

Aquifer thermal energy storage: Mitigation and adaptation in cities

Matthijs Bonte 8 December 2009, Copenhagen

Watercycle Research Institute

Key messages

ATES is a sustainable form of heating and cooling:

- Mitigation: ~3 Mton CO₂/yr in the Netherlands (11%)
- Adaptation: provide heat relieve in cities
- Important research questions:
 - How can we achieve the full potential or ATES?
 - What are the risks for other groundwater users?

KWR Watercycle Research Institute

Why bother about adaptation?

The Chicago Heat Wave, 1995

- 6 day heat wave, max 41°C
- UHI increased night temperatures by ~ 2°C (26 °C)
- 692 deaths (26% mortality displacement)
- · Mostly poor elderly without A/C
- More deaths than all other natural disasters

(Source: Wikipedia & Eric Klinenberg, Heat Wave: A Social Autopsy of Disaster in Chicago)

KWR Watercycle Research Institute

ATES and climate change mitigation

Open loop systems

- •Energy ↓ = 8 MJ/m³ 820 TJ/yr
- • $CO_2 \downarrow = 0.5 \text{ kg } CO_2/\text{m}^3 \dots 56 \text{ kton/yr}$
- •0.07% in the built environment

Closed loop systems

- •Energy ↓ = 870 MJ/well/yr 20 TJ/yr
- •CO₂ \downarrow = 60 kg CO₂/well/yr..... 1.4 kton/yr
- •Reduction < 0.01% with >20.000 well points (Source: If technology, 2007 & CBS, 2009; CBS, 2008)

KWR Watercycle Research Institute

Estimated CO₂ reduction potential

Ministerial Taskforce ATES, 2009:

-Aim is a growth rate of 30% / year

-Energy savings: 41 PJ

-CO₂ reduction: 2.9 Mton in 2020

-11% of direct energy use in built environment (28 Mton)

ATES is not 'the' solution but part of the puzzle

KWR Watercycle Research Institute

11

Groundwater claim

- Current ATES groundwater use: 350 Mm³/year

- 2020 use at desired growth: 5 - 6 Gm³/year

- Total groundwater extraction: 1.5 Gm³/year

- Annual groundwater recharge: 9 Gm³/year

KWR Watercycle Pesearch Institute

ATES to be largest groundwater user in 2020!

Research questions:

- How can we achieve the full potential of ATES?
- What are the risks for other groundwater users?

KWR Watercycle Research Institute

Minimising the risks

Effects:

- Thermal pollution
- Leaking bores, poorly sealed boreholes
- Microbiological changes
- Chemical changes
- ·Leaking anti freeze at closed loop systems

KWR Watercycle Research Institute

Decreasing groundwater quality increases energy use water cycle

Effects on energy use at treatment:

- -'Clean' groundwater ≈ 1 2 MJ/m3;
- Organic pollutants ↑ → add UV/H2O2 → ~ 0.5 2.5 MJ/m3
- Salinity $\uparrow \rightarrow$ add MF $\rightarrow \sim 2 6$ MJ/m3

remembering: energy ↓ ATES ~ 8 MJ/m3

Clean groundwater saves energy!

KWR Watercycle Research Institute

19

Effect increasing soil temperature on ATES

- -Increasing temperature penetrates aquifer to 60 m in 28 years
- -Agriculture to urban → ΔT= 1.9°C
- -Effect on cooling capacity of ATES?

KWR Watercycle Research Institute

On going research projects at KWR

- -Water Industry Research program:
 effects of ATES on groundwater quality
- -Ministry of spatial planning and environment: guidlines for subsurface spatial planning
- -Water and energy relations in the water cycle (Jan Hofman)

KWR Watercycle Research Institute

21

Questions

Matthijs.bonte@kwrwater.nl

KWR Watercycle Research Institute