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Abstract

Gruijter, 1.1, de (197‘). Numerical classification of soils and its application in survey. Agric. Res.
Rep. (Versl, landbouwk. Onderz.) 855, ISBN 90 220 0608 5, {(ix) + 117 p., 18 tables, 23 figs, 176 refs,
Eng. and Dutch summaries,

Also: Doctoral thesis. Wageningen; Soil Survey Papers 12,

Numerical classification of soils was studied with emphasis on methodology and feasibility in sur-
vey. A procedure was designed for construction of classes sufficiently homogeneous in terms of rele-
vant properties and handlable by the surveyor. In the procedure *central’ depth-profiles are calculated
separately for each property (e.g. clay content), from a sample of depth-profiles, with a relocation
method minimizing within-class variances. Any soil profile can thus be identified in the field by allo-
cating its constituent depth-profiles to the central depth-profile that is most similar for the respective
properties. Resulting strings of class labels serve for interim data recording. If too many combinations
of central depth-profiles arise to map all individually, they are fused into larger classes and within-class
variances are again minimized. This procedure was applied to survey data from a marine clay area in
the Netherlands: field estimates for 6 properties in 2212 profiles divided into 20 depth intervals.
A new method was used to map classes automatically. Tests showed that: samples of several hundred
profiles were needed; order of profiles and initial solution for relocation had little effect on results;
only extreme weighting significantly affected homogeneity for different variables. Choice of weights
and number of classes should be related and supported by sensitivity analysis.

Kevywords: numerical classification, numerical taxonomy, cluster analysis, depth profile, soil classifi-
cation, soil survey, marine clay, the Netherlands, line-printer map, automated cartography.
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1 Introduction

Right from the early days of scil science in the last century, considerable effort has
been directed towards classification. Two types of activity may be distinguished: arrang-
ing soil individuals {e.g. profiles) in classes (‘classification’), and assigning an individual to
an existing class (‘identification’). Both classification and identification may be per-
formed by numerical methods.

The reason for the present study was classification problems arising from surveys done
by the Netherlands Soil Survey Institute. The classification of Dutch soils, developed at
this institute {de Bakker & Schelling, 1966), has formed a basis for surveys since the early
1960s. The principles underlying this classification are partly similar to the new classifica-
tion used in the United States (Soil Survey Staff, 1975), but adapted to Dutch circum-
stances. It has a pedogenetic background, and the classes are morphometrically defined
where possible. So far, four levels exist in the Dutch system: order, suborder, group and
subgroup. The system has been extensively used in soil surveys since its introduction. (It
is the framework for the legend of the Dutch soil map of scale 1:50 000.) Apart from this
system, some special classifications have been devised 1o cope with particular aspects,
such as the contents of clay and carbonate in relation to depth (see Bodemkaart van
Nederland, 1:50 000, 1964)., However, problems remained and new ones have arisen.
There is a need to discriminate at levels lower than subgroup, and some of the existing
divisions proved to be unsatisfactory for some purposes. Also, a pedogenetic approach to
disturbed soil profiles is not always fruitful.

Numerical methods commonly involve large and time-consuming calculations. When
compuiers became readily accessible, research workers in biology and the social sciences
began in the 1950s to approach their classification problems by numerical methods.
Application of these methods to soil data has been reported in the literature since 1960.

The numerical approach has several attractions. More intensive and consistent use can
be made of the original scil data. Also, when a computer is used to support classification,
alternative solutions can be easily generated and tested. The whole process of classifica-
tion may then require less time and effort.

Published studies on numerical soil classification do not tell us everything about which
data should be used, and which of the numerous methods is likely to be most appropriate
in a given situation. Above all, little allowance is found in the literature that the usual
purpose of a soil ¢lassification is as a basis for soil survey, and that this may create
additional requirements and constraints. Thus the present study concentrates on the
choice of a numerical method, giving special attention to applicability in practical soil
survey.

This study considers firstly the main problems in soil classification from the viewpoint
of a numerical approach. Thus Chapter 2 deals with the purposes of classification, data
collection and preliminary processing, types of classifications, identification, and assess-
ment of classifications.



The problem of choice of a numerical method of classification {rom the vast array of
possibilities is separately treated in Chapter 3. Three basic approaches are distinguished
and discussed: the heuristic approach, the approach by imposing mathematical require-
ments and by objective functions. In Chapter 4 the rationale is given for a numerical
procedure, which can be integrated in the normal survey procedures, and which aims at
homogeneous classes that can be handled in the field. The method is described in detail
and applied to profile descriptions from a routine soil survey in the Netherlands. In
addition, experiments are reported on some particular aspects, including sample size, the
number of classes and weighting of the variables. General canclusions from this study and
suggestions for further investigations are presented in Chapter 5.



2 General problems of soil classification

‘This is the most elementary fact about classifica-
tion — that we classify for a purpose’ (Leeper,
1963)

This chapter deals with general questions related to soil classification. They concern
the purpose of classification, collection and pre-processing of the data, the choice of an
appropriate type of classification, identification, and assessment of classifications. This
applies whether conventional or numerical approaches are used. In the former case, the
decisions are often not explicitly stated, in the latter they must be.

In the following sections, we shall discuss these problems only where they are relevant
to a numerical approach.

2.1 Purposes of soil classification

Hallsworth (1965) saw soil classification as primarily directed towards ‘the mental
satisfaction that follows the logical organisation of knowledge in a coherent and mutually
consistent scheme’. How ever gratifying, in general it is not the reason for classifying.
Reviewing the literature de Bakker (1970) concluded that those who made soil classifica-
tions had little to say about their purposes. However a dichotomy according to ‘theoreti-
cal purposes’ and ‘purposes of practical importance’ seemed obvious. ‘Theoretical’ con-
veys the transmission of comprehension about soils, especially their genesis and mutual
relations. ‘Practical’ here relates to communication about soils, prediction of their behav-
iour or their survey. This distinction may be useful, though mixtures frequently occur.
Soil classifications exist that result from genetic considerations only. There are also
purely pragmatic single-purpose classifications. Then there are intermediate forms. Many
classifications reflect genetic theory but are intended as frameworks for predicting suit-
ability for practical soil uses.

Intended use may vary, but the handling of soil information is a common central
element. An essential function of a classification is that it facilitates the description of the
soil in a given area. This is achieved by substituting a unified description for a class,
covering many slightly different profile descriptions. The simplification reflects technical
and psychological desires. A division into classes is indispensable for the simultaneous
graphic display of the spatial variations of several soil properties on one map. Also soil
information is better memorized and, consequently, its transfer to, for instance, planners
of land-use or to students is easier, if it is restricted to a few classes.

In this study, the construction of a legend for soil survey is considered as the main
purpose of soil classification. The area to be surveyed, the method of soil survey and the
aim of the map are all further specifications of that purpose in a particular case. For
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instance, when some form of ‘free survey’ {sensu Steur, 1961) is to be used, an important
condition will be that the classification can be satisfactorily employed in the field.

The above can be more formally expressed. In a classification, one can store informa-
tion about individual soil profiles by allocating the individuals to their proper classes.
Information will be retrieved in the form of knowledge about the class to which its name
refers. As indicated in Fig. 1, the knowledge of a class in general entails two types of
information. Firstly, the definition of a class represents the differentiating characteristics
(sensi Cline, 1949) of the class members, Hereafter this is called primary information.
Secondly, one usually knows more about a class then its mere definition. This additional
knowledge may be either empirical (¢.g. observed soil properties: accessory characteris-
tics, Cline 1949, reactions to various treatments, geographical distribution) or it may be
theoretical (e.g. about genesis or relations between classes and the environment). This is
called secondary information.
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Fig. 1. Storage and retrieval by a classification.
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Naturally, empirical information about a class will increase by further observation on
already known members or by observation of new members. Advance of pedological
theory may update specific theories related to classes. Neither of these two processes as
such will alter or extend the classification, but both could make this desirable.

For simplicity a non-hierarchical classification is indicated in Fig. 1. In the case of a
hierarchical system, the scheme should be adapted and would have a tree structure, but
the principle would remain the same.

If a classification has been derived from theory, it may conveniently represent the
essentials of that theory. If mainly empirically derived, the classification need not corre-
spond the existing theory, but it may help to generate hypotheses and thus direct the
development of theory. In short: a classification can be seen as a medivm through which
theory may affect collecting and manipulating empirical data, and vice versa. This gives
rise to the question which direction of influence should prevail. Biologists have extensive-
ly discussed the similar question of choosing between the genetic and the phenetic ap-
proach (Johnson, 1970).

Typically, traditional soil classification rests, at least partly, on genetic theory. How-
ever, one does not need to be dogmatic here. Norris (1972) recommended to avoid ‘the
definition of soil types’ being ‘influenced by hypotheses about the causes of soil differ-
ences’, because otherwise they ‘cannot be used subsequently to justify the hypotheses’.
This kind of hypotheses need not be the main concern of applied pedological research,
and the requirement seems excessive. A hypothesis should not be statistically tested on
the basis of data from which it arose, but directing data collection by preconceptions is
an accepted practice. Science often proceeds this way. But there are risks. The view on the
object may gradually become biased. It is therefore said that genetic classification ulti-
mately boils down to a circular argument. We consider these risks not sufficient to
abandon the principle, but rather stress the need for intensive confrontation of data with
theory, i.e. frequent and effective feed-back.

On the other hand, one should admit that a theoretic basis might not be appropriate,
or even available. Firstly, theory may be insufficiently established to generate, reliably, as
detailed a classification as required. Secondly, a considerable body of established theory
may exist, which however cannot be translated into terms relevant to the given purpose
of classification. It is therefore recommended to decide pragmatically on the choice
between theory and empirical information as the basis for classification.

2.2 Data collection

This section deals with the collection of data to be used, possibly after pre-processing,
for the construction of a soil ¢lassification. Emphasis lies on fundamental aspects, rather
than on the practicalities of data collecting. Although other types of pedological data
exist, the discussion here is confined to data contained in profile descriptions.

In the following, any number, code or term used to describe a profile with respect to a
given property is considered as a basic element of the data. In the discussion, this is
referred to as a value.

It is inherent in numerical classification that, at least conceptually, the values are
arranged in an # x m data matrix X, where # and 1 are the numbers of rows and columns
respectively. Each row refers to what is called an entity, individual or object, for instance
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a soil profile. We often will call it an obfect; in applications no distinction will be made
between the object itself and the corresponding row of values. Each column consist of
values regarding the same characteristic or variable. The vatue recorded for the ith object
and the jth variable will thus be denoted by x,;.

When the objects are soil profiles, divided into genetic horizons or fixed intervals,
examples of variables are:
— percentage of clay between 50 and 60 cm depth, estimated by finger test (value, for
instance, 18),
— number of mottles in A2 horizon (valie, for instance, ‘few”),
— colour of Al horizon in Munsell code, when moist (value, for instance, 10YR 4/3),
- kind of structure in B horizon (value, for instance, ‘prismatic’).

2.2.1 Choice of variables

The variables on which a classification is based determine by definition the nature of
the primary information that can be stored and retrieved by the classification. Indirectly
these variables also partly determine the secondary information related to the classes. The
choice of variables is thus of paramount importance; the usefulness of the classification
heavily depends on it.

The number of morphological, physical, chemical and biological variables by which
soil classes can be defined is immense. Application of numerical computer techniques
enables one to include many variables in an analysis. This has revived interest in the
taxonomic principles of Adanson (e.g. Sokal & Sneath, 1963), which were hitherto hardly
practicable. According to these principles, a classification must be based on as many
variables as possible, chosen without preconceived opinions about their significance.
Whatever the merits of these principles may be for biological classification, their initial
identification with the numerical approach of soil classification (e.g. Bidwell & Hole,
1964b) seems a futile effort towards ‘objectivity’. Even if the purpose of the classification
is only vaguely defined, one could still think of variables being irrelevant. If these are still
used in classification, they may detrimentally influence the storage and retrieval of rele-
vant information. Numerical classification with many variables is technically possible. But
if classes are defined on many variables, new profiles may be difficult to identify. Thus
also for practical reasons, a limited number of well-chosen variables is desirable.

This implies that the variables ought to be chosen in relation to the purpose of the
classification. Suppose that the purpose of a soil map of a region is to display suitability
for a given type of agriculture. The way we chose the variables may be described as
follows. Using existing theory as well as experience, one tries to establish a number of
conceptual properties that together determine the suitability of the soil for the type of
agriculture in question. These may be referred to as assessment factors, for instance
‘availability of water’, ‘availability of oxygen’, ‘availability of nutrients’, and “penetrabili-
ty for roots’. Since these factors are not easily measured, we seek others that may be
assumed to be good predictors of the assessment factors, for instance ‘texture of top-soil’,
‘structure of subsoil’, ‘groundwater regime’. The latter often relate to several assessment
factoss, and also to one another. The search for variables that are technically and econom-
ically acceptable results in a restricted set of relevant variables.

Two aspects that are more specific deserve to be mentioned. Laboratory facilities



allow for accurate measurements that are more closely related to at least part of the
relevant conceptual properties than field data. On the other hand, the costs and effort
involved are usvally much higher. But reduction in the number of samples lowers the
reliability of estimates. A rational strategy is possible only in so far as the predictive
power with respect to the conceptual characteristics is known for both laboratory and
field variables. The effect of field and laboratory variables on classification can be conve-
niently studied by numerical classification methods. This was done by Sarkar (1965),
Grigal & Arneman (1969) and Norris (1971).

The second aspect occurs in literature on numerical soil classification as the problem
of vertical anisotropy. It arises when the same property is measured at various depths in
the profile. The recorded values may then concern fixed depth-intervals or varying inter-
vals such as genetic horizons. In both cases, there is the question which interval of the one
profile is to be compared with a given interval of the other. Imagine for instance that clay
contents are estimated at various depths in a number of profiies. Even if these depths are
the same for all profiles, comparing contents at the same depth is not obvious if one
thinks of the possibility that some of the profiles have been buried or eroded.

The problem might be seen as a special case of establishing comparability of data,
rather than specifically one of numerical classification. Another form is encountered
when, for instance, chemical data are to be analysed that arise from slightly different
methods of analysis. A related problem in biology is to establish hornologies.

Just as with the other aspects of defining the variables, the solution of the present
problem depends on the purpose of the classification. When a genetic system is desired,
homologies between soil horizons or layers have to be established. Rayner (1966) at-
tempted to accomplish this by a numerical procedure, later modified by Grigal & Arne-
man (1969). The idea is to consider, order constraints apart, the most similar pairs of
horizons as homologous. If, however, a classification if primarily meant for planning soil
use, the approach of Russel and Moore (1968) might be better. They divided profiles into
fixed depth-intervals, and then compared intervals at the same depth. The same line has
been followed in the experiments of Chapter 4. See also Lamp (1972) for a discussion of
this matter.

2.2.2 Choice of profiles

The choice of variables, discussed in the previous section, embodies the decision on
how to describe the profiles. This section deals with the question of which profiles are to
be described where to allocate the observation points in the area.

This is largely a matter of sampling design.! With respect to sampling in soil survey, it
is useful to distinguish between data collection for the construction of classes, and for the
geographical delineation of existing classes. Although both aims are in practice often
realized more or less simultaneously, they are different and may in principle require
different sampling designs.

1. There is no sampling probiem if soil bodies are previously delineated and each one is to be treated
as an object in subsequent classification. An advantage of this approach is that undue fragmentation of
the map can be avoided from the beginning. On the other hand, control of heterogeniety within the
classes is lost as far as this is due to variation within these delineated soil bodies. Therefore this approach
is not discussed further.



As far as delineation of classes is concerned, whether carried out manually or automat-
ically, strictly random sampling is not usual nor essential. In fact, as in free survey, the
surveyor may sample sequentially, and deliberately site each new observation point there
where he expects most information. It is commonly assumed that such a directed search
may be more efficient in class delineation than a random search. This efficiency depends
of course on the true pattern of the classes, the relations between soil properties and
landscape features, sample density and the experience of the surveyor, A comparative
study of soil survey methods is being conducted by the Oxford School (e.g. Burrough et
al. {1971}, Bie (1972) and Bie & Beckett (1973). The outcome of such studies are unclear
at the moment. So in divising a classification procedure, some form of directed search for
delineation will be assumed in this study and it will be required that surveyors can use the
classification in the field.

As distinct from delineation, sampling for classificatory analysis should produce data
that represent the variations in the area sufficiently well. A random sample sufficient in
size to represent adequately the multivariate distribution would be best. There are three
main categories of random sampling: strictly random, stratified random and systematic.
Each type has its own merits; for sampling theory see, for instance, Raj (1968) and
Yamane (1967). Classification of modal profile descriptions, originally selected to repre-
sent already established classes, and extracted haphazardly from the literature, is a dubi-
ous exercise (but see Hole & Hironaka 1960, and Cipra et al. 1970).

The first numerical soil classifications were with only some tens of objects. This has
gradually grown to some hundreds, which is certainly more realistic in view of the
intricate variations usually involved. Sample size is, like number of variables, of computa-
tional concern. High numbers of objects may rule out certain methods as requiring too
much computer time or storage.

2.3 Data pre-processing

It may be desirable to pre-process the data in some way before they are used for
classification. Apart from choosing the data and the method of classification, pre-proces-
sing constitutes another main category of decisions that have to be taken, and that
generally affect the final classification.

Pre-processing may be undertaken for different reasons. For instance, a data transfor-
mation may be necessary to a form required for classification. Pre-processing could also
be used to obtain a better classification or a more manageable set of data. When its effect
is to reduce the amount of data, it is henceforth called data reduction, Where the data
themselves change but not the number of data, it is referred to as data transformation.

2.3.1 Data transformation

By transformation, the data matrix X will be changed into a matrix Y, according to a
more or less intricate procedure. Columnn-wise defined transformations are, for instance
— all values ‘not’, *half’ and “fully’ in a given column are replaced by 0,5 and 10,
respectively,
— all values in a given column are multiplied by a constant, or replaced by their loga-
rithm,
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— reduction of the columns (subtracting the column mean),

— standardization of the columns: dividing all values in a column by the square root of
the sum of squares.

Examples of row-wise transformation are:

— ali values in a row are replaced by their proportion of the corresponding row total,

— reduction of the rows.

Various other possibilities exist, for example

— all valuesx; in Column 1 and x;, in Column 2 are replaced by their sum and differ-
ence, respectively,

— the matrix X is replaced by a lower rank approximation calculated by principal
components,

— reduction of the columns followed by reduction of the rows (double centring).

Because of the implications for the choice of a classification method and for prelimi-
nary transformations, first some distinct types of variables are discussed.

If the set of possible values of a variable is finite, or at least countable, that variable is
called discrete. An example is type of epipedon as defined in the US soil classification
system (Soil Survey Staff, 1975). In particular, counting gives rise to discrete variables,
like number of worm-holes. In the special case where only two values are possible, one
speaks of binary or dichotomous variables, like presence or absence of hydromorphic
characteristics. Some classification methods can only be used with dichotomous variables.

If the concept of a variable is such that afl possible values within a certain range
constitute an (uncountably) infinite set, that variable is conceptually continuous. Exam-
ples are C/N ratio or clay content. Due to coarseness of measurement and rounding, each
variable is discrete in practice. The concept of continuity, in cases where precision of
measurement may be increased ever further, may facilitate mathematical considerations,
e.g. for application of linear vector spaces or calculus, but in fact is an approximating
model of reatity. Handling strictly discrete variables requires discrete mathematics, which
is much more difficult. Classificatory concepts based on strictly discrete variables have
been developed by van Emden (1971).

Besides the number of possible values, the kind of relations between the values is also
important. In this respect, the following subdivision seems useful (Siegel, 1956).

Nominal variables: the values have no natural order. The only relation between the values
is that of equivalence: they are equal or unequal to each other. An example is type of
epipedon, with values ‘mollic’, ‘anthropic’, ‘umbric’, etc.

Ordinal variables: the values have a natural order, but only equivalence and order rela-
tions between them exist. An example is degree of mottling, with values ‘no’, ‘few’,
‘moderate’, ‘many’ and “abundant’,

Metrical variables:®> assignment of numerical values is at least definite up to a linear
transformation. Examples are mass fraction of clay and Celsius temperature.

2. Includes intetval variables, ratio variables and counts. For counts, the only reasonable choice is the
identity transformation.



2.3.1.1 Transformation of nominal and ordinal variables

The purpose of soil classification normally implies that classes be defined such that
members of the same class in some sense resemble each other more than members of
different classes. This, in turn, implies the concept of difference or distance between two
soils, or between a soil and the typical representative of a class. Whether such differences
are established quantitatively or qualitatively, assumptions must be made about the mag-
nitude or significance of the difference between any pair of values, relative to those of
other pairs. For nominal and ordinal variables this information is by definition absent and
the use of such variables for classification thus seems paradoxical.

Suppose a 3-valued nominal variable with values a, # and ¢ has been recorded for a set of objects which
is required to be partitioned into two classes. Are the 2’s to be lumped with the d’s or the ¢’s? Or
should the 5’s go together with the ¢'s? A rational choice does not seem possible unless we know
something about the differences between the values. The same difficulty exists for an ordinal variable,
where it is known that, for instance, 2 > b > ¢. One of the alternatives (¢ combined with ¢) may then
be discarded as being inferior, but the rating of the other two remains uncertain.

The paradox does not exist in practice. With non-mathematical classification, the values
of a nominal variable are generally not used as meaningless arbitrary labels. Rather,
differences between values are, at least implicitly, weighted against each other according
to what is known about them. The same holds for ordinal variables.

In numerical classification, the values are often handled as if they were equidistant.
Burr (1968) suggested, as an alternative, to decompose an m-valued nominal variable into
m binary variables, each denoting the presence or absence of a particular value,and to
assign numerical values to these variables by ‘reciprocal proportions’. This means that the
non-zero values of the binary variables are made proportional to the square root of the
reciprocals of the corresponding relative frequencies. With classification under the least-
squares criterion (to be discussed in 3.4.1.1), this standardization has the effect that a
variable with many values has greater influence than one with few values. Another ten-
dency, at least if the variables are statistically independent, is that fusions of objects with
rare values receive high priority. It is unlikely that these effects would always lead to a
useful soil classification. More generally, it seems difficult to devise one rigid scheme for
value assignment which is useful for all ends. Therefore, as a more pragmatic strategy, it is
advised that the user deliberately chooses the non-zero values of the binary variables, thus
controlling their influence on the classification according to what he knows about them.
In practice, a nominal variable usually refers to a complex of soil properties and could be
conceived as a previously established classification or typology. If data are available on
the content of the already established classes, these could be used to evaluate the mutual
differences (examples in Ch. 4). If not, the differences have to be estimated subjectively.
Even then, however, the transformation may be in better agreement with the purpose of
the classification than if the values are assumed equidistant.

A similar argument applies to ordinal variables, except that this type need not be
decomposed into binary variables. Suppose, for instance, that the perceived soil reaction
to 10% HCI has been recorded with the values ‘no’, ‘weak’ and ‘strong’. These values
could be replaced by numerical ones, proportional to the estimated contents of carbonate
with which the reactions on average correspond. The resulting variable is then treated as
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being metrical. In addition, statistical and mathematical methods for converting ordinal
into metrical variables exist, called ‘scaling methods’ (Kruskal, 1964a,b).

2.3.1.2 Transformation of metrical variables; weighting

If the original values x are transformed to:

y =a + b.x (g and b constant for a given variable), the transformation is said to be
linear, Under such transformations the ratios of differences between values are preserved.
Any other mode of transformation, like logarithmic, is termed ron-linear.

2.3.1.2.1 Non-linear transformations This type of transformation is sometimes ap-
plied to obtain normal frequency-distributions, the latter being considered indispensable
for a valid application of numerical classification. We see no reason for this requirement.
It is true that some methods presuppose that the sample which is to be partitioned arises
from different, normally distributed populations. However, classification methods based
on the assumption that the union of such populations is also normally distributed have
not been encountered and would also seem unlikely.

On the other hand, just as with nominal and ordinal variables, non-linear transforma-
tions could be desirable for pragmatic reasons, to produce a more useful classification. If,
for instance, a certain difference in clay content is judged to be more important in the
lower end of the scale than in the higher end, that could be accounted for in the
classification process by using, for instance, the square root or the logarithm of the clay
content.

2.3.1.2.2 Linear transformations, weighting of variables  If a set of objects is conceived
of as points in a space of which the co-ordinate axes correspond with the variables, it is
easy to see that multiplying the values by a factor and adding a constant have quile
different effects. Addition of a constant shifts the points relative to the origin, without
affecting the distances between the points. Classification methods, however, are nearly
always insensitive to such translations. If, on the other hand, the values of one variable
are multiplied by a constant, the group of points will stretch or shrink in the correspond-
ing direction, the distances between the points will change and the resulting classification
usually too. The general tendency is that the larger the factor, the more ‘weight’ attached
to the variable, so the more the classification will be determined by that variable.

As Williams (1971) pointed out, the concept of weight is rather vague and ambiguous.
Both the multiplication factor and the influence of a variable on a classification are
sometimes referred to as weight. Hereafter, the multiplication factor will be termed scale
factor. The latter concept has been given a more precise meaning by Burr (1968), who
referred to the average contribution of a variable to all (g) inter-object distances as the
effective weight of that variable. When, for instance, squared Euclidean distances (3.2.1.)
are used, the effective weight of a variable equals 2/{(rn—1) times the overall sum of
squares.

Burr's effective weight seems to be a useful measure. It is defined for the unparti-
tioned set of objects, though, and therefore confined to the situation before classifica-
tion. It is generally related, but not identical with the degree to which a classification is
actually determined by a variable. The latter, however, may be of direct interest for the
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usefulness of a soil classification. For this reason a second concept of weight could be
defined analogously, as the average cantribution of a variable to the distances between
the objects when replaced by the representative {e.g. centroid) of their respective classes.
For squared Euclidean distance, this contribution equals 2/(n—1) times the between-class
sum of squares.

Now the basic question arises whether the initial weights should be accepted as they
are in the raw data and, if not, how they are to be changed. From the beginning, these
questions were among the main issues in numerical classification.

The choice of measurement units is often partly a matter of convenience. Direct
processing of raw data could thus lead to arbitrary weights, to classifications arbitrarily
governed by a minority of variables.

An obvious remedy, often advocated, is standardization. The variables are then trans-
formed to equal range or variance. (Note that transformation to equal overall variance
results in equality of effective weights if squared Euclidean distance is used!). One of the
Adansonian principles (see also 2.2.1) indeed prescribe equal weighting. In my opinion,
this is not acceptable as a general principle for soil classification. Here too, decisions
should rather consider the purpose of the classification, the method by which this wiil be
established, and the raw data. We may not expect that the quality of a classification will
go beyond one’s ability to specify adequately the required accuracies of the different
kinds of information to retrieve. The study of Russell & Moore (1968) on effects of
different depth weightings on numercal soil classification, may be seen in that light. For
a clear expression of the same viewpoint in an econometric context, see Morrison (1967).

If a soil map is intended for predicting the suitability for a particular type of land-use,
the classification on which the survey is to be based must be constructed such that it is
correlated as strongly as possible with suitability. The more the suitability depends on a
given variable, the more important it is that information on this variable is preserved by
the classification: the more homogeneous the classes should be with respect to that
variable. ldeally, if adequate data on suitability were available, optimum scale factors
could be objectively established by multiple regression analysis. If that be impossible, the
scale factors have to be estimated subjectively.

Only a general approach to the problem of weighting is outlined in this section. The
actual procedure depends on the chosen method of classification, and further discussion
is therefore postponed to Section 3.2.1 and 4.2.3.3. Effects of different weightings on
within-class variances were investigated (4.3.4).

Special problems of weighting may arise for ‘hierarchical’ variables. Hierarchical vari-
ables are, for instance, the presence or absence of a certain type of horizon (primary
variable) and the content of clay in this (secondary variable; only applicable if that
horizon is present). Without special provision, the differences in secondary variables couid
preponderate over the differences in primary variables. Kendrick (1965), Williams (1969)
and Gower (1971) examined this problem,

Standardization is sometimes applied row-wise instead of column-wise. The values for
each object are then transformed, for instance, to zero mean and unit variance or total
value 1 for the values or their squares. Row-wise standardization might be appropriate for
special purposes, for instance if the average of the values of an object is immaterial for
comparison with other objects. It is sometimes applied for that reason by biologists and
psychologists.
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Soil data are frequently transformed to percentages of an object total, for instance of
mineral constituents or adsorbed cations. The use of percentages in numerical classifica-
tion is dealt with in 3.2.1.8. Standardization of object values has been discussed by, for
instance, Cronbach & Gleser (1953) and Orloci (1967a, b).

2.3.2 Data reduction
2.3.2.1 Reduction of the number of variables

The simplest reduction is deleting one or more variables of minor importance. The
choice could be made by inspection of the correlation coefficients, as in the procedure of
Sarkar et al. {1966). However, this is still subjective. Principal component analysis, some-
times preceded by factor analysis in order to find a suitable scale transformation, is a
better established technique for selection from covariance or correlation matrices. This
results in a reduced number of new variables, each of which is a linear combination of the
original variables. These methods indeed are frequently applied before classification. They
are treated in textbooks on multivariate analysis. The SELFIC/CLAFIC procedure of
Watanabe (1969a) is designed for classificatory problems. See also Arkiey (1971) and
Lamp (1972) for examples of factor analysis and principal component analysis preceding
numerical soil classification.

In many instances, these methods of reducing the number of variables will not save
computer time. Usually calculation of eigenvectors and eigenvalues from large matrices is
involved, which is apt to outweight the lower number of variables, especially if the time
required for a classification procedure is only linearly dependent on that number. As a
theoretical end, however, factor analysis may provide informaticn alongside that obtained
by classification methods. This is clearly so when only few dimensions are retained, so
that visual inspection of scatter diagrams is feasible. Marked clustering of objects could
already be detected in that stage, if it exists,

Especiaily if only one factor is used for subsequent analysis or description, as in
contour mapping, the loss of information may be serious and caution is needed (e.g.
Lamp, 1972; Norzis, 1972; Webster & Burrough, 1972a).

If new objects are to be identified it is necessary to express the observations in terms
of factors on which the classification is based. This transformation renders manual identi-
fication difficult.

When soil profiles have been described by depth interval, for instance by horizon, an
obvious way to reduce the number of variables is to reduce the number of intervals. The
values of the new variables are averages over two or more previous intervals. If necessary,
differences in bulk density and non-linearity of scales {as with pH) must be taken con-
sidered in calculating an average. The original units of measurement are preserved by this
procedure. One matter to be considered is the extent to which the inter-profile similari-
ties are distorted by this simplification. In tests of my own, a high correlation coefficient
(0.99) was found between Euclidean distances based on 5 layers of 40 cm and those
based on 40 layers of 5 cm.

Another method of reducing the number of variables is to represent the value of a
property {¥) as a polynomial function of depth below surface (x):
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y= Z ::0 ax!

The coefficients a; are calculated by least squares approximation of the values y recorded
at different depths. Each coefficient ; is then taken as a new variable. As » increases, the
approximation improves, but reduction will be less. As # decreases, the danger increases
that the polynominal assumption is untrue.

Approximation by polynormials is treated in textbooks on numerical analysis and
statistics. Applications in numerical soil classification are found in Campbell et al. (1970)
and Moore et al. (1972). Although superficially attractive, the method raises problems.
Firstly, if the degree of the polynomials is chosen too small, a considerable distortion
may result for irregular profiles. Secondly, if the total depth of the profiles varies, the
polynomials are difficult to compare. If, for instance, a shallow profile is similar to the
upper part of a deeper one, the calculated coefficients may differ considerably. Thirdly, it
is difficult to choose appropriate weights for the new variables. How important is cubic
trend of, for instance, phosphate concentration for plant growth, compared with quartic
trend? The unsatisfactory results obtained by Campbell et al. (1970) and Lamp {(1972)
are probably due to these difficulties.

Finally, a strategy frequently followed in conventional soil classification is to replace
the values of a subset of the original variables by a reduced number of classes, which form
a special classification or typology. This classification serves as a new variable for the final
classification. One example is the definition of diagnostic horizons as a preliminary to the
US soil taxonomy. This principle is a main element of the numerical classification proce-
dure, designed and tested in this study (Ch. 4).

2.3.2.2 Reduction of the number of objects

Reduction of the number of objects is of special interest when the classification
method is such that the computational effort increases proportional to the square of the
number of objects, or faster. That is so for agglomerative methods {3.2.2.1.1), for in-
stance.

The simplest and usual method of reduction is to use a random sample from the
original set as classification input. Little attention has yet been given to the question of
the sample size. As described in 4.3.1, T attempted to acquire some evidence on this.

Watanabe (1969a) suggested a procedure (REPREX) for extraction of a subset of
objects representing the whole set as well as possible. This method is theoretically ad-
vanced, but the computational effort required is apt to outweigh the advantage in sub-
sequent classification.

2.4 Major types of classification
This section is concerned with some general problems of choice involved in classifying
itself, i.e. starting from a given purpose and a set of possibly pre-processed data. Five

issues are discussed below. The first two are primarily related to the purpose; the next
three concern the structure of the resulting classification.
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2.4.1 Intrinsic versus extrinsic

These terms are used in the sense of Lance (1973); they are synonymous with ‘descrip-
tive’ and ‘predictive’, respectively, as used by Macnaughton-Smith {1965).

In general, the specification of an object as member of a certain class carries primary
and secondary information (2.1, Fig. I). The primary information tells something about
the object in terms of the same vadables as used for its identification, and the secondary
information may predict other variables. They are further called primery and secondary3
variables respectively. An intrinsic classification is only based on information about pri-
mary variables. If, for a subset of the objects, information exists on the secondary
variables and this has been used for the construction of the classification, the latter is
called extrinsic.

Of course also with intrinsic classification one should aim at high predictive value
through the choice and transformation of data (2.1 and 2.3). The idea of explicit usage of
selected data for this purpose seems of great potential interest. However, on extrinsic
classification only the work of Macnaughton-Smith (1963} is known to me; this is re-
stricted to presence-absence variables and only one secondary variable. In the following
we shall therefore confine the discussion to the intrinsic approach.

2.4.2 Distribution fitting versus homogeneity optimizing

Many arguments among numerical taxonomists about the suitability of their methods
seem to be caused by fundamental disagreement as to whether a classification should
reflect the distribution of objects in multivariate space as well as possible, or should
consist of classes that are as homogeneous as possible. Beside the vagueness of these
concepts, it is confusing that they are not mutuaily exclusive. On the contrary, distribu-
tion fitting seems often to imply optimization of homogeneity to a certain extent, and
vice versa. On the other hand, when the objects form elongated groups of points in
multivariate space, classes that correspond to these groups may be too heterogeneous.

The concept of distribution fitting has always had a strong appeal to taxonomists.
Several classification methods have this explicit aim (see 3.4.1.2). It is related to the idea
of a ‘natural’ classification, of which the classes are different populations. Undoubtedly
there are many situations, for instance in pedogenetic research, in which it is important to
know whether a given set of objects should be regarded as a mixture of samples out of
different populations; and if so, to indicate which objects belong to each population, and
to estimate the population parameters.

If the area to be surveyed is genetically heterogeneous, then it might be worth-while
trying first to separate some broad classes with soils having similar histories, by means of
distribution-fitting classification. If such classes are still too heterogeneous with respect to
the primary variables, they could be further split by homogeneity optimizing classifica-
tion. The classes resulting from such a strategy are perhaps better mappable and more
homogeneous for secondary variables than by homogeneity optimizing alone. As this
study is primarily directed to the mapping of genetically fairly homogeneous areas, the

3. Not to be confused with ‘primary’ and ‘secondary’ in relation to hierarchical variables (2.3.1.2).
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survey of numerical methods (Ch. 3) as well as the experiments (Ch. 4) have however
been concentrated upon optimizing homogeneity.

Other discussions of this topic are by Forgy (1965), Cattell and Coulter (1966),
Wishart (1969c¢) and Spence and Taylor {1970).

2.4.3 Fuzzy, overlapping or disfoint classes

A major choice in classification is whether disjoint or overlapping classes have to be
constructed. If the latter, an object may be a member of more than one class. If a set is
divided into disjoint classes one speaks of a partition. Fuzzy classes (serisu Zadeh, 1965)
are a third alternative. There one can no longer speak of an object being member of a
class, but only of its degree of membership. In practice, fuzzy classes arise when a series
of central concepts is defined and no unambiguous rules for identification are given.

The information that an object is near the boundary between two classes is lost if one
is working with disjoint classes. Through overlapping or fuzzy classes, it can be preserved,
by specifying the object’s multiple membership or its low degree of membership. Thus
with overlapping as well as with fuzzy classes, more detailed data about the objects can
theoretically be passed on to a user than with disjoint classes.

Even if fuzzy classes are used for soil survey, then each point of the map has still to be
definitely allocated to a class when drawing the (non-fuzzy) geographical boundaries. It is
true that, in this case, the definition of the classes can be adapted to the situation in the
field. However, a disadvantage of this strategy is that the concept of a class is likely to
shift when going from one part of the area to another. The final classes might then be too
heterogeneous.

To avoid excessive fragmentation of the map it is sometimes desirable to have overlap
between the classes. On the other hand, overlap must be avoided as much as possible
when homogeneity is to be optimized. Therefore, a soil survey can better start from
disjoint rather than overlapping classes, overlap being introduced only where, and to the
degree, it is necessary.

In sumnmary, variations within classes can be better controlled if disjoint classes are
taken as a starting point for soil survey, and possible adaptations of the classes are well
recorded. For this reason the following will be confined to construction of disjoint
classes. Methods leading to overlapping classes have been discussed by Jones & Jackson
(1967), Cole & Wishart (1970) and Jardine & Sibson (1971). Bezdek (1974) gives an
example of fuzzy classes being used in a mathematical model.

2.4.4 Hierarchic versus non-hierarchic
When it is decided that the classes should be disjoint, one has the choice between a
single partition and a series of hierarchically related partitions. Usually these alternatives
are called respectively non-hierarchical and hierarchical classification. Intuitively, it will
be clear what is meant by hierarchical classification. A precise definition is as follows.
Definition 1. Partition A is at least as fine as partition B {denoted by: A > B) if and
only if each class of A s a subset of a class of B.
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IfA>Band B> A, then A=8 If A >Band B } A, then A is finer than B. If so, one
also says that 4 isat hierarchical lower level than B. Note that if A > Band B > C, then
A>C

Definition 2. A hierarchical classification is a set of partitions that can be ordered in
the sense of Definition 1.

Sets of partitions which cannot be ordered in the sense of Definition 1 are called reti-
culate classifications; they are of theoretical interest only.

The advantage of hierarchical classifications over non-hierarchical ones is that both
storage and retrieval of information are easier. Any new object can be identified stepwise,
allocating it to classes of decreasing levels. In thié way many redundant comparisons
between the object and definitions of classes may be avoided, and the identification may
proceed more efficiently. Furthermore, the geographical boundaries in an area between
the classes of a given partition form a subset of those between the classes of any finer
partition in the same area. So if soil maps at different scales are requested, the classes can
be more efficiently delineated if a hierarchical classification is used instead of a reticulate
one. Also, due to the structure of the classes, a hierarchical system is more comprehensi-
ble. Without the constraint of a hierarchical structure, the homogeneity within classes
could in general be further optimized. However, the importance of easy storage and
retrieval will often override this drawback. Especially if the total variability is large, many
classes will be needed to achieve sufficient homogeneity and then the advantage of a
hierarchical structure will be greatest. Examples are the Linnaean system, the Universal
Decimal Classification system for documents, and various national and international soil
classifications. If, during a soil survey, the profiles must be easily identifiable, a hierarchi-
cal system seems indispensable.

Special numerical methods exist for constructing hierarchical classifications; these are
briefly discussed in 3.2.2.1. Other methods lead in principle to a single partition but when
applied again to the subsets a hierarchical classification will result. Alternatively, one
could create beforehand two or more partitions independently from each other, based on
different sets of variables. These partitions could then be combined into one, such that
every resulting class consists only of objects in the same classes of the respective original
partitions. This so-called product partition is at a hierarchical lower level than each of the
original partitions. The latter strategy is often practised conventionally. It has also been
followed in the numerical experiments described in Chapter 4.

The choice between hierarchical and non-hierarchical classifications has been discussed
by, for instance, Williams & Dale (1965) and Pielou (1969).

2.4.5 Monothetic versus polythetic
These terms were intraoduced by Sneath (1962). They refer to the kind of distinction

made between classes.

Definition 3. If a partition is such that for any pair of classes the values of at least
one variable are mutually exclusive, then the partition is monothetic.

In geometrical terms, each class boundary can be represented by a plane perpendicular to
one of the coordinate axes. Otherwise the partition is polythetic.
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Although this is not inherent in the concept, the construction of a monothetic hierar-
chical classification is in practice always a divisive procedure, i.e. successively dividing of
the complete set into finer partitions. Each new partition requires one variable.

The advantage of monothetic classification is its simplicity: the construction proce-
dure is straightforward, both conventionally and by computer; definitions of the resulting
classes are simple and clear, often to the extent that they can be used directly as class
labels. This, of course, enables quick storage and retrieval, especially with a hierarchical
system, which could directly be used as a key for identification.

However, just as with hierarchies, the advantage can in general only be achieved at the
price of optimality of the partition. Without the constraint of perpendicular boundaries,
more homogeneous classes might generally be possible, while the idea of fitting distribu-
tions is hardly compatible with monothetic division. This suboptimality is probably the
reason for bad experience with monothetic classification. Polythetic methods will there-
fore be of major concern in this study.

The choice between monothetic and polythetic classification is discussed, for instance,
by Williams (1971).

2.5 Identification

The concepts of classification and identification as described in Chapter 1, are not
always clearly distinguished from each other. Identification is basically the allocation of
an object to one or more already established classes. Classification must precede identifi-
cation. Watanabe (1969b) discussed this issue in detail.

Much of the confusion is probably because classification methods may be used in
some stage of the construction of identification devices (e.g. Firschein & Fischler, 1963),
and conversely, identification techniques may be involved in a classification procedure.
Various other terms are used in this connection, for instance pattern cogrition and
pattern recognition (Watanabe, 1969b).

The problem of identification arises when the objects on which a classification is based
are only part of the total universe considered. In soil science, this is mostly so. We argued
in 2.2.2 for adapted sample atlocation (free survey) for the estimation of the geographical
distribution of the classes. Though not necessarily in definitive form, such a strategy
assumes those classes to be established beforehand on the basis of only a limited sample.
Also the condition arises that identifications should be carried out in the field. This in
turn implies that identification should not involve more than simple diagram or a short
calcuiation, if any. For this reason we will not go into the field of multiple discrimination
analysis, although this might be of interest for other purposes in soil science, such as
automated analysis of air and thin-section photographs. See Sebestyen (1962) and Watan-
abe (196%¢).

The use of a key could be an interesting alternative. Despite the recent progress in
automated key generation (e.g. Pankhurst, 1975), the present methods would not serve
our needs adequately, and this line will not be pursued here.

A suitable structure of the classification itself could in principle solve the identifica-
tion prablem most directly. A hierarchical system would therefore be appropriate. As
indicated already in 2.4.4, this line has actually been followed in the experiments of
Chapter 4.
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Special attention to identification of scil profiles was paid by Norris & Loveday
(1971).

2.6 Assessment of classifications

It is evident already from the preceding sections that the construction of soil classifica-
tions is not at all straightforward. Several problems of choice exist for non-numerical
methods of classification; they are clearly stated by Schelling (1970). For a numerical
approach one must in addition choose the actual classification method; Chapter 3 is
entirely devoted to that subject.

The assessment of classifications has only recently received more than superficial
attention. For numerical classification, the literature shows that method and practice of
assessment are still in their infancy. The possibilities for such assessment are summarized
below.

2.6.1 Direct subjective assessment

As a first approximation the quality of a classification may be subjectively assessed by
informally forecasting how far it could fulfil its purpose. Various aspects may then be
relevant: suitability as a basis for soil survey, homogeneity of the classes and interpre-
tability in terms of pedogenetic theory. The flaw of this procedure is clear: only evidently
bad solutions can be spotted with certainty, the remainder can be rated only roughly and
with unknown reliability.

Williams et al. (1966) indicated how a small step could be made towards formalization
of the above procedure. Starting from the same considerations, a grouping could be
erected subjectively beforehand as a standard for comparison with numerical solutions. If
a conventional classification existed already, this could play the same role. In fact, these
are special cases of a more general one, as discussed below.

2.6.2 Stability of the result

Many miscellanecus statements in the literature suggest that as evidence for the good-
ness of a classification, one might take its stability against changes in either data or
procedure. For instance Campbell et al. (1970) took explicitly the latter line: if one starts
from different points and arrives at similar solutions, then they consider such a classifica-
tion more reliable. At least two questions arise.

Firstly, is the conclusion justified? If similar classifications result from different clas-
sification procedures, then probably a clear-cut clustering of the objects exists in the
multivariate space. However, it depends on the purpose whether such classifications are
the best ones. Conversely, also if the resulting classifications are different, it is still
possible that one of them is suitable.

Secondly, stability will be judged in general on the basis of classifications that differ
only moderately. Such differences, however, are often assessed in a subjective way. De-
mands for objectivity give rise to the quest for an appropriate method of comparing
classifications; this is a difficult problem in itself. (See Rand (1971) for a quantitative
approach.} These remarks need not lead to the conclusion that empirical research on
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classification is necessarily futile. If this yields further insight into classificatory processes,
it may indirectly contribute to a better strategy.

Comparison of a numerical classification may be with either other numerical ones or
with conventional ones. Many workers have compared with conventional but the inherent
difficulties seem sometimes to be overlooked. If the reason for searching for numerical
solutions is suspicion about the optimality of a conventional classification, it is hardly
right to adopt the suspect as a standard.

2.6.3 Assessment by mathematical criteria

Many attempts have been made to assess classifications objectively. For that purpose
mathematical criteria have been defined by which the goodness of a classification, once
established, can be measured and possible alternatives rated. Such criteria are surveyed
briefly in the following.

2.6.3.1 Criteria for hierarchical classifications

Numerical methods for hierarchical classification will be treated in 3.2.2.1. The pro-
cess of lumping or splitting subsets of objects, is usually displayed with a treelike diagram
called a dendrogram, dendrograph or phenogram. An example is given in Fig. 2. The
vertices represent the single objects. The level of each horizontal line may be interpreted

dissimilarity

30
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M 2 7 6 13 15 B 5 14 1 3 10 12 4 16 9
object No.

Fig. 2. Fictive dendogram for 16 objects.
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as the similarity between the subsets that it connects. The measure of similarity or
dissimilarity depends on the actual method.

Certain forms of dendrograms are usually considered, largely intuitively, more favour-

able than others. Williams et al. (1966) formalized this method of assessment by defining
the following criteria.
Chaining. The phenomenon of chaining occurs where single objects (for instance No 7
and 6 or No 16 and 9 in Fig. 2) must be added repeatedly to an ever growing subset in
order to obtain partitions of higher level. If chaining is abundant then the dendrogram
will show unbalanced partitions at the various levels, which is usnally considered undesir-
able.

Here we consider only the case if the transition from a partition at level i to the one at
level (i + 1) requires the amalgamation of only fwo classes. The absolute value of the
difference in number of objects in these two classes is denoted by ;. Williams et al.
(1966} defined thus the following coefficient of chaining:

n-1
C= 205, %
T (- 1)n-2)

where n is the total number of objects. C varies between zero for balanced divisions
throughout the dendrogram and unity for complete chaining. Its value for the example in
Fig. 2 is 0.43.

Number of reversals. There are no reversals if the similarity between two subsets to be
fused in a dendrogram is defined such that it is a monotone function of the partition
level. If this monotonicity is not satisfied then reversals do occur, as for instance at the
fusion of object No 4 with No 10 and 12 in Fig. 2. The authors consider reversals un-
favourable because they hinder unambiguous interpretation of the dendrogram.
Stratification. Williams et al. (1966} considered the distribution of the values at fusions
over the range of the coefficient, and suggested that ideally this is such that a relatively
large proportion of that range is covered by, say, the last 20% of the fusions. For
instance, in Fig. 2 that proportion is 0.5.

Descriptive accuracy. Instead of the form of the dendrogram, another type of criteria
considers its accuracy.

A dendogram results usvafly from the analysis of a triangular matrix S, of all
3(n—1)n—2) similarities, 5;;, between objects i and /, as calculated from the data (3.2.1).
It is simple because it represents only (n--1) similarities, notably those between the
subsets which it connects. To establish the accuracy with which § is represented by a
dendrogram, all inter-object similarities, s;j,f, will be read from that dendrogram as the
value of the similarity coefficient betwsen the subsets to which the objects belong. For
instance, from the dendogram of Fig. 2 is read: s}; ;5 = 1,573 3 =10,5%; ;4 = 20, etc.
A new matrix, 5%, is thus formed. The more similar the matrix S* is to S, the more
accurzte the representation by the dendrogram.

Various measures have been proposed for the deviation of $* from S. The oldest and
still most popular one is the product-moment correlation coefficient, H{S,5*), in this
context introduced by Sokal & Rohlf (1962). They referred to it as cophenetic correla-
tion coefficient. Of course, ¥ may also be used as a measure for the difference between
two dendrograms for the set of objects. Williams & Clifford (1971) decided not to use
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metric information from a dendrogram and instead proposed an order statistic, analogous

to r. Hartigan (1967) preferred a weighted sum of squared differences between the 5;; and
s,";

2.6.3.2 Criteria for non-hierarchical classifications

Many alternative criteria are also possible for assessment of non-hierarchical classifica-
tions. The most prominent type of criterion uses the pooled sample-scatter matrix within
classes, W, and the overall sample-scatter matrix, 7. (T equals the matrix (X—XyY
(X=X ), where (X—X ) is the data matrix reduced by the column means.)

Three alternatives, discussed by Demirmen (1969), are mentioned here. They will be
discussed in more detail in 3.4.1.

a) tr(W)

This measure has a simple geometrical interpretation: tr{W)/n is the mean squared
Euclidean distance between each object and the centroid of the class to which it belongs.
Of the three criteria to{W) is most frequently applied; it was adopted for the present
experiments too.

b) det{W)/det(T)

This quantity #, sometimes denoted by A, is Wilks’s (1932) test statistic for testing
equality of expected class centroids. Webster (1971) proposed it for assessment of soil
classifications. As det(7’} is constant for a given set of data, minimizing « is equivalent to
minimizing det(W).

c) tr(W-t B)

B is defined by the identity T = W + B. This is Hotelling’s (1931) criterion, used as an
alternative test statistic for the same purpose as that of Wilks,

2.6.4 Discussion

In the preceding sections it has been shown why an established classification should be
assessed, that a subjective approach to this is problematic, and how this could be made
ohjective. However, also the latter is questionable; as explained below, a definitive solu-
tion is not available.

A numerical classification is the result of collecting and preprocessing data and the
classification method used. Each of these may in principle be harmful for the result, but
let us concentrate upon the classification method. Here again, there may be different
detrimental factors.

Firstly, the principle of the method may be inappropriate in view of the purpose of
the classification. One may think here of wrong decisions concerning the major choices
discussed in 2.4, for instance overlapping versus disjoint classes, optimizing homegeneity
versus fitting distributions, and also of more detailed issues, like the actual definition of
homeogeneity.

Secondly, although the principle may be sound, a completely satisfactory numerical
procedure for application may not be available. Furthermore, when using a computer
program for classification, the specification of user-parameters may be inappropriate, thus
adding to the common type of numerical errors.

The second class of problems seems less difficult to overcome. It is largely opentoa
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