 89 0 18 2  3 0 9 0 0 0 0 38 50 

Turkeys 7 0 0 0 0 71 0 22 0  0 0 0 0 0 0 0 0 0 

                     

Latin 
America 

Broilers 4 4 0 0 0 36 10 23 0  14 11 3 0 0 0 6 38 15 

Camels 0 0 0 0 0 79 0 2 0  0 0 0 0 0 0 0 0 0 

DairyCows 0 0 0 0 0 60 0 12 1  1 4 2 0 0 0 6 22 48 

Goats 0 0 0 0 0 78 0 4 0  0 6 2 0 0 0 8 18 47 

Horses 0 0 0 0 0 79 0 3 0  0 0 0 0 0 0 0 0 0 

LayingHens 4 4 0 0 0 37 11 22 0  14 11 3 0 0 0 6 38 15 

OtherAnimals 1 0 0 0 0 61 0 29 0  0 0 0 0 0 0 0 0 0 

OtherCattle 0 0 0 0 0 80 0 2 0  0 6 2 0 0 0 8 16 48 

OtherPoultry 1 0 0 0 0 72 0 20 0  0 0 0 0 0 0 0 0 0 

Pigs 2 1 0 0 0 65 2 24 0  14 11 3 0 0 0 6 38 15 

Sheep 0 0 0 0 0 79 0 4 0  0 6 2 0 0 0 8 18 47 

Turkeys 1 0 0 0 0 71 0 23 0  0 0 0 0 0 0 0 0 0 
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 4.3 GHG emissions for livestock products 

Continent Product 
Uncertainty contribution (%) 

Total  CH4 

LAD CAD OAD BFD EFC EFN CPA LPA  LAD CAD OAD BFD EFC EFN CPA LPA OPA 

Africa CattleMeat 0 0 0 0 54 34 0 0  1 0 0 0 97 0 0 0 0 

 
CowMilk 1 0 0 0 55 34 0 2  1 0 0 0 97 0 0 0 0 

 
EGGS 4 1 2 0 1 30 1 16  1 0 0 0 98 0 0 0 0 

 
PigMeat 2 0 0 0 7 60 0 19  1 0 0 0 98 0 0 0 0 

 
PoultryMeat 4 1 1 0 3 29 1 16  1 0 0 0 97 0 0 0 0 

 
SheGoaMeat 0 0 0 0 50 36 0 0  1 0 0 0 98 0 0 0 0 

 
SheGoaMilk 1 0 0 0 49 36 0 0  1 0 0 0 97 0 0 0 0 

                    

EU27 CattleMeat 1 0 0 0 68 26 0 10  1 0 0 0 99 0 0 0 0 

 
CowMilk 1 0 0 0 61 28 0 12  1 0 0 0 99 0 0 0 0 

 
EGGS 11 1 1 0 0 45 1 33  1 0 0 0 101 0 0 0 0 

 
PigMeat 8 1 1 0 36 37 1 25  1 0 0 0 101 0 0 0 0 

 
PoultryMeat 11 1 1 0 0 41 2 34  1 0 0 0 101 0 0 0 0 

 
SheGoaMeat 1 0 0 0 54 36 0 12  1 0 0 0 99 0 0 0 0 

 
SheGoaMilk 1 0 0 0 54 36 0 12  1 0 0 0 99 0 0 0 0 

                    

LatinAmerica CattleMeat 0 0 0 0 76 16 0 1  0 0 0 0 99 0 0 0 0 

 
CowMilk 0 0 0 0 76 14 0 4  0 0 0 0 98 0 0 0 0 

 
EGGS 5 5 0 0 0 31 11 24  1 0 0 0 99 0 0 0 0 

 
PigMeat 1 1 0 0 10 52 2 21  0 0 0 0 99 0 0 0 0 

 
PoultryMeat 5 5 0 0 1 31 10 25  0 0 0 0 99 0 0 0 0 

 
SheGoaMeat 0 0 0 0 55 33 0 2  0 0 0 0 99 0 0 0 0 

 
SheGoaMilk 0 0 0 0 55 33 0 2  1 0 0 0 99 0 0 0 0 
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Continent Product 
Uncertainty contribution (%) 

N2O  CO2 

LAD CAD OAD BFD EFC EFN CPA LPA OPA  LAD CAD OAD BFD EFC EFN CPA LPA OPA 

Africa CattleMeat 0 0 0 0 0 73 0 0 0  2 2 9 0 0 0 54 21 6 

 
CowMilk 0 0 0 0 0 71 0 3 0  5 1 4 0 0 0 3 21 56 

 
EGGS 3 1 1 0 0 39 1 14 4  5 1 3 0 0 0 0 17 62 

 
PigMeat 1 0 0 0 0 75 0 22 1  5 1 3 0 0 0 0 17 63 

 
PoultryMeat 3 1 1 0 0 38 1 15 4  5 1 3 0 0 0 0 17 62 

 
SheGoaMeat 0 0 0 0 0 73 0 1 0  2 2 9 0 0 0 51 22 9 

 
SheGoaMilk 0 0 0 0 0 72 0 1 0  2 2 9 0 0 0 51 22 9 

  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 

EU27 CattleMeat 0 0 0 0 0 91 1 23 3  2 0 4 0 0 0 1 31 64 

 
CowMilk 1 0 0 0 0 89 1 22 5  5 1 4 0 0 0 0 29 63 

 
EGGS 7 1 0 0 0 71 2 23 7  13 2 8 0 0 0 0 36 44 

 
PigMeat 7 1 0 0 0 75 2 22 7  13 2 9 0 0 0 0 37 45 

 
PoultryMeat 8 1 0 0 0 66 3 24 8  13 2 7 0 0 0 0 35 44 

 
SheGoaMeat 1 0 0 0 0 90 0 18 2  4 0 9 0 0 0 1 37 48 

 
SheGoaMilk 1 0 0 0 0 89 0 17 2  4 0 9 0 0 0 1 37 48 

  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 

LatinAmerica CattleMeat 0 0 0 0 0 80 0 2 0  1 6 2 0 0 0 8 16 45 

 
CowMilk 0 0 0 0 0 59 0 12 1  1 4 2 0 0 0 5 21 46 

 
EGGS 4 4 0 0 0 36 11 21 0  14 11 3 0 0 0 6 37 14 

 
PigMeat 1 1 0 0 0 64 2 24 0  14 11 3 0 0 0 6 37 14 

 
PoultryMeat 3 4 0 0 0 36 10 23 0  14 11 3 0 0 0 6 37 14 

 
SheGoaMeat 0 0 0 0 0 79 0 4 0  1 6 2 0 0 0 7 17 45 

 
SheGoaMilk 0 0 0 0 0 79 0 4 0  1 6 2 0 0 0 7 17 45 
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  4.4 GHG emissions for IPCC categories 

Continent Category Uncertainty contribution (%) 

LAD CAD OAD BFD EFC EFN CPA LPA OPA 

Africa CropArea 0 0 0 0 0 0 68 25 0 

 EntericFermentation 3 0 0 0 99 0 0 0 0 

 FertilizerProd 2 1 3 0 0 0 0 13 71 

 FuelUse 0 0 17 0 0 0 43 24 1 

 ManureManagement 3 0 0 0 50 24 0 16 0 

 ManureManagementCH4 3 0 0 0 97 0 0 0 0 

 ManureManagementN2O 1 0 0 0 0 54 0 37 0 

 N2O_ByProducts 3 8 0 0 0 43 7 16 0 

 N2O_grazing 76 
         N2O_soil 0 1 0 0 0 99 0 11 0 

 PesticideUse 16 15 2 0 0 0 0 66 0 

 Total 2 0 0 0 50 39 0 1 0 

 CH4_rice 
                    

EU27 CropArea 5 1 0 0 0 0 1 92 0 

 EntericFermentation 4 0 0 0 97 0 0 0 0 

 FertilizerProd 2 0 0 0 0 0 0 13 85 

 FuelUse 10 2 44 0 0 0 0 51 2 

 ManureManagement 4 0 0 0 92 6 0 1 0 

 ManureManagementCH4 3 0 0 0 99 0 0 0 0 

 ManureManagementN2O 1 0 0 0 0 90 0 16 0 

 N2O_ByProducts 4 2 0 0 0 52 19 15 0 

 N2O_grazing 69 
         N2O_soil 1 0 0 0 0 99 0 20 0 

 PesticideUse 18 3 12 0 0 0 0 63 0 

 Total 4 0 0 0 49 37 0 17 8 

 CH4_rice 21 5 0 0 0 0 0 71 0 

           

LatinAmerica CropArea 0 0 0 0 0 0 52 36 0 

 EntericFermentation 3 0 0 0 97 0 0 0 0 

 FertilizerProd 0 5 1 0 0 0 3 11 61 

 FuelUse 1 0 34 0 0 0 28 29 1 

 ManureManagement 4 0 0 0 39 44 0 14 0 

 ManureManagementCH4 4 0 0 0 97 0 0 0 0 

 ManureManagementN2O 1 0 0 0 0 75 0 24 0 

 N2O_ByProducts 4 1 0 0 0 33 12 11 0 

 N2O_grazing 86 
         N2O_soil 0 0 0 0 0 67 0 13 0 

 PesticideUse 25 7 5 0 0 0 0 68 0 

 Total 2 0 0 0 73 16 0 1 0 

 CH4_rice 
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Annex 5 R script for uncertainty quantification with 
census data 
############################ Uncertainty quantification #################### 
# script used for calculating the cv (RMSE method)  for data from FAO data base and to analysis the 
trend of the data   
# SETTING ENVIRONMENT  ## 
#clean-up memory: 
rm(list = ls()) 
#load packages: 
library(reshape) 
library(matrixStats) 
#set work dictionary: 
setwd("M:/Thesis/1.UQ_in/FAOdata") 
# set options (print warnings as they occur) 
options(warn = 2) 
############################ LOADING POINT  
#1. [crpar]FAO_NatCropArea  
# read input data   
fao_crpar <- read.csv("FAO_NatCropArea.csv",header = TRUE,sep=",") 
# make a year factor to document the years from which the data is used 
year_crpar<-as.numeric(2000:2012) 
#create a new data frame for storing the statistics 
fao_crpar_stat<-fao_crpar 
# calculate the mean and the sd 
fao_crpar_stat$mean<-rowMeans(fao_crpar_stat[,3:15], na.rm = TRUE) 
fao_crpar_stat$sd<-rowSds(as.matrix(fao_crpar_stat[,3:15]), na.rm = TRUE) 
fao_crpar_stat$cv.original<-fao_crpar_stat$sd/fao_crpar_stat$mean 
cv_old_crpar<-sum(fao_crpar_stat$sd,na.rm = TRUE)/ 
              sum(fao_crpar_stat$mean,na.rm = TRUE) 
#define other columns for storing the results 
fao_crpar_stat$RMSE<-fao_crpar_stat$mean 
fao_crpar_stat$cv.NRMSE<-fao_crpar_stat$mean 
fao_crpar_stat$cv<-fao_crpar_stat$mean 
fao_crpar_stat$cv.weight<-fao_crpar_stat$mean 
#write a loop to get individual cv for each row in the input data 
#define the length of rows 
nr_crpar<-nrow(fao_crpar_stat) 
for (i in 1:nr_crpar){ 
  if (!is.na(fao_crpar_stat[i,"sd"])){ 
    observation.i<-as.numeric(fao_crpar_stat[i,3:15],na.rm=TRUE) 
    #get the linear least square fit line,skip the NA values 
    fitline.i<-lm(observation.i~year_crpar,na.action = na.omit) 
    #get the formula of the fit line, expressed as y=ax+b 
    summary<-summary(fitline.i) 
    coefficients<-summary$coefficients 
    a<-coefficients["year_crpar","Estimate"] 
    b<-coefficients["(Intercept)","Estimate"] 
    #generic a list for storing the predictions 
    prediction.i<-year_crpar 
    #define the length of the year factor 
    ylength<-length(year_crpar) 
    #fill the list prediction.i with predicted values 
    for (j in 1:ylength){ 
      prediction.i[[j]]<-a*year_crpar[[j]]+b 
    } 
    #generic a list for storing the RMSE 
    RMSE.i<-year_crpar 
    for (j in 1:ylength){ 
      if (!is.na(observation.i[[j]])){ 
        #if observation(i,j) is not NA, 
        #calculate the (Pi-Oi)2 and store the result in list RMSE.i 
        RMSE.i[[j]]<-(prediction.i[[j]]-observation.i[[j]])^2 
      }else{ 
        RMSE.i[[j]]<-NA 
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      }} 
    #define the length of RMSE.i withouth NAs 
    N<-length(RMSE.i[!is.na(RMSE.i)])  
    #calculate the RMSE 
    fao_crpar_stat[i,"RMSE"]<-sqrt(sum(RMSE.i,na.rm=TRUE)/N) 
    #calculate the cv.NRMSE for each row 
    fao_crpar_stat[i,"cv.NRMSE"]<-fao_crpar_stat[i,"RMSE"]/ 
                                  fao_crpar_stat[i,"mean"] 
    #choose the smaller one from cv.NRMSE and the cv.original as the cv 
    #because the cv from being removed trend should be smaller 
    fao_crpar_stat[i,"cv"]<-min(fao_crpar_stat[i,"cv.original"], 
                                fao_crpar_stat[i,"cv.NRMSE"]) 
}} 
#but if the cv.original is NA, the cv should remail NA 
for (i in 13075:nr_crpar){ 
  if (is.na(fao_crpar_stat[i,"cv.original"])){ 
    fao_crpar_stat[i,"cv"]<-NA 
  } 
  #weigh the cv by the mean of this row  
  fao_crpar_stat[i,"cv.weight"]<-fao_crpar_stat[i,"cv"]* 
                                 fao_crpar_stat[i,"mean"] 
} 
#get the sum of the means of each row from the input 
sum_mean_crpar<-sum(fao_crpar_stat[,"mean"],na.rm=TRUE) 
#get average cv for fao crop area data 
ave_weightcv_crpar<-sum(fao_crpar_stat$cv.weight,na.rm=TRUE)/sum_mean_crpar 
#write to csv 
write.csv(x = fao_crpar_stat,file = "stat_FAO_NatCropArea.csv",row.names=FALSE) 
# 2. [crpyi]FAO_NatCropProd  
#read input data   
fao_crpyi<-read.csv("FAO_NatCropProd.csv",header = TRUE,sep=",") 
#make a year factor to document the years from which the data is used 
year_crpyi<-as.numeric(2000:2012) 
#create a new data frame for storing the statistics 
fao_crpyi_stat<-fao_crpyi 
#calculate the mean and the sd 
fao_crpyi_stat$mean<-rowMeans(fao_crpyi_stat[,3:15], na.rm = TRUE) 
fao_crpyi_stat$sd<-rowSds(as.matrix(fao_crpyi_stat[,3:15]), na.rm = TRUE) 
fao_crpyi_stat$cv.original<-fao_crpyi_stat$sd/fao_crpyi_stat$mean 
cv_old_crpyi<-sum(fao_crpyi_stat$sd,na.rm = TRUE)/ 
              sum(fao_crpyi_stat$mean,na.rm = TRUE) 
#define other columns for storing the results 
fao_crpyi_stat$RMSE<-fao_crpyi_stat$mean 
fao_crpyi_stat$cv.NRMSE<-fao_crpyi_stat$mean 
fao_crpyi_stat$cv<-fao_crpyi_stat$mean 
fao_crpyi_stat$cv.weight<-fao_crpyi_stat$mean 
#write a loop to get individual cv for each row in the input data 
#define the length of rows 
nr_crpyi<-nrow(fao_crpyi_stat) 
for (i in 1:nr_crpyi){ 
  if (!is.na(fao_crpyi_stat[i,"sd"])){ 
    observation.i<-as.numeric(fao_crpyi_stat[i,3:15],na.rm=TRUE) 
    #get the linear least square fit line,skip the NA values 
    fitline.i<-lm(observation.i~year_crpyi,na.action = na.omit) 
    #get the formula of the fit line, expressed as y=ax+b 
    summary<-summary(fitline.i) 
    coefficients<-summary$coefficients 
    a<-coefficients["year_crpyi","Estimate"] 
    b<-coefficients["(Intercept)","Estimate"] 
    #generic a list for storing the predictions 
    prediction.i<-year_crpyi 
    #define the length of the year factor 
    ylength<-length(year_crpyi) 
    #fill the list prediction.i with predicted values 
    for (j in 1:ylength){ 
      prediction.i[[j]]<-a*year_crpyi[[j]]+b 
    } 
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    #generic a list for storing the RMSE 
    RMSE.i<-year_crpyi 
    for (j in 1:ylength){ 
      if (!is.na(observation.i[[j]])){ 
        #if observation(i,j) is not NA, 
        #calculate the (Pi-Oi)2 and store the result in list RMSE.i 
        RMSE.i[[j]]<-(prediction.i[[j]]-observation.i[[j]])^2 
      }else{ 
        RMSE.i[[j]]<-NA 
      }} 
    #define the length of RMSE.i withouth NAs 
    N<-length(RMSE.i[!is.na(RMSE.i)])  
    #calculate the RMSE 
    fao_crpyi_stat[i,"RMSE"]<-sqrt(sum(RMSE.i,na.rm=TRUE)/N) 
    #calculate the cv.NRMSE for each row 
    fao_crpyi_stat[i,"cv.NRMSE"]<-fao_crpyi_stat[i,"RMSE"]/ 
                                  fao_crpyi_stat[i,"mean"] 
    #choose the smaller one from cv.NRMSE and the cv.original as the cv 
    #because the cv from being removed trend should be smaller 
    fao_crpyi_stat[i,"cv"]<-min(fao_crpyi_stat[i,"cv.original"], 
                                fao_crpyi_stat[i,"cv.NRMSE"]) 
  }} 
#but if the cv.original is NA, the cv should remail NA 
for (i in 1:nr_crpyi){ 
  if (is.na(fao_crpyi_stat[i,"cv.original"])){ 
    fao_crpyi_stat[i,"cv"]<-NA 
  } 
  #weigh the cv by the mean of this row  
  fao_crpyi_stat[i,"cv.weight"]<-fao_crpyi_stat[i,"cv"]* 
                                 fao_crpyi_stat[i,"mean"] 
} 
#get the sum of the means of each row from the input 
sum_mean_crpyi<-sum(fao_crpyi_stat[,"mean"],na.rm=TRUE) 
#get average cv for fao crop area data 
ave_weightcv_crpyi<-sum(fao_crpyi_stat$cv.weight,na.rm=TRUE)/sum_mean_crpyi 
#write to csv 
write.csv(x = fao_crpyi_stat,file = "stat_FAO_NatCropProd.csv",row.names=FALSE) 
# 3. [aninu]FAO_NatAnimals  
#read input data   
fao_aninu<-read.csv("FAO_NatAnimals.csv",header = TRUE,sep=",") 
#make a year factor to document the years from which the data is used 
year_aninu<-as.numeric(2000:2011) 
#create a new data frame for storing the statistics 
fao_aninu_stat<-fao_aninu 
#calculate the mean and the sd 
fao_aninu_stat$mean<-rowMeans(fao_aninu_stat[,4:15], na.rm = TRUE) 
fao_aninu_stat$sd<-rowSds(as.matrix(fao_aninu_stat[,4:15]), na.rm = TRUE) 
fao_aninu_stat$cv.original<-fao_aninu_stat$sd/fao_aninu_stat$mean 
cv_old_aninu<-sum(fao_aninu_stat$sd,na.rm = TRUE)/ 
              sum(fao_aninu_stat$mean,na.rm = TRUE) 
#define other columns for storing the results 
fao_aninu_stat$RMSE<-fao_aninu_stat$mean 
fao_aninu_stat$cv.NRMSE<-fao_aninu_stat$mean 
fao_aninu_stat$cv<-fao_aninu_stat$mean 
fao_aninu_stat$cv.weight<-fao_aninu_stat$mean 
#write a loop to get individual cv for each row in the input data 
#define the length of rows 
nr_aninu<-nrow(fao_aninu_stat) 
for (i in 1:nr_aninu){ 
  if (!is.na(fao_aninu_stat[i,"sd"])){ 
    observation.i<-as.numeric(fao_aninu_stat[i,4:15],na.rm=TRUE) 
    #get the linear least square fit line,skip the NA values 
    fitline.i<-lm(observation.i~year_aninu,na.action = na.omit) 
    #get the formula of the fit line, expressed as y=ax+b 
    summary<-summary(fitline.i) 
    coefficients<-summary$coefficients 
    a<-coefficients["year_aninu","Estimate"] 

 
 

74 



    b<-coefficients["(Intercept)","Estimate"] 
    #generic a list for storing the predictions 
    prediction.i<-year_aninu 
    #define the length of the year factor 
    ylength<-length(year_aninu) 
    #fill the list prediction.i with predicted values 
    for (j in 1:ylength){ 
      prediction.i[[j]]<-a*year_aninu[[j]]+b 
    } 
    #generic a list for storing the RMSE 
    RMSE.i<-year_aninu 
    for (j in 1:ylength){ 
      if (!is.na(observation.i[[j]])){ 
        #if observation(i,j) is not NA, 
        #calculate the (Pi-Oi)2 and store the result in list RMSE.i 
        RMSE.i[[j]]<-(prediction.i[[j]]-observation.i[[j]])^2 
      }else{ 
        RMSE.i[[j]]<-NA 
    }} 
    #define the length of RMSE.i withouth NAs 
    N<-length(RMSE.i[!is.na(RMSE.i)])  
    #calculate the RMSE 
    fao_aninu_stat[i,"RMSE"]<-sqrt(sum(RMSE.i,na.rm=TRUE)/N) 
    #calculate the cv.NRMSE for each row 
    fao_aninu_stat[i,"cv.NRMSE"]<-fao_aninu_stat[i,"RMSE"]/ 
                                  fao_aninu_stat[i,"mean"] 
    #choose the smaller one from cv.NRMSE and the cv.original as the cv 
    #because the cv from being removed trend should be smaller 
    fao_aninu_stat[i,"cv"]<-min(fao_aninu_stat[i,"cv.original"], 
                                fao_aninu_stat[i,"cv.NRMSE"]) 
}} 
#but if the cv.original is NA, the cv should remail NA 
for (i in 1:1:nr_aninu){ 
  if (is.na(fao_aninu_stat[i,"cv.original"])){ 
    fao_aninu_stat[i,"cv"]<-NA 
  } 
  #weigh the cv by the mean of this row  
  fao_aninu_stat[i,"cv.weight"]<-fao_aninu_stat[i,"cv"]* 
    fao_aninu_stat[i,"mean"] 
} 
#get the sum of the means of each row from the input 
sum_mean_aninu<-sum(fao_aninu_stat[,"mean"],na.rm=TRUE) 
#get average cv for fao crop area data 
ave_weightcv_aninu<-sum(fao_aninu_stat$cv.weight,na.rm=TRUE)/sum_mean_aninu 
#write to csv 
write.csv(x = fao_aninu_stat,file = "stat_FAO_NatAnimals.csv",row.names=FALSE) 
# 4. [lndar]FAO_LandAreas  
#read input data   
fao_lndar<-read.csv("FAO_LandAreas.csv",header = TRUE,sep=",") 
#make a year factor to document the years from which the data is used 
year_lndar<-as.numeric(2000:2011) 
#create a new data frame for storing the statistics 
fao_lndar_stat<-fao_lndar 
#calculate the mean and the sd 
fao_lndar_stat$mean<-rowMeans(fao_lndar_stat[,3:14], na.rm = TRUE) 
fao_lndar_stat$sd<-rowSds(as.matrix(fao_lndar_stat[,3:14]), na.rm = TRUE) 
fao_lndar_stat$cv.original<-fao_lndar_stat$sd/fao_lndar_stat$mean 
cv_old_lndar<-sum(fao_lndar_stat$sd,na.rm = TRUE)/ 
              sum(fao_lndar_stat$mean,na.rm = TRUE) 
#define other columns for storing the results 
fao_lndar_stat$RMSE<-fao_lndar_stat$mean 
fao_lndar_stat$cv.NRMSE<-fao_lndar_stat$mean 
fao_lndar_stat$cv<-fao_lndar_stat$mean 
fao_lndar_stat$cv.weight<-fao_lndar_stat$mean 
#write a loop to get individual cv for each row in the input data 
#define the length of rows 
nr_lndar<-nrow(fao_lndar_stat) 
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for (i in 1:nr_lndar){ 
  if (!is.na(fao_lndar_stat[i,"sd"])){ 
    observation.i<-as.numeric(fao_lndar_stat[i,3:14],na.rm=TRUE) 
    #get the linear least square fit line,skip the NA values 
    fitline.i<-lm(observation.i~year_lndar,na.action = na.omit) 
    #get the formula of the fit line, expressed as y=ax+b 
    summary<-summary(fitline.i) 
    coefficients<-summary$coefficients 
    a<-coefficients["year_lndar","Estimate"] 
    b<-coefficients["(Intercept)","Estimate"] 
    #generic a list for storing the predictions 
    prediction.i<-year_lndar 
    #define the length of the year factor 
    ylength<-length(year_lndar) 
    #fill the list prediction.i with predicted values 
    for (j in 1:ylength){ 
      prediction.i[[j]]<-a*year_lndar[[j]]+b 
    } 
    #generic a list for storing the RMSE 
    RMSE.i<-year_lndar 
    for (j in 1:ylength){ 
      if (!is.na(observation.i[[j]])){ 
        #if observation(i,j) is not NA, 
        #calculate the (Pi-Oi)2 and store the result in list RMSE.i 
        RMSE.i[[j]]<-(prediction.i[[j]]-observation.i[[j]])^2 
      }else{ 
        RMSE.i[[j]]<-NA 
      } 
    } 
    #define the length of RMSE.i withouth NAs 
    N<-length(RMSE.i[!is.na(RMSE.i)])  
    #calculate the RMSE 
    fao_lndar_stat[i,"RMSE"]<-sqrt(sum(RMSE.i,na.rm=TRUE)/N) 
    #calculate the cv.NRMSE for each row 
    fao_lndar_stat[i,"cv.NRMSE"]<-fao_lndar_stat[i,"RMSE"]/ 
      fao_lndar_stat[i,"mean"] 
    #choose the smaller one from cv.NRMSE and the cv.original as the cv 
    #because the cv from being removed trend should be smaller 
    fao_lndar_stat[i,"cv"]<-min(fao_lndar_stat[i,"cv.original"], 
                                fao_lndar_stat[i,"cv.NRMSE"]) 
}} 
#but if the cv.original is NA, the cv should remail NA 
for (i in 1:1:nr_lndar){ 
  if (is.na(fao_lndar_stat[i,"cv.original"])){ 
    fao_lndar_stat[i,"cv"]<-NA 
  } 
  #weigh the cv by the mean of this row  
  fao_lndar_stat[i,"cv.weight"]<-fao_lndar_stat[i,"cv"]* 
                                 fao_lndar_stat[i,"mean"] 
} 
#get the sum of the means of each row from the input 
sum_mean_lndar<-sum(fao_lndar_stat[,"mean"],na.rm=TRUE) 
#get average cv for fao crop area data 
ave_weightcv_lndar<-sum(fao_lndar_stat$cv.weight,na.rm=TRUE)/sum_mean_lndar 
#write to csv 
write.csv(x = fao_lndar_stat,file = "stat_FAO_LandAreas.csv",row.names=FALSE) 
# 5. [anipr]FAO_AnimalProd  
#read input data   
fao_anipr<-read.csv("FAO_AnimalProd.csv",header = TRUE,sep=",") 
#make a year factor to document the years from which the data is used 
year_anipr<-as.numeric(2000:2011) 
#create a new data frame for storing the statistics 
fao_anipr_stat<-fao_anipr 
#calculate the mean and the sd 
fao_anipr_stat$mean<-rowMeans(fao_anipr_stat[,3:14], na.rm = TRUE) 
fao_anipr_stat$sd<-rowSds(as.matrix(fao_anipr_stat[,3:14]), na.rm = TRUE) 
fao_anipr_stat$cv.original<-fao_anipr_stat$sd/fao_anipr_stat$mean 
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cv_old_anipr<-sum(fao_anipr_stat$sd,na.rm = TRUE)/ 
              sum(fao_anipr_stat$mean,na.rm = TRUE) 
#define other columns for storing the results 
fao_anipr_stat$RMSE<-fao_anipr_stat$mean 
fao_anipr_stat$cv.NRMSE<-fao_anipr_stat$mean 
fao_anipr_stat$cv<-fao_anipr_stat$mean 
fao_anipr_stat$cv.weight<-fao_anipr_stat$mean 
#write a loop to get individual cv for each row in the input data 
#define the length of rows 
nr_anipr<-nrow(fao_anipr_stat) 
for (i in 1:nr_anipr){ 
  if (!is.na(fao_anipr_stat[i,"sd"])){ 
    observation.i<-as.numeric(fao_anipr_stat[i,3:14],na.rm=TRUE) 
    #get the linear least square fit line,skip the NA values 
    fitline.i<-lm(observation.i~year_anipr,na.action = na.omit) 
    #get the formula of the fit line, expressed as y=ax+b 
    summary<-summary(fitline.i) 
    coefficients<-summary$coefficients 
    a<-coefficients["year_anipr","Estimate"] 
    b<-coefficients["(Intercept)","Estimate"] 
    #generic a list for storing the predictions 
    prediction.i<-year_anipr 
    #define the length of the year factor 
    ylength<-length(year_anipr) 
    #fill the list prediction.i with predicted values 
    for (j in 1:ylength){ 
      prediction.i[[j]]<-a*year_anipr[[j]]+b 
    } 
    #generic a list for storing the RMSE 
    RMSE.i<-year_anipr 
    for (j in 1:ylength){ 
      if (!is.na(observation.i[[j]])){ 
        #if observation(i,j) is not NA, 
        #calculate the (Pi-Oi)2 and store the result in list RMSE.i 
        RMSE.i[[j]]<-(prediction.i[[j]]-observation.i[[j]])^2 
      }else{ 
        RMSE.i[[j]]<-NA 
    }} 
    #define the length of RMSE.i withouth NAs 
    N<-length(RMSE.i[!is.na(RMSE.i)])  
    #calculate the RMSE 
    fao_anipr_stat[i,"RMSE"]<-sqrt(sum(RMSE.i,na.rm=TRUE)/N) 
    #calculate the cv.NRMSE for each row 
    fao_anipr_stat[i,"cv.NRMSE"]<-fao_anipr_stat[i,"RMSE"]/ 
                                  fao_anipr_stat[i,"mean"] 
    #choose the smaller one from cv.NRMSE and the cv.original as the cv 
    #because the cv from being removed trend should be smaller 
    fao_anipr_stat[i,"cv"]<-min(fao_anipr_stat[i,"cv.original"], 
                                fao_anipr_stat[i,"cv.NRMSE"]) 
}} 
#but if the cv.original is NA, the cv should remail NA 
for (i in 1:1:nr_anipr){ 
  if (is.na(fao_anipr_stat[i,"cv.original"])){ 
    fao_anipr_stat[i,"cv"]<-NA 
  } 
  #weigh the cv by the mean of this row  
  fao_anipr_stat[i,"cv.weight"]<-fao_anipr_stat[i,"cv"]* 
                                 fao_anipr_stat[i,"mean"] 
} 
#get the sum of the means of each row from the input 
sum_mean_anipr<-sum(fao_anipr_stat[,"mean"],na.rm=TRUE) 
#get average cv for fao crop area data 
ave_weightcv_anipr<-sum(fao_anipr_stat$cv.weight,na.rm=TRUE)/sum_mean_anipr 
#write to csv 
write.csv(x = fao_anipr_stat,file = "stat_FAO_AnimalProd.csv",row.names=FALSE) 
# 6. [prdani]FAO_ProducingAnimals  
#read input data   
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fao_prdani<-read.csv("FAO_ProducingAnimals.csv",header = TRUE,sep=",") 
#make a year factor to document the years from which the data is used 
year_prdani<-as.numeric(2000:2011) 
#create a new data frame for storing the statistics 
fao_prdani_stat<-fao_prdani 
#calculate the mean and the sd 
fao_prdani_stat$mean<-rowMeans(fao_prdani_stat[,3:14], na.rm = TRUE) 
fao_prdani_stat$sd<-rowSds(as.matrix(fao_prdani_stat[,3:14]), na.rm = TRUE) 
fao_prdani_stat$cv.original<-fao_prdani_stat$sd/fao_prdani_stat$mean 
cv_old_prdani<-sum(fao_prdani_stat$sd,na.rm = TRUE)/ 
               sum(fao_prdani_stat$mean,na.rm = TRUE) 
#define other columns for storing the results 
fao_prdani_stat$RMSE<-fao_prdani_stat$mean 
fao_prdani_stat$cv.NRMSE<-fao_prdani_stat$mean 
fao_prdani_stat$cv<-fao_prdani_stat$mean 
fao_prdani_stat$cv.weight<-fao_prdani_stat$mean 
#write a loop to get individual cv for each row in the input data 
#define the length of rows 
nr_prdani<-nrow(fao_prdani_stat) 
for (i in 1:nr_prdani){ 
  if (!is.na(fao_prdani_stat[i,"sd"])){ 
    observation.i<-as.numeric(fao_prdani_stat[i,3:14],na.rm=TRUE) 
    #get the linear least square fit line,skip the NA values 
    fitline.i<-lm(observation.i~year_prdani,na.action = na.omit) 
    #get the formula of the fit line, expressed as y=ax+b 
    summary<-summary(fitline.i) 
    coefficients<-summary$coefficients 
    a<-coefficients["year_prdani","Estimate"] 
    b<-coefficients["(Intercept)","Estimate"] 
    #generic a list for storing the predictions 
    prediction.i<-year_prdani 
    #define the length of the year factor 
    ylength<-length(year_prdani) 
    #fill the list prediction.i with predicted values 
    for (j in 1:ylength){ 
      prediction.i[[j]]<-a*year_prdani[[j]]+b 
    } 
    #generic a list for storing the RMSE 
    RMSE.i<-year_prdani 
    for (j in 1:ylength){ 
      if (!is.na(observation.i[[j]])){ 
        #if observation(i,j) is not NA, 
        #calculate the (Pi-Oi)2 and store the result in list RMSE.i 
        RMSE.i[[j]]<-(prediction.i[[j]]-observation.i[[j]])^2 
      }else{ 
        RMSE.i[[j]]<-NA 
    }} 
    #define the length of RMSE.i withouth NAs 
    N<-length(RMSE.i[!is.na(RMSE.i)])  
    #calculate the RMSE 
    fao_prdani_stat[i,"RMSE"]<-sqrt(sum(RMSE.i,na.rm=TRUE)/N) 
    #calculate the cv.NRMSE for each row 
    fao_prdani_stat[i,"cv.NRMSE"]<-fao_prdani_stat[i,"RMSE"]/ 
                                   fao_prdani_stat[i,"mean"] 
    #choose the smaller one from cv.NRMSE and the cv.original as the cv 
    #because the cv from being removed trend should be smaller 
    fao_prdani_stat[i,"cv"]<-min(fao_prdani_stat[i,"cv.original"], 
                                 fao_prdani_stat[i,"cv.NRMSE"]) 
}} 
#but if the cv.original is NA, the cv should remail NA 
for (i in 1:1:nr_prdani){ 
  if (is.na(fao_prdani_stat[i,"cv.original"])){ 
    fao_prdani_stat[i,"cv"]<-NA 
  } 
  #weigh the cv by the mean of this row  
  fao_prdani_stat[i,"cv.weight"]<-fao_prdani_stat[i,"cv"]* 
                                  fao_prdani_stat[i,"mean"] 
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} 
#get the sum of the means of each row from the input 
sum_mean_prdani<-sum(fao_prdani_stat[,"mean"],na.rm=TRUE) 
#get average cv for fao crop area data 
ave_weightcv_prdani<-sum(fao_prdani_stat$cv.weight,na.rm=TRUE)/sum_mean_prdani 
#write to csv 
write.csv(x = fao_prdani_stat,file = "stat_FAO_ProducingAnimals.csv",row.names=FALSE) 
# 7. [natfrt]FAO_NatFertilizer  
#read input data   
fao_natfrt<-read.csv("FAO_NatFertilizer.csv",header = TRUE,sep=",") 
#make a year factor to document the years from which the data is used 
year_natfrt<-as.numeric(2002:2011) 
#create a new data frame for storing the statistics 
fao_natfrt_stat<-fao_natfrt 
#calculate the mean and the sd 
fao_natfrt_stat$mean<-rowMeans(fao_natfrt_stat[,3:12], na.rm = TRUE) 
fao_natfrt_stat$sd<-rowSds(as.matrix(fao_natfrt_stat[,3:12]), na.rm = TRUE) 
fao_natfrt_stat$cv.original<-fao_natfrt_stat$sd/fao_natfrt_stat$mean 
cv_old_natfrt<-sum(fao_natfrt_stat$sd,na.rm = TRUE)/ 
               sum(fao_natfrt_stat$mean,na.rm = TRUE) 
#define other columns for storing the results 
fao_natfrt_stat$RMSE<-fao_natfrt_stat$mean 
fao_natfrt_stat$cv.NRMSE<-fao_natfrt_stat$mean 
fao_natfrt_stat$cv<-fao_natfrt_stat$mean 
fao_natfrt_stat$cv.weight<-fao_natfrt_stat$mean 
#write a loop to get individual cv for each row in the input data 
#define the length of rows 
nr_natfrt<-nrow(fao_natfrt_stat) 
for (i in 1:nr_natfrt){ 
  if (!is.na(fao_natfrt_stat[i,"sd"])){ 
    observation.i<-as.numeric(fao_natfrt_stat[i,3:12],na.rm=TRUE) 
    #get the linear least square fit line,skip the NA values 
    fitline.i<-lm(observation.i~year_natfrt,na.action = na.omit) 
    #get the formula of the fit line, expressed as y=ax+b 
    summary<-summary(fitline.i) 
    coefficients<-summary$coefficients 
    a<-coefficients["year_natfrt","Estimate"] 
    b<-coefficients["(Intercept)","Estimate"] 
    #generic a list for storing the predictions 
    prediction.i<-year_natfrt 
    #define the length of the year factor 
    ylength<-length(year_natfrt) 
    #fill the list prediction.i with predicted values 
    for (j in 1:ylength){ 
      prediction.i[[j]]<-a*year_natfrt[[j]]+b 
    } 
    #generic a list for storing the RMSE 
    RMSE.i<-year_natfrt 
    for (j in 1:ylength){ 
      if (!is.na(observation.i[[j]])){ 
        #if observation(i,j) is not NA, 
        #calculate the (Pi-Oi)2 and store the result in list RMSE.i 
        RMSE.i[[j]]<-(prediction.i[[j]]-observation.i[[j]])^2 
      }else{ 
        RMSE.i[[j]]<-NA 
    }} 
    #define the length of RMSE.i withouth NAs 
    N<-length(RMSE.i[!is.na(RMSE.i)])  
    #calculate the RMSE 
    fao_natfrt_stat[i,"RMSE"]<-sqrt(sum(RMSE.i,na.rm=TRUE)/N) 
    #calculate the cv.NRMSE for each row 
    fao_natfrt_stat[i,"cv.NRMSE"]<-fao_natfrt_stat[i,"RMSE"]/ 
                                   fao_natfrt_stat[i,"mean"] 
    #choose the smaller one from cv.NRMSE and the cv.original as the cv 
    #because the cv from being removed trend should be smaller 
    fao_natfrt_stat[i,"cv"]<-min(fao_natfrt_stat[i,"cv.original"], 
                                 fao_natfrt_stat[i,"cv.NRMSE"]) 
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}} 
#but if the cv.original is NA, the cv should remail NA 
for (i in 1:1:nr_natfrt){ 
  if (is.na(fao_natfrt_stat[i,"cv.original"])){ 
    fao_natfrt_stat[i,"cv"]<-NA 
  } 
  #weigh the cv by the mean of this row  
  fao_natfrt_stat[i,"cv.weight"]<-fao_natfrt_stat[i,"cv"]* 
                                  fao_natfrt_stat[i,"mean"] 
} 
#get the sum of the means of each row from the input 
sum_mean_natfrt<-sum(fao_natfrt_stat[,"mean"],na.rm=TRUE) 
#get average cv for fao crop area data 
ave_weightcv_natfrt<-sum(fao_natfrt_stat$cv.weight,na.rm=TRUE)/sum_mean_natfrt 
#write to csv 
write.csv(x = fao_natfrt_stat,file = "stat_FAO_NatFertilizer.csv",row.names=FALSE) 
# 8. [frttp]FertilizerType  
#read input data   
fao_frttp<-read.csv("FAO_FertilizerType.csv",header = TRUE,sep=",") 
#make a year factor to document the years from which the data is used 
year_frttp<-as.numeric(2002:2011) 
#create a new data frame for storing the statistics 
fao_frttp_stat<-fao_frttp 
#calculate the mean and the sd 
fao_frttp_stat$mean<-rowMeans(fao_frttp_stat[,3:12], na.rm = TRUE) 
fao_frttp_stat$sd<-rowSds(as.matrix(fao_frttp_stat[,3:12]), na.rm = TRUE) 
fao_frttp_stat$cv.original<-fao_frttp_stat$sd/fao_frttp_stat$mean 
cv_old_frttp<-sum(fao_frttp_stat$sd,na.rm = TRUE)/ 
              sum(fao_frttp_stat$mean,na.rm = TRUE) 
#define other columns for storing the results 
fao_frttp_stat$RMSE<-fao_frttp_stat$mean 
fao_frttp_stat$cv.NRMSE<-fao_frttp_stat$mean 
fao_frttp_stat$cv<-fao_frttp_stat$mean 
fao_frttp_stat$cv.weight<-fao_frttp_stat$mean 
#write a loop to get individual cv for each row in the input data 
#define the length of rows 
nr_frttp<-nrow(fao_frttp_stat) 
for (i in 1:nr_frttp){ 
  if (!is.na(fao_frttp_stat[i,"sd"])){ 
    observation.i<-as.numeric(fao_frttp_stat[i,3:12],na.rm=TRUE) 
    #get the linear least square fit line,skip the NA values 
    fitline.i<-lm(observation.i~year_frttp,na.action = na.omit) 
    #get the formula of the fit line, expressed as y=ax+b 
    summary<-summary(fitline.i) 
    coefficients<-summary$coefficients 
    a<-coefficients["year_frttp","Estimate"] 
    b<-coefficients["(Intercept)","Estimate"] 
    #generic a list for storing the predictions 
    prediction.i<-year_frttp 
    #define the length of the year factor 
    ylength<-length(year_frttp) 
    #fill the list prediction.i with predicted values 
    for (j in 1:ylength){ 
      prediction.i[[j]]<-a*year_frttp[[j]]+b 
    } 
    #generic a list for storing the RMSE 
    RMSE.i<-year_frttp 
    for (j in 1:ylength){ 
      if (!is.na(observation.i[[j]])){ 
        #if observation(i,j) is not NA, 
        #calculate the (Pi-Oi)2 and store the result in list RMSE.i 
        RMSE.i[[j]]<-(prediction.i[[j]]-observation.i[[j]])^2 
      }else{ 
        RMSE.i[[j]]<-NA 
      }} 
    #define the length of RMSE.i withouth NAs 
    N<-length(RMSE.i[!is.na(RMSE.i)])  
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    #calculate the RMSE 
    fao_frttp_stat[i,"RMSE"]<-sqrt(sum(RMSE.i,na.rm=TRUE)/N) 
    #calculate the cv.NRMSE for each row 
    fao_frttp_stat[i,"cv.NRMSE"]<-fao_frttp_stat[i,"RMSE"]/ 
                                  fao_frttp_stat[i,"mean"] 
    #choose the smaller one from cv.NRMSE and the cv.original as the cv 
    #because the cv from being removed trend should be smaller 
    fao_frttp_stat[i,"cv"]<-min(fao_frttp_stat[i,"cv.original"], 
                                fao_frttp_stat[i,"cv.NRMSE"]) 
}} 
#but if the cv.original is NA, the cv should remail NA 
for (i in 1:1:nr_frttp){ 
  if (is.na(fao_frttp_stat[i,"cv.original"])){ 
    fao_frttp_stat[i,"cv"]<-NA 
  } 
  #weigh the cv by the mean of this row  
  fao_frttp_stat[i,"cv.weight"]<-fao_frttp_stat[i,"cv"]* 
                                 fao_frttp_stat[i,"mean"] 
} 
#get the sum of the means of each row from the input 
sum_mean_frttp<-sum(fao_frttp_stat[,"mean"],na.rm=TRUE) 
#get average cv for fao crop area data 
ave_weightcv_frttp<-sum(fao_frttp_stat$cv.weight,na.rm=TRUE)/sum_mean_frttp 
#write to csv 
write.csv(x = fao_frttp_stat,file = "stat_FAO_FertilizerType.csv",row.names=FALSE) 
# 9. [feedcr]feedset_Crops  
#read input data   
fao_feedcr<-read.csv("FAO_feedset_Crops.csv",header = TRUE,sep=",") 
#make a year factor to document the years from which the data is used 
year_feedcr<-as.numeric(2000:2009) 
#create a new data frame for storing the statistics 
fao_feedcr_stat<-fao_feedcr 
#calculate the mean and the sd 
fao_feedcr_stat$mean<-rowMeans(fao_feedcr_stat[,3:12], na.rm = TRUE) 
fao_feedcr_stat$sd<-rowSds(as.matrix(fao_feedcr_stat[,3:12]), na.rm = TRUE) 
fao_feedcr_stat$cv.original<-fao_feedcr_stat$sd/fao_feedcr_stat$mean 
cv_old_feedcr<-sum(fao_feedcr_stat$sd,na.rm = TRUE)/ 
  sum(fao_feedcr_stat$mean,na.rm = TRUE) 
#define other columns for storing the results 
fao_feedcr_stat$RMSE<-fao_feedcr_stat$mean 
fao_feedcr_stat$cv.NRMSE<-fao_feedcr_stat$mean 
fao_feedcr_stat$cv<-fao_feedcr_stat$mean 
fao_feedcr_stat$cv.weight<-fao_feedcr_stat$mean 
#write a loop to get individual cv for each row in the input data 
#define the length of rows 
nr_feedcr<-nrow(fao_feedcr_stat) 
for (i in 1:nr_feedcr){ 
  if (!is.na(fao_feedcr_stat[i,"sd"])){ 
    observation.i<-as.numeric(fao_feedcr_stat[i,3:12],na.rm=TRUE) 
    #get the linear least square fit line,skip the NA values 
    fitline.i<-lm(observation.i~year_feedcr,na.action = na.omit) 
    #get the formula of the fit line, expressed as y=ax+b 
    summary<-summary(fitline.i) 
    coefficients<-summary$coefficients 
    a<-coefficients["year_feedcr","Estimate"] 
    b<-coefficients["(Intercept)","Estimate"] 
    #generic a list for storing the predictions 
    prediction.i<-year_feedcr 
    #define the length of the year factor 
    ylength<-length(year_feedcr) 
    #fill the list prediction.i with predicted values 
    for (j in 1:ylength){ 
      prediction.i[[j]]<-a*year_feedcr[[j]]+b 
    } 
    #generic a list for storing the RMSE 
    RMSE.i<-year_feedcr 
    for (j in 1:ylength){ 
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      if (!is.na(observation.i[[j]])){ 
        #if observation(i,j) is not NA, 
        #calculate the (Pi-Oi)2 and store the result in list RMSE.i 
        RMSE.i[[j]]<-(prediction.i[[j]]-observation.i[[j]])^2 
      }else{ 
        RMSE.i[[j]]<-NA 
    }} 
    #define the length of RMSE.i withouth NAs 
    N<-length(RMSE.i[!is.na(RMSE.i)])  
    #calculate the RMSE 
    fao_feedcr_stat[i,"RMSE"]<-sqrt(sum(RMSE.i,na.rm=TRUE)/N) 
    #calculate the cv.NRMSE for each row 
    fao_feedcr_stat[i,"cv.NRMSE"]<-fao_feedcr_stat[i,"RMSE"]/ 
                                   fao_feedcr_stat[i,"mean"] 
    #choose the smaller one from cv.NRMSE and the cv.original as the cv 
    #because the cv from being removed trend should be smaller 
    fao_feedcr_stat[i,"cv"]<-min(fao_feedcr_stat[i,"cv.original"], 
                                 fao_feedcr_stat[i,"cv.NRMSE"]) 
}} 
#but if the cv.original is NA, the cv should remail NA 
for (i in 1:1:nr_feedcr){ 
  if (is.na(fao_feedcr_stat[i,"cv.original"])){ 
    fao_feedcr_stat[i,"cv"]<-NA 
  } 
  #weigh the cv by the mean of this row  
  fao_feedcr_stat[i,"cv.weight"]<-fao_feedcr_stat[i,"cv"]* 
                                  fao_feedcr_stat[i,"mean"] 
} 
#get the sum of the means of each row from the input 
sum_mean_feedcr<-sum(fao_feedcr_stat[,"mean"],na.rm=TRUE) 
#get average cv for fao crop area data 
ave_weightcv_feedcr<-sum(fao_feedcr_stat$cv.weight,na.rm=TRUE)/sum_mean_feedcr 
#write to csv 
write.csv(x = fao_feedcr_stat,file = "stat_FAO_feedset_Crops.csv",row.names=FALSE) 
# 10. [feedani]feedset_Animals  
#read input data   
fao_feedani<-read.csv("FAO_feedset_Animals.csv",header = TRUE,sep=",") 
#make a year factor to document the years from which the data is used 
year_feedani<-as.numeric(2000:2009) 
#create a new data frame for storing the statistics 
fao_feedani_stat<-fao_feedani 
#calculate the mean and the sd 
fao_feedani_stat$mean<-rowMeans(fao_feedani_stat[,3:12], na.rm = TRUE) 
fao_feedani_stat$sd<-rowSds(as.matrix(fao_feedani_stat[,3:12]), na.rm = TRUE) 
fao_feedani_stat$cv.original<-fao_feedani_stat$sd/fao_feedani_stat$mean 
cv_old_feedani<-sum(fao_feedani_stat$sd,na.rm = TRUE)/ 
                sum(fao_feedani_stat$mean,na.rm = TRUE) 
#define other columns for storing the results 
fao_feedani_stat$RMSE<-fao_feedani_stat$mean 
fao_feedani_stat$cv.NRMSE<-fao_feedani_stat$mean 
fao_feedani_stat$cv<-fao_feedani_stat$mean 
fao_feedani_stat$cv.weight<-fao_feedani_stat$mean 
#write a loop to get individual cv for each row in the input data 
#define the length of rows 
nr_feedani<-nrow(fao_feedani_stat) 
for (i in 1:nr_feedani){ 
  if (!is.na(fao_feedani_stat[i,"sd"])){ 
    observation.i<-as.numeric(fao_feedani_stat[i,3:12],na.rm=TRUE) 
    #get the linear least square fit line,skip the NA values 
    fitline.i<-lm(observation.i~year_feedani,na.action = na.omit) 
    #get the formula of the fit line, expressed as y=ax+b 
    summary<-summary(fitline.i) 
    coefficients<-summary$coefficients 
    a<-coefficients["year_feedani","Estimate"] 
    b<-coefficients["(Intercept)","Estimate"] 
    #generic a list for storing the predictions 
    prediction.i<-year_feedani 
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    #define the length of the year factor 
    ylength<-length(year_feedani) 
    #fill the list prediction.i with predicted values 
    for (j in 1:ylength){ 
      prediction.i[[j]]<-a*year_feedani[[j]]+b 
    } 
    #generic a list for storing the RMSE 
    RMSE.i<-year_feedani 
    for (j in 1:ylength){ 
      if (!is.na(observation.i[[j]])){ 
        #if observation(i,j) is not NA, 
        #calculate the (Pi-Oi)2 and store the result in list RMSE.i 
        RMSE.i[[j]]<-(prediction.i[[j]]-observation.i[[j]])^2 
      }else{ 
        RMSE.i[[j]]<-NA 
    }} 
    #define the length of RMSE.i withouth NAs 
    N<-length(RMSE.i[!is.na(RMSE.i)])  
    #calculate the RMSE 
    fao_feedani_stat[i,"RMSE"]<-sqrt(sum(RMSE.i,na.rm=TRUE)/N) 
    #calculate the cv.NRMSE for each row 
    fao_feedani_stat[i,"cv.NRMSE"]<-fao_feedani_stat[i,"RMSE"]/ 
                                    fao_feedani_stat[i,"mean"] 
    #choose the smaller one from cv.NRMSE and the cv.original as the cv 
    #because the cv from being removed trend should be smaller 
    fao_feedani_stat[i,"cv"]<-min(fao_feedani_stat[i,"cv.original"], 
                                  fao_feedani_stat[i,"cv.NRMSE"]) 
}} 
#but if the cv.original is NA, the cv should remail NA 
for (i in 1:1:nr_feedani){ 
  if (is.na(fao_feedani_stat[i,"cv.original"])){ 
    fao_feedani_stat[i,"cv"]<-NA 
  } 
  #weigh the cv by the mean of this row  
  fao_feedani_stat[i,"cv.weight"]<-fao_feedani_stat[i,"cv"]* 
                                   fao_feedani_stat[i,"mean"] 
} 
#get the sum of the means of each row from the input 
sum_mean_feedani<-sum(fao_feedani_stat[,"mean"],na.rm=TRUE) 
#get average cv for fao crop area data 
ave_weightcv_feedani<-sum(fao_feedani_stat$cv.weight,na.rm=TRUE)/sum_mean_feedani 
#write to csv 
write.csv(x = fao_feedani_stat,file = "stat_FAO_feedset_Animals.csv",row.names=FALSE) 
# 11.[pstuse]PesticideUse  
#read input data   
fao_pstuse<-read.csv("FAO_PesticideUse.csv",header = TRUE,sep=",") 
#make a year factor to document the years from which the data is used 
year_pstuse<-as.numeric(2000:2010) 
#create a new data frame for storing the statistics 
fao_pstuse_stat<-fao_pstuse 
#calculate the mean and the sd 
fao_pstuse_stat$mean<-rowMeans(fao_pstuse_stat[,2:12], na.rm = TRUE) 
fao_pstuse_stat$sd<-rowSds(as.matrix(fao_pstuse_stat[,2:12]), na.rm = TRUE) 
fao_pstuse_stat$cv.original<-fao_pstuse_stat$sd/fao_pstuse_stat$mean 
cv_old_pstuse<-sum(fao_pstuse_stat$sd,na.rm = TRUE)/ 
               sum(fao_pstuse_stat$mean,na.rm = TRUE) 
#define other columns for storing the results 
fao_pstuse_stat$RMSE<-fao_pstuse_stat$mean 
fao_pstuse_stat$cv.NRMSE<-fao_pstuse_stat$mean 
fao_pstuse_stat$cv<-fao_pstuse_stat$mean 
fao_pstuse_stat$cv.weight<-fao_pstuse_stat$mean 
#write a loop to get individual cv for each row in the input data 
#define the length of rows 
nr_pstuse<-nrow(fao_pstuse_stat) 
for (i in 1:nr_pstuse){ 
  if (!is.na(fao_pstuse_stat[i,"sd"])){ 
    observation.i<-as.numeric(fao_pstuse_stat[i,2:12],na.rm=TRUE) 
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    #get the linear least square fit line,skip the NA values 
    fitline.i<-lm(observation.i~year_pstuse,na.action = na.omit) 
    #get the formula of the fit line, expressed as y=ax+b 
    summary<-summary(fitline.i) 
    coefficients<-summary$coefficients 
    a<-coefficients["year_pstuse","Estimate"] 
    b<-coefficients["(Intercept)","Estimate"] 
    #generic a list for storing the predictions 
    prediction.i<-year_pstuse 
    #define the length of the year factor 
    ylength<-length(year_pstuse) 
    #fill the list prediction.i with predicted values 
    for (j in 1:ylength){ 
      prediction.i[[j]]<-a*year_pstuse[[j]]+b 
    } 
    #generic a list for storing the RMSE 
    RMSE.i<-year_pstuse 
    for (j in 1:ylength){ 
      if (!is.na(observation.i[[j]])){ 
        #if observation(i,j) is not NA, 
        #calculate the (Pi-Oi)2 and store the result in list RMSE.i 
        RMSE.i[[j]]<-(prediction.i[[j]]-observation.i[[j]])^2 
      }else{ 
        RMSE.i[[j]]<-NA 
    }} 
    #define the length of RMSE.i withouth NAs 
    N<-length(RMSE.i[!is.na(RMSE.i)])  
    #calculate the RMSE 
    fao_pstuse_stat[i,"RMSE"]<-sqrt(sum(RMSE.i,na.rm=TRUE)/N) 
    #calculate the cv.NRMSE for each row 
    fao_pstuse_stat[i,"cv.NRMSE"]<-fao_pstuse_stat[i,"RMSE"]/ 
                                   fao_pstuse_stat[i,"mean"] 
    #choose the smaller one from cv.NRMSE and the cv.original as the cv 
    #because the cv from being removed trend should be smaller 
    fao_pstuse_stat[i,"cv"]<-min(fao_pstuse_stat[i,"cv.original"], 
                                 fao_pstuse_stat[i,"cv.NRMSE"]) 
}} 
#but if the cv.original is NA, the cv should remail NA 
for (i in 1:1:nr_pstuse){ 
  if (is.na(fao_pstuse_stat[i,"cv.original"])){ 
    fao_pstuse_stat[i,"cv"]<-NA 
  } 
  #weigh the cv by the mean of this row  
  fao_pstuse_stat[i,"cv.weight"]<-fao_pstuse_stat[i,"cv"]* 
                                  fao_pstuse_stat[i,"mean"] 
} 
#get the sum of the means of each row from the input 
sum_mean_pstuse<-sum(fao_pstuse_stat[,"mean"],na.rm=TRUE) 
#get average cv for fao crop area data 
ave_weightcv_pstuse<-sum(fao_pstuse_stat$cv.weight,na.rm=TRUE)/sum_mean_pstuse 
#write to csv 
write.csv(x = fao_pstuse_stat,file = "stat_FAO_PesticideUse.csv",row.names=FALSE) 
# write overview to text  
sink('overview_RMSE.txt') 
cat('#####################fao data overview#####################') 
cat('\n') 
cat('\n') 
cat('[FAO_NatCropArea]') 
cat('\n') 
cat('average weight cv without corrected by trend',sep='\t',cv_old_crpar) 
cat('\n') 
cat('average weight cv corrected by trend with RMSE method',sep='\t',ave_weightcv_crpar) 
cat('\n') 
cat('\n') 
cat('[FAO_NatCropProd]') 
cat('\n') 
cat('average weight cv without corrected by trend',sep='\t',cv_old_crpyi) 
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cat('\n') 
cat('average weight cv corrected by trend with RMSE method',sep='\t',ave_weightcv_crpyi) 
cat('\n') 
cat('\n') 
cat('[FAO_NatAnimals]') 
cat('\n') 
cat('average weight cv without corrected by trend',sep='\t',cv_old_aninu) 
cat('\n') 
cat('average weight cv corrected by trend with RMSE method',sep='\t',ave_weightcv_aninu) 
cat('\n') 
cat('\n') 
cat('[FAO_LandAreas]') 
cat('\n') 
cat('average weight cv without corrected by trend',sep='\t',cv_old_lndar) 
cat('\n') 
cat('average weight cv corrected by trend with RMSE method',sep='\t',ave_weightcv_lndar) 
cat('\n') 
cat('\n') 
cat('[FAO_AnimalProd]') 
cat('\n') 
cat('average weight cv without corrected by trend',sep='\t',cv_old_anipr) 
cat('\n') 
cat('average weight cv corrected by trend with RMSE method',sep='\t',ave_weightcv_anipr) 
cat('\n') 
cat('\n') 
cat('[FAO_ProducingAnimals]') 
cat('\n') 
cat('average weight cv without corrected by trend',sep='\t',cv_old_prdani) 
cat('\n') 
cat('average weight cv corrected by trend with RMSE method',sep='\t',ave_weightcv_prdani) 
cat('\n') 
cat('\n') 
cat('[FAO_NatFertilizer]') 
cat('\n') 
cat('average weight cv without corrected by trend',sep='\t',cv_old_natfrt) 
cat('\n') 
cat('average weight cv corrected by trend with RMSE method',sep='\t',ave_weightcv_natfrt) 
cat('\n') 
cat('\n') 
cat('[FertilizerType]') 
cat('\n') 
cat('average weight cv without corrected by trend',sep='\t',cv_old_frttp) 
cat('\n') 
cat('average weight cv corrected by trend with RMSE method',sep='\t',ave_weightcv_frttp) 
cat('\n') 
cat('\n') 
cat('[feedset_Crops]') 
cat('\n') 
cat('average weight cv without corrected by trend',sep='\t',cv_old_feedcr) 
cat('\n') 
cat('average weight cv corrected by trend with RMSE method',sep='\t',ave_weightcv_feedcr) 
cat('\n') 
cat('\n') 
cat('[feedset_Animals]') 
cat('\n') 
cat('average weight cv without corrected by trend',sep='\t',cv_old_feedani) 
cat('\n') 
cat('average weight cv corrected by trend with RMSE method',sep='\t',ave_weightcv_feedani) 
cat('\n') 
cat('\n') 
cat('[PesticideUse]') 
cat('\n') 
cat('average weight cv without corrected by trend',sep='\t',cv_old_pstuse) 
cat('\n') 
cat('average weight cv corrected by trend with RMSE method',sep='\t',ave_weightcv_pstuse) 
sink() 
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############################ Cross correlation calculation ################### 
# script used for calculating the cross correlation for potential correlated model input pairs   
#  SETTING ENVIRONMENT   
#clean-up memory: 
rm(list = ls()) 
#load packages: 
library(psych) 
library(matrixStats) 
#set work dictionary: 
setwd("D:/Thesis_BQ/1.UQ_in/cross correlation") 
# set options (print warnings as they occur) 
options(warn = 2) 
############################ LOADING POINT  
# 1. [FAO_NatCropArea](crpar) and [FAO_NatCropProd](crppr)  
#read input data 
fao_crpar<-read.csv("FAO_NatCropArea.csv",header = TRUE,sep=",") 
fao_crppr<-read.csv("FAO_NatCropProd.csv",header = TRUE,sep=",") 
#merge the two data set by country code and crop code 
crpar_crppr<-merge(fao_crpar,fao_crppr,by=c('COUNTRYCODE','CROPCODE')) 
#write a loop to get the cross correlation coefficient between crop area and crop production 
#compare all the area and production for each year 
#generate a data frame to store the results 
corr_crpar_crppr<-data.frame("year"=2000:2012,"cross_correlation"=NA,"p_value"=NA) 
for (i in 1:13){  
  crpar<-as.numeric(crpar_crppr[,i+2]) 
  crppr<-as.numeric(crpar_crppr[,i+15]) 
  crpar_crppr_inloop<-cbind(crpar,crppr) 
  crpar_crppr_inloop<-na.omit(crpar_crppr_inloop) 
  crpar<-crpar_crppr_inloop[,1] 
  crppr<-crpar_crppr_inloop[,2] 
  corr<- cor.test(crpar,crppr) 
  corr_crpar_crppr[i,"cross_correlation"]<-corr$estimate 
  corr_crpar_crppr[i,"p_value"]<-corr$p.value   
} 
#get the mean of the cross correlation 
omit.corr_crpar_crppr<-na.omit(corr_crpar_crppr) 
corr_crpar_crppr[i+1,"year"]<-"mean" 
corr_crpar_crppr[i+1,"cross_correlation"]<-mean(omit.corr_crpar_crppr[,"cross_correlation"]) 
#get the mean of the significant cross correlations 
sig_corr_crpar_crppr<-subset(corr_crpar_crppr,p_value<=0.05) 
sig_corr_crpar_crppr<-na.omit(sig_corr_crpar_crppr) 
corr_crpar_crppr[i+2,"year"]<-"mean_significant" 
corr_crpar_crppr[i+2,"cross_correlation"]<-mean(sig_corr_crpar_crppr[,"cross_correlation"])  
# 2. [FAO_NatFertilizer](natfrt) and [FAO_NatCropProd](crppr 
#read input data 
fao_natfrt<-read.csv("FAO_NatFertilizer.csv",header = TRUE,sep=",") 
fao_crppr<-read.csv("FAO_NatCropProd.csv",header = TRUE,sep=",") 
#aggregate each input by the country code 
agg_natfrt<-aggregate(fao_natfrt,by=list(fao_natfrt$FaoTerritory),FUN=mean, na.rm=TRUE) 
#agg_natfrt<-fao_natfrt[fao_natfrt$FaoItemCodes_IA==3102,] 
#agg_natfrt<-fao_natfrt[fao_natfrt$FaoItemCodes_IA==3103,] 
#agg_natfrt<-fao_natfrt[fao_natfrt$FaoItemCodes_IA==3104,] 
agg_crppr<-aggregate(fao_crppr,by=list(fao_crppr$COUNTRYCODE),FUN=mean, na.rm=TRUE) 
#rename the natfrt first two columns 
colnames(agg_natfrt)[1]<-"COUNTRYCODE" 
#merge the two data set by country code and crop code 
natfrt_crppr<-merge(agg_natfrt,agg_crppr,by='COUNTRYCODE') 
natfrt_crppr<-na.omit(natfrt_crppr) 
#generate a data frame to store the results 
corr_natfrt_crppr<-data.frame("year"=2002:2011,"cross_correlation"=NA,"p_value"=NA) 
for (i in 1:10){  
  natfrt<-as.numeric(natfrt_crppr[,i+3]) 
  crppr<-as.numeric(natfrt_crppr[,i+17]) 
  natfrt_crppr_inloop<-cbind(natfrt,crppr) 
  natfrt_crppr_inloop<-na.omit(natfrt_crppr_inloop) 
  natfrt<-natfrt_crppr_inloop[,1] 
  crppr<-natfrt_crppr_inloop[,2] 
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  corr<- cor.test(natfrt,crppr) 
  corr_natfrt_crppr[i,"cross_correlation"]<-corr$estimate 
  corr_natfrt_crppr[i,"p_value"]<-corr$p.value   
} 
#get the mean of the cross correlation 
omit.corr_natfrt_crppr<-na.omit(corr_natfrt_crppr) 
corr_natfrt_crppr[i+1,"year"]<-"mean" 
corr_natfrt_crppr[i+1,"cross_correlation"]<-mean(omit.corr_natfrt_crppr[,"cross_correlation"]) 
#get the mean of the significant cross correlations 
sig_corr_natfrt_crppr<-subset(corr_natfrt_crppr,p_value<=0.05) 
sig_corr_natfrt_crppr<-na.omit(sig_corr_natfrt_crppr) 
corr_natfrt_crppr[i+2,"year"]<-"mean_significant" 
corr_natfrt_crppr[i+2,"cross_correlation"]<-mean(sig_corr_natfrt_crppr[,"cross_correlation"])  
# 3. [FAO_AnimalProd](anipr) and [FAO_ProducingAnimals](prani 
#read input data 
fao_anipr<-read.csv("FAO_AnimalProd.csv",header = TRUE,sep=",") 
fao_prani<-read.csv("FAO_ProducingAnimals.csv",header = TRUE,sep=",") 
#aggregate each input by the country code 
agg_anipr<-aggregate(fao_anipr,by=list(fao_anipr$FaoTerritory),FUN=mean, na.rm=TRUE) 
agg_prani<-aggregate(fao_prani,by=list(fao_prani$FaoTerritory),FUN=mean, na.rm=TRUE) 
#merge the two data set by country code and crop code 
anipr_prani<-merge(agg_anipr,agg_prani,by='FaoTerritory') 
anipr_prani<-na.omit(anipr_prani) 
#generate a data frame to store the results 
corr_anipr_prani<-data.frame("year"=2000:2011,"cross_correlation"=NA,"p_value"=NA) 
for (i in 1:12){  
  anipr<-as.numeric(anipr_prani[,i+3]) 
  prani<-as.numeric(anipr_prani[,i+17]) 
  anipr_prani_inloop<-cbind(anipr,prani) 
  anipr_prani_inloop<-na.omit(anipr_prani_inloop) 
  anipr<-anipr_prani_inloop[,1] 
  prani<-anipr_prani_inloop[,2] 
  corr<- cor.test(anipr,prani) 
  corr_anipr_prani[i,"cross_correlation"]<-corr$estimate 
  corr_anipr_prani[i,"p_value"]<-corr$p.value   
} 
#get the mean of the cross correlation 
omit.corr_anipr_prani<-na.omit(corr_anipr_prani) 
corr_anipr_prani[i+1,"year"]<-"mean" 
corr_anipr_prani[i+1,"cross_correlation"]<-mean(omit.corr_anipr_prani[,"cross_correlation"]) 
#get the mean of the significant cross correlations 
sig_corr_anipr_prani<-subset(corr_anipr_prani,p_value<=0.05) 
sig_corr_anipr_prani<-na.omit(sig_corr_anipr_prani) 
corr_anipr_prani[i+2,"year"]<-"mean_significant" 
corr_anipr_prani[i+2,"cross_correlation"]<-mean(sig_corr_anipr_prani[,"cross_correlation"])  
# 4. [FAO_AnimalProd](anipr) and [FAO_NatAnimals](natani)  
#read input data 
fao_anipr<-read.csv("FAO_AnimalProd.csv",header = TRUE,sep=",") 
fao_natani<-read.csv("FAO_NatAnimals.csv",header = TRUE,sep=",") 
#rename the natfrt first two columns 
colnames(fao_anipr)[1]<-"COUNTRYCODE" 
colnames(fao_natani)[1]<-"COUNTRYCODE" 
#aggregate each input by the country code 
agg_anipr<-aggregate(fao_anipr,by=list(fao_anipr$COUNTRYCODE),FUN=mean, na.rm=TRUE) 
agg_natani<-aggregate(fao_natani,by=list(fao_natani$COUNTRYCODE),FUN=mean, na.rm=TRUE) 
#merge the two data set by country code and crop code 
anipr_natani<-merge(agg_anipr,agg_natani,by='COUNTRYCODE') 
anipr_natani<-na.omit(anipr_natani) 
#generate a data frame to store the results 
corr_anipr_natani<-data.frame("year"=2000:2011,"cross_correlation"=NA,"p_value"=NA) 
for (i in 1:12){  
  anipr<-as.numeric(anipr_natani[,i+3]) 
  natani<-as.numeric(anipr_natani[,i+18]) 
  anipr_natani_inloop<-cbind(anipr,natani) 
  anipr_natani_inloop<-na.omit(anipr_natani_inloop) 
  anipr<-anipr_natani_inloop[,1] 
  natani<-anipr_natani_inloop[,2] 
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  corr<- cor.test(anipr,natani) 
  corr_anipr_natani[i,"cross_correlation"]<-corr$estimate 
  corr_anipr_natani[i,"p_value"]<-corr$p.value   
} 
#get the mean of the cross correlation 
omit.corr_anipr_natani<-na.omit(corr_anipr_natani) 
corr_anipr_natani[i+1,"year"]<-"mean" 
corr_anipr_natani[i+1,"cross_correlation"]<-mean(omit.corr_anipr_natani[,"cross_correlation"]) 
#get the mean of the significant cross correlations 
sig_corr_anipr_natani<-subset(corr_anipr_natani,p_value<=0.05) 
sig_corr_anipr_natani<-na.omit(sig_corr_anipr_natani) 
corr_anipr_natani[i+2,"year"]<-"mean_significant" 
corr_anipr_natani[i+2,"cross_correlation"]<-mean(sig_corr_anipr_natani[,"cross_correlation"])  
# 5. [FAO_ProducingAnimals](prani) and [FAO_NatAnimals](natani)  
#read input data 
fao_prani<-read.csv("FAO_ProducingAnimals.csv",header = TRUE,sep=",") 
fao_natani<-read.csv("FAO_NatAnimals.csv",header = TRUE,sep=",") 
#rename the natfrt first two columns 
colnames(fao_prani)[1]<-"COUNTRYCODE" 
colnames(fao_natani)[1]<-"COUNTRYCODE" 
#aggregate each input by the country code 
agg_prani<-aggregate(fao_prani,by=list(fao_prani$COUNTRYCODE),FUN=mean, na.rm=TRUE) 
agg_natani<-aggregate(fao_natani,by=list(fao_natani$COUNTRYCODE),FUN=mean, na.rm=TRUE) 
#merge the two data set by country code and crop code 
prani_natani<-merge(agg_prani,agg_natani,by='COUNTRYCODE') 
prani_natani<-na.omit(prani_natani) 
 
#generate a data frame to store the results 
corr_prani_natani<-data.frame("year"=2000:2011,"cross_correlation"=NA,"p_value"=NA) 
for (i in 1:12){  
  prani<-as.numeric(prani_natani[,i+3]) 
  natani<-as.numeric(prani_natani[,i+18]) 
  prani_natani_inloop<-cbind(prani,natani) 
  prani_natani_inloop<-na.omit(prani_natani_inloop) 
  prani<-prani_natani_inloop[,1] 
  natani<-prani_natani_inloop[,2] 
  corr<- cor.test(prani,natani) 
  corr_prani_natani[i,"cross_correlation"]<-corr$estimate 
  corr_prani_natani[i,"p_value"]<-corr$p.value   
} 
#get the mean of the cross correlation 
omit.corr_prani_natani<-na.omit(corr_prani_natani) 
corr_prani_natani[i+1,"year"]<-"mean" 
corr_prani_natani[i+1,"cross_correlation"]<-mean(omit.corr_prani_natani[,"cross_correlation"]) 
#get the mean of the significant cross correlations 
sig_corr_prani_natani<-subset(corr_prani_natani,p_value<=0.05) 
sig_corr_prani_natani<-na.omit(sig_corr_prani_natani) 
corr_prani_natani[i+2,"year"]<-"mean_significant" 
corr_prani_natani[i+2,"cross_correlation"]<-mean(sig_corr_prani_natani[,"cross_correlation"])  
# 6. [FAO_feedset_Crops](feedcr) and [FAO_NatAnimals](natani)   
#read input data 
fao_feedcr<-read.csv("FAO_feedset_Crops.csv",header = TRUE,sep=",") 
fao_natani<-read.csv("FAO_NatAnimals.csv",header = TRUE,sep=",") 
#rename the natfrt first two columns 
colnames(fao_feedcr)[1]<-"COUNTRYCODE" 
colnames(fao_natani)[1]<-"COUNTRYCODE" 
#aggregate each input by the country code 
agg_feedcr<-aggregate(fao_feedcr,by=list(fao_feedcr$COUNTRYCODE),FUN=mean, na.rm=TRUE) 
agg_natani<-aggregate(fao_natani,by=list(fao_natani$COUNTRYCODE),FUN=mean, na.rm=TRUE) 
#merge the two data set by country code and crop code 
feedcr_natani<-merge(agg_feedcr,agg_natani,by='COUNTRYCODE') 
feedcr_natani<-na.omit(feedcr_natani) 
#generate a data frame to store the results 
corr_feedcr_natani<-data.frame("year"=2000:2009,"cross_correlation"=NA,"p_value"=NA) 
for (i in 1:10){  
  feedcr<-as.numeric(feedcr_natani[,i+3]) 
  natani<-as.numeric(feedcr_natani[,i+16]) 
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  feedcr_natani_inloop<-cbind(feedcr,natani) 
  feedcr_natani_inloop<-na.omit(feedcr_natani_inloop) 
  feedcr<-feedcr_natani_inloop[,1] 
  natani<-feedcr_natani_inloop[,2] 
  corr<- cor.test(feedcr,natani) 
  corr_feedcr_natani[i,"cross_correlation"]<-corr$estimate 
  corr_feedcr_natani[i,"p_value"]<-corr$p.value   
} 
#get the mean of the cross correlation 
omit.corr_feedcr_natani<-na.omit(corr_feedcr_natani) 
corr_feedcr_natani[i+1,"year"]<-"mean" 
corr_feedcr_natani[i+1,"cross_correlation"]<-mean(omit.corr_feedcr_natani[,"cross_correlation"]) 
#get the mean of the significant cross correlations 
sig_corr_feedcr_natani<-subset(corr_feedcr_natani,p_value<=0.05) 
sig_corr_feedcr_natani<-na.omit(sig_corr_feedcr_natani) 
corr_feedcr_natani[i+2,"year"]<-"mean_significant" 
corr_feedcr_natani[i+2,"cross_correlation"]<-mean(sig_corr_feedcr_natani[,"cross_correlation"])  
# 7. [FAO_feedset_Animals](feedani) and [FAO_NatAnimals](natani)  
#read input data 
fao_feedani<-read.csv("FAO_feedset_Animals.csv",header = TRUE,sep=",") 
fao_natani<-read.csv("FAO_NatAnimals.csv",header = TRUE,sep=",") 
#rename the natfrt first two columns 
colnames(fao_feedani)[1]<-"COUNTRYCODE" 
colnames(fao_natani)[1]<-"COUNTRYCODE" 
#aggregate each input by the country code 
agg_feedani<-aggregate(fao_feedani,by=list(fao_feedani$COUNTRYCODE),FUN=mean, na.rm=TRUE) 
agg_natani<-aggregate(fao_natani,by=list(fao_natani$COUNTRYCODE),FUN=mean, na.rm=TRUE) 
#merge the two data set by country code and crop code 
feedani_natani<-merge(agg_feedani,agg_natani,by='COUNTRYCODE') 
feedani_natani<-na.omit(feedani_natani) 
#generate a data frame to store the results 
corr_feedani_natani<-data.frame("year"=2000:2009,"cross_correlation"=NA,"p_value"=NA) 
for (i in 1:10){  
  feedani<-as.numeric(feedani_natani[,i+3]) 
  natani<-as.numeric(feedani_natani[,i+16]) 
  feedani_natani_inloop<-cbind(feedani,natani) 
  feedani_natani_inloop<-na.omit(feedani_natani_inloop) 
  feedani<-feedani_natani_inloop[,1] 
  natani<-feedani_natani_inloop[,2] 
  corr<- cor.test(feedani,natani) 
  corr_feedani_natani[i,"cross_correlation"]<-corr$estimate 
  corr_feedani_natani[i,"p_value"]<-corr$p.value   
} 
#get the mean of the cross correlation 
omit.corr_feedani_natani<-na.omit(corr_feedani_natani) 
corr_feedani_natani[i+1,"year"]<-"mean" 
corr_feedani_natani[i+1,"cross_correlation"]<-mean(omit.corr_feedani_natani[,"cross_correlation"]) 
#get the mean of the significant cross correlations 
sig_corr_feedani_natani<-subset(corr_feedani_natani,p_value<=0.05) 
sig_corr_feedani_natani<-na.omit(sig_corr_feedani_natani) 
corr_feedani_natani[i+2,"year"]<-"mean_significant" 
corr_feedani_natani[i+2,"cross_correlation"]<-mean(sig_corr_feedani_natani[,"cross_correlation"])  
# 8. [LivestockDensity](lstden) and [FAO_natani_lsdmals](natani_lsd)  
#read input data 
livestockDensity<-read.csv("LivestockDensity.csv",header = TRUE,sep=",") 
fao_natani_lsd<-read.csv("FAO_NatAnimals_lsd.csv",header = TRUE,sep=",") 
spatial_code<-read.csv("spatial_code.csv",header = TRUE,sep=",") 
#re-order the livestockDensity input 
livestockDensity<-merge(livestockDensity,spatial_code,by="region") 
livestockDensity[[1]]<-livestockDensity$FAOcountry 
colnames(livestockDensity)[1]<-"COUNTRY" 
livestockDensity<-livestockDensity[,-8] 
#aggregate the livestockdensity data into country level 
agglstden<-aggregate(livestockDensity[,2:6],by=list(livestockDensity$COUNTRY),"sum") 
lstden_chickens<-aggregate(as.numeric(livestockDensity[,7]),by=list(livestockDensity$COUNTRY),"sum") 
agglstden[,"Chicken"]<-lstden_chickens[,2] 
colnames(agglstden)[1]<-"COUNTRY" 
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#merge the two data set by country code and crop code 
lstden_natani_lsd<-merge(agglstden,fao_natani_lsd,by='COUNTRY') 
lstden_natani_lsd<-na.omit(lstden_natani_lsd) 
#generate a data frame to store the results 
corr_lstden_natani_lsd<-data.frame("AnimalType"=c("Buffaloes","Cattle","Goats","Pigs","Sheep", 
                                                  "Chicken","mean","mean_significant"), 
                                   "cross_correlation"=NA,"p_value"=NA) 
#rownames(corr_lstden_natani_lsd)<-1:8 
for (i in 1:6){  
  lstden<-as.numeric(lstden_natani_lsd[,i+1]) 
  natani_lsd<-as.numeric(lstden_natani_lsd[,i+7]) 
  lstden_natani_lsd_inloop<-cbind(lstden,natani_lsd) 
  lstden_natani_lsd_inloop<-na.omit(lstden_natani_lsd_inloop) 
  lstden<-lstden_natani_lsd_inloop[,1] 
  natani_lsd<-lstden_natani_lsd_inloop[,2] 
  corr<- cor.test(lstden,natani_lsd) 
  corr_lstden_natani_lsd[i,"cross_correlation"]<-corr$estimate 
  corr_lstden_natani_lsd[i,"p_value"]<-corr$p.value   
} 
#get the mean of the cross correlation 
corr_lstden_natani_lsd[7,"cross_correlation"]<-mean(corr_lstden_natani_lsd[1:6,"cross_correlation"]) 
#get the mean of the significant cross correlations 
sig_corr_lstden_natani_lsd<-subset(corr_lstden_natani_lsd,p_value<=0.05) 
corr_lstden_natani_lsd[8,"cross_correlation"]<-mean(sig_corr_lstden_natani_lsd[,"cross_correlation"])  
# 8.1 [LivestockDensity](mlstden) and [FAO_natani_lsdmals](natani_lsd) ###  mean not sum 
#read input data 
livestockDensity<-read.csv("LivestockDensity.csv",header = TRUE,sep=",") 
fao_natani_lsd<-read.csv("FAO_NatAnimals_lsd.csv",header = TRUE,sep=",") 
spatial_code<-read.csv("spatial_code.csv",header = TRUE,sep=",") 
#re-order the livestockDensity input 
livestockDensity<-merge(livestockDensity,spatial_code,by="region") 
livestockDensity[[1]]<-livestockDensity$FAOcountry 
colnames(livestockDensity)[1]<-"COUNTRY" 
livestockDensity<-livestockDensity[,-8] 
#aggregate the livestockdensity data into country level, take the mean(density!) 
aggmlstden<-aggregate(livestockDensity[,2:6],by=list(livestockDensity$COUNTRY),"mean") 
mlstden_chickens<-
aggregate(as.numeric(livestockDensity[,7]),by=list(livestockDensity$COUNTRY),"sum") 
aggmlstden[,"Chicken"]<-mlstden_chickens[,2] 
colnames(aggmlstden)[1]<-"COUNTRY" 
#merge the two data set by country code and crop code 
mlstden_natani_lsd<-merge(aggmlstden,fao_natani_lsd,by='COUNTRY') 
mlstden_natani_lsd<-na.omit(mlstden_natani_lsd) 
#generate a data frame to store the results 
corr_mlstden_natani_lsd<-data.frame("AnimalType"=c("Buffaloes","Cattle","Goats","Pigs","Sheep", 
                                                   "Chicken","mean","mean_significant"), 
                                    "cross_correlation"=NA,"p_value"=NA) 
for (i in 1:6){  
  mlstden<-as.numeric(mlstden_natani_lsd[,i+1]) 
  natani_lsd<-as.numeric(mlstden_natani_lsd[,i+7]) 
  mlstden_natani_lsd_inloop<-cbind(mlstden,natani_lsd) 
  mlstden_natani_lsd_inloop<-na.omit(mlstden_natani_lsd_inloop) 
  mlstden<-mlstden_natani_lsd_inloop[,1] 
  natani_lsd<-mlstden_natani_lsd_inloop[,2] 
  corr<- cor.test(mlstden,natani_lsd) 
   
  corr_mlstden_natani_lsd[i,"cross_correlation"]<-corr$estimate 
  corr_mlstden_natani_lsd[i,"p_value"]<-corr$p.value   
} 
#get the mean of the cross correlation 
corr_mlstden_natani_lsd[7,"cross_correlation"]<-
mean(corr_mlstden_natani_lsd[1:6,"cross_correlation"]) 
#get the mean of the significant cross correlations 
sig_corr_mlstden_natani_lsd<-subset(corr_mlstden_natani_lsd,p_value<=0.05) 
corr_mlstden_natani_lsd[8,"cross_correlation"]<-
mean(sig_corr_mlstden_natani_lsd[,"cross_correlation"])  
# 9. [feedset_Crops](feedcr) and [feedset_Animals](feedani)  
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#read input data 
fao_feedcr<-read.csv("FAO_feedset_Crops.csv",header = TRUE,sep=",") 
fao_feedani<-read.csv("FAO_feedset_Animals.csv",header = TRUE,sep=",") 
#rename the natfrt first two columns 
colnames(fao_feedani)[1]<-"COUNTRYCODE" 
colnames(fao_feedcr)[1]<-"COUNTRYCODE" 
#aggregate each input by the country code 
agg_feedcr<-aggregate(fao_feedcr,by=list(fao_feedcr$COUNTRYCODE),FUN=mean, na.rm=TRUE) 
agg_feedani<-aggregate(fao_feedani,by=list(fao_feedani$COUNTRYCODE),FUN=mean, na.rm=TRUE) 
#merge the two data set by country code and crop code 
feedset<-merge(agg_feedcr,agg_feedani,by='COUNTRYCODE') 
feedset<-na.omit(feedset) 
#generate a data frame to store the results 
corr_feedset<-data.frame("year"=2000:2009,"cross_correlation"=NA,"p_value"=NA) 
for (i in 1:10){  
  feedcr<-as.numeric(feedset[,i+3]) 
  feedani<-as.numeric(feedset[,i+15]) 
  feedset_inloop<-cbind(feedcr,feedani) 
  feedset_inloop<-na.omit(feedset_inloop) 
  feedcr<-feedset_inloop[,1] 
  feedani<-feedset_inloop[,2] 
  corr<- cor.test(feedcr,feedani) 
  corr_feedset[i,"cross_correlation"]<-corr$estimate 
  corr_feedset[i,"p_value"]<-corr$p.value   
} 
#get the mean of the cross correlation 
omit.corr_feedset<-na.omit(corr_feedset) 
corr_feedset[i+1,"year"]<-"mean" 
corr_feedset[i+1,"cross_correlation"]<-mean(omit.corr_feedset[,"cross_correlation"]) 
#get the mean of the significant cross correlations 
sig_corr_feedset<-subset(corr_feedset,p_value<=0.05) 
sig_corr_feedset<-na.omit(sig_corr_feedset) 
corr_feedset[i+2,"year"]<-"mean_significant" 
corr_feedset[i+2,"cross_correlation"]<-mean(sig_corr_feedset[,"cross_correlation"])  
# write the result to overview  
sink('overview_fao_cross_correlation.txt') 
cat('################## fao cross correlation overview ##################') 
cat('\n') 
cat('\n') 
cat('1. [FAO_NatCropArea](crpar) and [FAO_NatCropProd](crppr)') 
cat('\n') 
print(corr_crpar_crppr) 
cat('\n') 
cat('\n') 
cat('2. [FAO_NatFertilizer](natfrt) and [FAO_NatCropProd](crppr)') 
cat('\n') 
print(corr_natfrt_crppr) 
cat('\n') 
cat('\n') 
cat('3. [FAO_AnimalProd](anipr) and [FAO_ProducingAnimals](prani)') 
cat('\n') 
print(corr_anipr_prani) 
cat('\n') 
cat('\n') 
cat('4. [FAO_AnimalProd](anipr) and [FAO_NatAnimals](natani)') 
cat('\n') 
print(corr_anipr_natani) 
cat('\n') 
cat('\n') 
cat('5. [FAO_ProducingAnimals](prani) and  [FAO_NatAnimals](natani)') 
cat('\n') 
print(corr_prani_natani) 
cat('\n') 
cat('\n') 
cat('6. [feedset_Crops](feedcr) and  [FAO_NatAnimals](natani)') 
cat('\n') 
print(corr_feedcr_natani) 
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cat('\n') 
cat('\n') 
cat('7. [feedset_Animals](feedani) and  [FAO_NatAnimals](natani)') 
cat('\n') 
print(corr_feedani_natani) 
cat('\n') 
cat('\n') 
cat('8. [LivestockDensity](lstden) and [FAO_natani_lsdmals](natani_lsd)') 
cat('\n') 
print(corr_lstden_natani_lsd) 
cat('9. [feedset_Crops](feedcr) and [feedset_Animals](feedani)') 
cat('\n') 
print(corr_feedset) 
sink() 
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Annex 6 R script for simulating input data  
######################  sub-national and national parameters  ################## 
# SETTING ENVIRONMENT  ## 
#clean-up memory: 
rm(list = ls()) 
# set work directory 
setwd("D:/Thesis_BQ/2.In_sim/simulations/3rd_run/") 
# set options (print warnings as they occur) 
options(warn = 2) 
############################ LOADING POINT  
# create a continent factor and define the length 
continents<-
c("Eastern_Europe","Western_Europe","Africa","Latin_America","Asia","Indian_Subcontinent", 
              "Middle_east","North_America","Oceania") 
lcon<-length(continents) 
#define the MC runs 
K <- 1 
# time the process 
system.time({ 
  for (con in 1:lcon){ 
    continent<-continents[[con]] 
    ## call needed files  
    source("new_sub_1.sim.R") 
    source("new_sub_2_sample_post_aggregrate.R") 
}}) 
# combining continents together 
source("new_sub_3_combine_continents.R") 
# read inputs 
# -input 1: relation between ncu, nuts, country 
# -input 2: ncu     = correlation between sub-nationals in the country 
#           nuts    = correlation between sub-nationals from different countries but in the same   
#                         continent 
#           country = correlation between sub-nationals from different countries (and continents) 
# -input 3: crosscorrelation between parameters 
input1 <- read.csv(file = "sim_input/Spatial_code.csv") 
spatcor <- read.csv(file = "sim_input/Parameter_ref.csv", header = TRUE, row.names = 1) 
crosscor <- read.csv(file = "sim_input/Crosscor_ref_sub.csv", header = TRUE) 
#choose the sub-national and national parameters 
spatcor<-spatcor[spatcor$Level=="NCU"|spatcor$Level == "NUTS",] 
#choose the needed continent 
input1<-input1[input1$IPCCcontinent== paste(continent),] 
# contruct cross-correlation matrices for cross-corelated and non-cross-corelated parameters 
rn <- rownames(spatcor) 
nr <- length(rn) 
crossmat <- matrix(data = 0, nrow = nr, ncol = nr, dimnames = list(rn,rn)) 
colid <- match( crosscor$Par2, rn) 
rowid <- match( crosscor$Par1, rn) 
crosssel <- matrix(data = 0, nrow = length(crosscor$Par2), ncol = length(crosscor$Par1), dimnames = 
list(crosscor$Par2,crosscor$Par1)) 
selparnm <- unique(append(levels(crosscor$Par1), levels(crosscor$Par2))) 
selparid <- sort(match(selparnm, rn)) 
selspatcor <- spatcor[selparid,] 
nselspatcor <- spatcor[-selparid,] 
 
crossmat[cbind(colid,rowid)] <- crosscor$Crossc 
crossmat[cbind(rowid,colid)] <- crosscor$Crossc 
diag(crossmat) <- 1 
selcrossmat <- crossmat[selparid,selparid] 
nselcrossmat <- crossmat[-selparid,-selparid] 
# write cross-correlations to file 
write.csv(x=crossmat,file=paste("sim_in_process/",continent, "_crosscor_matrix.csv", sep="")) 
write.csv(x=selcrossmat,file=paste("sim_in_process/",continent,"_selcrosscor_matrix.csv",sep="")) 
write.csv(x=nselcrossmat,file=paste("sim_in_process/",continent,"_nselcrosscor_matrix.csv",sep="")) 
input3 <- read.csv(file = paste("sim_in_process/",continent,"_selcrosscor_matrix.csv",sep=""), 
                   row.names = 1) 
input3n<-read.csv(file = paste("sim_in_process/",continent,"_nselcrosscor_matrix.csv",sep=""), 
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                    row.names = 1) 
input2 <- subset(spatcor, select = rhoNCU:rhoCOUNTRY) 
input2 <- subset(selspatcor, select = rhoNCU:rhoCOUNTRY) 
input2n <- subset(nselspatcor, select = rhoNCU:rhoCOUNTRY) 
# rename column names (to make things consistent with memo Gerard) 
names(input1) <- c("ncu", "nuts", "country") 
names(input2) <- names(input1) 
names(input2n) <- names(input1) 
# adjust spatial correlations 
input2n[, 1] <- pmin(0.9999,        input2n[, 1]) 
input2n[, 2] <- pmin(input2n[, 1], input2n[, 2]) 
input2n[, 3] <- pmin(input2n[, 2], input2n[, 3]) 
input2[, 1] <- pmin(0.9999,        input2[, 1]) 
input2[, 2] <- pmin(input2[, 1], input2[, 2]) 
input2[, 3] <- pmin(input2[, 2], input2[, 3]) 
## convert inputs to method arguments (matrices) 
input3 <- as(input3, "matrix") 
input3n <- as(input3n, "matrix") 
save(input1,file = paste("sim_in_process/",continent,"_input1.bin",sep="")) 
#time the simulation process 
#system.time({ 
  # set seed (reproducibility) 
  set.seed(19700124) 
  # construct spatial structure 
  ss <- spatialStructure(topology = input1, R_auto = input2, R_cross = input3) 
  # construct Gaussian Random Field 
  gaussianRandomVector <- krige(ss, maxNeighbors = 12, verbose = FALSE) 
   
  save( gaussianRandomVector, input2, input3, file = paste("sim_in_process/",continent, 
                                                           "_realisation_ccpar.bin",sep="")) 
  gRS_lst <- list() 
  for (parnm in rownames(input3n)) { 
    inp2 <- input2n[parnm,,drop = FALSE] 
    inp3 <- input3n[parnm, parnm, drop = FALSE] 
    selss <- spatialStructure(topology = input1, R_auto = inp2, R_cross = inp3) 
    selgaussianRandomVector <- krige(selss, maxNeighbors = 12, verbose = TRUE) 
    #save( selgaussianRandomVector, inp2, inp3, file = 
paste("sim_in_process/",continent,"_",parnm,".bin",sep = "")) 
    #load(file = paste(parnm,".bin")) 
    gRS_lst <- c(list(selgaussianRandomVector), gRS_lst) 
  } 
  save( gRS_lst, file = paste("sim_in_process/",continent, "_gRS_list.bin",sep="")) 
#})   
############# preparation for sampling ############# 
 
# load the prepared files from step 1 
load(file = paste("sim_in_process/",continent, "_gRS_list.bin",sep="")) 
load(file = paste("sim_in_process/",continent,"_realisation_ccpar.bin",sep="")) 
load(file = paste("sim_in_process/",continent,"_input1.bin",sep="")) 
 
############# preparation for post processing ############# 
# read the input reference data 
par_ref_post<- read.csv(file = "sim_input/Parameter_ref.csv", header = TRUE,row.names=1) 
# select the parameters and sub and nat level 
par_ref_post<-par_ref_post[par_ref_post$Level=="NCU"|par_ref_post$Level == "NUTS",] 
#select the cv for this continent 
npar<-nrow(par_ref_post) 
for (r in 1:npar){ 
  if(!is.na(par_ref_post[r,continent])) 
    par_ref_post[r,"CV"]<-par_ref_post[r,continent] 
} 
############# preparation for aggregrating ############# 
# read the input reference data 
spatial_code <- read.csv("sim_input/Spatial_code.csv",header = TRUE) 
par_ref_agg <- read.csv(file = "sim_input/Parameter_ref.csv", header = TRUE,row.names=1) 
# select the parameters and sub and nat level 
sub_par <- rownames(par_ref_agg[par_ref_agg$scode == "sub", ]) 
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nat_par <- rownames(par_ref_agg[par_ref_agg$scode == "nat", ]) 
con_par <- rownames(par_ref_agg[par_ref_agg$scode == "con" & par_ref_agg$Level == "NCU", ]) 
#start the MC run  
for (i in 1:K) { 
  cat(continent,i, "\n") 
   # step2: sample Gaussian Random Field        
  realisations <- input1[,1,drop=FALSE] 
  for (p in 1:length(gRS_lst)) { 
    realisation <- sample(gRS_lst[[p]]) 
    realisations <- cbind(realisations, realisation[,2, drop=FALSE]) 
  } 
  realisation <- sample(gaussianRandomVector) 
  realisations <- cbind(realisations, realisation[,-1, drop=FALSE]) 
  #change the sim of FAO_NatFertilizer to the mean of FAO_NatProd 
  realisations$FAO_NatFertilizer<-
rowMeans(subset(realisations,select=c("FAO_NatCP_wheat","FAO_NatCP_maize", 
                                                                        "FAO_NatCP_soybean","FAO_NatCP_barley", 
                                                                        "FAO_NatCP_other")),na.rm = TRUE) 
  #rename the spatial code of the realisations to sub national level 
  colnames(realisations)[1] <- "sub" 
  # result: realisations (zero mean, unit variance) 
  # step3: post process results to designed variance    
  # use the simulated results from step 2 (zero mean, unit variance): realisations 
  #define the column/row names and the column/row number of the realisations 
  lsub_reg<-nrow(realisations) 
  df<-realisations[,1,drop=FALSE] 
  #convert the results based on it`s uncertainty character (either cv or sd) 
  for(parname in colnames(realisations)[-1]){  
    #define a generic data frame for each column of the realisations 
    dfn<-realisations[,paste(parname),drop=FALSE]     
    if(!is.na(par_ref_post[paste(parname),"CV"]))           # normal distribution       
      dfn[,paste(parname)] <- dfn[,paste(parname)] * par_ref_post[paste(parname),"CV"]+1 
    else                                               # lognormal distribution 
      dfn[,paste(parname)] <- dfn[,paste(parname)] * par_ref_post[paste(parname),"SD"] 
     
    df<-cbind(df,dfn)   
  } 
  # result:df (designed variance) 
  #write to csv file 
  write.csv(x = df, 
            file = paste("sim_in_process/sub/",continent,"/result2_real_variance/real_post" ,  
                         formatC(x = i, width = nchar(K), flag = "0"), ".csv", sep = ""), 
            row.names = FALSE) 
  # step4: aggregrate results to designed spatial level       
  nat<-cbind(realisations[,"sub",drop=F],realisations[,nat_par,drop=F]) 
  # aggregrate to the designed levels 
  nat<-merge(nat,spatial_code,by="sub") 
  nat$sub<-NULL 
  nat$IPCCcontinent<-NULL 
  nat<-aggregate(nat,by=list(nat$FAOcountry),FUN=mean) 
  nat$Group.1<-nat$FAOcountry 
  nat$FAOcountry<-NULL 
  colnames(nat)[1]<-"FAOcountry" 
  #write to csv 
  write.csv(x = sub, 
            file = paste("sim_output/", continent, "/sim_sub",formatC(x = i, width = nchar(K), 
                                                                      flag = "0"), ".csv", sep = ""), 
            row.names = FALSE) 
  write.csv(x = nat, 
            file = paste("sim_output/", continent,"/sim_nat",formatC(x = i, width = nchar(K),  
                                                                     flag = "0"), ".csv", sep = ""), 
            row.names = FALSE) 
  #write to gdx 
  #symDim <- 2 
  #attr(sub, "symName") <-"sim" 
  #sub <- wgdx.reshape(sub, symDim) 
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  #wgdx.lst(paste("sim_output/gdx/", continent ,"/sim_sub", formatC(x = i, width = nchar(K), flag = 
"0"),  
  #".gdx", sep = ""),sub)    
  #attr(nat, "symName") <-"sim" 
  #nat <- wgdx.reshape(nat, symDim) 
  #wgdx.lst(paste("sim_output/gdx/",continent, "/sim_nat", formatC(x = i, width = nchar(K), flag = "0"),  
  #".gdx", sep = ""),nat)     
  gc() 
} 
for (i in 1: K){ 
  cat("combine",i, "\n") 
  # creat an empty data frame to store the results 
  sub_sim<-data.frame() 
  nat_sim<-data.frame() 
  for (con in 1:lcon){ 
    continent<-continents[[con]] 
    # read simulated data  
    sub_con<-read.csv(file = paste("sim_output/", continent, "/sim_sub", 
                                   formatC(x = i, width = nchar(K),flag = "0"), ".csv", sep = ""), 
                      header = TRUE) 
    sub_sim<-rbind(sub_sim,sub_con) 
     
    nat_con<-read.csv(file = paste("sim_output/", continent, "/sim_nat", 
                                   formatC(x = i, width = nchar(K),flag = "0"), ".csv", sep = ""), 
                      header = TRUE) 
    nat_sim<-rbind(nat_sim,nat_con)     
  }  
  # write the final result to csv  
  write.csv(x = sub_sim, 
            file = paste("sim_output_final/sim_sub",formatC(x = i, width = nchar(K), 
                                                            flag = "0"), ".csv", sep = ""), 
            row.names = FALSE) 
  write.csv(x = nat_sim, 
            file = paste("sim_output_final/sim_nat",formatC(x = i, width = nchar(K), 
                                                            flag = "0"), ".csv", sep = ""), 
            row.names = FALSE) 
  #write to gdx 
  symDim <- 2 
  attr(sub_sim, "symName") <-"sim" 
  sub_sim <- wgdx.reshape(sub_sim, symDim) 
  wgdx.lst(paste("sim_output_final/gdx/sim_sub", formatC(x = i, width = nchar(K), flag = "0"),  
                 ".gdx", sep = ""),sub_sim)  
  attr(nat_sim, "symName") <-"sim" 
  nat_sim <- wgdx.reshape(nat_sim, symDim) 
  wgdx.lst(paste("sim_output_final/gdx/sim_nat", formatC(x = i, width = nchar(K), flag = "0"),  
                 ".gdx", sep = ""),nat_sim)   
} 
#  national parameters  
for (i in 1: K){ 
  cat("nat",i, "\n") 
  # creat an empty data frame to store the results 
  nat_sim<-data.frame() 
  for (con in 1:lcon){ 
    continent<-continents[[con]] 
    # read simulated data  
    nat_con<-read.csv(file = paste("sim_output/", continent, "/sim_nat", 
                                   formatC(x = i, width = nchar(K),flag = "0"), ".csv", sep = ""), 
                      header = TRUE) 
    nat_sim<-rbind(nat_sim,nat_con) 
  }  
  # write the final result to csv  
  write.csv(x = nat_sim, 
            file = paste("sim_output_final/sim_nat",formatC(x = i, width = nchar(K), 
                                                            flag = "0"), ".csv", sep = ""), 
            row.names = FALSE) 
  #write to gdx 
  symDim <- 2 
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  attr(nat_sim, "symName") <-"sim" 
  nat_sim <- wgdx.reshape(nat_sim, symDim) 
  wgdx.lst(paste("sim_output_final/gdx/sim_nat", formatC(x = i, width = nchar(K), flag = "0"),  
                 ".gdx", sep = ""),nat_sim)  
} 
# sub national parameters  
for (i in 1: K){ 
  cat("sub",i, "\n") 
  # creat an empty data frame to store the results 
  sub_sim<-data.frame() 
  for (con in 1:lcon){ 
    continent<-continents[[con]] 
    # read simulated data  
    sub_con<-read.csv(file = paste("sim_output/", continent, "/sim_sub", 
                                   formatC(x = i, width = nchar(K),flag = "0"), ".csv", sep = ""), 
                      header = TRUE) 
    sub_sim<-rbind(sub_sim,sub_con) 
  }  
  # write the final result to csv  
  write.csv(x = sub_sim, 
            file = paste("sim_output_final/sim_sub",formatC(x = i, width = nchar(K), 
                                                            flag = "0"), ".csv", sep = ""), 
            row.names = FALSE) 
  #write to gdx 
  symDim <- 2 
  attr(sub_sim, "symName") <-"sim" 
  sub_sim <- wgdx.reshape(sub_sim, symDim) 
  wgdx.lst(paste("sim_output_final/gdx/sim_sub", formatC(x = i, width = nchar(K), flag = "0"),  
                 ".gdx", sep = ""),sub_sim)   
} 
 
########################## continental parameters ######################## 
# SETTING ENVIRONMENT  
#clean-up memory: 
rm(list = ls()) 
#load packages: 
library(MSBVAR) #"mtvnorm" package 
library(reshape) 
library(gdxrrw) #load the library for writing to gdx 
# set work directory 
setwd("D:/Thesis_BQ/2.In_sim/simulations/3rd_run/") 
#set the work place for gdx 
igdx("I:/Metabase_NEW/GAMS64/GAMS24.1") 
# set options (print warnings as they occur) 
options(warn = 2) 
############################ LOADING POINT  
# define the number of the MC runs 
K=1000 
# read input data 
spcode<-read.csv(file = "sim_input/Spatial_code.csv", header = TRUE) 
parlist <- read.csv(file = "sim_input/Parameter_ref.csv", header = TRUE) 
#select the needed spacial code (continental level) and parameters 
spcode = data.frame(unique(spcode$IPCCcontinent)) 
colnames(spcode)<-"continent" 
parlist<-parlist[parlist$Level == "NAT",] 
nsp<-nrow(spcode) 
npar<-nrow(parlist) 
 
# make a loop for each MC run 
for (m in 1:K) { 
  # create output data frame with only one column of continent  
  con = spcode 
  cat(m, "\n") 
  #make a loop to get each parameter 
  for (i in 1:npar){ 
    par<-parlist[i,"Code"] 
    #make a spatial correlation matrix for this parameter 
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    RHO = matrix(data = parlist$rhoCOUNTRY[i],nrow= nsp, ncol = nsp) 
    # replace diagonal with ones: 
    for (j in 1:nsp)  { 
      RHO[j,j] = 1 
    }   
    # simulate from the multivariate normal distribution: 
    sim = rmultnorm(n = 1, rep(0, times=nsp), vmat = RHO, tol = 1e-10) 
    # post-process the simulations of ksi depending on parameters characterized by CV or SD 
    if(!is.na(parlist$CV[i])) { 
      sim = sim * parlist$CV[i] + 1 
    } else { 
      sim = sim * parlist$SD[i] 
    } 
    # transpose sim to a column 
    sim<-t(sim) 
    #rename sim  
    colnames(sim)<-par 
    # store simulated values in a dataframe 
    con = data.frame(con, sim) 
  } 
  #write result to csv 
  write.csv(x = con, 
            file = paste("sim_output_final/sim_con", formatC(x = m, width = nchar(K), 
                                                           flag = "0"), ".csv", sep = ""), 
            row.names = FALSE) 
  #write to gdx 
  symDim <- 2 
   
  attr(con, "symName") <-"sim" 
  con <- wgdx.reshape(con, symDim) 
  wgdx.lst(paste("sim_output_final/gdx/sim_con", formatC(x = m, width = nchar(K), flag = "0"),  
                 ".gdx", sep = ""), con) 
} 
 
##########################  generic parameters ######################### 
# SETTING ENVIRONMENT  
#clean-up memory: 
rm(list = ls()) 
#load packages: 
library(MSBVAR) #"mtvnorm" package 
library(reshape) 
library(gdxrrw) #load the library for writing to gdx 
# set work directory 
setwd("D:/Thesis_BQ/2.In_sim/simulations/3rd_run/") 
#set the work place for gdx 
igdx("I:/Metabase_NEW/GAMS64/GAMS24.1") 
# set options (print warnings as they occur) 
options(warn = 2) 
############################ LOADING POINT  
# define the number of the MC runs 
K=1000 
# read input data 
parlist <- read.csv(file = "sim_input/Parameter_ref.csv", header = TRUE) 
crosscor <- read.csv(file = "sim_input/Crosscor_ref_gen.csv", header = TRUE) 
# select the needed parameters (generic ones) 
parlist<-parlist[parlist$Level == "GEN",] 
npar<-nrow(parlist) 
cc<-nrow(crosscor) 
# make a cross correlation matrix for these parameters 
RHO = matrix(data = 0,nrow= npar, ncol = npar) 
dimnames(RHO)<-list(parlist[,"Code"],parlist[,"Code"]) 
# replace diagonal with ones: 
for (n in 1:npar) { 
  RHO[n,n] = 1  
} 
# replace the cross correlations indicated by crosscor 
for (c in 1:cc){ 
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  Par1<-as.character(crosscor[c,"Par1"]) 
  Par2<-as.character(crosscor[c,"Par2"]) 
  Crossc<-crosscor[c,"Crossc"] 
  RHO[Par1,Par2]<-Crossc 
  RHO[Par2,Par1]<-Crossc 
} 
 
# simulate from the multivariate normal distribution: 
sim = rmultnorm(n = K, rep(0, times=npar), vmat = RHO, tol = 1e-10) 
# post-process the simulations depending on parameters characterized by CV or SD 
for (i in 1: 1:npar) 
if(!is.na(parlist$CV[i])) { 
  sim[,i] = sim[,i] * parlist$CV[i] + 1 
} else { 
  sim[,i] = sim[,i] * parlist$SD[i] 
} 
# add a row to indicate the runs 
run<-data.frame(1:K) 
colnames(run)<-"run" 
gen<-cbind(run,sim) 
 
#write result to csv 
write.csv(x = gen,"sim_output_final/sim_gen.csv",row.names = FALSE) 
#write to gdx 
#symDim <- 2 
 
#attr(gen, "symName") <-"sim" 
#gen <- wgdx.reshape(gen, symDim) 
#wgdx.lst("new_uncertainty_result/sim_gen.gdx", gen) 
 
# seperate generic parameter for each run 
gen <- read.csv("sim_output_final/sim_gen.csv", header = TRUE) 
#define the number of rows 
for (r in 1:K){  
  cat("gen",r, "\n") 
  gen_row <- gen[r,,drop=FALSE] 
  gen_row[,1]<-"sim_mean" 
  # write to csv 
  write.csv(x = gen_row, 
            file = paste("sim_output_final/sim_generic",formatC(x = r, width = nchar(K), flag = "0"), 
                         ".csv", sep = ""),row.names = FALSE) 
  # write to gdx 
  symDim <- 2 
  attr(gen_row, "symName") <-"sim" 
  gen_row <- wgdx.reshape(gen_row, symDim) 
  wgdx.lst(paste("sim_output_final/gdx/sim_generic",formatC(x = r, width = nchar(K), flag = "0"), 
                 ".gdx", sep = ""),gen_row)   
   
} 
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Annex 7 R script for analysing and visualising the 
uncertainty quantification results 
# 1. total emissions for each continent 
data_file = "9_pAggr_LS_GHG_total_AC_JP.gdx" 
LS_GHG_sum<-rgdx.param (data_file,"Livestock_GHG_sum_AC",names = 
c("Run","Continent","Emission"),compress=TRUE) 
total_emission <-LS_GHG_sum 
#processing the data 
# with ddply 
ddply_total<-ddply(total_emission, c("Continent", "Emission"), summarise, 
                   mean = mean(value, na.rm=TRUE)*10^-6, # convert result to Mton 
                   sd = sd(value, na.rm=TRUE)*10^-6, 
                   cv = sd/mean, 
                   n = sum(!is.na(value)), 
                   q_025=quantile(value, p=0.025)*10^-6,  
                   q_975=quantile(value, p=0.975)*10^-6) 
write.csv(ddply_total,"ddply_stat_total.csv",row.names=FALSE) 
ddply_total<-read.csv("ddply_stat_total.csv",header=T) 
ddply_total$Continent<-factor(ddply_total$Continent, c("Africa","LatinAmerica","EU27")) 
ddply_total$Emission<-factor(ddply_total$Emission, c("Total","CH4","N2O","CO2")) 
# plot mean 
png("one_total_mean.png",width=1400,height=900) 
ggplot(na.omit(ddply_total),aes(x=Continent,y=mean))+ 
  ylab("Emission (Mton CO2-eq)")+ 
  geom_bar(stat="identity",fill="grey", colour="black")+ 
  geom_errorbar(aes(ymin=q_025, ymax=q_975), width=.2)+ 
  theme(axis.text.y=element_text(size=20), 
        axis.text.x=element_text(size=15), 
        axis.title.y=element_text(size=30,face="bold"), 
        axis.title.x=element_text(size=30,face="bold"), 
        strip.text = element_text(face="bold", size=22))+ 
  facet_wrap(~Emission,nrow=1) 
dev.off() 
#plot the cv 
png("one_total_cv.png",width=1400,height=900) 
ggplot(na.omit(ddply_total),aes(x=Continent,y=cv))+ 
  ylab("cv for emission")+ 
  geom_bar(stat="identity",fill="grey", colour="black")+ 
  theme(axis.text.y=element_text(size=20), 
        axis.text.x=element_text(size=15), 
        axis.title.y=element_text(size=30,face="bold"), 
        axis.title.x=element_text(size=30,face="bold"), 
        strip.text = element_text(face="bold", size=22))+ 
  facet_wrap(~Emission,nrow=1) 
dev.off() 
# 2. GHG emissions for different sectors  
data_file = "10_pAggr_LS_GHG_sector_AC.gdx" 
LGHG_AC<-
rgdx.param(data_file,"Livestock_GHG_sum_AC",names=c("Run","Continent","Sector","Emission"), 
compress=TRUE) 
write.csv(LGHG_AC,"data_sector.csv",row.names=F) 
LGHG_AC<-read.csv("data_sector.csv",header=T) 
LGHG_AC$Continent<-factor(LGHG_AC$Continent,c("Africa","LatinAmerica","EU27")) 
LGHG_AC$Sector<-factor(LGHG_AC$Sector, 
                            c("OtherAnimals","Turkeys","LayingHens","Broilers", 
                              "Camels","Horses","OtherPoultry","Pigs", 
                              "Goats","Sheep","DairyCows","OtherCattle")) 
LGHG_AC$Emission<-factor(LGHG_AC$Emission, c("Total","CH4","N2O","CO2")) 
# processing the data 
# stat with ddply 
stat_sector<-ddply(LGHG_AC, c("Continent", "Emission","Sector"), summarise, 
                   mean = mean(value, na.rm=TRUE)*10^-6, 
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                   sd = sd(value, na.rm=TRUE)*10^-6, 
                   cv = sd/mean, 
                   n = sum(!is.na(value)), 
                   q_025=quantile(value, p=0.025)*10^-6,  
                   q_975=quantile(value, p=0.975)*10^-6) 
write.csv(stat_sector,"ddply_stat_sector.csv",row.names=FALSE) 
stat_sector<-read.csv("ddply_stat_sector.csv",header=TRUE) 
stat_sector$Continent<-factor(stat_sector$Continent,c("Africa","LatinAmerica","EU27")) 
stat_sector$Sector<-factor(stat_sector$Sector, 
                            c("OtherAnimals","Turkeys","LayingHens","Broilers", 
                              "Camels","Horses","OtherPoultry","Pigs", 
                              "Goats","Sheep","DairyCows","OtherCattle")) 
stat_sector$Emission<-factor(stat_sector$Emission, 
                              c("Total","CH4","N2O","CO2")) 
# plot for mean 
png("one_sector_mean.png",width=1400,height=1800) 
ggplot(stat_sector, aes(x=Sector, y=mean))+  
  geom_bar(stat="identity",fill="grey",color="black")+ 
  geom_errorbar(aes(ymin=q_025, ymax=q_975), width=.2)+ 
  ylab("Emission (Mton CO2 eq)")+ 
  xlab("Sector")+ 
  theme(axis.text.y=element_text(size=20), 
        axis.text.x=element_text(size=15), 
        axis.title.y=element_text(size=30,face="bold"), 
        axis.title.x=element_text(size=30,face="bold"), 
        strip.text = element_text(face="bold", size=22))+ 
  facet_grid(Emission~ Continent,scales="free")+ 
  coord_flip() 
dev.off() 
# plot for cv 
png("one_sector_cv.png",width=1400,height=1800) 
ggplot(stat_sector, aes(x=Sector, y=cv))+  
  geom_bar(stat="identity",fill="grey",color="black")+ 
  ylab("cv for emission")+ 
  xlab("Sector")+ 
  theme(axis.text.y=element_text(size=20), 
        axis.text.x=element_text(size=15), 
        axis.title.y=element_text(size=30,face="bold"), 
        axis.title.x=element_text(size=30,face="bold"), 
        strip.text = element_text(face="bold", size=22))+ 
  facet_grid(Emission~ Continent,scales="free")+ 
  coord_flip() 
dev.off() 
# 3. GHG emissions for different products  
data_file = "8_pAggr_LS_GHG_product_AC.gdx" 
LS_GHG_p_AC <- rgdx.param (data_file,"Aggr_LS_GHG_product_AC",names = 
c("Run","Continent","Product","Emission"), compress=TRUE) 
write.csv(LS_GHG_p_AC,"data_product.csv",row.names=FALSE) 
LS_GHG_p_AC<-read.csv("data_product.csv",header=T) 
LS_GHG_p_AC$Continent<-factor(LS_GHG_p_AC$Continent,c("Africa","LatinAmerica","EU27")) 
LS_GHG_p_AC$Emission<-factor(LS_GHG_p_AC$Emission,c("Total","CH4","N2O","CO2")) 
LS_GHG_p_AC$Product<-reorder(LS_GHG_p_AC$Product,LS_GHG_p_AC$value,FUN=mean) 
#processing the data 
# with ddply 
ddply_product<-ddply(LS_GHG_p_AC, c("Continent", "Product","Emission"), summarise, 
                     mean = mean(value, na.rm=TRUE), 
                     sd = sd(value, na.rm=TRUE), 
                     cv = sd/mean, 
                     n = sum(!is.na(value)), 
                     q_025=quantile(value, p=0.025),  
                     q_975=quantile(value, p=0.975)) 
write.csv(ddply_product,"ddply_stat_product.csv",row.names=FALSE) 
ddply_product<-read.csv("ddply_stat_product.csv",header=T) 
ddply_product$Continent<-factor(ddply_product$Continent,c("Africa","LatinAmerica","EU27")) 
ddply_product$Emission<-factor(ddply_product$Emission, c("Total","CH4","N2O","CO2")) 
ddply_product$Product<-reorder(ddply_product$Product, ddply_product$mean,FUN=mean) 
# plot th mean 
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png("one_product_mean.png",width=1400,height=900) 
ggplot(ddply_product, aes(x=Product, y=mean))+  
  geom_bar(stat="identity",fill="grey",color="black")+ 
  geom_errorbar(aes(ymin=q_025, ymax=q_975), width=.2)+ 
  ylab("Emission CO2(kg)/product(kg)") + xlab("Product")+ 
  theme(axis.text.y=element_text(size=20), 
        axis.text.x=element_text(size=15), 
        axis.title.y=element_text(size=30,face="bold"), 
        axis.title.x=element_text(size=30,face="bold"), 
        strip.text = element_text(face="bold", size=22))+ 
  facet_grid(Emission~ Continent)+ 
  coord_flip() 
dev.off() 
# plot cv 
png("one_product_cv.png",width=1400,height=900) 
ggplot(ddply_product, aes(x=Product, y=cv))+  
  geom_bar(stat="identity",fill="grey",color="black")+ 
  ylab("cv")+xlab("Product")+ 
  theme(axis.text.y=element_text(size=20), 
        axis.text.x=element_text(size=15), 
        axis.title.y=element_text(size=30,face="bold"), 
        axis.title.x=element_text(size=30,face="bold"), 
        strip.text = element_text(face="bold", size=22))+ 
  facet_grid(Emission~ Continent)+ 
  coord_flip() 
dev.off() 
# 4. GHG emissions for different processes 
data_file = "9_pAggr_LS_GHG_total_AC_JP.gdx" 
LS_GHG_total <- rgdx.param(data_file,"Livestock_GHG_total_AC",names = 
c("Run","Continent","Process"),  compress=TRUE) 
write.csv(LS_GHG_total,"data_process.csv",row.names=F) 
LS_GHG_total<-read.csv("data_process.csv",header=T) 
LS_GHG_total$Continent<- 
factor(LS_GHG_total$Continent, c("Africa","LatinAmerica","EU27")) 
#processing the data 
# with ddply 
ddply_process<-ddply(LS_GHG_total, c("Continent", "Process"), summarise, 
                   mean = mean(value, na.rm=TRUE)*10^-6, 
                   sd = sd(value, na.rm=TRUE)*10^-6, 
                   cv = sd/mean, 
                   n = sum(!is.na(value)), 
                   q_025=quantile(value, p=0.025)*10^-6,  
                   q_975=quantile(value, p=0.975)*10^-6) 
write.csv(ddply_process,"ddply_stat_process.csv",row.names=FALSE) 
ddply_process<-read.csv("ddply_stat_process.csv",header=T) 
ddply_process$Continent<-factor(ddply_process$Continent, 
                                    c("Africa","LatinAmerica","EU27")) 
ddply_process$Process<-reorder(ddply_process$Process, 
                               ddply_process$mean,FUN=mean) 
png("one_process_mean.png",width=1400,height=900) 
ggplot(na.omit(ddply_process), aes(x=Process, y=mean))+  
  geom_bar(stat="identity",fill="grey",color="black")+ 
  geom_errorbar(aes(ymin=q_025, ymax=q_975), width=.2)+ 
  ylab("Emission (Mton CO2-eq)")+ xlab("Process")+ 
  theme(axis.text.y=element_text(size=20), 
        axis.text.x=element_text(size=15), 
        axis.title.y=element_text(size=30,face="bold"), 
        axis.title.x=element_text(size=30,face="bold"), 
        strip.text = element_text(face="bold", size=22))+ 
  facet_grid(.~ Continent)+ 
  coord_flip() 
dev.off() 
png("one_process_cv.png",width=1400,height=900) 
ggplot(na.omit(ddply_process), aes(x=Process, y=cv))+  
  geom_bar(stat="identity",fill="grey",color="black")+ 
  ylab("cv for emission")+ 
  xlab("Process")+ 
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  theme(axis.text.y=element_text(size=20), 
        axis.text.x=element_text(size=15), 
        axis.title.y=element_text(size=30,face="bold"), 
        axis.title.x=element_text(size=30,face="bold"), 
        strip.text = element_text(face="bold", size=22))+ 
  facet_grid(.~ Continent)+ 
  coord_flip() 
dev.off() 

  

 
 

103 



Annex 8 R script for analysing and visualising the 
uncertainty analysis results 
# 1. total emissions for each continent 
# read the data 
stat_total_emission<-read.csv("stat_total_emission.csv",header=T) 
stat_total_emission<-melt(stat_total_emission,id=1:2) 
colnames(stat_total_emission)[3]<-"Group" 
stat_total_emission$Continent<-factor(stat_total_emission$Continent, 
                                      c("Africa","LatinAmerica","EU27")) 
stat_total_emission$Emission<-factor(stat_total_emission$Emission, 
                                     c("Total","CH4","N2O","CO2")) 
stat_total_emission<- ddply(stat_total_emission, .(Continent,Emission), transform, 
                            percent_contribution = value / sum(na.omit(value)) * 100) 
png("UA_total_emission.png",height=700,width=900) 
ggplot(na.omit(stat_total_emission), aes(x=Emission, y=percent_contribution, fill=Group)) + 
  geom_bar(stat="identity")+ 
  facet_grid(.~Continent)+ 
  ylab("Uncertainty contribution (%)")+ 
  theme(axis.title.x=element_text(size=22,face="bold"), 
        axis.title.y=element_text(size=22,face="bold"), 
        axis.text.x=element_text(size=15), 
        axis.text.y=element_text(size=15), 
        legend.title=element_text(size=15), 
        legend.text=element_text(size=15), 
        strip.text = element_text(face="bold", size=15))+ 
  guides(fill = guide_legend(keywidth = 1.5, keyheight = 1.5)) 
dev.off() 
# plot for two 
tt_p2<-stat_total_emission[stat_total_emission$Emission=="CH4"| 
                             stat_total_emission$Emission=="N2O",,drop=F] 
png("UA_total_200.png",height=700,width=900) 
ggplot(tt_p2, aes(x=Group, y=value)) + 
  geom_bar(stat="identity",position="dodge",fill="grey60")+ 
  facet_grid(Emission ~Continent)+ 
  ylab("Uncertainty contribution (%)")+ 
  theme(axis.title.x=element_text(size=22,face="bold"), 
        axis.title.y=element_text(size=22,face="bold"), 
        axis.text.x=element_text(size=15), 
        axis.text.y=element_text(size=15), 
        legend.title=element_text(size=15), 
        legend.text=element_text(size=15), 
        strip.text = element_text(face="bold", size=15))+ 
  guides(fill = guide_legend(keywidth = 1.5, keyheight = 1.5)) 
dev.off() 
# plot the result of all (comparing winding and one group at a time) 
stat_total_all<-read.csv("stat_total_all.csv",header=T) 
stat_total_all<-melt(stat_total_all,id=1:3) 
colnames(stat_total_all)[4]<-"Group" 
stat_total_all$Continent<-factor(stat_total_all$Continent, 
                                 c("Africa","LatinAmerica","EU27")) 
stat_total_all$Emission<-factor(stat_total_all$Emission, 
                                c("Total","CH4","N2O","CO2")) 
 
stat_total_all<- ddply(stat_total_all, .(Continent,Emission), transform, 
                       percent_contribution = value / sum(na.omit(value)) * 100) 
stat_total_all<-stat_total_all[stat_total_all$Emission=="CH4"| 
                                 stat_total_all$Emission=="N2O",,drop=F] 
png("UA_total_all.png",height=700,width=900) 
ggplot(stat_total_all, aes(x=Group, y=value,fill=Method)) + 
  geom_bar(stat="identity",position="dodge")+ 
  facet_grid(Emission ~ Continent)+ 
  ylab("Uncertainty contribution (%)")+ 
  theme(axis.title.x=element_text(size=22,face="bold"), 
        axis.title.y=element_text(size=22,face="bold"), 
        axis.text.x=element_text(size=15), 
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        axis.text.y=element_text(size=15), 
        legend.title=element_text(size=15), 
        legend.text=element_text(size=15), 
        strip.text = element_text(face="bold", size=15))+ 
  guides(fill = guide_legend(keywidth = 1.5, keyheight = 1.5))+ 
  coord_flip() 
dev.off() 
# 2. GHG emissions for different sectors 
# read the data 
stat_sector<-read.csv("stat_sector.csv",header=T) 
stat_sector<-melt(stat_sector,id=1:3) 
colnames(stat_sector)[4]<-"Group" 
stat_sector$Continent<-factor(stat_sector$Continent, 
                              c("Africa","LatinAmerica","EU27")) 
stat_sector$Emission<-factor(stat_sector$Emission, 
                             c("Total","CH4","N2O","CO2")) 
stat_sector<- ddply(stat_sector, .(Continent,Emission,Sector), transform, 
                    percent_contribution = value / sum(na.omit(value)) * 100) 
png("UA_sector.png",height=1800,width=1400) 
ggplot(na.omit(stat_sector), aes(x=Sector, y=percent_contribution, fill=Group)) + 
  geom_bar(stat="identity")+ 
  facet_grid(Emission~Continent)+ 
  ylab("Uncertainty contribution (%)")+ 
  theme(axis.title.x=element_text(size=30,face="bold"), 
        axis.title.y=element_text(size=30,face="bold"), 
        axis.text.x=element_text(size=22), 
        axis.text.y=element_text(size=22), 
        legend.title=element_text(size=22), 
        legend.text=element_text(size=22), 
        strip.text = element_text(face="bold", size=22))+ 
  guides(fill = guide_legend(keywidth = 1.5, keyheight = 1.5))+ 
  coord_flip() 
dev.off() 
# 3. GHG emissions for different products 
# read the data 
stat_product<-read.csv("stat_product.csv",header=T) 
stat_product<-melt(stat_product,id=1:3) 
colnames(stat_product)[4]<-"Group" 
stat_product$Continent<-factor(stat_product$Continent, 
                               c("Africa","LatinAmerica","EU27")) 
stat_product$Emission<-factor(stat_product$Emission, 
                              c("Total","CH4","N2O","CO2")) 
stat_product<- ddply(stat_product, .(Continent,Emission,Product), transform, 
                     percent_contribution = value / sum(na.omit(value)) * 100) 
png("UA_product.png",height=1800,width=1400) 
ggplot(na.omit(stat_product), aes(x=Product, y=percent_contribution, fill=Group)) + 
  geom_bar(stat="identity")+ 
  facet_grid(Emission~Continent)+ 
  ylab("Uncertainty contribution (%)")+ 
  theme(axis.title.x=element_text(size=30,face="bold"), 
        axis.title.y=element_text(size=30,face="bold"), 
        axis.text.x=element_text(size=22), 
        axis.text.y=element_text(size=22), 
        legend.title=element_text(size=22), 
        legend.text=element_text(size=22), 
        strip.text = element_text(face="bold", size=22))+ 
  guides(fill = guide_legend(keywidth = 1.5, keyheight = 1.5))+ 
  coord_flip() 
dev.off() 
# 4. GHG emissions for different processes 
stat_process<-read.csv("stat_process.csv",header=T) 
stat_process<-melt(stat_process,id=1:2) 
colnames(stat_process)[3]<-"Group" 
stat_process$Continent<-factor(stat_process$Continent, 
                               c("Africa","LatinAmerica","EU27")) 
stat_process<- ddply(stat_process, .(Continent,Process), transform, 
                     percent_contribution = value / sum(na.omit(value)) * 100) 
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png("UA_process.png",height=700,width=900) 
ggplot(na.omit(stat_process), aes(x=Process, y=percent_contribution, fill=Group)) + 
  geom_bar(stat="identity")+ 
  facet_grid(.~Continent)+ 
  ylab("Uncertainty contribution (%)")+ 
  theme(axis.title.x=element_text(size=22,face="bold"), 
        axis.title.y=element_text(size=22,face="bold"), 
        axis.text.x=element_text(size=15), 
        axis.text.y=element_text(size=15), 
        legend.title=element_text(size=15), 
        legend.text=element_text(size=15), 
        strip.text = element_text(face="bold", size=15))+ 
  guides(fill = guide_legend(keywidth = 1.5, keyheight = 1.5))+ 
  coord_flip() 
dev.off() 
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