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Towards a climate neutral water cycle

Jan Hofman, Kees Roest, Jos Frijns, Mark van Loosdrecht

COP15, 8 december 2009

Energy demand water cycle

Creating an energy neutralCreating an energy neutral 
watercycle:
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• Optimize and reduce 
energy consumption for 
treatment

• Conserve water
• Recover heat from
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wastewater

• Create energy from 
wastewater
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Climate and Energy
Green house gas emissions Dutch water sector
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Waste 
Water; 67%

Frijns, Mulder Roorda, KWR/STOWA 2008-17

Carbon Footprint Dutch Water Sector:
1.67 million tonnes CO2e per year, or 1.5 kg CO2e per m3 domestic water

GHGs emission in The Netherlands
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Carbon Footprint Dutch Water Sector:
1.67 million tonnes CO2e per year, or 1.5 
kg CO2e per m3 domestic water
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Energy in the Urban Water Cycle

Heat
55,900 TJ/y
110 W/cap

Potential energy
output

WWTP

Drinking water
789 Mm3/y
10 °C

0.47 kWh/m3

1 334 TJ/y

110 W/cap
27 °C Sewage

2,069 Mm3/y
COD 942.000 t/y

output
13,800 TJ/y
18 W/PE

Potential heat
recovery
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1,334 TJ/y
2.6 W/cap

Domestic
wastewater
789 Mm3/y

Domestic
wastewater
789 Mm3/y

7,190,543 Households
2.25 cap/household

24,462,000 PE
356 WWTPs

Energy input
5,390 TJ/y
7 W/PE

173,000 TJ/y
112 W/PE
20→10 °CIndustry

Rainwater
Groundwater
1280 Mm3/y

Energy in the water cycle
Summary

Energy
9.6 W/cap

“COD”
18 W/cap
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110 W/cap
Heat

112 W/cap
Heat
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Energy from COD
Pathways

MFC: mass transfer limitations at electrodes

COD

High costs, low power density (~4 W/m2)

Dark fermentation H2: Only <1/3 COD is used

Sludge digestion CH4

Direct anaerobic; COD concentration too low
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Sludge: drying, incineration, P-recovery

Best option according to STOWA 2005-26 Slibketenstudie:
• Pre-settling, no digestion, Bio-P
• Indirect thermal drying, co-incineration in cement oven

Final Sludge Destination
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Options for Concentrating COD

Decentralized approachDecentralized approach

• Separation at source, black water collection, vacuum 
toilets

Centralized systems

• Forward Osmosis
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• Convert COD to suspended solids as much as possible 
and collect sludge

Forward osmosis

Clean water

FO         Water recovery

t

Advantages: 

• Less fouling

Removal of Hormones and

But:

• Energy consumption ?

Membrane ?

Activated
sludge

Clean water

Excess thickened sludge

S
al

t

10Watercycle Research Institute

• Removal of Hormones and 
PPCPs

• Clean water production

• Energy production (PRO)

• Membrane ?

• Water Recovery Technology
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Optimized A-Stage

• High load A stage: Dissolved COD Suspended• High-load A-stage: Dissolved COD → Suspended 
material

• Flocculation with colloidal and suspended influent 
material

• Integration of chemical P-removal; if aluminium is used, 
incineration ashes can be used to recover P 
(Th h )
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(Thermphos)

Sludge collection

Existing AB systems: settling tanks after each stageExisting AB-systems: settling tanks after each stage

•Works well, but large footprint

MF/UF membranes (MBR): 

• Small footprint, but fouling and high energy demand
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Dynamic membranes:

• Small footprint, low energy demand, but periodic low 
quality filtrate
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Dynamic membranes

13Watercycle Research Institute

H. Liu, C. Yang, W. Pu and J. Zhang, Chem. Eng. J., 2009, 148, 290-295 

Dynamic membranes

Low cost porous substrate materialLow cost porous substrate material

Dynamic membrane deposits on substrate

Periodic membrane cleaning

Gravity is driving force

Small footprint
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Total Concept

Sewage
Dyn. Filter N2

A-stage

O2, Al

Sewage
Nitritation + Anammox Sand Filter

WFD

Drying

Waste Heat
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Thermphos

Incineration Cement furnace

Deliverables and Research Questions

Deliverables:Deliverables:
• Clean Water (WFD)
• Energy: self-supporting water cycle
• Possibilities for P recovery

Questions:
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• How much COD is converted to sludge?
• How much sludge can be removed effectively?
• What is the DS content of the sludge?
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Conclusion

• Energy: Self supporting water cycle is possible• Energy: Self supporting water cycle is possible

• Increase energy efficiency

• Water conservation and heat recovery are important

• Reuse water and nutrients possible
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AB-Systems with dynamic filtration
a new way to produce energy
Jan Hofman, Mark van Loosdrecht

De RWZI als Energiefabriek II, 18 september 2009
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Heat from domestic waste water
Stochastic modeling SIMDEUM

30Bath/shower: 38 40 oC Average: 21 3 MJ/home d
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Bath/shower: 38-40 oC

Tap 10-55 oC

Dishwasher/laundry 40 oC

Garden tap, toilet 10oC

300 demand patterns

Average: 21.3 MJ/home.d
109.6 W/cap

Tref = 10 °C
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Energy input wastewater treatment

Energ Amo ntEnergy Amount

(TJ/y)

Electrical 2606

Natural Gas: 29,574 m3; ∆Hc = -32 MJ/Nm3 946

Own biogas: 73,527 m3; ∆Hc = -25 MJ/Nm3 1838

Total 5390
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7,190,543 Households, 2,25 persons/household 10 W/cap

356 WWTP; 24,462,000 PE 7 W/PE
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Chemical energy from wastewater

C H O + 6 O 6 CO + 6 H O ∆H = 2 808 kJ/molC6H12O6 + 6 O2 → 6 CO2 + 6 H2O    ∆Hc = -2,808 kJ/mol

COD: 941,736,000 kg O2/y = 4.9*109 mol/y C6H12O6

Potential energy: 13,800 TJ/y

27 W/cap

18 W/PE
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18 W/PE

Sludge drying: ∆He = +2,256 kJ/kg


