

Delta Session DS 7: Rhine Delta

ChairBouke Ottow, Deltares, the NetherlandsOrganised byOtto de Keyzer, Deltares, the Netherlands

Short summary

During the session, policy makers, policy officers and scientists were brought together. The following points struck attention:

- Policy makers communicate in pictures and events, clear visions; scientists focus on maps, schemes and figures but, in this case, don't put much emphasis on how unique their research is.
- Time horizons differ between policy makers, policy implementers and scientists
- Scientists focus on reflecting on all uncertainties; policy officers focus on eliminating uncertainties to facilitate decision making processes.
- Dilemma between either taking a flexible adaptation path and a need for clear long term decisions on the part of developers
- It is crucial to take into account <u>all</u> (KNMI06) scenarios in decision taking processes as only then the uncertainties in climate change are taken into account.
- Be careful not to be too perfect, uncertainties will always remain.
- How to deal with changing risks at different time scales?

Introduction by Bouke Ottow

We want to hear from policy makers: What do policy makers need from science, how can they effectively deal with uncertainties? ...and we want to hear from scientists some clues for policy-makers how to handle the results from science, including the accompanying uncertainties.

Keynote by Lenie Dwarshuis, Representative for the Province of South Holland

Title: Climate adaptation time for the Dutch Rhine Delta

- Though water is a threat, it also provides many (market) opportunities. The history of the Netherlands from the Golden Ages until now exemplifies that.
- The climate is changing, that is no discussion. What is under discussion is the degree and the tempo.
- The people trust the government that it assures the Netherlands is safe and will be in the future.
- With the Deltaworks we learned that the Delta became safe but not sustainable, as the natural system was eliminated.
- Current problems include soil subsidence, salinization, water shortage, scarcity of space.
- We consider re-opening the barriers against the sea.
- There is an obvious need for more space but this cannot be at the cost of safety; casualties are not acceptable.
- Only further investments can assure that our children will be save and a new Delta Program is necessary.
- New deltaplan: 5 important Delta-decisions will be put forward to politicians.

Presentation by Jules Beersma

Title: Uncertainties in climate projections and hydrological models for climate change studies in the Rhine Basin

- Climate models give biased results
- For temperature these biases are similar to the expected change in temperature
- For precipitation these biases are larger than the expected change in precipitation
- A bias correction can be applied that corrects for these abnormalities
- The bandwidth represented by an ensemble of climate models is rather large
- The information about climate change is however in the full range represented by the whole ensemble.

Conclusions:

- There are large uncertainties in emission scenarios and climate models, and thus in climate model projections (for the Rhine basin).
- Uncertainty in projections is somewhat larger for the far future (2100) than for the near future (2050).
- For the far future, most projections show an increase in MQ in winter and a decrease in summer.
- Uncertainty in extreme discharge projections (like HQ1000) is often larger than for projections of averages discharges.
- The uncertainty in discharge projections for the Rhine basin is large; except for a clear increase in average discharge in winter in the far future, both increases and decreases are projected.
- As a result, one should be careful considering only the ensemble mean change, the majority of the projections or single-model results since this ignores the fact that there is also a (small) probability for a change in the opposite direction.
- The full information is in the full range of climate projections.

Presentation by Jaap Graveland, Secretary Deltaprogramme Rijnmond-Drechtsteden, Waterdienst

Title: Deltaprogramme Rijnmond-Drechtsteden: Towards adaptive water management and spatial planning to prepare for different scenarios of climate change

- This is 1 out of 6 regional programmes within the Delta Programme.
- Main problems: low-lying and subsiding area in combination with urbanization, salinisation and safety issues.
- On the one hand problems are increasing, on the other high ambitions for development though vague on the long term.
- Important to adapt before disaster strikes.
- In 2013 the Advice from the Steering Committee will be presented and in 2014 a political decision is expected.
- Problem analysis -> regional ambitions -> resulting challenge -> possible solutions -> advice.
- Uncertainty in climate change but uncertainty with regard to economic development is even larger.
- Tendency is to postpone decision, but people and investors need clarity on measures that are going to be taken as soon as possible.
- Dilemma between possible responses in this situation of uncertainty:
 - o Postpone
 - Combined measures
 - o Robust
 - o Flexible
- Dilemma regarding how to deal with uncertainties. On the one hand a need for adaptive path and need for investments to have soon clarity on decisions.

Presentation by Evert van der Meide, Policy Adviser Province of Holland

Water safety policy for spatial planning in unembanked areas in the province of South Holland

- Detailed provincial decision framework to evaluate if specific unembanked areas are suitable for building.
- Probability of casualties and social disruption is central in this framework
- Climate factor is introduced in decision framework, and there is a need to decide on climate scenario to get this factor clear
- Expects that in 2013-2014 when advice about Rijnmond-Drechtsteden is presented clarity will exist on measures taken in the area so the decisional framework can be finished.

Comments Jaap Kwadijk

- Different communication:
 - o Dwarshuis: pictures, events
 - o Jules: maps, schemes, figures. Did not mention that in Rhineblick best scientists
- Difference in time-horizon: 2050, 2100, 2013

- After 2013 less uncertainties?
- Scientists as aliens
- Jaap's clean figures
- Evert: incredible precise risk calculations
- Questions:
 - o Is there any question to be asked to the scientists (by the policy makers)?
 - o If Jaap Graveland and Evert van der Meide are doing what they say, is Mrs Dwarshuis convinced that the quality of life is safeguarded?

Discussion

Lenie Dwarshuis: Decision makers of course have many questions, it is the basis for all decision makers. E.g. a 2-week meeting is held with Deltares to formulate questions that are answerable.

Jules Beersma: Do not choose between scenarios! Together they reflect the uncertainties that need to be taken into account.

Lenie Dwarshuis: We have to be careful not to be too perfect; uncertainties will always remain.

Jules Beersma: Uncertainties do change in time and are related to time scales, how can be anticipated on changing risks?

Remaining questions by the audience

- Who are/do you recognize as your partners in addressing the problems of climate change on water management?
- What can be the role of private actors? What scale level? The Rhine in the Netherlands is a sink in relation with Germany.
- Jules: Some consequences of the higher and lower discharges of the Rhine in the future.
- A question about the hydrological models for climate change studies in the Rhine basin: how uniform are the models? Are the models objective?
- How can citizens get/be self-reliant with regards to climate change
- Jaap Graveland: Already now the Maeslantkering is not up to Deltastandard (1 use per 12 years * 1 failure per 200 times means 1 failure per 2400 years (Piet Rietveld).
- Jules Beersma: Why use many climate models and only one hydrological model? (Piet Rietveld)
- How does the 'strictness' of 16.000 m3/s relate to all the uncertainty in the catchment modelling?
- What is an appropriate time horizon for spatial planning/development? And for flood safety? 1/10.000 year? 1/100 years? Sea level rise 0,5 m, 1 m, >2m? (Hans de Boois)
- What sort of certainties are required for policy making? (Hans de Boois)