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Abstract 
 
There is large variation in the production performance of commercial growing-finishing pig 

farms. This variation even exists when pigs have a similar genetic background and fed similar 

diets. The health status is one of the major factors contributing to this large variation in pig 

performance, as activation of the immune system can decrease feed intake, body weight gain 

and increase nutrient utilisation for immune system functioning. As a consequence, amino 

acids (AA) are repartitioned from skeletal muscle deposition towards utilisation for immune 

system functioning. Current requirement estimates for growing-finishing pigs are formulated 

to maximize protein deposition for growth and do not take into account the increased 

utilization of AA for immune functioning as induced by health challenging conditions. This lack 

of knowledge hampers the ability of feed manufacturers to optimize diets and improve pig 

performance. The main objective of the present thesis was to quantify the effect of health 

status on AA requirements for body protein deposition and for immune system functioning of 

growing pigs.  

A health status web was developed as a tool to categorize growing-finishing pig farms on the 

basis of their health status. The health status web can be of use for feed manufacturers to 

develop targeted strategies to accommodate the nutritional requirements of pigs belonging to 

particular groups of farms sharing a common health status. A dose-response technique was 

developed, which is a simple, accurate technique to quantitatively estimate changes in AA 

requirements of individual meal-fed pigs. Nevertheless, a minimum time period of 21 days is 

required for each individual, which makes the technique inappropriate for studying the effect 

of immune system activation on AA requirements. The combined measurements of whole body 

N retention, plasma irreversible loss rate (ILR, i.e. the amount of free AA that disappears per 

unit of time from the plasma pool for protein synthesis or oxidation), urea entry and 

appearance of 13C into plasma proteins, provided insight into the consequences of immune 

system activation on AA metabolism.  

Pigs selected from a farm with a suboptimal health status had greater serum haptoglobin, 

lower serum albumin concentrations, and greater leukocyte counts in blood at the start of the 

experiment than pigs selected from a farm with a high health status, indicating a higher level of 

immune system activation. The occurrence of compensatory gain in pigs from a farm 

characterized as having a suboptimal health status proves, however, that it is difficult to 

maintain a contrast in health status, and that pigs can adapt quickly to a change in housing 

conditions. In the absence of effects on feed intake, health challenging conditions may affect 

performance due to alterations in post-absorptive AA metabolism, as also indicated by  

increased urinary N losses, and a tendency for a reduced N retention and a lower utilization of 

digestible N for N retention in pigs with a systemic inflammation, or by a reduction in faecal 

nutrient digestibility as indicated for dry matter and N in pigs from a farm with a suboptimal 

health status. The observed changes in protein and AA metabolism after immune stimulation 

imply that especially tryptophan may become limiting during immune system activation, 

whereas lysine becomes excessive. Furthermore, the utilization of methionine, tyrosine, and 

valine for immune system functioning seems to increase in pigs with a systemic lung 

inflammation. In addition, the dietary AA or protein supply was able to modulate the acute 

phase response pre- and post-challenge, stressing the importance of an adequate dietary AA 

supply for appropriate functioning of the immune system of growing-finishing pigs.  



 

 

Before implementing targeted feeding strategies for farms sharing a common health status, 

future research should be conducted to study the possible beneficial effects of increasing the 

dietary supply of particularly tryptophan, methionine, tyrosine, and valine relative to lysine for 

immune system function and for body protein deposition in pigs from farms with a different 

health status.  
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1 

Introduction 

Large variation in the performance of growing-finishing pigs exists between 

commercial pig farms, with average growth rates varying between 570 and 930 g/day 

based on data from 887 farms in the Netherlands (Figure 1.1) (AgroVision, 2012). The 

health status of pigs may be an important factor contributing to this large variation in 

pig performance (Van der Peet-Schwering and Jansman, 2007; Pastorelli et al., 2012). In 

commercial pig farms the animals can be continuously exposed to (non-)pathogenic 

agents, which can activate the immune system. During immune system activation, 

nutrients are redistributed from anabolic and maintenance processes towards 

processes involved in immunity (Klasing and Johnstone, 1991; Spurlock, 1997; Colditz, 

2002). A cascade of cytokine induced metabolic alterations occur, including anorexia, 

increased breakdown and decreased synthesis of skeletal muscle protein, increased 

hepatic synthesis of acute phase proteins (APP), and increased deamination of 

glucogenic amino acids (AA) (Klasing and Johnstone, 1991; Lochmiller and Deerenberg, 

2000; Le Floc'h et al., 2004). In pigs, immune system activation decreased feed intake, 

body weight (BW) gain, and N retention (Williams et al., 1997b; Daiwen et al., 2008; Le 

Floc'h et al., 2008). An overview of the impact of pathogens or other antigens on 

protein and AA metabolism is presented in Figure 1.2. Pathogens or antigens activate 

the immune system and reduce dietary intake and intestinal absorption of AA, and 

body protein synthesis for growth. Pathogens or antigens, however, stimulate 

endogenous losses, protein synthesis for immune functioning, protein breakdown, and 

AA oxidation. As a consequence of a reduction in maximum protein deposition 

observed after immune system activation, the absolute daily Lys requirements for 

maximum daily gain and for gain to feed ratio in pigs (Williams et al., 1997c) and to 

maximize protein deposition in chicken (Webel et al., 1998) can be reduced. However, 

quantitative information about the effect of immune system activation on the AA 

requirements of pigs is limited, and measurements on changes in responses of 

multiple AA to immune system activation are largely absent. In addition, AA 

requirement studies are often performed in pigs housed in a controlled environment 

with low pathogen pressure, and do not consider health status as a factor contributing 

to variation in AA requirements. This lack of knowledge hampers the ability of feed 

manufacturers to optimize pig diets by adjusting to variation in health status, and 

thereby to contribute to further improving pig performance. Apart from the influence 

of immune system activation on AA requirements, there is increasing evidence that the 

dietary protein or AA supply can affect the inflammatory response during immune 

system activation (Grimble et al., 1992; Jahoor et al., 1999; Li et al., 1999; Grimble, 2001; 

Li et al., 2007; Le Floc'h et al., 2008; Le Floc'h et al., 2009; Calder and Yaqoob, 2012). In 

the present thesis, AA requirements are defined as the optimal dietary AA supply for 

maximizing body protein deposition and for optimizing immune system functioning. It 

is hypothesized that feeding diets adjusted to variation in health status improves 

overall nutrient utilization, leading to improved production performance, and 

consequently a reduced N excretion into the environment, while maintaining 
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appropriate functioning of the immune system. Feeding adjusted diets may also 

support the pig’s capacity to cope with challenges to the immune system. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Average daily gain (ADG) of pigs between 25 and 118 kg body weight on 

887 Dutch growing-finishing pig farms over 2012 expressed per category, 

ranking all farms in the database in five classes, each representing 20% of 

the farms. Bars indicate minimum and maximum ADG within each class. 

Source: Bedrijfsvergelijking AgroVision B.V. (2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Impact of pathogens or antigens on protein and AA metabolism. Black 

solid arrows indicate nutrient fluxes. Black dotted arrows indicate 

stimulating effects, dashed arrows indicate inhibiting effects.  
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Health status 

Characterization 

In humans, health of an individual is defined as “a state of complete physical, mental, 

and social well-being and not merely the absence of disease or infirmity” (WHO, 1948). 

In animals, the World Organisation for Animal Health (OIE, 2011) defines animal health 

status as “the status of a country or a zone with respect to an animal disease, according 

to the criteria listed in the relevant chapter of the Terrestrial Code dealing with the 

disease”. In line with this, in the pig sector, the term SPF (specific pathogen free) is 

used to categorise farms based on the absence of specific pathogens. Clapperton et al. 

(2008) based their definition of health status of pig farms on “the presence of major 

swine diseases that consistently affect both animal welfare and performance”. Thus in 

the former three definitions, animal health status merely represents a criterion for the 

absence or occurrence of disease in a specific animal population. At an individual 

animal level, a Welfare Quality® assessment protocol for pigs was developed (Dalmau 

et al., 2009), describing criteria for high health as the absence of injuries, diseases, and 

the absence of pain induced by management procedures. The protocol was developed 

by 41 universities and research institutes across Europe. In contrast to defining health 

as the absence of disease, Boersma et al. (2009) focussed on the robustness of an 

animal: “a healthy animal should be sufficiently robust that it can cope with the 

causative agents of disease and be healthy again in a short period without remaining 

disabilities”.  

The definitions of health status as mentioned above do not fully cover all aspects of 

health which are important with respect to growing-finishing pig farms. Therefore, one 

of the aims of the present thesis was to characterize the health status of growing-

finishing pig farms, and not at an individual animal level, with focus on the impact of 

health status on pig performance, AA metabolism and AA requirements.  

In order to define and characterize the health status of growing-finishing pig farms, 

first, a brainstorm session was held with 13 experts, i.e. veterinarians specialized in pigs, 

scientists in the field of animal nutrition and animal health, and representatives from 

the commercial pig sector. The outcome of the session is graphically depicted in Figure 

1.3. Important factors in characterizing the health status of growing-finishing pig farms 

included choice of genetic line, factors related to the history of the farm and the pigs 

during the suckling and post-weaning phase, technical performance, environment (i.e. 

hygienic status or housing conditions), management, and immunological parameters 

(including pathogen prevalence, blood parameters and other parameters). Further, a 

selection of pathogens was listed according to two strategies commonly used for 

establishing or maintaining a high health status (Table 1.1). The first category refers to 

pathogens which should be eradicated and for which a protection strategy against 

pathogens should be created to maintain a pathogen free status. The second category 

refers to pathogens for which a control strategy should be applied to reduce the 

incidence and damage caused by the disease, i.e. the pathogen can be present, but an 
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outbreak of a disease is prevented or controlled (Heinonen, 2001; Reeves, 2006). 

Control strategies e.g. include hygienic measures, use of vaccines, application of 

specific feeding strategies, and the use of medicines. Examples of eradication and 

prevention strategies include depopulation-repopulation, the use of marker vaccines, 

application of the test and removal principle, i.e. removal of animals previously 

exposed to pathogens based on blood-testing, and restriction of movement of animals 

within a certain region. It has to be stressed that next to clinical infections, subclinical 

infections can also induce alterations in metabolism and concomitant losses in 

production performance (Spurlock, 1997; Sørensen et al., 2006).  

 

 

Figure 1.3 Schematic overview of important factors in characterizing the health status 

of growing-finishing pig farms. Abbreviations used: APP, Actinobacillus 

pleuropneumoniae; BRA, Brachyspira dysentery; EMCV, 

encephalomyocarditis virus; MYC, Mycoplasma hypneumoniae; PCV2, 

Porcine Circovirus type 2; PRRSV, Porcine reproductive and respiratory 

syndrome virus; STREP, Streptococcus suis.  
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Table 1.1 Pathogens of which its prevalence on farms was listed as a criterion of 

health status in growing-finishing pig farms, categorized by “Eradication 

and protection strategies” to create and maintain a pathogen free status, 

or “Control strategies” to prevent an outbreak and reduce damage. 

 Eradication and protection 

strategy 

Control strategy 

Viral  Swine fever1 PRRSV 

Foot-and-mouth disease1 PCV2 

Aujeszky’s disease1 Parvo 

Swine vesicular disease1 Enteroviruses 

Transm. gastro-enteritis EMCV 

Porcine epidemic diarrhoea  Porcine respiratory coronavirus 

 Influenza 

Bacterial Atrophic rhinitis STREP 

Salmonella cholera suis APP 

 MYC 

 Haemophilus parasuis 

 Lawsonia 

 Salmonella 

 BRA 

 Pasteurella multocida 

 Bordetella bronchiseptica 

Parasites / 

protozoa 

Scabiës and lice Coccidiosis 

 Ascaris suum 

Abbreviations used: APP, Actinobacillus pleuropneumoniae; BRA, Brachyspira dysentery; EMCV, 

encephalomyocarditis virus; MYC, Mycoplasma hypneumoniae; PCV2, Porcine Circovirus type 
2; PRRSV, Porcine reproductive and respiratory syndrome virus; STREP, Streptococcus suis. 
1Listed as notifiable animal disease according to the Dutch Food and Consumer Product Safety 
Authority. 
 

During the brainstorm session it was concluded that there is a need for characterizing 

the health status of farms in an objective manner, based on available data, thus 

without the need for additional on-farm measurements. Next, a questionnaire for 

veterinarians was developed to gain insight into the prevalence of infectious diseases 

in Dutch growing-finishing pig farms, and to rank pathogens according to their impact 

on nutrient requirements of pigs. In this survey, which was conducted in 2010, 12 

Dutch veterinarians specialized in growing-finishing pigs were asked to estimate the 

prevalence of different diseases on pig farms during 2009 and 2010, and to estimate 

the percentage of pigs that are (sub)clinically infected. Part of the results of this survey 

is depicted in Figures 1.4 and 1.5. (Sub)clinical infections with ascaris, Porcine circovirus 

type 2 (PCV2), Streptococcus suis, Porcine reproductive and respiratory syndrome virus 

(PRRSV), Lawsonia, Pasteurella multocida, and Bordetella bronchiseptica are commonly 

seen in growing-finishing pig farms, and in case of (sub)clinical infections with 

http://www.thepigsite.com/pighealth/article/456/swine-vesicular-disease-svd
http://www.thepigsite.com/diseaseinfo/123/transmissible-gastro-enteritis-tge
http://www.thepigsite.com/pighealth/article/453/porcine-epidemic-diarrhoea-ped
http://www.thepigsite.com/diseaseinfo/10/atrophic-rhinitis-ar
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Mycoplasma hyopneumoniae, Influenza or PRRSV there is a high prevalence of pigs 

with clinical symptoms on farms with (sub)clinical infection (Figure 1.4). Based on the 

brainstorm session and the responses to the questionnaire, it was decided to develop a 

methodology to objectively characterize health status of growing-finishing pig farms, 

based on data available and recorded on-farm. Therefore, in the present study, the 

health status of growing-finishing farms is characterized by the average daily gain 

(ADG), energy conversion ratio (ECR), mortality, incidence of pleuritis, and incidence of 

liver and lung abnormalities at slaughter. This concept is presented in Chapter 2. 
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Immune system 

The immune system acts to protect the host from pathogens, i.e. bacteria, viruses, 

fungi, and parasites, and from other harmful insults. The system recognizes and kills 

invading pathogens, while sparing the tissue of the host, i.e. there must be self-

tolerance (Beutler, 2004). The immune system is divided into two functional parts, the 

innate, or natural immune system, and the acquired immune system, also called 

specific or adaptive immune system (Figure 1.6). The innate immune system consists of 

the complement system, epithelial barriers, APP, natural killer cells, and phagocytic 

cells, i.e. granulocytes (neutrophils, basophils, eosinophils), monocytes, macrophages 

and dendritic cells (Parkin and Cohen, 2001; Calder and Yaqoob, 2012). The humoral 

part of the innate immune system includes proteins and other molecules that are able 

to recognize or kill pathogens (Beutler, 2004). The complement system consist of a 

group of proteins that 1) assists or complements phagocytic cells trough the activation 

of C3b, which binds to microbes, 2) enhances chemotaxis and the inflammatory 

response by the production of C5a, and 3) kill Gram-negative bacteria and inactivate 

viruses by forming the membrane attack complex, consisting of C5 trough C9 (Parkin 

and Cohen, 2001; Beutler, 2004). The macrophage-derived cytokines TNF-α, IL-1, and 

IL-6 play an important role in initiating the acute phase response, which is described in 

more detail in the next paragraph, and in activating the adaptive immune response by 

stimulating T- and B-lymphocyte proliferation (Calder, 2007a). Acquired or adaptive 

immunity consists of specific antigen recognition through T- and B-lymphoctyes 

(Parkin and Cohen, 2001; Calder and Yaqoob, 2012). The acquired immune system 

takes several days to weeks to develop, whereas the innate immune system provides 

immediate host defense (Parkin and Cohen, 2001). CD8+ cytotoxic  

T-lymphocytes can kill infected cells and tumour cells by secretion of cytotoxic 

enzymes, and CD4+ T-lympocytes, which include Th1, Th2 and regulatory T cells, 

primarily assist other cells by stimulating phagocytocis, and the maturation of B-cells 

into plasma cells (Calder and Yaqoob, 2012). B-lymphocytes can carry antigen-specific 

immunoglobulins and produce immunoglobulins as activated B-cells, i.e. plasma cells. 

Immunoglobulins enhance elements of the innate immune system, including activation 

of the complement system, phagocytocis, and neutralize toxins (Parkin and Cohen, 

2001). 

Leukocytes 

Leukocytes of healthy pigs in general range between 10 to 18 ∙ 109 cells/L, based on 

reference values developed by the laboratory of the Animal Health Service (GD, The 

Netherlands). A wider reference value for healthy pigs (Landrace Yorkshire sow ∙ 

Landrace Duroc boar) between 30-50 kg BW is used, i.e. 15.6 to 38.9 ∙ 109 cells/L (Klem 

et al., 2010). Based on GD reference values for pigs, leukocytes include neutrophils (27-

62%), lymphocytes (33-56%), monocytes (0-4%), eosinophils (0-7%), and basophils (0-

2%). A high leukocyte count cannot be used as a sole indicator of bacterial infections, 

as the range in reference values in pigs is wide (Klem et al., 2010).   
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Besides infection, total leukocyte count and differential counts are affected by breed, 

age, and housing conditions (Sutherland et al., 2005; Merlot et al., 2012), but not by 

multiple concurrent stressors, i.e. mixing, reduced floor space, and heat (Sutherland et 

al., 2006). Neutrophils, eosinophils and basophils have granulated cytoplasm and are, 

therefore, characterized as granulocytes. As part of the cellular component of the 

innate immune system, neutrophils play an important phagocytic role in destroying 

microbes (Beutler, 2004) and produce antimicrobial substances (Goldsby et al., 2003). 

Neutrophils are short-lived, they circulate in peripheral blood for 7-10 h before 

entering tissues, where they survive for only a few days (Goldsby et al., 2003). An 

increase in peripheral neutrophils is observed in bacterial infections in pigs (Zhang et 

al., 1997). Eosinophils (Beutler, 2004) and basophils (Goldsby et al., 2003; Mair et al., 

2014) play an important role in parasitic infections, or in allergic reactions. Monocytes 

circulate in the pheriperal blood for approximately 8 h, after which they migrate into 

tissues and differentiate into specific tissue macrophages or into dendritic cells 

(Goldsby et al., 2003). An increase in the percentage of blood monocytes was 

associated with a decrease in ADG in Large White pigs (Clapperton et al., 2005a). 

Lymphocytes produce and display antigen binding cell-surface receptors, and are thus 

part of the cell-mediated adaptive immune response to antigens (Goldsby et al., 2003). 

Selection and expansion of lymphocytes after antigen exposure, i.e. lymphocytes 

sensitisation, functions to support defence mechanisms against specific antigens 

(Colditz, 2002). Up to 2 days post E. coli challenge in pigs, blood T- and B-lymphocytes 

decreased compared to pre-challenge, possibly due to increased migration into tissue, 

e.g. spleen and thymus, or apoptosis (Iseri and Klasing, 2013). In addition, a 

considerable number of lymphocytes are located in the pigs’ lung after microbial 

stimulation (Pabst and Binns, 1994). During a later response to E. coli challenge, an 

increase was observed in CD4+ lymphocytes at day 7, 10 and 14 post-challenge, B-

lymphocytes at day 5, 7, and 10, and total leukocyte count at 18 h, 5, 7, and 10 day 

post-challenge (Iseri and Klasing, 2013).  

The acute phase response 

The acute phase response, as an important part of the innate immune system, is aimed 

at restoring homeostasis after infection, inflammation, tissue injury, or stress (Heinrich, 

1990; Murata et al., 2004). Monocytes are the primary cells to initiate an acute phase 

response (Baumann and Gauldie, 1994), but also other cells can be involved, including 

macrophages, fibroblasts in connective tissues, endothelial cells, and keratinocytes in 

the outermost layer of the skin (Heinrich, 1990). These cells initiate an acute phase 

response by the release pro-inflammatory cytokines, mainly interleukin (IL)-6, IL-1, and 

tumour necrosis factor-α (TNF-α). In turn, a systemic response is induced characterized 

by APP synthesis in the liver (Heinrich, 1990; Baumann and Gauldie, 1994). In addition, 

as depicted in Figure 1.7, the systemic response includes the release of 

adrenocorticotropic hormone (ACTH) from the pituitary gland, leading to an increased 

secretion of glucocorticoids from the adrenal cortex, which in turn suppress IL-6 levels 

as a negative feedback mechanism to regulate the acute phase response (Heinrich, 
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1990). It has been commonplace to discriminate between positive and negative APP, 

i.e. positive APP increase in blood concentration in response to external or internal 

challenges, such as infection, inflammation, surgical trauma or stress, whereas negative 

APP decrease in concentration (Murata et al., 2004). An overview of the effect of 

challenges on APP concentrations in blood is depicted in Table 1.2. In pigs, α1-acid 

glycoprotein (AGP), C-reactive protein (CRP), haptoglobin, Pig major acute-phase 

protein (pig-MAP), serum amyloid A (SAA), and fibrinogen have been characterized as 

positive APP. Albumin, α-lipoprotein or apolipoprotein A1 (ApoA1), and transthyretin 

have been characterized as negative APP in pigs. Compared to pre-challenge values, 

post-challenge serum concentrations can reach up to 2400% for haptoglobin, 7520% 

for CRP, and 600% for pig-MAP, whereas ApoA1 serum concentrations decreased with 

80% and albumin with 20% (Table 1.2). SAA is reported to have very short-lived ‘all-or-

nothing’ response to infection, with basal values often below detection limits 

(Heegaard et al., 2011). In pigs, AGP concentrations did not change after subcutaneous 

(s.c.) turpentine challenge (Lampreave et al., 1994) or after experimentally induced 

PRRS virus infection (Asai et al., 1999). A decrease in serum ApoA1, and to a lesser 

extent in serum albumin and transthyretin was observed in a study by Heegaard et al. 

(2011) after s.c. turpentine challenge, or experimentally induced infection with 

Streptococcus suis (serotype 2 ribotype I isolate, strain SS02-0119), Actinobacillus 

pleuropneumoniae (serotype 4 isolate) or Toxoplasma gondii (isolate SVS P14). Other 

factors that can increase serum APP are for instance stress caused by transport or 

housing conditions (Salamano et al., 2008), the occurrence and severity of lesions at 

slaughter (Pallarés et al., 2008), and tail or ear biting (Salamano et al., 2008; Piñeiro et 

al., 2013). A reference range of APP were 3.6-183 mg/L for CRP; 0.01-1.31 g/L for 

haptoglobin, 0.32-2.9 g/L for pig-MAP; and 174-610 mg/L for transthyretin, based on a 

commercial boar population with a high health status (n = 395 to 397) of 

approximately 7 months of age (Diack et al., 2011). Recent studies in pigs suggest that 

APP synthesis is not confined to the liver, as extrahepatic APP gene expression has 

been demonstrated in pigs experimentally infected with Actinobacillus 

pleuropneumoniae in peripheral lymphoid tissue, spleen, and leukocytes (Skovgaard et 

al., 2009).  

Biological functions of APP 

The biological functions of APP have been extensively reviewed (Mackiewicz and 

Kwang, 1997; Gabay et al., 1999; Suffredini et al., 1999; Murata et al., 2004; Petersen, 

2004; Gruys, 2005; Cray, 2012). APP play an important role in a variety of defence-

related activities of infection and inflammation (Gabay et al., 1999; Murata et al., 2004). 

APP function as immunomodulators by acting pro- and/or anti-inflammatory, function 

as transport proteins, participate in tissue repair, inhibit serine proteinases, i.e. enzymes 

released by pathogens or host tissues, and function as antioxidant by inhibition of 

hydroxy radical formation, lipid peroxidation, and superoxide production (Mackiewicz 

and Kwang, 1997; Suffredini et al., 1999; Gruys, 2005). A decrease in plasma 
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concentration of negative APP possibly functions to divert available AA to the 

production of positive APP that are required for host defence (Gabay et al., 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Regulation of hepatic acute phase protein synthesis by inflammatory 

mediators (Heinrich, 1990). Abbreviations used: ACTH, adrenocorticotropic 

hormone ; HSF III, hepatocyte stimulating factor; IL, interleukin; LIF, leukaemia 

inhibitory factor; LPS, lipopolysaccharide; TNF, tumour necrosis factor. 

 

Positive APP 

Alpha 1-acid glycoprotein  

AGP functions locally by reducing tissue damage especially in epithelial and 

endothelial cells, and systemically by binding to drugs (Murata et al., 2004) and 

lipopolysaccharide (LPS) (Cray, 2012). In addition, AGP, as immunomodulator, has anti-

inflammatory properties, including the inhibition of neutrophil activity, lymphocyte 

proliferation, and complement system activity (Fournier et al., 2000). C-reactive protein 

A major function of CRP is to bind to phosphocholine, by which pathogens and 

phospholipid constituents of damaged cells are recognized and their elimination is 

initiated (Kushner and Rzewnicki, 1994; Mackiewicz and Kwang, 1997; Gabay et al., 

1999). CRP activates the complement system, and enhances phagocytosis (Gabay et al., 

1999; Gruys, 2005). Other pro-inflammatory effects of CRP include the induction of 
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inflammatory cytokines and tissue factor, which enables cells to initiate blood 

coagulation (Gabay et al., 1999). CRP, however, also has anti-inflammatory properties 

including prevention of adhesion of neutrophils to endothelial cells, inhibition of the 

production of superoxide by neutrophils, and induce the production of anti-

inflammatory cytokines like IL-1 receptor antagonist by mononuclear cells (Gabay et 

al., 1999). 

 

Haptoglobin 

A major function of haptoglobin is the binding to and clearance of haemoglobin 

(Mackiewicz and Kwang, 1997; Gruys, 2005; Cray, 2012), by which the formation of 

reactive oxygen by iron and iron compounds (Gutteridge, 1987), and bacterial growth 

(Hossein Sadrzadeh and Bozorgmehr, 2004) is inhibited. Other immunomodulatory 

effects of haptoglobin include the inhibition of granulocyte chemotaxis, phagocytosis, 

mast cell proliferation, maturation of epidermal Langerhans cells, i.e. antigen 

presenting cells of the skin, and suppress T-cell proliferation as reviewed by Murata et 

al. (2004). In addition, haptoglobin plays an important role in tissue repair by 

stimulating angiogenesis, i.e. the formation of blood vessels (Cid et al., 1993).  

 

Fibrinogen 

Fibrinogen plays a major role in haemostasis, i.e. the process that stops bleeding, by 

aiding in clot-formation (Mackiewicz and Kwang, 1997; Gruys, 2005), and provides a 

matrix for the migration of inflammatory cells which enhance tissue repair (Murata et 

al., 2004).  

 

Pig major acute-phase protein 

Pig-MAP, or inter-a-trypsin inhibitor heavy chain 4, has been reported to be a 

counterpart of a human serum protein denominated PK-120, and is a major serum APP 

in pigs (González-Ramón et al., 1995; González-Ramón et al., 2000). The homology to 

PK-120 implies that pig-MAP is a substrate for plasma kallikrein (Nishimura et al., 

1995), a serine protease that plays a key role in repair of damaged tissue, by cleaving 

kinogen into bradykinin (Goldsby et al., 2003). Kinins are inflammatory peptides that, 

for instance, increase vascular permeability, cause vasodilation, induce contraction of 

smooth muscle, and act directly on the complement system (Goldsby et al., 2003). Pig-

MAP shows homology with the ITI superfamily of serum trypsin inhibitors, however, 

pig-MAP does not inhibit trypsin (González-Ramón et al., 1995).  

 

Serum amyloid A  

SAA consists of a family of apolipoproteins that influences high-density lipoprotein-

cholesterol transport, e.g. by binding and neutralizing LPS (Gruys, 2005). It has pro-
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inflammatory and anti-inflammatory properties (Suffredini et al., 1999). SAA attracts 

monocytes, lymphocytes, and granulocytes by inducing chemotaxis (Suffredini et al., 

1999; Gruys, 2005), and stimulates the adhesion to blood vessels. In addition, SAA 

activates leukocytes to kill microbes, and has antifungal activity (Suffredini et al., 1999). 

SAA acts as a mediator by activation monocytes and macrophages to produce 

cytokines and induce inflammation (Song et al., 2009; Lee et al., 2013). At high serum 

concentrations, SAA has anti-inflammatory properties, including the inhibition of 

lymphocyte and endothelial cell proliferation, and of platelet aggregation (Murata et 

al., 2004). In addition, SAA inhibits the respiratory burst of leukocytes that produce free 

radicals (Gruys, 2005). 

Negative APP 

Albumin 

Albumin is the most abundant protein in serum and two of its major functions are to 

act as a regulator of osmotic pressure and as binder or transporter of substrates 

(Rothschild et al., 1969), including fatty acids, minerals, AA and proteins, including 

bacterial proteins, bilirubin pigment, vitamins, hormones, and drugs (Fanali et al., 

2012). In addition, albumin exerts anti-oxidant activity, for instance by providing 

substrates that reduce free radicals, and functions as a depot for endogenous and 

exogenous compounds (Fanali et al., 2012). A decrease in albumin induces a temporary 

increased availability of free hormones that bind to albumin (Gruys, 2005). 

 

Apolipoprotein A-I 

ApoA1 is the major protein component of α-lipoprotein or high density lipoprotein 

(Carpintero et al., 2005). Under normal conditions, ApoA1 inhibits cytokine production 

in monocytes by binding to the activating factor on stimulated T lymphocytes. During 

acute inflammation, however, ApoA1 concentration decreases to allow the production 

of pro-inflammatory cytokines by monocytes (Burger and Dayer, 2002).  

 

Transthyretin 

Transthyretin, also known as thyroxin-binding prealbumin, serves as a transport protein 

by binding to thyroxin, i.e. the most abundant thyroid hormone in blood, and forms a 

complex with retinol-binding protein to aid the transport of vitamin A (Raz and 

Goodman, 1969; Schreiber and Richardson, 1997). As with albumin, a decrease in 

transthyretin induces a temporary increased availability of free hormones that bind to 

this protein (Gruys, 2005). Transthyretin inhibits IL-1 production by monocytes and 

endothelial cells; a decrease in concentration is thus suggested to be pro-inflammatory 

(Gabay et al., 1999).  
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Role of amino acids in the immune system 

The role of AA in the immune system is extensively reviewed by Li et al. (2007). They 

have several functions in the immune system, e.g. stimulation of lymphocyte 

proliferation, regulation or activation of cytokine production, inhibition of apoptosis, 

aid in immune defence by being antiviral and kill pathogens, some function as fuel for 

cells of the immune system, and are involved as antioxidant or in regulating cellular 

redox state.  

As the only precursor for nitric oxide, Arg plays an role in host defence (Beisel, 1996) 

and functions as a regulator in cardiovascular functions (Lorin et al., 2014). The 

branched-chained AA (BCAA) Leu, Ile, and Val are important for lymphocyte 

proliferation, stimulate the production of proteins including cytokines, 

immunoglobulins and antibodies (Calder, 2006). Cys is, together with Gln and Gly, a 

precursor of glutathione, which has several functions including detoxification of 

substances, antioxidant e.g. by neutralizing reactive oxygen species which are 

increasingly produced during inflammation, and modulation of cell proliferation 

(DeLeve and Kaplowitz, 1991; Lu, 2009). Cys can be produced from Met via 

homocysteine, and sulphur AA are suggested to play an important role in immune 

system functioning (Grimble, 2006; Kim et al., 2012; Litvak et al., 2013a,b; Rakhshandeh 

et al., 2014). APP are particularly high in Phe, Trp, and Tyr, and these AA are thus 

suggested to be required for APP synthesis (Reeds et al., 1994). In addition, Trp plays 

an important role in cell division (Mellor and Munn, 2004) and as immune modulator 

through several Trp metabolites, such as the extrahepatic enzyme indoleamine 2,3 

dioxygenase (IDO) (Chen and Guillemin, 2009; de la Fuente et al., 2012). Gln is an 

important regulator of immune function by regulating monocyte function, e.g. increase 

IL secretion, stimulate phagocytosis and antigen presentation, by regulating 

lymphocyte function, e.g. stimulating INF-γ secretion and inhibiting apoptosis, and 

activating and stimulating natural killer cells (Roth et al., 2002; Roth, 2007). In addition, 

Gln plays an important role by interfering with Arg and NO metabolism, and by being 

a precursor of glutathione (Roth, 2007). Furthermore, Gln is a major energy source for 

rapidly dividing cells, moreover lymphocyte proliferation is dependent on extracellular 

Gln concentrations (Newsholme, 2001). It also has an important function in the 

gastrointestinal tract, as do Arg, Glu, sulphur AA, Gly, and Lys (Wang et al., 2009). Gln 

for instance prevents villi damage in post-weaning piglets (Wu et al., 1996). Thr, Ser, 

Pro, and Cys are required for the synthesis of mucins, and thereby promote the 

function of the the gastrointestinal tract (Faure et al., 2006). In addition, Thr plays an 

important role in the production of humoral antibodies and immunoglobulins in pigs 

(Defa et al., 1999; Wang et al., 2006b). In the paragraph “Nutritional modulation of the 

immune system” more details on the function of AA in the immune system are 

provided, with emphasis on the effect of dietary AA supply.  
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Nutritional costs of immune system activation 

Protein metabolism associated costs 

During immune system activation in animals, nutrients are redistributed from anabolic 

and maintenance processes towards processes involved in immunity and disease 

resistance (Klasing and Johnstone, 1991; Spurlock, 1997). During this process, a cascade 

of cytokine induced metabolic alterations occur, including anorexia, increased 

breakdown and decreased synthesis of skeletal muscle protein (Zamir et al., 1992; 

Breuille, 1999), increased hepatic acute APP synthesis, and increased deamination of 

glucogenic AA (Klasing and Johnstone, 1991; Lochmiller and Deerenberg, 2000; Le 

Floc'h et al., 2004). In humans, the metabolic response due to immune system 

activation results in a net loss of body protein up to 20%, primarily from skeletal 

muscle, due to an increase in protein catabolism and a reduction in anabolic response 

to feeding (Biolo et al., 1997). In pigs, immune system activation induced by repeated 

LPS challenge reduced body protein deposition with 3% to 20% (de Ridder et al., 2012; 

Litvak et al., 2013a). Immune system activation induced by a rearing scheme that 

maximized the pigs’ exposure to pathogens reduced the Longissimus muscle area with 

3% to 20%, compared to pigs on a rearing scheme that minimized pathogen exposure 

(Williams et al., 1997c). In line, a reduction in muscle weight of more than 20% was 

observed in PRRSV challenged pigs compared to control (Escobar et al., 2004). Protein 

synthesis in the liver, however, is increased (Wolfe, 1999). In addition, changes in 

protein metabolism during immune system activation are associated with fever (Kluger, 

1991; Netea et al., 2000), pain, and a change in physical activity (Johnson, 2002), a 

reduction in feed intake (Williams et al., 1997a; Johnson, 1998; Sandberg et al., 2006; 

Daiwen et al., 2008; Pastorelli et al., 2012), and reduction in growth performance 

(Spurlock et al., 1997; Williams et al., 1997a; Daiwen et al., 2008) (Figure 1.8). The 

simultaneous decrease in feed intake and thus in the quantity of AA ingested and the 

reduction in muscle protein deposition leads to a decreased AA utilization for body 

protein deposition. In contrast, however, the utilization of specific AA for the synthesis 

of proteins for the immune system increases. Consequently, the optimal AA profile 

required for growth and immune function may change during an acute or chronic state 

of immune system activation, e.g. by continuous exposure to pathogens. 

Amino acid costs 

Recent studies in pigs revealed that immune system activation by intramuscular (i.m.) 

LPS administration increases the optimal dietary Met to Met + Cys ratio (Litvak et al., 

2013a) and dietary sulphur AA to Lys ratio (Kim et al., 2012), and reduces the efficiency 

of Trp utilization for body protein deposition (de Ridder et al., 2012). These findings 

indicate that the requirements for AA in growing pigs may be affected by health status. 

It is likely that the requirement of certain AA, in particular aromatic AA, increase for the 

production of APP during immune system activation. For the synthesis of APP, AA are 

provided either from dietary protein or from breakdown of skeletal muscle protein. 
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Figure 1.8 The effect of immune system activation on protein and energy 

metabolism. 

 

The AA composition of APP differs, however, largely from that of muscle protein 

(Reeds et al., 1994), and from commercial diets, which are formulated mainly to 

enhance muscle protein deposition. As a consequence, there can be an imbalance in 

AA available for body protein deposition during immune system activation, leading to 

increased oxidation of AA and increased loss of N via the urine (Reeds et al., 1994). The 

calculations of Reeds et al. (1994), however, are based on a typical APP response in 

humans after uncomplicated surgery, and the AA composition of human APP, and the 

mean of bovine, porcine and ovine skeletal muscle. To my knowledge, calculations on 

the estimated increase in quantitative AA requirements for APP synthesis during an 

APP response in pigs after immune system activation are absent. Moreover, 

quantitative information about the effect of immune system activation on the 

requirements for AA, and moreover on the optimal dietary AA profile, i.e. the ratios 

between AA, is lacking, and measurements on changes in responses of multiple AA to 

immune system activation are largely absent.  

 

Nutritional modulation of the immune system 

There is increasing evidence that the dietary protein or AA supply can affect the 

inflammatory response during immune system activation, by impairing, maintaining, or 
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improving immune function (Grimble et al., 1992; Jahoor et al., 1999; Li et al., 1999; 

Grimble, 2001; Adams, 2006; Li et al., 2007; Le Floc'h et al., 2008; Le Floc'h et al., 2009; 

Calder and Yaqoob, 2012). Besides dietary deficiencies in energy (Fagbemi et al., 1990), 

protein and AA, dietary deficiencies in vitamins, minerals, and fatty acids can impair 

immune functioning (Calder and Yaqoob, 2012). In this paragraph emphasis is on the 

detrimental effects of a deficient dietary AA supply on the immune system, as well as 

on beneficial effects of supplementary AA on the immune system.  

 

Sulphur-containing AA (Met and Cys) 

Live E. coli infected rats had increased glutathione synthesis rates in liver, spleen, large 

intestine, and lung, ranging between 1100% to 1450% and muscle and heart by 

approximately 180% compared to pair-fed controls (Malmezat et al., 2000). Glutathione 

is present in cells as thiol-reduced (GSH) and disulfide-oxidized (GSSG) forms (DeLeve 

and Kaplowitz, 1991). The ratio between GSH and GSSG is the most important 

regulator of the redox potential (Roth, 2007). In addition, this ratio plays an important 

role in inflammation by initiating inflammatory cytokines through nuclear factor-κB, 

and by regulating cell proliferation and apoptosis (Roth et al., 2002; Roth, 2007). 

Labelled Cys incorporation into glutathione was higher in spleen and kidneys of E. coli 

infected rats than pair-fed controls (Malmezat et al., 1998). In addition, Cys 

incorporation into protein in spleen, lung, and in plasma proteins without albumin, was 

higher in E. coli infected rats than pair-fed controls (Malmezat et al., 1998). Cys 

supplementation to a protein deficient diet increased liver weight, which was impaired 

in the protein deficient fed group, and increased hepatic glutathione concentrations 

following an intraperitoneal injection of pro-inflammatory cytokine TNF-α in rats 

(Grimble et al., 1992). These findings indicate that Cys is important for GSH production, 

and that both Cys and GSH are important for antioxidant defences, by acting as 

scavengers of reactive oxygen species. Furthermore, pigs fed a low protein diet were 

not able to maintain homeostasis in red blood cell and mucosal GSH concentration or 

synthesis rate when subjected to inflammation by s.c. challenge with turpentine 

(Jahoor et al., 1995). A study of Litvak et al. (2013a) revealed that after LPS 

administration, plasma albumin concentration and fractional synthesis rate were lower 

in pigs fed a diet deficient in Met and Cys, compared to a dietary supply that met the 

requirement for Met and Cys. Furthermore, Cys supplementation to E. coli infected rats 

was proven to be beneficial, as indicated by a reduced urinary nitrogen excretion and 

muscle weight loss (Breuillé et al., 2006). Feeding high protein diets with a deficient 

Met content to rats increased the number of worm eggs in the colon following an 

infection with Nippostrongylus brasiliensis larvea, indicating a reduced resistance 

against parasites, but did not affect systemic Ig, mast and goblet cells, and eosinophil 

numbers (Sakkas et al., 2012). Other products of sulphur AA are homocysteine and Tau, 

which can modulate the immune system, especially inflammation (Grimble, 2006). 

Grimble (2006) suggests that homocysteine stimulates monocyte activity, and increases 

the interactions between T lymphocytes, monocytes, and endothelium in vitro. Tau has 
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antioxidant properties, regulates the release of pro-inflammatory cytokines, and Tau 

deficiency in animals decreased the number of lymphocytes, increased monocytes, and 

impaired phagocytosis as reviewed by Grimble (2006). These studies indicate that 

dietary supplementation of Cys and or Met can be beneficial for immune functioning, 

whereas a deficiency can impair immune function.  

 

Tryptophan 

Trp deficiency in rats (Gershoff et al., 1968; Kenney et al., 1970) and mice (Qiu et al., 

2011) reduced antibody titres, and antibody titres linearly increased with increasing Trp 

supply, suggesting that Trp is an important mediator for maintaining immunoglobulin 

concentrations. 

During immune system activation the kynurenine pathway is up-regulated, particularly 

by IFN-γ produced e.g. by dendritic cells, macrophages, eosinophills and endothelial 

cells, and is associated with an increased catabolism of Trp into kynurenine by IDO 

(Chen and Guillemin, 2009; de la Fuente et al., 2012). IDO is expressed on cells in many 

tissues, and is induced by signals from the immune system (Mellor and Munn, 2004). 

Another rate limiting enzyme in Trp catabolism is hepatic Trp 2,3-dioxygenase (TDO), 

which, in contrast to IDO, is induced by Trp and metabolic steroids, and thus highly 

specific for the substrate tryptophan (Moffett and Namboodiri, 2003). Trp catabolism 

by IDO activity has a suppressive effect on the immune system, mainly by down-

regulating the T cell and inflammatory response (Fallarino et al., 2006; de la Fuente et 

al., 2012; Mandi and Vécsei, 2012). More specifically, IDO supresses T cell proliferation 

and stimulates T cell apoptosis through the production of kynurenines, including 

kynurenine and quinolinic acid, in combination with dramatically reducing the supply 

of Trp in local cells (Fallarino et al., 2006). Reducing the local supply of Trp could be a 

defence mechanism against pathogens (Moffett and Namboodiri, 2003). In vitro, IDO 

activity inhibits replication of certain bacteria and viruses which are sensitive to Trp 

depletion, although this mechanism remains unclear in vivo (Moffett and Namboodiri, 

2003; Mellor and Munn, 2004). When deprived of Trp, T cells stop cell division, whereas 

an excess of Trp can reverse IDO mediated suppression of T cells (Mellor and Munn, 

2004). Besides controlling parasite proliferation by local Trp depletion, IDO functions as 

a mechanism for immune tolerance. IDO expressed on dendritic cells stimulate the 

maturation of immature T cells into regulatory T cells, which play an important role in 

immunological self-tolerance, by controlling harmful self-reactive T cells (Wing and 

Sakaguchi, 2010). In this way over-activity of the immune system is prevented. In 

addition, IDO has antioxidant activity by consuming superoxide anions (Hayaishi, 

1996), a free radical associated with cell damage. Other Trp metabolites that are 

modulators of the immune system include quinolinate, by being anti-inflammatory and 

inducing apoptosis, and kynurenine, 3-hydroxykynurenine, and 3-hydroxyanthranilate, 

by supressing T cell proliferation, and inducing apoptosis in T cells and monocytes, and 

picolinic acid, by coactivating macrophages (Moffett and Namboodiri, 2003). Thus, Trp 

metabolism through the kynurenine pathway is suggested to be an important 
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regulator of the innate and adaptive immune responses. In complete Freund’s adjuvant 

(CFA) challenged pigs, for instance, IDO activity in lung increases (Le Floc'h et al., 2008). 

IDO activity in lungs and heart, and lung weight was, however, greater in CFA 

challenged pigs fed a deficient Trp diet than in CFA challenged pigs fed additional Trp 

(Le Floc'h et al., 2008). As IDO is less substrate specific for Trp than TDO, and induced 

by cells of the immune system, the increased IDO activity observed in pigs fed a 

deficient Trp diet, together with the increased lung weight indicate a more severe 

immune response than in pigs fed an adequate Trp diet. In line, plasma haptoglobin 

concentrations in CFA challenged pigs fed a deficient Trp diet were still elevated at day 

7 and 9 post-challenge compared to healthy pair-fed controls, whereas pigs fed an 

adequate Trp diet had similar plasma haptoglobin concentrations from day 7 onwards 

compared to healthy pair-fed controls (Le Floc'h et al., 2008). These findings indicate 

that additional Trp helps to preserve the immune response to CFA, with less severe 

increases in lung weight and plasma haptoglobin concentrations.  

 

BCAA (Leu, Ile, and Val) 

In chickens, a diet deficient in BCAA i.e. at 50 or 16% of the recommended requirement 

value, was associated with a lower lymphoid organ weight and tended to reduce 

antibody titres, i.e. total haemagglutinin titre, against sheep red blood cells, compared 

to pair-fed controls (Konashi et al., 2000). In that study, BCAA deficiency had the 

greatest potential to modulate the adaptive immune response in chickens, compared 

to a dietary deficiency in Met + Cys, Phe plus Tyr, Arg plus Lys, or other AA including 

Gly, Ser, His, Thr, and Trp. In vitro studies indicate that BCAA are essential for 

lymphocytes to synthesize protein, RNA and DNA and to proliferate after immune 

system activation, and that a deficient dietary supply of BCAA impairs killer-cell activity, 

reduces antibody titres, and increases the susceptibility to pathogens (Calder, 2006). In 

contrast, an excess of Leu, in combination with low levels of Val and Ile, can have 

detrimental effects by decreasing the humoral response to an i.m. challenge with 

keyhole limpet hemocyanin in weanling pigs (Gatnau et al., 1995). Furthermore, BCAA, 

especially Leu, increase albumin synthesis in rat primary hepatocytes in a dose-

dependent manner, through a key molecule mammalian target of rapamycin that 

triggers protein synthesis (Ijichi et al., 2003).  

 

Other essential and conditionally essential AA  

It has recently been considered that Arg, Gln, Glu, Gly, Pro, Tau and Cys can become 

conditionally essential during periods of stress (e.g., heat stress, burns, and infection) 

(Wu, 2013). “A ‘conditionally essential’ nutrient is a physiologically indispensable 

compound that is nutritionally nonessential for normal subjects, but is required in the 

diet by certain sick individuals because they have lost the capacity to synthesize it at an 

adequate rate” (Chipponi et al., 1982). Arg, Gln and Tau are succesfully supplemented 

to improve clinical outcome in surgery and critically ill patients (Calder, 2007b). By 
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increasing the supply of AA required for the synthesis of mucins, i.e. Thr, Ser, Pro, and 

Cys, to rats with dextran sulfate sodium induced colitis, the number of mucin-

containing goblet cells in the colon increased, mucin synthesis increased, and gut 

microbiota were promoted (Faure et al., 2006). The latter authors suggested that 

supplementation of Thr, Ser, Pro, and Cys assist in colonic protection and mucosal 

healing. In piglets, a deficient Thr diet was associated with a lower villus height and 

crypt width in the ileum than in pair-fed control piglets receiving an adequate Thr diet 

(Hamard et al., 2007). The addition of Thr to the diet of pigs increased serum IgG 

concentrations in response to ovalbumin (Wang et al., 2006a) or to s.c. challenge with 

swine fever attenuated vaccine or bovine serum albumin (Li et al., 1999). Arg is known 

as an important modulator of the immune system (Wu and Morris, 1998; Popovic et al., 

2007; Ruth and Field, 2013). Arg metabolism plays an important role in supressing 

activated T lymphocytes, by controlling myeloid suppressor cells, which activate the 

arginase-1 and NO synthase-2 pathways (Bronte and Zanovello, 2005). In addition, T 

lymphocytes depend on Arg for proliferation, antigen recognition, and the 

development of memory (Popovic et al., 2007). Arg is the only precursor of NO, which 

is a key immunomodulator and is highly required by neutrophils during the innate 

response of an infection (Calder and Yaqoob, 2012; Ruth and Field, 2013). Induced by 

pro-inflammatory cytokines, including IFN-γ, IL-1, TNF-α, but also by the endotoxin 

LPS, macrophages express nitric oxide synthase-2, which converts Arg into NO and 

citrulline (Bredt and Snyder, 1994; Bronte and Zanovello, 2005). In turn, NO enhances 

cytotoxic and antimicrobial activity against pathogens and tumour cells (Macmicking et 

al., 1997). In addition, NO regulates the vascular system by being a major endogenous 

vasodilator, and by inhibiting platelet aggregation and adhesion (Bredt and Snyder, 

1994). Dietary Arg supplementation improves wound healing (Wu et al., 2000; 

Stechmiller et al., 2005). In addition, dietary Arg supplementation increased antibody 

production against Salmonella, suppressed the increase in serum CRP, IFN-γ and IL-12 

concentrations, and down-regulated mRNA expression of TNF-α after an 

experimentally induced Salmonella enterica infection in weaned pigs (Chen et al., 

2012). The latter authors suggested that Arg supplementation has a protective effect 

by preventing overproduction of inflammatory cytokines. In addition, dietary Arg 

supplementation enhanced immune function in aged mice as indicated by increased 

delayed-type hypersensitivity response as measured by ear thickness to 

dinitrofluorobenzene, and increased popliteal lymph node weights in response to 

sheep red blood cells in aged mice (Lewis and Langkamp-Henken, 2000). In contrast, in 

the non-supplemented group both responses were impaired and associated with an 

age-dependent impairment of the immune system (Lewis and Langkamp-Henken, 

2000). In addition, intravenous (i.v.) Arg infusion diminished intestinal damage in a 

neonatal piglet model of necrotizing enterocolitis (Di Lorenzo et al., 1995). 

Nevertheless, Arg supplementation during inflammation can be both beneficial and 

harmful (Roth, 2007). Dietary Gln supplementation to rats with dextran sulfate sodium-

induced colitis did not affect gut associated lymphocyte populations, however, a lower 

water content in feces was observed compared to dextran sulfate sodium induced 
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control rats, indicative for an improved barrier function in the colon (Vicario et al., 

2007). In pigs, dietary Gln supplementation increased or maintained villus height 

compared to control, which was indicative for preventing enterocyte destruction (Wu 

et al., 1996). Gly supplementation to a low protein diet led to a higher serum APP as 

indicated by increased serum α-1-acid glycoprotein concentrations in response to a 

TNF-α injection in rats (Grimble et al., 1992). In addition, dietary Gly prevents mortality, 

prevented inflammation and injury in the lung, by downregulating chloride channels 

on Kupffer cells in response to i.v. LPS administration (Wheeler et al., 2000).  

In conclusion, the dietary supply of (semi)-essential AA play an impotant role in host 

resistance, and are able to modulate immune functioning by supporting or, in case of 

AA deficiencies or extreme surplus, by impairing the immune system.  

 

Methods for studying amino acid requirements 

AA requirements are typically determined by varying the dietary supply of the first 

limiting AA, and measuring the response in protein metabolism, e.g. in N retention, BW 

gain, plasma AA or urea concentration (Pencharz and Ball, 2003). In growing pigs, 

separate groups are usually assigned to specific AA supply levels, and requirement 

values are derived from nonlinear regression analysis of measured responses 

(Batterham et al., 1990; Rao and McCracken, 1990; Bikker et al., 1994; Susenbeth et al., 

1994; Coma et al., 1995). Kim et al. (1983) introduced the indicator AA oxidation (IAAO) 

technique, which has provided significant insight in the variation in AA requirements 

between individual pigs (Bertolo et al., 2005; Moehn et al., 2008). Yet, its application 

requires isotope infusion, mass spectrometry equipment, and steady-state conditions, 

hampering its application under meal-fed conditions of two to three daily feedings. 

Therefore, a technique was developed to estimate a quantitative change in the 

requirement of a limiting AA for protein deposition of individual meal fed pigs. 

Secondly, a technique was developed to measure changes in responses of multiple AA 

simultaneously to immune system activation. Changes in AA metabolism, e.g. an 

increased protein synthesis rate, can occur without concomitant changes in plasma AA 

concentrations or pool size, as AA concentrations can be maintained when fluxes from 

protein intake, breakdown and synthesis of body protein, and oxidation of AA are 

changing (Waterlow, 2006). Yet, changes in plasma AA concentrations have been used 

previously as a measure to assess effects of immune system activation on AA 

metabolism (Maes et al., 1993; Melchior et al., 2004; Melchior et al., 2005; Le Floc'h et 

al., 2006).  
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Aims and thesis outline 

The main objective of this thesis is to quantify the effects of health status on AA 

requirements for body protein deposition and for immune system functioning of 

growing pigs. This information allows feed manufacturers to optimize pig diets by 

adjusting to variation in health status, and thereby contributes to further improving pig 

performance.  

 

Firstly, the health status web as a concept for classification of the health status of 

growing-finishing pig farms was developed, based on data recorded in current 

commercial practice (Chapter 2). Techniques were developed for measuring AA 

requirements in individual pigs. A non-invasive dose-response technique was 

developed to quantify the requirement for Lys, and possibly for other AA in individual 

growing-pigs (Chapter 3). In addition, the isotope dilution technique was developed to 

provide insight in simultaneous changes in the metabolism of multiple AA as affected 

by differences in dietary supply of protein and AA. Next, an experiment was performed 

to determine the effects of health status and dietary deficiency of Met + Cys, Thr and 

Trp on N retention and AA metabolism in growing pigs, which were selected from two 

farms with a different health status (Chapter 4). A pilot study was performed to select 

an appropriate model for immune system activation. To quantify the effects of immune 

system activation and dietary protein supply on N retention and AA metabolism in 

growing pigs, a final study was conducted in growing pigs challenged with CFA as a 

model to activate the immune system (Chapter 5). In the General Discussion (Chapter 

6), the findings from Chapter 2 to 5 and pilot studies are discussed to provide 

quantitative information about the effect of health status on AA requirements for 

immune system functioning and for body protein deposition. Moreover, general 

conclusions and recommendations for future research are provided. 
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Chapter 2 

 

A novel scoring system for the classification of the 

health status of growing-finishing pig farms 
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Abstract 

The aim of the current study was to develop a concept for classification of the health 

status of growing-finishing pig farms, based on commonly recorded data. Six traits 

were incorporated into a health status web, being average daily gain (ADG), energy 

conversion ratio (ECR), mortality, incidence of pleuritis, and percentage rejected lungs 

and livers at slaughter over a period of one year. Performance data from 1074 and 783 

Dutch pig farms, and abattoir data of 50208 and 47426 farm deliveries to 

slaughterhouses, acquired over 2011 and 2012 respectively, were used as a 

representative sample for the Dutch growing-finishing pig population to calculate the 

25th and 75th percentiles of each trait for each year. For each individual farm, a score 

was calculated per trait by inter- and extrapolation using the 25th and 75th percentiles 

from the Dutch growing-finishing pig population as reference. The farm score was 

defined as the mean score over the six traits. A farm was classified as follows: for a farm 

score between 50 and 62.5: suboptimal health; for a farm score between 62.5 and 87.5: 

conventional health; for a farm score between 87.5 and 100: high health. 

To evaluate the health status web concept, two datasets were compiled: dataset 1 with 

individual farm data of 179 farms over the year 2011, and dataset 2 with individual 

farm data of 70 farms over both 2011, a subset of dataset 1, and 2012. In dataset 1, 13 

farms were characterized as high health, 159 farms as conventional and seven farms as 

having a low health status. Farm scores were higher (P < 0.001) for gilt-boar farms than 

for gilt-barrow farms, urging the need for adjusting the 25th and 75th percentiles of 

each trait in the health status web according to farm subpopulations, e.g. according to 

sex, rather than to the farm population as a whole. Furthermore, it was concluded that 

the performance and abattoir data used to calculate the 25th and 75th percentiles of 

each trait change in time and therefore must be updated yearly. Dataset 2 revealed 

consistent farm scores across years, indicating that the farm score is farm specific and 

that the health status web is a valuable concept to characterize growing-finishing pig 

farms on the basis of their health status.  

 

Keywords: Farm health status; growing pigs; performance; abattoir data. 
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Introduction 

Animal health can be defined as the absence of disease as determined by clinical 

examinations in combination with various diagnostic tests e.g. for parasites or 

pathogenic micro-organisms (Petersen et al., 2004). Clinical infections affecting pigs 

can be associated with high morbidity and mortality. Pigs, however, are continually 

exposed to a range of pathogens that can also cause varying degrees of nonspecific, 

subclinical disease (Cromwell, 2002). Subclinical infections are also problematic 

because they are difficult to detect by clinical examinations (Stark, 2000) and hamper 

the animal’s overall growth performance (Le Floc'h et al., 2004). It is very difficult to 

quantify and manage the impact of subclinical infections at farm level, especially when 

the nature of the pathogens is unknown (Clapperton et al., 2005b).  

Subclinical and clinical infections which activate the immune system can be bacterial, 

viral or parasitic in nature. They induce an inflammatory status through an activation of 

the immune system, which in turn does not allow the animal to achieve its full growth 

potential and compromises its well-being (Humphrey, 2008). This is evident by the fact 

that commercially reared pigs commonly fail to achieve their genetic potential for 

growth and efficiency (Holck et al., 1998; Gabler and Spurlock, 2008). At the same time 

there is large variability in performance between farms which cannot be attributed to 

genotype and nutrition; e.g. 20% of Dutch growing-finishing pig farms have an average 

daily gain (ADG) of less than 762 g/day whereas another 20% of farms have and ADG 

of more than 830 g/day (AgroVision; 2012). It is suggested that activation of the 

immune system adversely affects performance, by inducing anorexia (Kyriazakis and 

Doelsch-Wilson, 2009) and by altering the energy expenditure and metabolism of 

amino acids (AA) (Reeds and Jahoor, 2001). 

Current estimates for the nutrient requirements of pigs are based on experiments 

which have been largely performed under good sanitary conditions. Over the last 

decade it has been attempted to redefine these requirements, especially in relation to 

the demand for specific AA in inflammatory conditions (Li et al., 1999; Le Floc'h et al., 

2008; Le Floc'h et al., 2009; Wu, 2009; Rakhshandeh et al., 2010). The need to redefine 

nutrient requirements is increased by the ban of in feed antibiotics as part of the 

routine management for prophylaxis and for promotion of growth performance, due to 

concerns about the emergence and development of antimicrobial resistance (Aarestrup 

et al., 2008). Moreover, effects of subclinical disease might be more prevalent currently, 

as it has been proposed that selection for high lean meat deposition has resulted in 

pigs that are more susceptible to immunological stress (Frank et al., 2005; Merlot et al., 

2012). 

Classifying the health of pig herds is pivotal in applying targeted nutrition strategies 

and the implementation of husbandry measures related to the management of the 

herd, its housing and the environment of these farms with the aim to improve farm 

productivity. For the application of targeted nutritional strategies it is necessary to be 

able to easily identify farms that suffer from unsanitary conditions which induce 
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penalties in the efficiency of production. Currently, defining the health status of a farm 

requires assessment of clinical signs, post-mortem examination of dead pigs or those 

that are culled, vaccination and antibiotic use, slaughter-check examinations, and 

detection of specific pathogen occurrence through serology (Dewey and Straw, 2006). 

Over the last years, screening for concentrations of acute phase proteins (APP) in blood 

for defining the health status of farms and/or individual animals has attained 

considerable interest (Petersen et al., 2004; Carroll et al., 2004; Cray et al., 2009). These 

assessments, however, are time consuming and costly, as they are not readily available. 

Moreover, serological tests may be indicative for the health status of individual pigs, 

but may be less indicative for the health status of a farm. In addition, blood 

concentrations of APP are affected by age and time after immune system activation 

(Gutiérrez et al., 2009a), their response to subclinical problems may be short lived (days 

or weeks), and mainly reflect a short term health status. Although it is acknowledged 

that for monitoring the health status of individual farms the above mentioned 

assessments and diagnostic tests can be useful to improve the status and the 

productivity of a particular farm, the presented concept can be of use to adapt general 

nutritional or management strategies to suit the needs for particular groups of farms 

sharing a common health status. Therefore, a system for classification of farms should 

be employed, that incorporates traits which are registered, are readily available and are 

collectively related to (sub)clinical disease.  

The aim of the present study was to develop a system that allows the classification of 

the health status of growing-finishing pig farms.  

 

Materials and methods 

Traits included in the scoring system 

In a series of brainstorming sessions among specialists involved in the pig production 

sector, six traits were chosen on the basis of their relevance to the occurrence of 

clinical and subclinical infections at farm level and the availability of related relevant 

data from different sources. The proposed scoring system, hereafter referred to as 

health status web, incorporates six traits which are divided into two classes, being 

performance data and abattoir data, the latter being related to pathological deviations 

of specific organs in the slaughterhouse.   

One of the hallmarks of clinical and subclinical infections is the induction of penalties 

in the production performance of pig farms. Pathogenic challenges disturb 

physiological processes through the production of cytokines. Activation of the innate 

immune system upon pathogen invasion, results in secretion of the cytokines 

interleukin-1, interleukin-6, tumour necrosis factor α, and interferon-γ by activated 

macrophages (Le Floc'h et al., 2004). The latter induce inappetence and sickness 

behaviour (Johnson, 1998; Buchanan and Johnson, 2007) and as a result reduce 

nutrients available for protein deposition. In addition, they can inhibit nutrient 

absorption, increase metabolic rate, and alter nutrient utilization in a tissue-specific 
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manner (Johnson, 2002). Growth efficiency is negatively affected as nutrients and in 

particular AA are repartitioned away from body protein deposition towards tissues and 

cells involved in inflammatory and immune responses (Kyriazakis and Houdijk, 2006). 

Metabolic drains imposed by infection are related to the repair of damaged tissues, to 

the synthesis of lymphocytes, recruitment of new monocytes from the bone marrow, 

and synthesis of various proteinaceous molecules such as immunoglobulins, cytokines 

and APP (Colditz, 2002; Calder, 2006; Li et al., 2007; Sandberg et al., 2007; Wu, 2009). 

The repartitioning assists in delivering nutrients towards the immune system (Klasing, 

1988; Colditz, 2002; Obled, 2003). Various studies have been performed involving 

deteriorated sanitary housing conditions (Williams et al., 1997a,b,c; Le Floc'h et al., 

2009; Renaudeau, 2009; Le Floc'h et al., 2010), administration of infectious pathogens 

(Greiner et al., 2000; Escobar et al., 2004; Davis et al., 2010) or non-infectious 

immunogens such as lipopolysaccharide (LPS) (Van Heugten et al., 1996; Webel et al., 

1997; Chen et al., 2008), illustrating the adverse effects of immune system activation on 

feed intake, growth and efficiency of feed utilization. Recent meta-analysis studies 

associate the impact of infections on various aspects of production efficiency 

(Montagne et al., 2010; Kipper et al., 2011; Pastorelli et al., 2012). Consequently, it is 

expected that the occurrence of (sub)clinical disease is reflected in traits related to the 

production performance of farms. In addition, it is easy to perceive that higher 

prevalence of infections is expected to increase mortality in the herd, as more animals 

are expected to develop clinical signs of disease. In the proposed scoring system we 

incorporated the traits ADG (g/day), energy conversion ratio (ECR; EW/kg ADG, where 

EW = dietary net energy intake (MJ; CVB, 1996) / 8.8 MJ), and mortality (%) during the 

starter, grower and finisher phase. The ADG and ECR were standardized at a body 

weight (BW) range of 25 - 112 kg. In the Netherlands, data on these traits are 

registered by farmers on a voluntary basis using farm management programs 

Pigmanager and FARM and are summarized yearly by AgroVision (2012). 

Similarly, the health status of a farm is reflected on abnormalities detected in the 

slaughter line. Organized carcass inspection has long been recognized as a tool in 

assessing the health status of the herd (Willeberg et al., 1984; Mousing et al., 1990, 

Elbers, 1992). Since the 1990s results of individual inspection of all pigs delivered for 

slaughter are recorded in the Netherlands. Regulation (EC) No 854/2004 of the 

European Parliament was introduced as part of the ‘EU Hygiene Package’ which sets 

specific rules for the organization of official inspection controls on meat derived from 

pigs intended for human consumption (Hill, 2013). All abattoirs in the Netherlands are 

legally enforced to use the Dutch inspection procedure developed by the National 

Inspection Service for Livestock and Meat in the early 1990s (PVV, 2006). Pathological 

inspection results include lesions of livers, skin, legs, lungs and occurrence of pleuritis 

(van Wagenberg et al., 2010). Respiratory infections are recognized as one of the most 

serious disease problems in pigs and their importance continue to increase with 

intensification of pig production (Sørensen et al., 2006). They result in substantial 

economic losses due to poor growth performance, reduced feed efficiency and higher 

medication costs and have an adverse effect on pig welfare (Sørensen et al., 2006). 
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Often respiratory infections do not show clinical signs of disease making abattoir 

examinations of thoracic organs important for evaluation of the health status of the 

herd (Andreasen et al., 2001). Catarrhal bronchopneumonia and pleuritis are the most 

frequent lung lesions recorded on abattoir inspections with prevalence varying, 

depending on the country and the lung lesion scoring system that is used (Wilson et 

al., 1986; Enøe et al., 2002; Leneveu, 2005; Fraile et al., 2010; Meyns et al., 2011). The 

cause of respiratory diseases and the development of lung lesions is multifactorial and 

complex in nature, resulting from the interaction of multiple infectious agents such as 

bacteria, viruses, environmental conditions and host factors (Fablet et al., 2012; Merialdi 

et al., 2012). In pigs, the most important micro-organisms responsible for disease are 

Mycoplasma hyopneumoniae, Pasteurella multocida, Actinobacillus 

pleuropneumoniae, swine influenza viruses and porcine reproductive and respiratory 

syndrome virus (PRRSV) (Choi et al., 2003; Sørensen et al., 2006; Fablet et al., 2012). 

Pathological inspections in abattoirs estimate the incidence of pneumonia lesions and 

chronic pleuritis. Lungs are visually inspected in abattoirs in the Netherlands and are 

scored as abnormal or rejected depending on the degree of macroscopic alterations. In 

addition, the percentage of lungs which are affected by pleuritis is recorded. Liver 

abnormalities can be caused by many systemic diseases which cause congestion and 

inflammatory cell infiltration. However, the most common one is parasitism, in 

particular with Ascaris suum larvae (van Wagenberg et al., 2010; Vlaminck et al., 2014), 

which adversely affects production performance of growing pigs (Hale et al., 1985). 

Inspected livers are classified on the basis of the degree of pathological deformation 

due to Ascaris suum infection. A liver has minor lesions if it has one or two white spots 

on the front side, indicative for inflammatory tissue due to migration of larvae through 

the liver. When a liver has three or more white spots, it is rejected, and consequently 

declared unfit for human and animal consumption (van Wagenberg et al., 2010). In the 

scoring system we developed, the occurrence of pulmonary changes (percentage of 

rejected lungs in the slaughter line), pleuritis (percentage of pigs showing 

abnormalities in the slaughter line due to pleuritis) and liver abnormalities (percentage 

of rejected livers in the slaughter line), were taken into account. The aforementioned 

abattoir data from Dutch growing-finishing pig farms over the years 2011, and 2012 

were provided by the Vion Food Group (unpublished results).  

 

Parameterization of the scoring system 

The six underlying farm traits of the Dutch growing-finishing pig population, obtained 

from AgroVision (performance data) and Vion Food Group (abattoir data) were used to 

calculate the 25th and 75th percentiles, i.e. the value of a trait below which 25% or 75% 

of the observations in the Dutch growing-finishing pig population were found. For 

example, the 25th percentile for ADG indicates that 25% of the Dutch farms have an 

ADG equal to or less than 767 g/day. The 75th percentile for ADG indicates that 75% of 

the Dutch farms have an ADG equal to or less than 821 g/day (Table 2.1). Performance 

data from AgroVision included data of 1074 and 783 Dutch growing-finishing pig 
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farms over 2011 and 2012 respectively. The abattoir data from Vion Food Group 

included data of 50208 batches and 47426 batches, i.e. number of farm deliveries to 

the slaughterhouses, acquired over 2011 and 2012, respectively. The performance data 

were presented in five classes with an equal number of farms per class, ranking 

performance with an average value per class. The 25th and 75th percentiles of the 

performance traits ADG, and ECR, and for mortality (%) were calculated from these 

data using a normal distribution function:  

 

[1] 

where x is the value for each trait, µ is the mean of the distribution and σ is the 

standard deviation (SD).  

 

Table 2.1  Performance and abattoir data of a Dutch population of growing-finishing 

pig farms used to calculate percentiles and subsequent farm scores to 

characterize farms as having a suboptimal, conventional or high health 

status in the health status web.  

Abbreviations used: ADG, average daily gain; ECR, energy conversion ratio.  
1The 25th and 75th percentiles of the performance traits ADG, and ECR, and for mortality (%) 
were calculated from data using the normal distribution function [1] (n = 1074 and 783 for 
2011 and 2012, respectively). The 25th and 75th percentiles of the abattoir traits concerning the 
incidence of pleuritis, lung- and liver abnormalities were calculated from data providing the 
cumulative percentage of all batches of pigs recorded (n = 50208 and 47426 for 2011 and 
2012, respectively). 
2Energy conversion ratio (ECR) as energy intake (EW) per kg ADG, where EW = net energy (NE) 
in MJ per kg diet divided by 8.8 MJ (CVB, 1996). 
 

 

 

Trait 50th 
percentile 

25th 
percentile1 

75th 

percentile1 
Reference 

ADG, g/day 794 767 821 AgroVision, 2011  

 791 764 818 AgroVision, 2012 

ECR, EW/kg2 2.83 2.95 2.73 AgroVision, 2011 
 2.80 2.91 2.70 AgroVision, 2012 

Mortality, % 2.4 3.1 1.7 AgroVision, 2011 

 2.4 3.1 1.7 AgroVision, 2012 

Pleuritis, % 4.7 19.1 2.0 Vion Food Group, 2011  

 4.9 19.7 2.0 Vion Food Group, 2012  

Lung, % rejected 3.6 8.7 1.4 Vion Food Group, 2011 

 3.5 9.2 1.1 Vion Food Group, 2012 

Liver, % rejected 1.7 3.6 0.0 Vion Food Group, 2011 

 1.4 3.4 0.0 Vion Food Group, 2012 
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Figure 2.1  Graphical representation of a linear equation used to obtain a score per 

trait (y) from the value of one of the six traits of a particular farm (x), for 

example average daily gain (ADG; g/day), using the 25th and 75th 

percentiles of each trait derived from a Dutch population of growing-

finishing pig farms obtained from AgroVision (performance data) and Vion 

Food Group (abattoir data). For each trait, a minimum (min) score of 50 

and a maximum (max) score of 100 was established, corresponding with 

an ADG of 740 and 848 g/day, respectively.  

 

Concerning the abattoir data, the percentage of pigs showing pleuritis, lung- and liver 

abnormalities at slaughter were not normally distributed. Therefore the 25th and 75th 

percentiles of these traits were calculated from data on these deviations on the 

cumulative percentage of batches of pigs slaughtered in classes of 10%. For each 

individual farm, a score was calculated per trait by inter- and extrapolation using the 

25th and 75th percentiles from the Dutch growing-finishing pig population as reference 

(Figure 2.1). A trait score was set between a value of 50 (minimum) and 100 

(maximum). The mean score of the six traits of a particular farm is referred to as the 

farm score. The standard deviation over the values of the scores for the six traits of 

each farm is a measure for the uniformity of the farm score. Finally, a farm was 

classified based on the farm score as follows: for farm scores between 50 and 62.5: 

suboptimal health; for farm scores between 62.5 and 87.5: conventional health; for 

farm scores between 87.5 and 100: high health.  

Two datasets were compiled, dataset 1 with individual farm data of 179 farms over the 

year 2011 to characterize farms on the basis of their health status and to examine the 

effect of sex, i.e. gilt-barrow or gilt-boar, and genetic line on the farm score and the 
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uniformity of the farm score. Dataset 2 included individual farm data of 70 farms over 

both 2011 and 2012 and was used to evaluate the consistency in farm scores over 

years. 

 

Statistical methods 

Using dataset 1, the effect of health status classification group on the uniformity of the 

farm score was analysed by ANOVA using proc GLM in SAS (SAS Inst. Inc., Cary, NC, 

USA). When main effects were significant, P-values for differences of the Least squares 

means were used to compare the three health status classification groups. Similarly, 

the effect of sex, i.e. gilt-barrow or gilt-boar, or genetic line on the farm score and the 

uniformity of the farm score were analysed by ANOVA. In addition, the effect of sex on 

the six traits, ADG, ECR, mortality, incidence of pleuritis, and lung- and liver 

abnormalities, was analysed by ANOVA. Genetic lines were classified in 12 categories, 

including Hypor ∙ Mix (i.e. mix of different lines, n = 5), Pietrain (n = 21), T20 ∙ Pietrain (n 

= 26), T20 ∙ Talent (n = 19), T20 ∙ Tempo (n = 30), T20 ∙ Mix (n = 8), T30 ∙ Mix (n = 8), 

T40 ∙ Pietrain (n = 2), T50 ∙ Mix (n = 6), Talent (n = 8), Tempo (n = 27), “Other”, 

including non-specified (n = 19).  

Using dataset 2, it was tested whether the farm score was consistent over the years 

2011 and 2012. Therefore, a correlation analysis between the farm score or farm 

uniformity over 2011 and 2012 was performed in SAS (SAS Inst. Inc., Cary, NC, USA). A 

paired t-test on farm score and on its uniformity was performed to test whether the 

mean difference in farm score between 2011 and 2012 was not statistically different 

from zero, which indicates that a representative sample of farms of the Dutch 

population of growing-finishing pig farms was used. 

 

Results 

The data on the six traits from a total of 179 growing-finishing pig farms over 2011 and 

from a total of 70 growing-finishing pig farms over both 2011 and 2012 are displayed 

in Table 2.2. By using the health status web we classified the 179 farms according to 

their health status. A graphical representation of the scores of two farms are displayed 

in Figure 2.2 and Figure 2.3. Of the 179 farms in dataset 1, 13 farms were characterized 

as high health, 159 farms as conventional and seven farms as having a low health 

status (Table 2.3). The uniformity of the farm score was higher (P = 0.02) in the high 

health status group than in the conventional health status group, but similar to that of 

the suboptimal health status group. 
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Table 2.2  Performance and abattoir data of 179 growing-finishing pig farms over the 

year 2011 (dataset 1) used to characterize farms according to their health 

status, and of 70 farms over the year 2012a (dataset 2) used to compare 

the characterization of farms between 2011 and 2012.  

Trait Mean SD Min Max 

Dataset 1 (n = 179)     

  ADG, g/day 802 45.5 678 925 

  ECR, EW/kg2 2.81 0.133 2.48 3.16 

  Mortality, % 2.2 0.94 0.5 7.1 

  Pleuritis, % 7.9 6.24 0 34.7 

  Lung, % rejected 6.4 4.35 0 20 

  Liver, % rejected 2.3 2.99 0 22.3 

Dataset 2 (n = 70)1     

  ADG, g/day 802 53.4 671 907 

  ECR, EW/kg2 2.77 0.143 2.50 3.16 

  Mortality, % 2.1 0.89 0.5 5.0 

  Pleuritis, % 9.5 6.84 1.0 39.4 

  Lung, % rejected 8.5 5.81 0.7 33.9 

  Liver, % rejected 1.9 1.85 0.3 12.4 

Abbreviations used: ADG, average daily gain; ECR, energy conversion ratio; SD, standard 
deviation. 
1Dataset 2 includes the 70 farms that are also part of dataset 1.  
2Energy conversion ratio (ECR) as energy intake (EW) per kg ADG, where EW = net energy (NE) 
in MJ per kg diet divided by 8.8 MJ (CVB, 1996). 
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Figure 2.2  Graphical representation of the health status web of a farm characterized 

as having a low health status with farm score 59 and uniformity of the farm 

score 9.3. The farm score is referred to as the mean score of the six traits of 

a particular farm and characterizes farms as having a suboptimal (farm 

score between 50 and 62.5), conventional (farm score between 62.5 and 

87.5) or high health status (farm score between 87.5 and 100). The 

uniformity of the farm score is calculated as the standard deviation of 

scores for the six traits for each farm. The 25th and 75th percentiles of the 

Dutch growing-finishing pig population are displayed for each trait. 
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Figure 2.3 Graphical representation of the health status web of a farm characterized 

as having a high health status with farm score 89 and uniformity of the 

farm score 7.0. The farm score is referred to as the mean score of the six 

traits of a particular farm and characterizes farms as having a suboptimal 

(farm score between 50 and 62.5), conventional (farm score between 62.5 

and 87.5) or high health status (farm score between 87.5 and 100). The 

uniformity of the farm score is calculated as the standard deviation of 

scores for the six traits for each farm. The 25th and 75th percentiles of the 

Dutch growing-finishing pig population are displayed for each trait. 
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Table 2.3  Characterization of 179 farms over the year 2011 based on the six traits 

used in the health status web.  

 Suboptimal  
health status 

Conventional 
health status 

High health 
status 

 Farm score  
50 to 62.5 

Farm score 
>62.5 to <87.5 

Farm score  
87.5 to 100 

Number of farms 7 159 13 
Farm score 58 76 90 
Uniformity of the farm score1 10.0ab 11.1b 8.2a 
a,bValues without a common superscripts within a row differ (P < 0.05). 
1The mean of the standard deviation (SD) of the score of the six traits of each farm in the health 
status web. A low SD is indicative for a high uniformity of the farm score vice versa. 

 

Dataset 1 included one farm with only gilts, one farm with gilts, barrows and boars, 90 

farms with gilts and barrows and 87 farms with gilts and boars. Because of the low 

number of farms, data of the two farms with gilts or gilts, barrows and boars were 

excluded from the analysis. Of the 90 farms with gilts and barrows, seven farms were 

categorized as having a suboptimal health status (8%), 81 with a conventional health 

status (90%), and two farms with a high health status (2%). Within the 87 farms with 

gilts and boars, no farms were categorized as having a suboptimal health status (0%), 

76 with a conventional health status (87%), and 11 farms with a high health status 

(13%). The farm score was higher (P <0.001) in gilt-boar than in gilt-barrow farms 

(Table 2.4). The uniformity of the farm score was not affected by sex (Table 2.4). When 

analysing the six traits separately, ADG (P <0.001) was higher, and ECR (P <0.001), and 

the incidence of lung abnormalities (P = 0.04) were lower in gilt-boar than in gilt-

barrow farms and incidence of pleuritis tended to be lower (P = 0.06). The incidence of 

liver abnormalities and mortality were similar between gilt-boar and gilt-barrow farms. 

 

Table 2.4  Effect of sex (gilt-barrow or gilt-boar farm) on farm score over the year 

2011 based on the six traits used in the health status web1.  

 
Gilt-barrow,  

n = 90 
Git-boar,  

n = 87 
 Farm score 74a 79b 

Uniformity of the farm score1 10 11 
a,bValues without a common superscripts within a row differ (P < 0.001). 
1The mean standard deviation (SD) of the score of the six traits of each farm in the health status 
web. A low SD is indicative for a high uniformity of the farm score vice versa.  

 

Of the 163 farms with a specified genetic line, the four largest classes were T20 ∙ 

Tempo pigs with 30 farms of which one farm was categorized as a high health status 

farm and two as suboptimal, Tempo pigs with 27 farms of which two farms were 

categorized as a high health status farm and two as suboptimal, T20 ∙ Pietrain with 26 

farms of which one farm was categorized as a high health status farm and one as 
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suboptimal, and 21 Pietrain pigs of which four farms were categorized as a high health 

status farm. The genetic line neither affected farm score nor its uniformity (data not 

shown). 

The farm score of 70 farms was compared between the year 2011 and 2012. The 

difference in the farm score of individual farms between 2012 and 2011 was not 

different from zero (P = 0.47) with a mean difference of 0.6 ± 0.86 (SE). The mean 

difference in uniformity of the farm score (2012 minus 2011) was -0.1 ± 0.41 (SE, P = 

0.78). The farm scores over 2011 and 2012 were correlated (r = 0.64, P < 0.0001), as 

well as the uniformity of the farm score over 2011 and 2012 (r = 0.59, P < 0.0001; 

Figure 2.4). The farm score of most of the farms (50 out of 70, i.e. 71%) did not change 

with more than five points between 2011 and 2012 (Figure 2.5). Out of 70 farms, seven 

farms (10%) shifted from one health status category to another category, of which 

three farms had a major change in farm score, i.e. of more than 10 points between 

both years (Table 2.5), while uniformity of the farm score was not subject to major 

change over both years (data not shown). 
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Figure 2.4  Correlation plot between farm score (a) or uniformity of the farm score (b) 

over the year 2011 and 2012 of 70 farms based on the six traits used in the 

health status web. Dashes lines in panel a refer to the boundary values for 

the farm score which characterizes farms as having a suboptimal (farm 

score between 50 and 62.5), conventional (farm score between 62.5 and 

87.5) or high health status (farm score between 87.5 and 100).  
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Figure 2.5  Frequency distribution of the difference in farm score (2012 minus 2011) of 

70 farms based on the six traits used in the health status web. 

 

Table 2.5  Number of farms shifting between health status categories from 2011 to 

2012 out of 70 farms. 
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Discussion 

The aim of the present study was to develop a system that allows the classification of 

the health status of growing-finishing pig farms. This concept, that incorporates traits 

which are registered at farm level, readily available and are collectively related to 

(sub)clinical disease, can be used by farmers to monitor medium to long term changes 

in health status of their farm in relation to the pig population. In addition, it can be 

used by related industries to develop targeted strategies for improving efficiency of 

pig production. These may include farm-specific nutritional strategies, husbandry or 

breeding management strategies, e.g. genetic selection towards disease resistance 

which requires numerous traits to be monitored simultaneously (Bishop et al., 2010). 

For feed companies, for instance, the health status web can be applied to categorize 

farms on the basis of their health status and in turn, formulate diets for groups of farms 

and feeding concepts to improve production performance. In addition, animal 

extension services may use the concept to identify low heath status farms and take 

appropriate management actions that improve farm health and productivity. With this 

concept it is also possible to study trends in farm health status in a certain population 

of farms compared to other populations of farms or compared to the country’s pig 

farm population as a whole. The concept principally can also be applied to other 

livestock species, depending on currently available data on relevant traits. 

Data on the performance traits ADG, ECR, and mortality, and the incidence of pleuritis 

and lung- or liver abnormalities at slaughter, as traits incorporated in the health status 

web, were selected based on the direct or indirect relation to the incidence of 

(sub)clinical disease and the availability of data, i.e. they are routinely recorded at farm 

level. The extent of antibiotic use at farm level could also be a meaningful trait to 

include in our health status web, however, no correlation between therapeutic 

antibiotic use and the performance of farms was observed in the data used for the 

development of the present health status web (data not shown) and in literature 

(Dolman et al., 2012). In addition, data on therapeutic antibiotic use are not readily 

available yet, and on farm antibiotic use is subject to great variation over time. For 

example, in the Netherlands the annual antibiotic use has decreased by more than 60% 

in fattening pigs between 2008 and 2012 as a result of the implementation of a policy 

of the Dutch government to reduce antibiotic use in the animal production sector 

(Bondt et al., 2012). Nevertheless, in the future, the extent of antibiotic use at farm level 

could also be a meaningful trait to incorporate in the concept of the health status web.  

With regard to data obtained in abattoirs, it should be noticed that post mortem 

findings can vary substantially among meat inspectors and abattoirs as shown for e.g. 

the detection of liver abnormalities (Enøe et al., 2003). In contrast, variation in the 

detection of pleuritis and liver abnormalities has been suggested to be small (Bonde et 

al., 2010; Schleicher et al., 2013). It has to be stated, however, that especially data on 

liver abnormalities as used in the current study should be interpreted with some 

caution. In the current study, information on the combination of the six traits is 
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believed to be a valuable measure for the characterization of farms on the basis of 

their health status. 

Performance and abattoir data of a Dutch population of growing-finishing pig farms 

were used to create subsequent farm scores to characterize farms as having a 

suboptimal, conventional or high health status in the health status web. We 

acknowledge that the six traits can also be affected by other factors such as the genetic 

background, the ratio of boars : barrows : gilts, nutrition, housing and management. In 

fact, data of 179 farms used to develop the health status web, indicate that gilt-boar 

farms have on average a higher farm score than gilt-barrow farms. Boars are known to 

have a greater feed intake, ADG, and more favourable feed conversion ratio than 

barrows (van der Peet-Schwering et al., 2012). The fact that the farm score is different 

between sexes urges the need for calculating the 25th and 75th percentiles of each trait 

in the health status web for subpopulations of farms rather than for the farm 

population as a whole. This could result in the development of health status webs per 

sex, e.g. specific for gilt-boar or gilt-barrow farms. Another issue in the health status 

web is the time period over which the data of the traits in the health status are 

determined. In our health status web for each of the six traits 25th and 75th percentiles 

and related boundary values for calculating a farm score per trait are calculated per 

year, based on data collected over a large population of farms over a period of one 

year. This is believed to be an appropriate time period, as seasonal changes can affect 

the incidence of diseases on farms (Maclachlan and Dubovi, 2011). Moreover, we are 

interested in the characterization of the long term health status of a farm, rather than 

in a characterization of the short term status that could be largely influenced by 

incidental health problems.  

It is well recognized that farmers will strive to improve the health status of their farm, 

and particularly farms with major (sub)clinical problems can achieve a substantially 

different farm scores in adjacent years. Nonetheless, consistency of farm scores over 

years would demonstrate the validity of the concept. The farm scores of 2011 and 2012 

were highly correlated. In line, the farm score of the vast majority of farms (50 out of 

70, i.e. 71%) did not change by more than 5 points between 2011 and 2012. These 

findings demonstrate that the health status web is a farm specific and consistent 

concept to characterize farms on the basis of their health status. The mean difference 

in farm score between 2011 and 2012 was not statistically different from zero, 

indicative for the use of data of a representative sample of farms in both years, 

reflecting the Dutch population of growing-finishing pig farms.  

In the present study, high health farms had a higher uniformity of the farm score than 

conventional health farms, and numerically improved uniformity compared to farms 

categorized as having a suboptimal health status. These data demonstrate that the 

uniformity of the farm score improved with increasing overall farm score and health 

status. Farms with a suboptimal health status are possibly more subject to short term 

incidences that may have a more severe effect on uniformity of the farm score than 

long term effects, which in turn are expected to be indicative for a farm specific long 
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term health status. Furthermore, knowledge about the uniformity of a farm score with 

respect to the uniformity of farm scores within a population of farms can be important 

for making strategic decisions in order to improve the health status and productivity. 

 

Conclusions 

The health status web that incorporates ADG, ECR, mortality, the incidence of pleuritis 

and lung and liver abnormalities at slaughter is a farm specific and consistent concept 

to categorize farms with growing-finishing pigs on the basis of their health status, 

provided that the data of the six underlying farm traits of the growing-finishing 

population are updated each year. Farm scores were demonstrated to be consistent 

over years. The concept can be improved by developing sex or genotype specific webs 

per country. The concept can be used to characterize the health status of pig farms or 

other livestock species, as long as data of a substantial population of farms are 

available.  
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Abstract  

Two experiments were conducted to develop a simplified dose-response technique to 

estimate the Lys requirement of individual, meal-fed growing pigs. In Exp. 1, we 

studied adaptation processes that occur during such a dose-response study in meal-

fed pigs, and in Exp. 2, we studied the accuracy of this simplified technique to estimate 

changes in Lys requirement estimates of pigs following changes in energy intake. In 

Exp. 1, the effect of the Lys supply strategy on the Lys requirement was assessed in 14 

barrows fed an increasing (low to high, LH) or decreasing (high to low, HL) total Lys 

supply, with total Lys levels varying from 0.36 to 1.06 g/MJ DE in 7 equidistant steps of 

4 days each. Urinary urea and ammonia excretion and whole body N turnover were 

measured. In Exp. 2, the accuracy of the dose-response technique to determine a shift 

in Lys requirement was assessed in 20 barrows fed at either 2.2 (low energy, LE) or 2.7 

(high energy, HE) times the energy requirements for maintenance, with total Lys supply 

decreasing from 1.10 to 0.37 g Lys/MJ DE in 9 equidistant steps of 3 days each. In Exp. 

1, a lower increment in protein synthesis, breakdown, and whole body N turnover with 

increasing dietary Lys supply was observed in LH-pigs than HL-pigs (P < 0.01) and the 

estimated Lys requirement was 0.06 g/MJ DE greater (P = 0.01) in LH-pigs than HL-

pigs. These results indicated that pigs at a decreasing Lys supply strategy require less 

time for metabolic adaptation to a change in Lys supply than those at an increasing Lys 

supply. In Exp. 2, the estimated Lys requirement was 2.6 g/day greater (P < 0.001) in 

HE-pigs than LE-pigs. The variation in AA requirement estimates between individual 

pigs was low (4.9% in LH-pigs and 3.0% in HL-pigs in Exp. 1, and 8.1% in LE-pigs and 

6.0% in HE-pigs in Exp. 2). The present studies indicated that a dose-response 

technique with a decreasing Lys supply in time and a step length of 3 days with urinary 

N excretion as response criteria provides a simple, accurate technique to quantitatively 

estimate a change in AA requirements of individual meal-fed pigs. 

 

Keywords: amino acid requirement; individual variation; meal-fed pigs; metabolic 

adaptation, protein turnover; urinary nitrogen. 
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Introduction 

Amino acid (AA) requirements are typically determined by varying the dietary supply of 

the first limiting AA and measuring the response in protein metabolism (Pencharz and 

Ball, 2003). In contrast to traditional methods (Bikker et al., 1994; Coma et al., 1995), 

Kim et al. (1983) introduced the indicator AA oxidation (IAAO) technique, which has 

provided considerable insight into the variation in AA requirements between individual 

pigs (Bertolo et al., 2005; Moehn et al., 2008). Yet, its application requires isotope 

infusion, mass spectrometry equipment, and steady-state conditions, hampering its 

application under meal-fed conditions of 2 to 3 daily feedings. A random order of AA 

supply levels has been applied to each subject in IAAO studies (Bertolo et al., 2005; 

Moehn et al., 2008), whereas others have applied an increased supply over time (Heger 

et al., 2008, 2009).  

Das and Waterlow (1974) found that 6 enzymes involved in the urea cycle adapted 

without lag time to a reduction in dietary protein level from 230 to 50 g/kg, whereas a 

lag time of 6 h was observed to adapt to an increase in dietary protein level from 50 to 

230 g/kg. This indicates that the direction of change in protein or AA supply can 

influence the adaptation process to the change. We hypothesize that the rate of 

adaptation of protein metabolism to changes in AA supply is affected by the order in 

which graded AA levels are tested (an increasing or a decreasing supply strategy), and 

as a consequence, influences AA requirement estimates.  

The aim of the present studies was to develop a simplified dose-response technique, 

with urinary response variables, to estimate the Lys requirement of individual, meal-fed 

growing pigs. The objective of Exp. 1 was to determine the effect of the Lys supply 

strategy (increasing vs. decreasing) on the rate of adaptation of protein turnover and 

on Lys requirement estimates of individual pigs. The objective of Exp. 2 was to assess 

the accuracy of the dose-response technique for determining a shift in AA 

requirements of individual pigs.  

 

Materials and methods 

The experiments were approved by the Animal Experimental Committees of 

Wageningen University (Exp. 1) and Wageningen UR Livestock Research (Exp. 2).  

Animals and treatments 

In Exp. 1, 14 barrows (York ∙ Topigs 30 (Topigs, Helvoirt, The Netherlands)) with a BW of 

27.1 ± 0.3 kg at the start of the study were individually housed in metabolism cages 

(1.5 ∙ 0.6 m) at a room temperature of 22°C. Pigs were allocated, by equalizing mean 

BW between treatment groups and minimizing variation in BW among pigs within 

treatment groups, to either an increasing dietary Lys supply strategy (low to high, LH; n 

= 7) or a decreasing Lys supply strategy (high to low, HL; n = 7) with total Lys levels 

varying from 0.36 to 1.06 g/MJ DE (Figure 3.1). For a period of 12 days before the start 

of the study, pigs were adapted to housing conditions and experimental diets. For 9 d, 

pigs were fed a diet containing 0.72 g Lys/MJ DE followed by 3 d, in which they were 



 

66 

 

3 

0.00 

0.20 

0.40 

0.60 

0.80 

1.00 

1.20 

1-4 5-8 9-12 13-16 17-20 21-24 25-28 

D
ie

ta
ry

 L
y
s 

su
p

p
ly

 (
g

/M
J 

D
E
) 

Time after start (d) 

LH 

HL 

fed a diet with 0.36 (LH) or 1.06 g Lys/MJ DE (HL). Subsequently, a 28-days dose-

response study was performed, in which Lys supply increased (LH) or decreased (HL) in 

7 equidistant steps of 4 days each. The 7 Lys levels were created by mixing 2 basal 

diets (Table 3.1) with Lys levels of 0.36 and 1.06 g/MJ DE, respectively, in the 

appropriate ratios. The experimental diets were provided in mash form and mixed with 

water with a feed to water ratio of 1:3. Pigs were fed at 0730 and 1530 h in equal 

amounts at 2.5 times the energy requirements for maintenance (M; 458 kJ ME/(kg 

BW0.75/day); ARC, 1981). In Exp. 1, feed allowance was adjusted on the first day of each 

Lys supply level (i.e., every 4 d) based on BW at start of the dose-response period and 

an assumed BW gain of 450 g/day. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1  Changes in the total Lys supply during the experimental period for the 

increasing (low to high, LH) and decreasing (high to low, HL) Lys supply 

strategies (total Lys = 0.36 to 1.06 g/MJ DE) imposed on growing pigs in 

Exp. 1.  
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Table 3.1 Composition of low- and high-Lys basal diets fed to growing pigs (as-fed 

basis; Exp. 1)1. 

 Total Lys, g/MJ DE 
Item 0.36  1.06 
Ingredient, g/kg  

Wheat 467.9  456.0 
Barley 250.0  250.0 
Wheat gluten meal 100.0  100.0 
Sugar beet pulp  50.0  50.0 
Soy protein concentrate 42.0  42.0 
Soybean oil 30.0  30.0 
Sucrose 20.0  20.0 
Calcium carbonate 13.5  13.5 
Monocalcium phosphate  10.5  10.5 
Sodium carbonate 10.0  10.0 
Vitamin and mineral premix2 5.0  5.0 
L-Thr 0.9  0.9 
L-Trp 0.2  0.2 
L-Lys HCl -  11.9 

Calculated composition, g/kg3  
DM  884  886 
NE4, MJ/kg 10.0  10.0 
DE5, MJ/kg 14.0  14.1 
CP 190  198 
Crude ash 47  50 
Crude fat 48  48 
Crude fiber 34  34 
AID6 Lys 4.7  14.0 
AID Met 2.6  2.6 
AID Met + Cys 6.0  6.0 
AID Thr 5.4  5.4 
AID Trp 1.9  1.9 
AID Ile 6.2  6.2 
AID His 3.9  3.9 
AID Leu 11.7  11.7 
AID Val 5.8  5.8 

Analyzed composition, g/kg  
DM 885  885 
CP 187  194 
Total Lys 5.1  15.0 

1Seven diets were created by mixing 2 basal diets with 0.36 and 1.06 g/MJ DE.  
2Premix provided per kilogram of diet: 5,000 IU of vitamin A; 1,000 IU of cholecalciferol; 7.5 IU 
of vitamin E; 0.4 mg of vitamin K; 3.5 mg of riboflavin; 5 mg of pantothenic acid; 20 mg of 
niacin amide; 15 μg of vitamin B12; 200 mg of choline chloride; 80 mg of Fe as FeSO4∙7H2O; 20 
mg of Cu as CuSO4∙5H2O; 73 mg of Zn as ZnSO4∙H2O; 44 mg of Mn as MnO2; 0.2 mg of Co as 
CoSO4∙7H2O; and 0.4 mg of I as KI; 0.06 mg Se as organic Se.  
3Unless indicated otherwise. 
4NE was calculated based on CVB (1996). 
5DE was calculated based on CVB (1996) and Sauvant et al. (2004).  
6AID = apparent ileal digestible. 
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In Exp. 2, 20 barrows (Dutch Landrace ∙ York) with a BW of 31.5 ± 0.5 kg at the start of 

the experiment were individually housed in metabolism cages (1.3 ∙ 1.3 m) at a room 

temperature ranging between 20 and 25°C. Pigs were allocated, by distributing 

littermates and equalizing mean BW between treatment groups and minimizing 

variation in BW among pigs within treatment groups, to 1 of 2 treatment groups 

receiving a dietary energy supply of 2.2 ∙ M (low energy, LE) or 2.7 ∙ M (high energy, 

HE). The HE treatment was created by providing additional maize starch to the dietary 

LE treatment (Table 3.2). For a period of 12 days before the start of the experiment, 

pigs were adapted to housing conditions and experimental diets. For 9 d, pigs were fed 

a diet with 0.74 g Lys/MJ DE followed by 3 d, in which they were fed a diet with 1.10 g 

Lys/MJ DE. During the first 5 days of the adaptation period, pigs were fed at an 

intermediate energy supply of 2.45 ∙ M. Pigs were fed according to their treatment from 

7 days before the start of the measurements onward. Subsequently, a 27-days dose-

response study was performed, in which Lys supply decreased from 1.10 to 0.37 g 

Lys/MJ DE in 9 equidistant steps of 3 days each. The 9 Lys levels in the experimental 

diets were created by mixing 2 basal diets (Table 3.2) with Lys levels of 0.37 and 1.10 

g/MJ DE, respectively, in the appropriate ratios. The experimental diets were provided 

in pelleted form and mixed with water with a feed to water ratio of 1:3. Pigs were fed at 

0700, 1300, and 1900 h in equal amounts. 
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Table 3.2  Composition of low- and high-Lys basal diets fed at low- (LE) and high-

energy (HE) supply to growing pigs (as-fed basis; Exp. 2)1.  

 LE  HE 
 Total Lys, g/kg  Total Lys, g/kg 

Item 5.1 15.2  5.1 15.5 
Ingredient composition, g/kg  

Wheat 422.9 422.9  351.0 351.0 
Barley 250.0 250.0  207.5 207.5 
Wheat gluten meal 125.1 125.1  103.8 103.8 
Sugar beet pulp  50.0 50.0  41.5 41.5 
Soy protein concentrate 31.1 31.1  25.8 25.8 
Soybean oil 30.0 30.0  24.9 24.9 
Sucrose 20.0 20.0  16.6 16.6 
Calcium carbonate 17.1 17.1  14.2 14.2 
Maize starch 13.8 -  184.3 170.0 
Monocalcium phosphate  13.8 13.8  11.5 11.5 
Diamol 11.0 9.3  1.8 - 
Salt 4.8 -  4.9 - 
Potassium carbonate 3.8 3.6  5.4 5.2 
Sodium carbonate - 6.7  - 6.8 
Vitamin and mineral premix2 2.4 2.4  2.0 2.0 
L-Thr 2.1 2.1  1.8 1.8 
DL-Met 1.0 1.0  0.8 0.8 
L-Trp 0.6 0.6  0.5 0.5 
L-Val 0.6 0.6  0.5 0.5 
L-Lys HCl - 13.8  1.3 15.6 

Calculated nutrient composition3, g/kg  
NE4, MJ/kg 9.94 9.94  10.25 10.25 
DE5, MJ/kg 13.9 13.9  14.1 14.1 
Crude ash 66 69  51 54 
Crude fat 53 53  45 45 
Crude fiber 32 32  27 27 
AID6 Lys 4.5 15.4  4.7 15.9 
AID Met 3.8 3.8  3.2 3.2 
AID Met + Cys 7.5 7.5  6.2 6.2 
AID Thr 6.8 6.8  5.5 5.6 
AID Trp 2.3 2.3  1.9 1.9 
AID Ile 6.6 6.6  5.4 5.4 
AID His 4.0 4.0  3.3 3.3 
AID Leu 12.3 12.3  10.1 10.1 
AID Val 8.0 8.0  6.4 6.4 

Analyzed nutrient composition, g/kg  
DM 889 888  888 888 
CP 194 202  162 176 
Starch 408 391  484 465 
Total Lys 5.1 15.2  5.1 15.5 

1Nine diets were created for the LE and 9 for the HE treatment by mixing 2 diets 1 low- and 
one high-Lys. 
2Premix provided per kilogram of LE or HE diet, respectively: 9,600 or 8,000 IU of vitamin A; 
2,400 or 2,000 IU of cholecalciferol; 24 or 20 IU of vitamin E; 1.8 or 1.5 mg of vitamin K; 1.2 or 1 
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mg of thiamin; 4.8 or 4 mg of riboflavin; 14.4 or 12 mg of pantothenic acid; 24 or 20 mg of 
niacin; 24 or 20 μg of vitamin B12; 0.24 or 0.20 mg of folate; 1.2 or 1.0 mg of vitamin B6; 120or 
100 mg of choline chloride; 120 or 100 mg of Fe as FeSO4; 1.2 or 1.0 mg of Cu as CuSO4∙5H2O; 
78 or 65 mg of Zn as ZnO; 36 or 30 mg of Mn as MnO; 0.18 or 0.15 mg of Co as CoSO4; 0.90 or 
0.75 mg of K as KI; and 0.36 or 0.30 mg of Se as Na-selenite.  
3Unless indicated otherwise. 
4NE was calculated based on CVB (1996). 
5DE was calculated based on CVB (1996) and Sauvant et al. (2004).  
6AID = apparent ileal digestible. 

 

In both experiments, diets were formulated to be first limiting in Lys. The supply of 

other indispensable AA exceeded the estimated requirements for growing pigs of that 

BW (CVB, 1996; NRC, 1998). Pigs were weighed at arrival, and at the start and end of 

the dose-response period. In Exp. 2, pigs were weighed on the first day of each Lys 

level (i.e., every 3 d) to adjust their feed allowance, which was based on BW and 

expected BW gain (calculated from the mean daily BW gain over the preceding 6 d).  

 

Urine collection 

Unpooled urine samples were collected quantitatively per 24 h over 4 subsequent days 

at each Lys level in Exp. 1 and over the last 2 days at each Lys level (day 2 and 3) in Exp. 

2. Urine was collected via funnels, which were sprayed with an acetic acid buffer to 

prevent evaporation of NH3, into buckets containing sulfuric acid (9 N) for 

conservation. Feces were collected using plastic bags (15 ∙ 25 cm) attached around the 

anus of the pigs using a Velcro support system (Van Kleef et al., 1994) and disposed 

directly after each feeding. Urine was collected after the morning feeding and stored at 

-20°C pending analysis. 

 

Whole body nitrogen turnover 

In Exp. 1, whole body N turnover was measured by the end-product method (Waterlow 

et al., 1978). At 90 min after the morning feeding on day 3 of each Lys level, 300 mg 
15N-Gly (Isotec, Miamisburg, OH) was supplied with 100 g of feed, which was omitted 

from the morning feeding. The 48-h urine samples (of day 3 and 4 at each Lys level) 

were stored at -20°C pending measurement of 15N enrichment in ammonia and urea. 

Background 15N enrichment was determined in urine collected on day 2 at each Lys 

supply level. 

 

Chemical analyses  

In Exp. 1, N in urine of each of the subsequent 4 days of each Lys level was analyzed 

using the Kjeldahl method. Urine of day 3 and 4 of each Lys level was pooled and 

analyzed for urea (colorimetric method; Human, Wiesbaden, Germany) and ammonia 

(colorimetric method, Berthelot reaction). The 15N enrichment was measured in urinary 

urea and ammonia after combustion of isolated urea and ammonia by isotope ratio 

mass spectrometer (Finnigan MAT, Bremen, Germany). For urea, samples were 
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deproteinized by adding 5 mL cold methanol and vortex-mixed and stored at -20°C for 

1 h. Samples were centrifuged at 4,500 ∙ g for 20 min at 4°C and the supernatant was 

passed over a cation exchange column (Dowex 50WX8-200; Sigma Aldrich, St. Louis, 

MO) to separate urea from other N-containing components in urine. The column was 

washed with 40 mL of distilled water, and the eluent was evaporated using a rotary 

evaporator. One milliliter of distilled water was added to the residue and this solution 

was transferred into a 1.5 mL micro centrifuge tube. The solution was freeze-dried and 

100 µL of distilled water was added, mixed and transferred into a tin capsule. After 

evaporation of water at 40°C, the capsules were combusted and analyzed for 15N 

enrichment in urea. For ammonia, isolation was performed by micro-diffusion (Conway, 

1962). After 24 h, the N from ammonia in the sulfuric acid solution was harvested, 

freeze-dried, combusted in tin capsules, and analyzed for 15N enrichment. In Exp. 2, 

the concentration of urea plus ammonia in urine of day 2 and 3 of each Lys supply 

level was determined using a commercial enzymatic kit (UV method, R-Biopharm AG, 

Darmstadt, Germany). Diets were analyzed for N by the Kjeldahl method and crude 

protein was calculated (ISO, 2005a). Diets were analyzed for AA by HPLC after 

hydrolysis in hydrochloric acid (ISO, 2005b). In Exp. 2, starch content was determined 

enzymatically (NEN, 1992). All analyses were performed in duplicate. 

 

Calculations 

Urinary N excretion, calculated as the sum of N in urea and ammonia, was expressed 

relative to N intake. A reduction in urinary N excretion relative to N intake indicates an 

improved N utilization for protein deposition. 

Whole body N turnover was calculated using the formula (Waterlow et al., 1978): 

 Qa or Qu = Em ∙ do/em      [1] 

in which Qa represents the N flux (in mmol N/day) calculated from ammonia as end-

product and Qu represents the N flux with urea as end-product, Em represents the rate 

of N excretion in the end-product (ammonia or urea, in mmol N/day), do represents 

the dose of 15N-glycine (in mmol 15N), and em represents the total amount of 15N 

excreted, in excess of background, in the end-product (in 15N mmol/day). The 

arithmetic average of Qa and Qu was calculated for estimating whole body N turnover, 

assuming that partitioning of tracer over the 2 precursor compartments is similar (Fern 

et al., 1985). Turnover values were expressed in g/day. Whole body protein synthesis 

and breakdown were calculated assuming a steady-state in the AA pool over the 48-h 

period (Waterlow et al., 1978; Waterlow, 2006): 

 Q = S + E = B + I     [2] 

in which S is protein synthesis, E is urinary N excretion, B is protein breakdown, and I is 

N intake (all in g N/day). 
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Statistical analyses 

The pig was considered as the experimental unit. A linear-plateau model, as described 

by Koops and Grossman (1993), was fitted to urinary N excretion data or whole body N 

turnover data across Lys supply levels for each pig: 

 Y = a + b ∙ X - b ∙ s ∙ ln (1 + e(X - c)/s)    [3] 

in which Y is urinary N excretion in urea and ammonia (in % of N intake) or whole body 

N turnover (in g/day), X represents the Lys supply (in g/MJ DE in Exp. 1, and in g/day in 

Exp. 2), a represents the predicted urinary N excretion or N turnover at zero Lys supply, 

b represents the predicted rate of change for each unit of increase in Lys supply in the 

linear phase, c represents the transition point between the 2 phases, i.e., the estimated 

Lys requirement, and s is a smoothness parameter for transition between the 2 phases 

of the model that was fixed at 0.01, resulting in a sharp transition. The urinary N 

excretion (% of intake) at the plateau was calculated as a + b ∙ c. In addition, a linear 

model was fitted to data from urinary N excretion or whole body N turnover across Lys 

levels for each pig: 

 Y = a ∙ + b       [4] 

in which a represents the rate of change for each unit of increase in Lys supply and b 

the intercept, i.e., urinary N excretion or N turnover at zero Lys supply. 

The nonlinear least squares regression procedure (PROC NLIN; SAS Inst. Inc., Cary, NC) 

was used for fitting models [3] and [4] to the data for each pig. The goodness of fit of 

the linear-plateau model [3] was assessed by comparing the sum of squares error from 

the linear-plateau model with that from the linear model [4] in an F-test. Parameter 

estimates were accepted when the linear-plateau model [3] provided a better fit of 

data (P < 0.10) than the linear model [4]. If this was not the case, pigs were excluded 

from further analyses of N excretion data. Parameter estimates were analyzed by 

ANOVA with Lys supply strategy (Exp. 1) and energy supply strategy (Exp. 2) as fixed 

effects, followed by LSD tests. In Exp. 1 the effect of urinary collection day (day 1, 2, 3, 

or 4) on urinary N excretion in the Lys limiting phase (linear phase before the 

breakpoint) was analyzed by a mixed model with collection day nested within dietary 

Lys level as repeated measures. The fixed effects included collection day nested within 

dietary Lys level, supply strategy, dietary Lys level, and the interaction between supply 

strategy and dietary Lys level and the interaction between supply strategy and 

collection day. Effects were analyzed by pairwise comparisons using Tukey-Kramer 

adjustment. The covariance structure was chosen based on the lowest value for the 

Akaike and Bayesian information criteria. In all analyses, the normality of the 

distribution of studentized residuals was assessed by the Shapiro-Wilk statistic. In Exp. 

1, the slope parameters for N excretion and N turnover were transformed (logarithm 

and tangent, respectively) to obtain normal distribution of residuals. All statistical 

procedures were conducted in SAS. Values are presented as means ± SEM, and effects 

were considered significant at P ≤ 0.05. 
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Results 

Increasing vs. decreasing Lys supply (Exp. 1)  

All pigs remained healthy during the experiment and feed refusals did not occur. The 

BW did not differ between treatments and averaged 27.1 ± 0.3 kg at the start and 43.9 

± 0.4 kg at the end of the experiment (n = 14). 

The linear-plateau model [3] described the relationship between Lys supply (g/MJ DE) 

and urinary N excretion (% of intake) better (P < 0.10) than the linear model [4] in 11 

out of 14 pigs. The estimated Lys requirement was 0.06 g/MJ DE greater (P = 0.01) for 

LH-pigs than for HL-pigs (Table 3.3). The strategy of Lys supply did not affect the other 

parameter estimates (i.e., intercept, slope, and plateau). The CV of the requirement 

estimate for Lys (g/MJ DE) was 4.9% for LH (n = 4) and 3.0% for HL (n = 7). The data 

and model estimates for individual pigs are presented in Supplemental Figure 3.1 and 

3.2. 

 

Table 3.3  Effect of dietary Lys supply strategy on the linear-plateau model parameter 

estimates describing the relationship between total Lys supply (g/MJ DE) 

and urinary N excretion (% of N intake) in growing pigs (27 to 44 kg BW; 

Exp. 1).  

Item1,2 

Lys supply strategy3 

P-value LH  HL 

n 4  7  

Intercept 64.0 ± 2.4  64.2 ± 1.1 0.90 

Slope -44.1 ± 3.3  -47.5 ± 1.2 0.22 

Breakpoint 0.84 ± 0.02  0.78 ± 0.01 0.01 

Plateau 27.3 ± 0.3  27.3 ± 0.5 0.96 
1The intercept represents the urinary N excretion at zero Lys supply. The slope represents the 
increment in urinary N excretion (% of N intake/(g Lys/MJ DE)). The breakpoint represents the 
total Lys supply, at which the linear phase transits into the plateau phase (i.e., Lys requirement). 
The plateau represents the minimal urinary N excretion.  
2The slope was log-transformed to obtain normal distribution of residuals.  
3LH (low to high) = increasing Lys supply strategy and HL (high to low) = decreasing Lys supply 
strategy, and total Lys ranged from 0.36 to 1.06 g Lys/MJ DE. 
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Figure 3.2 Effect of dietary Lys supply strategy on whole body protein synthesis and 

breakdown (g N/(kg0.75/day)) in growing pigs fed various total Lys (g/MJ 
DE) in Exp. 1. 

 
The linear model [4] described the relationship between Lys supply (g/MJ DE) and 

whole body N turnover (g N/(kg0.75/day)) better than the linear-plateau model [3] in 13 

out of 14 pigs, therefore, the linear model [4] was used. Whole body N turnover rate 

increased by 3.9 g N/(kg0.75/day) per gram of increase in dietary Lys per MJ DE in HL 

pigs, resulting from an increase in synthesis (+5.2 g N/(kg0.75/day)) and breakdown 

rates (+3.9 g N/(kg0.75/day)). In contrast to HL pigs, the increase in whole body N 

turnover rate per gram of increase in dietary Lys/MJ DE was lower (P = 0.01) in LH pigs 

(+1.6 g N/(kg0.75/day) because of a lower increase in synthesis (P < 0.01) and 

breakdown (P = 0.01) rates (+2.6 and +1.6 g N/(kg0.75/day), respectively; Table 3.4). The 

estimated protein synthesis and breakdown rates per Lys level are presented in Figure 

3.2. In the Lys limiting phase (linear phase before the breakpoint), urinary N excretion 

was different between the dietary total Lys levels (P < 0.001), but did not differ 

between collection days within each Lys level, and interactions between collection day 

and Lys supply strategy did not occur.  
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Table 3.4 Effect of dietary Lys supply strategy on the relationship between dietary 

Lys supply (g MJ DE) and whole body N turnover (g/kg0.75/day) in the Lys 

limiting phase in growing pigs (27 to 44 kg; Exp. 1). 

Item1 
Lys supply strategy2  
LH HL P-value 

n 7 7  

Protein synthesis    

Intercept 2.4 ± 0.5 0.3 ± 0.2 < 0.01 

Slope 2.6 ± 0.6 5.2 ± 0.4 < 0.01 

Protein breakdown        

Intercept 2.0 ± 0.5 0.1 ± 0.2 < 0.01 

Slope 1.6 ± 0.7 3.9 ± 0.4 0.01 

Whole body N turnover        

Intercept 4.1 ± 0.5 2.2 ± 0.2 < 0.01 

Slope 1.6 ± 0.5 3.9 ± 0.4 0.01 
1The intercept represents whole body N turnover (g N/(kg0.75/day)) at zero Lys supply. The 
slope represents the increment in whole body N turnover ((g N/kg0.75/day)/(g Lys/MJ DE)).  
2LH (low to high) = increasing Lys supply strategy and HL (high to low) = decreasing Lys supply 
strategy, and total Lys ranged from 0.36 to 1.06 g Lys/MJ DE. 

 

Low vs. high dietary energy supply (Exp. 2) 

One LE-pig was excluded from the experiment due to health problems and feed 

refusals. In 1 HE-pig, the data at a Lys level of 1.10 g/MJ DE (i.e., the first 3 days of the 

experiment) were excluded due to feed refusals. The BW at the start of the experiment 

was similar between treatments (31.5 ± 0.5 kg; n = 19). At the end of the experiment, 

BW of LE-pigs (46.6 ± 1.0 kg) was lower (P < 0.01) than that of HE-pigs (52.5 ± 1.1 kg). 

The linear-plateau model [3] described the relationship between Lys supply (g/day) 

and urinary N excretion (% of intake) better (P < 0.10) than the linear model [4] for all 

19 pigs. The data and model estimates for individual pigs are presented in 

Supplemental Figure 3.3 and 3.4. The estimated Lys requirement was 2.6 g/day greater 

(P < 0.001) in HE-pigs than LE-pigs (Table 3.5) and the variation in estimated Lys 

requirement between individual pigs was numerically larger for LE (CV, 8.1%; n = 9) 

than for HE (CV, 6.0%; n = 10; Figure 3.3). An increase in dietary energy supply by 0.5 ∙ 

M decreased (P < 0.001) N excretion at the plateau with 8.6 percentage points (Table 

3.5).  
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Figure 3.3  Probability density of the Lys requirement of pigs supplied with low 

dietary energy (LE; n = 9; mean 12.1 ± 1.0 g/day) and high dietary energy 

(HE; n = 10; mean 14.7 ± 0.9 g/day) in Exp. 2. Symbols represent the 

estimated Lys requirement of individual pigs at LE (▲) or HE (●).  

 

Table 3.5  Effect of dietary energy supply on the linear-plateau model parameter 

estimates describing the relationship between total Lys (g/day) and urinary 

N excretion (% of N intake) in growing pigs (Exp. 2).  

Item1 

Energy supply2  

LE HE P-value 

n 9 10  

Intercept 83.9 ± 1.5 84.1 ± 2.4 0.95 

Slope -4.4 ± 0.2 -4.2 ± 0.2 0.44 

Breakpoint 12.1 ± 0.3 14.7 ± 0.3 < 0.001 

Plateau 30.3 ± 1.1 21.7 ± 0.8 < 0.001 
1The intercept represents the urinary N excretion at zero Lys supply. The slope represents the 
increment in urinary N excretion (% of N intake/(g Lys/day)). The breakpoint represents the 
total Lys (g/day), at which the linear phase transits into the plateau phase (i.e., Lys requirement). 
The plateau represents the minimal urinary N excretion (% of N intake).  
2LE = low dietary energy supply (2.2 ∙ maintenance) from 32 to 47 kg BW; and HE = high 
dietary energy supply (2.7 ∙ maintenance) from 32 to 53 kg BW. 
 

  



 

77 

 

3 

When expressing Lys intake relative to DE intake, the linear-plateau model [3] 

described the relationship between Lys supply (g/MJ DE) and urinary N excretion (% of 

intake) better (P < 0.10) than the linear model [4] in all 19 pigs. The estimated Lys 

requirement was 0.06 g/MJ DE lower (P = 0.01) in HE-pigs than LE-pigs, and urinary N 

excretion at the plateau decreased (P < 0.001) 8.6 percentage points in HE-pigs (Table 

3.6). The incremental efficiency of N utilization for protein deposition, as indicated by 

the slope, increased 14.7 percentage points (P < 0.05) in HE-pigs than LE-pigs (Table 

3.6). 

 

Table 3.6  Effect of dietary energy supply on the linear-plateau model parameter 

estimates describing the relationship between total Lys (g/MJ DE) and 

urinary N excretion (% of N intake) in growing pigs (Exp. 2). 

Parameter1 

Energy supply2  

LE HE P-value 

n 9 10  

Intercept  77.2 ± 1.6 75.2 ± 2.5 0.53 

Slope -60.5 ± 3.1 -75.2 ± 4.4 0.02 

Breakpoint 0.78 ± 0.02 0.72 ± 0.01 0.01 

Plateau 30.4 ± 1.0 21.8 ± 0.8 < 0.001 
1The intercept represents the urinary N excretion at zero Lys supply. The slope represents the 
increment in urinary N excretion (% of N intake/(g Lys/MJ DE)). The breakpoint represents the 
total Lys supply, at which the linear phase transits into the plateau phase (i.e., Lys requirement). 
The plateau represents the minimal urinary N excretion. 
2LE = low dietary energy supply (2.2 ∙ maintenance) from 32 to 47 kg BW; and HE = high 
dietary energy supply (2.7 ∙ maintenance) from 32 to 53 kg BW. 

 

 

Discussion 

The results of Exp. 1 showed that the rate of adaptation of protein metabolism to 

changes in AA supply is affected by the order, in which graded AA levels are tested (an 

increasing or a decreasing supply strategy). The HL-pigs required less time to adapt to 

changes in dietary Lys supply than LH-pigs. In addition, the Lys requirement estimate 

of LH-pigs was greater than HL-pigs. In Exp. 2, the dose response technique was 

proven to be accurate in estimating a quantitative change in the requirement of a 

limiting AA for protein deposition of individual meal-fed pigs. In both experiments, 

diets were formulated to be first limiting in Lys and second limiting in energy.  

 

Methodological issues in adaptation to a different AA supply 

Metabolic adaptation to changes in AA supply includes changes in the rates of protein 

synthesis, protein breakdown, AA oxidation, and urea production. As mentioned 

before, Das and Waterlow (1974) have demonstrated that enzymes involved in the urea 

cycle (arginase, argininosuccinate lyase, argininosuccinate synthetase, Glu 
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dehydrogenase, and Ala and Asp aminotransferases) adapt without lag time to a 

reduction in dietary protein level from 230 to 50 g/kg, whereas a period of 6 h was 

required to adapt to an increase in dietary protein level from 50 to 230 g/kg. This 

indicates that metabolic adaptation to a decreasing protein supply is more rapid than 

to an increasing protein supply. Pigs also adapted more rapidly to a decreasing AA 

supply in the current study, with responses being measured in daily rather than hourly 

intervals. When the balance in dietary AA is restored by supplementing Lys, protein 

synthesis and breakdown rates increase, resulting in an increase in whole body N 

turnover rate (Salter et al., 1990; Rivera-Ferre et al., 2006). During the Lys limiting phase 

in HL-pigs, the observed increase in rates of protein synthesis, breakdown, and whole 

body N turnover with increasing Lys supply corresponded with results of Rivera-Ferre 

et al. (2006). They found an increase in protein synthesis (+5.5 g N/kg0.75/day), protein 

breakdown (+4.0 g N/kg0.75/day), and whole body N turnover (+4.9 g N/kg0.75/day)/(g 

Lys/MJ DE) when increasing the dietary Lys supply from 0.31 to 0.91 g/MJ DE in pigs 

with a modern genotype. In contrast, the increase in protein synthesis, breakdown, and 

whole body N turnover in LH-pigs in our study was 47, 40, and 33%, respectively, of 

those observed by Rivera-Ferre et al. (2006).   

Considering the findings on the estimated Lys requirement, if changes in each of the 

adaptation processes would occur without delay, HL- and LH-pigs would have identical 

Lys requirement estimates. In Exp. 1, however, the Lys requirement estimate of LH-pigs 

was greater than HL-pigs. The lower increment in protein synthesis, breakdown, and 

whole N turnover rates in LH pigs and the difference in estimated Lys requirement 

indicate that, especially, LH-pigs require more time to metabolically adapt to changes 

in Lys supply than HL-pigs. The indication that LH-pigs required more time to adapt to 

changes in Lys supply than HL-pigs would indicate that no equilibrium in N excretion 

was achieved in this group. The total N excretion in urine was, however, similar 

between collection days and between Lys supply strategy treatments, indicating that 

an equilibrium was achieved within 4 d. Considering the rather slow turnover rate of 

the urea pool, i.e., a half-life of approximately 5 h in growing pigs (Reeds et al., 1987), a 

4-d time period of adaptation seems sufficient. Plasma urea N reached a new 

equilibrium in 2 to 3 days after changing the level of dietary Lys from 0.60 or 0.90 to 

0.75% or vice versa, thus, independent of the direction of change (Coma et al., 1995). 

Similarly to plasma urea N, urinary urea excretion reached a new equilibrium within 3 

days after adding dietary protein or AA that were limiting protein deposition (Brown 

and Cline, 1974; Fuller et al., 1979). Although in the present study, an equilibrium in the 

response variables may have been achieved after changing the dietary Lys supply, the 

estimated requirement estimate was still different between LH and HL pigs. 

This stresses the importance of taking into account the direction of change in AA 

supply during any dose-response study. In some N-balance studies, the supply of the 

limiting AA was increased over time (Heger et al., 2008, 2009), whereas others have 

used AA titration studies applying random allocation to each AA level in time (Bertolo 

et al., 2005; Moehn et al., 2008). Although random allocation may be favored from a 

statistical point of view, abrupt and large changes in AA supply will probably induce 
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more pronounced changes in protein turnover and urea synthesis. As a consequence, a 

longer period of adaptation to each level of Lys supply (i.e., step length) would be 

required to reduce the error of measurement, prolonging the dose-response study. 

Therefore, a decreasing Lys supply strategy was preferred over an increasing Lys supply 

strategy in Exp. 2. 

In the current studies, the Lys supply was gradually changed in small steps (0.12 g 

Lys/MJ DE per step in Exp. 1 and 0.09 g Lys/MJ DE per step in Exp. 2), so that abrupt 

changes in Lys supply were minimized, which would likely reduce the time required to 

adapt to new Lys levels. To increase the precision of the Lys requirement estimate, 9 

Lys supply levels were used in Exp. 2. The length of each titration step (i.e., Lys level) 

was reduced from 4 to 3 days to reduce the length of the experimental period. As 

illustrated by the low CV of the Lys requirement estimates in Exp. 1 (4.9% in LH-pigs 

and 3.0% in HL-pigs) and 2 (8.1% in LE-pigs and 6.0% in HE-pigs), these procedures 

allowed us to establish high precision estimates of changes in Lys requirements in 

individual pigs.  

The linear-plateau model [3] described the data better than the linear model [4] in 79% 

(Exp. 1) and 100% (Exp. 2) of the pigs, allowing estimation of Lys requirement values 

(i.e., at the inflection point). It should be realized, however, that exclusion of pigs with a 

poor fit with the linear-plateau model [3] may have led to underestimation of the Lys 

requirement for that particular treatment. A poor fit indicates that the inflection point 

was not achieved within the range of Lys supply, or that the transition from a decrease 

in urinary N excretion to a plateau occurred at 1 of the greatest levels of Lys supply. 

Care should, therefore, be taken in excluding pigs from the experiment, or, preferably, 

in determining the range of AA levels to be tested in such titration studies. For future 

studies, we suggest to include at least 7, and preferably 9, AA levels, equally spaced 

around the expected requirement values.  

In conclusion, our results demonstrated that a decreasing rather than an increasing Lys 

supply strategy with 7 to 9 Lys levels surrounding the expected requirement value is 

preferred to estimate (changes in) Lys requirements of individual meal-fed growing 

pigs. Similar approaches can be used for other indispensable AA. 

 

Accuracy: effect of dietary energy supply  

In Exp. 2, the accuracy of the dose-response technique to determine a shift in Lys 

requirement for individual pigs was assessed by creating a contrast in dietary energy 

supply. This approach has been well established to increase protein deposition, 

provided that the maximum rate of protein deposition has not been reached and that 

other indispensable AA or other nutrients are not limiting the rate of protein 

deposition (Campbell et al., 1984; Bikker et al., 1994). A previous study in growing pigs 

(Bikker et al., 1994) reported that Lys requirements increased by 1.9 g/day when 

increasing the dietary energy supply from 2.5 to 3.0 ∙ M. In addition, an increase in Lys 

requirement of 2.2 g/day (from 10.2 to 12.4 g/day) was predicted for this contrast in 

dietary energy supply by using a simulation model for growing pigs (van Milgen et al., 
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2008). According to NRC (2012), the Lys requirement is 16.9 g/day for an ad libitum fed 

growing pig at an average BW of 35 kg. This results in Lys requirements of 11.8 g/day 

(2.2 ∙ M) and 14.5 g/day (2.7 ∙ M), when extrapolating from ad libitum feed intake of 

approximately 20.8 MJ/day to 2.2 ∙ M (14.5 MJ/day) or 2.7 ∙ M (17.8 MJ/day). The 

increase of 2.7 g/day corresponds with the shift in Lys requirement (+2.6 g/day) with 

greater energy supply by adding dietary starch in Exp. 2. The AA requirement values in 

growing pigs are influenced by many factors, including genotype, BW, health status, 

dietary energy supply, sex, and environment (Susenbeth, 1995; NRC, 2012). The simple 

AA dose-response technique can be successfully adopted to quantify a change in the 

AA requirements of growing pigs, as induced by these factors.  

In Exp. 2, increasing the dietary energy supply by 0.5 ∙ M decreased the Lys requirement 

from 0.78 to 0.72 g Lys/MJ DE, increased the incremental efficiency of Lys utilization for 

protein deposition from 60.5 to 70.5%, and increased the maximum efficiency from 

69.6 to 78.2%. A decrease in Lys requirement (-0.03 g/MJ DE) with increasing energy 

supply (+ 0.5 ∙ M) has been reported in pigs of 15 kg BW, but not in pigs of 20 and 25 

kg BW (Urynek and Buraczewska, 2003). In that study, the average feeding level 

increased with BW (15 kg: 3.0 ∙ M; 20 kg: 3.3 ∙ M; and 25 kg: 3.5 ∙ M), indicating that the 

reduction in Lys requirement with greater dietary energy supply may be more 

pronounced at lower feeding levels. In growing pigs, the ratio between lipid and 

protein deposition increases from 0.55 to 0.77 g/g with 0.5 ∙ M extra energy intake 

(Bikker et al., 1994). This may have contributed to the reduced Lys requirement with 

greater dietary energy supply in the present study, i.e., a greater incremental 

deposition of lipids than of proteins. At a greater energy intake the maintenance 

requirements are proportionally more diluted because of a greater increase in 

requirements for protein deposition. As the requirement for Lys to energy ratio for 

protein deposition is greater than that for maintenance (NRC, 2012), an increase in the 

requirement for Lys to energy ratio because of the dilution effect will probably be 

more pronounced at greater energy intake levels. These opposing effects (increased 

lipid to protein deposition and “dilution” of the requirement for maintenance) could 

explain the lower Lys requirement value relative to energy intake at lower feeding 

levels in the study of Urynek and Buraczewska (2003), and the absence of an effect in 

the study of Bikker et al. (1994) at a greater feeding level than in the current study. 

In conclusion, the present studies demonstrated that a dose-response technique with 

urinary N excretion as response variable with a low number of pigs per treatment (n = 

4 to 10) provides a simple, accurate technique to estimate a quantitative change in the 

requirement of a limiting AA for protein deposition of individually meal-fed pigs. 

Potential applications of this technique include the quantification of effects of various 

factors, such as health status and genotype, on changes in AA requirements of pigs. 

Moreover, by estimating the requirement per individual pig, this technique also 

provides information on the variation between pigs, which could be adopted in future 

feeding strategies or breeding programs.  

 



 

81 

 

3 

Supplemental Material 

 
Supplemental Figure 4.1 Effect of dietary Lys supply on urinary N excretion (% of N intake) 

for low to high (LH)-pigs (increasing Lys supply strategy, Exp. 1). Each data point 

(▲) represents the mean urinary N excretion of the last 2 days at each Lys supply 

level period (in g/MJ DE). 
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Supplemental Figure 4.2 Effect of dietary Lys supply on urinary N excretion (% of N intake) 

for high to low (HL)-pigs (decreasing Lys supply strategy, Exp. 1). Each data point 

(●) represents the mean urinary N excretion of the last 2 days at each Lys supply 

level period (in g/MJ DE). 
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Supplemental Figure 4.3 Effect of dietary Lys supply on urinary N (% of N intake) for low 

energy (LE)-pigs (LE supply, Exp. 2). Each data point (▲) represents the mean 

urinary N excretion of the last 2 days at each Lys supply level period (in g/day).  
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Supplemental Figure 4.4 Effect of dietary Lys supply on urinary nitrogen (N) (% of N intake) 

for high energy (HE)-pigs (HE supply, Exp. 2). Each data point (●) represents the 

mean urinary N excretion of the last 2 days at each Lys supply level period (in 

g/day). 
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Erratum for Chapter 3 “A simple amino acid dose-

response method to quantify amino acid 

requirements of individual meal-fed pigs” 

 

Esther Kampman - van de Hoek 

 

Incorrect statement and clarification 

 

 

p. 67 Table 3.6 and p. 70 2nd paragraph  

It is observed that increasing the dietary energy supply by 0.5 ∙ the energy 

requirements for maintenance decreases the optimal Lys/DE ratio (breakpoint) from 

0.78 to 0.72 g Lys/MJ DE. It is erroneously concluded that the Lys requirement per unit 

of DE is therefore reduced. It is possible that, at the observed breakpoint of 0.72 g 

Lys/MJ DE, other indispensable amino acids (e.g. threonine) have been limiting protein 

deposition in pigs receiving a dietary energy supply of 2.7 ∙ the energy requirements 

for maintenance (High energy, HE treatment).  

This erratum does not concern the conclusions of the manuscript.  
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Chapter 4 

 

Dietary amino acid deficiency reduces the utilization 

of amino acids for growth in growing pigs following 

a period of low health as characterised by serum 

antibody presence and hygienic environment 
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Abstract  

During immune system activation, partitioning of amino acids (AA) between protein 

gain and immune system functioning changes. Our aim was to determine the effects of 

health status and dietary AA deficiency on nitrogen (N) retention and AA utilization in 

growing pigs. Castrated pigs (55 ± 0.4 days of age) were obtained from a farm of high 

health (HHS, n = 14) or low health status (LHS, n = 14), allocated to a diet adequate in 

essential AA (Adq) or deficient in Met + Cys, Thr and Trp (Def). Upon arrival, LHS pigs 

had greater haptoglobin, lower albumin and greater leukocyte counts (P < 0.01) than 

HHS pigs (all P < 0.01), but LHS pigs showed signs of recovery during the trial. Total 

tract N digestibility was lower in LHS pigs (4%, P < 0.01). LHS-Adq pigs, showed 

compensatory body weight gain upon arrival, coinciding with a greater N retention (P 

< 0.01) and greater efficiency of N utilization (P < 0.001) in LHS than HHS pigs. LHS 

pigs had increased ILR for Lys. Health status ∙ diet interactions for Lys (P = 0.07), Val (P 

= 0.03), Leu (P = 0.10) pool size, and an increased urea pool size in LHS pigs (P = 0.01) 

support the observation that the increase in ILR of Lys in LHS pigs relates to oxidation 

when feeding the AA-Def, but to synthesis when fed the AA-Adq diet. This study 

illustrates how the competition for AA between synthesis of proteins associated with 

immune system activation and body protein deposition is enlarged when dietary 

supply of Met + Cys, Thr and Trp is limiting in pigs during and following a period of 

low health. 

 

Keywords: health status; dietary amino acid deficiency; irreversible loss rate; urea entry 

rate; nitrogen retention; growing pigs.  
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Introduction  

During immune system activation, an increased competition occurs for amino acids 

(AA) between body protein deposition and immune system functioning (Klasing and 

Johnstone, 1991; Sandberg et al., 2007). The concentration of serum acute phase 

proteins (APP) in pigs, for example, can increase more than tenfold in response to 

infection or experimentally induced inflammation (Petersen, 2004; Heegaard et al., 

2011). The AA composition of APP, however, differs largely from the composition of 

muscle protein (Reeds et al., 1994). As a consequence, the increased demand for 

especially Phe, Trp and Tyr for the synthesis of APP, may lead to an imbalance in AA 

available for body protein deposition, resulting in increased AA oxidation and N loss in 

urine (Reeds et al., 1994). The estimated N loss derived from the oxidation of 

unbalanced AA due to excessive demands for aromatic acids for the synthesis of APP is 

close to the N loss observed under conditions of infection and trauma (Reeds et al., 

1994). Moreover, the cytokine induced metabolic change after immune system 

activation generally results in increased breakdown and decreased synthesis of skeletal 

muscle protein (Zamir et al., 1992; Breuille, 1999). Several studies have shown that 

immune system activation reduces feed intake, daily weight gain, feed efficiency, and 

protein deposition in pigs (Williams et al., 1997; Le Floc'h et al., 2006; Pastorelli et al., 

2011). Immune system activation reduced plasma Trp concentrations (Melchior et al., 

2004; Le Floc'h et al., 2010) and the efficiency of Trp utilization for body protein 

deposition in pigs (de Ridder et al., 2012). The absolute requirement, i.e. in g/day, for 

Lys (Williams et al., 1997), Met + Cys decreased after immune system activation 

(Rakhshandeh et al., 2014). Traditional dose-response studies typically estimate the 

requirement of a single AA, but do not provide insight in simultaneous changes in the 

utilization of other AA. Measuring the plasma irreversible loss rate (ILR, i.e. the amount 

of free AA that disappears per unit of time from the plasma pool for protein synthesis 

or oxidation) can be performed for multiple AA simultaneously, allowing estimation of 

a shift in metabolism of different AA. We hypothesize that a reduced health status 

leads to a shift in AA utilization, due to changes in the partitioning of AA towards 

synthesis of proteins of the immune system at the expense of synthesis of proteins in 

muscle. In addition, there is increasing evidence that a deficient dietary AA supply can 

impair cell-mediated responses of the immune system, thereby reducing the resistance 

to pathogens and the ability to regulate the immune system in response to 

disturbances (Grimble, 2001; Li et al., 2007; Calder and Yaqoob, 2012). The aim of the 

present study was to determine the effects of health status and dietary deficiency of 

Met + Cys, Thr and Trp on whole body N retention and AA utilization in growing pigs. 

We hypothesized that a dietary deficiency of Met + Cys, Thr and Trp would increase 

the competition for AA, hence reducing immune system functioning and body protein 

deposition. Combined measurements of whole body N retention and rates of 

irreversible loss of AA from plasma, urea entry and plasma protein synthesis (after a 

bolus of 13C labelled AA and 15N2 urea) were expected to provide insight into the 

consequences of immune system activation for AA metabolism. 
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Material and methods 

Animals and treatments 

The study was approved by the Animal Experimental Committee of Wageningen 

University. In total 28 barrows (Dutch Landrace ∙ York) of similar age at arrival (55 ± 0.4 

d) were used. Barrows originated from either a farm of high health (HHS; n = 14) or 

from a farm of low health status (LHS) (n = 14) as assessed by a serological monitoring 

program for the presence of antibodies against a number of pathogens in pigs 

(Supplemental Table 4.1). On both farms, one barrow per litter was selected from 14 

litters, with a body wt (BW) around the average BW of each litter. All barrows were 

born in the same week. After arrival at the experimental facilities, HHS pigs were kept 

in metabolism cages (1.90 ∙ 0.65 m) in disinfected respiration chambers (air 

temperature 23ºC) with High-Efficiency Air-filters (1D-H13, Camfill KG, Reinfeld, 

Germany) to reduce exposure to pathogens from the environment. In addition, a strict 

hygiene protocol was used (including showering, changing of clothes, disinfection of 

hands and boots, use of a hair nets, face masks and gloves). HHS pigs received 

antibiotics in their diet (8.4 mg amoxicillin/kg BW/day) during 4 days after arrival. LHS 

pigs were kept in metabolism cages (2.10 ∙ 0.65 m) in a cleaned but not disinfected 

room (air temperature 22 to 25ºC) in which other pigs were housed prior to the current 

study. LHS pigs did not receive dietary antibiotics after arrival. A timeline of the 

experiment is shown in Figure 4.1 with day 0 being the start of the dietary treatment 

allocation. For practical reasons HHS and LHS groups were split into two batches of 7 

pigs each, with a time lag of 1 day between both batches. Within each health status, 

pigs were allocated to a diet adequate in essential AA (Adq) or a diet deficient in Met + 

Cys, Thr and Trp (Def) at the start of the experiment (day 0). This resulted in four 

treatment groups (n = 7 each), i.e. HHS-Adq, HHS-Def, LHS-Adq and LHS-Def. Dietary 

treatments were balanced over batches of pigs. At day -1 or 0, pigs were surgically 

fitted with a jugular vein catheter for blood collection and a carotid artery catheter for 

injection of a mixture of U-13C labelled AA and 15N2 urea. Neopen (5 mg of Neomycine 

and 10,000 IE Procaïne benzylpenicilline per kg of BW; Intervet, Boxmeer, The 

Netherlands) was given i.m. at 1 day before surgery, at surgery and at 1 day after 

surgery. Flunixine (2.2 mg/kg BW, Fynadine; Schering-Plough, Brussels, Belgium) was 

given i.m. at surgery and for 2 days after surgery. Pigs were weighed at arrival, at day -

1 or 0, at day 2 (denoted as ‘initial’), and at day 9 (denoted as ‘final’).  
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Experimental diets  

The experimental diets are presented in Table 4.1. In order to prevent that dietary 

energy supply would limit protein deposition, assuming distinct protein and energy 

dependent phases of protein deposition in pigs (Campbell et al., 1984; Bikker et al., 

1994), the adequate diet was designed to be first-limiting in Lys, being 95% of the 

requirement value for Lys. The requirements for other essential AA were met for 

growing pigs in the range of 25 to 45 kg BW (CVB, 2004, 2008). The deficient diet was 

also formulated to be marginally deficient in Lys, i.e. at 95% of the Lys requirement 

value (CVB, 2004, 2008), and was deficient in Met + Cys, Thr and Trp (all at 76% of their 

requirement according to CVB (2008). All pigs received the adequate diet until day 0. 

From day 0 until the end of the experiment HHS-Adq and LHS-Adq pigs were fed the 

adequate diet, and HHS-Def and LHS-Def pigs were fed the deficient diet. Diets were 

provided as mash and mixed with water in a ratio of 1 to 3. Pigs were fed at 2.7 ∙ the 

energy requirements for maintenance (M) (458 kJ metabolizable energy/(kg 

BW0.75/day) according to ARC (1981). Feed allowance was adjusted for BW and BW 

gain was assumed to be 250 g/day. Pigs were fed their daily allowance in two equal 

meals, one provided at 0730 and one at 1630 h. Diets were analyzed for N content by 

the Kjeldahl method. Crude protein was calculated as N ∙ 6.25 (ISO, 2005a). Diets were 

analyzed for AA by HPLC after hydrolysis in hydrochloric acid (ISO, 2005b,c).  
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Table 4.1  Composition of the experimental diets (as-fed basis).  

  Adequate  Deficient 

  diet  diet 

Ingredient composition g/kg 
  Barley  343.5  343.5 
  Maize  150.0  150.0 
  Wheat starch  146.9  150.0 
  Soybean meal  135.8  135.8 
  Wheat  97.5  97.5 
  Pea  75.0  75.0 
  Calcium carbonate  14.3  14.3 
  Monocalcium phosphate  8.8  8.8 
  Wheat gluten feed  8.0  8.0 
  Soybean oil  5.0  4.9 
  Sodium bicarbonate  2.4  2.4 
  Sodium chloride  2.0  2.0 
  Vitamin and mineral premix1  2.0  2.0 
  Potassium carbonate  1.5  1.5 
  L-Lys HCl  3.6  3.6 
  DL-Met  1.5  0.2 
  L-Thr  1.3  0.0 
  L-Trp  0.4  0.0 
  L-Val  0.5  0.5 
Calculated nutrient composition g/kg2 
  Dry matter   873.5  873.1 
  NE3, MJ/kg  9.67  9.67 
  Crude protein  152.4  150.4 
  Crude ash  50.7  50.7 
  Crude fat  28.4  28.3 
  Crude fiber  31.8  31.8 
  AID4 Lys  8.7  8.7 
  AID Met  3.4  2.1 
  AID Met + Cys  5.4  4.1 
  AID Thr  5.2  4.0 
  AID Trp  1.7  1.3 
  AID Ile  4.9  4.9 
  AID His  3.1  3.1 
  AID Phe  6.2  6.2 
  AID Tyr  4.2  4.2 
  AID Leu  9.4  9.4 
  AID Val  6.0  6.0 
Analyzed nutrient composition  g/kg 
  Crude protein  154.0  154.0 
  Lys  10.3  10.4 
  Met   3.8  2.7 
  Cys  2.4  2.5 
  Trp  2.1  1.8 
  Thr  6.6  5.4 

1Premix contained (per kg premix): 4,000,000 IU of vitamin A; 1,000,000 IU of cholecalciferol; 
10,000 IU of vitamin E; 750.5 mg of vitamin K; 166,667 IU of thiamin; 800,000 IU of riboflavin; 
6,000 mg of pantothenic acid; 10,000 mg of niacin; 10,000 μg of vitamin B-12; 100 mg of folate; 
500 mg of vitamin B-6; 50,000 mg of choline chloride; 50,000 mg of Fe:FeSO4; 5,000 mg of 
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Cu:CuSO4∙5H2O; 32,500 mg of Zn:ZnO; 15,001 mg of Mn:MnO; 75 mg of Co:CoC; 375 mg of KI; 
and 150 mg of Se:Na-selenite. 
2Unless indicated otherwise. 
3Net energy, NE. Calculated based on CVB (2004). 
4Apparent ileal digestible, AID. 

 

Health status 

Blood samples were taken from the jugular vein catheter to characterize the health 

status of the pigs. Initial (day 2) and final (day 9) blood samples were collected into 

EDTA tubes (Vacuette, Greiner Bio-One, Kremsmünster, Austria) and were analyzed for 

the number of total leukocytes and differential leukocytes by an automated counter 

(Cell-Dyn 3700, Abbott, Hoofddorp, The Netherlands). Initial blood samples were also 

collected into serum tubes (Vacuette, Greiner Bio-One, Kremsmünster, Austria) and 

were allowed to clot for 1 h at room temperature. Serum was collected after 

centrifugation for 10 min at 1800 g and was stored at -20°C pending analysis of 

albumin (Randox Bromocresol Green assay, cat. no. AB 362), haptoglobin (Tridelta 

Phase Haptoglobin Assay, cat. no. TP-801), pig major acute phase protein (Pig-MAP, 

ELISA, Reactivlab Limited, Glasgow, Scotland) and C-reactive protein (CRP, ELISA, 

Reactivlab Limited, Glasgow, Scotland). All LHS pigs (at day 11) and three HHS pigs (at 

day 13) were euthanized after which autopsy was performed, the remaining HHS pigs 

were used in a subsequent study. Autopsy observations included judgment of body 

condition, and visual inspection for abnormalities of lung, spleen, stomach, small 

intestine, large intestine, kidney, liver, hart, and mesenteric lymph nodes by an 

experienced pathologist.  

 

Nitrogen balance 

Pigs were equipped with a Velcro support system to allow separate collection of urine 

and feces (Van Kleef et al., 1994). Feces and urine were collected quantitatively over 4 

subsequent days. Feces were stored at -20°C pending analysis. Urine was collected via 

funnels, which were sprayed with an acetic acid buffer to prevent evaporation of NH3, 

into buckets containing sulfuric acid (9N) for conservation. Urine was collected from 

the buckets, weighed, sampled and stored at -20°C pending analysis. Nitrogen in urine 

and feces was analyzed using the Kjeldahl method (ISO, 2005a). Dry matter content of 

feces was determined by drying at 103°C (ISO, 1999). 

 

Amino acid metabolism 

On day 7 or 8, the utilization of AA was studied by measuring the change in plasma 

isotopic enrichment of individual AA in time after an intravenous (i.v.) bolus of U-13C 

labelled AA. This allowed calculation of the ILR of AA from the plasma. Irreversible 

losses of AA occur by incorporation of AA into protein (protein synthesis) or by 

oxidation of AA (Reeds et al., 1980). To create a steady state in dietary AA supply in 

time during the injection of the U-13C labelled AA and 15N2 urea mixture, the daily feed 
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allowance on day 7 or 8 was divided over ten equal meals. Two meals were fed at 0730 

h, followed by hourly meals from 0910 h until 1610 h. At 1230 h, a mixture of 11 U-13C 

labelled AA (97 to 99 atom percent, Cambridge Isotope Laboratories, Andover, USA) 

and 15N2 urea (98 atom percent, Sigma-Aldrich, St. Louis, USA) was injected. The 

composition of the mixture (mg/g saline) was L-Cys, 0.04; L-His, 0.08; L-Ile, 0.16; L-Leu, 

0.16; L-Lys, 0.17; L-Met, 0.06; L-Phe, 0.13; L-Thr, 0.18; L-Trp, 0.07; L-Tyr, 0.16; L-Val, 0.19; 

and 15N2 urea, 2.0. The mixture was injected as a bolus (0.50 g/kg BW; 0.25 mL/s) in the 

carotid artery. If the carotid artery was blocked, the mixture was injected in the jugular 

vein. Blood samples (4 mL) were collected from the jugular vein and transferred into 

tubes containing lithium heparin (Vacuette, Greiner Bio-One, Kremsmünster, Austria) at 

20 and 10 min before injection of the isotope mixture and at 3, 6, 9, 12, 15, 20, 25, 30, 

40, 50, 61, 76, 91, 120 and 181 min after injection. Tubes were immediately placed on 

ice and centrifuged for 10 min at 2000 g at 4°C, after which plasma was collected and 

stored at -20°C pending analysis. Nine blood samples (-10, 3, 6, 9, 12, 15, 20, 40 and 61 

min after injection) per pig were used to measure 13C enrichment in plasma Ile, Leu, 

Lys, Phe, Trp, Tyr, and Val as described by Kampman - van de Hoek et al. (29). The 13C 

enrichment of Met and His could not be successfully analyzed due to high losses 

during the derivatization step. The 13C enrichment in Thr and Cys could not be 

determined with the current procedure. Eight blood samples (-10, 3, 9, 20, 61, 120, 181 

and 1260 min after injection) per pig were used to measure 15N enrichment of plasma 

urea and 13C enrichment in plasma proteins. For urea enrichment, the plasma samples 

were deproteinized by mixing 0.3 mL sodium tungstate (10% w/w) and 0.2 mL 

sulphuric acid (1N) with 400 µL plasma. After centrifugation, the supernatant was 

transferred into a 2-mL tube and the precipitate was used for measuring 13C 

enrichment in plasma protein. 400 µL Dowex ion exchange resin (Ag 50W-X8 H+ form, 

200-400 mesh, Dow Chemical Company, Edegem, Belgium) was added to the 

supernatant. After centrifugation the precipitate was flushed with Millipore water and 

collected. After evaporation to dryness, the sample was evaporated with a centrifugal 

concentrator (Jouan RC 1022, Thermo Scientific, Waltham, USA). The precipitate was 

used for measuring 13C enrichment in plasma proteins after freeze-drying. 15N 

enrichment in plasma urea and 13C enrichment in plasma protein was measured after 

combustion in an elemental analyzer (Flash 2000 organic elemental analyzer HT O/H- 

N/C, Thermo Scientific, Bremen, Germany) using a continuous flow isotope ratio mass 

spectrometer (Conflo IV, Thermo Scientific, Bremen, Germany).  

 

Models 

Assuming a physiological steady state conditions during the measurements, ILR and 

urea entry rate were calculated from the change in respectively plasma AA and urea 

isotopic enrichment after an i.v. bolus of U-13C labelled AA and 15N2 urea using the 

model and calculations as described by Holtrop et al. (2004). Furthermore, it is 

assumed that there is no recycling of tracer into the plasma pool and that the tracer 

transfers along with the tracee between compartments with a constant fractional rate 

(Waterlow, 2006); the ILR of an AA occurs as an output from the plasma pool, and only 
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by incorporation of the AA into protein or by oxidation (Reeds et al., 1980). For each 

AA and pig, a double exponential model was fitted to the 13C enrichment in plasma AA 

after administration of the bolus injection:  

E(t) = a1 ∙ exp (b1 ∙ t) + a2 ∙ exp (b2 ∙ t)     [1] 

where E(t) is the predicted 13C enrichment in plasma AA (TTR) at time t (min), and a1, 

b1, a2, and b2 are parameter estimates. The double exponential model [1] was also 

fitted to the 15N enrichment in plasma urea under the assumption that a two 

compartment model is more appropriate than a single model as indicated in growing 

pigs (Oosterveld et al., 2005) and humans (Matthews and Downey, 1984). For 13C 

enrichment of the plasma protein fraction (TTR, corrected for background enrichment), 

for each pig, a linear model without intercept was fitted to the measured 13C 

enrichment in plasma protein in time after administration of the bolus injection. The 

slope reflects the rate of plasma protein synthesis from free plasma AA during the 

measurement period.  

 

Calculations 

Average daily gain (ADG), dietary N intake, faecal and urinary N excretion and N 

retention were expressed relative to BW to correct for differences in BW between 

treatment groups (BW at arrival was 19.5 ± 0.32 for HHS and 13.6 ± 0.50 kg for LHS 

pigs). 13C enrichment in plasma AA and protein, and 15N enrichment in plasma urea 

was expressed as tracer-to-tracee ratio (TTR), and background enrichment (obtained 

from plasma samples taken before injection of the mixture of labelled AA and urea) 

was subtracted. Pig was considered as the experimental unit. With the parameter 

estimates derived from the exponential model [1] the ILR (µmol/(kg BW∙h)) [2] and 

pool sizes [3] were calculated: 

 ILR = do / (a1 / b1 + a2 / b2) ∙ 60     [2] 

Pool size = do / (a1 + a2)           [3] 

where do is the dose of the U-13C labelled AA (µmol/kg BW). 

AA released from protein breakdown was calculated as the difference between ILR and 

intake, using the steady state model (Waterlow et al., 2006), i.e. ILR = protein 

breakdown + dietary intake = protein synthesis + AA oxidation. Urea entry rate and 

pool size were calculated with formula [2] and [3] respectively, with do being the dose 

of the 15N labelled urea (µmol/kg BW).  

 

Statistical analyses 

The goodness of fit of the double exponential model was assessed by computing the 

mean square prediction error (MSPE). The root MSPE was scaled to the observed mean 

(mean prediction error) and the correlation between predicted and observed values 

was calculated. Errors due to overall bias, errors due to deviation of the regression 

slope from unity, and errors due to random variation were calculated (Bibby and 
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Toutenburg, 1977). All variables and parameter estimates were analyzed by ANOVA 

with health status and dietary treatment as fixed effects. To test whether the change in 
13C enrichment (TTR) of plasma protein as reflected by the slope was different from 

zero, i.e. whether or not the 13C enrichment (TTR) of plasma protein increased in time, 

the relation between TTR and time was analyzed by ANOVA. In addition, effect of 

health status, dietary treatment and day of collection (initial or final) on the count of 

total leukocytes, neutrophils, lymphocytes, monocytes and the sum of eosinophils and 

basophils were analyzed with a mixed model with collection day within pig taken as 

repeated measures. Apart from monocyte counts, dietary treatment did not affect the 

leukocyte counts. Therefore the presented data do not include the effect of dietary 

treatment. A covariance structure was chosen based on the lowest value for the Akaike 

and Bayesian information criteria. The normality of the distribution of studentized 

residuals was assessed. Data on the granulocyte count were log transformed to obtain 

normal distribution of model residuals. All statistical procedures were conducted in 

SAS (SAS Inst. Inc., Cary, NC). Values are presented as means ± (pooled) SEM, and 

effects were considered significant at P ≤ 0.05. 

 

Results 

Data of one pig in the HHS-Def treatment were excluded due to feed refusals, 

occurrence of fever and lung and liver abnormalities observed in a subsequent study, 

explaining an extremely low ADG and N retention in the present experiment. Data of 

two pigs in the LHS-Def treatment were excluded due to an error in BW determination 

and therefore incorrect feed allowances.  

 

Health status 

At the initial blood collection (day 2), LHS pigs had a lower (P < 0.001) serum albumin 

concentration than HHS pigs and a greater (P < 0.001) serum haptoglobin 

concentration, resulting in a greater (P < 0.001) haptoglobin to albumin ratio (Table 

4.2). Serum total protein concentration tended to be greater (P = 0.07) in LHS pigs than 

in HHS pigs (Table 4.2). Serum Pig-MAP and CRP concentrations did not differ between 

LHS and HHS pigs. Dietary treatment did not affect serum APP concentrations, 

although the serum haptoglobin concentration (P = 0.09) and the haptoglobin-to-

albumin ratio (P = 0.07) tended to be greater in LHS-Def than in LHS-Adq pigs, but not 

in HHS pigs (Table 4.2).  

LHS pigs had greater counts of total leukocytes (P < 0.001), granulocytes (sum of 

neutrophils, eosinophils and basophils) (P < 0.001) and lymphocytes (P < 0.01) than 

HHS pigs (Table 4.3). Counts of total leukocytes (P < 0.05), and granulocytes (P < 0.01) 

were lower at the final than at initial blood collection (Table 4.3). Dietary treatment did 

not affect counts for total leukocytes, granulocytes and lymphocytes, but monocyte 

count was greater (P = 0.01) in Def pigs (0.91 ± 0.081 ∙ 109/L) than in Adq pigs (0.68 ± 

0.054 ∙ 109/L). The effect of dietary AA supply on monocyte count was numerically 
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more pronounced in LHS pigs (52% greater in LHS-Def than in LHS-Adq) than in HHS 

pigs (18 % greater in HHS-Def than in HHS-Adq). 

Autopsy revealed that 13 out of 14 LHS pigs showed abnormalities, including 1 pig 

with signs of local necrotic pneumonia, 4 with signs of pneumonia by Actinobacillus 

pleuropneumoniae, 1 with signs of chronic pleuritis, 4 with signs of pneumonia, 1 with 

signs of Escherichia coli diarrhea, 1 with signs of kidney inflammation, and 1 with signs 

of a Staphylococcus aureus infection, whereas no abnormalities where found in HHS 

pigs (n = 3). 

 

Table 4.2  Effect of health status and dietary AA supply on serum acute phase 

proteins and serum total protein concentrations at day 2 in growing pigs. 

 

Table 4.3  Effect of health status and day of collection on blood leukocyte counts in 

growing pigs at day 2 (initial collection) and day 9 (final collection). 

1Granulocytes are the sum of neutrophils, eosinophils and basophils; log-transformed to obtain 
normal distribution of residuals.  

 

Performance, Nitrogen balance and digestibility 

Results of performance, N balance and total tract digestibility are shown in Table 4.4. 

LHS pigs had greater (P < 0.01) faecal N excretion, and a lower (P < 0.01) urinary N 

excretion than HHS pigs. Coinciding, LHS pigs had greater (P < 0.01) N retention than 

HHS pigs. The dry matter (DM) content of the feces was lower (P < 0.01) in LHS pigs 

than in HHS pigs and lower (P = 0.05) in Def than Adq pigs. Apparent total tract 

digestibility of DM (P < 0.05) and N (P < 0.01) was lower in LHS pigs than in HHS pigs. 

Health status (H) 
High Health 

(HHS) 
 
Low Health 

(LHS) 
 P-value 

Dietary AA supply 

(D)  

Adq  

n = 7 

Def   

n = 6 
 

Adq  

n = 7 

Def 

n = 5 
SEM H D H ∙ D 

Albumin, g/L 35.2 34.2  30.5 30.5 0.61 < 0.001 0.59 0.56 

Haptoglobin, g/L 1.3 1.1  2.0 2.6 0.15 < 0.001 0.43 0.09 

Hapt. / Alb.∙100 3.6 3.1  6.7 8.4 0.50 < 0.001 0.27 0.07 

Pig-MAP, g/L 1.3 1.5  1.3 1.5 0.08 0.83 0.30 0.86 

CRP, mg/L 363 383  442 339 23.6 0.72 0.40 0.21 

Total protein, g/L 48.6 49.3  51.4 51.6 0.68 0.07 0.73 0.83 

Health status (H) HHS  LHS  P-value 

Day 
Initial 

 

Final 

 
 

Initial 

 

Final 

 
SEM H Day 

H ∙ 
Day 

  n 13 12  12 12     

  Leukocytes, 109/L 17.2 17.0  26.0 22.5 0.77 < 0.001 0.03 0.09 

  Granulocytes1, 109/L 8.4 7.4  14.4 11.3 0.65 < 0.001 < 0.01 0.57 

  Lymphocytes, 109/L 8.0 8.8  11.0 10.3 0.35 < 0.01 0.90 0.21 

  Monocytes, 109/L 0.8 0.8  0.7 0.9 0.05 0.96 0.26 0.14 
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The utilization of digestible N for protein deposition was greater (P < 0.001) in LHS 

than in HHS pigs. Initial BW (at day 2) and final BW (at day 9) were lower (P < 0.001) in 

LHS pigs than in HHS pigs. ADG (in g/day and expressed relative to BW) and gain-to-

feed ratio were greater (P < 0.01) in LHS-Adq than LHS-Def pigs, but similar in HHS-

Adq and HHS-Def pigs. ADG was 112 g/day higher (P < 0.01) in LHS-Adq than in LHS-

Def pigs, but this effect of diet was absent in HHS pigs (H · D, P < 0.01). When 

expressed relative to BW, ADG in LHS-Adq pigs also exceeded ADG in HHS pigs (P = 

0.02), and ADG in LHS-Def pigs exceeded ADG in HHS-Adq pigs (P = 0.02), but not 

HHS-Def pigs.  

 

Protein metabolism 

The double exponential model accurately described the decrease in 13C enrichment of 

individual plasma AA after injection of the 13C AA bolus. An example of a curve fit is 

presented in Supplemental Figure 4.1. The average root MSPE of the seven studied AA 

ranged between 2.8 and 3.9%, with > 99% of the prediction error attributable to 

random variation. ILR was greater (P < 0.05) for Lys and tended to be greater for Ile (P 

= 0.08) in LHS than in HHS pigs (Table 4.5). ILR for Trp tended to be greater (P = 0.06) 

in Adq pigs than in Def pigs (Table 4.5). Lys pool size tended to be greater (P = 0.07) in 

LHS-Def than in HHS-Def pigs. Val pool size was lower in HHS-Def than in HHS-Adq, 

but greater in LHS-Def than in LHS-Adq pigs (H ∙ D; P = 0.03). Tyr pool size tended to 

be lower (P = 0.07) in Def pigs than Adq pigs. Urea pool size was greater (P = 0.01) in 

LHS pigs than in HHS pigs. Urea entry rate was not affected by health status or dietary 

treatment.  

 

For 13C enrichment in plasma protein, a linear model was fitted to from 20 min until 

120 min after isotope injection. Data of the first 20 min after isotope injection were 

discarded to prevent contamination of samples with traces of 13C AA from the catheter 

lines and to allow homogenous distribution of the tracer in the plasma AA pool (i.e. 

unrealistically high TTR in first two samples after injection). Incorporation of label into 

the plasma protein pool was detected, but the slope of 13C enrichment in plasma 

protein in time was not affected by health status or dietary treatment (Table 4.5). 
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Table 4.5  Effect of health status and dietary AA supply on the irreversible loss rate 

(ILR), release from protein breakdown (both in µmol/(kg BW∙h)), and pool 

size (µmol/kg BW) of plasma AA, urea entry rate (µmol/(kg BW∙h), urea 

pool size (µmol/kg BW), and change in 13C enrichment (TTR) of plasma 

protein in growing pigs1.  

Health status (H) HHS 
 

LHS 
 

P-value 

Dietary AA supply 
(D) 

Adq Def 
 

Adq Def SEM H D H ∙ D 

Lys       
   

  Pool size2 142 111  139 228 16.9 0.15 0.43 0.07 
  ILR2 856 783  941 1096 45.5 0.03 0.63 0.19 
  Breakdown3 840 768  924 1079 45.5    
Trp        

  
  Pool size 16 14  18 12 2.4 0.98 0.50 0.76 

  ILR 86 68  94 79 4.1 0.26 0.06 0.86 

  Breakdown 84 66  92 77 4.0    
Ile       

   
  Pool size 65 34 

 
66 88 10.7 0.22 0.84 0.24 

  ILR 395 325  437 456 23.9 0.08 0.59 0.36 
  Breakdown 383 313  424 443 23.8    
Leu       

   
  Pool size 121 56 

 
87 127 15.2 0.55 0.67 0.10 

  ILR 739 561  735 789 58.7 0.37 0.62 0.36 
  Breakdown 715 538  710 764 58.6    
Val        

  
  Pool size 175b 92a 

 
101a 200b 20.4 0.67 0.84 0.03 

  ILR 682 583  617 738 33.6 0.52 0.88 0.13 
  Breakdown 666 566  599 720 33.6    
Phe       

   
  Pool size 70 24 

 
51 49 7.5 0.84 0.12 0.15 

  ILR 338 226  318 314 22.4 0.46 0.22 0.24 
  Breakdown 326 213  305 301 22.4    
Tyr       

   
  Pool size 78 34 

 
48 43 6.8 0.41 0.07 0.14 

  ILR 322 252  298 269 15.6 0.92 0.14 0.52 
  Breakdown 314 244  290 261 15.6    
Urea          
  Entry rate2 702 592  624 693 34.2 0.87 0.78 0.24 
  Pool size2 1265 936  1586 1890 128.3 0.01 0.96 0.17 
13C plasma protein4          
  Slope*108 6.9 7.9  7.1 6.9 0.36 0.61 0.61 0.45 

a,b In case of significant interactions, within a row, means without common superscripts differ (P 
< 0.05). 
1n = 4-6 for Lys, Ile, Leu, Phe, and Tyr, n = 4-7 for Val, n = 2-6 for Trp, n = 3-5 for urea, n = 5-6 
13C plasma protein. 
2Calculated from model [2] describing the change in 13C enrichment of plasma AA and 15N2-
urea after an intravenous injection of seven U-13C labelled AA and 15N2-urea.  
3AA released from protein breakdown was calculated as the difference between ILR of an AA 
and its dietary intake, using the steady state model (Waterlow, 2006), i.e. ILR = protein 
breakdown + dietary intake = protein synthesis + AA oxidation. Intake was estimated by 
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multiplying the daily feed intake by the dietary AID content of each AA on a molar basis and 
dividing this by 24 h. Statistical differences are identical to those of the ILR values, and are 
therefore not presented. 
4Calculated from a linear model describing the change in 13C enrichment (TTR) of plasma 
protein after an intravenous injection of seven U-13C labelled AA and 15N2-urea in growing pigs. 
The slope of 13C enrichment in plasma protein differed from zero (P < 0.001).  

 

Discussion 

The objective of the present study was to determine the effects of health status and 

dietary deficiency of Met + Cys, Thr and Trp on whole body N retention and AA 

utilization in growing pigs.  

 

Contrast in health status 

In the present study, the contrast in health status between LHS and HHS pigs was 

created by selecting two farms at which pigs differed in the presence of antibodies 

against a number of pathogens. Sows, gilts and growing pigs were monitored on these 

farms during a period of one year prior to the start of the experiment. At day 2 of the 

experiment, we observed two times greater serum haptoglobin concentrations, and 

lower serum albumin concentrations in LHS than in HHS pigs, reflecting a lower health 

status (Lipperheide et al., 1998; Petersen et al., 2002; Le Floc’h et al., 2006). In line with 

our findings, haptoglobin was observed to be more responsive to variation in age, 

stress, sanitary and housing conditions than Pig-MAP and CRP (Heegaardd et al., 2011), 

and changes in haptoglobin concentrations are more pronounced than Pig-MAP, CRP 

and albumin in response to natural occurring infections in pigs (Parra et al., 2006). On 

average, LHS pigs had 51% greater counts of total leukocytes than HHS pigs at day 2 

and 29% greater counts at day 9, with the largest quantitative difference in the number 

of granulocytes, especially neutrophils. An increase in the number of neutrophils is 

indicative for an infection, possibly of bacterial nature (Zhang et al., 1997; Underhill and 

Ozinsky, 2002), as neutrophils are short-lived phagocytic cells, acting to kill ingested 

pathogens (Beutler, 2004). In line with the greater APP concentrations and leukocyte 

counts, LHS pigs showed abnormalities in selected organs and tissues upon autopsy. 

Only 3 HHS pigs were studied for autopsy, as the other HHS pigs were used in a 

subsequent study, but clinical signs of disease were not observed in these 3 HHS pigs. 

The greater haptoglobin and lower albumin concentrations in serum, the greater 

leukocyte counts, and the abnormalities observed upon autopsy indicate that LHS pigs 

had a more activated immune system than HHS pigs. From the start (day 2) to the end 

(day 9) of the measurement period, the counts of total leukocytes and granulocytes 

decreased, particularly in LHS pigs. In summary, a clear contrast in the degree of 

immune system activation between LHS and HHS pigs during the experimental period 

was observed, although performance parameters indicated that the health status of the 

LHS pigs was improving. The greater ADG, N retention, and more efficient utilization of 

digestible N for N-retention in LHS pigs than in HHS pigs indicated possible 

compensatory effects on these outcomes, likely due to a gradual improvement in 
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health during the experimental period. The BW at the start of the experiment was 

lower for LHS pigs than for HHS pigs of similar age. Although the feed intake per kg of 

metabolic BW did not differ between groups, HHS pigs received a greater absolute 

amount of feed above maintenance. Nonetheless, ADG was lower in HHS pigs than in 

LHS pigs, which may be explained by compensatory growth in these pigs.  

 

Effect of health status and dietary treatment on N retention and AA metabolism 

The apparent total tract digestibility of DM and N was respectively 1.3 and 3.7% points 

lower in LHS pigs than in HHS pigs. Reduced digestion and absorption of nutrients can 

be associated with gastrointestinal tract related diseases, e.g. due to intestinal cell 

damage or increased rate of passage of digesta (Sandberg et al., 2007; Pastorelli et al., 

2012). In addition, a parasite infection may have contributed to the observed 

difference, as observed in the study of Hale et al. (1985). 

Especially LHS pigs fed the AA adequate diet showed compensatory BW gain upon 

arrival at the experimental farm, coinciding with an increased efficiency of utilization of 

digestible N for body protein deposition. These findings are in line with the results of 

the ILR of AA. In all pigs, the 13C enrichment in plasma AA showed a rapid decline in 

time, which was accurately described by a double exponential model, as indicated by 

the goodness of fit. In the present study, the greater ILR for Lys and the tendency for a 

greater ILR for Ile (P = 0.08) in LHS pigs than in HHS pigs indicate greater use for 

protein synthesis or greater oxidation of these AA. The greater urea pool size in LHS 

pigs compared with HHS pigs indicates that the greater ILR for these AA is related to 

greater oxidation of AA rather than an increase in protein synthesis. Especially in LHS-

Def pigs, as the increase in ILR for Lys coincided with a lower ADG. In LHS-Adq pigs, 

the greater ILR for Lys and numerically higher ILR for Ile were more likely related to 

greater protein synthesis, as illustrated by a greater ADG, and are consistent with the 

more efficient use of digested N for protein deposition than in HHS and LHS-Def pigs 

(+6.8 and +3.8% points, respectively). The labelled AA incorporated in plasma proteins, 

reflected by the slope of 13C enrichment in plasma protein, was not affected by health 

status or dietary treatment, indicating that no differences in AA incorporation into 

plasma proteins were observed between treatments. When expressed relative to the 

calculated plasma protein pool size, the labelled AA incorporated in plasma proteins 

was numerically higher in LHS pigs compared to HHS-Adq pigs, but not to HHS-Def 

pigs. 

Feeding a diet deficient in Met + Cys, Thr and Trp was expected to limit protein 

synthesis, thus reducing the ILR for limiting AA and increasing the ILR of other AA due 

to greater oxidation of AA that become excessive. Indeed, the dietary treatment Def 

tended to reduce the ILR for Trp (P = 0.06). It did, however, not lead to greater ILR of 

the other AA. In HHS pigs, ADG and N retention were unaffected by dietary AA 

deficiency, indicating that Met + Cys, Thr and Trp were not limiting body protein 

deposition in HHS pigs. Furthermore, in HHS pigs, ILR, AA released from protein 

breakdown, and pool size numerically decreased for Lys, Ile, Leu, Val and Phe under 

Met + Cys, Thr and Trp deficiency. This numerical shift in ILR within HHS pigs likely 
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reflects reduced protein turnover rates coinciding with decreased oxidative losses of 

AA in HHS-Def pigs, as the efficiency of N retention was unaffected by AA imbalance in 

HHS pigs. Coinciding, the 110 µmol/kg BW∙h lower urea entry rate and 329 µmol/kg 

BW lower urea pool size in HHS-Def than HHS-Adq pigs indicate decreased oxidative 

losses. Within the LHS pigs, the observed compensatory gain in LHS-Adq pigs was 

associated with a numerical increase in ILR by Met + Cys, Thr and Trp deficiency. This 

confirms that in the LHS-Adq pigs, the increased N efficiency was related to a 

reduction in oxidative losses. This suggests that the AA profile of the Def dietary 

treatment limited body protein deposition in LHS pigs but not in HHS pigs. The 

gradual improvement in performance of especially LHS-Adq pigs, however, may in part 

have masked the effect of health status on N retention and AA utilization in the current 

study.  

The observed tendency (P = 0.09) for a greater serum haptoglobin concentration in 

LHS-Def pigs than in LHS-Adq pigs indicate that the dietary AA supply was certainly 

not limiting the production of APP in LHS-Def pigs. Furthermore, it is possible that the 

deficient dietary AA a pro-inflammatory response as described below. These findings 

imply that a deficient dietary supply of Met + Cys, Thr and Trp increased the 

competition for AA between body protein deposition and the synthesis of proteins 

associated with immune system activation in LHS pigs. 

 

Effect of dietary AA supply on the immune response 

In the present study we observed a 30% greater monocyte count in Def pigs than in 

Adq pigs, with the difference being most pronounced in LHS pigs. Monocytes are the 

most common cells to initiate the acute phase response by releasing cytokines 

(Baumann and Gauldie, 1994). In line, haptoglobin concentration and the haptoglobin 

to albumin ratio tended to be higher in Def pigs, particularly in LHS (interaction health 

∙ diet; P = 0.09 and 0.07, respectively) . Dietary AA supply has previously been 

associated with changes in the immune system (Grimble, 2001; Li et al., 2007; Calder 

and Yacoob, 2012). The systemic release of pro-inflammatory cytokines, for example, is 

inhibited by dietary Trp supplementation to pigs with experimentally induced colitis 

(Housemann et al., 1973). In humans, reducing protein intake from 1.4 to a marginally 

adequate 0.6 g/kg BW/day for 7 days induced a low grade inflammatory response, as 

indicated by increased plasma concentrations of interleukin-6 and synthesis of positive 

APP (haptoglobin and fibrinogen), while the albumin synthesis decreased (Jackson et 

al., 2001). Similarly, Le Floc’h et al. (2008) observed numerically greater plasma 

haptoglobin concentrations in Trp-deficient pigs than in Trp supplemented pigs with 

an experimentally induced lung inflammation. Furthermore, a deficient Trp supply in 

pigs was associated with greater relative lung weights (Le Floc’h et al., 2008), and with 

greater intestinal damage in experimentally induced colitis (Kim et al., 2010).  

In summary, LHS pigs had a lower health status, especially at the start of the 

experiment and a reduced total tract DM and N digestibility compared to HHS pigs. 

LHS pigs fed the AA adequate, and to a lesser extent the AA deficient diet, showed 
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compensatory BW gain after arrival at the experimental farm, coinciding with greater N 

retention and an increased efficiency of digestible N utilization for growth when 

compared with HHS pigs. A reduced health status increased ILR for Lys and tended to 

do so for Ile. Changes in Lys, Val and urea pool sizes support the observation that the 

increase in ILR of Lys under LHS conditions relates to oxidation in pigs fed the AA 

deficient diet, whereas it relates to synthesis in pigs fed the AA adequate diet. Feeding 

Met + Cys, Thr and Trp deficient diets increased monocyte counts and tended to do so 

for haptoglobin concentrations, particularly in LHS pigs. This illustrates how the 

competition for AA between synthesis of proteins associated with immune system 

activation and body protein deposition is enlarged when dietary supply of Met + Cys, 

Thr and Trp is limiting in pigs during and following a period of low health.  

 

Supplemental Material 

 

Supplemental Table 4.1 Serological results of the health monitoring program of the 

High Health status (HHS) and Low Health status (LHS) farm1.  

Characteristics  High Health status farm  Low Health status farm 

Seronegative to 
antibodies 
against: 

 PRRSV 
Swine Vesicular Disease 
MYC  
APP ( type 1, 2, 5, 9, 11) 
BRA 
Pasteurella multocida, 
Brucella suis 

 Pasteurella multocida 
Heamophilus parasuis 

     

Seropositive to 
antibodies 
against: 

 Influenza H1N1 
Lawsonia intracellularis 
Salmonella 

 PRRSV 
Influenza H1N1 and H3N2 
MYC 
APP (type 1, 2, 5) 
Lawsonia intracellularis 
Circo IgG and IgM 

Abbreviations used: APP, Actinobacillus pleuropneumoniae; BRA, Brachyspira dysentery; MYC, 

Mycoplasma hypneumoniae; PRRSV, Porcine reproductive and respiratory syndrome virus. 
1The serological monitoring program (Topigs, The Netherlands) included minimum 
quarterly monitoring of sows, gilts and growing pigs during a period of one year prior 
to the start of the experiment. 
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Supplemental Figure 4.1 Example: Measured (■) and predicted 13C-enrichment in 

plasma Trp (TTR) with a double exponential model (E(t) = a1 ∙ exp (b1 ∙ t) + 

a2 ∙ exp (b2 ∙ t)) after injection of the U-13C labelled AA mixture of one 

single pig.   
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Abstract 

It is hypothesised that during immune system activation there is a competition for 

amino acids (AA) between body protein deposition and immune system functioning. 

The aim of the present study was to quantify the effect of immune system activation 

on N retention and AA metabolism in growing pigs, depending on dietary protein 

supply. A total of sixteen barrows received an adequate (A) or restricted (R) amount of 

dietary protein, and were challenged at day 0 with intravenous (i.v.) complete Freund’s 

adjuvant (CFA). At day -5, 3 and 8, irreversible loss rate (ILR) of 8 AA was determined. 

CFA successfully activated the immune system, indicated by 2 to 4 fold increases in 

serum concentrations of acute phase proteins (APP). Pre-challenge C-reactive protein 

concentrations were lower (P < 0.05) and pre- and post-challenge albumin tended to 

be lower in R-pigs. These findings indicate that a restricted protein supply can limit the 

acute phase response. CFA increased urinary N losses (P = 0.04) and tended to reduce 

N retention in A-pigs, but not in R-pigs (P = 0.07). ILR for Val was lower (P = 0.05) at 

day 8 than at day 3 post-challenge. ILR of most AA, except for Trp, were strongly 

affected by dietary protein supply and positively correlated to N retention. Correlations 

between ILR and APP indices were absent or negative, indicating that changes in AA 

utilisation for APP synthesis were either not substantial, or more likely, outweighed by 

a decrease in muscle protein synthesis during immune system activation in growing 

pigs. 

 

Keywords: Inflammation; Amino acid metabolism; Dietary amino acid supply; Growing 

pigs 
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Introduction 

During immune system activation in animals, nutrients are redistributed from anabolic 

and maintenance processes towards processes involved in immunity and disease 

resistance (Klasing and Johnstone, 1991; Spurlock, 1997). A cascade of cytokine-

induced metabolic alterations occur, including anorexia, increased breakdown and 

decreased synthesis of skeletal muscle protein, increased hepatic acute phase protein 

(APP) synthesis, and increased deamination of gluconeogenic amino acids (AA) 

(Klasing and Johnstone, 1991; Lochmiller and Deerenberg, 2000; Le Floc'h et al., 2004). 

The acute phase response is the early innate immune response to injury, trauma or 

infection, and increases serum concentrations of positive APP while decreasing 

concentrations of negative APP (Baumann and Gauldie, 1994). Synthesis of positive 

APP during an acute phase response is considered to be nutritionally more costly than 

the adaptive response to inflammation, i.e. leukocyte proliferation and antibody 

production (Iseri and Klasing, 2013). Reeds et al. (1994) calculated that an APP 

response increases the demand for aromatic AA in particular. For the synthesis of APP, 

AA are provided either from dietary protein or from breakdown of skeletal muscle 

protein. The AA composition of APP differs, however, largely from that of muscle 

protein (Reeds et al., 1994), and from commercial diets, which are formulated mainly to 

enhance muscle protein deposition. It is hypothesised that, as a consequence there can 

be an imbalance in available AA for body protein deposition, leading to increased 

oxidation of AA and N loss, which is close to the quantitative N loss observed in 

uncomplicated trauma (Reeds and Jahoor, 1994). Moreover, the cytokine induced 

metabolic change after immune system activation generally results in increased 

breakdown and decreased synthesis of skeletal muscle protein (Breuille et al., 1999; 

Zamir et al., 1992).  

In pigs, immune system activation, by continuous exposure to major vectors of antigen 

transmission (Williams et al., 1997), or by i.m. lipopolysaccharide (LPS) injection 

(Daiwen et al., 2008), reduces feed intake, body weight (BW) gain and N retention. 

Recent studies in pigs revealed that immune system activation by i.m. LPS 

administration increases the optimal dietary Met to Met + Cys ratio (Litvak et al., 

2013b), and reduces the efficiency of Trp utilisation for body protein deposition (de 

Ridder et al., 2012). These findings indicate that the utilisation for AA in growing pigs 

may change due to variation in health status. However, quantitative information about 

the effect of immune system activation on the utilisation for AA is lacking, and 

measurements on changes in responses of multiple AA simultaneously to immune 

system activation are largely absent. Alterations in AA metabolism, e.g. an increased 

protein synthesis rate, can occur without concomitant changes in plasma AA 

concentrations or pool size, as plasma AA concentrations can be maintained when AA 

fluxes change by changes in dietary protein intake, breakdown and synthesis of body 

protein and oxidation of AA (Waterlow, 2006). The irreversible loss rate (ILR) of AA, 

reflects the amount of free AA that disappears per unit of time from the plasma pool 

for protein synthesis and oxidation. The combination of ILR measurements with N 

balance and pool size measurements can provide insight into the metabolic changes in 
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multiple AA simultaneously. It is hypothesized that an increase in blood APP during 

immune system activation affects the utilisation of AA, associated with an increased 

incorporation of, in particular aromatic, AA into APP.  

In the present study, intravenous (i.v.) administration of complete Freund’s adjuvant 

(CFA), that has been previously shown to induce chronic lung inflammation in pigs 

(Melchior et al., 2004; Le Floc'h et al., 2008), was used to activate the immune system. It 

is hypothesized that the effect of a CFA challenge on protein metabolism is more 

pronounced under conditions of a marginal dietary protein supply, which would 

increase the competition for indispensable AA used for immune system functioning 

and for protein deposition in muscle as a main determinant of the animal’s growth. In 

addition, there is increasing evidence that the dietary protein or AA supply can affect 

the inflammatory response during immune system activation (Grimble et al., 1992; 

Jahoor et al., 1999; Li et al., 1999; Grimble, 2001; Li et al., 2007; Le Floc'h et al., 2008; Le 

Floc'h et al., 2009; Calder and Yaqoob, 2012). A Trp deficient diet, for instance, was 

suggested to deteriorate the immune response to CFA, as indicated by increased IDO 

activity in lungs and heart, and increased lung weight (Le Floc’h et al., 2008) in contrast 

to a Trp supplemented diet. As IDO is induced by cytokines (Moffet and Namboodiri, 

2003), its activity is associated with the degree of immune system activation. In another 

study, the addition of Cys to a protein deficient diet increased liver weight and hepatic 

glutathione concentrations, following an intraperitoneal injection of TNF-α in rats 

(Grimble et al., 1992). The latter authors suggested that in that study Cys 

supplementation improved the immune response following TNF-α administration, 

enabling a full metabolic response to cytokines that improves the ability to maintain 

antioxidant defences. Although it is debatable whether a change in immunological 

response is beneficial or not, these findings show that the dietary protein or AA supply 

can affect the inflammatory response during immune system activation. The aim of the 

present study was to quantify the effect of immune system activation on N retention 

and AA metabolism in growing pigs, depending on dietary protein supply.  

 

Material and methods 

Animals and treatments 

The experiment was approved by the Animal Experimental Committee of Wageningen 

UR Livestock Research. Sixteen barrows (Dutch Landrace ∙ York) with an initial BW of 

28.5 ± 0.5 kg were individually housed in metabolism cages (1.3 ∙ 1.3 m) at a room 

temperature ranging between 18 and 22°C. Based on litter and BW, pigs were allocated 

to one of two treatment groups receiving either an adequate (A) or restricted (R, 70% 

of A) dietary protein supply at a similar daily supply of other nutrients. To this end, a 

basal mixture was created without protein sources. The A diet included the basal 

mixture with the additional protein sources casein, wheat gluten meal, soy protein 

isolate, and potato protein, and met the requirements for essential AA for growing pigs 

in the range of 35 to 45 kg BW (CVB, 2008) (Table 5.1). The R diet included the basal 

mixture to which 70% of the quantities of additional protein sources (casein, wheat 
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gluten meal, soy protein isolate, potato protein) were added compared to the 

quantities included in the A diet. In order to supply all pigs with the same amount of 

basal mixture, relative to their metabolic BW, the feed allowance of pigs assigned to 

the R diet was 94.3% of that of pigs receiving the A diet. The experimental diets were 

provided in mash form and mixed with water using a feed to water ratio of 1 : 3. Pigs 

were fed at 0700 and 1530 h in equal amounts at 2.7 times the energy requirements 

for maintenance (M; 458 kJ ME/(kg BW0.75/day); ARC, 1981). Feed refusals were 

collected 30 min after feeding. 
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Table 5.1  Composition of the experimental diets (as-fed basis). 

  Adequate 
protein 

diet 

Restricted 
protein 

diet 

 

Ingredient composition, g/kg     
Basal mixture1     

Wheat starch   250.0 265.2  
Pregelatinized potato starch  240.1 254.7  
Oat hulls  100.0 106.1  
Dextrose  100.0 106.1  
Beet pulp  50.0 53.0  
Soybean oil  30.0 31.8  
Calcium carbonate  15.5 16.4  
Monocalcium phosphate  11.6 12.3  
Potassium carbonate  6.2 6.6  
Sodium chloride  3.9 4.1  
Vitamin and mineral premix2  2.0 2.1  

  Protein containing 
ingredients 

    

Soy protein isolate  90.0 66.8  
Casein  65.0 48.2  
Wheat gluten meal  29.7 22.1  
Potato protein3  5.3 3.9  
DL-Met  0.9 0.6  

Calculated composition, g/kg4     
 DM   927 927  
 NE, MJ/kg5  10.55 10.63  
 Crude protein  170 129  
 Crude ash  51 52  
 Crude fat  36 37  
 Crude fiber  37 39  
 AID Lys  9.2 6.9  
 AID Met  3.9 2.9  
 AID Met + Cys  5.5 4.1  
 AID Thr  5.5 4.1  
 AID Trp  1.8 1.3  
 AID Ile  7.2 5.4  
 AID His  4.1 3.1  
 AID Leu  13.1 9.8  
 AID Phe  8.1 6.1  
 AID Val  8.1 6.0  

Analysed composition, g/kg     
Crude protein  182 137  
Total Lys  11.2 8.5  
Total Met  4.1 3.0  
Total Met + Cys  5.8 4.4  
Total Thr  6.7 5.2  
Total Trp  2.0 1.6  
Total Ile  8.2 6.3  
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Total His  4.6 3.6  
Total Leu  14.9 11.4  
Total Phe  9.2 7.1  
Total Val  9.7 7.4  

Abbreviations used: AID, apparent ileal digestible; NE, net energy. 
1Two levels of dietary protein supply (adequate (A) or restricted (R, 70% of A) were used in the 
study, at a similar daily supply of other nutrients. In the restricted protein supply, the 
proportion of protein containing ingredients in the diet was reduced with 30% relative to the 
proportion in the adequate protein diet. In order to supply all pigs, relative to their metabolic 
BW, with the same amount of basal mixture, the feed allowance of pigs fed the R diet was 
94.3% of those fed the A diet. 
2Vitamin and mineral premix provided per kg of adequate or restricted diet, respectively: 2.4 or 
2.5 mg of vitamin A; 50 or 52,5 µg of cholecalciferol; 14.7 or 15.7 mg of vitamin E; 1.5 or 1.6 mg 
of vitamin K; 1.0 or 1.1 mg of thiamin; 4.0 or 4.2 mg of riboflavin; 12.0 or 12.6 mg of 
pantothenic acid; 20.0 or 21.0 mg of niacin; 20.0 or 21.0 μg of vitamin B12; 0.20 or 0.21 mg of 
folate; 1.0 or 1.1 mg of vitamin B6; 100 or 105 mg of choline chloride; 100 or 105 mg of Fe as 
FeSO4; 10.0 or 10.5 mg of Cu as CuSO4∙5H2O; 65.0 or 68.3 mg of Zn as ZnO; 30.0 or 31.5 mg of 
Mn as MnO; 0.15 or 0.16 mg of Co as CoSO4; 0.75 or 0.79 mg of K as KI; and 0.30 or 0.31 mg of 
Se as Na-selenite. 
3Protastar®, Avebe Feed, Veendam, The Netherlands. 
4Unless indicated otherwise.  
5NE was calculated based on CVB (2004). 

 

At day -16 or -14 before the start of immune system activation, pigs were surgically 

fitted with a jugular vein and a carotid artery catheter for blood collection and injection 

of a mixture of U-13C labelled AA, respectively. Neopen (Neomycine 5 mg/kg BW and 

Procaïne benzylpenicilline 10,000 IE/kg BW; Intervet, Boxmeer, The Netherlands) was 

given intramuscular (i.m.) 1 day before surgery, at surgery and 1 day after surgery. 

Flunixine (Fynadine 2.2 mg/kg BW; Schering-Plough, Heist-op-den-Berg, Belgium) was 

given i.m. at surgery and for 2 day after surgery. A timeline of the experiment is shown 

in Figure 5.1 with day 0 being the start of immune system activation by i.v. 

administration of CFA (F5881, Sigma-Aldrich, St. Louis, MO, USA). CFA is a mineral oil 

containing 1 mg dead Mycobacterium tuberculosis cells per mL. The dose of CFA 

administered per pig was 0.2 mL/kg BW, diluted with saline in a ratio of 1 : 2. The dose 

was spread over four equal sub-doses, of which two were infused at day 0 and two at 

day 1, in the morning between 0915 and 1030 h, and in the afternoon between 1515 to 

1630 h. Eight pigs did not receive the fourth sub-dose of CFA, as clinical observations 

after the first infusions on 8 pigs showed a more severe response, i.e. greater and 

persistent feed refusals, greater increase in respiratory rhythm, than expected based on 

a preliminary study (unpublished results).  
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Figure 5.1  Timeline of the experimental period. A, autopsy; BS, blood sampling; ILR, 

irreversible loss rate measurement by the injection of the U-13C-labelled 

amino acid mixture; i.v., intravenous; CFA, complete Freund’s adjuvant. 

 

Immunological response parameters 

At day -5, -3, -1, 3, 4, 5, 6, 7 and 8, blood samples were collected into serum tubes 

(Vacuette, Greiner Bio-One, Kremsmünster, Austria) and allowed to clot for 1 h at room 

temperature. Serum was collected after centrifugation for 10 min at 1,800 ∙ g and was 

stored at -20°C pending analyses of albumin (Randox Bromocresol Green assay, cat. 

no. AB 362), C-reactive protein (CRP, ELISA, Reactivlab Limited, Glasgow, Scotland), 

haptoglobin (Tridelta Phase Haptoglobin Assay, cat. no. TP-801), pig major acute phase 

protein (pigMAP, ELISA, Reactivlab Limited, Glasgow, Scotland), and total protein 

(Biuret reaction; Doumas et al., 1981). At day -5, 0, 1, 3, 5 and 8, blood samples were 

collected into EDTA tubes (Vacuette, Greiner Bio-One, Kremsmünster, Austria) and 

analysed for the number of total white blood cells (WBC). At day 9, all pigs were 

euthanized and autopsy was performed by an experienced pathologist. Autopsy 

observations included assessment of body condition, visual inspection for 

abnormalities of lung, spleen, stomach, small intestine, large intestine, kidney, liver, 

heart, and mesenteric lymph nodes, determination of lung weight, and histological 

evaluation of lungs, liver, tracheobronchial lymph nodes, and kidneys. 

 

Nitrogen balance 

Pigs were equipped with a Velcro support system to allow separate collection of faeces 

(Van Kleef et al., 1994) and urine. Faeces and urine were collected quantitatively from 

each pig during two periods of 5 subsequent days each, i.e. in the pre- and post-

challenge period (Figure 5.1). Faeces were stored at -20°C pending analysis. Urine was 

collected via funnels, which were sprayed with an acetic acid buffer (sodium acetate 

0.08 M, formic acid 0.025 M, and acetic acid 0.013 M) to prevent evaporation of NH3, 

into buckets containing sulphuric acid (4.5 M), to maintain a pH < 3 for conservation. 

Urine was collected daily from the buckets, weighed, sampled and stored at  

-20°C pending analysis. Nitrogen in urine and fresh faeces was analysed using the 
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Kjeldahl method (ISO, 2005a). DM content of faeces was determined by drying at 103°C 

(ISO, 1999). 

 

Amino acid metabolism 

At pre-challenge (day -5), early post-challenge (day 3) and late post-challenge (day 8), 

the fluxes of plasma Lys, Trp, Met, Ile, Leu, Val, Phe, and Tyr were studied by measuring 

the change in plasma isotopic enrichment of individual AA in time after an i.v. U-13C 

labelled bolus of these AA. To create a steady state in dietary AA supply at the day of 

injection of the U-13C labelled AA mixture and frequent blood sampling, the daily feed 

allowance was spread over ten equal meals. Two meals were fed at 0730 h, followed by 

hourly meals from 0910 h until 1610 h. At 1230 h, a mixture of 11 U-13C labelled AA (97 

to 99 atom percent 13C, Cambridge Isotope Laboratories, Andover, MA, USA) was 

injected. The composition of the mixture (mg/g saline) was L-Lys, 0.17; L-Thr, 0.18; L-

Trp, 0.07; L-Met, 0.06; L-Cys, 0.04; L-Ile, 0.16; L-Leu, 0.16; L-Val, 0.19; L-Phe, 0.13; L-Tyr, 

0.16, and L-His, 0.08. The mixture was injected as a bolus (0.50 g/kg BW; 0.25 mL/s) in 

the carotid artery. If the carotid artery catheter was blocked, the mixture was injected in 

the jugular vein. Blood samples (4 mL each) were collected from the jugular vein and 

transferred into tubes containing lithium heparin (Vacuette, Greiner Bio-One, 

Kremsmünster, Austria) at 10 min before injection of the U-13C labelled AA mixture and 

at 3, 5, 7, 9, 11, 15, 25, 45, 80, and 120 min after injection. Tubes were immediately 

placed on ice and centrifuged for 10 min at 2,000 ∙ g at 4°C, after which plasma was 

collected and stored at -20°C pending analysis. In each blood sample, 13C enrichment 

was measured in plasma Lys, Trp, Met, Ile, Leu, Val, Phe, and Tyr as ethyl chloroformate 

ester (ECF, Merck Schuchardt OHG, Hohenbrunn, Germany) derivatives by GC-

combustion-isotope ratio MS (isotope ratio MS, Delta V Advantage, Thermo Scientific, 

Bremen, Germany; GC Trace Ultra, Thermo Scientific, Milan, Italy (column no. CP8982, 

VF-17ms 30 m ∙ 0.25 mm, film 0.25 µm, Agilent Technologies, Amstelveen, The 

Netherlands); and combustion , Combustion III, Thermo Scientific, Bremen, Germany), 

as adapted from Huang et al. (2011). Briefly, 20 µL hydrogen chloride (1 N) and 200 µL 

Dowex ion exchange resin (Ag 50W-X8 H+ form, 200-400 mesh, Dow Chemical 

Company, Edegem, Belgium) was added to 180 µL plasma and eluted with 0.7 mL 

ammonium hydroxide (6 N) to isolate free plasma AA. The supernatant was evaporated 

with a centrifugal concentrator (Jouan RC 1022, Thermo Scientific, Marietta, OH, USA) 

under vacuum at room temperature. Derivatisation was performed by adding 140 µL 

ethanol-pyridine (4 : 1 by volume) and 20 µL ECF to the dry supernatant. Derivates 

were extracted by adding 4 ∙ 200 µL hexane-dichloromethane-ECF (50 : 50 : 1 by 

volume) and the supernatant was dried in a vial under N2 gas at room temperature. 

After dissolving in 50 µL ethyl acetate, the sample was injected in triplicate into the GC. 

The 13C enrichment of His could not be successfully analysed due to high losses of His 

during the derivatization step. 13C enrichment in Thr and Cys could not be determined 

with the current procedure, and additional derivatization steps would be required for 

their measurement. 
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Calculations 

Dietary N intake, faecal and urinary N excretion and whole body N retention were 

expressed relative to metabolic BW (kg BW0.75). Relative lung weight was calculated as 

a percentage of BW. 13C enrichment in plasma AA was expressed as tracer-to-tracee 

ratio (TTR). To calculate a change in TTR in time, for each AA the background 

enrichment (obtained from plasma samples taken before injection of the U-13C labelled 

AA mixture) was subtracted from the 13C enrichment in samples after injection.  

ILR of AA from plasma was calculated from the change in 13C enrichment of plasma AA 

after the i.v. administered bolus of U-13C labelled AA using the model and calculations 

as described by Holtrop et al. (2004). The following assumptions were made: there is a 

physiological steady state during the measurement, i.e. a constant size of the plasma 

AA pool, so that the inflow of AA into the plasma pool equals the outflow from the 

plasma pool (Waterlow, 2006); the tracer transfers along with the tracee between 

compartments with a constant fractional rate (Waterlow, 2006); the ILR for an AA 

occurs as an output from the plasma pool, and only by incorporation of the AA into 

synthesised protein or by loss of AA via oxidation (Reeds et al., 1980). Finally, once the 

tracer has entered the body protein pool there is no recycling of the tracer into the 

plasma pool, as the whole body protein pool is a large pool with a low turnover rate 

compared to the plasma pool (Waterlow, 2006). A double exponential model was fitted 

to the 13C enrichment of individual plasma AA after administration of the bolus 

injection:  

E(t) = a1 exp (b1 t) + a2 exp (b2 t)     [1] 

where E(t) is the predicted 13C enrichment in plasma AA (TTR) at time t (min), and a1, b1, 

a2, and b2 are parameter estimates from which the ILR (µmol/(kg BW∙h)) was calculated: 

 ILR = d / (a1 / b1 + a2 / b2) 60     [2] 

where d is the dose of administered U-13C labelled AA (µmol/kg BW).  

For each AA and pig the pool size, i.e. the amount of AA in the pool (µmol/kg BW), was 

calculated as: 

Pool size = d0 / (a1 + a2)             [3] 

 

An ILR index was calculated for each pig and time point as the ILR at day -5, 3 or 8 

divided by the mean ILR at day -5, 3 and 8 of that particular pig, multiplied by 100. This 

index indicates the change in ILR within animals as affected by the challenge.  

AA released from protein breakdown was calculated as the difference between ILR and 

dietary intake, using the steady state model of Waterlow (2006), i.e. ILR = protein 

breakdown + dietary intake = protein synthesis + AA oxidation. Intake was estimated 

by multiplying the feed intake by the dietary AID content of each AA and divided by 24 

h and the molar mass. 

Two indices were calculated from serum concentrations of APP: a nutritional acute 

phase index (NAPI), and a health status acute phase index (HAPI). NAPI was considered 
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to be associated with the nutritional costs of APP synthesis, implying that the half-lives 

of the APP should be taken into account. The half-life of a positive APP is considered to 

be inversely related to the requirements for AA for APP synthesis. To amplify the 

nutritional costs of an APP response, all measured positive APP are divided by the half-

life (CRP 19 h (Vigushin et al., 1993); haptoglobin 132 h (Dobryszycka et al., 1979); 

pigMAP 132 h, the latter value assumed to be similar as for haptoglobin, based on the 

response pattern (Petersen, 2004).  

 

NAPI = (pigMAP (g/L) / half-life) + (CRP (g/L) / half-life) + (haptoglobin (g/L) / half-life) 

[4] 

 

HAPI was calculated as the sum of positive APP indices divided by the index for 

albumin as a negative APP, in which each index reflects the change in APP within a pig 

relative to the mean APP at day -5, 3 and 8 of that pig. HAPI was considered as a 

general indicator of health status. By including the indices for positive and negative 

APP in HAPI, the range in values is amplified (Toussaint et al., 1995; Gruys, 2005). 

 

             [5] 

 

where the APP index (e.g. CRP index) was calculated for each pig and time point as the 

APP concentration at day -5, 3 or 8 divided by the mean APP concentration at day -5, 3 

and 8 of that particular pig, multiplied by 100.  

 

Statistical analysis 

Pig was considered as the experimental unit. Effects of dietary treatment and collection 

day or period on WBC, N balance measures, ILR, AA release in plasma from protein 

breakdown, and AA plasma pool size were analysed with a mixed model with 

collection day, or period, taken as repeated measures. Fixed effects also included the 

interaction between dietary treatment and collection day, or period. Effects were 

analysed by pairwise comparisons using Tukey-Kramer adjustment. A covariance 

structure was chosen based on the lowest value for the Akaike and Bayesian 

information criteria. The effect of dietary treatment, collection day and the interaction 

between both on APP and total protein serum concentrations were analysed separately 

per period (pre- and post-challenge) with a mixed model with collection day taken as 

repeated measure. For the post-challenge APP serum concentrations, the mean of pre-

challenge serum APP concentrations (day -5, -3 and -1) was used a covariate. The 

effect of dietary treatment on relative lung weight was analysed by ANOVA. To 

associate a change in AA utilisation with a change in APP concentrations or N balance, 

the correlation between ILR index for AA and NAPI or HAPI, and the correlation 

between N retention and ILR or ILR index were determined using a Pearson correlation 
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analysis. To distinguish between the two days post-challenge (day 3 and 8), the 

correlation analyses were performed separately in two parts, i.e. including data of pre- 

and day 3 post-challenge, and including data of pre- and day 8 post-challenge.  

The normality of distribution of studentized residuals was assessed. Data on pigMAP 

and CRP were log transformed to obtain normal distribution of model residuals. All 

statistical procedures were conducted in SAS (SAS Inst. Inc., Cary, NC, USA). Values are 

presented as means ± (pooled) SEM, and effects were considered significant at P ≤ 

0.05. 

The goodness of fit of the double exponential model used to fit the 13C enrichment of 

individual plasma AA was assessed by the mean square prediction error (MSPE). The 

root MSPE was scaled to the observed mean (mean prediction error) and the 

correlation between predicted and observed values was calculated. Errors due to 

overall bias, due to deviation of the regression slope from unity, and due to random 

variation were calculated (Bibby and Toutenburg, 1977). Enrichment data of some AA 

were excluded due to unrealistic parameter estimation and concomitant unrealistic ILR. 

 

Results 

Four pigs had feed refusals that exceeded 10% of their daily allowance during the 

post-challenge measurement period. Data from these pigs were excluded from the 

experiment. One pig was excluded from the experiment due to illness occurring before 

the start of the N balance measurements.   

 

Immunological response  

Pre-challenge, serum CRP concentrations were lower (P = 0.02) in R-pigs than in A-

pigs. In the pre-challenge period, dietary protein supply did not affect serum 

concentrations of haptoglobin, pigMAP, and total protein. In the pre- and post-

challenge period, R-pigs tended to have lower (P = 0.09) serum albumin 

concentrations than A-pigs. In the post-challenge period, dietary protein supply did 

not affect serum concentrations of CRP, haptoglobin, pigMAP, and total protein. 

In the pre-challenge period, serum albumin concentrations were higher (P = 0.007) at 

day -5 than at day -3 and day -1 (Figure 5.2). In the post-challenge period, collection 

day affected serum concentrations of all APP and total protein. Serum concentrations 

of CRP peaked at day 5 post-challenge (P < 0.001) and declined thereafter. Serum 

concentrations of haptoglobin peaked at day 3 (P < 0.001) and declined thereafter. 

Serum concentrations of pigMAP peaked at day 3 (P < 0.001) and declined thereafter 

(Figure 5.2). Serum concentrations of albumin (P = 0.001) and total protein (P = 0.002) 

showed a drop at day 4. 

WBC counts were unaffected by dietary protein supply. The WBC count was lower at 

day 1 post-challenge (P = 0.03) than at day -5 pre-challenge and day 8 post-challenge 
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(Figure 5.2). The WBC count was lower at day 0 pre-challenge (P = 0.03) than at day 8 

post-challenge (Figure 5.2).  

Autopsy results revealed that i.v. administered CFA induced a moderate to severe 

granulomatous interstitial pneumonia. The relative lung weight was 1.52 ± 0.10% of 

BW at day 9 post-challenge, and was unaffected by dietary protein supply. Six pigs 

showed signs of lymphohisticytic focal hepatitis, and one pig showed signs of 

lymphocytosis. In one pig, sinushistiocytosis was observed in the tracheobronchial 

lymph nodes. No abnormalities were found in other organs.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Effect of CFA challenge and dietary protein supply (Adequate, A or 

Restricted, R) on serum acute phase proteins, serum total protein 

concentrations, and white blood count (WBC) in growing pigs (n = 11). 

Open and closed symbols indicate pre- or post-challenge measures, 

respectively. Within the pre- or post-challenge period, means of each day 

without a common letter differ (referring to the day effect). Cov, covariate; 

in the analysis of post-challenge APP serum concentrations, the mean of 

pre-challenge APP concentrations (day -5, -3 and -1) was used a covariate. 
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(continued)    
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Performance and nitrogen retention 

Dietary protein supply did not affect faecal N excretion. Total tract N digestibility was 

greater in A-pigs than R-pigs (P = 0.001). Urinary N excretion was greater in A-pigs 

than in R-pigs (P < 0.001), and N retention was 20% lower in R-pigs than in A-pigs (P < 

0.001). N utilisation for retention was greater in R-pigs (P = 0.02) than in A-pigs (Table 

5.2). CFA challenge did not affect N intake, faecal N excretion, and apparent total tract 

N digestibility (Table 5.2). Urinary N excretion was greater post-challenge than pre-

challenge (P = 0.04). N retention (P = 0.07) and N utilisation for retention (P = 0.07) 

tended to be greater in the pre- than in the post-challenge period.  

 

Amino acid metabolism 

The double exponential model accurately described the decrease in 13C enrichment of 

individual plasma AA after injection of the bolus with 13C AA. The average root MSPE of 

the studied AA ranged between 4.8 and 6.9%, with > 95% of the prediction error 

attributable to random variation.  

R-pigs had a lower ILR for Lys (P = 0.02), Met (P = 0.03), Ile (P = 0.05), Val (P < 0.01), 

and Tyr (P < 0.01) than A-pigs, and tended to have a lower ILR for Phe (P = 0.09). ILR 

for Leu and Trp was not affected by dietary protein supply. R-pigs had a lower Lys (P = 

0.03), Val (P = 0.02), and Tyr (P = 0.03) release from protein breakdown than A-pigs, 

and the Met release from protein breakdown tended to be lower in R-pigs (P = 0.06). 

The Trp, Ile, Leu and Phe release from protein breakdown was not affected by dietary 

protein supply. Lys pool size tended (P = 0.08) to be lower in R-pigs than in A-pigs 

(Table 5.3). 
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Table 5.3  Effect of CFA challenge and dietary protein supply (Adequate, A or 

Restricted, R) on the irreversible loss rate (ILR, µmol/(kg BW∙h)), release 

from protein breakdown (µmol/(kg BW∙h)), and pool size (µmol/kg BW) of 

plasma amino acids (AA) in growing pigs (mean values with the pooled 

SEM). 

1AA released from protein breakdown was calculated as the difference between ILR and intake, 
using the steady state model of Waterlow (2006), i.e. ILR = protein breakdown + dietary intake 
= protein synthesis + AA oxidation. Intake was estimated by multiplying the feed intake by the 
dietary AID content of each AA and dividing by 24 h and the molar mass.  
2In case of significant interactions, means without a common letter differ. 

Diet Adequate (A)  Restricted (R)  P-value 
Day (pre- or 
post-
challenge) 

Pre 
d -5 

Post 
d 3 

Post 
d 8  

Pre 
d -5 

Post 
d 3 

Post 
d 8 

SEM Day Diet 
Day ∙ 
Diet2 

Lys, n 5 5 5  4 6 6     
  ILR 695 716 698  559 605 576 18.2 0.61 0.02 0.95 
  Breakdown1 625 648 631  510 556 528 17.2 0.60 0.03 0.96 
  Pool size 85 79 108  90 74 53 6.6 0.88 0.08 0.23 

Trp, n 4 4 -  4 6 1     
  ILR 83 77 -  87 70 63 3.2 0.27 0.80 0.49 
  Breakdown 71 65 -  78 62 55 3.2 0.28 0.69 0.48 

  Pool size 16 16 -  22 14 27 1.4 0.13 0.39 0.27 

Met, n 5 5 4  4 6 4     

  ILR 271 267 295  221 237 198 10.1 0.91 0.03 0.21 

  Breakdown 235 232 261  196 212 174 9.6 0.91 0.06 0.21 

  Pool size 42 27a 88b  36 39 24 6.4 0.24 0.16 0.03 

Ile, n 5 5 5  5 6 6     

  ILR 450 464 426  400 400 379 9.9 0.24 0.05 0.86 

  Breakdown 374 390 354  346 347 328 9.0 0.29 0.21 0.85 

  Pool size 85 73 78  84 75 55 5.8 0.57 0.46 0.73 

Leu, n 5 5 5  5 6 6     

  ILR 797 744 732  690 612 633 25.9 0.33 0.13 0.92 

  Breakdown 658 610 601  592 516 539 24.5 0.37 0.30 0.92 

  Pool size 136 89 106  118 92 87 9.6 0.32 0.57 0.88 

Val, n 5 5 5  5 6 6     

  ILR 632 655 600  548 550 520 11.9 0.04 < 0.01 0.74 

  Breakdown 536 562 509  481 484 455 10.2 0.10 0.02 0.73 

  Pool size  150 135 138  142 128 93 9.1 0.49 0.19 0.70 

Phe, n 5 5 5  5 5 6     

  ILR 318 312 309  269 266 268 8.8 0.87 0.09 0.99 

  Breakdown 250 246 245  220 219 221 8.0 0.94 0.30 1.00 

  Pool size  59 57 63  57 58 60 4.5 0.94 0.84 0.98 

Tyr, n 5 5 5  5 6 6     

  ILR 347 340 312  290 280 270 7.4 0.06 0.01 0.71 

  Breakdown 295 290 263  253 244 235 6.5 0.09 0.03 0.73 

  Pool size 86 72 78  79 79 79 5.7 0.88 0.99 0.91 
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ILR for Val was affected by day of collection (P = 0.04), it remained constant until 3 day 

post-challenge, but was 7% lower (P = 0.05) at day 8 post-challenge (Table 5.3). ILR for 

Tyr tended to be affected by day of collection (P = 0.06), with a 9% lower (P = 0.06) ILR 

at day 8 post-challenge than at day -5 pre-challenge. Val release in plasma from 

protein breakdown tended to be affected by day of collection (P = 0.10), with a 6% 

lower (P = 0.09) breakdown rate at day 8 post-challenge than at day 3 post-challenge. 

Tyr release from protein breakdown tended to be affected by day of collection (P = 

0.09), with a 10% lower (P = 0.09) breakdown rate at day 8 post-challenge than pre-

challenge. The pool size of Lys, Trp, Ile, Leu, Val, Phe and Tyr was not affected by day of 

collection. Met pool size was approximately 230% greater at day 8 than at day 3 post-

challenge in A-pigs, but not in R-pigs (P = 0.03) (Table 5.3). 

 

Correlations ILR vs. NAPI, HAPI and N retention 

Results of the correlation analyses between ILR or ILR index of AA and NAPI, HAPI, or N 

retention are presented in Table 5.4. The ILR index was not affected by dietary protein 

supply. Positive correlations were observed between ILR and N retention for all AA, 

except for Trp. ILR of the sum of all measured AA was positively correlated with N 

retention. ILR index did not correlate with N retention for any of the AA measured. 

 

Table 5.4  Correlation coefficients for the relationships between irreversible loss rate 

(ILR) index and nutritional acute phase index (NAPI), for ILR index and 

health status acute phase index (HAPI), and for ILR and N retention. 

Correlations were calculated for data obtained at day 3 post-challenge and 

pre-challenge, and for data obtained at day 8 post-challenge and pre-

challenge in growing pigs. 

 Pre- and day 3 post-
challenge 

Pre- and day 8 post-
challenge 

ILR index for Trp vs. NAPI -0.45; P = 0.061 NS 
ILR index for Val vs. NAPI NS -0.38; P = 0.09 
ILR index for Tyr vs. NAPI NS -0.48; P = 0.03 
ILR index for Trp vs. HAPI -0.41; P = 0.09 NS 
ILR index for Val vs. HAPI NS -0.38; P = 0.09 
ILR index for Tyr vs. HAPI NS -0.51; P = 0.02 
   
ILR for Lys vs. N retention 0.49; P = 0.03 0.57; P = 0.01 
ILR for Met vs. N retention 0.47; P = 0.04 0.55; P = 0.02 
ILR for Ile vs. N retention 0.50; P = 0.02 0.53; P = 0.01 
ILR for Leu vs. N retention 0.36; P = 0.10 0.51; P = 0.02 
ILR for Val vs. N retention 0.64; P < 0.01 0.65; P < 0.01 
ILR for Phe vs. N retention 0.50; P = 0.02 0.50; P = 0.02 
ILR for Tyr vs. N retention 0.65; P < 0.01 0.68; P < 0.01 
Sum of ILR vs. N retention 0.58; P < 0.01 0.69; P < 0.001 
1Pearson correlation coefficients are presented with their P-value. Each correlation analysis 
included data of 11 pigs. 
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Discussion 

The aim of the present study was to quantify the effect of immune system activation 

on N retention and AA metabolism in growing pigs, depending on dietary protein 

supply. Intravenous CFA administration has been previously used in pigs as a model for 

immune system activation (Edwards and Slauson, 1983; Melchior et al., 2004; Melchior 

et al., 2005). In the present study, i.v. CFA administration activated the innate immune 

system, as indicated by a 2 to 4 fold increase in serum concentrations of CRP, 

haptoglobin, and pigMAP. The observed increase in haptoglobin concentration is in 

accordance with a study of Melchior et al. (2005) in CFA-challenged pigs. Similarly, 

haptoglobin and pig-MAP concentrations increase up to 6 fold and CRP concentrations 

up to 4 fold in response to bacterial and parasitic infections, or inflammation induced 

by s.c. turpentine challenge in pigs (Heegaard et al., 2011). The observed reduction in 

WBC at day 1 post-challenge might be due to leukocyte migration into the lungs, as 

infiltration of neutrophils and eosinophils has been reported in lung tissue after i.v. CFA 

administration in pigs (Edwards and Slauson, 1983). Autopsy results in the present 

study also indicate increased infiltration of lymphocytes and macrophages in lung and 

liver following CFA challenge. The drop in WBC at day 0 pre-challenge was, however, 

unexpected. 

In the present study, dietary protein supply did not affect relative lung weight of the 

pigs following CFA administration. In contrast, Le Floc’h et al. (2008) observed greater 

lung weight in CFA-challenged pigs fed a Trp deficient diet than in pigs fed an 

adequate Trp diet. In the present study, the restricted dietary protein supply reduced 

pre-challenge serum CRP concentrations and tended to reduce serum albumin 

concentrations pre- and post-challenge. In line with our results, plasma albumin 

concentrations, and albumin fractional and absolute synthesis rate decreased in pigs 

(Jahoor et al., 1999) fed low protein diets and after s.c. turpentine challenge. In 

addition, a lower plasma albumin concentration and albumin fractional synthesis rate 

was observed in i.m. LPS challenged pigs fed a low Met + Cys diet than in pigs fed a 

diet with an adequate Met + Cys content (Litvak et al., 2013a). These findings may 

suggest that the dietary AA supply can be insufficient for albumin synthesis, 

independent of immune system activation. Albumin serves as a nutrient carrier and 

depot by binding to nutrients (Cray, 2012; Fanali et al., 2012). This carrying capacity is 

possibly reduced when dietary protein supply is restricted. Houdijk et al. (2007) found a 

reduction in plasma CRP concentrations when the dietary protein content decreased in 

pigs with sub-clinical colibacillosis. Our results indicate that serum CRP concentrations 

are sensitive to dietary protein supply in the absence of immune system activation. 

Upon immune system activation, however, serum CRP concentrations were unaffected 

by dietary protein supply. This is in line with the concept that, immune functions are 

prioritised over other body functions during immune system activation (Klasing and 

Johnstone, 1991; Lochmiller and Deerenberg, 2000). The tendency for lower serum 

albumin concentrations during the pre- and post-challenge period in R-pigs than in A-
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pigs, however, indicates that a restriction in dietary protein supply can reduce albumin 

concentrations independent of immune system activation in growing pigs. 

Furthermore, this suggest that, in contrast to prioritizing for immune functions, in this 

case APP synthesis, there is a competition for AA between immune functions and other 

body functions such as body protein deposition in growing pigs.  

The ILR of an AA reflects the amount of free AA that disappears per unit of time from 

the blood plasma pool. ILR includes use of AA for protein synthesis and oxidation, and 

does not distinguish between both fluxes. The ILR of AA in plasma in combination with 

the pool size or concentration of AA is, however, more useful for quantifying changes 

in AA metabolism than merely plasma AA concentrations or pool sizes. Changes in AA 

metabolism, e.g. an increased protein synthesis rate, can occur without concomitant 

changes in plasma AA concentrations or pool size, as AA concentrations can be 

maintained when fluxes from protein intake, breakdown and synthesis of body protein, 

and oxidation of AA are changing (Waterlow, 2006). Yet, changes in plasma AA 

concentrations have been used previously as a measure to asses effects of immune 

system activation on AA metabolism (Maes et al., 1993; Melchior et al., 2004; Melchior 

et al., 2005; Le Floc'h et al., 2006). In the present study, the lower ILR for Val at day 8 

than day 3 post-challenge was not associated with a change in pool size. Therefore, the 

use of pool size or AA plasma concentrations as a single measure to quantify effects of 

immune system activation on AA metabolism can be misleading. Furthermore, N 

retention reflects the total whole body protein deposition, and does not distinguish 

between N retained in muscle protein or APP, neither does the ILR. 

The restricted dietary protein supply reduced apparent faecal N digestibility compared 

to the adequate dietary protein supply. This is likely attributed to a proportionally 

greater excretion of basal endogenous N in R-pigs, as the relative contribution of 

endogenous N to total faecal N excretion decreases with increasing dietary protein 

supply (Fan et al., 1994) or when AA are administered i.v. (de Lange et al., 1989). N 

retention was 20% lower in R-pigs than in A-pigs, and corresponded with the observed 

reduction in ILR for the presented AA, except for Trp. ILR for Lys was 19% lower in R-

pigs, followed by Met (-18%), Leu (-16%), Phe (-15%), Val (-14%), and Ile (-13%). In 

addition, positive correlations were observed between N retention and ILR for Lys, Met, 

Ile, Leu, Val, Phe and Tyr, but not for Trp. These positive correlations were mostly 

attributed to differences in dietary protein supply, as the ILR indices for all AA, 

reflecting the changes in ILR within animals due to the challenge, did not correlate with 

N retention. As expected, the restricted dietary protein supply resulted in a lower 

urinary N excretion (absolute in g/kg BW0.75/day as well as relative as % of N intake), 

indicating that oxidation of AA was reduced in R-pigs compared to A-pigs.  

In the present study, immune system activation induced by CFA altered N retention 

and AA metabolism, independent of dietary protein supply. It was hypothesized that 

the effect of CFA challenge on protein metabolism would be more pronounced under 

conditions of a marginal dietary protein supply. This would increase the competition 

for indispensable AA used for immune system functioning and for body protein 

deposition in muscle as a main determinant of the animal’s growth. The effects of CFA 
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challenge on variables related to protein metabolism, however, were less pronounced 

in R-pigs than in A-pigs. In R-pigs there was no drop in N retention post-challenge 

compared to pre-challenge, suggesting that there is a high priority for the allocation of 

AA for body protein deposition in R-pigs. N utilisation for retention, i.e. N retention / 

digestible N intake, was greater in R-pigs than in A-pigs as expected due to the 

difference in dietary protein supply. As shown by Fuller et al. (1987), the increase in N 

retention associated with an increase in dietary protein supply, is proportionally 

smaller than the increase in N digestibility. In A-pigs, N retention numerically 

decreased by 6% post-challenge and the post-challenge drop in ILR for Val and Tyr is 

therefore most likely attributed to a reduction in protein synthesis. In contrast, N 

retention in R-pigs was unaffected by CFA challenge. Therefore, the post-challenge 

drop in ILR for Val and Tyr in R-pigs, can probably be attributed to a reduction in 

oxidation rather than to a reduction in body protein synthesis, as also indicated by the 

concomitant numerical decrease in Val pool size. This indicates that immune system 

activation reduced Val and Tyr oxidation in R-pigs, but not in A-pigs. In humans, Leu 

oxidation decreased substantially more than Leu utilisation for protein synthesis, with 

77% and 30% respectively, when a low compared to a high protein diet was provided 

(Hoerr et al., 1993). A decrease in AA oxidation is possibly a compensatory mechanism 

in R-pigs to spare AA from catabolism, when AA for protein synthesis are scarce. CFA 

challenge increased urinary N excretion, and tended to reduce N retention and N 

utilisation for retention. In line, greater urinary N excretion (de Ridder et al., 2012) and 

lower N retention (Williams et al., 1997; de Ridder et al., 2012) was observed in pigs 

with an activated immune system by continuous exposure to major vectors of antigen 

transmission (Williams et al., 1997) or by repeated i.m. LPS injections (de Ridder et al., 

2012). The observed greater urinary N loss in the post-challenge period might be 

caused by increased AA oxidation of unbalanced AA, as suggested by Reeds et al. 

(1994). An increase in the synthesis of APP is suggested to increase the demands for 

AA, especially Phe, Trp, and Tyr, which can be released by breakdown of muscle protein 

(Reeds et al., 1994). As the AA composition of muscle protein differs from that of APP, 

an imbalance in AA available for body protein synthesis can occur, leading to greater 

urinary N losses (Reeds et al., 1994). It was hypothesized that an increase in serum APP 

during immune system activation affects the ILR of AA, with concomitant reduction in 

pool size, due to increased incorporation of (in particular aromatic) AA into APP, and 

increased pool size and oxidation of non-limiting AA resulting from related AA 

imbalance. The 2 to 4 fold increase in APP concentrations following immune system 

activation was, however, not associated with an increase in ILR of any of the AA. In 

contrast, the ILR for Val was lower at day 8 than at day 3 post-challenge and CFA 

challenge tended to reduce the ILR for Tyr at day 8 post-challenge compared to day -5 

pre-challenge. In addition, negative correlations were observed between NAPI or HAPI 

and the ILR index for Tyr, and tendencies for negative correlations with the ILR index 

for Trp and Val. These findings could on the one hand suggest that the changes in AA 

utilisation for growth due to the incorporation into APP are quantitatively less 

important than expected based on findings in other studies (Reeds et al., 1994; Iseri 

and Klasing, 2013). On the other hand, and more likely, a decrease in muscle protein 
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synthesis during immune system activation (Breuille, 1994) might have balanced the 

increase in AA utilisation after immune system activation due to increased 

incorporation of AA into APP. In the present study, however, no distinction could be 

made between AA utilisation for APP synthesis or for muscle protein synthesis related 

to growth.  

Another explanation for the lower ILR for Tyr at day 8 post-challenge may be a reduced 

formation of Tyr from Phe. Phenylalanine-hydroxylase catalyses the formation of Tyr 

from Phe. Pro-inflammatory cytokines (e.g. Interferon-γ), induce expression of the 

guanosine-triphosphate-cyclohydrolase-1 enzyme pathway and concomitantly release 

reactive oxygen species, which in turn inhibit phenylalanine-hydroxylase activity 

(Capuron et al., 2011). Thus, the formation of Tyr could be reduced after CFA challenge.  

Met pool size was approximately 230% greater at day 8 than at day 3 post-challenge in 

A-pigs, but not in R-pigs (P = 0.03). The greater pool size at day 8 in A-pigs might be 

attributed to greater release of Met from protein breakdown, i.e. Met released from 

breakdown increased by 11% compared to pre-challenge, and by 13% compared to 

day 3 post-challenge. An increase in plasma pool size at similar ILR may indicate Met 

oxidation (transsulfuration) rather than utilisation for protein synthesis. Hence, Met 

may have been released in excess of its requirement, which corresponds with the 

relatively high Met content in muscle protein (Conde-Aguilera et al., 2010) compared 

with average APP (Reeds et al., 1994). It can be expected that Met is increasingly used 

for conversion into Cys in order to produce glutathione, which plays an important role 

in maintaining antioxidant defences (Grimble and Grimble, 1998; Malmezat et al., 2000), 

and supports proliferation of T lymphocytes (Grimble, 2006). As shown by Litvak et al. 

(2013b) immune system activation by i.m. LPS administration increased the optimal 

dietary Met to Met + Cys ratio for whole body protein deposition.  

In conclusion, the effect of CFA challenge on N retention and AA metabolism was 

largely independent of the dietary protein supply. A deficient dietary protein supply 

decreased blood serum concentrations of CRP and to a lesser extent albumin, stressing 

the importance of an adequate dietary AA supply for the production of APP in growing 

pigs. Immune system activation via i.v. CFA administration increased urinary N 

excretion in growing pigs, and tended to reduce N retention and N utilisation of 

digestible N for retention. Immune system activation reduced the ILR for Val and Tyr, 

but did not lead to a significant change in pool size of the measured AA, except for 

Met. ILR of all AA measured, except for Trp, were strongly affected by dietary protein 

supply and were positively correlated to N retention. Correlations between ILR and APP 

indices were absent or negative, indicating that changes in AA utilisation for APP 

synthesis are quantitatively unimportant in growing pigs, or, more likely, outweighed 

by a decrease in muscle protein synthesis during immune system activation.  
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Introduction 

The main objective of the present thesis was to quantify the effect of health status on 

amino acid (AA) requirements for body protein deposition and for immune system 

functioning of growing pigs. In the present Chapter, the findings of four studies are 

discussed, with emphasis on the health status of farms and experiments were the 

immune system is activated under more standardized conditions, the techniques 

employed to estimate AA requirements, and the nutritional costs related to the 

functioning of the immune system (Figure 6.1). Finally, an overview of the main 

conclusions of this thesis and recommendations for the optimization of diets of 

growing-finishing pig farms differing in their health status are presented. 

 

Figure 6.1  Schematic presentation of the outline of the General Discussion. 
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Health status 

Variation in health status between pig farms vs. experimental models  

For the implementation of targeted feeding strategies for particular groups of farms 

sharing a common health status, it is pivotal to classify farms on the basis of their 

health status. In the study described in Chapter 2, a health status web was developed 

as a concept for the classification of growing-finishing pig farms, based on data 

recorded in current commercial practice. This concept incorporates traits which are 

recorded at farm level, are readily available and are collectively related to the incidence 

of (sub)clinical disease. The data on the six traits of farms incorporated in the health 

status web were collected over a period of one year. Thus, this concept reflects the 

long term health status of a farm, rather than a health status that is influenced by short 

term incidents. The health status web aims to provide insight into the variation in 

health status between farms. 

(Sub)clinical infections that often occur in the commercial growing-finishing pig 

industry include Ascaris suum, Porcine circovirus type 2 (PCV2), Streptococcus suis, 

Porcine reproductive and respiratory syndrome virus (PRRSV), Lawsonia, Pasteurella 

multocida, and Bordetella bronchiseptica (Figure 1.4; General introduction). In 

addition, behavioural abnormalities and health related problems such as increased 

incidence of tail or ear biting and leg problems have been associated with elevated 

concentrations of acute phase proteins (APP) in blood (Petersen et al., 2002; Salamano 

et al., 2008; Piñeiro et al., 2013). All health challenging conditions observed in 

commercial growing-finishing pig operations share one common aspect, i.e. they 

induce immune system activation and affect protein and energy metabolism (Figure 

1.8; General ntroduction). The traits included in the health status web are collectively 

related to (sub)clinical disease, which in turn induce immune system activation. 

Experimental models are, however, required to quantify the effect of health status on 

AA requirements for body protein deposition and for immune system functioning of 

growing pigs. Pastorelli et al. (2012) performed a meta-analysis on data of 122 

challenge studies to quantify the effect of experimental challenge models that activate 

the immune system on average daily gain (ADG), feed intake and feed efficiency 

(Figure 6.2). According to their findings, especially bacterial infections of the gastro-

intestinal tract greatly reduced ADG, by 40% on average relative to unchallenged 

control, followed by mycotoxicoses and respiratory diseases. Depending on the type of 

immune system challenge, less than 30% to more than 70% of the reduction in ADG 

was due to a reduction in feed intake, the first in case of bacterial infections of the 

gastro-intestinal tract and poor housing conditions, and the latter in case of 

lipopolysaccharide (LPS) challenge, mycotoxicoses and respiratory diseases (Pastorelli 

et al., 2012). 
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Figure 6.2 Partitioning of the reduction in the average daily gain (ADG) following an 

immune challenge between the fraction due to a reduction in feed intake 

(i.e. the extent of change in ADG associated with a reduction in feed 

intake) or the fraction not associated with a reduction in feed intake, but 

related to a greater maintenance requirement; the change in ADG at 

similar feed intake) in pigs (adapted from Pastorelli et al., 2012).  

 

To create a standardized contrast in immune system activation an intravenous (i.v.) 

CFA-challenge inducing a chronic, non-infectious lung inflammation was used as an 

experimental challenge model (Chapter 5). In addition, a contrast in health status 

between pigs (high vs. suboptimal) was created by selecting two farms at which pigs 

differed in the presence of antibodies in blood against a number of pathogens 

(Chapter 4). This contrast in health status was created in order to determine the effects 

of health status on nitrogen (N) retention and AA utilization in growing pigs, 

simulating what is observed in practice. 

In search of an experimental model to quantify the effect of immune system activation 

on AA requirements for body protein deposition and for immune system functioning 

of growing pigs the following criteria were set to induce: 

- a standardized response of the immune system, associated with an increase in 

body temperature and elevated concentrations of APP in blood, with a 

magnitude similar to that observed in pigs with an activated immune system 

due to e.g. (sub)clinical, over a time period of at least several days; 

- a low variation in response between animals with regard to immunological 

parameters and changes in AA metabolism;  

- a minimal effect on feed intake. 

Fraction due to a reduction in feed intake 

Fraction not related to a reduction in feed intake 
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In addition, the discomfort imposed on the animal was also taken into account. A pilot 

study was conducted (Textbox I) to compare the use of i.v. injection of Complete 

Freund’s Adjuvant (CFA), associated with a sterile lung inflammation, and s.c. injection 

with turpentine oil (TO), associated with tissue damage, to activate the immune system 

and to study the effect of immune system activation on AA metabolism in pigs. 

Although it is difficult to compare and judge the discomfort caused by the two 

challenge-models, CFA was preferred over TO. Considering the smaller within animal 

variation in response of APP and ILR in CFA challenged pigs compared to TO 

challenged pigs, and the greater magnitude of response in APP and ILR, CFA was 

chosen as the most appropriate experimental model to be used in Chapter 5, for the 

quantification of the effect of immune system activation on AA metabolism and N 

retention. The pigs from a farm characterized as having a low health status in the study 

described in Chapter 4 had greater leukocyte counts and serum haptoglobin 

concentrations, and coinciding lower serum albumin concentrations during the 

experiment. Yet, they were able to show compensatory growth under adequate dietary 

AA supply. Moreover, in the high health status pigs (Chapter 4), the observed serum 

APP concentrations were relatively high in comparison to concentrations observed in 

unchallenged pigs in Chapter 5, and in clinically healthy SPF pigs in the study of Parra 

et al. (2006), indicating that under commercial conditions, even greater contrasts in 

concentrations of APP are observed. The experiment in Chapter 4 indicates that it is 

very difficult to maintain a contrast in health status, in this case by housing pigs in 

unsanitized stables vs. desinfected stables in respiration chambers with high efficiency 

particle airfilters and applying contrasting hygienic and management measures.   
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Textbox I  Challenge models to study the effect of immune system activation on amino 

acid metabolism in pigs (E. Kampman - van de Hoek, 2013). 

Objective 

The objective of the present study was to compare the use of Complete Freund’s Adjuvant 

(CFA) and turpentine oil (TO) to activate the immune system and to study the effect of 

immune system activation on AA metabolism in pigs.  

Material and Methods 

Eight pigs (30 kg BW) were challenged with either four i.v.  CFA infusions (n = 3)), a single 

s.c. TO injection (n = 3), or i.v. and s.c. saline as a control (control, n = 2). Restricted feed 

intake of 2.7 ∙ the estimated ME requirements for maintenance. Feed intake was 

determined daily. Plasma acute phase protein (APP) concentrations were determined 

immediately before and at day 1, 2 and 6 after the challenge. Leukocyte counts were 

determined daily. A 4-d N balance was performed (day 0 to 3 after the challenge). At day 2, 

a mixture of 7 universally 13C-labelled essential AA (Lys, Met, Trp, Ile, Leu, Val, Phe, Tyr) was 

infused i.v. as a bolus to study the irreversible loss rate (ILR). At 9 d after the start of the 

challenge, pigs were euthanized after which autopsy was performed.  

Results 

One day after the start of the challenge serum haptoglobin concentrations increased 9 fold 

(P = 0.03) in CFA compared to control pigs, but was not increased in TO pigs (Figure Ia). 

Serum CRP concentrations increased three fold in CFA pigs (P = 0.06) and in TO-pigs (P = 

0.03) compared to control pigs. PigMAP increased 6 fold (P < 0.01) only in TO, and CRP 

increased 4 fold in TO (P = 0.01) compared to control. CFA increased (P < 0.05) eosinophil 

counts in blood at day 1 and 2. Feed intake was reduced at day 0 and 1 in CFA and at day 1 

in TO challenged pigs. N retention was similar in pigs of each of the three groups.  

 

Figure Ia  Serum haptoglobin concentration of pigs before and after immune system 

activation with CFA, TO or saline (control). 
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The ILR for Lys, Met, Trp, Ile, Leu, Val, Phe and Tyr were numerically lower in CFA pigs 

compared to control pigs, with the most pronounced numeric difference in ILR for Tyr, 

followed by Leu, Met, and Phe (Figure Ib). In TO pigs, the ILR were almost similar to the 

control pigs (Figure Ib). 

 

Figure Ib  Effect of CFA or TO administration on the irreversible loss rate of plasma 

amino acids (AA) by intravenous bolus infusion of universally labelled 13C-AA 

in growing pigs. 

 

Conclusions 

The reduction in ILR of AA in pigs with an activated immune system as induced by the 

CFA challenge indicates a reduction in protein synthesis and/or oxidation of AA. TO 

administration resulted in less pronounced differences in ILR. Possibly, this change in 

utilization is due to repartitioning of AA to protein synthesis for the immune system at 

the expense of synthesis for net body protein deposition. 
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Adaptation and flexibility  

In Chapter 4, a large difference of approximately 6 kg in starting BW was observed 

between pigs of similar age deriving from farms characterized as having a low or high 

health status. Low health status pigs receiving a diet adequate in AA, showed higher 

ADG relative to BW and metabolic BW than high health status pigs, whereas a dietary 

deficiency of Met + Cys, Thr and Trp did not allow compensatory growth to occur in 

low health status pigs. Thus, low health status pigs receiving a diet adequate in AA 

were able to show compensatory growth related to a more efficient N utilization. In 

line, Kyriazakis and Emmans (1992) suggested that impairment in growth following a 

period of nutrient limitation can be corrected over time, depending on the availability 

of resources during rehabilitation. Compensatory growth or improved N retention has 

been previously demonstrated in pigs following a period of restricted feeding (Critser 

et al., 1995; Bikker et al., 1996a; Bikker et al., 1996b) or restricted protein and AA supply 

(Tullis et al., 1986; Fabian et al., 2004). The compensatory growth or N retention has 

been attributed to increased feed intake (Critser et al., 1995), improved feed conversion 

ratio when feed intake was kept similar between restricted and control pigs (Bikker et 

al., 1996b), or due to reduced excretion of urinary N excretion (Fabian et al., 2004). The 

meta-analysis study on feed intake and ADG responses of pigs to an immune 

challenge (Pastorelli et al., 2012) showed that the ADG of challenged pigs was lower 

during a challenge, but in case of respiratory diseases, pigs were able to fully recover, 

i.e. have a similar ADG compared to control pigs. The authors suggested that 

compensatory growth or feed intake occurred during and after an immune system 

challenge, as no difference in feed intake was observed once challenged pigs were 

recovered. Pigs i.m. challenged with LPS were not able to compensate for the reduction 

in BW due to the challenge (Moraes et al., 2012). In line, the findings in Chapter 4 

suggest that in pigs with a low health status compensatory growth is possible 

following a period of reduced growth, especially when providing a diet adequate in 

AA, but not when providing a diet deficient in Met + Cys, Thr and Trp.  

The compensatory growth observed in the studies of Bikker et al. (1996a; 1996b) has 

been suggested to occur primarily due to protein deposition in organs and via an 

increase in digesta weight in the small intestine, and is to a lesser extent related to an 

increase in carcass protein deposition. In the present thesis no measurements on 

compensatory effects in different body components were performed. Another example 

that shows that animals are flexible in coping with nutritional deficiencies is shown by 

the study of Conde-Aguilera et al. (2010), which suggests that animals can either 

reduce body protein deposition for growth or change the composition of growth. In 

that study a dietary sulphur AA deficiency reduced the Met and Cys concentration of 

different body proteins, especially in skeletal muscle. Nevertheless, this adaptation 

mechanism may be limited as a reduction in ADG was not prevented by the observed 

reduction in AA content of body protein tissues (Conde-Aguilera et al., 2010), and 

suggests that animals may not be very flexible in changing the composition of body 

muscle protein. In PRRSV challenged pigs whole body concentrations of dry matter 

and lipid decreased, whereas concentrations of protein and ash increased compared to 
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non-challenged control pigs (Escobar et al., 2004). Furthermore, from day 7 to 14 post 

inoculation with PRRSV, the composition of gain consisted of protein and ash but not 

lipid, as the amount of lipid did not change during this period in PRRSV challenged 

pigs.  

 

Techniques to estimate AA requirements 

In the present thesis, two techniques were evaluated. A simplified dose-response 

technique to quantitatively estimate a change in AA requirements of individual meal-

fed pigs (Chapter 3), and an isotope dilution technique, to quantify the effect of 

immune system activation on AA metabolism and urea production (Chapter 4 and 5). 

The dose-response technique with a decreasing Lys supply in time and a step length of 

3 day with urinary N excretion as response criteria proved to be a simple, accurate 

technique to quantitatively estimate a change in AA requirements of individual meal-

fed pigs. Nevertheless, a minimum time period of 21 days is required for each 

individual (a step length of 3 days ∙ at least 7 dietary AA levels). An experimental model 

that maintains a standardized extent of immune system activation with systemic effects 

that are believed to influence AA metabolism for a period of at least 21 days was not 

found in literature. Therefore, in the studies described in Chapter 4 and 5, the isotope 

dilution technique was used to quantify the effect of health status on AA requirements 

for body protein deposition and for immune system functioning of growing pigs, using 

experimental models to activate the immune system as described in Chapter 4 and 5. 

With minor changes the simplified dose-response technique may be further developed 

to determine the AA requirement of pigs from commercial farms with a different 

health status, using an oral dose of isotopic labelled urea and determine the change in 

urea enrichment in saliva as a response parameter for urea production. Furthermore, 

the level of immune system activation can be monitored by determining APP 

concentrations in saliva, as evaluated by Gutiérrez et al. (2009b). Taking saliva samples 

is far less invasive than taking a blood sample in pigs.  

A schematic representation of the AA fluxes in the plasma pool, i.e. AA absorption from 

the diet and AA release from body protein breakdown, and AA fluxes out of the AA 

plasma pool, i.e. AA use for protein synthesis and AA oxidation, is provided in Figure 

1.2 of Chapter 1. With the isotope dilution technique, the pool size and ILR, i.e. the 

amount of free AA that disappear per unit of time from the plasma pool for protein 

synthesis or oxidation, can be determined. The ILR is determined by measuring the 

change in plasma isotopic enrichment of individual AA in time after an i.v. 

administered bolus of U-13C-labelled AA, while feeding the pigs hourly portions 

(Chapter 4 and 5). Under the assumption that there is a physiological steady state 

during the measurement of ILR and a constant size of the plasma pool, the turnover of 

AA in plasma (Q) equals: 

AA absorption from the diet (I) + AA release from body protein breakdown (B) = AA 

use for protein synthesis (S) + AA oxidation (O). 



 

138 

 

6 

ILR = S + O, B = Q - I = ILR - I. 

The pool size and AA absorption flux are relatively small in relation to the breakdown 

and ILR flux, implying that that the AA pools are renewed 4 to 8 times per h, according 

to the data in Figure 6.3.  

Figure 6.3 Mean of AA fluxes relative to pool size of clinically healthy pigs of 

approximately 42 kg body weight (BW) fed a diet adequate in protein and 

AA (Chapter 5).  

 

An interesting feature of the isotope dilution technique is that it allows the 

simultaneous measure of the rate of utilization of various AA. The downside, as 

extensively discussed (Chapters 4 and 5) is that discrimination between synthesis and 

oxidation of each AA is not possible with this technique. Additional measurements can 

be performed to aid the interpretation of treatment effects on ILR, as was done in the 

studies of Chapter 4 and 5. These extra measurements include determination of AA 

pool size, rate of N retention, urea entry rate, urea pool size, and 13C enrichment in 

plasma proteins. An overview of additional measurements done and how these can 

help in the interpretation of treatment effects on ILR for AA is presented below (Table 

6.1).  

To this end, three cases were selected from studies conducted in this thesis.  

In case 1 similar pool sizes were observed, although ILR and breakdown were different. 

Pigs fed a deficient protein and AA diet in Chapter 5, had a similar pool size of Met, 

Ile, Val, Phe and Tyr, while ILR and breakdown were lower, in line with a lower N 

retention (case 1a), compared to pigs fed an adequate protein and AA diet (case 1b). 
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This case shows the importance of measuring fluxes rather than only pool size or 

plasma concentrations.  

In case 2 the Met plasma pool size was greater at day 8 post-challenge compared to 

day 3, while the ILR was only slightly higher (Chapter 5). This likely reflects a higher 

rate of oxidation at the expense of utilization for protein synthesis. This would require 

measurements on urea entry rate and urea pool size to verify this assumption.  

In case 3, especially in low health status pigs a numerical reduction in Trp pool size 

was observed, with a tendency for a lower ILR in pigs fed a diet deficient in Trp, 

compared to pigs fed a diet adequate in AA (Chapter 4). In low health status pigs fed 

the deficient diet, this coincided with a reduction in N retention, and a higher urea 

pool size reflecting that Trp is limiting (case 3a), while other AA became excessive 

and were oxidized (case 3b).  

Table 6.1  Physiological processes involved in three cases, selected from various 

chapters in this thesis. Changes in the observed physiological processes 

between two groups of pigs are reflected by ++ symbols indicating a 

greater response, by -- symbols indicating a lower response, and by == 

indicating a similar response. The x symbols indicate that measurements 

on that particular physiological process are required to verify the 

statement, while grey cells indicate that the measurements are not 

required. 

 

Nutritional costs related to immune system activation 

Summarizing the energetic costs associated with immune system activation, Lochmiller 

and Deerenberg (2000) found that the resting metabolic rate can increase with 1.1 to 

1.6 fold due to infection, vaccination or endotoxin challenge as compared to controls 



 

140 

 

6 

in human, sheep and rodents. As reviewed by Sandberg et al. (2007), the relative 

increase in energy expenditure in immune challenged animals due to antibody 

production ranged between 1.09 and 1.55 fold of control. 

In the present thesis the focus is on the protein and AA costs related to immune 

system activation, divided into costs related to anabolic processes, especially an 

increase in synthesis of proteins for the immune system and repair of damaged tissues, 

and other associated metabolic costs. In order to quantify the nutritional cost related 

to immune system activation, the costs associated with the innate and acquired 

immune system need to be dissected. Furthermore, Isery and Klasing (2013) suggested 

that the division between early and late responses allows reallocation of nutrients to 

minimize nutritional costs. The magnitude of the immune response, e.g. acute or 

chronic immune system activation also affects the nutritional costs.  

Innate and acquired components of the immune system 

Efforts have been made to dissect the nutritional cost associated with the activation of 

different effector arms of the immune response, by quantifying the changes in mass of 

e.g. body tissues, like skeletal muscle and liver, cells and proteins, e.g. cytokines and 

APP (Houdijk et al., 2001; Klasing, 2007; Iseri and Klasing, 2013). Results of different 

approaches in chickens indicate that a healthy young broiler chicken utilizes 

approximately 1.2% of the Lys intake for leukocyte production, antibody secretion and 

production of proteins (Klasing and Calvert, 1999; Klasing, 2007). In the healthy 

chicken, the main estimated Lys costs were related to immunoglobulin synthesis (59% 

of the total Lys costs for the immune system), leukocyte production (41%), and none to 

APP synthesis (0%). Following an LPS-challenge, however, anabolic processes, 

including mainly the hepatic acute phase response, increase the Lys use by the 

immune system to 6.7% of Lys intake, with 71% of the total Lys costs related to APP 

synthesis, 17% for leukocytes production and 13% for immunoglobulin synthesis 

(Klasing and Calvert, 1999). Further findings also indicate that the APP response is 

nutritionally more costly than the acquired immune response following an E. coli 

challenge in chickens (Iseri and Klasing, 2013), indicated by the sum of the weight of 

antibodies and APP, and leukocyte subpopulations pre- and post-challenge. The total 

weight of leukocytes was 676 mg/kg BW pre-challenge and increased with 54% at day 

1 post-challenge, while the weight of APP was 333 mg/kg BW pre-challenge and 

increased with 207% at day 1 post-challenge (Figure 6.4). No estimates of nutritional 

costs related to the activation of the innate and adaptive immune system could be 

found in pigs. Although the sum of the mass of cells and proteins is not a direct 

measure for the amount of nutrients that are needed, the above mentioned studies 

show that the costs of an APP response is more substantial than that of an increase in 

leukocyte production and immunoglobulins synthesis.  
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Figure 6.4  Weight of cellular and effector protein components of the systemic 

immune system of 1.8 kg chickens prior to and 24 h or 5 day following E. 

coli (i.v.) challenge (Iseri and Klasing, 2013).  

 

Quantification of the nutritional costs of immune system activation 

Quantifying the effect of immune system activation on AA requirements is important 

for future optimization of pig diets for farms with a specific health status. In this 

paragraph calculations on the estimated change in quantitative AA requirements for 

APP synthesis during an APP response in pigs after immune system activation are 

discussed. In addition, estimated changes in the optimal dietary AA profile after 

immune system activation are further evaluated based on the observed changes in AA 

metabolism in pigs with a different health status (Chapter 4) and in pigs with an 

experimentally induced chronic lung inflammation (Chapter 5). 

 

Estimated costs of APP syntheses  

Reeds et al. (1994) suggest that stimulation of the immune response in humans leads 

to an increased utilization of certain AA, particularly Phe, Trp and Tyr, for APP synthesis. 

However, their calculations were based on a typical APP response in humans after 

uncomplicated surgery, and on the AA composition of human APP, and the mean 

composition of bovine, porcine and ovine skeletal muscle. In this Chapter, similar 

calculations were performed for pigs (Textbox II).  

The estimated APP synthesis (calculated as the rate of synthesis needed to sustain a 

serum concentration difference, assuming a particular half-life, specific for each APP) of 

the sum of haptoglobin, CRP and pig-MAP in healthy pigs ranged between 14 mg/kg 
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BW0.75/day and 61 mg/kg BW0.75/day (Table 6.2). In pigs with an activated immune 

system, the estimated APP synthesis of the sum of haptoglobin, CRP and pig-MAP 

ranged between 59 and 126 mg/kg BW0.75/day (Table 6.2). Assuming that the APP 

synthesis of haptoglobin, CRP and pig-MAP is approximately half of the total APP 

synthesized, the estimated total APP synthesis of pigs with an activated immune 

system ranged between 117 and 251 mg/kg BW0.75/day. The estimated difference in 

APP synthesis between healthy and challenged pigs was largest in PCV2 infected pigs, 

i.e. 112 mg/kg BW0.75/day, compared to pigs in the studies described in Chapter 4 and 

5.  

 

Table 6.2  Serum acute phase protein (APP) concentration and estimated synthesis 

rate of three APP in healthy pigs and in pigs with an activated immune 

system1. 

Challenge APP  

Healthy control 

pigs 

 Immune system 

activated pigs 

Difference 

in APP 

synthesis2, 

mg/kg 

BW0.75/d 

Serum, 

mg/mL 

APP 

synthesis, 

mg/kg 

BW0.75/d 

 Serum, 

mg/mL 

APP 

synthesis, 

mg/kg 

BW0.75/d 

Porcine 

circovirus 

type 2 field 

infection,  

n = 10  

(Parra et al., 

2006) 

haptoglobin 0.2 2.7  5.0 68.2 65.4 

CRP 0.005 0.4  0.14 12.3 11.9 

pig-MAP 0.8 10.7  3.3 45.2 34.5 

Sum  14   126 112 

        

Contrast in 

health 

status,  

n = 25   

haptoglobin 1.3 15.9  2 24.4 8.5 

CRP 0.363 28.8  0.442 35.0 6.2 

pig-MAP 1.3 
15.9 

 1.3 
15.9 0.0 

(Chapter 4) Sum  61   75 15 

        

CFA 

challenge, 

 n = 16 

(Chapter 5) 

haptoglobin 0.7 8.9  1.9 24.7 15.8 

CRP 0.160 13.6  0.266 22.5 8.9 

pig-MAP 0.2 
2.8 

 0.9 
11.4 8.6 

 Sum  25   59 33 
1APP synthesis rate was estimated using equation 6.1 in the computer program SMART 
(Simulation and Modelling Assistant for Research and Training), to maintain serum plasma 
concentrations of haptoglobin, CRP and pig-MAP as observed in healthy pigs and pigs with an 
activated immune system. The pigs had an average bodyweight of 50 kg (Parra et al., 2006), 25 
kg (Chapter 4) and 40 kg (Chapter 5), respectively. 
2Difference in APP synthesis rate between healthy pigs and pigs with an activated immune 
system.  
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Textbox II Calculations to determine the costs of APP production.  

To quantify the AA use for APP synthesis during immune system activation we calculated 

the amount of AA that is required for a porcine APP response, and the amount of muscle 

protein that needs to be mobilized to fulfil this need. First the synthesis rate of 

haptoglobin, CRP and pigMAP were calculated for healthy pigs and for pigs with an 

activated immune system in three different scenarios (Table 6.2), i.e. induced by a porcine 

Circovirus infection in a commercial farm (Parra et al., 2006), a contrast in health status 

(Chapter 4), or induced by a CFA challenge (Chapter 5). In the latter two scenarios only pigs 

fed a diet adequate in protein and AA were included. The synthesis rate of haptoglobin, 

CRP and pigMAP were calculated as the amount needed to sustain a particular pool size for 

APP (in mg), the latter calculated from measured serum APP concentrations and an 

assumed serum volume of 40 g/kg BW. In a steady state, APP synthesis equals APP decay, 

the latter calculated using the half-life of the APP. Therefore, APP synthesis (in mg/min) was 

calculated according to the equation below:  

APP synthesis = APPt0 * (1-APPt0 * e
-kt), 

Where APPt0 = the APP pool size (in mg) at time = 0, i.e. the time of interest at which a 

specific pool size should be maintained for each scenario, k=ln(2)/half-life (in min), and t = 

1, i.e. the first minute, thus resulting in the amount of APP synthesized in the first minute 

needed to maintain initial pool size;  

The half-life of APP was fixed at 19 h for CRP (Vigushin et al., 1993), 132 h for haptoglobin 

(Dobryszycka et al., 1979) and pigMAP, the latter value assumed to be similar as for 

haptoglobin, based on similarity in response pattern in time (Petersen, 2004). 

To calculate the difference in the AA quantity required for an APP response between 

healthy pigs and pigs with an activated immune system using the three scenarios 

mentioned in Table 6.2, first the additional quantity of AA required for each APP, i.e. 

haptoglobin, CRP and pig-MAP was calculated. This was done by multiplying the estimated 

difference in APP synthesis of each of the three APP, by its AA composition (g/g) (Table IIa). 

Next, the sum of the difference in AA quantity required for the synthesis of these three APP 

was multiplied by 2, assuming that haptoglobin, CRP and pig-MAP include half of the 

amount of total APP synthesized. Finally, it was assumed that the AA required would have 

to be delivered by degrading muscle protein. Therefore, the quantity of muscle protein to 

be mobilized for the synthesis of APP was calculated for each AA as the total amount of 

that AA used for APP synthesis (in g/day), divided by the concentration of that AA in the 

longissimus muscle (LM)(g/g).  
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Table IIa Amino acid (AA) composition of acute phase proteins and pig muscle (g AA/kg 

protein). 

AA Hapto-

globin1 

CRP1 Pig-

MAP2 

SAA1 AGP1 Albu-

min3 

LM muscle 

protein4 

Phe 30 105 46 103 64 50 40 

Tyr 70 50 25 67 74 33 39 

Trp 32 42 9 45 30 4 11 

Leu 82 91 100 29 101 93 79 

Ile 47 54 48 29 48 34 47 

Val 84 77 81 18 46 59 51 

Lys 92 71 49 33 75 100 85 

His 38 16 26 35 17 20 30 

Met 16 16 18 22 11 8 27 

Cys 24 13 3 0 18 58 10 

Thr 54 58 59 30 74 43 42 

Arg 28 36 54 116 52 45 59 

Pro 44 44 54 34 34 55 41 

Gly 44 46 66 61 19 29 46 

Ser 40 84 85 47 31 38 35 

Ala 54 31 75 106 36 83 57 

Abbreviations used: AGP, alpha- 1 acid glycoprotein; CRP, C-reactive protein; LM, 
longissimus muscle; pig-MAP, Pig major acute-phase protein; SAA, serum amyloid A. 
1Reeds et al. (1994). 
2The AA composition of Pig-MAP was calculated from the AA sequence 
(http://www.ncbi.nlm.nih.gov/protein/NP_001001537.1).  
3Carlsson et al. (1977) except for Trp, i.e. Saifer and Palo (1969). 
4Conde-Aguilera et al. (2010). 

 



 

145 

 

6 

According to the calculations in pigs in Table 6.3, Trp will be the first limiting AA for 

APP synthesis when muscle protein is mobilized, followed by Cys and Val. The 

estimated increase in muscle protein breakdown rate, i.e. muscle protein that is 

mobilized to release AA for APP synthesis, in pigs with an activated immune system 

compared to healthy pigs was 96, 181 or 526 mg/kg BW0.75/day for pigs in Chapter 4, 5 

or for pigs in the study of Parra et al. (2006), respectively (Table 6.3). In LPS challenged 

chickens, the estimated amount of muscle protein mobilized to support APP assuming 

dietary AA are not available was approximately 1000 mg/kgBW0.75/day (Barnes et al., 

2002). The reason why Trp may become first limiting instead of Phe as estimated in 

humans by Reeds et al. (1994), might be due to the slightly lower Phe concentration in 

haptoglobin and pig-MAP relative to the average concentration in APP used in the 

study of Reeds et al. (1994). Interestingly, APP seem to be also high in Ser, a non-

essential AA, which is also the case for immunoglobulins and is suggested to be 

potentially important for the immune system (MacRae, 1993; Sandberg et al., 2007).  
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Table 6.3 The calculated increase in the rate of AA utilization required for APP 

synthesis and increase in the muscle protein breakdown rate between 

healthy and challenged pigs.  

1The increase in the utilization rate of AAi required for each APP was calculated by multiplying 
the estimated difference in APP synthesis (Table 6.2) by the AA composition of each APP. To 
estimate the total costs of AA for APP synthesis, it was assumed that haptoglobin, CRP, and 
pig-MAP represent half of the total amount of APP synthesized after immune system activation. 
The sum of the difference in AAi quantity required for the synthesis of these three APP between 
healthy pigs and pigs with an activated immune system was therefore multiplied by 2.  
2The rate of muscle protein breakdown (mg/kg BW0.75d), needed to provide AAi for APP 
synthesis was calculated by dividing the amount of AAi required for APP (g/kg BW0.75/day) by 
the LM muscle content of AAi (g/g). 
3The amount of muscle protein that is broken down for APP synthesis, with Trp being first 
limiting for APP synthesis is underlined.  

 

In Chapter 5, a reduction in whole body protein deposition (6.25∙N retention based on 

N retention measurements) was observed of 0.63 g/kgBW0.75/day in pigs post 

compared to pre-challenge on a diet adequate in protein and AA. According to the 

calculations in the present Chapter, the increase in the rate of muscle protein 

breakdown was 0.181 g/kgBW0.75/day to provide enough Trp for the increase in APP in 

CFA-challenged pigs. Thus, of the observed decrease in whole body protein deposition 

based on N retention measures, approximately 30% (0.181/0.63) could be attributed to 

the loss of muscle protein for incorporation of AA into APP (Figure 6.5). In Chapter 4, 

pigs characterized as having a low health status had a greater N retention when 

 

 

 

AAi 

Porcine circovirus type 2 
in 50 kg pigs 

(Parra et al., 2006) 

 Contrast in health 
status in 25 kg pigs  

(Chapter 4) 

 CFA challenge in 40 kg 
pigs  

(Chapter 5) 

Increase 
in use of 
AAi for 
APP1  

Increase in 
muscle 
protein 

breakdown 
for APP2 

 Increase 
in use of 
AAi for 
APP1  

Increase in 
muscle 
protein 

breakdown 
for APP2 

 Increase 
in use of 
AAi for 
APP1  

Increase in 
muscle 
protein 

breakdown 
for APP2 

    mg/kg BW0.75/day    

Phe 9.6 239  1.9 45  3.8 94 
Tyr 12.1 310  1.9 47  3.8 94 
Trp 5.9 5263  1.0 963  1.9 1813 
Leu 19.8 250  2.9 31  6.3 78 
Ile 10.7 228  1.9 31  3.1 72 
Val 18.4 362  1.9 47  5.7 111 
Lys 17.0 201  2.9 29  5.0 61 
His 7.2 238  1.0 28  1.9 67 
Met 3.7 139  0.0 17  1.3 43 
Cys 3.7 368  1.0 57  1.3 109 
Thr 12.5 297  1.9 39  3.8 93 
Arg 8.0 140  1.0 15  2.5 43 
Pro 10.5 257  1.0 31  3.1 79 
Gly 11.4 248  1.0 29  3.8 76 
Ser 13.1 374  1.9 50  4.4 125 
Ala 13.0 228  1.0 23  3.8 65 
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N intake, 2.32 g/kg BW0.75/d (100%)

N digested 

N retained N urine

N 
feces 

(5%)

Adq
Pre

Adq
Post

2.2 
(95%)

2.2
(95%)

Adq
Pre

Adq 
Post

1.57
(68%)

1.47
(63%)

Adq 
Pre

Adq 
Post

0.64
(27%)

0.73 
(32%)

Reduction in whole body protein deposition with 0.63 g/kg BW0.75/d (N retention * 6.25)

Reduction in muscle protein attributed to increased APP synthesis with 0.18 g/kg BW0.75/d

expressed in g/(kg BW/day) than pigs characterized as having a high health status, thus 

the estimated quantity of muscle protein mobilized in order to supply AA for 

incorporation into APP was probably not high enough to affect protein deposition, or 

more likely, the observed compensatory growth counteracted the reduction in protein 

deposition related to APP synthesis.  

In conclusion, these calculations indicate that of the reduction in protein deposition 

observed in pigs challenged with CFA (Chapter 5), approximately 30% (0.181/0.63) 

could be attributed to a reduction in protein deposition due to muscle mobilization for 

incorporation of AA into APP (Figure 6.5). Moreover, these calculations indicate that in 

pigs the utilisation of Trp, Ser, Cys and Val for APP synthesis may increase, whereas 

especially Lys and Leu may become excessive.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Reduction in protein deposition between unchallenged (pre) and CFA 

challenged (post) pigs fed a diet adequate in protein and AA (Adq) 

(Chapter 5) and estimated reduction in muscle protein deposition, 

attributable to an increased muscle protein breakdown for APP synthesis.   

The difference in APP synthesis between high health and low health pigs in Chapter 4 

may be an underestimate of what can be observed under commercial conditions, as 

the APP serum concentration and the estimated APP synthesis for healthy pigs was 

relatively high in the study described in Chapter 4, compared to unchallenged pigs in 

Chapter 5 and the unchallenged SPF pigs in commercial pig farms in the study of Parra 

et al. (2006). The CFA challenge in Chapter 5 and PCV2 infection in the study of Parra et 

al. (2006), are both examples of acute rather than chronic conditions of immune system 

activation. In PCV2 infected pigs haptoglobin concentrations increased by 2400% 

(Parra et al., 2006), whereas in Chapter 5, haptoglobin concentrations increased by 

170%. To put this in perspective, as depicted in Table 1.2, serum haptogobin 



 

148 

 

6 

concentrations in pigs from commercial farms were increased compared to control to a 

similar extent as observed in Chapter 5, e.g. in case of a moderate inflammation 

induced by lower sanitary status and the absence of antibiotic-supplementation (150% 

greater compared to control, Le Floc'h et al. (2006)), in case of observed incidence of 

lung lesions at slaughter (380% greater compared to control, Pallarés et al., 2008) or 

due to growth retardation (60% greater compared to control, Chen et al., 2003). 

Moreover, commercial pigs can be continuously exposed to high levels of pathogen 

pressure suboptimal housing conditions, and other factors related to health status 

(Figure 1.3), which lead to chronic immune system activation. Compared to healthy 

commercially raised pigs, serum haptoglobin concentrations were greater in pigs with 

respiratory symptoms caused by M. hyopneumoniae infection (+1650%), or in pigs 

with signs of inflammation due to tail and ear bites, arthritis, rectal prolapse, or 

ulcerated umbilical hernia (+1900%; Parra et al., 2006). In addition, Clapperton et al. 

(2005b) observed a negative correlation between serum APP concentrations and daily 

weight gain or feed intake in 18 and 24 weeks old pigs. In summary, the calculated 

increased utilisation of AA related to an APP response in CFA challenged pigs in 

Chapter 5 seems relevant for comparison with the chronic conditions of immune 

system activation observed in practice. The calculated reduction in protein deposition 

related to APP synthesis was 181 mg/kg BW0.75/day in CFA challenged pigs compared 

to unchallenged pigs (Table 6.3). This is equivalent to a difference in ADG of 20 g/day 

in pigs with a BW of 50 kg, assuming that net protein deposition rate can be calculated 

as 0.17 ∙ ADG. Considering the variation in APP in pigs between commercial farms, this 

may even be an underestimate. In the studies described in Chapter 4 and 5, the feed 

intake was kept similar between healthy and immune challenged pigs. Therefore no 

estimate on the costs in relation to a reduction in feed intake could be made. In a 

situation of poor housing conditions, i.e. poor hygiene conditions, exposure to extreme 

temperatures and limited floor space allowance as described in the study of Pastorelli 

et al. (2012), the ADG was reduced with 16%, of which ¼ was related to an increased 

maintenance requirement and ¾ related to a reduction in feed intake. In contrast, in 

case of respiratory infections a reduction in ADG of 25% was observed, of which almost 

¾ was related to an increased maintenance requirement. The observed variation in 

ADG between commercial pig farms ranged between 570 and 930 g/day based on 

data from 887 Dutch pig farms (Figure 1.1) (AgroVision, 2012), i.e. a difference in ADG 

of almost 360 g/day. In this way, the reduction in ADG attributed to the APP response 

as observed in the study in Chapter 5, i.e. related to increased maintenance 

requirements for AA, would explain 6% (20/360) of the observed difference in mean 

ADG between Dutch farms. Considering these findings, the reduction in feed intake is 

likely a major contributor to the reduction in ADG during chronic immune system 

activation as a result of poor housing conditions, whereas an increase in maintenance 

requirement for AA associated with an APP response is expected to be a major 

contributor to the reduction in ADG in case of systemic inflammations as observed in 

case of respiratory diseases.  
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Associated metabolic changes related to immune system activation 

The increase in breakdown of muscle protein is part of the associated metabolic costs 

from catabolic processes, including a reduction in feed intake (Williams et al., 1997a; 

Johnson, 1998; Sandberg et al., 2006; Daiwen et al., 2008; Pastorelli et al., 2012), a 

decrease in protein synthesis (Zamir et al., 1992; Breuille, 1999), and an increased 

deamination of glucogenic AA (Klasing and Johnstone, 1991; Lochmiller and 

Deerenberg, 2000; Le Floc'h et al., 2004). These associated metabolic processes 

together can contribute to the reduction in protein deposition under conditions in 

which the immune system is activated. Moreover, it is suggested that besides 

cytokines, an increased glucocorticoid production by the adrenal gland released to the 

blood seems to play a major role in regulating muscle protein breakdown during 

inflammation (Hasselgren, 2000; Schakman et al., 2012). Glucocorticoids induce muscle 

protein breakdown during fasting, whereas insulin blocks this response in the fed state 

(Lecker et al., 1999). In line with our findings, Klasing (2013) suggested that a decreased 

appetite, an increased metabolic rate and metabolic inefficiencies dominate the 

nutritional costs of responses of the immune system. 

 

Optimal AA profile for growth vs. immunity 

In order to obtain insight in the optimal dietary AA profile for body protein deposition 

for growth and for immune system functioning, the estimated difference in AA 

utilization for APP production (Table 6.3) was combined with the observed changes in 

protein deposition and ILR of AA in pigs challenged with CFA (Chapter 5).  

The calculated increase in the rate of AA utilization required for APP synthesis (Table 

6.3) was 5.0 mg /kg0.75/day for Lys in CFA challenged pigs (Chapter 5; Table 6.3), 

whereas an additional 15.3 mg Lys /kg0.75/day is released due to the increased 

mobilization of body protein of 181 mg/kg BW0.75/day (Table 6.3). These estimated 

changes in AA utilization due to their increased incorporation into APP and increased 

oxidation of excessive AA are displayed for each AA in pigs fed an adequate protein 

and AA diet (Figure 6.5a) and a diet restricted in protein and AA (Figure 6.5b). The 

change in AA utilization related to protein deposition based on the observed N 

retention measurements in Chapter 5, were calculated by multiplying the observed 

reduction in protein deposition (0.63 g/kg BW0.75/day), post-challenge compared to 

pre-challenge, by the AA composition of whole body protein (Kyriazakis et al., 1993). 

The changes in ILR between pre- and post-challenge day 3 and 8 are expressed in 

mg/kg BW0.75/day (Figure 6.5c and d).  
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d. Res 

Post d 3 vs. pre 

Figure 6.5 The estimated changes in utilization of AA for protein deposition, based 

on N retention measurements, and for synthesis of APP, based on the 

difference in APP concentrations in blood on day 3 post-challenge (panel a 

and b) and in ILR of AA in pigs fed an adequate (Adq) and Restricted (Res) 

protein and AA diet (panel c and d) as affected by immune challenge 

(post- vs. pre-challenge) (Chapter 5)1,2. 

1The calculated increase in the rate of AA utilization for APP synthesis from Table 6.3, are 
displayed, and the release of excessive AA, i.e. the release of AA due to the increased 
mobilization of 181 mg body protein/kg BW0.75/day minus the use of AA for incorporation into 
APP (Table 6.3). 
2The changes in AA utilization related to protein deposition as based on the observed change 
in N retention, were calculated by multiplying the observed reduction in protein deposition 
post-challenge compared to pre-challenge by the AA composition of whole body protein 
(Kyriazakis et al., 1993). 
 

The ideal protein concept is underlined by the idea that there is an optimal pattern of 

dietary AA that correspond to the AA requirements of the animal, and the requirement 
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for all individual essential AA are expressed relative to the requirement for Lys as it is 

often the first limiting AA for body protein deposition for growth (Ball et al., 2007). In 

order to provide insight in the optimal dietary AA profile for body protein deposition 

and for immune system functioning of growing pigs, first the effect of immune system 

activation on Lys utilisation and requirement are discussed. The ILR for Lys was greater 

post-challenge compared to pre-challenge, which is likely related to a greater 

oxidation of Lys, considering the numerically lower pool size post-challenge, the lower 

body protein deposition, and the suggested excessive release of Lys from muscle 

protein mobilization for APP synthesis and resulting AA imbalance, especially in pigs 

fed a diet with restricted protein and AA levels (Fig 6.5b and d). Lys transport from 

muscle to the blood is facilitated in severe burn patients, comparable with the changes 

in whole body protein breakdown and synthesis observed in sepsis or trauma (Biolo et 

al., 2002). Based on literature it is likely that the absolute AA requirement for Lys 

decreases during immune system activation, as a consequence of a reduction in 

maximum protein deposition (Klasing and Barnes, 1988; Williams et al., 1997a,b,c; 

Webel et al., 1998).  

The ILR of Ile and Val are suggested to behave similar to that of Lys, their increase is 

suggested to be related to an increased oxidation as a result of AA imbalance. For Val, 

however, a greater utilisation for APP may also be likely, considering the greater 

numeric reduction in Val pool size compared to the change in pool size for Lys. In 

Chapter 4, the ILR for Ile tended to be higher in pigs with a low health status compared 

to pigs with a high health status, yet the occurrence of compensatory growth in these 

pigs fed an adequate AA supply complicated the interpretation of results (Chapter 4). 

The observed changes in ILR for Met, Phe and Tyr after immune system stimulation 

may be related to greater oxidation of these AA. The plasma pool size of Met was 

significantly greater at day 8 post-challenge compared to day 3 in pigs fed the 

adequate diet, which suggests a greater oxidation of Met, likely related to an increased 

conversion to Cys (Chapter 5). The requirement for sulphur AA expressed as SID 

sulphur AA: Lys is suggested to increase from 0.55 to 0.75 in pigs following an i.m. LPS 

challenge or by continuous pathogen exposure under commercial conditions (Kim et 

al., 2012). Other studies in pigs revealed that immune system activation by i.m. LPS 

administration increases the optimal dietary Met to Met + Cys ratio (Litvak et al., 2013). 

Rakhshandeh et al. (2014), however, estimated that the SID sulphur AA requirement in 

g/day to maximize protein deposition in LPS challenged pigs decreased with 8%, 

without observing an effect on efficiency of utilisation of Cys for body protein 

deposition. The authors suggested that immune system activation increased the 

maintenance requirements for sulphur AA as indicated by the change in intercept at 

zero protein deposition in a dose-response study. 

The ILR for Tyr and release of Tyr from breakdown tended to be lower at day 8 

compared to day 3 post-challenge, which may be related to decreased conversion of 

Phe to Tyr during inflammation (Capuron et al., 2011; Chapter 5).  

The ILR for Trp was numerically lower at day 3 post-challenge compared to pre-

challenge, and the pool size of Trp was similar at day 3 compared to pre-challenge in 
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pigs fed the adequate protein and AA diet and lower in pigs fed the restricted diet 

(Figure 6.5c and d), most likely indicating that Trp is the limiting AA post-challenge. 

The former is in line with the calculations in this thesis that suggest that Trp becomes 

limiting for APP synthesis. In a study of Le Floc’h (2010), the dietary Trp requirement 

expressed in g/kg to maximize ADG was not affected by moderate inflammation due 

to modification in housing conditions, and was suggested to be related to a decreased 

feed intake. In the latter study no difference in slope of the response in ADG to an 

increase in dietary Trp intake was observed between piglets suffering from moderate 

inflammation compared to unchallenged control, indicating that the efficiency in Trp 

utilization for body protein retention (growth) was not affected. In contrast, a reduced 

efficiency of Trp utilization for body protein deposition was observed in pigs 

challenged with LPS, which is possibly related to the increased oxidation of Trp 

through the IDO pathway to kynurenine (de Ridder et al., 2012).  

The numeric lower ILR for Leu post-challenge compared to pre-challenge is in line with 

the lower body protein deposition and associated change in AA utilisation (Figure 6.5 a 

and b), also considering the high proportion of Leu in whole body protein. Although 

the numeric lower pool size of Leu post-challenge compared to pre-challenge, may 

suggests that Leu becomes limiting for protein deposition, this seems unlikely. Leu is 

expected to become excessive rather than limiting for protein deposition, considering 

the reduction in body protein retention and the expected increase in Leu oxidation due 

to mobilization of muscle protein for APP synthesis, as estimated in Table 6.3. As the 

ILR of AA reflects the sum of AA needed for protein synthesis and AA oxidation, 

possibly the decrease in protein synthesis is outweighed by the increase in oxidation in 

case of Leu. Vaccination with diphtheria, pertussis and tetanus as an immune challenge 

in human raised the Leu oxidation and whole-body protein breakdown with 25 and 

20%, respectively, as measured in the isotopic enrichment in breath and blood 

following 13C labelled Leu and NaH13CO3 administration. No measurements on fluxes 

of other AA were made in their study (Kurpad et al., 1999).  

Unfortunately the ILR for Cys and Thr could not be determined in the studies described 

in the present thesis, although these AA are likely involved in immune system 

functioning.  

In conclusion, based on the calculations in the present thesis on muscle mobilization of 

AA for APP synthesis and their metabolic consequences, and the observed changes in 

ILR of a number of essential AA, it seems that in particular Trp may become limiting for 

immune system functioning, whereas Lys becomes excessive. Furthermore, indications 

were found that the utilization of Met, Tyr and Val for immune system functioning 

increases in pigs with an activated immune system.  
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General conclusions  

 The health status web that incorporates farm data on average daily gain, 

energy conversion ratio, mortality, the incidence of pleuritis, and the incidence 

of lung and liver abnormalities at slaughter is a useful tool to categorize 

growing-finishing pig farms on the basis of their health status (Chapter 2).  

 The dose-response technique to determine amino acid requirements using a 

decreasing dietary Lys supply strategy in time and a step length of 3 day with 

urinary N excretion as response criterion provides a simple, accurate technique 

to quantitatively estimate changes in amino acid requirements of individual 

meal-fed pigs (Chapter 3).  

 Pigs respond metabolically faster to an increase than to a decrease in a dietary 

amino acid imbalance. This needs to be taken into account when determining 

amino acid requirements of individual animals using a dose-response 

approach (Chapter 3). 

 The isotope dilution technique is appropriate for measuring changes in the 

metabolic utilization of various essential amino acids simultaneously and only 

requires short term in vivo measurements. This makes the technique 

appropriate for situations in which it is difficult to maintain a steady state e.g. 

in case of studying the effects of immune system activation (Chapter 4 and 5). 

 The occurrence of compensatory gain in pigs from a farm characterized as 

having a low status, proves that it is difficult to maintain a contrast in health 

status, and that pigs can adapt quickly to a change in housing conditions 

(Chapter 4).  

 The magnitude of the reduction in growth performance by immune system 

activation depends on the nature of the challenge. In the absence of effects on 

feed intake, health challenging conditions may affect performance due to 

alterations in post-absorptive amino acid metabolism, as also indicated by  

increased urinary N losses, and a tendency for a reduced N retention and a 

lower utilization of digestible N for N retention in pigs with a systemic 

inflammation (Chapter 5), or by a reduction in faecal nutrient digestibility as 

indicated for dry matter and N in pigs from a farm with a low health status 

(Chapter 4). 

 The observed changes in protein and amino acid metabolism after immune 

stimulation imply that especially tryptophan may become limiting during 

immune system activation, whereas lysine becomes excessive (General 

Discussion). Furthermore, the utilization of methionine, tyrosine, and valine for 

immune system functioning increases in pigs with an activated immune 

system, associated with an elevation in serum concentrations of acute phase 

proteins (Chapter 5).  

 A dietary amino acid or protein supply can modulate the acute phase response 

pre- and post-challenge, stressing the importance of an adequate dietary 

amino acid supply for appropriate functioning of the immune system of 

growing-finishing pigs (Chapter 4 and 5). 
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Directions for farm specific feeding and recommendations  

 Directions for farm specific feeding: 

o The health status web (Chapter 2) can be of use for feed manufacturers 

to develop targeted strategies to accommodate the nutritional 

requirements of pigs belonging to groups of farms sharing a particular 

health status, in turn improving efficiency of pig production.  

o Current requirement estimates for growing-finishing pigs are 

formulated to maximize protein deposition for growth and do not take 

into account the increased utilization of amino acids for immune 

functioning as induced by health challenging conditions. Reductions in 

performance in commercial farms likely arise both from acute 

inflammation triggered by infections and due to low grade sustained 

inflammation caused by poor sanitary conditions. In both cases, an 

adequate supply of dietary amino acids is required for immune system 

functioning and for body protein deposition for growth. Before 

implementing targeted feeding strategies for farms sharing a common 

health status, future research should be conducted to study the 

possible beneficial effects of increasing the dietary supply of 

particularly tryptophan, methionine, tyrosine, and valine relative to 

lysine for immune system function and for body protein deposition in 

pigs from farms with a different health status. In contrast, in pigs from a 

farm with a high health status, a deficient level of dietary methionine + 

cysteine, threonine and tryptophan, did not impair body weight gain, 

and N retention (Chapter 4). Thus, further optimization of diets for pigs 

from farms with a high health status may also be required.  

o Feeding strategies should not be aimed at preventing protein 

breakdown during disease, but at providing sufficient amino acids for 

body protein synthesis for growth and immune functioning. 

 Non-invasive techniques to determine the amino acid requirement of pigs from 

farms with a different health status may include a simplified dose-response 

technique (Chapter 3) using an oral dose of 15N urea and determination of 15N 

enrichment in saliva as a response parameter, and the detection of APP 

concentrations in saliva instead of blood.  
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Summary 

There is large variation in the production performance of commercial growing-

finishing pig farms. This variation even exists when pigs have a similar genetic 

background and fed similar diets. The variation in health status between growing-

finishing pig farms is suggested to be one of the major factors contributing to this 

large variation in pig performance. In commercial farms, pigs can be continuously 

exposed to high levels of (non-) pathogenic agents that can activate the immune 

system, and in turn affect protein and amino acid (AA) metabolism. Quantitative 

information about the AA requirements of pigs with an activated immune system is 

limited. This information enables feed manufacturers to optimize pig diets by adjusting 

to variation in health status, and thereby further improving pig performance. However, 

for the implementation of targeted feeding strategies, it is pivotal to classify farms on 

the basis of their health status. In addition, experimental challenge models are required 

to study the effect of immune system activation on AA metabolism, that are relevant to 

the contrast in health status observed in commercial pig farms. In addition, techniques 

are required which quantify changes in AA metabolism. The main objective of the 

present thesis was to quantify the effect of health status on AA requirements for body 

protein deposition and for immune system functioning of growing pigs.  

In the study described in Chapter 2 a health status web was developed as a concept 

for the classification of growing-finishing pig farms, based on data recorded in current 

commercial practice. Six traits were incorporated into a health status web, being 

average daily gain, energy conversion ratio, mortality, incidence of pleuritis, and 

percentage of rejected lungs and livers at slaughter over a period of one year. 

Performance data from 1074 and 783 Dutch pig farms, and abattoir data of 50208 and 

47426 farm deliveries to slaughterhouses, acquired over 2011 and 2012 respectively, 

were used as a representative sample for the Dutch growing-finishing pig population. 

For each individual farm, a score was calculated per trait by inter- and extrapolation 

using the data of the Dutch growing-finishing pig population as reference. The mean 

score over the six traits, was used to classify farms as having a suboptimal, 

conventional or high health status. The health status web can be of use for feed 

manufacturers to develop targeted strategies to accommodate the nutritional 

requirements of pigs belonging to particular groups of farms sharing a common health 

status, in turn improving efficiency of pig production.  

In the studies described in Chapter 3, 4 and 5 techniques were developed to 

determine AA requirements and to measure changes in AA metabolism. The study 

described in Chapter 3 indicated that the dose-response technique is a valuable 

method to determine AA requirements using a decreasing dietary lysine (Lys) supply 

strategy in time and a step length of 3 day with urinary nitrogen (N) excretion as 

response criterion. The dose-response technique is a simple, accurate technique to 

quantitatively estimate changes in AA requirements of individual meal-fed pigs. 

Nevertheless, a minimum time period of 21 days is required for each individual (a step 
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length of 3 days ∙ at least 7 dietary AA levels), which makes the technique 

inappropriate for situations in which it is difficult to maintain a steady state e.g. in case 

of studying the effects of immune system activation on the AA requirement. In 

addition, dose-response studies typically estimate the requirement of a single AA, but 

do not provide insight in simultaneous changes in the utilization of other AA. 

Measurements on the plasma irreversible loss rate (ILR, i.e. the amount of free AA that 

disappears per unit of time from the plasma pool for protein synthesis or oxidation) 

can be performed for multiple AA simultaneously, allowing estimation of a shift in 

metabolism of different AA. The combined measurements of whole body N retention 

and rates of ILR of AA from plasma, urea entry and appearance of 13C into plasma 

proteins (after a bolus of 13C labelled AA and 15N2 urea) provided insight into the 

consequences of immune system activation on AA metabolism. 

In the study described in Chapter 4 growing pigs of approximately 8 weeks old were 

obtained from a farm characterized as having a high health (n = 14) or low health (n = 

14) status, as assessed by the presence of antibodies against pathogens and sanitary 

status. Pigs were allocated to a diet adequate in essential AA or deficient in methionine 

(Met) + cysteine (Cys), threonine (Thr) and tryptophan (Trp). Low health status pigs had 

greater serum haptoglobin, lower serum albumin concentrations, and greater 

leukocyte counts in blood than high health status pigs, indicating a higher level of 

immune system activation at the start of the experiment. Total tract dry matter and N 

digestibility was lower in low health status pigs than in high health status pigs. Low 

health status pigs on a diet adequate in essential AA showed, however, compensatory 

body weight gain upon arrival, coinciding with a greater N retention and greater 

efficiency of N utilization compared to high health status pigs. Low health status pigs 

showed a greater plasma ILR for Lys, and a greater urea pool size than pigs with a high 

health status, indicating greater oxidation of AA due to an imbalance in AA, especially 

in low health status pigs fed a diet deficient in essential AA. The results suggested that 

the competition for AA between synthesis of proteins associated with immune system 

activation and body protein deposition is enlarged when dietary supply of Met + Cys, 

Thr and Trp is restricted.  

In the study described in Chapter 5 a total of 16 barrows received an adequate or 

restricted amount of dietary protein, and were challenged with intravenous (i.v.) 

complete Freund’s adjuvant (CFA) to induce a systemic lung inflammation. Serum acute 

phase proteins, N retention measurements, and the ILR of eight AA were determined 

pre- and post-challenge. CFA successfully activated the immune system, as indicated 

by a 2- to 4-fold increase in serum concentrations of APP. The CFA challenge increased 

urinary N losses and tended to reduce N retention in pigs fed an adequate amount of 

dietary protein, but not in pigs fed a restricted amount. The Met pool size was 

approximately 230% greater at day 8 post-challenge than at day 3 post-challenge in 

pigs fed an adequate amount of dietary protein. The ILR for valine (Val) was lower at 

day 8 than at day 3 in the post-challenge period. The observed changes in protein 

metabolism imply that especially Trp may become limiting during immune system 

activation, whereas Lys becomes excessive (General Discussion). Furthermore, the 
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utilization of Met, tyrosine (Tyr), and Val for immune system functioning seems to 

increase in pigs with a systemic lung inflammation. 

A dietary amino acid or protein supply can modulate the acute phase response pre- 

and post-challenge, stressing the importance of an adequate dietary amino acid supply 

for appropriate functioning of the immune system of growing-finishing pigs (Chapter 4 

and 5). 

Before implementing targeted feeding strategies for farms sharing a common health 

status, future research should be conducted to study the possible beneficial effects of 

increasing the dietary supply of particularly Trp, Met, Tyr, and Val relative to Lys for 

immune system function and for body protein deposition in pigs from farms with a 

suboptimal health status.  
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Samenvatting 

Er is een grote variatie in technische resultaten van commerciële vleesvarkensbedrijven. 

Deze variatie bestaat zelfs wanneer varkens eenzelfde genotype hebben en hetzelfde 

voer verstrekt krijgen. De variatie in gezondheidsstatus tussen vleesvarkensbedrijven is 

waarschijnlijk een van de belangrijkste factoren die bijdraagt aan de grote variatie in 

technische resultaten. Op commerciële bedrijven kunnen varkens continu blootgesteld 

worden aan hoge niveaus van (niet) pathogene stoffen, die het immuunsysteem 

kunnen activeren en vervolgens de eiwit- en aminozuurstofwisseling beïnvloeden. 

Kwantitatieve informatie over de aminozuurbehoefte van varkens met een geactiveerd 

immuunsysteem is schaars. Deze informatie stelt voerfabrikanten in staat om 

varkensvoer te optimaliseren op basis van variatie in gezondheidsstatus waarmee, door 

het verstrekken van aangepaste voeding, de dierprestaties verbeterd kunnen worden. 

Voor de implementatie van doelgerichte voerstrategieën is het classificeren van 

bedrijven op basis van gezondheidsstatus echter cruciaal. Daarnaast zijn 

onderzoeksmodellen nodig waarmee het effect van immuunsysteem activatie op de 

aminozuurstofwisseling onderzocht kan worden, die relevant zijn voor het contrast in 

gezondheidsstatus dat tussen commerciële varkensbedrijven wordt waargenomen. 

Daarnaast zijn onderzoekstechnieken vereist waarmee veranderingen in 

aminozuurstofwisseling kunnen worden gekwantificeerd. Het doel van dit proefschrift 

was om het effect van gezondheidsstatus op de aminozuurbehoefte voor aanzet van 

lichaamseiwit en voor het functioneren van het immuunsysteem van vleesvarkens te 

kwantificeren.  

In de studie beschreven in Hoofdstuk 2 is een gezondheidsstatus web ontwikkeld als 

concept waarmee vleesvarkensbedrijven geclassificeerd kunnen worden, gebaseerd op 

data die geregistreerd wordt op commerciële bedrijven. Zes kengetallen werden in het 

gezondheidsstatus web opgenomen, waaronder gemiddelde groei (per dier per dag), 

EW-conversie, uitval, incidentie van pleuritis en percentage van afgekeurde long en 

lever op basis van slachtgegevens, over een periode van één jaar. Technische 

resultaten van 1074 en 783 Nederlandse vleesvarkensbedrijven en gegevens van de 

slachterij van 50208 en 47426 bedrijfsleveringen, verkregen over respectievelijk 2011 

en 2012, werden gebruikt als data representatief voor de Nederlandse populatie van 

vleesvarkensbedrijven. Voor elk bedrijf werd een score per kengetal berekend door 

middel van inter- en extrapolatie waarbij de data representatief voor de Nederlandse 

populatie van vleesvarkensbedrijven als referentie werd gebruikt. De gemiddelde score 

van de zes kengetallen werd gebruikt om bedrijven te classificeren als hebbende een 

suboptimale, conventionele of hoge gezondheidsstatus. Het gezondheidsstatus web 

kan toegepast worden door voerfabrikanten in de ontwikkeling van doelgerichte 

voerstrategieën waarmee door het verstrekken van aangepaste voeding die aansluit bij 

de aminozuurbehoefte van varkens met eenzelfde gezondheidsstatus de productie-

efficiëntie verbeterd kan worden. 
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In de studies beschreven in Hoofdstuk 3, 4 en 5 zijn technieken ontwikkeld om de 

aminozuurbehoefte te bepalen en om veranderingen in aminozuurstofwisseling aan te 

tonen. Uit de studie beschreven in Hoofdstuk 3 bleek dat de dosisrespons techniek een 

geschikte techniek is voor het bestuderen van de aminozuurbehoefte met een 

aflopend Lysine (Lys) aanbod in de tijd, Lys titratiestappen van 3 dagen elk en N 

excretie in urine als respons criterium. De dosisrespons techniek is een simpele, 

accurate techniek waarmee veranderingen in aminozuurbehoefte van individuele 

maaltijd gevoerde varkens gekwantificeerd kan worden. Echter, een minimale periode 

van 21 dagen is vereist voor elk individuele varken (titratiestappen van 3 dagen maal 

ten minste 7 verschillende aminozuurniveaus). Dit maakt deze techniek ongeschikt in 

situaties waarin het moeilijk is een evenwicht te behouden, bijvoorbeeld bij het 

bestuderen van het effect van immuunsysteem activatie op de aminozuurbehoefte. 

Daarnaast kan met een dosisrespons studie de aminozuurbehoefte van één aminozuur 

per keer geschat worden, er wordt geen inzicht verkregen in de gelijktijdige 

veranderingen in het verbruik van andere aminozuren. De irreversibele verliezen (ILR, 

de hoeveelheid vrije aminozuren die verdwijnen uit de plasma pool per tijdseenheid 

voor eiwit synthese of voor oxidatie van aminozuren) kunnen gelijktijdig van meerdere 

aminozuren bepaald worden. Hierdoor kan een verschuiving in stofwisseling van 

verschillende aminozuren worden aangetoond. De gecombineerde metingen van de N 

aanzet in het lichaam, de hoeveelheid ILR van aminozuren uit het plasma, de ureum 

verschijningssnelheid en 13C verschijningssnelheid in plasma eiwitten (na een bolus van 
13C gelabelde aminozuren en 15N2 ureum) gaf inzicht in de consequenties van 

immuunsysteem activatie op de aminozuurstofwisseling.  

In de studie beschreven in Hoofdstuk 4 werden vleesvarkens van ongeveer 8 weken 

oud aangevoerd van een bedrijf gekarakteriseerd met een hoge gezondheidsstatus 

(n=14) of een suboptimale gezondheidsstatus (n=14), gebaseerd op de aanwezigheid 

van antistoffen in het bloed tegen specifieke pathogen en op hygiëne status. Aan de 

varkens werd een voerbehandeling verstrtekt met een adequaat of deficiënt aanbod 

aan de essentiële aminozuren methionine (Met) + cysteine (Cys), threonine (Thr) en 

tryptofaan (Trp). Bij de varkens met een suboptimale gezondheidsstatus werden 

hogere serum haptoglobine waarden, lagere serum albumine waarden en een hoger 

aantal leukocyten geconstateerd dan bij de varkens met een hoge gezondheidsstatus, 

duidend op een hogere mate van immuunsysteem activatie bij de start van het 

experiment. De schijnbare fecale droge stof en N verteerbaarheid van de rantsoenen 

was lager in varkens met een suboptimale gezondheidsstatus dan in varkens met een 

hoge gezondheidsstatus. Varkens met een suboptimale gezondheidsstatus die een 

adequaat aminozuuraanbod via het voer verstrekt kregen, vertoonden echter 

compensatoire groei na aankomst, geassocieerd met een hogere N retentie en grotere 

efficiëntie waarmee verteerbaar N aangezet werd in vergelijking met varkens met een 

hoge gezondheidsstatus. Varkens met een suboptimale gezondheidsstatus hadden een 

lagere plasma ILR voor Lys en een grotere ureum pool grootte dan varkens met een 

hoge gezondheidsstatus, indicatief voor een hogere aminozuuroxidatie door 

ongebalanceerde aminozuren. Dit was met name het geval in varkens met een 

suboptimale gezondheidsstatus die het deficiënte aminozuuraanbod via het voer 
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verstrekt kregen. De resultaten suggereren dat er een grotere competitie bestaat 

tussen het gebruik van aminozuren voor groei en lichaamseiwitaanzet enerzijds en 

gebruik voor het adequaat functioneren van het immuunsysteem anderzijds bij een 

deficiënt aminozuuraanbod van Met + Cys, Thr en Trp via het voer.  

In de studie beschreven in Hoofdstuk 5 ontvingen in totaal 16 borgen een adequaat 

of een beperkt eiwitaanbod via het voer en werden allen gechallenged met een 

intraveneuze toediening van complete Freund’s adjuvant (CFA) om een systemische 

longontsteking te induceren. Serum acute fase eiwitten, N retentie meting en de ILR 

van acht aminozuren werden pre- en post-challenge bepaald. CFA leidde tot 

immuunsysteem activatie, blijkend uit een twee- tot viervoudige verhoging in serum 

concentraties aan acute fase eiwitten. De CFA challenge verhoogde de N excretie in 

urine en tendeerde naar een verlaagde N retentie in varkens die een adequaat 

eiwitaanbod verstrekt kregen, maar niet in varkens die een beperkt eiwitaanbod 

verstrekt kregen. De grootte van de Met pool was ongeveer 230% groter op dag 8 

post-challenge dan op dag 3 post-challenge in varkens die een adequaat eiwitaanbod 

verstrekt kregen. De ILR voor valine (Val) was lager op dag 8 dan op dag 3 post-

challenge. De waargenomen veranderingen in aminozuurstofwisseling indiceren dat 

met name Trp limiterend kan worden bij immuunsysteem activatie, terwijl een Lys in 

overmaat aanwezig komt (Algemene Discussie). Bovendien lijkt het verbruik van Met, 

tyrosine (Tyr) en Val voor het functioneren van het immuunsysteem verhoogd in 

varkens met een systemische longontsteking.  

Het aanbod aan aminozuren of eiwit via het voer kan de acute fase response 

beïnvloeden, hieruit blijkt de noodzaak van het verstrekken van een adequaat 

aminozuuraanbod via het voer voor een passend functioneren van het 

immuunsysteem van vleesvarkens (Hoofdstuk 4 en 5).  

Voordat implementatie van doelgerichte voerstrategieën voor bedrijven met eenzelfde 

gezondheidsstatus kan plaatsvinden is vervolg onderzoek wenselijk waarin de mogelijk 

gunstige effecten van het verhogen van met name Trp, Met , Tyr en Val ten opzichte 

van Lys voor het functioneren van het immuunsysteem en voor lichaamseiwitaanzet in 

varkens van bedrijven met een suboptimale gezondheidsstatus worden onderzocht.   

 

 

 



 

176 

 

 

Acknowledgements 

Na een intensieve maar vooral leerzame periode van meer dan vier jaar is het zo ver. 

De laatste woorden van dit boekwerk komen op papier en die besteed ik graag aan het 

bedanken van alle mensen die mij met dit levenswerk geholpen hebben.  

Ik begin bij het begin, Frankie bedankt dat je me hebt overtuigd om te beginnen aan 

mijn PhD. Je hebt me de kracht gegeven om door te zetten, ik denk nog vaak aan je. 

Een PhD doe je niet alleen, ik heb samen mogen werken met een team van 

medestrijders waarvan ik ontzettend veel geleerd heb. Alfons, jij hebt me geleerd om 

niet altijd alle ballen in de lucht te houden, maar ook af en toe wat te laten landen. Je 

wist me met je kritische blik op het juiste pad te houden wanneer ik afdwaalde. Walter, 

bedankt voor je prikkelende manier van supervisie. Je hebt me aangestoken met het 

maken van (ingewikkelde) spreadsheets (wat tussen haakjes staat kun je net zo goed 

weglaten ). Je “Ja, en” mentaliteit heeft me geleerd verder te kijken en om uiteindelijk 

“Ja, of” te zeggen, beide hebben zeker bijgedragen aan de kwantiteit en de kwaliteit 

van het boekje. Joost, bedankt voor al je input, gelabeld en ongelabeld, ik heb er heel 

veel aan gehad! Carola, naast je kennis op wetenschappelijk gebied was jou 

praktijkgerichte ervaring in de varkenshouderij zeer nuttig, bedankt daarvoor. Hetty, ik 

ken niet veel mensen die zo snel kunnen praten en ook echt iets zinnigs zeggen. Met je 

netwerk was je de lijm van het spinnenweb. P.s. het peper en zout stel werkt ook nog 

steeds! Het aantal supervisors was wat aan de hoge kant, toch heb ik van ieder van 

jullie heel veel kunnen leren en kon ik bij jullie terecht als het nodig was. Wouter 

Hendriks bedankt voor het verstrekken van een goede werksfeer en voor je oog voor 

detail, ik doe graag nog een keer een weddenschap met je...  

Paranymph Panos, you were the help in times of need. Thank you for all your hard 

work, for sharing your knowledge on nutrition and immunology, and for all the fun we 

had! I really enjoyed working with you. When you put two chaotic persons together 

they will become more organized! You taught me how to keep overview, and when I 

need to glue fecal bags again I know where to find you! Yvonne bedankt voor je 

betrokkenheid in het project en succes met het afronden van je eigen PhD.  

Nathalie, thank you for your hospitable welcome at INRA, and for giving me the 

opportunity to learn from your work. I really enjoyed my short trip to France.   

Michel bedankt voor het harde werk op het lab. Jij hebt vele malen goed gemaakt wat 

de Speedvac liet afweten. Dit geldt ook voor Erika, Jane-Martine, Leon, Rick, Saskia, en 

Xuan. Betty en Yvonne bedankt voor het regelen van het papierwerk rondom het 

promoveren. Het heeft me veel ritjes naar Wageningen bespaard. 

Ik wil het Productschap Diervoeder en het Productschap Vee, Vlees en Eieren bedanken 

voor de medefinanciering van dit project. Alle leden van de stuurgroep 

Bedrijfsspecifieke Voeding wil ik bedanken voor het afreizen naar onze vele 

bijeenkomsten en jullie praktijkgerichte bijdrage. Ook de varkenshouders die 

betrokken waren in het project wil ik bedanken voor hun bijdrage, en de dierenartsen 



 

177 

 

 

voor het invullen van een enquête voor het definiëren van de gezondheidsstatus van 

vleesvarkensbedrijven. Ik wil betrokkenen vanuit de mengvoerindustrie en van Vion 

Food Group bedanken voor het verstrekken van data voor Hoofdstuk 1, soms moest ik 

wat geduld hebben, maar dan heb je ook wat.  

De mensen van DB (Centraal Veterinair Instituut, Lelystad) waaronder Albert, Andre, 

Gerald, Gerard, Gerrit Jan, Henk en Jan wil ik bedanken voor hun hulp bij de uitvoering 

van de proeven in Hoofdstuk 3 en 5. De watergevechten vergeet ik nooit meer! Gerrit 

Jan, bedankt voor je begeleiding en nuchtere kijk tijdens mijn eerste echte dierproef. 

Ruud en Piet bedankt voor jullie ondersteuning bij de dierproeven en Piet voor zijn 

pipetteer techniek! Ik wil Dirk en Jan bedanken voor het opereren van de varkens 

onder soms suboptimale omstandigheden en voor hun veterinaire kennis. Hans van 

Diepen, ik heb veel geleerd door samen met je de proefvoeders samen te stellen, iets 

dat elke keer weer een uitdaging is. Aura bedankt voor de leuke gesprekken in ons 

gezamenlijke kantoor en voor het wateren van de plantjes in mijn afwezigheid. Alle 

mensen van de proefaccommodatie de Haar (Wageningen), in het bijzonder Ben, 

Bjorge, Jarno, Ries en Sander bedankt voor het harde werk en voor jullie praktische 

inzicht, voor het ombouwen van de stallen met hygiëne sluizen en het inrichten van de 

operatieruimte voor de dierproef die in twee verschillende stallen plaats vond 

(Hoofdstuk 4) en de pilotstudies. Ook Ilona, Marcel, Sven, en Tamme bedankt voor alle 

voorbereidingen en het aanpoten in de respiratiecellen inclusief zweetpakken, 

handschoenen en mondmaskers. Dayenne, Janneke, Matthew, Sabrina, Suzan, Sander 

en Yvonne bedankt voor jullie getoonde interesse en enthousiasme in dit onderwerp 

en de bijdrage aan dit proefschrift, voor de hulp bij de dierproeven in de varkensstallen 

en voor de gezellige momenten samen. Ik vond het leuk en leerzaam om met jullie 

samen te werken.  

Sharon, bedankt voor het doorspitten van mijn referentielijst en voor alle hulp, zelfs tot 

in de late uurtjes! Han ook bedankt voor de finale check en voor het doorspitten van al 

deze vaktaal..... T en T bedankt voor de oppas, gezelligheid en Tessa bedankt voor het 

ontwerpen van de varkentjes op de voorkant van het boekje!  

Anke van Brakel, bedankt dat ik zelfs na mijn studie weer bij je kon aankloppen voor 

onderdak! Het heeft me heel veel reisuurtjes gescheeld. 

Dit boekwerk is zeker mede mogelijk gemaakt door Roy. Zonder je onvoorwaardelijke 

liefde was dit proefschrift er niet geweest. Liefde is het afstaan van je soeplepel, die 

echt heilig is voor een Kampman, voor het opvangen van varkensurine. Bedankt voor al 

je steun en je geduld, zelfs op momenten dat het vast heel moeilijk voor je was, 

bijvoorbeeld telkens als ik de BMW weer in een zwijnenstal had omgetoverd. Ik ga er 

aan werken ;) Ook wil ik mijn schoonouders bedanken, Bertus je boerenwijsheid komt 

nog steeds van pas. Ik wil mijn ouders bedanken voor het geven van 

onvoorwaardelijke liefde en voor alle han en span diensten in tijden van drukte. Familie 

en vrienden bedankt voor jullie luisterende oren en de gezelligheid! Femke, Lara, Bibi, 

Eef en Femke Z, bedankt voor de nodige afleiding! Tot slot wil ik mijn dochter Lynn 

bedanken voor het weerspiegelen van karaktereigenschappen en voor haar kunst om 

van de kleinste dingen te genieten, het werkt aanstekelijk. 



 

178 

 

 

About the author 

Curriculum Vitae 

Esther Kampman – van de Hoek was born on 20 August 1982 and grew up in Ommen, 

The Netherlands. She finished secondary school at the Vechtdal College (Hardenberg, 

The Netherlands) in 1999, whereafter she started her study Paraveterinary at the 

Groenhorst College (Barneveld, The Netherlands). In 2001 she started her study Animal 

Management at the Van Hall Instituut (Leeuwarden, The Netherlands), and obtained 

her Bachelor degree in 2004. From 2005 up to 2006 she worked fulltime as a 

nutritionist at Zodiac Zoos (Epe, The Netherlands). In 2006 she started her study Animal 

Sciences at Wageningen University and specialized in Animal Nutrition and Adaptation 

Physiology. For the specialization in Animal Nutrition she examined the effect of 

dietary fibre in dog feed on feed intake and behaviour, in collaboration with Gent 

University, Belgium. For the specialization in Adaptation Physiology she investigated 

the effect of fish oil supplementation to sows during gestation and lactation on the 

growth, learning ability, and behaviour of piglets. She participated in a summer course 

Organic Farming at Hohenheim University (Stuttgart, Germany). After her graduation in 

2008 she assisted in pig nutritional and behavioural studies at the Adaptation 

Physiology Group at Wageningen University. In 2009, she started her PhD at 

Wageningen UR Livestock Research and Wageningen University, commissioned by the 

Product Board Animal Feed (PDV) and the Product Board for Livestock, Meat and Eggs 

(PVE). The PhD thesis was aimed at quantifying the nutrient requirements of pigs as 

affected by health status. The results of the PhD are presented in the present thesis. In 

2013 she was awarded the NZV Travel Grant for the best paper presentation by the 

Nederlandse Zootechnische Vereniging (NZV). Since 2014 Esther is employed as a 

researcher pigs at the Agrifirm Innovation Center of Agrifirm (Apeldoorn, The 

Netherlands).  

  



 

179 

 

 

List of publications 

Peer reviewed scientific publications 

Bosch G, Beerda B, van de Hoek E, Hesta M, van der Poel AFB, Janssens GPJ, Hendriks 

WH (2009) Effect of dietary fibre type on physical activity and behaviour in 

kennelled dogs. Appl Anim Behav Sci 121, 32-41. 

 

Kampman - van de Hoek E, Gerrits WJJ, van der Peet-Schwering CMC, Jansman AJM, 

van den Borne JJGC (2013) A simple amino acid dose-response method to 

quantify amino acid requirements of individual meal-fed pigs. J Anim Sci 91, 

4788-4796. 

 

Kampman - van de Hoek E, Sakkas P, Gerrits WJJ, van den Borne JJGC, van der Peet-

Schwering CMC, Jansman AJM (2015) Induced lung inflammation and dietary 

protein supply affect N retention and amino acid metabolism in growing pigs. Br 

J Nutr 113, 414-425. 

 

Kampman - van de Hoek E, Jansman AJM, van den Borne JJGC, van der Peet-Schwering 

CMC, van Beers-Schreurs H, Gerrits WJJ. Dietary amino acid deficiency reduces 

the utilization of amino acids for growth in growing pigs following a period of 

low health as characterised by antibody presence and hygienic environment. 

Submitted to Journal of Nutrition. 

 

Kampman - van de Hoek E, Sakkas P, Gerrits WJJ, van Beers-Schreurs H, van der Peet-

Schwering CMC, van den Borne JJGC, Jansman AJM. A novel scoring system for 

the classification of the health status of growing-finishing pig farms. To be 

submitted. 

 

Conference proceedings and abstracts 

van de Hoek E, Borgijink S, van den Borne JJGC, Gerrits WJJ, Jansman AJM, van der 

Peet-Schwering CMC (2010) Titration studies to determine amino acid 

requirements of individual growing pigs. In Proceedings of the 3th international 

symposium on energy and protein metabolism and nutrition, 6-10 Sep 2010, 

Parma, Italy, 127, 115-116. 

 

van de Hoek E, Gerrits WJJ, van der Peet-Schwering CMC, Jansman AJM, van den Borne 

JJGC (2011) Development of a dose-response technique to determine amino acid 

requirements of individual growing pigs. In 36th Animal Nutrition Research forum, 

19 April, Heverlee, Belgium. pp. 51 - 52. 

 

van de Hoek E, van den Borne JJGC, Gerrits WJJ, van der Peet-Schwering CMC, Jansman 

AJM (2011) Health status and amino acid requirements in pigs. In Proceedings of 



 

180 

 

 

the international symposium “Nutrition and sustainable pig production”, 9 June  

2011, Wageningen, The Netherlands. 

 

van de Hoek E, van den Borne JJGC, Gerrits WJJ, van der Peet-Schwering CMC, Jansman 

AJM (2011) Evaluation of two models for immune system stimulation in pigs. In 

Proceedings of the Oskar Kellner symposium on metabolic flexibility in animal 

and human nutrition, 9-11 September 2011, Warnemünde, Germany.  

 

Kampman - van de Hoek E, Gerrits WJJ, van den Borne JJGC, van der Peet-Schwering 

CMC, van Beers-Schreurs H, Jansman AJM (2013) Challenge models to study the 

effect of immune system activation on amino acid metabolism in pigs. In 

Proceedings of the 4th international symposium on energy and protein 

metabolism and nutrition, 9-12 Sep 2013, Sacramento, USA, 134, 237-238. 

 

Kampman - van de Hoek E, Sakkas P, van den Borne JJGC, Gerrits WJJ, van der Peet-

Schwering CMC, van Beers-Schreurs H, Jansman AJM (2013) Impact of CFA and 

dietary protein supply on acute phase responses and nitrogen retention in pigs. 

In Proceedings of the 4th international symposium on energy and protein 

metabolism and nutrition, 9-12 Sep 2013, Sacramento, USA, 134, 367-368. 

 

Other Publications 

van de Hoek E, Gerrits WJJ, van den Borne JJGC, van der Peet-Schwering CMC, Jansman 

AJM (2011) Effect van energieaanbod op de optimal lysine : energie verhouding 

in voer van vleesvarkens. Validatie van de binnen-diertitratietechniek. 

Vertrouwelijk rapport 269, Wageningen UR Livestock Research, The Netherlands. 

 

van de Hoek E, Gerrits WJJ, van den Borne JJGC, van der Peet-Schwering CMC, Jansman 

AJM (2011) Ontwikkeling van de isotoopverdunningstechniek bij varkens: 

plasmametingen met 13C gelabelde aminozuren en 15N ureum. Vertrouwelijk 

rapport 270, Wageningen UR Livestock Research, The Netherlands. 

 

Kampman – van de Hoek E, Gerrits WJJ, van den Borne JJGC, van der Peet-Schwering 

CMC, van Beers-Schreurs H, Jansman AJM (2012) Selectie van een 

onderzoeksmodel voor het bestuderen van de invloed van immuunsysteem 

activatie op de aminozuurbehoefte van varkens. Vertrouwelijk rapport 335, 

Wageningen UR Livestock Research, The Netherlands.  

 

 

  



 

181 

 

 

Training and Supervision Plan1 

Description Year 

The Basic Package (3 ECTS2) 

 WIAS Introduction Course  2009 
Course on philosophy of science and/or ethics 2009 

  International conferences (4 ECTS ) 

 3rd Int. Symp. on Energy and Protein Metabolism and Nutrition, Parma, Italy 2010 
Oskar Kellner Symposium on Metabolic Flexibility in Human and Animal 

Nutrition, Warnemünde, Germany 2011 

Nutrition and sustainable pig production, Wageningen, The Netherlands 2011 

Developments in Phosphorus Nutrition in Pigs and Poultry, Wageningen, The 

Netherlands 2012 

4th Int. Symp. on Energy and Protein Metabolism and Nutrition, Sacramento, 

USA 2013 

  Seminars and workshops (3 ECTS) 

 WIAS Science Day, Wageningen, The Netherlands 2009 

Nutritionele en infectieuze factoren die de groei beinvloeden, Ewijk, The 

Netherlands 2009 

Int. Symposium Poultry Nutrition to manage future challenges, Wageningen, 

The Netherlands 2009 
Int. Symposium Progress in pig nutrition: health, envorinment and metabolism, 

Lelystad, The Netherlands  2009 

WIAS Science Day, Wageningen, The Netherlands 2010 

35th ANR Forum, Lelystad, The Netherlands 2010 

Dietary lysine and the importance of processing food- and feedstuffs seminar, 

Wageningen, The Netherlands 2010 

Mini symposium: How to write a world-class paper, Wageningen, The 

Netherlands  2010 

Scientific Research in Animal Welfare: Do We Make a Difference? Wageningen, 

The Netherlands 2011 

WIAS Science Day, Wageningen, The Netherlands 2011 

36th ANR Forum, Leuven Belgium 2011 

PDV Themabijeenkomst "Voeding en Darmgezondheid", Wageningen, The 

Netherlands 2011 

Seminar Learning how to eat like a pig, Wageningen, The Netherlands 2011 

WIAS Science Day, Wageningen, The Netherlands 2013 

    

                                                 
1
Completed in fulfilment of the requirements for the education certificate of the Graduate School 

WIAS (Wageningen Institute of Animal Science). 
2
One ECTS (European Credit Transfer System) equals a study load of 28 hours.  



 

182 

 

 

Presentations (6 ECTS) 

 Oral, Int. Symp. on Energy and Protein Metabolism and Nutrition, Parma, Italy 2010 

Poster, WIAS Science Day, Wageningen, The Netherlands 2011 

Oral, ANR Forum, Leuven, Belgium 2011 

Oral, Nutrition and sustainable pig production, Wageningen, The Netherlands 2011 
Oral, Oskar Kellner Symposium on Metabolic Flexibility in Human and Animal 

Nutrition, Warnemünde, Germany 2011 

Poster, 4th European Symposium on Porcine Health Management, Bruges, 

Belgium 2012 

Oral, WIAS Science Day, Wageningen, The Netherlands 2013 

Poster, 4th Int. EAAP Symp. on Energy and Protein Metabolism and Nutrition, 

Sacramento, USA 2013 

  In-Depth Studies (7 ECTS) 

 Advanced Immunology Course, Utrecht University, The Netherlands 2011 

Orientation on mathematical modelling in biology, Wageningen, The 

Netherlands 2011 

WIAS Design of Experiments, Wageningen, The Netherlands 2009 

Statistics for the Life Sciences, Wageningen, The Netherlands 2010 

Analytical work and possibilities within animal nutrition sciences, 

Wageningen, The Netherlands 2009 

  Professional Skills Support Courses (4 ECTS) 

 Techniques for Scientific Writing, Wageningen, The Netherlands 2010 

Teaching and supervising Thesis students, Wageningen, The Netherlands 2011 

Project and Time Management, Wageningen, The Netherlands 2010 

  Research Skills Training (6 ECTS)    

 Preparing own PhD research proposal 2009 

  Didactic Skills Training (9 ECTS) 

 Lecturing Veldwerkprakticum Gymnasiumleerlingen Pantarijn, Sprint-up 

project, Wageningen, The Netherlands 2010-2011 

Supervising 4 MSc students 2009-2012 

  Organisation of seminars and courses (1 ECTS) 

 Organizing WIAS Science Day 2010, Wageningen, The Netherlands 2009-2010 

  Education and Training Total 43 ECTS 

 

 

 

 



 

183 

 

 

List of abbreviations 

AA amino acids 
ACTH adrenocorticotropic hormone 
ADG Average daily gain 
AGP α1-acid glycoprotein  
ApoA1 apolipoprotein A1 
APP acute phase proteins 
B AA release from body protein breakdown 
BCAA branched-chained AA 
BRA Brachyspira dysentery 
BW body weight  
CFA Complete Freund’s Adjuvant  
CRP C-reactive protein  
ECF ethyl chloroformate ester 
ECR energy conversion ratio 
ECTS  European Credit Transfer System 
EMCV encephalomyocarditis virus 
EW energy intake (Dutch: energie waarde) 
GSH glutathione present in cells as thiol-reduced glutathione 
GSSG disulfide-oxidized glutathione  
HAPI health status acute phase index  
HHS high health status 
HSF III hepatocyte stimulating factor 
I AA absorption from the diet  
i.m.  intramuscular 
i.v.  intravenous (i.v.)  
IAAO indicator AA oxidation 
IDO indoleamine 2,3 dioxygenase 
IL interleukin 
ILR irreversible loss rate 
LHS low health status 
LIF leukaemia inhibitory factor 
LPS lipopolysaccharide 
MSPE mean square prediction error 
MYC Mycoplasma hypneumoniae 
N nitrogen 
NAPI  nutritional acute phase index  
O AA oxidation 
PCV2 Porcine Circovirus type 2 
Pig-MAP Pig major acute-phase protein  
PRRSV Porcine reproductive and respiratory syndrome virus 
Q the turnover of AA in plasma  
S AA use for protein synthesis 
s.c. subcutaneous 
SAA serum amyloid A 
SD standard deviation  
SE standard error 
SPF  specific pathogen free 
STREP Streptococcus suis 
TDO Trp 2,3-dioxygenase 
TNF tumour necrosis factor 
TO turpentine oil 
TTR tracer-to-tracee ratio 
WBC white blood cells 
WIAS Graduate School of Wageningen Institute of Animal Sciences 

 

 



 

184 

 

Colophon 

 

The research described in this thesis was financially supported by the Product Board Animal 

Feed, the Product Boards for Livestock and Meat, Wageningen University and Wageningen UR 

Livestock Research.  

 

Financial support from Agrifirm Innovation Center (Apeldoorn) for printing this thesis is 

gratefully acknowledged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cover design T. van de Hoek – Paarhuis and E. Kampman – van de Hoek 

Thesis design E. Kampman – van de Hoek 

Printed by GVO drukkers & vormgevers B.V. | Ponsen & Looijen, Ede, The Netherlands 


	voorkant
	PhD thesis EKampman_pdf version

