

Potential environmental impacts

- · Land use, biodiversity and landscape protection
- · Growing of biomass similar impacts as agriculture:
 - pesticides
 - Fertilization: nitrogen, phosphorus
 - Water use
 - Soil, water and air quality
- · Conversion and use of biomass
 - Air quality (ammonia, PM, NOx, VOC's)
 - Net-GHG balance: N₂O, CO₂ exchange
 - Ash issues
- Interaction of N and C with climate:
 Nitrogen as fertilizer and from combustion

7-12-2009

Energy research Centre of the Netherlands

www.ecn.nl

Concluding remarks

- Bioenergy is essential for the future energy supply. However, it has to be produced and converted in a sustainable way.
- Nitrogen losses from agriculture and biomass production has direct and indirect impacts on the carbon cycle and on the radiative balance
- Nitrogen deposition can lead to additional carbon sequestration and to impacts on biodiversity and ecosystem services
- Currently LCA studies show a net negative impact of nitrogen on the greenhouse gas balance (N₂O): balance is not right.
- Nitrogen management is essential for the environment and can have a positive effect on climate
- We call for a Special report on Nitrogen and Climate.

20 7-12-2009

Energy research Centre of the Netherlands

www.ecn.nl

