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Abstract 

South Ethiopian landscapes have undergone rapid and mostly uncontrolled landscape change in the 

last few decades with high social, economic and ecological impact. Changes in cropland 

composition are of particular interest to explain the link between landscape and potential natural 

pest control. We assessed landscape change in the Hawassa area in terms of land cover and land 

structure in the last three decades (1984, 1998, 2014) using Landsat TM and Landsat OLI/TIRS 

imagery. Eleven classes were assessed utilizing a hybrid approach of OBIA and pixel-based 

classification. Annual and perennial crops were separated using NDMI differencing, producing 

overall accuracies of 77 % (1984) and 75 % (2014). The results showed high dynamics and a clear 

shift in cropland cultivation towards perennial crops. Largest changes in the study area were seen in 

rising proportions of perennial crop and built up (+204 %, +616%) and decrease of annual crop, 

grassland and bare soil (-77 %, -82 %, -74 %). Natural land cover was thereby replaced by 

cropland. A large east-west difference was observed and substantiated by using landscape metrics 

Simpson Diversity, Contagion, Proximity Index, Number of patches and Edge density. Western 

areas showed least crop diversity in 1984 with strong dominance of annual crops. The introduction 

of perennial crops resulted in a shift of dominance towards mixed crop classes. Eastern areas were 

most diverse and fragmented in 1984, but showed trends in higher aggregation as perennial crop is 

strongly increasing towards 2014. Rising population pressure and cash cropping can be possible 

explanations of the observed change. The combination of OBIA and Landscape Ecology is 

promising, but requires a good data choice. Landsat data is not able to detect rapid small-scale 

changes of the Ethiopian landscape due to the relatively large pixel size compared to small field 

sizes. Thus, mixed crops were created to acknowledge the presence of mixed pixels. The use of 

OBIA was neither effective nor feasible for the purpose of cropland classification in our study. We 

suggest the use of VHR data to further assess the fragmentation of the landscape and other 

ecologically important landscape elements such as hedgerows and tree patches. The results of this 

study can help understanding impacts of landscape change on biodiversity and driving forces of 

pest incidence in the study area. 

 

Keywords: Land Cover Change, Landscape Assessment, Object-based Image Analysis, Landscape 

Ecology, Perennial Cropland, Annual Cropland, Ethiopia 
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1 Introduction 

1.1 Context and Background: Landscape change, population pressure and 

Ethiopian agriculture 

The research of this thesis report is set in Hawassa, Ethiopia. The landscape is known to have 

changed rapidly and in a mostly uncontrolled way within the last three decades, which has large 

social, economic and ecological impacts. The goal of this study is to trace landscape changes in the 

Hawassa area. This shall help in linking observed agricultural practices and pest pressure to 

landscape composition and configuration. The recent landscape as well as the historic land cover 

and land structure will be assessed. Landscape is a very broad term and commonly used in many 

different disciplines. We will continuously use the terms landscape, land cover and land structure in 

this report. Therefore, we will start with clarifying how these terms are used before setting the 

scene.  

Alexander von Humboldt defined “landscape” as one of the first as the “total character of a region” 

(Farina 2006). Green et al. (1996) describe it more precisely as “a particular configuration of 

topography, vegetation cover, land use and settlement pattern which delimits some coherence of 

natural and cultural processes and activities”. In the context of this study the latter definition shall 

be adopted. Land cover is commonly used to describe the physical appearance of the earth. 

Depending on the scale of interest a land cover type is formed as a class of objects with similar 

physical characteristics (Aplin 2004a). 

Land or landscape structure takes into account the composition of the landscape as well as its 

configuration (Gustafson 1998). Pickett and Cadenasso (1995) begin their analysis of spatial 

heterogeneity by stating that “all landscapes are mosaics […] composed of discrete, bounded 

patches that are differentiated by biotic and abiotic structure or composition”. Therefore, the term 

structure takes into account patterns formed by various elements of the same or different land cover 

types (Forman & Godron 1986). 

 

This thesis aims to connect observations in land cover, which is typically assessed with Remote 

Sensing, to land structure that is typically assessed with Landscape Ecology. Therefore, this thesis 

is also aiming to combine methods and perspectives of both disciplines. 

Remote Sensing experts tend to see land cover as detached blocks of information. But land cover is 

in fact part of an ecological system, providing and connecting habitat of plants and animals. A 

relevant example of landscape change in the 21
st
 century is the simplification of landscape caused 

by the intensification of agriculture (Meehan et al. 2011). When fields become larger and the 

productivity of the crops higher, it often affects the existence of other plants that are habitat to 

certain species and ecological corridors that allow species to travel and exchange between habitats.  

In the particular scenario of observing insect pests in a landscape, the structure of the landscape can 

have implications for biocontrol services provided by natural enemies of insect pests. Decreasing 

landscape diversity is associated with increased pest pressure because of an absence or reduction of 

habitat for predator species in and around agricultural fields (pest habitat). Research has shown that 

diverse landscapes are necessary to remain biodiversity and sustain natural pest control (Brévault et 

al. 2014, Woltz et al. 2012, Meehan et al. 2011, Gardiner et al. 2009, Landis et al. 2008, Poveda et 

al. 2008, Bianchi et al. 2006, , Tscharnke et al. 2005). 

Ethiopian landscapes have seen an extensive increase in farmlands with small scale agriculture, but 

uptake of space for natural vegetation on the contrary (Assefa & Berk 2014, Dessie and Kleman 

2007, Sonneveld & Keyzer 2003, Shiferaw 2011). 
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Generally spoken, African agriculture is extensive and often characterized by low crop productivity 

(Nkamleu 2011). Lambin et al. (2003) report an increased food production through both 

agricultural intensification (better input, higher output) and extensification (increasing cropland 

sizes) in most African tropical states. A phenomenon that is also seen by Reid et al. (2000), who 

observed a dramatic increase of land cover conversion from grassland and forest to cropland and 

pasture.  These observations are strongly connected to an ongoing global process: the growth of 

urban population that results in rapid land use change (Lambin et al. 2001). 

Ethiopia is experiencing the effects of high population pressure on the landscape with population 

growth rates of 2.6 % per year (World Bank 2015). An increased population size not only means 

that less land is available to everyone; it also implies the use of less suitable land and a decline of 

privately owned field sizes. Land property is usually inherited and equally divided by the male 

descendants of the land owner (Sonneveld &Keyzer 2003, Grepperud 1996). As private field sizes 

are decreasing, many households can’t live from selling food crops anymore. Therefore, they need 

to rethink their livelihood strategies and find other sources of income. A livelihood can roughly be 

described as all activities, capabilities and assets required to sustain a living (Rakodi 1999). 

Common strategies to improve livelihood under high population pressure are either to move to the 

city to find work or to diversify the income by carrying out more than one occupation or cultivating 

multiple kinds of crops (Barrett et al. 2001, Ellis 1999). It is common practice for households in 

rural Ethiopia to grow nutritious food crops on the one hand, but other non-food crops that reach 

high market prices on the other hand. Often these crops are referred to as cash crops (Poulton et al. 

2001, Maxwell &Fernando 1989). Relevant examples for cash crops on the Ethiopian market are 

coffee (Rapsomanikis et al. 2001) or khat (Lemessa 2001). Common food crops are barley, wheat, 

maize, teff and sorghum (Benson et al. 2014). Especially with rising proportions of cash crops and 

increasing population size a higher performance of food crops is essential to sustain food security 

of the population. 

 

Maize is a major crop in Ethiopia, with approx. 3.4 Mt supplied by domestic farmers in 2013 

(Benson et al. 2014). However, despite increasing maize yields up to an average of 2.8 t/ha, they 

are still far below the global average of 5.5 t/ha (CSA 2013, Edgerton 2009 in: De Valença 2014). 

One of the key reasons for low maize productivity is the infestation by stem borers, a moth 

common in Africa whose larval stage is most harmful to the crop. Much research has been 

undertaken to explain stem borer control at field level. However, understanding the effects of 

agricultural land use needs a landscape perspective since pest population dynamics are likely to be 

affected at larger spatial scales (Dale et al. 2013, Tscharnke et al. 2005).  

 

Therefore, WUR PhD-Candidate Yodit Kebede is investigating the influence of local management 

practices on stem borer incidence in the Hawassa area at the farm/landscape level. Her hypothesis 

is that complex landscapes, which contain a lower proportion of host plants (maize) for stem borers 

and provide shelter for their natural enemies, hold potential for sustainable suppression of this pest. 

Thus, it is hypothesised that pest pressure is inversely related to landscape diversity (Kebede 2013). 

Deffointaines et al. (1995) emphasise that agricultural landscapes can be better understood and 

modelled when landscape structure is the starting point of research. Identifying and understanding 

long term changes in the local landscape context of Hawassa is one of the very first steps to gain a 

deeper understanding of driving forces of pest incidence in the study area. This will help perceiving 

how farming systems can be intensified in a more sustainable way. 

 



3 

1.2 Problem definition 

The landscape in the Hawassa area is known to have experienced dramatic changes throughout the 

last four decades (Wondrade et al. 2014). These might have been caused by a land reform in 1975 

and a change in the political system in 1991. Other influencing factors are amended access to 

agricultural technologies since the 1990s and an increasing demand for cash crops and perennial 

food crops (Woyessa 2014). Wondrade et al. (2014) found that within the last four decades the 

study area has seen remarkable changes in the horizontal expansion of rain-fed agriculture 

replacing existing woody vegetation and grasslands. Causes have been found to be demographic 

factors, soaring prices of wooden products and urbanization. Indeed, Ethiopia is one of the most 

populous countries in Africa, experiencing rapid land-use/land-cover (LULC) dynamics from 

natural to agricultural and urban land use (Assefa & Berk 2014, Kindu et al. 2013).  

 

Understanding the complexity of LULC change is an important step to sustainably manage natural 

resources (Wondrade et al. 2014). It is widely acknowledged that land cover and land use refer to 

different aspects. As stated before land cover describes the physical appearance of the earth which’ 

components directly interact with electromagnetic radiation (Aplin 2004a). Land use on the other 

hand is a socioeconomic variable describing how humans utilize the earth’s surface (Comber 2008, 

Jansen & Di Gregorio 2002). The interactions between land use and land cover are complex. 

Remote Sensing, as a single tool, is only able to determine land cover, which is therefore the focus 

of this study. We do not seek to make inferences on land use. This would be subject to on-site 

research, as for example carried out by WUR student Kassahun Lemi Woyessa (2014) who 

analysed trajectories of maize-based farming systems with participatory methods. 

 

Although it is known that the landscape in the study area has changed in a rapid and mostly 

uncontrolled way, the extent and nature of change remain unknown. In particular changes in 

cropland composition are of interest, which have not been assessed until now as LULC studies in 

this area address agriculture as one class without further distinction (Kindu et al. 2013, Meshesha et 

al. 2012). Also the land cover analyses have not been linked to landscape patterns, yet. However, 

knowledge of landscape descriptors such as patch sizes and landscape fragmentation can give 

valuable hints on suitable pest and predator habitats.  Insight in changing cropland composition can 

help to understand the impact of farming systems on pest pressure and natural pest control. 

Therefore, the change of land cover and structure shall be assessed quantitatively and qualitatively 

to help understand developments in this area. The results of the landscape change analysis will then 

be further used and discussed within the research of Kebede, who is seeking to understand the link 

between landscape composition and pest pressure (Kebede 2013). This connection has been studied 

before with varying results, of affirming landscape diversity to have a positive effect on natural 

biocontrol services but also stating that the formation of landscape elements such as forest and road 

verges play an important role (Schellhorn et al. 2014, Gardiner et al. 2009, Bianchi et al. 2008, 

Landis et al. 2008, Poveda et al. 2008, Bianchi et al. 2006). However, precise knowledge about the 

effects and importance of landscape on natural pest control is still missing (Tscharnke et al. 2005).  
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1.3 Research objectives and research questions 

The main objective of this research is to understand landscape change dynamics in Hawassa, 

Ethiopia, within the last 30 years using object based image analysis of Landsat satellite data. 

Specific focus will lie on assessing the change of cropland cover, which will give insight into 

potential pest occurrence and spread in and between annual crops such as maize.  

 

This will be approached with the following three research questions: 

(i) Which land cover types have undergone most change and in which period? 

(ii) How does the cropland composition change and can this reflect changes in farmers’ 

livelihood strategies? 

(iii) How does land cover change affect landscape structure in terms of landscape 

configuration, diversity and annual to perennial crop distance? 

 

Second objective is the evaluation of the effectiveness of an object-based method, which is 

addressed in the following two research questions: 

(iv) How reliable are estimated change rates and trends based on the accuracies of the 

land cover classification? 

(v) How well does an object-based classification approach perform to describe landscape 

change in the study area compared to pixel-based approaches? 

 

1.4 Outline 

The following chapter gives a review, showing how landscape ecology and remote sensing can 

complement each other and presents the state of the art in object-based image classification. 

Thereafter the study area will be introduced and the methodology will be explained in chapter 3. 

The methodology consists out of three parts: land cover classification, land cover change and land 

structure change. The results of each part will be presented in chapter 4. The discussion follows in 

chapter 5 and will aim to answer the research questions in consecutive order by reflecting on the 

results on the one hand and the methodology on the other. Chapter 6 provides a conclusion and 

gives recommendations for further research. 
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2 Literature Review 

2.1 Linking Landscape Ecology and Remote Sensing 

Land cover and structure are both variable. Their change can be monitored and examined by 

utilizing the principles of landscape ecology. As broad as the term ‘landscape’ itself, as ambiguous 

is the field of ‘landscape ecology’, which is claimed by various disciplines such as geography, 

biology, landscape architecture and environmental planning (Kirchhoff et al. 2012). Relevant for 

this study is the definition based on Forman’s and Godron’s (1986) topological ecology that 

explains landscape as mosaics, which are composed of spatial elements with characteristic patterns. 

The authors distinguish between three recurring elements: patch, a homogeneous area that differs 

from its surrounding and is habitat to a species; matrix, the concerning surrounding environment 

that has a different species composition; and corridors, which connect patches and therefore enable 

functional flows and movements through the landscape (Forman 1995).  Landscape ecology is a 

suitable concept to consider and quantify landscape change and sustainability because it provides 

measurements to capture the essentials of an environment through patch mosaic, connectedness and 

heterogeneity (Dale et al. 2013, Deffontaines et al. 1995). Riitters et al. (1995) state that through 

rapid technological developments “the potential now exists to begin landscape monitoring and 

assessment by combining remote satellite imagery of landcover, geographic information system 

(GIS) technology, and recent advances in the science of landscape ecology.” 

 

Within this study we will combine the two research fields of Remote Sensing and Landscape 

Ecology. Remote Sensing provides repetitive spatially explicit measurements of the earth’s surface 

regarding vegetation cover, biomass, vegetation community structure and landscape heterogeneity 

(Lambin et al. 2013). It is therefore able to highlight the spatial and temporal complexity of a 

landscape. The extent and rate of change can be determined with high certainty (Meshesha et al. 

2014). The capabilities of air- and space-borne sensors to observe and monitor land change have 

improved over the past two decades by better spatial and temporal resolutions resulting in almost 

seamless global data of land cover (Turner et al. 2007). In addition, Remote Sensing is compared to 

other quantifitative methods, such as field studies, relatively inexpensive and able to give detailed 

insights while covering large areas (Kindu et al. 2013, Pettorelli et al. 2014, Wondrade et al. 2014).  

 

Despite increasing interest in how both disciplines can complement each other, “the relationship 

between remote sensing and ecology is not particularly well-defined and is almost certainly under-

exploited” (Gulinck et al. 2000 in: Aplin 2004b). A combination of both science domains holds the 

potential for understanding mechanisms determining current biodiversity patterns. Therefore, the 

integration of Remote Sensing and Landscape Ecology is clearly beneficial to both disciplines 

(Aplin 2005, Pettorelli et al. 2014). A few studies applied landscape pattern metrics on Remote 

Sensing based classifications in order to improve the classification result (Frohn 2006, Frohn & 

Hao 2006, Herold et al. 2002, Jiao et al. 2012). This is interesting, as those attempts are using 

texture and shape metrics which are very similar to methods now used by object-based 

classification approaches which will be explained later in this chapter. More often Remote Sensing 

has been applied in order to improve the understanding of ecological processes. The main fields of 

integration are hereby (1) identification of vegetation types and habitat through land cover 

classification, (2) ecosystem measurements as estimates of ecosystem function by deriving 

biophysical parameters, and (3) ecological monitoring through change detection (Aplin 2005). 

Although there is a clear interest amongst researchers to understand how Remote Sensing can 
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benefit biodiversity research, most research is often conducted within their own discipline, either 

Remote Sensing or Ecology, and is therefore not truly interdisciplinary (Pettorelli et al. 2014). 

Another issue that complicates the combination of the two is the difference in scale practised by 

both research fields. Ecologists often deal with relatively small areas at resolutions of a few meters 

and temporal resolutions of days to years. Remote Sensing on the other hand is often utilized at 

landscape or global scales for years to decades. This circumstance is seen as added value within 

this study, as we seek to ‘re-built’ trajectories of land cover change within the last 30 years 

covering not only field, but landscape scale. 

 

Landscape patterns are caused by complex relationships between multiple factors such as climate, 

soils and physical relief. Especially the way in which humans interfere are key drivers to landscape 

patterns (Turner 2005). 

The ecological extent for thesis is framed within the analysis of pest pressure in maize fields. When 

assessing locations of invasive species, mapping habitat fragmentation can be an important part of 

the research (MacLean & Congalton 2015). Quite frankly the occurrences of pest insects are 

determined by the existence of maize crops. The size, shape and configuration of fields is important 

in determining the habitat size of the pest and the probability of natural predator occurrence. 

Fragmentation programs describe the state of landscape based upon LULC maps, which show 

landscapes of current and past state. Therefore land cover classes should be created to benefit a 

landscape analysis. Since the emergence of landscape ecology in the 1980s, many metrics to 

describe landscape were developed (Gustafson 1998). The qualification of spatial heterogeneity 

should aim to give insights on relationships between ecological processes and spatial patterns. 

Hence, Turner (2005) explicitly demands that spatial analysis should be used as a tool and not as a 

goal of its own. However, determining which types of metrics should be used to describe landscape 

diversity and fragmentation can be difficult (MacLean & Congalton 2015). A landscape cannot be 

adequately captured by using a single metric only. To avoid misclassifications multiple and each 

other complementing metrics should be used (Eiden et al. 2000, Turner 2005). 

 

Landscape composition is quantified by the number of classes in a scene and the proportion of each 

class. Both aspects, also known as richness and evenness, are incorporated in diversity metrics such 

as Shannon or Simpson diversity. Configuration is assessed with patch-based metrics such as patch 

size, density or edge size; or with neighbourhood-based metrics describing relations between 

patches like the interspersion or juxtaposition index (Gustafson 1998). 

O’Neill et al. (1988) presented a set of three metrics that were able to describe the most important 

dimensions of landscape. Those are contagion, which measures whether the landscape is clumped 

or aggregated; fractal dimension, which measures shape complexity of a patch and dominance, a 

measure to assess if a certain land cover type dominates the landscape. It is the complement of 

evenness. These metrics have thereafter been further developed and diversified (e.g. Baskent & 

Jordan 1995, Gustafson & Parker 1992, LaGro 1991, McGarigal & Marks 1995). 

 

Various fragmentation programs for landscape assessment exist. The most commonly used 

software is Fragstats which was introduced by McGarigal and Marks in 1995 (MacLean & 

Congalton 2015, Turner 2005). It is providing capabilities to assess the landscape at patch, field 

and landscape level with numerous sets of metrics to choose from. In a comparison of five 

fragmentation softwares for identifying possible invasive plant species locations by MacLean and 

Congalton (2015) Fragstats created prediction maps with the highest accuracies.  
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Given the common use of Fragstats in the field of landscape ecology (e.g. Cushman et al. 2008, 

Tischendorf 2001, Terzioğlu 2010, Weng 2007) this program is a suitable choice for assessing 

landscape changes based on land cover maps created within our own research. 

2.2 Change detection and object-based image classification 

The quantification of LULC changes is one of today’s major challenges. LULC change is known to 

affect a wide range of processes and cycles such as the global carbon cycle, local 

evapotranspiration, ecosystem goods and services, biodiversity and soil functionality (Haines-

Young 2009, Lambin et al. 2013). Sala et al. (2000) argue that by 2100 the impact of LULC change 

on biodiversity is likely to be more significant than that of climate change, nitrogen deposition, 

species introductions and changing atmospheric concentrations of carbon dioxide. Hence, land 

cover change can have far reaching social, political and economic consequences (Meshesha et al. 

2014). The topic of land change has been receiving so much attention from various research 

communities during the past years, that Turner et al. (2007) refer to ‘land change science’ as a 

“fundamental component of global environmental change and sustainability research”. They 

proclaim an urgent need for an interdisciplinary effort to observe and monitor land changes and 

understand them in a coupled human-environment system. 

 

Remote Sensing is able to monitor the earth over a long period of time and thus able to capture 

long term change because it holds the advantage of continuous and repetitive data acquisition. 

Various applications exist, such as monitoring of LULC change, forest and vegetation change, 

deforestation, wetland change or urbanization (Lu et al. 2004). There are multiple change detection 

techniques, many were summarized and reviewed (e.g. Jensen et al. 1997, Lu et al. 2004, Singh 

1989, Tewkesbury et al. 2015). The choice of the optimal change detection technique depends on 

the purpose of research, but also on the unit of analysis, which can be pixel, kernel, image object or 

vector polygon for example (Tewkesbury et al. 2015). Change detection methods can be grouped 

into approaches using: algebra, transformation, classification, advanced models, GIS approaches, 

or visual analysis. Output of these analyses is in most cases a change map indicating magnitude 

and/or type of change. Within each group there are again multiple options for classification 

techniques of which only a few shall be named. An example for an algebra technique is image 

differencing, a subtraction of two subsequent images based on their pixel values. Transformation 

techniques are e.g. principal component analysis or tasselled cap. Classification based techniques 

use the thematic information of two classified images, e.g. in post-classification change, an overlay 

of two classification maps (Lu et al. 2004, Tewkesbury et al. 2015). 

To quantify change in an adequate way Lu et al. (2014) recommend to take into account four 

things: area change and change rate, spatial distribution of change types, the change trajectory of 

land cover types and an accuracy assessment of the change detection results. 

 

Because this report is dedicated not only to the department of Geo-Information and Remote 

Sensing, but also to the Farming System Ecology group, we will shortly summarize basic principles 

of Remote Sensing and introduce common terms, which will be used again later in this report.  

There are various sensing and classification techniques. Optical Remote Sensing commonly 

measures reflected sunlight in wavelengths between 0.4 to 12 µm. Objects can be identified in the 

image due to the fact that every object has its very own characteristic of reflecting and absorbing 

light, it’s fingerprint so to say. Radar Remote Sensing on the other hand uses a different approach 

of actively sending out energy of a known wavelength and measuring its return. In this thesis we 

will use optical Remote Sensing data. 
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Most classification approaches are pixel based (PBC), which means that the class membership is 

solely determined per pixel by means of spectral characteristics. For lower spatial resolution this 

holds the risk of misclassification because of ‘mixed pixels’. Those are pixels containing more than 

one object and therefore a mix of spectral information. In addition, some object classes have very 

similar fingerprints which can result in confusion between classes (Meshesha et al. 2012). 

Confusion is measured in accuracy assessments where the number of correctly classified pixels is 

counted and contrasted by the number of false positives (commission error) and false negatives 

(omission error) per class. Again, there are different techniques to perform pixel-based 

classifications. However, those shall not be further explained within this context. There are many 

studies on LULC change conducted in Ethiopia, especially in the Ethiopian highlands, utilizing 

PBC. Most of them stated the loss of natural vegetation like grassland and forests on advantage of 

cropland and residential areas (Bewket 2002, Dwivedi et al. 2005, Meshesha et al. 2012, Meshesha 

2014, Rembold et al. 2000, Shiferaw 2011). The resulting accuracies of those classifications have 

been ranging between 67 to 87 %. These results are within a satisfying range, but they also show 

room for improvement. 

 

Better results could be achieved by using a relatively new classification approach: object-based 

image analysis (OBIA). Other than PBC, OBIA performs first a clustering method to determine 

groups of pixels that belong together. After this segmentation step, the resulting objects are 

classified (Aplin 2011, Frohn et al. 2007, Baatz et al. 2008). The strength of this technique as 

compared to pixel based techniques is that it is able to combine spectral with spatial information of 

target features (Hay & Castilla 2006). This helps to determine object classes more accurately than 

when relying on spectral characteristics only. Frohn et al. (2007), for example, applied an object-

oriented classification on Landsat 7 ETM+ data of wetlands in Florida. The produced overall 

accuracy was with 90.2 % more than 10 % higher than those of traditional PBC (78.4 %). In 

addition, OBIA has the advantage of providing image objects that are more likely to resemble 

landscape patches than pixels (Aplin 2011, Laliberte et al. 2004). Additionally object-based 

software packages use similar metrics to describe objects as landscape ecologists, e.g. size, border 

length, shape index or border index, which indicates fractal dimension. Also number of classes 

within a super-object or texture can be assessed, metrics similar to as those for landscape richness 

and configuration. This is why OBIA seems to be a good technique to represent ecological 

landscape components such as patch, matrix and corridors. Consequently, we hypothesise that it is 

also better suitable to identify patterns in landscape structure than PBC. 

 

OBIA is mostly carried out for high or very high resolution (VHR) data, which provide spatial 

resolutions of few meters. It becomes difficult to classify VHR images with traditional pixel-based 

approaches, because the spectral variety between pixels is high which often results in an 

oversampling of the scene (Chen et al. 2011, Malinverni et al. 2011). Clustering pixels to objects as 

initial step provides a better basis for classification. 

This technique is especially profitable in urban environments, where the level of geometry is high 

(e.g. O’Neil-Dunne et al. 2013, Owojori & Xie 2005, Potuckova et al. 2010). Shape parameters of 

objects like houses, streets or trees can be used for more accurate classification results that better 

resemble real world objects (Aplin 2011). 

 

Little research has been carried out using OBIA in Ethiopia or comparable landscapes so far, but 

the results were promising. Kindu et al. (2013) performed OBIA to determine land cover change in 

the Ethiopian highlands based on Landsat and RapidEye data. Again, their results showed higher 

accuracies (85.7 – 93.2 %) than comparable studies using PBC. Wondrade et al. (2014) used a 
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hybrid approach to map land cover changes in the Lake Hawassa Watershed, which comprises 

parts of the study area of this thesis. They partitioned the image based on visually homogeneous 

land cover types in a GIS environment and then classified the segments in Erdas Imagine by an 

unsupervised algorithm first, followed by a supervised classification to reduce spectral confusion. 

The overall accuracies of the produced LULC maps ranged from 82 to 85 %. OBIA can be 

performed with eCognition, a software environment enabling the user to perform the above 

mentioned steps in one process. However, the segmentation process is a black box, as the outcome 

cannot be perceived beforehand, which might be why the authors have chosen to use their own 

algorithm. But eCognition also holds the advantage of determining classes more accurately due to 

the use of other, non-spectral, features. Therefore, it is expected that an analysis of the study area 

using OBIA can be more effective than using PBC. 
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3 Methodology 

3.1 Study Area 

Figure 1 shows the study area, which is located in the region of Hawassa at the border of the 

provinces ‘Southern Nations, Nationalities and Peoples’(SNNPR) and ‘Oromia’, Ethiopia. The city 

is situated at the eponymous lake, which is part of the African eastern rift valley. Next to urban area 

and water, the area is mainly characterized by agricultural land use (Wondrade et al. 2014). The 

quality of soils is mostly poor, with arid and acid soil types such as xerosols, eutric nitosols and 

ferric acrisols dominant (FAO/UN). The area can further be distinguished by different levels of 

diversity (Kebede 2013). The spatial quantification of landscape diversity will be one of the 

objectives of this study. 

 

The city of Hawassa was founded in 1959 and is the capital of SNNPR since 1995. Ever since its 

foundation a continuous population growth is seen. In 1978 the population size was estimated at 

10.740, in 2006 it was 130.028 (Wolde et al. 2013). 

 

The agricultural landscape in the region is a mosaic of annual crops, mainly maize, and perennial 

crops, mainly enset (false banana), coffee, khat and sugar cane (DeValenca 2014). Prior to 1991 

especially maize, coffee and enset crops have been of importance (Woyessa 2014). 

 
Figure 1 Geographic location of the study area: Hawassa, Ethiopia. 

 

Source: left ESRI Basemap 

National Geographic World Map 
top: Landsat 5 TM 2011 (RGB 3-2-1) 

Projection: GCS WGS 1984 
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3.2 Data 

The classification is based on Landsat 8 OLI/TIRS, data for the year 2014 and Landsat 5 TM data 

for the years 1984 and 1998. All images are required by the USGS in L1T level, implying 

geometric correction. The Landsat series provides one of the longest continuous records of 

satellite-based observations, since the first satellite of this series was launched in 1972 (Chander et 

al. 2009). It is one of the most valuable data-sets for studying land cover change (Zhu & Woodcock 

2012). Landsat TM and OLI sensors allow comparison of their imagery as the sensors have similar 

temporal, spectral and geometric resolutions (30 x 30 m). Only the radiometric resolution differs, 

as Landsat 5 has a radiometric resolution of 8 bit, Landsat 8 provides a 16 bit resolution. 

The USGS also allows free download of processed Landsat data. As such, NDMI images of wet 

season and dry season state were acquired for each year of interest. Additionally cloud masks were 

downloaded to facilitate cloud masking of wet season imagery. Dry season images on the other 

hand were acquired in cloud-free condition. 

  

For the purpose of scrub classification and for the exclusion of runoff in the classification process a 

SRTM elevation model was acquired, which offers a spatial resolution of 90 x 90 m. 

 

Validation of classification map of 1984 is achieved by using topographic maps of 1979 and 1988 

and aerial images of 1972. Aerial images have been geo-referenced with a basemap in ArcMap.  

For the map of 2014 GPS ground truthing data was acquired in December 2014 and March 2015. 

 

Table 1 Data characteristics 

 

  

Purpose Data Acquisition Date/ Source Resolution/ 

scale 

Used in 

step 

 

Classification 

Landsat 8 OLI/TIRS 

Path/raw  

2014 

USGS 

30 m pixel, 

15 m PAN 
A2 

Landsat 5 TM 

Path/raw 

1984, 1998 

USGS 
30 m pixel A2 

NDMI 
1984, 1998, 2014 

USGS 
30 m pixel A3 

Cloud/Shadow Mask 
1984, 1998 

USGS 
30 m pixel A2 

SRTM Elevation 
2000 

USGS 
90 m pixel A2, A3 

 

Validation 

Aerial photo 

133ET1 (51-54), 133 ET3 

(8-10, 82-86), 133 ET4 

(104-106) 

Nov-Dec 1972 

Ethiopian Mapping Agency 
1:50000 A5.2 

Topographic maps 

ETH4 0638 A2  

(Ed. 1 EMA/DOS 1979), 

ETH4 0638 B1  

(Ed. 1 EMA 1988) 

1979, 1988 

Ethiopian Mapping Agency 
1:50000 A5.2 

GPS Garmin eTrex 
Nov 2014, March 2015 

Manual acquisition Y. Kebede 

Std. accuracy 

± 3m 
A5.1 
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3.3 Landscape Assessment 

3.3.1 Methodological Overview 

The study area is analysed on three moments in time: 1984, 1998 and 2014. The time span was 

chosen to represent the landscape before and after the political change in Ethiopia in 1991 by 

assessing three images of comparable time steps. The political break from a communist to 

democratic system is known to have had large effects on land distribution regulations and the 

economic situation (Holden &Yohannes 2002). Goal of this study is to assess both, land cover and 

landscape structure in order to understand change dynamics of the landscape. Therefore the 

methodology consists of three parts, which are visualized in Figure 2. The symbols at the bottom of 

the boxes indicate the software package that has been used for each step. Every box represents one 

processing step to which more detail will be given in the following sub-chapters. Rulesets and 

models mentioned in this chapter are fully presented in the Appendix and on the data DVD that is 

handed in with this thesis report. 

 

Part A serves to assess the imagery of each time step by producing classified images. This part is 

the most extensive as it prepares the data for further re-use. However, the output of the 

classification itself is not yet meaningful. It will gain value as an input for change analysis in part B 

and C, which serve to analyse the change within the landscape regarding its cover and structure. 

Therefore, part B aims to answer research question i and ii, quantifying land cover and cropland 

changes, part C answers research question iii, assessing changes in landscape configuration. 

Research question iv, estimating the map reliability, will be answered in regard to the obtained 

classification accuracies of part A. 

 

Research question v, the effectiveness of OBIA as a method, will be assessed after the landscape 

change analysis in the discussion chapter, by comparing the results to similar pixel-based studies 

and discussing part of the outcome of part B, as further described in section 3.3.9. 

 
Envi Erdas Imagine E-cognition ArcMap Fragstats

 Part A Land Cover Classification

Part B
Land Cover Change Analysis

Step A1
Pre-processing

Step A2
Land Cover 

Classification

Step A4
Post-

Processing

Step A5
Accuracy 

Assessment

LS 5 TM 
1984

Part C
Land Structure Change Analysis

Step A3
Vegetation 

Classification

LS 5 TM 
1998

LS 8 OLI 
2014

Figure 2 Landscape assessment in three main parts 
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3.3.2 Pre-processing (A1) 

 

 
Figure 3 Pre-processing steps for Landsat 5 and 8 data 

As described in chapter 3.2 Landsat data was acquired as a L1T product. The imagery has been 

terrain corrected by the USGS, providing a systematic radiometric accuracy and geometric 

accuracy by incorporating ground control points and a DEM (USGS 2013a).  

To achieve a state of imagery that enables accurate classification and allows comparison between 

the results, a series of pre-processing steps is carried out, as presented in Figure 3.  

 

As stated by USGS (2013d) Landsat data is not yet rescaled to Top of Atmosphere (TOA) radiance 

or reflectance. A rescaling removes variation between images due to sensor differences, different 

Earth-sun distances and solar zenith angles (Bruce & Hilbert 2006). Therefore, a recalculation to 

TOA radiance is carried out in step A1.1 utilizing the radiometric correction function of envi. This 

step has been missed out on with Landsat 8 data for a lack of knowledge. Only at a later stage of 

this research we realized that the data have not been radiometrically corrected yet. A later change 

of DN values to corrected DN values would have resulted in a change of all thresholds applied in 

step A2, which is why a calibration on Landsat 8 data has not been carried out subsequently. 

However, it has been done consistently for Landsat 5 TM data. Therefore, comparability of the 

results of 1984 and 1998, which both are based on Landsat 5 TM data, is guaranteed. Landsat 8 

OLI provides a radiometric resolution of 16 bit. Thus, the radiometric comparability between the 

two sensors is limited and does not depend on rescaling to TOA. To keep the advantage of using 

the higher DN range of Landsat 8 data with 16 bit resolution, we decided to not rescale the data to 

reflectance but to radiance. This increases the contrast and allows better class separation for the 

year of 2014. 

 

Following the radiometric correction the data is prepared by stacking all bands into one file (A1.2) 

and subsetting the acquired tile to the size of the research area (A1.3). Additionally, the scene is 

atmospherically corrected by using a dark object subtraction method (A1.4). As reference for a 

‘dark’ area an area of interest (AOI) situated in the middle of Lake Awassa was chosen. This 

method is recommended by many researchers (e.g. Schroeder et al. 2006, Song et al. 2001) as well 

as by the USGS itself (USGS 2013b).  It is an image-based technique that corrects for the additive 

scattering effect of the atmosphere (Chavez et al. 1996). Schroeder et al. (2006) recommend it for 

its simplicity and ability to produce a consistent common scale for image time series. 

 

Landsat TM 5 data of both years, 1984 and 1998, was affected by impulse noise (IN). The term 

describes artefacts in the imagery which are generally seen as isolated coloured pixels that occur in 

random patterns. It is usually caused by digitizing the data from an earlier format (USGS 2013c). 

This corruption is consistent and incorrectable. The most prominent method to decrease the effect 

of IN is the application of a Median Filter (Geoffrine & Kumarasabapathy 2011). It is able to 

remove local peaks and brightness drops by replacing the value with the median value of its 

Step A1

A1.2
Stacking

A1.1
Radiometric 
Calibration 
(only LS 5)

A1.3
Subsetting

A1.4
Dark Pixel 

Subtraction

A1.5
Median 

Filtering (only 
LS 5)

Pre-
process

ed 
Image

Raw 
Image
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neighbourhood without changing the overall appear of the image. Consequently, in step A1.5 a 

Median Filter was applied to all Landsat TM 5 data with a window size of 3x3 pixels. 

On the downside the filter is applied to all pixels, also those that are uncorrupted. Therefore, it 

should not be applied if discrete pixel values are of higher importance. This is stated because the 

effect of Impulse Noise is not only visible in the acquired raw data but also in NDMI images, 

which were also acquired directly from USGS and not calculated based on the filtered image. 

Because the filtering process affects all pixel values those images have not been filtered since 

discrete NDMI values will become relevant in step A3. 

 

3.3.3 Object-based Land Cover Classification (A2) 

The identification of land cover types is carried out in two steps (A2 and A3). Step A2 serves to 

create subsets of the landscape, create objects and carry out a classification of water, built up areas 

and vegetation. Step A3 serves to identify specific types of vegetation and will be explained in 

more detail in the next sub-chapter. Figure 5 gives an overview of all classes that are created within 

the process. The class symbols have also been incorporated into the following methodological 

graphs to show when a class is created and further used. 

 

The object-based classification is carried out using eCognition. It is an object-based software 

package that performs a clustering method first to determine groups of pixels that belong together 

(objects). After a segmentation step, the resulting objects are classified (Blaschke 2010). As 

described in chapter 2 the strength of this technique as compared to pixel based techniques is that it 

is able to combine spectral and spatial information of target features.  

For step A2 an image representing the dry season state or an in-between state is used as input. The 

reasoning for using a dry season image instead of a wet season image lies in the observation that in 

wet season the state of greenness is too high. As a result, a separation of sparsely vegetated and 

intensely vegetated areas which will become relevant in step A2.1 is not feasible. Also it can be the 

case that smaller roads are less visible because they are partly covered by tree canopy. 

The classification is carried out for each year of interest, starting with the most recent one going 

back in time. The year 2014 has been chosen as the starting point of analysis, because our 

knowledge about land cover is most accurate for this year. Additionally Landsat 8 provides higher 

contrast with a 16 bit resolution and a higher spatial resolution of 15 m for the panchromatic 

channel. This channel has been used for road classification in step A2.3.  

Figure 4 Effect of Impulse Noise on Landsat Scene before (left) and after median filtering (right) 
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Figure 5 Typology for classes that are created within landscape assessment. 

Class 15 is comparable to class 14, but based on different classification criteria. 

 
Figure 6 Object-based land cover classification 

Step A2
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Figure 6 displays the sub-steps of the land cover classification. The colour of the input/output 

parallelograms refers to the data format. Blue indicates raster format, green indicates vector format, 

which is typically an output format of eCognition. 

 

Pre-processed images of step A1 serve as input for the land cover classification of A2 and A3. The 

only difference is that as stated before, step A2 uses one image of a dry season state only, whereas 

step A3 uses multiple images of one year representing dry season and wet season state. Further 

explanation will be given within the description of step A3. A description on images used within 

both steps is presented in Table 2. 

 

Before the actual classification is performed, two other projects have to be applied first, which 

deliver input datasets for the classification process. These are cloud and shadow masking (A2.2) 

and road classification (A2.3). 

For step A2.2 a cloud and shadow mask is produced which can be used to identify those during the 

classification process. For Landsat 5 TM data a cloud and shadow mask from the automatic cloud 

cover assessment (ACCA) by USGS is used as a thematic layer that is direct input for step A2.4. 

For Landsat 8 OLI the mask was produced by ourselves to increase the accuracy. The reason hereof 

is that the automatically derived cloud masks do not detect all, in particular small, clouds. A 

problem also observed by Zhu and Woodcock (2012), who significantly increased the accuracy of 

the ACCA by using brightness temperature and an object-based detection of cloud shadow. 

eCognition makes it especially easy to identify cloud shadows in approximation to their distance 

from clouds and relative darkness. In step A2.2 a cloud mask is created using a threshold of  DN 

below 23000 in thermal band 1 (LS 8 TIRS), which was enhanced in eCognition searching for high 

brightness values, and classifying large dark objects close to classified cloud objects as shadow. 

The produced classes are exported as vector dataset and inserted to the project of A2.4 as described 

for Landsat 5 TM data before. The ruleset is available in Appendix C. 

 

The identification of roads requires a different set of segmentation parameters than the creation of 

landscape objects, which are created in step A2.1. ECognition has strong restrictions on how to 

create levels of different sized objects that make it hard to apply more than one segmentation 

ruleset on one image without changing previously created objects. Therefore, step A2.3 was 

performed in a separate project. It serves to identify roads which are usually long, but narrow 

objects.  

The input for the road classification stays the same, with the difference that only one channel is 

used. For Landsat 8 this is the panchromatic channel, which provides the advantage of a higher 

spatial resolution of 15 m. For Landsat 5 a panchromatic channel is not available, instead the green 

channel was chosen because it provided more contrast between vegetation and non-vegetation than 

the red channel. Since many roads are gravel roads, they show high confusion with the bare soil 

class. That’s why spectral information is not considered to give more knowledge on the road class, 

which is why one channel is enough as an input. In the first step of A2.3 this channel is edge 

filtered by applying a Lee Sigma Filter of Sigma 30. This increases the contrast of roads to their 

environment, but also shows positive effects at the lake shore and the edges of the image itself. The 

Sigma filter smoothens image noise by averaging neighbourhood pixels, only preserving intensities 

within a fixed sigma probability of the Gaussian distribution. “Consequently, image edges are 

preserved, and subtle details and thin lines such as roads are retained” (Lee 1983). 

Afterwards, objects are formed using a segmentation algorithm. The two different sensors showed 

different contrast in filtered images, which is why different segmentation algorithms were applied. 

The filtered channel based on Landsat 8 data showed more contrast and was segmented using a 



17 

multiresolution segmentation with a scale of 50 and shape and compactness values of 0.1 each. A 

multiresolution segmentation of filtered Landsat 5 data did not give the same result. Therefore, it 

was segmented using a contrast split algorithm with a tile size of 10. Roads are then identified as 

bright, long and narrow objects in the filtered image. Large and wide areas can instantly be 

excluded. Furthermore, the results are refined by connecting neighbouring road objects at their 

corners; searching for less bright, but long and narrow objects within close distance; and excluding 

lake shores, image edges and runoff using slope as an indicator. The referring ruleset is shown in 

Appendix C. The created road dataset is exported as vector layer and inserted as thematic layer into 

the project of step A2.4. 

 

The segmentation of the image is the first and most crucial step of object-based image analysis as it 

will determine the following classification (Neubert & Herold 2008, Kavzoglu & Yildiz 2004, 

Wang et al. 2004). In step A2.1 a multiresolution segmentation was applied. A problem within this 

step is that parameters determining object size are subjectively chosen, often with a trial-and-error 

method (Drăguţ et al. 2010, Kim et al. 2008). To facilitate a more objective decision on an 

appropriate segmentation scale the Estimation of Scale Parameter (ESP2) method developed by 

Drăguţ et al. (2014) was used. It is a new automated approach to test different scale parameters 

with fixed shape and compactness values on an image, producing graphs of local variance plotted 

against the rate of change. These can help to indicate appropriate scale. The programme also 

automatically recommends three scale levels to the user at the end of the procedure. 

 

However, the outcome of the initial segmentation was not satisfying despite the use of ESP as it did 

not represent real world objects very well. This was caused by the fact that a segmentation of the 

whole image results in a compromise between all elements present in the scene. Therefore, objects 

are partly over-segmented whereas others are under-segmented. To avoid this undesirable effect the 

study area is further divided into subsets. We decided to create subsets internally, based on the 

image itself, instead of using secondary data such as Globcover, which was created in a different 

year and with a different spatial resolution. Internally created subsets showed a better resemblance 

of scene characteristics. Subsets shall indicate different landscape types containing objects of 

similar characteristics.  Thus, subsets provide the advantage that objects can be formed within a 

smaller context. Therefore, segmentation parameters can differ per subset, allowing objects of 

different sizes and shapes to be present within the whole image. 

The described procedure is visualised in step A2.1. An initial segmentation results in relatively 

large and fuzzy objects. These objects are classified and summarized to landscape classes by using 

area, texture, brightness and greenness thresholds. The output of this step is a dataset containing six 

subsets that represent water, homogenous green areas, sparsely vegetated areas, areas of intense 

agriculture, urban and marshland areas. Many studies recommend the use of a hierarchical 

classification, where multiple levels are used to reproduce differently sized objects such as forests 

and trees (Kavzoglu & Yildiz 2013, Kindu et al. 2013, Moskal & Jakubauskas 2013, Drăguţ et al. 

2010). Yet, the approach of assembling multiple object sizes and shapes in one level is new.  

Step A2.1 was carried out only for the first classification, which was the classification of the year 

2014. Afterwards the subsets created for 2014 have been used as an input for all years to a second 

ESP analysis and segmentation. Consequently, segmentation parameters differ per year, but are 

applied in the same spatial context. 

 

The actual classification is then performed in step A2.4 where cloud objects and road objects are 

incorporated and classified. Water is classified as an area of negative NDVI. Additionally, objects 

of low NDVI with a relative border to water higher than 50 % and shallow water bodies are 
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classified. Shallow waters are difficult to identify 

because they look very similar to soil in real-

colour combination. To classify those we used a 

HUE parameter in SWIR-NIR-Red combination. 

In this combination shallow lakes appear as being 

azure blue. This is caused by a high amount of 

suspended sediment, which results in remotely 

sensed data peaks in green/red wavelengths of 

approx. 550-650 nm (Novo et al. 1991 and 1989 

in: Liu et al. 2003). In contrast to soil, the amount 

of reflection in NIR and SWIR bands is low in 

shallow waters, which is why the layer 

combination is suitable to separate the two classes, 

as visualized in Figure 7.  

 

Urban areas are classified using inserted road objects. Objects fully enclosed by roads or with more 

than 5 neighbouring road objects have been classified as built up. This way highly agglomerated 

areas have been taken into account as ‘cities’. Vegetation is classified based on its greenness with a 

NDVI value above 0.35 (range -1 to 1). Other areas that do not fall under the criteria of the named 

classes were classified as sparsely vegetated objects that contribute to the vegetation mask as well. 

These objects hold higher potential of containing bare soil and annual cropland classes. The 

classification of 2014, which was carried out first, was more extensive than the following. It 

involved a creation of more object classes and usage of more object characteristics than described 

in the text. A diagram of the original classification is presented in Appendix C. A larger ruleset was 

motivated by the idea of classifying object change. However, during the process it became clear 

that objects were too big for cropland classification, which is why the methodology had to be 

changed. Step A3 classifies at pixel level. Consequently, a larger ruleset was not needed any longer 

for the classification of the other images. Therefore, the rulesets for Landsat 5 TM classification 

were shortened to only classify water, built up, green vegetation and sparse vegetation as described. 

All classes have been created with a threshold-driven approach. This means that instead of creating 

samples and training a classification algorithm on selected sample objects, the objects are strictly 

classified by parameter descriptions. The reasoning for this decision is that ground truthing data are 

only available for the 2014 image not for previous years. Therefore, a sample-based approach 

would have resulted in a subjective selection of sample objects, strongly influenced by our own 

interpretation of the image. Samples for the previous years would have therefore solely been 

selected based on our own interpretation. Using a threshold-driven approach on the other hand 

holds the advantage that the same ruleset can be used with only minor changes for each year. 

Thresholds had to be changed for example, when applying the ruleset that was developed for 

Landsat 8 on Landsat 5 data, caused by the different radiometric resolution.  

Outputs of this step are the land cover classes water, built up and a vegetation mask, which will be 

further used in the next step (A3). 

3.3.4 Separate Vegetation Analysis (A3) 

The vegetation mask from the previous step is further classified into vegetation types such as 

perennial and annual crop, grassland, scrub and non-vegetated areas of bare soil. An application of 

the vegetation mask excludes water and built up classes from the analysis of this step because they 

do not need to be further assessed. 

Figure 7 Identification of shallow waters using 

SWIR-NIR-Red Combination (bottom) compared 

to a real colour composite (above)  
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A problem occurring with Landsat data in this 

research area is that the provided spatial 

resolution of 30 x 30 m is often slightly larger or 

just as large as local field sizes. This is especially 

the case in agricultural areas in the south and east 

of the study area where fields typically range 

between 20 to 30 m. Figure 8 shows field sizes in 

relation to the pixel size of Landsat data. It can 

be seen that fields in the west of the study area 

are usually longer, typically in ranges of 100 to 

200 m length, but still narrow, with widths of 

approx. 30 to 40 m.  In conclusion, fields can 

only be classified at sub-pixel level. For this 

reason objects previously created cannot be used 

during this step, as they are simply too large to 

represent fields. However, the assessment of 

cropland types is of high importance to give 

insights in landscape development. The presence 

or absence of crop types such as maize might give 

valuable knowledge on the presence and possible 

movements of pests, e.g. stem borers. The spectral and spatial resolution of Landsat data is not 

suitable to detect specific crop types. By using a time series, however, we are able to distinguish 

annual and perennial crop types. Annual crops in the study area are mainly maize. Earlier also 

grains such as barley and wheat have been cultivated. Perennial crops on the other hand are often 

enset, khat and sugar cane (De Valenca 2014, Woyessa 2014).  

 

The idea of the cropland classification is to assess the change in greenness of each pixel within a 

year. Annual cropland classes are vegetated during wet season but bare after harvest. Therefore, a 

change in greenness will be visible when comparing wet season to dry season state. 

Perennial crops on the other hand are green throughout the whole year and thus show hardly any 

change in greenness. Phenology based classification of vegetation is widely used to separate 

different vegetation types based on their temporal growing characteristics (Wang et al. 2011). A 

suitable measure for greenness is a vegetation index. Multiple indexes have been assessed, 

including NDVI, NDMI, NBR and tasselled cap.  We found the NDMI most useful because it does 

not saturate as easily as NDVI (Wilson & Sader 2002). Therefore, especially in wet season it 

distinguishes better between vegetation types. In contrast to NDVI NDMI does not only use the 

NIR dimension of the electromagnetic spectrum to distinguish vegetation from non-vegetation but 

also information of SWIR, as seen in the formula below: 

 

𝑁𝐷𝑀𝐼 =
NIR (760−900 nm)−SWIR(1550−1750 nm)

NIR+SWIR
  

 

This gives an indication on plant structure, leaf moisture and crop canopy physiological status (Ji et 

al., 2011). Hais et al. (2009) state that spectral indices based on NIR and SWIR are commonly used 

to assess forest disturbance caused by harvesting. Thus, NDMI seems to be a good solution to 

separate harvested from non-harvested fields. Tasseled Cap Wetness (TCW) also seemed to be a 

suitable indicator, as it uses almost the same band combination as NDMI, but based on a 

transformation of data to three dimensions (including wetness) (Wilson & Sader 2002, Crist et al. 

Figure 8 Pixel Size compared to field sizes in west of 

study area (above) and east of study area (bottom). 

Image Coverage of Google Earth 19.12.2014 and 

17.01.2014, respectively. 
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1986). A paper by Jin and Sader (2005) showed that NDMI and TCW are highly correlated and 

detect forest disturbance with nearly equal accuracy. An additional advantage of NDMI is that 

processed images can be downloaded from USGS directly, whereas tasseled cap has to be 

calculated separately. Therefore, NDMI images have been acquired through USGS directly to 

avoid influences of our own pre-processing. Those images are based on a calibration to surface 

reflectance, so that they are assumed to be suitable for comparison between multiple years. 

 

For cropland classification one NDMI image of dry season state and one of wet season state is 

required. However, if we want to apply the vegetation mask of step A2 one pre-processed Landsat 

image should be included in the project as well. This does not need to be used during classification, 

 

 
Figure 9 Identification of vegetation types 

Table 2 Applied Image Datasets for Land Cover Classification 

Classified year Sensor Acquisition Date Layer used for 

road classification 

Used in step 

2014 LS 8 OLI/TIRS 17.10.2014 Layer 8 (Pan) A2 

 LS 8 OLI/TIRS 27.06.2014  A3-wet season 

 LS 8 OLI/TIRS 30.08.2014  A3-additional 

 LS 8 OLI/TIRS 04.12.2014  A3-dry season 

1998 LS 5 TM 25.01.1999 Layer 2 (Green) A2, A3-dry season 

 LS 5 TM 15.06.1998  A3-wet season 

 LS 5 TM 27.03.1998  A3-additional 

1984 LS 5 TM 17.12.1984 Layer 2 (Green) A2, A3-dry season 

 LS 5 TM 27.08.1984  A3-wet season 

 LS 5 TM 21.04.1984  A3-additional 
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(Appendix C)
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but it is necessary to provide overlap with vegetation objects. The reason hereof is that the cell 

centre slightly shifts during the calculation of surface reflectance by the USGS. Thus, objects do 

not overlap 100 % with pixels of NDMI images, which makes a classification of objects harder. 

 

Figure 9 presents the overall procedure of the vegetation analysis. In the first step (A3.1) a 

difference image is produced as the absolute of the subtraction of NDMI values of wet and dry 

season state. Small changes in greenness shall later be classified as perennial crop, large changes as 

annual crop. One limitation of this method is that areas of bare soil that are never vegetated 

throughout the whole year are also showing small change. Consequently, those areas would be 

misclassified as perennial crops. However, as these areas show no greenness they can be excluded 

from the subtraction because they do not exceed NDMI values of 0 (range -1 to 1) in both images. 

Regarding pixels are marked as -9999, which will be used as a classification criteria for bare soil in 

step A3.2.The difference image is then inserted to an eCognition project in step A3.2 where pixels 

are classified according to change thresholds. This is achieved with a chessboard segmentation of 

tile size 1. Thus, each pixel gets treated as a separate object. A threshold for perennial classes (low 

change) was chosen according to ground truthing points of 2014. Perennial classes have been seen 

to not exceed a change in NDMI of more than 0.15 (range 0 to 1). Every pixel above this threshold 

is considered as annual crop. Many fields are smaller than the 30 x 30 m pixel size, which is why a 

pixel could potentially contain more than one cropland type. To acknowledge the presence of 

mixed pixels the annual crop class has been further divided. Thresholds for those mixed classes 

have been chosen subjectively and have not been assessed with field data. Therefore, they do not 

represent a certain percentage of crop type present in the pixel, but allow more interpretation on the 

annual cropland class. Pixels with changes larger than 0.5 are considered purely annual. Pixels with 

an intermediate change are represented by mixed classes. Thresholds for cropland classes are 

presented in Table 3. The whole procedure of step A3.1 and A3.2 is carried out again afterwards 

using a different wet season image. A repetition is necessary because no wet season image was 

available that was 100 % cloud free. Therefore, the results of the second difference image will be 

used to replace cloud covered areas of the first. The combination will be carried out during post-

classification in step A4. 

 

In addition the class ‘Annual, S’ has been created within the classification of the years 1984 and 

1998, which is an exceptional class. It shows annual crop, but has a potential of showing confusion 

with bare soil and was therefore kept separate (‘s’). 

The class is created based on a lowered threshold for bare soil, which has originally been a NDMI 

value of less than 0. An exception was created for the wet season image of 1998 and the additional 

wet season image of 1984. 1998 was a very dry year, with 52 mm rain in June being less than half 

compared to other years (111 mm in 1997 and 99 mm  in 1999; National Meteorological Agency, 

2010) causing a crop failure in the region (Quinlan et al. 2014). This results in less green and less 

dense vegetation, represented by lower NDMI values. To take this fact into account the bare soil 

threshold of the dry season image has been lowered to -0.3 to also consider pixels that contain a 

higher proportion of soil than during a usual vegetation period. If these pixels are showing values 

in the range of -0.3 to 0 during wet season and values below 0 during dry season they are marked 

as -1111, which will be classified as annual ‘s’ in step A3.2. Perennial classes would have regained 

greenness again in dry season. Therefore, the potential misclassification of this class is mainly with 

bare soil. 

The additional image of 1984 showed a similar problem because it was acquired at the start of the 

vegetation period. Therefore, greenness was not as strong as during full growing season. The same 

threshold as before was used to create the separate annual class. Additionally, a minimum threshold 
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of NDVI >= 0.2 is taken into account, to decrease the probability of misclassifying bare soil. 

Because NDMI is a measure for plant structure and leaf moisture it is less sensitive to detecting 

young plants. NDVI on the other hand is highly sensitive to any green element. Therefore, it is 

better suitable to detect plants at early growing stages (White et al. 2009). Models created in Erdas 

Image are presented in Appendix D. 

 

The output of step A3.2 are cropland classes of mixed and pure character and bare soil. However, 

the results indicated that other classes were still present in the image biasing the results. Grassland 

shows similar characteristics as annual crops, since they are greenest during wet season, but drying 

out later in the year. Scrub shows similarity with perennial classes because most bushes hold the 

same state of greenness throughout the whole year and thus show low change. 

To avoid a contribution of these classes to the estimated cropland areas, they have been classified 

in additional projects and will be excluded from cropland areas in the following step (A4). 

Grassland is identified in step A3.3 using a combination of SWIR and NDVI thresholds. Grassland 

has a different vegetation structure than other plants because it is dense but short. Therefore, the 

SWIR channel can be used. In combination with NDVI the greenness is taken into account as well, 

that has been seen to show values between 0.45 to 0.6. 

Scrub is identified in step A3.3. This class did not show specific spectral or textual characteristics 

that enabled classification. Yet within the most recent year of 2014 scrub was present in 

uninhabited areas only. These areas on the other hand, due to the high population pressure, only 

occur in regions of high slope. Therefore, we instrumentalized slopes of higher than 20° as an 

indicator for scrub presence. The threshold was visually assessed with Google Earth (Figure 10). 

 

 

 
Figure 10 Scrub class at slopes greater than 20 ° (yellow) shown in Google Earth coverage 

Table 3 Change Thresholds of NDMI between dry and wet season within a year for cropland classification 

Class Change Threshold Other Threshold (Marker) 

Perennial < = 0.15  

Annual, of which: > 0.15  

      Perennial – Annual > 0.15 <= 0.3  

     Annual – Perennial > 0.3 <= 0.5  

     Annual > 0.5  

Annual ‘Separate’ - -1111 

Bare Soil - -9999 
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3.3.5 Post-Classification (A4) 

The output of eCognition is a vector dataset. When exporting an object with class properties the 

class is not inherited in the object itself but its membership to each class is saved with a value of 0 

or 1 for every object. For further re-use with conventional Remote Sensing software a conversion 

to raster format is necessary. This conversion requires each pixel to contain one discrete class value 

only. Therefore, the output of A2 and A3 is post-processed in ArcMap, which is a suitable software 

environment for handling shapefiles. Four ArcMap models were created, which are represented as 

sub-steps in Figure 11 and applicable in Appendix E. 

 

Objects of one class are selected by querying membership values of 1 for each class. Class names 

and numerical codes (see Figure 5) are assigned to objects of the same class. Also the area of a 

class is calculated.  

In step A4.1 this procedure is applied on cropland and bare soil classes of A3. This step is carried 

out twice because as described in the previous sub-chapter the vegetation classification had to be 

applied on two wet season images due to cloud cover. In this step, cloud covered area of the first 

wet season image is identified and replaced by objects of the additionally classified image. Classes 

of both images are merged and dissolved after the selection process. 

 

 
Figure 11 Post-classification 
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There is a possibility that bare soil has been classified in one of the images but not in the other. 

However, if it was vegetated in one of the two images it should be classified as cropland. 

Consequently, bare soil pixels are erased from the class if they overlap with cropland. 

 

In step A2.2 other classes, which were exported as separate classes, are dissolved, assigned class 

names, numerical code and area. Wetland is created as a class by querying a change in water 

coverage from 1984 to 1998 or 2014. Areas that have changed from water to a different class are 

therefore classified as wetland. In addition, cropland objects that overlap with other classes are 

erased from the cropland class. This is applicable for overlap with wetland, grassland and scrub 

because these have been created after cropland classification. 

 

Step A4.3 involves an additional masking process where all objects within the cloud mask of 

persistent cloud cover are erased from their classes. This step is necessary as a result from the 

vegetation analysis (A3) of 2014.  Both wet season images that were used in the process showed 

areas of persistent cloud cover. Therefore, not all covered areas could be filled in the first post-

processing step (A4.1). To enable adequate comparison between the results of all three years 

regarding areas have been masked. 

A different image (e.g. from April 2014) could have been used as additional wet season image, in 

order to avoid persistent cloud cover. However, this would have meant using an image representing 

the start of growing season, whereas now both images are in the peak of growing season (June and 

August). An earlier image of e.g. March or April would have resulted in the creation of a separate 

annual class again. As 2014 is the year where we have most knowledge on, we did not want to add 

the uncertainty associated with the annual ‘s’ class. 

 

Afterwards class areas are updated. As a last step all classes are merged in one dataset in A4.4 and 

transformed to raster format with each cell holding a numerical class code. Additionally a table is 

created that holds information on each class and is easily accessible with Microsoft Excel to read 

out the results. 

3.3.6 Accuracy Assessment (A5) 

The accuracy of the images is checked at the start (1984) and the end (2014) of the time series. 

For the imagery of 1998 no reference dataset was available. Thus, the error of 1998 cannot be 

assessed. 

 

Figure 12 visualises the validation process, which is carried out as a last step in the land cover 

classification of block A.  

 

 
Figure 12 Accuracy Assessment of Land Cover Maps 2014 (left) and 1984 (right) 
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For the most recent classification result of 2014, ground truth was taken via GPS (Garmin eTrex) in 

late November 2014 and March 2015. Because of limited accessibility ground truth for the class 

water was taken via Google Earth. 30 sample points were acquired for each class but mixed 

cropland classes, wetland and scrub, resulting in a total of 180 samples.  

For the image of 1984, aerial images of 1972 and a topographic map of 1988 were used as 

reference. 210 sample points are generated from the classified image, 30 points per class except 

mixed cropland and wetland classes. Those are then manually classified using the reference 

imagery. Additionally 30 points of the Annual ‘s’ class are assessed to check confusion between 

annual cropland and bare soil within the class. Figure 14 shows examples of the visual appearance 

of each class that was used for interpretation during the manual classification. Also it shall be 

noted, that as seen in Figure 13 the reference imagery did not cover the outmost eastern part of the 

study area. Therefore, no sample points were generated in this area. 

Output of the assessment is a confusion matrix stating omission and commission error per class and 

overall accuracy of the classified image. 

 

As stated before, mixed classes of both classified images have not been assessed. Their assessment 

would require a more extensive sampling of 30 x 30 m plots that resemble the position of pixels to 

assess the percentage of cover per cropland type. 

Also the wetland and scrub class are not checked in the 2014 image because those classes are built 

upon an assumption. Areas that have been classified as water in 1984 have been classified as 

wetland in later years subsequently. The decision to classify scrub is based on an observation in 

Google Earth that showed the presence of scrubs at slopes higher than 20°. 

 

 
Figure 13 Spatial coverage of reference data for 1984  

 

Aerial Images 1972 Topographic Map 1979 and 1988Reference Points 1984
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Figure 14 Interpretation criteria of Reference Imagery for the Land Cover Map of 1984 

Left image: aerial image, right image: topographic map, n.a.: not applicable.  
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3.3.7 Land Cover Change Detection (B) 

The land cover change analysis is carried out with Erdas Imagine. It would be possible to create a 

ruleset in eCognition for this part as well, but then a lot of conditional statements would be needed. 

Erdas already provides a function to detect land cover change. Land cover change is assessed in 

two time steps: from 1984 to 1998; and from 1998 to 2014. These years serve as snapshots in time. 

Eventual change that happened in between such as seasonal fluctuations are not assessed and 

therefore do not contribute to associated change.  

 

Land cover change assessed in three spatial contexts:  

 Step B1 assesses class change seen in the total scene. 

 Step B2 assesses class change seen within subsets of A2. 

 Step B3 assesses class change based on segmented objects of A2. 

 

The goal is to identify land cover change by measuring the quantity of change (in ha and percent), 

the quality of change (change classes, e.g. from grassland to cropland) and to give more detail on 

the specific location of change. In conclusion, part B aims to answer research questions i and ii. 

 

The first step (B1) simply identifies areas with no class change and areas in a post-classification 

change assessment. The change between the images is hereby assessed thematically based on a 

pixel-by pixel comparison of two consecutive land cover maps. This gives insight into which 

classes are decreasing or increasing over the years. The technique is one of many change detection 

techniques and was chosen because it minimizes the impact of atmospheric and sensor differences 

between multi-temporal images and provides a complete matrix of change information (Lu et al. 

2004). Results are simple to analyse and to interpret. However, the user should be aware, that the 

change detection result is directly influenced by the accuracy of the classified input image of each 

date. 

 

Spatially more specific insight is given in step B2 where the output of B1 is linked to previously 

created subsets (A2.1). This way it can be observed, whether some classes are more prominent 

within certain areas or whether certain regions are more affected by change than others. 

Additionally class properties are assessed in eCognition. Subset texture is measured on Grey Level 

Co-Occurrence Matrix (GLCM) contrast and orderliness. Classes form objects with specific shape 

properties. Mean length, area, shape index and border index are assessed per subset. These features 

can already indicate a change in landscape structure and shall therefore be linked to the outcome of 

part C to answer research question iii. 

GLCM texture after Haralick et al. (1973) is used to analyse combinations of grey level 

occurrences considering the relationships of 2 neighbouring pixels. The matrix holds information 

on counts of co-occurrence combinations and is normalized by a division through the total number 

of counts in the image. Therefore, texture is comparable between subsets of different sizes. In this 

research we use GLCM contrast to measure diversity and dominance and GLCM Entropy and 

GLCM Angular Moment (ASM) to assess chaos and orderliness, respectively. The produced 

texture variables are based on a calculation in all directions. 

 

While Step B3 is not necessary for the understanding of land cover change, it serves to give insight 

on the usefulness of the method itself. It has been proposed to use an object-based approach for 

analysis. During the process of this thesis we found out that a better way to approach field level is  
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to use pixel classification due to the small field size and relatively large pixel size. Therefore, 

objects have only been used to classify built up and water. 

In spite of this, objects have been created in step A2.1. To evaluate the meaningfulness of these 

objects, pixel-based classification results are aggregated to the size of exported objects of each 

year. These objects are than assessed as in step B2 and their results being compared. Therefore, this 

step will help to answer research question v. 

 

3.3.8 Land Structure Change (C) 

Change in landscape structure shall be assessed in terms of landscape fragmentation and diversity. 

The concept fragmentation originates from Godrons’ and Formans’ (1986) topological landscape 

ecology and is a measure of landscape heterogeneity or ‘patchiness’. The definition of a patch is 

relatively vague as it can refer to structural, functional, resource or habitat patches (Farina 2006). In 

the context of this study we refer to patches as habitat patches. Annual cropland is considered to be 

habitat to pest insects, perennial elements as habitat to natural pest predators (De Valenca 2014). 

Other classified objects such as urban settlements and infrastructure also contribute to landscape 

fragmentation, which is why these elements have been taken into consideration, too. With 

increased fragmentation the following effects in landscape structure should be visible: decrease of 

habitat area, decrease of patch size, increase of distance and isolation and increase of edge effects 

(Forman & Godron 1986). 

Landscape diversity on the other hand describes the relative abundance of land cover classes in a 

landscape. Therefore, a landscape can be highly fragmented without being highly diverse at the 

same time. 
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Figure 16 Land structure change 

 

The analysis of part C follows a straightforward approach where the land cover maps of all years 

are analysed in Fragstats (Figure 16). To acknowledge the presence of differently diverse 

landscapes, the scene is subsetted again. The same subsets as in step B2 are used (output of step 

A2.1). 

Unlike texture measures after Haralick the size of the subset will influence the results of diversity 

and fragmentation because bigger regions have a higher potential for more diversity. Therefore 

subsets are normalized in step C1 to a size of 2500 x 2500 m. Six regions were manually selected 

within all subsets but water. The size is chosen to represent landscape scale, which is a relevant 

scale for the research on pest pressure. Ecologically, scale is highly important because it determines 

observed patterns. What is sensible in one scale might not be observed in another (Turner 2005). 

Landscape scales in ecological studies are typically assessed at scales between 1 x 1 km (Hansen et 

al. 2015), or 5 x 5 km (Bianchi et al. 2015). 

 

After normalization each tile is analysed for each year of interest in Fragstats, the most commonly 

used software for landscape assessment (Farina 2006, Turner 2005). 

Fragstats provides a wide range of landscape metrics. Out of those five measures are chosen and 

assessed with an 8-cell neighbourhood rule and no sampling. Edge depth is not specified (Depth=0) 

due to the large pixel size of 30 x 30 m that is assumed to hold both, edge and core areas. At 

landscape level composition is assessed using Simpson Diversity. Configuration is assessed with 

Contagion and Proximity between annual and perennial cropland classes. At class level edge 

density and patch number is calculated. An overview of used metrics is applicable in Table 4. 

 

An indication of the relevance of each measure to this research is given as followed. 

Simpson Diversity can give insight in the relative abundance of patch types (classes) within a 

landscape. High diversity represents high numbers of different patch types (patch richness) that 

share similar proportions. Low diversity is associated with the dominance of one patch type 

(McGarigal & Marks 1995). In less diverse landscapes insect populations are determined by the 

patch types present in the landscape. If pest habitat is dominant, intrusion of natural pest predators 

is limited due to the absence of their habitat and ecological corridors. 

 

Contagion is a measure for aggregation, showing how clumped patch types are (O’Neill et al. 

1988). The higher contagion (aggregation), the larger is the core habitat. Predators are more likely 

to be present at patch edges than in patch cores (Bianchi et al. 2006). This means that in highly 

clumped pest habitats, natural pest enemies are less probable to interfere because edges are small. 
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Table 4 Landscape metrics of analysis of part C 

Metric Measure for Level Unit Range Relevance 

Simpson Diversity 

Index 

Proportional abundance of each 

patch type in landscape 
Landscape - 0-1 

Composition, 

Dominance 

Contagion 
Aggregation of landscape patches 

within landscape 
Landscape % 0-100 

Configuration, 

Dominance 

Proximity Index 
Neighbouring patches within 

specified distance 
Landscape - ≥0 Configuration 

Edge Density 
Length of patches of one class in 

proportion to area size 
Class m/ha ≥0 Configuration 

Number of patches Count of patches per class Class - ≥0 Configuration 

 

and cores are big.  Contagion is inversely related to Edge Density. 

Proximity measures the closeness of patches by dividing the summed patch area by the nearest 

patch to patch distance. The mean is created for the whole landscape. This measure has been used 

only considering perennial (11) and annual (13,14,15) classes. A close proximity between the two 

class-sets can give insight on increasing potential of natural pest suppression because perennial 

elements are considered pest predator habitat. The closer their distance to annual crop the more 

probable is an exchange between insect populations. 

 

The number of patches estimates the number of all habitats present. This measure is assessed for 

each class (habitat type) present in the landscape. It can give insight on either patch sizes (the 

larger, the less counts) and abundance of patch type (the fewer, the less counts). Diversity and Edge 

measures can facilitate a better interpretation. 

 

Edge density or perimeter/area ratio assesses the relative length of a patch type (class), which is 

measured as total length of class divided by total landscape area. Edges are of high ecological 

importance. They are used as corridors on the one hand, but also facilitate the “Edge Effect” on the 

other hand. It describes the colonization and exchange of species within close distance to the patch 

border (Schellhorn et al. 2014). Therefore, a landscape with many edges holds a higher potential 

for exchange between insect populations.  

3.3.9 Evaluation of Object-based Image Analysis 

It has been hypothesised that object-based classification will produce higher accuracies than pixel-

based classification due to its ability of detecting shape patterns. To evaluate this hypothesis the 

results of this study shall be compared to similar studies that used OBIA in South Ethiopian 

landscapes. The comparison will be literature based.  

As a second part the effectiveness of an object-based classification approach for this research shall 

be evaluated by comparing the output of the analysis to itself. As described in section 3.3.7 

classification results are aggregated to object level and then compared to the ‘original’ 

classification. 
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4 Results 

4.1 Land Cover Classification of 1984, 1998, 2014 

4.1.1 Land Cover 

The following paragraphs give a description of land cover for the years 1984, 1998 and 2014 that 

shall guide the reader by highlighting relevant classes and giving hints on misclassifications or 

underlying landscape processes. The classification map is presented with a list of most prominent 

features. More detailed description on four to five selected features is given afterwards. A 

quantification of land cover change will be presented for the results of part B in chapter 4.2. 

 

1984 

 

Largest and smallest class: 

 Largest area: cropland 

 Within cropland: annual ‘s’ (class 15) holds largest shares (28.34% of cropland), followed 

by mixed crop class 12 (26.77 % of cropland, Table A.1)  

 These two classes roughly represent the west and the east of the study area. 

 Smallest area: built up (class 4, 0.76 %)  

Natural coverage: 

 Grassland areas are extensive and many.  

 They occur especially in the south and east of the study area. 

 Largest grassland areas are situated in the centre of the image, east of Hawassa City. 

Cropland coverage: 

 Annual classes are mainly created based on an additional image of early growing season. 

This results in a high coverage of land cover class 15 (Annual, ‘s’). 

 Western areas show mainly coverage by annual crops (14 and 15) or mixed crop (13).  

 Western areas show almost no pixels that belong to class 11 (Perennial).  

 Eastern areas generally show more coverage by perennial crops.  

 Coherent areas of perennial crops are small.  

 Perennial crop is often neighbouring fields of mixed cropland status. This indicates that 

there is a large amount of small sized annual crops present.    

Built-up: 

 The city of Hawassa is relatively small. It is surrounded by large scale agricultural fields 

of mainly annual character. 

 Only two roads were mapped. One road connects the city with the south; the other road 

expands through the east to the north. It is the road where the town Wondo Genet is 

situated today. Roads are hardly visible in the image, because they are often not wider 

than the size of 1 pixel. 

Water: 

 East of Lake Hawassa exists a second lake, Lake Cheleleka, with an area of 6,75 km². 
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Figure 17 Land Cover Classification of 1984. White areas refer to No-Data due to masked cloud cover of 

2014. 

 

Especially interesting features are shortly described in more detail. Their position can be seen in 

Figure 18. The background of the overview image shows Lake Awassa and the class built up, for 

better orientation. Therefore, this image is also suitable to identify road networks which are hard to 

see in the overall classification image.  

 

Remarkable in 1984 is the high amount of grassland that is present in eastern areas (Snapshot 1). 

Grassland is forming relatively large patches, neighboured by cropland. It is indicating low 

population pressure that allows part of the landscape to be unused or at least not used for 

agriculture. Also it is possible, that these patches were used as grazing areas for cattle. 

The biggest grass patches are seen in an area further east of Hawassa city close to the Lake 

Cheleleka (snapshot 2). This area is different to others as until the year 2014 no cropland has been 

cultivated there (personal communication, Kebede 2015). The area is corresponding to a subset 

created in step A2 that was initially called “Other- Wetlands”. The name indicates that the region 

doesn’t show similar characteristics as other areas, e.g. in greenness or brightness. Thus, the region 

was leftover during the classification process and later summarized as “other”. It might be the case 

that soil characteristics are different in this region, which makes it unfavourable for agricultural 

use. Also it has been noticed that the eastern road is not passing through this area. Therefore, 

cropland classes in this region are most likely misclassified, which will be discussed during the 

Accuracy Assessment in chapter 4.1.2. 

 

Another region that is remarkably different from surrounding cropland is a  bare soil patch in the 

west (snapshot 3). It can be seen that these regions are surrounded by annual cropland class 15 

(red). 

3 4 5 11 12 13 14 15 21 22 



33 

 

Figure 18 Overview of snapshots from LCC 1984. Background Lake Awassa and Class Built-up. 

 

As wetlands described before, it can be speculated that soil characteristics are different to its 

surrounding as subsequent years also show bare soil in this region. 

Very noticeable in the map of 1984 is the use of the additional image in step A3. This image 

represents an early stage in the growing season. Therefore classes are created based on a lowered 

NDMI and minimum NDVI threshold, which results in classification of class 15. Its appearance is 

very prominent in western areas as it represents the cloud pattern. The lowered threshold causes a 

direct classification of these areas as annual ‘s’. Neighbouring pixels of this class suggest that a 

classification as mixed crop might have better represented the area (snapshot 4). The annual‘s’ 

class shows highest potential of misclassification with bare soil, as further described in chapter 5. 

Red areas (class 15) in southern regions do not seem to fit in the classification pattern of the region 

and might therefore be misclassified bare soil patches (snapshot 5). 
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1998 

 

 
Figure 19 Land Cover Classification of 1998. White areas refer to no-data due to masked cloud cover of 

2014. 

Largest and smallest class: 

 Largest area: cropland, of which 36.3 % class 11 (Perennial) and 28.97 % class 12 (mixed) 

 Smallest area: class 23 (wetland), which replaced dried up areas of Lake Cheleleka 

Natural Coverage: 

 Grassland patches are small and few. Grassland can mainly be found in central regions 

close to wetland area and subset ‘Other-wetland’ (see Figure 28) 

 Eminent influence of dry year. Dried up grassland patches in wetland areas were classified 

as mixed crop. Bare soil is mapped more often in cropland areas, e.g. Northeast. 

Cropland: 

 Increase of perennial crop in all areas. 

 Increase of mixed crops in all areas. 

 Western areas show high percentage of coverage with annual crops. But expansion of class 

11 (perennial) and mixed cropland class 12 into western areas is seen, emerging from the 

south. 

 Mixed crops and perennial crops in western areas form linear features, suggesting the 

existence of small roads. 

Built-up: 

 Hawassa city expanded to the edge of the road. 

 Other cities (Wondo-Genet, Busa, Tula) emerge at north-eastern road. 

 Existence of a new road connecting southern areas with the east. 

 

3 4 5 11 12 13 14 15 21 22 23 
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The overview image alongside displays the 

newly built road that connects the south with the 

west of the study area. This connection displays a 

population increase that makes new routes of 

transportation necessary. 

 

Higher population in western regions is also 

suggested by the formation of linear features by 

perennial crops (dark green) and mixed crops 

(orange) that intersperse annual cropland (red; 

snapshot 1). These features represent “home 

gardens”, small sized fields at the backyard of houses. Houses on the other hand are located along 

streets. Therefore, home gardens form characteristic linear features, indicating the presence of 

perennial crop cultivation and population increase. 

 

Very visible in the map of 1998 is the effect of the dry year, which results in increased bare soil 

areas in the north (snapshot 3). The structure of the mapped area suggests, however, that they are 

cropland. Big grassland patches in the centre of the image are mapped as annual or mixed annual 

crop (snapshot 2) because they were too dry and did not fit the spectral characteristics of grassland 

for classification. Also most annual cropland is classified as class 15 (Annual ‘s’), based on a 

lowered threshold of NDMI for cropland classification to compensate for the dry year effect. This 

might cause misclassification in the south, where annual crop patches seem to not fit the 

surrounding classification (snapshot 4). It can be speculated that these patches are in fact bare soil 

or mixed crops.  

 

2014 

Largest and smallest class: 

 Largest area: cropland, of which 60.12 % class 11 (perennial) 

 Smallest area: wetland, grassland, bare soil, annual crop; each represent approx.1% of total 

area 

Natural coverage: 

 Grassland areas are rare. 

 Bare soil is restricted to very few areas north of the study area. 
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Figure 21 Land Cover Classification of 2014. White areas refer to no-data due to cloud cover. 

 

Cropland: 

 Eastern and southern areas are very much covered with perennial cropland, with 

neighbouring fields of mixed cropland status (mostly class 12). Western areas show higher 

coverage of annual crops, represented by mixed cropland class 13.  

 Areas of pure annual class (14) are rare. 

 Perennial crops in western areas form many linear features, suggesting existence of many 

small roads. 

Built-up: 

 City of Hawassa has largely expanded. 

 All other cities, east and south have expanded, too. 

 Emergence of new big city in the west of study area. 

 Infrastructure has increased. Road network is detailed and intertwined. This suggests that 

not only more roads are build, but also wider roads and more concrete roads which can be 

better detected. 

Water: 

 Large water areas classified close to wetlands. This resembles river runoff, which has not 

been mapped in previous classifications. 
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Figure 22 displays the detailed road network of 

2014 that connects streets at multiple junctions. 

This is remarkable as earlier roads very linear, 

with only one or two junctions. It indicates a 

population increase in the study area that 

demands more transportation routes, not only to 

the city of Hawassa but also between smaller 

cities. 

Eastern areas in 2014 show high texture contrast 

in cropland composition (snapshot 1), indicating 

that field sizes are very small on the one hand, 

but that crop cultivation is various on the other 

hand. Grassland patches are rare. Eastern 

regions were occupied by grassland in earlier years. The disappearance of grassland, together with 

the small field sizes, suggests high population pressure leading to conversion into cropland. 

However, it is known that the class grassland is under-estimated due to its very small patch size 

below 30 x 30 m resolution. These areas cannot be mapped, as they will be summed up with 

cropland areas. Also bare soil patches are rare and only seen in the northwest of the study area 

(snapshot 3). The bare soil patch is characterized by its very geometrical shape. Even in previous 

years soil was dominant in this area as described in Figure 18. In 2014, it is known that the region 

is being prepared for the building of a new international airport (personal communication, Kebede 

2015). Therefore, bare soil patches with minimum vegetation cover have been misclassified as 

perennial crop. 

 

Large scale agriculture is only remaining in northern regions (snapshot 2). Field sizes are relatively 

large and have distinct field borders, which makes them easy to identify. All other fields in 2014 

are much smaller. Therefore, this northern region was mapped as a subset with own characteristic 

features in step A2 (Figure 28). It is likely that the area is owned by a company or the government 

as it does not resemble the for the study area typical small scale agricultural pattern. 

 

Linear features in western areas have increased and are very remarkable for the area (snapshot 4). 

In 2014, they are mostly classified as perennial crop instead of mixed crop, indicating increasing 

home garden proportions, higher population rates and the presence of many small roads. 

Composition of surrounding cropland is widely homogeneous, suggesting that field sizes in the 

west are larger than in the east. 

 

 

  

Figure 22 Overview of snapshots from LCC 2014. 

Background Lake Awassa and Class Built-up. 
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4.1.2 Accuracy Assessment 

 

1984 

The land cover map of 1984 shows an overall accuracy of 77.14 % with a Kappa coefficient of 

0.7333 (Table 5). Mixed cropland was not validated in this assessment. Highest accuracies are 

achieved for water (class 5) and built up (class 4). Commission error is highest for the perennial 

cropland class (11), 6 out of 30 pixels were misclassified grassland (class 21), another 5 pixels 

were misclassified scrub (class22). These pixels often refer to wetland areas in the centre of the 

image, which were described before (Figure 23). This observation confirms that wetland regions 

are a source for potential misclassification and might therefore be better masked from the 

classification result. 

The omission error of perennial fields on the other hand is small with only 1 misclassified pixel 

that was classified as annual crop (class 14), resulting in a producer’s accuracy of 96.67 % (Table 

5). Omission error is highest for the scrub (class 22). 17 out of 45 pixels were misclassified. The 

scrub class was created based on slopes higher than 20°. In the methodology it was explained that 

this threshold was chosen based on an observation in 2014, where scrub was only seen in 

uninhabited areas. It is likely that scrub is present in lower slope areas in years before 2014 due to a 

lower population pressure. This assumption can be validated with the results of the accuracy 

assessment. Scrub is present not only in pixels classified as cropland, but also in those classified as 

bare soil and grassland. Thus, scrub cover is highly under-estimated in 1984. 

The annual crop class (14) shows highest confusion with bare soil, grassland and scrub. Again this 

indicates, that cropland is over-estimated in the land cover classification of 1984, whereas natural 

cover is under-estimated.  The confusion between the two cropland classes, however, is low.  

An assessment of ‘separate’ annual cropland (class 15) has shown that annual crops are displayed 

by this class with 70 % accuracy (Table 6). There is some confusion with bare soil as assumed 

earlier. Nine out of 30 pixels were misclassified, 6 of them were bare soil, 2 were scrub and 1 was 

grassland. 

 

2014 

The land cover map of 2014 shows an overall accuracy of 75.76 % with a Kappa Coefficient of 

0.7067 (Table 7). The accuracy is comparable to that of 1984. The low accuracy is mainly 

influenced by the classes bare soil (3) and grassland (21) which are under-estimated and show 

producer accuracies of 46.67 % and 40.00 %, respectively. This will be discussed further in chapter 

5. Reference points of bare soil were partly taken in built up areas (Figure 24), because many roads 

and urban areas are still covered by soil instead of concrete. Apart from roads it is difficult to find 

reference points for bare soil because this class is mostly absent. Grassland (class 21) on the other 

hand forms very small patches, which are not visible in 30 x 30 m. Therefore sample points were 

confused with cropland. 

Highest accuracies were achieved for water (class 5) and built up (class 4) as before in 1984. 

Cropland classes also showed good resemblance of ground truthing data. Out of 30 samples of 

perennial cropland, 19 corresponded to class 11, 6 to class 12, 2 to class 13. Based on the 

assumption that mixed cropland classes contain both annual and perennial crop, mixed crop results 

were counted as correctly classified. Annual crops resemble 14 pixels of class 12 and 11 pixels of 

class 13. The counts show that the proportion of annual crops within mixed classes is higher than 

the proportion of perennial crops, as assumed before the creation of these classes. Also it proves the 

presence of mixed pixels that contain more than one crop type, which require mixed crop classes. 

The result also indicates that there are almost no pure annual crop fields (class 14). Field sizes are 

generally small, which leads to more mixed pixels and intermediate NDMI change rates. 
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However, the annual class might have been underrepresented in the ground truth sampling. Figure 

24 shows that only a few cropland samples have been taken in the western study area where a 

higher proportion of annual crops was observed in the land cover map.  

 

 

Figure 23 Ground truthing coverage for LCC 1984, based on randomly generated points 

 

 
Figure 24 Ground truthing coverage for LCC 2014, based on collected GPS points 
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Table 5 Confusion Matrix 1984 in total pixels. Commission , omission error and accuracy in percent. 

Overall Accuracy: 77.14 % , Kappa Coefficient: 0.7333 

 Reference Points  

C
la

ss
if

ie
d

 a
s 

# 3 4 5 11 14 21 22 Total 
Com-

mission 

User 

Accuracy 

3 19 0 0 0 5 1 5 30 36.67  63.33 

4 1 26 0 0 1 1 1 30 13.33  86.67 

5 0 0 29 0 0 0 1 30 3.33  96.67 

11 1 0 1 15 2 6 5 30 50  50 

14 3 0 0 1 21 2 3 30 30  70 

21 1 0 0 0 3 24 2 30 20  80 

22 1 0 0 0 0 1 28 30 6.67  93.33 

Total 26 26 30 16 32 35 45 210   

 Omission 26.92  0 3.33 6.25 34.38 31.43 37.78    

Producer 

Accuracy 
73.08 100 96.67 93.75 65.63 68.57 62.22    

 

 
Table 6 Confusion of ‘Separate’ Annual Class 1984. Commission error and accuracy in percent. 

Overall Accuracy: 70.00 % 

 Reference Points  

C
la

ss
if

ie
d

 a
s 

# 3 4 5 11 14 21 22 Total 
Com-

mission 

User 

Accuracy 

15 6 0 0 0 21 1 2 30 30  70 

 

 
Table 7 Confusion Matrix 2014 in total pixels. Commission, omission error and accuracy in percent. 

Overall Accuracy: 75.76 %, Kappa Coefficient: 0.7067 

 Ground Truth Points (GPS)  

C
la

ss
if

ie
d

 a
s 

# 3 4 5 11 14 21 Total 
Com-

mission 

User 

Accuracy 

3 14 0 0 0 0 0 14 0.00 100.00 

4 16 30 0 3 2 3 54 44.44 55.56 

5 0 0 28 0 0 0 28 0.00 100.00 

11 0 0 2 27* 3 8 40 32.50 67.50 

14 0 0 0 0 25** 7 32 0.00 78.13 

21 0 0 0 0 0 12 12 0.00 100.00 

Total 30 30 30 30 30 30 180   

 Omission 53.33 0 6.67 10.00 16.67 60.00    

Producer 

Accuracy 
46.67 100 93.33 90.00 83.33 40.00    

 

*class 11 of which: #11: 19 pixels, #12= 6 pixels, #13= 2 pixels 

*class 14 of which: #12: 14 pixels, #13: 11 pixels 
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4.2 Land Cover Change 

4.2.1 Class Change 

Overview 

Visual comparison of the land cover maps already indicated obvious changes in land cover such as 

in cropland composition and urban expansion. A more detailed analysis of change shall give a 

quantitative and qualitative insight in these changes. Within both steps almost all areas are affected 

by change (Figure 25). In total, slightly more change is measured in the period from 1984 to 1998 

than from 1998 to 2014, where 56648 ha are affected by change compared to 51874 ha of non-

changing areas (including cloud masked areas). 

 

Within the period of study the area of perennial crops (class 11) is strongly increasing (Figure 26). 

Mixed cropland class 12 holds maximal coverage in 1998, decreasing in 2014. Mixed cropland 

class 13 is comparably stable throughout all years, whereas annual cropland classes 14 and 15 are 

strongly decreasing from 1984 to 2014. Also grassland and bare soil classes (21, 3) show high 

decrease in area coverage. Built up areas (class 4) grow drastically in both periods, especially 

between 1998 and 2014. This increase is even better visible when inspecting Figure 27. When only 

taking into account the change rate within the last 30 years, built up is the class that showed most 

pre-eminent changes. Considering the total amount of change, perennial classes showed the highest 

change. The increase in water (class 5) is caused by the mapping of the perennial river channel 

from former Lake Cheleleka to Lake Awassa in 2014. 

Qualitatively, highest change is seen from annual cropland (class 15) changing to perennial, and 

mixed crop classes 12 and 13 (21%, 26 %, 20% of class area) in the period 1984-1998 (Table A.2). 

For period 1998-2014 most change is seen in change from mixed crop class 13 to perennial crop 

and mixed crop 12 (49%, 22% of class; Table A.3). But also changes from annual crop (15) to 

mixed crop class 13 and from perennial crop to mixed crop class 12 are high. This displays a loss in 

large annual cropland areas one the hand, but shows an increase in small scale farming of various 

crop types and small field sizes on the other hand. 

 

 
Figure 25 Areas affected by class change from 1984 to 1998 (left) and from 1998 to 2014 (right) 

 

No change Change No change Change 
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Figure 26 Comparison of land cover in percent per class and time step 

 

Cropland change 

In all years, cropland classes share the highest percentage of the area, slightly increasing 

from 1984 to 2014. Interesting is especially the change within the cropland class.  

Approx. 16000 ha have changed from an annual or mixed crop status to perennial crop in 

1998, and 21000 ha from 1998 to 2014 (Table A.4 in Appendix). The change from 

perennial class to annual or mixed class only affected 5000 ha in both years. This shows a 

clear transition of farming systems towards the cultivation of perennial crops. This trend 

begins earlier (1984-1998) in the eastern areas of the study area, gradually increasing to 

2014. Western and southern areas experience these increases in the later time period from 

1998 to 2014 (Figure A.1, Figure A.2 in Appendix). 
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Figure 27 Land cover increase/decrease per class for 1998 and 2014, each compared to estimated areas in 1984 
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Change of natural land cover 

Grassland and bare soil cover decreased remarkably over the period of study (-82%, -74%) in 

advantage of cropland with slightly more area decrease in the period 1984-1998 than 1998 -2014 

(Table A.5). Whereas between 1984-1998 all crop types are expanding their area onto previously 

natural land cover, in the later time period especially perennial crop and mixed crop 13 are 

increasing on behalf of natural areas. The class built up did affect the transformation of grassland 

and bare soil to only small extents with 50 ha and 117 ha in 1998 and 2014, respectively. 

Therefore, cropland expansion can be considered the main driver in transformation of marginal 

land cover. 

Spatially, there is a clear distinction between changing bare soil areas and changing grassland 

areas. Bare soil was mainly located in western regions. Grassland was mainly present in eastern 

regions (Figure A.3, Figure A.4 in Appendix). In 2014 both classes show only small area estimates. 

 

4.2.2 Subset Change 

Class Change 

A large east-west difference was found in the study area by analysing subsets that were created in 

step A2.1 (Figure 28).  

 

The proportion of perennial crops is increasing in all subsets, indicating a general shift in cropland 

composition. Perennial crop is most dominant in southern and eastern part of the study area, where 

the majority (56%) is covered by perennial crop and the mixed cropland class 12 (16%) in 2014 

(Figure 29). In 1998 and 1984 this subset shows high shares of perennial cropland that always 

exceed the amount of annual crops. The only other subset that shows similarly high proportions of 

perennial crop is the central ‘other’ subset. As described in the results section of part A these areas 

are wetland areas. Therefore, it can be discussed if the subset should be excluded from the 

classification result so that they do not contribute to the total estimate of cropland cover. 

 

Annual croplands are declining in all subsets. Most evident is this process in western regions. This 

subset shows a tradition in annual crop farming, as 40% and 37% of the area contribute to class 14 

and 15 in 1984 and 1998, respectively (Figure 29). A clear cut is visible in comparison to 2014 

where only 2.2 % of the region is classified as annual crop. As a result the mixed cropland classes 

gained high importance. Reasons for the dramatic change could be a higher population pressure 

that causes field sizes to decline and the existence of home gardens containing more perennial 

crops. Decreasing bare soil amounts are mainly found in western areas. Grassland areas are 

decreasing in all subsets and time steps, most apparent in the south and east, where area estimates 

have declined from 3670 ha in 1984 to 356 ha in 2014 (Table A.7). This can indicate a loss of 

grazing area. 

 

The increase in urban area is not only visible in the subset of the City Hawassa, but also in the 

western, south/eastern and northern subset. The increase in the first two subsets mentioned is likely 

to be associated with the emergence and expansion of smaller cities and new and better roads. The 

increase in the northern subset can be explained by an expansion of the city into the north. The 

urban class in the city subset itself has been growing towards the east and south, taking in cropland 

areas that existed in 1984 and 1998. Those were mostly of annual character. 

Lake Awassa is the only subset without changes as it incorporates the water body only. However, a 

slight increase of 0.5 % of the lake area in this subset was observed, as border parts of the lake 

were partly classified as cropland and bare soil in 1984. 
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The assessment has shown that western regions have a tradition in annual cropland farming. Thus, 

increase of perennial crops results in strong decrease rates of annual cropland. Eastern areas have 

had large perennial crop proportions since 1984 already.  

 

 

 
Figure 28 Subsets as output of the land cover classification of 2014, step A2.1 

Names of the subset refer to their physical appearance in an October image of 2014, which was 

used for classification. 
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Figure 29 Land cover change in relative area per subset 

 
Figure 30 GLCM Texture Change for three subsets based on classification result (all directions) 
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Texture Change 

Texture contrast has increased in all subsets, but most pronounced in the west and Hawassa city 

between 1998 and 2014 (Figure 30, Table A.8). This indicates that more classes are present in the 

subset within a small focal window because GLCM represents the count of co-occurrences of 

observed pixel combinations. The results suggest higher landscape diversity and the loss of a 

dominant class. Dominance can be seen in the western subset for years 1984 and 1998, where 

contrast is low. The overall level of contrast is remarkably higher in the south/east within all years. 

GLCM entropy is decreasing in all subsets, showing that the scene is becoming less ‘chaotic’. This 

means that patches get more geometric and their alignment follows recurrent patterns. On the other 

hand this can also indicate that class areas increase, which results in homogeneity. Higher 

homogeneity was also implied by class change in east-southern subsets, where perennial classes 

were available in over 50 % of the area. GLCM Angular Second Moment (ASM) is a 

complementing metric that measures orderliness. It is therefore inversely correlated to Entropy. 

ASM shows strong increases in orderliness for the south-eastern subset and the City subset. The 

western subset shows highest order in 1984. This confirms the loss of one dominant class in this 

subset, which causes more patches to be ‘unordered’. 

 

Object change (of classified areas) per subset 

The mean area size per subset is measured, as well as mean object length, mean Shape Index and 

mean Border Index. All mean Border Index values are relatively small (<1.6; Figure A.5), 

indicating that highly complex shapes are rare. This suggests that fields are compact and small. 

Complex road shapes for example have been identified during road classification at Border Indexes 

of 8. 

Object shapes get more complex from 1984 to 1998, therefore lose its geometric fit (Figure A.5). 

This can mean two things, on the one hand that object borders become less linear and that patch 

sizes become bigger on the other hand. Shape index values close to 1 are seen in eastern areas in 

1984, which resemble almost perfect fit to the shape of a square (Figure A.5). It can be speculated 

that this is an effect of the pixel size.  

The mean object area is strongly increasing in subset south/east between 1984 and 1998. This 

suggests a gain in homogeneity, which causes larger coherent areas of one class. As a direct effect 

of the area increase, the object length is increasing. This effect is also visible to a lesser extent in 

the western subset. Area sizes and object lengths in the west are comparably large throughout all 

years. It suggests that homogeneity is higher and patches are bigger in these regions. 

 

The Subset of Hawassa City shows highest values in 1998 for all features. This indicates that the 

class composition has been most balanced during this year, when large crop fields and large built 

up areas were present to almost same extent but spatially divided in east and west. 

 

Both, texture and object change, substantiated an east/west difference in the study area. It showed 

that not only cropland composition is different, but also that field sizes and change trajectories 

differ. Whereas eastern areas gained higher order, western areas became more chaotic.  
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4.2.3 Object Change 

This section serves to validate segmented objects that were created during step A2.1. These objects 

have not been used because they were unable to resemble field sizes. 

 

An aggregation of classified pixels to the extent of objects showed that these are not able to 

resemble the classification result. Large areas after the aggregation process remain unclassified 

(black; Figure 31), because the mean of all classes present in an object does not reflect a class 

value. Consequently, it will be unclassified. This is especially the case in southern and eastern parts 

of the study area, where too many different classes are present within an object. This implies that 

segmentation scale of objects was too high to produce similar sizes as observed in coherent class 

areas. Object sizes are particularly over-estimated in the year 2014. This can show that real world 

object sizes become smaller on the one side, but reflects a higher scale setting on the other side.  

 

Mean size and length of segmented objects are continuously over-estimated compared to classified 

objects (Figure 32). The only exception are estimates for subset west, where segmented objects are 

smaller than coherent classified areas and therefore, over-segmented. It proves that field sizes in the 

west are larger than in other regions of the study area and therefore detectable as objects with 

OBIA. 

 

Additionally, we tested if objects are generally too big, but in proportion to the classified objects. 

In this case their change would show the same trends despite the over-estimated size. 

Results indicate that segmented objects show no relation to classified objects, as they are not able 

to show the same trends (Table 8). Exception is again the subset west where a significant difference 

between the area change and length change of classified and segmented objects was observed. It 

can be explained by the over-segmentation of these elements by OBIA. For the subset Hawassa 

City the area and length change was strongly correlated, indicating that built up features are better 

resembled by OBIA than other features. 

 

Table 8 Correlation of shape development of three moments in time (1984, 1998, 2014) between classified 

and segmented objects per subset and measure 

Subset South/East West North Hawassa City 

Area 0.66 -0.99 -0.13 0.96 

Length 0.69 -0.78 0.04 0.98 

Shape Index 0.54 -0.01 0.10 0.66 

Border Index 0.50 -0.09 -0.14 0.59 
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Figure 31 Aggregated classes for segmented objects of each year 

 

 

 
Figure 32 Direct comparison of classified objects (I) and segmented objects (II) as result of subtraction I-II 
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Figure 33 Tiles selected for representation of landscapes south, west, east and central 

4.3 Changes in Landscape Diversity and Fragmentation 

Landscapes are represented by 2,5 x 2,5 km tiles of the subsets created in step A2.1. 

To ensure that a subset is adequately represented 2 tiles were selected within the western and 3 

within the south/eastern subset.  One tile was placed in the subset of Hawassa city (Figure 33). 

 

The results show a clear east-west difference in the landscape in terms of dominant classes and 

Simpson Diversity. Southern tiles are more likely to resemble characteristics of the eastern 

landscape but with a more pronounced 1998-2014 change, as seen in western areas. In eastern tiles 

the change from 1984 to 2014 is seen to be more continuous without hard breaks. In general both 

eastern tiles show similar trends and characteristics with only few differences in class composition. 

Same applies for both western tiles. This indicates that the landscapes are resembled well by the 

initial creation of subsets. 

 

Landscape diversity was highest in eastern landscapes and the city subset in 1984 (Figure 34). 

Since then a strong decrease in diversity has been noted. Likewise contagion is increasing, 

confirming that patch types get fewer and a few classes become more dominant. Contagion and 

diversity are inversely related. Dominant classes in the east and south in 1998 and 2014 are larger 

areas of perennial (11) with low number of patch habitats and high edge densities (Figure 35) and 

many medium sized mixed crop (12) patches. It shall be noted that the mixed crop class holds 

diversity in itself and also reflects high levels of fragmentation. Therefore low diversity levels 

combined with a dominance of mixed crop might indeed suggest the opposite. Generally, it is seen 

that edge densities of all classes are higher in the east and south than in the western regions. This 

indicates higher fragmentation levels and less geometric patches in eastern than in western regions. 

 

Aggregation levels were relatively high in western tiles in 1984, showing the dominance of few 

classes, which are class 14 and 12 as seen in a high number of patches with large edge densities 
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(Figure 35). In2014, Simpson diversity is higher than in eastern areas, caused by the higher 

aggregation levels in the east. Diversity and contagion in the west are relatively stable throughout 

the whole time period. This can indicate that the overall proportions within the landscape stay 

constant. Combining these findings with other metrics shows a shift in class composition, however. 

It can be perceived by a decrease in distance between perennial and annual crops, as implied by the 

Proximity Index. This can indicate increased interspersion of annual and perennial crops, which is 

supported by rising patch numbers (Figure 35). A permanent change in cropland composition from 

annual towards mixed and perennial crops can be observed in a shift from high edge densities of 

classes 12-14 in 1984 to high densities of classes 11-13 in 2014. Perennial crops increased thereby 

first in number of patch habitats, which were small in size (1984-1998) then became larger, with 

higher edge densities (1998-2014).   

 

In eastern and southern areas a general reduction in the patch abundance of annual crop is observed 

in decreasing number of patches and decreasing edge densities. Therefore, proximity index results 

in higher values. Again it shall be noted that mixed crop classes hold the highest level of proximity 

possible. Therefore, areas with dominating mixed crop status are assumed to hold highest potential 

for population exchange between pest habitat and pest predator habitat. This refers especially to the 

“East 2” tile (Wondo Genet) where the number of distinct patches of mixed crop class 12 is very 

high, complemented by relatively large edge densities.  

 

The aggregation level in the city is highest (71 %) in 2014, showing an expansion of built up with 

only 4 discrete patches but a large edge density (Figure 35). Also it can be seen that number of 

patches and edge densities are relatively small in the city subset compared to other subsets, 

reflecting larger and more compact patches. 

 

The landscape assessment substantiated an east-west difference in the landscape, implying that 

eastern areas lost class diversity, as dominance and aggregation of perennial class increased. 

Western areas have shown stable Simpson diversity and Contagion levels. A change in cropland 

composition can be perceived through decreasing Proximity Index values and a shift of patch count 

and edge densities from annual to mixed crops. The results imply that eastern landscapes were 

more fragmented in 1984 than western landscapes. Their change is mainly perceived in changing 

cropland composition. Western landscapes faced a more complex change of decreasing field sizes, 

which results in high aggregation of mixed crop and the introduction of perennial crops. 
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Figure 34 Landscape descriptors at landscape level for all tiles. Proximity is measured between class 11 and 

class 13/14/15. 
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Figure 35 Landscape descriptors at class level for subsets City and West 
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Figure 36 Landscape descriptors at Class Level for Subset East and South 
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5 Discussion 
The discussion is divided in two parts. The first part is addressed to discuss the second objective, 

the effectiveness of the method. The second part is dedicated to reflect on the results and answer 

the research questions of the first objective, understanding landscape change and give an outlook 

on ecological implications. 

5.1 Evaluation of Methodology 

5.1.1 Research Question iv 

How reliable are estimated change rates and trends based on the accuracies of the land cover 

classification? 

 

Within our study we produced three thematic land cover maps (1984, 1998, 2014). For the first and 

last map we could acquire reference data for validation to determine overall accuracies of 77 % 

(1984) and 75 % (2014). For the intermediate map, reference data is missing. Therefore, the error 

of this image could not be assessed. The accuracy can be interpolated based on the class accuracies 

in the year before and after. If a class produced high accuracies in both years, it can be assumed 

reliable in 1998 as well because it was classified based on the same criteria. If it was seen less 

reliable in both years, its accuracy in 1998 should therefore also be assumed low. The map of 1998 

saw another problem in the classification, which was pointed out in the result section of A (Figure 

18). It was a very dry year, which caused a “famine” in the region of Boricha, south of our study 

area (Quinlan et al. 2014). Meteorological data proved that there was less precipitation than usual, 

which led to a crop failure, visible in no or scarce vegetation. To classify cropland despite its 

unusual appearance the bare soil threshold was adapted and the class “annual, separate” (15) was 

created. Those pixels were then excluded from the NDMI change analysis. This class holds higher 

potential to be misclassified with bare soil, because of the lowered threshold. This assumption was 

proven right in an accuracy assessment of class 15 for land cover in 1984, where 20 % of the 

sample pixels were seen to be soil instead of cropland. Another 6.67 % of the sample pixels were 

misclassified scrub. In the same year the commission error of annual class 14 on bare soil was a lot 

lower with 10 %, whereas another 10 % were misclassified scrub (Table 6).  

For the image of 1984 the separate crop class 15 was created, too, because of the use of a wet-

season image early in the growing season. It can be seen that this class holds large proportions of 

the scene in 1984 (19.88 %, Figure 26) and is present in all subsets (Figure 29). Therefore, it should 

be considered that annual crop in both years, 1984 and 1998, is over-estimated on behalf of under-

estimated bare soil and scrub. 

 

The accuracy assessment of 1984 revealed that scrub cover was present in all other classes and is 

therefore largely under-estimated. The omission error was with 38 % the highest amongst all 

classes. The user’s accuracy on the other hand was with 93 % very high, which proved that slope as 

a classification criterion is valid (Table 5). But the result suggests that in 1984 scrub is also present 

at lower slopes. This finding is proved by studies in the Hawassa area (Wondrade et al. 2014, 

Woyessa 2014, Kindu et al. 2013, Meshesha et al. 2012, Dessie & Kleman 2010), which all 

observe a reduction of scrub, bushland or natural forest. Also scrub and forest was reported to be 

present near the location of Hawassa city before it was built in 1959. Initially it was called Adare, 

which means home for cattle because it could find shelter underneath the trees (Wolte et al. 2010). 
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Another problem in land cover classification is the low producer’s accuracy of grassland, which 

means that many pixels were not classified as grassland when in the reference data they were 

(omission). This was found for both years, 1984 and 2014, but probably for different reasons. 

We believe that for 1984 our threshold, based on SWIR and NIR, did not capture the whole 

spectral variety of the class. Therefore, not enough grassland was excluded from the cropland 

classification. For 2014, grassland was covered a relatively low surface area Based on this image 

the thresholds were created, which were seen to work well with a user’s accuracy of 100 % (Table 

7). The omission in 2014 is believed to be caused by relatively small patch sizes of grassland that 

are smaller than the pixel size. Therefore, grass cannot be effectively separated from cropland.  

Also bare soil patches were rare in 2014 and ground truthing points hard to find (personal 

communication, Kebede 2015). Most of the reference points were taken along streets and close to 

cities. These areas were therefore misclassified as built up. Not taking grassland and soil into 

account, which might be too small in size to be detected, the overall accuracy of 2014 would lie at 

91.67 % with a Kappa Coefficient of 0.89. This indicates that the classification of cropland itself is 

of high accuracy. Indeed inter-crop confusion was low. However, mixed classes in 2014 were 

counted as correctly classified for perennial and annual crop because they are assumed to hold both 

classes. This contributes to the high accuracy values (Table 7). 

Additionally, it shall be stated that the thresholds for mixed crops are made subjectively to 

represent different proportions of crop types. The threshold itself has not been assessed. Therefore, 

we recommend the classes to be interpreted as higher proportions of annual crop cover being 

present with higher class numbers within cropland classes 12 to14. The precise proportions, 

however, are unknown. 

 

Wetland areas are contributing to an over-estimation of cropland in all three maps. We thereby do 

not mean the class wetland, but the subset “Other-Wetlands”, which holds the former Lake 

Cheleleka and areas south of it. They are unsuitable for agriculture as discussed in the result section 

(Figure 18), not inhabited nor crossed by any streets. Therefore, they should be masked from the 

classification result or alternatively be defined as wetland class 23. An exclusion would result in 

lower area estimates of cropland classes, but does not have an effect on observed crop type 

proportions of the overall images. 

 

Lastly, it shall be noted that the reference data itself might hold errors, too. Despite a subjective 

interpretation of the aerial images for 1984, the date might also cause errors. For 1984 we used 

aerial images of 1972 and topographic maps of 1979 and 1988 as validation data. These images are 

not representing the exact year of classification, which would be desirable. However, as these are 

the only data available for reference of the study area and in the time period, also used by other 

researches (Dessie & Kleman 2010, Rembold et al. 2000), they serve as the best estimate of land 

cover in 1984. The images were orthorectified based on an ArcGIS base map. The accuracy 

assessment was hence performed assuming perfect co-registration, which is an unrealistic 

assumption (Foody et al. 2002).  

 

Overall it can be concluded that cropland cover is over-estimated in both images 1984 and 2014, 

and therefore probably in the image of 1998 as well. Wondrade et al. (2014) have measured an 

increase in cropland cover from 43 % in 1973 to 56,4 % in 2011. Our results show a smaller 

increase of 2 % between1984 and 2014 (Table A.1). This is due to a large under-estimation of the 

classes grassland and scrub in 1984, and a slight under-estimation of these classes in 2014. Hence, 

also the increase in cropland cover is underestimated. The inter-crop confusion, however, is low. 

Thus, depicted trends in changing cropland composition are valid and reliable. 
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5.1.2 Research Question v 

How well does an object-based classification approach perform to describe landscape change in 

the study area compared to pixel-based approaches? 

 

Our main finding concerning the use of an object-based approach is that object based image 

classification using Landsat imagery is neither effective nor feasible within our study area for the 

classification of cropland types. 

 

The class water and built up are the only classes that were classified based on objects, although 

water was classified using NDVI which would have been feasible using a pixel-based approach as 

well. Built up is therefore the only class that was truly created with the special opportunities of 

eCognition using shape features. We did see this classification to perform very well, as a 

producer’s accuracy of 100 % was achieved in both images (Table 5, Table 7). The higher 

commission in 2014 was mainly attributed by sample points close to streets that merged with the 

class in the used pixel size of 30 x 30 m. Also other studies have shown that roads are better 

detectable with OBIA using shape features instead of spectral features because of its specific 

geometry (Potuckova et al. 2010).  

 

It was suggested to compare the results of an object-based classification of our research to those of 

pixel-based classifications of other researchers. 

As most of the classes within our study are now pixel-based this comparison doesn’t make sense 

anymore. However, we did segment image objects at the beginning of the process. Therefore, we 

can compare the classification result to itself by aggregating classified pixels to segmented objects, 

as done in step B3. It was shown that objects over-estimate the size of cohesive class areas by far 

(Figure 32) and thus, under-estimate the number of discrete objects (Table A.6, Table A.10). 

Largest differences between the shapes of classified and segmented objects were seen for objects of 

2014. This can indicate that the segmentation process for Landsat 5 and Landsat 8 is different due 

to a different radiometric resolution. To increase the comparability of segmentation parameters it 

might have been better to rescale the data of both sensors to comparable units, such as reflectance. 

This is especially stated because, other than expected, the use of radiance did not result in any 

advantage over reflectance as in the end we used NDMI images for the main classification process. 

Also it was shown that segmented objects are not only over-estimating the size of classified (real-

world) objects, they were also not able depict change trends seen in the classification result. This 

was proven by a correlation between shape metrics of classified and segmented objects (Table 8). 

Therefore, it can be concluded that the objects created in the segmentation step are meaningless and 

are not able to depict real-world objects like fields in our study area. 

 

It was suggested in chapter 2 that OBIA was able to produce higher classification accuracies than 

PBC. Our classification is with 75 % (2014, Table 7) and 77 % (1984, Table 5) accuracy 

comparable to the accuracies of other studies in Ethiopian landscapes using PBC that were seen to 

range between 67 to 87% (Meshesha 2014, Meshesha et al. 2012, Shiferaw 2011, Dwivedi et al. 

2005, Bewket 2002, Rembold et al. 2000). The high accuracies that are promised by researchers 

using object-based approaches in South Ethiopian landscapes were not achieved, e.g. Kindu et al. 

2013 (Landsat MSS, TM, ETM+, RapidEye; 85,7 % to 93,2 %), Wondrade et al. 2014 (Landsat 

MSS, TM; 82 to 85 %). This is indicating that for the right purpose in the right landscape and with 

the right sensor OBIA can be very effective. 
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For our sensor, Landsat, in our landscape, small-scale African agriculture, and for our purpose, 

cropland classification, the use of OBIA is not feasible. 

Therefore, it shall be remarked that Landsat data might not be the best data choice to detect land 

cover change in Ethiopian landscapes that are characterised by high population densities, high 

fragmentation and small farm sizes (Sonneveld & Keyzer 2003). VHR data, that allows better 

spatial resolutions, would be able to give more insight on these landscapes (Lung et al. 2013). They 

would also allow the classification of smaller landscape features such as hedgerows and small 

scrub areas, which are of high ecological importance. 

With VHR data object-based classification would be more effective for cropland classification, as 

fields can be separated from each other. Despite the fact that OBIA did not work in our research 

project, we believe that it can be a great addition to landscape assessment if real world objects are 

large enough to be detected by the sensor that is used. The results of texture and object shape 

assessment (Figure 30, Figure A.5) showed that object descriptors are able to detect similar trends 

as landscape metrics of Fragstats. Therefore, the potential of OBIA to contribute to landscape 

analysis is high. 

The strong advantage of Landsat over VHR data is that it is providing a continuous data series 

since 1972, which allows mapping of historic land cover. VHR data on the other hand is only 

available for the most recent year and not free of charge. 

 

Despite the described problem regarding the relatively low spatial resolution of Landsat data, two 

other obstacles of OBIA were observed: segmentation is too important and incomparable; and the 

classification strongly depends on the knowledge and expectations of the user. 

The segmentation step is crucial in the process of object-based classification. It determines the 

outcome of the classification to a large extent. The determination of the right segmentation scale, 

however, is very complicated and highly subjective as there is no unique solution. Also 

segmentation is image dependent and changes for every image. These problems have been noted by 

many researchers (Kavazoglu & Yildiz 2014, Baatz et al. 2008, Neubert & Herold 2008, Hay-

Castilla 2006). There have been attempts to enhance decision making on the right segmentation 

scale by involving statistic measures for interpretation (Drăgut et al. 2014, Drăgut et al. 2012, Kim 

et al. 2008, Wang et al. 2004). However, these metrics are often difficult to interpret. Baatz et al. 

(2008) propose an object-oriented approach that overcomes the problem of a two-staged 

classification, first segmentation then classification, by the creation of flexible objects that are 

constantly altered. We used the ESP approach by Drăgut et al. (2014) in our research. It helped 

decision making to a large extent and the suggested scales seemed to resemble the visual 

appearance of image properties well. Because fields were classified on sub-pixel level and thus not 

detectible, we cannot judge its effectiveness. We noticed that it seemed to be less effective for 

Landsat 8. 

 

The second problem observed for OBIA is that you can only classify what you expect. OBIA is 

certainly not able to produce unexpected results, as the user needs to define objects beforehand. 

Therefore, our own analysis was seen to work in a circular approach. We expected different levels 

of diversity in terms of crop composition and fragmentation in the landscape and thus, created 

subsets that we segmented with different segmentation parameters of scale, compactness and shape. 

Later on in the analysis, we proved that the landscape showed indeed different levels of diversity 

with using landscape metrics. The cropland composition was now based on pixel level. But 

assuming that we would have worked with objects, as planned, in a landscape where fields would 

have been larger, this would have only proven our assumptions to be right, but OBIA would have 

not helped to create new knowledge. 
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5.2 Understanding landscape change 

5.2.1 Research Question i 

Which land cover types have changed the most and in which period? 

 

Key findings are an increase of perennial crop (+ 204 %) and a decrease of annual crop, grassland 

and bare soil (-77 %, -82 %, -74 %) in the whole study area between 1984 and 2014 (Figure 27). A 

qualitative analysis showed that natural areas were thereby replaced by cropland (Table A.2). A 

large east-west difference was found to be present in the scene, with more annual crop and bare soil 

proportions being observed in the west (Figure 29). 

The loss of natural vegetation can be confirmed by many studies conducted on land cover change 

in Ethiopia (Assefa & Berk 2014, Kindu et al. 2014, Meshesha et al. 2014, Teferi et al. 2013, 

Meshesha et al. 2012, Shiferaw 2011), but also for our study area more specifically. Shewingazew 

& Micheal (2010) observed a loss of natural vegetation of 9 % within the years 1995-1998 in the 

Lake Awassa watershed. Wondrade et al. (2014) confirmed a horizontal expansion of agriculture 

replacing existing woody vegetation and grassland in Hawassa Zuria, an area south of Hawassa 

city. A loss in scrub or bushland cannot be evaluated in our study because over the period of study 

it was classified based on slopes larger 20°. Therefore, the class extent does not change. However, 

as described in chapter 5.1.1 scrub known to be present in lower slope areas, too, and thus largely 

under-estimated in 1984. In 2014 a visual check in Google Earth implied that scrub is not present at 

lower slopes (Figure 10). Therefore, it can be hypothesised that scrub cover in our research area is 

decreasing, too. Dessie and Kleman (2010) have studied deforestation at a study site close to 

Hawassa city and present a loss of natural forest of 82 % due to an expansion of small-scale 

agriculture, which strengthens our assumption.  

 

Whereas land cover change has been studied in South Ethiopian landscapes with rising extent, the 

change of cropland composition has rarely been a target of research. Therefore, it is difficult to 

confirm our finding of decreasing annual and increasing perennial crops. Meshesha et al. (2014) 

reported an increase of perennial crops and decrease of annual crops in a study located in the 

Ethiopian highlands, which goes along with our findings. Most studies assessing cropland change 

have been based on qualitative approaches such as field surveys with locals (Woyessa 2014, Abebe 

& Kjørholt 2009). Our findings support the assumption that annual crops are losing their 

importance in the study area as a shift towards the cultivation of perennial or multiple crops can be 

observed. A more detailed discussion of cropland change will be given for research question ii. 

 

The transition of natural vegetation to cropland implies that the landscape is under enormous 

population pressure which requires the population to use all land possible.  

Grepperud (1996) summarizes the process of extensification and population increase as “forcing 

people on new land.” When the demand on land for crops and livestock, building materials and fuel 

increase, it ultimately results in removal of original vegetation cover. People are moving onto new, 

less fertile land, which is less suitable for production and more erosion-prone (Sonneveld & Keyzer 

2003, Grepperud 1996).  

 

Perennial cropland increased the most in terms of total area (Figure 26), but the highest growing 

rates were depicted for class built up, that has gained more than 600 % from 1984 to 2014 (Figure 

27). It is known that these rates are even under-estimating population growth as it does not take 

into account the presence of houses and farms within the landscape. An inspection in Google Earth 

(Figure 37) shows these buildings as white spots next to almost every field. In a 30 x 30 m 



59 

resolution of Landsat their signal gets merged with the surrounding field information. The 

expansion of cropland and high proportion of mixed cropland, indicating small field sizes, gives 

reason to assume that the number of on-site farms is also growing. Additionally, the emergence of 

new rural cities and roads as well as the presence of linear perennial features observed in the 

western regions (Figure 38) encourages this thought. Increasing urban features were affirmed by 

many studies of LULC change in Ethiopia with high expansion rates of up to + 200 %, but at 

different time spans and study sites (Kindu et al. 2014, Meshesha et al. 2014, Wondrade et al. 2014, 

Meshesha et al. 2012, Shewangizew & Micheal 2010). 

 

Lastly, a small change of + 0.5 % (100 ha) in the lake area was noted from 1984 to 2014 (Table 

A.7). This seemed unlikely and was thought to be caused by different classification settings for 

Landsat 5 and Landsat 8. Wondrade et al. (2014) and Shewangizaw & Micheal (2010) have made 

the same observation. They suggest that an expansion of lake size is caused by the salination of the 

smaller lake Cheleleka that was situated east of Hawassa city and increasing runoff due to 

deforestation in the eastern highlands. Lake Cheleleka served as a water and sediment trap. With its 

aridification it loses this function and water and sediments are directly transported to Lake Awassa 

via the perennial river Tikurewuha.  

 

Concerning the moments of change, it can be noted that change was seen to proceed gradually from 

1984 to 2014, but was slightly more pronounced in the time period 1984-1998. Especially losses in 

grassland and annual crop cover were seen within this time period (Table A.1). Land cover changes 

might be affected by the political change in 1991 that resulted in a transition of communal land to 

privately owned land (Woyessa 2014, Holden & Yohannes 2002). Therefore, everyone was able to 

buy land and free to cultivate the crop of their own choice. It followed an earlier land reform in 

1975 that claimed all land as state property, but distributed it to farmers with only to use- right 

basis (Headey et al. 2014, Belete et al. 1991 in: Woyessa 2014). Between 1975 and 1991 

commercial large-scale farming was promoted to the state farms (Headey et al. 2014, Zerihun 2009 

in: Woyessa 2014). 

 

For perennial and built up classes most change was seen in period 1998-2014. This could have 

different reasons. Built up increase was mainly seen in the subset of Hawassa city and the subset 

East/South (Figure 29). Therefore the increase is clearly connected to the expansion of Hawassa 

city and the emergence and growth of cities in the east (Wondo Genet, Busa) and south (Irba, 

Tula). A possible reason hereof could be that in the aftermath of the land reform in 1991 less land 

is available which causes people to move to the city to maintain and/or increase their income 

(Barrett et al. 2001). Another reason could be that Hawassa city has been designated capital of the 

South Nations, Nationalities and People’s state (SNNPR) in 1995, which brought a transition in 

almost all economic sectors, private investment, tourism, the service sector, industrial development, 

trade and commerce. Along with it new opportunities in the employment sector evolved (Wolde et 

al. 2013). 

The increase in perennial crop between 1998 and 2014 can potentially be explained by a population 

increase in the western regions that promotes the formation of home gardens with higher 

proportions of perennial crops (Abebe 2005, Zemede & Ayele 1995). Also a new road was mapped 

in 1998, connecting the west with regions south and east of Lake Awassa. This reflects the 

population increase in the western regions that demands new and better ways of transportation. 

Also it displays the opportunity of better market access, which might trigger the production of more 

lucrative, perennial, crops. 
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5.2.2 Research Question ii 

How does the cropland composition change and can this reflect changes in farmers’ livelihood 

strategies? 

 

A closer inspection of cropland change can be interesting, because it can provide us with hints on 

where to find more potential on sustainable pest suppression and can give insights into social and 

economic processes.  

Research question i has presented that highest changes occur in increasing perennial crop cover and 

decreasing annual crop cover. This finding can be confirmed by studies of Ethiopian land cover and 

crop market change, which were mainly conducted by field surveys. Meshesha et al. (2014) made a 

study in the Ethiopian highlands on land degradation and found a decrease of annual crop with 29 

% and increasing perennial crop shares of 42 % between 1985 and 2011. This supports our findings 

as the trend in cropland change is the same, despite a different land composition. Most land in their 

study area degraded to marshland. Feyisa & Aune (2003) found a rapid increase of the perennial 

crop khat especially between 1985 and 2000 in the Ethiopian highlands, also stating decreasing 

amounts of annual food crops. The most relevant study for our research area was carried out by 

Woyessa (2014), who interviewed the 49 participant of the local population in the Hawassa area to 

re-produce trajectories on land cover change. He reported a large difference in crop proportions 

before and after 1991. The proportion of maize strongly decreased, attributed to the relative 

increase in perennial crops enset and khat. This observation coincides with the results of the 

quantitative analysis of our research, where perennial crops more than doubled its size from 1984 

to 2014 (Table A.1). Despite the fact that all studies indicate the same trends in decreasing maize 

proportions, yields of annual food crops have been seen to rise with 12 -14% throughout the last 

years (Benson et al. 2014). This seems to contradict our finding of a reduction of annual cropland 

cover. According to Benson et al. (2014) higher yields are mainly achieved through a governmental 

Agricultural Growth Program, helping farmers to improve their farming methods and intensify 

their production with the availability of improved inputs, such as seeds and fertilizer. Therefore, it 

seems that the increase in maize productivity is achieved by intensification only because our results 

suggest that an extensification of annual crop is not taking place. At least not in the Hawassa area. 

However, concrete numbers on yield production in this area are missing. 

 

In our research mixed crop classes have been created in addition to annual and perennial crop. 

They were created because of a relatively large pixel size of 30 x 30 m and therefore, to 

acknowledge the presence of mixed pixels, containing more than one crop type. The development 

of mixed crop classes showed the same process of increasing perennial crop proportions. 

Therefore, a decrease in annual crop type was observed as a shift towards mixed crop class 13 and 

12 first. 

Figure 29 has shown that a large difference between the west and east of the study area exists. It 

leads especially to differences in the importance of mixed crop classes. Whereas the overall amount 

of mixed crop is decreasing, its proportion in the west of the study area is increasing over the 

period of study. This difference can reflect that there are different underlying processes in both 

landscapes that are causing changes in cropland composition. 

The western region showed a tradition in the cultivation of annual crop, which has been dominating 

this area in 1984, shown in low diversity and high aggregation values. From 1984 to 1998 diversity 

levels increased in western regions with decreasing contagion, implying less aggregation and less 

dominance of annual crops (Figure 34).Also the proximity index showed that distances between 

annual and perennial crop became smaller throughout the years, indicating the introduction of 

perennial crops to the region. 
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The eastern areas were seen to be more diverse in 1984 then western regions, but also showed 

small field sizes. This can be assumed from the high amount of mixed crop observed in 1984 

(Table A.7). Already then a high proportion of perennial crop was present. As the importance of 

perennial crops increased this led to a loss of mixed crop fields and resulted in overall higher 

proportions of perennial crops (over 50 % in 2014). On the contrary in the west perennials were 

newly introduced to the area after 1991 (Woyessa 2014) and thus, a decrease in annual crop and 

increase in perennial crop mainly resulted in higher proportions of mixed crop. 

A reason for the observed west/east difference could be explained historically. High aggregation 

rates and low number of patches indicated relatively large field sizes of annual crops in the west. It 

can be speculated that this farm land was determined by state demands on food supply. After the 

political change a change in settling patterns was observed. Especially the formation of more 

geometric and linear feature (Figure 38) implies that this area was “colonized” at a later time and in 

an organized way. The east showed small field sizes and high fragmentation in all years. This 

suggests that this region has grown from itself over a longer period of time and in a more 

unorganized way (Figure 37). 

Summarizing, it can be stated that a shift in crop cultivation towards a higher rate of perennial 

crops can be observed in landscapes east and west of Lake Awassa. This results in a higher 

proportion of perennial crop class in the east and higher proportions of mixed crop class in the west 

in 2014. 

 

Next to an increase in perennial crops also a decrease in field sizes was indicated by mixed crop 

shares. Woyessa states that in his survey enset and maize was present in 90 %, khat in 57,5 % and 

coffee in 32,5 % at the farms. These numbers indicate that many farmers cultivate more than one 

crop, of both perennial and annual character. They are present on spatially small scale as farm land 

sizes in South Ethiopia commonly range between an average of 0.6 -2 ha (Woyessa 2014, Abebe & 

Kjørholt 2009, Shiferaw & Holden 1999). Therefore, our hypothesis of mixed pixels, containing 

more than one crop type can be assumed right. 

Another phenomenon promoting the cultivation of mixed crops, which can be used to explain 

higher perennial crop proportions, is the presence of home gardens. These have been studied before 

in South Ethiopia (Zemede & Ayele 1995) and our study area (Abebe et al. 2010, Abebe 2005). 

Home gardens are characterised by a wide variety of different crops growing spatially close to each 

other. Zemede & Ayele (1995) found a range of 162 different species in a survey of 111 home 

garden sites, with enset and maize being the most frequent. Abebe (2005) made similar findings in 

a survey in the Sidama province, of which Hawassa is capital. In a study on home garden diversity 

he found 78 different species within 144 farms. Enset and coffee were the most dominant perennial 

crops and maize the most frequent annual crop. Within recent years these crops have been 

gradually replaced by khat and pineapple, which are financially more attractive (Abebe et al. 2010, 

Abebe & Kjørholt 2009). These crops are considered cash crops. 

In our study area perennial crops are especially khat, coffee and enset (De Valenca 2014,Woyessa 

2014). Enset is used as a food crop but also for its by-products such as fibre (Abebe 2010). It has an 

advantage over other cereal grains because it can support a higher density of population, offers a 

high caloric yield per unit and is more drought resistant (Abebe &Kjørholt 2009). Whereas enset 

has been an important crop for home consumption already in the past (Woyessa 2014, Bezenuh 

1966), khat production has rapidly expanded within the last years and is one of Ethiopia’s largest 

export items. It is grown partly for home consumption, but largely for sale on regional or national 

markets. About a third of the production was exported to Djibouti and Somalia in 2000 (Feyisa & 

Aune 2003). Woyessa (2014) reported especially an increase in khat production in Wondo Genet, a 

region in the east of our study area that was addressed as tile “east 2” in the result section of part C. 
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The observation of Woyessa is substantiated by our study, which found lowest diversity rates and a 

high dominance of perennial crop within this area in 2014. 

 

Can an increase in perennial crop production reflect changes in livelihood strategies? Yes, changes 

in livelihood strategies in the study area are very likely. Increasing shares of cash crops such as 

khat, positively affects the households income. It enables them to obtain more food than by 

producing their own food crops, but also has seen to have positive effects on all other aspects of 

consumption, as well as education (Poulton et al. 2001, Maxwell & Fernando 1989). 

Households aim for livelihood with resilience, low sensitivity to shock and stress (Rakodi et 

al.1999), which can be achieved through cash crops on the one hand but diversification on the other 

hand (Ellis 1999). Maize has been an unstable food source for farmers in the Hawassa region 

because of recurring droughts and pest infestations (Woyessa 2014), which was also seen in our 

own research when water scarcity resulted in crop failure in 1998. However, diversification of crop 

types is also important, as global market prices change quickly. Coffee, which is also sold as a cash 

crop is a relevant example. In 1998 coffee prices were sharply declining on the global market due 

to an expansion in supplies, but stable demands (Hallam 2003). This can explain increasing 

proportions of khat as an alternative after 1998 within the perennial crop class (Feyisa & Aune 

2009). 

A change in livelihood strategies becomes even more likely considering the dramatic population 

growth in the area, which was discussed in research question i. Higher population densities 

ultimately result in land scarcity and forces people to find new and stable sources of income. Thus, 

Poulton et al. (2001) state that shifts on greater reliance on cash cropping are inevitable as 

population increases. 

The higher production of cash crops and population increase might be a coupled process since both 

processes seem to have high influence on the local cropland composition and configuration. 

Therefore, the conclusion of Woyessa (2014) that the production of perennial cash crops are key 

drivers in the change of farming systems in the Hawassa area can be strongly supported by our 

results. 
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Figure 38 Home gardens in the western areas (above left) and south-western areas (below left). 

Characteristic formation of linear features due to home gardens along streets in the west (right) in 

December 2014. Source: Google Earth. 

  

  

Figure 37 On-site farms in rural areas between Busa and Colaris (left) and south of Awassa Lake (right) in 

January and December 2014. Source: Google Earth. 
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5.2.3 Research Question iii 

How does land cover change affect landscape structure in terms of landscape configuration, 

diversity and annual to perennial crop distance? 

 

Our results have confirmed a west-east difference in the study area that showed different levels of 

class diversity, which can have large ecological impacts. Possible implications of landscape 

configuration on natural pest control will be discussed at the end of this chapter. Eastern areas were 

most fragmented and most diverse in 1984, western areas showed low diversity, high aggregation 

and dominance of one class (annual crop). Southern areas show characteristics of both areas, with 

high fragmentation on one side, but higher aggregation and dominance of annual crops on the other 

(Figure 34). In the past 30 years eastern regions have lost class diversity, approaching levels of 

western areas with high dominance of perennial crop. Diversity levels in western areas stayed 

almost the same, despite a loss in aggregation. 

 

Solely from these findings it seems as though only eastern areas experience a land structure change. 

But as Turner (2005) points out “no single metric can capture the pattern on a given landscape” It 

needs a palette of complementing measures to explain landscape change (Eiden et al. 2000). 

Adding the proximity index to the palette shows that the western area is indeed also experiencing 

changes in landscape configuration as the distance between annual and perennial crop is drastically 

decreasing (Figure 34). A closer look at number of patches and edge densities per class identifies a 

clear shift from annual cropland towards mixed cropland. Whereas in 1984 a few large fields of 

annual classes14 and 15 and mixed crop 13 dominate the area, the number of mixed crop 13, 12 

and perennial crop patches increase in 1998 and 2014. Thereby the number of patches was seen to 

increase first, which afterwards gain in size in 2014. One problem that was neglected during the 

land structure assessment was the existence of class 15, which held annual crop as separate class 

due to different classification settings. 

It is important to keep this class separate to acknowledge the higher potential of misclassification 

and allow better interpretation of the area. However, it is considered to hold annual crops and 

should therefore be treated as such in the analysis. This means that class 14 and 15 should have 

been merged. This has not taken place, which might explain almost consistent levels of diversity 

and aggregation. We suggest that indeed those metrics would have resulted in lower class diversity 

and higher aggregation if class 14 and 15 had been one class. This affects also the analysis of B2.2 

where we assessed texture and object shapes. 

However, the proximity index assessed annual class as a merged class of class 13, 14 and 15. Class 

13 was involved because it is assumed to hold large proportions of annual crop. Therefore, 

measuring its distance to purely perennial features is also relevant. 

 

Another aspect that might lead to misinterpretation of the data is the presence of mixed crop. It is 

assessed as one compact class, when in reality it is meant to hold more than one crop type. 

Therefore mixed crops hold highest crop diversity and fragmentation levels already in itself. This 

should be considered in the analysis of the data. Especially eastern landscapes that have shown 

decreasing diversity levels and hold high proportions of large mixed crop patches (class 12), which 

was shown in 2014 in the highest number of patches for class 12 with intermediate edge density at 

the same time (Figure 36). Therefore, fragmentation and crop diversity in the eastern regions are 

higher than indicated by the levels of Simpson’s Diversity Index (Figure 34). One the other hand, 

the data also showed that the number of perennial patches is decreasing while edge densities grow. 

This implies that the overall importance of perennial crops in the east is rising and large, compact 

areas of this crop type are present. This observation could be interpreted as an increase in field 
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sizes, which is known to not be true from observations made on satellite data and on-site 

knowledge (DeValenca 2014, Woyessa 2014, Kebede 2013). However, for eastern regions we 

cannot see this from our data because of the large pixel size of 30 x 30 m that is not able to depict 

field edges. Also the combination of number of patches and edge densities requires more 

interpretation on the relation between patch sizes and patch number. Another complimentary 

landscape metric such as area-to-edge ratio might have made this interpretation easier. 

The metrics in our assessment were chosen especially to complement the work of Kebede in 

assessing pest pressure in maize crops. Her hypothesis is that a higher proportion of perennial 

crops, which is habitat to natural pest predators, in the landscape can help sustainable pest 

suppression.  A diversified agricultural mosaic in the landscape with many patches and especially 

edges can sustain diversity of natural enemies (Bianchi et al. 2006). Edges are ecologically very 

important because they hold higher concentration of biodiversity, as populations move along edges 

(Bianchi et al. 2006).  

Therefore, edge density is an important measure in our assessment. The more edges are available 

per ha the higher is the potential for exchange (Debinsky & Holt 2000, Landis et al. 2000). Now it 

was measured per class, to complement the interpretation of number of habitat patches. However, it 

might have been more interesting to explain edge densities on landscape level instead of on class 

level because one discrete number would have improved a comparison between different 

landscapes and point out areas of higher potential for natural pest control. 

The number of habitat patches is an important measure to assess potential predator and pest habitat. 

Especially interesting is the size of a patch. The bigger the patch, the bigger becomes the core area 

which is where habitat for one species but can be hostile for others (Bianchi et al. 2006). Predators 

are known to mainly colonize pest habitat along its edges. Therefore, it can be speculated that 

bigger annual crop patches are more affected by pests than small fields (Poveda et al. 2008). Based 

on the stated, we can speculated, that for our study area pest pressure was the highest in western 

regions, where large annual crop fields were present and edge densities of these classes were low 

(Figure 35). The potential for natural pest suppression was highest in eastern areas, where the 

opposite was seen. We do not have past or current data on pest pressure to validate these 

assumptions. Therefore, a validation will follow within the work of Kebede, who is currently 

collecting these kinds of data. 

To assess the potential of natural pest control the distance between perennial and annual landscape 

elements was measured. It is hypothesised that the closer these elements are, the higher is the 

potential of colonization of pest habitat by natural pest predators (De Valenca 2014, Kebede 2013). 

The data have shown that the proximity decreases in western areas, but rises in the south and east. 

This can be explained through an introduction of perennial crops to the western areas, especially 

along new built streets in home gardens, which results in decreasing distances between the 2 crop 

types. In the east proportions of annual crop are largely decreasing, which results in rising 

distances. 

 

We tried to achieve an approximation of the landscape dynamics by using the Proximity Index. 

However, the classification is based on a 30 x 30 m pixel size. A pixel might incorporate 

hedgerows which are of high ecological importance (Schellhorn et al. 2014, Vialette et al. 2007, 

Bianchi et al. 2006, Forman & Baudry 1984), because they enable functional flows through the 

landscape and have been found to be predator habitat in our study area (DeValenca 2014). 

Information on hedgerow presence and length would be very interesting, but is not feasible when 

using Landsat data. VHR data or Radar data can be recommended as suitable data choices to gain 

more insight on hedgerow occurrence. 
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Another problem when indicating distances between pest and predator habitat is that now only 

perennial crop is considered as pest habitat. But is it known that scrub can also serve as predator 

habitat. This has not been considered because scrub area is inflexible in our analysis. Therefore, an 

assessment of scrub and annual class distance would have meant a correlation between crop cover 

and relief, on which the scrub class is based on. For 2014, this correlation might be valid, because 

scrub was seen to not occur on lower slopes. In this case the eastern areas hold the highest potential 

on natural pest control, because it is more mountainous and comprises many steep slopes. Southern 

regions and regions close to the lake hold the least potential for natural pest control based on scrub 

cover, because high slopes and therefore scrubs are missing. However, as discussed in research 

question i and iv, we assume that scrub cover was also present at lower slopes in 1984. Therefore, 

the influence of scrub presence on natural pest control in earlier years cannot be adequately 

assessed. 

 

In result section B2 texture and object shapes were assessed. Texture measures were seen to 

support the results of the land structure analysis on landscape level. GLCM contrast was seen to 

compliment diversity, whereas GLCM Orderliness (Entropy and ASM) were related to Contagion. 

The texture measure implied the same trends of increasing aggregation in the east and more or less 

stable aggregation and diversity in the west. GLCM contrast in the eastern areas on the other hand 

was seen to be increasing (Figure 30), whereas the Simpson’s Diversity Index showed the opposite. 

This is most likely caused by the different spatial context. GLCM measurements were based on 

subsets, for which eastern and southern areas were assessed in one subset. The diversity analysis 

was based on normalized subsets of a tile size of 2,5 x 2,5 km. Therefore, the subset east/south was 

represented by three tiles (East, East2, South; Figure 33) 

The object measures of shape, mean area and length, can be correlated to the measurements of 

number of patches and edge density. Both combinations can give more knowledge on patch sizes. 

Shape index and border index are comparable to the landscape metric “fractal dimension”, which 

usually is used to indicate human impact (Feng & Liu 2015, Trimble 2014). Especially with small 

field sizes and high diversity this metric was largely affected by the pixel size, which it resembles 

(Figure A.5). Therefore, fractal dimension was not assessed in part C. 

The good resemblance of landscape patterns with measurements derived by OBIA proves this 

method to be a valid addition to landscape analysis. It was able to show similar patterns as 

landscape metrics of Fragstats. But the accuracy and reliability of Fragstats metrics have been 

analysed to a large extent already (Fan & Myint 2014, Cushman et al. 2008, Tischendorf 2001, 

Riitters et al. 1995), which enables easier interpretation of these metrics and better comparison. 

Also, within in our own study an assessment of texture and object shape did not add more 

information on landscape then already achieved with Fragstats. Therefore, this step was redundant. 
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6 Conclusion and Recommendations 
Identifying and understanding long term changes in the local landscape context of Hawassa, 

Ethiopia is one of the very first steps to gain a deeper understanding of driving forces of pest 

incidence in the study area. Of particular interest are changes in cropland composition that can help 

to understand the impact of farming systems on pest pressure and natural pest control. 

Understanding patterns and trajectories of maize cultivation, for example, can be linked to the 

occurrence of stem borer infestation. 

In this study the land cover of the Hawassa area was examined using available long term Landsat 

time series for three moments in time, 1984, 1998 and 2014. Eleven relevant land cover classes 

were classified: bare soil, built-up, water, perennial crop, two annual crop classes, two mixed crop 

classes, grassland, scrub and wetland. 

 

The developed method could achieve overall accuracies of 77 % (1984) and 75 % (2014), which 

are comparable to those of other studies in our research area using pixel-based classification. 

We used an object-based image analysis for detecting the classes water and built-up. Due to locally 

very small field sizes that are often below the pixel size of 30 x 30 m, cropland, grassland, bare soil 

and scrub were classified based on pixel level. Vegetation was assessed by using NDMI as a 

measure for greenness and assessing its change between wet season and dry season state. Annual 

crop and perennial crop were separated using a change threshold of <0.15 for perennials. 

Additionally, mixed crop classes were created to acknowledge the presence of mixed pixels and 

thus, pixels containing more than one crop type. Bare soil was classified as being not green in both 

wet and dry season images. Grassland and scrub were excluded from the cropland classification by 

using NDVI and SWIR; and slope as classification criteria, respectively. Accuracies were assessed 

using aerial images and topographic maps for 1984 and ground truthing GPS data for 2014 as 

validation.  

 

Object based image classification of Landsat data was found to be neither effective nor feasible 

within our study area for the purpose of cropland classification.  

Created objects were meaningless and not able to depict trends in land cover change. This can be 

explained by a relatively low resolution of Landsat data that is not useful to detect small scale 

agriculture. Therefore, Landsat data might not be the best data choice to detect current landscape 

patterns at field level in Ethiopian landscapes or other 3
rd

 world countries that experience high 

population pressure. However, it is the only global data source that allows long-term monitoring of 

land cover change. 

 

The landscape change revealed a clear increase of perennial crop at the cost of annual crops with a 

large difference between the eastern and western part of the study area. 

More specific, our results showed an increase of perennial crop (+204 %) and built up (+616 %) 

and a decrease of annual crop, grassland and bare soil (-77 %, -82 %, -74 %) in the whole study 

area between 1984 and 2014. A qualitative analysis showed that natural areas were thereby 

replaced by cropland. A large east-west difference was noticed in higher annual crop and bare soil 

proportions in western regions. This led especially to a difference in the importance of mixed crop. 

Eastern areas already showed high proportions of perennial crop and mixed crops in 1984, whereas 

perennial crop classes have been introduced to western areas only after 1984. A shift in crop 

cultivation towards a higher rate of perennial crop was observed in higher proportion of perennial 
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crop class in the east and higher proportions of mixed crop classes in the west in 2014. Change was 

seen to proceed gradually from 1984 to 2014, but was slightly more pronounced in the time period 

1984-1998, which might be related to a political change in 1991. The results can give insights on 

underlying social and economic changes such as rising population pressure and a change in 

livelihood strategies towards the cultivation of multiple crops and cash crops. The depicted trends 

in changing cropland composition were found to be valid and reliable, despite the fact that the total 

amount of cropland is over-estimated. This is especially the case in 1984, where scrub and 

grassland areas are largely under-estimated. 

 

Land structure assessment showed that eastern areas lost most crop diversity on behalf of higher 

aggregation rates of perennial crops within the last 30 years. Western areas became more 

fragmented through the introduction of perennial crops. Dominance has shifted towards mixed 

crops.  

The west-east difference was substantiated using the landscape metrics Simpson Diversity, 

Contagion and Proximity Index. In specific, eastern areas were most fragmented and most diverse 

in 1984, western areas showed low diversity, high aggregation and dominance of annual crop at the 

time. Southern areas showed characteristics of both areas, with high fragmentation on one side, but 

higher aggregation and dominance of annual crops on the other. In the past 30 years eastern regions 

have lost class diversity, approaching levels of western areas. Changing perennial crop proportions 

in the western areas resulted in lower distances between crop types, higher edge densities and less 

aggregation. Mixed crop classes are of special importance as they hold high fragmentation and crop 

diversity in themselves. 

It can be speculated that changing annual-to-perennial crop distance and higher edge densities in 

western areas result in increased amount of predator habitat and thus, higher potential of pest 

suppression. The potential for the occurrence of natural pest enemies is highest in the eastern parts 

of the landscape through to the higher availability of perennial and mixed crops that serve as pest 

habitat. Mixed crops also indicate small patch sizes of annual crop, which result in smaller core 

areas for pest species and thus, higher potential for colonization by natural enemies. 

 

Recommendations: 

 Other satellite data, such as VHR data, is better suitable for depicting field level in 

Ethiopian landscapes than Landsat as a higher spatial resolution is demanded to detect crop 

patches. Additionally, other ecologically important features such as hedgerows, tree groups 

or allies and scrub would be visible. Radar could also be useful data in that sense. 

 

 Landscape assessment is highly scale dependent. We have now assessed landscape at a 

spatial scale of 2,5 x 2,5 km within the land structure assessment. Other studies used 

different higher scales, e.g 5 x 5 km (e.g. Bianchi et al. 2014, Fan & Myint 2014). 

Considering the fact, that pest predators can fly this might also be an interesting scale, 

especially for the assessment of perennial-to-annual crop distance and edge density. Edge 

density assessment was carried out on class level. One discrete density number at 

landscape level might be more interesting to allow comparison between different parts of 

the landscape. 

 

 Object based image analysis is a great tool for accurate mapping if used for the right 

purpose and with the right data. A crop type classification can be feasible in landscapes 

with larger fields, detectable by Landsat. If used in Ethiopian landscapes, VHR data should 
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be used as a data source or the classification should be limited to the separation of basic 

land cover types, such as soil, water, built up and vegetation.  

 

 The combination of OBIA and landscape assessment for landscape ecology is high. Further 

research should be carried out to define the relation between objects and patches and 

explain the usefulness of shape variables for landscape assessment. This can be achieved, 

e.g in a comparison of shape and object variables to existing metrics as used in Fragstats. 
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A Appendix: Supporting Results 

A Land Cover Classification 
Table A.1: Output Step A Coverage per class in ha and percent per year 

Class Name            1984 

[ha]            [%] 

            1998 

[ha]             [%] 

          2014 

[ha]             [%] 

1 Cropland 67297.61 70.16 69952 72.81 69121.83 72.29 

11 Perennial crop 13670.30 14.25 25394.10 26.43 41555.7 43.46 

12 Perennial-Annual Crop 18013.40 18.78 20265.20 21.09 13838.5 14.47 

13 Annual-Perennial Crop 12960.50 13.51 11980.30 12.47 12917.9 13.51 

14 Annual Crop 3582.81 3.74 1043.10 1.09 809.73 0.85 

15 ‘Separate’ Annual Crop 19070.60 19.88 11269.30 11.73 - - 

2 Natural Vegetation 14092.02 14.69 11477.43 11.95 10279.98 10.75 

21 Grassland 5430.78 5.66 2286.09 2.38 942.39 0.99 

22 Scrub 8661.24 9.03 8667.27 9.02 8774.73 9.18 

23 Wetland - - 524.07 0.55 562.86 0.59 

3 Bare Soil 3893.49 4.06 3006.99 3.13 1011.87 1.06 

4 Built Up 724.86 0.76 2197.71 2.29 5189.22 5.43 

5 Water 9914.04 10.34 9443.16 9.83 10019.3 10.48 

 TOTAL 95922.02 100.00 96077.29 100.00 95622.20 100.00 

 Cloud Cover 12773.61  12618.27  13073.49  

 

B1 Land Cover Change (all) 
Table A.2: Change Classes from 1984 to 1998 in pixel and percent 

Class to  3 4 5 11 12 13 14 15 21 22 23 

from  

3 

7704 200 46 4191 6399 4722 288 19606 104   

18% 0% 0% 10% 15% 11% 1% 45% 0%   

4 
14 6230 15 765 450 168 1 217 26   

0% 77% 0% 9% 6% 2% 0% 3% 0%   

5 
 10 102845 1257 115 84 17 1   5823 

 0% 93% 1% 0% 0% 0% 0%   5% 

11 
732 1995 616 79505 44656 16929 1037 2990 3423   

0% 1% 0% 52% 29% 11% 1% 2% 2%   

12 
1733 3798 409 94165 60163 25434 1490 8619 4328   

1% 2% 0% 47% 30% 13% 1% 4% 2%   

13 
5821 4649 114 37670 36454 24581 1800 30902 2013   

4% 3% 0% 26% 25% 17% 1% 21% 1%   

14 
2270 1630 4 6250 8201 6439 990 13712 311   

6% 4% 0% 16% 21% 16% 2% 34% 1%   

15 
13862 3955 208 44888 54141 41537 4603 46685 2011   

7% 2% 0% 21% 26% 20% 2% 22% 1%   

21 
1274 426 292 13459 14583 13212 1363 2478 12312 939  

2% 1% 0% 22% 24% 22% 2% 4% 20% 2%  

22 
        872 95364  

        1% 99%  
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Table A.3 Change Classes from 1998 to 2014 in pixel and percent 

Class to  3 4 5 11 12 13 14 21 22 23 

from  

3 

3814 478 3 5991 6438 14596 1661 119 48  

11% 1% 0% 18% 19% 44% 5% 0% 0%  

4 
93 16073 52 5549 1087 520 12 32 13  

0% 66% 0% 23% 4% 2% 0% 0% 0%  

5 
57 67 104093 300 47 26 4 3 1 243 

0% 0% 99% 0% 0% 0% 0% 0% 0% 0% 

11 
1567 14148 3319 197275 37322 17171 1134 2929 1329 156 

1% 5% 1% 70% 13% 6% 0% 1% 0% 0% 

12 
1547 9602 1163 133671 43954 27248 1190 2255 575 23 

1% 4% 1% 59% 20% 12% 1% 1% 0% 0% 

13 
991 4240 521 65093 29856 26410 1612 2244 149 7 

1% 3% 0% 49% 22% 20% 1% 2% 0% 0% 

14 
109 333 126 4174 2504 3548 418 218 4 1 

1% 3% 1% 36% 22% 31% 4% 2% 0% 0% 

15 
2997 7930 61 33008 26265 50247 2680 734 273  

2% 6% 0% 26% 21% 40% 2% 1% 0% 0% 

21 
41 717 1304 11388 4722 3493 280 1918 1121 0 

0% 3% 5% 45% 19% 14% 1% 8% 4% 0% 

22 
20 27  1757 208 41  17 92877 0 

0% 0%  2% 0% 0%  0% 96% 0% 

23 
         5823 

         100% 

 

Table A.4: Cropland Change Only 

Class LCC 1984 to 1998 [ha] LCC 1998 to 2014 [ha] LCC 1984 to 2014 [ha] 

 was changed to was changed to was changed to 

11 5905.08 16467.6 5006.43 21235.15 2708.64 27203.4 

12 8474.85 

5905.08 

12030.4 

5006.43 

12434.3 

2708.64 
13 3390.31 5858.37 5307.75 

14 562.52 375.66 844.66 

15 4039.92 2970.72 8616.69 

Total 22372.68 26241.58 29912.04 

 

Table A.5: Change of Natural Vegetation  

Class LCC 1984 to 1998 [ha] LCC 1998 to 2014 [ha] 

 was changed to was changed to 

1  7359.75  4585.68 

11  1701.63  1749.24 

12  1898.73  1027.35 

13  1621.62  1634.04 

14  150.12  175.05 

15  1987.65   

21 4097.25  1891.53  

22   116.01  

3 3186.63  2648.43  

4  57.24 47.43 117.72 

5 133.01    

Total 7416.99 4703.4 
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Figure A.1 Change in cropland composition 1984-1998 to Annual (#12,13,14,15) or Perennial Crop (#11) 

 
Figure A.2 Change in cropland composition 1998-2014 to Annual (#12,13,14,15) or Perennial Crop (#11) 
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Figure A.3 Areas and classes affected by change in natural cover from 1984 to 1998 

 

 
Figure A.4 Areas and classes affected by change in natural cover from 1998 to 2014 
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B2 Land Cover Change (subset) 
Table A.6: Number of classified sub-objects per subset  

Subset 1984 1998 2014 

Green Vegetation (south, east) 42079 46772 33257 

Sparse Vegetation (west) 9068 17558 13046 

Intensive Agriculture (north) 97 4135 2992 

Other (Hawassa City; wetlands) 1408;463 2059;1787 2059;502 

Water (Awassa Lake) 1 1 1 

 

Table A.7: Classes present per subset, area in ha 

 

class 

Green vegetation (south, east) Sparse Vegetation (west) 

1984 1998 2014 1984 1998 2014 

11  10766.6 17695.5 29491.3 472.1 2839.9 6158.0 

12  13869.9 14454.8 8434.3 1545.3 3565.4 3385.7 

13  5516.8 7240.1 4385.6 4584.3 2526.3 6703.2 

14  771.5 410.0 189.9 1603.2 308.3 407.8 

15  10638.3 3025.7  6228.4 6580.2  

21  3668.1 1384.1 356.1 441.4 116.1 72.3 

22 7015.9 7014.9 7105.6 628.3 628.7 640.7 

23   0.4 0.7    

3 344.5 870.1 160.2 3149.4 1838.8 527.5 

4  131.3 730.2 2098.9 16.6 159.9 558.6 

5  33.5 19.3 306.7 14.5 125.0 216.7 

 

class 

Intensive Agriculture (north) Hawassa City 

1984 1998 2014 1984 1998 2014 

11  461.5 1443.6 1481.2 198.3 775.1 647.3 

12  564.6 497.2 729.0 509.6 433.4 189.0 

13  1365.9 855.6 1279.4 967.3 337.7 301.5 

14  179.3 97.6 189.3 965.8 108.9 3.8 

15  1396.1 880.7  278.9 552.1  

21  161.9 247.6 131.0 17.7 37.4 18.7 

22 51.0 51.0 51.1 28.9 28.9 30.1 

23        

3 42.6 156.6 145.2 33.0 39.6 39.2 

4  7.7 0.2 136.4 558.7 1269.1 2322.4 

5  0.2 0.2 74.5 17.6 20.5 33.5 

 

class 

Other- Wetlands Awassa Lake 

1984 1998 2014 1984 1998 2014 

11  1743.8 2594.6 3753.8 19.8 15.2  

12  1496.0 1289.0 1089.6 10.1 0.9  

13  500.3 988.8 230.9 2.5 0.5  

14  59.5 114.9 18.3 0.0 0.3  

15  491.3 221.9  0.2 0.2  

21  1129.4 500.5 362.8 7.2   

22 936.9 943.5 945.5 0.2  0.3 

23   523.7 562.2    

3 318.6 99.5 136.7 0.1   

4  9.3 38.4 72.9 1.2   

5  674.6 79.3 171.0 9173.5 9198.9 9217.0 
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Table A.8: GLCM Texture Measurements (all directions) based on Land Cover Classification 

Measure  Green 

Vegetation 

(south, east) 

Sparse 

vegetation 

(west) 

Intensive 

Agriculture 

(north) 

Hawassa City Wetlands 

C
o

n
tr

as
t 1984 4016.47 415.36 340.21 1647.17 484.42 

1998 3935.56 390.47 278.34 1323.80 479.64 

2014 4555.10 1776.33 361.83 2849.37 879.81 

E
n

tr
o
p

y
 1984 3.205 2.905 2.549 2.992 2.547 

1998 3.099 3.205 3.062 2.891 2.635 

2014 2.632 2.830 2.786 2.389 2.123 

A
S

M
 

1984 0.064 0.1 0.143 0.086 0.119 

1998 0.073 0.066 0.075 0.112 0.125 

2014 0.125 0.09 0.104 0.219 0.22 

M
ea

n
 

1984 53.91 14.91 14.95 17.96 14.67 

1998 51.48 14.58 14.28 14.33 15.88 

2014 54.42 20.56 13.18 17.38 16.63 
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Figure A.5 Description of mean object shapes for three subsets based on land cover maps of 1984, 1998, 

2014 

Table A.9: Object measures for classified objects per subset 

Parameter  Green Vegetation 

(south, east) 

Sparse vegetation 

(west) 

Intensive 

Agriculture (north) 

Hawassa City 

A
re

a 

1984 46.95 125.86 102.88 56.68 

1998 126.95 117.93 162.61 108.21 

2014 143.74 175.66 163.16 91.63 

L
en

g
th

 1984 6.895 16.28 12.6 8.56 

1998 14.33 16.49 18.39 12.99 

2014 15.51 18.38 17.07 11.75 

S
h

ap
e 

in
d

ex
 

1984 1.243 1.58 1.412 1.324 

1998 1.465 1.684 1.66 1.453 

2014 1.457 1.546 1.547 1.426 

B
o

rd
er

 

in
d

ex
 

1984 1.137 1.422 1.301 1.211 

1998 1.335 1.511 1.499 1.319 

2014 1.316 1.391 1.386 1.296 
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B3 Land Cover Change (Object) 

 

Table A.10 Number of segmented objects per subset 

Subset 1984 1998 2014 

Green Vegetation (south, east) 21881 11098 938 

Sparse vegetation (west) 2173 1828 3973 

Intensive Agriculture (north) 97 69 259 

Other (Hawassa City; wetlands) 177; 187 233;231 525;270 

Water (Hawassa Lake) 1 1 1 

 

Table A.11: B3 Object measures for segmented objects per subset 

Parameter  Green Vegetation 

(south, east) 

Sparse vegetation 

(west) 

Intensive 

Agriculture (north) 

Hawassa City 

A
re

a 

1984 32.81 96.44 499.57 96.44 

1998 64.68 114.64 702.29 114.64 

2014 765.27 52.75 187.1 104.31 

L
en

g
th

 1984 10.3 15.35 38.92 15.35 

1998 15.31 19.29 46.25 19.29 

2014 50.46 12.21 24.96 17.54 

S
h

ap
e 

in
d

ex
 

1984 1.498 1.419 1.715 1.419 

1998 1.642 1.613 1.727 1.613 

2014 3.084 1.697 1.952 1.91 

B
o

rd
er

 

in
d

ex
 

1984 1.291 1.269 1.521 1.269 

1998 1.438 1.412 1.506 1.412 

2014 2.837 1.493 1.732 1.719 

 

C Landscape Structure Change 
Table A.12: Landscape metrics at landscape level 

Tile  Contagion [%] Simpson Diversity [-] Proximity Index [-] 

City 

 

1984 46.2211 1.7131 271.4742 

1998 56.9571 1.4122 25.471 

2014 71.2326 0.8096 18.3759 

East 

 

1984 34.9025 1.6895 160.8476 

1998 47.8938 1.3424 39.9211 

2014 58.6179 1.021 184.5178 

East2 

 

1984 34.8962 1.8255 13.2855 

1998 41.029 1.6757 49.3234 

2014 48.341 1.3636 68.3262 

South 

 

1984 46.0282 1.3373 35.3402 

1998 43.1414 1.2662 48.4912 

2014 58.4528 0.8581 117.7522 

West 

 

1984 52.0362 1.3497 207.8721 

1998 33.6877 1.5358 54.9104 

2014 48.7735 1.2333 83.4019 

West2 

 

1984 51.1525 1.2581 458.6867 

1998 39.4194 1.3751 164.8544 

2014 48.7886 1.2243 34.3274 
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B Appendix: ESP Analysis 
Table B.1: Segmentation Parameters of multiresolution segmentation per subset and year.  

Scale (Colour, Compactness). 

Subset 1984 1998 2014 

Green Vegetation (south, east) 3 (0.1, 0.1) 5 (0.1, 0.1) 430 (0.1, 0.5) 

Sparse vegetation (west) 5 (0.1, 0.6) 7 (0.1, 0.5) 250 (0.1, 0.5) 

Intensive Agriculture (north) 14 (0.3, 0.3) 20 (0.3, 0.3) 165 (0.4, 0.9) 

Other (Hawassa City; wetlands) 10 (0.2, 0.3) 10 (0.2, 0.3) 200 (0.2, 0.5) 

Water (Hawassa Lake) - - - 

 

 

 
Figure B1 ESP2 Output of 2014, Graphs showing Local Variance against Rate of Change. Yellow bars 

indicate suggested scale. 

Subset West- “Sparse Vegetation” 

Subset East/South - “Green Vegetation” Subset North - “Intensive Agriculture” 

Subset Central- “Other” 
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C Appendix: E-cognition rulesets 

 
Figure C.1 Ruleset of step A2.1, creating subsets 

 
Figure C.2 Ruleset of step A2.2, cloud masking 
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Figure C.3 Ruleset of stepA2.3 for 2014, Road Classification 
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Figure C.4 Ruleset of stepA2.3 for 1984 and 1998, Road Classification 
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Figure C.5 Ruleset of step A2.4 in 2014, Land Cover Classification 
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Figure C.6 Overview of Classification process of step A2.4 for 2014 
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Figure C.7 Ruleset of step A2.4 in 1984 and 1998, Land Cover Classification 
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Figure C.8 Ruleset of step A3.2, cropland classification based on NDMI Change Thresholds 
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Figure C.9 Ruleset of step B2.2, Creating Variables for Object Metrics 
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Figure C.10 Ruleset of step B3.1, aggregation classification results to segmented objects 
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D Appendix: Erdas Imagine Models 
 

 
Figure D.1 NDMI Differencing for Wet Season /Dry Season Comparison 

 

 
Figure D.2 NDMI Differencing for Wet Season /Dry Season Comparison, Exception June 1998 

 

 
Figure D.3 NDMI Differencing for Wet Season /Dry Season Comparison, Exception April 1984 

 

 
Figure D.4 Grassland Classification Thresholds
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E Appendix: ArcGis Models 
 

 
Figure E.1 ArcMap Model for Step A4.1, Filling Cloud Covered Areas of the wet season image with data 

from an additional wet season image, part 1 
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Figure E.2 ArcMap Model for Step A4.1, Filling Cloud Covered Areas of the wet season image with data 

from an additional wet season image, part 2 
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Figure E.3 ArcMap Model for step A4.2, Adding Class Details and Erasing Overlay 

 

 

Figure E.4 ArcMap Model for step A4.3, Erasing Cloud Covered Areas of 2014 
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Figure E.5 ArcMap Model for step A4.4, Transformation to Raster and Output Table 

 

Polygon 
to Raster

Input from A4.2

Wetland

Built Up

Merge

Raster

Water

Grassland

Input from A4.3

Cropland

Scrub

Merged

Raster to 
other Format

TIFF

Copy 
Rows

Table
Joined 
Table

Raster To 
Polygon

Polygon

Dissolve

Join Field

Dissolved

UpdatedUpdate 
Area

Table To 
Table

Output 
Table

Input Output Tool 

Legend 


