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Abstract
Clara Patricia Peña Venegas (2015). People, soil and manioc interactions in the upper 

Amazon region. PhD thesis, Wageningen University, The Netherlands, with summaries in 

English and Dutch, 210 pp.

The presence of anthropogenic soils, or Amazonian Dark Earths (ADE), fuels the debate 

about how pristine the Amazon ecosystem actually is, and about the degree to which humans 

affected Amazonian diversity in the past. Most upland soils of the Amazon region are very 

acid, highly weathered, and have a limited nutrient holding capacity; together, these 

characteristics limit permanent or intensive agriculture. Várzeas or floodplains that are 

periodically enriched with Andean sediments carried and deposited by rivers that cross the 

Amazon Basin, are moderately fertile but experience periodic floods that limit agriculture to 

crops able to produce in a short time. ADE patches in uplands usually are more fertile than 

non-anthropogenic uplands, providing a better environment for agriculture. Most studies 

about how people manage a broad portfolio of natural and anthropogenic soils come from 

non-indigenous farmers of Brazil. There is limited information about how indigenous people 

use a broad soil portfolio, and how this affects the diversity of their staple crop, manioc. With 

the aim to contribute to the understanding of the role of ADE in indigenous food production, 

as compared with other soils, and in order to provide information about how indigenous 

people use and create diversity in Amazonia, research was carried out among five different 

ethnic groups living in two locations of the Colombian Amazon.

Several social and natural science methods were used during the study. These included 

ethnography, participant observation, structured and un-structured interviews, sampling of 

soil and manioc landraces, standardized protocols for the quantification of soil physical and 

chemical variables, and molecular techniques to assess genetic diversity of manioc and 

arbuscular mycorrhizal fungi.

Results indicate that ADE patches from the Middle Caquetá region of Colombia are not 

contrastingly more fertile than surrounding, non-anthropogenic upland soils, except for higher 

levels of available phosphorus in ADE. Indigenous farmers from the Middle Caquetá region 

do not use ADE more frequently or more intensively than non-ADE uplands. The swidden 

agriculture practiced on ADE and on non-ADE uplands is similar. Although ADE patches 

were not specifically important for swiddens and therefore relatively unimportant for the 
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production of manioc. They were important as sites for indigenous settlements and for 

maintaining agroforestry systems with native and exotic species that do not grow in soils with 

low available phosphorus. Várzeas were also used for agriculture, whether farmers had access 

to ADE or not. Differences occurred between locations in the type of floodplains selected and 

the way they were cultivated. Those differences were not related to differences in soil 

conditions but were associated with the cultural traditions of the different ethnic groups who

cultivate low floodplains, as well as labor availability when organizing collective work 

(mingas) to harvest floodplains.

Manioc diversity among indigenous communities was not predominantly related with 

differences in soil types. Complete manioc stocks were cultivated equally on ADE, non-ADE 

uplands or várzeas. One issue that could be related with this non-specificity in manioc-soil 

combinations was the similar arbuscular mycorrhizal fungi diversity of soils and the high 

number of arbuscular mycorrhizal symbionts associated to manioc roots; these were shown to 

be independent from the physicochemical composition of the soil or the manioc landrace. 

Differences in the diversity of manioc stocks among ethnic groups were predominantly 

related to cultural values attached to different manioc landraces.

This study of indigenous agriculture in environments with natural and anthropogenic 

soils indicates that people have had an important role in transforming the Amazonian 

ecosystem through agriculture, with consequences on forest composition and forest dynamics. 

Pre-Columbian people contributed to this by creating an additional soil- the Amazonian Dark 

Earths. Although ADE are not presently considered to play a major role in indigenous food 

production, indigenous people believe that ADE have had an important role in the 

management of the first maniocs cultivated by their ancestors. The domestication of manioc 

and the creation and maintenance of hundreds of different landraces by indigenous people 

contributed, and still contributes, to the region’s plant diversity.
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General Introduction
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The Amazon forest is the biggest patch of continuous tropical forest and also one of the most 

bio-diverse regions of the world (Peres et al., 2010). The high diversity of the Amazon region 

is the product of natural events that occurred during the history of Planet Earth such as forest 

fragmentation during the Pleistocene, marine incursions during the Mid-Miocene and 

encrustation of Amazonian rivers acting as natural barriers to gene flow (Solomon et al., 

2008); human interventions, however, also shaped Amazonian diversity. The Amazon forest 

has been inhabited for thousands of years by native societies which have been interacting with 

the environment, changing the floristic composition of the vegetation through agriculture and 

creating new environments by modifying soils (Balée, 2014). There is a debate among 

scientists, however, about how much people contributed to shaping diversity in the Amazon 

region. On the one hand, some scientists affirm that human interventions were heterogeneous 

and mainly limited to areas near floodplains along the main rivers (Meggers, 2003;

McMichael et al., 2012). Therefore, people had little effect on the diversity of interfluvial 

areas, the diversity there being the product of long-term evolutionary and ecological 

processes. On the other hand, other scientists affirm that the Amazon landscape was highly

impacted by humans. Therefore, many areas of the Amazon region can be considered 

constructed or ‘domesticated’ landscapes, constituting ‘hotspots’ of bio-historical diversity in 

the Amazon region (Denevan, 1992; Balée, 1993; Heckenberger et al., 2007).

A better understanding of how people use and create diversity would provide important 

hints to dimension the effect of people in the Amazonian diversity.

1.1. Amazonian landscapes for food production

The Amazon Basin is composed of different environments with a range of conditions and 

soils (Quesada et al., 2010). Most uplands of the Amazon Basin are dominated by very acid, 

highly weathered soils, originating from parental materials rich in kaolinite with a naturally 

limited nutrient holding capacity (Sombroek, 1966; Cochrane and Sanchez, 1982; Ma and 

Eggleton, 1999; FAO, 2006). Under these conditions indigenous people usually cultivate 

through swidden agriculture. Swidden agriculture, also known as slash-and-burn or shifting 

cultivation, consists of a system in which forested areas are “slashed and burnt” to establish 

polycultures for a short period of time. Cultivation is subsequently followed by a long fallow 

period. During the fallow, the agricultural field returns into a (secondary) forested area while 

a new forested area is opened for a new swidden (Hammond et al., 1995; Perreault, 2005;
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Bonilla-Bedoya et al., 2013). Consequently, upland landscape is transformed over time into a 

mosaic of secondary forests varying in age (Junqueira et al., 2011).

Besides uplands with acid, low-fertile soils, in the Amazon region the floodplains 

known as várzeas are also important environments for agriculture. Várzeas are enriched with 

Andean sediments carried and deposited by rivers that come from the Andes and cross the 

Amazon region (Piedade et al., 2001). Andean sediments deposited on floodplains increase 

the pH and the cation exchange capacity of the soils and enrich them with calcium and 

magnesium (Teixeira et al., 2006), resulting in more fertile soils compared with most uplands 

of the region. Under these conditions floodplain cultivation can be relatively intensive (Shorr, 

2000; Fraser et al., 2012), but the crop cycle is limited by floods, and floodplains tend to be 

covered with younger secondary forests.

The discovery of Amazonian Dark Earths (ADE) or Terra Preta de Índio demonstrated 

that Amazonian soils could be modified permanently by anthropogenic activities under humid 

tropical conditions where organic matter degradation rates are usually high and leaching and 

run-off can be intense. ADE are usually less acid than non-ADE soils, with good cation 

exchange capacity, good base saturation, and relatively high quantities of organic matter, 

nitrogen, calcium, and available phosphorus (Glaser and Birk, 2012). ADE not only provide 

the opportunity for a more permanent agriculture, but also the possibility to introduce, favor 

or cultivate plant species unable to thrive in other conditions (Junqueira et al., 2011).

Therefore, younger secondary forests similar to those observed on floodplains might dominate 

ADE, but with differences in plant species composition.

Based on archaeological evidence, it has been proposed that - due to the better soil

conditions of ADE for agriculture - ADE may have had an important role in the food 

production of complex societies that emerged in the region (Heckenberger et al., 2007;

Arroyo-Kalin, 2010; Schmidt et al., 2014). When ADE were not present, pre-Columbian 

societies inhabited bluffs near floodplains and cultivated these intensively, using uplands as a 

complementary environment for food production during flooding (Denevan, 1996, 2012).

However, observations on contemporary indigenous groups do not follow previous patterns. 

The cultivation of ADE has been reported only in Kuikuro communities of Brazil (Schmidt 

and Heckenberger, 2009), but not in indigenous groups of the Colombian Amazon region 

where ADE are present (Eden et al., 1984; Torres-Sanabria and Rucaurte, 2013). In 

indigenous communities where ADE are not present, swiddens are placed more frequently on 

uplands than on floodplains (Eden and Andrade, 1987; Wilson and Dufour, 2006; Acosta et 
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al., 2011).

Why land use by different indigenous groups does not follow a consistent pattern is not 

clear, but it is also not clear if practices or knowledge of contemporary indigenous groups 

support hypotheses addressed by researchers. This thesis addresses the indigenous use of 

ADE in relation to other available soils as well as the indigenous knowledge about ADE 

formation and the role of ADE in manioc (Manihot esculenta Crantz) domestication and 

diversification.

1.2. Manioc, the Amazonian staple crop

Enhanced by the presence of ADE, the Amazon region offers a broad range of environments 

with soils that differ in composition allowing cultivation of different crops. However, the 

main crop cultivated in the region is manioc, which is also the staple crop for most of the 

native population (Dufour, 1988; Duputié et al., 2009b; Fraser, 2010a). Manioc, usually 

vegetatively propagated through stem cuttings, dominates the crop fields and is characterized 

by the cultivation of a high diversity of landraces (Ferguson et al., 2012; Bradburry et al.,

2013). Manioc landraces are roughly classified into two groups according to the concentration 

of cyanide compounds in their roots and related processing as sweet maniocs (those with less 

than 100 mg cyanogenic compounds per kg of roots) or bitter maniocs (those with more than 

100 mg cyanogenic compounds per kg roots) (Dufour, 1988).

The high diversity of manioc in the Amazon region has been attributed to environmental 

and social factors. It has been stated that sweet maniocs are generally cultivated in the upper 

Amazon Basin near the Andean foothills where soils are more fertile while bitter maniocs are 

generally cultivated in the lower Amazon basin where soils are more acid and less fertile 

(Bradburry et al., 2013). However, this is not always the case (Fraser, 2010b; Fraser et al.,

2012), suggesting that a broader portfolio of soils could promote convergent adaptation of 

manioc which results in the selection of specific manioc landraces for specific environments 

(Fraser and Clement, 2008; Alves-Pereira et al., 2012), in this way increasing manioc 

diversity. Additionally, the cultural management of manioc could promote or deplete manioc 

diversification. On the one hand, the geographical isolation of ethnic groups in the region 

(Elias et al., 2000), the use of manioc landraces associated to socio-cultural and symbolic 

values (Emperaire and Peroni, 2007), culinary traditions of each particular group (Wilson and 

Dufour, 2006), and the domestication of manioc volunteer seedlings into new landraces 
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increase manioc diversity (Pujol et al., 2007). On the other hand, the permanent exchange of 

manioc landraces among farmers and communities could homogenize the genetic diversity 

among communities, decreasing manioc diversity in the region. Indigenous farmers are 

exposed to different environments to cultivate manioc but also to specific cultural and social 

rules that are reflected in their manioc portfolios. Cultural exchange of manioc stems could 

break geographical separation of maniocs. As manioc still has the capacity of sexual 

reproduction, the cultivation together of genetically different maniocs could result in a 

genetically homogeneous stock of manioc landraces through time. But if cultural exchange is 

accompanied by a strict maintenance of clones and farmers´ stocks are enriched by the 

additional selection of volunteer seedlings, the result will be higher manioc diversity in the 

region. It is not clear how indigenous people manage all these eventualities and how these are 

reflected in manioc diversity. This thesis addressed how soil variability and cultural patterns 

act together to explain manioc diversity in the study area.

As the evolutionary selection of manioc favored bulky roots rich in starch as the 

principal edible part of the manioc plant, the root system has a limited capacity to acquire 

nutrients from the soil. Manioc copes with this limitation by associating to arbuscular 

mycorrhizal fungi. Arbuscular mycorrhization is a plant-fungi association between 

Glomeromycota endo-symbiont fungi and plants (Fitter and Moyersoen, 1996) with an 

important role in the mobilization of soil phosphate and other nutrients to roots (Helgason and 

Fitter, 2009). Arbuscular mycorrhizal fungi are affected by plant community composition 

(Davison et al., 2011) and soil conditions (Entry et al., 2002). Plant communities of 

floodplains and non-flooding environments and of ADE and non-ADE upland soils are 

different. Therefore, each field plot could provide different arbuscular mycorrhizal fungal

communities with different affinities to establish an association with manioc. But because 

under swidden agriculture arbuscular mycorrhizal fungal communities are exposed more 

permanently to native species and transitory to crop species manioc-arbuscular mycorrhizal 

fungi might be a promiscuous association. A clear specificity between manioc and arbuscular 

mycorrhizal fungi might not be evident.

Additionally, acidity and phosphate availability also affect arbuscular mycorrhization 

(Entry et al., 2002). In general, manioc roots cultivated in Amazonian soils with high acidity 

and low phosphate availability are well-mycorrhized and  arbuscular mycorrhizal associations 

are effective providing the nutrients manioc requires (Howeler and Sieverding, 1983a; Dodd

et al., 1990; Ceballos et al., 2013). On the contrary, the arbuscular mycorrhization in 
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environments with high soil phosphate availability is generally inhibited or less efficient 

(Howeler et al., 1982; Howeler and Sieverding, 1983b; Habte and Manjunath, 1987). It is not 

clear whether all manioc landraces have the same affinity to establish arbuscular mycorrhizal 

associations under different environmental conditions. Differences in manioc arbuscular 

mycorrhization among landraces could affect the way farmers manage manioc in the different 

environments, and therefore promote or diminish manioc diversification. The frequency and 

abundance (as percentage of arbuscular mycorrhization per root length) in which manioc roots 

are colonized by arbuscular mycorrhizal fungi in Amazonian floodplains and ADE have not 

been reported yet. This thesis compares the arbuscular mycorrhization of the different manioc 

landraces in environments with different soil fertility to evaluate the effect of the manioc type 

and the soil composition in this plant-fungi association.

1.3. Studies on Amazonian Dark Earths in Colombia

Studies related to ADE in Colombia were done in the 1980´s with the financial support of the 

Corporación Araracuara and summarized in a few publications, which are now part of the 

scientific background of the Instituto Amazónico de Investigaciones Científicas Sinchi. Those 

publications emphasize the archaeological aspects of ADE (Herrera, 1981; Eden et al., 1984;

Herrera et al., 1992; Morcote-Ríos and León-Sicard, 2011) and do not provide information 

about the use of ADE by contemporary indigenous groups or about differences in land use 

management and manioc diversity among indigenous groups with and without access to ADE. 

With the aim to study ADE in more detail and in a broader geographic area, in 2010 the Terra 

Preta program, funded by the Interdisciplinary Research and Education Fund (INREF) of 

Wageningen University, was created. This thesis joins the efforts of the Sinchi Institute and 

the Terra Preta Program to contribute in two ways: to the understanding of indigenous 

farmers’ perceptions and actual use of ADE in Colombia in relation to other Amazonian soils;

and to providing information about indigenous knowledge and indigenous land use useful to

understand how indigenous people use and create diversity in the region. 
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1.4. The study area 

1.4.1. Geographical and demographic information

This study was conducted in the Amazon region of Colombia, specifically in the Amazonas 

state. The Amazonas state is the biggest state of Colombia with a total area of 108,700 km2

(Figure 1.1) which corresponds to 10% of the total area of the country and 23% of the 

Colombian Amazon region. The Amazonas state has been inhabited by many different ethnic 

groups. Today, it is inhabited by 25 different ethnic groups, each with its own cultural 

background and particular cultural pattern to interact with the environment. From the total 

area of the Amazonas state 9,209,244 ha (around 85% of the state) corresponds to legally 

recognized indigenous territories known as “resguardos”. There, about 19,000 indigenous 

people live, which corresponds to 40.5% of the total population of the Amazonas state 

(Castro, 2009). There are relatively numerous indigenous people settled in the Amazonas state 

in resguardos which are managed according to their “Plans of life” (own community plans to 

administrate the portion of the resguardo assigned). The resguardos are formed by thousands 

of kilometers which include diverse landscapes with soils with different fertility for 

indigenous food production. Additionally, resguardos in general have low influence of 

markets. All those characteristics made the Amazonas state an ideal location to study diversity 

use and diversity creation as a product of indigenous relations with the environment.

In the Amazonas state two locations were included as areas for the thesis field work. 

One location corresponds to the municipality of Leticia in the southern part of the Amazonas 

state in the upper course of the Amazon River. There, fieldwork was done in the Tikuna 

community of San Martín de Amacayacu located in the Tikuna, Cocama and Yagua TICOYA 

Resguardo. This indigenous community was selected to be considered one of the most 

traditional communities of the study area without access to ADE. Additionally, agricultural 

fields in Fantasy Island, Puerto Triunfo and the Tacana were included in this study, to 

evaluate interactions between manioc and soils not affected directly by culture. 

The second location corresponds to the northern part of the Amazonas state in the 

middle course of the Caquetá River (Figure 1.1), in four indigenous communities located in 

two resguardos: The Aduche Resguardo where the Andoke community of Aduche and the 

Uitoto community of Guacamayo are settled; and the Nonuya Resguardo where the Muinane 

community of Villazul and the Nonuya community of Peña Roja are settled. The second 
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location was selected as the presence of ADE has been reported there before (Leon-Sicard, 

1983; Mora et al., 1991), and it is also one of the oldest human occupations and one of the 

oldest evidences of maize cultivation in the Amazon Basin (Mora et al., 1991).

Figure 1.1. Part of the hydrographic map of the Amazonas state of Colombia made by Sinchi 
(2002); scale 1:500,000, modified to indicate the location of the indigenous communities that 
participated in this research, as well as other locations referred to in this thesis.

The way in which people relate with their environment – thereby using and at the same time 

creating diversity – must be seen in its historical context. A historical contextualization of 

each one of the ethnic groups that participated in this research is therefore important.

1.4.2. History of the study area and its people

In the first location of this research, the Tikuna is the biggest and most representative ethnic 

group of the area. The Tikuna are today the most numerous ethnic group of the Amazon Basin 

and distributed in communities in the upper Amazon River in Brazil, Colombia and Peru 

(Umbarila, 2011). Tikuna means “People of dark skin” because of the Tikuna tradition of 

staining their bodies in a dark color with the juice of the unripe fruit of the Genipa americana 
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tree during celebrations. The Tikuna people maintain this tradition until today. The Tikuna are 

divided into two main groups of clans, those with feathers and those without feathers. Tikuna 

communities traditionally corresponded to one or more malokas. In each one a Tikuna clan 

lived together according to their own political organization (Chapter 4).

Riverine indigenous groups from the Colombian Amazon had their first sporadic 

contact with Europeans in the 17th century. Those first contacts introduced Old World 

diseases that resulted in recurrent epidemics that natives could not control, and approximately 

95% of the native population had died by 1650 (Dull et al., 2010). After, in the first decade of 

18th century, the Portuguese traveled from Brazil upstream along the Amazon River and 

arrived at the study area looking for indigenous people to take them as slaves to work on the 

sugar cane plantations along the lower part of the Amazonas River (Rosa, 2000). The most 

exposed communities to diseases and slavery were those located along the main rivers such as 

the Omaguas, now extinct. Omagua territories were occupied by the Tikuna in what is 

roughly the present-day Tikuna territory. After the Portuguese, the Spanish Jesuit mission 

arrived to evangelize indigenous people and convert them into Christians. At the beginning of 

the 20th century the Spanish Jesuits forced Tikuna people living in their traditional malokas to 

live in single houses as nuclear families as the Jesuits considered it immoral to live all 

together in a single house. Most Tikuna communities lost the tradition to live in malokas in 

this way but people from San Martín de Amacayacu lost the tradition in a different way. 

Between 1966 and 1971, Tikuna families abandoned their malokas in the Cotuhé River (a 

tributary of the Putumayo River near Tarapacá), the Matamatá River (a tributary of the 

Amazonas River), and a maloka in the middle course of the Amacayacu River to re-organize 

themselves in a new community. They wanted to receive governmental support to build a 

school and receive an electric generator but the government did not consider a single maloka 

as a “community organization” suitable for financial support forcing them to found the 

community of San Martín de Amacayacu with nuclear family houses.

In the second location of this research, four ethnic groups were selected , the Andoke, 

Muinane, Nonuya and Uitoto, all part of the “Gente de Centro” (People of the Center), were 

the ethnic groups selected. People of the Center is a name adopted by those ethnic groups to 

indicate their common origin from the interfluvial region between the Putumayo and the 

Caquetá Rivers (Acosta, 2013). The four ethnic groups share some traditions (Chapters 3 and 

4), but identify themselves as different groups with different languages and cultures. The 

Andoke, known as “People of axes”, have been the traditional inhabitants of the Middle 
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Caquetá. According to Andoke mythology, “the daughter of Nenefí (the Andoke God) was 

pregnant. Because she did not have relations with a man, she could not deliver a human baby, 

delivering a tool: The stone axe”. (Interview with Fissi Andoke, October 12th of 2012). 

According to Fissi, the stone axe was given to the Andoke to open swiddens. Because this, the 

Andoke word BUθKA that means logging could be translated as “to use the stone axe”. 

Andoke introduced stone axes to Uitoto (Henao, 1989) and other ethnic groups of the 

Colombian Amazon. 

The traditional life of indigenous communities of Colombia was deeply disturbed at the 

end of the 19th century after the Colombian internal war called “The Thousand Day War”, 

when Colombia decided to promote international investments to extract natural rubber from 

its Amazon forest. The Peruvian Julio César Arana answered to the Colombian invitation and 

created with British financial support the Peruvian Amazon Rubber Company. The main 

office of the company in London received the rubber collected in La Casa Arana, a location 

set in a place known as La Chorrera on the Igará Paraná River (Figure 1.1) and the traditional 

territory of the Uitoto, known traditionally as “the sons of coca, tobacco, and sweet manioc”.

There, the company used indigenous slaves captured in the region as the main workers for 

rubber extraction under conditions that caused thousands of them to die, reducing 

considerably the indigenous population of the Colombian Amazon (Chapter 3).

Rumors of the inhuman conditions in which native people worked for La Casa Arana

reached the British government which investigated what was happening in Colombia through 

its Consul in Brazil. The results of the investigation were published in the Blue Book and 

precipitated the liquidation of the Peruvian-British rubber company. Between 1921 and 1930, 

Julio César Arana moved to Peru the indigenous slaves he still had and the rubber already 

collected, crossing the Amazon jungle in South direction from La Chorrera to the Putumayo 

River, the frontier between Colombia and Peru (Figure 1.1). The weaker people died on the 

way. Few others arrived to Peru carrying the rubber. Others took advantage of the situation 

and escaped during the journey into the direction of the Middle Caquetá region. The Andoke 

who escaped returned to Aduche. People of Andoke clans that survived reconstructed their 

malokas, one for each clan. Slaves from other ethnic groups organized new settlements and 

started a new life. Some of those settlements corresponded to the communities participating in 

this work: the community of Guacamayo (founded by the Uitoto in 1967), and the community 

of Villazul (founded by the Muinane, traditionally known as “People of River Estuary”, in 

1956). In the case of the Nonuya known traditionally as “People of Achiote (Bixa orellana)”
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only four men survived and arrived to live in Villazul, adopting the Muinane language and 

customs (Echeverri and Landaburu, 1995). But in 1990 these Nonuya decided to rescue their 

own language and customs and founded the community of Peña Roja. 

The Tikuna communities were less affected during the rubber boom, as they offered less 

resistance to slavery. In the Tikuna mythology “white people” would arrive to punish them. 

Therefore Tikuna accepted slavery as a divine punishment (Rosa, 2000). Slavery of Tikuna 

communities along the Amazon River was a kind of neo-feudal domination in which 

indigenous people extracted the rubber exclusively for a patron and the patron allowed them 

to maintain their own settlements and live according to their traditions. 

In 1935 the government of Colombia opened a high security Penal Colony in 

Araracuara as it is very remote from the main cities of Colombia and as the region has a 

difficult natural landscape: a rocky plateau surrounded by the Caquetá River rapids (Figure 

1.2). In 1938 an improvised airstrip was created at the top of the sandstone plateau to facilitate 

communications which is until today the main entry port to the area (Figure 1.2). In 1971 the 

Penal colony was closed, but many of the guardians and prisoners did not leave the place. 

Together, they organized a small village at the other side of the Caquetá River called Puerto 

Santander (Figure 1.1) which is the main place for commerce in the area until today. Puerto 

Santander is also the main place of contact between indigenous people and the market. In 

1977 the buildings of the Penal Colony were given to the Corporación Araracuara, the first 

independent institution for scientific research in the Colombian Amazon region (Franco, 

2007) and supported by the Dutch government. Most of the research on ADE in Colombia 

was done by the Corporación Araracuara (Leon-Sicard, 1983; Eden et al., 1984). This period 

also coincided with the legal recognition of the traditional territories of Amazonian ethnic 

groups as “resguardos”, a kind of indigenous reserve. In 1983, the resguardo of Puerto 

Nariño, a multi-ethnic resguardo made up of Tikuna, Cocama and Yagua people and known 

by its acronym TICOYA was created. The community of San Martín de Amacayacu is part of 

this resguardo. In 1988, the Predio-Putumayo resguardo was created. The Predio-Putumayo 

resguardo is the biggest indigenous reserve of Colombia and comprises almost half of the 

Amazonas state (5,818,702 ha). To facilitate the administration of the Predio-Putumayo 

resguardo it was sub-divided into smaller resguardos. Two of them are the Aduche resguardo

where the communities of Aduche and Guacamayo are located, and the Nonuya resguardo

where the communities of Villazul and Peña Roja are located.

In 1991, Colombia re-wrote its political constitution and created the Ministry of 
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Environment and five research institutes to support it. One of them is the Instituto Amazónico 

de Investigaciones Científicas Sinchi. In 1993, the mission and functions of the Sinchi 

institute were legally formalized as the main scientific research center for the Colombian 

Amazon region, inheriting all the goods, scientific and technical patrimony of the former 

Corporación Araracuara.

Figure 1.2. Landscape of Araracuara, one of the research locations: A. Rapids of the Caquetá 
River and at the top of the rocky plateau, the location of the airport (Picture by Gerard 
Verschoor); B. View of the improvised airport of Araracuara over the natural rocky plateau 
(Picture by Clara Peña).

1.5. This thesis

This thesis aims, first, to contribute to understanding indigenous farmer’s perception and 

actual use of ADE in Colombia in a context in which ADE and other soils are accessible for 

their use; second, it aims to provide information about indigenous knowledge and indigenous 

land use that could help to better understand how indigenous people use and create diversity 

in the region. 

An analytical framework was established (Figure 1.3) to clearly identify the gaps 

addressed by the thesis. First, the Amazon region is culturally diverse with approximately 420 

different ethnic groups (UNEP and ACTO, 2009). Cultural links to environment and 

differences in traditions could affect people × environment interactions in terms of land use 

and diversity management. The thesis includes different indigenous ethnic groups (four for 

Chapter 3 and five for Chapters 2 and 4) to understand these differences. 

Second, agriculture is considered the main anthropogenic activity that reflects 

A B
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ecological and social co-adaptation (Altieri, 2002). This thesis documents indigenous 

agriculture in communities with and without access to ADE. How different environments are 

managed simultaneously in the landscape. And to investigate how differences in the 

environment (additionally to culture) could influence the intensity in which each environment 

is used for food production and the diversity of the crops cultivated.

Soil fertility gradient in environments

Amazonian Dark Earths UplandsFloodplains

Land 
diversity

Manioc 
diversity

Agriculture

4

Arbuscular mycorrhizal association

3

Cultural 
diversity

Figure 1.3. Graphic representation of the framework used in this thesis. Numbers indicate the 
research questions that correspond to each topic studied. The expected soil fertility gradient of 
environments is indicated by the direction of the arrow and the color gradient from black (the 
most fertile) to white (the least fertile).

Third, agriculture depends on environmental conditions. The Amazon region has a 

diversity of landscapes which vary in their soil composition (represented in Figure 1.3 by the 

bar with the darkest edge for ADE and the clearest edge for non-ADE uplands), vegetation, 

microbial composition, and in their chance to experience periodical floods. This thesis 

compares land use in communities with access to floodplains, and with and without access to 

ADE. Differences among communities might occur as communities with access to ADE 

would have a broader portfolio of environments for food production than communities 
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without access to ADE. In this context, in the thesis it is proposed to investigate what soils are 

selected for agriculture, and which ones for other purposes, and how much ADE are preferred 

by indigenous people in comparison with other soils. Finally this thesis tries to investigate 

how people´s practices and background support scientific interpretations about ADE creation 

and the role ADE had in pre-Columbian agriculture and manioc domestication.

Cultural and environmental conditions determine what crops are cultivated. This thesis 

focuses on the study of manioc for two main reasons: manioc is the staple food of indigenous 

people in areas with and without access to ADE (Wilson and Dufour, 2006; Fraser, 2010a;

Acosta et al., 2011); and manioc diversity has been previously documented in natural and 

anthropogenic soils of the Amazon region (Arias et al., 2005; Alves-Pereira et al., 2012). In 

this thesis, it is attempted to investigate how cultural and environmental conditions act 

together to shape manioc diversity. 

Manioc needs an arbuscular mycorrhizal association to satisfy its nutritional 

requirements. But the arbuscular mycorrhizal association is affected by the floristic 

composition of vegetation and the soil condition. Floristic composition of flooded and non-

flooded forests is different according to plant species’ susceptibility to floods and therefore, 

arbuscular mycorrhizal communities associated with them are expected to differ. When 

forests are logged for swiddens to cultivate manioc, part of the arbuscular mycorrhizal 

community colonizes manioc roots, reflecting that arbuscular mycorrhizal community 

variability. However, not all maniocs are equal and some have more toxic roots than others. In 

this thesis, it is investigated how arbuscular mycorrhizal community composition of different 

soils is reflected in manioc roots and how variable manioc arbuscular mycorrhizal association 

is in relation to manioc diversity (in terms of the manioc types or the landraces cultivated). 

However, edaphic variables such as pH and phosphorus availability also affect arbuscular 

mycorrhizal composition of soils. Upland (ADE and non-ADE) and floodplain soil 

composition differs according to the parental material from which soils originated and the 

type, quality and quantity of inputs that they received affecting their pH and phosphorus 

availability and therefore, their arbuscular mycorrhizal community composition. This thesis 

compares arbuscular mycorrhizal communities and manioc mycorrhization of different 

manioc types in environments with contrasting soils to provide information on the role and 

variability of this plant-fungi association in different Amazonian environments. An additional 

value to the general knowledge on ADE is that in this thesis it is reported for the first time 

how the arbuscular mycorrhizal community composition of ADE is in comparison with other 
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soils.

The creation of a new environment for food production, such as ADE, could change 

indigenous people interaction with their environment, changing the biotic and abiotic 

conditions of uplands for food production and therefore, changing indigenous preferences for 

cultivating environments, the selection of crops and varieties cultivated (in this case referring 

to the selection of different manioc types and landraces), and agricultural patterns associated 

with the species cultivated and indigenous culinary traditions. Differences among indigenous 

communities with and without ADE in those aspects have not been documented previously as 

there is limited information about the management of ADE by indigenous people.

To approach the previously described gaps in knowledge, the thesis focuses on the 

study of indigenous land use for agriculture and on manioc as the crop that exemplifies how 

people select and transform native crops. Based on these particular topics of study, the 

knowledge gaps are transformed into research questions to contribute to the debate about how 

much indigenous people use and create diversity in the Amazon region:

1. Research question to approach cultural diversity and land diversity interaction: 

How do cultural preferences and conditions of natural and anthropogenic 

environments determine land use among indigenous people of the Colombian 

Amazon? (Chapters 2 and 3).

2. Research question to approach cultural diversity and manioc diversity 

interaction: How do cultural and environmental conditions jointly shape 

manioc diversity in indigenous communities of the Colombian Amazon? 

(Chapters 4 and 5). 

3. Research question to approach land diversity and manioc diversity interaction: 

How different are arbuscular mycorrhizal communities of natural and 

anthropogenic soils of the Colombian Amazon and how much do those 

differences affect manioc mycorrhization? (Chapter 5).

4. Research question to approach the interaction among culture, land and manioc 

diversity: Does indigenous agriculture in the Colombian Amazon reflect a co-

adaptation between people and environment that has enhanced Amazonian 

diversity, supporting the scientific hypothesis that people play an important 

role in the conservation and creation of Amazonian diversity? (Chapters 2, 3, 4 

and 5).
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To explore and answer the research questions proposed, for Chapters 2, 3 and 4 social 

science methodologies (ethnography, participant observations, structured and un-structured 

interviews) and natural science methodologies (composite-soil sampling, extensive sampling 

for inventories, standardized protocols for the quantification of soil physical and chemical 

variables) were applied. To answer the research questions proposed for Chapters 4 and 5 in 

which manioc and arbuscular mycorrhizal fungi diversity are explored, two types of 

methodologies were applied: First, classical methodologies based on the comparison of 

morphological features to explore diversity at morphotype level (manioc descriptors 

developed by world reference collections of manioc (CIAT, 1984; Fukoda and Guevara, 

1998), arbuscular mycorrhizal fungi taxonomic classification using the morphological 

description of arbuscular mycorrhizal fungi spores (Schenck and Perez, 1988)), and molecular 

methodologies to explore diversity at genotype level (variability of manioc single nucleotide 

polymorphisms using direct sequencing (Duitama et al., 2014), and variability of the subunit 

18S of the ribosomal DNA to estimate arbuscular mycorrhizal virtual taxons in soils and 

manioc roots (Öpik et al., 2009)). The combination of different field and laboratory 

methodologies allowed the discussion of results in a transdisciplinary (researcher-indigenous 

people) and interdisciplinary (natural sciences-social sciences) way. This approach helped to 

achieve the goal of this thesis: to provide information about indigenous knowledge and 

indigenous land use in order to understand how indigenous people inhabiting different 

environments (with and without ADE) use and create diversity in the region.

1.6. Thesis outline

The thesis consists of six chapters. This introduction (Chapter 1) presents the context of the 

study area, the research questions and the analytical framework (Figure 1.3) of the thesis. The 

following four chapters (Chapters 2 to 5) address specific knowledge gaps that are addressed 

through research questions. 

There is little information about indigenous agriculture in environments with 

anthropogenic soils or floodplains. There is no available information about how indigenous 

people select and manage a landscape with a diverse portfolio of soils with diverse fertility. In 

Chapter 2, indigenous agriculture on natural and anthropogenic soils of the Colombian 

Amazon is described. The production systems in these environments are also compared 
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among communities with and without access to ADE. Differences among communities and 

ethnic groups are discussed, addressing the role of soil fertility and other criteria in the 

selection and use of the different environments for agriculture. 

The use of ADE for indigenous agriculture has not been reported before, but other uses 

of ADE have also not been reported. Indigenous knowledge on the origin and ancient use of 

ADE has been briefly indicated for the Kuikuro from the Brazilian Amazon but not for other 

indigenous groups. In Chapter 3, indigenous classification of natural and anthropogenic soils 

by indigenous communities of the Upper Amazon region of Colombia, and indigenous 

perceptions about their suitability for agriculture and other uses are addressed. Indigenous 

knowledge about origin of natural and anthropogenic soils, and ancient and contemporary 

uses is discussed and compared with current scientific knowledge about past Amazonian land 

use.

As reports of indigenous agriculture on ADE are limited, information about manioc 

diversity of indigenous stocks cultivated in ADE and manioc diversity in communities with 

access to natural and anthropogenic soil is not available. Socio-cultural preferences have been 

reported for single ethnic groups but comparison among different groups is not possible as 

previous inventories were done in different times and using different methodologies. In

Chapter 4, differences in manioc diversity among five ethnic groups of the Colombian 

Amazon are compared. Morphotypic and genotypic manioc diversity is assessed in 

Amazonian communities with and without access to ADE. Indigenous estimation of manioc 

diversity through manioc morphotypes is compared with manioc genotypic diversity and 

discussed. The sources of manioc diversity are also explored, evaluating the role of soil 

diversity and social differences in manioc diversification. Additional indications of manioc 

diversity hotspots and for manioc diversity conservation are included.

Arbuscular mycorrhizal fungal communities have not been studied in ADE and reports 

of arbuscular mycorrhizal fungal communities on floodplains are limited. A comparison of the 

arbuscular mycorrhization of manioc in Amazonian environments with different phosphorus 

availability has not been made. There are few reports on how manioc root arbuscular 

mycorrhization occurs in landraces with different levels of toxicity (due to variations in the 

root concentration of cyanogenic compounds). In Chapter 5, root arbuscular mycorrhization 

of manioc in natural and anthropogenic soils of the Amazon region is described and 

compared. The abundance and richness of arbuscular mycorrhizal fungal communities from 

environments with natural and anthropogenic soils are compared. Root arbuscular 
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mycorrhization of manioc is evaluated in relation to arbuscular mycorrhizal fungal 

communities of soils, soil pH and phosphorus availability. Differences in manioc 

mycorrhization in relation to manioc diversity (types of landraces evaluated) are assessed. 

In the General Discussion (Chapter 6) a synthesis and a discussion of results are 

presented. Answers to research questions here presented are provided as the major 

contribution to the debate about how much people contribute to shape diversity in the 

Amazon region. The thesis also presents some unsolved issues as suggestions for further 

research.

In summary, the findings of this thesis indicate that the creation of ADE constitutes a 

new environment for agriculture, but ADE are not always contrastingly different to non-

anthropogenic soils. Indigenous people perceive this similarity between soils as similar 

conditions for cultivation of manioc, their staple food. Floodplains on the other hand are also 

important places for manioc agriculture, but the agriculture practiced in floodplains located at

different height of the riverside and different frequency of flooding varies. Low floodplains 

(flooded every year) are used permanently through flood-recession agriculture and harvested 

by mingas (numerous people helping through collaborative work). High floodplains known as 

restingas (which are flooded once every 5 to 10 years) are used through swidden agriculture 

and harvested through family work. There are no specific manioc landraces for any of the 

different soil types studied. Indigenous farmers maintain highly diverse stocks of sweet and 

bitter manioc landraces that move from one field to another, independently of the edaphic or 

flooding differences among sites. The high affinity of manioc for arbuscular mycorrhizal 

fungi makes it a promiscuous arbuscular mycorrhizal species always colonized by arbuscular 

mycorrhizal fungi, independently of the edaphic conditions or the particular arbuscular 

mycorrhizal fungal community of the different soils. This particular affinity of manioc for 

arbuscular mycorrhizal fungi explains in part why manioc could be moved from one field to 

another and successfully cultivated in different sites with contrasting soil fertility as was 

observed in this study. 

In general, manioc diversity in the study area is high but manioc diversity is little 

determined by environmental conditions. On the contrary, cultural values attached to manioc 

explained most of the manioc variability found in the study area. People therefore, are 

considered an important transforming actor in the Amazon region using most of the 

environments for food production, and affecting forest composition and dynamics. 

Additionally, people create a new environment, the Amazonian Dark Earths, not 
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naturally present in the Amazon region before human occupation. People also domesticate 

native species such as manioc and create cultural values associated with it which results in 

hundreds of different landraces that contribute to enhance the Amazonian diversity. It is 

possible to conclude that the human contribution to shape the actual Amazonia diversity is 

clearly important and exemplified through the cultivation of manioc.
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Abstract

Amazonian indigenous people access different farmlands with different inherent soil fertility. 
Extensive literature exists on indigenous Amazonian swidden agriculture on low-fertile uplands, but 
not on fertile Amazonian Dark Earths (ADE) or floodplains. Current literature suggests that ADE are
preferred by studied farmer communities for agriculture among other soils due to their fertility and 
non-flooding risk. It is not clear whether indigenous farmers also prefer ADE and apply the same land-
use management practices reported for non-indigenous communities. During two years, we studied 
indigenous agricultural systems on different soils, through participant observations and interviews 
with farmers. Contrary to previous literature, ADE and non-ADE were similar except for higher 
phosphorus availability in ADE. Indigenous agriculture was also similar on both soils as well as the 
cultivated manioc stocks. Site selection and management of plots in floodplains differed among 
communities and depended on farmer access to communal labor rather than on floodplain soil 
conditions.

Key words: Amazonian soils, indigenous agriculture, land-use management, Amazonian Dark Earths, 

floodplain.
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2.1. Introduction

For small farmers living in tropical forests, the soil is the most important resource for 

agriculture and labor the main required input. Access to a broad portfolio of soils might 

provide better opportunities for sustained livelihoods (German, 2003; Fraser and Clement, 

2008; Arce-Nazario, 2011).

The Amazon basin is commonly divided into two types of farmland: uplands and 

floodplains. Most Amazonian uplands are considered to have limitations for a permanent and 

intensive agriculture while floodplains are considered more amenable to intensive agriculture

(Meggers, 1954; Denevan, 1996; McMichael et al., 2012). Amazonian uplands generally have 

very acid, highly weathered soils (Richter and Babbar, 1991), originating from parental 

materials rich in kaolinite with a naturally limited nutrient holding capacity (Ma and 

Eggleton, 1999) and thus have a low inherent nutrient availability. However, within low-

fertile uplands patches of anthropogenic soil are found, known as Amazonian Dark Earths 

(ADE). These anthropogenic soils are enriched with ashes, charcoal, plant remains, and

specially with animal bones and human faeces which results in a higher nutrient content 

compared with background soils (Birk et al., 2011; Glaser and Birk, 2012). Typically ADE

are less acid than surrounding uplands, leading to a higher cation exchange capacity and base 

saturation. ADE have higher organic matter content and more pyrogenic carbon (Glaser et al.,

2001; Sombroek et al., 2003) which results in a higher nitrogen, calcium and potassium 

availability (Lima et al., 2002). ADE are also richer in phosphorus and calcium than 

background soils (Glaser and Birk, 2012) and therefore phosphorus/potassium ratios, and 

calcium/magnesium ratios are significantly higher than in background soils.

Floodplains also vary in fertility (Junk, 1997) and could be divided roughly into two 

classes: floodplains with a limited fertility flooded by black water rivers originating in the 

Amazon basin; and fertile floodplains enriched by white water rivers carrying and depositing 

Andean sediments (Piedade et al., 2001), locally known as várzeas. Researchers usually refer 

to várzeas when mentioning floodplains as fertile environments important for agriculture. 

Várzeas have near-neutral pH values, large amounts of calcium and magnesium (Teixeira et 

al., 2006) and a better cation exchange capacity due to the texture and mineral composition of 

Andean sediments resulting in a better fertility compared with uplands. Várzeas can be 

classified in terms of their height in respect to the river water level and related period and 

frequency of flooding into low floodplains that are flooded every year, and restingas (high 
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floodplains) that are not flooded yearly. 

Swidden agriculture on Amazonian uplands is well documented (Hammen, 1984; Eden 

and Andrade, 1987; McGrath et al., 2001; Wilson and Dufour, 2006; Acosta et al., 2011;

Thomaz, 2013; Béliveau et al., 2014). Upland swiddens are typically half to one hectare in 

size (Eden and Andrade, 1987; Perreault, 2005), placed in locations previously covered by 

mature forests or old secondary forests (Acosta et al., 2011). Manioc is the dominant crop 

species cultivated in swiddens (Hammond et al., 1995). Manioc is cultivated for one or two

long production cycles of about one to three years each (Fraser, 2010b), followed by a fallow 

period (Wezel and Ohl, 2005) of about 26 years or longer.

Agriculture on other Amazonian soils has been addressed in few papers. Agriculture on 

ADE has been described for Caboclo farmers (with a mixed Amerind-European or Amerind-

Euro-African heritage) of the Middle Madeira River in Brazil (Fraser, 2010a; Fraser et al.,

2011a). On ADE, Caboclos practice a more intensive swidden agriculture than on uplands 

characterized by smaller swidden areas (Fraser, 2010a) in which manioc is replanted

consecutively up to three times (Fraser et al., 2011a) for a shorter growing period (Fraser, 

2010a) than in non-ADE upland. Fallow periods on ADE are up to three times shorter than on 

non-ADE upland (Fraser and Clement, 2008; Fraser et al., 2012) but weed infestation is a 

larger problem and therefore more labor is required to control them (German, 2003; Hiraoka

et al., 2003).

Caboclo agriculture on floodplains is similar to the one described for ADE. Swiddens 

are smaller than those observed on non-ADE uplands, usually placed in areas previously 

covered by young secondary forests, and opened after short fallows of 1.6 ± 4 years on 

average (Fraser, 2010b; Fraser et al., 2012). Because cultivation is limited by floods only a 

short production cycle is possible and manioc landraces therefore bulk quickly (Fraser, 

2010b). Adams et al. (2005) found that some Caboclos prefer to cultivate manioc on high 

floodplains rather than on low floodplains to secure a longer growing period and therefore 

allow more time for root bulking. As on ADE, weed growth on floodplains is also more 

vigorous and weed control requires more labor than on uplands (Adams et al., 2005).

Limited information about indigenous agriculture on fertile Amazonian soils (such as 

ADE and floodplains) seems available. The Kuikuro indigenous group from Brazil cultivate

nutrient-demanding crops on ADE (Schmidt and Heckenberger, 2009). Uitoto and Andoke 

indigenous groups with access to ADE (Eden et al., 1984) cultivate mainly non-ADE upland 

under swidden systems, and rarely cultivate floodplains (Eden and Andrade, 1987), but their
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article does not mention ADE use. Shorr (2000) described an agricultural system in

floodplains practiced by a Tikuna community with recently improved access to markets. In 

this system, which he called flood-recession agriculture, farmers continuously cultivate low 

floodplains with watermelon without additional fertilization, restricting the fallow period to 

the flooding period.

In low input agriculture as practiced by indigenous farmers labor constitutes the main 

input into the system. Farmers afford the required labor in different ways. Some use mainly 

family labor (including parents, grandparents, and children) in all agriculture activities,

independent of their age. As indigenous farmers do not have capital for hiring labor, they use 

collaborative labor in activities that require a high labor input such as site opening, weed 

control or harvesting (Downey, 2010; Takasaki et al., 2014). Collective labor consists of

reciprocated work in which different persons outside the direct family are invited to work in 

exchange for food and drinks (Takasaki et al., 2014). Contributing to collective work also 

opens the opportunity to ask for labor contributions in return when time comes. It has been 

documented that in areas where other economic activities exist, the use of collective work is 

replaced by wage labor (Peroni and Hanazaki, 2002). Today, most indigenous communities 

participate in regional economies by selling their agricultural surpluses, producing goods for 

sale (e.g. handicrafts), working in the timber or tourist industry (Hammond et al., 1995) or by

engaging in a host of cash generating activities such as mining of alluvial gold (Hammond et 

al., 2007; Peña-Venegas et al., 2014a, Chapter 2 of this thesis). However, the impact of these 

activities on the availability of labor for indigenous agriculture in these communities is not 

known.

Although swidden agriculture on low-fertility uplands is the main production system 

used by Amazonian indigenous people, there is no information whether indigenous farmers 

also practice swidden agriculture on more fertile soils or if other production systems (such as 

flood-recession agriculture) are also practiced by indigenous groups without a strong relation 

to markets. There is no information either on how indigenous people mobilize labor for 

different agricultural environments, and how this relates to household labor availability. More 

information is still required to have a better picture of indigenous agriculture on different 

Amazonian soils. This paper reports on research conducted among five indigenous 

communities of the Colombian Amazon to study how agriculture was carried out on different 

soils. Participatory observation and interviews with indigenous farmers were made in all 

communities. All communities had access to non-anthropogenic uplands and várzeas (low 
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floodplains and restingas) and four had access to ADE (Figure 2.1). This paper compares

agricultural systems on different soils and relates the differences to soil characteristics, age of 

fallows, and labor use.

2.2. Material and methods

2.2.1. Study area

Two locations in the Colombian Amazon were selected for this study. The first one was the 

Tikuna indigenous community of San Martín de Amacayacu, located in the most southern 

part of the Colombian Amazon, on the upper Amazonas River. The community is located 

between 03º50’17.3” South and 70º17’57.3” West, at an altitude of 95 m.a.s.l. along the last 

section of the Amacayacu River, just five kilometers upstream before it joins the Amazon 

River. The community is inhabited by 153 families (own community census in 2011) and 

located in the Tikuna, Cocama and Yagua Indigenous Resguardo TICOYA which has an 

approximate extension of 140,000 ha. The community’s upland swiddens are, for the most 

part, located within Amacayacu National Park. The second location comprises a part of the 

Middle Caquetá region (the portion of the Caquetá River between Araracuara and the island 

of Maria Cristina). Here, at an altitude of 128 m.a.s.l., four communities were selected: the 

Andoke community of Aduche (27 families), the Uitoto community of Guacamayo (34 

families), the Muinane community of Villazul (17 families), and the Nonuya community of 

Peña Roja (15 families),1 which are distributed in two legally recognized indigenous 

territories. The communities of Aduche (00º39´21” South and 72º17´32” West) and 

Guacamayo (00º31´25” South and 72º22´38” West) are located in the Aduche Resguardo; and 

the communities of Villazul (00º 40´00” South and 72º16´32” West) and Peña Roja (00º 

44´29” South and 72º 05´09” West) are located in the Nonuya Resguardo.

Tikuna farmers distinguish two main types of soils on which they carry out agriculture. 

The first is “tierra firme” which are uplands with elevations around 100 m.a.s.l. and slopes 

between 1-3% composed by soils of denudation origin, formed over old floodplains of the 

Amazon River but not affected by actual river floods (IGAC, 1979). The second are the

“bajiales” as they denominated várzeas flooded by a combination of water from the Amazon 

and the Amacayacu River (the first a white water river and the second a black water river).

1 Based on community censuses carried out by local authorities in 2011.
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Farmers distinguish two types of várzeas: those that are located in low areas and are flooded 

every year (Figure 2.1), and those located in more elevated areas and that are flooded once 

every five to 10 years. Around the community of San Martín de Amacayacu no ADE were 

observed and, when ADE were described to them, they did not recall a similar soil in their 

territory.

Farmers from the Middle Caquetá region distinguish the same two main types of soils.

One, the “tierra firme” which corresponded to elevated plateaus between 200 and 300 m.a.s.l.

with slopes between seven and 25%, and composed of superficial soils of sedimentary origin, 

originating from the erosion of parental materials from the Paleozoic period (IGAC, 1979).

Within the “tierra firme” farmers discern the “arenas negras” as a more-or-less specific 

subcategory of uplands (Chapter 3 of this thesis, Peña-Venegas et al., 2015a). “Arenas 

negras” correspond to ADE in the scientific literature. For this study ADE were considered as 

a specific group of soils due to its anthropogenic origin, which differentiates it from 

surrounding upland soils (Figure 2.1). Second, the várzeas which correspond to those 

periodically flooded by the Caquetá River (Figure 2.1), and which farmers locally called

“vegas”. Within “vegas” farmers distinguish between the “propia vega” (low floodplains 

flooded annually) and the “restingas” (high floodplains flooded once every five to 10 years; 

see Figure 2.1). 

Figure 2.1. Location and nomenclature of soil types used by indigenous farmers in relation to 
the riverpulse.

High floods (once every 5 to 10 years)

Regular flood level (annually flooded)
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2.2.2. Selection of indigenous fields for monitoring and fieldwork

In all communities, the most experienced farmer families were selected; the selection itself 

was done by the different communities (Table 2.1).

A preliminary inventory was made of the number of fields (64) that selected farmers 

were using at the time of our research. Since our main purpose was a detailed description of 

indigenous production systems, only fields that had been opened recently (i.e. no more than 6 

months old) were further selected for continuous monitoring; an important reason for this 

selection was that this allowed for a relatively precise reconstruction of the initial activities in 

the production cycle. Additionally, fields opened between September and December of 2011 

were selected for monitoring and for direct observation of the first steps in the production 

cycle. In total, 25 fields were monitored continuously from September 2011 until September 

2013 to obtain information on agricultural activities and the way these were performed (Table 

2.1).

Table 2.1. Number of indigenous families that participated in the research, representativeness 
in percentage of each community in the farmer´s sample, and number of indigenous fields per 
community selected for monitoring and direct observation of the production cycle.

Community Number 
of 
families

Percentage 
respect to 
total families 

Number of fields monitored
Non-ADE 
upland 
soils

ADE Low 
floodplains

Restingas

San Martín de 
Amacayacu

20 13% 3 3

Aduche 9 29% 5

Guacamayo 10 33% 3

Villazul 8 47% 3 1 1

Peña Roja 6 40% 4 2

2.2.3. Location and soil composition of farmlands

During the first visit to fields, the landscape in which they were located was described and a 

composite soil sample of about 500 g of the A horizon was collected by mixing five soil sub-

samples, one from each one of the corners and one from the center of the field. In cases where 



Challenging current ADE knowledge

29

two fields were adjacent to each other, only one soil sample was collected to represent the soil 

of the two fields. A total of 20 soil samples were analyzed: nine from non-ADE uplands (three 

from the Amazon region and six from the Middle Caquetá region), five from ADE and six 

from várzeas (two low floodplains from the community of San Martín de Amacayacu and 

four restingas from the Middle Caquetá region). Soil samples were analyzed in the National

Laboratory of Soils of the Instituto Geográfico Agustín Codazzi-IGAC in Bogotá, Colombia. 

The analyses included soil granulometry, pH (1:1 in water), percentage of organic carbon 

(Walkley – Black), cation exchange capacity (with normal and neutral ammonium acetate), 

DTPA-extractable Ca, Mg, K, Na, percentage of total bases (base saturation with normal and 

neutral ammonium acetate), and available phosphorus (Bray II). Analyses were executed 

according to the protocols standardized by the laboratory (IGAC, 2006). The size of 

agricultural fields was first estimated by the indigenous farmers and then corroborated or 

adjusted in situ with a GPS, taking the length and width of the field and calculating the total 

area.

2.2.4. Reconstructing the production cycle

Farmers identify different steps and activities in their production systems –from the selection

of an area to establish a crop field until the field is abandoned for a fallow period. The most 

frequently used terms (in Spanish) to refer to each one of the steps were used between 

researchers and farmers to allow for a common vocabulary. Individual interviews with

farmers were held to reconstruct the first steps of the production cycle and to establish (with

them) how to record the information in forms. Forms were filled out by farmers at the end of 

each day a farmer worked in her field; this provided information about the activities 

undertaken, the date, the number of persons involved and how much time was spent on the 

activities. To train farmers, the forms were first filled out with the help of the research team, 

but later farmers filled them out directly. Since some of the older farmers were illiterate or did 

not speak Spanish, one of their children was trained to fill the forms for their parents. This 

was not the first time farmers of these communities recorded data as they had participated in 

different, earlier research projects of governmental institutions, NGOs and universities.

Each time the researchers were in the community a visit to each field was made and the 

information previously recorded was confirmed, clarified or corrected - thus creating a 

permanent feedback and form fill-out training cycle. With this purpose, periodic visits were 
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made to each community, with a total of eight visits per community for 2 to 4 days each. The 

forms collected during each visit were transcribed into an Excel sheet.

2.2.5. Labor estimation of each step of the production cycle

The time farmers spent each day doing a given activity was added to obtain the total time 

spent on it. Because field sizes and the number of persons who participated in each activity 

varied between agricultural fields, the data were converted to person hours per hectare. As 

farmers sometimes recorded they worked “a complete day”, all farmers were asked at what 

time they started and at what time they finished agricultural activities in their fields when they 

worked a complete day (excluding the time they spend walking to get to and comeback from 

the field). The mean number of working hours of a full work day was estimated at 5.6 hours. 

This value was then used to transform the estimation of labor in the raw data into person 

hours per hectare. 

2.2.6. Statistical analysis

A non-parametric one-way Kruskal-Wallis ANOVA analysis was used to compare soil

physicochemical composition within uplands and várzeas of the two locations and between 

ADE and non-ADE uplands for the Middle Caquetá region. 

A one-way Kruskal-Wallis ANOVA analysis was also used to compare the size, the 

vegetation age of sites used to locate agricultural fields, and the field management in labor 

time among different land and soil types. As some fields were opened on forested areas that, 

according to farmers’ collective memory, had not been cultivated before, these forests were 

considered as over 100 years old. The field management was compared among the different 

land and soil types in terms of the time spent on the different activities, the number of cycles 

of weed control and the length of the manioc growing cycle before its harvesting started.

Indigenous farmers cultivated a high diversity of maniocs in their fields; a total of 47

landraces were registered in the 25 fields monitored. Manioc harvest started after around one 

year after planting by digging up a few roots each day in accordance with family requirements 

- except on várzeas. In low floodplains all manioc was harvested at the same time shortly 

before the arrival of floods. In restingas manioc harvest started after 5 months and was 

finished it in no more than two months, independently if restingas harvesting was pushed by 
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the flood or not. To evaluate the differences in manioc plant height (a measure of potential 

sources of vegetative propagules for new agricultural fields) between soil types, information 

about the name of the manioc landrace and the height of the longest stem in each manioc plant 

dug up during harvesting was recorded. As not all farmers and communities cultivated the 

same manioc landraces, only data of nine manioc landraces which were cultivated on the four

different soil types (non-ADE and ADE upland soils, low floodplain and restinga soils) were 

selected for this analysis: Amarilla (five registers); Borugo (six registers); Cáscara morada

(seven registers); Guava (12 registers); Pan (10 registers); Masatera (seven registers); Yucuna

(10 registers); Ereño Juti (six registers); and Lupuna (six registers).Values of manioc plant

height of each manioc landrace were tested against soil types using a non-parametric Kruskal-

Wallis ANOVA test with the analytical software Statistix 9.0 (Statistix, 1998), using p≤0.05 

as criterion to denounce differences as significant.

2.3. Results 

2.3.1. Soil composition of farmlands

Sampled soils varied in physicochemical composition but all had pH ≤ 4.5 (Table 2.2). 

Upland soils from the two different locations differed in texture and chemical composition in 

line with differences in the parental materials from which soils were formed. Upland soils 

from San Martín de Amacayacu were more clayey (p= 0.01), had more calcium (p= 0.01) and 

more potassium (p= 0.01) than uplands from the Middle Caquetá region (Table 2.2).

The physicochemical composition of ADE was more variable than that of non-ADE 

uplands. The phosphorus availability was significantly higher in ADE (p< 0.01) than in non-

ADE uplands, but none of the other chemical variables differed significantly (Table 2.2). 

Means of the ratios of available phosphorus (P) and potassium (K), and of calcium (Ca) and 

magnesium (Mg) however, were higher in ADE than in non-ADE uplands. The ADE P/K 

ratio (1144.5) was 62 times higher than for non-ADE upland P/K ratio (18.5), and ADE 

Ca/Mg ratio (2.5) was 3.8 times higher than for non-ADE upland Ca/Mg ratio (0.66), 

distinctly showing the anthropogenic enrichment of ADE.

Farmers from San Martín de Amacayacu only cultivated low floodplains while farmers 

from the Middle Caquetá region only cultivated restingas. Chemical differences between the 

low floodplains used by farmers from San Martín de Amacayacu and the restingas used by
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farmers from the Middle Caquetá region were apparent only for soil acidity (p=0.03) and the

related percentage base saturation (p= 0.03) (Table 2.2), but these differences did not explain 

differences in the selection and use of várzeas among farmers of the two locations.

2.3.2. Swidden agriculture on uplands

Sites selected for swiddens were always covered by forest and required previous consultation 

with forest spirits and forest owners (animals and plants) before opening a field. Indigenous 

farmers considered this consultation very important to prevent accidents, crop pests and 

diseases, and to secure a good production. After this first measure indigenous farmers 

considered three main steps for the opening of a site. First the area was cleaned of annuals, 

shrubs and small trees with machetes. In the second step larger trees were logged with axes 

and machetes or with chainsaws (only in 3 of the 19 upland sites). In the third step branches 

and stems were chopped in smaller pieces to facilitate a faster drying of material. Cleaning, 

logging and chopping activities followed the annual weather pattern of the region using the 

dry period so all logged and chopped vegetation would dry properly before burning. After 

burning, crop planting started. Indigenous farmers planted more than 10 different crops in 

swiddens (Table 2.3), but manioc was generally planted first, distributed more-or-less 

homogenously across the swidden area, and occupying around 70% of planting space. When 

manioc was not planted first, maize (Zea mays L.), plantain (Musa sp.), watermelon (Citrullus

lanatus (Thunb.) Matsum. & Nakai), sugar cane (Saccharum officinarum L.) or chili 

(Capsicum sp.) were planted first. The main reason to plant these species before manioc was 

because they require sites with high quantities of ash and charcoal and it is easy to find these

sites when manioc is not yet planted.

The length of the manioc growing period (the period between planting and the start of 

harvesting) in uplands (including ADE) was between 10 and 16 months (Table 2.4). No 

differences (p> 0.05) were observed in the growing period of manioc in non-ADE or ADE 

uplands of the Middle Caquetá region. During the growing period farmers weeded the 

swiddens two to three times, without significant differences in the number of cycles needed 

on ADE or non-ADE uplands.

Once manioc harvesting started no systematic weeding occurred. Manioc was harvested 

progressively, selecting each time the number of plants and the landraces required for daily

use. Fields therefore acted as an in vivo manioc storage place. In four of 19 swiddens
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Table 2.3. Crops, fruit trees and palms cultivated in indigenous swiddens of the Colombian 
Amazon region specified for restingas, ADE and non-ADE uplands.

English name Scientific name Restingas ADE Non-ADE 

Achira Canna indica L. X
Avocado Persea americana Mill. X
Araza Eugenia stipitata McVaugh X
Asai Euterpe precatoria Mart. X

Bacuri Garcinia gardneriana (Planch. &Triana) Zappi X X

Banana Musa sp. X
Barbasco Lonchocarpus nicou (Aubl.) DC. X
Bean Phaseolus sp. X
Bore Xanthosomas agittifolium (L.) Schott X
Borojo Genipa americana L. X
Caimo Pouteria caimito (Ruiz &Pav.) Radlk. X X
Cashew Anacardium occidentale L. X X
Chili Capsicum annum L. X X X
Coca Erythroxylum coca Lam. X X
Cocoa Theobroma cacao L. X
Copoazu Theobroma grandiflorum (Spreng.) K.Schum. X
Dale dale Pseudolmedia laevigata Trécul X X
Hairstain Palicourea triphylla DC. X X
Lemon Citrus limon (L.) Osbeck X
Lulo Solanum sessiliflorum Dunal X X
Maize Zea mays L. X X
Mafafa Xanthosomas agittifolium (L.) Schott X X
Milpeso Oenocarpus bataua Mart. X
Manioc Manihot esculenta Crantz X X X
Papaya Carica goudotiana (Triana&Planch.) Solms X X
Peach palm Bactris gasipaes Kunth X
Peanut Arachis hypogaea L. X
Pineapple Ananas comosus (L.) Merr. X X
Plantain Musa paradisiaca L. X X
Saffron Curcuma longa L. X
Sugarcane Saccharum officinarum L. X X X
Sweet pepper Capsicum annuum L. X
Sweet potato (batata) Ipomoea batatas (L.) Lam. X X
Indian yam (ñame) Dioscorea trifida L.f. X X X
Tobacco Nicotiana tabacum L. X X
Tomato Solanum lycopersicum L. X X
Tree grape Pourouma cecropiifolia Mart. X X
Ucuye Macoubea guianensis Aubl. X X X
Water melon Citrullus lanatus (Thunb.) Matsum. &Nakai X X X
Zapote Conceveiba martiana Baill. X
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monitored on uplands (one from primary forest and three from secondary forests on non-ADE

soils), while harvesting manioc farmers considered the soil of some patches was good enough 

for a second cycle of manioc production and shortly replanted these patches with stems 

obtained from the same manioc plants that were previously harvested. Harvesting continued 

for two to three years (later in replanted fields) until all manioc plants were harvested, after 

which swiddens were left for a fallow period.

2.3.3. Continuous flood-recession agriculture

The low floodplains were only cultivated in San Martín de Amacayacu through a flood 

recession system in which fields were left uncultivated during the annual flooding period 

only. Farmers perceived low floodplains as natural cropping landscapes that do not require 

special permission (e.g. by spirits) for their use. The sparse vegetation of annuals present after 

the water receded was cleaned with a machete. Logging and chopping was unnecessary. The 

cleaned vegetation was sometimes burned and sometimes not. Manioc was the only crop 

cultivated on these fields. The length of the growing period was never longer than 5 months 

as it was limited by the flood. Most weed seeds are not tolerant to a prolonged flood and 

during the short growing period weeds developed poorly; hence weeding was done once or 

not at all. All manioc plants were harvested in one or two days, shortly before the field was 

flooded. All manioc roots were peeled after harvesting. Some peeled roots were processed 

immediately as farinha (a fermented and roasted manioc granulate) and others were buried 

using a traditional technique to preserve manioc roots.

2.3.4. Swidden agriculture on restingas

Swidden agriculture on restingas mixed elements of swidden agriculture on uplands and 

flood-recession agriculture on low floodplains. As for uplands, sites selected for swidden 

agriculture were previously covered by forest and required consultation with forest spirits and 

forest owners before opening.

Cleaning, logging and chopping activities followed the dynamics of the river, opening the 

sites when the river started to recede, whether the restinga had been flooded or not. Forests on 

fields opened in restingas were significantly younger than in uplands (p= 0.01) and dried

easier, requiring a shorter period (no more than 4 weeks) without heavy rains to be dry
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enough for burning. Manioc was also the main crop planted on restingas and occupied more 

than 70% of the planting space, with a range of others crops planted alongside (Table 2.3). 

The growing period of swiddens on restingas was significantly longer than on low floodplains 

(p= 0.02), but significantly shorter than in swiddens on non-ADE uplands (p= 0.01), and long 

enough to require weeding (Table 2.4).

Particularly in várzeas a climbing herb from the genus Mimosa (with many small spines 

on its branches) grew in abundance. Farmers called this herb “cortadera” (Spanish for cutting 

herb) as farmers frequently cut their hands when removed it. Although “cortadera” is more 

abundant in várzeas than in uplands, fallow periods in restingas were longer than in low 

floodplains and therefore “cortadera” was more abundant in restingas - taking farmers more 

time to weed than swiddens on uplands. Harvesting started between four to six months after 

manioc was planted, and took no more than two months. Harvesting was precipitated when 

the level of the river started to rise above the regular level (as happened in 2011). Otherwise

farmers maintained maniocs for one or two more months for better root bulking - but never 

prolonged harvesting beyond six months. 

2.3.5. Age of vegetation on land selected for agricultural fields 

and field size

Average vegetation age of sites selected for fields was significantly higher in uplands than in 

floodplains (p= 0.02), and not significantly different between uplands with non-ADE and 

ADE (Table 2.4). Swiddens opened on uplands independently of the soil condition were 

covered by mature forest older than 100 years or secondary forest between five and 70 years 

of age. Field sizes were not significantly different between uplands and floodplains or among

ADE and non-ADE uplands.

2.3.6. Management of farmer´s manioc germplasm

Manioc was planted mainly from stem cuttings between 10 and 15 cm long. However, manioc 

volunteer seedlings were not generally weeded but left to grow alongside the clonal manioc 

plants in order to evaluate their root production. Indigenous farmers called manioc stem 

cuttings “seeds” although these are not seeds in the botanical sense. Manioc stems used for 
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planting a new field were usually collected during the manioc harvesting of a different field. 

However, manioc stems from the same field were sometimes used to replant parts of a field

where manioc was harvested and that farmers considered was still fertile enough for a second 

production cycle. Additionally, in seven of 25 plots studied, manioc stems were collected 

from plants of which the roots were not harvested. In this case, farmers collected the longest 

and thickest stalks of selected manioc plants and left the thinner stems and all roots to 

continue growing until harvesting at a later stage. 

All landraces were planted in all soils in proportions that depended on expected culinary 

needs and not on any agronomic consideration. Manioc germplasm movement indicated an 

active flux of manioc among land and soil types (Figure 2.2). In all communities manioc 

germplasm moved back and forth between uplands and floodplains and, in the communities of

the Middle Caquetá, also between ADE and non-ADE uplands. Indigenous farmers indicated 

that manioc root production is important, but stressed that so is the production of manioc 

propagules for new fields; they also stated that manioc plants grow taller on floodplains and 

on ADE than on non-ADE, thus producing more manioc propagule per plant. 

This was corroborated by us: in seven of nine manioc landraces tested, plant height was 

higher in floodplains than in uplands and for some landraces differences between ADE and 

non-ADE were observed. However, only three manioc landraces showed significant 

differences in height when planted on different soils: Cáscara morada (p= 0.05; n= 7) with an 

average height of 210 cm on non-ADE, 252 cm on ADE, and 397 cm on floodplain soils; 

Guava (p= 0.02; n= 9) with an average height of 290 cm on non-ADE, 317 cm on ADE, and 

397 cm on floodplain soils; and Masatera (p= 0.04; n= 7) with an average height of 245 cm 

on non-ADE, 227 cm on ADE, and 301cm on floodplain soils. Differences indicate that,

certainly for some manioc landraces, an extra production of propagules is obtained. Based on 

the above data, an extra three to nine manioc propagules per plant stem were obtained when 

they were cultivated on floodplains instead of non-ADE uplands. Differences in propagule

production between ADE and non-ADE soils were not so clear as between non-ADE uplands 

and floodplains.

2.3.7. Labor time

Most labor activities in the field were done by nuclear families but during opening and 

harvesting fields some families used collective work (locally known as minga). In San Martín 
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Figure 2.2. Movement of manioc germplasm from old to new agricultural fields planted in 
2011 and 2012 according to land and soil type. ADE: Amazonian Dark Earths in uplands. A.
the community of San Martín de Amacayacu (n= 10 fields); and B. communities of the 
Middle Caquetá region (n= 31 fields). Numbers indicate the number of fields from where 
manioc stocks were moved in the direction of the arrow.

de Amacayacu all three fields in low floodplains were opened and harvested through minga

and two of three swiddens in non-ADE uplands were opened through minga. In the Middle

Caquetá region only two swiddens located in non-ADE uplands were opened through minga, 

the other 17 were opened and harvested exclusively with family labor. According to 

indigenous farmers of the Middle Caquetá region working in minga was more common in the 

past than it is today.

Estimations indicated that opening a 1-ha plot would take one person 13 work days 

when there is no forest to log and 100 work days for forested sites (Table 2.4). When sites 

were opened through minga the clearing, logging and chopping were finished in a single day. 

Otherwise, these activities took several consecutive days depending on the family workforce 

in terms of number and work capacity of family members. Time spent on manioc harvesting 

could only be assessed in the low floodplains of San Martín de Amacayacu. On average,

harvesting a 1-ha plot took 194 person hours (35 person days), because of the flood pressure 

low floodplains were always harvested through minga, harvesting a 1-ha plot in no more than 

2 days. At community level, the number of persons for mingas and the number of days for

harvesting all manioc on low floodplain plots was limited, therefore only few plots were 

established in low floodplains by prestigious farmers who had the capacity to organize mingas



Chapter 2

40

and knew the techniques to bury the manioc roots properly. 

In restingas, the flood water will take more time to reach the fields even in years with 

high floods, offering farmers more days for manioc harvesting than in low floodplains. In 

years with regular floods plots would not flood at all and farmers would have months to 

harvest fields. However, as in restingas weed pressure was high and weed control was 

difficult, farmers did not leave manioc to grow as long as in uplands.

2.4. Discussion

The interviewed indigenous farmers used both fertile and low-fertile soils for agriculture. 

Sites opened by farmers from the Middle Caquetá region on ADE and non-ADE uplands had 

similar physicochemical characteristics (Table 2.2), though ADE clearly showed higher 

available P and higher P/K and Ca/Mg ratios – which is typical of anthropogenic soils. ADE 

have been reported to contain on average more phosphorus, nitrogen, calcium, potassium, and 

magnesium, compared with background soils (Hiraoka et al., 2003; Glaser and Birk, 2012).

Although peripheral areas of ADE use to be less fertile than the center of ADE (Fraser, et al. 

2011b), our results indicate that in the Middle Caquetá region ADE were not consistently 

more fertile than background soils except for a higher phosphorus availability on ADE. This 

might explain why the area of swiddens, the age of fallows, the swidden management and the 

time spent controlling weeds were all similar between ADE and non-ADE uplands; this 

contrasts with reports from the Central Amazon where striking differences between ADE and 

non-ADE uplands were reported (Fraser and Clement, 2008).

The age of the vegetation on selected sites was not significantly different between ADE 

and non-ADE uplands. All fields were opened in very old secondary forests (on average older 

than 40 years) and mature forests older than 100 years. The old age of forests opened for 

swiddens can be related to the low population densities which results in low land-pressure. 

Due to this long recovery period of sites previously used for agriculture, secondary forests can 

accumulate enough above and belowground biomass to provide crops with the nutrients they 

require in a new swidden. Swiddens opened in old secondary forests required similar time for 

weeding to swiddens opened in mature forest; this contrasts with reports about swiddens in 

younger secondary forests that required more time for weeding than swiddens in mature 

forests (Awanyo, 2008; De Rouw et al., 2014). These secondary forests, however, were 

clearly much younger than the ones used by farmers interviewed in this research.
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Manioc was the main crop cultivated in all soil types, and the prime reason indicated by 

indigenous farmers to practice agriculture. According to indigenous farmers, there was no 

specific match between manioc landraces and land types or soils, and all manioc landraces 

grew well on all land types and soils. In fact, all landraces were moved between land and soils

types - with an important flux between floodplains and uplands and vice-versa (Figure 2.2). 

This contrasts with observations made for Caboclo agriculture in which specific landraces are 

cultivated on specific soil types (Fraser and Clement, 2008; Fraser et al., 2012). Interestingly, 

farmers indicated that manioc root production is important in floodplains but, in addition, 

manioc plants also grow taller there thus producing longer stems in a short time. This claim 

could be proven right only for some manioc landraces that were significantly taller when 

growing in floodplains compared to uplands and therefore an important source of manioc 

propagules for upland swiddens. However, a more systematic collection of information on 

indigenous fields with this purpose in mind is required to more rigorously verify this 

statement made by farmers.

Floodplain cultivation seems to be an important component of indigenous agriculture as 

floodplains were cultivated in the two locations (also in those where ADE are present), but 

floodplains were used differently in different communities. Farmers from San Martín de 

Amacayacu used low floodplains and practiced a flood-recession system. Low floodplain 

cultivation requires less time opening sites, burning and controlling weeds when compared to 

restinga cultivation. But mingas are needed to secure harvests on time. The flood-recession 

system practiced by Tikuna farmers from San Martín de Amacayacu is a traditional practice 

among Tikuna, and is accompanied by technologies of manioc burying to preserve high 

volumes of harvested roots (Acosta and Mazorra, 2004). The exclusive cultivation of 

watermelon in low floodplains and an intensification of sweet manioc, banana and maize in 

restingas observed by Shorr (2000) in a Tikuna community might be an adaptation of the 

traditional Tikuna flood-recession agriculture to markets. Flood-recession systems for manioc 

production are apparently not so rare in the Amazon region and also occur among Caboclo

communities as fallows were 1.6 ± 4 years on average (Fraser et al., 2012), but not recognized

as a continuous agriculture system by these authors. 

Farmers from the Middle Caquetá region in turn used restingas and practiced a swidden 

system there. Cultivation of restingas entailed more labor to control weeds; this might explain

the infrequent use of floodplains observed in this study and reported previously in the area 

(Eden and Andrade, 1987). Apparently, agriculture on restingas seems not to be a free choice, 
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but a consequence of changes in the organization of labor within the communities. Since 

mingas are reciprocal support institutions (Lyle and Smith, 2014), they require a continuity in 

reciprocity relations for their survival (Guillet, 1980). But reciprocity relations subside 

whenever those partaking in it are not available anymore. In the Middle Caquetá region wage 

labor has become much more common since gold mining and other economic activities exists 

in the region. Those working in alluvial gold mining (most of whom are indigenous people) 

are either employee under a verbal agreement or have to surrender a minimum amount of gold 

per week in order to be able to keep their jobs and can therefore no longer participate in 

mingas. Importantly, young people (who have the best work capacity) prefer to receive cash 

for their involvement in mining, than food or drinks for participating in mingas. This seems to 

have forced farmers to adjust their agriculture to fit the available work force within the family 

and cultivate restingas instead of low floodplains. Similar changes in the organization of work 

have been reported by Peroni and Hanazaki (2002) in communities where other economic 

activities introduce wage labor as replacement of collective work. The benefits however that a 

salary could provide indigenous families (e.g. compensating for deficiencies in agricultural 

production by enabling them to buy food on the market) do not materialize as men largely 

spend the money on alcoholic drinks (Chapter 2 of this thesis, Peña-Venegas et al., 2014a).

Family staple support therefore continues to depend mainly on women, through traditional 

agriculture on uplands and restingas, and on forest and river resources. 

2.5. Conclusions

Both Amazonian fertile and low-fertile soils are cultivated by indigenous farmers. In contrast 

to what indicates literature, ADE and non-ADE from the Middle Caquetá region are very 

similar in their physicochemical composition. Due to this similarity, swidden agriculture on 

both soils is also similar in opposition to literature on systems elsewhere in the Amazon basin 

that reports important differences in the agriculture practiced on natural and anthropogenic 

Amazonian soils. Similarities of natural and anthropogenic soils might also explain why there 

is no difference in the portfolio of manioc landraces grown on the different soil types as 

reported for Central Amazonia. Therefore, the agriculture practiced by indigenous farmers 

from the Colombia Amazon on ADE differed from previous reports in the literature. 

Additionally, selection and use of floodplains is not related to the soil conditions or market 

pressures for agricultural products but responds rather to cultural traditions and labor 
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availability for mingas.
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Abstract

Outsiders often oversimplify use of Amazon soils by considering abundantly available natural soils 

poorly suitable for agriculture and sporadic anthropogenic soils agriculturally productive. Local 

perceptions about potentials and limitations of available soils might be different but information on 

these perceptions is scarce. We examined how inhabitants of the Colombian Amazon classify and use 

natural and anthropogenic soils. The study was framed in ethnopedology: local classifications, 

preferences, rankings, and uses of soils were recorded through interviews and field observations in 

four indigenous communities of the Middle Caquetá region. Indigenous groups recognized nine soils 

varying in suitability for agriculture. They identified anthropogenic soils as most suitable for 

agriculture but only one group used it predominantly for their swiddens. As indigenous groups did not 

perceive soil nutrient status as limiting, they did not base site selection on soil fertility or on the 

interplay between soil quality and performance of manioc genetic resources.

Key words: Soil, Amazonian Dark Earths, manioc, indigenous communities.
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3.1. Introduction

About 70% of the Amazon basin is mainly composed of very acid, highly weathered natural 

soils with poor availability of the most important plant nutrients (Richter and Babbar, 1991).

There are, however, small patches of anthropogenic soils known as Amazonian Dark Earths 

(ADE) with completely different characteristics: ADE are usually less acid with better cation 

exchange capacity and base saturation than natural soils (Glaser et al., 2001). ADE also 

contain more nitrogen, calcium, available phosphorus (Lima et al., 2002), and organic matter; 

the higher organic matter content results in better moisture-holding capacity and lower rates 

of nutrient leaching than in natural soils (Glaser and Birk, 2012).

Several archaeologists alleged that the poor fertility of Amazonian soils was an 

environmental limitation to socio-cultural development in the region (Roosevelt, 1999;

Meggers, 2003; McMichael et al., 2012). In contrast, other archaeologists posited that about 

2000 year ago, Amazonian societies coped with this apparent environmental limitation when 

ADE emerged; these soils permitted them to increase food production and to develop complex 

societies (Heckenberger et al., 1999; Denevan, 2003; Heckenberger et al., 2008).

Soil is an important resource directly related to sustainability, especially in societies that 

largely depend on subsistence agriculture for their food security, such as the indigenous 

groups in Amazonia. Understanding how indigenous groups perceive, distinguish, classify 

and use soils would help us to understand from the local perspective the potentials and 

limitations of soils for community development. The perception of Amazonian soils might 

have been oversimplified and therefore the potentials and limitations of Amazonian soils 

might have been wrongly interpreted. Local perceptions of Amazonian soils might be 

different and even more complex than expected (Balée, 2003; Barrera-Bassols et al., 2006),

but information about how indigenous people perceive natural and anthropogenic soils is 

limited. 

Earlier reports about how indigenous people in Amazonia identify and classify soils 

have merely described indigenous soil classes (Wilshusen and Stone, 1990; WinklerPrins and 

Barrera-Basols, 2004; Sánchez et al., 2007) but not the soil uses or people’s preferences. Most 

recent studies on Amazonian soils focused on how indigenous and Caboclo (with Amerind-

Euro or Amerind-Euro-Afro heritage) people recognize and describe ADE, not taking into 

account surrounding natural soils or merely making brief references to them (German, 2004;

Schmidt and Heckenberger, 2009; Fraser et al., 2012) .
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In the Colombian Amazon region, ADE have been reported along the Caquetá River 

(Herrera et al., 1992; Mora, 2003), along some small tributaries of the Amazon River 

(Morcote-Ríos and Sicard, 2012) and along the Putumayo River (J.A. Echeverri, unpublished 

data). Most of the area of the Colombian Amazon basin is inhabited by indigenous groups 

which have access to both natural soils and ADE. For the Middle Caquetá region where most 

studies on ADE have been conducted, reports show that indigenous people recognize ADE as 

the soils most suitable for agriculture (Galán, 2003; Andoque and Castro, 2012). Studies on 

native production systems, however, reported that indigenous people use uplands on Oxisols 

and alluvial soils (floodplains) but did not report the use of ADE (Hammen, 1984; Eden and 

Andrade, 1987; Calon and Kuiper, 1993; Verkleij and Nederveen, 1998). Reported uses of 

ADE in the Brazilian Amazon basin indicated that wherever human settlements were located 

near ADE, people used ADE for subsistence or market-oriented production (Hiraoka et al.,

2003; Fraser et al., 2011a). There are no reasons to think that indigenous people from the 

Middle Caquetá region might be the exception.

The research question, therefore, is: How do indigenous people from the Middle 

Caquetá region of Colombia classify and use natural and anthropogenic soils? To answer this 

question, semi-structured interviews with open-ended questions, participatory observations 

and field observations were undertaken with four ethnic groups that inhabit the Middle 

Caquetá region of Colombia. An ethno-pedology approach (Wilshusen and Stone, 1990;

WinklerPrins and Barrera-Basols, 2004) was used to assess, understand, and interpret the way 

indigenous people classify and use soils based on their own understanding and preferences.

3.2. Material and methods

3.2.1. Study area

The research was conducted in the Middle Caquetá region, on the border between the 

Colombian states of Amazonas and Caquetá. The area is located between 00°22´14.9” S and 

00°55´11”S and between 72°06´36.3” W and 71°26’18.3” W (Figure 3.1). This region is 

formed by the intersection of sedimentary plains of Tertiary origin (dissected terraces and 

hills), with rocky outcrops of Paleozoic origin running to the north creating elevated plateaus, 

and crossed by the alluvial planes of the Caquetá River and its tributaries. Elevation ranges 

between 200 and 300 m, with slopes between 7 to 25%, and average annual rainfall is 3,000 
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mm (Duivenvoorden and Lips, 1995), December, January, and February being the driest 

months of the year with 150 mm of rainfall per month on average.

At the two sides of the river there are two small semi-urban municipalities: Araracuara 

at the northern border of the Caquetá River with a population of 1,637 inhabitants (60% of 

them indigenous people), and Puerto Santander at the southern border of the Caquetá River 

with a population of 2,373 inhabitants (67% of them indigenous people) (López, 2009). The 

two municipalities have basic infrastructure for health care, education and commerce. In 

addition, Araracuara has a basic airport infrastructure where weekly flights constitute the 

main connection between the region and the rest of Colombia. With the exception of these 

two municipalities, the study area was situated in indigenous resguardos (legally recognized 

indigenous territories). The field work was done in four indigenous communities: Aduche, 

Guacamayo, Peña Roja, and Villazul (Figure 3.1).

The communities of Aduche and Guacamayo share the Aduche resguardo with an area 

of 62,178 ha, located at the two river sides of the Caquetá River excluding Puerto Santander 

and Araracuara municipalities. The community of Aduche is located mainly on transitional 

soils between the coluvio-alluvial valleys of Caquetá and Aduche Rivers and the denudation 

surfaces. These soils are found in plane, well-drained areas with slopes of 1 to 7%, in which 

recently coluvio-alluvial sediments were deposited (IGAC, 1979). The community of 

Guacamayo was founded in 1967 and it is located at the back side of Araracuara. The 

landscape is rich in rocky formations from sedimentary origin, some of them with 

petroglyphs. Soils are superficial and limited by the bedrock. The presence of quartz gravy 

developed soils with sandy textures and clayey soils in deeper strata (IGAC, 1979). In 

addition, Caquetá´s River sides provide Aduche and Guacamayo with extensive areas of 

floodplains.

The communities of Peña Roja and Villazul share the Nonuya resguardo with an area of 

59,840 ha, which was created by the communities after their arrival in the Middle Caquetá 

region. The communities of Peña Roja and Villazul are located on elevated terraces of the 

Tertiary plateau, facing the Caquetá River. Both have access to islands and extensive areas of 

floodplains from the Caquetá River. The community of Villazul was founded in 1956 and is 

located about 50 km from Araracuara down river. Peña Roja is the youngest community. It 

was founded in 1990 when Nonuya people living in Villazul decided to establish a Nonuya 

community to rescue their tradition (Echeverri and Landaburu, 1995).
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Figure 3.1. Map of the study area including the location of Aduche (the big one) and Nonuya 
(the small one) resguardos, indigenous communities, anthropogenic soils (areas in black) and 
malokas of communities (clear dots). Illustration is based on the map of the Amazon basin 
elaborated by the Amazon Cooperation Treaty Organization-ACTO (2008), the hydrographic 
map of the Colombian Amazon region was elaborated by the Instituto Amazónico de 
Investigaciones Científicas Sinchi (2002) and the image of the study area taken from Google 
Earth (2014).

3.2.2. Population

Indigenous communities of Aduche, Guacamayo, Peña Roja, and Villazul are inhabited by 

Andoke, Uitoto, Nonuya, and Muinane ethnic groups with a common origin. They 

denominate themselves as Gente de Centro (People of the Centre) in reference to their 

interfluvial origin between the Caquetá and Putumayo Rivers. The study area corresponded 

traditionally to the Andoke´s territory and has been occupied by them since before the 18th 

century (Franco, 2002), with an occasional migration forced by the rubber boom between the 
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1900s and 1930s. The other three ethnic groups were displaced from their original territories 

by the rubber boom and arrived in the Middle Caquetá region around the 1950s. 

Indigenous settlements along the Middle Caquetá region are composed of individual 

family houses and one or more malokas1. The community of Aduche is inhabited by 128 

persons belonging to 27 Andoke families, living in small habitational sub-nuclei around six 

malokas (one for each remaining Andoke clan). The community of Guacamayo is inhabited 

by 153 persons belonging to 34 families, living in houses distributed across Araracuara. The 

single maloka that exists is managed by a Uitoto man, son of one of the founders of the 

community. The community of Peña Roja is inhabited by 71 persons belonging to 15 families 

living in houses distributed along the banks of the Caquetá River. There are two malokas, 

each one managed by one of the sons of the community founder. The community of Villazul 

is inhabited by 77 persons belonging to 17 Muinane families organized in a unique small 

habitational nucleus with two malokas managed by the sons of the founder of the community. 

Populations of these ethnic groups were strongly diminished by the rubber boom at the 

beginning of the 19th century. Estimations of their populations before the rubber boom were 

about 10,000 Andoke, 15,000 Uitoto, 1,000 Nonuya, and 2,000 Muinane inhabitants, 

according to the records taken by Thomas Whiffen during his journey in the region between 

1908 and 1909 (Andrade, 1986). After the rubber boom, their populations decreased to about 

30 Andoke, 300 Uitoto, 4 Nonuya, and 10 Muinane inhabitants, according to estimations 

made by members of the communities. In the Nonuya and Muinane ethnic groups where only 

few men survived, ethnic groups broke the tradition to only marry between clans of their own 

ethnic group and made new agreements to marry women of other ethnic groups (Orlando 

Paky, personal communication). This allowed them to increase the number of inhabitants in 

their ethnic groups and perpetuate their cultures. Although these communities became more 

multiethnic for outside observers, communities followed men´s tradition and recognized 

themselves as mono-ethnic communities. 

For this research, each community was asked to suggest farmer families who knew well 

their territory, knew most about soils and were active farmers. Nine families from Aduche, ten 

from Guacamayo, six from Peña Roja, and eight from Villazul (33%, 29%, 40% and 47% of 

community´s total population respectively) were selected, conserving the representativeness 

of each ethnic group in the sample.

1 Communal indigenous houses with round shape made of wood and with a roof of palm leaves where traditional 
leaders live and teach the culture to other community members.
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3.2.3. Permissions

This project was part of the free prior informed consent agreement between the Instituto 

Amazónico de Investigaciones Científicas Sinchi and the communities associated to the 

indigenous organization Consejo Regional Indígena del Medio Amazonas-CRIMA to work 

together on traditional food production as part of the process developed by the Sinchi Institute 

to build up the institutional politics with indigenous communities (Acosta and Mendoza, 

2006). Soil sampling was done by the Sinchi Institute in the frame of the new legislation for 

research institutes associated to the Ministry of Environmental Issues of Colombia (Decreto 

1376 of 2013), in which the Sinchi Institute does not need permission for genetic resources 

assessment when the material collected is only for research without a commercial interest.

3.2.4. Field work

From September 2011 to September 2013, communities were visited eight times to collect 

information, discuss preliminary results and make field observations in the swiddens. Visits to 

the study area were for 1 or 2 weeks, working with each community between 2 to 4 days 

during the day and the night, for a total of 90 days. Because in indigenous communities men 

and women have different roles and manage different but complementary information, during 

field work members of the research team participated and assumed the corresponding gender 

role to access male and female information. Interviews and field work were planned together 

with local people according to the progress of the research. Participatory observations 

occurred during field work and during daily community activities in the course of our visits.

3.2.5. Natural and anthropogenic soils in the study area

As a starting point for the research, an initial discussion between communities and the 

research team took place about what indigenous people understand by soil. After this 

discussion, communities elaborated maps of their territories localizing the soils they 

distinguished. They named soils in their native language, in Spanish (their second language) 

or in both. In most cases, native names corresponded to words that define soil texture and/or 

color, but in other cases soil names were words with no direct correspondence in the Spanish 
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language. In such cases, linguistic interpretation or translation of names was included. Uitoto 

and Nonuya translations could be made by Juan Alvaro Echeverri, co-author of this paper 

who speaks Uitoto and has been working in the study area for many years. Expert academic 

linguists for Muinane and Andoke languages were not found. Therefore native Muinane and 

Andoke persons fluent in both their language and in Spanish helped. Orlando Paky, health 

promoter of the area who was educated by the Instituto Linguístico de Verano and 

participated in the translation of the Holy Bible into Muinane helped with the interpretation 

and translation of Muinane words. Fissi, the leader of the Andoke ethnic group who is expert 

on the Andoke language and culture helped with the interpretation and translation of Andoke 

words.

Based on the maps produced by the communities, field trips with farmer families were 

planned to visit and describe each soil. In the field, an Edelman auger was used to collect a 

90-cm deep core sample of the soil profile. GPS coordinates were taken where soil samples 

were collected and a participatory description of soils was made. Soil description included the 

profile observation and horizons description by features observable in the field such as texture 

and color (using a Munsell soil color chart). Information about the soil’s recent use history, its 

suitability for agriculture, and crops, trees or palms that might grow well in each soil was also 

collected. 

About 500 g of A horizon was collected from each soil for physicochemical analyses. 

At the end a total of 30 soil samples were obtained for physicochemical analyses that 

corresponded to a unique soil sample of a soil type or duplicate samples of the same soil type 

collected in different communities (Table 3.1). Soil samples were analyzed in the National 

Soil Laboratory of the Instituto Geográfico Agustín Codazzi - IGAC in Bogotá, Colombia. 

Physicochemical analyses included: texture, pH (1:1 in water), Al saturation (exchangeable Al 

with KCl), organic carbon (Walkley – Black), cation exchange capacity (with normal and 

neutral ammonium acetate), minor elements (Ca, Mg, K, Na) by DTPA, percentage of total 

bases, base saturation (with normal and neutral ammonium acetate) and available phosphorus 

(Bray II). 

After the complete soil inventory was finished in each community, each farmer ranked 

soils from very good (with the number 1) to very poor (with the number 5) according his or 

her perception of the suitability of the soil to establish swiddens. After the evaluation was

finished in all communities, the 30 evaluations were grouped for a final ranking of soils. The 

final ranking was discussed with farmers to confirm that the soil ranking represented the view
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of the majority.

Field trips around communities were also undertaken to localize ADE and to estimate 

the surface area of ADE. During field trips, soils were checked superficially for color and 

presence of anthropogenic materials. Information about the type of vegetation (natural or 

cultivated species), its age (mature forest, secondary forest, young fallow, swidden in 

different stages or grassland), and the area of each patch of ADE was recorded. Areas of ADE

were estimated in situ with a GPS. The correct area estimation of ADE was difficult because 

they were discontinuous and had irregular shapes. To improve estimations of ADE areas, GPS 

information was compared with maps indigenous people made of their territories, maps of 

Indigenous Reserves provided by the Instituto Colombiano de Desarrollo Rural-INCODER, 

and graphs of local ADE published by Herrera et al. (1992) and Andrade (1983). The result is 

presented in Figure 3.1.

3.2.6. Indigenous narratives about origin of soils and their ancient 

use

Most of the information about origin and ancient uses of soils and myths referring to these 

aspects was collected from traditional leaders at night in the mambeadero2. Discussions were 

always joined by mambe (coca powder) and ambil (tobacco paste) as the essential elements 

for dialogue. Pre-structured trigger questions were prepared but the research team always 

adopted a flexible approach about the order in which questions were asked or the order in 

which topics were addressed to let the traditional leaders feel comfortable answering. Because 

of that, not all the mambeadero sessions provided relevant information for the research and 

more mambeadero sessions were required than originally expected to obtain the reported 

information. 

3.2.7. Swidden location, estimations of soil productivity and 

indigenous perceptions of soil productivity

Based on the soil maps elaborated in each community, farmers indicated the number of 

swiddens they had, where they were located and on which type of soil. Information for 2011 

2 The space in the maloka for knowledge exchange
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and 2013 was recorded. 

A preliminary research on the swidden production system in the study area was done to 

understand the particularities of it. The information collected helped to identify variables used 

to estimate soil productivity. Three variables were used to estimate soil productivity in the 

three main groups of soils indigenous farmers ranked: fallow duration, swidden area, and time 

between planting and harvesting manioc (Manihot esculenta Crantz). Variables were

evaluated in 20 swiddens (5 from Peña Roja, 8 from Guacamayo, 5 from Aduche and 2 from 

Villazul) from which 9 were located on Oxisols and Ultisols, 4 on Alluvial Entisols, and 7 on 

ADE Anthrosols.

Fallow period starts when swiddens are abandoned after a cropping period when labor 

effort is no longer compensated by production due to the increased presence of weeds and soil 

nutrients depletion. The fallow duration reflects the removal of nutrients from soil during the 

cropping period and the time required to restore nutrient stocks to a minimum to allow 

production of a new crop. In soils with limited nutrients it is expected that long periods are 

needed to restore them without human intervention. In more fertile soils, on the other hand, 

nutrient depletion is less and fallows might be shorter. Fallow duration was estimated in years 

based on local farmer´s knowledge about when the place was used before, for how long and 

how many years the soil rested before a new swidden was established. In cases people 

indicated the patch was a primary forest never logged before, it was assumed the area had a 

fallow period of at least 100 years. 

A relationship between swidden size and soil fertility is expected. Larger fields will be 

needed on less fertile soils with lower productivity than more fertile soils. The swidden area 

(in square meters) was estimated in the field with a GPS. 

A better plant nutrition is reflected by a faster plant growth. Manioc as the main crop 

planted in swiddens is a good indicator to evaluate the relation between plant growth and soil

productivity. In manioc, a better plant nutrition results in a more active nutrient translocation 

to roots and therefore in an early root bulking (Alves, 2002). When root bulking is early 

farmers can harvest manioc early, thus shortening the crop cycle of manioc. A short cycle 

could be advantageous for certain product preparations that are produced in large quantities. 

The months between manioc planting and harvesting was estimated from 20 swiddens 

permanently monitored since manioc was planted until when it was ready for harvesting 

according to indigenous criteria. Because swidden harvesting on floodplains is biased by 

flood, swiddens located at restingas (Alluvial Entisols on high floodplains that are only 
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reached by high floods) were monitored, hoping farmers could make the manioc harvesting 

decision based on manioc root bulking and not on the flooding regime. Indigenous farmers 

cultivated around 12 different manioc landraces per swidden. Those manioc landraces were 

cultivated indistinctively on Oxisols, Alluvial Entisols or ADE Anthrosols. Consequently, the 

moment of manioc harvesting was determined by a specific manioc landrace or by multiple 

manioc landraces farmers considered ready for harvesting. 

Field trips to swiddens were also used to ask and observe swidden productivity 

according to indigenous perceptions.  Indigenous perceptions included expectations in relation 

to swidden production as well as problems faced in the swidden in relation to productivity.  

3.2.8. Manioc inventories 

Inventories of manioc landraces managed by each community were done during field trips to 

swiddens. Portfolios of landraces of communities were compared in relation with the type of 

soil on which swiddens were located. A manioc landrace was defined as a unique combination 

of morphological characteristics clearly recognized by local people and identified by a local 

name. Landraces were classified by indigenous people into three main groups: sweet maniocs 

(those with non-toxic roots that can be consumed after being cooked without a previous 

treatment of detoxification), white bitter maniocs also known as maniocs “to grate” (toxic 

landraces, white to very pale yellowish colored roots, used to obtain starch after having grated 

them) and yellow bitter maniocs (toxic maniocs with yellow pulp colored root of which their 

complete biomass is used in different preparations). In addition to field trips, during research 

team visits to communities, researchers shared meals or were involved in the preparation of 

those, being important opportunities to observe culinary traditions. 

3.2.9. Statistical analysis

A one-way ANOVA Kruskal-Wallis test for non-parametric data was done for the twenty 

registers obtained for fallow duration, swidden area and number of months between manioc 

planting and harvesting in the three groups of soils indigenous farmers ranked. A Chi-square 

test was done to assess differences in manioc inventories among ethnic groups. Differences 

were considered significant at p≤ 0.05. All statistical analyses were performed with the 

analytical software Statistix 9.0.
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3.3. Results  

3.3.1. Indigenous classification of soils

Indigenous people of the Middle Caquetá region have a complex view on the world. They 

understand that living and non-living elements are composed of physical and spiritual 

components. All elements, including humans themselves, are equally important parts of a 

unique unit, the world. Because all components are equally important, they cannot be isolated 

from each other. In this way, the soil does not exist per se. It is part of a “place” that includes 

also other elements such as vegetation, water sources, landscape and animals that live there in 

an integral way. 

Although different elements exist and interact in the world, each element has particular 

characteristics that confer to the place attributes to be used for specific purposes. Soils of 

places are classified by indigenous people into two main groups: soils suitable for cultivation 

and soils not suitable for cultivation (Table 3.1). Soils not suitable for cultivation commonly 

show cultural (taboos), physical or chemical constraints for agriculture. In any case, they have 

important roles in the maintenance of the environmental equilibrium. Examples of these soils 

according to Uitoto people are the Kaiyanɨe or “soils of stone to make fire”; the Jetekore or 

swiddens of the sun in which wild animals find fruits to eat; and the Za+core which are soils 

permanently swamped and covered by broad patches of Mauritia  flexuosa palm whose fruits 

are an important source of food (mainly proteins and oil) for wild animals. 

Soils suitable for cultivation have two distinct layers (horizons) indigenous people of 

the Middle Caquetá region recognized: one formed by the litter layer and the first layer of 

dark earth (A horizon for soil scientists) that indigenous people denominate the workable soil.

The second layer is formed by the deeper soil and the bedrock (B horizon, deeper mineral 

horizons and bedrock for soil scientists) indigenous people denominate the dead soil.

In the research area, indigenous people recognized nine different soils suitable for 

cultivation, although the quality of some of them restricts their use to sporadic occasions 

(Table 3.1). Indigenous soil classifications were based on soil texture, soil color and the 

presence of other easily observable features in the field. Each ethnic group classified soils 

differently. Muinane people had the simplest soil classification mainly based on texture; they 

recognized two main groups of soils: clayey and sandy soils. Uitoto people also classified 

clayey soils in one group, but recognized differences among sandy soils grouping them 
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separately and using specific words to name each one of them. Nonuya people based their soil 

classification on both texture and color. Nonuya native names referred to texture and color 

characteristics followed by the word nokea which means soil (tierra as they translate it into 

Spanish). Nonuya people distinguished differences between clayey soils but grouped all soils 

with sandy texture into a unique group. Andoke people particularly recognized each soil 

individually. The Andoke language does not use a specific word for “soil” and named each 

soil using a specific word. 

All indigenous groups recognized ADE. They called it Tierra negra or Arena negra in 

Spanish (black earth or black sand in English), but they also had native names for it. For the 

Nonuya and Muinane ethnic groups ADE were classified as one of the soils into the group of 

sandy soils using a common word to denominate sandy soils in general (Nógañu jiinɨje as in 

Muinane language) or adding a word to highlight the dark color of ADE (as in Nonuya 

language in which they added the word black, jitɨrɨ, to the words nichoɨ nokea that mean 

sandy soil).

Soil native names provide information beyond merely its texture or color. The Uitoto 

word ++kan+ used to denominate a soil with a thick layer of litter also means fish odor 

according to the n+pode dictionary developed by Griffiths et al. (unpublished manuscript)

that might be related to the production of volatile substances during organic matter 

decomposition easily perceived by the amount of litter in this soil. The Tapire (or Zafire) soils 

as Uitoto people denominate sandy soils with a thick upper layer of fine roots indicate the 

particular short and thin forest that grows on these soils. More interesting meanings have the 

words used by Uitoto and Andoke people to denominate ADE. The Uitoto word Jí+k+no can 

be analyzed as Jɨi- “small”, -kɨ both mean “fire” or “generation”, and –no (nɨe) is the suffix 

for “place (soil)” so the name could be translated as “soil with small particles due to fire or 

use by former generations”. Andoke people called ADE ÑesxaΘ that means textually black 

soils, but the term indicates that black color origin is burning. 

3.3.2. Indigenous understanding of the origin and ancient use of 

soils

Indigenous people of the Middle Caquetá region agreed that natural soils were formed 

naturally but had a different perception of ADE origin. In local indigenous understanding 
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ADE have a mythical origin in which fire is an important element. The mythical Andoke tale 

for ÑesxaΘ formation talks about a fest in the sky organized by Pepái, the son of the Andoke 

god Nenefí, to which only the good persons who lived in The Earth at that time were invited. 

During the fest, people threw away bones of the cooked animals that opened springs of hot 

water which burnt The Earth. Bones of eaten animals and bodies of bad people in The Earth 

amended the soil and gave to ÑesxaΘ their characteristics. The Uitoto version of ADE 

creation also talks of a time in which the world was burnt. The evidence of that episode 

according to Uitoto people are the black patches that have small parts of animals or animal 

forms we don`t know today.

On the more recent history indigenous people indicate that ADE, formed in mythical 

times, provided good agricultural soils. Aurelio, the traditional leader of the Guacamayo 

community said that Ji+k+no were the favorite soils of ancient people. So, when ancient 

people found those black patches of soil, they settled there. Fissi, leader of the Andoke 

people, indicated that in ancient times people pulled the woods up from the soil (removed the 

litter and decaying wood lying on the soil) to check the soil color.  When they found ÑesxaΘ,

they settled their communities there. The practice of locating indigenous settlements on ADE 

is still maintained. Muinane, Nonuya and Uitoto ethnic groups that did not live in the Middle 

Caquetá region traditionally established their communities on ADE.

The Middle Caquetá region was traditionally inhabited by the Cacambra (a local bird 

species) and the Cucarrón (beetle in English) Andoke clans which are now extinct. Actual 

indigenous people, however, know who lived there and how much those soils were 

appreciated for food production. Muinane people indicated that Carijonas (an almost extinct 

ethnic group of the Colombian Amazon region) were the oldest inhabitants of the area while 

Nonuya people indicated that both Cacambras and Carijonas were the oldest inhabitants 

there. Aurelio, leader of Uitoto people, indicated that ancient people selected on ADE because 

the production was good and those soils could be used after short fallows without problem 

(without compromising crop production). Fissi pointed out that “Andoke used to fight against 

Carijona people for those patches of dark soil. Carijona people looked for those places 

because they knew they were good for manioc cropping. During Andoke and Carijona fights 

for ÑesxaΘ, people were killed, their goods were destroyed, their malokas were burnt and the 

winner took the territory. Andokes also fought against Carijona to recuperate their territories 

and so on for many generations. The broken ceramics and artefacts are found where ancient 

malokas and houses existed and they are the remains of those wars” (Fissi’s interview, May 
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18th of 2012).

Andoke people believe those artifacts are not only burnt household waste but also 

remains of broken utilities of malokas and houses intentionally destructed. Then, places where 

ADE were formed were exposed to frequent small burnings and also to periodical big 

burnings when complete communities were destroyed. Community destruction could lead to 

high amounts of organic matter in the soil that with burnings might produce higher amounts 

of charcoal and ashes than regular burnt household waste. High amounts of charcoal and 

ashes might change the environmental conditions of soils for ADE formation or potentiate the 

initial beginnings of the ADE process formation, but this is an element for further discussion 

among scholars. 

In summary, indigenous mythology indicates soil creation before human existence. 

Indigenous groups currently living in the Middle Caquetá region do not recognize themselves 

as the creators of ADE. Their historical memory expressed through their narratives goes to a 

time in which ADE already existed, the region was densely inhabited, ADE had a key role in 

food production, they were not able to recreate it, and they needed to fight for its use. That 

picture does not correspond to what we find today.

3.3.3. Today’s use of natural and anthropogenic soils in the study 

area

Most natural soils of the study area are covered with primary and secondary forest indigenous 

people use for different purposes:

Fruit collection: Not all species indigenous people consume are cropped. An important 

number of edible plants were never domesticated or their domestication was truncated at some 

point in the human history (Clement, 1999) and indigenous people go regularly to forested 

areas to collect them. 

Extraction of materials for construction: All materials used for house or boat 

constructions, for the elaboration of house artifacts, furniture, and tools for food processing 

are mainly obtained from the forest, except metal artifacts and modern tools for hunting and 

fishing. 

Collection of medicinal plants: As is the case for some edible species, some natural 

medicines are wild plants. Medicines include complete wild plants or parts of them such as 

roots, leaves, bark or resins. Most of the medicinal plants are not cultivated or not maintained 
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Figure 3.2. Percentage of farmers’ swiddens located on Amazonian Dark Earths (ADE), 
Oxisols (O) or Alluvial Entisols (A) during 2011 and 2013 in the Andoke community of 
Aduche, the Uitoto community of Guacamayo, the Muinane community of Villazul, and the 
Nonuya community of Peña Roja, Middle Caquetá region of Colombia.

in anthropic environments and people depend on forested areas to obtain them. 

Areas for hunting: Most of the hunting events occur in secondary forests where there 

are palms and fruit trees still producing. Additionally, there are specific places to hunt specific 

animals such as salados (soils with a high concentration of salts wild animals visit 

periodically to restock minerals) were most of the big mammals are hunted or patches of the 

Mauritia flexuosa palm where big rodents are hunted. 

Swidden establishment: Between 50% and 90% of the indigenous swiddens were 

located in natural soils (Figure 3.2).

Common uses of ADE observed in the indigenous communities were: 

Settlement: Most of the malokas and houses of the communities of Aduche, Peña Roja 

and Villazul were located on ADE (Table 3.2). Indigenous people appreciate places on ADE 

as they are plane landscapes with good soils with often natural streams of fresh potable water 

in the proximity. 

Agroforestry systems: Swiddens observed in all types of soils were mainly of transitory
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Table 3.2. Percentage of settlings (number of houses), agroforests, grasslands and swiddens 
located on Amazonian Dark Earths (ADE) in each one of the communities visited. Estimates 
are based on observations during field trips in 2013 and reflect a relative frequency of uses 
and not absolute values.

Use of ADE Aduche Guacamayo Peña Roja Villazul
Settling 93 6 60 100
Agroforest 100 10 100 100
Grassland 100 0 100 100
Swidden 75 0 0 27

crops and almost no palms or fruit trees were planted there. Most palms and fruit trees were 

planted around malokas and houses on ADE, producing agroforestry systems. Agroforests not 

only included native trees and palms but also exotic plants such as citrus trees, coconut palms 

and mangos. Farmers from Villazul indicated that “we plant fruit trees and palms in a 

swidden if we want to abandon and transform it into a fruit tree garden. After that, we will not 

log the fruit trees anymore. We will not use that place for a swidden anymore. Those places 

are for hunting and for fruit collecting” (Ana Rita Andoke’s interview November 27th of

2012).

Grasslands: In the communities of Aduche, Villazul and Peña Roja some of ADE or 

parts of them near or in the settlements were covered by non-native grasses (Table 3.2) such 

as star grass (Cynodon nlemfuensis Vanderyst) and humidicola grass (Brachiaria humidicola 

(Rendle) Schweick). None of the communities raised cows or other domestic animals that 

could feed on those grasses. Periodically and especially when grasses became dry, people 

burnt it to stimulate its re-grow. Interviews with local people indicated that grassed patches 

were planted by men as they like grassed landscapes. Women however, indicated that they 

would prefer to use ADE for crop production but they consented men´s decisions. 

Swiddens: Soil ranking for swiddens indicated that by consensus indigenous farmers 

considered ADE as the best soils for food production (In the case of Muinane people, sandy 

soils in which ADE are included were ranked in first place as very good soils)  (Table 3.1). 

Common expressions people used to refer to ADE included “These soils are always 

preferred”; “they are so good”; “they have a lot of nutrients”; “The best soils”; “Very good 

soils for manioc and fruits”; “they produce good manioc”. The soil ranked in second place 

was Alluvial Entisol. Other soils listed were considered as soils with limitations for 

agriculture but which are suitable to cultivate.

Chemical composition and soil fertility measures reported in Table 3.3 were not part of 

the environment conceptualization indigenous people make. They used soil color, soil texture, 
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and vegetation as indicators of potential productivity. They understood the importance of 

organic matter in soil nutrient supply. From their experience they knew that a dark soil holds 

more nutrients. They also recognized which trees and which type and age of vegetation 

provided more and better organic matter that would confer to the soil a deeper and better 

workable soil for their crop production. An old vegetation, with a deep workable soil that 

produced well before would be the main criteria to select a place for a new swidden.

Every year each indigenous family opens a new swidden on uplands. Swiddens are 

cropped mainly with manioc which occupies about 70% of the total cropped area; other non-

staple crops such as plantain (Musa paradisiaca L.), pepper (Capsicum annuum L.), pineapple 

(Ananas comosus Merr.), and corn (Zea mays L.); ritual species such as coca (Erythroxylum 

coca Lam.) and tobacco (Nicotiana tabacum L.); and some medicinal and cosmetic plants. 

Crops with short production cycles while manioc harvest starts a year after planting and 

continues for another two years until manioc finished. This means, each family had three to 

four swiddens on uplands in growing or harvesting stages and 18% of the families 

additionally had one or two swiddens on floodplains.

Because mainly ADE and Alluvial Entisols had a workable soil with good conditions 

for food production, their frequently selection for swiddens was expected. Swidden 

inventories made in 2011 and 2013 indicated that Uitoto, Nonuya, and Muinane farmers used 

predominantly Oxisols while Andoke farmers used predominantly ADE for their swiddens in 

the same period (Figure 3.2). 

It could be assumed that because of the relative abundance of ADE in their 

surroundings, Caboclos of the Central Amazon have been more exposed and have more 

access to ADE, explaining why ADE are used more in the Brazilian Amazon than in other 

regions. Limited access to ADE was therefore explored as a reason for the results described 

above.

3.3.4. Accessibility to ADE use

It is known that indigenous farmers will not open swiddens farther than 5 km from their

community, because of human-limited physical capacity to transport harvested products from 

far away. All ADE registered were less than 5 km from the communities, therefore ADE were 

available for swiddens. Total ADE area in the Aduche reserve was estimated to be 115 ha (86

ha in the Andoke territory and 29 ha in the Uitoto territory), and in the Nonuya reserve to be
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70 ha (distributed in almost equal areas of 35 ha for the Nonuya and Muinane groups). Land 

tenure in indigenous reserves is collective and all community members have equal access to 

land. Then when ADE hectares were equally divided over the families of each group, each 

Andoke family had access to 3.18 ha; each Uitoto family to 0.85 ha; each Nonuya family to 

2.33 ha; and each Muinane family to 2.05 ha. ADE access for Uitoto families could be less 

because some ADE were also part of the Araracuara municipality and were used by families 

that were not part of the community of Guacamayo. Results indicated that all ethnic groups 

had access to ADE, although some ethnic groups had access to more ADE land than others 

(Andoke farmers for example). However, ADE accessibility did not explain the results as 

ADE use did not correspond to the accessibility to it.

3.3.5. Estimation of soil productivity and its indigenous 

perception

There was a high variability in fallow duration (Figure 3.3A), swidden area (Figure 3.3B) and 

time between planting and harvesting manioc (Figure 3.3C), independently of the soil in 

which swiddens were located. Kruskal-Wallis one-way ANOVA test showed no significant 

differences in the duration of fallows (p= 0.34) or in swidden areas (p= 0.41) on different 

soils. Differences in the time between planting and harvesting manioc among soils were 

significant (p= 0.03). Manioc grown on Alluvial Entisols was harvested earlier than manioc 

grown on uplands but there were no significant differences between Oxisols and ADE, despite 

differences in their chemical composition. Indigenous farmers estimated swidden productivity 

based on manioc production. From 33 interviewed farmers, 64% were satisfied with their 

swidden production independently of the soil selected. Only four farmers declared being 

dissatisfied with swidden production. Two farmers with swiddens on ADE indicated that 

swiddens were not burnt properly and nutrients did not liberate properly into the soil affecting 

swidden production. Two other farmers with swiddens on non-ADE indicated that strong

rains on soils with poor drainage capacity and groups of capybara (Hydrochoerus 

hydrochaeris) spoiled a good portion of the cultivated manioc. 
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Figure 3.3. Average and standard error of fallow duration, swidden area and time between 
planting and harvesting manioc in swiddens on Oxisols (O), Amazonian Dark Earths (ADE) 
or Alluvial Entisols (A). A. Fallow duration (in years) of places where swiddens were 
established; B. Swidden area in square meters; C. Time  between planting and harvesting 
manioc in months (letters under each soil correspond to test results of pair-wise comparison).

3.3.6. Cultural values associated to soil selection

Indigenous communities maintained very diverse manioc inventories of sweet, white and 

yellow bitter manioc landraces (Figure 3.4). When the proportion of sweet, white and yellow 

bitter maniocs was compared among communities, significant differences in the number of 

A

Oxisols

C

B
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Figure 3.4. Manioc inventories (N) and percentages of sweet, white bitter, and yellow bitter 
landraces cultivated in the Andoke community of Aduche, the Uitoto community of 
Guacamayo, the Nonuya community of Peña Roja, and the Muinane community of Villazul, 
Middle Caquetá region of Colombia.

sweet and yellow bitter manioc existed (10.5 and 25.8 respectively compared to a Chi-square 

table value of 7.82). Andoke and Muinane communities cultivated the lowest numbers of 

yellow bitter maniocs and they were also the communities that used ADE predominately for 

swiddens. The Nonuya community on the other hand, cultivated the highest number of yellow 

bitter maniocs and was the one that did not use ADE for their swiddens, neither in 2011 nor in

2013.

Differences in manioc inventories among ethnic groups were related to their culinary 

preferences. Nonuya and Uitoto people traditionally consume casabe de masa (round flat 

breads made with the whole fermented yellow bitter manioc root biomass) as the main way to 

consume manioc. As bitter maniocs grow well on Oxisols (Eden and Andrade, 1987; Wilson 

and Dufour, 2006), Nonuya farmers do not require ADE for swiddens and prefer ADE for 

cropping agroforests with exotic species they appreciate and that cannot be grown on non-

ADE. On the other hand, Andoke and Muinane people traditionally consume manioc mainly 

as casabe de almidón (round flat breads made from starch obtained from white bitter manioc 

roots). 
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3.4. Discussion

3.4.1. Composition of Amazonian soils

According to the standard soil quality indexes for Colombian soils used by the Instituto 

Geográfico Agustín Codazzi-IGAC (IGAC, 1979) and the soil study done in the Middle 

Caquetá region by Duivenvoorden and Lips (1995), soils of the research area do not have 

physical problems for agriculture as all of them are loamy to sandy soils. The main constraint 

is their high acidity which causes high levels of exchangeable aluminum toxic to plants, low 

Ca availability and low base saturation which results in a reduced fertility. Most of 

Amazonian parental materials from which soils originate are rich in kaolinite which has 

limited nutrient holding capacity (Ma and Eggleton, 1999). Soil organic matter therefore plays 

an important role in cation exchange capacity (Glaser and Birk, 2012). In environments with 

high temperatures and high humidity as common in the Amazon region organic matter 

decomposition is rapid. Nutrients liberated after organic matter decomposition are rapidly 

leached due to the frequent strong rains and the low nutrient-holding capacity of soils, 

resulting in a limited fertility of most natural upland soils of the region.

Results of this research indicated that upland soils have a pH of 4 and an exchangeable 

acid saturation over 70%, independently whether they were natural or anthropogenic soils. 

Alluvial Entisols on the contrary have an exchangeable acid saturation around 40% (Table 

3.3) explained by the sediment enrichment that is experienced every year when the Caquetá 

River floods them (Piedade et al., 2001) and deposits sediments from the Andes with different 

mineral composition. 

Rather than the high soil acidity (Table 3.3), other edaphic variables determined the 

conditions for agriculture. Soils with more organic carbon have higher cation exchange 

capacities. Soils with better conditions for agriculture were generally those with higher Mg 

and K availability, a higher total base saturation and a higher percentage of base saturation 

(Table 3.3). When ADE and Alluvial Entisols were compared, alluvial soils had higher Ca 

amounts and a better chemical composition for agriculture than ADE, but indigenous farmers 

ranked Alluvial Entisols in the second place. Periodical floods that limit the number of crops 

that can be produced on alluvial soils were the main factor in indigenous soil ranking. Corn 

and plantain that are usually cropped in Alluvial Entisols are complementary to the staple-

food manioc, and farmers do not need to crop them permanently or in large amounts to satisfy 
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their requirements. Hence advantages for these crops are generally not major determinants in 

indigenous appreciation of soils.

Indigenous description of soil layers were in concordance with the scientific knowledge 

of soils. Indigenous discrimination of workable soil and dead soil corresponded well with the 

activity and function each layer has in relation to plant nutrition, resource capture and 

agricultural practices as seen by natural sciences. The workable soil for indigenous people is 

the one in which people work to produce food and it is also the fertile portion of soils. For soil 

scientists it is the layer where organic matter transformations occur and it is susceptible to 

degradation or improvement by human agency. In soils with high turnover rates of organic 

matter, such as most of the natural Amazonian soils, generally the topsoil plays an important 

role in plant nutrition (Serna-Chavez et al., 2013). Microbial activity is also found to be 

mainly restricted to the first 20 cm of these soils (Peña-Venegas et al., 2007). The term dead 

soil on the other hand, describes well the almost inexistent biological activity in soil layers 

below the A horizon where very old and leached materials coming from a predominant 

kaolinite bedrock with low natural cation exchange capacity hardly provides nutrients to 

plants. 

3.4.2. Origin of Amazonian Dark Earths and other soils

Soil scientists agree that natural soils are formed by the natural erosion of bedrock, the action 

of weather on those materials and the decomposition of organic matter. On the other hand, 

scientists accepted that ADE are anthropogenic soils created by inhabitants of the Amazon 

region between 2000 and 500 years ago (Neves et al., 2004), easily distinguished from natural 

soils by their chemical properties and other naked-eye observable features such as their dark 

color, their deep A horizon with presence in most cases of potsherds, lithics and charcoal 

pieces that were left by ancient anthropogenic activities (Kämpf et al., 2003). Therefore, ADE 

are classified as Anthrosols (according to soil science nomenclature) or as anthropogenic soils 

(a term used by researchers of both natural and social sciences). For indigenous people all 

soils (including ADE) were created by nature. However, indigenous people recognized a 

relationship between ancient people and ADE in which human activities and fire were 

important elements associated to ADE. It is interesting that native words used to denominate 

ADE approach the currently accepted definition of ADE among scholars. Those words 

enclosed information of two major elements related with ADE formation: fire and human 
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activity. A similar understanding of the ADE formation is shared with Caboclos. Caboclos of 

the Middle Madeira River also associate ADE with old sites of indigenous residences and 

recognize the importance of  burning processes in ADE formation (Fraser et al., 2011a).

However, a new element about ADE formation is provided by indigenous knowledge. While 

scholars explain the presence of ceramics and human artifacts in ADE as waste deposits of 

ancient settlements (Schmidt et al., 2014), indigenous narratives included other sources as the 

remains of the complete destruction of communities.

3.4.3. Actual indigenous use of Amazonian Dark Earths

Indigenous narratives about the ancient use of ADE is not the one they have today and the 

picture recalls more pre-Columbian times when the region was densely inhabited (Dull et al.,

2010) and ADE were used intensively.

Today, indigenous people from the study area did not use ADE primarily for food 

production. It is remarkable that instead of using ADE for swiddens, some indigenous people 

preferred to keep ADE covered with grasses for aesthetic reasons. On the contrary, studies 

from the Brazilian Amazon on how local farmers used ADE indicated that Caboclos and 

indigenous communities chose predominantly ADE for agriculture. Some communities could 

face limitations to access ADE as Kuikuro people who had to walk about 10 km to cultivate 

ADE (Schmidt and Heckenberger, 2009) but despite that constraint they continued cultivating 

it. In the Middle Caquetá region some indigenous farmers could have restrictions to cultivate 

ADE, but this did not explain why farmers without restrictions to use ADE were inclined to 

cultivate Oxisols. Indigenous soil selection of swiddens therefore was not based on soil 

fertility as the main condition and other conditioning aspects drove this selection. In the case 

of Aduche where ADE were used more for swiddens than in the other communities studied, a 

cultural issue might be related with this difference. Burgos and Ceróz (2012) found that 

maniocs cultivated in sandy soils with high phosphorus availability accumulate more starch.

In natural soils of the Middle Caquetá region most phosphorus is present as Al-P or Fe-P with 

a low availability (Souza et al., 2009). The higher phosphorus availability in ADE and long 

periods of manioc growth (ADE do not experience periodical floods as floodplains do) could 

allow a larger accumulation of root starch in white bitter maniocs that particularly Andoke 

and Muinane people appreciated, encouraging them to use ADE more frequently for their 

swiddens.
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3.5. Conclusions 

Soil classification by indigenous groups of the Middle Caquetá region reflected their 

knowledge about local soils, and their perceptions about their potential and limits for 

cultivation. Indigenous people recognized ADE as the best soils and agreed that ADE provide

good conditions for most of the crops, palms, exotic and native fruit trees, but their higher 

appreciation for ADE production did not lead to a more frequent use. Contrary, other 

contemporary Amazonian farmers used ADE for food production more often than other soils 

(Fraser et al., 2011a). Those farmers produced food for their subsistence but also to supply 

local markets. Under those conditions, soils such as ADE played an important role in food 

production. Contemporary uses of natural and anthropogenic soils by indigenous communities 

of the Middle Caquetá region contrasted with their historical narratives in which ADE had a 

predominant role in food production. Drastic declines of these ethnic groups’ population 

could change the way ADE were perceived. Today, Andoke, Uitoto, Nonuya and Muinane 

remain as small ethnic groups living in a region with low population densities where abundant 

forested areas exist with conditions good enough to guarantee their food security based on 

manioc, becoming exceptional cases of how ADE are perceived and used. 

From all Amazonian soils, ADE were the only one with a clear legislation regarding 

their use due to their anthropogenic origin, classifying them also as archaeological sites (both 

in Brazil and in Colombia). Although most ADE had been reported in the Brazilian Amazon, 

they have been reported in several other countries of the Amazon Basin as well. The frequent 

use of ADE for agriculture in Brazil by groups traditionally occupying these soils to some 

extent limits their potential as archaeological sites as this agricultural use may have largely 

disturbed the sites. Archaeological studies of ADE in Colombia and other Amazonian 

countries different from Brazil are scarce. However, these countries at the fringe of the Basin 

may in fact contain more undisturbed ADE and more indigenous communities who preserved 

their traditions. Such sites and communities with similar perceptions of Amazon soils as those 

presented in this paper, might constitute an important opportunity to obtain information about 

Amazonia’s history and better understand the origin of those anthropogenic soils.
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Abstract

Manioc is an important root crop in the tropics and the most important staple food in the 

Amazon. Manioc is diverse but its diversity has not yet been clearly associated with 

environmental or social factors. Our study evaluates how variation in edaphic environments and 

in social factors influences manioc diversity among five ethnic groups of the Amazon region of 

Colombia. Inventories of landraces, genetic analysis of manioc diversity, visits to farmers’ 

swiddens and interviews with farmers were carried out during two years of field work. 

Morphotypic and genotypic diversity of manioc were large. The different ethnic groups of our 

study cultivate different sweet and bitter manioc landraces which they select and maintain in 

accordance with their ancestral rules and norms. Differences in available environments among 

indigenous communities (such as the presence of different soils) did not markedly affect manioc 

morphotypic or genotypic diversity, while social factors considerably influenced observed 

manioc diversity. Manioc diversity was explained by two parallel processes of manioc 

diversification: volunteer seedling selection and manioc propagule exchange. We argue that, for 

a full understanding of manioc diversity, indigenous knowledge, as well as morphological and 

genetic variation should be taken into account.

Keywords: Amazon; indigenous farmers; manioc diversity; manioc classification; 

morphological diversity; genetic diversity; volunteer seedling; germplasm exchange.
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4.1. Introduction

Manioc (Manihot esculenta Crantz), a crop domesticated in Central Amazonia around 8000–

10,000 years ago (Olsen and Schaal, 1999), is currently the sixth most important crop in 

tropical and sub-tropical areas of Africa, Asia and America (El-Sharkawy, 2004).The main 

world collection of manioc is located at the Centro Internacional de Agricultura Tropical 

(CIAT) in Colombia with more than 5000 accessions. CIAT classifies and conserves this 

publicly accessible manioc germplasm with an aim to improve crop performance, increase 

yields under different conditions, and adapt the crop to global climate change (El-Sharkawy, 

2006).

World crop collections maintain a core set of germplasm which is considered the 

minimum number of specimens that represent the genetic diversity of a crop and its relatives 

(Brown, 1989). However, in the case of manioc, core collections apparently do not represent 

the diversity present in highly diverse regions such as the Amazon region (Elias et al., 2000;

Elias et al., 2001; Elias et al., 2004) and therefore do not necessarily represent the complete 

diversity of this crop. A way to improve the selection of specimens for their conservation 

from areas such as the Amazon region is by understanding how manioc diversity is generated 

and preserved there and what factors affect its diversification. This information is partially 

available from previous studies conducted in particular areas (Elias et al., 2001; Emperaire

and Peroni, 2007; Fraser, 2010a) or among particular ethnic groups of the Amazon Basin

(Boster, 1986; Salick et al., 1997), but comparison of results between different locations or 

ethnic groups has so far not been attempted.

The general consensus among manioc geneticists is that manioc diversity is complex 

and varies depending on whether or not it is assessed by the number of genotypes or 

morphotypes (Elias et al., 2001). A genotype is a specific arrangement of genes that confer 

morphological and physiological characteristics to a particular group of plants. A morphotype 

is the outcome of the genetic expression that results in a particular arrangement of 

morphological features that can be recognized in a group of plants. In the field, populations of 

autochthonous manioc morphotypes (product of natural and artificial selection) are 

denominated landraces (Zeven, 1998; Villa et al., 2006). At least three reasons can be given 

why the number of genotypes or morphotypes distinguished in a sample differs. One is that 

manioc is highly heterozygous (bi-allelic state for most important variable sites). It is 

monoecious (separate male and female reproductive organs on the same plant) and out 
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crossing rates are thus high, making it difficult to interpret manioc variability (Rabbi et al.,

2012). A second reason is that the next-generation molecular markers (with high 

discrimination power) have become available only recently, making it possible to improve the 

discrimination of genotypes with respect to the number of morphotypes assessed (Ferguson et 

al., 2012). A third reason is that manioc, although commonly reproduced clonally, also 

maintains the capacity to reproduce sexually, thus producing seedlings from a recombination 

of clonally maintained landraces and causing new genotypes that continuously emerge —

genotypes that could (or could not) heretofore be distinguished as different manioc landraces

(McKey et al., 2010a). In this paper, we call these seedlings volunteer seedlings (Pujol et al.,

2007).

Manioc is the most important staple crop in the Amazon region and exhibits a 

particularly high diversity there. Manioc diversity is distributed unevenly across different 

Amazonian environments (Alves-Pereira et al., 2011; Fraser et al., 2012) and ethnic groups 

(Boster, 1986; Salick et al., 1997; Heckler and Zent, 2008). On alluvial soils from the 

Madeira River (Brazil), for example, a higher manioc genetic diversity was observed than on 

highly weathered soils or anthropogenic soils of that region (Alves-Pereira et al., 2011). This 

difference was partially attributed, on the one hand, to the presence of diversity of soil types 

apt for manioc cultivation. On the other hand, the distribution of manioc diversity has been 

explained by the indigenous farmers’ practice of collecting naturally occurring volunteer 

seedlings (Heckler and Zent, 2008) and of cropping, maintaining and exchanging different 

manioc landraces (Emperaire and Peroni, 2007). Volunteer seedlings are incorporated in 

farmers’ portfolios, thus increasing the number of landraces each farmer holds (Pujol et al.,

2007), but also increasing the genetic diversity by inbreeding (Pujol et al., 2005; Duputié et 

al., 2009b). The selection and maintenance of volunteer seedlings in farmers’ portfolios have 

been attributed mainly to farmers’ practices through directional selection in accordance to the 

agronomic performance of the volunteer seedling and through ideotypic selection when the 

volunteer seedling is similar to a landrace a farmer already recognizes (Duputié et al., 2009b).

However, since volunteer seedlings initially produce a single root (McKey et al., 2010b) and 

therefore are less productive than maniocs propagated clonally, it is not clear how farmers 

select and why they maintain volunteer seedlings to propagate them clonally. Manioc exchange 

usually occurs among kin and reflects a particular farmer’s social network (Boster, 1986);

sometimes, however, key individuals specialize in the breeding and maintenance of manioc 

germplasm—as is the case of Amuesha shamans of the Peruvian Amazon (Salick et al.,
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1997). New landraces increase farmers’ manioc portfolios; these in turn are exchanged with other 

farmers—in this way increasing the number of landraces at community level.

Amazonian societies consider manioc to be much more than only a crop, and attribute to 

it a variety of symbolic meanings that are part of their wider cultural patrimony (Emperaire 

and Peroni, 2007). For the Piaroa ethnic group of the Venezuelan Amazon, for example, 

manioc is considered cultural heritage and is used as a mediator of social relationships 

(Heckler and Zent, 2008). The social aspects of manioc might thus encourage or restrict its 

exchange among ethnic groups and in turn affect manioc diversity of a specific area or region.

With the aim to contribute to the understanding of manioc genotypic and morphotypic 

diversity in the Amazon region, interdisciplinary research was carried out to study manioc 

diversity at the community level, indicating what factors affect manioc diversity, how manioc 

diversity at community level contributes to manioc diversity at regional level and, finally, 

what information associated to manioc landraces must be considered to select and conserve 

manioc diversity in situ or ex situ. The main question guiding our research was: How is 

manioc diversity shaped by edaphic and social differences among indigenous communities of 

the Colombian Amazon? To answer this question, manioc morphological and molecular 

diversity was evaluated in areas inhabited by different ethnic groups. Soil differences and 

social factors were analyzed to assess their importance for manioc diversification.

4.2. Materials and methods

4.2.1. Study area

Throughout our research we studied two elements that affect manioc diversity: soil diversity 

and socio-cultural arrangements. For the study, we selected the Colombian Amazon region, 

part of upper Amazonia, where manioc diversity has been poorly studied. In the case of soil 

diversity we were particularly interested in the way Amazonian Dark Earths (ADE) affect

manioc cultivation, as the use of these soils by indigenous people has been poorly 

documented. For this, and with an aim to compare two locations with contrasting soils, we 

selected an area in the southern part of the Colombian Amazon in which ADE have not been 

reported, and an area in the Middle Caquetá region in which ADE have been reported. To 

assess the relation between socio-cultural aspects and manioc diversity we selected the most 

representative ethnic groups and the most traditional communities of each area of study. 
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Accordingly, research was carried out among five ethnic groups (Figure 1.1, General 

Introduction). The first are the Tikuna living in the community of San Martín de Amacayacu, 

located in the lower section of the Amacayacu River, a tributary of the Amazon River. A 

second cluster of four ethnic groups (the Andoke community of Aduche, the Uitoto 

community of Guacamayo, the Muinane community of Villazul, and the Nonuya community 

of Peña Roja) is located in the Middle Caquetá region.

San Martín de Amacayacu (03°50′17.3″ South and 70°17′57.3″ West) lies within the 

limits of the Amacayacu National Park and is part of the Tikuna, Cocama and Yagua 

TICOYA resguardo (a legitimate recognized indigenous territory) which covers 

approximately 140,000 ha. The area is characterized by flat plains of ancient, low alluvial 

terraces with superficial soils as a result of the high phreatic level of the area. Elevation is 

around 100m above sea level with slopes between 1% and 3%. The average annual rainfall is 

2800mm.The area is covered by a mature dense forest most in a mature stage with abundant 

epiphytes (IGAC, 1979) with moderate anthropic intervention.

The area of the Middle Caquetá region embraces two resguardos of which the 

communities of Aduche, Guacamayo, Villazul and Peña Roja are a part. The Aduche 

resguardo (approximately 62,000 ha) includes the communities of Aduche (00°39′21″ South 

and 72°17′32″ West) and Guacamayo (00°31′25″ South and 72°22′38″ West) and the Nonuya 

resguardo (approximately 59,840 ha) includes the communities of Villazul (00°40′00″ South 

and 72°16′32″ West) and Peña Roja (00°44′29″ South and 72°05′09″ West). The area is 

formed by the intersection of sedimentary plains of Tertiary origin with rocky outcrops of 

Paleozoic origin, creating elevated plateaus. The area also includes alluvial plains of the 

Caquetá River and its tributaries. Elevation ranges between 200 and 300m above sea level with 

slopes between 7% – 25%. The average annual rainfall is 3000mm (Duivenvoorden and Lips, 

1995). The area is covered by a mosaic of vegetation types ranging from mature dense forest 

to small herbs and bromeliads on the rocky formations (IGAC, 1979), with moderate 

anthropic intervention.

All the indigenous communities that participated in this research project have access to 

highly weathered soils and alluvial soils for manioc production (Eden and Andrade, 1987;

Shorr, 2000; Adams et al., 2005). Highly weathered soils classified as Oxisols and Ultisols 

(USDA, 1999) are acid (pH 3–5.5) soils, characterized by prolonged periods of weathering 

and leaching during their formation, resulting in soils with a low cation exchange capacity,

limited amounts of cations and a very low phosphorus availability. Alluvial soils (classified as 
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Alluvial Entisols) originate from the enriched Andisols sediments from the flooding of the 

Caquetá and Amazon rivers and their tributaries (Piedade et al., 2001).

The community of San Martín de Amacayacu is the only one without ADE. ADE are 

very fertile soils with good physical and chemical properties and very suitable for agriculture 

(Denevan, 1996; Glaser and Birk, 2012). They hold large amounts of organic matter and are 

less acidic than the Oxisols or Ultisols from which they were formed, resulting in a better 

cation exchange capacity and base saturation compared to background soils (Glaser et al.,

2001). ADE not only have more available nitrogen, calcium, and phosphorus (Lima et al.,

2002) but are also less affected by leaching, resulting in a longer-term nutrient availability as 

compared to background soils (Glaser, 2007).

4.2.2. Fieldwork

The research we undertook was based on a free, prior informed consent agreement between 

the Instituto Amazónico de Investigaciones Científicas Sinchi and the communities associated 

to the indigenous organization Asociación de Comunidades Indígenas del Trapecio

Amazónico (ACITAM) which includes the community of San Martín de Amacayacu and the 

indigenous organization Consejo Regional Indígena del Medio Amazonas (CRIMA—which 

includes the communities of the Middle Caquetá region) to work together on all aspects of 

traditional food production (Agreement between Sinchi Institute and the AZICATCH, CRIMA 

and ACITAM indigenous organizations of June 2004) (Acosta and Mendoza, 2006). The 

activities carried out also obeyed the two main missions of the Sinchi Institute (Colombia, 

1993): First, to support the Ministry of Environment in carrying out their commitments and 

the development of activities stemming from Colombia’s participation in international treaties 

and agreements (such as its support to article 8j of the Convention on Biological Diversity); 

second, to encourage the development and dissemination of knowledge, values and 

technologies related to the management of natural resources of ethnic groups of the 

Colombian Amazon through participatory action research.

Field work was carried out between September 2011 and September 2013. Each 

community was visited eight times for two to four days, for a total of 20 days per community. 

For a better understanding of manioc diversity, both morphological and genetic diversity was 

estimated. Morphological diversity was assessed in the field together with indigenous farmers 

in 2011, while genetic diversity of the landraces that were recognized by indigenous people 
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was estimated in the laboratory in December 2013. Cultural elements associated to manioc 

diversity were recorded in all communities between 2011 and 2013. All the information 

obtained was discussed and analyzed by the authors of this paper.

4.2.3. Populations

Five ethnic groups of the Colombian Amazon region participated in this research: Tikuna, 

Andoke, Muinane, Nonuya and Uitoto.

The Tikuna people are originally from the upper Amazon Basin; their language 

(Tikuna) stems from an independent linguistic family. Tikuna people can be divided into two 

main groups of clans, those with feathers and those without feathers; marriages generally only 

occur between members of opposed clans, thus promoting exogamy (Rosa, 2000). During the 

rubber boom at the beginning of 1900s, the Tikuna were less affected than the ethnic groups 

from the Middle Caquetá region, as the former apparently offered less resistance to slavery 

than other groups. At present the Tikuna number approximately 35,500 individuals distributed 

across the Amazon region of Brazil (71%), Colombia (23%) and Peru (6%) (Umbarila, 2002).

The community of San Martín de Amacayacu is inhabited by 440 inhabitants (153 families; 

community census of 2011) who live on one side of the Amacayacu River. Despite having had 

long contact with white people throughout their recent history, the community of San Martín de 

Amacayacu maintains its traditional culture.

Uitoto, Andoke, Muinane and Nonuya people presently living in the Middle Caquetá 

region identify themselves as ethnic groups with a common geographic origin encompassing 

the area between the Putumayo and the Caquetá rivers. Because of this they call themselves 

“Gente de Centro” (People of the Center). Therefore, Uitoto, Andoke, Muinane and Nonuya 

share different cultural aspects such as the common origin of their languages (rooted in the 

Wuitoto linguistic family), the construction and use of malokas (large houses where 

traditional leaders are consulted and where they pass on their knowledge) and the use of the 

coca leaves and tobacco as elements required to establish dialogue within the malokas.

Between 1908 and 1909 Thomas Whiffen visited the area between the Putumayo and the 

Caquetá rivers and estimated the number of Uitoto at 15,000, of Andoke at 10,000, of 

Muinane at 2000 and of Nonuya at 1000 (Andrade, 1986).

The population of People of the Center was strongly diminished by the rubber boom. In 

some cases (e.g., the Nonuya and Muinane) only few men survived. Therefore, these groups 
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broke with the tradition to marry only between clans of their own ethnic group and made new 

arrangements to marry women of other ethnic groups (Orlando Paky, personal 

communication). This allowed them to increase their numbers and perpetuate their particular 

cultures—at the expense of creating multiethnic communities. The present Uitoto population 

is estimated to be 8400 inhabitants, with 77% living in Colombia and 23% in Peru where they 

arrived as slaves during the rubber boom. According to the 2011 community census, the 

Uitoto community of Guacamayo consists of 153 persons (34 families). Aduche is the only 

Andoke community that exists today. This community is located on Andoke ancestral 

territory and inhabited by 128 persons (27 families). The community of Villazul is one of two 

Muinane communities that remain today. The community of Villazul is inhabited by 77 

persons (17 families).The community of Peña Roja is the only Nonuya community that exists 

today. It is inhabited by 71 persons (15 families).

After explaining the participatory approach of the project and the activities our research 

would consist of each community selected what they considered to be the most experienced 

and active farmer families to work with us in this project. Twenty families from San Martín 

de Amacayacu (13% of the population), ten from Guacamayo (29% of the population), nine 

from Aduche (33% of the population), eight from Villazul (47% of the population), and six 

from Peña Roja (40% of the population) were selected. The selected families were composed 

of couples or elder people and their daughters or sons. Because not all the families were of the 

same ethnic origin, information about the ethnicity of men and women was recorded. Because 

women are directly responsible for planting and cooking manioc, it was also assessed whether 

they followed the cultural traditions of their husbands or their own traditions when cultivating 

or cooking manioc.

4.2.4. Ethnobotanical data

4.2.4.1. Manioc inventories

An inventory of manioc landraces managed by each community was made to determine 

manioc morphotypic diversity. Morphotypic diversity was understood as the number of 

different manioc morphotypes conserved per community and across communities. With each of 

the communities separately an inventory of their manioc landraces was made to determine 

manioc diversity. At the start, a preliminary list of the names of the manioc landraces present 
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in the community was elaborated through a group discussion with women farmers. This was 

followed by visits to swiddens starting with the swiddens local people considered to be the

most diverse. In the field, the farmers discussed which plant represented which landrace and 

jointly a description was made. Whenever new landraces were found, these would be added to 

the list. When no more new landraces were found on a swidden, the group went to the next 

swidden to look for other landraces. This procedure was repeated until the people indicated 

there were no further manioc landraces in their community. This ensured that most landraces 

Figure 4.1. Morphological features used to describe manioc morphotypes. The illustration is a 
modification (with permission of the Sinchi Institute) of one of the drawings elaborated by 
Luis Angel Ramos del Águila describing a Tikuna manioc landrace (Arias et al., 2004).
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present in the village were recorded, although there is a possibility that some landraces may 

have been left out from these inventories. The same procedure was repeated in all 

communities.

The description of manioc landraces was based on morphological characteristics used 

by indigenous people of the communities and made them equivalent to the morphological indices 

developed by CIAT (CIAT, 1984) and EMBRAPA (Fukoda and Guevara, 1998). The 

descriptors of manioc plants included: apical leaf color, mature leaf color, leaf branch color, 

shape of the leaf lobule, color of the stalk exterior, color of the bulking root cortex, color of 

the bulking root pulp, shape of the bulking root, presence of a root stem, and architecture of 

the plant (Figure 4.1); a photographic record of each landrace was taken. The overlap between 

the descriptors used by indigenous farmers and the descriptors used by CIAT and EMBRAPA 

is included in Appendix Table A 4.1.

Complementary information collected on manioc landraces included: common name, 

traditional name, type of manioc according to indigenous classification, type of soil in which 

the landrace grows best, origin of the landrace (sexual when the landrace was recognized by 

the farmer as a volunteer seedling or propagated from a volunteer seedling; clonal when the 

farmer obtained the landrace from a stem cutting), location from where the landrace was 

obtained, and its uses. Complementary information was used to assess volunteer seedling 

frequency in indigenous swiddens and their management by farmers.

In order to triangulate the individual inventories of each community and to look for 

duplicates, after completing the community inventories group discussions were held with 

farmers who participated in the description of the manioc landraces. To this purpose, the 

pictures and the description of each landrace were used.

4.2.4.2. Inventory of ethnic manioc dishes

Women from the different ethnic groups were interviewed to list all recipes they knew in 

which manioc was the main ingredient; and to assess the frequency with which those recipes 

were prepared. They were asked about all types of preparations including fermented and non-

fermented drinks, main meals, snacks, condiments and any preparation they considered were 

important to include in the list.  

In this way an inventory of recipes was obtained. The research team often helped in the 

preparation of meals and to share these with members of the communities; these were 
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important opportunities to observe culinary traditions and learn about the manioc landraces 

frequently used in them.

4.2.5. Genetic data

From each one of the landraces described by indigenous people in the field, one to three 

samples of apical sprouts were collected in paper bags with silica gel as dehydrating agent. 

Upon arrival at the laboratories of the Sinchi institute in Leticia (Colombia) the samples were 

completely dried with silica gel and preserved at −20°C.

Plant molecular analyses were carried out within the framework of the new legislation 

for research institutes associated with Colombia’s Ministry of Environment (Decreto 1376 of 

2013) (MINAMBIENTE, 2013), and in which the Sinchi institute does not need permission 

for genetic resources assessment when the material is collected without a commercial interest 

and for research purposes only. The samples were processed in the Manioc Genetics 

Laboratory of CIAT, Palmira (Colombia). Upon arrival the samples were lyophilized 

overnight using an Alpha 2-4LDplus Martin Christ Freeze-dryer (Germany). From lyophilized 

samples DNA was extracted using Qiagen (Venlo, The Netherlands) DNeasy Plant 96-well 

extraction kits.

Genetic diversity of manioc has generally been assessed by the study of single sequence 

repeats (SSRs). However, only a limited number of SSR markers are polymorphic, limiting 

the power to assess genetic variability in manioc (Kawuki et al., 2009). On the other hand, 

single nucleotide polymorphisms (SNPs) are the most abundant type of DNA polymorphisms 

in eukaryotic genomes. For manioc, one SNP can be found per 121 nucleotides. A total of 

about 2954 SNPs have been found for manioc from which 1190 have been technically and

biologically validated for manioc (Ferguson et al., 2012) making them much more abundant 

than SSRs (Kawuki et al., 2009). Additionally, SNPs are bi-allelic (homozygous or 

heterozygous), generally stable to mutations, locus specific and co-dominant (Oliveira et al.,

2014). SNP information is easily available from generally expressed sequences tags (ESTs) 

on gene databases (Ferguson et al., 2012), with a low genotyping error rate compared to other 

markers (Oliveira et al., 2014), and therefore ideal for genetic studies and especially for 

assessing diversity (Kawuki et al., 2009). For this study 93 SNPs were used (Appendix Table 

A 4.2) to assess manioc diversity, tested previously by the team of the Manioc Genetics 

Laboratory of CIAT (Duitama et al., 2014).
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Samples were processed using the protocol for SNP genotyping with the EP1TM system 

and SNP type assays of Fluidigm® version S.01 following instructions from the manufacturer.

The SNP assay is based on an allele-specific Polymerase Chain Reaction (PCR) SNP 

detection chemistry using a Biotium Fast Probe Master Mix, hybridizing SNPs at end-points 

and attaching signal bases that emit specific fluorescent patterns according to the DNA base 

that is read (Li et al., 2010a).

Prior to performing allele-specific PCR, a standard amount of manioc DNA (60 ng) per 

sample was amplified in a three-step procedure to obtain the sample assay. In step one a 

Specific Target Amplification (STA) with the manioc DNA was done in a thermocycler 

through 15 min at 95°C for Taq polymerase activation, followed by 14 extension cycles of 

95°C for 15 s and 60°C for 4 min. This is called the sample mix. In step two, the sample mix 

was diluted 1:100. In step three the diluted sample mix was combined with an assay mix 

which contained the ASP1, ASP2 primers and the locus-specific primer (LSP); the sample 

assay thus obtained was placed in the sample inlet of the chip of an IFC Controller HX. In the 

detector inlet a Fluidigm SNPtypeTM custom assay based on a core set of 93 manioc SNPs 

was placed that was previously reported by Ferguson et al. (Ferguson et al., 2012) and 

validated at CIAT’s Manioc Genetics Laboratory. After the sample assay and the SNPtype 

custom assay were placed in the chip, and the IFC Controller HX automatically set up 

reaction chambers. The 96.96 IFC was placed on the FC1TM cycler and run using the 

following program: 95°C 5 min then 4 cycles of 95°C for 15 s, 64–61°C for 45 s decreasing 

by 1°C/cycle, then 72°C for 15 s, followed by 34 cycles of 95°C for 15s, 60°C for 45 s, 72°C 

for 15 s, and finally 10 s at 25°C.

SNP variability-data were captured in the EP1TM fluorescent reader at cycle 28 and 33 

to be able to discriminate between homozygous and heterozygous SNP-allele calls. A direct 

detection of products was obtained as they emitted peaks at 495, 520, 538 and 554 nm that 

were read by a BioMarkTM System for genetic analysis. Both data sets collected in the EP1TM

(at 28 and 33 cycles) were analyzed using the Fluidigm SNP Genotyping Analysis software

(Spurgeon et al., 2008).

Sequences of samples collected in the field were compared with sequences from 99 

samples of the CIAT’s manioc world collection obtained with the same methodology. 

Samples of CIAT’s manioc world collection included samples from South and Central 

America (71), Africa (1) and Asia (9), 3 hybrids and 15 landraces of unknown origin. Manioc 

DNA samples from the America’s included: 5 from Argentina, 2 from Bolivia, 4 from Brazil, 



Chapter 4

88

26 from Colombia, 3 from Costa Rica, 3 from Cuba, 3 from Ecuador, 5 from Guatemala, 5 

from Mexico, 2 from Panama, 2 from Paraguay, 5 from Peru, 1 from Puerto Rico, and 5 from 

Venezuela. The manioc DNA sample from Africa was from Nigeria. Manioc DNA samples 

from Asia included: 2 from China,3 from Thailand, 2 from Indonesia, and 2 from Malaysia. 

The three samples of manioc hybrids were ICA-CIAT hybrids obtained by open or controlled 

pollination. The 15 samples from unknown origin were identified by the codes AM206-5, 

AM560-2, FLA 21, FLA61, FLA 19, GLA8, GM905-52, GM905-57, GM905-60, SM301-3, 

TMS60444, C18, SG107-35, GUT64, and JAC3. Results of manioc diversity of the CIAT 

core collection and samples of this study are presented as Figure 4.2.

4.2.6. Statistical analysis

Chi-square tests were used to assess differences in manioc inventories and differences in the 

classes of manioc landraces cultivated among ethnic groups. The statistical analyses were 

performed with the Analytical Software Statistix 9.0.

A z-test was used to assess which morphological variables distinguished as different 

morphotypes plant pairs that were considered duplicates in the genomic analysis. The 

morphological description obtained for each variable was transformed into binary data (1 = 

when the morphological description of the variable matched between genotype duplicates, 

and 0 = when the morphological description of the variable did not match between genotype 

duplicates). Z was then calculated as:

(1)

where p was the number of times a variable chosen matched between genotype duplicates; π 

was the null hypothesis value that in this case was 0.5 as each variable has the same 

possibility to match or not between duplicates; and n was the sample size which corresponded 

to the number of genotype duplicates tested (21). The test considered that, when the values 

obtained for each variable were greater than the z-value from the table, the variable was 

significantly different among the 21 genotype duplicates compared. The variables that obtained 

the highest values were the variables that matched in most of the duplicates compared while 

variables with low scores could be potential morphologic discriminators of genotypes.
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The sequences obtained from each manioc landrace through its genetic analysis were 

read, organized and analyzed to obtain the genetic structure of the population of the samples 

collected. The genetic structure was obtained using a Bayesian model approach (Kawuki et 

al., 2013) with the STRUCTURE 2.2 software (Pritchard et al., 2000). This Bayesian analysis 

determines the minimum number of populations (K) that could have generated the observed 

diversity using an admixture model and assumes that each individual inherited some portion 

of its ancestry from each one of the K populations determined. The number of K populations 

is based on the rate of change in the log probability of the data between successive K values. 

To estimate it, a ΔK method (Evanno et al., 2005) was implemented in the STRUCTURE 

software to ascertain the most likely value of K in this data set, using 1 to 10 populations. The 

length of the burn-in period was set on 100,000 and the number of MCMC Reps after burn-in 

on 200,000. After the value of K was determined, each sample was compared with each one 

of the K populations to discriminate samples into defined groups that segregate similarly. 

Information was used to elaborate Neighbor-Joining dendrograms of genetic diversity. The 

observed heterozygosity (Ho) of each SNP was calculated according to Nei (Nei, 1973) and 

Shete et al. (Shete et al., 2000) using PowerMaker software.

STRUCTURE outputs were processed using CLUMPP v1.1.2 (Jakobsson and 

Rosenberg, 2007) to account for the variability in individual membership probabilities across 

the different runs, and to find optimal alignments of independent replicates on each K. Neighbor-

Joining dendrograms were elaborated with the data obtained with K=3 and K=6, calculated to 

be the number of populations that best explained the genetic data obtained (Evanno et al.,

2005). Samples that, after being compared with three or six populations (K=3 and K=6) 

obtained membership coefficients (Q) higher than 0.9 for one of the populations with which 

they were compared, were considered samples with low genetic variability. On the contrary, 

samples that obtained membership coefficients (Q) between 0.9 and 0.3 in relation with all of 

the populations with which they were compared, were considered samples with high genetic 

variability; that is, the samples with the lowest values were the ones with the highest genetic 

variability.
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4.3. Results

4.3.1. Manioc diversity in the study area

4.3.1.1. Morphotypic manioc diversity

Indigenous descriptions of manioc landraces were based on homolog morphological 

parameters comparable to those proposed by CIAT and EMBRAPA (cf. Figure 4.1 and Table 

S 4.1) as colors and shapes are morphological characteristics easily recognizable by manioc 

farmers around the world. All farmers recognized volunteer seedlings as plants that do not 

grow from stem cuttings, produce only a single bulking root, and appear spontaneously in 

swiddens on soils where manioc had been grown previously. When CIAT’s and EMBRAPA’s 

morphological features for manioc description were discussed with indigenous farmers, they 

Table 4.1. Local manioc classification and diversity (number of landraces and between 
brackets percentage within a community) in five indigenous communities of the Colombian 
Amazon. T= Total number of manioc landraces per class. EI= Number of manioc landraces 
associated to ethnic identity in each class; NE= Number of manioc landraces not associated to 
ethnic identity in each class.

Manioc inventory

San Martín de Amacayacu

(Tikuna)

Manioc inventory communities “People of the Center” Total

Aduche

(Andoke)

Guacamayo 

(Uitoto)

Peña Roja 

(Nonuya)

Villazul 

(Muinane)

Maniocs 

“to eat”

Total 23 (70%)
Manicuera

Total 2 (6%) 3 (9%) 2 (4%) 2 (7%)

60

EI 2 3 2 21(1)

EI 10
NE 0 0 0 0

Maniocs 

“to eat”

Total 9 (28%) 8 (23%) 4 (9%) 7 (27%)

NE 13
EI 8 0 0 1(1)

NE 1 8 4 6

Bitter 

maniocs

Total 10 (30%) Maniocs 

“to grate”

Total 18 (57%) 14 (40%) 25 (54%) 16 (59%)

113

EI 14 0 5(2) 2(1)

EI 0
NE 4 14 20 14

Yellow 

bitter 

maniocs

Total 3 (9%) 10 (28%) 15 (33%) 2 (7%)

NE 10
EI 3 1 2(2) 1(1)

NE 0 9 13 1

Total 33 32 35 46 27 173
(1) Of these one Manicuera, one manioc “to eat”, one manioc “to grate”, and one yellow bitter manioc were 
identified by informants as landraces originating from the Bora ethnic group. (2) Of these two maniocs “to grate”
and one yellow bitter manioc were identified by informants as landraces originating from the Miraña ethnic group.
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disagreed that the presence/absence of a root stem (Figure 4.1) might be used as a parameter 

for manioc classification.

Farmers considered that all manioc landraces had a root stem, and that only volunteer 

seedlings (which have a single root attached directly to the stalk) lacked this. Although among 

these ethnic groups the presence or absence of a root stem was not considered an appropriate 

morphological feature to classify manioc, it has been observed that presence or absence of a 

root stem provided a relevant morphological characteristic to classify manioc landraces 

cultivated by Makushi people of Guyana (Elias et al., 2001).

In addition to morphological characteristics of manioc, indigenous people also 

considered toxicity and use as important features to classify manioc landraces. All five ethnic 

groups used morphological, toxicity and use parameters to classify manioc landraces, but 

classifications differed in complexity among ethnic groups (Table 4.1). Tikuna people classified 

manioc landraces into two main groups (Table 4.1): Maniocs “to eat” composed of manioc 

landraces with low root toxicity that can be cooked and eaten directly without a detoxification 

pre-treatment, and bitter maniocs composed of high toxicity manioc landraces that require a 

process of detoxification before they can be eaten. On the other hand, Andoke, Muinane,

Nonuya, and Uitoto people classified manioc landraces into four main groups (Table 4.1). One 

group was composed of non-toxic Manicuera landraces used to prepare their traditional drink 

called Manicuera (a very sweet juice prepared after grating manioc roots and cooking the 

squeezed juice in water).

The second group was composed of low toxicity “to eat” landraces with white or very 

pale yellowish roots. The third group was composed of high toxicity “to grate” landraces with 

white to very pale yellowish roots usually used to obtain starch through grating. The fourth 

group was composed of high toxicity landraces with clearly yellow roots used for different 

recipes.

From the 173 manioc samples collected and described, 165 came from clonal stems 

while eight were volunteer seedlings. Among the 173 samples 60 landraces were recognized 

by local people as non-toxic maniocs which included “to eat” and Manicuera maniocs (35%) 

with low toxicity and 113 as toxic maniocs which included “to grate” and yellow bitter 

maniocs (65%) with high toxicity. Manioc inventories included between 27 and 46 different 

manioc landraces per community (Table 4.1). The average number of manioc landraces per 

swidden was 12, without significant differences among indigenous communities. After a

detailed review with local farmers of samples from their own community and samples 
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collected across all communities of the Middle Caquetá region, only three duplicates were 

identified by them.

Differences among communities in the total number of manioc landraces were not 

significant (chi-square value = 4.5, d.f. = 4; α = 0.05), but there were significant differences in 

the number of low toxicity and high toxicity manioc landraces cultivated among ethnic groups 

(chi-square values of 10.99 and 21.19, respectively, for low toxicity and high toxicity 

landraces; d.f. = 4; α = 0.05). The Tikuna community maintained more low toxicity manioc 

landraces than the People of the Center communities. On the other hand, the People of the 

Center communities maintained more high-toxicity manioc landraces (Table 4.1). Although the 

Tikuna do not themselves make the distinction between bitter manioc landraces with different 

color of bulking root pulp, we observed that, from the 10 bitter manioc landraces they 

maintained, eight were yellow bitter maniocs and one had pink root pulp.

When the number of maniocs “to eat”, maniocs “to grate”, and yellow bitter manioc 

landraces were compared among indigenous communities of the People of the Center,

significant differences in the number of landraces “to eat” and yellow bitter manioc landraces 

were found (chi-square values of 10.5 for landraces “to eat” and 25.8 for yellow bitter manioc 

landraces, respectively; d.f. = 4; α = 0.05).

4.3.1.2. Genotypic manioc diversity

Most of the single nucleotide polymorphisms (SNPs) used discriminated manioc samples well 

after 28 cycles, and only few samples required 33 cycles to obtain proper discrimination. On 

average observed heterozygosity was 0.39 across the 93 SNPs, with values between 0.04 and 

0.69. Around 20% of SNPs had an observed heterozygosity below 0.30 (Table S 4.2).

When the 173 collected morphotypes were compared genetically with genotypes from 

the CIAT collection, three of the morphotypes collected that corresponded to one genotype 

(duplicate 2 in Table 4.2) matched to one of the CIAT genotypes. From the remaining 170 

morphotypes 41 corresponded to 20 genotypes as these were duplicates or triplicates (Table 

4.2). These differed morphologically in some features (Table 4.2), but the manioc class in 

which the landraces were classified (z-table value of 0.999), the color of bulking root pulp (z-

table value of 0.974), and the uses (z-table value of 0.939) were the characteristics the 

duplicates mostly shared. Morphological comparison of genotype duplicates indicated that 

different morphotypes could have identical genotypes based on genetic analyses.
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Table 4.2. Comparison of genotypic duplicates indicating which morphological variables 
indigenous farmers considered equal (value = 1), and which morphological variables they 
considered different (value = 0) between samples, and differences discriminating between 
duplicates (by a Z-test). Variables: 1. Class of manioc; 2. Color of bulking root pulp; 3. Uses; 
4. Soil in which the landrace grows better; 5. Preferred character to maintain the landrace; 6.
Color of petiole; 7. Color of mature leaf; 8. Plant branching; 9. Color of apical leaf; 10. Color 
of bulking root cortex; 11. Shape of leaf lobule; 12. Root shape.

VARIABLE 1 2 3 4 5 6 7 8 9 10 11 12
z-value obtained 3.27 1.96 1.52 1.09 1.09 −0.21 −0.65 −1.09 −1.52 −1.96 −2.40 −2.40
z-value expected 
(two-tailed 95% C. I.) 0.99 0.97 0.93 0.87 0.87 0.40 0.25 0.12 0.60 0.02 0.00 0.00

DUPLICATES DUPLICATES AMONG COMMUNITIES
1.(ADU10, GUO18, 
GUO22) 1 0 0 0 0 0 0 0 0 0 0 0

2. (ADU16,GUO6, 
AMA1) 1 1 1 1 0 1 0 0 0 0 0 0

3. (ADU1, GUO29) 1 1 1 0 1 0 1 0 0 0 1 0

4. (ADU11, GUO13)
1 0 1 0 0 0 1 1 0 0 0 0

5. (ADU18, GUO4) 1 1 0 0 1 0 1 0 0 0 1 0

6. (ADU23, GUO8) 1 1 1 0 0 1 1 1 0 0 1 0

7. (ADU30, GUO10) 1 1 0 1 0 1 0 0 0 0 0 0

8. (AMA28, GUO9) 1 1 0 1 0 1 1 1 0 1 0 0

9. (GUO31, PRO23) 1 1 1 1 1 0 1 0 1 1 0 0

10. (PRO2, VA12) 1 1 1 1 1 1 0 0 1 1 0 1

11. (PRO21, VA24) 1 1 1 1 1 0 1 0 0 0 0 0

12. (PRO40, VA19) 1 1 1 0 1 0 0 0 0 1 0 0

13. (PRO42, VA11) 1 1 1 1 1 1 1 1 1 1 0 0

14. (PRO8,VA23) 0 0 1 0 1 0 0 1 1 0 0 0

DUPLICATES DUPLICATES WITHIN COMMUNITIES
15. (ADU32, ADU27) 1 1 0 1 0 0 0 1 1 0 0 0

16. (ADU3,ADU4) 1 1 0 1 1 0 1 1 0 0 0 0

17. (AMA7, AMA17) 1 1 1 1 0 1 0 0 1 1 1 1

18. (AMA3, AMA30) 0 0 1 1 1 0 0 0 1 0 1 1

19. (AMA31, AMA32) 1 1 0 1 1 1 0 0 0 0 0 1

20. (PRO9, PRO47) 1 0 1 0 1 1 0 1 0 0 0 0

21. (VA13,VA15) 0 0 1 1 1 1 0 0 0 0 0 1

Codes: ADU: Samples from Aduche; AMA: Samples from San Martín de Amacayacu; GUO: Samples 
from Guacamayo; PRO: Samples from Peña Roja; VA: Samples from Villazul.
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Duplicates were partly collected in different communities with different names and 

characteristics (30 manioc landraces) and partly collected in the same community (14 manioc 

landraces). Excluding known genomes (in CIAT´s collection) and duplicates, we obtained a 

total of 150 unique genotypes that were genomic material new and different from the CIAT 

core collection, in fact largely grouping into a different cluster (Figure 4.2).

When the genomes of morphotypes collected in this project were compared with 

genotypes from the CIAT core collection, manioc genotypes from the Tikuna community of 

San Martín de Amacayacu (AMA) appeared to be closely related to Peruvian manioc 

genotypes (PER). 

Figure 4.2. Neighbor-Joining dendrogram comparing the molecular diversity of 99 samples 
of the CIAT manioc core collection (in the bottom of the graph) and 150 manioc landraces 
from the Colombian Amazon (in the upper part of the graph) collected in this study.

Manioc genotypes from the communities of the People of the Center formed a cluster 

apart from the bulk of the genotypes provided by CIAT (Figure 4.2). When a genetic analysis 

of manioc samples was done according to their toxicity, “to eat” maniocs formed a cluster 

apart from bitter maniocs (“to grate” and yellow bitter maniocs), except for few samples 

(Figure 4.3). Manicuera maniocs on the other hand were genetically more related to high 

toxicity maniocs than with low toxicity maniocs (Figure 4.3). With K= 3 and K= 6, one 

cluster (in red in the first STRUCTURE graph and red and pink in the second STRUCTURE 
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Figure 4.3. Genetic distribution of manioc landraces according to their toxicity.(A)
Neighbor-Joining dendrogram showing the genetic relation of the different manioc 
types identified by indigenous people;(B) STRUCTURE outputs of the molecular 
diversity of sampled maniocs according to their toxicity as sweet (low toxicity) 
and bitter (high toxicity) maniocs obtained with the most likely number of clusters 
(K=3 and K=6). Each vertical colored bar represents one genotype and the colors 
indicate the extent to which a genotype genetically belonged to the 3 or 6 clusters.
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graph) in Figure 4.3 combined most of the “to eat” maniocs. Although some of the “bitter” 

maniocs were placed in the “sweet” manioc cluster and Manicuera maniocs were placed in the 

“bitter” manioc cluster, indigenous morphotypic and toxicity organization into “to eat” and 

bitter maniocs corresponded largely with the clustering based on genomic information.

From the 150 new genotypes, 74% had high genomic variability indicating they were 

the product of mixing of several genomes. The remaining 26% of the samples had low 

genomic variability with single population membership coefficients (Q) higher than 0.9 

(Figure 4.4). The proportions of landraces with high/low genomic variation were comparable 

across communities: 73%/27% for San Martin de Amacayacu, 72%/28% for Aduche, 

77%/23% for Guacamayo, 78%/22% for Peña Roja, and 81%/19% for Villazul.

Figure 4.4. Genomic variability as expressed by the single population membership coefficient 
or Q-value of manioc landraces collected in five indigenous communities of the Colombian 
Amazon region; a distinction is made between landraces grouped according to ethnic classification
(cf. Table 4.1) and whether or not they are with/without ethnic specificity.

4.3.2. Sources of manioc landraces

4.3.2.1. Mythical accounts of the origin of manioc use

Ethnic groups from the Amazon region of Colombia consider manioc as a native species. 

Manioc domestication is attributed to mythical beings and this knowledge is passed on orally 
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from generation to generation.

In Tikuna narratives, manioc came from the mythic “tree of abundance”. The 

maintenance and preparation of this mythic manioc were in the hands of an ancient woman 

and her husband, a bird that was the owner of fire (Acosta and Mazorra, 2004). Manioc was 

the food that allowed the mythic twins Yoi and Ipi to procreate and feed their off-spring. 

According to these narratives, the origin of the Tikuna was directly related to manioc: when 

Yoi went fishing, he used different baits to fish different animals, but when he used a piece of 

sweet manioc to fish at the Eware River, he fished the Tikunas (Camacho, 1995). That is why 

the Tikunas know how to cultivate sweet manioc—their main food.

According to narratives of the People of the Center, manioc existed before humans as a 

Paempa tree (Paempa is the name Andoke people use to refer to Manicuera manioc). 

According to Yua Andoke, one of the students of Yiñeko, the Andoke leader that rebuilt 

Aduche after the rubber boom, “the first Manicuera landrace as we know it today originated 

from a branch of the Paempa tree that fell down and stuck into the ground” (Interview with 

Yua Andoke, November 22, 2012). All the ethnic groups of the People of the Center agree 

that Manicuera was the first manioc. Andoke people consider it their initial food. In Muinane 

words, Manicuera is “the breast of Mother Earth and our first food”. An Andoke mythical 

tale recalls that “after The Flood, DidanAikA, the wife of the Andoke God also identified as 

Mother Earth, took branches of the Paempa tree and cut them into small sticks. From each 

stick originated a new manioc landrace” (Interview with Fissi Andoke, August 15, 2012).

All People of the Center received Manicuera but each particular ethnic group received 

different manioc landraces. This manioc distribution was further explained to us through a 

mythical tale shared by all People of the Center, and told by an elder Uitoto woman:

“When God started to distribute the manioc landraces among the People of the 

Center, he first distributed Manicuera among all groups. Then he distributed 

maniocs “to grate” to Andoke, Muniane and Bora people. It was getting late and 

there were still other groups waiting for maniocs. He finally gave to Uitoto and 

Nonuya people yellow bitter maniocs. Because it was too late to grate them, 

Uitoto and Nonuya women put the roots into the water. That is why Uitoto and 

Nonuya women don’t know how to grate manioc” (Interview with Virgelina 

Moreno, April 25, 2013).

The Andoke also recount that after Nenefi, the Andoke God, gave them the manioc 

stalks, he recommended people to search for a burnt, soft soil called ÑesxaΘ to cultivate 
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them. In the case of the Uitoto, they were instructed to plant manioc on Juk+no soils. ÑesxaΘ 

and Juk+no are Andoke and Uitoto terms for ADE (Chapter 3 of this thesis, Peña-Venegas et 

al., 2015). The use of ADE for manioc cultivation is also referred to in Muinane history. 

According to an elder woman who was present at the establishment of Villazul at the 

beginning of the 20th century: “the community was located on these black soils [ADE]. The 

first swiddens were done there [on ADE] because those soils are good for manioc growth”

(Interview with Alicia Kumimarima, November 27, 2012).

4.3.2.2. Sources of today’s manioc inventories

According to the indigenous people participating in our study, the manioc landraces they 

presently cultivate come from three different sources: landraces received in mythical times 

(and that provide them with their distinct ethnic identity); landraces obtained throughout their 

history and which furnish clans with their particular identity; and landraces obtained through 

exchange with farmers from outside the community.

Mythical narratives indicate that some manioc landraces were given to indigenous 

people as ethnic identity markers (Manicuera for example), yet these are not all the manioc 

landraces that today bestow an ethnic group with its identity. Tikuna and Uitoto people for 

example share a common historical event in which other manioc landraces appeared at the 

time clan differentiation within the ethnic group took place. Tikuna narratives point to a time 

when individuals were undifferentiated and nobody knew who their relatives were. To avoid 

this situation, the Tikuna started to use different manioc landraces to create differences 

between clans (families not bonded by consanguinity). Uitoto people specify that clan 

differentiation strengthened their identity by selecting particular landraces. According to Uitoto 

narratives, before a clan was formed people prayed asking for manioc landraces that could 

grant them identity as a clan. Then they searched for new manioc landraces from those that 

grew spontaneously (volunteer seedlings) and selected some as their own.

In addition to the manioc landraces that people maintained as ethnic identity markers, 

other landraces were obtained through exchange. According to our respondents, from the 173 

manioc landraces collected in our study, 116 (67%) were obtained through exchange (mainly 

with neighboring communities), but some landraces came from very distant places—

including places outside the Amazon Basin (11% of the total inventory of manioc 

morphotypes). The remaining 57 landraces (33% of the total inventory of manioc 

morphotypes) were manioc landraces identified by indigenous farmers as landraces that 
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characterized them as members of a particular ethnic group (including mythical and clan-

specific landraces). These 57 landraces also included four Bora manioc landraces introduced 

by a Bora woman living in Villazul as well as three Miraña landraces introduced by a Miraña 

woman living in Peña Roja. These landraces are now part of the manioc portfolio of the 

Muinane and the Nonuya communities respectively (see Table 4.1).

When these landraces that bestow ethnic identity were analyzed genetically, 100% of 

the Manicuera, 53% of maniocs “to eat”, and 40% of yellow bitter landraces turned out to be 

genotypes with low genomic variability and thus with a high single population membership or 

Q-value (Figure 4.4). For landraces without a specific ethnic association, the percentage of 

genotypes with low genomic variability was between 10% and 30%. None of the “to grate”

maniocs had a Q-value higher than 0.9, but 43% of the maniocs “to grate” with ethnic 

specificity had a Q-value higher than 0.8 (Figure 4.4).

Note: The pattern of sweet landraces in the center and bitter landraces in the periphery of the swidden was 
reported earlier by Van der Hammen for the Middle Caquetá region (Hammen, 1984) and also observed 
elsewhere by McKey and Beckerman (Jakobsson and Rosenberg, 2007).

Figure 4.5. Manioc planting patterns in swiddens of indigenous communities.

When patterns of manioc planting in swiddens were evaluated, the most frequent 

patterns did not prevent manioc sexual recombination between toxic and non-toxic varieties 

or within manioc groups (Figure 4.5). In swiddens manioc landraces are commonly organized 

randomly or grouped in patches according to manioc group, so manioc landraces are never 
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truly separated from others. Therefore, each swidden creates opportunities for crossing among 

manioc landraces.

4.3.3. The effect of different soil environments on manioc 

diversity

From the five communities studied, San Martín de Amacayacu was the only one without 

access to ADE. However, as mentioned above, there were no significant differences in the 

number of manioc landraces between communities, so the presence of ADE did not increase 

the number of landraces in communities of the Middle Caquetá region. Moreover, from the 

173 manioc landraces indigenous people identified, 119 (70%) were classified by them as 

landraces that grow well in any kind of soil. Among manioc landraces that, according to our 

respondents, performed better in highly weathered soils (six landraces), alluvial soils (19 

landraces) or ADE (29 landraces) there were landraces from all the four different classes. In 

the cases in which indigenous farmers indicated that some landraces grew better in highly 

weathered soils, these landraces were not cultivated in ADE; we were also told that these 

same landraces did not tolerate soils with high moisture content and the roots rotted easily 

when cultivated in floodplains. In the case of landraces that performed better in alluvial soils, 

our respondents indicated that these landraces quickly developed bulking roots and could be 

harvested early (one manioc landrace from San Martín de Amacayacu, for example, takes 3 

months on average to be ready for harvesting). In the case of landraces that performed better 

in ADE, farmers indicated that these landraces produce big roots rich in starch.

4.3.4. The effect of manioc exchange on manioc diversity

Indigenous farmers readily exchange manioc landraces on different occasions. Important 

exchanges occur primarily between mothers, grandmothers and daughters when the latter get 

married. Because all communities studied are patrilocal, when a woman marries, she leaves 

her community and/or home and goes to live at her husband’s community and/or home, 

adopting her husband’s ethnic traditions. Before she leaves a cross-generational exchange of 

manioc landraces occurs, and the newly-wed receives landraces from her mother and 

grandmother as part of her dowry. As soon as she arrives to her husband’s community/home, 

her mother-in-law introduces her to the husband’s traditions. One of the first activities the new 

couple has to do is to open a swidden to produce their own food. At that moment, the mother-in-
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law gives her daughter-in-law the manioc landraces that are specific to her son’s ethnic group. 

She will plant them, but mix them with the manioc landraces given to her by her family. Over 

time, she will exchange with her mother-in-law (and other women in her husband’s 

community) her own manioc landraces, increasing in this way family manioc inventories and, 

when partners come from different communities, community manioc inventories.
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Figure 4.6. Ethnic composition (in fractions) of the group of family farmers in each 
community who participated in this project.

Traditionally, in most indigenous groups of the Amazon region, men were not allowed 

to marry women from other ethnic groups. Because of this, manioc stocks of different ethnic 

groups could develop into distinct clusters. During the last century, however, marriage rules 

have considerably changed. In the case of the People of the Center, for example, interethnic 

marriages offered patrilocal groups in danger of extinction a chance for cultural survival 

(Figure 4.6). Nowadays, the ethnic composition of People of the Center communities is a mix 

of ethnic groups but where variation is always larger for women than for men. These changes 

are reflected in the arrangement of genotypes of manioc landraces in which there are no clear 

clusters formed by a community (Figure 4.3). In the case of San Martín de Amacayacu, in 

which most of the marriages are between Tikuna partners (in fact, in our sample all the 

couples were 100% Tikuna; see Figure 4.6), manioc landraces form a more compact cluster 

than the landraces of the People of the Center.

Apart from manioc exchanges mediated by marriages, opportunities for manioc 

exchange that are not marriage dependent also occur. Often, women who travel outside the 
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region bring back with them landraces from the places visited (for example, the landrace 

GUO27 in Figure 4.2 which was brought in from the Vaupes region in the northeast of the 

Colombian Amazon).This eagerness to increase manioc inventories was also apparent during 

our collective visits to swiddens to describe and classify manioc landraces. Farmer visitors 

commonly asked a swidden’ owner for stalks of varieties they did not yet possess. This was 

also observed during collective manioc harvesting of swiddens. The practice of free manioc 

exchange is part of being an indigenous farmer. In fact, from an indigenous point of view a 

good farmer is one who maintains a high number of different landraces (and not necessarily 

the one who produces more per unit of land). In our case, the farmer families that each 

community selected to participate (i.e., the most appreciated farmers) in the study were also 

those with the most diverse swiddens (in terms of the number of landraces held by each 

family).

4.3.5. Indigenous culinary traditions

According to indigenous mythical tales, since not all manioc landraces were equally 

distributed over all ethnic groups, their culinary traditions also differed (Table 4.3). The 

composition of manioc inventories of each community therefore, also reflects the culinary 

traditions of each ethnic group.

Seventy percent of the manioc landraces found in San Martín de Amacayacu were “to eat”

landraces. Tikuna culinary tradition is therefore based on sweet maniocs mainly. People from 

San Martín de Amacayacu affirmed that they did not possess bitter maniocs until recently—

about 50 years ago or so, when yellow farinha was first prepared for sale. They also stated 

that they traditionally knew the technique to prepare farinha from sweet manioc landraces and 

that they still prepare it for household use, but that they produce yellow farinha for cash. 

People of the Center cultivate Manicuera landraces exclusively and indeed Manicuera

landraces grouped together—with the exception of one sample (VA27) which is a Manicuera

landrace of the Bora ethnic group. They use Manicuera landraces to prepare their traditional 

drink (Manicuera) which in their mythical tales is considered as their food and identity 

symbol. Excluding Manicuera, each particular ethnic group recognized other manioc 

landraces as their own. The Uitoto and Nonuya communities of Guacamayo and Peña Roja 

held the highest number of yellow bitter manioc landraces. At the same time, these ethnic 

groups claimed that recipes elaborated with yellow bitter manioc were their own traditional 
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Table 4.3.Traditional ethnic recipes based on manioc. A stands for Andoke, M for Muinane, 
N for Nonuya, T for Tikuna and U for Uitoto. Recipes which are not exclusive to any one 
group are identified with an X.

Ethnic Preparations A M N T U
Based on Manicuera maniocs
Manicuera (Manioc grated and boiledfor a sweet manioc juice) A M N U
Based on maniocs “to eat”
Arapata (Manioc cooked and mixed with banana) T
Colada (Manioc starch cooked with water and sugar) X
Dry casabe (Round bread made from the manioc root) X
Farinha (A fermented and roasted manioc granulate) T
Jutiroi (Juice of fermented manioc leaves boiled) U
Manioc juice boiled with fish X X X X
Masato (Manioc beer obtained from a mix of mashed manioc and sweet potatoes) T
Monegú (Boiled manioc and kneaded with fish) T
Payavarú (Boiled manioc, mixed with toasted manioc leaves and squeezed) T
Payavarú wine (Fermented Payavarú) T
Pururuca (Masato with banana) T
Starch casabe (Round bread made of manioc starch) X
Tapioca (A granulate of toasted manioc starch) T
Unchará (Manioc bread) T
Based on maniocs “to grate”
Arepa (Baked round bread) X X X X
Caguana (Boiled starch and mixed with fruit juice) A M X X
Colada X
Farinha X X X
Manioc juice boiledwith fish X X X X
Starch casabe A M
Tamal (Manioc root packed in banana leaves and steamed) X X X X
Tapioca X
Based on yellow bitter maniocs
Arepa X X X X
Caguana X X N U
Colada X
Dry casabe N U
Manioc juice boiled with fish X X X X
Farinha X X X X X
Tucupí (Source made cooking the fermented bitter manioc juice with hot chilies) X X X X U
Jukui (Tucupí with fish and/or shrimps) U
Mingao (farinha mixed and water) X
Starch casabe X
Tapioca X
Tamal X X X X

preparations (Table 4.3).

The farinha that is commonly associated with the use of yellow bitter maniocs was not a

traditional preparation of Uitoto and Nonuya people. According to them, they learned how to 

prepare farinha from their yellow bitter maniocs during the rubber boom—when this storable 

product was used as the main food to feed indigenous slaves. Andoke and Muinane people on 

the other hand claim to have the tradition to use maniocs “to grate” and claim that caguana

and starch casabe are traditional preparations of theirs.
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However, maniocs “to grate” are also commonly used by other ethnic groups and in fact 

they form the dominant group of manioc landraces in the manioc inventories of indigenous 

communities of the Middle Caquetá region. The Tikuna are also starting to use bitter maniocs 

to prepare traditional recipes that require starch (colada and tapioca), thus moving away from 

their more traditional sweet manioc use.

Against our expectations, when complexity in the preparation of recipes (in terms of 

number of steps and time required) was taken into account, no direct relation between 

complexity and toxicity was found. There are Tikuna recipes made of non-toxic maniocs that 

take several days to prepare such as farinha, masato (manioc beer), payavarú, payavarú wine, 

and tapioca, and the People of the Center use toxic maniocs that also take days to prepare 

such as dry casabe and tucupí. However, when complexity in terms of the time spent to 

prepare recipes made of “to grate” or yellow bitter manioc landraces was compared, we found 

that the preparation of recipes from maniocs “to grate” took less time than those prepared 

with yellow bitter maniocs. Maniocs “to grate” are used mainly to obtain the starch of the 

roots by grating and washing them with water to eliminate cyanogenic compounds and 

precipitate the starch. 

On the other hand, preparations made of yellow bitter manioc required root 

fermentation in water to liberate cyanogenic compounds, followed by the grating and 

squeezing of the root biomass to eliminate the cyanogenic compounds before cooking. 

Differences in the time required for bitter manioc processing might explain why the use of 

manioc “to grate” in communities that traditionally use mainly yellow bitter for their dishes is 

becoming more popular.

On the other hand, and according to the Tikuna, the use of yellow bitter maniocs among 

indigenous communities was promoted by outsiders for the elaboration of farinha as a non-

perishable cash product, and so were new products indigenous people highly appreciate (such 

as tucupí). In this latter case, the toxicity of bitter maniocs is related with other organoleptic 

characteristics that are perceived by indigenous people as culinary advantage.

Indigenous people know the danger of consuming bitter maniocs when not properly 

prepared, yet they are not concerned about bitter manioc toxicity as they do not perceive this 

as a limitation to consume them. In fact, what we observed is that, presently, indigenous 

people from the communities we included in our study increase the use of bitter maniocs 

instead of, as we expected, increasing the use of sweet maniocs.
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4.4. Discussion

4.4.1. Manioc diversity and manioc classification in indigenous 

communities of the Colombian Amazon

A total of 173 manioc landraces were collected and distinguished based on morphological 

parameters. Manioc diversity in study areas of comparable size ranged between 100 and 204 

different morphotypes (Boster, 1986; Salick et al., 1997; Heckler and Zent, 2008). This means 

that the methodology we used (i.e., to assess community manioc diversity through a small 

group of experienced farmers) gave results comparable to earlier studies.

The numbers of distinguished morphotypes and genotypes differed in our inventory, as 

also observed in earlier studies (Elias et al., 2000; Elias et al., 2001; Vieira et al., 2008). In 

some cases, morphological variations of identical genotypes can be attributed to genotype by 

environment interactions that cause unique morphotypes of the same genotype which local 

people classify as different landraces (Salick et al., 1997). In other cases, morphologically 

similar landraces growing together are the result of an ideotypic selection of volunteer 

seedlings mixed with an already known landrace, resulting in more than one genotype per 

morphotype (Pujol et al., 2007). In this study, 87% of the morphotypes indigenous farmers 

distinguished were also considered genetically different; this indicates that farmers recognized 

more variability in the morphological features of the landraces than the genomic assay did. 

The high coincidence between morphotypic inventories and genotypic inventories indicates 

that the descriptors used by indigenous farmers to discriminate different manioc landraces 

were rather accurate, and that they are experts in discriminating landraces in the field. This 

expertise has been developed through permanent contact with the different manioc landraces 

in their swiddens and the efficient transmission of this body of knowledge to other women.

The 93 SNPs selected to discriminate manioc genetic diversity allowed to differentiate 

different locations and communities (Figure 4.3A) and manioc groups (Figure 4.3B). The average 

observed heterozygosity across the 160 genotypes was 0.39, similar to heterozygosity reported 

for samples from Brazil (Oliveira et al., 2014). Using SNP genotyping to discriminate 

samples genetically, 22 duplicates of genotypes were obtained among 173 samples. These 

duplicates matched landraces with morphological differences in one or more features (Table 

4.2). However, most of the duplicates were consistently classified into the same manioc class 

according to their toxicity and use, or consistently identified by the color of the bulking root 
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pulp. These two variables define the main characteristics indigenous farmers want to see in a 

landrace and this in the end will define the way in which a given landrace can be used.

Among scientists, manioc variability is classified in different ways, but toxicity 

(expressed in terms of the content of cyanogenic compounds) is by far the main feature for 

manioc classification (Aristizábal et al., 2007; Silva et al., 2008). Manioc landraces with less 

than 100 mg/kg of cyanogenic compounds are classified as sweet or of direct culinary quality, 

and manioc landraces with more than100 mg/kg of cyanogenic compounds are classified as 

bitter or of industrial quality (Wilson and Dufour, 2002; Aristizábal et al., 2007), implying a 

major processing step is required. The concept of industrial quality is alien to indigenous 

classifications but by and large they follow the same major distinction of maniocs (Table 4.1) 

as needing a major processing step or ready to eat after minor processing. In addition, they 

add the color aspect as of major (culinary) importance.

Accidents of manioc poisoning are extremely rare in Amazonian indigenous 

communities; apparently, a biocultural co-evolution between people and manioc occurred 

(McKey et al., 2010a). We evidenced no constraints whatsoever in the use of high toxicity 

maniocs among indigenous farmers, even though we observed an increase in the use of high 

toxicity maniocs. The use of low toxicity and high toxicity maniocs encourages indigenous 

farmers to maintain both types of maniocs in their production systems and thus a potential 

source of manioc variability that would, of course, be limited in regions where bitter maniocs 

are not appreciated for human consumption. However, farmers outside the Amazon Basin (as 

in some African countries) also find advantages in the cultivation of bitter maniocs (Fresco, 

1986; Chiwona-Karltun et al., 1998) and are increasingly including high-toxicity landraces in 

their productive systems (McKey et al., 2010a).

It has been proposed that sweet and bitter maniocs were domesticated in different 

historical moments, and that these maniocs were distributed unevenly throughout the Amazon 

region—even though they are presently cultivated together in fields (Mühlen et al., 2013).

Our results show a clear genetic clustering for both sweet and bitter maniocs; this might 

support arguments in favor of a different origin of these two manioc classes. It has been 

proposed that sweet manioc landraces were domesticated in what is today the state of 

Rondônia in Brazil (Arroyo-Kalin, 2010) and that from there they spread along the main 

rivers of the Amazon Basin. This might explain why in Tikuna communities (such as San 

Martín de Amacayacu) located on the Amazon River and its main tributaries the use of sweet 

manioc varieties is dominant, while among ethnic groups living in the interfluvial region 
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bitter maniocs dominate. Results also indicate the importance of interethnic marriages among

neighboring ethnic groups. This implies a relatively high propagule exchange rate between 

neighboring groups that also exchange brides as compared against propagule exchange with 

far away communities, e.g., between San Martín de Amacayacu and the communities of the 

Middle Caquetá region. This propagule exchange through marriage between neighboring 

groups has also been observed in other communities (Coomes, 2010; Delêtre et al., 2011;

Pautasso et al., 2013; Samberg et al., 2013). The lack of exchange over longer distances 

strengthens geographical isolation, thus increasing overall manioc diversity in the Amazon 

region.

When the genomic composition of the morphotypes collected in this study were 

compared with the genotypes provided by CIAT’s world collection most of the samples form 

a cluster apart from CIAT’s genotypes. This indicates that although some of the genomic 

variability of maniocs from the Colombian Amazon is represented in CIAT’s core collection, 

there is a substantial genetic diversity that is not contained by it. Similar findings were 

obtained when the germplasm of some Amazonian maniocs was compared with CIAT’s core 

collection using microsatellites (Elias et al., 2001; Elias et al., 2004). The current study also 

showed clear that potentially diversity available in Colombian Amazon is poorly represented 

in CIAT’s collection.

4.4.2. Sources of manioc variability among ethnic groups

Propagule exchange mechanisms are important sources to increase and maintain crop 

agrobiodiversity in the Amazon (Coomes, 2010), and manioc exchange is most likely to occur 

among nearby communities. However, manioc exchange can reduce diversity as active out-

crossing of the different landraces exchanged may homogenize crop diversity (Dyer et al.,

2011). Our dendrograms show that there exist differences in manioc diversity among groups 

geographically separated by hundreds of kilometers; these differences however also appear in 

the cluster of the Middle Caquetá region where communities exist relatively close to one 

another. Delêtre et al. (2011) found that, in areas where ethno-linguistic boundaries are 

present, particular manioc groups are formed (and which they attribute to differences in 

marriage rules and therefore manioc exchange). Notwithstanding the differences in marriage 

rules between the communities studied by Delêtre et al. and the communities we researched 

(where, until recently, manioc exchange was limited by ethnic boundaries), the effect of 
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marriage rules on manioc diversity seem to be comparable. 

In our case, social rather than geographical exclusion allowed for the emergence of a 

relation between particular manioc landraces and ethnic identity; this in turn possibly 

strengthened the bond within, and the differentiation between, ethnic groups. For indigenous 

groups of the Colombian Amazon, manioc is not merely a crop; it also constitutes a symbol of 

identity. There are maniocs that identify ethnic groups with a common origin (Manicuera for

People of the Center) as well as maniocs that identify particular ethnic groups (maniocs “to 

eat” for the Tikuna, yellow bitter maniocs for the Nonuya and Uitoto and maniocs “to grate”

for the Andoke and Muinane). This link between ethnicity and manioc apparently occurs 

elsewhere as well, as is the case with the Miraña and the Bora (see above) or the Piaroa of the 

Venezuelan Amazon (Heckler and Zent, 2008). This particular segregation of maniocs among 

the different ethnic groups constitutes a source of manioc variation in the region.

Some of the maniocs that provide ethnic groups with their identity must have been 

obtained from volunteer seedlings selected long ago (so long ago that indigenous people 

consider them to be of a mythical origin), those that provide clan identity clearly showed that 

they were obtained through the selection of sporadic volunteer seedlings. These historical 

moments of volunteer seedlings selection are clear examples of a directional selection of 

volunteer seedlings. What most probably started as a selection for agronomic performance

(Duputié et al., 2009b) could later have led to the selection of a manioc landrace for 

distinctive features that could help clans to claim it as their own. Volunteer seedlings 

constitute an important source of manioc variability and are important for the selection of 

manioc landraces as ethnic identity markers. Today, indigenous farmers continue to 

incorporate volunteer seedlings into their manioc pools as 5% of the landraces they described 

were obtained from recently selected volunteer seedlings.

The fact that 33% of the total manioc inventory of landraces constituted a symbol of 

identity, and that from these Manicuera, more than 50% of the “to eat” maniocs and 40% of 

yellow bitter maniocs also have low genomic variability indicates that these landraces have 

been conserved without major modification to their genomes (that is: without significant 

recombination). The importance (in terms of historical memory) of these landraces for each 

one of the ethnic groups studied warrants the special treatment they receive. This fact 

notwithstanding, all manioc landraces (whether they are or are not attached to ethnic identity) 

are managed in the same way and planted in patterns that do not prevent possible sexual 

recombination of landraces. 
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In contrast to other ethnic groups in which shamans play an important role in the 

conservation of manioc landraces, in the communities we studied, women are wholly 

responsible for the management of manioc inventories and their conservation. Results indicate 

that indigenous women have a deep knowledge of these landraces and furthermore partake in 

effective knowledge transfer networks involving young women to perpetuate their 

conservation. This is why ethnic groups that have production systems based on swidden 

agriculture, have been less affected by outside interventions, and are still able to pass on the 

knowledge required to manage, conserve or otherwise increase manioc inventories. Swiddens 

can be considered effective in situ reservoirs of landraces with low genomic variability.

Duputié et al.(2009b) indicated that the incorporation of volunteer seedlings that had a 

too high level of inbreeding could reduce agronomic quality, while volunteer seedlings that 

had a too high level of outbreeding could blur highly appreciated landrace features. 

Apparently, the indigenous people we studied handle these probabilities appropriately through 

their intimate knowledge of the morphological characteristics that distinguish important 

landraces from others, by reproducing them clonally, by planting different landraces in 

clusters to maintain landraces’ most important characteristics, and by testing volunteer 

seedlings for two or three production cycles before deciding whether to maintain them or not; 

the latter practice was also observed in the Wayãpi indigenous group (Duputié et al., 2009b).

These practices effectively help avoid the negative effects of cross-breeding in clonal 

populations.

As we show, the use of low toxicity or high toxicity maniocs was directly associated to 

ethnic culinary traditions (and which in turn provided a specific ethnic or clan-specific identity). 

Wilson and Dufour (2006) also found a direct relationship between the manioc inventories of 

the Tukano of the Colombian Vaupés and their culinary traditions. McKey et al. (2010a)

propose that the use of particular manioc landraces among ethnic groups might be the result of 

the type of society. Accordingly, high toxicity maniocs would be most favored in large, 

sedentary societies along floodplains of major rivers where fish supply is abundant and a good 

part of the time could be used for high toxicity manioc processing. On the other hand, the use 

of low toxicity maniocs might be favored in smaller and more mobile societies where the 

main activities are based on hunting and gathering and where there is not enough time for 

processing manioc or for making or transporting the tools needed for it to a new settlement.

The hypothesis of McKey et al. (2010a) however does not hold for the case of the 

indigenous communities of this study. People of the Center who do have a tradition to use 
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high toxicity maniocs do not originate from the floodplains of major rivers but rather from the 

interfluve between the Caquetá and the Putumayo rivers where the supply of fish is also 

limited (Pereira, 2011). Although they have moved out of their ancestral territories to areas 

with fertile floodplains, their tradition to use mainly high toxicity maniocs has not changed. 

On the other hand, the Tikuna, a much less mobile society than the ethnic groups of the 

Middle Caquetá region, adopted high-toxicity maniocs only recently and mainly as a way to 

obtain some cash for goods they cannot themselves produce. We therefore found that the

preference for low toxicity or high toxicity maniocs was unrelated with the ease of processing 

and hence, according to our respondents, not an important reason to select or grow landraces.

4.4.3. Sources of manioc variability among communities

Fraser and Clement (2008) and Fraser et al. (2012) suggested that ADE could constitute a 

different edaphic environment for manioc cultivation which might drive an artificial selection 

of manioc landraces that perform better in those soils—thus increasing manioc diversity at the 

community level. However, the number of manioc landraces in our community inventories did 

not differ significantly between communities with or without access to ADE. Although 

according to indigenous farmers a few manioc landraces performed better in certain soils, 

most of the manioc landraces they cultivate grow well in any soil. These indigenous 

communities have not encouraged soil-manioc specificity, moving their manioc stocks 

indiscriminately between soils. Having manioc landraces that easily adapt to soil variations 

allows farmers to harvest enough manioc to satisfy their requirements independently of the 

soil characteristics of the swidden. Our respondents showed little interest in increasing manioc 

yields and seemed more concerned in preserving a variety of landraces to satisfy their 

culinary traditions, thereby maintaining what they deem to be a good quality of life. Our 

findings match those of Hastik et al. (2013) who also found no preference for the use of 

anthropogenic soils in an Amazonian region with low land use pressure. The favoring of a 

soil-manioc specificity might be an important aspect in Amazonian societies that are more 

integrated in the market and more interested in cultivating manioc as a cash crop, showing a 

proclivity to select specific soils such as ADE in order to improve yields as in the case of 

Caboclos from the Madeira River (Fraser, 2010a). Although manioc-soil specificity was not 

found in the communities we studied, Andoke and Uitoto narratives attribute an important 

role to ADE in the conservation of the first maniocs indigenous people manipulated. This is in 
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agreement with the hypothesis that manioc is a native species of Amazonia (McKey et al.,

2010a; Arroyo-Kalin, 2012) and that ADE might have played an important role in manioc 

domestication (Arroyo-Kalin, 2010).

One factor that affected manioc diversity at community level was manioc exchange. 

The common inclination of farmers to maintain high numbers of manioc landraces can be 

explained through their concept of life-quality which is based on the notion of abundance of 

landraces and products. For indigenous people, the good life is “to eat well and live well” 

which basically means continuous access to a variety of foods which in turn will secure good 

health, harmonious relationships with the family and the other members of the community, as 

well as a prolific progeny (Acosta, 2013). Essential to this purpose is to secure an abundance 

of products and landraces that may serve as a buffer in difficult times.

Manioc exchange among indigenous communities of the Middle Caquetá region could 

be appreciated in the dendrograms of manioc genetic diversity. Dendrograms also showed a

close relation between Tikuna manioc landraces and landraces from Peru (Figure 4.2). This 

latter relation could be explained by the geographical position of the community of San 

Martín de Amacayacu and the distribution of the Tikuna ethnic group in the region: the 

Tikuna’s traditional territory corresponds to the upper part of the Amazon River which 

includes parts of the Brazilian, Colombian and Peruvian Amazon (Acosta and Zoria, 2012).

For the Tikuna, borders within what they consider to be their territory do not exist, and 

therefore sharing and exchanging manioc landraces with other Tikuna communities of the 

three countries is common. Finally, manioc exchange has also been induced by external pull 

factors such as the recent cultivation of high toxicity landraces to prepare yellow farinha as a 

cash product which is easily sold within the community and in close-by urban centers.

Apparently, instead of an erosion of manioc diversity due to outside interventions, 

manioc diversity has been maintained in the last century and, in some cases, increased by the 

interplay of three different factors. First, the continuity of local culture which has encouraged

indigenous people to maintain manioc landraces with low genomic variation. Second, the 

continuous experimentation with volunteer seedlings in the field. Third, the willingness of 

indigenous farmers to maintain highly diverse inventories of manioc in their swiddens as a 

symbol of a good quality of life. From our perspective, as long as the relationship between 

indigenous people and manioc continues, the conservation of a high manioc diversity in the 

region is possible. In this sense, manioc could be considered more than just a crop in the 

Amazon region: it also needs to be seen as cultural heritage of Amazonian societies.
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However, the permanent threats to the conservation of the Amazon Basin, together with 

the pressure to integrate indigenous people in currently prevailing economic models severely 

increases the risk of loss of indigenous crop diversity (Salick et al., 1997; Steward, 2007). For 

this reason, it is expedient to understand the drivers of current manioc diversity and to locate 

manioc variability hotspots. Information about these issues might be important for those 

interested in maintaining and increasing public manioc collections, and for those interested in 

the conservation of manioc diversity, to help develop strategies to conserve these materials in 

situ. There are already some experiences showing that it is possible to protect both crop 

diversity and the collective knowledge indigenous people have of crops by way of 

geographical indications or denominations of origin (Acosta and Zoria, 2009) in which the 

use of molecular tools such as SNPs to discriminate landraces from specific localities or 

ethnic groups is accurate (Kawuki et al., 2009; Li et al., 2010b; Ciarmiello et al., 2011). Since 

it is difficult to maintain a real representation of diversity in worldwide crop collections, the 

possibility to acknowledge and incorporate local farmers in the conservation of diversity 

could be a real alternative for crop conservation and the preservation of independent cultures. 

Unfortunately, initiatives to do so are still in their initial stages (Dulloo et al., 2010).

4.5. Conclusions

Inventories of manioc of communities were both morphotypically and genotypically different, 

with a good correspondence between the two. The high manioc diversity observed in the five 

indigenous communities of our study is the result of different social factors that have 

historically affected manioc since its domestication. These social factors have played a more 

important role than for example e.g., differences in edaphic environments. The main reason 

for this is that manioc, the staple food for indigenous communities of the Amazon region, is a 

symbol of identity. Manioc variation is intimately related with ethnicity or clan membership 

and with local culinary traditions that express this identity. Manioc diversity is therefore 

linked to cultural aspects and it explains the importance and conservation of each one of the 

manioc landraces that today exist in our area of study. These aspects are lost when manioc 

landraces are conserved outside the communities that shaped these people-manioc 

relationships.

We sampled only five communities in the Colombian Amazon; since the Amazon Basin 

is inhabited by hundreds of different ethnic groups—each with its distinct people-manioc 
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relationship—the number of manioc landraces in this Basin can be expected to be high and 

diverse. The knowledge indigenous farmers and, particularly, women have of the 

characteristics of the manioc landraces they manage, constitutes an important factor for the

conservation of particular manioc landraces with low genomic variability. In addition to the 

particular manioc landraces conserved by each ethnic group, the incorporation of volunteer 

seedlings into farmers’ portfolios and manioc exchange mechanisms are two important and 

permanent sources of manioc variability in the region.

Swidden agriculture provides indigenous people the opportunity to continue managing 

highly diverse stocks of toxic and non-toxic maniocs, as well as to select and conserve 

volunteer seedlings that spontaneously appear in their swiddens. Nevertheless, the production 

system of the indigenous communities from our study is not any more commonplace in the 

Amazon Basin or beyond. Today, many indigenous groups are disappearing or merge into 

larger societies—to the detriment of cultural diversity (UNEP and ACTO, 2009). Models of 

manioc production in which production depends on a limited number of genotypes with clear 

commercial advantages reduces the possibilities for social mechanisms to act in favor of 

promoting and sustaining manioc diversity.

The manioc diversity shown in this study represents a small sample as we only studied 

five of 420 ethnic groups (UNEP and ACTO, 2009). Nevertheless, this diversity is not fully 

represented by CIAT’s world collection. In situ conservation of manioc diversity is possible 

but this can only be attained when the production systems of indigenous communities are 

themselves also conserved. It is therefore necessary that institutions interested in manioc 

conservation develop strategies to recognize and learn from these communities how they 

created their highly diverse manioc portfolios and help them conserve them as an important 

legacy for present and future generations.
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Appendices
Table A 4.1.Morphological descriptors of manioc used to discriminate landraces in the field.

No.

CIAT ORACLE 
DATABASE 
(1995)

EMBRAPA 
(Fukoda and 
Guevara 1998)

Indigenous 
descriptors Used Observations

PLANT GROWTH

1 Form of the plant Type of plant No

Indigenous people recognize 
differences in the form of the plants 
but do not have specific class 
groups for it

2 Height of plant Height of plant

Height of 
plant (tall, 
medium, 
small) No Plants in different stages

3
Height until the 
first branching

Height until the 
first branching No

Indigenous people do not use metric 
instruments to measure it

4
Levels of 
branching No

Difficult to estimate it in plants in 
different stages

5 Angle of branching No

Indigenous people do not 
understand the metric differences 
between angles

6 Plant branching
Way of 
branching Yes

7 Phyllotaxis No Plants in different stages

8

Color of 
terminal 
branches in 
mature plants No

Indigenous people consider this the 
same as the color of the apical leaf

LEAF

9
Width of leaf 
lobule No

Indigenous people do not use metric 
instruments to measure it

10
Length central 
leaf lobule

Length central 
leaf lobule No

Indigenous people do not use metric 
instruments to measure it

11

Length-width 
ratio of central 
leaf lobule No

Indigenous people do not use metric 
instruments to measure it

12

Number of 
lobules in the 
leaf

Number of 
lobules in the 
leaf No

There were plants with different 
numbers of lobules in leaves

13
Shape of the leaf 
lobule

Shape of the leaf 
lobule

Shape of the 
leaf lobule 
(oblong, 
round) Yes

14
Color of mature 
leaf

Color of mature 
leaf

Color of 
mature leaf Yes
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15
Color of apical 
leaf

Color of apical 
leaf

Color of 
apical leaf Yes

16 Color leaf vein Color leaf vein No

Indigenous people consider this 
color is the same as that of the 
petiole

17 Pubescence Pubescence No Not found

18
Prominences of 
foliar scares No

Indigenous people do not consider 
it a characteristic of the plant

19
Sinusoid of leaf 
lobule No

Indigenous people consider it as 
part of the shape of the leaf lobule

PETIOLE

20 Color of petiole Color of petiole
Color of 
petiole Yes

21 Length of petiole No
Indigenous people do not use metric 
instruments to measure it

22 Petiole position No Differences were not found
STALK

23
External color of 
stalk

External color of 
stalk

Outside 
color of stalk Yes

24
Color of stalk 
collenchyma 

Color of stalk 
collenchyma No

For some landraces indigenous 
people use it, for others they do not

25
Color of 
epidermis stalk

Color of 
epidermis stalk No

26
Way in which 
the stalk grows

Way in which 
the stalk grows No

No clear differences in the way 
stalks grow found

27

Presence of 
purple stain in 
the stem No

28
Length of 
stipules No

Indigenous people recognize this 
part in manioc plants but not as a 
descriptor to discriminate them

29
Margin of 
stipules No

Indigenous people recognize this 
part in manioc plants but not as a 
descriptor to discriminate them

ROOT

30
External color of 
the root

Outside color of 
the root

Outside 
color of the 
root Yes

31
Color of root 
cortex

Color of root 
cortex Yes

32
Color of root 
pulp

Color of root 
pulp Yes

33
Presence of root 
stem

Presence of 
root stem No

Indigenous people recognize it but 
do not consider a parameter to 
discriminate manioc landraces
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34 Shape of root
Shape of 
root Yes

35 Root constrains No
Indigenous people consider it as 
part of the shape of the root

36
Texture of root 
epidermis No

Indigenous people from San Martín
de Amacayacu recognize that in 
some cases maniocs transformed 
into a landrace called "caiman" and 
the epidermis of the root became 
scaly. Apparently it is related to a 
virus infection.

FLOWERING

37 Flowering No
Plants in different stages, some 
without flowers

USES
38 Use Use Yes
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Table A 4.2. SNPs used to estimate manioc genetic diversity, indicating the location of each 
SNP in the manioc genome, the most frequent allele, frequency of the most frequent allele, 
observed heterozygosity (Ho) as calculated by the PowerMaker software. Additional 
information of SNPs is available from the Cassava Genome Database 
(http://cassava.igs.umaryland.edu/cgi-bin/index.cgi).

SNP
Location in 
the manioc 

scaffold

Position 
in the 

scaffold
Reference 
nucleotide 
base

Alternative 
nucleotide 
base

Most 
frequent 
allele

Frequency 
of most 
frequent 
allele Ho

SNPY-002 scaffold00341 522287 T A T 0.60 0.49
SNPY-003 scaffold00486 4139 T C T 0.51 0.45
SNPY-004 scaffold00506 357810 T C T 0.71 0.37
SNPY-008 scaffold00926 170134 G A G 0.79 0.36
SNPY-009 scaffold00977 131601 T C T 0.57 0.43
SNPY-011 scaffold01127 53623 G A G 0.54 0.50
SNPY-012 scaffold01131 100283 G A A 0.72 0.36
SNPY-014 scaffold01551 772988 A C C 0.80 0.35
SNPY-015 scaffold01624 211719 T C T 0.56 0.42
SNPY-016 scaffold01701 51387 C T T 0.69 0.53
SNPY-017 scaffold01782 87521 A G G 0.57 0.59
SNPY-018 scaffold01934 135374 C T C 0.55 0.51
SNPY-019 scaffold01945 1718 C T C 0.73 0.46
SNPY-021 scaffold02165 486046 T G T 0.85 0.29
SNPY-022 scaffold02242 58303 T A A 0.79 0.30
SNPY-024 scaffold02431 470148 C T T 0.41 0.46
SNPY-025 scaffold02477 29865 T C T 0.78 0.32
SNPY-026 scaffold02586 990 G C G 0.55 0.48
SNPY-027 scaffold02688 74739 A T T 0.52 0.42
SNPY-028 scaffold02886 10162 A C A 0.74 0.42
SNPY-030 scaffold02973 15845 T A A 0.63 0.47
SNPY-034 scaffold03049 652738 G A A 0.71 0.38
SNPY-035 scaffold03115 64538 G C C 0.90 0.19
SNPY-038 scaffold03175 199915 C G C 0.81 0.31
SNPY-042 scaffold03237 108434 T C T 0.62 0.52
SNPY-046 scaffold03363 322574 G A A 0.70 0.50
SNPY-047 scaffold03395 289363 C T T 0.71 0.38
SNPY-048 scaffold03404 16874 C A C 0.84 0.28
SNPY-051 scaffold03581 609409 G C G 0.69 0.43
SNPY-052 scaffold03602 328252 C G C 0.95 0.09
SNPY-053 scaffold03614 507488 A G A 0.83 0.29
SNPY-056 scaffold03741 509165 G C G 0.65 0.50
SNPY-063 scaffold03980 3811 G A G 0.77 0.37
SNPY-064 scaffold04043 961177 G A G 0.89 0.23
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SNPY-066 scaffold04165 3471 C T C 0.62 0.48
SNPY-067 scaffold04209 58499 T C T 0.97 0.07
SNPY-072 scaffold04489 59448 T C C 0.70 0.36
SNPY-076 scaffold04803 23641 C T T 0.84 0.26
SNPY-077 scaffold04851 86189 T C C 0.72 0.36
SNPY-078 scaffold04895 248557 G A ND ND ND
SNPY-079 scaffold04953 260403 G T T 0.55 0.55
SNPY-080 scaffold05019 190612 C T C 0.80 0.38
SNPY-085 scaffold05709 65499 G A G 0.78 0.36
SNPY-086 scaffold05859 331862 C T T 0.50 0.39
SNPY-087 scaffold05865 82333 C A C 0.54 0.32
SNPY-090 scaffold06043 10403 T C T 0.98 0.03
SNPY-094 scaffold06548 79796 A G A 0.67 0.60
SNPY-095 scaffold06550 80150 A G A 0.54 0.44
SNPY-096 scaffold06582 530272 A G G 0.75 0.36
SNPY-098 scaffold06609 527660 T C T 0.69 0.43
SNPY-099 scaffold06700 120785 C T C 0.53 0.69
SNPY-100 scaffold06701 67024 T G G 0.68 0.48
SNPY-101 scaffold06707 231104 A G A 0.67 0.55
SNPY-102 scaffold06708 256386 G C C 0.76 0.33
SNPY-105 scaffold06914 436528 A C C 0.68 0.53
SNPY-108 scaffold07005 76128 G A G 0.77 0.31
SNPY-109 scaffold07035 786578 T C T 0.72 0.54
SNPY-111 scaffold07238 413538 T C C 0.69 0.43
SNPY-113 scaffold07478 906418 T A T 0.72 0.47
SNPY-116 scaffold07591 53616 A C A 0.82 0.24
SNPY-118 scaffold07778 195117 C A C 0.68 0.41
SNPY-120 scaffold07859 56295 G A A 0.90 0.19
SNPY-121 scaffold07991 525619 T A T 0.82 0.35
SNPY-125 scaffold08265 16150 T C T 0.90 0.18
SNPY-126 scaffold08359 711856 T C T 0.64 0.43
SNPY-127 scaffold08485 197096 G A G 0.80 0.33
SNPY-128 scaffold08500 174717 C G C 0.59 0.53
SNPY-129 scaffold08542 231091 G A G 0.52 0.40
SNPY-130 scaffold08655 139164 A G G 0.63 0.34
SNPY-131 scaffold08673 56121 G C C 0.66 0.47
SNPY-132 scaffold08799 195547 C G G 0.78 0.41
SNPY-134 scaffold08873 367474 A G G 0.80 0.34
SNPY-136 scaffold09260 286852 C A C 0.69 0.38
SNPY-137 scaffold09426 12925 T C C 0.75 0.37
SNPY-140 scaffold09520 7011 C T C 0.77 0.40
SNPY-141 scaffold09702 295652 A T A 0.75 0.44
SNPY-142 scaffold09876 604006 G A A 0.66 0.48
SNPY-145 scaffold10114 195492 G A G 0.63 0.48
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SNPY-146 scaffold10173 304868 G T G 0.57 0.35
SNPY-148 scaffold10493 519834 T C T 0.61 0.35
SNPY-149 scaffold10504 2504 G A A 0.61 0.41
SNPY-152 scaffold10878 637609 T C T 0.52 0.59
SNPY-154 scaffold11110 114971 A C C 0.65 0.43
SNPY-159 scaffold11635 293538 G A A 0.83 0.29
SNPY-160 scaffold11661 207635 G T G 0.85 0.23
SNPY-161 scaffold11689 77485 A T A 0.56 0.57
SNPY-164 scaffold11998 903514 A C A 0.54 0.59
SNPY-165 scaffold12118 12855 T A A 0.79 0.34
SNPY-168 scaffold12248 10334 G A G 0.59 0.47
SNPY-170 scaffold12455 225034 C T C 0.70 0.40
SNPY-173 scaffold12657 33735 G A G 0.83 0.27
SNPY-175 scaffold12794 702004 A T A 0.87 0.25
SNPY-176 scaffold12828 6789 A G A 0.82 0.28

ND: Not determined for this SNP, as the assay did not give concluding results for some of the tested genotypes.
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Abstract

Manioc (Manihot esculenta Crantz) is an arbuscular mycorrhiza dependent tropical crop. In the 

Amazon region, manioc mycorrhization has been studied mainly in acid, low-fertile soils, hardly in 

more fertile soils. In order to better understand manioc arbuscular mycorrhization in different 

Amazonian soils, research was conducted on mycorrhization of different manioc landraces cultivated 

in plots located on anthropogenic Amazonian Dark Earths (ADE), non-ADE uplands, and floodplains 

of the Colombian Amazon. The percentage of arbuscular mycorrhizal colonization of manioc roots

was estimated after clearing and staining. Arbuscular mycorrhizal fungi species and communities in 

soils and in manioc roots were assessed using spore-based (only soil) and molecular (virtual taxa for 

soil and roots) approaches. Estimates of arbuscular mycorrhizal fungal diversity based on fungal DNA 

obtained from root samples were higher than those based on spores or DNA from soil samples. 

Arbuscular mycorrhizal fungal diversity was comparable across soil types. Arbuscular mycorrhization 

of manioc roots was independent of soil arbuscular mycorrhizal diversity, soil physico-chemical 

composition or the toxicity of manioc roots. Arbuscular mycorrhizal root colonization of maniocs 

grown on non-ADE or ADE uplands was higher than on annually flooded (low) floodplains. 

Particularities in the way manioc was cultivated on low floodplains and/or the prolonged annual flood 

affected manioc arbuscular mycorrhization. Although Rhizophagus manihotis was abundant in manioc 

roots across all observed soils and landraces, this is surprising as this species has not been reported on 

any forest species in the Amazon so far. Despite this abundance of Rhizophagus manihotis there was 

no evidence for co-adaptation between arbuscular mycorrhizal fungi and manioc landraces.

Key words: Arbuscular mycorrhiza, Manihot esculenta, indigenous agriculture, Amazonas, Colombia, 

ADE, virtual taxa.
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5.1. Introduction 

Arbuscular mycorrhization is the most common plant-fungus association between obligate 

endo-symbiont Glomeromycota fungi and roots of higher plants (Fitter and Moyersoen, 

1996); it plays an important role in the supply of phosphorus and other immobile nutrients to 

host plants (Helgason and Fitter, 2009) but also has other benefits, such as protection against 

pathogens (Cardoso and Kuyper, 2006). That is why different studies focused on finding the 

best conditions for arbuscular mycorrhization of important crops. It has been hypothesized 

that plant ecotypes adapt to their local soil and native arbuscular mycorrhizal (AM) fungal 

communities producing more mutualistic AM associations (Johnson et al., 2010; Herrera-

Peraza et al., 2011). Then, AM fungal communities are affected by soil conditions and plant 

species and communities, resulting in different levels of root colonization of host plants and 

in different levels of benefit of the AM association for these plants.

Among different edaphic variables, pH and phosphorus availability are major 

determinants of arbuscular mycorrhization (Entry et al., 2002). Generally, AM fungi (AMF) 

are susceptible to acidity and plant roots are usually more colonized by AMF at near-neutral 

pH. However, some AMF genera such as Acaulospora sp. and Gigaspora sp., and some AMF

species such as Rhizophagus manihotis are well adapted to low pH (Clark, 1997). Also in

soils with alkaline pH specific AM fungal communities tolerant to high pH are able to 

colonize plant roots (Oliveira et al., 2006). AM colonization of roots is more likely in soils 

with low phosphorus availability (less than 15 ppm). In soils with high phosphorus 

availability (more than 30 ppm), AM fungal communities are generally found to be reduced 

(Gosling et al., 2013) and the AM association is inhibited or less efficient (Howeler et al.,

1982; Howeler and Sieverding, 1983; Habte and Manjunath, 1987). However, this pattern is 

not consistent for all plant species. Apparently, root colonization of maize by AMF is only 

affected by very high phosphorus availability (more than 140 ppm) (Gosling et al., 2013).

AM fungal communities are also affected by plant species composition. In general, a

more diverse vegetation is associated with more diverse AM fungal communities (Schnitzer et 

al., 2011; Hiiesalu et al., 2014). Roots of plant species from more diverse tropical forests have 

higher AMF richness than roots of plant species from less diverse vegetations (Öpik et al.,

2006); generalist plants, including crop plants, tend to associate with generalist AMF 

communities (Davison et al., 2011).

The variable responses of AMF to pH levels and phosphorus availability across soils 
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and plant species indicate that AMF adapt to soil conditions, and that some co-adaptation 

between AMF and plants grown in particular edaphic conditions can be expected.

Understanding how environmental conditions favor the arbuscular mycorrhization of 

particular crops could provide hints for a more sustainable agriculture that secures the staple 

food of populations living in the tropics.

Particularly in the Amazon region, manioc (Manihot esculenta Crantz) is the most 

important staple crop for most native people (Chapter 4 of this thesis, Peña-Venegas et al.,

2014b). Manioc is highly dependent on and responsive to AM association, which could be 

due to the fact that its root system is inefficient in foraging nutrients in the soil once manioc 

roots are transformed to large bulky structures for starch storage (Akinbo et al., 2012; Larson

et al., 2014). Manioc might compensate this limitation with arbuscular mycorrhization as it is 

always found to be associated with AMF (Howeler and Sieverding, 1983; Dodd et al., 1990;

Habte and Byappanahalli, 1994).

The AM association of manioc has been studied mostly in tropical soils with high 

acidity and low phosphorus availability (Howeler et al., 1982; Howeler and Sieverding, 1983;

Ceballos et al., 2013). Under these soil conditions AMF species such as Rhizophagus

manihotis, Acaulospora colombiana (Howeler and Sieverding, 1983), Rhizophagus

irregularis (Ceballos et al., 2013) and Paraglomus occultum (Dodd et al., 1990) are important 

AM symbionts of manioc, establishing efficient AM associations and mobilizing phosphorus 

efficiently to the plant through the hyphal network. Acid, low-fertile upland soils are common 

in manioc cultivation in the Amazon region (Eden and Andrade, 1987; Wilson and Dufour, 

2002a), but other, more fertile soils are also used. Manioc is cultivated in Amazonian Dark 

Earths (ADE) (Fraser and Clement, 2008; Fraser et al., 2012; Chapter 2) and floodplain soils 

(Acosta and Mazorra, 2004; Adams et al., 2005; Fraser et al., 2012; chapter 2) but there is no 

information about manioc arbuscular mycorrhization on those soils. On the one hand, ADE 

are patches of anthropogenic soil usually less acid and with (much) higher phosphorus 

availability than non-anthropogenic soils (Glaser et al., 2001). The particular conditions of 

ADE increase soil microbial activity (Glaser and Birk, 2012; Lehmann et al., 2011), but the 

high phosphorus availability of ADE could also inhibit AM associations. On the other hand, 

floodplain soils are alluvial soils periodically enriched with nutrient-rich sediments that are 

transported and deposited by rivers. Floodplains are less acid and with moderate phosphorus 

availability compared with non-anthropogenic upland soils (Piedade et al., 2001), but aerobic 

AM fungi might be affected by the periodical floods that floodplains experience. This is 
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supported by the often lower root colonization in plants growing in floodplains than in non-

flooded environments (Entry et al., 2002).

Additionally and according to Davison et al. (2011), the transformation of forests into 

croplands could affect AMF community composition selecting for more generalist AMF. In 

the Amazon region manioc is cultivated mainly under two different types of agriculture: under 

swidden agriculture for one to three years in uplands and high floodplains that do not flood 

yearly, leaving the plot for a long fallow period of more than 10 years; and under a continuous 

agriculture in low floodplains where manioc is cultivated yearly, with only a brief fallow 

during the flooding period (Chapter 2). Manioc interacts for a longer time with native AM 

fungal communities in low floodplains than in uplands or high floodplains due to the 

differences in fallow duration. It is expected therefore that a co-adaptation as the one reported 

by Ceballos et al. (2013) is more likely to occur in low floodplains.

In addition to edaphic conditions and plant communities that could affect manioc-AM

fungal associations, the interaction between manioc and AMF could depend on the level of

the root toxicity of the manioc. In the Amazon region, two different manioc types with 

different levels of root toxicity are cultivated (Wilson and Dufour, 2002; Aristizábal et al.,

2007; Chapter 4): sweet maniocs (landraces with less than 100 mg/kg of cyanogenic 

compounds in their roots) and bitter maniocs (landraces with more than100 mg/kg of 

cyanogenic compounds in their roots). Cyanogenic compounds are very toxic to living 

organisms inactivating respiration when they are tightly bound to cytochrome-c oxidase and 

other metalloproteins (Raybuck, 1992). Because AMF do not have a cyanide-resistant 

respiration (Lambers, 1982), an inhibitory effect on the AM colonization of manioc roots with 

high cyanogenic contents is expected, consistent with observations that mycorrhizal 

colonization was lower in sorghum landraces with high levels of cyanogenic compounds in 

roots (Miller et al., 2014).

There are many aspects of manioc arbuscular mycorrhization that have not been 

addressed and that are relevant to identify the best conditions in which manioc arbuscular 

mycorrhization occurs in the Amazon region. Research was conducted to assess how much 

AM fungal communities and manioc arbuscular mycorrhization differ among contrasting soils 

and contrasting manioc landraces of the Amazon region. We hypothesized that different 

Amazonian soils have different AMF communities which would be reflected in the 

composition of AM fungal communities in manioc roots grown in those environments.

Arbuscular mycorrhization of sweet and bitter maniocs might also be different due to 
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differences in the root toxicity of manioc types. Co-adaptation between native AMF and 

manioc might occur more readily in manioc landraces grown on low floodplains than in other 

environments.

5.2. Material and methods

5.2.1. Study area

This study was conducted at two locations in the Colombian Amazon. One was the Middle 

Caquetá River region in the southern part of the Caquetá state of Colombia. There, swiddens 

on three soil types were studied: (i) non-ADE uplands with superficial soils from sedimentary 

origin, originated by the erosion of Paleozoic parental materials (IGAC, 1979). These upland 

fields were from the indigenous communities of Guacamayo (00º31´25” South;72º22´38” 

West), Villazul (00º 40´00” South; 72º16´32” West), and Peña Roja (00º 44´29” South; 72º 

05´09” West); (ii) ADE from Araracuara and La Sardina described by Eden (1984) and ADE 

with fields from the indigenous community of Aduche (00º39´21” South; 72º17´32” West) 

described by Peña-Venegas et al. (2015a, Chapter 3 of this thesis); and (iii) high floodplain 

soils flooded each 5 to 10 years from the Caquetá riverside with fields from the communities 

of Peña Roja and Villazul, and high floodplains from the Mariñame Island owned by 

indigenous farmers from the Peña Roja community (00°01´57.8” South; 72°06´35.1” West).

The other location was in the municipality of Leticia in the southern part of the 

Amazonas state of Colombia. There, swiddens on the same three soil types were studied: (i) 

non-ADE uplands from denudation origin, formed over old floodplains of the Amazonas 

River, but not affected by actual river floods (IGAC, 1979). Upland field here were from a 

local farm in the locality of Puerto Triunfo (4°05´29.5” South; 69°29´55.6” West); (ii) a patch 

of ADE located near the Tacana River (04⁰05´29,5"South; 69⁰29´55,6" West) and described 

by Morcote-Ríos and León-Sicard (2011) with fields from the Perez family, a Uitoto family 

part of the indigenous community Kilómetro 11; and (iii) a low floodplain soil from Fantasy 

Island located in the Amazonas River (4°10´09” South; 69°57´25” West) which is flooded 

every year with fields from Tikuna families who live in Leticia and neighboring communities.

Soil types in uplands were identified in the field as ADE when the A horizon was 

deeper than 25 cm, had a dark color (Munsell soil color charts codes corresponding to black to 

very dark brown colors) and ceramics were present and as non-ADE when the A horizon was 
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lighter, more shallow and without ceramics. Floodplains were identified by their position 

relative to the river level. Indigenous farmers indicated which floodplains were high and 

which were low.

5.2.2. Agricultural fields sampled

Swiddens on uplands were established after logging and burning areas of mature forests or

secondary forests of more than 40 years old (Appendix Table A5.1). There, manioc was

planted with other crops but manioc was the dominant crop species, covering more than 70% 

of the swidden area. In each swidden, more than 12 different manioc landraces, including 

sweet and bitter types, were cultivated. Manioc harvesting started 10 months after planting 

and continued for just over two years. During the prolonged harvesting period farmers 

selectively harvest daily the few manioc plants they need. For our sampling we depended on 

farmers choices. Swiddens in high floodplains were established on plots with secondary forest

of 5 to 10 years old (Appendix Table A5.1) also these were logged and burned prior to 

planting. Manioc was the dominant species. Manioc harvesting started after five months and 

continued for two months. Samples of manioc roots were collected in fields between 5 and 6 

months old. In low floodplains manioc is cultivated annually in a production system 

denominated “flood-recession agriculture” (Shorr, 2000) where the fallow period corresponds 

to the time the floodplain is flooded. Fields on low floodplains are not burned before planting. 

In this agriculture system, manioc was cultivated exclusively. All manioc was harvested 5 

months after planting prior to the flooding and samples of manioc roots were collected at that 

time. No fertilizers or other external inputs were used in any of the agriculture systems used to 

crop manioc.

A total of 26 fields were sampled (Appendix Table A5.1): 13 located on non-ADE 

upland soils, 8 on ADE upland soils, and 5 on floodplain soils. 

5.2.3. Root and soil collection

Root and soil samples were taken between September 2011 and September 2012 in the 26 

fields reported in Table A5.1 (Appendix). Manioc roots were collected from plants farmers 

were harvesting. We did not have direct control on the manioc landraces harvested as manioc 

selection for harvesting depended on farmers’ needs. However, in most of the cases at least 
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three plants per manioc landrace per field were collected. Per manioc plant between 5 and 25 

fine roots were collected directly from manioc bulky roots or the stem roots. The local name 

of each manioc landrace and whether it was sweet or bitter according to the farmer was

recorded. Sweet landraces were those indigenous farmers did not consider toxic and that did 

not need a post-harvesting process before consumption. Bitter landraces were those 

indigenous farmers considered toxic and that needed a post-harvesting process to decrease 

their toxicity before consumption. 

Fine-root samples were stored in paper bags within a plastic bag with silica gel as 

dehydrating agent until arrival at the laboratory (after one week). Some of the manioc 

landraces were collected in more than one community. At the end, a total of 174 root samples 

of 47 different manioc landraces including 39 sweet and 135 bitter maniocs were collected 

(Table 5.1). During manioc root collection, simultaneously a sample of the soil adhering to 

roots and from the hole where the cassava was growing was collected. Per field these soil 

samples were mixed to obtain a composite soil sample of about 500 g. At laboratory, soil 

samples were dried at room temperature (25°C and 50% humidity).After soils were dry, they 

were temporarily stored at 4°C for one month. 

After, a subset of the 174 root samples and corresponding soil samples collected was 

selected to determine AM fungal community composition based on spore morphotyping (soil 

samples) and molecular analyses (soil and root samples).

The subset was based on whether a landrace had been sampled in all three soil types 

and consisted of 12 soil samples and 37 root samples organized in a factorial (incomplete) 

design of 3 soil types × 5 manioc landraces (Table 5.2). 

Table 5.1. Manioc root samples evaluated in this study.

Soil Location No. samples No. manioc 
landraces

No. of samples per manioc 
type

Sweet Bitter
Non-ADE Amazonas 8 6 5 3

Caquetá 65 25 4 61
ADE Amazonas 8 6 4 4

Caquetá 53 21 7 46
Floodplain Amazonas 18 4 11 7

Caquetá 22 12 8 14



Arbuscular mycorrhization of manioc in natural and anthropogenic soils

129

Table 5.2. Description of the subset of samples used to assess arbuscular mycorrhizal 
community composition of soils and manioc landraces. Numbers correspond to the number of 
samples analyzed per manioc landrace in each soil.

Soil Sample
Manioc landrace

Sweet Bitter
Cáscara morada Guava Borugo Yucuna Amarilla

Non-ADE 1 1     
2  5  2  
3   2   
4     2

ADE 1 2     
2  3    
3   2   
4   1   
5    5  
6     1

Floodplain 1 2 3  3 1
2 1  1   

From each 500 g soil sample three sub-samples of 50 g were taken and stored at 4°C

to assess AM fungal communities by a spore-based approach; a sub-sample of 100 g was 

taken and stored at -70°C to assess AM fungal communities by molecular analyses. The 

remaining 250 g was conserved at room temperature until processing to assess soil physico-

chemical composition. Each one of the 37 root samples of the subset was divided into two. 

One half was stored at 4°C for later use to assess AM colonization, and the other half was 

stored at -70°C for later use to assess AM fungal communities by molecular analyses.

5.2.4. Laboratory analyses

Laboratory analyses were carried out between January 2013 and October 2014. Manioc root

staining and AM spore isolation and description of morphotypes from the soil samples were 

done at the Laboratory of Microbiology of the Instituto Amazónico de Investigaciones

Científicas Sinchi in Leticia, Colombia. Molecular analyses to estimate AM fungal 

community composition of soil samples and of manioc root samples were done at the Institute 

of Botany and Ecology of the University of Tartu, Estonia. Soil physico-chemical analyses 

were done at the National Soil Laboratory of the Instituto Geográfico Agustín Codazzi-IGAC 

in Bogotá, Colombia.
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5.2.5. Estimating AM root colonization

Root samples were processed by clearing, and thereafter staining roots with trypan blue 

(Phillips and Hayman, 1970). The percentage of AM root colonization was estimated by the 

gridline intersect method (Giovannetti and Mosse, 1980), to obtain the total percentage of AM 

root colonization in 100 root intersections observed. The procedure was repeated thrice per 

sample.

5.2.6. AM fungal communities of different Amazonian soil types

5.2.6.1. Molecular investigations of soil and root samples

The PowerMax® Soil DNA Isolation Kit (MoBio laboratories, Inc.) was used for soil DNA 

isolation, following the instructions of the provider but with a modification in the quantity of 

soil processed. Five grams of each soil sample was processed instead of 10g as suggested in 

the protocol.

For root DNA isolation, 70 mg of fine manioc roots were placed in tubes with 1.1 mm 

and 2.3 mm tungsten carbide beads in a mixer mill run at 30 revolutions per sec to crush the 

roots. The samples were shaken three times for 2 min, moving each time the position of the 

tubes to secure a complete crushing of all roots. The PowerSoil® DNA Isolation kit (MoBio 

laboratories, Inc.) was used for root DNA isolation, following the instructions of the provider 

and with a slight modification during the elution of the samples. During elution, the sample 

was divided into two 50-µl sub-samples. The first 50µl were eluded with the solution for 

elution and centrifuged at room temperature for 30 sec at 10.000 g. The remaining 50 µl were 

added to the same tube with the solution of elution and centrifuged in the same way before 

discarding the spin filter.

After DNA isolation of soil and root samples, the samples were processed together for 

PCR amplification, including a sample of non-mycorrhizal Plantago roots as negative control. 

PCR was done using Qiagen’sHotStarTaq Master Mix and using the SSU rRNA NS31 and 

rRNA AML2 primers for AM detection (Öpik et al., 2009). The final PCR reaction volume 

was 12.5 µl composed of 6.25 µl of HotStarTaq Master Mix (2x); 0.5 µl of the forward SSU 

rRNANS31 primer (5-10 pmol/µl); 0.5 µl of the reverse SSU rRNAAML2 primer (5-10
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pmol/µl); 1.0 µl template DNA; and 4.25 µl of PCR water. The PCR was run under the 

following conditions: 95°C × 15 min followed by 35 cycles of 94°C × 30 sec, 58°C × 30 sec, 

and 72°C × 1 min, and finalizing 72°C × 10 min, 10°C hold and end. PCR products were 

checked by electrophoresis in a 1.5% agarose gel in 1×TBE plus 1 µl of ethylene bromide per 

100ml. Five µl of each PCR product was mixed with 1µl of 6× Loading Dye and placed in the 

electrophoresis wells.

PCR products were purified from the gel using the QiagenQIA quick Gel Extraction kit 

(Quagen GmbH, Germany). A second PCR was done using a 1:10 dilution of the products 

first obtained. In this PCR adaptors were added to the primers used before. The first primer 

was composed off an A adaptor+6bp barcode in addition to NS31 and the second was 

composed off a B adaptor+8bp barcode in addition to AML2. The conditions for the second 

PCR were: 95°C × 15 min, followed by five cycles of 42°C × 30 sec, 72°C × 90 sec, and 

92°C × 45 sec, and 20 cycles of 65°C × 30 sec, 72°C × 90 sec, and 92°C × 45 sec, and 

finalizing with 65°C × 30 sec, 72°C × 10 min hold and end. The PCR products were purified 

as before and quantified using NanDrop 1000 (Thermo Scientific, Wilmington, USA). Three 

µg of the DNA obtained was used for sequencing on a Genome sequencer FLX system.

5.2.6.2. Assessing AM fungal communities by morphotyping of 

spores

The same subset of 12 swidden soil samples was also used to assess AM fungal community 

composition of the different soil types by a spore-based approach, recovering AMF spores 

directly from the swidden soils. Three replicates of 10 g of each soil were wet-sieved and 

centrifuged in a sucrose gradient as explained by Gerdemann and Nicolson (1964). AMF 

spores were quantified per sample and separated in morphotypes. About 10 spores of each 

morphotype were placed on microscope slides with lactoglycerine and on microscope slides 

with lactoglycerine and Melzer’s reagent (1:1) for genus and species identification. Spore 

characteristics of each morphotype were recorded in drawings and pictures for identification. 

AMF determination was done comparing AMF spore morphotypes with vouchers described 

on the INVAM webpage (2012); in the Peña-Venegas et al. (2006) catalogue; and in the 

Schenck and Perez (1988) catalogue. As AMF inventories were done based on field-collected 

spores, not all spores recovered were fresh. Therefore, the information for spore-based 

inventories is provided in presence-absence terms and not as quantitative values.
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5.2.7. Soil physico-chemical analysis

Analyses included soil texture (granulometry), pH (1:1 in water), percentage of organic 

carbon (Walkley – Black), cation exchange capacity expressed in ppm (with normal and 

neutral ammonium acetate), Ca, Mg, K, Na expressed in ppm (by DTPA extraction), 

percentage of total bases (base saturation with normal and neutral ammonium acetate), and 

available phosphorus expressed as mg kg-1 of dry soil (Bray II), executed according to the 

standardized methodologies of the laboratory (IGAC, 2006).

5.2.8. Statistical analysis

The 454 sequences fasta file obtained from root and soil sample sequencing was cleaned in 

Java using bioinformatics pipeline (Öpik et al., 2006). First, primers and Tag of 100% of 

identity was checked. Then, individual sequences (amplicons) of 170 nucleotides in length or 

longer were included in the analysis. When they were longer than 520bp, sequences were cut 

at that base number and the remaining bases were eliminated. The presence of chimeric 

sequences was checked using UCHIME. The percentage of possible chimeras was less than 

1% and these were removed. 

A closed reference OTU (Ordinary Taxonomic Units) picking strategy was used to 

compare the sequences obtained against those in the MaarjAM database to find hits and no-

hits of sequences with virtual taxa (VT; as are called OTU in MaarjAM database). It was 

considered a hit when a sequence matched for 97% or more and the alignment was more than 

95% for the shorter sequences through a BLAST analysis. After comparisons, a pivot table 

was constructed with the obtained hits. For further analyses, virtual taxa that only appeared 

once (singletons) in the complete matrix were considered artefacts and removed. For 

statistical analysis, the information obtained in the thus cleaned pivot table was used.

As two different types of samples (soil and root) and three different types of soils were 

used to assess the AMF community richness, two redundancy analyses (RDA) were done to 

evaluate, on the one hand, the influence of the type of sample used in the observed 

composition of the AMF community, and on the other hand, if there were differences in the 

AM fungal community composition of soil types. For that, the sequence values of each one of 

the virtual taxa were transformed into their log (x+1). RDA was done using the vegan option 

in the R package.
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Kruskal-Wallis one way ANOVA tests were done to evaluate the differences between 

the number of virtual taxa recovered from soil and root samples, the number of virtual taxa in 

each type of soil, the abundance of AMF genera in soil types, and the abundance of AMF 

spores in the different soil types. 

Additional Kruskal-Wallis tests were done to evaluate differences in the root AM fungal 

communities of manioc growing in different soil types, differences in the number of virtual 

taxa colonizing manioc roots, differences in the root AM colonization and the number of 

virtual taxa of the two types of maniocs (sweet and bitter), and among manioc landraces.

Kruskal-Wallis tests were done using the Analytical Software Statistix 9.0 (Statistix, 1998)

with p ≤ 0.05 as criterion to consider differences significant. When significant differences 

were found, a Tukey multiple pair wise comparison test was used to check the source of those 

differences.

5.2.9. Permissions

The research was undertaken in the frame of the Agreement of June 2004, signed by the 

Sinchi Institute and the AZICATCH, CRIMA and ACITAM indigenous organizations to 

work together on swidden agriculture. Soil and manioc root sample collection was done in the 

frame of the legislation for research institutes associated to Colombia’s Ministry of 

Environment in which the Sinchi institute does not need permission for research activities 

(Decreto 302 de 2003, MINAMBIENTE) and could make collections when the material 

collected is for research purposes only, without a commercial interest (Decreto 1376 of 2013). 

Soil and roots used for molecular analysis were transported with the phyto-sanitary certificate 

of the ICA No. 013-07211 and exported from Colombia under the permission No. 00369 of 

the Autoridad Ambiental de Licencias Ambientales - ANLA of Colombia, and allowed into 

Estonia under the Letter of Authority No. 29 of Estonia for the introduction and/or movement 

of organisms, plants or plant products for scientific purposes.
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5.3. Results 

5.3.1. Arbuscular mycorrhizal fungal community composition of 

the study area

The molecular approach recovered 85,530 sequences of Glomeromycota from root samples

and 4,056 sequences from soil samples. From all sequences 67,628 (75.5%) matched with 

sequences previously recognized as virtual taxa in the MaarjAM database. The other 21,958 

sequences (24.5%) corresponded to no-hits. From these sequences, some were grouped in 

sequence types that could belong to 14 new virtual taxa.

A total of 92 known virtual taxa were recovered. RDA analysis showed that the virtual 

taxa richness was significantly affected by the type of sample used to assess it (p< 0.01). 

From the 92 virtual taxa, 49 virtual taxa were recovered from soil samples and 89 were 

recovered from root samples. These virtual taxa belonged to nine AMF genera:  Acaulospora,

Ambispora, Archaeospora, Claroideoglomus, Gigaspora, Glomus (Figure 5.1), Paraglomus,

Rhizophagus and Scutellospora (Tables 5.3 and 5.4). 

RDA analysis showed that the virtual taxa richness was significantly affected by the 

type of sample used to assess it (p< 0.01). From the 92 virtual taxa, 49 virtual taxa were 

Figure 5.1. Spores of an undetermined Glomus which might be represented in some of the 
sequences obtained by molecular approaches.
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recovered from soil samples and 89 were recovered from root samples. These virtual taxa 

belonged to nine AMF genera: Acaulospora, Ambispora, Archaeospora, Claroideoglomus 

Gigaspora, Glomus, Paraglomus, Rhizophagus and Scutellospora (Tables 5.3 and 5.4). 

Although all genera were present in both manioc root samples and soil samples, the frequency 

of appearance was different among samples. For example, Scutellospora was recovered only 

from ADE soil samples but was recovered from root samples of plants obtained in all three 

soil types (Tables 5.3 and 5.4). Additionally, most virtual taxa present in soil samples were 

also present in manioc roots except three that were only recovered from soil samples: 

Ambisporaleptoticha (VTX00103) and two Glomus sp. (VTX 00125 and VTX 00130).

Significant differences were observed in the virtual taxa richness of soils with both soil 

samples (p=0.02) and manioc root samples (p= 0.05). From soil samples, the most abundant 

virtual taxa in non-ADE, ADE and floodplain soils were Glomus VTX00126, Glomus

VTX00082, and Glomus VTX00410 respectively. From roots samples, the most abundant 

virtual taxa in non-ADE, ADE and floodplain soils were Glomus VTX 00280; Glomus

VTX00093, and Rhizophagus manihotis (VTX00090) respectively. Generally, exclusive

virtual taxa were always found in low amplicon number while common virtual taxa shared by 

two or three soils were always frequent (Tables 5.3 and 5.4). For soil samples, non-ADE 

presented more exclusive virtual taxa (13) than the other soils while for root samples 

floodplain soils presented more exclusive virtual taxa (13) than the other soils (Tables 5.3 and 

5.4).

For the spore-based approach, spores collected directly from swidden soils were 

evaluated. The number of AMF spores collected in 10 g of soil sample was between 83 and 

114 spores without significant differences in the number of AMF spores isolated among 

different soil samples (p= 0.62).The spore-based approach yielded seven AMF genera  

(Acaulospora, Ambispora, Funneliformis, Gigaspora, Glomus, Rhizophagus and Sclerocystis)

in 38 AM spore morphotypes, and four unidentified spore taxa (Table 5.5). The AM 

community composition of soils based on spores differed among soil types. Exclusive 

morphotypes in specific soils were more common in non-ADE and ADE than in floodplain 

soils. In floodplain soils only one exclusive morphotype was registered. Only three 

morphotypes were found in all three soil types (Table 5.5).
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Table 5.3. Inventory of virtual taxa (VTX based on MaarjAM database (version March 31st

of 2013)) recovered from swiddens in non-anthropogenic uplands (Non-ADE), Amazonian 
Dark Earths (ADE), and floodplains of the Colombian Amazon. Relative abundance as the 
average number of sequences recovered of each virtual taxon.
Virtual taxa AM species Non-ADE ADE Floodplain
VTX00126 Glomus sp. 240.5 17.7 5.5 
VTX00399 Glomus sp. 236.5 1.8 0.0 
VTX00270 Glomus sp. 26.3 0.0 0.0 
VTX00280 Glomus sp. 23.8 8.7 0.0 
VTX00089 Glomus sp. 34.0 9.0 0.0 
VTX00080 Glomus sp. 23.0 0.2 0.0 
VTX00070 Glomus sp. 20.5 6.7 0.5 
VTX00167 Glomus sp. 12.0 1.7 0.0 
VTX00028 Acaulospora sp. 10.5 0.7 0.0 
VTX00004 Archaeospora sp. 7.3 0.2 0.0 
VTX00312 Glomus sp. 3.3 0.0 0.0 
VTX00108 Glomus sp. 4.8 0.0 0.0 
VTX00253 Glomus sp. 3.3 0.0 0.0 
VTX00398 Glomus sp. 1.0 0.0 0.0 
VTX00242 Ambispora leptoticha 1.0 0.0 0.0 
VTX00092 Glomus sp. 0.8 0.0 0.0 
VTX00248 Glomus sp. 0.5 0.0 0.0
VTX00087 Glomus sp. 0.3 0.0 0.0
VTX00057 Claroideoglomus sp. 0.3 0.0 0.0
VTX00163 Glomus sp. 0.3 0.0 0.0
VTX00360 Glomus sp. 0.3 0.0 0.0
VTX00030 Acaulospora sp. 0.3 0.0 0.0
VTX00082 Glomus sp. 3.3 42.8 0.0
VTX00024 Acaulospora sp. 0.0 17.7 0.0
VTX00368 Glomus sp. 0.0 1.7 0.0
VTX00096 Glomus sp. 0.0 1.5 0.0
VTX00255 Scutellospora heterogama 0.0 0.8 0.0
VTX00222 Glomus sp. 0.0 0.7 0.0
VTX00124 Glomus sp. 0.0 0.5 0.0
VTX00212 Glomus sp. 0.0 0.3 0.0
VTX00166 Glomus sp. 0.0 0.3 0.0
VTX00069 Glomus sp. 0.0 0.2 0.0
VTX00283 Ambispora fennica 0.0 0.2 0.0
VTX00219 Glomus sp. 0.0 0.2 0.0
VTX00410 Glomus sp. 0.0 0.0 8.5
VTX00342 Glomus sp. 0.0 0.0 0.5
VTX00093 Glomus sp. 31.8 24.2 0.5
VTX00026 Glomus sp. 21.8 16.5 0.0
VTX00238 Paraglomus occultum 19.8 18.2 0.0
VTX00090 Rhizophagus manihotis 1.5 1.2 0.0
VTX00039 Gigaspora decipiens 4.0 4.8 0.0
VTX00375 Paraglomus sp. 0.5 0.2 0.0
VTX00403 Glomus sp. 0.5 0.7 0.0
VTX00130 Glomus sp. 0.3 0.3 0.0
VTX00076 Glomus sp. 1.5 0.0 1.0
VTX00113 Glomus sp. 0.3 0.0 0.5
VTX00199 Glomus sp. 0.0 0.2 0.5
VTX00143 Glomus sp. 0.0 0.2 0.5
VTX00125 Glomus sp. 0.0 0.2 0.5
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5.3.2. Arbuscular mycorrhizal fungal communities in different 

soil types

Soils were variable in their physico-chemical composition (Appendix Table A5.2). Contrary 

to what was expected, ADE showed the lowest average values for the pH and the lowest 

content of magnesium and potassium, although ADE had higher organic carbon (between 1.1 

and 2.6%) and available phosphorus (between 16.4 and 720 mg kg-1) than non-ADE or 

floodplain soils.

Although soil types were very variable, and anthropogenic and non-anthropogenic 

uplands were not contrastingly different, RDA analysis showed that there were significant 

differences in the virtual taxa colonizing manioc roots (of the subset, Table 5.2) related with 

the type of soil where maniocs were growing (p= 0.01). An RDA triplot (Figure 5.2) shows 

that there was a large group of virtual taxa common between the three soils such as 

Rhizophagus manihotis which was the most abundant taxon colonizing manioc roots across 

soil types. It was the most abundant in floodplains with 764.5 reads on average, the second 

most abundant in non-ADE with 393.5 reads on average, and the third most abundant in ADE 

with 240.9 reads on average (Table 5.4). But the RDA triplot also shows that there were some 

virtual taxa specific to soil types. Glomus VTX00089 (as X-89 in the graph) was more 

frequent in ADE with an average number of reads of 58.9, than in non-ADE uplands or 

floodplains with 0.8 and 5.6 reads, respectively, (Table 5.4); Glomus VTX00312 (as X-312 in 

the graph) was more frequent in floodplain soils with an average number of reads of 180.6, 

than in non-ADE or ADE uplands with 13.5 and 34.6 reads, respectively (Table 5.4); and  

Acaulospora VTX00024 (as X-24 in the graph) was more frequent in non-ADE with an 

average number of reads of 353.7, than in ADE or floodplain soils with 37.8 and 28.0 reads, 

respectively (Table 5.4).

Differences were not only in the virtual taxa colonizing roots grown in different soils, 

also in the genera colonizing them. Significant differences were obtained for the genus 

Achaeospora (p< 0.01) observed only in roots of plants grown in ADE and Claroideoglomus

(p=0.05) observed more frequently in roots of plants grown in floodplains (Table 5.6).

Although there were differences in the AMF colonizing manioc roots in the different 

soils, the number of virtual taxa colonizing manioc roots in each type of soil was marginally 

different among soil types (p=0.08). Manioc roots cultivated in non-ADE, ADE and 

floodplain soils were colonized by 14±6, 15±5, and 19±5 virtual taxa respectively. 
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Table 5.4. Inventory of virtual taxa recovered from root samples of manioc plants growing in 
swiddens in three soil types of the Colombian Amazon: non-anthropogenic uplands (Non-
ADE), Amazonian Dark Earths (ADE), and floodplains. The relative abundance of each 
virtual taxon (VTX) is estimated according to the average number of sequences recovered for 
each VTX. Taxonomic determinations based on the identification of virtual taxa from the 
MaarjAM database (version March 31st of 2013).

Virtual taxa AM species Non-ADE ADE Floodplain
VTX00024 Acaulospora sp. 353.7 37.8 28.0
VTX00418 Glomus sp. 97.5 0.0 0.5
VTX00028 Acaulospora sp. 65.0 6.4 0.7
VTX00248 Glomus sp. 48.1 0.0 2.5
VTX00178 Glomus sp. 41.8 0.7 0.4
VTX00227 Acaulospora sp. 33.4 10.0 5.5
VTX00115 Glomus sp. 20.0 0.1 1.5
VTX00113 Glomus sp. 19.2 0.2 3.9
VTX00087 Glomus sp. 10.3 0.0 0.0
VTX00359 Glomus sp. 8.9 0.0 0.0
VTX00292 Glomus sp. 8.3 0.6 0.5
VTX00153 Glomus sp. 6.8 0.0 0.0
VTX00039 Gigaspora decipiens 2.6 0.9 0.0
VTX00109 Glomus sp. 2.6 0.0 0.0
VTX00129 Glomus sp. 2.1 0.1 0.0
VTX00084 Glomus sp. 1.5 0.5 0.0
VTX00370 Glomus sp. 0.9 0.0 0.0
VTX00199 Glomus sp. 0.1 0.0 0.0
VTX00030 Acaulospora sp. 0.7 0.0 0.0
VTX00091 Glomus sp. 0.2 0.0 0.0
VTX00093 Glomus sp. 174.3 290.2 74.7
VTX00420 Glomus sp. 0.0 142.8 51.6
VTX00070 Glomus sp. 10.6 68.1 2.5
VTX00089 Glomus sp. 0.8 58.9 5.6
VTX00004 Archaeospora sp. 0.0 32.2 0.0
VTX00080 Glomus sp. 4.8 28.4 1.1
VTX00255 Scutellospora heterogama 1.2 23.7 2.7
VTX00167 Glomus sp. 0.0 11.1 0.7
VTX00051 Archaeospora sp. 0.0 9.4 0.0
VTX00249 Archaeospora sp. 0.0 4.0 0.0
VTX00410 Glomus sp. 0.0 3.3 1.2
VTX00361 Glomus sp. 0.0 0.9 0.0
VTX00247 Glomus sp. 0.0 0.5 0.1
VTX00343 Glomus sp. 0.0 0.4 0.1
VTX00253 Glomus sp. 0.2 0.4 0.2
VTX00222 Glomus sp. 0.0 0.2 0.0
VTX00079 Glomus sp. 0.1 0.2 0.0
VTX00122 Glomus sp. 0.0 0.2 0.0
VTX00342 Glomus sp. 0.0 0.1 0.0
VTX00143 Glomus sp. 0.0 0.1 0.0
VTX00090 Rhizophagus manihotis 393.5 240.9 764.5
VTX00312 Glomus sp. 13.5 34.6 180.6
VTX00108 Glomus sp. 0.3 77.9 116.4
VTX00092 Glomus sp. 0.2 0.4 101.3
VTX00268 Glomus sp. 0.1 78.4 70.3
VTX00264 Rhizophagus clarum 14.8 22.1 69.2
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VTX00269 Glomus sp. 9.2 7.2 54.1
VTX00124 Glomus sp. 0.0 2.9 48.8
VTX00403 Glomus sp. 10.6 1.7 25.5
VTX00076 Glomus sp. 2.3 4.6 16.5
VTX00212 Glomus sp. 0.0 0.0 11.1
VTX00057 Claroideoglomus sp. 0.0 0.0 10.3
VTX00069 Glomus sp. 0.1 0.1 10.0
VTX00383 Glomus sp. 0.0 0.0 8.3
VTX00163 Glomus sp. 2.8 0.1 6.1
VTX00193 Claroideoglomus lamellosum 0.0 0.0 2.1
VTX00295 Glomus sp. 0.0 0.7 1.4
VTX00204 Glomus sp. 0.0 0.0 2.1
VTX00283 Ambispora fennica 0.0 0.0 1.8
VTX00360 Glomus sp. 0.0 0.1 1.4
VTX00112 Glomus sp. 0.2 0.2 0.5
VTX00077 Glomus sp. 0.0 0.0 0.5
VTX00001 Paraglomus sp. 0.0 0.0 0.5
VTX00186 Glomus sp. 0.0 0.0 0.5
VTX00159 Glomus sp. 0.0 0.0 0.4
VTX00215 Glomus sp. 0.0 0.0 0.3
VTX00074 Glomus sp. 0.0 0.0 0.2
VTX00055 Claroideoglomus sp. 0.0 0.0 0.2
VTX00219 Glomus sp. 0.0 0.0 0.1
VTX00082 Glomus sp. 150.3 214.0 7.1
VTX00238 Paraglomus occultum 4.7 3.0 0.6
VTX00368 Glomus sp. 0.6 0.6 0.0
VTX00375 Paraglomus sp. 0.1 0.1 0.0
VTX00166 Glomus sp. 0.1 0.1 0.0
VTX00364 Glomus sp. 0.1 0.2 0.0
VTX00318 Scutellospora sp. 0.1 0.1 0.0
VTX00419 Glomus sp. 0.1 0.1 0.0
VTX00041 Scutellospora castanea 0.1 0.1 0.0
VTX00327 Glomus sp. 0.1 0.1 0.0
VTX00280 Glomus sp. 513.0 1.2 609.1
VTX00126 Glomus sp. 352.1 161.4 226.9
VTX00398 Glomus sp. 0.3 0.0 0.2
VTX00072 Glomus sp. 0.1 0.0 0.1
VTX00399 Glomus sp. 0.3 0.1 0.3
VTX00270 Glomus sp. 20.3 257.6 226.0
VTX00026 Glomus sp. 1.3 9.1 5.6
VTX00096 Glomus sp. 0.1 11.4 12.5
VTX00105 Rhizophagus intraradices 0.3 0.6 0.5
VTX00397 Glomus sp. 0.1 0.1 0.1
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Table 5.5. Presence of AMF spores of identified morphotypes in swidden soils located in 
Amazonian Dark Earths (ADE) and non-ADE uplands, and high floodplains of the 
Colombian Amazon. Numbers indicate the number of swiddens in which the AMF 
morphotype was recovered. 

MORPHOTYPE DESCRIBED BY

Non-
ADE
(n=4)

ADE
(n=6)

High 
floodplains
(n=2)

Acaulospora rehmii Sieverding & Toro 1989 1 0 0
Acaulospora sp2 1 0 0
Gigaspora gigantea Nicolson & Gerdemann 1968 1 0 0
Glomus pansihalos Bech & Koske 1986 1 0 0
Sclerocystis rubiformis Gerdemann & Trappe 1974 1 0 0
Glomus sp2 1 0 0
Glomus sp16 1 0 0
Ambispora leptoticha Schenck et al. 1984 2 1 0
Funneliformis geosporum Walker 1982 2 3 0
Glomus magnicaule Hall 1977 3 1 0
Glomus microaggregatum Koske & Gemma 1986 1 1 0
Glomus sp5 1 1 0
Glomus sp6 1 1 0
Glomus sp8 1 1 0
Glomus sp9 2 1 0
Glomus sp10 1 1 0
Glomus sp11 1 3 0
Glomus sp14 1 1 0
Glomus sp17 1 1 0
Glomus aggregatum Schenck & Smith 1982 2 2 0
ND* sp3 3 1 0
Acaulospora foveata Janos &Trappe 1982 3 3 2
Acaulospora sp 1 2 2 1
Glomus sp1 1 2 1
Glomus sp7 1 0 1
ND* sp4 1 0 1
Gigaspora sp1 0 2 0
Glomus reticulatum Bhattacharjee & Mukerji 1980 0 1 0
Glomus sp3 0 3 0
Glomus sp12 0 1 0
Glomus sp13 0 1 0
Glomus sp15 0 1 0
Rhizophagus manihotis Schenck et al. 1984 0 3 0
Glomus sp4 0 2 1
Acaulospora morrowiae Schenck et al. 1984 0 2 1
Acaulospora tuberculata Janos &Trappe 1982 0 1 1
ND* sp2 0 1 1
ND* sp1 0 0 1

Average number of AMF morphotype per soil type 9 9 6
* ND corresponds to unidentified samples as the morphotypic features of spores were not enough to establish the 
genus.
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Figure 5.2. RDA triplot showing the distribution of virtual taxa (red labels) colonizing 
manioc roots and the sampling sites (black labels). Sequence values of virtual taxa were 
transformed as log (x+1) before analysis. U, A and F as prefix in site labels refer to non-ADE 
upland, ADE and floodplain sites respectively. Virtual taxa are indicated by the letter X 
followed by the number of the virtual taxon, according to the nomenclature used in the 
MaarjAM database (Axis 1 explained 7% of the variation of virtual taxa (p<0.01) and Axis 2 
explained 5.1% of the variation of virtual taxa (p= 0.01)).

Table 5.6. Frequencies (as numbers of reads) of arbuscular mycorrhizal fungal genera in
manioc roots grown in three soil types. Values correspond to means with standard deviations 
between brackets.

Genus Non-ADE
(n = 12)

ADE
(n = 14)

Floodplain
(n = 11)

Acaulospora 452.8 (593.9) 54.2 (55.6) 34.3 (55.3)
Ambispora 0 0 1.8 (6.0)
Archaeospora 0 45.6 (75.4) 0
Clareideoglomus 14.8 (34.2) 22.1 (35.7) 81.7 (89.2)
Gigaspora 2.6 (5.4) 0.9 (1.2) 0
Glomus 1536.6 (1041.2) 1472.6 (973.3) 1891.1 (1508.4)
Paraglomus 4.8 (14.9) 3.1 (10.9) 1.2 (1.9)
Rhizophagus 393.8 (752.3) 241.5 (372.6) 765.0 (897.9)
Scutellospora 1.3 (4.0) 23.9  (74.8) 2.7 (7.5)
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All manioc roots collected in the three type of soils were colonized by AMF. Manioc 

root colonization was dominated by hyphae; vesicles or arbuscules were rarely present. The 

AM colonization of manioc roots was not significantly affected by differences between soils 

(p = 0.82). On average, fractional root AM colonization of maniocs grown on non-ADE, ADE 

and floodplain soils was 52±23, 58±15, and 51±23 % respectively. When the root AM 

colonization of the 174 manioc roots sampled was compared, there were significant 

differences among soils (p=0.01). The average AM colonization of manioc roots was similar 

between non-ADE and ADE (62±21 and 63±21 % respectively), but root AM colonization of 

maniocs grown on floodplain soils was lower (39±32 %). 

AM colonization of manioc roots was significantly different among the different 

floodplains (p<0.01). Root samples collected from low floodplains of Fantasy Island had 

significantly lower percentages of root AM colonization than roots from high floodplains of 

Mariñame Island or the Caquetá riverside (Table 5.7).

Table 5.7. Percentage of arbuscular mycorrhizal colonization of manioc roots in floodplain 
soils. Values correspond to means with standard deviations between brackets Difference were 
significantly different (p<0.05) according to a Kruskal-Wallis ANOVA text. Averages 
followed by the same letter were not significantly different as established with a multiple pair-
wise Tukey test (p=0.05).

Floodplain where the 
swidden was located

Number of samples 
evaluated

Mycorrhizal root 
colonization (%)

Caquetá riverside (Caquetá) 18 64.5 (22.8) a
Mariñame Island (Caquetá) 4 56.5 (11.1) a
Fantasy Island (Amazonas) 18 9.2 (5.8) b

5.3.3. Co-adaptation of arbuscular mycorrhizal communities with 

manioc landraces

The root AM colonization of sweet and bitter maniocs was not significantly different in the 

sub-set of 37 samples (p=0.78). No significant differences occurred (p=0.90) either in the 

number of virtual taxa colonizing sweet manioc roots (15±6) or bitter manioc roots (15±5) or 

in the number of virtual taxa colonizing individual manioc landraces (p=0.60). Cáscara

morada was colonized on average by 15±6 different virtual taxa, Guava by 15±5, Borugo by 

15±7, Yucuna by 13±5, and Amarilla by 19±7. However, the virtual taxa colonizing sweet and 

bitter maniocs most frequently differed in their abundance (as number of reads). Glomus

VTX00280 was the most abundant AM fungus colonizing sweet maniocs, followed by 
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Rhizophagus manihotis and Glomus VTX00092. Rhizophagus manihotis was the most 

abundant AM fungus colonizing bitter maniocs, followed by Glomus VTX00126 and Glomus

VTX00280. 

When all 174 manioc root samples were analyzed, significant differences occurred in 

the AM root colonization of sweet and bitter maniocs (p =0.01) (Table 5.8). However, 

because the AM root colonization of manioc was significantly affected by flooding regime, a 

second test was done excluding root samples collected from all floodplains. In this case, the 

differences in the root AM colonization of manioc types were not significant (p = 0.88).

Table 5.8. Arbuscular mycorrhizal fungi colonization of root length expressed as percentage. 
Values are averages with the standard deviation in parenthesis. The asterisk indicates
significant differences based on a one-way Kruskal-Wallis ANOVA test (p ≤ 0.05).

Manioc type n

% root length 
colonized by AMF 
All samples n

% root length colonized 
by AMF excluding 
floodplain samples

Sweet maniocs 39 43 (29) 20 62 (21)
Bitter maniocs 135 61 (23) 114 63 (21)
Significance * ns

5.4. Discussion

5.4.1. Estimation of AM fungal community composition by 

different approaches

Both methodologies, the spore-based approach and the molecular approach, identified the 

same AMF genera in soils (Glomus sp., Acaulospora sp., and Rhizophagus sp.) as principal,

and many unidentified species (4 spore morphotypes and 21,958 sequences). Results are in 

concordance with previous reports where Glomus sp. (including Rhizophagus as formerly 

included in this genus) and Acaulospora sp. were identified as the main genera present in 

Amazonian soils (Peña-Venegas, 2010; Freitas et al., 2014), and where the number of 

uncultured taxa from Glomerales was high (Ohsowski et al., 2014).

Inventories obtained with the two methodologies showed differences. Differences in 

this study between the genera reported from spore-based approaches and molecular 

approaches may have partly be caused by imprecise classifications of AMF spores of closely 
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related genera (Archaeospora with Ambispora; Claroideoglomus, Funneliformis,

Rhizophagus, and Paraglomus with Glomus in its traditional sense). The identification of 

virtual taxa as AMF species or the correspondence of the described spores with virtual taxa is 

at present difficult, because of the low number of virtual taxa with an AMF species name 

assigned. There are few reports in which AM spores are clearly identified based on genomic 

barcode sequences from these spores (Stockinger et al., 2010). Additionally, for some AMF

genera such as Glomus sp., spores do not provide enough morphological parameters to easily 

distinguish different species, and, therefore, most spore collections are multi-species mixtures 

where DNA sequencing then yields results of poor comparability (Stockinger et al., 2010).

That is why some previous studies suggested a combination of different methodologies to 

provide a more comprehensive picture of AM fungal communities (Gamper et al., 2008). Our 

work provides additional support to this approach.

Additionally, the type of sample used to assess soil AM fungal communities showed to 

have an effect on the inventories reported. On the one hand, a higher number of virtual taxa 

was recovered from roots than from soils as a consequence of a higher concentration of AMF

in roots than in soils (Saks et al., 2013). On the other hand, the virtual taxa recovered in the 

highest frequency (number of reads) from soil samples are likely to be those that also produce

most propagules in the soil (spores). These differed clearly from the most abundant virtual 

taxa colonizing manioc roots. This result supports previous reports that AMF that sporulate 

abundantly in soils are often not those colonizing abundantly plant roots (Sanders, 2004).

Two AMF genera seem to have some soil specificity: Achaeospora and 

Claroideoglomus. Archaeospora is an AM genus with a broad geographic distribution, 

reported in natural and anthropogenic landscapes associated to wild and cultivated plants, but 

commonly reported in low frequencies. Archaeospora seems to occur in relatively high 

frequencies in acid soils (Bhatia et al., 1996) with high percentages of sand (Stutz et al.,

2000; Blaszkowski et al., 2002; Shi et al., 2012), which could explain the presence of 

Archaeospora on some of the sandy ADE (Table 5.4) and non-ADE uplands (Table 5.3) of 

this study. Claroideoglomus is a genus that produces abundant spores in soils. It has been 

suggested that Claroideoglomus tends to dominate crop fields while Rhizophagus tends to 

dominate areas with long fallows (Jemo et al., 2014). In our study Claroideoglomus was more 

abundant in high floodplains with short fallows than in ADE or non-ADE uplands with long 

fallows, or in the continuously cultivated low floodplain.

From the few virtual taxa with correspondence to a specific AMF species, most were 
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AMF species with a worldwide distribution. Ambispora leptoticha, first denominated as 

Acaulospora appendiculata (Schenck et al., 1984) was reported for the first time for 

croplands of Colombia, but it has been reported around the world associated with croplands 

and natural forests (Kojima et al., 2004). Claroideoglomus lamellosum was first reported in 

North America, but also reported in Europe (Walker and Vestberg, 1998; Blaszkowski et al.,

2002). Rhizophagus clarum, currently considered closely related to or a synonym of 

Rhizophagus manihotis (INVAM, 2014) but in this study with a different DNA sequence, is a 

well-known AM symbiont of many different tropical crops around the world. Rhizophagus

manihotis was initially isolated from croplands of Colombia (Schenck et al., 1984), but it has 

been reported in anthropogenic and disturbed tropical soils of Asia and Africa (Higo et al.,

2011; Voko et al., 2013). Gigaspora decipiens has been reported in Australia and India (Hall 

and Abbott, 1984). Paraglomus occultum has been reported in North America and Europe 

(Walker, 1982; Stutz et al., 2000). Rhizophagus intraradices was first reported in the south of 

the United States (Schenck and Smith, 1982) and associated with different crops. 

Scutellospora castanea was first reported in Europe (Walker et al., 1993). Scutellospora

heterogama was first reported in North America but has also been observed in Central and 

South America (Morton and Msiska, 2010). From the above, Ambispora leptoticha (Stürmer 

and Siqueira, 2008), Gigaspora decipiens (Stürmer and Siqueira, 2008), Rhizophagus clarum

(Stürmer and Siqueira, 2008), Paraglomus occultum (Cordoba et al., 2001), Scutellospora 

castanea (Schneider et al., 2013) and Scutellospora heterogama (Novais et al., 2014) have 

been reported in Brazil. In addition, Paraglomus brasilianum was described first in Brazil

(Spain and Miranda, 1996). The only AM species that has not been described before in 

Colombia, the Amazon region or surrounding countries is Ambispora fennica which has been 

reported as a AM native species of Finland (Walker et al., 2007).

5.4.2. Co-adaptation of AMF and manioc landraces in different 

soil types

All soils where manioc roots were collected were acid with pH values below 4.4 and with 

high variability in their percentage of organic carbon and phosphorus availability (Appendix 

Table A5.2). Those are the edaphic conditions where native AMF communities evolved.

It has been suggested that ADE might have more diverse and abundant microbial 

communities than non-ADE in response to the higher amounts of biochar and organic matter 
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in ADE that provide enhanced conditions to microorganisms (Lehmann et al., 2011),

expecting more diverse and abundant AMF in ADE than in non-ADE. In addition, AMF are 

aerobic organisms sensitive to low soil oxygen concentrations (Entry et al., 2002; Freitas et 

al., 2014). AMF spore germination is inhibited at low oxygen concentrations and AM root 

colonization is directly correlated with soil redox potential (Entry et al., 2002). Therefore, 

more diverse and abundant AM fungal communities could be expected in uplands than in 

floodplains. Contrary to what was expected, the AM fungal community composition of soils 

was different but all were equally diverse (based on the number of virtual taxa). Reports on 

the microbial composition of ADE showed that bacterial communities were different when 

compared with adjacent non-ADE, but not more diverse (Grossman et al., 2010). Our results 

are in line with the findings by Grossman et al. in the sense that the anthropogenic changes to 

the soil led to differences in AM fungal communities when compared to background soils, but 

the abundance or diversity was neither increased nor decreased.

Regarding floodplains, periodical floods as occur on high floodplains did not 

considerably affect the AM fungal community composition of soils or root AM colonization. 

AM colonization of manioc roots was around 60% at five months after planting (Table 5.7) 

comparable with values previously reported for manioc in uplands (Ceballos et al., 2013).

This was different for low floodplains in which root AM colonization was around 10%. Low 

floodplains differed from the other soils in that they are annually flooded and are cultivated 

continuously. All manioc is harvested before the water rises, leaving the soil almost clean of 

vegetation and so clean of living roots to “host” AMF. The fallow period corresponds to the 

flooding period. Therefore, after the flood, there is little remaining vegetation that could 

support an AM hyphal network to quickly colonize the manioc that is planted. Colonization 

will have to start most likely from spores and pieces of root coming from other sites. This

could explain the much lower root AM colonization values for maniocs roots grown on low 

floodplains from Fantasy Island (Table 5.7).

The two manioc types and the five manioc landraces tested on all soils were colonized 

by a similar number of virtual taxa and presented similar values of AM colonization of roots, 

independent of the soils in which they were grown or the type of agriculture used. This is in 

concordance with observations made by Burns et al. (2012) who also found that sweet and 

bitter maniocs had similar AM root colonization in poor soils of Mozambique. Two of the 

three most frequent virtual taxa colonizing manioc roots were shared between sweet and bitter 

maniocs. Therefore, evidence of co-adaptation between manioc and AMF was not observed in 
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this study. Signs of co-adaptation between plants and native AMF have been reported for 

grasses in pot experiments (Johnson et al., 2010) and coffee in semi-natural environments 

(Herrera-Peraza et al., 2011). It is possible that due to the nature of manioc as an AM-

dependent and highly responsive plant it is always highly colonized by AMF, irrespective of 

AMF species present in the soil, contrary to grasses and coffee plants that are largely 

mycorrhizal independent species. Additionally, the way manioc is currently planted in the 

Amazon region does not favor a co-adaptation process. Manioc interacts for a short time with 

native AMF in the swidden (usually 1 to 2, but never more than 3 years) in comparison with 

the long time forest species interact with native AMF due to the long fallow periods (between 

15 and more than 100 years) (Chapter 2). Interestingly in our study, a single manioc root was 

associated on average with 16±5 AMF species which is closer to the commonly observed 18.2 

AMF species in forest species than to the 5 AMF species commonly observed in crop species 

(Öpik et al., 2006). In other words swiddens here seem to maintain a biology closer to natural 

systems.

It was not possible to argue that manioc, a crop species, were associated with generalist 

AMF species as suggested by Davison et al. (2011). In this study manioc was associated with 

a high number of AMF (16±5 in average) which included what could be considered as 

generalist AMF species such as Rhizophagus manihotis, but also with unknown Glomus. It 

seems that the relation of crops with generalist AMF species depends on temporal dynamics 

of the vegetation.

Rhizophagus manihotis was frequent and abundant in manioc roots. Disturbing soils 

broke the external mycelia of AMF, but particularly in Rhizophagus manihotis those pieces of 

mycelia may have become effective propagules to infect roots (Boddington and Dodd, 1999). 

Additionally, Rhizophagus manihotis is more abundant in cropland located in sites previously 

covered by forests (Jemoet al. 2014). Swidden agriculture could thus favor the presence of 

Rhizophagus manihotis in swidden soils, favoring manioc root colonization by Rhizophagus

manihotis independently from the edaphic conditions. This AMF species was also mentioned 

in previous reports in soils where manioc grew exceptionally well (Howeler and Sieverding, 

1983; Howeler, 2002) which may suggest some manioc-Rhizophagus manihotis specificity. 

The affinity of manioc-Rhizophagus manihotis has been reported always in acid soils with 

low phosphorus availability. We additionally showed that Rhizophagus manihotis can 

colonize effectively manioc roots in soils with high phosphorus availability. In this study 

Rhizophagus intraradices was also colonizing manioc roots in all three soil types but in very 



Chapter 5

148

low frequencies (number of reads). Although Rhizophagus intraradices seems to be an 

adequate AMF to inoculate manioc (Ceballos et al., 2013), the authors based their selection 

more on the capacity to produce enough propagules to inoculate manioc than on the affinity 

between manioc and this AMF species. Therefore, the observed good effect of Rhizophagus

intraradices on manioc might be also found with other AMF strains. 

Manioc is propagated clonally by stems that are free of AMF. Thus, manioc roots are 

colonized by AMF present in the soil in which the stems are planted. Rhizophagus manihotis

has been commonly reported as an AMF present in agricultural fields colonizing different 

crops (Schenck et al., 1984; Jemo et al., 2014). But swiddens in which manioc is cultivated 

came from secondary forests with long fallows. Therefore it had to be present in roots of 

native trees, shrubs or herbs in the vegetation that was cleared to create the agricultural fields. 

As Rhizophagus manihotis has not been reported from Amazon forest species yet (Stürmer 

and Siqueira, 2008; Leal et al., 2009; Freitas et al., 2014), our circumstantial evidence that it 

must be present on forest species will need further corroboration by direct observations.

5.5. Conclusions 

Our results indicated that AM fungal communities of soils in which manioc is grown, are 

different in the number of taxa and their abundance. We are still far from knowing the AM

fungal community composition of soils, the distribution of AMF species across the globe and 

the environmental conditions that shape AM fungal communities.

This work is the first report of AM fungal communities in Amazonian Dark Earths 

(ADE). However, there is a wider variation in ADE properties (pH, available phosphorus,

calcium, etc.) than covered in this study and therefore more sampling in the Amazon basin is 

necessary with special attention to Central Amazonia, where very rich ADE soils occur (cf.

Fraser and Clement (2008) and Glaser and Birk (2012)).

Through agronomic experiments scientists have tried to find specific AMF for specific 

crops that increase AM root colonization, and especially plant nutrition and biomass yield 

under different soil conditions (Ceballos et al., 2013). It seems that for manioc there is no 

need for that specificity in any environmental condition or for any manioc landrace cultivated.
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Appendices

Table A5.1. Description of indigenous fields (swiddens and flood-recession plots) used to 
collect soil and manioc root samples to study the arbuscular mycorrhizal association. Fields 
are ordered by soil type, swidden age indicates the age of plants when sampled, information 
on fallow refers to the age of the fallow preceding the current cultivation. 

Soil type Location of swidden Swidden 
age since 
planting 
(in months)

Age of the fallow / forest before transformation 
into agricultural field 

Non-ADE
(n=13)

Peña Roja (Caquetá) 13 Secondary forest 25 years old
Peña Roja (Caquetá) 13 Forest older than 100 years old
Peña Roja (Caquetá) 12 Secondary forest (Unknown age)
Guacamayo (Caquetá) 13 Forest older than 100 years old
Guacamayo (Caquetá) 10 Secondary forest (Unknown age)
Guacamayo (Caquetá) 12 Secondary forest (Unknown age)
Guacamayo (Caquetá) 13 Secondary forest (Unknown age)
Guacamayo (Caquetá) 12 Secondary forest (Unknown age)
Guacamayo (Caquetá) 12 Forest older than 100 years old
Guacamayo (Caquetá) 12 Forest older than 100 years old
Villazul (Caquetá) 11 Forest older than 100 years old
Puerto Triunfo (Amazonas) 13 Forest older than 100 years old
San Sebastian (Amazonas) 12 Forest older than 100 years old

ADE
(n= 8)

Aduche (Caquetá) 15 Secondary forest 20 years old
Aduche (Caquetá) 11 Secondary forest 32 years old
Aduche (Caquetá) 9 Secondary forest 15 years old
Aduche (Caquetá) 10 Forest older than 100 years old
Araracuara (Caquetá) 12 Secondary forest 70 years old
La Sardina (Caquetá) 12 Secondary forest 5 years old
Villazul (Caquetá) 11 Secondary forest 10 years old
Tacana (Amazonas) 10 Secondary forest 5 years old

Floodplain
(n=5)

Peña Roja (Caquetá) 5 High floodplain riverside forest 10 years old
Peña Roja (Caquetá) 6 High floodplain riverside forest 5 years old
Villazul (Caquetá) 5 High floodplain riverside vegetation 3 years old
Mariñame Island (Caquetá) 6 High floodplain forest 5 years old
Fantasy Island (Amazonas) 6 Flooding period of  6 months
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This thesis contributes to the debate about the relative importance of humans in the shaping of 

the Amazon’s diversity (which ranges from a limited one to transforming the full natural 

landscape into an anthropogenic environment) in two ways: 

1. By throwing light on the way in which indigenous farmers in Colombia perceive an 

environment with Amazonian Dark Earths (ADE) in the context of wider access to 

other soils, and 

2. By providing information about indigenous knowledge and indigenous land use that 

may help to better understand how indigenous people currently use and create 

diversity in the region.

In the introduction to this thesis an analytical framework (Figure 1.3) was proposed in which 

the interactions between cultural diversity, land diversity and manioc diversity could be 

studied to answer four research questions:

1. How did cultural preferences and conditions of natural and anthropogenic 

environments determine land use among indigenous people of the Colombian 

Amazon?

2. How did cultural and environmental conditions jointly shape manioc diversity in 

indigenous communities of the Colombian Amazon? 

3. How different are arbuscular mycorrhizal communities of natural and anthropogenic 

soils of the Colombian Amazon and how much do these differences affect manioc 

mycorrhization?

4. Does indigenous agriculture in the Colombian Amazon reflect a co-adaptation 

between people and environment that has enhanced Amazonian diversity, supporting 

the scientific hypothesis that humans had an important role in the conservation and 

creation of Amazonian diversity?

In this final chapter, the answers to those questions are elaborated on the basis of the results 

obtained and described in Chapters 2 through 5. We discuss how the findings of this research 

might contribute to support or reject the positions in the debate on the extent to which people 

contributed to shaping diversity in the Amazon region. Finally, some recommendations for 

further research are provided.
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6.1. How do cultural preferences and conditions of natural and 

anthropogenic environments determine land use among 

indigenous people of the Colombian Amazon?

The Amazonian landscape can be divided into two main environments: uplands and 

floodplains. In this particular study floodplains are restricted to várzeas - defined as 

floodplains periodically flooded by white-water rivers coming from the Andes and crossing 

the Amazon region. Within várzeas, two distinct environments were studied: low floodplains 

which are flooded every year, and restingas which are high floodplains flooded once every 5-

10 years when river levels are at their highest. Within uplands, two distinct environments 

were studied: natural uplands and anthropogenic uplands with ADE. Indigenous people also 

recognized these particular environments. Indigenous people distinguish between 

environments suitable and not suitable for agriculture (Table 3.1), with the latter having 

important roles in the maintenance of other environmental services (water, air) and natural 

populations (plants, fish, game) vital for their livelihood (Chapter 3).

Researchers have emphasized the importance of soil composition for land use and made 

predictions on how different environments could provide the food pre-Columbian societies 

needed (Denevan, 1996; German, 2003). In general, it is assumed that ADE provide better 

conditions for agriculture than background soils (German, 2003; Glaser and Birk, 2012).

Indigenous groups also ranked ADE first in suitability for agriculture (Chapter 3); however, a 

larger number of cropping plots were opened in non-anthropogenic uplands. When the soil 

composition of ADE and non-ADE uplands was compared, ADE showed chemical changes in 

their soil composition typical of an anthropogenic soil (Chapter 2) but the only variable that 

differed drastically between these two soils was phosphorus availability, which on average 

was around 60 times higher in ADE (Chapter 2, Table 2.2). Additionally P/K and Ca/Mg 

ratios were higher in ADE (Chapter 2). Soil composition of ADE and non-anthropogenic soils 

was similar, and indigenous people managed fields in ADE and non-ADE in a similar way. 

Both ADE and non-ADE were cultivated under similar swidden agriculture and farmers spent 

a comparable amount of time controlling weeds, leaving sites for a similar period of time 

fallow before using it again. Although higher phosphorus availability in ADE did not 

contribute to cultivating more crops on indigenous swiddens (Table 3.2), ADE were used 

more often for the establishment of agroforestry systems of perennial native and exotic 
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species unable to grow in nutrient-poor soils. More starch-rich manioc landraces highly 

appreciated by Andoke and Muinane people were preferentially grown on ADE. Maintaining 

of grasslands for aesthetic reasons was more common on ADE (Chapter 3).

Our results contrast with reports for downstream areas along the Amazon where larger 

differences were reported between ADE and non-ADE soils, and where this difference affects 

the way in which swiddens are managed. In general, swiddens on ADE are situated in sites 

with shorter fallows, weed control takes more time, and specific manioc landraces with faster 

root bulking are cultivated (Fraser and Clement, 2008; Fraser et al., 2012). However, 

differences between soil composition of ADE from Colombia and ADE from the Central 

Amazon (Brazil) do not fully explain the results obtained: in the Central Amazon ADE 

composition also varies considerably. This suggests that soil composition of ADE should be 

considered as a continuum, independent of the location sampled (Fraser et al., 2011a). Along 

the Madeira River (one of the most studied areas for ADE), for example, between 30 and 60% 

of anthropogenic soils sampled in five locations had high levels of phosphorus availability but 

low amounts of calcium and magnesium (Fraser et al., 2011a). This is comparable with our

studies (Chapter 2, Table 2.2). 

When a general picture of the composition of ADE reported for areas downstream of the 

Colombian Amazon is presented, 40% of ADE had low calcium amounts, 36% of ADE had 

low magnesium amounts, and 25% of ADE had low phosphorus availability (Figure 6.1). 

Although ADE are commonly associated with high fertility (Glaser and Birk, 2012; Costa et 

al., 2013), the reality is that this is not always true. A high variability of ADE could be 

expected as the parental materials from which ADE originated are variable (Quesada et al.,

2010), but also the time when background soils were transformed, the amounts and quality of 

organic matter used, and the cultural practices of people responsible for this soil modification 

(Glaser and Birk, 2012).

Since indigenous communities from the Middle Caquetá region are composed of only a 

few families, there are plenty of areas covered by forests older than 40 years that accumulate 

enough above- and below-ground biomass to provide manioc and other crops cultivated in 

low densities sufficient nutrients to allow adequate growth and production. Therefore ADE 

are not needed for indigenous food security. Indigenous socio-economic conditions contrast 

with those of farmers from the Central Amazon where population densities are higher and 

manioc covers household needs but is also produced to supply local and regional markets 

(Fraser, 2010); this explains the differences in the preference to open 
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Figure 6.1. Comparison of Amazonian Dark Earths from the Upper Amazonia (Colombia) 
reported by Eden and Andrade 1984, Morcote-Ríos and León-Sicard 2011, and original data 
of this thesis; and the Central Amazonia (Brazil) reported by Madari et al. 2003, Falcão et al. 
2009, and Fraser et al. 2011. A. Mean and standard deviation for DTPA-extractable calcium 
(Ca) (n = 13 for Colombia; n = 237 for Brazil); DTPA-extractable magnesium (Mg) (n = 13 
for Colombia; n = 237 for Brazil); available phosphorus (P) by Bray II (Colombia, n = 13) 
and Mehlich I (Brazil, n = 248) assumed here as homologous methodologies; and pH in water 
(n = 13 for Colombia; n = 238 for Brazil). B. Histograms of the distribution of the data of 
each variable for the upper Amazonia (Soil = 2) and the Central Amazonia (Soil = 21).
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swiddens on ADE between our  study and previous reports. 

When the use of várzeas among communities with and without access to ADE was 

compared, important differences were observed. Tikuna farmers from San Martín de 

Amacayacu (where ADE are not present) cultivated low floodplains continuously while 

farmers from the Middle Caquetá region (where ADE are present) cultivated restingas. The 

production systems on the two types of floodplains were also different: Tikuna farmers from 

San Martín de Amacayacu used flood-recession agriculture (Shoor, 2000) while farmers from 

the Middle Caquetá region used swidden agriculture. The flood-recession agriculture 

practiced by Tikuna farmers consisted of the yearly cultivation of floodplains with a brief 

fallow period during flooding. Differences in the use of várzeas among communities could 

not be associated with the presence or absence of ADE uplands. An intensive cultivation of 

várzeas by Tikuna farmers from San Martín de Amacayacu was also not associated with 

market pressure as has been observed in communities where subsistence agriculture is 

transformed to produce more in order to satisfy the local or regional market demand for food 

(Shorr, 2000; Fraser et al., 2012). This study shows that development of a continuous 

agriculture is not always a response to external pressures. In the case of Tikuna farmers it is a 

traditional practice to produce their staple food with traditional technologies to preserve high 

volumes of harvested manioc roots and to process roots to prepare farinha (Acosta and 

Mazorra, 2004) (Chapter 2). Why the Tikuna from San Martín de Amacayacu cultivate 

floodplains permanently is not well understood, but their population growth could be an 

important factor. Certainly, San Martín de Amacayacu is one of the indigenous communities 

that has significantly increased its population over the last 40 years (Chapter 4). As their 

staple food is based on sweet manioc, and some landraces are adapted to bulk quickly (within 

the time during which the low floodplains are not flooded), the production of floodplains can 

provide important amounts of food in a short time - food that is preserved for the whole year 

in the form of farinha.

The cultivation of low floodplains might also be common among other indigenous

groups as restinga cultivation requires more labor input (opening sites, burning and 

controlling weeds) during the growing period than the low floodplains. However, the use of 

low floodplains requires a particular work organization to ensure that labor is available during 

harvesting - which is the most critical activity because the harvest needs to be in before the 

flooding season. In indigenous communities, the minga is an important institution of 

collective work in which members of the community are invited to supply the work needed 
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for activities such as manioc harvesting in low floodplains; in compensation drinks and food 

are provided by the owner of the plot where the work is carried out. Minga is a reciprocal 

support institution: if people do not participate in mingas reciprocity is broken and the 

maintenance of the work structure is lost. In indigenous communities such as those of the 

Middle Caquetá region in which members with the capacity to participate in mingas prefer not 

to participate, indigenous farmers are pushed to cultivate restingas instead of low floodplains 

to allow harvesting with family labor only (Chapter 2). The role of the várzea in food 

production seems to have a particular importance as the várzea continues to be used for food 

production, even if its cultivation there is more difficult than on upland soils (Table 4.2). This 

thesis indicates that várzeas are not only important for the production of manioc roots, but 

also for a better manioc growth - which translates into more vegetative “propagules” when 

compared with other environments (Chapter 2). 

Summarizing, our results indicate that staple food production in the indigenous 

communities we studied is mainly carried out on non-anthropogenic uplands. ADE are

important environments for the cultivation of exotic or nutrient-demanding species which are 

required in low amounts and complement the staple food, manioc. The várzeas offer a fast 

production of manioc roots and an important amount of vegetative “propagules”; this triggers

indigenous people to continue cropping them when the labor required for harvesting is 

available.

6.2. How do cultural and environmental conditions jointly shape 

manioc diversity in indigenous communities of the Colombian 

Amazon?

Agro-biodiversity in Central Amazonia is attributed to ADE; this indicates the importance of 

anthropogenic soils for crop selection and manioc diversification (Fraser et al., 2011a). In all 

the environments indigenous people cultivate, manioc showed a high diversity. However, in 

this research the number of manioc landraces did not differ significantly among communities 

with or without access to ADE (Chapter 4). All studied ethnic groups cultivated sweet 

landraces (with low concentration of cyanogenic compounds in roots) and bitter landraces 

(with high concentration of cyanogenic compounds in roots), but the way they classified 

manioc landraces and the number of landraces of each class they cultivated depended on the 
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cultural traditions of each ethnic group (Chapter 4). From both sweet and bitter manioc types, 

there were those that were ethnic identity symbols and those that were not. This particular 

segregation of maniocs among the different ethnic groups constituted a source of manioc 

diversification in the region. From indigenous narratives it seems that manioc landraces that 

are ethnically specific might come from volunteer seedlings while also genomes showed low 

recombination. Volunteer seedlings continue to be used by indigenous farmers to diversify 

their individual landrace portfolios but recent volunteer seedlings were not recognized as 

symbols of identity. The main source of new manioc landraces in the neighboring 

communities is the exchange of manioc seeds, as indigenous farmers call the stem pieces they 

use as vegetative manioc propagules.

All manioc landraces with or without ethnic specificity were cultivated under swidden 

agriculture and flood-recession agriculture without distinctive patterns of distribution. As 

manioc conserves its sexual reproduction, manioc landrace recombination can occur 

spontaneously in agricultural fields, allowing for the homogenization of manioc landraces’ 

germplasm through time if no control mechanism is applied. However, our results show that 

more than 87% of the landraces identified by indigenous farmers were also genetically 

different (Chapter 4). We found no cultural practices to avoid sexual recombination, but there 

is evidence that cultural strategies to preserve the morphotype of the manioc landrace exist, 

such as for example the ‘teaching’ of more experienced women to help younger women 

clearly recognize manioc landraces, or the passing on of culinary traditions derived from the 

use of those landraces. 

Although in our study region cultural conditions appeared to be more directly related to 

manioc diversity, environmental conditions also played an important role. Indigenous farmers 

did not consider soil-manioc landrace specificity and moved all their manioc stock from one 

environment to another. Independent from the environment selected, manioc roots were 

always well colonized by arbuscular mycorrhizal fungi and specifically by Rhizophagus 

manihotis (Chapter 5), identified as an excellent AM symbiont for manioc (Howeler and 

Sieverding, 1983; Howeler, 2002). This offers all manioc landraces the opportunity to secure 

an arbuscular mycorrhization independent from the environment selected for its cultivation 

and allows these landraces to produce enough roots and provide vegetative manioc 

“propagules” so that their permanency in new swiddens is secured. Additionally swidden 

agriculture on uplands promotes the growth of volunteer seedlings (Pujol et al., 2002) that 

are, after some screening, either included or rejected as new landraces in farmers’ portfolios.  
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Although we observed little interest to procure soil-manioc specificity among 

indigenous farmers, some soil-manioc specificity was mentioned by members of some ethnic 

groups. The Tikuna for example claimed to cultivate sweet manioc landraces whose roots 

bulk in three months - making them especially suitable for cultivation in low floodplains 

(Chapter 4). The Andoke in turn claimed that a specific group of bitter maniocs they call “to 

grate” accumulate more starch when cultivated on ADE. This is important because starch is 

the main ingredient in the Andoke’s traditional cuisine (Chapter 3). Manioc specialization

thus not only responds to external pressures as has been reported before (Fraser et al., 2011a),

but also to cultural preferences. These two examples of manioc-soil specificity did not affect 

manioc diversity among ethnic groups as manioc selection did not aim to reduce the portfolio 

of manioc landraces (as commonly occurs in modern agriculture). One indigenous principle 

linked to the prestige of being called a “good farmer” is to maintain as many manioc 

landraces as possible – which is at the same time an indication of abundance and well-being 

(Chapter 4). 

In summary, the particular relation that indigenous people from the Colombian Amazon 

established with manioc, and the adaptability of this crop to grow and produce well in the 

different Amazonian environments, contributed to manioc diversity in the region (Chapter 4).

6.3. How different are arbuscular mycorrhizal fungal 

communities of natural and anthropogenic soils of the 

Colombian Amazon and how much do those differences affect 

manioc mycorrhization?

We found a number of environmental differences that could affect the arbuscular mycorrhizal 

fungal composition of soils and the arbuscular mycorrhization of manioc. The different soils 

in which manioc was cultivated have significantly different phosphorus availability (Chapter 

2). The arbuscular mycorrhizal fungi are sensitive to soil phosphorus availability and high 

concentrations could inhibit root arbuscular mycorrhization of host plants (Gosling et al.,

2013). In this study two types of floodplains were studied: low floodplains which flood every 

year and high floodplains (known as restingas) which flood once every 5-10 years (Chapter 

2). Differences in the flooding regime of floodplains expose arbuscular mycorrhizal fungal 

communities to more or less prolonged periods of anoxic soils affecting the survival of 
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arbuscular mycorrhizal fungal communities. Additionally, because the production system 

used by indigenous farmers to cultivate the two floodplains is different, the plant composition 

of floodplains in which agricultural fields are placed is different. On the one hand, swiddens 

on high floodplains are covered by a secondary forest of more than 10 year old (Table 2.4) 

previous to its cultivation. On the other hand, flood-recession agriculture on low floodplains 

does not develop a plant cover during the fallow period as this coincides with the flooding 

period (Chapter 2). In this way, the arbuscular mycorrhizal fungal communities colonizing 

manioc in high floodplains would be the same as the one that colonized previous forest 

species. Arbuscular mycorrhizal fungal communities colonizing manioc in low floodplains 

can originate from AMF propagules from other sites and deposited there by the river, and 

from AMF that colonized manioc in a previous production cycle and survived the flood. 

Although we found differences in the arbuscular mycorrhizal fungal composition of soils 

(Chapter 5), those differences did not affect manioc root arbuscular mycorrhizal colonization 

(Chapter 5).

Manioc exhibits a high diversity (El-Sharkawy, 2006). In the study area, manioc 

diversity included 173 different morphotypes distributed across 60 manioc landraces with low 

root toxicity and 113 manioc landraces with high root toxicity (Table 4.1). Studies on the 

effect of root toxicity on the arbuscular mycorrhization of plants are rare. In sorghum 

landraces (Sorghum bicolor) with high root toxicity the arbuscular mycorrhization of roots is 

lower than in landraces with low root toxicity (Miller et al., 2014). But in manioc, it seems 

that the arbuscular mycorrhization of the root is not affected by root toxicity (Burns et al.,

2012). The results of this thesis confirm the observations of Burns and collaborators as the 

number of arbuscular mycorrhizal species (as virtual taxa) colonizing roots and the root 

arbuscular mycorrhizal colonization were similar for the two types of manioc (Chapter 5). 

Since manioc requires arbuscular mycorrhization to improve the foraging of nutrients in the 

soil (Habte and Byappanahalli, 1994), the capacity that manioc exhibits to associate 

effectively with a high number of arbuscular mycorrhizal fungi in different environments 

explains in part why indigenous farmers can rotate their complete manioc stock from one soil 

to another (Chapter 2). It would also explain in some way why indigenous farmers keep the 

different maniocs they have in a single field (Chapter 4). The high affinity of manioc for 

arbuscular mycorrhizal association can be a key factor related to manioc diversification in the 

region as manioc stems that are exchanged are able to adapt to new environments, thus 

increasing the chance that they are kept by farmers.
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6.4. Does indigenous agriculture in the Colombian Amazon reflect 

a co-adaptation between people and environment that has 

enhanced Amazonian diversity, supporting the scientific 

hypothesis that people played an important role in the 

conservation and creation of Amazonian diversity?

Most Amazonian uplands are acid, with toxic levels of aluminum for plants, and limited 

nutrient holding capacity due to the abundant kaolinite of parental materials (Ma and 

Eggleton, 1999) which results in a limited fertility. The organic matter which accumulates in 

the A horizon improves the cation exchange capacity (Glaser and Birk, 2012); it is the main 

source of nutrients for plants through its mineralization (Serna-Chavez et al., 2013), and 

therefore the main source of nutrients for crops in agricultural systems. For soil scientists the 

A horizon is also the soil layer susceptible to degradation or improvement by human agency. 

Although indigenous people do not have direct knowledge of microbial and biochemical 

processes in the soil, they interpret the importance of the different soil horizons for agriculture 

in a way comparable to that of scientists (Chapter 3). They denominate the A horizon as the 

workable soil which implies this horizon is the one managed or modified by farmers, the one 

that is worked in to produce food. Indigenous people call the deeper soil the dead soil which 

indicates the limited importance it has for plant nutrition. 

Both várzeas and ADE have modified A horizons. The várzeas are enriched 

periodically in a natural way with sediments deposited by rivers while ADE were transformed 

by activities of pre-Columbian inhabitants of the Amazon region (Glaser and Birk, 2012). For 

indigenous people all soils are formed naturally. They do not consider that people are 

responsible for ADE creation - not even the Andoke who are the traditional inhabitants of the 

Middle Caquetá region and have historically been in direct contact with ADE. Their historical 

memory goes back to a time in which the region was densely inhabited, ADE already existed 

and played a key role in food production. Although the Andoke consider humans are not 

responsible for ADE formation, they associate ADE with densely inhabited communities and 

the use of fire. This picture supports scientific interpretations of the conditions in which ADE 

were formed, yet does not provide hints of how organic matter was accumulated, nor 

information about the burning techniques used (which are considered key steps in ADE 

formation). It has been proposed that ADE are an unintentional by-products of Pre-Columbian 
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settlements (Schmidt et al., 2014). Indigenous people we interviewed indicated that ancient 

groups did not know how to transform natural uplands into ADE and that, therefore, different 

ethnic groups continuously fought over ADE possession and use. This supports the hypothesis 

that ADE formation was not an intentional product of indigenous activities. 

Indigenous people consider manioc a native species given to them in mythical times. 

Presently, there is consensus among scientists that manioc is a native species from the 

Amazon region (Olsen and Schaal, 1999). It is suggested that sweet and bitter maniocs were 

domesticated at different historical moments and therefore distributed unevenly throughout 

the Amazon (Mühlen et al., 2013). Our results show a clear genetic clustering of sweet and 

bitter maniocs (Chapter 4); this suggests that sweet and bitter manioc split into different 

manioc types a long time ago. It has been proposed that ADE played an important role in the 

domestication of sweet manioc (Arroyo-Kalin, 2010; Mühlen et al., 2013) which was 

domesticated first, while bitter manioc was domesticated later on non-ADE. This hypothesis 

was supported by Andoke and Uitoto respondents who attributed an important role to ADE in 

the conservation of the first maniocs by indigenous people (Chapter 3). However, low-toxicity 

Manicuera landraces, which according to People of the Center (as the groups of the Middle 

Caquetá region call themselves, see Introduction) were the first maniocs they cultivated, are 

genetically closer to bitter maniocs than to sweet maniocs (Figure 4.3). Moreover, 

archaeological evidence of first manioc cultivation does not match with ADE creation. 

Archaeological evidence of manioc cultivation outside Amazonia dates back to 8,500 years 

BP (Piperno et al., 2000; Piperno, 2011) and in Amazonia > 4,700 years BP (Mora et al.,

1991). The creation of most ADE dates back to between 2,000 and 500 BP (Neves et al.,

2004) but one of the oldest evidences of ADE in the region (found in Peña Roja in the Middle 

Caquetá) dates back to >4,700 years BP and coincides with the oldest report of manioc in the 

region (Mora et al., 1991). However, the Middle Caquetá region (with the oldest occurrences 

of both manioc and ADE) is far from Rondônia (Brazil) where manioc was presumably first 

domesticated (Olsen and Schaal, 1999). Distribution of sweet and bitter manioc landraces can 

be attributed to crop exchange among ethnic groups connected by a dense river network 

(Mühlen et al., 2013). However, and according to their historical narratives, bitter manioc 

cultivation has predominated since the origin of indigenous people in the Middle Caquetá 

(Chapter 4). There are thus still many unsolved issues around manioc domestication, and 

other possibilities might be considered. Manihot esculenta ssp. flabellifolia, the closest wild 

ancestor of modern manioc (Manihot esculenta Crantz), has a broad distribution within and 
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surrounding the Amazon region (Duputié et al., 2009) and naturally exhibits landraces with 

low and high root toxicity (Akinbo et al., 2012). It is possible that sweet and bitter landraces 

of Manihot esculenta ssp. flabellifolia were selected independently for domestication among 

different ethnic groups - resulting in today’s manioc landrace diversity of both low and high 

root toxicity.

Figure 6.2. Graphic representation of the anthropogenic outputs that contributed to the 
increase in diversity in the Amazon region based on the framework used in this thesis. Fine 
arrows represent the natural baseline with which native people evolved. Thick arrows 
represent the anthropogenic contributions made within this natural setting. The two directions 
of the arrow and the black, white and grey colors of the bar in a mixed pattern indicate the 
observed variable soil fertility of environments.

An overview of the results of this thesis (Figure 6.2) indicates that ADE are not always 

more fertile than uplands or floodplain soils and that, in general, Amazonian soils are highly 

variable in their physicochemical composition (as indicated by the bar that varies in a grey 

color scale). Despite differences in soil composition, indigenous people use most of the 
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environments for food production. In this way forest composition of uplands (with and 

without ADE) and (low and high) floodplains is changed. Anthropogenic interventions in the 

Amazon landscape have resulted in the domestication of species such as manioc (a crop with 

high affinity for arbuscular mycorrhizal association); this has occurred regardless of soil 

conditions. Cultural values associated with manioc enhance manioc diversity – evidenced by 

hundreds of different landraces which have contributed in shaping Amazonian diversity. 

Humans have therefore been an important transformation factor in the region.

It is often stated that diversity is of major importance today as diversity is the genetic 

base for crop improvement and the achievement of better yields, better pest and disease 

control, and better adaptation of crops to climate change (El-Sharkawy, 2006). Due to its high 

diversity and high adaptability to different edapho-climatic conditions, manioc is recognized 

as an important tropical crop to achieve future agricultural goals (Burns et al., 2010). Our 

work demonstrates that manioc is highly diverse among indigenous communities of the 

Colombian Amazon, showing a variety of root pulp colors, root toxicity, time required for its 

harvesting, and culinary properties. Clearly, manioc in the Colombian Amazon is an 

important genetic reserve – a reserve that will continue to be protected as long as indigenous 

communities retain their traditions and cultural traits associated with manioc. 

Efforts regarding the selection of specific crop-arbuscular mycorrhizal fungi 

associations have been made around the world to enhance the benefits that arbuscular 

mycorrhizal association can provide to agriculture (Ceballos et al., 2013). One aim is to 

reduce the use of chemical fertilizers (and associated environmental pollution) due to a more 

effective arbuscular mycorrhizal association between crops and fungus. In the particular case 

of manioc cultivated under traditional, low-input agricultural systems this might not be an 

important issue. Manioc can be colonized effectively by a high number of arbuscular 

mycorrhizal fungi and including Rhizophagus manihotis (a well-recognized manioc 

arbuscular mycorrhizal symbiont) independent of the soil conditions or the manioc landraces 

selected. Modern tropical agriculture has to take advantage of this important issue and 

evaluate the main differences between traditional and modern agriculture that affect 

arbuscular mycorrhizal fungal communities (and specially the presence of Rhizophagus 

manihotis) - and how this could be improved.
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6.5. Future challenges

ADE are archaeological sites and their use is regulated by national governments. Disturbing 

ADE is considered illegal as it compromises the cultural patrimony of the countries. In 

Colombia, there is limited knowledge among Amazonian researchers, soil scientists and 

governmental officials about what an Amazonian Dark Earth is. There is hardly any 

knowledge among local people that those soils are archaeological sites that have to be treated 

in a special way to preserve the information these soils hold. As we argued (Chapter 3) and 

deduced from studies in Brazil (German, 2003; Fraser, 2010; Junqueira et al., 2011), ADE 

have been places for crop production since Pre-Columbian times and therefore disturbed 

many times during history. However, those disturbances are also the main reason to study 

these soils and understand the role they have played in the history of Amazonian societies. A 

discussion among scientists, governments and local communities is required to get a better 

grip on the importance of ADE, and how to use them both as sites for archaeological study 

and fields for agriculture.

Throughout the Chapters of this thesis we have claimed that women play a key role in 

the maintenance and diversification of manioc, and in the management of crop plots. Women 

also play an important role in the maintenance and diversification of other cultivated crops, 

yet some species that are cultivated for ritual purposes are managed by men exclusively. 

Among the ethnic groups of the People of the Center the cultivation, harvesting and 

processing of coca (Erythroxylum coca) are male responsibilities. Due to my gender, this 

research could not address male practices around coca cultivation and the management of 

coca diversity as the knowledge thereof is exclusively shared among men. Despite the limited 

access to men’s practices, I had the opportunity to observe some interesting issues during my 

work in the swiddens. Coca is cultivated from stalks (like manioc) in swiddens on both ADE 

and non-ADE uplands. Men harvest the coca leaves every day (just as women who harvest 

manioc daily) to elaborate the mambe (coca powder) which is used during sessions in which 

local knowledge is orally transmitted in the mambeadero (the center place of the maloka or 

collective dwelling house). Men and especially traditional leaders indicated that, in mythical 

times, coca was given to them as their food. Among these ethnic groups, therefore, swiddens 

are not completely a competence of women. The male practices regarding coca cultivation 

and the management of coca diversity are not well understood and could provide an 

interesting case to study the male management of swidden agriculture and crop diversity –
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something that has not been addressed before in the Amazon region.

There are many examples of how people have been interacting with the environment in 

the Amazon region, changing the landscape (Heckenberger et al., 2003) and enhancing 

diversity (Clement, 1999). In this thesis we only explored the relationships that five 

indigenous groups established with their landscape to cultivate manioc as their staple food. 

But even in manioc production, a well-known Amazonian crop, there are many aspects that 

are not fully understood. One of these (and which has been addressed before) is the origin of 

sweet and bitter maniocs and their distribution throughout the Amazon region. Most studies 

that have explored manioc diversity by molecular approaches have used manioc landraces 

from Brazil (Alves-Pereira et al., 2011; Mühlen et al., 2013), and other studies have been 

based on the diversity of world´s manioc collections (Elias et al., 2004). Yet, and as we have 

demonstrated in this thesis, these collections are not a good representation of manioc diversity 

in the Amazon region (Chapter 4). It will be important to establish cooperation strategies 

among researchers to carry out molecular studies of manioc that include manioc landraces 

from places not researched before, and with an aim to understand the origin of sweet and 

bitter manioc landraces. Farinha for example is a very well-known preparation, commonly 

associated with the detoxification and preparation of bitter maniocs. The origin of farinha 

however is not clear. The Tikuna in this study indicated that they knew the process of farinha 

preparation before they knew bitter maniocs. On the other hand, indigenous people from the 

Middle Caquetá region (who have traditionally managed bitter maniocs), indicated that they 

learned how to prepare farinha while working as slaves during the rubber boom era of barely 

a century ago. The study of the origin farinha might help to understand the use of bitter and 

sweet maniocs in the region. 

One of the topics that require more attention is the arbuscular mycorrhizal fungal 

community composition of Amazonian soils. First of all, studies on arbuscular mycorrhizal 

fungal communities of other ADE are required. This thesis provides the first report of the 

arbuscular mycorrhizal fungal community composition of ADE, but the ADE studied in this 

research are not consistently more fertile than backgrounds soils. Some slight differences 

were found in the arbuscular mycorrhizal fungal community composition between ADE and 

non-ADE, but these differences could not be attributed to differences in their physicochemical 

composition. It is still unknown if the transformation of natural soils into anthropogenic soils 

has some effect on the native arbuscular mycorrhizal fungal composition. Rhizophagus 

manihotis was one of the most frequent arbuscular mycorrhizal species colonizing manioc
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roots. This arbuscular mycorrhizal species has been commonly identified as a frequent 

arbuscular mycorrhizal symbiont of different crops. However, the arbuscular mycorrhizal 

fungi colonizing manioc roots came from swiddens located on plots where very old secondary 

forests or mature forest had grown previously. Rhizophagus manihotis therefore had to be 

colonizing native forest species. There are few reports that use molecular approaches to assess 

which arbuscular mycorrhizal species colonize roots of plant species from Amazonian 

environments (Öpik et al., 2013). More studies in this direction could confirm this hypothesis. 

In addition to this we suggest including the study of arbuscular mycorrhizal fungi associated 

with Manihot esculenta ssp. flabellifolia landraces with different root toxicity in order to 

assess whether or not the high affinity that modern manioc shows for Rhizophagus manihotis

is a characteristic inherited from its wild ancestors. It is also important to do more work on 

swiddens to compare the arbuscular mycorrhization of manioc with that of other crops in the 

swiddens and assess whether these crops are colonized by the same number and the same 

species of arbuscular mycorrhizal fungi that colonize manioc, or if manioc arbuscular 

mycorrhization is a particular case.

This thesis provides evidence that humans have made important contributions to shape 

current Amazonian diversity. This is partially reflected in indigenous agriculture. Despite the 

existence of a good number of publications about the Amazon region on topics such as 

swidden agriculture, manioc and soils, this thesis demonstrates that these topics have not been 

sufficiently studied. For scientists, the Amazon region continues to be a box full of interesting 

surprises.
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Summary
The Amazon forest has been considered a highly diverse, well-preserved forest. However, it 

has been occupied by humans since the late Pleistocene, around 11,000-10,000 BP. Despite 

its long human occupation, human impact on the Amazonian ecosystem was considered 

limited. The discovery of Amazonian Dark Earths (ADE) as one clear anthropogenic 

modification of the Amazonian ecosystem opened the debate about how pristine the Amazon 

forest is and how much humans affected Amazonian diversity in pre-Colombian times. ADE 

not only constitute a new environment not present in the Amazon region before human 

presence but also an environment with enhanced conditions for food production. This thesis 

aims to contribute to the understanding of the role of ADE in indigenous food production, as 

compared with other soils, and to provide information about how indigenous people use and 

create diversity in Amazonia.

Most upland soils of the Amazon region are very acid, highly weathered, and with a 

limited nutrient holding capacity. Therefore, these upland soils are considered unsuitable for 

permanent or intensive agriculture. Soils in floodplains are annually enriched with Andean 

sediments carried and deposited by rivers that cross the Amazon region. These are known as 

várzeas and are better suited for agriculture. Várzeas have less acid pH, better cation 

exchange capacity and more calcium and magnesium than the very acid, highly weathered 

uplands. However, várzeas experience periodical floods which limit the period for cultivation 

and the choice of suitable crop species to those that can produce in a short time. Contrary to 

very acid, highly weathered uplands and várzeas, ADE are usually less acid, with better 

cation exchange capacity, good base saturation, and relatively high quantities of organic 

matter, nitrogen, calcium, and available phosphorus; and most of them no susceptible to 

experiencing floods. Therefore, ADE provide the opportunity for a more intensive agriculture, 

and the possibility to cultivate nutrient-demanding crop species with long production cycles 

unable to thrive in non-ADE upland soils or on the regularly flooded várzeas.

Previous studies certainly indicate that in areas where ADE are present, farmers 

cultivate them frequently through an intensified swidden agriculture in which swidden size is 

smaller and cropping cycles and fallow periods are shorter than in non-ADE uplands. But, due 

to the higher fertility, ADE require more labor and time to control weeds. In areas where ADE 

are not present, várzeas are also frequently and intensively cultivated through a swidden 

agriculture similar to the one practiced on ADE but where the cropping cycle is limited by the 
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flood. The results of this thesis indicate that contrary to what has been reported before, ADE 

from the Middle Caquetá region of Colombia are not contrastingly more fertile than the very 

acid, highly weathered upland soils, except for better phosphorus availability in ADE

(Chapter 2). Although ADE constitute a good environment for agriculture, indigenous farmers 

from the Middle Caquetá region do not use ADE more frequently or more intensively than 

non-ADE uplands. Additionally, the swidden agriculture practiced on ADE and that on non-

ADE are similar and characterized by similar plot size, with production cycles between two

and three years, fallow periods of about 40 years, and with similar amount of time invested in 

controlling weeds.

Várzeas were also cultivated by indigenous farmers, independently whether they have 

access to ADE or not. However, there were differences in the type of floodplains selected and 

the way in which they were cultivated among farmers. In San Martín de Amacayacu, where 

ADE are not present, low floodplains flooded every year and farmers practiced a continuous 

system of production, called flood-recession agriculture. Farmers from the Middle Caquetá 

region, where ADE are present and used, practiced swidden agriculture on high floodplains 

(denominated restingas) flooded once every five to 10 years. Differences in the selection of 

floodplains and the production systems used were not related to differences in soil conditions 

or market pressures to grow certain crops. Differences were associated with cultural traditions 

related to the processing and conservation of high volumes of manioc roots; and the

availability of people to organize collaborative work (locally called mingas) for harvesting 

floodplains. Farmers from the Tikuna community of San Martín de Amacayacu have the 

capacity to organize mingas and harvest manioc roots in a short period of time (1-ha plot in 

two days on average). They also have the knowledge of a technology to bury fresh manioc 

roots to conserve them, and the technique to prepare farinha (a fermented and roasted manioc

granulate) as a way to conserve high volumes of manioc in a preparation ready to eat. Farmers 

from the Middle Caquetá region have limited opportunities to organize mingas as some 

profitable activities in the region compete for available labor. Therefore, all agricultural 

activities are carried out with family work and farmers select high floodplains which provide 

a longer time for harvesting than low floodplains in order to fit the capacity of individual

families to harvest.

Although the use of ADE for swiddens was only important in one of the four 

communities of the Middle Caquetá region studied (Chapter 3), ADE were important sites for 

settling the communities and for the maintenance of agroforestry systems with native and 
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exotic species not able to grow in soils with low phosphorus availability. Additionally, ADE 

were sometimes used to maintain grasslands for aesthetic purposes. Therefore, ADE are not 

an important environment for the production of the staple food of these communities as the 

low number of families living in the communities and the low land pressure in the area secure 

the availability of old forested areas with enough nutrients accumulated above and below 

ground to supply the requirements of swiddens where their staple food is mainly produced.

Manioc (Manihot esculenta Crantz) is the staple crop of the indigenous groups studied 

in this thesis. Manioc is cultivated on all soil types and is always the main crop cultivated in 

indigenous fields, occupying more than 70% of the plot area. The manioc diversity in this 

study was high and 173 different manioc landraces were distinguished based on 

morphological parameters. From them, 87% were also considered genetically different based 

on molecular techniques. The five ethnic groups studied cultivated sweet manioc landraces 

(those with less than 100 mg/kg of cyanogenic compounds in their roots which indigenous 

farmers did not consider toxic and did not need a post-harvesting process before 

consumption) and bitter landraces (those with more than 100 mg/kg of cyanogenic 

compounds in their roots which indigenous farmers considered toxic and needed a post-

harvesting process to decrease their toxicity before consumption). The number of manioc 

landraces in communitarian inventories and the number of sweet and bitter landraces in those 

inventories differed among indigenous groups (Chapter 4). Differences of manioc inventories 

among indigenous groups were not predominantly related with differences among soil types

used to cultivate manioc as the complete stock of manioc used by farmers were cultivated on

all soil types. In fact, complete manioc stocks appeared to be moved back and forth from 

uplands to floodplains (low floodplains and restingas), and from ADE to non-ADE without

specificity among manioc landraces and soils. This management of manioc stocks differed 

from previous reports in which specific manioc landraces were found to be cultivated on

specific soils. 

Why manioc is moved from one soil to another in an unspecific way might be the 

consequence of different factors. One was the similarity in soil composition between ADE 

and non-ADE which offer similar environments for manioc production. Other is the similar 

arbuscular mycorrhizal fungi diversity of soils, independently their physicochemical 

composition, offering manioc with environments rich in arbuscular mycorrhizal symbionts. 

Additionally, the type of indigenous agriculture practiced does not favor manioc-arbuscular 

mycorrhizal fungus co-adaptation as in swidden agriculture fallows are very long compared 
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with the growing time of manioc, and in floodplains, the flood limit the time for manioc 

cultivation (Chapter 5). In summary, variation in soil characteristics does not account to a 

great extent for manioc diversity; cultural values attached to manioc (i.e., manioc landraces as 

symbols of ethnic identity, conservation of highly diverse manioc stocks; culinary traditions) 

are more important to account for the manioc variation observed in the study area.

People have been an important transforming actor in Amazonia. People have been 

cultivating most of the environments of the Amazon region and in this way have affected

forest composition and dynamics. Additionally, pre-Colombian people created Amazonian 

Dark Earths, an environment not naturally present in the Amazon region before human 

occupation. Indigenous people associate ADE with ancient settlements densely inhabited 

where first maniocs were cultivated and where ADE had an important role in food production.

Although today the role of ADE in indigenous food production is not considered relevant, 

indigenous narratives indicated that this new environment was a key factor in ancient times. 

In addition to ADE creation, people also domesticated native species. One of them is manioc, 

considered today the sixth most important crop in tropical and sub-tropical areas of Africa, 

Asia and America, and a potential crop to achieve adaptation of agriculture to climate change 

in tropical areas. As indicated before, manioc diversity is particularly high in the Amazon 

region, and contributes to the region’s plant diversity. Humans have made important 

contributions to shape current Amazonian diversity. We are still trying to understand the 

importance of those contributions. This thesis contributes to exemplify how indigenous 

agriculture reflects those people-environment interactions that resulted in the particular use of 

a diversified landscape and the selection and management of manioc as a staple food.



197

Samenvatting
Het Amazonewoud wordt gezien als een zeer divers, goed geconserveerd oerwoud. Het is 

echter al sinds het Laat-Pleistoceen, 11.000-10.000 jaar geleden, bewoond. Ondanks deze 

langdurige bewoning meende men lange tijd dat de mens het Amazone ecosysteem slechts 

beperkt heeft beïnvloed. De ontdekking van antropogene Amazonian Dark Earths (ADE), als 

bewijs van menselijk ingrijpen in het Amazonegebied, opende de discussie over de mate 

waarin ook het Amazonewoud ongerept is gebleven en in hoeverre de mens de diversiteit in 

de Amazone al voor Columbus beïnvloedde. ADE zijn bodems die niet aanwezig waren 

voordat de mens in het gebied verscheen; ze bieden goede omstandigheden voor 

voedselproductie. Dit proefschrift stelt zich tot doel om a) bij te dragen aan ons begrip van de 

rol die ADE – vergeleken met andere bodems – in de voedselproductie van lokale 

bevolkingsgroepen spelen en b) informatie te vergaren over de wijze waarop lokale 

bevolkingsgroepen diversiteit creëren en gebruiken. 

De meeste hoger gelegen gronden in het Amazonegebied bestaan uit sterk verweerde en 

zure bodems met een beperkt nutriënten-vasthoudend vermogen. Deze bodems worden 

daarom ook als ongeschikt beschouwd voor permanente, intensieve teelt. Bodems in de lager 

gelegen vloedvlaktes worden jaarlijks verrijkt met sedimenten die de rivier aanvoert uit de 

Andes. Deze vloedvlakten staan lokaal bekend als várzeas en zijn beter geschikt voor 

landbouw. Várzeas hebben een minder lage pH, een groter kationen-uitwisselend vermogen 

en meer calcium en magnesium dan de zuurdere, sterk verweerde hoger gelegen gronden. 

Daarentegen staan de várzeas periodiek onder water, waardoor het groeiseizoen bekort wordt. 

Daarmee is de gewassenkeuze beperkt tot soorten met een korte groeicyclus. In tegenstelling 

tot zeer zure, sterk verweerde hoger gelegen gronden en várzeas zijn de ADE meestal minder 

zuur, hebben ze een beter kationen-uitwisselend vermogen en betere basenverzadiging, 

beschikken ze over relatief grotere hoeveelheden organische stof en hebben ze een hoger

gehalte aan stikstof, calcium en beschikbaar fosfaat; het merendeel van deze gronden is ook 

hoger gelegen en wordt niet overstroomd. Op ADE kan de landbouw daarom intensiever zijn 

en kunnen gewassen worden verbouwd die hogere eisen stellen aan de bodemvruchtbaarheid,

een langere groeicyclus hebben, en slecht floreren op niet-antropogene hoge gronden of op de 

regelmatig overstromende várzeas.

Eerdere studies hebben aangegeven dat wanneer ADE voorkomen de boeren deze vaak 

benutten door een intensievere zwerflandbouw toe te passen, waarbij de omvang van de 
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veldjes kleiner is en ze sneller op dezelfde veldjes terugkeren dan op de niet-antropogene 

hoger gelegen gronden. Door de hogere bodemvruchtbaarheid echter vergen ADE meer 

arbeid en tijd voor onkruidbeheer. In sommige gebieden worden várzeas ook veel en intensief 

benut voor zwerflandbouw die vergelijkbaar is met die op ADE, al moet dan rekening worden 

gehouden met regelmatige overstroming.

De resultaten in dit proefschrift geven aan dat, in tegenstelling tot eerdere rapportages, 

ADE in de Midden Caquetá regio van Colombia niet beduidend rijker zijn dan de omliggende 

zure, sterk verweerde hoge gronden - behalve dat de fosfaatbeschikbaarheid in de ADE wat 

beter is (Hoofdstuk 2). Hoewel ADE goede mogelijkheden bieden voor landbouw gebruiken 

lokale boeren uit de Midden Caquetá regio deze ADE niet vaker of op intensievere wijze dan 

omliggende niet-antropogene hoge gronden. De zwerflandbouw die wordt toegepast op ADE 

en niet-antropogene bodems is dezelfde en wordt gekenmerkt door veldjes van gelijke 

grootte, een teeltperiode van tussen de twee en drie jaar, ongeveer 40 jaar braak en een 

vergelijkbare tijdsinvestering in onkruidbeheer.

De lokale boeren bebouwden ook várzeas - of ze nu wel of geen toegang hadden tot 

ADE. Er waren echter wel verschillen tussen boeren in het type vloedvlakte dat werd 

verkozen voor bebouwing en de wijze van verbouw. In San Martín de Amacayacu, waar geen 

ADE voorkomen, bewerkten boeren jaarlijks dezelfde veldjes in laag gelegen vloedvlaktes die 

jaarlijks onderlopen in een systeem dat ‘teelt na terugtrekkend water’ wordt genoemd. Boeren 

uit de Midden Caquetá regio, die toegang hebben tot ADE, bebouwden hogere delen van de

vloedvlaktes (lokaal restingas genoemd) die eens in de 5-10 jaar overstromen volgens hun 

zwerflandbouwsysteem. Deze verschillen in de keuze van het type vloedvlakte en daarbij 

passend teeltsysteem hingen niet samen met de bodemomstandigheden of vraag naar

specifieke gewassen of producten vanuit de markt. Deze verschillen hingen samen met 

culturele tradities betreffende de opslag en verwerking van grote hoeveelheden cassave 

wortels en de beschikbaarheid van mensen om collectief werk (lokaal bekend als mingas) te 

organiseren voor de oogst van velden in de vloedvlakte. Boeren in de Tikuna gemeenschap 

van San Martín de Amacayacu zijn in staat om zulke mingas te organiseren en daarmee in 

korte tijd (gemiddeld 2 dagen voor een veld van 1 ha) de cassave wortels te bergen. Zij 

beschikken ook over de kennis en techniek om grote hoeveelheden verse cassave wortels 

goed te houden tijdens hun tijdelijke opslag en tot fariña (een korrelig product van 

gefermenteerde en geroosterde cassave zetmeel) te verwerken, een vorm waarin grote 

hoeveelheden cassave opgeslagen kan worden voor latere consumptie. Boeren uit de Midden 
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Caquetá regio zijn beperkt in hun mogelijkheden tot het organiseren van mingas doordat er in 

die regio competitie is om arbeid met betaalde activiteiten in de illegale mijnbouw. Alle 

landbouwactiviteiten worden daarom slechts met arbeid uit de eigen familie uitgevoerd en 

boeren verkiezen daarom teelt op de hoger gelegen gedeeltes van de vloedvlakte waar de 

oogst over langere tijd kan worden gespreid boven teelt in de lagere delen die meer arbeid 

vraagt per dag dan binnen het huishouden beschikbaar is.

Hoewel het gebruik van ADE voor landbouw slechts in één van de vier bestudeerde 

gemeenschappen in de Midden Caquetá regio van belang was (Hoofdstuk 3), waren ADE van 

belang als vestigingsplek van gemeenschappen en voor bos-landbouw systemen met zowel 

lokale soorten als exoten die het slecht doen op bodems die arm zijn aan beschikbaar fosfaat. 

Voorts werden ADE soms gebruikt om grasvelden voor esthetische doelen aan te leggen. 

Kortom, ADE waren niet direct van belang voor de productie van het basisvoedsel van de 

gemeenschappen aangezien de beperkte aantallen mensen en de lage bevolkingsdruk in het 

gebied leidden tot ruime beschikbaarheid van oudere bosvegetaties waarin zowel boven- als 

ondergronds voldoende voedingstoffen waren opgehoopt om de benodigde nutriënten te 

leveren voor de zwerflandbouwveldjes waarin het basisvoedsel wordt verbouwd.

Cassave (Manihot esculenta Crantz) is het basis voedselgewas voor de in dit 

proefschrift bestudeerde lokale gemeenschappen. Cassave wordt op alle bodemtypes 

verbouwd en is met meer dan 70% van de plantplaatsen hoofdgewas in alle velden. De 

diversiteit aan cassave was groot met op basis van morfologische kenmerken 173 

onderscheiden landrassen. Van deze rassen werd 87% ook op basis van moleculaire 

technieken als genetisch uniek aangemerkt. De bestudeerde vijf etnische groepen verbouwden 

zowel zoete cassave (met minder dan 100 mg/kg cyanide in de wortels en waarvoor geen 

specifieke bewerking nodig is voor consumptie) als bittere cassave (met meer dan 100 mg/kg 

cyanide in de wortels die de lokale bevolking als toxisch beschouwt en die een toxiciteit-

beperkende verwerkingsstap nodig hebben voor consumptie). Er was een verschil tussen 

etnische groepen in het aantal cassave landrassen waarover men beschikte; ook was er een 

verschil in de verhouding tussen zoete en bittere rassen (Hoofdstuk 4). Deze verschillen in 

rassenassortiment tussen etnische groepen hingen niet zozeer samen met bodemtypes die 

bebouwd werden aangezien boeren alle rassen op alle bodemtypes verbouwden. Gehele 

assortimenten bleken heen en weer te gaan tussen hoger gelegen gronden en vloedvlaktes 

(zowel de lager gelegen vloedvlaktes als de restingas), en tussen antropogene en niet-

antropogene gronden; er werden geen specifieke combinaties van gronden en rassen
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waargenomen. Dit laatste in tegenstelling tot eerder onderzoek waarin specifieke combinaties 

gevonden werden van cassavelandrassen en bodems.

Verschillende factoren kunnen deze ongerichte verplaatsing van cassaverassen tussen 

bodems veroorzaken. Enerzijds waren er geen grote verschillen in bodemkarakteristieken 

tussen ADE en niet-antropogene bodems: beide leverden vergelijkbare omstandigheden voor 

cassave productie. Anderzijds bleek ook de diversiteit aan arbusculaire mycorrhiza schimmels 

vergelijkbaar tussen bodems en was deze onafhankelijk van de fysische en chemische 

bodemeigenschappen, waardoor bodems vergelijkbare condities leverden met een rijke 

populatie aan arbusculaire mycorrhiza symbionten. Gezien de lange duur van braak 

vergeleken met de tijd dat er cassave ten velde staat, levert de lokale zwerflandbouw verder 

ook geen basis voor co-adaptatie van cassave en arbusculaire mycorrhiza schimmels 

(Hoofdstuk 5). Samenvattend draagt de variatie in bodemeigenschappen niet sterk bij aan 

diversiteit in cassave; de culturele waardes die toegekend worden aan cassave (d.w.z. 

cassavelandrassen als symbolen van etnische identiteit, het in stand houden van een breed 

assortiment aan landrassen, culinaire tradities) zijn veel belangrijkere verklaringen voor de 

waargenomen diversiteit in het studiegebied.

De mens is een belangrijke, scheppende actor in het Amazonegebied. De mens heeft 

landbouw bedreven op de meeste gronden in de regio en heeft daarmee de bosvegetatie en 

bosdynamiek beïnvloed. De mens heeft ruim voor Columbus ADE doen ontstaan - een bodem 

die zonder de mens niet had bestaan in de Amazoneregio. De lokale bevolking associeerde 

ADE met historische en dichte bewoning waar ook de eerste cassave werd verbouwd en waar 

ADE van groot belang waren voor de voedselproductie. Hoewel de rol van ADE in de huidige 

voedselvoorziening beperkt wordt geacht, geven de volksverhalen aan dat deze bodems in 

vroegere tijden een sleutelrol speelden. Niet alleen was de mens de motor achter de vorming 

van ADE: hij domesticeerde ook lokale plantensoorten. Cassave, dat inmiddels het zesde 

gewas is in de tropen en sub-tropen, is daar één van; cassave kan zelfs in belangrijke mate 

bijdragen tot aanpassing van de landbouw bij klimaatveranderingen in de tropen. Zoals 

aangegeven is de cassavediversiteit uitgesproken groot in het Amazonegebied en deze draagt 

sterk bij aan de plantaardige diversiteit daarin. De mens heeft in sterke mate bijgedragen aan 

het creëren van de diversiteit in het Amazonegebied. We zijn bezig ons een beeld te vormen 

van die bijdrage. Dit proefschrift draagt hieraan bij met zijn analyse van de wijze waarop de 

mens-omgeving interacties resulteerden in een specifiek gebruik van een gediversifieerd 

landschap en in keuzes rond het beheer van cassave als basisvoedsel.
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