

HSGR 02: Future flood risk in the Rhine basin

Aline te Linde^{1,2}, Hans de Moel², Philip Bubeck²

- ¹ Deltares, Delft, NL
- ² Institute for Environmental Studies, VU University, Amsterdam, NL

KvK projectendag 7 April 2011, Amersfoort

IVM Institute for Environmental Studies

Problem and research goals

- ~10 Million people live in areas at risk from extreme flooding
- · Increase in flood risk is expected
- Develop a flood risk model for the entire Rhine channel
 - Estimate potential flood damage on the basis of up-to-date information
 - Evaluate current flood risk
 - > Probability x damage
 - Estimate the development of potential damage and flood risk in the future
 - > What is the main driving factor

France

Assess various adaptation strategies

Austria

IVM Institute for Environmental Studies

Conclusions and recommendations

- Highest potential damage NL: 109 BEuro Highest flood risk in Nordrhein Westfalen: 350 MEuro / yr
- 2000 2030: 54 230 % increase in basin-wide flood risk
 - ~ three quarters climate change
 - no projections for increased capital value included
- Probability of extremes is very uncertain, impact of climate change even more
 - → damage reduction seems robust adaptation measure
- Method needs improvement:
 - Inundation simulation
 - Damage estimates
 - Estimates of safety levels

Deltares

