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Abstract 

 

Dissolved organic carbon (DOC) is a complex, heterogeneous mixture of C 

compounds which, as a substrate, may influence various processes of the soil 

microbial community. Microbial respiration and volatile production are two 

such processes. These have both been linked to general disease suppression 

(GDS), a phenomenon in agricultural soils which inhibits pathogenic infestation 

in crops. The underlying hypothesis of this thesis is that the quality of DOC, via 

regulation of microbial processes, may be an important indicator of soil 

functions, including GDS. Properties of DOC quality include proportions of 

hydrophobic and hydrophilic fractions, and aromaticity. This thesis describes a 

high range in DOC fractions from various types of compost, which is often 

added to soil as an amendment to promote GDS. Differences in soil microbial 

respiration rates were attributed to differences in the composition of compost 

DOC added to soil in a laboratory incubation experiment. Compost DOC high 

in proportion of the hydrophilic (Hi) fraction promoted respiration rates. 

Depletion of the hydrophobic humic acid (HA) fraction was also observed. The 

relationship between DOC and microbial respiration was further explored in a 

survey of 50 arable soils. Both HA and Hi fractions of DOC that were found to 

be statistically, significantly related to respiration rates in these soils. 

Furthermore, in an assay measuring in vitro pathogen suppression by microbial 

volatile production, DOC concentration and microbial respiration were linked to 

growth suppression of Rhizoctonia solani, Fusarium oxysporum, and Pythium 

intermedium via multivariate regression modelling. This thesis provides 

evidence for the importance of DOC and DOC quality’s influence on microbial 

respiration and volatile production, thus supporting the hypothesis that DOC is 

a microbially-relevant soil chemical parameter, and potential indicator of 

general disease suppression in agricultural soils.  
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1.1 Motivation 

Robust soil quality is an important factor in supporting the productivity 

of agricultural systems. One major threat to productivity is plant disease caused 

by soil-borne plant pathogens. Incidence of disease caused by these pathogens, 

however, is reduced in soils exhibiting general disease suppression. General 

disease suppression (GDS) is a naturally-occurring phenomenon whereby the 

soil microbial community is antagonistic towards multiple pathogens (Hoitink 

and Boehm, 2003). This suppression of pathogens may be a result of the non-

pathogenic community producing compounds inhibitory to pathogen 

development, or it may be the result of competition for resources between 

pathogenic and non-pathogenic organisms (Termorshuizen and Jeger, 2008).  

One resource that pathogenic and non-pathogenic organisms may 

compete for in soil is organic matter. Organic matter (OM) is a source of 

organic carbon (C), which fuels soil microbial processes (Haynes, 2005). 

Therefore, the ability of non-pathogenic organisms to consume organic C may 

influence both the availability of this substrate for the pathogens, and the 

microbial community’s production of inhibitory compounds. The quality of 

organic C in soils, however, affects its availability as a substrate (Boyer and 

Groffman, 1996). If microbial community consumption of organic C with 

particular qualities could be linked to that community’s ability to suppress 

pathogens, then organic C quality could be used as an indicator of a soil’s 

capacity for GDS. An indicator of GDS would be valuable not only for 

informing users about a soil’s current state (Janvier et al., 2007), but also for 

identifying management practices that may enhance desirable OM and organic 

C characteristics, and reduce plant disease incidence. This need for an indicator 

of GDS was the impetus for the research presented in this thesis, which intends 

to advance knowledge of soil C-driven microbial processes and contribute to the 

identification of a GDS indicator.  
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1.2 Organic Carbon in Soils: An Introduction 

Soils are the largest terrestrial sink of C and almost 2/3 of the C stored 

in soils globally is in organic form (Lal, 2004). In arable soils alone, 167 Pg of 

organic C is stored (Cole et al., 1997). Soil organic carbon (SOC) is former 

living material in various stages of decomposition and it is found to varying 

degrees in every soil type. Two main pools of SOC are present in soils: 

stabilized SOC, and labile SOC (Haynes, 2005), which are in a constant state of 

flux between each other. Stabilized SOC is generally referred to as such because 

it is relatively resistant to decomposition, either by being composed of a 

recalcitrant substance such as humus, or being physically fixed to the soil 

mineral phase (Stevenson, 1994). Through decomposition or desorption, 

however, even stabilized SOC can enter the pool of labile SOC where it can be 

taken up by soil microorganisms or remain in solution (Haynes, 2005; Sollins et 

al. 1996). In solution, SOC is also known as dissolved organic carbon.  

 

1.2.1 Soil Dissolved Organic Carbon 

The term dissolved organic carbon (DOC) refers to both a phase of 

SOC and an operational definition as well. Carbon in soil solution that has been 

collected or extracted (Burford and Bremner, 1975; Curtin et al., 2011) and 

filtered to 0.45 µm is defined as DOC (Kalbitz et al., 2000).  

Once SOC enters the pool of DOC, it has several possible fates (Figure 

1.1): it may re-enter the SOC pool; it may be decomposed and remain in the 

DOC pool; or it may be decomposed and released as carbon dioxide (CO2) as a 

result of microbial activity (Kalbitz et al., 2000). The nature of DOC as a pool 

in constant flux makes it difficult to study DOC dynamics and this difficulty is 

often exacerbated by low DOC concentrations in soils; in forest soils only up to 

2% of SOC is in DOC form, and this upper limit even lower (0.4%) in 

agricultural soils (Haynes, 2005). 
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In addition to SOC, a potential source of DOC is OM input (Figure 

1.1). Additions of OM that contribute to DOC are generally in the process of 

decomposition and may include plant material, decaying animal and microbial 

organisms, and root exudates (Kalbitz et al., 2000), although the primary source 

is most often plant litter (Cadisch and Giller, 1997; Paul et al., 1996). In arable 

soils, however, a higher degree of anthropogenic control is garnered over plant 

litter inputs compared to unmanaged ecosystems, and OM sources can also be 

imported to the system and applied as a soil amendment. These potential 

sources are described in further detail in the following section.  

 

1.2.2 Organic Amendments as Dissolved Organic Carbon Sources 

For the purposes of this thesis, organic amendments will refer to any 

OM source that is deliberately and anthropogenically applied to arable soils. 

Organic amendments serve many purposes in their application to agricultural 

soils, including nutrient supplementation (Chang et al., 2007), SOC 

Figure 1.1: Sources and potential fates of dissolved organic carbon in soils 

(Adapted from Kalbitz et al., (2000)). 
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supplementation (Gregorich et al., 1998; Smith et al., 1997), physical 

stabilization of the soil (Diacono and Montemurro, 2010), and suppression of 

plant diseases (Hoitink and Fahy, 1986; Paulitz and Bélanger, 2001). These 

amendments may range from animal manure (both liquid or solid forms), 

sawdust, and crop residues (Chantigny, 2003) to compost (Hargreaves et al., 

2008) and are often integrated into field management strategies. Organic 

amendments influence the quantity and composition of soil DOC by either 

entering the soil DOC pool directly in the form of leachate (Chantigny, 2003), 

or decomposing further to become incorporated in the SOC pool (Kalbitz et al., 

2000), and indirectly entering the DOC pool via SOC desorption or 

decomposition (Figure 1.1).  

As a source of DOC, organic amendments can vary largely in both the 

absolute concentrations and chemical properties of the DOC they release, 

including biodegradability (Chefetz et al., 1998; Wei et al., 2014). Upon 

integration of organic amendment DOC into soil DOC (Figure 1.1), the new 

characteristics of soil DOC may shift to reflect that of the added DOC (Kalbitz 

et al., 2003b), with implications for soil DOC quality.  

 

1.2.3 Dissolved Organic Carbon Quality 

Soil DOC quality broadly refers to the composition of the total pool of 

DOC and the properties of the C compounds within the DOC pool. These 

compounds include soluble humic and fulvic substances (Thurman and 

Malcolm, 1981; Zsolnay, 1996), organic and amino acids (Amery et al., 2009), 

and carbohydrates ranging from mono- to poly-saccharides (Herbert et al., 

1995). As DOC is a heterogeneous mixture of C compounds, characterizing 

DOC by the nature of these compounds provides insight into the relevance of 

DOC either as a substrate for microbial activity, or the capacity for feedback 

between pools of SOC and DOC (Figure 1.1).  

Several methods are well-established for the qualification of DOC. Due 

to the complexity and heterogeneity of the substances, molecular identification 

of DOC substances only provides insight into a small proportion of total DOC 
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(Marschner and Kalbitz, 2003). Leenheer and Croué (2003) estimate that <10% 

of DOC can be identified as specific compounds and the cost increases 

associated with such analyses are exponential compared to identifying broader 

classes of compounds. Amino acids and carbohydrates are examples of low 

molecular weight (LMW) compound classes that have had ample 

methodological development (Jones, 2002; Myklestad et al., 1997). Other 

methods of determining physical and/or chemical DOC properties include 

specific UV absorbance (Amery et al., 2008) and fluorescent or infrared 

spectroscopy (Ellerbrock et al., 1999; Kalbitz et al., 2003) as indicators of 

aromaticity, size-exclusion chromatography as an indicator of molecular weight 

(Her et al., 2003), or fractionation based on classes of relative hydrophobicity 

(Guggenberger et al., 1994; Thurman and Malcolm, 1981). 

 

1.2.4 Fractionation of Dissolved Organic Carbon 

Fractionation of DOC from soil is adapted by Swift et al., (1996) from 

methods developed to measure humic substances in aqueous solutions (Aiken et 

al., 1985; Thurman and Malcolm, 1981). Hydrophobic and hydrophilic fractions 

of DOC are distinguishable from one another based on their solubility under 

acidic conditions and/or their affinity for binding to hydrophobic resin. 

Operational definitions of hydrophobic and hydrophilic DOC compounds have 

been developed and described by the International Humic Substances Society 

(IHSS). The advantage of this method and the employment of IHSS’s 

operational definitions of these DOC fractions is the standardization of their 

measurement across experimental conditions.  

The fractionation procedure is described in detail by Aiken et al. (1985) 

but the most important outcome of this method to emphasize here is the 

isolation of four fractions: humic acids (HA), fulvic acids (FA), hydrophobic 

neutrals (HoN) and hydrophilics (Hy) (Figure 1.2). These fractions range from 

most hydrophobic (HA) to least (Hy) and are themselves heterogeneous 

mixtures of C substances, though they are considered relatively more 

homogeneous than total DOC (Leenheer, 1981). Hydrophobic HA molecules  
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Figure 1.2: Work-flow of the dissolved organic carbon (DOC) rapid batch 

fractionation method from Van Zomeren and Comans (2007). Red boxes 

indicate pools in solution measured for total organic carbon (TOC). Humic 

acids (HA), fulvic acids (FA), and hydrophilic compounds (Hy) are measured 

directly while hydrophobic neutrals (HON) remain adsorbed to the resin (DAX-

8) after equilibration and their pool size is calculated.  
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are considered quite recalcitrant to microbial degradation and thus one of the 

most stable soil organic compounds (Kalbitz et al., 2003b), even in solution. 

Conversely, when measuring how specific compounds are partitioned between 

hydrophobic and hydrophilic pools, Amery et al. (2009) observed the majority 

of aliphatic, LMW C and 97% of glucose were measured in the hydrophilic 

pool. Guggenberger et al. (1994) have proposed that hydrophobic compounds 

(including FA and HON) may be in an intermediary state of decomposition 

between DOC source material and Hy fractions. Each fraction therefore may 

have properties unique to it beyond hydrophobicity.  

One draw-back of the fractionation procedure has been that it is time-

consuming and labour-intensive (Malcolm, 2005). These disadvantages have 

recently been overcome by the development of a batch-fractionation procedure 

(Figure 1.2) by Van Zomeren and Comans (2007) which allows for a greater 

number of DOC samples to be processed in a shorter amount of time with no 

loss of precision. Although fractionation is a widely-used and (becoming a 

more) accessible method for characterizing DOC, relatively little is known 

about the importance of the isolated fractions for soil function, particularly 

biological activity.  

 

1.2.5 The Biological Relevance of Dissolved Organic Carbon 

(Fractions) 

Due to its soluble nature and ability to permeate the soil matrix, DOC 

has been presumed a relatively bioavailable source of C for soil microorganisms 

(Kalbitz et al., 2000; Marschner and Kalbitz, 2003). The microbial processes 

shown to be influenced by soil DOC (quality) include: nutrient mineralization 

(Haynes and Beare, 1997; Janzen et al., 1997), biomass accumulation, and 

activity (respiration) rates (Boyer and Groffman, 1996; Brooks et al., 1999; 

Janzen et al., 1997; Marschner and Noble, 2000). However, in reviewing many 

studies on the biodegradability of DOC, Haynes (2005) determined a range of 

only 10-40% of DOC that is available for decomposition to CO2 by the soil 

microbial community. Since biological activity of soils is frequently proposed 
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as a potential indicator of overall soil quality (Gregorich et al., 1994; Janvier et 

al., 2007), this 10-40% of DOC may be critical for many processes.  

The remaining proportion of DOC considered “non”-bioavailable is 

suggested to be composed of recalcitrant humic-like substances (Haynes, 2005). 

Indeed, Jandl and Sollins (1997) and Qualls and Haines (1992), in some of the 

few studies on the biodegradability of specific DOC fractions, confirmed that 

hydrophilics were the fraction of DOC most rapidly depleted by soil 

microorganisms. However, the recalcitrant nature of HA has been challenged 

(Boyer and Groffman, 1996) and it may be more useful to think of HA  

molecules as a potential reservoir of LMW C that is intermittently adsorbed to 

HA surfaces (Sutton and Sposito, 2005). The biological relevance of DOC may 

not only support microbial activity and thus soil CO2 production (Figure 1.1), 

but the activity may in turn influence concentrations and quality of DOC 

(Magill and Aber, 2000). Figure 1.3 is a conceptual representation of the 

feedback between the components of the soil microbial biomass and the pool of 

total DOC. As different functional groups of soil microorganisms have different 

Figure 1.3: Conceptual framework of dissolved organic carbon and 

microbial biomass feedback loop in agricultural soils.  
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C substrate preferences (Fierer et al., 2008; Kramer and Gleixner, 2008), and 

secondary (non-CO2) products of decomposition remain in solution as DOC 

(Kalbitz et al., 2003), the feedback between properties of the microbial 

community and DOC pools in soils may be intricate and rapid. However, much 

remains to be explored about this feedback, including the role of DOC fractions 

as indicators of DOC quality as a substrate, and the implications of this for 

various microbial processes.  

 

1.2.6 Predicting Disease Suppressiveness of Agricultural Soils 

One microbially-mediated soil process that may also be influenced by 

DOC quality is GDS. This thesis is one outcome of the Dutch Technology 

Foundation-funded project Predicting Disease Suppressiveness of Agricultural 

Soils. The objective of this project is to identify indicators of a soil’s capacity 

for GDS and develop management recommendations for farmers to increase 

GDS. The research presented in this thesis was conducted in close collaboration 

with that conducted for the thesis Suppression of Soil-Borne Plant Pathogens, 

by Maaike van Agtmaal (2015), which the reader is also encouraged to refer to. 

Together, these two theses investigate the hypotheses of Predicting Disease 

Suppressiveness of Agricultural Soils, which are that:  

1)  GDS is determined by soil microbial community activity, including 

 decomposition of the substrate DOC, and production of pathogen-

 inhibiting volatile compounds; 

2)  The activity rates of the soil microbial community are reflected in 

 the quantity and composition of the soil DOC pool, any organic

  amendment DOC pool, and/or subfractions of these pools; 

3)  OM management is a tool in management of DOC and 

 consequently of GDS. 
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1.3 Research Objectives 

The three hypotheses developed for the project Predicting Disease 

Suppressiveness of Agricultural Soils were the foundation of the research 

objectives of this thesis.  The broad objectives of this thesis were to determine 

how DOC and DOC fractions ranged among soils, and how DOC properties 

were related to various processes of the soil microbial community. Addressing 

these broad objectives was approached by sequentially addressing the following 

more specific research objectives:  

1)  To investigate differences in the DOC characteristics of organic 

 materials used for soil amendment, and relate these differences to 

 how the materials were processed (Chapter 2);  

2)  To measure how differences in DOC from different organic 

 amendments influenced fractions of soil DOC (Chapter 3); 

3)  To measure how changes in fractions of soil DOC were related to 

 changes in soil microbial respiration (Chapter 3);  

4)  To determine how DOC properties ranged among different 

 agricultural soil types, and to what degree these properties could be 

 used to explain microbial respiration (Chapter 4);  

5)  To relate DOC properties among different agricultural soil types to 

 the microbial production of pathogen-suppressing volatiles 

 (Chapter 5);  

6)  To consider DOC in a new context relative to soil microbial 

 functions, especially GDS, and develop hypotheses for future 

 research consideration (Chapter 6). 
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1.4 Thesis Outline and Experimental Approach 

The research objectives outlined in this thesis were investigated using a 

variety of experimental approaches. Many were exploratory and aimed to gather 

information about DOC properties from sources that we previously had little 

information for (Objectives 1, 4 and 5), while others used a systematic 

application of treatments (Objectives 2 and 3) that built on earlier experiments.  

In Chapter 2, I characterized DOC from various compost types that had 

received different input material and undergone different processing conditions, 

thereby addressing Objective 1. Based on vast variation reported in the literature 

about how soil microbial functions may respond to compost application, I 

hypothesized that the range in DOC fraction concentration may be the 

mechanism behind these differences, so I measured this potential range. While 

previous studies had investigated changes in DOC quality in one compost type 

over time, or differences in total DOC among compost types, this would be the 

first study to perform an in-depth comparison of DOC quality among many 

compost types. The high range measured suggested that these differences may 

indeed be significant enough to result in differences in soil microbial response.  

The results of Chapter 2 thus prompted our experimental treatments in 

Chapter 3. In Chapter 3 I aimed to determine if the differences in compost DOC 

quality found in Chapter 2 had discernible effects on soil DOC fractions when 

that compost DOC was added to soil. To this end, I selected two of the 

composts measured in Chapter 2 that had different DOC fraction profiles. I 

hypothesized that not only would the differences in compost DOC quality affect 

soil DOC quality upon addition (Objective 2), but that these differences would 

be further reflected in the rates of soil microbial activity measured from this soil 

over a period of incubation (Objective 3). In addition to confirming both of 

these hypotheses, Chapter 3’s experiment produced some surprising results: 

humic acid DOC fractions that were expected to remain stable over the 

incubation period were actually very dynamic. The results of Chapter 3 were 

unique and important, but I wondered how representative this one soil type was 

of what may be measured in other agricultural soils.  
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Therefore, in follow-up to Chapter 3, a much broader survey of 

agricultural soils was conducted in another exploratory experimental approach. 

The 50 soils sampled for Chapters 4 and 5 came from a variety of arable soil 

types undergoing several different management regimes. All 50 soils were 

measured in collaboration with BLGG Agroexpertus and the Netherlands 

Institute of Ecology to determine the broadest set of physical, chemical, 

microbial and DOC parameters. In both Chapters 4 and 5, using a statistical 

approach, I determined the influence of DOC properties on the soil microbial 

processes of respiration and suppressive-volatile production, respectively.  

Chapter 4 describes both the general patterns of variability in indicators 

of DOC quality and the (lack of) influence of field management practices on 

those indicators. These DOC properties were then analysed separately and 

together as independent variables in a model explaining variation in soil 

microbial respiration rates, which is motivated by Objective 4.  By comparing 

performances of models with various DOC properties as independent variables, 

more insight is provided into the biological relevance of DOC fractions and 

their aromaticity, which supplements the findings of Chapter 3. Peripheral to 

Objective 4, the results of this experiment revealed interesting relationships 

between the properties of DOC aromaticity and proportions of DOC hydrophilic 

fractions. The survey I performed in Chapter 4 is the most detailed study 

conducted to date on the properties of DOC (fractions) among agricultural soils.  

Succeeding my analysis of DOC’s influence on microbial respiration is 

Chapter 5’s analysis of pathogen-suppression rates. This final experiment builds 

on the statistical approach of Chapter 4, but includes DOC properties in 

conjunction with a wider range of soil chemical and microbial community 

properties as independent variables, and considers the production of pathogen-

suppressing microbial volatiles as the dependent variable. Identifying the nature 

of this relationship is the research priority of Objective 5. The importance of 

DOC for pathogen-suppression in vitro is confirmed by the significance of both 

DOC and microbial respiration as model parameters for the overall suppression 

of three soil-borne plant pathogens. These results subsequently lead to the 
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recommendations I make for future research, which are proposed in Chapter 5 

and elaborated on in Chapter 6.  

Chapter 6 is the final chapter in this thesis, in which I interpret the 

results of each chapter not only relative to one another, but to the broader body 

of literature on soil organic carbon quality and microbial function. Furthermore, 

as per Objective 6, I go on to describe the implications of this thesis for 

development of future research priorities in such pertinent fields as soil OM 

turnover and general disease suppression.  
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Input materials and processing conditions control 
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Abstract 

Dissolved organic carbon (DOC) has been proposed as an indicator of compost 

maturity and stability. Further fractionation of compost DOC may be useful for 

determining how particular composting conditions will influence DOC quality. 

Eleven composts ranging in input materials and processing techniques were 

analysed; concentrations of DOC ranged from 428 mg kg
-1

 to 7300 mg kg
-1

. 

Compost DOC was qualified by fractionation into pools of humic acids (HA), 

fulvic acids (FA), hydrophobic neutrals (HoN), and hydrophilic (Hi) 

compounds. The range in proportion of DOC pools was highly variable, even 

for composts with similar total DOC concentrations. Longer composting time 

and higher temperatures consistently corresponded with a depletion of 

hydrophilics, suggesting a preferential turnover of these compounds during the 

thermophilic composting phase. Qualification of DOC pools through 

fractionation may be an informative tool in predicting the effects of a processing 

technique on compost quality and, ultimately, soil functional processes. 
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2.1 Introduction 

Composts are produced using many different processing techniques and 

with a broad range of input materials, resulting in physical and chemical 

heterogeneity between compost types (Lannan et al., 2012). This heterogeneity 

makes it difficult to predict how a soil’s biogeochemical properties are 

influenced by compost application. Dissolved organic carbon (DOC) 

concentration is associated with many indicators of both compost and soil 

quality, including maturity and microbial activity, respectively. Therefore, DOC 

has been proposed as an indicator of compost maturity and stability (Bernal et 

al., 1998; Zmora-Nahum et al., 2005). Between compost types, however, DOC 

quality may range broadly and independently of total DOC, depending on input 

materials (Wei et al., 2014) and duration of composting (Said-Pullicino et al., 

2007).  

Qualification of DOC is often performed by isolating and quantifying 

the pools of hydrophobic and/or hydrophilic DOC in a solution extracted from 

solid-phase materials (Aiken et al., 1985), such as compost. Hydrophobic 

compounds include humic acids, fulvic acids and hydrophobic neutrals. These 

compounds tend to be more aromatic and higher in molecular weight than 

hydrophilic compounds (Aiken et al., 1985).  These various pools of DOC also 

function distinctly from one another; the size and hydrophobicity of compost 

humic acids facilitate their ability to complex contaminants such as trace metals, 

polycyclic aromatic hydrocarbons, and pesticides (Semple, 2001). Meanwhile, 

hydrophilics extracted from compost have been found to influence rates of 

microbial activity in soils (Straathof et al., 2014) which may subsequently 

impact nutrient availability and turnover. As compost’s application purposes 

range from remediation to nutrient supplementation to pathogenic disease 

suppression (Termorshuizen et al., 2006), the characterization of the respective 

pools that influence these processes may be valuable information for end users.  

The objective of this experiment was to investigate the range in quality 

of dissolved organic carbon from a variety of composts. It was hypothesized 

that composts sourced from different organic input materials and composted 
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under different processing conditions would have different DOC quality profiles 

independent of total DOC concentration. Furthermore, it was hypothesized that 

increasing the length of maturation time and/or increasing proportions of woody 

input material would result in higher concentrations of hydrophobic compounds 

relative to hydrophilic compounds. This will provide insight into how input 

materials and processing conditions of a particular compost influence the DOC 

quality of the final product.  

 

2.2 Materials and Methods 

2.2.1 Compost Collection and Characterization 

Eleven compost types were collected from different composting 

facilities in The Netherlands between March 2012 and June 2013. Each compost 

was collected on-site from the commercial composting facilities (Table 2.1) 

except MW6, which was received from the supplier in commercial packaging. 

Composts collected on-site were shoveled from a minimum depth of 30 cm 

below the surface of the compost heap, from multiple points in the heap, and 

homogenized manually into one sample. All composts were collected at the 

stage of readiness for commercial distribution (i.e. a final product). The input 

materials and/or processing conditions (Table 2.1) were different for each 

compost, to better obtain a broad range in properties. Composts were 

transported to the laboratory and refrigerated (4°C) for a maximum of one week 

before pretreatment and analysis.  

Prior to chemical analysis (Table 2.2), composts were air dried at 40°C 

and ground (<1mm) for homogeneity of each sample. For pH, total soluble N 

and PO4-P, samples were equilibrated for 1h in a 1:10 ratio of dry material to 

0.01M CaCl2, and filtered to 0.45 µm. Nitrogen and P were measured on a 

San
++

 6 channel segmented flow analyser (SFA) (Skalar, The Netherlands). 

Calcium carbonate content on each compost was determined using the 



 

 

19 

 

 

T
a
b

le
 2

.1
: 
C

o
m

p
o
s
ts

 i
n
c
lu

d
e
d
 i
n
 t
h

is
 s

tu
d

y
, 
s
o

u
rc

e
 m

a
te

ri
a
l 
in

g
re

d
ie

n
ts

 o
f 

th
e
 c

o
m

p
o
s
t,
 a

n
d
 p

ro
c
e
s
s
in

g
 p

ro
c
e

d
u
re

. 
 

 

C
o
m

p
o
s
t 

c
o

d
e
 

C
o
m

p
o
s
ti
n
g

 f
a
c
ili

ti
e

s
 

S
o

u
rc

e
 m

a
te

ri
a
l 

P
e

a
k
 T

a
  

  
  

°C
 

T
im

e
 a

t 
p

e
a

k
 T

 
d

 
A

d
d

it
io

n
a
l 

M
W

-1
 

V
a

n
 I

e
rs

e
l 
C

o
m

p
o

s
t,
 

B
ie

z
e

n
m

o
rt

e
l,
 N

L
 

5
5

%
 s

h
re

d
d

e
d

 w
o

o
d

, 
2

5
%

 g
ra

s
s
 

lit
te

r,
 2

0
%

 l
e
a

f 
lit

te
r 

8
0
 

5
2
 

S
ie

v
e

d
 t

o
 1

0
 m

m
. 

1
0

 d
 i
n

 w
in

d
ro

w
 (

tu
rn

e
d
 5

x
),

  
4

2
 d

 o
n

 t
a
b

le
b

e
d

 (
tu

rn
e
d

 4
x
) 

M
W

-2
 

V
a

n
 I

e
rs

e
l 
C

o
m

p
o

s
t,
 

B
ie

z
e

n
m

o
rt

e
l,
 N

L
 

5
5

%
 s

h
re

d
d

e
d

 w
o

o
d

, 
2

5
%

 g
ra

s
s
 

lit
te

r,
 2

0
%

 l
e
a

f 
lit

te
r 

8
0
 

5
2
 

S
ie

v
e

d
 t

o
 1

5
 m

m
. 

1
0

 d
 i
n

 w
in

d
ro

w
 (

tu
rn

e
d
 5

x
),

  
4

2
 d

 o
n

 t
a
b

le
b

e
d

 (
tu

rn
e
d

 4
x
) 

F
L

 
V

a
n

 I
e

rs
e

l 
C

o
m

p
o

s
t,
 

B
ie

z
e

n
m

o
rt

e
l,
 N

L
 

F
o

re
s
t 
(l

e
a

f)
 l
it
te

r 
7

0
 

2
8
 

S
ie

v
e

d
 t

o
 3

0
 m

m
. 
W

in
d

ro
w

, 
tu

rn
e

d
 6

x
 

S
G

 
V

a
n

 I
e

rs
e

l 
C

o
m

p
o

s
t,
 

B
ie

z
e

n
m

o
rt

e
l,
 N

L
 

7
5

%
 s

o
il 

s
ie

v
e

d
 f

ro
m

 w
o

o
d

y
 

m
u

n
ic

ip
a

l 
w

a
s
te

 +
 2

5
%

 g
ra

s
s
 l
it
te

r 
7

5
 

1
4
 

S
ie

v
e

d
 t

o
 2

0
 m

m
. 
W

in
d

ro
w

, 
tu

rn
e

d
 7

x
 

M
W

-3
 

V
a

n
 I

e
rs

e
l 
C

o
m

p
o

s
t,
 

B
ie

z
e

n
m

o
rt

e
l,
 N

L
 

6
5

%
 s

h
re

d
d

e
d

 w
o

o
d

, 
1

7
.5

%
 g

ra
s
s
 

lit
te

r,
 1

7
.5

%
 l
e

a
f 
lit

te
r 

8
0
 

5
2
 

S
ie

v
e

d
 t

o
 1

5
 m

m
. 
 

1
0

 d
 i
n

 w
in

d
ro

w
 (

tu
rn

e
d
 5

x
),

  
4

2
 d

 o
n

 t
a
b

le
b

e
d

 (
tu

rn
e
d

 4
x
) 

F
G

-1
 

V
a

n
 I

e
rs

e
l 
C

o
m

p
o

s
t,
 

B
ie

z
e

n
m

o
rt

e
l,
 N

L
 

7
0

%
 s

h
re

d
d

e
d

 w
o

o
d

, 
+

 3
0
%

 c
la

y
, 

g
ra

s
s
 l
it
te

r 
&

 c
o
m

p
o
s
t 

a
s
 i
n

o
c
u
lu

m
 

7
0
 

8
4
 

W
in

d
ro

w
, 

tu
rn

e
d

 1
5

x
 

F
G

-2
 

O
rg

a
w

o
rl

d
, 

 
L

e
ly

s
ta

d
, 

N
L
 

G
ra

s
s
 c

lip
p

in
g

s
 +

 f
u
n

g
a

l-
in

o
c
u
la

te
d
 

m
u

lc
h

e
d
 w

o
o

d
 

>
6

5
 

2
1
 

T
u

rn
e

d
 7

-1
0

x
. 

In
o

c
u

la
te

d
 w

it
h

 
T

ri
c
h
o

d
e

rm
a

 s
p

p
. 
 

M
W

-I
W

 
O

rg
a

w
o

rl
d

, 
Z

e
e

a
s
te

rw
e

g
, 

N
L
 

8
0

%
 m

u
n

ic
ip

a
l 
o

rg
a
n

ic
 w

a
s
te

  
+

 2
0

%
 i
n

d
u

s
tr

ia
l 
o

rg
a
n

ic
 w

a
s
te

 
5

0
-6

5
 

1
 

T
u

rn
e

d
 2

x
 

M
W

-4
 

O
rg

a
w

o
rl

d
, 

 
L

e
ly

s
ta

d
, 

N
L
 

M
u

n
ic

ip
a

l 
o

rg
a

n
ic

 w
a

s
te

b
 

5
0

-6
5
 

1
 

T
u

rn
e

d
 2

x
 

M
W

-5
 

O
rg

a
w

o
rl

d
, 

 
D

ra
c
h

te
n

, 
N

L
 

M
u

n
ic

ip
a

l 
o

rg
a

n
ic

 w
a

s
te

 
6

5
-7

0
 

1
0
 

T
u

rn
e

d
 3

x
 

M
W

-6
 

C
o
m

g
o

e
d

, 
 

D
ir

k
s
la

n
d
, 

N
L
 

M
u

n
ic

ip
a

l 
o

rg
a

n
ic

 w
a

s
te

 
5

5
-6

0
; 
 

>
5

0
 

3
; 
 

1
4
 

T
u

rn
e

d
 4

-5
x
. 

3
 d

 a
t 
p

e
a
k
 T

 t
h

e
n

 
1

4
 d

 s
lig

h
tl
y
 b

e
lo

w
 p

e
a
k
 T

. 
 

a
In

te
rn

a
l 
m

a
x
im

u
m

 t
e
m

p
e
ra

tu
re

 o
f 

c
o
m

p
o
s
t 
h
e
a
p

 
b
M

u
n

ic
ip

a
l 
o
rg

a
n

ic
 w

a
s
te

 i
s
 a

 m
ix

tu
re

 o
f 

v
e
g
e

ta
b

le
, 
fr

u
it
 a

n
d

 g
a
rd

e
n
 w

a
s
te

 c
o

lle
c
te

d
 f

ro
m

 c
u
rb

-s
id

e
 m

u
n
ic

ip
a
l 
p
ro

g
ra

m
s
 



 

 

20 

 

Scheibler method (ISO10693) and total elemental C and N measurements were 

performed on a LECO Truspec CHN analyser (LECO Corporation, St. Joseph, 

MI, USA) (Table 2.2). Organic matter (OM) content was determined by loss on 

ignition from 105 to 550°C (Table 2.2).   

Extraction of DOC was performed on dry-weight-equivalent fresh 

compost material in ultra-pure water (1:10). Due to heterogeneity of the fresh 

compost materials, four suspensions of 10 g compost were equilibrated, filtered, 

and subsequently pooled. Equilibration for 1 h via end-to-end shaking preceded 

0.45 µm filtration of the solution. A subsample of the pooled solution was taken 

for measuring total DOC concentration on a TOC-5050A analyser (Shimadzu 

Corporation, Kyoto, Japan). The remainder of the total DOC sample was 

fractionated.  

 

 

Table 2.2: Chemical properties of 11 composts analysed. Data presented is 

based on dry matter. Extractions (pH, total soluble N and P) were performed in 

1:10 solutions of dry, ground compost in 0.01M CaCl2, except dissolved organic 

carbon (DOC) concentration, which was extracted from 1:10 solutions of fresh 

compost (dry-matter equivalent) in ultra-pure water. OM= organic matter 

content. 

 

Compost pH 
N – total 
soluble 

P-PO4 CaCO3 DOC 
Total 

C 
Total 

N 
OM 

 
 

mg kg
-1 

mg kg
-1 

% mg kg
-1 

g kg
-1 

g kg
-1 

% 

MW-1 6.74 226 15.1 0.54 663 101.0 8.1 18.6 

MW-2 7.13 218 13.4 0.69 997 102.6 7.7 20.6 

FL 6.91 59 89.9 0.41 903 182.2 8.4 42.5 

SG 7.30 88 10.9 0.34 904 74.2 4.9 18.5 

MW-3 6.92 101 31.8 0.65 1085 151.2 10.7 26.7 

FG-1 7.39 79 2.1 0.62 428 83.4 5.1 17.9 

FG-2 7.14 248 11.9 0.96 527 97.0 7.3 25.3 

MW-IW 7.07 381 48.4 2.33 4674 258.1 19.1 37.0 

MW-4 7.16 1102 238 3.95 7307 194.0 15.3 45.3 

MW-5 7.18 649 52.6 2.86 6753 165.4 14.6 35.9 

MW-6 7.0 N/A N/A 2.90 505 183.3 11.7 31.6 
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2.2.2 Fractionation of DOC 

After extraction, the total DOC sample was fractionated using the 

operational definitions set by the International Humic Substances Society 

(IHSS) and described by Aiken et al. (1985). Hydrophobic humic acid (HA), 

fulvic acid (FA) and neutral (HoN) compounds were physically separated from 

hydrophilic (Hi) compounds through pH changes to the solution and 

equilibration with a resin. In this experiment, the batch fractionation procedure 

(Van Zomeren and Comans, 2007) was used; first, the total DOC sample was 

acidified to pH 1 with 6 M HCl and allowed to stand overnight. This 

precipitated humic acids out of solution. The acidified solution was then 

centrifuged (15 min, 3000 g), separating the HA from the supernatant 

containing FA+HoN+Hi. Next, the HA pellet was resuspended in 0.1 M KOH 

(pH 12) and the HA DOC concentration was determined on a TOC-5050A 

analyser (Shimadzu Corporation, Kyoto, Japan). The supernatant 

(FA+HoN+Hi) was then added in a 1:10 resin to solution ratio to the resin 

DAX-8 (Sigma-Aldrich). DAX-8 is a non-ionic, macroporous resin. The resin 

was prepared for use by extracting organic impurities in a 24 h Soxhlet 

extraction with acetonitrile and then methanol, as described by Van Zomeren 

and Comans (2007), and rinsed with ultra-pure water. The resin was then 

equilibrated with FA+HoN+Hi for 1 h using horizontal shaking. This pulled the 

hydrophobic FA and HoN compounds out of the solution by binding them to the 

surface of the resin. The Hi compounds do not bind to the resin but remain in 

the solution, which was separated from the resin after equilibration. The DOC 

concentration of Hi was measured on the San
++

 6 channel SFA (Skalar, The 

Netherlands). Finally, the resin with the adsorbed FA+HoN pools was 

equilibrated in several wash steps with 0.1 M KOH. Each wash step re-

dissolved part of the FA pool from the resin surface and they were repeated 

until the concentration of the wash solution was not higher than a blank sample 

(4 to 6 wash steps per sample, depending on the FA concentration in the starting 

total DOC solution). The DOC concentration of FA was also measured on the 

SFA.  The DOC concentration of the HoN pool is calculated by determining the 
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proportion of the DOC which was not re-dissolved from the resin (as it remains 

bound to the resin even under alkaline conditions). The percent DOC return 

from the beginning to the end of the fractionation procedure was 85 to 105%. 

 

2.3 Results and Discussion 

2.3.1 Compost chemical properties 

The compost samples selected for this study were found to encompass a 

broad range of chemical properties (Table 2.2). pH was the least variable 

parameter measured, with all composts having near-neutral pH. Total soluble N 

was positively correlated with Total N (r=0.68, P=0.03), although compost 

MW4 had relatively high soluble N to total N (Table 2.2). This sample also had 

a very high DOC concentration (7307 mg kg
-1

) relative to its total C 

concentration (194 g kg
-1

). Organic matter (OM) had a broad range between 

samples (18.5 to 45%) but did not seem to correspond with any particular input 

materials or processing procedure (Table 2.1).  

The most nutrient-rich composts in terms of both total and total soluble 

N, PO4, and total C were MWIW, MW4 and MW5. These were also the 

composts with the shortest periods (1 to 10 d) spent at peak internal composting 

temperature (Table 2.1) and all were sourced from municipal organic waste 

household collection programs. These three composts also had the highest DOC 

concentrations, which were 6 to 10 times higher than the mean of the other eight 

composts. While they did have relatively high % OM, there were composts with 

comparably high % OM and much lower DOC (See FL and MW6, Table 2.2). 

These three high-DOC composts (MWIW, MW4 and MW5) had reached 

maturation according to the manufacturer’s internal standards, but did not meet 

the DOC level of 4000 mg kg
-1

 recommended by Zmora-Nahum et al. (2005) as 

the upper limit of DOC concentration for a compost to be considered mature. 

This high DOC concentration is most likely because of C preservation from the 

compost spending less time at peak composting temperature (Table 2.1). During 
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the composting process, the most biodegradable forms of C are mineralized 

(Bernal et al., 1998; Paré et al., 1998) along with other nutrients (i.e. N and P), 

fuelling microbial activity. While all other composts spent 14 to 42 d at 

maximum internal temperature, MWIW, MW4, MW5 and MW6 had shorter 

opportunity for C turnover (1 to 10 d). Paré et al. (1998) describe a compost 

with maximum loss of C as CO2 during days 4 to 11 of a 59 d composting 

period.  Decreases in DOC concentration during the thermophilic composting 

phase are well reported in the literature (Benito et al., 2003; Paré et al., 1998; 

Raj and Antil, 2011).  Therefore, it is likely that the conservation of total DOC 

in these three composts is a result of reduced cumulative microbial activity 

which, as described below, subsequently alters the composition of the 

remaining DOC as well.  

 

2.3.2 Compost DOC quality  

Variability was found between samples not only in total DOC 

concentrations, but also in the composition of the DOC quality profiles (Figure 

2.1). When considering HA, FA, HoN and Hi pool sizes relative to one another, 

FA nearly consistently had the highest proportion of total DOC. Humic acids 

had low variability relative to other pools (10 to 27%). Of the hydrophobic 

compounds (HA+FA+HoN), HoN tended to have the lowest concentrations 

across the compost types (except MW6). These HoN compounds are highly 

aliphatic in compost (Chefetz et al., 1998), including quinones (Amery et al., 

2009), which are known to be released by microbial turnover (Paul, 2006). The 

Hi pool, typically comprised of low-molecular weight sugars and amino acids 

(Amery et al., 2009), had both the highest absolute concentrations and 

proportion of total DOC under conditions of <10 d in thermophilic phase.  

Three composts had both the highest absolute DOC concentrations and 

the highest proportions of hydrophilic (Hi) DOC: MWIW, MW4 and MW5. 

These three composts underwent the shortest durations at peak composting 

temperature (Table 2.1) and all three were sourced from municipal household  
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Figure 2.1: Relative composition of dissolved organic carbon (DOC) extracted 

from 11 compost types. Each pool is presented as a proportion of total DOC. 

Numbers in pie charts are the absolute concentrations (g DOC kg-1 compost) 

of the corresponding DOC pools. 
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organic waste, i.e. low prevalence of woody materials. All other composts 

underwent a longer composting period (>10 d), higher composting temperature 

(≥70 °C (except MW6)), and had lower proportions of Hi, which indicates 

turnover of these compounds during composting. The Hi pool may be 

preferentially used as a substrate by microorganisms throughout the composting 

process (Said-Pullicino et al., 2007), subsequently contributing a lower 

proportion to the composition of the remaining DOC. Furthermore, when added 

to soil, compost DOC high in Hi proportion has been found to promote short-

term (<2d) microbial activity rates more so than a compost with a higher 

proportion of hydrophobic compounds (Straathof et al., 2014). Measurement of 

Hi DOC may therefore be a more informative indicator of the effect compost 

addition may have on soil microbial activity rates than measurements of OM or 

even total DOC. Alternatively, HA DOC and other hydrophobic pools 

(FA+HoN) dominated composts that underwent ≥28 d at peak composting 

temperature (Figure 2.1; Table 2.1). These hydrophobics are aromatic and more 

resistant to turnover than hydrophilic compounds and thus, as hydrophilics are 

depleted, they constitute a larger proportion of total DOC. The aromatic and 

recalcitrant nature of the hydrophobics may also contribute to their ability to 

bind pollutants when applied to soil (Semple, 2001). Particularly the HA in this 

hydrophobic fraction may contribute to the formation of soil aggregates and, 

hence, to the remediation of soil structure through HA’s ability to bind strongly 

to reactive mineral surfaces (Weng et al., 2006). 

Composts with the most similar DOC profiles were those with both 

similar inputs and similar lengths of time at peak temperature. Composts MW2 

and MW3 both had a DOC pool breakdown of approximately 55% FA, 20% Hi, 

15% HA and 10% HoN. As both composts were processed similarly in terms of 

temperature, time, and sieving (Table 2.1), this suggests these treatments are 

reflected in the DOC composition. The two samples varied slightly in input 

materials (Table 2.1), but by <10%. Compost MW1 also underwent the same 

processing treatment and had a similar quality composition as MW2 and MW3. 

However, it was sieved to a smaller size (10 mm vs. 15 mm), which probably 

resulted in a larger proportion of its material dominated by highly decomposed 
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materials. This is reflected in its more dominant proportion of HA (Figure 2.1), 

a highly transformed DOC pool. These three composts’ processing similarities 

are reflected in their shared DOC quality profiles, validating the consistency of 

this fractionation method as an indicator of compost input materials and 

processing treatments.  

 

2.4 Conclusions 

The DOC fractionation method showed consistency between composts 

with similar input materials and processing conditions. Composts with the 

shortest thermophilic periods (≤10 d) and lower composting temperatures (≤70 

°C) had the highest DOC concentrations and the highest proportion of 

hydrophilic compounds. This suggests preferential turnover of hydrophilics 

during composting, while hydrophobics remain relatively conserved.  Based on 

the variability of these pools between composts, and the consistent influence of 

processing conditions on DOC composition, these results suggest that DOC 

quality via fractionation is a valuable parameter to consider when assessing the 

suitability of a compost for application to soil.   
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Dynamics of soil dissolved organic carbon pools 
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compounds sustain microbial respiration  
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Abstract 

The quality of dissolved organic carbon (DOC) released from soil organic 

amendments may influence soil microbial activity and the quality of the soil’s 

DOC pools. Measurements of total DOC are often considered in relation to 

microbial activity levels but here we propose that quantification of DOC 

fractions is a more informative alternative. In a laboratory incubation, soil 

received DOC that was extracted from three organic matter sources: fresh 

compost, mature compost, and a mixture of the two. Soil microbial respiration 

(CO2 emission), and concentrations of hydrophobic (humic acids (HA), fulvic 

acids (FA) and neutrals (HoN)) and hydrophilic (Hi) DOC fractions were 

measured throughout the 35 d incubation. The A254 specific UV absorption of 

total and HA DOC were measured at the start and end of the incubation as an 

indicator of aromaticity. Microbial respiration rates were highest in soils 

amended with fresh compost DOC, which had a higher proportion of Hi 

compounds. Concentration of Hi was significantly and positively correlated 

with soil respiration, explaining 24% more variation than total DOC. Humic 

acid concentrations significantly decreased over 35 d, including a 33% 

reduction in HA from an unamended control soil. Compost treated soils’ HA 

pools increased in aromaticity, suggesting preferential mineralization of the 

least aromatic HA molecules. A decrease in SUVA254 values in other HA pools 

may be the result of HA degradation in the absence of low-aromatic HA. Our 

observation of depletion of hydrophobic compounds from the HA fraction 

provides evidence that humic substances can be a relatively reactive pool, which 

can provide, together with hydrophilic compounds, a readily available C source 

to the microbial community. 
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3.1 Introduction 

Dissolved organic carbon (DOC) plays a key role in sustaining soil 

microbial activity due to its solubility and lability (Kalbitz et al., 2000; 

Chantigny, 2003) and thus may be a pertinent indicator of soil quality. Soil 

DOC is both a substrate for microbial activity and a byproduct of the 

subsequent microbial metabolic processes (Marschner and Kalbitz, 2003; Van 

Hees et al., 2005; Bolan et al., 2011). The quality of DOC influences the 

variability of several soil factors, such as microbial community composition (De 

Graaff et al., 2010), nutrient availability and leaching (Gerard H. Ros et al., 

2010), and the rate of soil C turnover (Boddy et al., 2007; Jandl and Sollins, 

1997). As a substrate, DOC may originate from plant residues, root exudates, 

decomposing litter, and, in agricultural soils, from applied organic amendments 

(Chantigny, 2003). The range in potential sources results in a biochemically 

heterogeneous DOC solution, which exacerbates uncertainty in predicting how a 

particular amendment impacts soil microbial activity and C turnover rates.  

Several studies have measured the influence of various qualities of C 

additions on soil C turnover (Guggenberger et al., 1994; De Nobili et al., 2001; 

Kalbitz et al., 2003a; Boddy et al., 2007). Those describing rapid evolution of 

CO2 from soil (<1h after C addition) attributed this to the turnover of low 

molecular weight (LMW) C compounds (De Nobili et al., 2001; Boddy et al., 

2007), such as short-chain polysaccharides and amino acids. Van Hees et al. 

(2005) compared forest soil respiration rates between LMW and high molecular 

weight DOC compounds and concluded that the latter drives only 14% of CO2 

emissions. This suggests that DOC containing high proportions of LMW 

compounds would stimulate microbial activity relatively more than DOC with a 

smaller proportion of LMW C. Qualifying DOC into proportions of labile, 

LMW C vs more recalcitrant, aromatic C compounds may therefore provide a 

more powerful indication of C turnover rates and microbial activity potential 

than measurements of DOC concentration alone.  

One method of qualifying DOC is to partition the total pool into 

operationally defined fractions based on their solubility and relative 
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hydrophobicity (van Zomeren and Comans, 2007). This is a rapid-batch 

procedure based on the International Humic Substances Society’s standard 

method for isolation of humic substances from organic matter in soils and 

natural waters (Swift, 1996; Thurman and Malcolm, 1981). By equilibrating a 

DOC solution with an absorbent hydrophobic resin (DAX-8), hydrophobic 

compounds are pulled out of solution and physically separated from hydrophilic 

compounds. The isolated pools resulting from this fractionation are 

distinguishable as aromatic, hydrophobic fraction (humic (HA) and fulvic acids 

(FA), hydrophobic neutrals (HoN)) and a hydrophilic fraction (Hi). Despite the 

relative ease of the method and its pervasiveness in environmental chemistry 

applications, only a few studies have looked at the dynamics of DOC quality 

over time using these fractions as a proxy. Ros et al. (2010) quantified fractions 

in three different soils after 35 d of incubation at different temperatures. They 

observed a decrease in the absolute concentration of a sandy soil’s HA fraction 

at 10 and 20°C, which resulted in this pool contributing a smaller proportion of 

the total DOC.  At the same time, this study observed a stable Hi concentration 

at the end of incubation, which seems counterintuitive in contrast with other 

studies describing a high degradability of LMW compounds (Boddy et al., 

2007; Bolan et al., 2011; De Nobili et al., 2001; Lannan et al., 2012a) which 

would be present in the Hi pool. In a study of how known compounds in 

homogenous, prepared solutions are partitioned between hydrophobic and 

hydrophilic pools, Amery et al. (2009) observed the majority of aliphatic C and 

97% of a fractionated glucose solution was measured in the hydrophilic pool. 

This pool contains the largest proportion of LMW compounds (<500 Da) 

(Thurman et al., 1982). Conversely, hydrophobic HA molecules are considered 

a source of C quite recalcitrant to microbial degradation and thus one of the 

most stable soil organic compounds (Kalbitz et al., 2003b). This HA pool also 

contains larger, more aromatic molecules, in the range of 500-10000 Da 

(Thurman et al., 1982). Fulvic acids tend to be less aromatic and lower in 

molecular weight (500-2000 Da (Thurman et al., 1982)) than humic substances. 

Guggenberger et al. (1994) have proposed that hydrophobic compounds may be 

in an intermediary state of decomposition between DOC source material and Hi 
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fractions, but the authors do not identify a mechanism behind this flux or 

explore the implications for soil quality.  

The biological relevance of each of these DOC fractions in soil remains 

unclear, especially for agricultural soils (Haynes, 2005), as research has yet to 

link fractionation in real-time with measurements of microbial activity. 

Although Chantigny (2003) describes the effect of organic amendments on soil 

DOC concentration, their impact on soil DOC quality over time may be highly 

variable depending on the amendment’s composition and their effect on C 

turnover rates. The aim of this study was to investigate the dynamics of soil 

DOC quality using fractionation and specific UV absorbance, in parallel with 

measurements of soil microbial respiration, in a soil amended with compost-

derived DOC. Due to increased bioavailability, we hypothesized that soils 

receiving DOC with a higher proportion of hydrophilic compounds would have 

respiration rates stimulated more so than those receiving more aromatic 

hydrophobic compounds. We expected DOC extracted from soil to reflect the 

characteristics of the added DOC with respect to prevalence of certain fractions 

and aromaticity measurements. These quality measurements and soil microbial 

respiration rates were carried out simultaneously, in order to elucidate the 

influence of hydrophobic vs hydrophilic DOC fractions on soil C turnover rates 

and better understand the contribution of DOC to soil activity levels. 

 

3.2 Materials and Methods 

3.2.1 Amendment Characterization 

Two different composts were used as a source of DOC to add to soil. 

To obtain DOC varying in quality, the composts were selected based on their 

different source materials and maturation treatments. They were collected in 

October 2012 from two different commercial compost facilities in the 

Netherlands. The first compost, hereafter referred to as fresh compost, was 

collected from the Orgaworld Biocel fermentation facility in Lelystad, The 
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Netherlands. The input material of the fresh compost consisted of municipally 

collected household fruit, vegetable and garden residues. These materials were 

composted for 1 d above 65°C (internal temperature of the compost heap) and 6 

d above 45°C, with two instances of the material being turned. The second 

compost, hereafter referred to as mature compost, was collected from the Van 

Iersel compost facility in Biezenmortel, The Netherlands. It consisted, by mass, 

of 75% soil sieved from woody compost inputs and 25% municipal grass 

cuttings. The composting period for the mature compost lasted for 2 weeks at an 

internal temperature of 60-70°C, and the compost heap was turned twice a 

week. After this period, the mature compost was cured at ambient outdoor 

temperatures for 6-8 weeks. Both composts were collected at the stage of being 

a final, commercial product and their chemical characteristics are described in 

Table 3.1. 

The compost DOC was obtained via a 1:2 compost to ultra-pure water 

(UPW) extraction: after 1 h equilibration by horizontal shaking, 20 min 

centrifuging at 3000 g and 10 min ultra-speed centrifuging at 11700 g, the 

supernatant was vacuum-filtered through a 0.2 m cellulose nitrate membrane, 

which had been pre-rinsed with 100 ml UPW to avoid C release from the 

membrane itself (Khan and Subramania-Pillai, 2006). The filter size was 

selected to exclude any microbes from the solution (Norris and Ribbons, 1969). 

This extraction was performed on both fresh and mature compost, as well as a 

50/50 mass mixture of the two (hereafter referred to as mix compost) so that 

three DOC amendment solutions ranging in quality were prepared. The 

solutions were then freeze-dried for stable storage and to allow for re-

dissolution at equal DOC concentrations. 

 

3.2.2 Soil Collection and Characterization 

The soil was collected in October 2012 from the Wageningen UR 

Applied Plant Research site in Vredepeel, Netherlands, from the 0-20 cm layer 

of an agricultural field. It is classified as non-calcareous loamy sand soil. It was 

suitable to assess DOC dynamics, since a high level in carbonates and clay 
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minerals strongly affects DOC concentration and adsorption (Chantigny, 2003; 

Kalbitz et al., 2000), and contribute to abiotic soil CO2 release; this soil was less 

than 0.01% CaCO3 (Table 3.1) and only 1% clay. Roots and crop residues were 

manually removed and the soil was air dried at 22±1°C for 8 hours until 30% 

water holding capacity was reached. 

 

Table 3.1: Initial characteristics of the soil and composts used in the study. 

Numbers in brackets are SE for dry matter (n=2; except organic matter (OM), 

where n=3). Humic acid (HA), fulvic acid (FA), hydrophobic neutral (HoN) and 

hydrophilic (Hi) dissolved organic carbon (DOC) are presented as a percent of 

total DOC. 

 

Source 
material 

pH OM CaCO3 
Total 
DOC 

HA  FA  HoN  Hi  

 
% % mg kg

-1
 % % % % 

Soil 6.68 
3.6 

(0.1) 
0.01 38.2 6.3 18.6 41.4 33.7 

Fresh 
Compost 

8.12 
38.7 
(1.2) 

3.95 
1624 

(270.1) 
23.5 
(0) 

31.2 
(3.1) 

10.1 
(4.6) 

35.3 
(1.4) 

Mature 
Compost 

8.35 
17.5 
(0.5) 

0.34 
559 

(30.1) 
16.1 
(3.8) 

37.3 
(5.0) 

23.8 
(0.6) 

22.9 
(0.6) 

 

3.2.3 Soil Incubation and Respiration Measurements 

An incubation experiment was established in November 2012 to 

measure DOC turnover in soil to which the extracted compost DOC had been 

added. The incubation was conducted in 575 ml glass bottles with 150 g dry-

weight-equivalent soil at 20°C in the dark for 35 d. After soil was placed in the 

bottles but before DOC addition, a pre-incubation period of 5 d occurred. This 

was to avoid measurement of CO2 that may have been produced as a result of 

physical or chemical changes caused during sampling and transfer of the soils to 

the bottles. The compost DOC was resuspended in UPW and solutions were 

added at rates of 70 or 30 g C g
-1

 dry soil (high (H) and low (L) rates, 
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respectively), which adjusted the final soil moisture content to 60% water 

holding capacity. The control treatment received only UPW. These rates 

correspond with a compost application of 50 or 20 Mg ha
-1 

compost. Thus, three 

DOC source types were added at two rates of DOC addition, making six 

treatments. Five replicates per treatment and for the control were established (3 

DOC sources x 2 DOC rates x 5 replicates + 5 controls = 35 jars for CO2 

measurements). Soil moisture in each bottle was adjusted to 60% water holding 

capacity using UPW as needed, at least once per week. 

The soil’s CO2 emission was measured from each bottle’s headspace by 

sealing the jar with a rubber-septum for a time duration which increased from 6-

24 h throughout the 35 d incubation period, depending on the emission 

concentration at that point in the incubation. Headspace CO2 concentrations 

were measured using an INNOVA 1412 Photoacoustic field gas-monitor 

(LumaSense Technologies, Ballerup Denmark). This procedure was repeated on 

days 1, 2, 4, 7, 10, 14, 21, 28 and 35. The CO2 emission rate (g C g
-1

 soil h
-1

) 

from each replicate was calculated as: 

  

 

where Vtot, Vgm and Vhs are the total, gas monitor’s and bottle’s headspace 

volumes (l), CO2hs and CO2air are the measured CO2 concentrations (l CO2 l
-1

) 

of the bottle’s headspace and the ambient air, Wsoil is the soil dry weight (g), t is 

the duration of the sealing (h), 22.4 is the molar volume of CO2 (l mol
-1

) at STP, 

and 12 the molar mass of C (g mol
-1

). Respiration rates on days between 

measurements points were calculated using linear interpolation. Respiration 

related to the addition of DOC (i.e. independent of basal respiration) was 

calculated by subtracting the mean CO2 emission rate of the unamended control 

soil from the rates of soils with added DOC measured at the same time point.  

The cumulative curve of C mineralized as a percent of total C added 

was calculated after linear interpolation between measurements as: 
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where rate(i) and rate(j) are the CO2 emission rates on different days (g C g
-1

 

soil h
-1

) after subtraction of basal respiration rates, t(i-i0) and t(j-i) are the time 

differences between consecutive measurements (h) and Cadded is the C rate 

applied at the experiment’s beginning g C g
-1

 of compost DOC solution). 

 

3.2.4 DOC Extraction and Fractionation 

To measure DOC dynamics over the course of the 35 d incubation, 12 

additional microcosms for each treatment were established and incubated in 

parallel to the five CO2-measured replicates. Three of these additional 

microcosms from each treatment were destructively harvested on days 2, 6, 13 

and 35. On these days, DOC was extracted from each replicate in 1:2 soil to 

UPW solution ratio in the same method as the aforementioned compost 

extraction. The filtered DOC solution was then qualified using a rapid-batch 

fractionation procedure described by Van Zomeren and Comans (2007). This 

fractionation method uses precipitation and dissolution properties established by 

the International Humic Substances Society (IHSS) to operationally isolate four 

DOC pools: humic acids (HA), fulvic acids (FA), hydrophobic neutrals (HoN), 

and hydrophilics (Hi), the concentrations of which are either measured directly 

or calculated by differences before and after isolation. Briefly, the starting 

solution of the total extracted DOC was acidified to pH 1 using 6 M HCl, which 

results in the precipitation of any humic acids that were in solution. The 

acidified solution was then centrifuged, separating the HA from the supernatant. 

The pellet of HA was resuspended in a base solution of 0.1 M KOH and the 

concentration determined on a Shimadzu total organic carbon analyzer (5000A). 

The supernatant was then equilibrated with the resin DAX-8 (Sigma-Aldrich) 

for 1 h at 220 rpm horizontal shaking at a 1:5 resin to solution ratio. This 

equilibration step pulled hydrophobic FA and HoN compounds out of solution 
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by binding them to the surface of the resin. The compounds that remained in 

solution are operationally defined as hydrophilic and their concentration was 

measured as DOC on a Segmented Flow Analyzer (SFA). Finally, the resin 

separated from the Hi fraction was equilibrated in 0.1 M KOH, re-dissolving the 

FA pool. The concentration of FA was also measured as DOC on an SFA while 

the concentration of the HoN pool was calculated by determining the proportion 

of the DOC which was not re-dissolved from the resin (as it remains bound to 

the resin even under alkaline conditions). We deemed 90-110% mass balances 

of the sum of the individual fractions, relative to the original total DOC 

concentration, as an acceptable return.  

To test for the adsorption of added DOC to the soil solid phase 

throughout the incubation time, an acid and base extraction and fractionation of 

the total soil matrix was also performed, as described by Van Zomeren and 

Comans (2007).  

 

3.2.5 Aromaticity of DOC 

To assess aromaticity of the DOC solutions, specific ultraviolet 

absorbance (SUVA) was measured in total DOC and HA fractions extracted 

after 2 and 35 d of incubation. Three replicates of 1.5 ml soil-extracted DOC 

from each treatment were analyzed with a spectrophotometer (Genesys 10S 

UV-VIS, Thermo Fisher Scientific Inc., Waltham MA, USA) and UPW was 

used as a blank. Three replicates of 1.5 ml isolated and redissolved HA from 

each treatment were also analyzed with 0.1M KOH used as a blank. Specific 

UV absorbance (SUVA, l g
-1

 cm
-1

) at 254 nm was calculated through the 

following equation, as described by Weishaar et al. (2003) and adapted by 

Amery et al. (2008): 

 

 

where A254 is absorbance at 254 nm (dimensionless), b is the length path (cm) 

and DOC the dissolved organic carbon concentration (mg l
-1

) of the solution. 
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3.2.6 Data Analysis 

Statistical analyses were performed with GenStat 15
th
 Edition (VSN 

International, Hemel Hempstead UK). Homogeneity of variance was tested 

through a Bartlett’s test and normality through a Shapiro-Wilk’s test; all data 

met the requirements. A three-way repeated measures ANOVA, with time as 

the third variable, was run to test significance of compost DOC type and rate of 

addition on soil respiration, DOC concentrations and SUV absorption. Tukey’s 

multiple means comparison test was employed to avoid Type I errors where 

P<0.05 was the significance level selected. Linear regression was performed on 

log soil respiration rates (independent variable) and total DOC and all DOC 

pool concentrations. Sigma Plot 11.0 (Systat Software Inc., 2008, Chicago IL) 

was used for curve fitting of C mineralization rates. 

 

3.3 Results 

3.3.1 Carbon mineralization dynamics 

The CO2 emission rates from incubated soils decreased throughout the 

incubation time for all treatments (Table 3.2), most rapidly between day 1 and 

day 7. No significant interaction was found between DOC compost source and 

DOC addition rate (P>0.05), therefore only main effects are presented here. The 

data of all treatment effects may be found in the Supplementary Materials Table 

S1 (http://dx.doi.org/10.1016/j.soilbio.2014.09.004). Treatment effects of DOC 

compost source and DOC addition rate resulted in significant differences 

(P<0.05) only until 4 d after the start of the incubation. Respiration 

measurements taken on 7, 14, 21 and 35 d after the start of incubation indicated 

no differences between treatments. This corresponded with trends in DOC 

concentrations, which did not differ significantly among treatments after day 6 

(Table 3.2, P>0.05). Thus, Table 3.2 presents days 1-6 and day 35 of soil 

respiration values and soil DOC concentrations. The results of a three-way 

ANOVA to test the main effects of DOC compost source and DOC addition rate 
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Table 3.2: Mean respiration rates (CO2 µg C g
-1

 h
-1

) (n=5) and dissolved organic 

carbon (DOC) (n=3) concentrations from incubated soil over a 35 d period. 

Humic acids (HA), fulvic acids (FA), hydrophobic neutrals (HoN) and hydrophilic 

compounds (Hi) were fractionated from DOC. Different letters within a column 

indicate significantly different least squared means after Tukey’s adjustment 

(P<0.05). Main effects were significant for compost source (P<0.001) and 

addition rate (P<0.001) as DOC treatments added to soils.  

 

Main 
Effect  

Time 
 

d 

CO2 

 

µg C  
g

-1
 h

-1 

DOC 
 

mg kg
-1 

HA 
 

mg kg
-1 

FA 
 

mg kg
-1 

HoN 
 

mg kg
-1 

Hi  
 

mg kg
-1 

Compost 
source 
of DOC 

Fresh 1 0.157a 
     

 2 0.103b 22.7b 8.6bcd 3.7bcd 1.6cd 8.7b 

 4 0.057d 
      

 6 
 

10.4de 7.3cde 2.1de 0.4e 7.4bc 
 

 35 0.002e 7.6e 1.7f 1.7e 2.4abc 1.0d 

 Mix 1 0.143a 
      

 2 0.092bc 24.9b 13.6b 5.0b 0.5de 11.2a 
 

 4 0.050d 
      

 6 
 

15.9c 10.7bc 1.4e 2.6abc 5.7c 
 

 35 0e 11.9cde 4.1def 1.8e 2.7abc 0.4d 

 Mature 1 0.099b 
      

 2 0.076c 41.9a 20.7a 7.4a 3.3a 11.2a 
 

 4 0.050d 
      

 6 
 

22.4b 12.37bc 4.4bc 1.9bc 7.9b 
 

 35 -0.003e 12.6cd 2.6ef 3.0cde 2.9ab 1.0d 

Addition High 1 0.170A 
     Rate of 

 2 0.12B 35.0A 14.7A 7.4A 2.3AB 11.1A 

DOC 
 4 0.068D 

      
 6 

 
18.3C 10.4B 3.8B 1.6BC 7.8C 

 
 35 -0.003F 10.9DE 2.2C 2.5BC 2.8A 1.1E 

 Low 1 0.095C 
      

 2 0.061D 24.7B 13.9AB 3.3B 1.3C 9.6B 
 

 4 0.036E 
      

 6 
 

14.1D 9.9B 1.5C 1.7BC 6.1D 
 

 35 0.002F 10.3E 3.4C 1.8C 2.6A 0.5E 
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indicated that on days 1-2 the soils receiving fresh compost DOC (which had 

the highest starting proportion of Hi (Table 3.1)) respired significantly more 

CO2 than soils receiving mature compost DOC (Table 3.2, P<0.001). Soils with 

additions of mix compost respired slightly less than fresh compost, but more 

than the mature compost DOC, indicating that the mix compost did indeed 

represent an intermediary source of the other two composts combined.  

Respiration rates from DOC treated soils were affected as expected; 

rates of emission from high C addition rate treatments respired approximately 

two times the amount of CO2 as soils with low addition rates (Table 3.2, 

P<0.001) up to and including day 4. However, low addition rates had the 

highest proportion of mineralized C (Figure 3.1) for soils receiving fresh 

compost and mix compost. These two treatments were not significantly 

different from each other and mineralized, respectively, 58±13 and 46±5% of C 

added. Their high rate counterparts (Figure 3.1: FC-H and Mix-H) were 

significantly lower (P<0.05) in the proportion of mineralized added C, and 

mineralized 40 and 29% of added C, respectively. However, in absolute terms, 

higher C mineralization occurred in all high rate treatments, which corresponds 

with 10-15% higher CO2 emission rates from mix and mature compost additions 

in the first 4d (Table S1: http://dx.doi.org/10.1016/j.soilbio.2014.09.004). For 

mature compost DOC, no different mineralization pattern between high and low 

rate was observed and both treatments mineralized on average 27% of C added, 

which was not significantly different from the mix compost at high addition 

rates (Figure 3.1).  

 

3.3.2 DOC extraction and fractionation 

Total DOC concentration in each treatment and the control was 

significantly lower on day 35 than at the start of the incubation (Table 3.2). 

After the first sampling (day 2), soil that had received mature compost DOC had 

the highest DOC concentration in soil, reaching the mean value of 49 mg kg
-1

 

soil for mature compost added at the high rate, and 35 mg kg
-1

 soil for mature 

compost added at the low rate. Concentrations of DOC from fresh compost and 
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mix compost-treated soils were significantly lower than mature compost on 

days 2 and 6, despite DOC being added at the same concentration(s) as mature 

compost.  

Total DOC, HA, FA and Hi concentrations all had significant linear 

regression models with log CO2 respiration rates (P<0.001, <0.001, 0.003 and 

<0.001, respectively) over the 35 days (Figure 3.2). Hydrophobic neutrals could 

not significantly explain any variation in CO2 emission rates (P=0.4). The 

variable with the best fit to the observed data was Hi concentration (R
2
=0.81), 

followed by HA, Total DOC and FA (R
2
0.60, 0.57 and 0.29, respectively). 

Figure 3.1: Cumulative rate of soil C respired as a % of C added as DOC 

over a 35 d incubation. Symbols represent point data calculated for fresh 

compost DOC high/low rate (FC-H, FC-L), mix compost DOC high/low rate 

(Mix-H, Mix-L), and mature compost DOC high/low rate (MC-H, MC-L) 

additions to soil. Different patterned lines show fitted curves: y=(Cmax*t)/(b+t), 

where Cmax is maximum C mineralizable (%), t is the time in d, and b is the 

slope of the curve for each treatment. 
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 Over the course of the incubation, a decrease in total DOC from each 

soil was measured for each treatment (Table 3.2) and thus a decrease in each 

fraction’s concentration was almost consistently exhibited. Total absolute 

concentrations of Hi and HA decreased the most in each treatment. Mature 

compost treated soils lost 18 mg DOC kg
-1

 although all HA concentrations were  

reduced by a factor of 3-8 from day 2-35. Fulvic acids also decreased in each 

soil but by less magnitude (Table 3.2). Concentrations of HoN remained 

relatively stable or behaved inconsistently; HoN concentrations in fresh 

compost and mix compost soils increased (Table 3.2). The largest loss of Hi 

was in mix compost soils where 10.8 mg kg
-1 

was lost while the lowest losses 

Figure 3.2: Linear regression of log CO2 respiration rates from dissolved 

organic carbon (DOC) pool concentrations. Symbols represent respiration 

rates measured or interpolated from the same measurement time point of 

total DOC, humic acids (HA), fulvic acids (FA), hydrophobic neutrals (HoN) 

and hydrophilic (Hi) pools. Regression line equations with significant 

(P<0.05) regression mean squares are presented in the legend below their 

corresponding variables, except for HoN (P>0.05).   
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(7.7 mg kg
-1

) were from fresh compost soils. While Hi decreased consistently in 

each soil, their depletion was almost equal to that of the HA. As a proportion of 

DOC however, depletion of HA was more dramatic across all treatments, 

including the control soil, than that of Hi.  

The above trends become more apparent when considering the 

contribution of each pool to the total DOC (Figure 3.3). Soils with fresh 

compost and mix compost DOC additions had a similar pattern in quality 

changes over 35 d: a sharp decrease in HA proportion was observed after day 6 

for high rate treatments. While low rate additions also exhibited a decrease in 

this pool, this was less pronounced than in high rate additions of fresh and 

mature compost. Furthermore, %HoN had a net increase in every treatment 

between day 2 and 24. To a lesser degree, %FA also increased. In high rate 

treatments and the control soil, %Hi was constant throughout the incubation 

period, although in the low rate treatments %Hi decreased over time (Figure 

3.3). Remarkably, the control soil had a similar pattern as soils receiving a high 

rate of fresh and mature compost DOC: a significant depletion (33%) of native 

HA after day 6, an increase in HoN and FA proportions and a steady proportion 

of Hi (Figure 3.3). 

 

3.3.3 Aromaticity of DOC 

Specific UV absorption values for total extracted soil DOC did not vary 

significantly between DOC treatments throughout the incubation ((P>0.05) 

Table 3.3). Control soil DOC at day 2 was more aromatic than soils with DOC 

additions, but not by day 35, and this was the only treatment that exhibited a 

decrease in total DOC aromaticity. In contrast, HA fraction SUVA varied 

significantly between treatments and over time. Compost source and DOC rate 

of addition were significant main effects (P<0.001), but did not have a 

significant interaction. Soils with low rate DOC additions were more aromatic 

for each compost source than high rates of addition (Table 3.3). Moreover, there 

was a significant interaction of the compost source over time; fresh and mix 

compost soils increased their HA aromaticity levels over time. Conversely, the 
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Figure 3.3: Percent composition of soil 

DOC fractions over a 35 d incubation 
period. Humic acids (HA), fulvic acids 

(FA), hydrophobic neutrals (HoN) and 
hydrophilic compounds (Hi) were 

fractionated from, and presented as a 
percent of, total soil DOC. Each graph 

represents one DOC addition type over 
time: a) fresh compost, high addition rate 

(FC-H); b) fresh compost, low addition 
rate (FC-L); c) mature compost, high rate 

(MC-H); d) mature compost, low rate (MC-
L); e) mix compost, high rate (Mix-H); f) 

mix compost, low rate (Mix-L); and g) 
Control. Bars show ±SE (n=3). 
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aromaticity of control soil HA fractions decreased over the same time period, 

while mature compost soils did not change significantly between days 2 and 35 

(Table 3.3).  

 

Table 3.3: Mean SUVA254nm values for dissolved organic carbon (DOC) 

extracted from soil receiving fresh (FC), mature (MC), or a mixture of fresh and 

mature (Mix) compost DOC at high (H) or low (L) addition rates, or no DOC 

addition (Control). Humic acid (HA) fractions and total DOC were measured at 

the start (day 2) and end (day 35) of the 35 d incubation. Numbers in brackets 

show SE (n=3). 

 

 HA DOC 

DOC 

source 

Day 2  

(l mg
-1

 cm
-1

) 

Day 34  

(l mg
-1

 cm
-1

) 

Day 2  

(l mg
-1

 cm
-1

) 

Day 34  

(l mg
-1

 cm
-1

) 

FC-H 57.4 (1.9) 91.1 (10.2) 36.7 (0.2) 34.3 (3.4) 

FC-L 81.9(9.1) 115.1 (11.8) 38.3 (2.2) 34.0 (2.6) 

Mix-H 67.4 (0.7) 73.0 (7.9) 35.0 (2.2) 33.3 (1.7) 

Mix-L 93.4 (7.1) 103.0 (8.0) 33.5 (2.7) 37.0 (2.0) 

MC-H 65.6 (2.0) 66.6 (9.6) 35.0 (0.6) 33.8 (2.3) 

MC-L 87.1 (4.5) 84.6 (10.4) 36.7 (1.9) 33.1 (0.7) 

Control 155.3 (0.4) 106.4 (4.5) 43.0 (0.2) 34.1 (0.5) 

 

3.4 Discussion 

A pertinent hypothesis behind this experiment was that soils receiving 

DOC with a higher proportion of labile Hi compounds would yield higher C 

turnover than more hydrophobic (HA, FA, HoN) DOC additions. This was 

confirmed in our results, which showed higher CO2 emission rates and thus a 

faster C turnover for fresh and mix compost compared to mature compost 

(Table 3.2). The fresh compost material had a 3-times higher extractable DOC 

concentration than the mature compost. Therefore, soils treated with mix 

compost DOC likely behaved more similarly to soils treated with fresh compost 
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DOC because the 50-50% mixture resulted in a DOC composition closer to 

fresh compost. The higher respiration rate for fresh compost DOC coincided 

with a faster decline in DOC and Hi concentrations, indicating that a biological 

process caused the decline in DOC. Specific UV absorption measurements were 

consistent with C mineralization dynamics and DOC fractionation, since 

aromaticity index SUVA (Table 3.3) for HA was lower for the treatments which 

respired more CO2. Additionally, the most variation (81%) in respiration rates 

throughout the incubation period was explained by Hi pool concentrations as 

opposed to other pools or even total DOC. Both these findings support our 

proposition that qualification of C pools is an improvement over total DOC 

measurement in predicting the response of soil microbial activity levels.  

Perhaps most remarkable with regards to the change in soil DOC 

quality measured over time was the 33% decline in the contribution of HA to 

total DOC in the control soil (Figure 3.3). This was unexpected due to what is 

known about the aromatic and recalcitrant nature of humic substances relative 

to the bioavailability of other DOC pools (Jandl and Sollins, 1997). To better 

understand the physical-chemical processes that may contribute to this, it is 

relevant to consider the change in SUVA characteristics of HA. All compost 

DOC-treated soils had a lower HA SUVA value than the control soil at day 2, 

indicating that the composition of treated soils’ HA was more reflective of 

added HA, i.e. the dilution of native HA with less aromatic compost-derived 

HA reduced the aromaticity of the new conjoined pool.  The depletion of humic 

substances in compost-DOC treated soils may be attributed to compost-derived 

HA being more bioavailable in nature than soil-derived HA (as evidenced by 

the lower HA aromaticity of soil receiving compost DOC). The bioavailability 

of this added HA is supported by the observation that the HA SUVA increases 

over time in soils amended with fresh compost DOC. This suggests that the 

least aromatic HA molecules are being preferentially turned over and more 

completely mineralized while more aromatic compounds remain in solution. 

The turnover of such compounds and the resulting change in their 

bioavailability is conceptually described by Kaiser and Kalbitz (2012). As the 

authors propose, and as our findings support, the turnover of freshly added 
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organic matter by microbial activity results in organic matter more resistant to 

decomposition than its source material. 

Conversely, the decrease in aromaticity of the control soil’s HA fraction 

is indicative of a different mechanism because the depletion in size of the HA 

pool measured from this soil corresponds with a decrease in the pool’s 

aromaticity.  Degradation of these control soil’s HA compounds, which had a 

higher initial SUVA than DOC treated soils, may be the result of incomplete 

mineralization of HA. We hypothesize that the disruption of bonds in aromatic 

HA molecules by partial mineralization may result in constituent molecules 

either remaining in the HA fraction but exhibiting less SUVA due to decreased 

complexity, or entering the other lower molecular weight DOC fractions. The 

latter explanation is supported by observations of disaggregation of HA 

molecules by dilution (van Zomeren and Comans, 2007), consistent with the 

model of Kaiser and Kalbitz (2012), and corresponds with the observation of 

depletion in total HA concentration. Mature compost treated soils may be in an 

equilibrium of these two proposed processes as the aromaticity of their HA 

fraction is relatively stable (unchanged SUVA) throughout the incubation.  

A stabilization or increase in the concentration of FA and HoN pools 

was observed to correspond with a depletion of HA concentration (Table 3.2) in 

many treatments. Guggenberger et al. (1994) have proposed that hydrophobic 

compounds may be in an intermediary state of decomposition between DOC 

source material and Hi pools. We agree and further propose more specifically 

that constituents of the HA pool are resupplying the FA and/or HoN pools with 

DOC. Although it was not possible to directly measure the flux of materials 

between pools, the changes in fraction concentrations over time offer some 

evidence for this proposed transfer of C. Humic acids are typically represented 

as aromatic ring structures with a vast range of functional groups, hydrophobic, 

hydrogen and oxygen bonds between these rings (Sutton and Sposito, 2005). 

These bonds can be broken down by microbial activity, resulting in free lower 

molecular weight moieties either hydrophobic or hydrophilic in nature, which 

can then be either consumed by the soil microbial community or remain in 

solution as a component of another DOC subfraction, such as FA, Hi or HoN 
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(Guggenberger et al., 1994; Gerard H. Ros et al., 2010). The subsequent pool in 

which they will be found will depend on the size and nature of the compounds 

released from the HA: relatively long C-based molecular chains can be 

classified as FA or HoN, depending on the nature of their functional groups, 

while relatively small C-based molecules, such as sugars, proteins, carboxylic 

acids, and fatty acids will be found in the Hi fraction (Jandl and Sollins, 1997; 

Amery et al., 2009). Ros et al. (2010), although they did not account for HoN, 

observed the same pattern for FA in a grassland sandy soil after 35 d of 

incubation, suggesting that this pattern is consistent, not only for amended, but 

also for unamended soils. Therefore, this behaviour could be generalized for a 

wider range of HA and not only compost-derived ones, as further evidenced by 

the decline in our unamended control soil’s native DOC HA. 

Higher rates of DOC addition corresponded with significantly more 

CO2 emission, confirming that, in absolute terms, greater C mineralization 

occurred in soils receiving more DOC input (Table 3.2). However, we observed 

that not all DOC added was mineralized (Figure 3.1) and that, in relative terms, 

fresh and mix compost added at low rates mineralized a higher proportion of C 

input compared to their corresponding high rate additions (Figure 3.1). The 

latter observation may be a result of a priming mechanism (De Nobili et al., 

2001), although this is admittedly difficult to elucidate. We assumed that the 

DOC added that was not mineralized was adsorbed to the soil solid phase or 

organic matter. The concentration and speciation of DOC in soil solution are 

often controlled by adsorption and desorption processes imposed by clay 

minerals, Al and Fe oxides, multivalent cations such as Ca
2+

, and soil organic 

matter (Chantigny, 2003; Kalbitz et al., 2000). While the soil used in this 

experiment had only 1% clay and 3.6% organic matter content, it is relevant to 

consider that soils with greater proportions of either of these properties may 

result in less DOC being physically available for biodegradation. In particular, 

had our DOC solution been added to soil with a high-binding capacity, the 

hydrophobic fraction of DOC may bind more preferentially to mineral and OM 

surfaces than hydrophilics. Upon addition of DOC, any part of the solution that 

subsequently adsorbs to the soil solid phase becomes more protected against 
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microbial action. However, when we extracted total soil DOC from the soil 

solid phase at the end of the 35 d incubation using an acid and base extraction, 

no significant differences were found between any of the treatments’ total C 

concentrations (data not shown). This is likely a result of the solid phase having 

an organic C concentration several orders of magnitude higher than DOC. This 

is supported by other authors, who quantified DOC as a small proportion of soil 

total organic carbon, usually accounting for 0.05-0.40% of soil organic C 

(Haynes, 2005; Lundquist et al., 1999). The soil DOC proportion in this 

experiment ranged between 0.09% and 0.61% of SOC. We suspect the 

disproportion between DOC and SOC concentrations prevents us from precisely 

determining DOC adsorption to the soil solid phase, which may have accounted 

for the remaining DOC that was not mineralized over the 35 d. As these 

adsorption rates will vary between soils, it may be useful to replicate aspects of 

this experiment among different soil types. While binding capacities between 

soil types may influence the soil solution’s DOC in terms of hydrophobic and 

hydrophilic profiles, the relative lability of these pools would likely remain 

independent of the properties of the soil mineral phase.  

 

3.5 Conclusions 

While concentrations of DOC in soils are often associated with soil 

microbial activity potential, our study suggests that qualifying soil DOC 

through subpool fractionation, particularly of the hydrophilic pool, offers more 

insight into the relationship between activity and DOC. A different rate of 

addition and range in composition of DOC fractions resulted in different soil C 

mineralization rates, and also affected DOC speciation and aromaticity in soil 

after 35 d. These findings suggest characterization of amendments prior to 

application on soil will provide insight into the potential that soil holds for C 

turnover of the DOC from those amendments. This experiment confirmed 

recent findings of other experiments about the biological relevance of DOC, but 

more importantly, it provides evidence for a relatively new view of hydrophobic 
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humic acid molecules as a highly reactive pool sustaining the concentrations of 

other bioavailable pools. Together with hydrophilic compounds, we have shown 

that hydrophobic humic acid pools in DOC may provide a readily available C 

source to the microbial community, therefore sustaining its metabolism in soil. 

Further research to identify the mechanism of depletion in these hydrophobic 

pools would be valuable for predicting how they may behave in different soils 

or under different land management. 
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Abstract 

Dissolved organic carbon (DOC) is a heterogeneous mixture of hydrophobic 

and hydrophilic C compounds, the proportions of which may change the quality 

of DOC and its influence on soil microbial processes. Determining DOC quality 

indicators may therefore be a more informative tool for predicting soil microbial 

respiration over total DOC alone. In this study, 46 Dutch agricultural soils 

under different fertilization and tillage management were characterized by DOC 

fractionation and specific UV absorbance (aromaticity), making this the 

broadest survey of multiple indicators of DOC quality for these soil types. 

Using backward stepwise regression, we determined how these quality 

indicators contributed to explaining variation in soil respiration rates.  

Concentrations of humic acid DOC and aromaticity of hydrophilics (Hi) were 

significant independent variables in a linear model (R
2
 = 0.33), which was a 

more informative model than total DOC alone. Aromaticity of Hi was found to 

increase as the proportion of Hi decreased, suggesting reduced bioavailability of 

this fraction and a shift of microbial substrate preference from Hi to more 

hydrophobic fractions. This study documents a high variability in range 

between DOC fractions and aromaticity, even from soils with similar absolute 

DOC concentrations. Our results demonstrate the potential for DOC quality to 

have added value as an activity indicator relative to total DOC, and to reveal 

mechanistic relationships between DOC as a substrate and microbial processes 

in agricultural soils.   
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4.1 Introduction 

Soils are a significant global reservoir of terrestrial carbon (C). Soil C, 

however, especially in agricultural soils, is susceptible to loss brought on by 

changes in land use and management practices (Chantigny, 2003; Janzen, 

2006). A particularly transient phase of C in soils is the pool of dissolved 

organic carbon (DOC), which, as an intermediary phase between organic and 

inorganic C, is an important pool for various soil processes (Kalbitz et al., 

2000). These processes include nutrient mineralization (Boyer and Groffman, 

1996; Magill and Aber, 2000) and mobility (Qualls et al., 1991), and soil 

microbial activity (Brooks et al., 1999; Jandl and Sollins, 1997). The 

relationships between DOC and these processes are well-established, despite 

DOC contributing a relatively small proportion to total agricultural soil C (0.05-

0.4%) (Haynes, 2005). However, with regards to soil microbial activity, there is 

still a large amount of variation in rates that cannot be explained by absolute 

concentrations of DOC (Neff and Asner, 2001).  

Variation in microbial activity rates relative to soil DOC may be due to 

the heterogeneous nature of the DOC solution, the constituents of which range 

from low molecular weight, aliphatic organic- and amino-acids, to more 

aromatic fulvic and humic acids (Amery et al., 2009; Stevenson, 1994). The 

range in the proportion of those DOC compounds which may be bioavailable 

has also been reported to be quite large: from 14-88% in forest soils (Kalbitz et 

al., 2003a; Qualls and Haines, 1992) and 17-46% in agricultural soils 

(Embacher et al., 2007; Marschner and Kalbitz, 2003). Characterization of these 

more bioavailable DOC compounds may therefore provide insight into 

microbial activity variation that cannot be explained by total DOC.  

Agricultural soils’ DOC concentrations and properties are often 

quantified for comparison with forest or “natural” ecosystems (Chantigny, 

2003; McDowell et al., 2006; Zsolnay, 1996) but less frequently for comparison 

with other agricultural soils, and even less-so in connection with biological 

properties. In an extensive review of dissolved organic matter (DOM) in 

terrestrial systems, Chantigny (2003) identified the need to determine the 
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significance of DOM composition for soil biological functions, especially 

composition under different agricultural management practices. Methods of 

determining soil DOC composition include measurement of proportions of 

hydrophobic and hydrophilic compounds (Jandl and Sollins, 1997; R.G. Qualls 

et al., 1991; Van Zomeren and Comans, 2007) and/or measuring the aromaticity 

of DOC (Amery et al., 2008; Kalbitz et al., 2003a&b; Straathof et al., 2014).  

Since little appears to be known about the variability among agricultural 

soils’ DOC characteristics, this study primarily aimed to investigate the 

potential range that exists in different soil types, specifically of the quality 

indicators DOC fractions and DOC (fractions’) aromaticity. Furthermore, we 

wanted to determine how these quality indicators may be influenced by 

management practices at the field-scale; thus, a second aim of this study was to 

determine relationships between tillage or fertilization practices and DOC 

quality. Having characterized DOC and investigated the influence of 

management practices, our third and ultimate aim in this study was to determine 

relationships that may exist between DOC quality and microbial activity, 

relative to other soil properties known to influence microbial activity. We 

hypothesized that those indicators of DOC quality (fractions and/or aromaticity) 

would be more informative of microbial activity levels from soils than total 

DOC alone, and that this in turn may eventually lead to useful management-

practice advice for managing DOC quality that may optimize mineralization 

driven by microbial activity.  

 

4.2 Materials and Methods  

4.2.1 Soil sample collection and conditioning 

Forty-six arable fields from across the Netherlands (Figure 4.1) were 

sampled in February-March 2013 (after frost recession but before crop 

emergence). This time of year is also when many farmers submit soil samples 

for nutrient status determination. Forty-two out of the 46 farmers surveyed  
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provided information about the previous season’s tillage regime and fertilization 

(including organic matter (OM)) application. In this survey, we did not sample 

fields that had had tillage, OM application, or crop emergence already in 2013. 

A 3 kg soil sample representative of each field was made by taking about 60 

soil cores along a criss-crossing W-pattern from an area of about 2 ha. Sampling 

depth was from the soil surface to 20 cm. These cores were all pooled and 

manually homogenized on-site into one bulk sample, which was kept at 4°C 

during transportation to the laboratory.   

Figure 4.1: Locations in The Netherlands of 46 field sites where soil samples 

were obtained. 
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Soils were processed directly upon arrival to the laboratory. Each bulk 

sample was separated into two equal parts: one for analysis of properties by 

BLGG laboratories (Wageningen, The Netherlands) and one for analysis of a 

different set of properties by the Chemical-Biological Soil Laboratory of 

Wageningen UR. Samples at BLGG were oven-dried (40°C), ground, and used 

to determine OM, total C, total N and CaCO3 by near-infrared analysis (Malley 

et al., 1999). The other half of each sample was kept at field moist conditions 

and sieved to 4 mm to homogenize samples and remove large, non-soil 

particles. Soil moisture was determined from the mass differential measured by 

drying a subsample at 105°C for 24 h, and soil water-holding capacity (WHC) 

was determined by bringing a field-moist subsample to saturation. The 

remainder of the soil sample was then separated into three equal-sized samples 

in plastic bags. These three samples per field were then pre-incubated for 3 days 

at 9°C (mean ambient air temperature in The Netherlands in February-March) 

and 60% WHC, which was achieved by adding ultra-pure water (UPW) to 

samples below 60% WHC, or air-drying samples above 60% WHC. Sample 

equilibration during this period was for two intended purposes: 1) to minimize 

the effects of variable temperature and moisture conditions occurring at 

different fields over the four weeks sampling period, and 2) to allow soils time 

to approach chemical equilibrium, which may have been disrupted during 

sampling and handling. After separation and equilibration, the measurement of 

each soil property was performed in triplicate and the average of the three 

samples was used as the input datum. 

 

4.2.2 DOC fractionation and aromaticity measurements  

Extractions of DOC were made using a 1:2 soil to UPW solution ratio, 

which was equilibrated for 1 h via horizontal shaking at 220 rpm. The 

suspension was then centrifuged for 20 min at 3000 g and ultra-centrifuged for 

10 min at 11700 g, after which the supernatant was syringe-filtered through a 

0.45 m cellulose nitrate membrane that was pre-rinsed with UPW to prevent 
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contamination of DOC originating from the membrane. pH was measured on 

this filtered sample. The filtered DOC solution was then fractionated according 

to the rapid-batch procedure developed by Van Zomeren and Comans (2007). 

This fractionation method is based on operational definitions determined by the 

International Humic Substances Society (IHSS) and adapted from methods 

described by Aiken et al. (1985). The result is the separation of four fractions of 

DOC: humic acids (HA), fulvic acids (FA), hydrophobic neutrals (HoN), and 

hydrophilic compounds (Hi), the concentrations of which are either measured 

directly (HA, FA, Hi) or calculated by differences (HoN) before and after 

isolation.  

The starting total DOC extraction was acidified to pH 1 with 6 M HCl, 

which precipitates HA out of the starting solution. This acidified solution was 

then centrifuged (10 min at 3000 g), separating the HA precipitate from the 

supernatant (containing FA+HoN+Hi), which was poured-off. The supernatant 

DOC concentration was measured on a San++ 6 channel Segmented Flow 

Analyser (SFA) (Skalar, The Netherlands). The HA pellet was resuspended in 

0.1 M KOH and DOC content in this suspension was measured on a Shimadzu 

total organic carbon 5050A analyser (Shimadzu Corporation, Kyoto, Japan). 

The supernatant from the centrifugation step was then equilibrated with the non-

ionic, macroporous resin DAX-8 (Sigma-Aldrich) for 1 h at 220 rpm horizontal 

shaking at a 1:5 resin to solution ratio. This equilibration with DAX-8 pulled 

hydrophobic FA and HoN compounds out of solution by binding them to the 

surface of the resin. The compounds that remained in solution after separation 

from the resin were Hi and their DOC concentration was measured on the SFA. 

Finally, the resin adsorbing the FA and HoN fractions was equilibrated in 0.1 M 

KOH for 1 h at 220 rpm horizontal shaking at a 1:5 resin to solution ratio, re-

dissolving the FA pool. This step was repeated until the DOC concentration of 

solution after equilibration was not different from the blank-resin (i.e. all FA 

was desorbed). The DOC concentration of desorbed FA was also measured on 

the SFA. The concentration of the HoN pool was not measured directly (as it 

remains bound to the resin even under alkaline conditions) but calculated as the 

difference between the concentration of the FA+HoN+Hi sample and the FA 
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and Hi concentrations. All DOC-fractionated soils in this study were between 

90-120% mass balances, relative to the original total DOC concentration. 

Aromaticity of the total DOC, HA, FA and Hi fractions was determined 

by specific ultraviolet absorbance (SUVA) of the respective solutions at 254 nm 

(Weishaar et al., 2003). Each sample had 1.5 ml solution analyzed on a 

spectrophotometer (Genesys 10S UV-VIS, Thermo Fisher Scientific Inc., 

Waltham MA, USA) with a 1 cm path length. Blank samples for total DOC, 

HA, FA and Hi were UPW, 0.1 M KOH, 0.1 M KOH after equilibration with 

blank resin, and 0.1 M HCl after equilibration with blank resin, respectively. 

Specific UV absorbance (SUVA, l g
-1

 cm
-1

) per sample was calculated as UV 

absorbance normalized by sample DOC concentration per cm path length 

(Amery et al., 2008). As the HoN fraction remains adsorbed to the DAX-8 

resin, no aromaticity data is obtainable for this fraction. 

 

4.2.3 Microbial respiration and biomass determination 

Basal respiration values for each soil were determined from CO2 

emission rates of incubated soils. The dry weight-equivalent (DWE) of 100 g 

fresh soil was weighed into a 335 ml glass bottle and incubated in the dark at 

20°C, in triplicate. Soil moisture in each bottle was maintained at starting levels 

(60% WHC) by adding UPW as needed, at least once per week. After the start 

of incubation (T0), emissions were measured nine days after T0 (T1), three 

weeks after T1 (T2), and 11 weeks after T2 (T3). At the start of a measurement, 

each glass bottle was flushed with N2 gas, and then sealed with a rubber septum 

for 4 h (T1), 6 h (T2), or 12 h (T3). Accumulated CO2 concentrations in the 

bottle’s headspace were then measured through the septum using an INNOVA 

1412 Photoacoustic field gas-monitor (LumaSense Technologies, Ballerup 

Denmark) at the end of the sealed period. Cumulative CO2 emissions for the 14 

weeks of incubation were calculated by linear interpolation of T1, T2 and T3, 

which produced a better fit than exponential interpolation. In downstream 
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analysis of respiration rates, cumulative CO2 values were used after log-

transformation.  

Microbial biomass N was determined using the chloroform fumigation-

extraction method (Brookes et al., 1985) on 20 g DWE fresh soil. Before and 

after 24 h fumigation with chloroform, a soil subsample was equilibrated for 1 h 

in a 1:10 DWE soil to solution ration in 0.5 M K2SO4 using horizontal shaking 

at 220 rpm. The equilibrated solution was centrifuged for 10 min at 3000 g and 

the supernatant was filtered through a 0.45 m cellulose nitrate membrane. 

Total soluble N in the filtrate was measured on a San
++

 6 channel segmented 

flow analyser (Skalar, The Netherlands). The microbial biomass N fraction of 

total soluble N released during fumigation was calculated using the conversion 

rate of 0.54 (Brookes et al., 1985).  

 

4.2.4 Data analysis 

Statistical analysis on data from this survey was conducted in SAS 9.3 

(SAS Institute). Analysis was performed on the average of three measurements 

from 46 soils, except where management practice was an effect because then 

only 42 soils were included (due to limited information from the farmer survey 

responses). One-way analysis of variance was performed using the SAS proc 

mix statement with tillage and fertilization practice as class variables. 

Limitations in degrees of freedom did not permit exploration of management-

practice interactions. Management-practice effects on DOC and DOC fractions 

were tested using Tukey’s adjusted least squared means comparisons, where the 

significance limit was set to P<0.05. Correlations between DOC parameters 

were also tested using Pearson’s product moment correlation coefficient (r). 

Linear regression analysis was performed using the proc reg statement to 

investigate relationships between DOC quality indicators and other soil 

parameters. Non-normally distributed (according to the Shapiro-Wilk test 

statistic) response variable data were log-transformed before regression, which 

also resulted in their meeting requirements of homogeneity of variance 
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(P<0.001). Residuals of input variables were independently distributed and 

covariance was tested using Spearman rank correlation. No significant linear 

regression models were determined from proc reg between SUVA data and 

DOC fractions, but visualization of the Hi SUVA data suggested a nonlinear 

relationship. Therefore, curve-fitting and subsequent graphing of the SUVA 

data was performed in Sigmaplot 11.0 (Systat Software Inc.) using inverse first-

order nonlinear regression.  

For regression with microbial respiration as the response variable, 

analysis was performed using proc reg backward selection stepwise statements 

where slstay=0.05 (upper cut-off level of significance for keeping model 

parameters) and the Cp statistic (Mallows, 1973) was within two units of the 

number of equation variables (including the y-intercept). Six models were 

generated from different sets of input variables: 1) general soil properties that 

are known from literature to influence soil microbial respiration (OM, total 

DOC, pH, microbial biomass, CaCO3 and C:N), 2) General abiotic soil 

properties (general soil properties except for microbial biomass), 3) DOC 

fractions (HA, FA, HoN, Hi), 4) DOC aromaticity (SUVA of HA, FA, Hi and 

total DOC), 5) DOC quality indicators to test for interactions between fractions 

and aromaticity (DOC fractions data with DOC aromaticity data), and 6) all 

measured soil properties. Only significant (P <0.05) models had coefficients 

determined for their independent variables.  

 

4.3 Results 

4.3.1 DOC properties: fractions and aromaticity 

Among the 46 soils measured in this experiment, DOC ranged broadly 

with regards to total concentration extracted, but also DOC quality as indicated 

by both fraction profiles (Figure 4.2) and aromaticity measurements (Figure 

4.3). Total DOC ranged from 11.3 - 292.3 mg kg
-1 

(Figure 4.2), with a median 

concentration of 35.5 mg kg
-1

. The presence of four peat soils (Figure 4.2) in 
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this survey resulted in non-normal distribution of this dataset and a high 

standard deviation of the mean (56.6 ±61.25 mg kg
-1

). Concentrations of DOC 

fractions also ranged broadly, although hydrophobic compounds (HA + FA + 

HoN) were consistently cumulatively higher in concentration than Hi. Humic 

acids made up ≥50% of soil DOC in 24 (more than half) of the soils. 

Hydrophobic compounds made up at least 60% of total DOC in every sample, 

and up to about 95% of total DOC in some samples (i.e. Hi compounds only 

made up 5-40% of total DOC) (Figure 4.2). Concentrations of each fraction 

were positively correlated with total DOC concentration, but the proportion of 

each fraction had no strong correlation with total DOC concentration (HA r = 

0.11; FA r = 0.13; HoN r = -0.11; Hi r = -0.21).  

 

 

 

Figure 4.2: Dissolved organic carbon (DOC) profiles of 46 soils after 

fractionation. The sum of the four DOC fractions is equal to the total DOC 

(n=3) measured from each site. Four peat soils and 42 mineral soils are 

indicated on the x-axis.  
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Even greater variability was seen among sites’ soil aromaticity values 

(SUVA). Figure 4.3 shows the diversity of aromaticity profiles of the 46 soils in 

this experiment. No significant (P <0.05) linear relationship could be found 

between DOC fractions (proportions) and SUVA concentrations. The DOC 

fractions that were most aromatic in any sample were about equally split 

between HA (in 16 fields), FA (14) and Hi (16), i.e. no fraction was consistently 

the most aromatic (Figure 4.3). While total DOC SUVA was significantly 

positively associated (R
2
 = 0.8) with HA SUVA, this was deemed the result of 

the collinearity between total DOC and HA absolute concentrations (R
2
 = 0.9). 

However, initial data visualization of Hi SUVA properties prompted nonlinear 

regression of this value as a function of the proportion of Hi in the total DOC 

solution (Figure 4.4). The significant (P <0.05) relationship determined between 

Figure 4.3: Specific UV absorbance at 254 nm of total dissolved 
organic carbon (DOC) and three DOC fractions (n=3). Data at the 
same x-axis values belong to the same soil sample from that field site.  

Figure 4.3: Specific UV absorbance at 254 nm of total dissolved 
organic carbon (DOC) and three DOC fractions (n=3). Data at the 
same x-axis values belong to the same soil sample from that field site.  
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these two properties had an R
2 

of 0.58, which was higher than any linear 

relationships (which were not significant).  

 

 

 

 

 

 

 

 

 

4.3.2 Influence of field management practices 

Tillage practice (conventional, conservation, or no till) and fertilizer 

source (artificial, liquid manure, solid manure or compost) did not significantly 

(P >0.05) affect OM content, pH, total DOC, DOC quality indicators, or 

microbial biomass, according to the results of one-way ANOVAs. Means were 

calculated for each tillage practice and fertilizer source for informative purposes 

(Table 4.1). Analysing total DOC and DOC fractions normalized by soil OM  

Figure 4.4: The hydrophilic (Hi) dissolved organic carbon (DOC) fraction as a 

proportion of total DOC relative to the specific UV absorbance at 254 nm of 

the Hi fraction of 46 soils. Plotted is the inverse first-order polynomial 

equation (P <0.05) with intercept (P =0.06) and independent variable 

coefficient (P  <0.001).   
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content resulted in different trends in the means per management practice 

(Table 4.1), although this did not result in significant differences between these 

effects. Humic acids showed significant differences as a result of tillage or 

fertilizer source: significantly higher HA/OM was associated with solid manure 

application and higher concentrations of HA relative to conventional till was 

associated with conservation till (Table 4.1). Conservation till fields also had 

significantly higher cumulative CO2 respiration rates than conventionally tilled 

fields (8.7 µ C g
-1

 d
-1

 and 4.1 µ C g
-1

 d
-1

, respectively, as determined after log-

transformation).  

 

4.3.3 Relationships between DOC and microbial respiration 

Results of linear regression analysis obtained via backward-step 

procedures identified the most influential parameters explaining variation in 

(log-transformed) cumulative soil respiration rates (Table 4.2). Six models with 

various input parameters were tested, and one linear model was made using 

total DOC for comparison to the performance of models including DOC quality 

indicators in place of total DOC.  

The independent variable that explained the most variation in soil 

respiration was microbial biomass (R
2 

= 0.77). Any model that included 

microbial biomass (General Soil Properties and All Measured Soil Properties) 

selected this parameter from the backward procedure as the only variable in the 

model (Table 4.2). When microbial biomass was removed as an input 

parameter, to consider only abiotic soil properties, the coefficient of 

determination decreased to 0.28, in which case OM became the only 

independent variable included.  

When considering only the DOC quality indicators measured on these 

soils, significant (P <0.05) models could also result in explaining respiration.  

The second-best model (R
2
 = 0.33) resulted from DOC quality indicators as 

input parameters (the four DOC fraction absolute concentrations and four DOC 

aromaticity measurements (Table 4.2)). In this model the independent variables 

included were HA concentration and Hi SUVA.  
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Table 4.2: Regression equations determined from backward-step analysis, in 

which microbial respiration (log 14 week cumulative CO2 emission) was the 

dependent variable (y) and the input parameters varied. Models are linear and 

significant (P <0.05). Total dissolved organic carbon (DOC) was included as a 

stand-alone model for comparison to DOC fractions.  

 

Model name  
(tested input variables) 

R2 
Standard 
error of 
estimate 

Independent 
variable(s) in 
linear model 

General soil properties  
 
(OM

a
, total DOC, pH, microbial 

biomass, C:N, CaCO3) 

0.77 0.0435 
Microbial 
biomass 

General abiotic soil properties 
 
(OM, total DOC, pH, C:N, CaCO3) 

0.28 0.0775 OM 

DOC fractions 
 
(Humic acids, fulvic acids, 
hydrophobic neutrals, hydrophilic 
compounds) 

0.24 0.0793 Fulvic acids 

DOC aromaticity 
 
(SUVA

b
 of Humic acids, fulvic 

acids, hydrophobic neutrals, 
hydrophilic compounds,  total DOC) 

0.16 0.0844 

Fulvic acid 
SUVA and 
hydrophilic 
SUVA 

DOC quality indicators 
 
(all input variables of “DOC 
fractions” and “DOC aromaticity” 
models) 

0.33 0.0753 
Humic acids and 
hydrophilic 
SUVA 

All measured soil properties  
 
(all input variables of “General soil 
properties” and “DOC quality 
indicators” models) 

0.77 0.0435 
Microbial 
biomass 

Total DOC  
 
(total DOC) 

0.25 0.0790 Total DOC 

a
Organic matter content 

b
Specific UV absorption at 245 nm 
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4.4 Discussion 

The range of DOC fractions as a proportion of total DOC measured in 

this study indicates this characteristic behaves independently of total DOC 

concentration. The concentrations of the four DOC fractions measured in this 

study agree with previous research indicating humic acids constitute 

approximately 50% of soil DOC (Kaiser et al., 1996), and that 10-40% of soil 

DOC is made up of hydrophilic compounds (Guggenberger et al., 1994), 

although this is lower than reported in other studies (Cook and Allan, 1992).  

Management practices had little to no effect on either the concentrations 

of total DOC, or the composition of its profile with regards to fractions or 

aromaticity (Table 4.1), which may be the result of measurable effects already 

having subsided before our sampling period. Still, the lack of significance was 

surprising considering the effects that OM inputs and tillage are known to have 

on soil OM content (Rasmussen and Collins, 1991), the quality of which is 

often reflected in DOC quality (Chantigny, 2003; De Troyer et al., 2011; 

Kalbitz et al., 2000). Although, as it has been suggested that DOC is more 

dynamic than other soil C pools in terms of C fluxing through it (Kalbitz et al., 

2000), DOC may only be sensitive to tillage and OM input in the short-term. 

Concentrations of DOC have been previously reported to rapidly return to 

background levels after OM addition (Chantigny, 2003). This rapid degradation 

of added OM also agrees with recent findings linking DOC additions to soil: in 

an incubation study DOC added from various OM sources was significant in 

effects on respiration and DOC fraction characteristics only up until 6 days after 

addition (Straathof et al., 2014). Therefore, as our study did not include soils 

that had had a recent (<4 months) application of OM, these effects may have 

already subsided in the 46 soils of this survey. More research into the short-term 

effects of OM additions on DOC fractions in different soil types may therefore 

be valuable for determining potential microbial responses and turnover rates.  

The low proportion of Hi compounds (Figure 4.2) and their 

subsequently high aromaticity values (Figure 4.3) may also be a result of the 

sampling time of this study and the exclusion of soils with crop emergence or 
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recent OM application. Root exudates from growing plants (i.e. arable crops) 

are often low-weight molecular C compounds (Van Hees et al., 2005; Strobel, 

2001) that are measured in the hydrophilic fraction of DOC (Straathof, 

unpublished). As total DOC has been found to increase throughout the growing 

season in arable fields (Campbell et al., 1999; Embacher et al., 2007), we 

propose a large proportion of reported increases may be the result of crop-root-

exudate Hi contributions. The low proportion and high aromaticity of Hi 

fractions measured in this experiment (Figure 4.4) suggest the latter is a 

response to low-Hi DOC. Kaiser and Kalbitz (2012) have previously proposed a 

conceptual model of soil C recalcitrance, in which C at depth is microbially-

derived and thus more recalcitrant than plant-derived C, which is more 

prevalent in the rhizosphere. Although we did not measure along a depth 

gradient, the lack of recent Hi C input in our soils (either from root exudation or 

OM application) may result in a relative deprivation of the soil microbial 

community of Hi C. The remaining compounds of the reduced Hi pool may 

therefore be more aromatic because they are microbially-derived by-products of 

decomposition (Kalbitz et al., 2003b), and/or because they are remnant 

compounds from preferential turnover of more bioavailable (i.e. less aromatic) 

C that had previously been present in the soil solution. The high aromaticity of 

this residual Hi may therefore shift substrate preference of the microbial 

community from low-molecular weight Hi compounds to more hydrophobic 

compounds (Kalbitz et al., 2003b). This shift may have implications for why 

hydrophobic compounds (HA and FA) were significant independent model 

variables (as opposed to Hi) for soil respiration (Table 4.2) (despite their 

previously reported low-bioavailability (Jandl and Sollins, 1997)), and supports 

recent observations of relatively bioavailable HA (Straathof et al., 2014).  

The most important variable for explaining microbial respiration 

measured in this study was the amount of microbial biomass (Table 4.2). On 

account of our hypothesis that soil chemical parameters are also valuable 

respiration indicators, we compared our DOC-quality models to this microbial-

biomass model: When considering only DOC fractions as model input variables 

to microbial respiration, FA performed just as well as total DOC as an 
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independent variable in the linear model (Table 4.2), which may indicate that 

FA is an important fraction for microbial activity in situ. The transient nature of 

FA may contribute to its biological relevance, as it has been proposed as an 

intermediary phase between Hi and more hydrophobic compounds 

(Guggenberger et al., 1994; Ros et al., 2010). Fulvic acid aromaticity was also 

generally lower than the HA or Hi fractions (Figure 4.3), which may contribute 

to a relatively more bioavailable FA pool. Nonetheless, it is interesting to note 

the lack of significance in the DOC fraction model of either HA (which 

constituted the largest proportion of total DOC among the soils) or the 

presumably more bioavailable Hi. Although neither DOC fraction concentration 

nor aromaticity models increased the coefficient of variation relative to the total 

DOC model, considering all DOC quality indicators together in one model did 

(Table 4.2). It was this latter model in which HA and Hi properties became 

significant independent variables, indicating an interaction between the (non-

colinear) variables HA concentration and Hi aromaticity. The depletion of Hi 

compounds has also recently been linked to concurrent depletion of HA 

(Straathof et al., 2014) and Kalbitz et al. (2003b) describe how, in the absence 

of carbohydrates as a substrate, microorganisms rely on hydrophobic 

compounds. The apparent feedback between these two operationally distinct 

DOC fractions is obviously also relevant for physiological responses of the soil 

microbial community and the biological relevance of HA DOC may be 

underestimated. In general, we found that the relationships between DOC 

quality indicators and microbial respiration were complex but significant, 

supporting our hypothesis that these parameters are not unimportant to consider 

as components of soil microbial activity.   

 

4.5 Conclusions 

This study innovatively links a variety of DOC properties to agricultural 

management and microbial activity in a comprehensive survey of soil types. 

The range in DOC fraction-prevalence and aromaticity in these soils showed 
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high variability of these quality indicators, independent of total DOC 

concentrations. Total DOC was not statistically more relevant for microbial 

respiration rates than fulvic acid DOC concentrations. The added value of 

determining DOC quality characteristics also includes a greater amount of 

variation in soil respiration rates explained by humic acid (HA) concentrations 

and hydrophilic (Hi) aromaticity. Hi aromaticity was also found to increase as 

the proportion of Hi decreased, supporting previous conceptual models which 

suggested increased recalcitrance of low-molecular weight compounds as their 

concentrations decrease. This shift in Hi bioavailability has apparent 

implications for the bioavailability of the HA fraction and the interaction 

between these two DOC characteristics for microbial substrate preference 

should be mechanistically explored in future research. We recommend DOC 

characterization as a soil-chemical-based method of determining potential soil 

microbial respiration and as a tool to further identify mechanistic relationships 

between DOC properties and turnover in soils. Specific follow-up research 

should also include shifts in these DOC characteristics in different soils in 

response to occurrences of management practices more recent than were 

measured here.  
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Abstract 

There is increasing evidence that volatile organic compounds have a role in 

suppressing soil-borne plant pathogens but it is thus far unknown which edaphic 

properties are indicative of a soil’s capacity to produce pathogen-suppressing 

volatiles. We measured the growth-suppressive effects of volatiles emitted from 

a broad range of agricultural soils on the agronomically important pathogens 

Rhizoctonia solani, Fusarium oxysporum and Pythium intermedium. In vitro 

growth suppression caused by exposure to soil volatiles was linked to edaphic 

properties, microbial community composition and field history using a 

multivariate statistical approach. Our results show volatile-mediated 

suppression of mycelial development for all pathogens; however, the range of 

effects and the significant edaphic variables differ per pathogen. Suppression of 

R. solani by volatiles was positively correlated with organic matter content, 

microbial biomass and amount of litter saprophytes but negatively correlated 

with pH, Shannon diversity and amount of Acidobacteria. Suppression of F. 

oxysporum and P. intermedium, however, was more affected by field history. P. 

intermedium suppression was also negatively correlated with soil sulphur 

content.  Regression modelling of the three pathogens’ overall suppression rate 

identified microbial activity, dissolved organic carbon (substrate availability) 

and crop history as the most influential variables. This study identified the 

overall and pathogen-specific drivers of growth-suppressive volatiles of soil-

borne pathogens, which may be valuable components of a soil's potential for 

natural disease suppression. 
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5.1 Introduction 

Soil-borne plant pathogens cause crop loss world-wide and there is a 

need for enhancing natural control mechanisms as a component of sustainable 

agriculture. In soils, one natural phenomenon that decreases disease 

manifestation of such pathogens is called general disease suppression (GDS), 

which is proposed to be related to substrate-driven microbial activity (Hoitink 

and Boehm, 2003). The edaphic properties that determine a soil’s capacity for 

GDS, however, remain largely unidentified (van Bruggen and Semenov, 2000), 

but an indicator of this capacity would be valuable for moving towards 

prediction of natural suppression and risk of disease outbreak. One aspect of 

soil that is positively correlated with GDS is pathogen suppression 

(Termorshuizen and Jeger, 2008), which occurs when a pathogen’s germination 

and/or hyphal extension is restricted by the soil microbial community through 

either resource competition or the production of antifungal compounds (Watson 

and Ford, 1972). The latter may be in the form of volatile organic compounds 

(VOCs), which have recently been proposed as important agents in pathogen 

suppression (as an outcome of fungistasis) and, thus, may contribute to GDS 

(Garbeva et al., 2011). The diffusive nature of VOCs facilitates their permeation 

of the soil matrix, resulting in a greater effective range relative to other 

suppressive compounds or organisms. 

The effect of exposure to volatiles on growth of several 

phylogenetically different, agronomically important soil-borne plant pathogens 

has been tested, including Rhizoctonia solani., Fusarium spp. (Garbeva et al., 

2014a; Kai et al., 2009), and Pythium spp. (Chaurasia et al., 2005; Garbeva et 

al., 2014a). The growth of these pathogens is reported to be inhibited by VOCs 

released from various bacteria and fungi (Weisskopf and Bailly, 2013), 

including soil-dwelling Bacillus spp., Burkholderia spp., Pseudomonas spp., 

Serratia spp., and Stenotrophomonas spp. (Fiddaman and Rossall, 1994; Kai et 

al., 2007; Pandey et al., 1997). Growth stimulation, however, has also been 

reported, including observations of volatiles that are suppressive against some 

pathogenic species but promote the growth of others (Wheatley, 2002). Most 
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volatile-pathogen interaction studies have been performed with bacterial isolates 

(Campos et al., 2010) on artificial media, outside the indigenous environment of 

both the volatile-producers and the pathogens. This limits the conclusions that 

can be made about volatiles emitted by the collective soil community, or 

volatiles produced as a result of microbe-microbe or edaphic-microbial 

interactions in the soil.  

The effects of edaphic-microbial interactions on volatile production 

may be two-fold: first, the management and/or inherent properties of a soil may 

influence the composition of the microbial community (Ettema and Wardle, 

2002; Marschner, 2003; Rousk et al., 2010), which is responsible for volatile 

production. Secondly, the quality and availability of substrates for 

microorganisms may influence the rate and profile of VOCs produced 

(Fiddaman and Rossall, 1994; Gray et al., 2010). Leff and Fierer (2008) 

measured both higher emission rates and higher diversity of VOCs emitted from 

litter than from mineral soils, and found organic C quality and microbial 

biomass were, respectively, the most influential edaphic properties of those 

sources. The soil environment may further confound volatile emissions, because 

of absorptive properties of the soil matrix; for instance, differences in recovery 

rates of polar, aromatic and aliphatic VOCs were significant when compounds 

were forced through either sand or clay soil types (Ruiz et al., 1998). Because of 

the myriad of influences the soil environment can have on both production and 

release of VOCs (Peñuelas et al., 2014), it is important to consider pathogen-

suppressing VOCs as they are emitted from a variety of soils. Chuankun et al. 

(2004) found a widespread suppressive effect of volatiles from 146 soils on 

fungal spore germination. Furthermore, Campos (2010) suggested that volatile-

mediated pathogen suppression is far more extensive than currently known; 

however, no studies have investigated volatile-mediated suppression from 

multiple soils for multiple plant pathogens thus far.  

We conducted a large-scale survey on agricultural soils to measure a 

broad range of soil properties and potentially relevant parameters never before 

measured in the context of volatile-mediated pathogen growth. The objectives 

of this survey were to 1) measure the effect of volatiles emitted from 
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agricultural soils on in vitro biomass production of the soil-borne plant 

pathogens Rhizoctonia solani, Fusarium oxysporum and Pythium intermedium, 

and 2) identify the most statistically informative soil properties, microbial 

community structure, or field management parameters relevant for an 

agricultural soil’s production of pathogen-suppressing volatiles. This study will 

therefore contribute to the development of hypothesis-driven testing of volatile-

mediated pathogen suppression in soils.  

 

5.2 Materials and Methods 

5.2.1 Field selection, soil sampling and pre-treatment 

A total of 50 arable fields were selected from across the Netherlands 

(Figure S1), covering a wide range of soil properties, e.g. texture, pH and 

organic matter content. Fields were sampled in February-March 2013, before 

the start of the growing season. Soil sampling (0-20 cm cores) was performed 

by taking 60 subsamples in a double W-pattern from an area of about 2 ha in 

each field. These subsamples were pooled and manually homogenized, resulting 

in a 3 kg sample per field, which was kept at 4°C during transportation.  

Upon arrival in the lab, soils were processed directly; they were split in 

two parts used for determining (1) chemical soil properties, (2) dissolved 

organic carbon (DOC) fractions, microbial biomass N, respiration, microbial 

community composition, and the in vitro suppression of pathogen growth by 

volatiles released by the soil. Part (1) was oven-dried (40°C), ground, and 

processed by BLGG (Wageningen, The Netherlands) according to standard 

procedures (Table 5.1). Part (2) was sieved to 4 mm. Per soil, two 1 g 

subsamples were taken and stored at -20°C for DNA extractions. Soil moisture 

was determined from the mass differential measured by drying the soil at 105°C 

for 24 h. Part (2) was then separated into three equal-sized samples. The three 

samples per field were then pre-incubated for 3 days at 9°C and 60% water-

holding capacity (WHC). By equilibrating each soil under the same
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conditions, the effects of variable temperature and moisture conditions between 

different fields over the four weeks of sampling were minimized. After 

separation and pre-incubation, measurements of soil properties were performed 

in triplicate and the averages of the three samples were used as the input data.  

 

5.2.2 Soil properties 

A brief summary of all measured soil properties and the respective 

methodological references can be found in Table 5.1. For the measurement of 

soil dissolved organic carbon (DOC), field-moist soil was suspended in a 1:2 

(w:w) extraction, where one part fresh soil (mass of dry-weight equivalent 

(DWE) was suspended in two parts ultra-pure water (UPW). Samples were 

equilibrated for 1 h on a horizontal shaker, centrifuged 20 min at 3000 g, and 

ultra-centrifuged 10 min at 11700 g. The supernatant was filtered through a pre-

rinsed 0.45 m cellulose nitrate membrane and a subsample of the filtrate was 

analysed for total DOC with a TOC-5050A analyzer (Shimadzu Corporation, 

Kyoto, Japan). The remaining filtrate was fractionated into four DOC fractions 

(Table 5.1) based on their hydrophobicity (Thurman and Malcolm, 1981) using 

a batch fractionation procedure (Van Zomeren and Comans, 2007). The 

aromaticity of Total DOC, humic acids, fulvic acids and the hydrophilic fraction 

were also measured by each solution’s absorption of UV light at 254 nm 

(Genesys 10S UVeVIS, Thermo Fisher Scientific Inc., Waltham MA, USA), 

normalized by sample DOC concentration per cm path length.  

Basal respiration rates were determined by CO2 emission from 

incubated soils. The DWE of 100 g fresh soil was weighed into a 335 ml glass 

bottle and incubated in the dark at 20°C. Soil moisture in each bottle was 

maintained at starting levels (60% WHC) by adding UPW as needed, at least 

once per week. After the start of incubation (T0), emissions were measured nine 

days after T0 (T1), three weeks after T1 (T2), and 11 weeks after T2 (T3). At 

the start of a measurement period, each glass bottle was flushed with N2 gas, 

and then sealed with a rubber septum for 4 h (T1), 6 h (T2), or 12 h (T3). 

Accumulated CO2 concentrations in the bottle’s headspace were then measured 
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through the septum using an INNOVA 1412 Photoacoustic field gas-monitor 

(LumaSense Technologies, Ballerup Denmark). Cumulative CO2 emissions for 

the 14 weeks of incubation (T1-T3) were calculated by linear interpolation of 

T1, T2 and T3, which produced a better fit than exponential interpolation.  

Microbial biomass N was determined using the chloroform fumigation-

extraction method (Brookes et al., 1985) on 20 g DWE fresh soil. Before and 

after a 24 h fumigation, a soil subsample was equilibrated for 1 h in 80 ml 0.5 

M K2SO4, and the solution was filtered through a pre-rinsed 0.45 m cellulose 

nitrate membrane. Total soluble N in the filtrate was measured on a San
++

 6 

channel segmented flow analyser (Skalar, The Netherlands). 

 

5.2.3 Community analysis 

Microbial community composition was assessed using 454 

pyrosequencing. Two DNA extractions per soil were performed using Mobio 

96-well Powersoil® extraction kit according to the manual. Amplicons for 

barcoded pyrosequencing (10 bp unique barcode per sample) of bacterial 16S 

ribosomal DNA fragments, and fungal and oomycetal ITS regions were 

generated using PCR reactions (primers, sequencing adapters and PCR 

conditions are listed in Table S1). PCR product quality was examined on a 1% 

agarose gel and subsequently purified using gel electrophoresis, followed by gel 

extraction (QIAGEN Inc., Valencia, CA). Concentrations of amplified DNA 

were measured by the Qubit® 2.0 Fluorometer (Life Technologies) and samples 

were pooled equimolar. Sequencing was performed by Macrogen (Macrogen 

Inc., South Korea) on a Roche 454 automated sequencer and GS FLX system 

using titanium chemistry (454 Life Sciences, Branford, CT, USA).  

The obtained 454 sequences were filtered and analyzed using Mothur 

version 1.32.1. Briefly, primer and barcode information was identified in 

sequences allowing 0 errors. 16S sequences were trimmed based on a Phred 

score of 30, or 400 bases. Chimeras were identified by Uchime (Edgar et al., 

2011). Sequences were aligned to the Silva reference alignment (Pruesse et al., 

2007) followed by a classification (Wang et al., 2007). A distance matrix was 
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calculated (distance cutoff 0.10), and clustered using average neighbour 

clustering. Operational taxonomic units (OTUs) were determined at 97% 

similarity. A representative sequence was taken for each OTU and blasted 

against the NCBI database. An indication of taxonomy was based on the first 

five blast hits. ITS sequences were similarly filtered and analyzed using a 

minimum sequence length of 180 and a maximum length of 400 bases. ITS 

sequences (after chimera removal) were aligned and clustered using cd-hit-est 

(Li and Godzik, 2006) version 4.5.4 (parameters: word size 9, compare both 

strands, cluster sequences into most similar clusters instead of first cluster). The 

same workflow was used for 18S sequences, but a minimum length of 200 

bases and a maximum length of 450 bases was applied. 

rDNA sequences obtained from the two DNA extractions of each soil 

were pooled and rarefied to the minimum number of reads. The bacterial 

sequences were grouped on phylum level. Phyla were included in further 

analysis if a phylum contained over 0.05% of the total reads. The OTUs of the 

fungal dataset that could be assigned at the species level were each classified 

into one of eight potential functional groups (pathogenic, arbuscular 

mycorrhizal, coprophilic, endophytic, hyperparasitic (i.e. parasitizing on fungi), 

nematophagous, saprophytic on wood, saprophytic on litter), based on literature 

screening. For 40-50% of the total reads, a potential function could be indicated. 

The oomycete sequencing data were also classified into functional groups. 

However, in contrast to the other two datasets, the data were only pooled and 

not rarefied, due to the apparent absence or low number of reads in several soils. 

Shannon diversity index was calculated from the fungal, bacterial and combined 

dataset. 

 

5.2.4 Field management survey 

For each of the 50 soils, an interview with the farmers was conducted to 

document management practices, including questions on tillage, fertilization, 

previous crop and crop rotation. Of the 50 fields sampled, 46 fields had 

successfully completed management surveys; four fields were not included in 
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subsequent analysis where field management variables were input. Results were 

grouped according to different management practices: different tillage practices 

were categorized into three groups, (1) conventional tillage, (2) reduced tillage, 

or (3) no tillage; fertilizer application was categorized into four groups, (1) 

artificial fertilizer, (2) liquid manure, (3) solid manure, or (4) compost; cover 

crop was grouped based on presence or absence of a cover crop during the 

previous field season.  

 

5.2.5 Volatile Assay 

An experimental set-up was designed to determine the growth response 

of three different soil-borne plant pathogens to volatile organic compounds 

(VOC) released from soils. The three pathogens selected were the 

basidiomycete Rhizoctonia solani AG2-2-IIIB (strain 02-337, Sugarbeet 

Research Institute (IRS), isolated from Beta vulgaris), the ascomycete Fusarium 

oxysporum f. sp. tulipae (strain TuA, Applied Plant Research (PPO) 

Wageningen University and Research Centre, PPO Lisse isolated from Tulipa 

bulbs) and the oomycete Pythium intermedium (strain P52, PPO, Wageningen 

University and Research Centre, isolated from Narcissus bulbs). The 

experiment was designed to ensure enough airspace between pathogen and soil 

so the exposure to volatiles produced by the soils was enabled without physical 

contact between the pathogens and soil, an assay modified from Garbeva et al., 

2014 (Figure S2). For each pathogen, 20 g DWE soil (60% WHC) was spread 

evenly on the bottom of a 90 mm Petri dish and incubated for 1 week at 10°C 

before the start of the experiment. For each Petri dish, a 4 mm layer of Water 

Yeast Agar (WYA; 20 g agar, 1 g KH2PO4, 0.1g (NH4)2SO4, 0.1 g yeast extract 

(Difco) L
-1

,
 
pH 6.5) was poured into the lid. Agar plugs of 6 mm diameter 

Potato Dextrose Agar (PDA; 19.5 g L
-1

 (Oxoid)) colonized by R. solani, F. 

oxysporum or P. intermedium, incubated 5-10 days at 20°C, taken from the 

growing front, were transferred to WYA plates and incubated at 10°C. After 48 

h, a WYA agar disc (Ø 6 mm) containing the pathogen mycelium was placed in 

the center of the (agar-filled) lid. The lid was then carefully placed on top of the 



 

 

81 

 

bottom (soil-containing) compartment and sealed using Parafilm (Figure S2). 

Plates were incubated for 10 days at 10°C. Petri dishes without soil were used 

as controls to measure the development of mycelium under conditions without 

soil-released volatiles. The assay was performed with six replicates. Mycelial 

biomass determination was done according to the method of Garbeva et al. 

(2014b), with some modifications. Briefly, pathogen mycelia were harvested by 

melting and dissolving the colonized agar from the lids of the Petri dishes in a 

glass beaker with water in a microwave oven (c. 100°C), followed by sieving 

the mycelium with a tea strainer and three washing steps with water (c. 90°C) to 

remove agar residues. For measurements of dry biomass weight, mycelia were 

frozen at -20°C and freeze-dried for 24 h.  

 

5.3 Data Analysis 

5.3.1 Statistics 

All statistical analyses were performed in R (3.0.0) with the R packages 

vegan, packfor, ade4, leaps, car, and ape. For the soil properties data, normality 

and homogeneity of variances were examined using the Shapiro-Wilk test and 

Levene’s test, respectively. Variables that did not meet these assumptions were 

log-transformed or square root-transformed (Table 5.1). To study the 

community composition of the fungal and oomycete community, the OTUs 

from the sequencing that could be assigned to species were grouped by 

function. The bacterial community was grouped by taxa. The sequencing 

datasets were Hellinger-transformed to minimize the effects of large 

abundances and zero values in the community dataset (Legendre and Gallagher, 

2001). The field management data were dummy-coded because the data were 

categorically either absent or present. Pathogen suppression by volatiles was 

converted to the proportion of reduction of mycelial biomass in comparison to 

the soil-free control (control = 0 (no suppression), 1 = maximum suppression, 

<0 = stimulation). The F. oxysporum and P. intermedium suppression datasets 
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were arcsin-square-root-transformed and three growth-promoting outlier soils 

were removed from the P. intermedium dataset to meet the basic assumptions of 

normality and homoscedasticity. These soils prevented normal distribution of 

suppression rate data and were excluded from subsequent analysis. They were 

not outliers with regards to any other measured parameters. 

 

5.3.2 Selection of parameters for regression analysis 

Covariation between all measured soil properties was first examined 

using a principal component analysis (PCA). The resulting plots of the first two 

PCs (Figure S3A and B) were used to make a selection of the most relevant 

parameters (Table 5.1), to avoid covariability and reduce the number of input 

parameters for downstream regression analyses. The decision-making process 

for selecting soil properties included: 1) if two parameters’ PCA vectors had 

overlapping length and direction, the most biologically relevant of the two was 

selected (e.g. available nutrients from CaCl2 extraction were chosen over less 

soluble bound elements (Houba et al., 1990)), 2) if two parameters have an 

inverse relationship, the most biologically relevant of the two was selected (e.g. 

DOC proportion of humic acids’ vector is divergent from the proportion of 

hydrophilic compounds, but the latter has been found to be more closely related 

to rates of microbial respiration (Straathof et al., 2014)), and 3) parameters 

previously identified in the literature as being associated with disease 

suppression in agricultural soils (e.g. microbial respiration and biomass (Janvier 

et al., 2007)). For microbial community and field history datasets, all 

parameters were used as input.  

 

5.3.3 Multiple linear regression analysis 

For the soil property and microbial community datasets, a multiple 

linear regression analysis was performed, followed by permutation tests to 

determine the contribution and significance of the selected parameters in the 
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suppression rates of each pathogen by volatiles (the dependent variable). To 

create a regression model, this was followed by a forward selection procedure 

with double stopping criterion, adjusted R² and α<0.05 (Blanchet et al., 2008). 

Correlations between significant (P<0.05) parameters and suppression rates 

were tested with the Pearson correlation coefficient (r). A similar approach was 

taken for the field history dataset, but using multiple logistic regression models 

(due to the binary nature of this dataset) and forward selection to create a 

parsimonious model (Blanchet et al., 2008).  

 

5.3.4 Multivariate regression analysis 

Preliminary observations of pathogen growth response to volatiles 

revealed that no one soil or group of soils was highly suppressive to all three 

pathogens. Furthermore, a lack of common significant variables among the 

three pathogens resulting from the univariate multiple linear regression 

prompted analysis of multivariate regression. Redundancy analysis (RDA) was 

performed for each dataset to test the contribution and significance of the 

selected soil property, microbial community, and field history parameters on 

suppression by volatiles of all three pathogens in combination. Within the RDA 

plot, an ordination value was generated for the overall pathogen suppression 

rates. This three-way ordination value became the dependent variable in 

subsequent regression; a permutation test and then forward selection procedure 

with double stopping criterion, adjusted R² and α<0.05 (Blanchet et al., 2008) 

was performed to create parsimonious models and identify the most relevant 

parameters. To assess the contribution of each variable in the model, partial R
2
 

values were calculated. Furthermore, for each model, each significant (P<0.05) 

variable was removed one-by-one to assess its respective contribution to the 

significance level of the original model and coefficient of variation value. The 

subsequent parameters selected in the forward selection procedure to replace 

removed variables were also considered in terms of their contribution to 

explaining variation in pathogen-suppression. All of the parameters found to be 

significant in the multiple linear regression for each pathogen, and the 



 

 

84 

 

multivariate regression within the RDA (all models run) were combined into 

one dataset for a final regression analyses on all significant parameters only.  

 

5.4 Results and Discussion 

In part due to the geographical dispersion of the 50 arable fields 

sampled across The Netherlands (Figure S1), a wide variety of soil properties 

and management strategies was obtained. This in turn resulted in a broad range 

of soil properties measured: soils contained from 1-45% clay and 8-97% sand. 

Organic matter (OM) content ranged from 1.3-41% (mean 6.4%), although 

mineral soil (excluding five peat soils) mean OM content was 4.1%, which 

agrees with the 4.3% mean OM content of Dutch mineral arable soils found by 

Reijneveld et al. (2009). The mean pH of all 50 soils was 6.4, again similar to 

values previously reported (6.6 (Reijneveld et al., 2009)), indicating our 

selection of soils is representative of arable soils in The Netherlands. Other soil 

properties varied broadly as well and not necessarily collinearly (Figure S3), 

and 17 were ultimately selected as input variables into the regression analysis 

(Table 5.1). Tillage regimes, manure applications, and the use of a cover crop 

varied among the selected soils as a result of the spread in edaphic properties 

and the variety of crops. Corn was the most frequently grown crop at sampled 

sites (n=24), followed by wheat (n=19). Furthermore, the crop rotation on the 

sampled fields often included flower bulbs, sugar beet, potato and/or onion.  

The soils also varied in their compositions of indigenous bacteria, fungi 

and oomycetes. The 16S sequencing resulted in a minimum of 14789 bacterial 

reads per field, from 16 phyla. Most reads were assigned to Proteobacteria (19-

41% of the reads per field) and Acidobacteria (13-34% of the reads per field). 

More rare phyla included Tenericutes and Spirochaetes, which each had 

maximum 42 reads per sampled site. Most fungi inhabiting these soils 

(minimum 2745 reads per field) were classified within the functional group 

litter saprophytes, yielding in total 23-90% of the reads per field, whereas most 
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of the oomycetes were from the family Pythiales (>99%) in the genera 

Phytophthora or Pythium. 

Variability among soils was measured in in vitro pathogen growth 

suppression by soil VOCs (Figure 5.1) and was determined to be a general soil 

phenomenon with pathogen-specific outcomes (Table 5.2).  Volatile-mediated 

effects differed among the tested soil pathogens (Table 5.2). However, relating 

these overall pathogen response effects to measured parameters identified 

microbial activity, previous crop type, and multiple C- and S-related parameters 

as the most statistically influential (Table 5.3). Each of R. solani, F. oxysporum, 

and P. intermedium exhibited a range of responses from suppression to 

promotion of hyphal biomass production, but 91% of pathogen-soil 

combinations resulted in at least some suppression relative to the soil-free 

control. This is similar to results showing fungal growth can be either inhibited 

(up to 60%) or stimulated (up to 35%) by the volatiles of bacterial isolates 

(Mackie and Wheatley, 1999; Wheatley, 2002). When comparing responses to 

soil volatiles between pathogens (Figure 5.1), patterns failed to emerge; i.e. 

volatiles from soils that were promoting the growth of F. oxysporum were not 

necessarily promoting growth of R. solani (Figure 5.1A) or P. intermedium 

(Figure 5.1B), and vice versa.  

The observation of pathogen-specific response effects (Figure 5.1) to 

volatiles emitted from the 50 soils in our study agrees with previous research 

which found species-specific responses to volatiles from various bacterial and 

fungal isolates under laboratory conditions (Bruce et al., 2000; Garbeva et al., 

2014a; Mackie and Wheatley, 1999). Pathogen-specific response variability 

may result from volatile compounds affecting different sites of action on the 

pathogen, or from differences between each pathogen’s ability to detoxify the 

VOCs  (Kai et al., 2009). Our results support previous study that reported both 

taxon- and genus-specific sensitivity between pathogens; generally oomycetes 

tend to be very sensitive to volatiles while Fusarium spp. were reported to have 

relative tolerance towards them (Hunziker et al., 2015; Weisskopf and Bailly, 

2013). These observed differences in tolerance to volatile exposure may also be 

related to the biology and morphology of each pathogen.  Hunziker et al. (2015)
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Table 5.2: Multiple linear regression models determined from soil properties, 

microbial community, and field history parameters measured from 50 soils; the 

dependent variable was in vitro suppression of Rhizoctonia solani, Fusarium 

oxysporum, or Pythium intermedium by soil volatiles. Significant model parameters 

(SMP) presented explain significant (P<0.05) amounts of variation in volatile 

suppression rates. Parameters are derived from a reduced regression model after a 

forward selection procedure, which was only run on significant (P<0.05) models, and 

not non-significant (ns) models.  

 

Pathogen Dataset 
Model 
type 

R
2
 

SMP with respective partial 
R

2 
(in brackets) 

R. solani 

Soil 
properties 

linear 0.51 
organic matter (0.40), pH 
(0.27), microbial biomass N 
(0.26) 

Microbial 
community 

linear 0.44 
Shannon diversity index 
(0.28), litter saprophytes 
(0.17), Acidobacteria (0.02) 

Field history logistic 0.18 bulbs (0.10), potato (0.08) 

F. oxysporum 

Soil 
properties 

linear ns 
 

Microbial 
community 

linear ns 
 

Field history logistic 0.08 reduced tillage (0.08) 

P. intermedium 

Soil 
properties 

linear 0.16 
S-total (0.18), microbial 
biomass N (0.08) 

Microbial 
community 

linear ns 
 

Field history logistic 0.39 
solid manure (0.24), bulbs 
(0.09), corn (0.08) 
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Table 5.3: Multivariate regression models determined from soil properties, microbial 

community, and/or field history parameters measured from 50 soils; the dependent 

variable was overall in vitro suppression of Rhizoctonia solani, Fusarium oxysporum, and 

Pythium intermedium by soil volatiles, combined. Significant model parameters (SMP) 

presented explain significant (P<0.05) amounts of variation in volatile suppression rates. 

SMP are derived from a reduced regression model after a forward selection procedure, 

which was only run on significant (P<0.05) models, and not non-significant (ns) models. 

The first model listed for each dataset is the best model determined. For comparison, 

SMP were removed, the model rerun, and the alternative models listed below the best 

model.  

Dataset 
Removed 
variable 

R
2
 P 

Significant model parameters with 
respective partial R

2
 (in brackets) 

Soil properties 

 
0.24 <0.001 

DOC
a
 (0.08), CO2

b
 (0.08),  

C:S (0.05) 

DOC 0.21 0.029 
CO2 (0.08), S-total (0.09),  
OM

c
 (0.07) 

C:S 0.19 0.016 DOC (0.08), CO2 (0.08), C:N (0.02) 

CO2 0.20 0.049 DOC (0.08), C:S (0.05), Na (0.03) 

Microbial 
community 

 ns ns  

Field History
d 

 
0.18 0.004 

corn (0.09), potato (0.07), solid 
manure (0.07) 

corn 0.16 0.045 
potato (0.07), solid manure (0.07), 
liquid manure (0.02) 

potato 0.14 0.070 corn (0.09), solid manure (0.07) 

solid 
manure 

0.14 0.025 potato (0.07), corn (0.09) 

All significant 
parameters 
from soil 
properties + 
microbial 
community + 
field history 

 0.27 <0.001 CO2 (0.09), corn (0.05), DOC (0.07),  

CO2 0.13 0.002 DOC (0.07), corn (0.05) 

corn 0.22 <0.001 
CO2 (0.09), DOC (0.07),  
C:S (0.04) 

DOC 0.25 <0.001 
CO2 (0.09), corn (0.05),  
S-total (0.07) 

a
DOC=dissolved organic carbon 

b
Cumulative microbial respiration after 14 weeks incubation 

c
Organic matter content (%) 

d
Indicated field crop or management practice was either present or absent in previous field seasons 

 

  



 

 

89 

 

have suggested that cell wall differences between pathogens may contribute to 

the permeability and, consequently, the inhibitory effect of volatiles. Relatively 

VOC-sensitive oomycete (P. intermedium) cell walls contain cellulose whereas 

fungal (R. solani and F. oxysporum) hyphae are built with a chitin matrix. 

Strong differences in lysis have been observed between Rhizoctonia and 

Fusarium after contact with non-volatile anti-microbial metabolites, which 

Potgieter and Alexander (1966) attributed to differences in cell wall structure 

and composition between the two fungi.  

 

5.4.1 Suppression of R. solani by volatiles  

Of the three pathogens, R. solani was most consistently suppressed by 

volatiles, with only one soil emitting volatiles that promoted R. solani growth 

(Figure 5.1A and C) by about 20% more than the soil-free control. The best 

multiple linear regression model determined for R. solani explained a 

proportion of 0.51 variation (Table 5.2), and was produced from the dataset of 

soil properties. While OM content and microbial biomass N were positively 

correlated with R. solani suppression rates (Figure 5.2A and 2C, respectively), 

pH was negatively correlated with growth suppression by volatiles (Figure 

5.2B). A moderate correlation (r=0.51) was found between OM content and 

microbial biomass N, and OM content and pH (r=-0.52), but no relationship 

was found between microbial biomass N and pH. The decomposition of 

complex OM constituents may result in the release of VOCs (Isidorov and 

Jdanova, 2002) as intermediary compounds of decomposition processes 

(Dickschat et al., 2005; Gray et al., 2010). With regards to pH, while it may act 

as a direct determinant of a volatile’s partitioning between the solution and gas 

phase, the potential effects of this property so tightly link soil chemical and 

microbiological feedback that it is difficult to disentangle whether its effect is 

direct or interactive.  

When considering the microbial community dataset, another significant 

model included the Shannon diversity index value, the fungal functional group 

litter saprophytes, and the taxonomic group Acidobacteria as significant model 
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parameters (Table 5.2). Acidobacteria were present in each of the 50 soils, had 

about 1800-5000 reads after rarefication, and were negatively correlated with 

volatiles suppressing R. solani (Figure 5.2F). Abundance of Acidobacteria has 

been shown to positively correlate to VOC-based pathogen suppression in other 

experiments (Van Agtmaal, unpublished). As the Shannon diversity index of the 

total microbial community increased, R. solani suppression decreased (Figure 

5.2D).  On the contrary, an increase in suppression was measured as litter 

saprophyte read numbers increased (Figure 5.2E).  

With regards to the historical field management practices at each site, a 

lower (0.18) amount of variation could be accounted for by that model, although 

this was still significant (P<0.05) (Table 5.2). Field sites that included bulbs 

and/or potato in their crop rotation were most relevant in this model (Table 5.2) 

and appeared to slightly decrease R. solani suppression by volatiles 

(Figures5.2G and H). Plant species are known to differentially alter soil 

microbial community composition (Berg and Smalla, 2009). This effect also 

applies to crops grown in long-term agricultural soils (Maul and Drinkwater, 

2009) which may offer an explanation for this observation as the composition of 

the microbial community can influence the volatile profiles emitted.  

 

  

Figure 5.2 (next page): Relationships between in vitro suppression of 

Rhizoctonia solani by soil volatiles and properties of 50 arable soils: A) Organic 

matter (% (log-scaled)), B) pH, C) microbial biomass N (mg kg
-1

 (log-scaled)), 

D) Shannon diversity index, E) Acidobacteria (Total OTU reads), F) Litter 

saprophytes (Total OTU reads), G) Potatoes in the crop rotation, and H) Bulbs 

in the crop rotation. Properties A-H were significant (P<0.05) model parameters 

determined by forward-step regression where suppression of R. solani by soil 

volatiles was the dependent variable. Suppression by volatiles was converted to 

the proportion of reduction of mycelial biomass in comparison to a soil-free 

control (control = 0 (no suppression), 1 = maximum suppression, <0 = 

stimulation). 
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5.4.2 Suppression of F. oxysporum by volatiles 

Volatiles from the soils measured in this experiment were least effective 

in suppressing F. oxysporum in vitro. The only parameter from all three 

measured datasets which significantly contributed to a model explaining 

variation in suppression of F. oxysporum (R
2
 = 0.08) was the practice of 

reduced tillage (Table 5.2). Field sites using reduced tillage (n=9) had slightly 

higher suppression levels of F. oxysporum than sites using conventional or no-

till management (Figure 5.3). Although most soils were suppressive to some 

degree, the mean rate of suppression for F. oxysporum relative to the control 

(0.2) was much lower than for R. solani or P. intermedium (0.7 and 0.6, 

respectively). There were also nine soils from which volatiles promoted 

biomass production of this pathogen (Figure 5.1A and 1B), although the 

remainder were suppressive to at least some degree (<0.7).  

 

 

  

Figure 5.3: Relationship between in vitro suppression of Fusarium 

oxysporum by soil volatiles and the practice of reduced tillage in 50 arable 

soils. Reduced tillage was a significant (P<0.05) model parameter 

determined by forward-step regression where suppression of F. oxysporum 

by soil volatiles was the dependent variable. Suppression by volatiles was 

converted to the proportion of reduction of mycelial biomass in comparison to 

a soil-free control (control = 0 (no suppression), 1 = maximum suppression, 

<0 = stimulation). 
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Different Fusarium species have been reported to be more tolerant to 

VOCs, e.g. F. solani was resistant to bacterial VOCs (Kai et al., 2007) and F. 

oxysporum has been shown to have only limited sensitivity to volatiles 

produced by antagonistic strains (Hunziker et al., 2015; Weisskopf and Bailly, 

2013). The relative tolerance of Fusarium to microbial volatiles and specifically 

bacterial volatiles may be one of the underlying reasons for the lack of edaphic 

variables corresponding with F. oxysporum volatile-mediated suppression. This 

may, however, be strain-specific or dependent on the volatile profile the fungus 

is exposed to, as strong inhibitory responses of F. oxysporum upon volatile 

exposure have also been found (Garbeva et al., 2014a). 

 

5.4.3 Suppression of P. intermedium by volatiles 

Several oomycetes (Pythium spp. and Phytophthora spp.) have 

consistently been shown to be highly sensitive to microbial volatiles (Van 

Agtmaal, unpublished; Hunziker et al., 2015). From the soil properties dataset, 

two significant parameters contributed to a model predictive of suppression 

with a R
2
 of 0.16: S-total and microbial biomass N (Table 5.2). When correlated 

individually against suppression, relationships were slightly negative (Figure 

5.4A and 4B, respectively), although variability between sites was high for both 

parameters. Sulphur-based volatile compounds like dimethyl disulphate 

(DMDS) and dimethyl trisulphate (DMTS) have been shown to be produced by 

soil microbes (Kai et al., 2007), e.g. the major compound emitted (94%) by an 

Achromobacter isolate was DMDS (Minerdi et al., 2011). Sulphur-containing 

compounds have been related to reduced Pythium infections in cucumber, both 

after direct addition of DMDS to soil or after incorporation of S-rich Allium 

crop residues (Arnault et al., 2013). As production of S-containing VOCs from 

bacterial isolates seems dependent on nutrient availability (including S) in the 

growth medium (Garbeva et al., 2014a), this would imply that S-availability, 

quality, or interactions with other soil properties may also influence emission of 

S-containing VOCs. The nature of this relationship, however, may be too 

complex to elucidate via our statistical approach.  
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  Figure 5.4: Relationships between in vitro suppression of Pythium intermedium by soil 
volatiles and properties of 50 arable soils: A) Total sulphur (mg kg

-1
 (log-scaled)), B) Microbial 

biomass N (mg kg
-1

 (log-scaled)), C) Bulbs in the crop rotation, D) Application of solid 
manure, and E) Corn in the crop rotation. Properties A-E were significant (P<0.05) model 
parameters determined by forward-step regression where suppression of P. intermedium by 
soil volatiles was the dependent variable. Suppression by volatiles was converted to the 
proportion of reduction of mycelial biomass in comparison to a soil-free control (control = 0 
(no suppression), 1 = maximum suppression). 
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A model with a better fit (R
2
 = 0.39) to the P. intermedium suppression 

rates was determined from the field history data. The presence of bulbs in the 

crop rotation (Figure 5.4C), the presence of corn in the crop rotation (Figure 

5.4E), and the application of solid manure (Figure 5.4D) were all negatively 

correlated with the suppression rates of P. intermedium. The latter, however, 

was the most explanatory parameter in terms of its partial R
2 
value (Table 5.2).  

 

5.4.4 Multivariate analysis of overall pathogen suppression by 

volatiles 

Multivariate analysis of the overall pathogen response to volatiles was 

prompted by the observation that there was no one soil or group of soils 

producing volatiles highly suppressive to all three pathogens (Figure 5.1). 

Furthermore, a lack of common significant variables among the three pathogens 

resulting from the univariate multiple linear regression (Table 5.2) warranted a 

multivariate approach to determine whether the combined response rate would 

have significant model parameters. Therefore, the parameters of all three 

datasets were combined using the overall response rate’s ordination of the three 

pathogens as one dependent variable (Table 5.3). The ordination of each point 

on the RDA plot (Figure S4A, B and C) was more spread out compared to 

clustering that had been seen in PCA plots (Figure S3A and B), suggesting that 

while soils shared similar properties, this did not translate to commonalities in 

overall suppression of the pathogens. 

Significant models were obtained from the soil properties and field 

history datasets, but not from the microbial community dataset (Table 5.3). 

Parameters in the most explanatory model of soil properties (R
2 

= 0.24) were 

different from those identified in the univariate multiple linear regression. 

Instead, DOC, cumulative CO2 production, and C:S ratio were the most 

significant of the 17 soil properties included. Removing each of these 

significant parameters did not drastically reduce the model’s coefficient of 

variation, but it did indicate relationships between parameters beyond 

collinearity. Parameters removed from regression analysis are not necessarily 
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replaced by parameters with the most similar RDA vectors (Figure S4A). For 

example, removing CO2 as a model input parameter results in Na as a new 

significant parameter (Table 5.3).  

Dissolved organic carbon is a known substrate for soil microorganisms 

(Haynes, 2005). Substrate quality impacts VOC composition, as resource 

variations have been shown to change the type, amount and suppressiveness of 

volatiles (Ezra and Strobel, 2003; Gray et al., 2010; Wheatley et al., 1997). 

Furthermore, resource availability and quality of DOC is reflected in microbial 

activity rates (CO2) (Straathof et al., 2014; Chapter 4 (this thesis)), which have 

been found to positively correlate to VOC production rates and microbial 

biomass in soil and litter samples (Leff and Fierer, 2008). Any combination of 

these effects may thus result in the significance of DOC for the overall 

pathogens suppression measured.  

The best field history model for overall pathogen suppression yielded 

an R
2
 of 0.18 in which the presence of corn and/or potato in the crop rotation, 

along with the application (or lack thereof) of solid manure were significant 

independent variables (Table 5.3). About 40% of fields had had corn and about 

30% had had potatoes in their rotations in the last five years. Conversely, only 

five fields had received applications of solid manure, and are relative outliers in 

their RDA ordination (Figure S4B). When solid manure was removed from the 

model, potato and corn still explained significant amounts of variation in the 

volatile-mediated suppression of the three pathogens combined (Table 5.3).  

By reducing the number of input parameters into the multivariate 

regression models (dataset “All significant parameters”) for overall suppression, 

the highest coefficient of variation was achieved (R
2 

= 0.27 (Table 5.3)). In this 

case, cumulative CO2 production, DOC and corn were the significant model 

parameters. Removal of CO2 resulted in the highest decrease of variation 

explained: 14% lower than when it is included in the model, and it was not 

replaced by any other variables (i.e. DOC and corn remained the only two 

significant parameters (Table 5.3)). The importance of this parameter further 

supports the notion that overall pathogen suppression by volatiles is driven by 

the consortium of soil microorganisms. Furthermore, these results suggest that 
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microbial activity is more relevant to volatile production than the absence or 

presence of particular microbial species, which were not significant model 

parameters contributing to overall suppression variation.  

 

5.5 Conclusions and Future Directions 

We have presented here the first multi-soil survey of the effects of 

volatiles emitted from soils on in vitro biomass production of three different 

pathogens. The edaphic parameters we have identified as being significant in 

their effect on the combination of these pathogens are also properties that have 

been directly linked to microbial metabolic activity, either as a substrate source 

(DOC) or an activity indicator (CO2). While this link has been previously 

postulated, our statistical confirmation of the relevance of these parameters 

should provide an impetus for future hypothesis-testing. The focus of this future 

experimental work is recommended to 1) more mechanistically explore the role 

of microbial substrate, including DOC, and its influence on VOC 

production/quality, and then 2) determine management practices which effect 

substrate-driven microbial activity and thus, may enhance VOC-mediated 

pathogen suppression in situ. Previously it has been shown that VOCs from soil 

positively correlate to reduced disease incidence in situ (Van Agtmaal et al., 

unpublished) which supports the potential for VOC-mediated suppression in 

agricultural fields. This implies VOC-mediated pathogen suppression could be 

an important component of general disease suppression in agricultural soil, and 

should be considered as a natural control mechanism for reducing crop-loss and 

moving towards sustainable agriculture. 
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Figure S1: Locations in The Netherlands of 50 arable agricultural fields 

sampled.  

Plug containing pathogen 

Figure S2: Illustration of the set-up used to determine the effect of soil-

released volatiles on pathogen biomass. The bottom Petri-dish compartment 

contains fresh soil. The inner side of the lid compartment contains water yeast 

agar with a plug directly in the centre containing pathogen mycelium as 

inoculum.  Para-film seals the lid to the bottom compartment.  
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Figure S3A: Principal component analysis of 50 soils’ soil properties 

measured using routine near-infrared based or CaCl2 extractions (OM=organic 

matter; CEC=cation exchange capacity). 
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Figure S3B: Principal component analysis of 50 soils’ soil properties 

measured using ultra-pure water extractions and dissolved organic carbon 

(DOC) fractionation (HA=humic acids; FA=fulvic acids; HoN=hydrophobic 

neutrals; Hi=hydrophilic compounds; SUVA=specific ultra violet absorption at 

245 nm).  
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Figure S4A: Redundancy analysis (RDA) plot of overall in vitro suppression of 

Rhizoctonia solani, Fusarium oxysporum, and Pythium intermedium (combined) 

by soil volatiles from 50 arable soils in relation to soil properties (DOC=dissolved 

organic carbon). 
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Figure S4B: Redundancy analysis (RDA) plot of overall in vitro suppression 

of Rhizoctonia solani, Fusarium oxysporum, and Pythium intermedium 

(combined) by soil volatiles from 50 arable soils in relation to field 

management practices. 
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Figure S4C: Redundancy analysis (RDA) plot of overall in vitro suppression 

of Rhizoctonia solani, Fusarium oxysporum, and Pythium intermedium 

(combined) by soil volatiles from 50 arable soils in relation to all significant 

(P<0.05) regression model parameters from soil properties, microbial 

community and field history datasets. 
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General Discussion 
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6.1 Introduction 

Dissolved organic carbon (DOC) has long been presumed to be a vital 

substrate for soil microorganisms (Haynes, 2005; Kalbitz et al., 2000). This 

thesis aimed to investigate the importance of DOC properties for various 

processes of the soil microbial community. These microbial processes included 

turnover of DOC fractions, both basal and substrate-induced microbial 

respiration rates, and production of pathogen-suppressing volatile organic 

compounds (VOCs), and were all measured as functions of the total soil 

microbial community. The soil microbial community is known to act 

collectively to suppress the proliferation of soil-borne plant pathogens, in a 

process known as general disease suppression (GDS). By determining the role 

of DOC in microbial processes linked to GDS, this thesis contributes 

knowledge that may aid in identifying of an indicator of a soil’s GDS capacity. 

In this final chapter, I synthesize and contextualize the major findings of my 

experimental chapters (Chapters 2-5) with respect to the six thesis objectives 

described in Chapter 1. I then summarize some recommendations for future 

research opportunities, especially for considering DOC quality in the ongoing 

search for an indicator of GDS.    

 

6.2 New insights into dissolved organic carbon 

Before DOC and its inherent properties could be linked to soil 

microbial processes, this thesis had to consider the potential range of these 

properties. Therefore, I first had to assess the suitability of a rapid-batch 

fractionation procedure (Van Zomeren and Comans, 2007) for determining 

DOC characteristics among soils and organic amendments. The principles of 

this fractionation procedure have been previously applied to determine the 

bioavailability of some DOC fractions (Jandl and Sollins, 1997; Qualls and 

Haines, 1992) but this thesis relies on this procedure as the primary method of 

DOC characterization in all experimental chapters. The improvements of this 
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rapid-batch method over previous approaches to DOC fractionation (Aiken et 

al., 1985) make it appropriate to be used in experiments with a high-frequency 

of DOC sampling (Chapter 3) as well as with large sample sizes of organic 

matter (OM) and soil types (Chapters 2, and 4 and 5, respectively). I found the 

rapid-batch DOC fractionation procedure to be suitable for all of these 

applications; it is sensitive and sufficiently replicable to detect changes in DOC 

characteristics over time, and appropriate to conduct in combination with other 

measurements of DOC characteristics (e.g. aromaticity (Amery et al., 2008) 

(Chapters 3 and 4)). Application of this DOC fractionation method therefore 

allowed me to consider DOC fractions as they might vary in field soils, in soil 

after OM application, and as they might influence microbial processes.  

 

6.2.1 Fractions of dissolved organic carbon and the influence of 

organic amendments 

One of the difficulties in developing the experimental designs of this 

thesis was considering the wide range in DOC concentrations that has been 

reported in literature for both soils (Cook and Allan, 1992; Van Hees et al., 

2005; Zsolnay, 1996) and organic amendments (Termorshuizen et al., 2006; 

Wei et al., 2014). Each experimental chapter confirmed these previously 

reported ranges in total DOC concentrations, and further, showed high 

variability in the DOC fraction profiles that was independent of total DOC 

concentration (Chapters 2 and 4). Fractions of DOC are known to vary in their 

different physical and chemical traits relative to one another (Amery et al., 

2009). The range I initially observed proportions of hydrophilic vs hydrophobic 

fractions (Chapters 2 and 4) supported the hypothesis that previously reported 

discrepancies in DOC concentration and microbial processes (Neff and Asner, 

2001) may be attributed to differences in DOC quality.  

One of the earliest observations I made in this thesis was that the DOC 

fractions of organic amendments range widely (55-90% hydrophobic 

compounds) and independently of total DOC concentration. Concentrations of 

DOC fractions are driven by the conditions under which they are processed 
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(Straathof and Comans, 2015 (Chapter 2)). Amendments are often selected on 

the basis of nutrient status or OM content (Hargreaves et al., 2008), not on the 

basis of DOC content or quality. They are also often applied to inhibit pathogen 

outbreaks and support GDS (Termorshuizen et al., 2006), but there is currently 

no recommended physical or chemical properties for selecting a disease-

suppressive amendment (Bonanomi et al., 2010). In Chapter 2, I propose that 

the proportions of DOC fractions measured may be valuable to consider when 

selecting a soil organic amendment, depending on the purposes of application 

(e.g. improving soil nutrient status and/or promoting GDS and/or influencing 

DOC quality). This led to the development of my second thesis objective: to 

measure the influence of amendment DOC on soil DOC.  

In Chapter 3, I demonstrated that amendment DOC quality shifts soil 

DOC quality, but only in the short-term (≤ 6 d) (Straathof et al., 2014). 

However, no significant effects were found when determining the influence of 

organic amendment type on DOC fractions in 42 agricultural soils (Chapter 4). 

Organic amendments had been applied to these soils more than 4 months before 

sampling. As such, the effects of amendment DOC on soil DOC in Chapters 3 

and 4 appear time-dependent. Therefore, I am led to conclude, in agreement 

with Chantigny (2003), that the effects of DOC added to soil are immediate and 

significant, but short-lived. The legacy of these effects, however, may impact 

plant production throughout the growing season if they coincide with seedling 

emergence (Scheuerell et al., 2005). Therefore, it may be especially valuable to 

characterize the DOC quality of organic amendments applied close to the time 

of crop emergence, if producers want an indicator of how soil DOC properties 

(and the microbial processes linked to those properties) may be influenced. 

More experimentation is needed, however, to confirm the relevance of any 

influence on microbial processes for GDS and plant productivity.  
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6.2.2 Dissolved organic carbon as a substrate for soil microbial 

respiration 

Two objectives of this thesis (Chapter 1) specifically aimed to 

determine how DOC quality indicators influence rates of soil microbial 

respiration. Chapters 3, 4, and 5 all present evidence that DOC quality is 

important for microbial activity. In Chapter 3, I found that by comparing basal 

respiration rates to respiration rates induced by substrates with different DOC 

fraction profiles, I could interpret the relative biological importance of the 

added fractions (Straathof et al., 2014).  Applications of amendment DOC with 

higher proportions of hydrophilic (Hi) DOC fractions resulted in the highest 

substrate-induced respiration (SIR) rates. Concentrations of the Hi fraction also 

contributed the most to variation in respiration rates from all soil treatments in 

that experiment. This supported previous findings of high bioavailability of this 

fraction (De Troyer et al., 2011; Jandl and Sollins, 1997) but was not confirmed 

by the results of Chapter 4 when DOC fractions were model-input parameters 

for respiration rates among 46 soils. In that experiment, fulvic acid (FA) 

accounted for as much variation in respiration rates as the linear regression 

model that correlated total DOC and respiration rates (Chapter 4), suggesting 

that fulvic acids are also a biologically relevant fraction.   

In order to explain the influence of isolated DOC fractions on microbial 

respiration rates more mechanistically, a follow-up experiment to Chapter 3 was 

conducted, which is not included in this thesis. Total DOC, or humic acid (HA), 

FA, or Hi fractions from the end of the rapid-batch fractionation method were 

added to soil and incubated 6 h in a SIR assay (Campbell et al., 2003). 

Significant SIR rates from the HA fraction were measured, but later deemed an 

artefact of the 0.1 M KOH solution used to re-suspend HA (Van Zomeren and 

Comans, 2007) and the 0.01 M HCl used the moderate the pH of that solution. 

Blank 0.1 M KOH + 0.01 M HCl, and 0.1 M KOH + 0.01 M HCl + 30 ppm 

glucose also released significantly higher SIR rates than additions of water, total 

DOC, FA or Hi to the soil. This is one methodological limitation of the DOC 

fractionation procedure, and of only measuring short-term SIR.  
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Background-solution effects of HA fractions may be minimized when 

SIR is measured in a longer-term incubations (i.e. several weeks), but this 

would not account for any shifts in the soil microbial community, which may 

adapt differently depending on added salt concentrations (Rousk et al., 2010). 

Measuring the effects of isolated fractions on microbial respiration therefore 

remains an important avenue of experimentation which may help explain the 

statistical significance of Hi and FA fractions identified in Chapters 3 and 4. 

Measuring turnover of an isolated HA fraction may also lead to mechanistic 

explanations for the observed depletion of HA concentration in Chapter 4. 

However, alternative methods of fraction-isolation should first be considered: 

these may include dialysis of fraction solutions to reduce the ionic strength 

(Canellas et al., 2010), or equilibration of the solutions with a cation-exchange 

resin (Schmidt et al., 2007). 

 

6.2.3 Considering the relationship between hydrophilic and 

hydrophobic dissolved organic carbon 

In all experiments where DOC quality was considered in the context of 

microbial activity, a link was found between the fractions of Hi and 

hydrophobic HA. The observation of HA depletion in Chapter 3 suggests that 

this fraction was either consumed or degraded by the soil microbial community. 

This seemed to correspond with relatively stable concentrations of the Hi 

fraction. Therefore, although I could not determine this experimentally, I 

proposed that HA constituents were fuelling microbial activity upon entering 

less hydrophobic pools. This possible explanation also offers an explanation for 

observations regarding FA: FA proportions in Chapter 3 remained stable while 

other fractions were preferentially depleted. The FA fraction was also as 

relevant as total DOC for statistically explaining variation in basal respiration 

rates in Chapter 4.  

It has been recently proposed that HA molecules may act as carrier 

molecules of more labile functional moieties (Sutton and Sposito, 2005). These 

adsorbed compounds may desorb from HA molecules and thus be more 
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susceptible to microbial decomposition. Molecules desorbed from HA may then 

enter less hydrophobic pools (FA or HoN), as I postulate in Chapter 3, in a 

fragmentation pathway similar to that proposed by Leenheer and Croué (2003). 

In Chapter 4, I provide further support for this possible explanation by 

describing a statistically significant model with aromaticity of the Hi fraction 

and concentration of the HA fraction accounting for microbial activity variation. 

This is conceptually presented in Figure 6.1 which illustrates how shifts in 

microbial substrate consumption potentially occur under changing properties of 

the Hi fraction. This shift in substrate utilization offers a possible explanation 

for the observed depletion of HA even when a comparably-sized Hi fraction 

was in the soil solution (Chapter 3). It also potentially accounts for why 

aromaticity measurements alone did not explain high amounts of variation in 

microbial activity rates in Chapter 4. The nature of this feedback between 

hydrophobic and hydrophilic fractions would be interesting to illuminate in 

future research, because it may have implications for other microbial functions, 

as it would plausibly result in a shift of the microbial community as substrates 

of the native community are consumed.  

It may be useful to reconsider fractions of DOC as a continuum of 

hydrophobicity, rather than in terms of aromaticity or bioavailability. 

Aromaticity does not appear to have a strong relationship with biodegradability 

(Chapter 4) and bioavailability is a somewhat subjective term because it 

depends on the composition of the microbial community. Reliance of the 

microbial community on low molecular weight (LMW) C (Boddy et al., 2007; 

Van Hees et al., 2005) may be determined by properties of other C compounds 

in solution, or by properties of LMW C other than their molecular weight. This 

thesis, in particular Chapters 3 and 4, also provides evidence for previous 

suggestions that FA and HoN fractions contain compounds that are 

intermediary between HA and Hi (Guggenberger et al., 1994). The 

measurement of C fluxes through these fractions in both directions may also 

provide further insight into how and why HA compounds supplement the Hi 

fraction.  
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6.2.4 A call to reconsider humic acids 

This thesis demonstrated the biological relevance of the soluble HA 

fraction in Chapters 3 and 4. Although HA is typically described as recalcitrant 

(Kalbitz et al., 2000) and relatively non-biodegradable (Haynes, 2005) fraction, 

some studies have shown HA biodegradation (Boyer and Groffman, 1996) or 

short-term depletion (Ros et al., 2010) in soils. These studies, however, failed to 

provide a mechanistic explanation for this phenomenon. I propose here that the 

use of HA as a C substrate for soil microorganisms is linked to the prevalence 

and aromaticity of other DOC fractions (Figure 6.1). However, this remains to 

be established experimentally. Therefore, I recommend that future research on 

the biodegradability of HA aim to determine how these molecules decompose in 

the presence or absence of Hi compounds with different properties. The biggest 

limitation to exploring the mechanism underlying HA depletion may be a lack 

of means to trace products of HA decomposition through DOC solutions and/or 

into the microbial food web.  

Figure 6.1: Conceptual diagram of dissolved organic carbon (DOC) 

hydrophilic fraction properties and the consumption of that fraction by the soil 

microbial community. Arrows indicate increasing or decreasing consumption 

rates; as microbial dependence on hydrophobic fractions for substrate 

increases, dependence on hydrophilic fractions decreases and vice versa. 

Properties may be “high” or “low” relative to other hydrophilics, and/or relative 

to hydrophobics.  
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6.2.5 Dissolved organic carbon as a substrate for volatile 

production 

Another soil microbial process measured in the context of DOC quality 

was the production of pathogen-suppressing volatiles by the soil microbial 

community (Chapter 5). This was done specifically to address my fifth thesis 

objective: to determine whether DOC quality effects on microbial activity rates 

(Chapters 3 and 4) were also reflected in suppression of soil-borne plant 

pathogenic biomass.  

Volatiles have previously been identified as capable of suppressing 

pathogens in vitro (Weisskopf and Bailly, 2013; Garbeva et al., 2014; Van 

Agtmaal, unpublished (Figure 6.2)) and pathogen-suppression is a factor 

potentially contributing to GDS (Termorshuizen and Jeger, 2008). The results 

of Chapter 4 contribute to the growing body of evidence that VOCs may play an 

important role of suppressing soil-borne plant pathogens in situ. Hypothesis 1, 

which suggested that GDS is determined by soil microbial activity and volatile 

production, has been explored in more detail in the thesis Suppression of Soil-

Borne Plant Pathogens (Van Agtmaal, 2015). Experiments conducted in 

Suppression of Soil-Borne Plant Pathogens explored in more detail whether 

soils producing pathogen-suppressing volatiles also had lower incidences of 

diseased plants. The results of a combined volatile-assay and bioassay 

measuring the inhibition of P. intermedium are presented in Figure 6.2. Two 

soils inoculated with P. intermedium produced hyacinth bulb biomass not 

significantly different from the uninoculated control soils (Figure 6.2a; 

untreated soils and peat-amended soils). These same two soils also produced 

VOCs that significantly reduced the biomass of P. intermedium grown on agar 

exposed to these volatiles (Figure 6.2c). This observation of soils producing 

pathogen-suppressing volatiles and inhibiting disease manifestation (Figure 6.2) 

suggests that VOCs are potentially important components of GDS. The 

statistical relationship described in Chapter 4 between DOC and overall 

pathogen-suppression by volatiles therefore supports the hypothesis that DOC 

may play a role in disease suppression, via volatile production, although a direct 

link remains hypothetical.  
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Figure 6.2: Root biomass of Hyacinth bulbs after a bioassay with Pythium 

intermedium inoculation, and hyphal biomass production of P. intermedium 

exposed to soil volatiles in situ. Top row shows average root biomass of 

Hyacinth bulbs grown in differently managed soils (U = untreated, P = peat 

addition, AD = anaerobic disinfestation; soil treatments applied in 2011 only) 

with and without P. intermedium addition in 2011 (a) and 2012 (b).  Bottom 

row shows average hyphal weight of P. intermedium that had been exposed to 

volatiles produced from differently managed soils in 2011 (c) and 2012 (d). P. 

intermedium biomass is presented as a percentage of the biomass produced 

in a soil-free control. Error bars represent standard deviation. 

 

This figure (unpublished) is courtesy of M. van Agtmaal, modified from the 

thesis Suppression of Soil-Borne Plant Pathogens (2015). 
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Each of the three hypotheses put forward in the project Predicting 

Disease Suppression of Agricultural Soils (Chapter 1) has been tested in this 

thesis. Properties that have been identified as potential indicators of a soil’s 

capacity for GDS include microbial biomass, microbial activity, and pathogen-

suppression (Bonanomi et al., 2010; Janvier et al., 2007; Termorshuizen and 

Jeger, 2008). This thesis has statistically linked microbial activity to DOC 

quality, and production of pathogen-suppressing volatiles to DOC 

concentration. Therefore, I hypothesize that, with further research, mechanistic 

links can still be identified between DOC quality and GDS.  

 

6.3 On Future Research Considerations 

This thesis has sequentially linked organic amendment DOC quality to 

soil DOC quality, and soil DOC quality to microbial activity and volatile-

induced pathogen suppression in vitro. To close the gap that remains in 

application of this knowledge, it would be useful to investigate such effects in 

situ. Long-term field experiments should be used to validate the results of this 

thesis under more agronomically-relevant conditions. These long-term 

experiments would be most useful in combination with bioassays for 

investigating the qualities of organic amendments that best promote GDS in 

agricultural soils.  

Many results of this thesis indicate a statistical relationship between 

DOC properties and soil microbial processes. In particular, statistical evidence 

for the role of DOC in volatile production, and the role of volatile production in 

disease suppression, lends support to the hypothesis that DOC may yet prove 

significant in identifying an indicator GDS. These statistics are useful in 

establishing that DOC characteristics and processes are linked, and in inspiring 

hypotheses for causal mechanisms. However, these causal mechanisms must be 

identified via future experiments before DOC quality can be used as a tool to 

manipulate these processes, or before management recommendations to 

promote GDS can be made.  



 

 

118 

 

Furthermore, based on the results of this thesis’s experimental chapters, 

I make the following recommendations and considerations for the field of DOC 

research: 

1) The biological relevance of hydrophobic DOC fractions, especially 

HA, is currently undervalued. In order to understand the decomposition of these 

compounds, and the role of recalcitrance in organic-C bioavailability, future 

experiments should quantify HA DOC concentrations and determine how these 

change over time in parallel with microbial activity measurements.  

2) Stable-isotope labelling of compounds in DOC solutions via 
13

C and 

stable-isotope probing of the soil microbial community would allow for tracing 

of substrate fluxes and uptake. This is necessary to confirm the flow of 

compounds between hydrophobic and hydrophilic fractions, and to determine 

the consumption rates of these compounds by microorganisms. This technique 

would provide a means of mechanistically determining microbial substrate 

consumption, however:  

3) 
13

C labelling of aromatic compounds such as HA presents challenges 

because of their degree of degradation. Perhaps for tracing these compounds, 

natural abundance of isotopes may be a more appropriate approach.  

4) Manipulation of soil DOC quality (e.g. via organic amendment 

application) is recommended in combination with measuring soil microbial 

community shifts. This would confirm if a shift in microbial consumption from 

hydrophilics to hydrophobics (or vice versa (Figure 6.1)) is a result of 

community composition shifts, or substrate-use shifts, or both. 

5) A statistical relationship has been identified between DOC, microbial 

respiration, and production of pathogen-suppressing volatiles. However, it 

remains unknown if this effect is the result of an absolute increase in volatile 

production, or an influence on the types of volatiles produced. Therefore, 

identifying volatile profiles and/or volatile compounds produced when different 

qualities of DOC are used as substrate would determine the specific mechanism 

of this effect.  

6) Experiments in the form of bioassays and field-trials must be 

conducted with labelled 
13

C compounds in order to discover the fundamental 
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link between organic amendment management, soil DOC properties, and in situ 

GDS of soil-borne plant pathogens.  

 

Conclusions 

This thesis has demonstrated the importance of not only total DOC 

concentration, but also the quality of DOC fractions for various microbial 

processes, including respiration, and production of pathogen-suppressing 

volatiles. I have demonstrated the biological relevance of DOC fractions, 

particularly humic acids, which were previously dismissed as too recalcitrant to 

be considered bioavailable. This thesis, therefore, provides support for the value 

of DOC fractionation in supplement to measurements of total DOC 

concentration. Whether or not an experimental design makes use of DOC 

fractionation (or other methods of DOC qualification) will always depend on 

the experimental objectives. However, I strongly encourage researchers to 

consider the value of soil DOC quality in the context of their research questions. 

The results of this thesis also contribute evidence to support the hypothesis that 

DOC and organic amendment quality are relevant for identifying an indicator of 

GDS of soil-borne plant pathogens.  

I am confident in speculating that the next frontier of soil science lies in 

being able to mechanistically link the quality of DOC, and soil organic matter in 

general, to the performance of soil organisms, including microbial processes 

beyond those investigated in this thesis. The implications of thesis extend 

beyond soil science and advance our fundamental understanding of microbial C-

cycling.
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Summary 

An important form of C in agricultural soils is organic C, which is 

presumed to be relatively bioavailable in dissolved form (DOC). Soil 

microorganisms consume DOC to fuel various metabolic processes, and the rate 

of consumption, or the nature of these processes, may be influenced by the 

quality of DOC available. Since DOC is a heterogeneous mixture of compounds 

varying in hydrophobicity and aromaticity, some fractions of DOC are 

potentially more relevant for microbial processes than others. These processes 

may include microbial activity (which decomposes organic C and releases CO2) 

and production of volatile organic compounds (VOCs). Both of these processes 

have been linked in previous research to general disease suppression (GDS), 

which is an important natural aspect of soils that protects crops from soil-borne 

plant pathogen disease infestation. It therefore stands to reason that DOC 

quality, via an influence on microbial function, may contribute to identifying an 

indicator of GDS, which would be very valuable for crop producers.  

This thesis was motivated by a lack of scientific evidence to identify the 

DOC properties that are most important for soil microbial processes. Chapter 1 

provides an overview of previous research framed in support of the hypotheses 

that organic matter quality may influence DOC quality, and that DOC quality 

may in turn influence soil microbial activities. By linking properties of DOC to 

indicators of microbial processes in both controlled experiments and statistically 

explorative studies, this thesis aimed to provide evidence for the role of DOC 

quality in these processes, and support the hypothesis that DOC is an important 

component of GDS in agricultural soils. This was done in a series of four 

experiments presented as four thesis chapters. 

Chapter 2’s objective was to determine how DOC quality differed 

among organic amendments and if these differences were the result of the 

processing conditions of those amendments. Eleven composts were processed 

under various methods, and were also made of many different input materials. 

This experiment used DOC fractionation to determine concentrations and 

proportions of hydrophobic (humic acid (HA), fulvic acid (FA), hydrophobic 
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neutral (HoN)) and hydrophilic (Hi) compounds in each compost. Duration and 

temperature of composting were the most important aspects of processing: these 

treatments negatively corresponded with Hi, suggesting preferential turnover of 

this fraction during the thermophilic composting phase. The results of this 

experiment led to the development of the hypothesis that the ranges measured in 

amendment DOC quality may subsequently affect soil DOC quality and 

microbial activity rates when added to soil.  

To test this hypothesis, an experiment was designed in which DOC 

extracted from composts was added to soils at the same concentration, but with 

different ratios of hydrophobic:hydrophilic compounds. This experiment is 

presented in Chapter 3. High-Hi treated soils had the highest respiration rates, 

but only up to 6 days after DOC addition. Linear-regression modelling 

identified the Hi fraction as having the highest coefficient explaining variation 

in respiration rates. An important peripheral observation reported in this chapter 

is the depletion of the HA fraction. Because HA is generally considered an 

aromatic, recalcitrant fraction, the evidence of this fraction being decomposed 

(by as much as one-third) over a period of 35 d suggests that HA is more 

biologically relevant than previously assumed.  

In the experimental work preceding Chapter 4, this thesis characterizes 

the DOC of only one soil type. Therefore, to determine how DOC properties 

may differ among soil types, and may be influenced by field-management 

practices, 50 agricultural soils were characterized. Concentrations of soil DOC 

fractions, (fractions’) aromaticity and basal respiration were measured and 

statistically analysed. Neither tillage nor organic matter applications 

significantly influenced DOC properties; the fact that these management 

treatments had been applied the previous growing season suggests their effects 

are short-lived. This observation agrees with the results of Chapter 3 (<6 d of 

significant treatment effects of compost DOC). Another result of Chapter 3 

supported by Chapter 4’s soil survey is the potential biological relevance of the 

HA fraction. This fraction, along with the aromaticity of Hi, accounted for 33% 

of the variation measured in basal respiration rates. Soils with lower proportions 

of Hi had the highest aromaticity of Hi, but not necessarily lower respiration 
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rates. This observation led to the hypothesis that as Hi substrates decrease in 

bioavailability, substrate utilization of the more hydrophobic fractions increases.  

While microbial activity rates in Chapters 3 and 4 could be linked to 

DOC quality, microbial activity is just one potential aspect of GDS in soils. 

Another aspect is the microbial community’s potential to suppress pathogens 

via VOCs, which has been previously reported in the literature. Therefore, the 

objective of Chapter 5 was to determine if volatiles from the 50 soils sampled 

were able to suppress pathogens in vitro, and if so, to statistically explore the 

relationship between suppression and other soil properties, including DOC. The 

measurements of pathogen-suppression by volatiles were done in combination 

with DOC fraction and aromaticity measurements, 454-pyrosequencing of the 

total soil microbial community, and extensive analysis of soil chemical 

properties. The results of Chapter 5 are that different soil properties account for 

variation among different pathogens. However, these properties were generally 

indicators of collective microbial function, as opposed to specific groups of 

organisms. When overall pathogen suppression was modelled, activity rates and 

total DOC concentrations were the significant soil properties contributing to 

variation.  

The statistical significance of activity and DOC in relation with 

pathogen suppression are important for supporting and developing hypotheses 

for links with GDS, but causal relationships can only be identified through 

experiments investigating mechanisms of GDS. These are the types of 

recommendations made for future research in Chapter 6, along with the use of 

isotopic labelling techniques to trace soil organic C decomposition through 

DOC fractions and into the microbial community. Chapter 6 emphasises the 

novelty and value of this thesis’ results in supporting the importance of DOC 

quality for microbial function, particularly the undervalued role of hydrophobic 

DOC. The potential for characteristics of DOC to be identified as GDS 

indicators is still possible, and this thesis concludes by encouraging future 

research into this relationship.  
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Samenvatting 

Organische koolstof (C) is de meest voorkomende vorm van C in 

landbouwgronden. Een deel ervan is opgelost in het bodemvocht (DOC, dissol-

ved organic C). Algemeen wordt aangenomen dat micro-organismen in de 

bodem deze opgeloste fractie goed kunnen omzetten. De manier waarop en de 

snelheid waarmee DOC wordt omgezet, hangen waarschijnlijk af van de samen-

stelling van DOC. DOC is namelijk een mengsel van verbindingen die variëren 

in hydrofobie en aromaticiteit en daarmee waarschijnlijk in afbreekbaarheid 

door microorganismen. Bij de afbraak kunnen naast CO2 ook vluchtige 

organische verbindingen (volatile organic compounds; VOCs) worden 

geproduceerd. Zowel CO2, als de productie van VOCs zijn in eerder onderzoek 

gerelateerd aan algemene ziektewerendheid van de bodems (general disease 

suppression; GDS). GDS is een belangrijke natuurlijke bodemeigenschap, die 

aangeeft in welke mate gewassen beschermd zijn tegen bodempathogenen. Via 

haar invloed op het microbieel functioneren van de bodem zou de samenstelling 

van DOC een waardevolle indicator voor GDS kunnen zijn. 

Aanleiding voor het onderzoek in dit proefschrift, was het gebrek aan 

kennis over de deeigenschappen van DOC die belangrijk zijn voor 

bodemmicrobiologische processen. Hoofdstuk 1 geeft een overzicht van de 

bestaande kennis over de relatie tussen organische stof in de bodem en DOC. 

Dit overzicht ondersteunt de hypothese dat de kwaliteit van DOC is gerelateerd 

aan de kwaliteit van organische stof en de activiteit van micro-organismen in de 

bodem. De overige vier hoofdstukken in dit proefschrift beschrijven het 

onderzoek van deze hypothese in van vier experimenten. Een deel van deze 

hoofstukken beschrijft experimenten die zijn uitgevoerd onder gecontroleerde 

omstandigheden.Een ander deel beschrijft statistische  verkenningen van 

gegevens over grondmonsters uit akkers van verschillende boerenbedrijven. 

Het doel van hoofdstuk 2 was om vast te stellen of organische mest-

stoffen, met name composten, verschillen in kwaliteit van DOC. en of deze 

verschillen te maken hebben met de omstandigheden waaronder de composten 

zijn geproduceerd. Elf verschillende composten werden onderzocht die werden 
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geproduceerd uit verschillende uitgangsmaterialen. Behalve de concentratie is 

ook de samenstelling van DOC in de composten bepaald door deze te 

fractioneren in hydrofobe zuren (humuszuren en fulvozuren), neutrale 

verbindingen en hydrofiele verbindingen. De samenstelling van DOC bleek in 

belangrijke mate bepaald door de duur van en temperatuur tijdens de 

compostering. Hoe langer de compostering en hoe hoger de temperatuur, hoe 

kleiner de fractie hydrofiele verbindingen. Dit duidt op een selectieve omzetting 

van deze verbindingen tijdens de thermofiele fase van de compostering. Deze 

variatie in DOC tussen composten gaf aanleiding te veronderstellen dat 

verschillende composten na toediening uiteenlopende effecten op de DOC van 

de bodem zouden kunnen hebben. 

Om deze veronderstelling te toetsen, werd een experiment opgezet 

waarin DOC uit composten in een vaste concentratie, maar variërende verhou-

ding hydrofobe/hydrofiele verbindingen, werd gemengd met een grondmonster. 

Dit experiment is beschreven in hoofdstuk 3. Behandelingen met hogere 

concentraties hydrofiele verbindingen hadden de eerste zes dagen na toediening 

de hoogste respiratiesnelheid. Een belangrijke observatie was bovendien dat de 

humuszuurfractie afnam na toediening aan de grond, terwijl algemeen wordt 

aangenomen dat deze fractie slecht afbreekbaar is vanwege haar aromaticiteit. 

De waarneming dat maar liefst een derde van de humuszuurfractie werd afge-

broken binnen 35 dagen, wat suggereert dat humuszuur biologisch belangrijker 

is dan tot nu toe werd gedacht. 

In hoofdstuk 4 staat beschreven hoe DOC uit 50 verschillende 

grondmonsters van akkerbouwbedrijven werd geanalyseerd. Het doel was om 

vast te stellen of de samenstelling van DOC varieert tussen bodemtypen en of 

deze afhangt van het type bodembeheer. De concentratie en aromaticiteit van 

verschillende componenten van DOC, alsmede de bodemrespiratie werden 

gemeten en de resultaten werden statistisch geanalyseerd. Noch grond-

bewerking, noch toediening van organische stof, bleken variatie in DOC 

eigenschappen te verklaren, ondanks dat deze in het vorige groeiseizoen waren 

toegediend. Dit suggereert dat , zelfs als deze beheersmaatregelen al effect 

hebben gehad, dan ditvan korte duur geweest is. Dit is in overeenstemming met 
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de resultaten van hoofdstuk 3, waarin blijkt dat de toediening van compost na 6 

dagen ook geen effect meer heeft op bodemrespiratie. Een ander resultaat uit 

hoofdstuk 3 werd ook bevestigd: humuszuur blijkt inderdaad mogelijk een 

biologisch relevante component van DOC  te zijn. Een derde van de variatie in 

bodemrespiratie bleek te verklaren te zijn door de grootte van de 

humuszuurfractie en de aromaticiteit van de hydrofiele fractie,. In 

grondmonsters met een kleinere hydrofiele fractie bleek deze aromatischer te 

zijn. Echter, de bodemrespiratie in deze monsters was niet per se lager. Deze 

genoemde statistische verbanden leidden tot de hypothese dat de hydrofobe 

componenten in toenemende mate biologisch worden afgebroken naarmate de 

beschikbaarheid van de hydrofiele substraten afneemt. 

In de hoofdstukken 3 en 4 is weliswaar aangetoond dat er een relatie 

bestaat tussen DOC en metabolische activiteit van de microbiële gemeenschap . 

Echter, microbiële activiteit is slechts één mogelijk aspect van GDS. Een ander 

aspect is het vermogen om pathogenen te onderdrukken d.m.v. VOCs. Het doel 

van hoofdstuk 5 was om vast te stellen of VOCs die werden geproduceerd door 

de 50 grondmonsters van akkerbouwbedrijven, in vitro pathogene schimmels 

konden onderdrukken en aan of deze statistisch gerelateerd kon worden aan 

bepaaldebodemeigenschappen. De onderdrukking van pathogenen door VOCs 

werd gemeten in combinatie met analyse van de samenstelling van DOC 

alsmede een groot aantal andere bodemchemische parameters en een analyse 

van de samenstelling van de bodemmicrobiële gemeenschap middels 454-

pyrosequencing. Voor elk van de drie pathogene schimmels verklaarde een 

andere combinatie van bodemeigenschappen de variatie in onderdrukking. Deze 

bodemeigenschappen waren indicatoren voor algemene microbiële activiteit. 

Aanwezigheid van bepaalde microbiële groepen correleerde echter niet met 

onderdrukking van de pathogenen. Wanneer de onderdrukking tegen alle drie de 

geteste pathogenen werd samengenomen, bleken de microbiële activiteit van de 

en de totale DOC concentratie significante verklarende factoren voor 

onderdrukking van bodempathogenen in vitro. 

Deze laatste bevinding inspireert tot het formuleren van nieuwe hypo-

theses over de relatie tussen microbiële activiteit en DOC enerzijds en GDS 
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anderzijds, waarbij causale verbanden uiteraard alleen kunnen worden 

vastgesteld door de mechanismen van GDS te onderzoeken. Hiervoor worden 

aanbevelingen gedaan in hoofdstuk 6. Ook zou de rol van de verschillende 

fracties van DOC als intermediair in de afbraak van organisch C in de bodem 

onderzocht kunnen worden met behulp van koolstofisotopen. Hoofdstuk 6 bena-

drukt bovendien de tot nu toe ondergewaardeerde rol van de hydrofobe fracties 

van DOC als substraat voor microbiële activiteit in de bodem. Het hoofdstuk 

besluit met een aanmoediging tot nader onderzoek naar DOC als indicator voor 

GDS. 
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